
Adding Custom Data to the Oracle Solaris
11.4 StatsStore and System Web Interface

E61819-03
March 2024

Adding Custom Data to the Oracle Solaris 11.4 StatsStore and System Web Interface,

E61819-03

Copyright © 2018, 2024, Oracle and/or its affiliates.

Primary Author: Cathleen Reiher, Alta Elstad

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Copyright © 2018, 2024, Oracle et/ou ses affiliés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont
concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf stipulation expresse de votre
contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et
par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le
désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par
la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle
Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par
écrit.

Si ce logiciel, la documentation du logiciel, les données (telles que définies dans la réglementation "Federal
Acquisition Regulation") ou la documentation afférente sont livrés sous licence au Gouvernement des Etats-Unis, ou à
quiconque qui aurait souscrit la licence de ce logiciel pour le compte du Gouvernement des Etats-Unis, la notice
suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are
"commercial computer software," "commercial computer software documentation," or "limited rights data" pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation
of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed, or
activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii)
other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for
such services. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des
informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque,
notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou
matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de
secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions
optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l'utilisation de ce logiciel ou matériel pour des applications dangereuses.

Oracle®, Java, MySQL et NetSuite sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre
nom mentionné peut être une marque appartenant à un autre propriétaire qu'Oracle.

Intel et Intel Inside sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont
utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Epyc, et le
logo AMD sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée
de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant
accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute
responsabilité et excluent toute garantie expresse ou implicite quant aux contenus, produits ou services émanant de
tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses
affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages
causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée
dans un contrat entre vous et Oracle.

Pour plus d'informations sur l'engagement d'Oracle pour l'accessibilité de la documentation, visitez le site Web Oracle
Accessibility Program, à l'adresse : http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

 Using This Documentation

Product Documentation Library vii

Feedback vii

1 Adding Data to the Oracle Solaris StatsStore

Adding Data: Steps and Best Practices 1-1

How to Add Data 1-1

Type of Data to Provide 1-2

Data Type 1-2

Components of the Application 1-3

Components of a Statistic 1-3

Topology Map 1-3

Interfaces for Providing Statistic Values 1-4

Comparing Methods for Providing Statistic Values 1-5

The sstore_data_attach() Interface 1-5

The sstore_data_update() Interface 1-6

The sstore_data_bulk_update() Interface 1-6

The sstore_data_attach_histogram() Interface 1-6

Removing Resources and Statistics 1-7

Troubleshooting Providing Statistics 1-7

How to Force a Reread of all Metadata 1-8

2 Defining Custom Statistics

Adding Resources and Statistics to the Statistics Store Namespace 2-1

Using Statistics Store Metadata Files 2-1

Defining Resources 2-2

Adding Static Resources 2-3

Adding Resources Dynamically 2-4

Defining Partitions 2-4

Mapping Topology 2-5

Creating a Collection 2-5

iv

Creating Visualizations 2-6

Sheet and Visualization Design Best Practices 2-6

How to Create a Visualization 2-8

How to Create a Visualization by Using the System Web Interface 2-9

Authorizing Access to Resources and Statistics 2-10

Restricting Access to Sensitive Data 2-11

Restricting Capture of Data that is Expensive to Capture 2-12

Authorizing the Ability to Add and Remove Resources and Statistic and Event
Data 2-14

Authorizing the Ability to Configure a Collection 2-14

3 Adding Simple Data Values to the Statistics Store

Populate the Statistics Store Namespace 3-1

Create an Application that Writes Statistic Values 3-3

C Version 3-3

Python Version 3-4

Update and View Statistic Values 3-5

Create a Graph to Visualize the Statistic Values 3-6

4 Specifying Resources

Collect Data for Statically Allocated Resources 4-1

Add Resources to the Class Metadata 4-1

Modify the Application to Save Statistic Values for Each Resource 4-3

View Statistic Values for Statically Allocated Resources 4-4

Create a Graph to Visualize Resource Statistics 4-5

Collect Data for Dynamically Allocated Resources 4-7

Modify the Metadata to Omit Resource Names 4-8

Modify the Application to Create Resources Dynamically 4-9

How to Add Resources Dynamically 4-10

5 Separating Data Into Partitions

Add Partition Metadata 5-1

Modify the Statistics Metadata File 5-1

Create a Statistic Mapping File 5-2

View Partitioned Statistic Values 5-3

Create a Graph to Visualize Partitioned Statistic Values 5-3

v

6 Adding Any Type of Data to the Statistics Store

Create the Class and Statistic Definition Files 6-1

Create an Application that Updates Statistic Values 6-2

Record Statistic Values 6-3

Index

vi

Using This Documentation

Product Documentation Library
Documentation and resources for this product and related products are available at http://
www.oracle.com/pls/topic/lookup?ctx=E37838-01.

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

vii

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/goto/docfeedback

1
Adding Data to the Oracle Solaris StatsStore

Adding Data: Steps and Best Practices
Following are the steps for adding data to the StatsStore and making that data easy to use in
the Oracle Solaris System Web Interface.

How to Add Data
1. Decide what data to provide.

Provide only data that users are likely to want in order to use the application as effectively
as possible or to troubleshoot problems. Adding all available data to the statistics store
might cause administrators to spend more time finding the data they really need.

• What are the most meaningful metrics for this application?

• What information are users most likely to need to diagnose a performance
degradation?

• Can you provide useful data about how the application is interacting with users, with
other applications, or with the operating system?

2. Decide the best form in which to provide the data.

In most cases, you should provide counter data. See Type of Data to Provide for more
information.

3. Define the statistics.

Create metadata files that define your statistics as described in Adding Resources and
Statistics to the Statistics Store Namespace.

• Give each statistic a descriptive SSID (id) and an informative description.

• Set the value of stability to stable so that all users can browse the data. Similarly,
be very judicious about specifying authorizations required to read data. Anyone who
is authorized to use your application should be able to browse the data about the
application.

• Specify any resources, partitions, and topology mappings that are needed.

See the ssid-metadata(7) man page for best practices for naming resources, statistics,
and partitions.

4. Modify your application to update values for the statistics that you created in
metadata.

Use the interfaces described in Interfaces for Providing Statistic Values.

If you are not using static resources, your application might need to create resources as
well. See Adding Resources Dynamically.

5. Record data values.

1-1

Recording data values causes the values to be stored in the statistics store so that
users can retrieve current and historical values. When your application writes data
values, each value overwrites the previous value unless the values are being
requested.

• Users can record values by displaying a sheet that contains those statistics in
the System Web Interface while the application is writing the values.

• Users can record values by running the sstore capture command while
the application is writing the values.

• An application can record values by calling sstore_data_read() while the
application is writing the values.

• To persistently record values whenever the values are written, create and
enable a collection as described in Creating a Collection.

6. Create charts and graphs of the data.

How will your users use this information? Decide how the information should be
organized into groups of charts and graphs for most effective use in the System
Web Interface. What type of visualization is most appropriate for this data?

Typically, each statistic is shown on a separate visualization. Related statistics can
be shown on the same visualization if the statistics are in the same units and can
be shown in the same time scale.

Related events can be included on the same visualization with other data for
visualizations with a time axis.

Will your users want to see some system-provided statistics along with your
application statistics? You can include visualizations for those statistics on the
same sheet with your application statistics for easier visual correlation.

Create metadata files that describe your visualizations as described in Creating
Visualizations. Give each visualization and sheet a useful title and description.

Type of Data to Provide
This section discusses the kinds of data that are most useful for analyzing
performance issues.

This section also discusses how to organize related data.

• An application might have multiple components that each need to report the same
statistics.

• A statistic might need multiple components to fully explain the total value.

• Statistics might benefit from topology mapping to enable administrators to more
easily find the data they need.

Data Type
Counts are the most efficient type of data to provide. For example, you might provide
the number of transactions or number of bytes read. Count data will be monotonically
increasing and not very useful for troubleshooting. You can use the built-in operators to
show the count data as another type of data such as the rate of change or percent
utilization. See Chapter 4, Performing Operations on Statistic Values in Using Oracle
Solaris 11.4 StatsStore and System Web Interface for descriptions of the built-in
operators.

Chapter 1
Adding Data: Steps and Best Practices

1-2

https://docs.oracle.com/cd/E37838_01/html/E56520/operations.html
https://docs.oracle.com/cd/E37838_01/html/E56520/operations.html

Components of the Application
Does the application have subcomponents for which users might want separate data? Does
the application provide the same data about different parts of the application? Define these
subcomponents or parts as resources and provide the same statistics for each resource. For
example, nscd provides the same set of statistics for resources such as ipnodes, networks,
and services. The nscd StatsStore resources are the resources for which nscd provides
caching.

For a class that has resources defined, any class-level statistics (statistics that are defined
directly on the class) should also be defined on each resource.

Class-level statistics are a useful way to combine data across all resources so that users do
not need to apply operations to the SSIDs. For example, for a class that has resources
defined, the class-level statistic could be the sum or average of that same statistic for each
resource.

The //:class.cpu//:stat.usage class-level statistic shows the total usage of all CPUs in
the system, and the //:class.cpu//:res.id/0//:stat.usage resource statistic shows the
total usage for one CPU. The value of //:class.cpu//:stat.usage is equal to the value
of //:class.cpu//:res.id/*//:stat.usage//:op.sum. The nscd application does not
provide any class-level statistics because users do not want to combine all positive hits, for
example, for ipnodes, networks, services, and other nscd resources.

Another reason to define resources for your application is to use the resources to provide
topology mapping so that users can access the statistics data in different ways.

Do not define resources that are not interesting to users. For example, CPUs are exposed as
resources, but DIMMs are not.

Components of a Statistic
Can the value of a statistic be subdivided into useful parts such that the sum of the values of
the parts accounts for one hundred percent of the value of the statistic? Define a partition for
such a statistic. If the sum of the values of the parts does not equal the value of the
unpartitioned statistic, do not create a partition for the statistic.

For example, //:class.cpu//:stat.usage shows the total usage of all CPUs in the system,
and //:class.cpu//:stat.usage//:part.mode shows the total idle, inter, kernel, stolen,
and user usage of all CPUs in the system.
Similarly, //:class.cpu//:res.id/0//:stat.usage shows the total usage of CPU 0,
and //:class.cpu//:res.id/0//:stat.usage//:part.mode shows the total idle, inter,
kernel, stolen, and user usage of CPU 0. The value
of //:class.cpu//:res.id/0//:stat.usage is equal to the sum of the values of all parts of
the //:class.cpu//:res.id/0//:stat.usage//:part.mode partition.

Partitions of a statistic should have approximately equal capacity. If the capacities vary
greatly, consider providing a normalized statistic. For example, users should be able to easily
see that a 1GB network card is 90% utilized and a 10GB network card is 10% utilized.

Topology Map
Will topology mapping of some statistics benefit your users? You need resources to provide
topology. Users can list the resources of a class to explore the topology without capturing the
data.

Chapter 1
Adding Data: Steps and Best Practices

1-3

Interfaces for Providing Statistic Values
Use one of the following interfaces to write data values to the statistics store from your
applications:

• sstore_data_attach
• sstore_data_update
• sstore_data_bulk_update
All of these interfaces are available for both C and Python. See the libsstore(3LIB),
sstore_data_attach(3SSTORE), libsstore(python), and sstore(3rad) man pages.

All of these interfaces perform the following tasks:

• Enable any static resources in any of the specified SSIDs that are not currently
enabled.

• Mark affected resources as actively provided.

Use the sstore_data_attach_histogram() interface to record the number of times
your statistic values occur within predefined ranges or intervals. The
sstore_data_attach_histogram() interface can be used only with one of the three
interfaces listed above.

See the libsstore(3LIB) man page for the complete list of statistics store interfaces.
Interfaces in the libsstore library provide the following capabilities:

• List statistic and event identifiers

• Update values for statistics

• Read statistic and event value data and metadata

• Add resources and resource-specific metadata to the statistics store

• Remove resources

• Add resource topology to the statistics store by using the metadata argument of
sstore_resource_add()

To update data statistic values periodically, consider using an SMF periodic service,
probably with the sstore_bulk_update() interface. For more information about periodic
services, see Chapter 3, Creating a Service to Run Periodically in Developing System
Services in Oracle Solaris 11.4.

Note that updating statistic values does not add the updated value to the statistics
store. The statistics store accumulates data values only when requested by a client.
The requesting client can be the sstore capture command or sstore_data_read().
The following clients use sstore_data_read() to request statistic values:

• A sheet that contains the statistic in the System Web Interface

• An application that calls sstore_data_read()

• An enabled collection

Updated statistic values continue to be written to the statistics store for a short time
after the last request or until the application that is updating the values stops providing
updates.

Chapter 1
Interfaces for Providing Statistic Values

1-4

https://docs.oracle.com/cd/E37838_01/html/E61677/periodicsvc.html
https://docs.oracle.com/cd/E37838_01/html/E61677/periodicsvc.html

Comparing Methods for Providing Statistic Values
Whether you use the sstore_data_attach() or sstore_data_update() API depends on the
data type, the frequency of additions, and the importance of the time stamp of each value.

Table 1-1 sstore_data_attach() and sstore_data_update() Comparison

Feature sstore_data_attach() sstore_data_update()

Architecture Writes statistic values to memory space
that is shared between the application
and the statistics store.

Writes statistic values directly to the
statistics store.

Statistic data type Integer, especially a counter Any type

Initial data value 0 Specified value

Time stamp When the data is requested by the
statistics store client

When the data is collected by the
application

Use sstore_data_attach() if the statistic values are integer and if the time the value was
collected is not needed. Statistic value time stamps in this case are the time that the statistics
store retrieves the values from the shared memory area. The sstore_data_attach() method
is also recommended if you need to make large numbers of data updates per time period.

Use sstore_data_update() if the statistic values are not numeric or if the exact time the data
was collected is needed. You must use the sstore_data_update() method if multiple statistic
values must be updated simultaneously such that each statistic value must have the same
time stamp.

See the following sections for more information about sstore_data_attach(),
sstore_data_update(), sstore_data_bulk_update(), and sstore_data_attach_histogram().
See also the sstore_data_attach(3SSTORE) man page and the
sstore_data_read(3SSTORE) man page.

The sstore_data_attach() Interface
The sstore_data_attach() interface creates a shared memory region between sstored and
the client process. Call sstore_data_attach() only one time during the runtime of the client
process.

The sstore_data_attach() interface supports only integer statistic values, particularly
counters. The sstore_data_attach() interface creates a shared memory region with one
counter for each statistic. The values in this shared memory region are initialized to 0. To
update the statistics store, update the shared memory region array element for that statistic.
For sstore_data_attach(), updating statistic values typically means incrementing the counter
for that statistic.

When these statistic values are requested, sstored attempts to read from the shared
memory region once each second, regardless of how quickly the application updates the
value.

See Adding Simple Data Values to the Statistics Store for example applications that use
sstore_data_attach().

Chapter 1
Interfaces for Providing Statistic Values

1-5

The sstore_data_update() Interface
The sstore_data_update() interface supports any data type for statistic values,
including string and other large data types. Each time the statistics store client
requests a value update, call sstore_data_update() to update the values of the
specified SSIDs with the given values.

See Adding Any Type of Data to the Statistics Store for example applications that use
sstore_data_update().

The sstore_data_bulk_update() Interface
The sstore_data_bulk_update() interface enables an application to provide a value
pair (time stamp, value) for statistics. Statistic values do not need to be provided in
real time because the application provides the time stamp along with the value.

An example of a case when sstore_data_bulk_update() is needed is for a third-party
application that cannot be modified to talk to sstored directly. In such a case, statistic
values can be read from a proxy such as a log file.

The sstore_data_bulk_update() interface supports any data type for statistic values,
including string and other large data types.

Statistic updates must be provided in chronological order: Each update must have a
time stamp that is more recent than the time stamp of any update that was previously
provided. Any update that has a time stamp that is not more recent than the time
stamp of the previous update is ignored. The sstore_data_bulk_update() interface
writes to the statistics store all the statistics value pairs that are newer than the most
recently provided data for that statistic.

Statistics store clients such as sstore capture, sstore export, or
sstore_data_read() return the time stamps provided by sstore_data_bulk_update()
for each statistic value. If a consumer requests data for a time for which the application
has not yet provided data, the value SSTORE_VALUE_NODATA_YET is returned.

The metadata for any statistic for which data will be provided by
sstore_data_bulk_update() must define min-update-interval, which is the minimum
number of seconds between any two bulk updates. Consumers such as the System
Web Interface use this value to set expectations about the update frequency of a
statistic.

The sstore_data_attach_histogram() Interface
Like sstore_data_attach(), the sstore_data_attach_histogram() interface creates a
shared memory region between sstored and the client process. Call
sstore_data_attach_histogram() only one time during the runtime of the client
process.

The sstore_data_attach_histogram() interface creates a shared memory region with
an array of counters for each statistic: one counter for each interval defined for the
histogram. To update the statistics store, call sstore_histogram_quantize() to update
the appropriate interval counter in the shared memory region. The statistic value can
be any data type; sstore_data_attach_histogram() stores a count of the values. See
the sstore_histogram_init(3SSTORE) man page for more information about

Chapter 1
Interfaces for Providing Statistic Values

1-6

interfaces used to store data in a histogram and the types of histograms that are supported
by the statistics store.

Latency is a good example for a histogram. If you capture or export a statistic such
as //:class.disk//:stat.io-completions//:part.latency
or //:class.scheduler//:stat.cv-signal//:part.latency, you see a long list of intervals.
The value of each interval is the number of times the value of the statistic is in that interval.

The following sstore export example output shows that 191324 I/O operations completed
between 524288 and 1048576 nanoseconds since system boot:

$ sstore export //:class.disk//:stat.io-completions//:part.latency
...
 524288: 112392.0
 1048576: 191324.0
...

Removing Resources and Statistics
The sstore_resource_remove() interface performs the following tasks:

• Decrements the internal reference count.

• Removes the resource from the statistics store namespace if both of the following criteria
are met:

– The reference count is 0.

– No statistics associated with the resource have an active provider.

Troubleshooting Providing Statistics
If your statistic values do not update as expected, check for the following issues:

• The class, resource, statistic, or event that you are updating is not defined in a JSON file
in /usr/lib/sstore/metadata/json/.

• The identifier names used in the application that provides the statistic values do not
match the names defined in the metadata files.

• The type of the data specified in the application does not match the data type specified in
the metadata files.

• The statistics store service has not been restarted to read new or changed metadata.

• The caller of the application does not have the solaris.sstore.write authorization and
is not the authorized user for write operations on that namespace.

• An identifier that your application attempts to update is already updated by a different
application.

A statistic cannot have multiple providers. If one application initializes a statistic and then
another application initializes the same statistic while the first application is still actively
writing values for those statistics, the second application will receive an error from
sstore_data_attach(), sstore_data_update(), or sstore_data_bulk_update().

Check the application log file for error messages.

If the application is managed by an SMF service, use the svcs -Lv command to check the
log file for that service.

Chapter 1
Troubleshooting Providing Statistics

1-7

If you attempt to retrieve data values before the event or statistic is initialized, you
receive an error message that the identifier is not valid.

If you attempt to retrieve data values after the event or statistic is initialized but before
any value has been provided, the identifier is valid but no value is shown.

How to Force a Reread of all Metadata
If you make a metadata change that is not read by restarting the sstore:default
service, you can force a reread of all metadata by destroying the entire statistics
repository.

Caution:

This action destroys all historical data.

1. Disable the statistics store service.

$ svcadm disable sstore:default
$ svcs sstore
STATE STIME FMRI
disabled 13:03:54 svc:/system/sstore:default

2. Destroy the statistics store repository.

$ zfs destroy rpool/VARSHARE/sstore

If the repository still exists, remove it:

$ rm -fr /var/share/sstore/repo

Note:

Removing or modifying individual directories or files within the statistics
store repository is not supported. Removing or modifying metadata
directories or files that were delivered with Oracle Solaris is not
supported.

3. Reread the statistics metadata.

$ svcadm enable sstore:default
$ svcs sstore
STATE STIME FMRI
online 13:04:46 svc:/system/sstore:default

If the service is not online, check the service log file.

$ svcs -Lx sstore

Chapter 1
Troubleshooting Providing Statistics

1-8

2
Defining Custom Statistics

Adding Resources and Statistics to the Statistics Store
Namespace

Many resources, such as disks or other devices, are added to the statistics store
automatically when the devices are added to the system. System statistics such as kstats
and information about services and faults are included in the statistics store by default.

You can use one of the following methods to add your custom resources and statistics to the
statistics store namespace:

• JSON text files. See Using Statistics Store Metadata Files.

• The sstore_resource_add() statistics store library interface. See Adding Resources
Dynamically.

Using Statistics Store Metadata Files
By default, permission to create and modify files in the /usr/lib/sstore/metadata/
directory is restricted to root.

JSON files delivered as part of the Oracle Solaris OS are in /usr/lib/sstore/
metadata/json/solaris. Your custom metadata files can go in either the /usr/lib/
sstore/metadata/json/site directory or the /usr/lib/sstore/metadata/json/
vendor directory.

JSON files in /usr/lib/sstore/metadata/json/ describe classes, resources, and
statistics. These statistics are automatically added to the statistics store namespace on
system start and any other time the statistics store service restarts.

To add statistics to the statistics store namespace, take the following steps:

1. Create one or more files in /usr/lib/sstore/metadata/json/. Do not modify files
that you did not create.

2. Run the soljsonfmt tool on the .json file to check for JSON syntactic errors. See the
soljsonfmt(1) man page for more information.

3. Run the soljsonvalidate tool on the .json file to check for JSON semantic errors.
The soljsonvalidate tool reports deviation from defined schemas, such as a missing
id. See the soljsonvalidate(1) man page for more information.

All matching .json files are opened and checked for JSON syntax errors. No validation
is performed if syntax errors are found.

You can describe each class and statistic in a separate file, or you can describe multiple
components in one file by creating a more complex object using JSON array syntax.
Resource definitions are part of the class definition. A single statistic definition can be used
by multiple classes and resources. For example, many devices might count how many times

2-1

they are interrupted. The same stat.interrupt statistic could be used with each of
the different device resources.

The first character of a class-name must be an alphanumeric character; other
characters in a class-name must be alphanumeric characters or the hyphen character
(-). For alphabetic characters, best practice is to use lower case characters only.
Examples of class-name values include app, cpu, dev, io, link, pg, pset, svc, system,
and zone. The //:class.solaris/ and //:class.s/ class names are reserved.

A class and res pair is a canonical resource name. Each name space must be unique
on each system. For example, a system cannot have more than one CPU with ID 0. If
a given name can be used by multiple resources, then that name is not a suitable
namespace identifier.

The / and : characters are allowed in resource names. The following fmri resource
uses both / and : in the name. Resource names can contain any characters except
the reserved three-character sequence //:. As much as possible, resource names are
the same as names used in the related administrative commands.

//:class.svc//:res.fmri/system/identity:node

The metadata for a class defines how resources in that class can be named.
Resources can use different naming schemes within a single class, as shown in the
following examples from the kstat class:

//:class.kstat//:res.disk/sd/sd0/0
//:class.kstat//:res.device_error/sderr/sd0,err/0
//:class.kstat//:res.misc/pci-ide/fm/0
//:class.kstat//:res.zones/cpu/sys_zone_0/0

You can use metadata to provide a description of each component, provide topology
mappings, and provide aliases. See the ssid-metadata(7) man page for more
information about statistics store metadata files.

The statistics store reads all the data without regard to how the data is organized into
different files. For documentation purposes for other developers and administrators, if
you describe multiple components in a single file, all the components described in one
file should be related.

Classes can define in metadata other classes in which their resources appear.

The /usr/lib/sstore/metadata/json-schema/ directory contains JSON
schema files that describe the format of the metadata files in /usr/lib/sstore/
metadata/json/.

The properties sensitive and expensive restrict the use of statistics as described in
Restricting Access to Sensitive Data and Restricting Capture of Data that is Expensive
to Capture.

Defining Resources
Some statistics apply to the entire class, and no separate resources need to be
defined within that class. For example, the //:class.app/solaris/sysstat/sysconf
system configuration statistics are for the entire system. No resources are defined for
that class.

Chapter 2
Adding Resources and Statistics to the Statistics Store Namespace

2-2

Some statistics have a value for the entire class and separate values for individual resources
within the class. For example, //:class.cpu//:res.id/0//:stat.usage gives usage
statistics for one CPU in the system, while //:class.cpu//:stat.usage gives usage
statistics for all CPUs in the system combined.

If you know the resources in the class at the time you define the class, define those
resources as static-instances in the class json file as described in Adding Static
Resources.

If some instances of the class are not known when you define the class, you can add those
resources dynamically as described in Adding Resources Dynamically.

A single class can have some resources that are statically defined and others that are added
dynamically.

A resource inherits class metadata, and you can add metadata that only applies to the
resources.

Adding Static Resources
Resources are defined in a static-instances element in the class metadata file. The name
and namespace properties are required. The name is the unique name of the particular
resource. The namespace groups similar resources and matches the value of a resource-
name in the namespaces element. You can add metadata for the resources in the instance-
metadata element.

The following partial example of a class metadata file shows the required namespaces and
static-instances elements and the optional instance-metadata element:

"instance-metadata": {
 "description": "Instances of util2",
 "stability": "stable"
},
"namespaces": [
 {
 "name-type": "string",
 "resource-name": "inst"
 }
],
"static-instances": [
 {
 "name": "inst1",
 "namespace": "inst"
 },
 {
 "name": "inst2",
 "namespace": "inst"
 }
]

See Collect Data for Statically Allocated Resources for a complete example.

In the following excerpt from class.svc.json, one resource is defined. Other resources
(services) are added dynamically.

 "namespaces": [
 {
 "name-type": "string",
 "resource-name": "fmri"

Chapter 2
Adding Resources and Statistics to the Statistics Store Namespace

2-3

 }
],
...
 "static-instances": [
 {
 "name": "system/svc/restarter:default",
 "namespace": "fmri"
 }
]

Adding Resources Dynamically
If you need to create new resources from within your application, use the
sstore_resource_add() interface. See the sstore_resource_add(3SSTORE) man
page for details. Typically you should not need to add resources from within your
application. Instead, you should define any needed resources as static-instances in
the class json file and use your application only to add statistic values.

If your application will use the sstore_resource_add() interface to create resources
dynamically, then you do not need to specify static resources in the metadata. You still
need to provide resource namespace rules in the class json metadata file.

An example where resources are added dynamically is the cpu class, where the
number of CPUs on the system is not known until the system is running.

See Collect Data for Dynamically Allocated Resources for an example of how to add
resources dynamically.

Defining Partitions
To have partitioned statistics, your application must have resources.

Partitions are a stat-mapping schema, and the SSID has a stat-mapping component
instead of a stat component. Partitions are named in a partitions element within an
aggregations or instance-metadata element in the metadata file, as shown in the
following example:

"$schema": "//:stat-mapping",
"id": "//:class.app/util2//:stat-mapping.errors",
"instance-metadata": {
 "partitions": [
 "inst"
]
},
"transforms": [
 {
 "match": "//:class.app/util2//:res.inst/(inst[1-2])//:stat.errors$",
 "replace": "//:class.app/util2//:stat.errors//:part.inst(\\1)"
 }
]

In the transforms section, each match represents a statistic that is already defined in
the class and stat metadata, and the paired replace maps that statistic to one of the
partitions named in the partitions element. The value of the partitioned statistic is
equal to the sum of the values of the matching statistics for each resource.

See Separating Data Into Partitions for an example. See also the "Statistic Mapping"
section in the ssid-metadata(7) man page.

Chapter 2
Adding Resources and Statistics to the Statistics Store Namespace

2-4

Mapping Topology
See mapping information in the ssid-metadata(7) man page.

Creating a Collection
A collection is a convenient way to show multiple statistics using one SSID, as described in
Representing Sets of Statistics and Events in Using Oracle Solaris 11.4 StatsStore and
System Web Interface and Using Collections in Using Oracle Solaris 11.4 StatsStore and
System Web Interface.

Use one of the following methods to create a collection:

• Create a JSON file in the /usr/lib/sstore/metadata/collections/ directory
and restart the sstore service. The rules for creating a collection JSON file are
documented in the ssid-collection.json(5) man page.

• Use the API described in the sstore_collection_alloc (3SSTORE) man page.

After the collection is created, you can disable or enable the collection by using the following
commands:

• sstoreadm disable-collection
• sstoreadm enable-collection

Note:

Statistics in an enabled collection are recorded persistently. Recording too many
statistics persistently can degrade system performance, especially if those statistics
are expensive to record.

The user1.db-rw.json JSON file in the /usr/lib/sstore/metadata/collections/
directory includes some user-created statistics in a collection:

{
 "$schema": "//:collection",
 "description": "DB rw",
 "enabled": false,
 "id": "db-rw",
 "ssids": [
 "//:class.app/db1//:stat.reads",
 "//:class.app/db1//:stat.writes",
 "//:class.app/db2//:stat.reads",
 "//:class.app/db2//:stat.writes"
],
 "user": "user1"
}

This collection is not enabled by default. Instead of persistently recording these statistics, this
collection provides a convenient way to access these statistics by using one SSID.

Only user1 can change this collection by using the System Web Interface or the sstoreadm
command.

Chapter 2
Mapping Topology

2-5

https://docs.oracle.com/cd/E37838_01/html/E56520/defcollections.html
https://docs.oracle.com/cd/E37838_01/html/E56520/defcollections.html
https://docs.oracle.com/cd/E37838_01/html/E56520/usingcollections.html
https://docs.oracle.com/cd/E37838_01/html/E56520/usingcollections.html

Run the soljsonfmt tool on the .json file to check for JSON syntactic errors. Run
the soljsonvalidate tool on the .json file to check for JSON semantic errors. See
Using Statistics Store Metadata Files for more information. Make sure you are in a
directory where you have write privilege because the soljsonfmt command creates
a temporary file.

soljsonfmt /usr/lib/sstore/metadata/collections/user1.db-rw.json
#

Restart the sstore service. Now you are able to use the collection.

svcadm restart sstore:default
sstore list //:class.collection//:collection.name/user1/db-rw
IDENTIFIER
//:class.collection//:collection.name/user1/db-rw

You cannot use the sstore list command to list the statistics that belong to the
collection. Use the sstore info command instead.

sstore info //:class.collection//:collection.name/user1/db-rw
Identifier: //:class.collection//:collection.name/user1/db-rw
 ssid: //:class.app/db1//:stat.reads
 ssid: //:class.app/db1//:stat.writes
 ssid: //:class.app/db2//:stat.reads
 ssid: //:class.app/db2//:stat.writes
 state: disabled
 uuid: 1ca6f562-e00d-42ed-b288-8047345507b6
 owner: user1
 cname: db-rw
crtime: 1464997510390334

You can use the collection SSID to easily record all the statistics that are in the
collection:

sstore capture //:class.collection//:collection.name/user1/db-rw
TIME VALUE IDENTIFIER
2016-06-03T16:54:20 33352207 //:class.app/db1//:stat.reads
2016-06-03T16:54:20 33316406 //:class.app/db1//:stat.writes
2016-06-03T16:54:20 16438126 //:class.app/db2//:stat.reads
2016-06-03T16:54:20 16370542 //:class.app/db2//:stat.writes

Creating Visualizations
Visualizations enable administrators to view data graphically in the System Web
Interface, as described in Chapter 2, Using Oracle Solaris System Web Interface in
Using Oracle Solaris 11.4 StatsStore and System Web Interface.

Sheet and Visualization Design Best Practices
Visualizations are organized into groups, which are organized into sections, which are
on a sheet.

• Define the purpose of the sheet. When will an administrator use this sheet? How
will an administrator use this sheet to learn more about this application or
subsystem?

Chapter 2
Creating Visualizations

2-6

https://docs.oracle.com/cd/E37838_01/html/E56520/analyticsbui.html
https://docs.oracle.com/cd/E37838_01/html/E56520/analyticsbui.html

A sheet should be self explanatory and guide the administrator through the
troubleshooting process. A sheet should help an administrator discover contributors to a
particular problem and lead the administrator to specific actions.

• Determine the information needed to achieve the purpose. What information is most key?
What information is related?

Resource utilization and saturation and number and type of errors typically are key
information. Can you show utilization rather than raw usage numbers?

Time-series visualisations provide the most data dense visualisation that include
historical data. Other types of visualizations should only be used if the time-series
visualisation does not suit the underlying data.

Consider using //:op.top to avoid switching to Pareto visualization automatically when
defining a time-series visualization.

Are historical comparisons of data values useful? If so, should historical comparisons be
shown by default?

Is the required information available from existing statistics, do new statistics need to be
created, do existing statistics need to be partitioned or mapped to achieve the purpose of
this sheet?

• Determine the layout of the sheet into sections and groups. What flow should the
administrator likely to follow to troubleshoot a specific problem or explore potential
problems with this application or subsystem?

– The most key information should be first, at the top of the sheet. To aid
troubleshooting, provide information about potential problems or errors first, instead
of starting with basic status information.

– Sections should guide the flow of problem investigation. Based on what the most key
information in the first section shows, what should the administrator look at next?
Group the key indicators for the most common symptoms of problems with this
subsystem into sections.

– Related information should be in the same group.

– Find the right balance. Organizing data into multiple groups and sections can make
data easier to understand and use and reduce clutter on the screen, but too many
groups and sections add to the clutter and make problems harder to investigate.
Also, each section and group title takes screen real estate that visualizations could
use.

• Use the purpose of the sheet to create a brief description of the sheet.

– What data does this sheet provide?

– What kinds of failures can this sheet help diagnose?

– If possible, mention diagnosis specifics such as how visualizations are related and
used together. What are typical steps to take to troubleshoot the system represented
by this sheet?

– Include links to additional information.

• Create a brief description for each section.

– What is the purpose of this section? Which symptoms can be diagnosed here?

– What steps should an administrator take here?

– Include links to additional information.

Chapter 2
Creating Visualizations

2-7

• Create a brief description for each visualization.

– How can the data in this visualization be used to diagnose a problem?

– How can an administrator compare the data values in this visualization to
expected values?

– Mention specifics such as how data is partitioned, what related data can be
shown, what you can learn from this data.

– Include links to additional information to help troubleshoot the problem,
including references to visualizations on other sheets and how those would be
helpful.

If you cannot clearly express the purpose of the visualization, perhaps the
visualization is not needed to investigate problems with this subsystem.

• Decide what type of visualization will make the data easiest to understand and
use.

– Add operations to the SSIDs to show the most meaningful data. Do you want
to show resource utilization, resource saturation, error counts, rate, top five
values? Do you want to filter the data or convert to a different unit of
measurement?

– How important is historical data? To show historical data, use one of the time
series type of visualizations. Consider whether the data identifiers should be in
an enabled collection and collected persistently.

– Is a stacked time series or Pareto chart better than a regular time series graph
for this data? Is a gauge, bar chart, or pie chart better for what you want to
show? Do you need a histogram to show which values occur most frequently?

– Is data that is represented by different SSIDs related closely enough to show
in the same visualization? For example, reads and writes of the same
resources might be shown in a single visualization. To show two different
SSIDs in one visualization, both SSIDs must be partitioned identically (or not
partitioned), must be in the same units in a similar range of possible values,
and must be able to be shown at the same time scale.

– Are certain events useful to include with this data? Events can be shown as
points on a time graph.

How to Create a Visualization
To create a visualization, use one of the following methods:

• Use the System Web Interface as described in How to Create a Visualization by
Using the System Web Interface.

• Create a JSON file in the /usr/lib/webui/analytics/sheets/vendor
or /usr/lib/webui/analytics/sheets/site directory and restart the
webui/server service.

Use one of the following methods to create the JSON file:

– Export the file from the System Web Interface. In the System Web Interface,
create a new sheet or copy and modify an existing sheet. To copy a sheet,
open the sheet and select the Duplicate & Edit option from the Sheet Actions
menu. Modifications that you make in the System Web Interface are saved in
your user preferences file (/var/user/ user-name /webui/preferences/
solaris.json) and only you can view them. From the Sheet Actions menu,

Chapter 2
Creating Visualizations

2-8

select the Export option to save the JSON description of the sheet in the /usr/lib/
webui/analytics/sheets/vendor or /usr/lib/webui/analytics/
sheets/site directory so that all users can view it.

– Write the JSON code yourself using the following resources:

* The analytics(5) man page

* The /usr/lib/webui/analytics/sheets/analytics-
import.schema.json JSON schema file

* Sheet definitions in /usr/lib/webui/analytics/sheets/solaris
* Examples in later chapters in this guide

How to Create a Visualization by Using the System Web Interface
This procedure describes all steps, starting with creating a new sheet. You can skip some of
these steps by modifying an existing sheet. Open a sheet that is similar to what you want,
and select the Duplicate & Edit option from the Sheet Actions menu. Then open the duplicate
sheet and modify the sections, groups, and visualizations as necessary.

1. Create a sheet.

At the top of the Sheets page, select the Add Sheet button. Give the new sheet a useful
name and description.

2. Add a section to the sheet.

From the Sheet Actions menu, select Add Section. From the Section Actions menu,
select the Rename option to give the section a meaningful name.

3. Add a group to the section.

From the Section Actions menu, select Add Group. From the Group Actions menu, select
the Properties option and give the group a useful name and description.

4. Add a visualization to the group.

Use one of the following methods to add a visualization:

• From the bottom of the Group Properties pop-up, select Add Visualization.

• From the Group toolbar, select the + icon.

Give the visualization a useful name.

From the Visualization Actions menu, select the Properties option and give the
visualization a useful description.

5. Add a statistic or event to the visualization.

Use one of the following methods to add a statistic or event:

• From the Visualization Properties pop-up, select Statistics or select Events and select
the + icon.

• From the Visualization Actions menu, select the Add Statistic or Event option.

Follow the prompts in the dialog. See the System Web Interface help for more
information.

From the Visualization Actions menu, select the Visualization Type option to select the
type of chart or graph that is most appropriate for this statistic.

Chapter 2
Creating Visualizations

2-9

From the Visualization Actions menu, select the Set Time Range → Custom option
to select the period length that is most appropriate for monitoring this statistic. Be
sure to select Ending Now.

Authorizing Access to Resources and Statistics
By default, any user can read and record any data in the statistics store. Anyone who
is authorized to use your application should be able to browse the data about the
application. Some other operations, such as reading sensitive data, are restricted.
Statistics Store Operation Authorizations provides information you need to authorize
access to restricted statistics store operations. The listed operations can be performed
by any user that has the associated authorization. See the sstore-security(7) and
sstore-authorized-user(7) man pages for more information. The root user or role
has all solaris authorizations. Most users do not have these authorizations. You
might need to assign alternative authorizations to enable a daemon or application to
manipulate certain statistics store data.

You can specify a particular authorization to grant access to any user who has that
authorization, or you can authorize specified users. The authorization applies to the
node where the authorization is specified in the metadata and to any non-topological
descendant nodes. For example, if you specify an authorized user for a class, that
user can perform the specified operation on any statistics in that class. If you specify
an authorized user for a statistic but not for the class, that user can perform the
specified operation only on that statistic, not on other statistics in that class.

You can authorize access for any user who has a specified authorization.

• Imply a specific required authorization by setting the sensitive or expensive
property to true.

• Specify a required authorization as the value of an sau_op_name_auth property.
See the table for values of op_name.

You can authorize access to an operation for specified users.

• Specify a list of user names as the value of an sau_op_name_username property.
See the table for values of op_name. An authorized user can be a human user or
a daemon. A user is also called a client.

Table 2-1 Statistics Store Operation Authorizations

Property
op_name

Authorization Authorized
Operation

Interface

read_sensitiv
e

solaris.sstore.re
ad.sensitive

Read a sensitive
statistic or event.

sstore_data_read(),
sstore_batch_data_rea
d(), sstore_info_read(),
sstore_batch_info_rea
d(),
sstore_namespace_list
(),
sstore_batch_namespac
e_list(), sstore
export, sstore info,
sstore list

Chapter 2
Authorizing Access to Resources and Statistics

2-10

Table 2-1 (Cont.) Statistics Store Operation Authorizations

Property
op_name

Authorization Authorized
Operation

Interface

capture_sensi
tive

solaris.sstore.ca
pture.sensitive

Record a sensitive
statistic or event.

sstore_data_read(),
sstore_batch_data_rea
d(), sstore capture

capture_expen
sive

solaris.sstore.ca
pture.expensive

Record an expensive
statistic or event.

sstore_data_read(),
sstore_batch_data_rea
d(), sstore capture

update_res solaris.sstore.up
date.res

Add a resource to a
class.

sstore_resource_add()

update_res solaris.sstore.up
date.res

Deactivate a resource
that was created by a
previous
sstore_resource_a
dd() call.

sstore_resource_remov
e()

write solaris.sstore.wr
ite

Provide statistic or
event data.

sstore_data_attach(),
sstore_data_update()

delete solaris.sstore.de
lete

Purge statistic or
event data.

sstoreadm purge

config solaris.sstore.co
nfigure

Update a collection
created by another
user.

sstore_collection_wri
te(),
sstore_collection_set
_state(),
sstore_collection_upd
ate_ssid(),
sstore_collection_del
ete()

Restricting Access to Sensitive Data
To restrict access to sensitive data, mark the data sensitive by specifying the sensitive
property with the value true. Statistics and events that have the sensitive property set to
true require a user to have the solaris.sstore.read.sensitive authorization to read the
data and have the solaris.sstore.capture.sensitive authorization to capture the data. A
user that has the solaris.sstore.read.sensitive authorization can export data values of
any statistic in the statistics store. A user that has the solaris.sstore.capture.sensitive
authorization can record data values of any statistic in the statistics store except statistics that
are expensive to capture as described in Restricting Capture of Data that is Expensive to
Capture.

To enable access by other users who need to read or record this data, specify an alternative
authorization that is more targeted to this data, or specify particular users that are authorized
to access this data.

To specify an alternative authorization that enables a user to access particular sensitive data,
specify the sau_read_sensitive_auth property or the sau_capture_sensitive_auth property
with the alternative authorization as the value. The value of these properties can be a list of
authorizations.

Chapter 2
Authorizing Access to Resources and Statistics

2-11

To enable a specified user to access particular sensitive data even if the user has
none of the required authorizations, specify the sau_read_sensitive_username
property or the sau_capture_sensitive_username property with the user name as the
value. The value of these properties can be a list of user names.

Note:

Even if you specify alternative authorizations or authorized users, you must
still set the sensitive property to true.

Example 2-1 Specifying Which Users Can Read Particular Sensitive Data

The following partial metadata for a sensitive statistic enables the following users to
export values of this statistic:

• Any user that has the solaris.sstore.read.sensitive authorization

• Any user that has the solaris.system.sysevent.read authorization

• The authorizeduser1 user

• The authorizeduser2 user

{
 "sensitive" : true,
 "sau_read_sensitive_auth" : "solaris.system.sysevent.read",
 "sau_read_sensitive_username" : "authorizeduser1" "authorizeduser2"
}

Example 2-2 Specifying Which Users Can Record Particular Sensitive Data

The following partial metadata for a sensitive statistic enables the following users to
record values of this statistic:

• Any user that has the solaris.sstore.capture.sensitive authorization

• Any user that has the solaris.system.sysevent.write authorization

• The authorizeduser1 user

{
 "sensitive" : true,
 "sau_capture_sensitive_auth" : "solaris.system.sysevent.write",
 "sau_capture_sensitive_username" : "authorizeduser1"
}

Restricting Capture of Data that is Expensive to Capture
If capturing certain statistic data has a high cost in system resources, you might want
to restrict who can capture that data. For example, using DTrace scripts to record
statistic data often has a high cost in system resources.

To restrict who can capture data that is costly to capture, mark the data costly by
specifying the expensive property with the value true. Statistics and events that have
the expensive property set to true require a user to have the
solaris.sstore.capture.expensive authorization to capture the data. A user that
has the solaris.sstore.capture.expensive authorization can record data values of

Chapter 2
Authorizing Access to Resources and Statistics

2-12

any statistic in the statistics store except statistics that are sensitive as described in
Restricting Access to Sensitive Data.

To enable access by other users who need to record this data, specify an alternative
authorization that is more targeted to this data, or specify particular users that are authorized
to record this data.

To specify an alternative authorization that enables a user to record particular expensive
data, specify the sau_capture_expensive_auth property with the alternative authorization as
the value. The value of this property can be a list of authorizations.

To enable a specified user to record particular expensive data even if the user has none of
the required authorizations, specify the sau_capture_expensive_username property with the
user name as the value. The value of this property can be a list of user names.

Note:

Even if you specify alternative authorizations or authorized users, you must still set
the expensive property to true.

Example 2-3 Specifying Which Users Can Record Particular Expensive Data

The following partial metadata for a statistic that is expensive to record enables the following
users to record values of this statistic:

• Any user that has the solaris.sstore.capture.expensive authorization

• Any user that has the solaris.system.sysevent.write authorization

• The authorizeduser1 user

{
 "expensive" : true,
 "sau_capture_expensive_auth" : "solaris.system.sysevent.write",
 "sau_capture_expensive_username" : "authorizeduser1"
}

Example 2-4 Specifying Users Who Can Record Data that is Sensitive and Expensive

A statistic could be both sensitive and expensive. The following partial metadata for a statistic
restricts the ability to capture values of this statistic to the following users:

• Any user that has the solaris.sstore.capture.sensitive authorization

• Any user that has the solaris.sstore.capture.expensive authorization

• Any user that has the solaris.system.sysevent.write authorization

• The authorizeduser1 user

{
 "sensitive" : true,
 "expensive" : true,
 "sau_capture_sensitive_auth" : "solaris.system.sysevent.write",
 "sau_capture_sensitive_username" : "authorizeduser1",
 "sau_capture_expensive_auth" : "solaris.system.sysevent.write",
 "sau_capture_expensive_username" : "authorizeduser1"
}

Chapter 2
Authorizing Access to Resources and Statistics

2-13

Authorizing the Ability to Add and Remove Resources and Statistic
and Event Data

You can specify who can add resources to a class and deactivate those resources,
and who can add and purge statistic and event data values.

A user who has the solaris.sstore.update.res authorization can add a resource to
any class in the statistics store. To enable other users to add resources in a specific
class, set the sau_update.res_auth property on the class to specify an alternative
authorization, or set the sau_update.res_username property on the class to authorize
particular users. These users are also able to deactivate resources that they created.

A user who has the solaris.sstore.write authorization can add or update any
statistic or event data values. A user who has the solaris.sstore.delete
authorization can purge any statistic or event data values from the statistics store. To
enable other users to add, update, or purge specific statistic or event data, set the
sau_write_auth and sau_delete_auth properties to specify an alternative
authorization, or use the sau_write_username and sau_delete_username properties to
authorize particular users.

Authorizing the Ability to Configure a Collection
Configuring a collection includes adding statistics and events to the collection,
removing statistics and events from the collection, enabling or disabling the collection,
and deleting the collection. A user who has the solaris.sstore.configure
authorization can configure any collection. The user who created the collection can
configure that collection.

To enable other users to configure a particular collection, set the sau_config_auth
property on the class to specify an alternative authorization, or set the
sau_config_username property on the class to authorize particular users.

Chapter 2
Authorizing Access to Resources and Statistics

2-14

3
Adding Simple Data Values to the Statistics
Store

Populate the Statistics Store Namespace
In this example, the application that produces the statistics is a custom application named
util1.

In the /usr/lib/sstore/metadata/json/site/ directory, create the file
class.app.util1.json with the following content to define the class for the util1
application. Note that files in /usr/lib/sstore/metadata/json/site/ are owned by
root.

{
 "$schema": "//:class",
 "description": "Example using count data and sstore_data_attach()",
 "id": "app/util1",
 "stability": "stable",
 "stat-names": [
 "//:stat.reads",
 "//:stat.writes",
 "//:stat.errors"
]
}

If you might change the semantic meaning of a statistic (for example, the type of the statistic),
set the value of stability to unstable.

To define the statistics for this example, create the file stat.util1.json with the following
content in the /usr/lib/sstore/metadata/json/site/ directory:

[
 {
 "$schema": "//:stat",
 "description": "reads",
 "id": "//:class.app/util1//:stat.reads",
 "stability": "stable",
 "type": "counter",
 "units": "operations"
 },
 {
 "$schema": "//:stat",
 "description": "writes",
 "id": "//:class.app/util1//:stat.writes",
 "stability": "stable",
 "type": "counter",
 "units": "operations"
 },
 {
 "$schema": "//:stat",
 "description": "errors",

3-1

 "id": "//:class.app/util1//:stat.errors",
 "stability": "stable",
 "type": "counter",
 "units": "errors"
 }
]

Run the soljsonfmt tool on the .json file to check for JSON syntactic errors:

soljsonfmt class.app.util1.json stat.util1.json

Run the soljsonvalidate tool on the .json file to check for JSON semantic
errors:

soljsonvalidate class.app.util1.json stat.util1.json

Use the v option to see a list of each element and the schema against which that
element was validated.

You must restart the sstore:default service to see the new class SSID.

$ sstore list //:class.app/util1
Warning (//:class.app/util1) - lookup error: no matches found

Restart the statistics store:

$ svcadm restart sstore:default

Ensure that sstore:default and other services are online:

$ svcs -x

Check whether the metadata files imported correctly:

$ svcs -Lx sstore

The log file should show no errors and should show that the start method exited with
status 0.

Try again to list the new class SSID:

$ sstore list //:class.app/util1
IDENTIFIER
//:class.app/util1

Show the metadata for the class:

$ sstore info //:class.app/util1
 Identifier: //:class.app/util1
 stability: stable
 $schema: //:class
description: Example using count data and sstore_data_attach()
 id: app/util1
 stat-names: //:stat.reads
 stat-names: //:stat.writes
 stat-names: //:stat.errors

Except for the stat-names statistic names shown in the class information, you cannot
get any information about statistics until you provide values for the statistics as shown
in Update and View Statistic Values.

Chapter 3
Populate the Statistics Store Namespace

3-2

$ sstore list //:class.app/util1//:*
Warning (//:class.app/util1//:*) - lookup error: no matches found
$ sstore list //:class.app/util1//:stat.*
Warning (//:class.app/util1//:stat.*) - lookup error: no matches found
$ sstore list //:class.app/util1//:stat.reads
Warning (//:class.app/util1//:stat.reads) - lookup error: no matches found

Create an Application that Writes Statistic Values
The application in this section does nothing other than generate values for the statistics in
this example. This functionality needs to be integrated into your real application.

C Version
Create the file util1.c with the following content to increment the counter statistics in this
example. See the libsstore(3LIB) and sstore_data_attach(3SSTORE) man pages for
information about the libsstore C interfaces and types.

/*
 * Example program to provide statistics values using sstore_data_attach().
 */

#include <libsstore.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>

#define NUM_STATS 3

/* libsstore handle */
sstore_handle_t hdl;

/* statistic identifiers */
char *ids[NUM_STATS] = {
 "//:class.app/util1//:stat.reads",
 "//:class.app/util1//:stat.writes",
 "//:class.app/util1//:stat.errors"
};

/* structure where values are stored */
struct mystats {
 uint64_t reads;
 uint64_t writes;
 uint64_t errors;
};

int main()
{
 int iterations = 500;
 struct mystats *stats;

 /* Allocate a libsstore handle. */
 if ((hdl = sstore_alloc()) == NULL) {
 (void) printf("Failed to allocate handle.");
 return (-1);
 }

Chapter 3
Create an Application that Writes Statistic Values

3-3

 /*
 * These statistics already have metadata in a common location,
 * so sstore knows how to create them. sstore_data_attach() will
 * create a shared-memory region between sstore and this program.
 */
 if (sstore_data_attach(hdl, (const char **)&ids, NUM_STATS,
 (uint64_t **)&stats) != ESSTORE_OK) {
 (void) fprintf(stderr,
 "sstore_data_attach() failed because %s\n",
 sstore_err_description(hdl));
 return (-1);
 }

 /*
 * Update the values in the structure.
 * The new values will be stored when sstore reads them.
 */

 while (iterations-- > 0) {
 stats->reads += rand() % 6;
 stats->writes += rand() % 5;
 stats->errors += rand() % 2;
 sleep(1);
 }

 /*
 * Free the libsstore handle.
 * The statistics are marked as not being actively provided.
 */
 sstore_free(hdl);

 return (0);
}

Compile this sample application:

$ cc -lsstore -o util1 util1.c

Python Version
Create the file util1.py with the following content to increment the counter statistics
in this example. See the libsstore(python) man page for information about the
Python libsstore library, the SStore class, and the data_attach() method.

#!/usr/bin/python

Example program to provide statistics values using Python data_attach().

import time
import random
from libsstore import SStore

ssids = [
 "//:class.app/util1//:stat.reads",
 "//:class.app/util1//:stat.writes",
 "//:class.app/util1//:stat.errors"
]

Get an instance of the SStore class.

Chapter 3
Create an Application that Writes Statistic Values

3-4

ss = SStore()

Set up the shared memory region.
try:
 stats = ss.data_attach(ssids)
except:
 print("data_attach() failed. Reason {0}".format(
 ss.err_description))
 exit(1)

Update statistics every second.
for i in range (500):
 stats[0] += random.randint(2,6)
 stats[1] += random.randint(1,4)
 stats[2] += random.randint(0,1)
 time.sleep(1)

Update and View Statistic Values
Run the application:

$./util1

List the new statistics. The sstore command lists them in alphabetical order:

$ sstore list //:class.app/util1//:stat.*
IDENTIFIER
//:class.app/util1//:stat.errors
//:class.app/util1//:stat.reads
//:class.app/util1//:stat.writes

Show metadata for the new statistics:

$ sstore info //:class.app/util1//:stat.*
 Identifier: //:class.app/util1//:stat.errors
 $schema: //:stat
description: errors
 id: //:class.app/util1//:stat.errors
 stability: stable
 units: errors
 type: counter

 Identifier: //:class.app/util1//:stat.reads
 $schema: //:stat
description: reads
 id: //:class.app/util1//:stat.reads
 stability: stable
 units: operations
 type: counter

 Identifier: //:class.app/util1//:stat.writes
 $schema: //:stat
description: writes
 id: //:class.app/util1//:stat.writes
 stability: stable
 units: operations
 type: counter

Record values. If the program has finished running, you only see the last value that was
recorded in the shared memory space.

Chapter 3
Update and View Statistic Values

3-5

$ sstore capture //:class.app/util1//:stat.*
TIME VALUE IDENTIFIER
2016-06-01T16:04:14 252 //:class.app/util1//:stat.errors
2016-06-01T16:04:14 1191 //:class.app/util1//:stat.reads
2016-06-01T16:04:14 959 //:class.app/util1//:stat.writes
2016-06-01T16:04:14 252 //:class.app/util1//:stat.errors
2016-06-01T16:04:14 1191 //:class.app/util1//:stat.reads
2016-06-01T16:04:14 959 //:class.app/util1//:stat.writes
^C

Re-run the program, and record the values while the program is running:

$./util1 &
$ sstore capture //:class.app/util1//:stat.*
TIME VALUE IDENTIFIER
2016-06-01T14:36:54 2 //:class.app/util1//:stat.errors
2016-06-01T14:36:54 3 //:class.app/util1//:stat.reads
2016-06-01T14:36:54 4 //:class.app/util1//:stat.writes
2016-06-01T14:36:54 2 //:class.app/util1//:stat.errors
2016-06-01T14:36:54 3 //:class.app/util1//:stat.reads
2016-06-01T14:36:54 8 //:class.app/util1//:stat.writes
2016-06-01T14:36:55 3 //:class.app/util1//:stat.errors
2016-06-01T14:36:55 3 //:class.app/util1//:stat.reads
2016-06-01T14:36:55 12 //:class.app/util1//:stat.writes
^C

The export command can show values that were recorded in the past. The export
command prints all the requested values for one statistic and then all the values for the
next statistic:

$ sstore export -t 2016-06-01T16:58:20 -p 3 //:class.app/util1//:stat.*
TIME VALUE IDENTIFIER
2016-06-01T16:58:20 244 //:class.app/util1//:stat.errors
2016-06-01T16:58:21 245 //:class.app/util1//:stat.errors
2016-06-01T16:58:22 246 //:class.app/util1//:stat.errors
2016-06-01T16:58:20 1144 //:class.app/util1//:stat.reads
2016-06-01T16:58:21 1148 //:class.app/util1//:stat.reads
2016-06-01T16:58:22 1152 //:class.app/util1//:stat.reads
2016-06-01T16:58:20 712 //:class.app/util1//:stat.writes
2016-06-01T16:58:21 715 //:class.app/util1//:stat.writes
2016-06-01T16:58:22 717 //:class.app/util1//:stat.writes

Create a Graph to Visualize the Statistic Values
Create the following sheet metadata file named util1.json in the
directory /usr/lib/webui/analytics/sheets/site/. Each graph or
visualization must be in a group, each group must be in a section, and each section
must be in a sheet. Each visualization, group, section, and sheet must have a unique
name: They cannot all be named util1 statistics, for example. The following file defines
two visualizations in one group: one visualization for the read and write operations
counts, and one visualization for the error count.

{
 "$schema": "file:///analytics-import.schema.json",
 "v1": {
 "groups": [
 {
 "description": "Reads, writes, and error counts for the util1
example",

Chapter 3
Create a Graph to Visualize the Statistic Values

3-6

 "uniqueName": "util1 statistics Group",
 "visualizations": [
 "util1 operations",
 "util1 errors"
]
 }
],
 "sections": [
 {
 "groups": [
 "util1 statistics Group"
],
 "uniqueName": "util1 statistics Section"
 }
],
 "sheets": [
 {
 "description": "Statistics for the util1 data_attach example.",
 "sections": [
 "util1 statistics Section"
],
 "tags": [
 "data_attach",
 "memory map"
],
 "uniqueName": "util1 statistics"
 }
],
 "visualizations": [
 {
 "description": "Count of errors from util1",
 "ssids": [
 "//:class.app/util1//:stat.errors"
],
 "style": "time-series",
 "uniqueName": "util1 errors"
 },
 {
 "description": "Counts of read and write operations for util1",
 "ssids": [
 "//:class.app/util1//:stat.reads",
 "//:class.app/util1//:stat.writes"
],
 "style": "time-series",
 "uniqueName": "util1 operations"
 }
]
 }
}

Run the soljsonfmt tool on the .json file to check for JSON syntactic errors. Run the
soljsonvalidate tool on the .json file to check for JSON semantic errors:

soljsonfmt util1.json
soljsonvalidate /usr/lib/webui/analytics/sheets/analytics-import.schema.json
util1.json

Restart the webui/server:default service and ensure the service is online:

$ svcadm restart svc:/system/webui/server:default
$ svcs webui/server

Chapter 3
Create a Graph to Visualize the Statistic Values

3-7

STATE STIME FMRI
online 14:02:22 svc:/system/webui/server:default

Ensure the new sheet file was successfully read:

$ svcs -Lx webui/server
[2016 Jun 22 14:02:20 Executing start method ("/lib/svc/method/svc-webui-server
start").]
Importing preference files
Found : 14 files
Imported : 1 updated/new files

Successfully imported 1 files, removed 0 files
Import succeeded
Starting Apache webserver
Apache start completed
[2016 Jun 22 14:02:22 Method "start" exited with status 0.]

When administrators open the Sheets view in the System Web Interface, they see a
new sheet named "util1 statistics". If the util1 program is not running, the "util1
operations" and "util1 errors" visualizations show only the last values that were
recorded. When the util1 program is started, the graphs show the values updating as
they are recorded.

The following figure shows the values of uniqueName specified in the util1.json
sheet definition file displayed as the names of the sheet, section, group, and
visualizations. The statistic labels in the legend of each visualization were specified in
description elements in the stat.util1.json statistic definition file, and the units
of the y-axis were specified in the units elements. The reads and writes statistics
must be the same units to display on the same visualization.

Graphs Showing Updating Values

Chapter 3
Create a Graph to Visualize the Statistic Values

3-8

What do your users need to know about these statistics? An ever-increasing total count of
operations over time might not be very useful. Edit the sheet definition file to add //:op.rate
to each statistic as shown:

{
 "$schema": "file:///analytics-import.schema.json",
 "v1": {
 "groups": [
 {
 "description": "Rate of change of the reads, writes, and errors counts
for the util1 example",
 "uniqueName": "util1 statistics Group",
 "visualizations": [
 "util1 operations",
 "util1 errors"
]
 }
],
 "sections": [
 {
 "groups": [
 "util1 statistics Group"
],
 "uniqueName": "util1 statistics Section"
 }
],
 "sheets": [
 {
 "description": "Statistics for the util1 data_attach example.",
 "sections": [
 "util1 statistics Section"
],
 "tags": [
 "data_attach",
 "memory map"
],
 "uniqueName": "util1 statistics"
 }
],
 "visualizations": [
 {
 "description": "Rate of change of errors count from util1",
 "ssids": [
 "//:class.app/util1//:stat.errors//:op.rate"
],
 "style": "time-series",
 "uniqueName": "util1 errors"
 },
 {
 "description": "Rate of change of read and write operations count for
util1",
 "ssids": [
 "//:class.app/util1//:stat.reads//:op.rate",
 "//:class.app/util1//:stat.writes//:op.rate"
],
 "style": "time-series",
 "uniqueName": "util1 operations"
 }
]
 }
}

Chapter 3
Create a Graph to Visualize the Statistic Values

3-9

Restart the webui/server:default service and ensure the service is online. The
System Web Interface will close and request that you log in again. Restart the util1
program, and now you see a graph of the rate of change of the statistics.

Graph Showing Rate of Change of Statistics

Chapter 3
Create a Graph to Visualize the Statistic Values

3-10

4
Specifying Resources

Collect Data for Statically Allocated Resources
The examples described in this section are similar to the previous example. The difference is
that resources are defined for the applications in these examples. For an application, a
resource typically is an instance of the application. The examples described in this section
define three resources for the application: Customers, Products, and Orders. The same
statistics that were associated directly with the application in the previous example are also
associated with each resource in these examples.

These examples focus on the differences between these examples and the previous
example. For more complete descriptions of these files and procedures, see Adding Simple
Data Values to the Statistics Store.

Add Resources to the Class Metadata
In the /usr/lib/sstore/metadata/json/site/ directory, create the file
class.app.util2.json with the following content to include the three static resources for
the util2 application. In this version, the description and the name of the application are
updated . The stat-names element is the same as in the previous example. The following
elements are new:

• instance-metadata
• namespaces
• static-instances
Note that the value of resource-name in the namespaces element matches the value of
namespace in the static-instances element.

{
 "$schema": "//:class",
 "description": "Example util1 plus statically-allocated resources",
 "id": "app/util2",
"instance-metadata": {
"description": "Instances of util2",
"stability": "stable"
},
"namespaces": [
{
"name-type": "string",
"resource-name": "inst"
}
],
 "stability": "stable",
 "stat-names": [
 "//:stat.reads",
 "//:stat.writes",
 "//:stat.errors"

4-1

],
"static-instances": [
{
"name": "Customers",
"namespace": "inst"
},
{
"name": "Products",
"namespace": "inst"
},
{
"name": "Orders",
"namespace": "inst"
}
]
}

Create the file stat.util2.json, which is the same as the stat.util1.json file
except that util1 is changed to util2 in each id value.

[
 {
 "$schema": "//:stat",
 "description": "reads",
 "id": "//:class.app/util2//:stat.reads",
 "stability": "stable",
 "type": "counter",
 "units": "operations"
 },
 {
 "$schema": "//:stat",
 "description": "writes",
 "id": "//:class.app/util2//:stat.writes",
 "stability": "stable",
 "type": "counter",
 "units": "operations"
 },
 {
 "$schema": "//:stat",
 "description": "errors",
 "id": "//:class.app/util2//:stat.errors",
 "stability": "stable",
 "type": "counter",
 "units": "errors"
 }
]

Restart the sstore:default service and view the util2 statistic metadata.

$ svcadm restart sstore:default
$ sstore info //:class.app/util2
 Identifier: //:class.app/util2
 namespaces: {'0': '{'name-type': 'string', 'resource-name': 'inst'}'}
 $schema: //:class
 description: Example util1 plus statically-allocated resources
 id: app/util2
instance-metadata: {'description': 'Instances of util2', 'stability': 'stable'}
 static-instances: {'0': '{'name': 'Customers', 'namespace': 'inst'}', '1':
'{'name': 'Products', 'namespace': 'inst'}', '2': '{'name': 'Orders',
'namespace': 'inst'}'}
 stability: stable

Chapter 4
Collect Data for Statically Allocated Resources

4-2

 stat-names: //:stat.reads
 stat-names: //:stat.writes
 stat-names: //:stat.errors

Modify the Application to Save Statistic Values for Each Resource
The util2.c file is the same as the util1.c file except for the description at the top of the
file and the following changes:

• Change NUM_STATS from 3 to 9.

• The ids array has two changes:

– Change util1 to util2 in the class name of each SSID.

– Add the three resource instances, each with all three statistics.

• The while() loop updates nine statistics instead of three.

Note that the stats structure is unchanged and the sstore_data_attach() call is unchanged.

/*
 * Sample program to use sstore_data_attach() to provide values for
 * statistics of statically allocated resources.
 */

#include <libsstore.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>

#define NUM_STATS 9

/* libsstore handle */
sstore_handle_t hdl;

/* statistic identifiers */
char *ids[NUM_STATS] = {
 "//:class.app/util2//:res.inst/Customers//:stat.reads",
 "//:class.app/util2//:res.inst/Customers//:stat.writes",
 "//:class.app/util2//:res.inst/Customers//:stat.errors",
 "//:class.app/util2//:res.inst/Products//:stat.reads",
 "//:class.app/util2//:res.inst/Products//:stat.writes",
 "//:class.app/util2//:res.inst/Products//:stat.errors",
 "//:class.app/util2//:res.inst/Orders//:stat.reads",
 "//:class.app/util2//:res.inst/Orders//:stat.writes",
 "//:class.app/util2//:res.inst/Orders//:stat.errors"
};

/* structure where values are stored */
struct mystats {
 uint64_t reads;
 uint64_t writes;
 uint64_t errors;
};

int main()
{
 int iterations = 500;

Chapter 4
Collect Data for Statically Allocated Resources

4-3

 struct mystats *stats;

 /* Allocate a libsstore handle. */
 if ((hdl = sstore_alloc()) == NULL) {
 (void) printf("Failed to allocate handle.");
 return (-1);
 }

 /*
 * These statistics already have metadata in a common location,
 * so sstore knows how to create them. sstore_data_attach() will
 * create a shared-memory region between sstore and this program.
 */
 if (sstore_data_attach(hdl, (const char **)&ids, NUM_STATS,
 (uint64_t **)&stats) != ESSTORE_OK) {
 (void) fprintf(stderr,
 "sstore_data_attach() failed because %s\n",
 sstore_err_description(hdl));
 return (-1);
 }

 /*
 * Update the values in the structure.
 * The new values will be stored when sstore reads them.
 */

 while (iterations-- > 0) {
stats[0].reads += rand() % 6;
stats[0].writes += rand() % 4;
stats[0].errors += rand() % 2;
stats[1].reads += rand() % 8;
stats[1].writes += rand() % 4;
stats[1].errors += rand() % 2;
stats[2].reads += rand() % 9;
stats[2].writes += rand() % 5;
stats[2].errors += rand() % 2;
 sleep(1);
 }

 /*
 * Free the libsstore handle.
 * The statistics are marked as not being actively provided.
 */
 sstore_free(hdl);

 return (0);
}

View Statistic Values for Statically Allocated Resources
Compile and run the util2 application.

cc -lsstore -o util2 util2.c
./util2 &
sstore capture //:class.app/util2//:*//:*
TIME VALUE IDENTIFIER
2016-06-12T04:34:28 2 //:class.app/util2//:res.inst/Customers//:stat.errors
2016-06-12T04:34:28 5 //:class.app/util2//:res.inst/Customers//:stat.reads
2016-06-12T04:34:28 5 //:class.app/util2//:res.inst/Customers//:stat.writes
2016-06-12T04:34:28 2 //:class.app/util2//:res.inst/Orders//:stat.errors

Chapter 4
Collect Data for Statically Allocated Resources

4-4

2016-06-12T04:34:28 8 //:class.app/util2//:res.inst/Orders//:stat.reads
2016-06-12T04:34:28 12 //:class.app/util2//:res.inst/Orders//:stat.writes
2016-06-12T04:34:28 3 //:class.app/util2//:res.inst/Products//:stat.errors
2016-06-12T04:34:28 9 //:class.app/util2//:res.inst/Products//:stat.reads
2016-06-12T04:34:28 6 //:class.app/util2//:res.inst/Products//:stat.writes

Create a Graph to Visualize Resource Statistics
Create the following sheet metadata file named util2.json in the directory /usr/lib/
webui/analytics/sheets/site/:

{
 "$schema": "file:///analytics-import.schema.json",
 "v1": {
 "groups": [
 {
 "description": "Rate of change of the reads, writes, and errors counts
for the util2 example",
 "uniqueName": "util2 statistics Group",
 "visualizations": [
 "util2 writes",
 "util2 Customers"
]
 }
],
 "sections": [
 {
 "groups": [
 "util2 statistics Group"
],
 "uniqueName": "util2 statistics Section"
 }
],
 "sheets": [
 {
 "description": "Resource statistics for the util2 example.",
 "sections": [
 "util2 statistics Section"
],
 "tags": [
 "data_attach",
 "static resources"
],
 "uniqueName": "util2 statistics"
 }
],
 "visualizations": [
 {
 "description": "Rate of change of writes count for all resources",
 "ssids": [
 "//:class.app/util2//:res.*//:stat.writes//:op.rate"
],
 "style": "time-series",
 "uniqueName": "util2 writes"
 },
 {
 "description": "Rate of change of reads, writes, and errors count for
Customers",
 "ssids": [
 "//:class.app/util2//:res.inst/Customers//:stat.*//:op.rate"

Chapter 4
Collect Data for Statically Allocated Resources

4-5

],
 "style": "time-series",
 "uniqueName": "util2 Customers"
 }
]
 }
}

This file defines a sheet with two visualizations. One visualization shows the rate of
change of write operation counts for each resource. The second visualization shows
the read, write, and error count rates of change for one resource.

Restart the webui/server:default service and ensure the service is online and the
visualization definitions were successfully read:

$ svcadm restart svc:/system/webui/server:default
$ svcs webui/server
STATE STIME FMRI
online 15:47:13 svc:/system/webui/server:default
$ svcs -Lx webui/server

When administrators open the Sheets view in the System Web Interface, they see a
new sheet named util2 statistics, shown in the following figure. The visualization
named util2 writes shows the rate of change of the writes count for the Customers
resource, the Orders resource, and the Products resource. The visualization named
util2 Customers shows the rate of change of the reads, writes, and errors counts for
the Customers resource.

You can create partitions and use mapping to enable administrators to choose how
they want to view the data. Instead of providing multiple visualizations with different
views of the data, you can provide a single visualization that enables administrators to
display the data in different ways. See Separating Data Into Partitions for more
information.

Graph Showing Statistics for Resources

Chapter 4
Collect Data for Statically Allocated Resources

4-6

Collect Data for Dynamically Allocated Resources
The example described in this section is similar to the previous example. The difference is
that in this example you do not know ahead of time how many or which application instances
will be configured on the system. The resources in this example are dynamically allocated in
the application using the sstore_resource_add() interface.

The sstore_resource_add() interface protects against multiple applications providing data for
the same resources as described in the following comparison:

• To allocate resources statically, you must assume the root role; the metadata files and
directories are owned by root. If you add conflicting metadata, you will get errors when
you restart the sstore service.

• To allocate resources dynamically, you must call sstore_resource_add() to add the
resource metadata to the statistics repository. If you try to add metadata that is already in
the statistics store, you will get an error return.

Note that a single class can have both statically-allocated resources and dynamically-
allocated resources. For example, the svc class has one static resource: the default restarter
service system/svc/restarter:default. Other services are added dynamically as the
services are installed on the system.

Chapter 4
Collect Data for Dynamically Allocated Resources

4-7

Modify the Metadata to Omit Resource Names
The following table provides an overview of elements to define in your class metadata.
Some optional elements, such as events, are not shown. This table is focused on
resources. In the "No Resources" column, all statistics are class statistics.

Table 4-1 Class Metadata Elements

No Resources Statically Defined
Resources

Dynamically Defined
Resources

• schema
• description
• id
• stability
• stat-names

• schema
• description
• id
• instance-metadata
• namespaces
• stability
• stat-names
• static-instances

• schema
• description
• id
• namespaces
• stability
• stat-names

In the /usr/lib/sstore/metadata/json/site/ directory, create the file
class.app.util3.json with the following content. If you copy the file
class.app.util2.json, the primary changes you need to make are:

• Delete the instance-metadata element.

• Delete the static-instances element.

The instance-metadata and static-instances elements are not used for dynamically
allocated resources.

The stat-names element is the same as in the previous two examples. The
namespaces element is still needed to define the type of the resources.

You might also want to update the description of the application and the name of the
application in the id.

{
 "$schema": "//:class",
 "description": "Example util1 plus dynamically-allocated resources",
 "id": "app/util3",
 "namespaces": [
 {
 "name-type": "string",
 "resource-name": "inst"
 }
],
 "stability": "stable",
 "stat-names": [
 "//:stat.reads",
 "//:stat.writes",
 "//:stat.errors"
]
}

Chapter 4
Collect Data for Dynamically Allocated Resources

4-8

Create the file stat.util3.json, which is the same as the stat.util2.json file except
that util2 is changed to util3 in each id value.

[
 {
 "$schema": "//:stat",
 "description": "reads",
 "id": "//:class.app/util3//:stat.reads",
 "stability": "stable",
 "type": "counter",
 "units": "operations"
 },
 {
 "$schema": "//:stat",
 "description": "writes",
 "id": "//:class.app/util3//:stat.writes",
 "stability": "stable",
 "type": "counter",
 "units": "operations"
 },
 {
 "$schema": "//:stat",
 "description": "errors",
 "id": "//:class.app/util3//:stat.errors",
 "stability": "stable",
 "type": "counter",
 "units": "errors"
 }
]

Restart the sstore:default service to add the new metadata to the statistics repository.

$ svcadm restart sstore:default

View the util3 statistic metadata.

$ sstore info //:class.app/util3
 Identifier: //:class.app/util3
 namespaces: {'0': '{'name-type': 'string', 'resource-name': 'inst'}'}
 $schema: //:class
description: Example util1 plus dynamically-allocated resources
 id: app/util3
 stability: stable
 stat-names: //:stat.reads
 stat-names: //:stat.writes
 stat-names: //:stat.errors

Modify the Application to Create Resources Dynamically
The util3 version of this example application calls sstore_data_attach() in the same way
as in the util2 version and updates the statistic values in the same way. The stats
structure is the same.

The util3 version of the ids array is the same as the util2 version except that the SSIDs
are not statically listed in the application. In the util3 version, the ids array is built
dynamically as resources are added.

Chapter 4
Collect Data for Dynamically Allocated Resources

4-9

How to Add Resources Dynamically
Use this procedure when your application detects that a new resource has come
online.

1. Store an SSID for the resource in an array.

This resource SSID has the following form:

//:class.class//:res.resource

For example, store the following SSID in an array named res_ids.

//:class.app/util3//:res.inst/Customers

This array of resource SSIDs is an argument to sstore_resource_add().

2. Call sstore_resource_add() to add the resource metadata to the statistics
repository.

For example, if you had added Customers, Products, and Orders resources to the
res_ids array, you could make the following call:

sstore_resource_add(hdl, (const char **)res_ids, 3)

An optional fourth argument enables you to include additional metadata for the
resource. See the sstore_resource_add(3SSTORE) man page for details.

3. Build the statistics array.

Use the res_ids resource SSID array and the stats structure to dynamically
create the ids statistics array. As in previous versions of this example, the ids
statistics array is the array that you pass to sstore_data_attach() and use for
updating the values of the statistics.

Chapter 4
Collect Data for Dynamically Allocated Resources

4-10

5
Separating Data Into Partitions

Add Partition Metadata
The class metadata file does not need to change. Use the class.app.util2.json file
shown in Add Resources to the Class Metadata.

In this example, the statistics metadata file is modified to add a statistic that will be used in
creating partitions.

Modify the Statistics Metadata File
The statistics metadata file is the same as the stat.util2.json file shown in Add
Resources to the Class Metadata except that you need to add an element for the activity
statistic that will be used to partition and reads and writes statistics. Modify the
stat.util2.json file to have the following content:

[
 {
 "$schema": "//:stat",
 "description": "reads",
 "id": "//:class.app/util2//:stat.reads",
 "stability": "stable",
 "type": "counter",
 "units": "operations"
 },
 {
 "$schema": "//:stat",
 "description": "writes",
 "id": "//:class.app/util2//:stat.writes",
 "stability": "stable",
 "type": "counter",
 "units": "operations"
 },
 {
 "$schema": "//:stat",
 "description": "errors",
 "id": "//:class.app/util2//:stat.errors",
 "stability": "stable",
 "type": "counter",
 "units": "errors"
},
{
"$schema": "//:stat",
"description": "reads or writes",
"id": "//:class.app/util2//:stat.activity",
"stability": "stable",
"type": "counter",
"units": "operations"
 }
]

5-1

Create a Statistic Mapping File
Create a new stat-mapping metadata file with the following content in stat-
mapping.util2.json in the /usr/lib/sstore/metadata/json/site/
directory:

[
 {
 "$schema": "//:stat-mapping",
 "description": "map util2 instance errors to aggregate class errors",
 "id": "//:class.app/util2//:stat-mapping.errors",
 "instance-metadata": {
 "partitions": [
 "inst"
]
 },
 "transforms": [
 {
 "match": "//:class.app/util2//:res.inst/(Customers|Products|
Orders)//:stat.errors$",
 "replace": "//:class.app/util2//:stat.errors//:part.inst(\\1)"
 }
]
 },
 {
 "$schema": "//:stat-mapping",
 "description": "map util2 instance reads and writes to aggregate class
activity",
 "id": "//:class.app/util2//:stat-mapping.activity",
 "instance-metadata": {
 "partitions": [
 "inst",
 "type"
]
 },
 "transforms": [
 {
 "match": "//:class.app/util2//:res.inst/(Customers|Products|
Orders)//:stat.(reads|writes)$",
 "replace": "//:class.app/util2//:stat.activity//:part.inst(\
\1)//:part.type(\\2)"
 }
]
 }
]

In the first stanza, the errors statistic for each instance (statically allocated Customers,
Products, and Orders) is mapped to a class-level errors statistic. The partitions
element indicates that the statistic is partitioned by resource (inst). The (\\1)
expression in the replace value matches the (Customers|Products|Orders)
expression in the match value. The //:class.app/util2//:res.inst/
Customers//:stat.errors, //:class.app/util2//:res.inst/
Products//:stat.errors, and //:class.app/util2//:res.inst/
Orders//:stat.errors values are aggregated in the //:class.app/
util2//:stat.errors statistic. The split between resource instances is shown by
the //:class.app/util2//:stat.errors//:part.inst SSID.

Chapter 5
Add Partition Metadata

5-2

In the second stanza, the reads and writes statistics for each instance are mapped to the
new activity statistic that you added to the stat.util2.json file. The (\\2) expression
in the replace value matches the (reads|writes) expression in the match value. Total reads
and writes from all three instances are aggregated in the //:class.app/
util2//:stat.activity statistic. Splits between instances are shown by the //:class.app/
util2//:stat.activity//:part.inst SSID. Splits between statistics are shown by
the //:class.app/util2//:stat.activity//:part.type SSID.

View Partitioned Statistic Values
The following output shows the values of all resource instance statistics and partitioned
statistics:

$./util2 &
$ sstore capture //:class.app/util2//:*//:*
TIME VALUE IDENTIFIER
2016-06-12T05:19:54 2 //:class.app/util2//:res.inst/Customers//:stat.errors
2016-06-12T05:19:54 10 //:class.app/util2//:res.inst/Customers//:stat.reads
2016-06-12T05:19:54 7 //:class.app/util2//:res.inst/Customers//:stat.writes
2016-06-12T05:19:54 3 //:class.app/util2//:res.inst/Orders//:stat.errors
2016-06-12T05:19:54 15 //:class.app/util2//:res.inst/Orders//:stat.reads
2016-06-12T05:19:54 13 //:class.app/util2//:res.inst/Orders//:stat.writes
2016-06-12T05:19:54 3 //:class.app/util2//:res.inst/Products//:stat.errors
2016-06-12T05:19:54 13 //:class.app/util2//:res.inst/Products//:stat.reads
2016-06-12T05:19:54 7 //:class.app/util2//:res.inst/Products//:stat.writes
2016-06-12T05:19:54 //:class.app/util2//:stat.activity//:part.inst
 Customers: 17.0
 Orders: 28.0
 Products: 20.0
2016-06-12T05:19:54 //:class.app/util2//:stat.activity//:part.type
 writes: 27.0
 reads: 38.0
2016-06-12T05:19:54 //:class.app/util2//:stat.errors//:part.inst
 Customers: 2.0
 Orders: 3.0
 Products: 3.0
^C

Partitioned values are shown as real numbers.

The following output shows that the total of all reads and writes (17 + 28 + 20 or 27 +38
shown in the preceding output) is stored in the //:class.app/util2//:stat.activity
statistic, and the total errors from all instances is stored in the //:class.app/
util2//:stat.errors statistic:

$ sstore export -t 2016-06-12T05:19:53 -p 1 //:class.app/util2//:stat.*
TIME VALUE IDENTIFIER
2016-06-12T05:19:54 65.0 //:class.app/util2//:stat.activity
2016-06-12T05:19:54 8.0 //:class.app/util2//:stat.errors

Create a Graph to Visualize Partitioned Statistic Values
Create the following sheet metadata file in /usr/lib/webui/analytics/sheets/site/
and then restart the webui/server:default service:

{
 "$schema": "file:///analytics-import.schema.json",

Chapter 5
View Partitioned Statistic Values

5-3

 "v1": {
 "groups": [
 {
 "description": "util2 reads, writes, and errors partitioned by
resource or operation",
 "uniqueName": "util2 partitioned statistics Group",
 "visualizations": [
 "util2 operations summed",
 "util2 operations not summed",
 "util2 errors"
]
 }
],
 "sections": [
 {
 "groups": [
 "util2 partitioned statistics Group"
],
 "uniqueName": "util2 partitioned statistics Section"
 }
],
 "sheets": [
 {
 "description": "Partitioned statistics",
 "sections": [
 "util2 partitioned statistics Section"
],
 "tags": [
 "data_attach",
 "partitions"
],
 "uniqueName": "util2 partitioned statistics"
 }
],
 "visualizations": [
 {
 "description": "Sum of reads and writes for each resource",
 "ssids": [
 "//:class.app/util2//:stat.activity"
],
 "style": "time-series",
 "uniqueName": "util2 operations summed"
 },
 {
 "description": "reads and writes for each resource",
 "ssids": [
 "//:class.app/
util2//:stat.activity//:part.type(reads,writes,sum=false)"
],
 "style": "time-series",
 "uniqueName": "util2 operations not summed"
 },
 {
 "description": "util2 error counts",
 "ssids": [
 "//:class.app/util2//:stat.errors"
],
 "style": "time-series",
 "uniqueName": "util2 errors"
 }
]

Chapter 5
Create a Graph to Visualize Partitioned Statistic Values

5-4

 }
}

The sheet defined in this file includes two visualizations to display values of the activity
statistic so that you can compare the results. You probably will define a single visualization for
each statistic that you think will be most useful to most administrators. Administrators can use
the System Web Interface to change the visualization if necessary.

All three visualizations defined in this metadata file have an inst choice on the partitions list.
The visualization for //:class.app/util2//:stat.activity also has a type choice. This
information comes from the mapping file.

In the first activity visualization ("operations summed"), if no partition is selected, the graph
shows a single line labeled "reads or writes" that represents the sum of all reads and writes
from any resource.

In the second activity visualization ("operations not summed"), if no partition is selected,
the graph shows two lines. The line labeled "reads" is the sum of all reads performed by any
resource; the line labeled "writes" is the sum of all writes performed by any resource. The first
activity visualization shows this same display if the user selects type from the partitions list.

The following figure shows both activity visualizations when inst is selected from the
partitions list. In the first visualization, the three lines represent the sum of all reads and
writes from each resource. In the second visualization, the six lines represent the number of
reads from each resource and the number of writes from each resource. Looking back at the
sheet metadata file, the reads and writes are summed by default. Specifying sum=false
effectively resulted in partitioning by both resource and data type at the same time.

Graph Showing Statistics Partitioned by Resource

Chapter 5
Create a Graph to Visualize Partitioned Statistic Values

5-5

6
Adding Any Type of Data to the Statistics
Store

Create the Class and Statistic Definition Files
In the /usr/lib/sstore/metadata/json/site/ directory, create the file
class.app.example.json with the following content to define the class for the example
application.

{
 "$schema": "//:class",
 "description": "example of sstore_data_update()",
 "id": "app/example",
 "stability": "stable",
 "stat-names": [
 "//:stat.one",
 "//:stat.two"
]
}

To define the statistics for this example, create the file stat.example.json with the
following content in the /usr/lib/sstore/metadata/json/site/ directory:

[
 {
 "$schema": "//:stat",
 "description": "example stat one",
 "id": "//:class.app/example//:stat.one",
 "stability": "stable",
 "type": "counter",
 "units": "calls"
 },
 {
 "$schema": "//:stat",
 "description": "example stat two",
 "id": "//:class.app/example//:stat.two",
 "stability": "stable",
 "type": "counter",
 "units": "calls"
 }
]

Run the soljsonfmt tool on the .json file to check for JSON syntactic errors. Run the
soljsonvalidate tool on the .json file to check for JSON semantic errors:

soljsonvalidate class.app.example.json stat.example.json
soljsonfmt class.app.example.json stat.example.json

You must restart the sstore:default service to see the new class SSID.

$ svcadm restart sstore:default

6-1

Ensure that sstore:default and other services are online:

$ svcs -x

Check whether the metadata files imported correctly:

$ tail `svcs -L sstore`

The log file should show no errors and should show that the start method exited with
status 0.

List the new class SSID:

$ sstore list //:class.app/example
IDENTIFIER
//:class.app/example

Show the metadata for the class:

$ sstore info //:class.app/example
 Identifier: //:class.app/example
 $schema: //:class
 id: app/example
description: example of sstore_data_update()
 stat-names: //:stat.one
 stat-names: //:stat.two
 stability: stable

Create an Application that Updates Statistic Values
Create the file data_update.c with the following content to update the statistic
values in this example. Differences between this sstore_data_update() program and
the sstore_data_attach() program described in Create an Application that Writes
Statistic Values include the following:

• This sstore_data_update() program has no mystats structure. The mystats
structure is used for the memory map in the sstore_data_attach() program.

• The handle to the statistics store is declared but no memory is allocated.

/*
 * Example program data_update.c:
 */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <libsstore.h>

#define NUM_STATS 2

const char *ssids[NUM_STATS] = {
 "//:class.app/example//:stat.one",
 "//:class.app/example//:stat.two"
};

int main()
{
 sstore_handle_t hdl;
 sstore_value_t vals[NUM_STATS] = {0};

Chapter 6
Create an Application that Updates Statistic Values

6-2

 int i, j;

 if ((hdl = sstore_alloc()) == NULL) {
 fprintf(stderr, "Failed to alloc libsstore handle\n");
 return (-1);
 }

 /* Alloc the sstore_value_t's */
 for (i = 0; i < NUM_STATS; i++) {
 if ((vals[i] = sstore_value_alloc()) == NULL) {
 fprintf(stderr, "Failed to alloc sstore_value_t\n");
 goto end;
 }

 vals[i]->sv_type = SSTORE_VALUE_NUMBER;
 }

 /* Update the stats every second */
 for (i = 0;; i++) {
 char *id, *desc;

 for (j = 0; j < NUM_STATS; j++) {
 vals[j]->sv_value.num += j + 1;
 }

 if (sstore_data_update(hdl, ssids, NUM_STATS,
 vals) != ESSTORE_OK) {
 fprintf(stderr, "Failed to update stats. "
 "Reason: %s\n", sstore_err_description(hdl));
 break;
 }

 /* Check warnings */
 while (sstore_warning_next(hdl, &id,
 &desc) != SS_WARN_OK) {
 fprintf(stderr, "failed to update stat for %s "
 "because %s\n", id, desc);
 }

 sleep(1);
 }

end:
 for (i = 0; i < NUM_STATS; i++) {
 sstore_value_free(vals[i]);
 }

 sstore_free(hdl);
 return (0);
}

Compile the application:

$ cc -lsstore -o data_update data_update.c

Record Statistic Values
List the new statistics:

Chapter 6
Record Statistic Values

6-3

$ sstore list //:class.app/example//:stat.*
IDENTIFIER
//:class.app/example//:stat.one
//:class.app/example//:stat.two

Show information about the new statistics:

$ sstore info //:class.app/example//:stat.*
 Identifier: //:class.app/example//:stat.one
 $schema: //:stat
description: example stat one
 id: //:class.app/example//:stat.one
 stability: stable
 type: counter
 units: calls

 Identifier: //:class.app/example//:stat.two
 $schema: //:stat
description: example stat two
 id: //:class.app/example//:stat.two
 stability: stable
 type: counter
 units: calls

Run the data_update application and record the statistic values:

$ sstore capture //:class.app/example//:stat.*
TIME VALUE IDENTIFIER
2016-05-25T23:21:02 2 //:class.app/example//:stat.one
2016-05-25T23:21:02 4 //:class.app/example//:stat.two
2016-05-25T23:21:03 3 //:class.app/example//:stat.one
2016-05-25T23:21:03 6 //:class.app/example//:stat.two
2016-05-25T23:21:04 4 //:class.app/example//:stat.one
2016-05-25T23:21:04 8 //:class.app/example//:stat.two
...

Chapter 6
Record Statistic Values

6-4

Index

Symbols
/usr/lib/sstore/metadata/ directory, 2-1

A
authorizations

solaris.sstore.capture.expensive, 2-12
solaris.sstore.capture.sensitive, 2-11
solaris.sstore.read.sensitive, 2-11
solaris.sstore.update.res, 2-14

C
C API, 1-4, 3-3
collections

creating, 2-5

D
data types, 1-4

E
expensive property, 2-12

G
graphs

creating, 2-6, 3-6
partitioned statistics, 5-3
resource statistics, 4-5

H
histograms, 1-6

J
JSON files

data, 2-1
schema, 2-1

L
libsstore library, 1-4

C API, 3-3
Python API, 3-4

M
metadata, 3-1
metadata files, 2-1
mmap, 1-4, 3-3

P
partitions, 2-4
properties

expensive, 2-12
sau_capture_expensive_auth, 2-12
sau_capture_expensive_username, 2-12
sau_capture_sensitive_auth, 2-11
sau_capture_sensitive_username, 2-11
sau_read_sensitive_auth, 2-11
sau_read_sensitive_username, 2-11
sau_update_res_auth, 2-14
sau_update_res_username, 2-14
sensitive, 2-11

Python API, 1-4, 3-4

R
resources

defining, 2-2
dynamically allocated, 2-4, 4-7
metadata, 4-1, 4-8
removing, 1-7
statically allocated, 2-3, 4-1
topology, 2-5

S
sau_capture_expensive_auth property, 2-12
sau_capture_expensive_username property,

2-11, 2-12

Index-1

sau_capture_sensitive_auth property, 2-11
sau_read_expensive_username property, 2-11
sau_read_sensitive_auth property, 2-11
sau_update_res_auth property, 2-14
sau_update_res_username property, 2-14
sensitive property, 2-11
shared memory area, 1-4, 3-3
sheets

creating, 2-6, 3-6
partitioned statistics, 5-3
resource statistics, 4-5

solaris.sstore.capture.expensive
authorization, 2-12

solaris.sstore.capture.sensitive
authorization, 2-11

solaris.sstore.read.sensitive authorization,
2-11

solaris.sstore.update.res authorization, 2-14
soljsonfmt, 2-1, 3-1
soljsonvalidate, 2-1, 3-1
sstore command

capture subcommand, 3-5
export subcommand, 3-5
info subcommand, 3-5
list subcommand, 3-5

SStore data_attach(), 3-4
sstore_alloc(), 3-3
sstore_data_attach, 1-4
sstore_data_attach_histogram, 1-4
sstore_data_attach_histogram(), 1-6
sstore_data_attach(), 3-3
sstore_data_bulk_update, 1-4

sstore_data_update, 1-4
sstore_free(), 3-3
sstore_histogram_quantize(), 1-6
sstore_resource_add(), 2-4, 4-7
sstore_resource_remove(), 1-7
statistics

adding, 2-1
adding values, 1-4
bulk value update, 1-4
categorizing values into ranges, 1-6
histograms, 1-6
metadata, 2-1
partitions, 2-4
providers, 1-4
removing, 1-7
updating values, 1-4

troubleshooting, 1-7
value time stamps, 1-4
value types, 1-4

T
time stamps, 1-4
topology, 2-5

V
visualizations

creating, 2-6, 3-6
partitioned statistics, 5-3
resource statistics, 4-5

Index

Index-2

	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	1 Adding Data to the Oracle Solaris StatsStore
	Adding Data: Steps and Best Practices
	How to Add Data
	Type of Data to Provide
	Data Type
	Components of the Application
	Components of a Statistic
	Topology Map

	Interfaces for Providing Statistic Values
	Comparing Methods for Providing Statistic Values
	The sstore_data_attach() Interface
	The sstore_data_update() Interface
	The sstore_data_bulk_update() Interface
	The sstore_data_attach_histogram() Interface

	Removing Resources and Statistics

	Troubleshooting Providing Statistics
	How to Force a Reread of all Metadata

	2 Defining Custom Statistics
	Adding Resources and Statistics to the Statistics Store Namespace
	Using Statistics Store Metadata Files
	Defining Resources
	Adding Static Resources
	Adding Resources Dynamically

	Defining Partitions

	Mapping Topology
	Creating a Collection
	Creating Visualizations
	Sheet and Visualization Design Best Practices
	How to Create a Visualization
	How to Create a Visualization by Using the System Web Interface

	Authorizing Access to Resources and Statistics
	Restricting Access to Sensitive Data
	Restricting Capture of Data that is Expensive to Capture
	Authorizing the Ability to Add and Remove Resources and Statistic and Event Data
	Authorizing the Ability to Configure a Collection

	3 Adding Simple Data Values to the Statistics Store
	Populate the Statistics Store Namespace
	Create an Application that Writes Statistic Values
	C Version
	Python Version

	Update and View Statistic Values
	Create a Graph to Visualize the Statistic Values

	4 Specifying Resources
	Collect Data for Statically Allocated Resources
	Add Resources to the Class Metadata
	Modify the Application to Save Statistic Values for Each Resource
	View Statistic Values for Statically Allocated Resources
	Create a Graph to Visualize Resource Statistics

	Collect Data for Dynamically Allocated Resources
	Modify the Metadata to Omit Resource Names
	Modify the Application to Create Resources Dynamically
	How to Add Resources Dynamically

	5 Separating Data Into Partitions
	Add Partition Metadata
	Modify the Statistics Metadata File
	Create a Statistic Mapping File

	View Partitioned Statistic Values
	Create a Graph to Visualize Partitioned Statistic Values

	6 Adding Any Type of Data to the Statistics Store
	Create the Class and Statistic Definition Files
	Create an Application that Updates Statistic Values
	Record Statistic Values

	Index

