

Oracle Linux

Administering SELinux

F22957-19
June 2025

Oracle Linux Administering SELinux,

F22957-19

Copyright © 2019, 2025, Oracle and/or its affiliates.

Contents

Preface

Documentation License	v
Conventions	v
Documentation Accessibility	v
Access to Oracle Support for Accessibility	v
Diversity and Inclusion	v

1 About Administering SELinux in Oracle Linux

SELinux Package Descriptions	1-1
SELinux Utilities	1-3
Setting SELinux Modes	1-4
Disabling SELinux	1-5
Installing Policy Documentation	1-6

2 Administering SELinux Policies

Targeted Policy	2-1
Multi-Level Security Policy	2-1
Setting or Switching SELinux Policies	2-2
Customizing SELinux Policies	2-2

3 Administering SELinux Security Context

Displaying SELinux User Mapping	3-1
Displaying SELinux Context Information	3-2
Changing the Default File Type	3-3
Restoring the Default File Type	3-4
Relabeling a File System	3-4

4 Administering SELinux Users

Understanding Confined SELinux Users	4-1
Mapping Oracle Linux Users to SELinux Confined Users	4-2

Setting the Default User Mapping	4-3
Configuring the Behavior of Application Execution for Users	4-3

5 Extending SELinux Policies with Multi-Category Security

MCS Requirements	5-1
Enabling MCS for Users	5-2
Applying MCS Categories to a User	5-2
Applying MCS Categories to Files	5-3
Enabling the mcstrans Service	5-4

6 Troubleshooting Access-Denial Messages

Preface

[Oracle Linux: Administering SELinux](#) provides an overview of the SELinux feature and includes tasks for administering SELinux on Oracle Linux systems.

Documentation License

The content in this document is licensed under the [Creative Commons Attribution–Share Alike 4.0](#) (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions

The following text conventions are used in this document:

Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
<i>italic</i>	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at <https://www.oracle.com/corporate/accessibility/>.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit <https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab>.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce that increases thought leadership and innovation. As part of our initiative to build a more inclusive culture that positively impacts our employees, customers, and partners, we are working to remove insensitive terms from our products and documentation. We are also mindful of the necessity to maintain compatibility with our customers' existing technologies and

the need to ensure continuity of service as Oracle's offerings and industry standards evolve. Because of these technical constraints, our effort to remove insensitive terms is ongoing and will take time and external cooperation.

About Administering SELinux in Oracle Linux

This chapter describes SELinux and provides guidance on administering SELinux in Oracle Linux.

 Note:

This document applies to Oracle Linux 8 and later releases.

Traditional Linux security is based on a Discretionary Access Control (DAC) policy. In the DAC model of system security, access to resources such as files and processes is based solely on user identity and ownership. If malware or broken software is present on the system, it can do anything with files and resources that the user that started the process has permission to do. If the user is `root` or the application is running with elevated privileges (`setuid` or `setgid` to `root`), the process has `root`-access control over the entire file system.

To address this problem, the National Security Agency created Security Enhanced Linux (SELinux) to provide a greater level of control over files, processes, users, and applications in the Linux OS. The SELinux enhancement to the Linux kernel implements the Mandatory Access Control (MAC) policy, which lets you define a security policy that configures granular permissions for all users, programs, processes, files, and devices. The kernel's access control decisions are based on how sensitive the resources are from a security perspective, and not solely on the authenticated user identity.

When security-relevant access occurs, such as when a process opens a file, SELinux intercepts the operation in the kernel. If a MAC policy rule allows the operation, it continues. Otherwise, SELinux blocks the operation and returns an error to the process. The kernel checks and enforces DAC policy rules before MAC rules, so it doesn't check SELinux policy rules if DAC rules have already denied access to a resource.

SELinux Package Descriptions

SELinux contains several packages, each of which contain specific utilities that you can use to administer SELinux on Oracle Linux systems. Some packages are installed by default, while other packages are optional.

The following table describes the SELinux packages that are installed by default with Oracle Linux.

Package	Description
<code>policycoreutils</code>	Provides utilities such as <code>load_policy</code> , <code>restorecon</code> , <code>secon</code> , <code>setfiles</code> , <code>semodule</code> , <code>sestatus</code> , and <code>setsebool</code> for operating and managing SELinux.

Package	Description
libselinux	Provides the API that SELinux applications use to get and set process and file security contexts, and to obtain security policy decisions.
python3-libselinux	Contains Python bindings for developing SELinux applications.
selinux-policy	Provides the SELinux Reference Policy, which is used as the basis for other policies, such as the SELinux targeted policy.
selinux-policy-targeted	Provides the SELinux targeted policy, where objects outside the targeted domains run under DAC.
libselinux-utils	Provides the <code>avcstat</code> , <code>getenforce</code> , <code>getsebool</code> , <code>matchpathcon</code> , <code>selinuxconlist</code> , <code>selinuxdefcon</code> , <code>selinuxenabled</code> , and <code>setenforce</code> utilities.

The following table describes useful SELinux packages that aren't installed by default. Install any required packages using the `dnf` command.

Package	Description
mcstrans	Translates SELinux levels, such as <code>s0-s0:c0.c1023</code> , to an easier-to-read form, such as <code>SystemLow-SystemHigh</code> .
policycoreutils-python-utils	Provides Python utilities for operating SELinux, such as <code>audit2allow</code> , <code>audit2why</code> , <code>chcat</code> , and <code>semanage</code> .
policycoreutils-sandbox	Provides the <code>sandbox</code> utility for creating SELinux sandboxes to run commands in a tightly confined SELinux domain.
selinux-policy-mls	Provides a strict Multi-Level Security (MLS) policy as an alternative to the SELinux targeted policy.
selinux-policy-doc	Provides manual pages for many SELinux policy elements.
setroubleshoot	Lets you view <code>setroubleshoot-server</code> messages by using the <code>sealert</code> command.
setroubleshoot-server	Translates access-denial messages from SELinux into detailed descriptions that you can view on the command line using the <code>sealert</code> command.
setools-console	Provides the Tresys Technology SETools distribution of tools and libraries, which you can use to analyze and query policies, monitor and report audit logs, and manage file context.

For more information, see the [SELinux Project Wiki](#) and the `selinux(8)` and other SELinux command manual pages.

SELinux Utilities

The following table describes the main utilities that you can use to administer SELinux and the packages that contain them.

Utility	Package	Description
audit2allow	policycoreutils-python-utils	Generates SELinux policy <code>allow_audit</code> rules from logs of denied operations.
audit2why	policycoreutils-python-utils	Generates SELinux policy <code>don't_audit</code> rules from logs of denied operations.
avcstat	libselinux-utils	Displays statistics for the SELinux Access Vector Cache (AVC).
chcat	policycoreutils-python-utils	Changes or removes the security category for a file or user.
chcon	coreutils	Changes the SELinux context of files and directories.
fixfiles	policycoreutils	Fixes the security context for file systems.
getenforce	libselinux-utils	Reports the current SELinux mode.
getsebool	libselinux-utils	Reports SELinux Boolean values.
load_policy	policycoreutils	Loads a new SELinux policy into the kernel.
matchpathcon	libselinux-utils	Queries the system policy and displays the default security context that's associated with the file path.
restorecon	policycoreutils	Resets the security context on one or more files.
restorecond	policycoreutils	Daemon that watches for file creation and sets the default file context.
runcon	coreutils	Runs a command within the specified context.
sandbox	policycoreutils-sandbox	Runs a command within an SELinux sandbox.
sealert	setroubleshoot-server, setroubleshoot	Acts as the user interface to the <code>setroubleshoot</code> system for diagnosing and explaining SELinux AVC denials and providing recommendations on how to prevent such denials.
sechecker	setools-console	Checks SELinux policies.

Utility	Package	Description
secon	policycoreutils	Displays the SELinux context from a file, program, or user input.
sediff	setools-console	Compares SELinux policies.
seinfo	setools-console	Queries SELinux policies.
selinuxconlist	libselinux-utils	Displays all SELinux contexts that are reachable by a user.
selinuxdefcon	libselinux-utils	Displays the default SELinux context for a user.
selinuxenabled	libselinux-utils	Indicates whether SELinux is enabled.
semanage	policycoreutils-python-utils	Manages SELinux policies.
semodule	policycoreutils	Manages SELinux policy modules.
semodule_deps	policycoreutils	Displays the dependencies between SELinux policy packages.
semodule_expand	policycoreutils	Expands a SELinux policy module package.
semodule_link	policycoreutils	Links SELinux policy module packages together.
semodule_package	policycoreutils	Creates a SELinux policy module package.
sesearch	setools-console	Queries SELinux policies.
sestatus	policycoreutils	Displays the SELinux mode and the SELinux policy that are in use.
setenforce	libselinux-utils	Changes the SELinux mode.
setsebool	policycoreutils	Sets SELinux Boolean values.
setfiles	policycoreutils	Sets the security context for one or more files.

Setting SELinux Modes

SELinux runs in either `enforcing` or `permissive` mode:

`enforcing`

The kernel denies access to users and programs if they aren't granted permissions by SELinux security policy rules. All denial messages are logged as AVC (Access Vector Cache) denials. This is the default mode.

`permissive`

The kernel doesn't enforce security policy rules but SELinux sends denial messages to a log file. This lets you see what actions would be denied if SELinux is running in `enforcing` mode. Use this mode to help you implement SELinux in a system effectively.

To display the current SELinux mode, run the following command:

```
getenforce
```

To set the current mode to enforcing, run the following command:

```
sudo setenforce enforcing
```

To set the current mode to permissive, run the following command:

```
sudo setenforce permissive
```

 Note:

The value that you set for a mode using `setenforce` doesn't persist across reboots. To configure the default SELinux mode, edit the configuration file for SELinux, `/etc/selinux/config`, and set the value of the `SELINUX` directive to `enforcing`, or `permissive`.

Disabling SELinux

You can fully disable SELinux by setting the `selinux` kernel parameter to zero.

 Important:

Oracle doesn't recommend disabling SELinux in production systems. Use `permissive` mode instead.

1. Set the required kernel parameter.

Use the `grubby` utility to set the `selinux` parameter to zero:

```
sudo grubby --update-kernel ALL --args selinux=0
```

2. Restart the system.

3. Check that SELinux is disabled.

Run the `getenforcing` command and verify that the output is `Disabled`:

```
getenforcing  
Disabled
```

4. (Optional) Reenable SELinux

To reenable SELinux, enter the following command and restart the system:

```
sudo grubby --update-kernel ALL --remove-args selinux
```

Installing Policy Documentation

SELinux is complex, with many options for configuring access, using policies. You can obtain detailed information about the available policies from the manual pages that the `selinux-policy-doc` package provides. This task shows you how to access this information.

The policy documentation also contains information about users and roles. For example, you can read more about the SELinux unprivileged `user_u` user and the `user_r` role in the `user_selinux(8)` manual page. The policy documentation outlines the restrictions that apply for different security contexts and what Boolean options are available to customize the policy for an environment.

1. Install the package:

```
sudo dnf install -y selinux-policy-doc
```

2. Update the manual page database:

```
sudo mandb
```

3. Browse the SELinux policy manual pages. To get a complete listing of all the SELinux manual documentation, run:

```
man -k _selinux
```

Administering SELinux Policies

An SELinux policy describes the access permissions for all users, programs, processes, and files, and for the devices they act upon. You can configure SELinux to implement either the Targeted Policy or the Multi-Level Security (MLS) Policy. This chapter describes these SELinux policies and how to administer them.

Targeted Policy

A targeted policy applies access controls to a limited number of processes that are believed to be high risk targets in an attack on a system. Targeted processes run in their own SELinux domain, known as a *confined domain*, which restricts access to files that an attacker could exploit. If SELinux detects that a targeted process is trying to access resources outside the confined domain, it denies access to those resources and logs the denial.

Only specific services run in confined domains. Examples are services that listen on a network for client requests, such as `httpd`, `named`, and `sshd`, and processes that run as `root` to perform tasks on behalf of users, such as `passwd`. Other processes, including most user processes, run in an *unconfined domain* where only DAC rules apply. If an attack compromises an unconfined process, SELinux doesn't prevent access to system resources and data.

The following table shows examples of SELinux domains.

Domain	Description
<code>init_t</code>	<code>systemd</code>
<code>httpd_t</code>	HTTP daemon threads
<code>kernel_t</code>	Kernel threads
<code>syslogd_t</code>	<code>journald</code> and <code>rsyslogd</code> logging daemons
<code>unconfined_t</code>	Processes that are started by Oracle Linux users run in the unconfined domain

Multi-Level Security Policy

A Multi-Level Security (MLS) policy applies access controls to different levels of processes with each level having different rules for user access. Users can't obtain access to information if they don't have the correct authorization to run a process at a specific level.

In SELinux, MLS implements the Bell-LaPadula (BLP) model for system security, which applies labels to files, processes, and other system objects to control the flow of information between security levels. In a typical implementation, the labels for security levels might range from the most secure, `top secret`, through `secret`, and `classified`, to the least secure, `unclassified`.

For example, under MLS, you might configure a program labeled `secret` that can write to a file that's labeled `top secret`, but can't read from it. Similarly, you would configure the same program to read from and write to a file labeled `secret`, but only to read `classified` or `unclassified` files. So, information that passes through the program can flow upwards through the hierarchy of security levels, but not downwards.

The MLS policy is provided by the `selinux-policy-mls` package.

 Caution:

Oracle doesn't recommend using the MLS policy on a system that's running the X Window System. The X Window System is a complex system that lets many clients connect to a single X server, and it doesn't have the necessary security features to enforce MLS policy correctly.

 Note:

Switching to the MLS policy might restrict access for certain confined domains, and the system is likely to generate more SELinux denial messages. These denials can be frequent and difficult to resolve. SELinux denials are often more common when using the MLS policy for the following main reasons:

- MLS disables the unconfined policy module.
- MLS uses sensitivity levels.

Setting or Switching SELinux Policies

You can configure the default policy type by editing the `/etc/selinux/config` file and setting the value of the `SELINUXTYPE` directive to `targeted` or `mls`.

 Note:

You can't change the policy type of a running system.

Before switching from one policy to another, change the SELinux mode to `permissive`. On first boot after changing the policy type, SELinux might relabel all files, which can take some time. Relabeling while in `enforcing` mode might prevent confined domains from accessing files, which would stop the system from starting correctly.

Customizing SELinux Policies

This task shows you how to customize an SELinux policy by turning features on or off using Boolean values. Any changes that you make are effective immediately.

- To display the Boolean values and their descriptions, use the following command:

```
sudo semanage boolean -l
```

SELinux boolean	State	Default	Description
abrt_anon_write	(off , off)		Allow abrt to anon write
abrt_handle_event	(on , on)		Allow abrt to handle event

```
abrt_upload_watch_anon_write  (on , on)  Allow abrt to upload watch
anon write
auditadm_exec_content        (on , on)  Allow auditadm to exec
content
...
```

- You can use the `getsebool` and `setsebool` commands to display and set the value of a specific Boolean.

```
getsebool boolean
sudo setsebool boolean on|off
```

The following example shows how you to display and set the value of the `abrt_anon_write` Boolean:

```
getsebool abrt_anon_write
abrt_anon_write --> off
sudo setsebool abrt_anon_write on
getsebool abrt_anon_write
abrt_anon_write --> on
```

- To persist the new Boolean value across reboots, specify the `-P` option to `setsebool`, for example:

```
sudo setsebool -P abrt_anon_write on
getsebool abrt_anon_write
ftp_home_dir --> on
```

Administering SELinux Security Context

Under SELinux, all file systems, files, directories, devices, and processes have an associated security context. For files, SELinux stores a context label in the extended attributes of the file system. The context contains more information about a system object: the SELinux user, their role, their type, and the security level. SELinux uses this context information to control access by processes, Linux users, and files. This chapter provides information about how to administer SELinux Security Context.

You can specify the `-z` option with certain commands (`ls`, `ps`, and `id`) to display the SELinux context by using the following syntax:

`SELinux user:Role:Type:Level`

SELinux user

An SELinux user account complements a regular Linux user account. SELinux maps every Linux user to an SELinux user identity that's used in the SELinux context for the processes in a user session. SELinux usernames often end with `_u`. Several Linux users can be mapped to the same SELinux user.

Role

In the Role-Based Access Control (RBAC) security model, a role acts as an intermediary abstraction layer between SELinux process domains or file types and an SELinux user. Processes run in specific SELinux domains, and file system objects are assigned SELinux file types. SELinux users are authorized to perform specified roles, and roles are authorized for specified SELinux domains and file types. A user's role defines which process domains and file types the user can access, and hence which processes and files the user can access. The convention in SELinux is that role names end in `_r`.

Type

All rules in SELinux are based on types. A type defines an SELinux file type or an SELinux process domain. Processes are separated from each other by running in their own domains. This separation prevents processes from accessing files that other processes use, and prevents processes from accessing other processes. The SELinux policy rules define the access that process domains have to file types and to other process domains.

Level

A level is an attribute of Multi-Level Security (MLS) and Multi-Category Security (MCS). An MLS range is a pair of sensitivity levels, written as `low_level-high_level`. The range can be abbreviated as `low_level` if the levels are identical. For example, `s0` is the same as `s0-s0`. Each level has an optional set of security categories to which it applies. If the set is contiguous, it can be abbreviated. For example, `s0:c0.c3` is the same as `s0:c0,c1,c2,c3`.

Displaying SELinux User Mapping

This task shows you how to view the mapping between SELinux and Linux user accounts using the `semanage` command.

1. List all SELinux users.

Run the following command to show all SELinux user accounts:

```
seinfo -u
```

The output is similar to the following:

```
Users: 8
guest_u
root
staff_u
sysadm_u
system_u
unconfined_u
user_u
xguest_u
```

2. Show which Linux user accounts are mapped to which SELinux user accounts.

Run the following command to display the mappings:

```
sudo semanage login -l
```

The output is similar to the following:

Login Name	SELinux User	MLS/MCS Range	Service
__default__	unconfined_u	s0-s0:c0.c1023	*
root	unconfined_u	s0-s0:c0.c1023	*
system_u	system_u	s0-s0:c0.c1023	*

By default, SELinux maps Linux users other than `root` and the default system-level user, `system_u`, to the Linux `__default__` user, and in turn to the SELinux `unconfined_u` user. The MLS/MCS Range is the security level used by Multi-Level Security (MLS) and Multi-Category Security (MCS).

Displaying SELinux Context Information

This task shows how to view the SELinux context information associated with different resources.

- To display the context information that's associated with all files in a directory, use the `ls -Z` command:

```
ls -Z
```

The output is similar to the following:

```
-rw-----. root root system_u:object_r:admin_home_t:s0 anaconda-ks.cfg
-rw-r--r--. root root unconfined_u:object_r:admin_home_t:s0 config
-rw-r--r--. root root system_u:object_r:admin_home_t:s0 initial-setup-
ks.cfg
```

```
drwxr-xr-x. root root unconfined_u:object_r:admin_home_t:s0 jail
-rw-r--r--. root root unconfined_u:object_r:admin_home_t:s0 team0.cfg
```

- You can view the context of a specific file or directory. For example, to view the context of the `/etc/selinux/config` file, enter the following command:

```
ls -Z /etc/selinux/config
```

The output is similar to the following:

```
-rw-r--r--. root root system_u:object_r:selinux_config_t:s0 /etc/selinux/
config
```

- To display the context information that's associated with processes, use the `ps -Z` command:

The output is similar to the following:

```
ps -Z
```

LABEL	PID	TTY	TIME
CMD			
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023	3038	pts/0	00:00:00
su			
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023	3044	pts/0	00:00:00
bash			
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023	3322	pts/0	00:00:00
ps			

- To display the context information that's associated with the current user, use the `id -Z` command:

```
id -Z
```

The output is similar to the following:

```
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
```

Changing the Default File Type

This task shows you how to change the default file type for a file system hierarchy. In the example, you have chosen to use a different `DocumentRoot` directory for `httpd` than the default `/var/www/html`.

1. Specify the new default file type for the directory hierarchy.

To change the default file type of the directory hierarchy `/var/webcontent` to `httpd_sys_content_t`, use the `semanage` command:

```
sudo /usr/sbin/semanage fcontext -a -t httpd_sys_content_t "/var/
webcontent(/.*)?"
```

Running this command adds the following entry to the `/etc/selinux/targeted/contexts/files/file_contexts.local` file:

```
/var/webcontent(/.*)? system_u:object_r:httpd_sys_content_t:s0
```

2. Apply the new file type to the directory hierarchy:

Use the `restorecon` command to apply the new file type to the entire directory hierarchy:

```
sudo /sbin/restorecon -R -v /var/webcontent
```

Restoring the Default File Type

In this task, you reverse the change you made in the previous task, restoring the default file type of the directory hierarchy `/var/webcontent`.

1. Delete the existing file type definition.

Use the `semanage` command to delete the file type definition for the directory hierarchy from the `/etc/selinux/targeted/contexts/files/file_contexts.local` file:

```
sudo /usr/sbin/semanage fcontext -d "/var/webcontent(/.*)?"
```

2. Apply the default file type.

Use the `restorecon` command to apply the default file type to the entire directory hierarchy:

```
sudo /sbin/restorecon -R -v /var/webcontent
```

Relabeling a File System

If you see an error message that contains the string `file_t`, this probably means that the file system has an incorrect context label. This task shows you how to relabel the file system.

1. Create the `.autorelabel` file.

Create an empty file called `.autorelabel` in the root of the file system:

```
sudo touch /.autorelabel
```

Or, you can run the following command:

```
sudo fixfiles -F onboot
```

Either method performs a full SELinux relabel of the file system on the next boot, to ensure all files have the correct SELinux context labels according to policy.

2. Reboot the system.

Administering SELinux Users

As described in [Administering SELinux Security Context](#), each SELinux user account complements a regular Oracle Linux user account. SELinux maps every Oracle Linux user to an SELinux user identity that's used in the SELinux context for the processes in a user session.

SELinux users form part of a SELinux policy that's authorized for a specific set of roles and for a specific MLS (Multi-Level Security) range, and each Oracle Linux user is mapped to an SELinux user as part of the policy. Therefore, Linux users inherit the restrictions and security rules and mechanisms placed on SELinux users. To define the roles and levels of users, the mapped SELinux user identity is used in the SELinux context for processes in a session.

By default, users are mapped to the `unconfined_u` SELinux user when they're created. With that setting, SELinux functions in a nonrestrictive capacity. To improve system security, you can change the default user mapping and start applying different user mappings for different user requirements on the system.

Understanding Confined SELinux Users

SELinux includes several confined users that are restricted to different security domains and have predefined security rules and mechanisms to control what a user is allowed to do. SELinux policies include rules that apply to the different roles that a user can belong to, and these are used to enforce what operations are allowed for each SELinux user.

By convention, SELinux users have the suffix `_u`, such as `user_u`.

Oracle Linux includes several predefined SELinux users that you can use to restrict system access immediately:

`unconfined_u`

A largely unrestricted SELinux user often set as the default SELinux user mapping for less restrictive environments. In a hardened environment, no system user accounts must map to this user.

`root`

The SELinux user meant for the root account.

`sysadm_u`

The SELinux user with direct system administrative role assigned. This user isn't intended to run nonadministrative commands.

`staff_u`

The SELinux user for users that need to run both nonadministrative commands (through the `staff_r` role) and administrative commands (through the `sysadm_r` role).

`user_u`

The SELinux user for nonprivileged accounts that don't need to run any administrative commands.

system_u

The SELinux user for system services.

xguest_u

The SELinux user for guest access to a system and provisioned with limited access.

Users are confined to their SELinux domains, and policies control the types of things that they can do on the system. The following table illustrates how certain predefined security rules work for different users.

SELinux User	SELinux Domain	Permit Running su and sudo?	Permit Network Access?	Permit Logging in Using X Window System?	Permit Executing Applications in \$HOME and /tmp?
guest_u	guest_t	No	Yes	No	No
staff_u	staff_t	sudo	Yes	Yes	Yes
system_u	ssystem_t	Yes	Yes	Yes	Yes
user_u	user_t	No	Yes	Yes	Yes
xguest_x	xguest_t	No	Firefox only	Yes	No

SELinux users are distinct and managed separately from standard Oracle Linux system users within SELinux. You can map Oracle Linux system user accounts to different SELinux users to apply a more restrictive security policy framework to any of the system user accounts.

Mapping Oracle Linux Users to SELinux Confined Users

By default, users are mapped to the `unconfined_u` SELinux user when they're created. Users can check their security context by running:

```
id -Z
```

The output is similar to the following:

```
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
```

A system administrator can map an Oracle Linux user to an SELinux confined user to apply different levels of access. For example, to map the `oracle` user to the SELinux `user_u` user, use the `semanage` command:

```
sudo semanage login -a -s user_u oracle
```

When you create a user, you can specify the SELinux user mapping when you run the `useradd` command. For example, to add a privileged `oracleadmin` user that maps onto the SELinux `staff_u` user, run:

```
sudo useradd -Z staff_u oracleadmin
```

Setting the Default User Mapping

This task shows how to change the default user mapping from `unconfined_u` to another SELinux user.

On most newly installed systems, the default user mapping is set to the `unconfined_u` SELinux user to provide a less restrictive environment for general use. In some environments where strict policy enforcement is required, such as when conforming to a Security Technical Implementation Guide (STIG), you might need to map all Oracle Linux user accounts to appropriate confined SELinux users so that a system is better protected by the SELinux policy rules that you're enforcing.

1. Change the default user mapping.

To change the default user mapping so that any user accounts that don't have explicit SELinux user mappings are confined to the SELinux `user_u` user, run:

```
sudo semanage login -m -s user_u -r s0 __default__
```

2. Verify the change.

Check that the `__default__` user mapping is no longer set to the `unconfined_u` SELinux user by running:

```
semanage login -l
```

Note that the unconfined security context continues to apply to users after this change until the user session or the process is restarted under the new context. To enforce this change at a system-wide level, reboot the system.

Configuring the Behavior of Application Execution for Users

To help prevent flawed or malicious applications from changing a user's files, you can use Boolean values to specify whether users can run applications in directories in which they have write access, such as the user's home directory hierarchy and `/tmp`.

The following settings let Oracle Linux users in the `guest_t` and `xguest_t` domains run applications in directories they can write to:

```
sudo setsebool -P allow_guest_exec_content on
sudo setsebool -P allow_xguest_exec_content on
```

The following settings prevent users in the `staff_t` and `user_t` domains from running applications in directories they can write to:

```
sudo setsebool -P allow_staff_exec_content off
sudo setsebool -P allow_user_exec_content off
```

For more information, see [Customizing SELinux Policies](#).

Extending SELinux Policies with Multi-Category Security

Multi-Category Security (MCS) extends the SELinux targeted and Multi-Level Security (MLS) policies so you can assign category labels to processes and files. With MCS, files can be accessed only by processes or users that are assigned to the same categories that apply to the file. MCS is applied after all other security checks have been performed. Thus MCS is typically used to further restrict access. Category tags range from `c0` to `c1023`, but you can define text labels for these category values to make them easier to work with. The `mcstrans` service can be used to translate between the category values and text labels when handling system inputs and outputs.

While MLS can be used to define different security levels or sensitivity for data, MCS can be used to group data for different purposes. For example, you might run the same service for several different projects on a system and data within each project that might have different levels of sensitivity. Users must only be granted access to data that meets their sensitivity clearance for a particular project. MCS enforces this restriction by associating a category tag with each project. The resulting security context of a file or process is a combination of SELinux user, SELinux role, SELinux type, MLS sensitivity level, and MCS category.

Table 5-1 Matrix to illustrate data sensitivity and category application

Sensitivity	Category			
	Not specified	Accountancy	Marketing	Development
Unclassified	<code>s0</code>	<code>s0:c0</code>	<code>s0:c1</code>	<code>s0:c2</code>
Internal	<code>s1</code>	<code>s1:c0</code>	<code>s1:c1</code>	<code>s1:c2</code>
Restricted	<code>s2</code>	<code>s2:c0</code>	<code>s2:c1</code>	<code>s2:c2</code>
Highly Restricted	<code>s3</code>	<code>s3:c0</code>	<code>s3:c1</code>	<code>s3:c2</code>

In the example table, a highly privileged user in the accountancy department (`c0`) with a requirement to access highly restricted data (`s3`) might have the following security context defined:

```
user_u:user_r:user_t:s3:c0
```

MCS Requirements

Before a system can be configured for MCS, check the following:

- SELinux must be configured in `enforcing` mode.
- SELinux must be configured to use either the `targeted` or `mls` policies.
- The `policycoreutils-python-utils` package must be installed so you can use the `chcat` and `semanage` commands.
- The `setools-console` package can be installed to use the `seinfo` command for verification.

- SELinux confined user mappings are typical when using MCS. For example, nonprivileged users are assigned to `user_u`, while privileged users are assigned to `staff_u`. Define user mappings before configuring MCS to make the process easier. See [Administering SELinux Users](#).

Enabling MCS for Users

MCS is active by default in SELinux, but isn't configured for users. To configure MCS for users, you must create a policy module that adds a rule to assign the `mcs_constrained_type` attribute to the user domain.

1. Create a file that contains the rule.

For example:

```
echo '(typeattribute set mcs_constrained_type (user_t))' >  
local_mcs_user.cil
```

2. Load the new policy module.

Use the `semodule` command to load the new policy module:

```
sudo semodule -i local_mcs_user.cil
```

3. Verify the change.

Use the `seinfo` command to check that the `mcs_constrained_type` is now applied to the `user_t` domain.

```
seinfo -xt user_t|grep mcs_constrained_type
```

You can add the `mcs_constrained_type` attribute to any other SELinux domain in the same way.

Applying MCS Categories to a User

You can control a user's access to resources by applying MCS categories to the user. You can define category ranges that are available to each SELinux user and you can specify subranges for each Oracle Linux user account that's mapped to an SELinux user.

 Note:

See [Administering SELinux Users](#) for more information on the different SELinux users and how to manage mappings between these users and standard Oracle Linux users.

Defining the category ranges for an SELinux user

To specify the category ranges that are available to the SELinux `user_u` user, use the `semanage` command. For example:

```
sudo semanage user -m -rs0:c0,c1-s0:c0.c9 user_u
```

Use category numbers `c0` to `c1023`, or category aliases if you're using the `mcstrans` service. In this example, the category range of `c0` to `c9` is assigned to the `user_u` user.

Specifying individual categories for an SELinux user

For each Oracle Linux user that's mapped to an SELinux user, for which you have defined a category range, you can specify the individual categories that apply. For example, to apply the `c1` category to the `oracle` user you can run:

```
sudo semanage login -m -rs0:c1 oracle
```

The categories that you assign to users must be within the range that you defined for the mapped SELinux user.

Changing the categories that apply to an SELinux user

You can also use the `chcat -l` command to change which categories apply to a user. For example, you can add the `c2` category to `oracle` and remove the `c1` category:

```
sudo chcat -l -- +c2,-c1 oracle
```

The command uses `--` to indicate that the `-` character isn't to be interpreted as an option switch.

See the `chcat(8)` and `semanage-user(8)` manual pages for more information.

Applying MCS Categories to Files

Any user that has access rights to a file can apply an MCS category to the file if the category is assigned to that user. By applying a category to a file, a user can block access to that file for other users on the system that don't have the same category assigned to them. Note that as with all SELinux policies, standard Linux discretionary access controls are also in effect, so even if a user has category access to a file, the user might still be unable to access the file if the file permissions and mode prevent access for that user.

A user can set the categories that apply to a file if the categories that the user sets are also assigned to the user. File categories are set using the `chcat` command. For example, to add the `c1` and `c2` categories to a file, the user can run:

```
chcat -- +c1,+c2 /path/to/file
```

To remove the `c1` category, the user can run:

```
chcat -- -c1 /path/to/file
```

The command uses `--` to indicate that the `-` character isn't to be interpreted as an option switch. See the `chcat(8)` manual page for more information.

You can check which categories are assigned to a file by listing the file's security context:

```
ls -lZ /path/to/file
```

New files and directories, by default, inherit the SELinux type of their parent directories. You can check which categories are assigned to the parent directory of a file by running:

```
ls -dZ /path/to/file
```

Enabling the mcstrans Service

The `mcstrans` service automatically translates MCS category and MLS sensitivity values against a map of human-readable text labels that are defined as editable configuration entries.

If you're using a targeted policy, the configuration file is in `/etc/selinux/targeted/setrans.conf`. If you're using an `mls` policy, the configuration file is in `/etc/selinux/mls/setrans.conf` or as individual configuration files within `/etc/selinux/mls/setrans.d`.

The `mcstrans` service can make it easier for users to make sense of category and sensitivity values returned by the system for different SELinux outputs and to set appropriate values when defining security contexts. See the `setrans.conf(8)` and `mcstransd(8)` manual pages for more information.

To install and enable the `mcstrans` service, run:

```
sudo dnf install -y mcstrans
sudo enable --now mcstrans
```

If you update any of the `setrans.conf` files to create custom mappings, you must restart the `mcstrans` service:

```
sudo systemctl restart mcstrans
```

You can verify that translations are applied by running:

```
chcat -L
```

The command returns a list of the current mappings applied by the `mcstrans` service.

Troubleshooting Access-Denial Messages

The decisions that SELinux makes about access are stored in the Access Vector Cache (AVC). If the auditing service (`auditd`) isn't running, SELinux logs AVC denial messages to `/var/log/messages`. Otherwise, the messages are logged to the `/var/log/audit/audit.log` file. If the `setroubleshootd` daemon is running, more readable versions of the denial messages are also written to `/var/log/messages`.

If you have installed the `setroubleshoot` and `setroubleshoot-server` packages, the `auditd` and `setroubleshoot` services are running. If you're using the X Window System, you can also use the `sealert -b` command to run the SELinux Alert Browser, which displays information about SELinux AVC denials. To view the details of the alert, select **Show**. To view a recommended solution, select **Troubleshoot**.

Use the `ausearch` tool to search the `/var/log/audit/audit.log` file, filtering for `avc` (Access Vector Cache) messages, which indicate SELinux denials:

```
sudo ausearch -m avc
```

The output of `ausearch` resembles the following:

```
type=AVC msg=audit(1688509311.123:345): avc: denied { read } for
pid=1234 comm="nginx" name="index.html" dev="sda1" ino=56789
scontext=system_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:user_home_t:s0 tclass=file
```

You can further filter by time, user, or executable if required. For example, the following command finds events in the last 10 minutes:

```
sudo ausearch -m avc -ts recent
```

The following example finds events involving a specific process:

```
sudo ausearch -m avc -exe /usr/sbin/httpd
```

The main causes of access-denial problems include the following:

- **Context labels for an application or file are incorrect.**

A solution might be to change the default file type of the directory hierarchy. For example, change the default file type from `/var/webcontent` to `httpd_sys_content_t`:

```
sudo /usr/sbin/semanage fcontext -a -t httpd_sys_content_t "/var/
webcontent(/.*)?"
sudo /sbin/restorecon -R -v /var/webcontent
```

- **A Boolean that configures a security policy for a service is set incorrectly.**

A solution might be to change the value of a Boolean. For example, let `httpd` access user home directories by turning on `httpd_enable_homedirs`:

```
sudo setsebool -P httpd_enable_homedirs on
```

- **A service is accessing a port to which a security policy prohibits access.**

If the service's use of the port is valid, a solution is to use `semanage` to add the port to the policy configuration. For example, to set the Apache HTTP server to listen on port 8000:

```
sudo semanage port -a -t http_port_t -p tcp 8000
```

- **An update to a package causes an application to behave in a way that breaks an existing security policy.**

`audit2allow` is a command line tool used in SELinux environments to help administrators create custom SELinux policy rules based on audit log entries of denied actions.

You can use the following command to view the reason why an access denial occurred:

```
sudo audit2allow -w -a
```

When you see an SELinux denial, don't immediately use `audit2allow` to create a local policy module. First, check for any file labeling issues. Then, verify that there hasn't been a change in process configuration that hasn't been updated for SELinux. Start troubleshooting with these checks before considering policy changes.

If you're satisfied that the denial isn't because of file labelling or process configuration problems, you can use the `audit2allow` tool to generate SELinux policy rules that enable the denied actions. Run the following command to create the required `.te` (type enforcement) and `.pp` (policy package) files:

```
sudo audit2allow -a -M module
```

You can then use the generated policy package file to stop the error from reoccurring by running the following command:

```
sudo semodule -i module.pp
```

 Caution:

This procedure is typically intended to make package updates function until an updated policy is available. If used incorrectly, you can create potential security holes in the system.