
Oracle Solaris 11.4 DTrace (Dynamic Tracing)
Guide

E61035-03
August 2023

Oracle Solaris 11.4 DTrace (Dynamic Tracing) Guide,

E61035-03

Copyright © 2011, 2023, Oracle and/or its affiliates.

Primary Author: Cathleen Reiher

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Copyright © 2011, 2023, Oracle et/ou ses affiliés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont
concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf stipulation expresse de votre
contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et
par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le
désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par
la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle
Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par
écrit.

Si ce logiciel, la documentation du logiciel, les données (telles que définies dans la réglementation "Federal
Acquisition Regulation") ou la documentation qui l'accompagne sont livrés sous licence au Gouvernement des Etats-
Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le compte du Gouvernement des Etats-Unis, la
notice suivante s'applique :

UTILISATEURS DE FIN DU GOUVERNEMENT É.-U. : programmes Oracle (y compris tout système d'exploitation,
logiciel intégré, tout programme intégré, installé ou activé sur le matériel livré et les modifications de tels programmes)
et documentation sur l'ordinateur d'Oracle ou autres logiciels OracleLes données fournies aux utilisateurs finaux du
gouvernement des États-Unis ou auxquelles ils ont accès sont des "logiciels informatiques commerciaux", des
"documents sur les logiciels informatiques commerciaux" ou des "données relatives aux droits limités" conformément
au règlement fédéral sur l'acquisition applicable et aux règlements supplémentaires propres à l'organisme. À ce titre,
l'utilisation, la reproduction, la duplication, la publication, l'affichage, la divulgation, la modification, la préparation des
œuvres dérivées et/ou l'adaptation des i) programmes Oracle (y compris tout système d'exploitation, logiciel intégré,
tout programme intégré, installé, ou activé sur le matériel livré et les modifications de ces programmes), ii) la
documentation informatique d'Oracle et/ou iii) d'autres données d'Oracle, sont assujetties aux droits et aux limitations
spécifiés dans la licence contenue dans le contrat applicable. Les conditions régissant l'utilisation par le
gouvernement des États-Unis des services en nuage d'Oracle sont définies par le contrat applicable à ces services.
Aucun autre droit n'est accordé au gouvernement américain.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des
informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque,
notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou
matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de
secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions
optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l'utilisation de ce logiciel ou matériel pour des applications dangereuses.

Oracle®, Java, et MySQL sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom
mentionné peut être une marque appartenant à un autre propriétaire qu'Oracle.

Intel et Intel Inside sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont
utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Epyc, et le
logo AMD sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée
de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant
accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute
responsabilité et excluent toute garantie expresse ou implicite quant aux contenus, produits ou services émanant de
tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses
affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages
causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée
dans un contrat entre vous et Oracle.

Contents

 Using This Documentation

Product Documentation Library xviii

Feedback xviii

1 About DTrace

Getting Started 1-1

What's New in Dynamic Tracing in Oracle Solaris 11.4 1-3

Providers and Probes 1-3

2 D Programming Language

D Program Structure 2-1

Probe Clauses and Declarations 2-1

Probe Descriptions 2-2

Predicates in DTrace 2-3

Probe Actions 2-7

Order of Executing DTrace Actions 2-7

Use of the C Preprocessor 2-7

Compilation and Instrumentation in DTrace 2-7

Variables and Arithmetic Expressions in DTrace 2-9

Output Formatting in DTrace 2-11

Arrays in DTrace 2-14

External Symbols and Types in DTrace 2-15

Types, Operators, and Expressions in DTrace 2-16

Identifier Names and Keywords 2-16

Data Types and Sizes 2-18

Constants in DTrace 2-19

Arithmetic Operators 2-20

Relational Operators 2-21

Logical Operators 2-22

Bitwise Operators 2-22

Assignment Operators 2-23

iv

Increment and Decrement Operators 2-24

Conditional Expressions 2-24

Type Conversions 2-25

Precedence DTrace Rules 2-25

Variables in DTrace 2-27

Scalar Variables 2-27

Associative Arrays 2-28

Thread-Local Variables 2-29

Clause-Local Variables 2-31

Built-In Variables 2-33

External Variables 2-35

Pointers and Arrays in DTrace 2-36

Pointers and Addresses 2-37

Pointer Safety 2-38

Array Declarations and Storage 2-39

Pointer and Array Relationship 2-40

Pointer Arithmetic 2-40

Generic Pointers 2-41

Multi-Dimensional Arrays 2-42

Pointers to DTrace Objects 2-42

Pointers and Address Spaces 2-42

Strings in DTrace 2-43

String Representation 2-43

String Constants 2-44

String Assignment 2-44

String Conversion 2-44

String Comparison 2-45

Structs and Unions in DTrace 2-45

Structs in DTrace 2-46

Pointers to Structs 2-47

Union Types in DTrace 2-51

Member Sizes and Offsets 2-53

Bit Fields 2-54

Type and Constant Definitions in DTrace 2-54

typedef Keyword 2-54

Enumerations in DTrace 2-55

Inlines in DTrace 2-56

Type Namespaces in DTrace 2-57

v

3 DTrace Aggregations

Aggregating Functions 3-1

About Aggregations 3-2

Printing Aggregations 3-12

Data Normalization 3-13

Clearing Aggregations 3-16

Sorting Aggregations 3-16

Truncating Aggregations 3-18

Minimizing Drops 3-19

4 DTrace Actions and Subroutines

DTrace Actions 4-1

DTrace Default Action 4-1

DTrace Data Recording Actions 4-2

clear Action 4-2

denormalize Action 4-2

freopen Action 4-2

ftruncate Action 4-3

func Action 4-4

jstack Action 4-4

mod Action 4-4

normalize Action 4-4

pcap Action 4-4

print Action 4-5

printa Action 4-6

printf Action 4-6

setopt Action 4-7

stack Action 4-7

sym Action 4-8

trace Action 4-8

tracemem Action 4-9

trunc Action 4-9

uaddr Action 4-9

ufunc Action 4-11

umod Action 4-11

ustack Action 4-12

usym Action 4-15

DTrace Destructive Actions 4-16

Process Destructive Actions 4-16

copyout Action 4-16

vi

copyoutstr Action 4-16

raise Action 4-16

stop Action 4-17

system Action 4-17

Kernel Destructive Actions 4-18

breakpoint Action 4-18

chill Action 4-20

panic Action 4-20

DTrace Special Actions 4-21

Speculative Actions 4-21

exit Action 4-21

DTrace Subroutines 4-21

alloca Subroutine 4-21

basename Subroutine 4-22

bcopy Subroutine 4-22

cleanpath Subroutine 4-22

copyin Subroutine 4-22

copyinstr Subroutine 4-23

copyinto Subroutine 4-23

dirname Subroutine 4-23

inet_ntoa Subroutine 4-23

inet_ntoa6 Subroutine 4-23

inet_ntop Subroutine 4-24

msgdsize Subroutine 4-24

msgsize Subroutine 4-24

mutex_owned Subroutine 4-24

mutex_owner Subroutine 4-24

mutex_type_adaptive Subroutine 4-24

progenyof Subroutine 4-25

rand Subroutine 4-25

rw_iswriter Subroutine 4-25

rw_write_held Subroutine 4-25

speculation Subroutine 4-25

strchr Subroutine 4-25

strjoin Subroutine 4-26

strlen Subroutine 4-26

strrchr Subroutine 4-26

strstr Subroutine 4-26

strtok Subroutine 4-26

DTrace User Address Symbol Resolution 4-26

vii

5 DTrace Buffers and Buffering

Principal Buffers 5-1

Principal Buffer Policies 5-1

switch Policy 5-2

fill Policy 5-2

fill Policy and END Probes 5-3

ring Policy 5-3

Other Buffers 5-3

Buffer Sizes 5-4

Buffer Resizing Policy 5-4

6 Output Formatting in DTrace

printf() Function 6-1

Conversion Specifications 6-2

Flag Specifiers 6-2

Width and Precision Specifiers 6-3

Size Prefixes 6-3

Conversion Formats 6-4

printa() Function 6-6

trace Default Format 6-8

7 Speculative Tracing in DTrace

Speculation Interfaces 7-1

Creating a Speculation 7-2

Using a Speculation 7-2

Committing a Speculation 7-3

Discarding a Speculation 7-3

Speculation Example 7-3

Speculation Options and Tuning 7-7

8 dtrace Utility

dtrace Command Description 8-1

dtrace Command Options 8-1

dtrace Command Operands 8-6

dtrace Command Exit Status Values 8-6

viii

9 Scripting in DTrace

Interpreter Files 9-1

Macro Variables 9-2

Macro Arguments 9-3

Target Process ID 9-5

10

DTrace Options and Tunables

Consumer Options 10-1

Modifying Options 10-3

11

DTrace Providers

cpc Provider 11-1

cpc Probes 11-1

cpc Probe Arguments 11-3

Probe Availability and CPU Counters 11-4

cpc Probe Creation 11-4

cpc Probe and Existing Tools 11-4

Using the cpc Provider 11-5

cpc Stability 11-7

dtrace Provider 11-7

BEGIN Probe 11-8

END Probe 11-8

ERROR Probe 11-9

dtrace Provider Stability 11-10

fbt Provider 11-10

fbt Probes 11-11

fbt Probe Arguments 11-11

fbt entry Probes 11-11

fbt return Probes 11-11

Using the fbt Provider 11-12

fbt and Tail-Call Optimization 11-16

fbt and Assembly Functions 11-17

fbt and Instruction Set Limitations 11-18

x86 Limitations With fbt 11-18

SPARC Limitations With fbt 11-18

fbt and Breakpoint Interaction 11-18

fbt and Module Loading 11-18

FBT Stability Mechanism 11-18

fileops Provider 11-19

ix

fileops Probes 11-19

fileops Probe Arguments 11-20

Using the fileops read Probe 11-21

fileops Stability 11-24

fpuinfo Provider 11-24

fpuinfo Probes 11-24

fpuinfo Probe Arguments 11-26

fpuinfo Stability 11-26

io Provider 11-26

io Probes 11-27

io Probe Arguments 11-27

io bufinfo_t Structure 11-28

io devinfo_t Structure 11-29

io fileinfo_t Structure 11-30

Using the io Provider 11-31

io Stability 11-40

lockstat Provider 11-41

lockstat Overview 11-41

lockstat Adaptive Lock Probes 11-41

lockstat Spin Lock Probes 11-42

lockstat Thread Locks 11-43

lockstat Reader/Writer Lock Probes 11-43

lockstat Stability 11-44

mib Provider 11-44

mib Probes 11-44

mib Probe Arguments 11-57

mib Stability 11-57

pid Provider 11-58

Naming pid Probes 11-58

pid Function Boundary Probes 11-59

pid entry Probes 11-59

pid return Probes 11-59

pid Function Offset Probes 11-59

pid Stability 11-60

plockstat Provider 11-60

plockstat Overview 11-60

plockstat Mutex Probes 11-61

plockstat Reader/Writer Lock Probes 11-61

plockstat Stability 11-62

proc Provider 11-62

proc Probes 11-62

x

proc Probe Arguments 11-64

proc lwpsinfo_t Structure 11-64

proc psinfo_t Structure 11-67

Using the proc Provider 11-67

Using the proc exec Probe 11-67

Using proc start and proc exit 11-69

Using proc lwp-start and proc lwp-exit 11-70

Using proc signal-send 11-72

proc Stability 11-73

profile Provider 11-73

profile-n Probes 11-73

tick-n Probes 11-75

profile Probe Arguments 11-75

profile Timer Resolution 11-76

profile Probe Creation 11-77

profile Stability 11-77

sched Provider 11-78

sched Probes 11-78

sched Probe Arguments 11-80

sched cpuinfo_t Structure 11-81

Using the sched Provider 11-82

Using on-cpu and off-cpu 11-82

Using sched Probes 11-88

sleep and wakeup 11-93

preempt and remain-cpu 11-99

Using change-pri 11-101

Using sched tick 11-102

Using sched cpucaps-sleep and cpucaps-wakeup 11-104

sched Stability 11-105

sdt Provider 11-105

SDT Probes 11-105

Using the sdt Provider 11-106

Creating SDT Probes 11-109

Declaring sdt Probes 11-109

sdt Probe Arguments 11-109

sdt Stability 11-109

syscall Provider 11-110

syscall Probes 11-110

System Call Anachronisms 11-110

Subcoded System Calls 11-110

New System Calls 11-111

xi

Deleted System Calls 11-111

Large File System Calls 11-112

Private System Calls 11-113

syscall Probe Arguments 11-113

syscall Stability 11-113

sysinfo Provider 11-113

sysinfo Probes 11-113

sysinfo Probe Arguments 11-116

Using sysinfo mpstat 11-117

sysinfo Stability 11-119

vminfo Provider 11-119

vminfo Probes 11-119

vminfo Probe Arguments 11-121

Using vminfo vmstat 11-121

vminfo Stability 11-124

Network and Network Service Protocol Providers 11-125

icmp Provider 11-125

ICMP Probes 11-125

ICMP Probe Arguments 11-125

Using the ICMP Provider 11-129

ICMP Stability 11-130

igmp Provider 11-130

igmp Probes 11-130

igmp Probe Arguments 11-130

Monitoring IGMP Traffic by Zone 11-133

IGMP Stability 11-133

ip Provider 11-133

ip Probes 11-134

ip Probe Arguments 11-134

Using the ip Provider 11-139

ip Stability 11-143

iscsi Provider 11-143

iscsi Probes 11-143

iscsi Probe Arguments 11-144

COMSTAR iSCSI Argument Types 11-144

Using the iscsi Provider 11-146

nfsv3 Server Provider 11-148

nfsv3 Probe Arguments 11-148

NFSv3 Probes 11-149

Using the nfsv3 Provider 11-150

nfsv4 Provider 11-157

xii

nfsv4 Probe Arguments 11-157

NFSv4 Top-Level Probes 11-158

Using the nfsv4 Provider 11-161

nlmv4 Provider 11-168

nlmv4 Probe Arguments 11-168

nlmv4 Probes 11-168

nlm4_probe_cancargs_t Arguments 11-169

nlmv4 Stability 11-171

scsi Provider 11-171

SCSI Probes 11-171

scsi Probe Arguments 11-172

Using the scsi Provider 11-175

scsi Stability 11-177

sctp Provider 11-177

SCTP Probes 11-177

SCTP Probe Arguments 11-178

Using the sctp Provider 11-181

sctp Stability 11-182

srp Provider 11-182

srp Probes 11-183

SRP Argument Types 11-185

Using the srp Provider 11-186

tcp Provider 11-190

tcp Probes 11-190

Argument Types for the tcp Provider 11-191

Using the tcp Provider 11-196

tcp Stability 11-201

udp Provider 11-201

udp Probes 11-201

udp Probe Arguments 11-202

Using the udp Provider 11-204

udp Stability 11-205

12

User Process Tracing

copyin and copyinstr Subroutines 12-1

Subroutine Examples 12-1

Avoiding Errors 12-2

Eliminating dtrace Interference 12-3

syscall Provider 12-3

ustack Action 12-4

xiii

uregs[] Array 12-5

pid Provider 12-7

User Function Boundary Tracing 12-7

Tracing Arbitrary Instructions 12-9

13

Statically Defined Tracing for User Applications

Choosing the Probe Points 13-1

Adding Probes to an Application 13-1

Defining Providers and Probes 13-2

Adding Probes to Application Code 13-2

Building Applications With Probes 13-3

14

Security in DTrace

Privileges in Oracle Solaris 14-1

Privileged Use of DTrace 14-2

dtrace_proc Privilege 14-2

dtrace_user Privilege 14-3

dtrace_kernel Privilege 14-3

Users Granted All Privileges 14-4

15

Anonymous Tracing in DTrace

Anonymous Enablings 15-1

Claiming Anonymous State 15-1

Anonymous Tracing Examples 15-2

16

Postmortem Tracing in DTrace

Displaying DTrace Consumers 16-1

Displaying Trace Data 16-2

17

Performance Considerations in DTrace

Limit Enabled Probes 17-1

Use Aggregations 17-1

Use Cacheable Predicates 17-2

xiv

18

DTrace Stability Mechanisms

Stability Levels 18-1

Stability Dependency Classes 18-2

Stability Interface Attributes 18-3

Stability Interfaces Defined for USDT Providers 18-4

Stability Computations and Reports 18-4

Stability Enforcement 18-6

19

DTrace Translators

Translator Declarations 19-1

Translator Operator 19-3

Process Model Translators 19-4

Stable Translations 19-4

20

Writing DTrace Consumers

Creating Custom DTrace Consumers 20-1

DTrace Consumer Functions 20-1

dtrace_open() Function 20-3

dtrace_program_strcompile() Function 20-4

dtrace_program_exec() Function 20-5

dtrace_setopt() Function 20-5

dtrace_go() Function 20-5

dtrace_sleep() Function 20-6

dtrace_work() Function 20-6

dtrace_stop() Function 20-8

dtrace_aggregate_print() Function 20-8

dtrace_close() Function 20-9

dtrace_errmsg() and dtrace_errno() Functions 20-9

Processing Traced Data in DTrace 20-9

Strings in DTrace 20-10

DTrace Compound Data 20-10

stack() Function 20-10

ustack() and jstack() Functions 20-11

tracemem() Function 20-12

umod(), usym(), and uaddr() Functions 20-12

Processing Aggregation Data in DTrace 20-12

avg() Function 20-13

stddev() Function 20-13

quantize() Function 20-14

xv

lquantize() Function 20-15

llquantize() Function 20-16

Processing of Aggregations in DTrace 20-17

Aggregation Walkers 20-18

dtrace_aggregate_walk_keysorted() Function 20-18

dtrace_aggregate_walk_valsorted() Function 20-19

dtrace_aggregate_walk_keyrevsorted() Function 20-19

dtrace_aggregate_walk_valrevsorted() Function 20-20

dtrace_aggregate_walk_keyvarsorted() Function 20-21

dtrace_aggregate_walk_valvarsorted() Function 20-21

dtrace_aggregate_walk_keyvarrevsorted() Function 20-22

dtrace_aggregate_walk_valvarrevsorted() Function 20-22

Periodic Processing of Aggregation 20-26

Per-CPU Data for Aggregations 20-28

Joining Data From Multiple Aggregations 20-30

DTrace Handler Interfaces 20-32

Drop Handler 20-33

Error Handler 20-34

Process Handler 20-36

setopt Handler 20-36

Process Control Interface in DTrace 20-38

21

Program Versioning in DTrace

Versions and Releases 21-1

Versioning Options 21-2

Provider Versioning 21-3

A libdtrace API Reference

General Purpose APIs A-1

Programming APIs A-3

Data Consumption APIs A-4

Formatting Output APIs A-4

Handler APIs A-5

Aggregation APIs A-6

Process Control APIs A-8

Object, Type, and Symbol APIs A-8

Probe APIs A-9

Utility APIs A-9

xvi

Index

xvii

Using This Documentation

• Overview – Describes how to use DTrace and details the DTrace providers.

• Audience – Oracle Solaris developers and administrators.

• Required knowledge – Advanced C programming skills and basic knowledge
about UNIX and Oracle Solaris internals.

Product Documentation Library
Documentation and resources for this product and related products are available at
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01.

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/
docfeedback.

Using This Documentation

xviii

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/goto/docfeedback
http://www.oracle.com/goto/docfeedback

1
About DTrace

DTrace is a comprehensive dynamic tracing facility that is built into Oracle Solaris.
Administrators and developers can use DTrace on live production systems to examine the
behavior of user programs and operating system. DTrace enables you to explore your system
to understand how it works, track down performance problems across many layers of
software, or locate the cause of aberrant behavior. DTrace enables you to create custom
programs to dynamically instrument the system and provide immediate and concise answers
to arbitrary questions that you can formulate using the DTrace D programming language.

DTrace enables all Oracle Solaris users to perform the following activities:

• Dynamically enable and manage thousands of probes

• Dynamically associate logical predicates and actions with probes

• Dynamically manage trace buffers and buffer policies

• Display and examine trace data from the live system or a crash dump

Familiarity with a programming language such as C or a scripting language such as awk or
perl will enable you to learn DTrace and the D programming language faster.

Getting Started
DTrace enables you to understand a software system by dynamically modifying the operating
system kernel and user processes to record additional data that you specify at locations of
interest, called probes. A probe is a location or activity to which DTrace can bind a request to
perform a set of actions, like recording a stack trace, a timestamp, or the argument to a
function. Probes are like programmable sensors scattered all over your Oracle Solaris system
in interesting places. You can use DTrace to program the appropriate sensors to record the
information that is of interest to you. Then, as each probe fires, DTrace gathers the data from
your probes and reports it back to you. If you do not specify any actions for a probe, DTrace
will just take note of each time the probe fires.

Every probe in DTrace has an unique integer ID and a probe description. For more
information about the fields of a probe description, see Providers and Probes.

You can learn DTrace by building some simple requests using the probe named BEGIN, which
fires once each time you start a new tracing request. You can use the -n option of the
dtrace utility to enable a probe using its string name. Type the following command:

dtrace -n BEGIN

The output shows that a probe was enabled and the BEGIN probe was fired. Once you see
this output, dtrace remains paused waiting for other probes to fire. Since no other probes
are enabled and BEGIN only fires once, press Control-C in the shell to exit dtrace and
return to the shell prompt:

dtrace -n BEGIN
dtrace: description 'BEGIN' matched 1 probe
CPU ID FUNCTION:NAME
 0 1 :BEGIN

1-1

^C
#

The output displays that the probe named BEGIN fired once and both its name and
integer ID, 1, are printed. By default, the integer name of the CPU on which this probe
fired is displayed. In this example, the CPU column indicates that the dtrace
command was executing on CPU 0 when the probe fired.

DTrace requests can be constructed using arbitrary numbers of probes and actions.
Create a simple request using two probes by adding the END probe to the previous
example command. The END probe fires once when tracing is completed. Type the
following command, and then again press Control-C in your shell after you see the
line of output for the BEGIN probe:

dtrace -n BEGIN -n END
dtrace: description 'BEGIN' matched 1 probe
dtrace: description 'END' matched 1 probe
CPU ID FUNCTION:NAME
 0 1 :BEGIN
^C
 0 2 :END
#

Pressing Control-C to exit dtrace triggers the END probe. dtrace reports this probe
firing before exiting. In addition to constructing DTrace experiments on the command
line, you can also write them in text files using the D programming language. In a text
editor, create a file called hello.d and type in your first D program:

Example 1-1 Hello, World in DTrace Using hello.d
In a text editor, create a file called hello.d and type in your first D program.

BEGIN
{
 trace("hello, world");
 exit(0);
}

Save the hello.d program and run it using the dtrace -s command. Type the
following command:

dtrace -s hello.d
dtrace: script 'hello.d' matched 1 probe
CPU ID FUNCTION:NAME
 0 1 :BEGIN hello, world
#

dtrace printed the same output as before followed by the text "hello, world". Unlike
the previous example, you did not have to wait and press Control-C, either. These
changes were the result of the actions specified for BEGIN probe in hello.d.

Each D program consists of a series of clauses, each clause describing one or more
probes to enable, and an optional set of actions to perform when the probe fires. The
actions are listed as a series of statements enclosed in braces { } following the probe
name. Each statement ends with a semicolon (;). Your first statement uses the function
trace to indicate that DTrace should record the specified argument, the string "hello,
world", when the BEGIN probe fires, and then print it out. The second statement uses
the function exit to indicate that DTrace should cease tracing and exit the dtrace
command. DTrace provides a set of useful functions like trace() and exit() to call in D

Chapter 1
Getting Started

1-2

programs. To call a function, you specify its name followed by a parenthesized list of
arguments. The complete set of D functions is described in DTrace Actions and Subroutines.

The D programming language is similar to the C programming language. Indeed, the D
programming language is derived from a large subset of C combined with a special set of
functions and variables to help make tracing easy. You will learn more about the D
programming features in subsequent chapters. You will understand all of the syntax by the
end of this chapter.

What's New in Dynamic Tracing in Oracle Solaris 11.4
For existing customers, this section highlights the key changes in this release.

• Custom DTrace consumer – You can write your own custom consumer by using the
libdtrace library APIs. For more information, see the libdtrace(3LIB) man page and
Writing DTrace Consumers.

• pcap – The pcap action collates packet data and displays it in a manner similar to the
trace action. For more information, see pcap Action.

• fileops provider – The fileops provider makes the probes available probes pertaining
to file operations such as open, close, read, write and so on. These probes are not
specific to any file system type, nor are they dependent on I/O to external storage
devices.

• scsi provider – The scsi provider provides probes for tracing SCSI T10 command
protocol in an Oracle Solaris host. For more information, see scsi Provider.

• icmp provider – The icmp provider provides probes for tracing the Internet Control
Message Protocol (ICMP). For more information, see icmp Provider.

• igmp provider – The igmp provider provides probes for tracing the Internet Group
Management Protocol (IGMP). For more information, see igmp Provider.

• sctp provider – The sctp provider provides probes for tracing the Stream Control
Transmission Protocol (SCTP). For more information, see sctp Provider.

• User address symbol resolution – You can modify the way in which DTrace formats user
addresses by using the uresolve option. For more information, see DTrace User Address
Symbol Resolution.

Providers and Probes
The examples in the Getting Started section described two probes named BEGIN and END.
DTrace probes come from a set of kernel modules called providers, each of which performs a
particular kind of instrumentation to create probes. When you use DTrace, each provider is
given an opportunity to publish the probes it can provide to the DTrace framework. You can
then enable and bind your tracing actions to any of the probes that have been published. To
list all of the available probes on your system, type the following command:

dtrace -l
 ID PROVIDER MODULE FUNCTION NAME
 1 dtrace BEGIN
 2 dtrace END
 3 dtrace ERROR
 4 lockstat genunix mutex_enter adaptive-acquire
 5 lockstat genunix mutex_enter adaptive-block
 6 lockstat genunix mutex_enter adaptive-spin

Chapter 1
What's New in Dynamic Tracing in Oracle Solaris 11.4

1-3

https://docs.oracle.com/cd/E88353_01/html/E37842/libdtrace-3lib.html

 7 lockstat genunix mutex_exit adaptive-release
 ... many lines of output omitted ...
#

It might take some time to display all of the output. To count up all your probes, type
the following command:

dtrace -l | wc -l
 30122

You might observe a different total on your system, as the number of probes varies
depending on the operating platform and the software you have installed. As you can
see, there are a very large number of probes available to you. In fact, this output is not
the complete list because, some providers offer the ability to create new probes based
on your tracing requests, making the actual number of DTrace probes virtually
unlimited. The output of the dtrace -l command displays the probes. Notice that
each probe has an integer ID and a probe description. A probe description is
composed of four parts shown as separate columns in the dtrace output:

Provider
Name of the DTrace provider that is publishing this probe. The provider name typically
corresponds to the name of the DTrace kernel module that performs the
instrumentation to enable the probe.

Module
Name of the module in which the probe is located, if this probe corresponds to a
specific program location. The name is either of a kernel module or of a user library.

Function
Name of the program function in which the probe is located, if this probe corresponds
to a specific program location.

Name
Identifier that indicates the purpose of the probe, such as BEGIN or END.
This name can be referenced in a D program by using the built-in variable probename.

When writing a probe description, write all four parts of the description separated by
colons.

provider:module:function:name

Notice that some of the probes in the output do not have values for module and
function, such as the BEGIN and END probes used earlier. Some probes leave these two
fields blank because these probes do not correspond to any specific instrumented
program function or location. Instead, these probes refer to a more abstract concept
like the idea of the end of your tracing request. A probe that has a module and function
as part of its name is known as an anchored probe, and one that does not is known as
unanchored.

By convention, if you do not specify all of the fields of a probe description, DTrace
matches your request to all of the probes that have matching values in the parts of the
name that you specify. In other words, when you used the probe name BEGIN earlier,
you were actually telling DTrace to match any probe whose name field is BEGIN,
regardless of the value of the provider, module, and function fields. As it happens,
there is only one probe matching that description, so the result is the same. But you
now know that the true name of the BEGIN probe is dtrace:::BEGIN, which indicates
that this probe is provided by the DTrace framework itself and is not anchored to any

Chapter 1
Providers and Probes

1-4

function. Therefore, the hello.d program could have been written as follows and would
produce the same result:

dtrace:::BEGIN
{
 trace("hello, world");
 exit(0);
}

Chapter 1
Providers and Probes

1-5

2
D Programming Language

D is a systems programming language that enables you to interface with the operating
system application programming interface (APIs) and with the hardware. This chapter
describes the overall structure of a D program and features for constructing probe
descriptions that match more than one probe. You can also use the C preprocessor cpp with
D programs.

This chapter contains the following topics:

• D Program Structure

• Compilation and Instrumentation in DTrace

• Variables and Arithmetic Expressions in DTrace

• Output Formatting in DTrace

• Arrays in DTrace

• External Symbols and Types in DTrace

• Types, Operators, and Expressions in DTrace

• Variables in DTrace

• Pointers and Arrays in DTrace

• Strings in DTrace

• Structs and Unions in DTrace

• Type and Constant Definitions in DTrace

D Program Structure
D programs consist of a set of clauses that describe probes to enable and predicate actions
to bind to these probes. D programs can also contain declarations of variables and definitions
of new types.

Probe Clauses and Declarations
A D program source file consists of one or more probe clauses that describe the
instrumentation that must be enabled by DTrace. Each probe clause has the following
general form:

probe descriptions
/ predicate /
{
 action statements
}

You can omit the predicate and list of action statements. Any directives found outside probe
clauses are referred to as declarations. Declarations must be made outside of probe clauses.
No declarations inside of the enclosing { } are permitted and declarations may not be

2-1

interspersed between the elements of the probe clause shown in the preceding
example. You can use whitespace to separate any D program elements and to indent
action statements.

You can use declarations to declare D variables and external C symbols. For more
information, see Variables in DTrace. You can use declarations to define types in D.
For more information, see Type and Constant Definitions in DTrace. Special D
compiler directives called pragmas may also appear anywhere in a D program,
including outside of probe clauses. D pragmas are specified on lines beginning with a
character. For example, D pragmas are used to set run-time DTrace options. For
more information, see DTrace Options and Tunables.

Probe Descriptions
Every D program clause begins with a list of one or more probe descriptions, each
taking the following form:

provider:module:function:name
If one or more fields of the probe description are omitted, the specified fields are
interpreted from right to left by the D compiler. For example, the probe description
foo:bar would match a probe with function foo() and name bar regardless of the
value of the probe's provider and module fields. Therefore, a probe description is really
more accurately viewed as a pattern that can be used to match one or more probes
based on their names.

You must write D probe descriptions specifying all four field delimiters so that you can
specify the desired provider on the left side. If you do not specify the provider, you
might obtain unexpected results if multiple providers publish probes with the same
name. Similarly, future versions of DTrace might include new providers whose probes
unintentionally match your partially specified probe descriptions. You can specify a
provider but match any of its probes by leaving any of the module, function, and name
fields blank. For example, the description syscall::: can be used to match every
probe published by the DTrace syscall provider.

Probe descriptions also support a pattern matching syntax similar to the shell globbing
pattern matching syntax. For more information, see the sh(1) man page. Before
matching a probe to a description, DTrace scans each description field for the
characters *, ?, and [. If one of these characters appears in a probe description field
and is not preceded by a \, the field is regarded as a pattern. The description pattern
must match the entire corresponding field of a given probe. The complete probe
description must match on every field in order to successfully match and enable a
probe. A probe description field that is not a pattern must exactly match the
corresponding field of the probe. A description field that is empty matches any probe.

The following table lists the special characters that are recognized in probe name
patterns.

Table 2-1 Probe Name Pattern Matching Characters

Symbol Description

* Matches any string, including the null string.

? Matches any single character.

Chapter 2
D Program Structure

2-2

https://docs.oracle.com/cd/E88353_01/html/E37839/sh-1.html

Table 2-1 (Cont.) Probe Name Pattern Matching Characters

Symbol Description

[...] Matches any one of the enclosed characters. A pair of characters separated by
- matches any character between the pair, inclusive. If the first character after
the [is !, any character not enclosed in the set is matched.

\ Interpret the next character as itself, without any special meaning.

Pattern match characters can be used in any or all of the four fields of the probe descriptions.
You can also use patterns to list matching probes by using the patterns on the command line
with the dtrace -l command. For example, the command dtrace -l -f kmem_* lists
all DTrace probes in functions whose names begin with the prefix kmem_.

If you want to specify the same predicate and actions for more than one probe description or
description pattern, you can place the descriptions in a comma-separated list. For example,
the following D program would trace a timestamp each time probes associated with entry to
system calls containing the words "lwp" or "sock" fire:

syscall::*lwp*:entry, syscall::*sock*:entry
{
 trace(timestamp);
}

A probe description may also specify a probe using its integer probe ID. For example:

12345
{
 trace(timestamp);
}

You can use the preceding clause to enable probe ID 12345, as reported by the dtrace -l
-i 12345 command. You must always write D programs using human-readable probe
descriptions. Integer probe IDs are not guaranteed to remain consistent as DTrace provider
kernel modules are loaded and unloaded or following a reboot.

Predicates in DTrace
Predicates are expressions enclosed in slashes / / that are evaluated at probe firing time to
determine whether the associated actions should be executed. Predicates are the primary
conditional construct used for building more complex control flow in a D program. You can
omit the predicate section of the probe clause entirely for any probe, in which case the
actions are always executed when the probe fires.

Predicate expressions can use any of the previously described D operators and may refer to
any D data objects such as variables and constants. The predicate expression must evaluate
to a value of integer or pointer type so that it can be considered as true or false. As with all D
expressions, a zero value is interpreted as false and any non-zero value is interpreted as
true.

One major difference between D and other programming languages such as C, C++, and the
Java programming language is the absence of control-flow constructs such as if-statements
and loops. D program clauses are written as single straight-line statement lists that trace an
optional, fixed amount of data. D does provide the ability to conditionally trace data and
modify control flow using logical expressions called predicates that can be used to prefix

Chapter 2
D Program Structure

2-3

program clauses. A predicate expression is evaluated at probe firing time prior to
executing any of the statements associated with the corresponding clause. If the
predicate evaluates to true, represented by any non-zero value, the statement list is
executed. If the predicate is false, represented by a zero value, none of the statements
are executed and the probe firing is ignored.

Example 2-1 Creating a 10-Second Countdown Timer

Type the following source code and save it in a file named countdown.d:

dtrace:::BEGIN
{
 i = 10;
}

profile:::tick-1sec
/i > 0/
{
 trace(i--);
}

profile:::tick-1sec
/i == 0/
{
 trace("blastoff!");
 exit(0);
}

This D program implements a 10-second countdown timer using predicates. When
executed, countdown.d counts down from 10 and then prints a message and exits:

dtrace -s countdown.d
dtrace: script 'countdown.d' matched 3 probes
CPU ID FUNCTION:NAME
 0 25499 :tick-1sec 10
 0 25499 :tick-1sec 9
 0 25499 :tick-1sec 8
 0 25499 :tick-1sec 7
 0 25499 :tick-1sec 6
 0 25499 :tick-1sec 5
 0 25499 :tick-1sec 4
 0 25499 :tick-1sec 3
 0 25499 :tick-1sec 2
 0 25499 :tick-1sec 1
 0 25499 :tick-1sec blastoff!
#

This example uses the BEGIN probe to initialize an integer i to 10 to begin the
countdown. The program uses the tick-1sec probe to implement a timer that fires
once per second. Notice that in countdown.d, the tick-1sec probe description is
used in two different clauses, each with a different predicate and action list. The
predicate is a logical expression surrounded by enclosing slashes / / that appears
after the probe name and before the braces { } that surround the clause statement list.

The first predicate tests whether i is greater than zero, indicating that the timer is still
running:

profile:::tick-1sec
/i > 0/
{

Chapter 2
D Program Structure

2-4

 trace(i--);
}

The relational operator > means greater than and returns the integer value zero for false and
one for true. All of the C relational operators are supported in D; the complete list is found in
Types, Operators, and Expressions in DTrace. If i is not yet zero, the script traces i and then
decrements it by one using the - operator.

The second predicate uses the == operator to return true when i is exactly equal to zero,
indicating that the countdown is complete:

profile:::tick-1sec
/i == 0/
{
 trace("blastoff!");
 exit(0);
}

The countdown.d program uses a sequence of characters enclosed in double quotes, called
a string constant, to print a final message when the countdown is complete. The exit()
function is then used to exit dtrace and return to the shell prompt.

If you look back at the structure of countdown.d, you will see that by creating two clauses
with the same probe description, but different predicates and actions, effectively created the
logical flow:

i = 10
once per second,
 if i is greater than zero
 trace(i--);
 otherwise if i is equal to zero
 trace("blastoff!");
 exit(0);

When you want to write complex programs using predicates, try to first visualize your
algorithm in this manner, and then transform each path of your conditional constructs into a
separate clause and predicate.

Now combine predicates with a new provider, the syscall provider, and create the first real D
tracing program. The syscall provider permits you to enable probes on entry to or return
from any Oracle Solaris system call. The next example uses DTrace to observe every time
your shell performs a read or write system call. For more information, see the read(2) and
write(2) man page. First, open two terminal windows, one to use for DTrace and the other
containing the shell process you are going to watch. In the second window, type the following
command to obtain the process ID of this shell:

echo $$
12345

Now go back to your first terminal window and type the following D program and save it in a
file named rw.d. As you type in the program, replace the integer constant 12345 with the
process ID of the shell that was printed in response to your echo command.

syscall::read:entry,
syscall::write:entry
/pid == 12345/
{
}

Chapter 2
D Program Structure

2-5

https://docs.oracle.com/cd/E88353_01/html/E37841/read-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/write-2.html

Notice that the body of rw.d's probe clause is left empty because the program is only
intended to trace notification of probe firings and not to trace any additional data. Once
you have typed in rw.d, use dtrace to start your experiment and then go to your
second shell window and type a few commands, pressing return after each command.
As you type, you should see dtrace report probe firings in your first window, similar to
the following example:

dtrace -s rw.d
dtrace: script 'rw.d' matched 2 probes
CPU ID FUNCTION:NAME
 0 34 write:entry
 0 32 read:entry
 0 34 write:entry
 0 32 read:entry
 0 34 write:entry
 0 32 read:entry
 0 34 write:entry
 0 32 read:entry
...

The read and write system calls read a character from your terminal window and
echo back the result. This example includes many of the concepts described so far
and a few new ones as well. First, to instrument read and write in the same manner,
the script uses a single probe clause with multiple probe descriptions by separating the
descriptions with commas like this:

syscall::read:entry,
syscall::write:entry

For readability, each probe description appears on its own line. This arrangement is
not strictly required, but it makes for a more readable script. Next the script defines a
predicate that matches only those system calls that are executed by your shell
process:

/pid == 12345/

The predicate uses the predefined DTrace variable pid, which always evaluates to the
process ID associated with the thread that fired the corresponding probe. DTrace
provides many built-in variable definitions for useful things like the process ID. The
following table lists a few DTrace variables you can use to write your first D program.

Variable Data Type Meaning

errno int Current errno value for system calls

execname string Name of the current process's executable file

pid pid_t Process ID of the current process

tid id_t Thread ID of the current thread

probeprov string Current probe description's provider field

probemod string Current probe description's module field

probefunc string Current probe description's function field

probename string Current probe description's name field

Now that you have written a real instrumentation program, try experimenting with it on
different processes running on your system by changing the process ID and the

Chapter 2
D Program Structure

2-6

system call probes that are instrumented. Then, you can make one more simple change and
turn rw.d into a very simple version of a system call tracing tool like truss. An empty probe
description field acts as a wildcard, matching any probe, so change the program to the
following new source code to trace any system call executed by your shell:

syscall:::entry
/pid == 12345/
{
}

Try typing a few commands in the shell such as cd, ls, and date to see what your DTrace
program reports.

Probe Actions
Probe actions are described by a list of statements separated by semicolons (;) and
enclosed in braces { }. If you only want to note that a particular probe fired on a particular
CPU without tracing any data or performing any additional actions, you can specify an empty
set of braces with no statements inside.

Order of Executing DTrace Actions
Each clause is represented by its predicate, if any, and the clause's actions. When an
enabled probe fires, its actions will execute if the predicate evaluates to true or if no predicate
is given. Program order determines the order in which actions are executed. Two or more
clauses that enable the same probe will also execute in program order.

Use of the C Preprocessor
The C programming language used for defining system interfaces in Oracle Solaris includes
a preprocessor that performs a set of initial steps in C program compilation. The C
preprocessor is commonly used to define macro substitutions where one token in a C
program is replaced with another predefined set of tokens, or to include copies of system
header files. You can use the C preprocessor in conjunction with D programs by specifying
the dtrace -C option. This option causes dtrace to first execute the cpp preprocessor on
your program source file and then pass the results to the D compiler.

The D compiler automatically loads the set of C type descriptions associated with the
operating system implementation, but you can use the preprocessor to include type
definitions such as types used in your own C programs. You can also use the preprocessor to
perform tasks such as creating macros that expand to chunks of D code and other program
elements. If you use the preprocessor with D program, you may only include files that contain
valid D declarations. Typical C header files include only external declarations of types and
symbols, which will be correctly interpreted by the D compiler. The D compiler cannot parse C
header files that include additional program elements like C function source code and
produces an appropriate error message.

Compilation and Instrumentation in DTrace
When you write traditional programs in Oracle Solaris, you use a compiler to convert the
program from source code into object code that you can execute. Running the dtrace
command invokes the complier for the D language. DTrace sends the compiled program to
the operating system kernel for execution. In the kernel, the probes that are named in your

Chapter 2
Compilation and Instrumentation in DTrace

2-7

program are enabled and the corresponding provider performs whatever
instrumentation is needed to activate them.

All of the instrumentation in DTrace is completely dynamic. Probes are enabled
discretely only when you are using DTrace instrumentation. No instrumented code is
present for inactive probes, so the system does not experience any kind of
performance degradation when you are not using DTrace. Once your experiment is
complete and the dtrace command exits, all of the probes you used are automatically
disabled and their instrumentation is removed, returning your system to its exact
original state. No effective difference exists between a system where DTrace is not
active and one where the DTrace software is not installed.

The instrumentation for each probe is performed dynamically on the live running
operating system or on user processes you select. The system is not quiesced or
paused in any way, and instrumentation code is added only for the probes that you
enable. As a result, the probe effect of using DTrace is limited to exactly what you ask
DTrace to do: no extraneous data is traced, no one big "tracing switch" is turned on in
the system, and all of the DTrace instrumentation is designed to be as efficient as
possible. These features enable you to use DTrace in production to solve real
problems in real time.

The DTrace framework also provides support for an arbitrary number of virtual clients.
You can run as many simultaneous DTrace experiments and commands as you like,
limited only by the system's memory capacity, and the commands all operate
independently using the same underlying instrumentation. This same capability also
enables any number of distinct users on the system to take advantage of DTrace
simultaneously: developers, administrators, and service personnel can all work
together on distinct problems on the same system using DTrace without interfering
with one another.

Unlike programs written in C and C++ and similar to programs written in the Java
programming language, DTrace D programs are compiled into a safe intermediate
form that is used for execution when your probes fire. This intermediate form is
validated for safety when your program is first examined by the DTrace kernel
software. The DTrace execution environment also handles any run-time errors that
might occur during your D program's execution, including dividing by zero,
dereferencing invalid memory, and so on, and reports them to you. As a result, you
can never construct an unsafe program that would cause DTrace to inadvertently
damage the Oracle Solaris kernel or one of the processes running on your system.
These safety features allow you to use DTrace in a production environment without
worrying about crashing or corrupting your system. If there is a mistake in the
program, DTrace reports the error and disables the instrumentation. You can rectify the
program and try again. The DTrace error reporting and debugging features are
described later in this book.

The following diagram shows the different components of the DTrace architecture,
including providers, probes, the DTrace kernel software, and the dtrace command.

DTrace Architecture and Components

Chapter 2
Compilation and Instrumentation in DTrace

2-8

Variables and Arithmetic Expressions in DTrace
The following example program makes use of the DTrace profile provider to implement a
simple time-based counter. The profile provider is able to create probes based on the
descriptions found in the D program. If you create a probe named profile:::tick-nsec for
some integer n, the profile provider creates a probe that fires every n seconds. Type the
following source code and save it in a file named counter.d:

/*
* Count off and report the number of seconds elapsed
*/
dtrace:::BEGIN
{
 i = 0;
}

profile:::tick-1sec
{
 i = i + 1;
 trace(i);
}

dtrace:::END
{
 trace(i);
}

Chapter 2
Variables and Arithmetic Expressions in DTrace

2-9

When executed, the program counts off the number of elapsed seconds until you
press Control-C, and then prints the total at the end:

dtrace -s counter.d
dtrace: script 'counter.d' matched 3 probes
CPU ID FUNCTION:NAME
0 25499 :tick-1sec 1
0 25499 :tick-1sec 2
0 25499 :tick-1sec 3
0 25499 :tick-1sec 4
0 25499 :tick-1sec 5
0 25499 :tick-1sec 6
^C
0 2 :END 6
#

The first three lines of the program are comments to explain what the program does.
Similar to C, C++, and the Java programming language, the D compiler ignores any
characters between the /* and */ symbols. Comments can be used anywhere in a D
program, including both inside and outside your probe clauses.

The BEGIN probe clause defines a new variable named i and assigns it the integer
value zero using the statement:

i = 0;

Unlike C, C++, and the Java programming language, D variables can be created by
using them in a program statement; explicit variable declarations are not required.
When a variable is used for the first time in a program, the type of the variable is set
based on the type of its first assignment. Each variable has only one type over the
lifetime of the program, so subsequent references must conform to the same type as
the initial assignment. In counter.d, the variable i is first assigned the integer
constant zero, so its type is set to int. D program provides the same basic integer
data types as C, including:

char
Character or single byte integer

int
Default integer

short
Short integer

long long
Extended long integer

The sizes of these types are dependent on the operating system kernel's data model,
described in Types, Operators, and Expressions in DTrace. The D programming
language also provides built-in friendly names for signed and unsigned integer types of
various fixed sizes, as well as thousands of other types that are defined by the
operating system.

The central part of counter.d is the probe clause that increments the counter i:

profile:::tick-1sec
{
 i = i + 1;

Chapter 2
Variables and Arithmetic Expressions in DTrace

2-10

 trace(i);
}

This clause names the probe profile:::tick-1sec, which tells the profile provider to
create a probe which fires once per second on an available processor. The clause contains
two statements, the first assigning i to the previous value plus one, and the second tracing
the new value of i. All the usual C arithmetic operators are available in D; the complete list is
found in Types, Operators, and Expressions in DTrace. Also as in C, you can use the ++
operator as shorthand for incrementing the corresponding variable by one. The trace()
function takes any D expression as its argument, so you can write counter.d more concisely
as follows:

profile:::tick-1sec
{
 trace(++i);
}

If you want to explicitly control the type of the variable i, you can surround the desired type in
parentheses when you assign it in order to cast the integer zero to a specific type. For
example, if you wanted to determine the maximum size of a char in D, you could change the
BEGIN clause as follows:

dtrace:::BEGIN
{
 i = (char)0;
}

After running counter.d for a while, you can see the traced value grow and then wrap
around back to zero. If it is taking a long time for the value to wrap, try changing the profile
probe name to profile:::tick-100msec to make a counter that increments once every 100
milliseconds, or 10 times per second.

Output Formatting in DTrace
System call tracing is a powerful way to observe the behavior of most user processes. If you
have used the Oracle Solaris truss utility before as an administrator or developer, you have
probably learned that it is a useful tool to keep around for whenever there is a problem. If you
have never used truss before, type this command in one of your shells:

$ truss date

You will see a formatted trace of all the system calls executed by date followed by its one
line of output at the end. The following example improves upon the earlier rw.d program by
formatting its output to look more like truss so you can more easily understand the output.
Type the following program and save it in a file called trussrw.d:

Example 2-2 Tracing System Calls with truss Output Format

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
 printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);
}

syscall::read:return,
syscall::write:return

Chapter 2
Output Formatting in DTrace

2-11

/pid == $1/
{
 printf("\t\t = %d\n", arg1);
}

In this example, the constant 12345 is replaced with the label $1 in each predicate.
This label allows you to specify the process of interest as an argument to the script: $1
is replaced by the value of the first argument when the script is compiled. To execute
trussrw.d, use the dtrace options -q and -s, followed by the process ID of your
shell as the final argument. The -q option indicates that dtrace should be quiet and
suppress the header line and the CPU and ID columns shown in the preceding
examples. As a result, you will only see the output for the data that you explicitly
traced. Type the following command after replacing 12345 with the process ID of a
shell process and then press return a few times in the specified shell:

dtrace -q -s trussrw.d 12345
 = 1
write(2, 0x8089e48, 1) = 1
read(63, 0x8090a38, 1024) = 0
read(63, 0x8090a38, 1024) = 0
write(2, 0x8089e48, 52) = 52
read(0, 0x8089878, 1) = 1
write(2, 0x8089e48, 1) = 1
read(63, 0x8090a38, 1024) = 0
read(63, 0x8090a38, 1024) = 0
write(2, 0x8089e48, 52) = 52
read(0, 0x8089878, 1) = 1
write(2, 0x8089e48, 1) = 1
read(63, 0x8090a38, 1024) = 0
read(63, 0x8090a38, 1024) = 0
write(2, 0x8089e48, 52) = 52
read(0, 0x8089878, 1)^C
#

Examine the D program and its output in more detail. First, a clause instruments each
of the shell's calls to read and write. For this example, a new function, printf(), is
used to trace data and print it out in a specific format:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
 printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);
}

The printf() function combines the ability to trace data, as if by the trace() function
used earlier, with the ability to output the data and other text in a specific format that
you describe. The printf() function tells DTrace to trace the data associated with
each argument after the first argument, and then to format the results using the rules
described by the first printf argument, known as a format string.

The format string is a regular string that contains any number of format conversions,
each beginning with the % character, that describe how to format the corresponding
argument. The first conversion in the format string corresponds to the second printf
argument, the second conversion to the third argument, and so on. All of the text
between conversions is printed verbatim. The character following the % conversion
character describes the format to use for the corresponding argument. Here are the
meanings of the three format conversions used in trussrw.d:

Chapter 2
Output Formatting in DTrace

2-12

%d
Print the corresponding value as a decimal integer

%s
Print the corresponding value as a string

%x
Print the corresponding value as a hexadecimal integer

DTrace printf works just like the C printf library routine or the shell printf utility. If you
have never used printf, the formats and options are explained in detail in Output
Formatting in DTrace. In D, printf is provided as a built-in utility and some new format
conversions are available to you designed specifically for DTrace. For more information, see
the printf(3C) man page.

To write correct programs, the D compiler validates each printf format string against its
argument list. Try changing probefunc in the preceding clause to the integer 123. If you run
the modified program, you will see an error message telling you that the string format
conversion %s is not appropriate for use with an integer argument:

dtrace -q -s trussrw.d
dtrace: failed to compile script trussrw.d: line 4: printf()
 argument #2 is incompatible with conversion #1 prototype:
 conversion: %s
 prototype: char [] or string (or use stringof)
 argument: int
#

To print the name of the read or write system call and its arguments, use the printf
statement.

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);

The printf statement traces the name of the current probe function and the first three
integer arguments to the system call, available in the DTrace variables arg0, arg1, and arg2.
For more information about probe arguments, see Variables in DTrace. The first argument to
read and write is a file descriptor, printed in decimal. The second argument is a buffer
address, formatted as a hexadecimal value. The final argument is the buffer size, formatted
as a decimal value. The format specifier %4d is used for the third argument to indicate that the
value should be printed using the %d format conversion with a minimum field width of 4
characters. If the integer is less than 4 characters wide, printf will insert extra blanks to
align the output.

To print the result of the system call and complete each line of output, use the following
clause:

syscall::read:return,
syscall::write:return
/pid == $1/
{
 printf("tt = %dn", arg1);
}

Notice that the syscall provider also publishes a probe named return for each system call in
addition to entry. The DTrace variable arg1 for the syscall return probes evaluates to the
system call's return value. The return value is formatted as a decimal integer. The character
sequences beginning with backwards slashes in the format string expand to tab (\t) and
newline (\n) respectively. These escape sequences help you print or record characters that

Chapter 2
Output Formatting in DTrace

2-13

https://docs.oracle.com/cd/E88353_01/html/E37843/printf-3c.html

are difficult to type. D supports the same set of escape sequences as C, C++, and the
Java programming language. For more information about escape sequences, see
Types, Operators, and Expressions in DTrace.

Arrays in DTrace
D enables you to define variables that are integers, as well as other types to represent
strings and composite types called structs and unions. You can use any type in D that
you can in C. For more information about the different kinds of data types, see Types,
Operators, and Expressions in DTrace. D also supports a special kind of variable
called an associative array. An associative array is similar to a normal array in that it
associates a set of keys with a set of values, but in an associative array the keys are
not limited to integers of a fixed range.

D associative arrays can be indexed by a list of one or more values of any type.
Together the individual key values form a tuple that is used to index into the array and
access or modify the value corresponding to that key. Every tuple used with a given
associative array must conform to the same type signature; that is, each tuple key
must be of the same length and have the same key types in the same order. The value
associated with each element of a given associative array is also of a single fixed type
for the entire array. For example, the following D statement defines a new associative
array a of value type int with the tuple signature string, int and stores the integer value
456 in the array:

a["hello", 123] = 456;

Once an array is defined, its elements can be accessed like any other D variable. For
example, the following D statement modifies the array element previously stored in a
by incrementing the value from 456 to 457:

a["hello", 123]++;

The values of any array elements you have not yet assigned are set to zero. Now use
an associative array in a D program. Type the following program and save it in a file
named rwtime.d:

Example 2-3 Timing read and write Calls

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
ts[probefunc] = timestamp;
}

syscall::read:return,
syscall::write:return
/pid == $1 && ts[probefunc] != 0/
{
printf("%d nsecs", timestamp - ts[probefunc]);
}

As with trussrw.d, specify the ID of shell process when you execute rwtime.d. If
you type a few shell commands, you can see the amount of time elapsed during each
system call. Type the following command and press return a few times in your other
shell:

Chapter 2
Arrays in DTrace

2-14

dtrace -s rwtime.d `pgrep -n

bash`
dtrace: script 'rwtime.d' matched 4 probes
CPU ID FUNCTION:NAME
 0 33 read:return 22644 nsecs
 0 33 read:return 3382 nsecs
 0 35 write:return 25952 nsecs
 0 33 read:return 916875239 nsecs
 0 35 write:return 27320 nsecs
 0 33 read:return 9022 nsecs
 0 33 read:return 3776 nsecs
 0 35 write:return 17164 nsecs
...
^C
#

To trace the elapsed time for each system call, you must instrument both the entry to and
return from read and write and sample the time at each point. Then, on return from a given
system call, you must compute the difference between the first and second timestamp. You
could use separate variables for each system call, but this would make the program annoying
to extend to additional system calls. Instead, it is easier to use an associative array indexed
by the probe function name. Here is the first probe clause:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
 ts[probefunc] = timestamp;
}

This clause defines an array named ts and assigns the appropriate member the value of the
DTrace variable timestamp. This variable returns the value of an always-incrementing
nanosecond counter, similar to the Oracle Solaris library routine gethrtime. Once the entry
timestamp is saved, the corresponding return probe samples timestamp again and reports
the difference between the current time and the saved value:

syscall::read:return,
syscall::write:return
/pid == $1 && ts[probefunc] != 0/
{
 printf("%d nsecs", timestamp - ts[probefunc]);
}

The predicate on the return probe requires that DTrace is tracing the appropriate process and
that the corresponding entry probe has already fired and assigned ts[probefunc] a non-
zero value. This trick eliminates invalid output when DTrace first starts. If your shell is already
waiting in a read system call for input when you execute dtrace, the read:return probe
will fire without a preceding read:entry for this first read and ts[probefunc] will evaluate to
zero because it has not yet been assigned. For more information, see the gethrtime(3C)
man page.

External Symbols and Types in DTrace
DTrace instrumentation executes inside the Oracle Solaris operating system kernel, so in
addition to accessing special DTrace variables and probe arguments, you can also access
kernel data structures, symbols, and types. These capabilities enable advanced DTrace

Chapter 2
External Symbols and Types in DTrace

2-15

https://docs.oracle.com/cd/E88353_01/html/E37843/gethrtime-3c.html

users, administrators, service personnel, and driver developers to examine low-level
behavior of the operating system kernel and device drivers.

D uses the backquote character (`) as a special scoping operator for accessing
symbols that are defined in the operating system and not in your D program. For
example, the Oracle Solaris kernel contains a C declaration of a system tunable
named kmem_flags for enabling memory allocator debugging features. For more
information about kmem_flags, see Oracle Solaris 11.4 Tunable Parameters Reference
Manual. This tunable is declared in C in the kernel source code as follows:

int kmem_flags;

To trace the value of this variable in a D program, you can write the D statement:

trace(`kmem_flags);

DTrace associates each kernel symbol with the type used for it in the corresponding
operating system C code, providing easy source-based access to the native operating
system data structures. Kernel symbol names are kept in a separate namespace from
D variable and function identifiers, so you never need to worry about these names
conflicting with your D variables.

The following sections describe the complete set of rules for D and demonstrate how
DTrace can make complex performance measurements and functional analysis of the
system easy. Later, you will see how to use DTrace to connect user application
behavior to system behavior, giving you the capability to analyze your entire software
stack.

Types, Operators, and Expressions in DTrace
D provides the ability to access and manipulate a variety of data objects: variables and
data structures can be created and modified, data objects defined in the operating
system kernel and user processes can be accessed, and integer, floating-point, and
string constants can be declared. D provides a superset of the ANSI-C operators that
are used to manipulate objects and create complex expressions. This section
describes the detailed set of rules for types, operators, and expressions.

Identifier Names and Keywords
D identifier names are composed of upper case and lower case letters, digits, and
underscores where the first character must be a letter or underscore. All identifier
names beginning with an underscore (_) are reserved for use by the D system
libraries. You should avoid using such names in your D programs. By convention, D
programmers typically use mixed-case names for variables and all upper case names
for constants.

D language keywords are special identifiers reserved for use in the programming
language syntax itself. These names are always specified in lower case and should
not be used for the names of D variables.

auto*
break*
case*
char
const

Chapter 2
Types, Operators, and Expressions in DTrace

2-16

https://docs.oracle.com/cd/E37838_01/html/E61034/index.html
https://docs.oracle.com/cd/E37838_01/html/E61034/index.html

continue*
counter*+
default*
do*
double
else*
enum
extern
float
for*
goto*
if*
import*+
inline
int
long
offsetof+
probe*+
provider*+
register*
restrict*
return+
self+
short
signed
sizeof
static*
string+
stringof+
struct
switch*
this+
translator+
typedef
union
unsigned
void
volatile
while*
xlate+

D reserves for use as keywords a superset of the ANSI-C keywords. The keywords reserved
for future use by the D language are marked with "*". The D compiler will produce a syntax
error if you attempt to use a keyword that is reserved for future use. The keywords defined by
D but not defined by ANSI-C are marked with "+". D provides the complete set of types and
operators found in ANSI-C. The major difference in D programming is the absence of control-
flow constructs. Keywords associated with control flow in ANSI-C are reserved for future use
in D.

Chapter 2
Types, Operators, and Expressions in DTrace

2-17

Data Types and Sizes
D provides fundamental data types for integers and floating-point constants. Arithmetic
can be performed only on integers in D programs. Floating-point constants can be
used to initialize data structures, but you cannot perform floating-point arithmetic in D.
D provides a 32-bit and 64-bit data model for use in writing programs. The data model
used when executing your program is the native data model associated with the active
operating system kernel. You can use the isainfo -b command to determine the
native data model of your system.

The names of the integer types and their sizes in each of the two data models are
shown in the following table. Integers are always represented in two's complement
form in the native byte-encoding order of your system.

Table 2-2 D Integer Data Types

Type 32-bit Size 64-bit Size

char 1 byte 1 byte

short 2 bytes 2 bytes

int 4 bytes 4 bytes

long 4 bytes 8 bytes

long long 8 bytes 8 bytes

Integer types may be prefixed with the signed or unsigned qualifier. If no sign qualifier
is present, the type is assumed to be signed. The D compiler also provides the type
aliases listed in the following table.

Table 2-3 D Integer Type Aliases

Type Description

int8_t 1 byte signed integer

int16_t 2 byte signed integer

int32_t 4 byte signed integer

int64_t 8 byte signed integer

intptr_t Signed integer of size equal to a pointer

uint8_t 1 byte unsigned integer

uint16_t 2 byte unsigned integer

uint32_t 4 byte unsigned integer

uint64_t 8 byte unsigned integer

uintptr_t Unsigned integer of size equal to a pointer

These type aliases are equivalent to using the name of the corresponding base type in
the D Integer Data Types and are appropriately defined for each data model. For
example, the type name uint8_t is an alias for the type unsigned char. For more
information about how to define your own type aliases, see Type and Constant
Definitions in DTrace.

Chapter 2
Types, Operators, and Expressions in DTrace

2-18

Note:

The predefined type aliases cannot be used in files included by the preprocessor.

D provides floating-point types for compatibility with ANSI-C declarations and types. Floating-
point operators are not supported in D, but floating-point data objects can be traced and
formatted using the printf() function. You can use the floating-point types listed in the
following table.

Table 2-4 D Floating-Point Data Types

Type 32-bit Size 64-bit Size

float 4 bytes 4 bytes

double 8 bytes 8 bytes

long double 16 bytes 16 bytes

D also provides the special type string to represent ASCII strings. Strings are discussed in
more detail in Strings in DTrace.

Constants in DTrace
Integer constants can be written in decimal (12345), octal (012345), or hexadecimal
(0x12345). Octal (base 8) constants must be prefixed with a leading zero. Hexadecimal (base
16) constants must be prefixed with either 0x or 0X. Integer constants are assigned the
smallest type among int, long, and long long that can represent their value. If the value is
negative, the signed version of the type is used. If the value is positive and too large to fit in
the signed type representation, the unsigned type representation is used. You can apply one
of the following suffixes to any integer constant to explicitly specify its D type:

Suffix Description

u or U unsigned version of the type selected by the compiler

l or L long
ul or UL unsigned long
ll or LL long long
ull or ULL unsigned long long

Floating-point constants are always written in decimal and must contain either a decimal point
(12.345) or an exponent (123e45) or both (123.34e-5). Floating-point constants are assigned
the type double by default. You can apply one of the following suffixes to any floating-point
constant to explicitly specify its D type:

• f or F for float
• l or L for long double
Character constants are written as a single character or escape sequence enclosed in a pair
of single quotes ('a'). Character constants are assigned the type int and are equivalent to an
integer constant whose value is determined by that character's value in the ASCII character
set. You can refer to ascii(7) for a list of characters and their values. You can also use any of

Chapter 2
Types, Operators, and Expressions in DTrace

2-19

https://docs.oracle.com/cd/E88353_01/html/E37853/ascii-7.html

the special escape sequences shown in the following table in your character
constants. D supports the escape sequences found in ANSI-C.

Table 2-5 D Character Escape Sequences

Character Escape
Sequence

Description Character Escape
Sequence

Description

\a alert \\ backslash

\b backspace \? question mark

\f formfeed \' single quote

\n newline \" double quote

\r carriage
return

\0oo octal value 0_oo_

\t horizontal tab \xhh hexadecimal value
0x_hh_

\v vertical tab \0 null character

You can include more than one character specifier inside single quotes to create
integers whose individual bytes are initialized according to the corresponding
character specifiers. The bytes are read left-to-right from your character constant and
assigned to the resulting integer in the order corresponding to the native endianness of
your operating environment. Up to eight character specifiers can be included in a
single character constant.

Strings constants of any length can be composed by enclosing them in a pair of
double quotes ("hello"). A string constant may not contain a literal newline character.
To create strings containing newlines, use the \n escape sequence instead of a literal
newline. String constants may contain any of the special character escape sequences
shown for character constants in D Character Escape Sequences. Similar to ANSI-C,
strings are represented as arrays of characters terminated by a null character (\0) that
is implicitly added to each string constant that you declare. String constants are
assigned the special D type string. The D compiler provides a set of special features
for comparing and tracing character arrays that are declared as strings. For more
information, see Strings in DTrace.

Arithmetic Operators
D provides the following binary arithmetic operators. The arithmetic operators have the
same meaning in both D and ANSCI-C.

Table 2-6 D Binary Arithmetic Operators

Arithmetic Operator Description

+ integer addition

- integer subtraction

* integer multiplication

/ integer division

% integer modulus

Chapter 2
Types, Operators, and Expressions in DTrace

2-20

Arithmetic in D can be performed only on integer operands, or on pointers, as discussed in
Pointers and Arrays in DTrace. Arithmetic may not be performed on floating-point operands in
D programs. The DTrace execution environment does not take any action on integer overflow
or underflow. You must check for these conditions yourself in situations where overflow and
underflow can occur.

The DTrace execution environment does automatically check for and report division by zero
errors resulting from improper use of the / and % operators. If a D program executes an
invalid division operation, DTrace will automatically disable the affected instrumentation and
report the error. Errors detected by DTrace have no effect on other DTrace users or on the
operating system kernel.

In addition to these binary operators, the + and - operators may also be used as unary
operators as well; these operators have higher precedence than any of the binary arithmetic
operators. The order of precedence and associativity properties for all the D operators is
presented in D Relational Operators. You can control precedence by grouping expressions in
parentheses ().

Relational Operators
D provides the binary relational operators shown in the following table for use in your
programs. These operators all have the same meaning as they do in ANSI-C.

Table 2-7 D Relational Operators

Relational Operator Description

< Left operand is less than right operand.

<= Left operand is less than or equal to right operand.

> Left operand is greater than right operand.

>= Left operand is greater than or equal to right operand.

== Left operand is equal to right operand.

!= Left operand is not equal to right operand.

Relational operators are most frequently used to write D predicates. Each operator evaluates
to a value of type int which is equal to one if the condition is true, or zero if it is false.

Relational operators may be applied to pairs of integers, pointers, or strings. If pointers are
compared, the result is equivalent to an integer comparison of the two pointers interpreted as
unsigned integers. If strings are compared, the result is determined as if by performing a
strcmp on the two operands. Here are some example D string comparisons and their results:

• "coffee" < "espresso" ... returns 1 (true)

• "coffee" == "coffee" … returns 1 (true)

• "coffee" >= "mocha" ... returns 0 (false)

Relational operators may also be used to compare a data object associated with an
enumeration type with any of the enumerator tags defined by the enumeration. You can use
enumeration to create named integer constants. For more information, see Type and
Constant Definitions in DTrace.

Chapter 2
Types, Operators, and Expressions in DTrace

2-21

Logical Operators
D provides the following binary logical operators for use in D programs. The first two
operators are equivalent to the corresponding ANSI-C operators.

Table 2-8 D Logical Operators

Logical Operator Description

&& logical AND: true if both operands are true

|| logical OR: true if one or both operands are true

^^ logical XOR: true if exactly one operand is true

Logical operators are most frequently used in writing D predicates. The logical AND
operator performs short-circuit evaluation: if the left operand is false, the right
expression is not evaluated. The logical OR operator also performs short-circuit
evaluation: if the left operand is true, the right expression is not evaluated. The logical
XOR operator does not short-circuit: both expression operands are always evaluated.

In addition to the binary logical operators, the unary ! operator may be used to perform
a logical negation of a single operand: it converts a zero operand into a one, and a
non-zero operand into a zero. By convention, D programmers use ! when working with
integers that are meant to represent boolean values, and == 0 when working with non-
boolean integers, although both expressions are equivalent in meaning.

The logical operators may be applied to operands of integer or pointer types. The
logical operators interpret pointer operands as unsigned integer values. As with all
logical and relational operators in D, operands are true if they have a non-zero integer
value and false if they have a zero integer value.

Bitwise Operators
D provides the following binary operators for manipulating individual bits inside of
integer operands. These operators all have the same meaning as in ANSI-C.

Table 2-9 D Bitwise Operators

Bitwise Operator Description

& bitwise AND

| bitwise OR

^ bitwise XOR

<< shift the left operand left by the number of bits specified by the right
operand

>> shift the left operand right by the number of bits specified by the right
operand

The binary & operator is used to clear bits from an integer operand. The binary |
operator is used to set bits in an integer operand. The binary ^ operator returns one in
each bit position where exactly one of the corresponding operand bits is set.

Chapter 2
Types, Operators, and Expressions in DTrace

2-22

The shift operators are used to move bits left or right in a given integer operand. Shifting left
fills empty bit positions on the right side of the result with zeroes. Shifting right using an
unsigned integer operand fills empty bit positions on the left side of the result with zeroes.
Shifting right using a signed integer operand fills empty bit positions on the left side with the
value of the sign bit, also known as an arithmetic shift operation.

Shifting an integer value by a negative number of bits or by a number of bits larger than the
number of bits in the left operand itself produces an undefined result. The D compiler will
produce an error message if the compiler can detect this condition when you compile your D
program.

In addition to the binary logical operators, the unary ~ operator may be used to perform a
bitwise negation of a single operand: it converts each zero bit in the operand into a one bit,
and each one bit in the operand into a zero bit.

Assignment Operators
D provides the following binary assignment operators for modifying D variables. You can only
modify D variables and arrays. Kernel data objects and constants may not be modified using
the D assignment operators. The assignment operators have the same meaning as they do in
ANSI-C.

Table 2-10 D Assignment Operators

Assignment Operator Description

= Set the left operand equal to the right expression value.

+= Increment the left operand by the right expression value.

-= Decrement the left operand by the right expression value.

*= Multiply the left operand by the right expression value.

/= Divide the left operand by the right expression value.

%= Modulo the left operand by the right expression value.

|= Bitwise OR the left operand with the right expression value.

&= Bitwise AND the left operand with the right expression value.

^= Bitwise XOR the left operand with the right expression value.

<<= Shift the left operand left by the number of bits specified by the right
expression value.

>>= Shift the left operand right by the number of bits specified by the right
expression value.

Aside from the assignment operator =, the other assignment operators are provided as
shorthand for using the = operator with one of the other operators described earlier. For
example, the expression x = x + 1 is equivalent to the expression x += 1, except that the
expression x is evaluated once. These assignment operators obey the same rules for
operand types as the binary forms described earlier.

The result of any assignment operator is an expression equal to the new value of the left
expression. You can use the assignment operators or any of the operators described so far in
combination to form expressions of arbitrary complexity. You can use parentheses () to
group terms in complex expressions.

Chapter 2
Types, Operators, and Expressions in DTrace

2-23

Increment and Decrement Operators
D provides the special unary ++ and -- operators for incrementing and decrementing
pointers and integers. These operators have the same meaning as in ANSI-C. These
operators can only be applied to variables, and may be applied either before or after
the variable name. If the operator appears before the variable name, the variable is
first modified and then the resulting expression is equal to the new value of the
variable. For example, the following code fragments produce identical results:

• x += 1; produces the same results as y = ++x;
• y = x;
If the operator appears after the variable name, then the variable is modified after its
current value is returned for use in the expression. For example, the following code
fragments produce identical results:

• y = x; results in y = x--;
• x -= 1; results in null ("")

You can use the increment and decrement operators to create new variables without
declaring them. If a variable declaration is omitted and the increment or decrement
operator is applied to a variable, the variable is implicitly declared to be of type
int64_t.

The increment and decrement operators can be applied to integer or pointer variables.
When applied to integer variables, the operators increment or decrement the
corresponding value by one. When applied to pointer variables, the operators
increment or decrement the pointer address by the size of the data type referenced by
the pointer. Pointers and pointer arithmetic in D are discussed in Pointers and Arrays
in DTrace.

Conditional Expressions
Although D does not provide support for if-then-else constructs, it does provide
support for simple conditional expressions using the ? and : operators. These
operators enable a triplet of expressions to be associated where the first expression is
used to conditionally evaluate one of the other two. For example, the following D
statement could be used to set a variable x to one of two strings depending on the
value of i:.

x = i == 0 ? "zero" : "non-zero";

In this example, the expression i == 0 is first evaluated to determine whether it is true
or false. If the first expression is true, the second expression is evaluated and the ?:
expression returns its value. If the first expression is false, the third expression is
evaluated and the ?: expression returns its value.

As with any D operator, you can use multiple ?: operators in a single expression to
create more complex expressions. For example, the following expression would take a
char variable c containing one of the characters 0-9, a-z, or A-Z and return the value
of this character when interpreted as a digit in a hexadecimal (base 16) integer:

hexval = (c >= '0' && c <= '9') ? c - '0' :
 (c >= 'a' && c <= 'z') ? c + 10 - 'a' : c + 10 - 'A';

Chapter 2
Types, Operators, and Expressions in DTrace

2-24

The first expression used with ?: must be a pointer or integer in order to be evaluated for its
truth value. The second and third expressions may be of any compatible types. You may not
construct a conditional expression where, for example, one path returns a string and another
path returns an integer. The second and third expressions also may not invoke a tracing
function such as trace() or printf(). If you want to conditionally trace data, use a predicate
instead, as discussed in Predicates in DTrace.

Type Conversions
When expressions are constructed using operands of different but compatible types, type
conversions are performed in order to determine the type of the resulting expression. The D
rules for type conversions are the same as the arithmetic conversion rules for integers in
ANSI-C. These rules are sometimes referred to as the usual arithmetic conversions.

A simple way to describe the conversion rules is as follows: each integer type is ranked in the
order char, short, int, long, long long, with the corresponding unsigned types
assigned a rank above its signed equivalent but below the next integer type. When you
construct an expression using two integer operands such as x + y and the operands are of
different integer types, the operand type with the highest rank is used as the result type.

If a conversion is required, the operand of lower rank is first promoted to the type of higher
rank. Promotion does not actually change the value of the operand: it simply extends the
value to a larger container according to its sign. If an unsigned operand is promoted, the
unused high-order bits of the resulting integer are filled with zeroes. If a signed operand is
promoted, the unused high-order bits are filled by performing sign extension. If a signed type
is converted to an unsigned type, the signed type is first sign-extended and then assigned the
new unsigned type determined by the conversion.

Integers and other types can also be explicitly cast from one type to another. In D, pointers
and integers can be cast to any integer or pointer types, but not to other types. Rules for
casting and promoting strings and character arrays are discussed in Strings in DTrace. An
integer or pointer cast is formed using an expression such as:

y = (int)x;

where the destination type is enclosed in parentheses and used to prefix the source
expression. Integers are cast to types of higher rank by performing promotion. Integers are
cast to types of lower rank by zeroing the excess high-order bits of the integer.

Because D does not permit floating-point arithmetic, no floating-point operand conversion or
casting is permitted and no rules for implicit floating-point conversion are defined.

Precedence DTrace Rules
The D rules for operator precedence and associativity are described in the following table.
These rules are somewhat complex, but are necessary to provide precise compatibility with
the ANSI-C operator precedence rules. The table entries are in order from highest
precedence to lowest precedence.

Table 2-11 D Operator Precedence and Associativity

Operators Associativity

() [] ->. left to right

! ~ ++ - + - * &(type) sizeof stringof offsetof xlate right to left

Chapter 2
Types, Operators, and Expressions in DTrace

2-25

Table 2-11 (Cont.) D Operator Precedence and Associativity

Operators Associativity

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

^^ left to right

|| left to right

?: right to left

= += -= *= /= %= &= ^= ?= <<= >>= right to left

, left to right

The following operators are discussed in subsequent sections:

• sizeof – Computes the size of an object

• offsetof – Computes the offset of a type member

• stringof – Converts the operand to a string

• xlate – Translates a data type

• unary & – Computes the address of an object

• unary * – Dereferences a pointer to an object

• -> and . – Accesses a member of a structure or union type

The comma (,) operator listed in the table is for compatibility with the ANSI-C comma
operator, which can be used to evaluate a set of expressions in left-to-right order and
return the value of the right most expression. This operator is provided strictly for
compatibility with C and should generally not be used.

The () entry in the table of operator precedence represents a function call; examples
of calls to functions such as printf() and trace() are presented in Output Formatting
in DTrace. A comma is also used in D to list arguments to functions and to form lists of
associative array keys. This comma is not the same as the comma operator and does
not guarantee left-to-right evaluation. The D compiler provides no guarantee as to the
order of evaluation of arguments to a function or keys to an associative array. You
should be careful of using expressions with interacting side-effects, such as the pair of
expressions i and i++, in these contexts.

The []entry in the table of operator precedence represents an array or associative
array reference. Examples of associative arrays are presented in Associative Arrays. A
special kind of associative array called an aggregation is described in DTrace

Chapter 2
Types, Operators, and Expressions in DTrace

2-26

Aggregations. The [] operator can also be used to index into fixed-size C arrays as well, as
described in Pointers and Arrays in DTrace.

Variables in DTrace
D provides two basic types of variables for use in your tracing programs: scalar variables and
associative arrays. This section explores the rules for D variables in more detail and how
variables can be associated with different scopes. A special kind of array variable, called an
aggregation, is discussed in DTrace Aggregations.

Note:

• Scalar variables and associative arrays have a global scope and are not multi-
processor safe (MP-safe). It means that the value of these variables can be
changed by more than one processor and thus there are chances that the
variable can became corrupt.

• Aggregations are MP-safe even though they have a global scope.

This section covers the following types of variables:

• Scalar Variables

• Associative Arrays

• Thread-Local Variables

• Clause-Local Variables

• Built-In Variables

• External Variables

Scalar Variables
Scalar variables are used to represent individual fixed-size data objects, such as integers and
pointers. Scalar variables can also be used for fixed-size objects that are composed of one or
more primitive or composite types. D provides the ability to create both arrays of objects as
well as composite structures. DTrace also represents strings as fixed-size scalars by
permitting them to grow up to a predefined maximum length. For or e information about
control over string length, see Strings in DTrace.

Scalar variables are created automatically the first time you assign a value to a previously
undefined identifier in your D program. For example, to create a scalar variable named x of
type int, you can simply assign it a value of type int in any probe clause:

BEGIN
{
 x = 123;
}

Scalar variables created in this manner are global variables: their name and data storage
location is defined once and is visible in every clause of your D program. Any time you
reference the identifier x, you are referring to a single storage location associated with this
variable.

Chapter 2
Variables in DTrace

2-27

Unlike ANSI-C, D does not require explicit variable declarations. If you do want to
declare a global variable to assign its name and type explicitly before using it, you can
place a declaration outside of the probe clauses in your program as shown in the
following example. Explicit variable declarations are not necessary in most D
programs, but are sometimes useful when you want to carefully control your variable
types or when you want to begin your program with a set of declarations and
comments documenting your program's variables and their meanings.

int x; /* declare an integer x for later use */

BEGIN
{
 x = 123;
 ...
}

Unlike ANSI-C declarations, D variable declarations may not assign initial values. You
must use a BEGIN probe clause to assign any initial values. All global variable storage
is filled with zeroes by DTrace before you first reference the variable.

The D language definition places no limit on the size and number of D variables, but
limits are defined by the DTrace implementation and by the memory available on your
system. The D compiler will enforce any of the limitations that can be applied at the
time you compile your program. You can learn more about how to tune options related
to program limits in DTrace Options and Tunables.

Associative Arrays
Associative arrays are used to represent collections of data elements that can be
retrieved by specifying a name called a key. D associative array keys are formed by a
list of scalar expression values called a tuple. You can think of the array tuple itself as
an imaginary parameter list to a function that is called to retrieve the corresponding
array value when you reference the array. Each D associative array has a fixed key
signature consisting of a fixed number of tuple elements where each element has a
given, fixed type. You can define different key signatures for each array in your D
program.

Associative arrays differ from normal, fixed-size arrays in that they have no predefined
limit on the number of elements, the elements can be indexed by any tuple as
opposed to just using integers as keys, and the elements are not stored in
preallocated consecutive storage locations. Associative arrays are useful in situations
where you would use a hash table or other simple dictionary data structure in a C, C+
+, or Java™ language program. Associative arrays give you the ability to create a
dynamic history of events and state captured in your D program that you can use to
create more complex control flows.

To define an associative array, you write an assignment expression of the form:

name [key] = expression;

where name is any valid D identifier and key is a comma-separated list of one or more
expressions. For example, the following statement defines an associative array a with
key signature [int, string] and stores the integer value 456 in a location named by
the tuple [123, "hello"]:

a[123, "hello"] = 456;

Chapter 2
Variables in DTrace

2-28

The type of each object contained in the array is also fixed for all elements in a given array.
Because a was first assigned using the integer 456, every subsequent value stored in the
array will also be of type int. You can use any of the assignment operators to modify
associative array elements, subject to the operand rules defined for each operator. The D
compiler will produce an appropriate error message if you attempt an incompatible
assignment. You can use any type with an associative array key or value that you can use
with a scalar variable. You cannot nest an associative array within another associative array
as a key or value. For more information, see Types, Operators, and Expressions in DTrace.

You can reference an associative array using any tuple that is compatible with the array key
signature. The rules for tuple compatibility are similar to those for function calls and variable
assignments: the tuple must be of the same length and each type in the list of actual
parameters must be compatible with the corresponding type in the formal key signature. For
example, an associative array x is defined as follows:

x[123ull] = 0;

The key signature is of type unsigned long long and the values are of type int. This array
can also be referenced using the expression x['a'] because the tuple consisting of the
character constant 'a' of type int and length one is compatible with the key signature
unsigned long long according to the arithmetic conversion rules. For more information about
arithmetic conversion rules, see Type Conversions.

If you need to explicitly declare a D associative array before using it, you can create a
declaration of the array name and key signature outside of the probe clauses in your program
source code:

int x[unsigned long long, char];

BEGIN
{
 x[123ull, 'a'] = 456;
}

Once an associative array is defined, references to any tuple of a compatible key signature
are enabled, even if the tuple in question has not been previously assigned. Accessing an
unassigned associative array element is defined to return a zero-filled object. A consequence
of this definition is that underlying storage is not allocated for an associative array element
until a non-zero value is assigned to that element. Conversely, assigning an associative array
element to zero causes DTrace to deallocate the underlying storage. This behavior is
important because the dynamic variable space out of which associative array elements are
allocated is finite; if it is exhausted when an allocation is attempted, the allocation will fail and
an error message will be generated indicating a dynamic variable drop. Always assign zero to
associative array elements that are no longer in use. For other techniques to eliminate
dynamic variable drops, see DTrace Options and Tunables.

Thread-Local Variables
In DTrace, you can declare a variable storage that is local to each operating system thread.
Thread-local variables are useful in situations where you want to enable a probe and mark
every thread that fires the probe with some tag or other data. Creating a program to solve this
problem is easy in D because thread-local variables share a common name in your D code
but refer to separate data storage associated with each thread. Thread-local variables are
referenced by applying the -> operator to the special identifier self:

syscall::read:entry
{

Chapter 2
Variables in DTrace

2-29

 self->read = 1;
}

This D fragment example enables the probe on the read system call and associates a
thread-local variable named read with each thread that fires the probe. Similar to
global variables, thread-local variables are created automatically on their first
assignment and assume the type used on the right side of the first assignment
statement (in this example, int).

Each time the variable self->read is referenced in your D program, the data object
referenced is the one associated with the operating system thread that was executing
when the corresponding DTrace probe fired. You can think of a thread-local variable as
an associative array that is implicitly indexed by a tuple that describes the thread's
identity in the system. A thread's identity is unique over the lifetime of the system: if the
thread exits and the same operating system data structure is used to create a new
thread, this thread does not reuse the same DTrace thread-local storage identity.

Once you have defined a thread-local variable, you can reference it for any thread in
the system even if the variable in question has not been previously assigned for that
particular thread. If a thread's copy of the thread-local variable has not yet been
assigned, the data storage for the copy is defined to be filled with zeros. As with
associative array elements, underlying storage is not allocated for a thread-local
variable until a non-zero value is assigned to it. Also as with associative array
elements, assigning zero to a thread-local variable causes DTrace to deallocate the
underlying storage. Always assign zero to thread-local variables that are no longer in
use. For other techniques to fine-tune the dynamic variable space, see DTrace
Options and Tunables.

Thread-local variables of any type can be defined in your D program, including
associative arrays. Some example thread-local variable definitions are:

self->x = 123; /* integer value */
self->s = "hello"; /* string value */
self->a[123, 'a'] = 456; /* associative array */

Like any D variable, you are not required to explicitly declare thread-local variables
before using them. If you want to create a declaration anyway, you can place one
outside of your program clauses by prepending the keyword self:

self int x; /* declare int x as a thread-local variable */

syscall::read:entry
{
 self->x = 123;
}

Thread-local variables are kept in a separate namespace from global variables so you
can reuse names. Remember that x and self->x are not the same variable if you
overload names in your program. The following example shows how to use thread-
local variables.

Example 2-4 Computing Time Spent in read
In a text editor, type in the following program and save it in a file named rtime.d.

syscall::read:entry
{
 self->t = timestamp;
}

Chapter 2
Variables in DTrace

2-30

syscall::read:return
/self->t != 0/
{
 printf("%d/%d spent %d nsecs in read(2)\n",
 pid, tid, timestamp - self->t);
 /*
 * Done with the thread-local variable; assign zero to it to
 * allow the DTrace runtime to reclaim the underlying storage.
 */
 self->t = 0;
}

Go to your shell and type the following command to see a similar output.

dtrace -q -s rtime.d
100480/1 spent 11898 nsecs in read(2)
100441/1 spent 6742 nsecs in read(2)
100480/1 spent 4619 nsecs in read(2)
100452/1 spent 19560 nsecs in read(2)
100452/1 spent 3648 nsecs in read(2)
100441/1 spent 6645 nsecs in read(2)
100452/1 spent 5168 nsecs in read(2)
100452/1 spent 20329 nsecs in read(2)
100452/1 spent 3596 nsecs in read(2)
...
^C
#

rtime.d uses a thread-local variable named to capture a timestamp on entry to read by any
thread. Then, in the return clause, the program prints out the amount of time spent in read by
subtracting self->t from the current timestamp. The built-in D variables pid and tid report
the process ID and thread ID of the thread performing the read. Because self->t is no
longer needed once this information is reported, it is then assigned 0 to allow DTrace to reuse
the underlying storage associated with t for the current thread.

Typically you will see many lines of output without even doing anything because, behind the
scenes, server processes and daemons are executing read all the time. Try changing the
second clause of rtime.d to use the execname variable to print out the name of the process
performing a read to learn more:

printf("%s/%d spent %d nsecs in read(2)\n",
 execname, tid, timestamp - self->t);

If you find a process that is of particular interest, add a predicate to learn more about its read
behavior:

syscall::read:entry
/execname == "Xsun"/
{
 self->t = timestamp;
}

For more information about read system call, see the read(2) man page.

Clause-Local Variables
You can also define D variables whose storage is reused for each D program clause. Clause-
local variables are similar to automatic variables in a C, C++, or Java language program that

Chapter 2
Variables in DTrace

2-31

https://docs.oracle.com/cd/E88353_01/html/E37841/read-2.html

are active during each invocation of a function. Like all D program variables, clause-
local variables are created on their first assignment. These variables can be
referenced and assigned by applying the -> operator to the special identifier this.

BEGIN
{
 this->secs = timestamp / 1000000000;
 ...
}

If you want to explicitly declare a clause-local variable before using it, you can do so
using the this keyword.

this int x; /* an integer clause-local variable */
this char c; /* a character clause-local variable */

BEGIN
{
 this->x = 123;
 this->c = 'D';
}

Clause-local variables are only active for the lifetime of a given probe clause. After
DTrace performs the actions associated with your clauses for a given probe, the
storage for all clause-local variables is reclaimed and reused for the next clause. For
this reason, clause-local variables are the only D variables that are not initially filled
with zeros. Note that if your program contains multiple clauses for a single probe, any
clause-local variables will remain intact as the clauses are executed, as shown in
Using Clause-Local Variables.

While clause-local variables are persistent across clauses enabling the same probe,
their values are undefined in the first clause executed for a given probe. Be sure to
assign each clause-local variable an appropriate value before using it, or your program
may have unexpected results.

Clause-local variables can be defined using any scalar variable type, but associative
arrays may not be defined using clause-local scope. The scope of clause-local
variables only applies to the corresponding variable data, not to the name and type
identity defined for the variable. Once a clause-local variable is defined, this name and
type signature may be used in any subsequent D program clause. You cannot rely on
the storage location to be the same across different clauses.

You can use clause-local variables to accumulate intermediate results of calculations
or as temporary copies of other variables. Access to a clause-local variable is much
faster than access to an associative array. Therefore, if you need to reference an
associative array value multiple times in the same D program clause, it is more
efficient to copy it into a clause-local variable first and then reference the local variable
repeatedly.

Example 2-5 Using Clause-Local Variables

int me; /* an integer global variable */
this int foo; /* an integer clause-local variable */

tick-1sec
{
 /*
 * Set foo to be 10 if and only if this is the first clause executed.
 */
 this->foo = (me % 3 == 0) ? 10 : this->foo;

Chapter 2
Variables in DTrace

2-32

 printf("Clause 1 is number %d; foo is %d\n", me++ % 3, this->foo++);
}

tick-1sec
{
 /*
 * Set foo to be 20 if and only if this is the first clause executed.
 */
 this->foo = (me % 3 == 0) ? 20 : this->foo;
 printf("Clause 2 is number %d; foo is %d\n", me++ % 3, this->foo++);
}

tick-1sec
{
 /*
 * Set foo to be 30 if and only if this is the first clause executed.
 */
 this->foo = (me % 3 == 0) ? 30 : this->foo;
 printf("Clause 3 is number %d; foo is %d\n", me++ % 3, this->foo++);
}

Because the clauses are always executed in program order, and because clause-local
variables are persistent across different clauses enabling the same probe, running the
preceding program will always produce the same output.

dtrace -q -s clause.d
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
^C

Built-In Variables
The following table provides a complete list of D built-in variables. All of these variables are
scalar global variables; no thread-local or clause-local variables or built-in associative arrays
are currently defined by D.

Table 2-12 DTrace Built-In Variables

Variable Description

int64_t arg0, ...,
arg9

The first 10 input arguments to a probe represented as raw 64-bit integers. If
fewer than 10 arguments are passed to the current probe, the remaining
variables return zero.

Chapter 2
Variables in DTrace

2-33

Table 2-12 (Cont.) DTrace Built-In Variables

Variable Description

args[] The typed arguments to the current probe, if any. The args[] array is
accessed using an integer index, but each element is defined to be the type
corresponding to the given probe argument. For example consider the
start probe in the io provider. In this probe, args[0] is of type
bufinfo_t struct, args[1] is of type devinfo_t struct and args[2]
is of type fileinfo_t struct.

uintptr_t caller The program counter location that called the current kernel thread, at the
time the probe fired.

uintptr_t ucaller The program counter location that called the current user-level thread, at the
time the probe fired.

chipid_t chip The CPU chip identifier for the current physical chip. For more information,
see sched Provider.

processorid_t cpu The CPU identifier for the current CPU. For more information, see sched
Provider.

cpuinfo_t *curcpu The CPU information for the current CPU. For more information, see sched
Provider.

lwpsinfo_t
*curlwpsinfo

The lightweight process (LWP) state of the LWP associated with the current
thread. This structure is described in further detail in the proc man page.

psinfo_t
*curpsinfo

The process state of the process associated with the current thread. This
structure is described in further detail in the proc man page.

kthread_t
*curthread

The address of the operating system kernel's internal data structure for the
current thread, the kthread_t. The kthread_t is defined in <sys/
thread.h>.

string cwd The name of the current working directory of the process associated with the
current thread.

uint_t epid The enabled probe ID (EPID) for the current probe. This integer uniquely
identifies a particular probe that is enabled with a specific predicate and set
of actions.

int errno The error value returned by the last system call executed by this thread.

string execname The name that was passed to exec to execute the current process.

gid_t gid The real group ID of the current process.

uint_t id The probe ID for the current probe. This ID is the system-wide unique
identifier for the probe as published by DTrace and listed in the output of
dtrace -l.

uint_t ipl The interrupt priority level (IPL) on the current CPU at probe firing time.

lgrp_id_t lgrp The latency group ID for the latency group of which the current CPU is a
member. See sched Provider for more information.

pid_t pid The process ID of the current process.

pid_t ppid The parent process ID of the current process.

string probefunc The function name portion of the current probe's description.

string probemod The module name portion of the current probe's description.

string probename The name portion of the current probe's description.

Chapter 2
Variables in DTrace

2-34

Table 2-12 (Cont.) DTrace Built-In Variables

Variable Description

string probeprov The provider name portion of the current probe's description.

psetid_t pset The processor set ID for the processor set containing the current CPU. See
sched Provider for more information.

string root The name of the root directory of the process associated with the current
thread.

string kthreadname The kernel thread name associated with the currently executing thread.

string uthreadname The user thread name associated with the currently executing thread.

uint_t stackdepth The current thread's stack frame depth at probe firing time.

id_t tid The thread ID of the current thread. For threads associated with user
processes, this value is equal to the result of a call to pthread_self. For
more information, see the pthread_self(3C) man page.

uint64_t timestamp The current value of a nanosecond timestamp counter. This counter
increments from an arbitrary point in the past and should only be used for
relative computations.

uid_t uid The real user ID of the current process.

uint64_t uregs[] The current thread's saved user-mode register values at probe firing time.
For information about the use of the uregs[] array, see User Process
Tracing.

uint64_t
vtimestamp

The current value of a nanosecond timestamp counter that is virtualized to
the amount of time that the current thread has been running on a CPU,
minus the time spent in DTrace predicates and actions. This counter
increments from an arbitrary point in the past and should only be used for
relative time computations.

uint64_t
walltimestamp

The current number of nanoseconds since 00:00 Universal Coordinated
Time, January 1, 1970.

uint_t
dtrace_is_tracing

Contains non-zero if the current thread is being traced by the current DTrace
consumer.

string zonename Name of the zone as specified on creation of the process.

zoneid_t zoneid The zone identifier.

For information about functions built into the D language such as trace, see DTrace Actions
and Subroutines.

External Variables
D uses the backquote character (`) as a special scoping operator for accessing variables that
are defined in the operating system and not in your D program. For example, the Solaris
kernel contains a C declaration of a system tunable named kmem_flags for enabling memory
allocator debugging features. For more information about kmem_flags, see the Oracle Solaris
11.4 Tunable Parameters Reference Manual. This tunable is declared as a C variable in the
kernel source code as follows:

int kmem_flags;

To access the value of this variable in a D program, use the following D notation:

Chapter 2
Variables in DTrace

2-35

https://docs.oracle.com/cd/E88353_01/html/E37843/pthread-self-3c.html
https://docs.oracle.com/cd/E37838_01/html/E61034/index.html
https://docs.oracle.com/cd/E37838_01/html/E61034/index.html

`kmem_flags

DTrace associates each kernel symbol with the type used for the symbol in the
corresponding operating system C code, providing easy source-based access to the
native operating system data structures. In order to use external operating system
variables, you will need access to the corresponding operating system source code.

When you access external variables from a D program, you are accessing the internal
implementation details of another program such as the operating system kernel or its
device drivers. These implementation details do not form a stable interface upon which
you can rely. Any D programs you write that depend on these details might cease to
work when you next upgrade the corresponding piece of software. For this reason,
external variables are typically used by kernel and device driver developers and
service personnel in order to debug performance or functionality problems using
DTrace. For more information about the stability of your D programs, see DTrace
Stability Mechanisms.

Kernel symbol names are kept in a separate namespace from D variable and function
identifiers, so you never need to worry about these names conflicting with your D
variables. When you prefix a variable with a backquote, the D compiler searches the
known kernel symbols in order using the list of loaded modules in order to find a
matching variable definition. Because the Oracle Solaris kernel supports dynamically
loaded modules with separate symbol namespaces, the same variable name might be
used more than once in the active operating system kernel. You can resolve these
name conflicts by specifying the name of the kernel module whose variable should be
accessed prior to the backquote in the symbol name. For example, typically provides a
_fini() function, so to refer to the address of the _fini() function provided by a kernel
module named foo, you would write:

foo`_fini

For more information about _fini() function, see the _fini(9E) man page.

You can apply any of the D operators to external variables, except those that modify
values, subject to the usual rules for operand types. When you launch DTrace, the D
compiler loads the set of variable names corresponding to the active kernel modules,
so declarations of these variables are not required. You may not apply any operator to
an external variable that modifies its value, such as = or +=. For safety reasons,
DTrace prevents you from damaging or corrupting the state of the software you are
observing.

Pointers and Arrays in DTrace
Pointers are memory addresses of data objects in the operating system kernel or in
the address space of a user process. D provides the ability to create and manipulate
pointers and store them in variables and associative arrays. This section describes the
D syntax for pointers, operators that can be applied to create or access pointers, and
the relationship between pointers and fixed-size scalar arrays. Also discussed are
issues relating to the use of pointers in different address spaces.

Chapter 2
Pointers and Arrays in DTrace

2-36

https://docs.oracle.com/cd/E88353_01/html/E37854/u-fini-9e.html

Note:

If you are an experienced C or C++ programmer, you can skim most of this section
as the D pointer syntax is the same as the corresponding ANSI-C syntax. For
information about features and issues specific to DTrace, see Pointers to DTrace
Objects and Pointers and Addresses.

Pointers and Addresses
Oracle Solaris uses a technique called virtual memory to provide each user process with its
own virtual view of the memory resources on your system. A virtual view of memory
resources is referred to as an address space. An address space associates a range of
address values with a set of translations that the operating system and hardware use to
convert each virtual address to a corresponding physical memory location. The range of
address values are[0 ... 0xffffffff] for a 32-bit address space and [0 ...
0xffffffffffffffff] for a 64-bit address space. Pointers in D are data objects that store an
integer virtual address value and associate it with a D type that describes the format of the
data stored at the corresponding memory location.

You can declare a D variable to be of pointer type by first specifying the type of the
referenced data and then appending an asterisk (*) to the type name to indicate you want to
declare a pointer type. For example:

int *p;

The preceding declaration declares a D global variable named p that is a pointer to an
integer. This declaration means that p itself is an integer of size 32 or 64-bits whose value is
the address of another integer located somewhere in memory. Because the compiled form of
your D code is executed at probe firing time inside the operating system kernel itself, D
pointers are typically pointers associated with the kernel's address space. You can use the
isainfo -b command to determine the number of bits used for pointers by the active
operating system kernel. For more information about the isainfo command, see isainfo(1).

If you want to create a pointer to a data object inside of the kernel, you can compute its
address using the & operator. For example, the operating system kernel source code declares
an int kmem_flags tunable. You could trace the address of this int by tracing the result of
applying the & operator to the name of that object in D.

trace(&`kmem_flags);

The * operator can be used to refer to the object addressed by the pointer, and acts as the
inverse of the & operator. For example, the following two D code fragments are equivalent in
meaning:

p = &`kmem_flags; trace(`kmem_flags);
trace(*p);

The left fragment creates a D global variable pointer p. Because the kmem_flags object is of
type int, the type of the result of &`kmem_flags is int * (that is, pointer to int). The left
fragment traces the value of *p, which follows the pointer back to the data object kmem_flags.
This fragment is therefore the same as the right fragment, which simply traces the value of
the data object directly using its name.

Chapter 2
Pointers and Arrays in DTrace

2-37

https://docs.oracle.com/cd/E88353_01/html/E37839/isainfo-1.html

Pointer Safety
If you are a C or C++ programmer, you know that misuse of pointers in your programs
can cause your programs to crash. DTrace is a robust, safe environment for executing
your D programs where these mistakes cannot cause program crashes. You may
indeed write a buggy D program, but invalid D pointer accesses will not cause DTrace
or the operating system kernel to fail or crash in any way. Instead, the DTrace software
will detect any invalid pointer accesses, disable your instrumentation, and report the
problem back to you for debugging.

If you have programmed in the Java programming language, you probably know that
the Java language does not support pointers for precisely the same reasons of safety.
Pointers are needed in D because they are an intrinsic part of the operating system's
implementation in C, but DTrace implements the same kind of safety mechanisms
found in the Java programming language that prevent buggy programs from damaging
themselves or each other. DTrace's error reporting is similar to the run-time
environment for the Java programming language that detects a programming error and
reports an exception back to you.

To see DTrace's error handling and reporting, write a deliberately bad D program using
pointers.

Example 2-6 Adding DTrace Error Handling

In an editor, type the following D program and save it in a file named badptr.d.

BEGIN
{
 x = (int *)NULL;
 y = *x;
 trace(y);
}

The badptr.d program creates a D pointer named x that is a pointer to int. The
program assigns this pointer the special invalid pointer value NULL, which is a built-in
alias for address 0. By convention, address 0 is always defined to be invalid so that
NULL can be used as a sentinel value in C and D programs. The program uses a cast
expression to convert NULL to be a pointer to an integer. The program then
dereferences the pointer using the expression *x, and assigns the result to another
variable y, and then attempts to trace y. When the D program is executed, DTrace
detects an invalid pointer access when the statement y = *x is executed and reports
the error.

dtrace -s badptr.d
dtrace: script '/dev/stdin' matched 1 probe
CPU ID FUNCTION:NAME
dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address
(0x0) in action #2 at DIF offset 4
dtrace: 1 error on CPU 0
^C
#

The other problem that can arise from programs that use invalid pointers is an
alignment error. By architectural convention, fundamental data objects such as
integers are aligned in memory according to their size. For example, 2-byte integers
are aligned on addresses that are multiples of 2, 4-byte integers on multiples of 4, and
so on. If you dereference a pointer to a 4-byte integer and your pointer address is an

Chapter 2
Pointers and Arrays in DTrace

2-38

invalid value that is not a multiple of 4, your access will fail with an alignment error. Alignment
errors in D almost always indicate that your pointer has an invalid or corrupt value due to a
bug in your D program. You can create an example alignment error by changing the source
code of badptr.d to use the address (int *)2 instead of NULL. Because int is 4 bytes and 2
is not a multiple of 4, the expression *x results in a DTrace alignment error.

For information about the DTrace error mechanism, see ERROR Probe.

Array Declarations and Storage
D provides support for scalar arrays in addition to the dynamic associative arrays described
in Variables in DTrace. Scalar arrays are a fixed-length group of consecutive memory
locations that each store a value of the same type. Scalar arrays are accessed by referring to
each location with an integer starting from zero. Scalar arrays correspond directly in concept
and syntax with arrays in C and C++. Scalar arrays are not used as frequently in D as
associative arrays and their more advanced counterparts aggregations, but these are
sometimes needed when accessing existing operating system array data structures that are
declared in C. Aggregations are described in DTrace Aggregations.

A D scalar array of 5 integers would be declared by using the type int and suffixing the
declaration with the number of elements in square brackets as follows:

int a[5];

The following diagram shows a visual representation of the array storage:

Scalar Array Representation

The D expression a[0] is used to refer to the first array element, a[1] refers to the second,
and so on. From a syntactic perspective, scalar arrays and associative arrays are very
similar. You can declare an associative array of five integers referenced by an integer key.

int a[int];

You can reference this array using the expression a[0]. But from a storage and
implementation perspective, the two arrays are very different. The static array a consists of
five consecutive memory locations numbered from zero and the index refers to an offset in
the storage allocated for the array. An associative array, on the other hand, has no predefined
size and does not store elements in consecutive memory locations. In addition, associative
array keys have no relationship to the corresponding value storage location. You can access
associative array elements a[0] and a[-5] and only two words of storage will be allocated by
DTrace which may or may not be consecutive. Associative array keys are abstract names for
the corresponding value that have no relationship to the value storage locations.

If you create an array using an initial assignment and use a single integer expression as the
array index (for example, a[0] = 2), the D compiler will always create a associative array,
even though in this expression a could also be interpreted as an assignment to a scalar array.
Scalar arrays must be predeclared in this situation so that the D compiler can see the
definition of the array size and infer that the array is a scalar array.

Chapter 2
Pointers and Arrays in DTrace

2-39

Pointer and Array Relationship
Pointers and arrays have a special relationship in D, just as they do in ANSI-C. An
array is represented by a variable that is associated with the address of its first storage
location. A pointer is also the address of a storage location with a defined type, so D
enables the use of the array [] index notation with both pointer variables and array
variables. For example, the following two D fragments are equivalent in meaning.

p = &a[0]; trace(a[2]);
trace(p[2]);

In the left fragment, the pointer p is assigned to the address of the first array element
in a by applying the & operator to the expression a[0]. The expression p[2] traces the
value of the third array element (index 2). Because p now contains the same address
associated with a, this expression yields the same value as a[2], shown in the right
fragment. One consequence of this equivalence is that C and D enable you to access
any index of any pointer or array. Array bounds checking is not performed for you by
the compiler or DTrace runtime environment. If you access memory beyond the end of
an array's predefined value, you will either get an unexpected result or DTrace will
report an invalid address error.

The difference between pointers and arrays is that a pointer variable refers to a
separate piece of storage that contains the integer address of some other storage. An
array variable names the array storage itself, not the location of an integer that in turn
contains the location of the array. This difference is illustrated in the following diagram.

Pointer and Array Storage

This difference is manifested in the D syntax if you attempt to assign pointers and
scalar arrays. If x and y are pointer variables, the expression x = y is legal; it simply
copies the pointer address in y to the storage location named by x. If x and y are
scalar array variables, the expression x = y is not legal. Arrays may not be assigned
as a whole in D. However, an array variable or symbol name can be used in any
context where a pointer is permitted. If p is a pointer and a is an array, the statement p
= a is permitted; this statement is equivalent to the statement p = &a[0].

Pointer Arithmetic
Since pointers are just integers used as addresses of other objects in memory, D
provides a set of features for performing arithmetic on pointers. However, pointer
arithmetic is not identical to integer arithmetic. Pointer arithmetic implicitly adjusts the
underlying address by multiplying or dividing the operands by the size of the type
referenced by the pointer.

Chapter 2
Pointers and Arrays in DTrace

2-40

Example 2-7 Using Pointer Arithmetic

int *x;

BEGIN
{
 trace(x);
 trace(x + 1);
 trace(x + 2);
}

This fragment creates an integer pointer x and then trace its value, its value incremented by
one, and its value incremented by two. If you create and execute this program, DTrace
reports the integer values 0, 4, and 8.

Since x is a pointer to an int (size 4 bytes), incrementing x adds 4 to the underlying pointer
value. This property is useful when using pointers to refer to consecutive storage locations
such as arrays. For example, if x were assigned to the address of an array a like the one
shown in the Pointer and Array Storage figure, the expression x + 1 would be equivalent to
the expression &a[1]. Similarly, the expression *(x + 1) would refer to the value a[1].
Pointer arithmetic is implemented by the D compiler whenever a pointer value is incremented
using the =+, +, or ++ operators. Pointer arithmetic is also applied when an integer is
subtracted from a pointer on the left side, when a pointer is subtracted from another pointer,
or when the -- operator is applied to a pointer. The following D program would trace the
result 2:

int *x, *y;
int a[5];

BEGIN
{
 x = &a[0];
 y = &a[2];
 trace(y - x);
}

Generic Pointers
Sometimes it is useful to represent or manipulate a generic pointer address in a D program
without specifying the type of data referred to by the pointer. Generic pointers can be
specified using the type void *, where the keyword void represents the absence of specific
type information, or using the built-in type alias uintptr_t which is aliased to an unsigned
integer type of size appropriate for a pointer in the current data model. You may not apply
pointer arithmetic to an object of type void *, and these pointers cannot be dereferenced
without casting them to another type first. You can cast a pointer to the uintptr_t type when
you need to perform integer arithmetic on the pointer value.

Pointers to void may be used in any context where a pointer to another data type is required,
such as an associative array tuple expression or the right side of an assignment statement.
Similarly, a pointer to any data type may be used in a context where a pointer to void is
required. To use a pointer to a non-void type in place of another non-void pointer type, an
explicit cast is required. You must always use explicit casts to convert pointers to integer
types such as uintptr_t, or to convert these integers back to the appropriate pointer type.

Chapter 2
Pointers and Arrays in DTrace

2-41

Multi-Dimensional Arrays
Multi-dimensional scalar arrays are used infrequently in D, but are provided for
compatibility with ANSI-C and for observing and accessing operating system data
structures created using this capability in C. A multi-dimensional array is declared as a
consecutive series of scalar array sizes enclosed in square brackets [] following the
base type. For example, to declare a fixed-size two-dimensional rectangular array of
integers of dimensions 12 rows by 34 columns, you would write the declaration:

int a[12][34];

A multi-dimensional scalar array is accessed using similar notation. For example, to
access the value stored at row 0 column 1 you would write the D expression:

a[0][1]

Storage locations for multi-dimensional scalar array values are computed by
multiplying the row number by the total number of columns declared, and then adding
the column number.

You should be careful not to confuse the multi-dimensional array syntax with the D
syntax for associative array accesses (that is, a[0][1] is not the same as a[0,1]). If
you use an incompatible tuple with an associative array or attempt an associative
array access of a scalar array, the D compiler will report an appropriate error message
and refuse to compile your program.

Pointers to DTrace Objects
The D compiler prohibits you from using the & operator to obtain pointers to DTrace
objects such as associative arrays, built-in functions, and variables. You are prohibited
from obtaining the address of these variables so that the DTrace runtime environment
is free to relocate them as needed between probe firings in order to more efficiently
manage the memory required for your programs. If you create composite structures, it
is possible to construct expressions that do retrieve the kernel address of your DTrace
object storage. You should avoid creating such expressions in your D programs. If you
need to use such an expression, be sure not to cache the address across probe
firings.

In ANSI-C, pointers can also be used to perform indirect function calls or to perform
assignments, such as placing an expression using the unary * dereference operator
on the left side of an assignment operator. In D, these types of expressions using
pointers are not permitted. You can only assign values directly to D variables using
their name or by applying the array index operator [] to a D scalar or associative
array. You can only call functions defined by the DTrace environment by name. For
more information, see DTrace Actions and Subroutines. Indirect function calls using
pointers are not permitted in D.

Pointers and Address Spaces
A pointer is an address that provides a translation within some virtual address space to
a piece of physical memory. DTrace executes your D programs within the address
space of the operating system kernel itself. Your entire Oracle Solaris system
manages many address spaces: one for the operating system kernel, and one for
each user process. Since each address space provides the illusion that it can access

Chapter 2
Pointers and Arrays in DTrace

2-42

all of the memory on the system, the same virtual address pointer value can be reused
across address spaces but translate to different physical memory. Therefore, when writing D
programs that use pointers, you must be aware of the address space corresponding to the
pointers you intend to use.

For example, if you use the syscall provider to instrument entry to a system call that takes a
pointer to an integer or array of integers as an argument (for example, pipe(2)), it would not
be valid to dereference that pointer or array using the * or [] operators because the address
in question is an address in the address space of the user process that performed the system
call. Applying the * or [] operators to this address in D would result in a kernel address
space access, which would result in an invalid address error or in returning unexpected data
to your D program depending upon whether the address happened to match a valid kernel
address.

To access user process memory from a DTrace probe, you must apply one of the copyin(),
copyinstr(), or copyinto() functions to the user address space pointer. For more information
about functions that can be applied to the user address space pointer, see DTrace Actions
and Subroutines. To avoid confusion, ensure that you name and comment variables that
store user addresses. You can also store user addresses as uintptr_t so you do not
accidentally compile D code that dereferences them. For information about techniques for
using DTrace on user processes, see User Process Tracing.

Strings in DTrace
DTrace provides support for tracing and manipulating strings. This section describes the
complete set of D language features for declaring and manipulating strings. Unlike ANSI-C,
strings in D have their own built-in type and operator support so you can easily and
unambiguously use them in your tracing programs.

String Representation
Strings are represented in DTrace as an array of characters terminated by a null byte (that is,
a byte whose value is zero, usually written as '\0'). The visible part of the string is of
variable length, depending on the location of the null byte, but DTrace stores each string in a
fixed-size array so that each probe traces a consistent amount of data. Strings may not
exceed the length of this predefined string limit, but the limit can be modified in your D
program or on the dtrace command line by tuning the strsize option. For more information
about tunable DTrace options, see DTrace Options and Tunables. The default string limit is
256 bytes.

The D language provides an explicit string type rather than using the type char * to refer to
strings. The string type is equivalent to a char * in that it is the address of a sequence of
characters, but the D compiler and D functions like trace provide enhanced capabilities when
applied to expressions of type string. For example, the string type removes the ambiguity of
the type char * when you need to trace the actual bytes of a string. In the D statement,
trace(s);, if s is of type char *, DTrace will trace the value of the pointer s (that is, it will
trace an integer address value).

In the D statement, trace(*s);, by definition of the * operator, the D compiler will
dereference the pointer s and trace the single character at that location.

You can manipulate character pointers that by design refer to either single characters, or to
arrays of byte-sized integers that are not strings and do not end with a null byte. In the D
statement, trace(s);, if s is of type string, the string type indicates to the D compiler that you

Chapter 2
Strings in DTrace

2-43

want DTrace to trace a null terminated string of characters whose address is stored in
the variable s.

You can also perform lexical comparison of expressions of type string. For more
information, see String Comparison.

String Constants
String constants are enclosed in double quotes (") and are automatically assigned the
type string by the D compiler. You can define string constants of any length, limited
only by the amount of memory DTrace is permitted to consume on your system. The
terminating null byte (\0) is added automatically by the D compiler to any string
constants that you declare. The size of a string constant object is the number of bytes
associated with the string plus one additional byte for the terminating null byte.

A string constant may not contain a literal newline character. To create strings
containing newlines, use the \n escape sequence instead of a literal newline. String
constants may also contain any of the special character escape sequences defined for
character constants in D Character Escape Sequences.

String Assignment
Unlike assignment of char * variables, strings are copied by value, not by reference.
String assignment is performed using the = operator and copies the actual bytes of the
string from the source operand up to and including the null byte to the variable on the
left side, which must be of type string. You can create a new variable of type string by
assigning it an expression of type string. The D statement, s = "hello";, creates a
new variable s of type string and copy the 6 bytes of the string "hello" into it (5
printable characters plus the null byte).

s = "hello";

String assignment is analogous to the C library function strcpy(), except that if the
source string exceeds the limit of the storage of the destination string, the resulting
string is automatically truncated at this limit. For more information, see the strcpy(3C)
man page.

You can also assign to a string variable an expression of a type that is compatible with
strings. In this case, the D compiler automatically promotes the source expression to
the string type and performs a string assignment. The D compiler permits any
expression of type char * or of type char[n] (that is, a scalar array of char of any
size), to be promoted to a string.

String Conversion
Expressions of other types may be explicitly converted to type string by using a cast
expression or by applying the special stringof operator, which are equivalent in
meaning:

s = (string) expression s = stringof (expression)

The stringof operator binds very tightly to the operand on its right side. Typically,
parentheses are used to surround the expression for clarity, although they are not
strictly necessary.

Chapter 2
Strings in DTrace

2-44

https://docs.oracle.com/cd/E88353_01/html/E37843/strcpy-3c.html

Any expression that is a scalar type such as a pointer or integer or a scalar array address
may be converted to string. Expressions of other types such as void may not be converted to
string. If you erroneously convert an invalid address to a string, the DTrace safety features
will prevent you from damaging the system or DTrace, but you might end up tracing a
sequence of undecipherable characters.

String Comparison
D overloads the binary relational operators and permits them to be used for string
comparisons as well as integer comparisons. The relational operators perform string
comparison whenever both operands are of type string, or when one operand is of type
string and the other operand can be promoted to type string. For more information, see
String Assignment. All of the relational operators can be used to compare strings:

Table 2-13 D Relational Operators for Strings

String Relational Operator Description

< Left operand is less than right operand.

<= Left operand is less than or equal to right operand.

> Left operand is greater than right operand.

>= Left operand is greater than or equal to right operand.

== Left operand is equal to right operand.

!= Left operand is not equal to right operand.

As with integers, each operator evaluates to a value of type int which is equal to one if the
condition is true, or zero if it is false.

The relational operators compare the two input strings byte-by-byte, similar to the C library
routine strcmp. For more information, see the strcmp(3C) man page. Each byte is compared
using its corresponding integer value in the ASCII character set, as shown in ascii, until a
null byte is read or the maximum string length is reached. For more information, see the
ascii(7) man page. The following list shows some example D string comparisons and their
results.

• "coffee" < "espresso" ... returns 1 (true).

• "coffee" == "coffee" ... returns 1 (true).

• "coffee" >= "mocha" ... returns 0 (false).

Structs and Unions in DTrace
Collections of related variables can be grouped together into composite data objects called
structs and unions. You can define these objects in D by creating new type definitions for
them. You can use your new types for any D variables, including associative array values.
This section explores the syntax and semantics for creating and manipulating these
composite types and the D operators that interact with them. The syntax for structs and
unions is illustrated using several example programs that demonstrate the use of the DTrace
function boundary tracing (fbt) and pid providers.

Chapter 2
Structs and Unions in DTrace

2-45

https://docs.oracle.com/cd/E88353_01/html/E37843/strcmp-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37853/ascii-7.html

Structs in DTrace
The D keyword struct, short for structure, is used to introduce a new type composed
of a group of other types. The struct type can be used as the type for D variables and
arrays, enabling you to define groups of related variables under a single name. D
structs are the same as the corresponding construct in C and C++. If you have
programmed in the Java programming language, think of a D struct as a class, but one
with data members only and no methods.

Suppose you want to create a more sophisticated system call tracing program in D
that records a number of things about each read and write system call executed by
your shell, such as the elapsed time, number of calls, and the largest byte count
passed as an argument. You could write a D clause to record these properties in three
separate associative arrays as shown in the following example:

int maxbytes; /* declare maxbytes */

syscall::read:entry, syscall::write:entry
/pid == 12345/
{
 ts[probefunc] = timestamp;
 calls[probefunc]++;
 maxbytes[probefunc] = arg2 > maxbytes[probefunc] ?
 arg2 : maxbytes[probefunc];
}

However, this clause is inefficient because DTrace must create three separate
associative arrays and store separate copies of the identical tuple values
corresponding to probefunc for each one. Use a struct type to conserve space and
make the program easier to read and maintain. For example, declare a struct type at
the top of the program source file as follows:

struct callinfo {
 uint64_t ts; /* timestamp of last syscall entry */
 uint64_t elapsed; /* total elapsed time in nanoseconds */
 uint64_t calls; /* number of calls made */
 size_t maxbytes; /* maximum byte count argument */
};

The struct keyword is followed by an optional identifier used to refer back to the new
type, which is now known as struct callinfo. The struct members are then
enclosed in a set of braces {} and the entire declaration is terminated by a semicolon
(;). Each struct member is defined using the same syntax as a D variable declaration,
with the type of the member listed first followed by an identifier naming the member
and another semicolon (;).

The struct declaration itself simply defines the new type; it does not create any
variables or allocate any storage in DTrace. Once declared, you can use struct
callinfo as a type throughout the remainder of your D program, and each variable of
type struct callinfo will store a copy of the four variables described by the structure
template. The members will be arranged in memory in order according to the member
list, with padding space introduced between members as required for data object
alignment purposes.

You can use the member identifier names to access the individual member values
using the "." operator by writing an expression of the form:

Chapter 2
Structs and Unions in DTrace

2-46

variable-name.member-name

The following example is an improved program using the new structure type.

Example 2-8 Gathering read and write System Call Statistics

In a text editor type the following program and save as rwinfo.d.

struct callinfo {
 uint64_t ts; /* timestamp of last syscall entry */
 uint64_t elapsed; /* total elapsed time in nanoseconds */
 uint64_t calls; /* number of calls made */
 size_t maxbytes; /* maximum byte count argument */
};

struct callinfo i[string]; /* declare i as an associative array */

syscall::read:entry, syscall::write:entry
/pid == $1/
{
 i[probefunc].ts = timestamp;
 i[probefunc].calls++;
 i[probefunc].maxbytes = arg2 > i[probefunc].maxbytes ?
 arg2 : i[probefunc].maxbytes;
}

syscall::read:return, syscall::write:return
/i[probefunc].ts != 0 && pid == $1/
{
 i[probefunc].elapsed += timestamp - i[probefunc].ts;
}

END
{
 printf(" calls max bytes elapsed nsecs\n");
 printf("------ ----- --------- -------------\n");
 printf(" read %5d %9d %d\n",
 i["read"].calls, i["read"].maxbytes, i["read"].elapsed);
 printf(" write %5d %9d %d\n",
 i["write"].calls, i["write"].maxbytes, i["write"].elapsed);
}

After you type in the program, run dtrace -q -s rwinfo.d, specifying one of your shell
processes. Then go type in a few commands in your shell and, when you're done entering
your shell commands, type Control-C in the dtrace terminal to fire the END probe and print
the results:

dtrace -q -s rwinfo.d `pgrep -n

bash`
^C
 calls max bytes elapsed nsecs
------ ----- --------- -------------
 read 36 1024 3588283144
 write 35 59 14945541

Pointers to Structs
Referring to structs using pointers is very common in C and D. You can use the operator -> to
access struct members through a pointer. If a struct s has a member m and you have a

Chapter 2
Structs and Unions in DTrace

2-47

pointer to this struct named sp (that is, sp is a variable of type struct s *), you can
either use the * operator to first dereference sp pointer in order to access the member:

struct s *sp;
(*sp).m

or you can use the -> operator as a shorthand for this notation. The following two D
fragments are equivalent in meaning if sp is a pointer to a struct:

(*sp).m sp->m

DTrace provides several built-in variables which are pointers to structs, including
curpsinfo and curlwpsinfo. These pointers refer to the structs psinfo and lwpsinfo
respectively, and their content provides a snapshot of information about the state of
the current process and lightweight process (LWP) associated with the thread that has
fired the current probe. An Oracle Solaris LWP is the kernel's representation of a user
thread, upon which the Oracle Solaris threads and POSIX threads interfaces are built.
For convenience, DTrace exports this information in the same form as the /proc
filesystem files /proc/pid/psinfo and /proc/pid/lwps/lwpid/lwpsinfo.
The /proc structures are defined in the system header file sys/procfs.h and are
used by observability and debugging tools such as ps, pgrep, and truss. For more
information, see ps(1), pgrep(1), truss(1), and proc(5) man pages. The following table
lists example expressions using curpsinfo, their types, and their meanings:

Table 2-14 curpsinfo in Expressions

Expression Type Description

curpsinfo->pr_pid pid_t Current process ID

curpsinfo->pr_fname char [] Executable file name

curpsinfo->pr_psargs char [] Initial command line arguments

You should review the complete structure definition later by examining the sys/
procfs.h header file. For more information, see proc(5). The next example uses the
pr_psargs member to identify a process of interest by matching command-line
arguments.

Structs are used frequently to create complex data structures in C programs, so the
ability to describe and reference structs from D also provides a powerful capability for
observing the inner workings of the Oracle Solaris operating system kernel and its
system interfaces. In addition to using the aforementioned curpsinfo struct, the next
example examines some kernel structs as well by observing the relationship between
the ksyms driver and read() requests. For more information, see the ksyms(4D) man
page. The driver makes use of two common structs, known as uio and iovec and, to
respond to requests to read from the character device file /dev/ksyms. For more
information, see the uio(9S) and iovec(9S) man page.

The uio struct, accessed using the name struct uio or type alias uio_t, is described
in the uio man page and is used to describe an I/O request that involves copying data
between the kernel and a user process. The uio in turn contains an array of one or
more iovec structures which each describe a piece of the requested I/O, in the event
that multiple chunks are requested using the readv or writev system calls. For more
information, see the readv(2) and writev(2) man page. One of the kernel device driver
interface (DDI) routines that operates on struct uio is the function uiomove(), which is

Chapter 2
Structs and Unions in DTrace

2-48

https://docs.oracle.com/cd/E88353_01/html/E37839/ps-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/pgrep-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/truss-1.html
https://docs.oracle.com/cd/E88353_01/html/E37852/proc-5.html
https://docs.oracle.com/cd/E88353_01/html/E37852/proc-5.html
https://docs.oracle.com/cd/E88353_01/html/E37851/ksyms-4d.html
https://docs.oracle.com/cd/E88353_01/html/E37856/uio-9s.html
https://docs.oracle.com/cd/E88353_01/html/E37856/iovec-9s.html
https://docs.oracle.com/cd/E88353_01/html/E37841/readv-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/writev-2.html

one of a family of functions kernel drivers use to respond to user process read requests and
copy data back to user processes.

The ksyms driver manages a character device file named /dev/ksyms, which appears to be
an ELF file containing information about the kernel's symbol table, but is in fact an illusion
created by the driver using the set of modules that are currently loaded into the kernel. The
driver uses the uiomove routine to respond to read requests. The next example illustrates
that the arguments and calls to read from /dev/ksyms match the calls by the driver to
uiomove to copy the results back into the user address space at the location specified to
read. For more information, see the uiomove(9F) man page.

Use the strings -a command to force a bunch of reads from /dev/ksyms. Try running
strings -a /dev/ksyms in your shell and see what output it produces. For more
information, see the strings(1) man page.

In an editor, type in the first clause of the example script and save it in a file named ksyms.d:

syscall::read:entry
/curpsinfo->pr_psargs == "strings -a /dev/ksyms"/
{
 printf("read %u bytes to user address %x\n", arg2, arg1);
}

This first clause uses the expression curpsinfo->pr_psargs to access and match the
command-line arguments of the strings command so that the script selects the correct
read requests before tracing the arguments. Notice that by using operator == with a left
argument that is an array of char and a right argument that is a string, the D compiler infers
that the left argument should be promoted to a string and a string comparison should be
performed. Type in and execute the command dtrace -q -s ksyms.d in one shell, and
then type in the command strings -a /dev/ksyms in another shell. As strings
executes, you will see output from DTrace similar to the following example:

dtrace -q -s ksyms.d
read 8192 bytes to user address 80639fc
read 8192 bytes to user address 80639fc
read 8192 bytes to user address 80639fc
read 8192 bytes to user address 80639fc
...
^C
#

This example can be extended using a common D programming technique to follow a thread
from this initial read request deeper into the kernel. Upon entry to the kernel in
syscall::read:entry, the next script sets a thread-local flag variable indicating this thread is
of interest, and clears this flag on syscall::read:return. Once the flag is set, it can be used
as a predicate on other probes to instrument kernel functions such as uiomove(). The DTrace
function boundary tracing (fbt) provider publishes probes for entry and return to functions
defined within the kernel, including those in the DDI. Type in the following source code which
uses the fbt provider to instrument uiomove() and again save it in the file ksyms.d:

Example 2-9 Tracing the read and uiomove() Relationship

/*
 * When strings(1) invocation starts a read(2), set a watched flag on
 * the current thread. When the read(2) finishes, clear the watched flag.
 */
syscall::read:entry
/curpsinfo->pr_psargs == "strings -a /dev/ksyms"/

Chapter 2
Structs and Unions in DTrace

2-49

https://docs.oracle.com/cd/E88353_01/html/E37855/uiomove-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37839/strings-1.html

{
 printf("read %u bytes to user address %x\n", arg2, arg1);
 self->watched = 1;
}

syscall::read:return
/self->watched/
{
 self->watched = 0;
}

/*
 * Instrument uiomove(9F). The prototype for this function is as follows:
 * int uiomove(caddr_t addr, size_t nbytes, enum uio_rw rwflag, uio_t *uio);
 */
fbt::uiomove:entry
/self->watched/
{
 this->iov = args[3]->uio_iov;
 printf("uiomove %u bytes to %p in pid %d\n",
 this->iov->iov_len, this->iov->iov_base, pid);
}

The final clause of the example uses the thread-local variable self->watched to
identify when a kernel thread of interest enters the DDI routine uiomove. Once there,
the script uses the built-in args array to access the fourth argument (args[3]) to
uiomove, which is a pointer to the struct uio representing the request. The D
compiler automatically associates each member of the args array with the type
corresponding to the C function prototype for the instrumented kernel routine. The
uio_iov member contains a pointer to the struct iovec for the request. A copy of this
pointer is saved for use in a clause in the clause-local variable this->iov. In the final
statement, the script dereferences this->iov to access the iovec members iov_len
and iov_base, which represent the length in bytes and destination base address for
uiomove, respectively. These values should match the input parameters to the read
system call issued on the driver. For more information, see the read(2) and
uiomove(9F) man pages. Go to your shell and run dtrace -q -s ksyms.d and then
again enter the command strings -a /dev/ksyms in another shell. You should see
output similar to the following example:

dtrace -q -s ksyms.d
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
...
^C
#

The addresses and process IDs will be different in your output, but you should observe
that the input arguments to read match the parameters passed to uiomove by the
ksyms driver.

Chapter 2
Structs and Unions in DTrace

2-50

https://docs.oracle.com/cd/E88353_01/html/E37841/read-2.html
https://docs.oracle.com/cd/E88353_01/html/E37855/uiomove-9f.html

Union Types in DTrace
Unions are another kind of composite type supported by ANSI-C and D, and are closely
related to structs. A union is a composite type where a set of members of different types are
defined and the member objects all occupy the same region of storage. A union is therefore
an object of variant type, where only one member is valid at any given time, depending on
how the union has been assigned. Typically, some other variable or piece of state is used to
indicate which union member is currently valid. The size of a union is the size of its largest
member, and the memory alignment used for the union is the maximum alignment required
by the union members.

The Oracle Solaris kstat framework defines a struct containing a union that is used in the
following example to illustrate and observe C and D unions. The kstat framework is used to
export a set of named counters representing kernel statistics such as memory usage and I/O
throughput. The framework is used to implement utilities such as mpstat and iostat. This
framework uses struct kstat_named to represent a named counter and its value and is
defined as follows:

struct kstat_named {
 char name[KSTAT_STRLEN]; /* name of counter */
 uchar_t data_type; /* data type */
 union {
 char c[16];
 int32_t i32;
 uint32_t ui32;
 long l;
 ulong_t ul;
 ...
 } value; /* value of counter */
};

The examined declaration is shortened for illustrative purposes. The complete structure
definition can be found in the <sys/kstat.h> header file and is described in kstat_named
man page. The preceding declaration is valid in both ANSI-C and D, and defines a struct
containing as one of its members a union value with members of various types, depending on
the type of the counter. Notice that since the union itself is declared inside of another type,
struct kstat_named, a formal name for the union type is omitted. This declaration style is
known as an anonymous union. The member named value is of a union type described by
the preceding declaration, but this union type itself has no name because it does not need to
be used anywhere else. The struct member data_type is assigned a value that indicates
which union member is valid for each object of type struct kstat2_named. A set of C
preprocessor tokens are defined for the values of data_type. For example, the token
KSTAT_DATA_CHAR is equal to zero and indicates that the member value.c is where the value
is currently stored. For more information, see the kstat2_named(9S) man page.

The kstat counters can be sampled from a user process using the kstat_data_lookup()
function, which returns a pointer to a struct kstat_named. For more information, see the
kstat_lookup(3KSTAT) man page. The mpstat utility calls this function repeatedly as it
executes in order to sample the latest counter values. Go to your shell and try running
mpstat 1 and observe the output. Press Control-C in your shell to abort mpstat after a few
seconds. To observe counter sampling, enable a probe that fires each time the mpstat
command calls the kstat_data_lookup() function in libkstat. To do so, make use of a new
DTrace provider: pid. The pid provider enables you to dynamically create probes in user
processes at C symbol locations such as function entry points. You can ask the pid provider

Chapter 2
Structs and Unions in DTrace

2-51

https://docs.oracle.com/cd/E88353_01/html/E37856/kstat2-named-9s.html

to create a probe at a user function entry and return sites by writing probe descriptions
of the form:

pidprocess-ID:object-name:function-name:entry
pidprocess-ID:object-name:function-name:return

For example, if you wanted to create a probe in process ID 12345 that fires on entry to
kstat_data_lookup, you would write the following probe description:

pid12345:libkstat:kstat_data_lookup:entry

The pid provider inserts dynamic instrumentation into the specified user process at the
program location corresponding to the probe description. The probe implementation
forces each user thread that reaches the instrumented program location to trap into
the operating system kernel and enter DTrace, firing the corresponding probe. So
although the instrumentation location is associated with a user process, the DTrace
predicates and actions you specify still execute in the context of the operating system
kernel. The pid provider is described in further detail in pid Provider.

To apply your D program to different processes, use macro variables. Macro variables
are evaluated at compile time and are replaced with additional dtrace command-line
arguments. Macro variables are specified using a dollar sign $ followed by an identifier
or digit. If you execute the command dtrace -s script foo bar baz, the D
compiler will automatically define the macro variables $1, $2, and $3 to be the tokens
foo, bar, and baz respectively. You can use macro variables in D program expressions
or in probe descriptions.

For more information about macro variables and reusable scripts, see Scripting in
DTrace. Now that you know how to instrument user processes using their process ID,
return to sampling unions.

Example 2-10 Tracing Calls to kstat_data_lookup
Type the following source code in a text editor and save it as kstat.d:

pid$1:libkstat:kstat_data_lookup:entry
{
 self->ksname = arg1;
}

pid$1:libkstat:kstat_data_lookup:return
/self->ksname != NULL && arg1 != NULL/
{
 this->ksp = (kstat_named_t *) copyin(arg1, sizeof (kstat_named_t));
 printf("%s has ui64 value %u\n",
 copyinstr(self->ksname), this->ksp->value.ui64);
}

pid$1:libkstat:kstat_data_lookup:return
/self->ksname != NULL && arg1 == NULL/
{
 self->ksname = NULL;
}

Now go to one of your shells and execute the command zonestat to start zonestat
running in a mode where it samples statistics and reports them once per second. Once
zonestat is running, execute the command dtrace -q -s kstat.d `pgrep
zonestatd` in your other shell. You will see output corresponding to the statistics

Chapter 2
Structs and Unions in DTrace

2-52

that are being accessed. Press Control-C to abort dtrace and return to the shell prompt.

dtrace -q -s kstat.d `pgrep

zonestatd`
hat_fault has ui64 value 0
as_fault has ui64 value 48053
maj_fault has ui64 value 1144
xcalls has ui64 value 123832170
intr has ui64 value 165264090
intrthread has ui64 value 124094974
pswitch has ui64 value 840625
inv_swtch has ui64 value 1484
cpumigrate has ui64 value 36284
mutex_adenters has ui64 value 35574
rw_rdfails has ui64 value 2
rw_wrfails has ui64 value 2
...
^C
#

If you capture the output in each terminal window and subtract each value from the value
reported by the previous iteration through the statistics, you should be able to correlate the
dtrace output with the mpstat output. The example program records the counter name
pointer on entry to the lookup function, and then performs most of the tracing work on return
from kstat_data_lookup. The D built-in functions copyinstr() and copyin() copy the function
results from the user process back into DTrace when arg1 (the return value) is not NULL.
Once the kstat data has been copied, the example reports the ui64 counter value from the
union. This simplified example assumes that mpstat samples counters that use the
value.ui64 member. As an exercise, try recoding kstat.d to use multiple predicates and
print out the union member corresponding to the data_type member. You can also try to
create a version of kstat.d that computes the difference between successive data values
and actually produces output similar to mpstat.

Member Sizes and Offsets
You can determine the size in bytes of any D type or expression, including a struct or union,
using the sizeof operator. The sizeof operator can be applied either to an expression or to
the name of a type surrounded by parentheses, as illustrated by the following two examples:

sizeof expression sizeof (type-name)

For example, the expression sizeof (uint64_t) would return the value 8, and the
expression sizeof (callinfo.ts) would also return 8 if inserted into the source code of the
preceding program. The formal return type of the sizeof operator is the type alias size_t,
which is defined to be an unsigned integer of the same size as a pointer in the current data
model, and is used to represent byte counts. When the sizeof operator is applied to an
expression, the expression is validated by the D compiler but the resulting object size is
computed at compile time and no code for the expression is generated. You can use sizeof
anywhere an integer constant is required.

You can use the companion operator offsetof to determine the offset in bytes of a struct or
union member from the start of the storage associated with any object of the struct or union
type. The offsetof operator is used in an expression of the following form:

offsetof (type-name, member-name)

Chapter 2
Structs and Unions in DTrace

2-53

Here type-name is the name of any struct or union type or type alias, and member-
name is the identifier naming a member of that struct or union. Similar to sizeof,
offsetof returns a size_t and can be used anywhere in a D program that an integer
constant can be used.

Bit Fields
D also permits the definition of integer struct and union members of arbitrary numbers
of bits, known as bit fields. A bit field is declared by specifying a signed or unsigned
integer base type, a member name, and a suffix indicating the number of bits to be
assigned for the field, as shown in the following example:

struct s {
 int a : 1;
 int b : 3;
 int c : 12;
};

The bit field width is an integer constant separated from the member name by a trailing
colon. The bit field width must be positive and must be of a number of bits not larger
than the width of the corresponding integer base type. Bit fields larger than 64 bits may
not be declared in D. D bit fields provide compatibility with and access to the
corresponding ANSI-C capability. Bit fields are typically used in situations when
memory storage is at a premium or when a struct layout must match a hardware
register layout.

A bit field is a compiler construct that automates the layout of an integer and a set of
masks to extract the member values. The same result can be achieved by simply
defining the masks yourself and using the & operator. C and D compliers try to pack
bits efficiently The compliers do not follow any order while packing the bits. Therefore,
bit fields are not guaranteed to produce identical bit layouts across differing compilers
or architectures. If you require stable bit layout, you should construct the bit masks
yourself and extract the values using the & operator.

A bit field member is accessed by simply specifying its name in combination with the
"." or -> operators like any other struct or union member. The bit field is automatically
promoted to the next largest integer type for use in any expressions. Because bit field
storage may not be aligned on a byte boundary or be a round number of bytes in size,
you may not apply the sizeof or offsetof operators to a bit field member. The D
compiler also prohibits you from taking the address of a bit field member using the &
operator.

Type and Constant Definitions in DTrace
This section describes how to declare type aliases and named constants in D. This
section also discusses D type and namespace management for program and
operating system types and identifiers.

typedef Keyword
The typedef keyword is used to declare an identifier as an alias for an existing type.
Like all D type declarations, the typedef keyword is used outside probe clauses in a
declaration of the form:

typedef existing-type new-type ;

Chapter 2
Type and Constant Definitions in DTrace

2-54

where existing-type is any type declaration and new-type is an identifier to be used as the
alias for this type. For example, the declaration:

typedef unsigned char uint8_t;

is used internally by the D compiler to create the uint8_t type alias. Type aliases can be
used anywhere that a normal type can be used, such as the type of a variable or associative
array value or tuple member. You can also combine typedef with more elaborate declarations
such as the definition of a new struct:

typedef struct foo {
 int x;
 int y;
} foo_t;

In this example, struct foo is defined as the same type as its alias, foo_t. Oracle Solaris C
system headers often use the suffix _t to denote a typedef alias.

Enumerations in DTrace
Defining symbolic names for constants in a program eases readability and simplifies the
process of maintaining the program in the future. One method is to define an enumeration,
which associates a set of integers with a set of identifiers called enumerators that the
compiler recognizes and replaces with the corresponding integer value. An enumeration is
defined using a declaration such as:

enum colors {
 RED,
 GREEN,
 BLUE
};

The first enumerator in the enumeration, RED, is assigned the value zero and each
subsequent identifier is assigned the next integer value. You can also specify an explicit
integer value for any enumerator by suffixing it with an equal sign and an integer constant, as
in the following example:

enum colors {
 RED = 7,
 GREEN = 9,
 BLUE
};

The enumerator BLUE is assigned the value 10 by the compiler because it has no value
specified and the previous enumerator is set to 9. Once an enumeration is defined, the
enumerators can be used anywhere in a D program that an integer constant can be used. In
addition, the enumeration enum colors is also defined as a type that is equivalent to an int.
The D compiler will allow a variable of enum type to be used anywhere an int can be used,
and will allow any integer value to be assigned to a variable of enum type. You can also omit
the enum name in the declaration if the type name is not needed.

Enumerators are visible in all subsequent clauses and declarations in your program, so you
cannot define the same enumerator identifier in more than one enumeration. However, you
may define more than one enumerator that has the same value in either the same or different
enumerations. You may also assign integers that have no corresponding enumerator to a
variable of the enumeration type.

Chapter 2
Type and Constant Definitions in DTrace

2-55

The D enumeration syntax is the same as the corresponding syntax in ANSI-C. D also
provides access to enumerations defined in the operating system kernel and its
loadable modules, but these enumerators are not globally visible in your D program.
Kernel enumerators are only visible when used as an argument to one of the binary
comparison operators when compared to an object of the corresponding enumeration
type. For example, the function uiomove() has a parameter of type enum uio_rw
defined as follows:

enum uio_rw { UIO_READ, UIO_WRITE };

The enumerators UIO_READ and UIO_WRITE are not normally visible in your D program,
but you can promote them to global visibility by comparing one to a value of type enum
uio_rw, as shown in the following example clause:

fbt::uiomove:entry
/args[2] == UIO_WRITE/
{
 ...
}

This example traces calls to the uiomove() function for write requests by comparing
args[2], a variable of type enum uio_rw, to the enumerator UIO_WRITE. Because the
left argument is an enumeration type, the D compiler searches the enumeration when
attempting to resolve the right identifier. This feature protects your D programs against
inadvertent identifier name conflicts with the large collection of enumerations defined
in the operating system kernel. For more information, see the uiomove(9F) man page.

Inlines in DTrace
D named constants can also be defined using inline directives, which provide a more
general means of creating identifiers that are replaced by predefined values or
expressions during compilation. Inline directives are a more powerful form of lexical
replacement than the #define directive provided by the C preprocessor because the
replacement is assigned an actual type and is performed using the compiled syntax
tree and not simply a set of lexical tokens. An inline directive is specified using a
declaration of the form:

inline type
name = expression ;

where type is a type declaration of an existing type, name is any valid D identifier that
is not previously defined as an inline or global variable, and expression is any valid D
expression. Once the inline directive is processed, the D compiler substitutes the
compiled form of expression for each subsequent instance of name in the program
source. For example, the following D program would trace the string "hello" and
integer value 123:

inline string hello = "hello";
inline int number = 100 + 23;

BEGIN
{
 trace(hello);
 trace(number);
}

Chapter 2
Type and Constant Definitions in DTrace

2-56

https://docs.oracle.com/cd/E88353_01/html/E37855/uiomove-9f.html

An inline name may be used anywhere a global variable of the corresponding type can be
used. If the inline expression can be evaluated to an integer or string constant at compile
time, then the inline name can also be used in contexts that require constant expressions,
such as scalar array dimensions.

The inline expression is validated for syntax errors as part of evaluating the directive. The
expression result type must be compatible with the type defined by the inline, according to
the same rules used for the D assignment operator (=). An inline expression may not
reference the inline identifier itself: recursive definitions are not permitted.

The DTrace software packages install a number of D source files in the system
directory /usr/lib/dtrace that contain inline directives you can use in your D programs. For
example, the signal.d library includes directives of the form:

inline int SIGHUP = 1;
inline int SIGINT = 2;
inline int SIGQUIT = 3;
...

These inline definitions provide you access to the current set of Oracle Solaris signal names
described in signal(3HEAD). Similarly, the errno.d library contains inline directives for the C
errno constants described in Intro. For more information, see the Intro(2) man page.

By default, the D compiler includes all of the provided D library files automatically so you can
use these definitions in any D program.

Type Namespaces in DTrace
This section discusses D namespaces and namespace issues related to types. In traditional
languages such as ANSI-C, type visibility is determined by whether a type is nested inside of
a function or other declaration. Types declared at the outer scope of a C program are
associated with a single global namespace and are visible throughout the entire program.
Types defined in C header files are typically included in this outer scope. Unlike the C
language, D provides access to types from multiple outer scopes.

D is a language that facilitates dynamic observability across multiple layers of a software
stack, including the operating system kernel, an associated set of loadable kernel modules,
and user processes running on the system. A single D program may instantiate probes to
gather data from multiple kernel modules or other software entities that are compiled into
independent binary objects. Therefore, more than one data type of the same name, perhaps
with different definitions, might be present in the universe of types available to DTrace and
the D compiler. To manage this situation, the D compiler associates each type with a
namespace identified by the containing program object. Types from a particular program
object can be accessed by specifying the object name and backquote (`) scoping operator in
any type name.

For example, a kernel module named foo contains the following C type declaration:

typedef struct bar {
 int x;
} bar_t;

The types struct bar and bar_t could be accessed from D using the type names:

struct foo`bar foo`bar_t

Chapter 2
Type and Constant Definitions in DTrace

2-57

https://docs.oracle.com/cd/E88353_01/html/E37841/intro-2.html

The backquote operator can be used in any context where a type name is appropriate,
including when specifying the type for D variable declarations or cast expressions in D
probe clauses.

The D compiler also provides two special built-in type namespaces that use the names
C and D respectively. The C type namespace is initially populated with the standard
ANSI-C intrinsic types such as int. In addition, type definitions acquired using the C
preprocessor cpp using the dtrace -C option will be processed by and added to the
C scope. As a result, you can include C header files containing type declarations
which are already visible in another type namespace without causing a compilation
error. For more information, see thecpp(1) man page.

The D type namespace is initially populated with the D type intrinsics such as int and
string as well as the built-in D type aliases such as uint32_t. Any new type
declarations that appear in the D program source are automatically added to the D
type namespace. If you create a complex type such as a struct in your D program
consisting of member types from other namespaces, the member types will be copied
into the D namespace by the declaration.

When the D compiler encounters a type declaration that does not specify an explicit
namespace using the backquote operator, the compiler searches the set of active type
namespaces to find a match using the specified type name. The C namespace is
always searched first, followed by the D namespace. If the type name is not found in
either the C or D namespace, the type namespaces of the active kernel modules are
searched in ascending order by kernel module ID. This ordering guarantees that the
binary objects that form the core kernel are searched before any loadable kernel
modules, but does not guarantee any ordering properties among the loadable
modules. You should use the scoping operator when accessing types defined in
loadable kernel modules to avoid type name conflicts with other kernel modules.

The D compiler uses compressed ANSI-C debugging information provided with the
core Oracle Solaris kernel modules in order to automatically access the types
associated with the operating system source code without the need for accessing the
corresponding C include files. This symbolic debugging information might not be
available for all kernel modules on your system. The D compiler will report an error if
you attempt to access a type within the namespace of a module that lacks
compressed C debugging information intended for use with DTrace.

Chapter 2
Type and Constant Definitions in DTrace

2-58

https://docs.oracle.com/cd/E88353_01/html/E37839/cpp-1.html

3
DTrace Aggregations

DTrace enables you to aggregate data gathered by the probes. For example, if you wanted to
know the number of system calls by user ID, you would not necessarily care about the data
collected at each system call. You simply want to see a table of user IDs and system calls.
Without aggregation, you would have postprocessed the data gathered at each system call
by using a tool such as awk or perl. For more information, see the awk(1) and perl(1) man
pages. In DTrace, aggregation of data is a first-class operation.

This chapter describes the DTrace facilities for manipulating aggregations:

• Aggregating Functions

• About Aggregations

• Printing Aggregations

• Data Normalization

• Clearing Aggregations

• Sorting Aggregations

• Truncating Aggregations

• Minimizing Drops

Aggregating Functions
An aggregating function has the following property:

f(f(x0) U f(x1) U ... U f(xn)) = f(x0 U x1 U ... U xn)

where x{_}{_}{~}n{~} is a set of arbitrary data. That is, applying an aggregating function to
subsets of the whole and then applying it again to the results gives the same result as
applying it to the whole itself. For example, consider a function SUM that yields the summation
of a given data set. If the raw data consists of {2, 1, 2, 5, 4, 3, 6, 4, 2}, the result of applying
SUM to the entire set is {29}. Similarly, the result of applying SUM to the subset consisting of the
first three elements is {5}, the result of applying SUM to the set consisting of the subsequent
three elements is {12}, and the result of applying SUM to the remaining three elements is also
{12}. SUM is an aggregating function because applying it to the set of these results, {5, 12, 12},
yields the same result, {29}, as applying SUM to the original data.

Not all functions are aggregating functions. An example of a non-aggregating function is the
function MEDIAN that determines the median element of the element set. The median is
defined to be that element of a set for which as many elements in the set are greater than it
as are less than it. The MEDIAN is derived by sorting the set and selecting the middle element.
Returning to the original raw data, if MEDIAN is applied to the set consisting of the first three
elements, the result is {2}. The sorted set is {1, 2, 2}; {2} is the set consisting of the middle
element. Likewise, applying MEDIAN to the next three elements yields {4} and applying MEDIAN
to the final three elements yields {4}. Applying MEDIAN to each of the subsets thus yields the
set {2, 4, 4}. Applying MEDIAN to this set yields the result {4}. However, sorting the original set

3-1

https://docs.oracle.com/cd/E88353_01/html/E37839/awk-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/perl-1.html

yields {1, 2, 2, 2, 3, 4, 4, 5, 6}. Applying MEDIAN to this set thus yields {3}. Because
these results do not match, MEDIAN is not an aggregating function.

Many common functions for understanding a set of data are aggregating functions.
These functions include counting the number of elements in the set, computing the
minimum value of the set, computing the maximum value of the set, and summing all
elements in the set. Determining the arithmetic mean of the set can be constructed
from the function to count the number of elements in the set and the function to sum
the elements in the set.

However, several useful functions are not aggregating functions. These functions
include computing the mode (the most common element) of a set, the median value of
the set, or the standard deviation of the set.

Applying aggregating functions to data as it is traced has a number of advantages:

• The entire data set need not be stored. Whenever a new element is to be added to
the set, the aggregating function is calculated given the set consisting of the
current intermediate result and the new element. After the new result is calculated,
the new element may be discarded. This process reduces the amount of storage
required by a factor of the number of data points, which is often quite large.

• Data collection does not induce pathological scalability problems. Aggregating
functions enable intermediate results to be kept per-CPU instead of in a shared
data structure. DTrace then applies the aggregating function to the set consisting
of the per-CPU intermediate results to produce the final system-wide result.

About Aggregations
DTrace stores the results of aggregating functions in objects called aggregations. The
aggregation results are indexed using a tuple of expressions similar to those used for
associative arrays. In D, the syntax for an aggregation is:

@name[keys] = aggfunc (args);

where name is the name of the aggregation, keys is a comma-separated list of D
expressions, aggfunc is one of the DTrace aggregating functions, and args is a
comma-separated list of arguments appropriate for the aggregating function. The
aggregation name is a D identifier that is prefixed with the special character @. All
aggregations named in your D programs are global variables; there are no thread- or
clause-local aggregations. The aggregation names are kept in a separate identifier
namespace from other D global variables. Remember that a and @a are not the same
variable if you reuse names. The special aggregation name @ can be used to name an
anonymous aggregation in simple D programs. The D compiler treats this name as an
alias for the aggregation name @_.

The DTrace aggregating functions are shown in the following table. Most aggregating
functions take just a single argument that represents the new data.

Table 3-1 DTrace Aggregating Functions

Function Arguments Result

count none The number of times called.

sum scalar expression The total value of the specified expressions.

Chapter 3
About Aggregations

3-2

Table 3-1 (Cont.) DTrace Aggregating Functions

Function Arguments Result

avg scalar expression The arithmetic average of the specified expressions.

min scalar expression The smallest value among the specified expressions.

max scalar expression The largest value among the specified expressions.

stddev scalar expression The standard deviation of the specified expressions.

lquantize scalar expression,
lower bound, upper
bound, step value

A linear frequency distribution, sized by the specified
range, of the values of the specified expressions.
Increments the value in the highest bucket that is less
than the specified expression.

quantize scalar expression A power-of-two frequency distribution of the values of
the specified expressions. Increments the value in the
highest power-of-two bucket that is less than the
specified expression.

llquantize scalar expression, a
factor (base of the
logarithm), lower
bound, upper bound,
step value

A frequency distribution table of the values specified in
the expression. Increments the value in the highest
bucket that is less than the specified expression. The
values are grouped logarithmically at first and then
grouped linearly.

For example, to count the number of write system calls in the system, you can use an
informative string as a key and the count aggregating function.

syscall::write:entry
{
 @counts["write system calls"] = count();
}

The dtrace command prints aggregation results by default when the process terminates,
either as the result of an explicit END action or when the user presses Control-C. The following
example output shows the result of running this command, waiting for a few seconds, and
pressing Control-C.

dtrace -s writes.d
dtrace: script './writes.d' matched 1 probe
^C
 write system calls 179
#

You can count system calls per process name by using the execname variable as the key to
an aggregation:

syscall::write:entry
{
 @counts[execname] = count();
}

The following example output shows the result of running this command, waiting for a few
seconds, and pressing Control-C:

dtrace -s writesbycmd.d
dtrace: script './writesbycmd.d' matched 1 probe
^C

Chapter 3
About Aggregations

3-3

 dtrace 1
 cat 4
 sed 9
 head 9
 grep 14
 find 15
 tail 25
 mountd 28
 expr 72
 sh 291
 tee 814
 def.dir.flp 1996
 make.bin 2010
#

Alternatively, you might want to further examine writes organized by both executable
name and file descriptor. The file descriptor is the first argument to write, so the
following example uses a key consisting of both execname and arg0:

syscall::write:entry
{
 @counts[execname, arg0] = count();
}

Running this command results in a table with both executable name and file descriptor,
as shown in the following example:

dtrace -s writesbycmdfd.d
dtrace: script './writesbycmdfd.d' matched 1 probe
^C
 cat 1 58
 sed 1 60
 grep 1 89
 tee 1 156
 tee 3 156
 make.bin 5 164
 acomp 1 263
 macrogen 4 286
 cg 1 397
 acomp 3 736
 make.bin 1 880
 iropt 4 1731
#

The following example displays the average time spent in the write system call,
organized by process name. This example uses the avg aggregating function,
specifying the expression to average as the argument. The example averages the wall
clock time spent in the system call:

syscall::write:entry
{
 self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
 @time[execname] = avg(timestamp - self->ts);
 self->ts = 0;
}

Chapter 3
About Aggregations

3-4

The following example output shows the result of running this command, waiting for a few
seconds, and pressing Control-C:

dtrace -s writetime.d
dtrace: script './writetime.d' matched 2 probes
^C
 iropt 31315
 acomp 37037
 make.bin 63736
 tee 68702
 date 84020
 sh 91632
 dtrace 159200
 ctfmerge 321560
 install 343300
 mcs 394400
 get 413695
 ctfconvert 594400
 bringover 1332465
 tail 1335260
#

The average can be useful, but often does not provide sufficient detail to understand the
distribution of data points. To understand the distribution in further detail, use the quantize
aggregating function as shown in the following example:

syscall::write:entry
{
 self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
 @time[execname] = quantize(timestamp - self->ts);
 self->ts = 0;
}

Because each line of output becomes a frequency distribution diagram, the output of this
script is substantially longer than previous ones. The following example shows a selection of
sample output:

lint
 value ------------- Distribution ------------- count
 8192 | 0
 16384 | 2
 32768 | 0
 65536 |@@@@@@@@@@@@@@@@@@@ 74
 131072 |@@@@@@@@@@@@@@@ 59
 262144 |@@@ 14
 524288 | 0

 acomp
 value ------------- Distribution ------------- count
 4096 | 0
 8192 |@@@@@@@@@@@@ 840
 16384 |@@@@@@@@@@@ 750
 32768 |@@ 165
 65536 |@@@@@@ 460
 131072 |@@@@@@ 446
 262144 | 16

Chapter 3
About Aggregations

3-5

 524288 | 0
 1048576 | 1
 2097152 | 0

 iropt
 value ------------- Distribution ------------- count
 4096 | 0
 8192 |@@@@@@@@@@@@@@@@@@@@@@@ 4149
 16384 |@@@@@@@@@@ 1798
 32768 |@ 332
 65536 |@ 325
 131072 |@@ 431
 262144 | 3
 524288 | 2
 1048576 | 1
 2097152 | 0

Notice that the rows for the frequency distribution are always power-of-two values.
Each row indicates the count of the number of elements greater than or equal to the
corresponding value, but less than the next larger row value. For example, the
preceding output shows that iropt had 4,149 writes taking between 8,192
nanoseconds and 16,383 nanoseconds, inclusive.

While quantize is useful for getting quick insight into the data, you might want to
examine a distribution across linear values instead. To display a linear value
distribution, use the lquantize aggregating function. The lquantize() function takes
three arguments in addition to a D expression: a lower bound, an upper bound, and a
step. For example, if you wanted to look at the distribution of writes by file descriptor, a
power-of-two quantization would not be effective. Instead, use a linear quantization
with a small range, as shown in the following example:

syscall::write:entry
{
 @fds[execname] = lquantize(arg0, 0, 100, 1);
}

Running this script for several seconds yields a large amount of information. The
following example shows a selection of typical output:

mountd
 value ------------- Distribution ------------- count
 11 | 0
 12 |@ 4
 13 | 0
 14 |@@@@@@@@@@@@@@@@@@@@@@@@@ 70
 15 | 0
 16 |@@@@@@@@@@@@ 34
 17 | 0

 xemacs-20.4
 value ------------- Distribution ------------- count
 6 | 0
 7 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 521
 8 | 0
 9 | 1
 10 | 0

 make.bin
 value ------------- Distribution ------------- count
 0 | 0

Chapter 3
About Aggregations

3-6

 1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3596
 2 | 0
 3 | 0
 4 | 42
 5 | 50
 6 | 0

 acomp
 value ------------- Distribution ------------- count
 0 | 0
 1 |@@@@@ 1156
 2 | 0
 3 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 6635
 4 |@ 297
 5 | 0

 iropt
 value ------------- Distribution ------------- count
 2 | 0
 3 | 299
 4 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 20144
 5 | 0

You can also use the lquantize aggregating function to aggregate on time since some point
in the past. This technique allows you to observe a change in behavior over time. The
following example displays the change in system call behavior over the lifetime of a process
executing the date command:

syscall::exec:return,
syscall::exece:return
/execname == "date"/
{
 self->start = vtimestamp;
}

syscall:::entry
/self->start/
{
 /*
 * You linearly quantize on the current virtual time minus the
 * process's start time. Divide by 1000 to yield microseconds
 * rather than nanoseconds. The range runs from 0 to 10 milliseconds
 * in steps of 100 microseconds; you can expect that no date process
 * will take longer than 10 milliseconds to complete.
 */
 @a["system calls over time"] =
 lquantize((vtimestamp - self->start) / 1000, 0, 10000, 100);
}

syscall::rexit:entry
/self->start/
{
 self->start = 0;
}

The preceding script provides greater insight into system call behavior when many date
processes are executed. To see this result, run sh -c 'while true; do date >/dev/null;
done' in one window, while executing the D script in another. The script produces a profile of
the system call behavior of the date command:

Chapter 3
About Aggregations

3-7

dtrace -s dateprof.d
dtrace: script './dateprof.d' matched 218 probes
^C
 system calls over time
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@ 20530
 100 |@@@@@@ 48814
 200 |@@@ 28119
 300 |@ 14646
 400 |@@@@@ 41237
 500 | 1259
 600 | 218
 700 | 116
 800 |@ 12783
 900 |@@@ 28133
 1000 | 7897
 1100 |@ 14065
 1200 |@@@ 27549
 1300 |@@@ 25715
 1400 |@@@@ 35011
 1500 |@@ 16734
 1600 | 498
 1700 | 256
 1800 | 369
 1900 | 404
 2000 | 320
 2100 | 555
 2200 | 54
 2300 | 17
 2400 | 5
 2500 | 1
 2600 | 7
 2700 | 0

This output provides a rough idea of the different phases of the date command with
respect to the services required of the kernel. To better understand these phases, you
might want to understand which system calls are being called when. If so, you could
change the D script to aggregate on the variable probefunc instead of a constant
string.

You can use the llquantize aggregating function to group data both logarithmically
and linearly. The arguments to the llquantize() function in order are: the expression,
the base, the low exponent, the high exponent, and the number of steps per order of
magnitude. The following example displays system call latencies in the microsecond
range. Note that timestamp is in nanoseconds and 1000 nanoseconds = 1
microsecond.

syscall:::entry
{
 self->ts = timestamp;
}

syscall:::return
/ self->ts /
{
 /* The expression "timestamp - self->ts" gives the system call latency
in nanoseconds */

 @ = llquantize(timestamp - self->ts, 10, 3, 5, 10);

Chapter 3
About Aggregations

3-8

 self->ts = 0;
}

In this example the expression @ = llquantize(timestamp - self->ts, 10, 3, 5, 10);
generates a frequency distribution of the observed system call latencies. The distribution runs
from 103 nanoseconds through 105 nanoseconds (inclusive). For each order of the
magnitude, the data is displayed linearly in groups of 10. This example generates an output
similar to the following:

 value ------------- Distribution ------------- count
 < 1000 |@@@@@@ 12899
 1000 |@@@@@@@@@@@@ 26357
 2000 |@ 3202
 3000 |@ 1869
 4000 |@ 2110
 5000 |@@ 4716
 6000 |@@ 3998
 7000 |@ 1617
 8000 |@@ 4924
 9000 |@ 2515
 10000 |@@@@@@@ 15307
 20000 |@ 2240
 30000 |@ 1327
 40000 |@ 1369
 50000 | 990
 60000 | 1057
 70000 | 631
 80000 | 453
 90000 | 434
 100000 |@ 1570
 200000 | 228
 300000 | 45
 400000 | 59
 500000 | 60
 600000 | 52
 700000 | 30
 800000 | 22
 900000 | 17
 >= 1000000 | 513

You can use the stddev aggregating function to characterize the distribution of data points.
This example shows the average and standard deviation of the time it takes to execute
processes:

syscall::exece:entry
{
 self->ts = timestamp;
}

syscall::exece:return

/ self->ts /
{
 t = timestamp - self->ts;
 @execavg[probefunc] = avg(t);
 @execsd[probefunc] = stddev(t);

 self->ts = 0;
}

END

Chapter 3
About Aggregations

3-9

{
 printf("AVERAGE:");
 printa(@execavg);
 printf("nSTDDEV:");
 printa(@execsd);
}

The sample output as follows:

dtrace -s ./stddev.d
dtrace: script './stddev.d' matched 3 probes
^C
CPU ID FUNCTION:NAME
 0 2 :END AVERAGE:
 exece 7053786
STDDEV:
 exece 9470351

For aggregations using count() and sum() the result may be seen by using the
agghist runtime option. The following example shows how agghist might be used
when counting the number of system calls invoked by each executable:

syscall:::entry
{
@[execname] = count();
}

dtrace -s syscall.d -x agghist
dtrace: description 'syscall:::entry' matched 221 probes
^C
.
 key -------------- Distribution ------------- count
 fmd | 1
 inetd | 1
 rad | 1
 cat | 47
 gdm-simple-greet | 107
 mail | 119
 httpd |@ 174
 sstored |@ 288
 quota |@ 316
 svc.configd |@ 351
 Xorg |@ 392
 bash |@@ 550
 nscd |@@@@ 1299
 sshd |@@@@@@@@ 2794
 dtrace |@@@@@@@@@@@@@@@@@@@@@ 7218

By default, aggregation histograms are displayed such that the full width available for a
bar represents 100% of the measured variable. The aggzoom option scales the display
such that the result with the highest frequency count consumes the full width available.
Relative proportions are preserved but smaller bars may become more visible. The
following example shows the result of adding aggzoom:

dtrace -s syscall.d -x agghist -x aggzoom
dtrace: description 'syscall:::entry' matched 221 probes
^C
.
 key -------------- Distribution ------------- count
 fmd | 1
 inetd | 1

Chapter 3
About Aggregations

3-10

 rad | 1
 cat | 47
 VBoxService | 74
 gdm-simple-greet |@ 110
 mail |@ 119
 httpd |@ 207
 sstored |@@ 310
 quota |@@ 316
 svc.configd |@@ 351
 Xorg |@@ 425
 bash |@@@ 692
 nscd |@@@@@@ 1299
 sshd |@@@@@@@@@@@@@@ 2979
 dtrace |@@ 8246

The quantize() and lquantize() aggregating actions can sometimes generate an large
amount of output. For these two actions, the aggpack option provides a compressed output
and improves the readability. The following example measures the distribution of times spent
within each system call:

syscall:::entry
{
self->ts = timestamp;
}
.
syscall:::return
/self->ts/
{
@[probefunc] = quantize(timestamp - self->ts);
self->ts = 0;
}

dtrace -s syscalls.d -x aggpack
dtrace: script 'syscalls.d' matched 442 probes
^C
.
 key min -------------------------- max | count
 sigaction 256 : X_ : 536870912 | 4
 fstatat 256 : X : 536870912 | 1
 getuid 256 : X : 536870912 | 2
 mmap 256 : X : 536870912 | 1
 uadmin 256 : X : 536870912 | 2
 zone 256 : X : 536870912 | 2
 getrandom 256 : xx : 536870912 | 2
 waitsys 256 : X : 536870912 | 2
 sysconfig 256 : _x__ : 536870912 | 7
 setitimer 256 : xx : 536870912 | 4
 lseek 256 : x __ : 536870912 | 4
 brk 256 : _ ___ : 536870912 | 4
 lwp_sigmask 256 : X_ : 536870912 | 13
 read 256 : Xx : 536870912 | 3
 schedctl 256 : X : 536870912 | 1
 setcontext 256 : X : 536870912 | 1
 writev 256 : X : 536870912 | 2
 recvmsg 256 : _x__ : 536870912 | 10
 clock_gettime 256 : X__ : 536870912 | 93
 write 256 : _ X : 536870912 | 4
 p_online 256 : X__ _ : 536870912 | 1024
 getdents 256 : xx : 536870912 | 4
 ioctl 256 : xx____ _ __ : 536870912 | 2068
 lwp_park 256 : xx : 536870912 | 2

Chapter 3
About Aggregations

3-11

 pollsys 256 : _x _ __ : 536870912 | 13
 nanosleep 256 : _X : 536870912 | 5
 portfs 256 : _ X _ : 536870912 | 39

Each histogram now occupies a single line in which one of the characters _, x and X is
used to approximate bars for populated intervals. The aggpack and aggzoom options
may be combined to draw attention to otherwise emptier intervals. Repeating the
previous example output.

key min ----------------------------- max | count
 fcntl 64 : X : 4294967296 | 1
 sigaction 64 : Xx : 4294967296 | 4
 getrandom 64 : X : 4294967296 | 1
 mmap 64 : X : 4294967296 | 1
 pset 64 : X x : 4294967296 | 3
 fstatat 64 : XXX : 4294967296 | 3
 brk 64 : x Xx : 4294967296 | 4
 getuid 64 : X : 4294967296 | 7
 uadmin 64 : X : 4294967296 | 7
 zone 64 : X : 4294967296 | 7
 setcontext 64 : X : 4294967296 | 1
 sysconfig 64 : _XX_ : 4294967296 | 17
 waitsys 64 : xX : 4294967296 | 7
 lwp_sigmask 64 : X__ : 4294967296 | 17
 lseek 64 : x _XxX : 4294967296 | 15
 read 64 : xX : 4294967296 | 13
 close 64 : XXXX : 4294967296 | 4
 pread 64 : X : 4294967296 | 1
 schedctl 64 : X : 4294967296 | 1
 so_socket 64 : X : 4294967296 | 1
 sendmsg 64 : X_ : 4294967296 | 8
 setitimer 64 : _XX : 4294967296 | 26
 openat 64 : X X X : 4294967296 | 3
 write 64 : XX_ _ : 4294967296 | 15
 writev 64 : _X_ : 4294967296 | 14
 p_online 64 : X__ : 4294967296 | 1024
 recvmsg 64 : _xX_ : 4294967296 | 83
 clock_gettime 64 : _X__ : 4294967296 | 509
 getdents 64 : _X_ : 4294967296 | 14
 ioctl 64 : _X_________ : 4294967296 | 8263
 lwp_park 64 : _ X__ : 4294967296 | 12
 portfs 64 : _ X _ : 4294967296 | 223
 pollsys 64 : xX_ __ _xX__ : 4294967296 | 82
 nanosleep 64 : xX _ : 4294967296 | 44

Printing Aggregations
By default, multiple aggregations are displayed in the order they are introduced in the
D program. You can override this behavior using the printa() function to print the
aggregations. The printa() function also enables you to precisely format the
aggregation data using a format string, as described in Output Formatting in DTrace.

If an aggregation is not formatted with a printa statement in your D program, the
dtrace command will snapshot the aggregation data and print the results after tracing
has completed using the default aggregation format. If a given aggregation is
formatted using a printa statement, the default behavior is disabled. You can achieve
equivalent results by adding the statement printa(@{_}aggregation-name{_}) to a
dtrace:::END probe clause in your program. The default output format for the avg,

Chapter 3
Printing Aggregations

3-12

count, min, max, and sum aggregating functions display an integer decimal value
corresponding to the aggregated value for each tuple. The default output format for the
lquantize and quantize aggregating function displays an ASCII table of the results.
Aggregation tuples are printed as if trace had been applied to each tuple element.

Data Normalization
When aggregating data over some period of time, you might want to normalize the data with
respect to some constant factor. This technique enables you to compare disjoint data more
easily. For example, when aggregating system calls, you might want to output system calls as
a per-second rate instead of as an absolute value over the course of the run. The DTrace
normalize action enables you to normalize data in this way. The parameters to normalize
are an aggregation and a normalization factor. The output of the aggregation shows each
value divided by the normalization factor.

Example 3-1 Normalizing an Aggregation With normalize.d
The following example shows how to aggregate data by system call:

#pragma D option quiet

BEGIN
{
 /*
 * Get the start time, in nanoseconds.
 */
 start = timestamp;
}

syscall:::entry
{
 @func[execname] = count();
}

END
{
 /*
 * Normalize the aggregation based on the number of seconds it has
 * been running. (There are 1,000,000,000 nanoseconds in one second.)
 */
 normalize(@func, (timestamp - start) / 1000000000);
}

Running the preceding script for a brief period of time results in the following output on a
physical machine:

dtrace -s ./normalize.d
 ^C
 syslogd 0
 rpc.rusersd 0
 utmpd 0
 xbiff 0
 in.routed 1
 sendmail 2
 echo 2
 FvwmAuto 2
 stty 2
 cut 2
 init 2

Chapter 3
Data Normalization

3-13

 pt_chmod 3
 picld 3
 utmp_update 3
 httpd 4
 xclock 5
 basename 6
 tput 6
 sh 7
 tr 7
 arch 9
 expr 10
 uname 11
 mibiisa 15
 dirname 18
 dtrace 40
 ksh 48
 java 58
 xterm 100
 nscd 120
 fvwm2 154
 prstat 180
 perfbar 188
 Xsun 1309

normalize sets the normalization factor for the specified aggregation, but this action
does not modify the underlying data. denormalize takes only an aggregation.
Adding the denormalize action to the preceding example returns both raw system
call counts and per-second rates.

Example 3-2 Denormalizing an Aggregation With denorm.d
#pragma D option quiet

BEGIN
{
 start = timestamp;
}

syscall:::entry
{
 @func[execname] = count();
}

END
{
 this->seconds = (timestamp - start) / 1000000000;
 printf("Ran for %d seconds.n", this->seconds);

 printf("Per-second rate:n");
 normalize(@func, this->seconds);
 printa(@func);

 printf("nRaw counts:n");
 denormalize(@func);
 printa(@func);
}

Running the preceding script for a brief period of time produces output similar to the
following example:

Chapter 3
Data Normalization

3-14

dtrace -s ./denorm.d
^C
Ran for 14 seconds.
Per-second rate:

 syslogd 0
 in.routed 0
 xbiff 1
 sendmail 2
 elm 2
 picld 3
 httpd 4
 xclock 6
 FvwmAuto 7
 mibiisa 22
 dtrace 42
 java 55
 xterm 75
 adeptedit 118
 nscd 127
 prstat 179
 perfbar 184
 fvwm2 296
 Xsun 829

Raw counts:

 syslogd 1
 in.routed 4
 xbiff 21
 sendmail 30
 elm 36
 picld 43
 httpd 56
 xclock 91
 FvwmAuto 104
 mibiisa 314
 dtrace 592
 java 774
 xterm 1062
 adeptedit 1665
 nscd 1781
 prstat 2506
 perfbar 2581
 fvwm2 4156
 Xsun 11616

Aggregations can also be renormalized. If normalize is called more than once for the same
aggregation, the normalization factor will be the factor specified in the most recent call. The
following example prints per-second rates over time:

Example 3-3 Renormalizing an Aggregation With renormalize.d
#pragma D option quiet

BEGIN
{
start = timestamp;
}

syscall:::entry

Chapter 3
Data Normalization

3-15

{
@func[execname] = count();
}

tick-10sec
{
normalize(@func, (timestamp - start) / 1000000000);
printa(@func);
}

Clearing Aggregations
When using DTrace to build simple monitoring scripts, you can periodically clear the
values in an aggregation using the clear() function. This function takes an aggregation
as its only parameter. The clear() function clears only the aggregation's values; the
aggregation's keys are retained. Therefore, the presence of a key in an aggregation
that has an associated value of zero indicates that the key had a non-zero value that
was subsequently set to zero as part of a clear(). To discard both an aggregation's
values and its keys, use the trunc function. For more information about the trunc
function, see Truncating Aggregations.

The following example adds the clear() function to Renormalizing an Aggregation
With renormalize.d:

Example 3-4 Clearing Aggregations

#pragma D option quiet

BEGIN
{
 last = timestamp;
}

syscall:::entry
{
 @func[execname] = count();
}

tick-10sec
{
 normalize(@func, (timestamp - last) / 1000000000);
 printa(@func);
 clear(@func);
 last = timestamp;
}

While Renormalizing an Aggregation With renormalize.d shows the system call rate
over the lifetime of the dtrace invocation, the preceding example shows the system
call rate only for the most recent ten-second period.

Sorting Aggregations
When displaying aggregated data, you can sort the output. The output can be sorted
based on aggregation keys or aggregation variables. The following options are
available to sort the output:

Chapter 3
Clearing Aggregations

3-16

aggsortkey
Sort aggregation by key order with ties broken by value.

aggsortkeypos
Position of the aggregate key on which the output is sorted.

aggsortpos
Position of the argument in the aggregate function on which the output is sorted.

aggsortrev
Sort aggregation in the reverse order.

For example, consider the following aggsort.d script that prints aggregation values.

/* aggsort.d */
syscall::read:entry
{
@avg[execname, pid] = avg(arg2);
@max[execname, pid] = max(arg2);
@min[execname, pid] = min(arg2);
@cnt[execname, pid] = count();
}
END
{
printf("%20s %10s %10s %10s %10s %10s\n", "EXECNAME", "PID", "COUNT", "MIN", "MAX",
"AVG");
printa("%20s %10d %@10d %@10d %@10d %@10d\n", @cnt, @min, @max, @avg);
}

Running the aggsort.d script displays an output similar to the following:

dtrace -q -s ./aggsort.d
^C

EXECNAME PID COUNT MIN MAX AVG
battstat-applet- 100981 2 32 32 32
gnome-settings-d 100853 3 32 64 53
soffice.bin 101382 10 32 32 32
dsdm 100708 10 32 160 54
xscreensaver 101082 14 32 32 32
gnome-panel 100896 24 12 168 51
firefox-bin 101363 31 1 1024 35
gnome-terminal 101029 40 32 4096 163
nautilus 100906 119 32 480 48
wnck-applet 100961 161 8 128 32
Xorg 100534 926 64 5104 3263

Note:

If no sort options are provided, the output is sorted on the value of first aggregation.
In the preceding example, the output is sorted on COUNT.

If you want to sort the output based on the pid which is the second aggregation key, you
must specify the aggsortkey and the aggsortkeypos options. Running aggsort.d with these
options, displays an output similar to the following:

Chapter 3
Sorting Aggregations

3-17

dtrace -q -s ./aggsort.d -x aggsortkey -x aggsortkeypos=1
^C

EXECNAME PID COUNT MIN MAX AVG
Xorg 100534 885 64 4940 3688
dsdm 100708 23 32 128 40
gnome-settings-d 100853 4 32 64 40
gnome-panel 100896 26 12 168 49
nautilus 100906 79 32 320 40
wnck-applet 100961 161 8 96 32
gnome-terminal 101029 27 32 4096 220
xscreensaver 101082 11 32 64 34
thunderbird-bin 101337 2 1 1024 512
firefox-bin 101363 29 1 1024 36
soffice.bin 101382 525 4 1440 33

To sort the output based on any of the aggregation variables, you must use the
aggsortpos option. Running the following command sorts the output based on MAX
which is the third aggregation variable.

dtrace -q -s ./aggsort.d -x aggsortpos=2

To sort the aggregation values in a reverse order, use the aggsortrev option. For
example:

dtrace -q -s ./aggsort.d -x aggsortrev

Truncating Aggregations
You can use the trunc() function to manipulate the aggregation results. For example,
you can display only the top results, or discard an entire aggregation result, and so on.

The parameters to trunc are an aggregation and an optional truncation value. Without
the truncation value, trunc discards both aggregation values and aggregation keys for
the entire aggregation. When a truncation value n is present, trunc discards
aggregation values and keys except for those values and keys associated with the
highest n values. That is, trunc(@foo, 10) truncates the aggregation named foo after
the top ten values, where trunc(@foo) discards the entire aggregation. The entire
aggregation is also discarded if 0 is specified as the truncation value.

To see the bottom n values instead of the top n, specify a negative truncation value to
trunc. For example, trunc(@foo, -10) truncates the aggregation named foo after the
bottom ten values.

The following example augments the system call example to only display the per-
second system call rates of the top ten system-calling applications in a ten-second
period.

Example 3-5 Truncating an Aggregation

#pragma D option quiet

BEGIN
{
 last = timestamp;
}

syscall:::entry
{

Chapter 3
Truncating Aggregations

3-18

 @func[execname] = count();
}

tick-10sec
{
 trunc(@func, 10);
 normalize(@func, (timestamp - last) / 1000000000);
 printa(@func);
 clear(@func);
 last = timestamp;
}

The following example shows output from running the preceding script on a lightly loaded
laptop:

FvwmAuto 7
 telnet 13
 ping 14
 dtrace 27
 xclock 34
 MozillaFirebird- 63
 xterm 133
 fvwm2 146
 acroread 168
 Xsun 616

 telnet 4
 FvwmAuto 5
 ping 14
 dtrace 27
 xclock 35
 fvwm2 69
 xterm 70
 acroread 164
 MozillaFirebird- 491
 Xsun 1287

Minimizing Drops
Because DTrace buffers some aggregation data in the kernel, space might not be available
when a new key is added to an aggregation. In this case, the data will be dropped, a counter
will be incremented, and dtrace will generate a message indicating an aggregation drop.
This situation rarely occurs because DTrace keeps long-running state (consisting of the
aggregation's key and intermediate result) at user-level where space may grow dynamically.
In the unlikely event that aggregation drops occur, you can increase the aggregation buffer
size with the aggsize option to reduce the likelihood of drops. You can also use this option to
minimize the memory footprint of DTrace. As with any size option, aggsize may be specified
with any size suffix. The resizing policy of this buffer is dictated by the bufresize option. For
more information about buffering, see DTrace Buffers and Buffering. For more information
about options, see DTrace Options and Tunables.

An alternative method to eliminate aggregation drops is to increase the rate at which
aggregation data is consumed at user-level. This rate defaults to once per second, and may
be explicitly tuned with the aggrate option. As with any rate option, aggrate may be specified
with any time suffix, but defaults to rate-per-second. For more information about the aggsize
option, see DTrace Options and Tunables.

Chapter 3
Minimizing Drops

3-19

4
DTrace Actions and Subroutines

You can use D function calls such as trace and printf to invoke two different kinds of
services provided by DTrace: actions that trace data or modify state external to DTrace, and
subroutines that affect only internal DTrace state. This chapter defines the actions and
subroutines and describes their syntax and semantics.

This chapter contains the following topics:

• DTrace Actions

• DTrace Default Action

• DTrace Data Recording Actions

• DTrace Destructive Actions

• DTrace Special Actions

• DTrace Subroutines

• DTrace User Address Symbol Resolution

DTrace Actions
Actions enable your DTrace programs to interact with the system outside of DTrace. The
most common actions record data to a DTrace buffer. Other actions are available, such as
stopping the current process, raising a specific signal on the current process, or ceasing
tracing altogether. Some of these actions are destructive in that they change the system,
albeit in a well-defined way. These actions may only be used if destructive actions have been
explicitly enabled. By default, data recording actions record data to the principal buffer. For
more details on the principal buffer and buffer policies, see DTrace Buffers and Buffering.

DTrace Default Action
A clause can contain any number of actions and variable manipulations. If a clause is left
empty, the default action is taken. The default action is to trace the enabled probe identifier
(EPID) to the principal buffer. The EPID identifies a particular enabling of a particular probe
with a particular predicate and actions. From the EPID, DTrace consumers can determine the
probe that induced the action. Indeed, whenever any data is traced, it must be accompanied
by the EPID to enable the consumer to make sense of the data. Therefore, the default action
is to trace the EPID.

Using the default action allows for simple use of dtrace. For more information about
dtrace, see the dtrace(8) man page. The following example command enables all probes in
the TS timeshare scheduling module with the default action:

dtrace -m TS

The preceding command might produce output similar to the following:

dtrace -m TS
dtrace: description 'TS' matched 80 probes

4-1

https://docs.oracle.com/cd/E88353_01/html/E72487/dtrace-8.html

CPU ID FUNCTION:NAME
 0 12077 ts_trapret:entry
 0 12078 ts_trapret:return
 0 12069 ts_sleep:entry
 0 12070 ts_sleep:return
 0 12033 ts_setrun:entry
 0 12034 ts_setrun:return
 0 12081 ts_wakeup:entry
 0 12082 ts_wakeup:return
 0 12069 ts_sleep:entry
 0 12070 ts_sleep:return
 0 12033 ts_setrun:entry
 0 12034 ts_setrun:return
 0 12069 ts_sleep:entry
 0 12070 ts_sleep:return
 0 12033 ts_setrun:entry
 0 12034 ts_setrun:return
 0 12069 ts_sleep:entry
 0 12070 ts_sleep:return
 0 12023 ts_update:entry
 0 12079 ts_update_list:entry
 0 12080 ts_update_list:return
 0 12079 ts_update_list:entry
...

DTrace Data Recording Actions
The data recording actions comprise the core DTrace actions. Each of these actions
records data to the principal buffer by default, but each action may also be used to
record data to speculative buffers. For more information about the principal buffer, see
DTrace Buffers and Buffering. For more information about speculative buffers, see
Speculative Tracing in DTrace. The descriptions in this section refer only to the
directed buffer, indicating that data is recorded either to the principal buffer or to a
speculative buffer if the action follows a speculate.

clear Action
When using dtrace to build simple monitoring scripts, you can periodically clear the
values in an aggregation using the clear() function. For more information, see the
Clearing Aggregations.

denormalize Action
For more information, see the Data Normalization.

freopen Action
void freopen(string pathname)
void freopen(string format, ...)

The freopen action changes the standard output file to the file specified by pathname
argument. This action is potentially destructive and needs to be activated by the -w
destructive option.

"dispatch_command":
#!/usr/sbin/dtrace -qw

Chapter 4
DTrace Data Recording Actions

4-2

#pragma D option strsize=1024
dtrace:::BEGIN
{
 freopen("/tmp/sqls");

}
pid$target::*dispatch_command*:entry

{
 printf("%Y-> %s \n",walltimestamp,copyinstr(arg2));
}

which gives logs like:

2009 Feb 5 08:13:43- > create table fo_bawr (i INTEGER)
2009 Feb 5 08:13:56- > create table foo_bar (is INTEGER)

ftruncate Action
The ftruncate action truncates standard output file, but does not truncate standard error
file. Perform the following steps to truncate a standard error file:

1. Re-open stdout as stderr.

2. Truncate stderr.

3. Re-open the original stdout.

Following example displays how to truncate a standard error file.

cat > script.d
#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option destructive

BEGIN
{
 printf("data\n");
 freopen("/dev/stderr");
 ftruncate();
 freopen(""); /* re-open original stdout */
 printf("more data\n");
 exit(0);
}
chmod a+x script.d
echo foo > stdout
echo foofoo > stderr
ls -l std*
-rw-r--r-- 1 root root 7 Feb 27 14:21 stderr
-rw-r--r-- 1 root root 4 Feb 27 14:21 stdout
./script.d >> stdout 2 >> stderr
ls -l std*
-rw-r--r-- 1 root root 0 Feb 27 14:26 stderr
-rw-r--r-- 1 root root 19 Feb 27 14:26 stdout
cat stdout
foo
data
more data
#

Chapter 4
DTrace Data Recording Actions

4-3

func Action
The func action displays the function name of the kernel argument.

jstack Action
void jstack(int nframes, int strsize)
void jstack(int nframes)
void jstack(void)

jstack is an alias for ustack that uses the value of the jstackframes option for the
number of stack frames and the value of the jstackstrsize option for the string space
size. By default, jstacksize defaults to a non-zero value. As a result, use of jstack
will result in a stack with in situ Java frame translation.

mod Action
The mod action displays the module name of the kernel argument. This action is
exactly the same as the sym command.

normalize Action
For more information, see the Data Normalization.

pcap Action
pcap(mblk, protocol);

The pcap action collates the packet data in a contiguous buffer and displays it in a
manner similar to the trace action. However if freeopen() specifies a capture file, it
writes to the capture file by using the libpcap() function, pcap_dump().

mblk is a pointer to mblk_t. The mblk_t is the main data structure used by the Oracle
Solaris networking stack to represent packet data. DTrace collects data from b_rptr,
the read pointer, which marks where the data begins. The b_rptr pointer collates
information from additional buffers into a contiguous block of memory. It also writes to
a capture file in the pcap format, which can be then later read using tshark or
wireshark. By default, DTrace collects a maximum of 2048 bytes of data. You can
customize the memory block size by using the pcapsize or the DTRACEOPT_PCAPSIZE
option. For example:

dtrace -x pcapsize=5000
dtrace -x DTRACEOPT_PCAPSIZE=5000

You can also specify a #pragma option in your D script to set the size. For example:

#pragma option pcapsize 7000

protocol specifies the protocol and can have the following values:

• PCAP_ETHER
• PCAP_WIFI

Chapter 4
DTrace Data Recording Actions

4-4

• PCAP_PPP

Note:

PPP was removed in the Oracle Solaris 11.4 SRU 24 release.

• PCAP_IP
• PCAP_IPNET
• PCAP_IPOIB
The following command captures sent IP traffic in per-process capture files.

dtrace -qwn 'ip:::send { freopen("/tmp/cap.%d", pid); pcap(args[0]->pkt_addr,
PCAP_IP); freopen("");}'

The following command captures traffic dropped by IP on inbound or outbound path in
separate cap.drop-in or cap.drop-out files.

dtrace -qwn 'ip:::drop-in,ip:::drop-out { freopen("/tmp/cap.%s", probename);
pcap(args[0]->pkt_addr, PCAP_IP); freopen("");}'

print Action
The print action takes a single argument. In addition to printing the input argument, it also
prints the type of the input argument. The print action exploits the fact that, for kernel code,
DTrace already has type information. The print action uses the type information and its own
set of rules to print its argument using an appropriate format. For example, given the function:

int fop_open(
 struct vnode **vpp,
 int mode,
 cred_t *cr,
 caller_context_t *ct)
{

DTrace knows that the first argument is a pointer to a struct vnode and it also knows what a
struct vnode contains.

dtrace -q -n 'fop_close:entry {print(*args[0]);exit(0)}'
 vnode_t {
 v_lock = {
 _opaque = [NULL]
 }
 v_flag = 0x36
 v_count = 0x1
 v_data = 0x10001f047450
 v_vfsp = 0x1000102eddf0
 v_stream = NULL
 v_type = VPROC
 v_rdev = 0xffffffffffffffff
 v_vfsmountedhere = NULL
 v_op = 0x10001009c040
 v_pages = NULL
 v_filocks = NULL
 v_shrlocks = NULL
 v_nbllock = {
 _opaque = [NULL]

Chapter 4
DTrace Data Recording Actions

4-5

 }
 v_cv = {
 _opaque = 0x0
 }
 v_pad = 0xcafe
 v_count_dnlc = 0x0
 v_locality = NULL
 v_femhead = NULL
 v_path = "/proc/343325/psinfo"
 v_rdcnt = 0x0
 v_wrcnt = 0x0
 v_mmap_read = 0x0
 v_mmap_write = 0x0
 v_mpssdata = NULL
 v_fopdata = NULL
 v_vsd_lock = {
 _opaque = [NULL]
 }
 v_vsd = NULL
 v_xattrdir = NULL
 v_fw = 0xbaddcafebaddcafe
 }

printa Action
printa

void printa(aggregation)
void printa(string format, aggregation)

The printa action enables you to display and format aggregations. For more
information about aggregations, see DTrace Aggregations. If a format is not provided,
printa only traces a directive to the DTrace consumer that the specified aggregation
should be processed and displayed using the default format. If a format is provided,
the aggregation will be formatted as specified. For more information about the printa
format string, see Output Formatting in DTrace.

printa only traces a directive that the aggregation should be processed by the
DTrace consumer. It does not process the aggregation in the kernel. Therefore, the
time between the tracing of the printa directive and the actual processing of the
directive depends on the factors that affect buffer processing. These factors include
the aggregation rate, the buffering policy and, if the buffering policy is switching, the
rate at which buffers are switched. For more information, see DTrace Aggregations
and DTrace Buffers and Buffering.

printf Action
void printf(string format, ...)

Like trace, the printf action traces D expressions. However, printf enables
elaborate printf style formatting. Like printa the parameters consist of a format
string followed by a variable number of arguments. By default, the arguments are
traced to the directed buffer. The arguments are later formatted for output by dtrace
according to the specified format string. For example, the first two examples of trace
from trace Action could be combined in a single printf:

printf("execname is %s; priority is %d", execname, curlwpsinfo->pr_pri);

Chapter 4
DTrace Data Recording Actions

4-6

For more information about printf, see Output Formatting in DTrace. Also, see the
printf(3C) man page.

setopt Action
setopt action enables dynamic specification of a DTrace option.

void setopt(const char *opt_name)
void setopt(const char *opt_name, const char *opt_value)

For example:

setopt("quiet");

setopt("bufsize", "20m");

setopt("aggrate", "96hz");

stack Action
void stack(int nframes)
void stack(void)

The stack action records a kernel stack trace to the directed buffer. The kernel stack will be
nframes in depth. If nframes is not provided, the number of stack frames recorded is the
number specified by the stackframes option. For example:

dtrace -n uiomove:entry'{stack()}'
 CPU ID FUNCTION:NAME
 0 9153 uiomove:entry
 genunix`fop_write+0x1b
 namefs`nm_write+0x1d
 genunix`fop_write+0x1b
 genunix`write+0x1f7

 0 9153 uiomove:entry
 genunix`fop_read+0x1b
 genunix`read+0x1d4

 0 9153 uiomove:entry
 genunix`strread+0x394
 specfs`spec_read+0x65
 genunix`fop_read+0x1b
 genunix`read+0x1d4
 ...

The stack action is a little different from other actions in that it may also be used as the key
to an aggregation:

dtrace -n kmem_alloc:entry'{@[stack()] = count()}'
dtrace: description 'kmem_alloc:entry' matched 1 probe
^C
 rpcmod`endpnt_get+0x47c
 rpcmod`clnt_clts_kcallit_addr+0x26f
 rpcmod`clnt_clts_kcallit+0x22
 nfs`rfscall+0x350
 nfs`rfs2call+0x60
 nfs`nfs_getattr_otw+0x9e
 nfs`nfsgetattr+0x26

Chapter 4
DTrace Data Recording Actions

4-7

https://docs.oracle.com/cd/E88353_01/html/E37843/printf-3c.html

 nfs`nfs_getattr+0xb8
 genunix`fop_getattr+0x18
 genunix`cstat64+0x30
 genunix`cstatat64+0x4a
 genunix`lstat64+0x1c
 1

 genunix`vfs_rlock_wait+0xc
 genunix`lookuppnvp+0x19d
 genunix`lookuppnat+0xe7
 genunix`lookupnameat+0x87
 genunix`lookupname+0x19
 genunix`chdir+0x18
 1

 rpcmod`endpnt_get+0x6b1
 rpcmod`clnt_clts_kcallit_addr+0x26f
 rpcmod`clnt_clts_kcallit+0x22
 nfs`rfscall+0x350
 nfs`rfs2call+0x60
 nfs`nfs_getattr_otw+0x9e
 nfs`nfsgetattr+0x26
 nfs`nfs_getattr+0xb8
 genunix`fop_getattr+0x18
 genunix`cstat64+0x30
 genunix`cstatat64+0x4a
 genunix`lstat64+0x1c
 1

 ...

sym Action
The sym action describes the symbol name of the kernel argument.

trace Action
void trace(expression)

The most basic action is the trace action, which takes a D expression as its
argument and traces the result to the directed buffer. You can force trace to use
binary format for ASCII text by using the rawbytes option.

Example 4-1 Tracing Actions

The following statements are examples of trace actions:

trace(execname);
trace(curlwpsinfo->pr_pri);
trace(timestamp / 1000);
trace(`lbolt);
trace("somehow managed to get here");

If the trace action is used to record a buffer, the output format depends on the data
that is collected. If dtrace decides that the data looks like an ASCII string, it prints
text and the output is terminated by the first null byte. However, if dtrace decides that
the data is in a binary form, it prints the output in a hexadecimal format. For example:

Chapter 4
DTrace Data Recording Actions

4-8

 0 342 write:entry
 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
 0: c0 de 09 c2 4a e8 27 54 dc f8 9f f1 9a 20 4b d1 J.'T..... K.
 10: 9c 7a 7a 85 1b 03 0a fb 3a 81 8a 1b 25 35 b3 9a .zz.....:...%5..
 20: f1 7d e6 2b 66 6d 1c 11 f8 eb 40 7f 65 9a 25 f8 .}.+fm....@.e.%.
 30: c8 68 87 b2 6f 48 a2 a5 f3 a2 1f 46 ab 3d f9 d2 .h..oH.....F.=..
 40: 3d b8 4c c0 41 3c f7 3c cd 18 ad 0d 0d d3 1a 90 =.L.A<.<........

tracemem Action
void tracemem(address, size_t nbytes)
void tracemem(address, size_t nbytes, size_t dbytes)

The tracemem action takes a D expression as its first argument, address, and a constant as
its second argument, nbytes. tracemem copies the memory from the address specified by
address into the directed buffer for the length specified by nbytes. If only two arguments are
provided, dtrace will dump the entire contents of the buffer.

In the second format, the tracemem action takes an additional third argument, dbytes, which
is a D expression that is computed dynamically; the result is used to limit the number of bytes
that are displayed to the user. If the result is less than zero or greater than nbytes, the result
is ignored and tracemem will behave as though it is called using the two argument form.
Otherwise, dtrace will dump only dbytes bytes of the directed buffer.

trunc Action
For more information, see the Truncating Aggregations.

uaddr Action
_usymaddr uaddr(uintptr_t address)

uaddr translates the specified address according to the setting of the uresolve option. For
more information, see DTrace User Address Symbol Resolution.

By default, uaddr formats an address as a symbol and, if appropriate, a hexadecimal offset.
The following example shows uaddr translating the known address of a variable into its
name:

dtrace -n 'pid$target::main:entry{ uaddr(0x5037d0); }' -c date
dtrace: description 'pid$target::main:entry' matched 1 probe
Tue Jun 28 13:57:58 BST 2016
dtrace: pid 113190 has exited
 CPU ID FUNCTION:NAME
 0 4193 main:entry date`clock_val

Another example, truncated for brevity, shows the display of offsets within a symbol:

dtrace -n "pid\$target::main:{uaddr(uregs[R_PC])}" -c date
dtrace: description 'pid$target::main:' matched 188 probes
Tue Jun 28 13:59:35 BST 2016
dtrace: pid 113192 has exited
 CPU ID FUNCTION:NAME
 7 4194 main:entry date`main
 7 4195 main:0 date`main
 7 4196 main:1 date`main+0x1
 7 4197 main:4 date`main+0x4

Chapter 4
DTrace Data Recording Actions

4-9

 7 4198 main:5 date`main+0x5
 7 4199 main:7 date`main+0x7
 7 4200 main:9 date`main+0x9
 7 4201 main:b date`main+0xb
 7 4202 main:d date`main+0xd
 7 4203 main:11 date`main+0x11
 7 4204 main:13 date`main+0x13
 7 4205 main:16 date`main+0x16
 7 4206 main:1d date`main+0x1d
 7 4207 main:22 date`main+0x22
 7 4208 main:27 date`main+0x27

If the load object contains suitable DWARF then uaddr can format an address as the file
name and line number of the corresponding source code. For the following example,
date has been built with DWARF. The DTrace invocation is identical to the previous
example except for the use of the uresolve option:

dtrace -x uresolve=basename -n "pid\$target::main:{uaddr(uregs[R_PC])}" -c date
dtrace: description 'pid$target::main:' matched 188 probes
Tue Jun 28 14:02:03 BST 2016
dtrace: pid 113194 has exited
 CPU ID FUNCTION:NAME
 4 4194 main:entry date.c:123
 4 4195 main:0 date.c:123
 4 4196 main:1 date.c:123
 4 4197 main:4 date.c:123
 4 4198 main:5 date.c:123
 4 4199 main:7 date.c:123
 4 4200 main:9 date.c:123
 4 4201 main:b date.c:123
 4 4202 main:d date.c:123
 4 4203 main:11 date.c:123
 4 4204 main:13 date.c:123
 4 4205 main:16 date.c:129
 4 4206 main:1d date.c:129
 4 4207 main:22 date.c:129
 4 4208 main:27 date.c:131
 4 4209 main:2e date.c:131
 4 4210 main:33 date.c:133
 4 4211 main:3a date.c:133
 4 4212 main:3c date.c:133
 4 4213 main:3f date.c:133
 4 4214 main:44 date.c:133
 4 4215 main:47 date.c:133
 4 4216 main:4a date.c:133
 4 4217 main:4d date.c:133
 4 4258 main:ea date.c:151
 4 4259 main:f1 date.c:151

Each line corresponds to more than one instruction. It may be useful to discard
duplicates by using the uniq command. The following example reveals the complete
path through the function:

dtrace -q -x uresolve=basename -n 'pid\$target::main:
{uaddr(uregs[R_PC]);printf("\n")}' -c date | uniq
Tue Jun 28 14:10:50 BST 2016
 date.c:123
 date.c:129
 date.c:131
 date.c:133
 date.c:151

Chapter 4
DTrace Data Recording Actions

4-10

 date.c:152
 date.c:155
 date.c:158
 date.c:171
 date.c:172
 date.c:174
 date.c:182
 date.c:193
 date.c:195
 date.c:200
 date.c:209
 date.c:215
 date.c:216
 date.c:218
 date.c:221

If the load object contains suitable DWARF and uaddr is used as an aggregation key, uaddr
represents a single line of source code and not a single address, as shown in the following
example:

dtrace -x uresolve=basename -n 'pid\$target::main:{@[uaddr(uregs[R_PC])]=count()}' -
c date
dtrace: description 'pid\$target::main:' matched 188 probes
Tue Jun 28 14:13:51 BST 2016
dtrace: pid 113213 has exited

 date.c:152 1
 date.c:131 2
 date.c:158 2
 date.c:174 2
 date.c:182 2
 date.c:218 2
 date.c:129 3
 date.c:151 3
 date.c:171 3
 date.c:193 3
 date.c:195 3
 date.c:155 4
 date.c:172 4
 date.c:200 4
 date.c:209 4
 date.c:215 5
 date.c:216 6
 date.c:133 8
 date.c:221 10
 date.c:123 11

ufunc Action
The ufunc action displays the function name of the userland argument.

umod Action
The umod action displays the module name of the userland argument. This action is exactly
the same as theusym command.

Chapter 4
DTrace Data Recording Actions

4-11

ustack Action
void ustack(int nframes, int strsize)
void ustack(int nframes)
void ustack(void)

The ustack action records a user stack trace to the directed buffer. The user stack
will be nframes in depth. If nframes is not provided, the number of stack frames
recorded is the number specified by the ustackframes option. The ustack action
determines the frame's program counters at the point that the probe fires. These
program counters are translated once the action is processed at user-level by the
DTrace consumer. The translation can be modified by using the uresolve option. For
more information, see DTrace User Address Symbol Resolution.

If strsize is specified and non-zero, ustack allocates the specified amount of string
space, and uses it to perform address-to-symbol translation directly from the kernel.
This direct user symbol translation is currently available only for Java Virtual Machines,
version 1.5 and higher. Java address-to-symbol translation annotates user stacks that
contain Java frames with the Java class and method name. If such frames cannot be
translated, the frames will appear only as hexadecimal addresses.

The following example traces a stack with no string space, and therefore no Java
address-to-symbol translation:

dtrace -n syscall::write:entry'/pid == $target/{ustack(50, 0);
 exit(0)}' -c "java -version"
dtrace: description 'syscall::write:entry' matched 1 probe
java version "1.5.0-beta3"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0-beta3-b58)
Java HotSpot(TM) Client VM (build 1.5.0-beta3-b58, mixed mode)
dtrace: pid 5312 has exited
CPU ID FUNCTION:NAME
 0 35 write:entry
 libc.so.1`_write+0x15
 libjvm.so`__1cDhpiFwrite6FipkvI_I_+0xa8
 libjvm.so`JVM_Write+0x2f
 d0c5c946
 libjava.so`Java_java_io_FileOutputStream_writeBytes+0x2c
 cb007fcd
 cb002a7b
 cb002a7b
 cb002a7b
 cb002a7b
 cb002a7b
 cb002a7b
 cb002a7b
 cb002a7b
 cb002a7b
 cb002a7b
 cb002a7b
 cb002a7b
 cb002a7b
 cb000152
 libjvm.so`__1cJJavaCallsLcall_helper6FpnJJavaValue_
 pnMmethodHandle_pnRJavaCallArguments_
 pnGThread__v_+0x187
 libjvm.so`__1cCosUos_exception_wrapper6FpFpnJJavaValue_
 pnMmethodHandle_pnRJavaCallArguments_

Chapter 4
DTrace Data Recording Actions

4-12

 pnGThread__v2468_v_+0x14
 libjvm.so`__1cJJavaCallsEcall6FpnJJavaValue_nMmethodHandle_
 pnRJavaCallArguments_pnGThread __v_+0x28
 libjvm.so`__1cRjni_invoke_static6FpnHJNIEnv__pnJJavaValue_
 pnI_jobject_nLJNICallType_pnK_jmethodID_pnSJNI_
 ArgumentPusher_pnGThread__v_+0x180
 libjvm.so`jni_CallStaticVoidMethod+0x10f
 java`main+0x53d

Notice that the C and C++ stack frames from the Java virtual machine are presented
symbolically using C++ "mangled" symbol names, and the Java stack frames are presented
only as hexadecimal addresses. The following example shows a call to ustack with a non-
zero string space:

dtrace -n syscall::write:entry'/pid == $target/{ustack(50, 500); exit(0)}' -c "java -
version"
dtrace: description 'syscall::write:entry' matched 1 probe
java version "1.5.0-beta3"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0-beta3-b58)
Java HotSpot(TM) Client VM (build 1.5.0-beta3-b58, mixed mode)
dtrace: pid 5308 has exited
CPU ID FUNCTION:NAME
 0 35 write:entry
 libc.so.1`_write+0x15
 libjvm.so`__1cDhpiFwrite6FipkvI_I_+0xa8
 libjvm.so`JVM_Write+0x2f
 d0c5c946
 libjava.so`Java_java_io_FileOutputStream_writeBytes+0x2c
 java/io/FileOutputStream.writeBytes
 java/io/FileOutputStream.write
 java/io/BufferedOutputStream.flushBuffer
 java/io/BufferedOutputStream.flush
 java/io/PrintStream.write
 sun/nio/cs/StreamEncoder$CharsetSE.writeBytes
 sun/nio/cs/StreamEncoder$CharsetSE.implFlushBuffer
 sun/nio/cs/StreamEncoder.flushBuffer
 java/io/OutputStreamWriter.flushBuffer
 java/io/PrintStream.write
 java/io/PrintStream.print
 java/io/PrintStream.println
 sun/misc/Version.print
 sun/misc/Version.print
 StubRoutines (1)
 libjvm.so`__1cJJavaCallsLcall_helper6FpnJJavaValue_
 pnMmethodHandle_pnRJavaCallArguments_pnGThread
 __v_+0x187
 libjvm.so`__1cCosUos_exception_wrapper6FpFpnJJavaValue_
 pnMmethodHandle_pnRJavaCallArguments_pnGThread
 __v2468_v_+0x14
 libjvm.so`__1cJJavaCallsEcall6FpnJJavaValue_nMmethodHandle
 _pnRJavaCallArguments_pnGThread__v_+0x28
 libjvm.so`__1cRjni_invoke_static6FpnHJNIEnv__pnJJavaValue_pnI
 _jobject_nLJNICallType_pnK_jmethodID_pnSJNI
 _ArgumentPusher_pnGThread__v_+0x180
 libjvm.so`jni_CallStaticVoidMethod+0x10f
 java`main+0x53d
 8051b9a

The previous example output demonstrates symbolic stack frame information for Java stack
frames. There are still some hexadecimal frames in this output because some functions are

Chapter 4
DTrace Data Recording Actions

4-13

static and do not have entries in the application symbol table. Translation is not
possible for these frames.

The ustack symbol translation for non-Java frames occurs after the stack data is
recorded. Therefore, the corresponding user process might exit before symbol
translation can be performed, making stack frame translation impossible. If the user
process exits before symbol translation is performed, dtrace will emit a warning
message, followed by the hexadecimal stack frames, as shown in the following
example:

 dtrace: failed to grab process 100941: no such process
 c7b834d4
 c7bca85d
 c7bca1a4
 c7bd4374
 c7bc2628
 8047efc

Techniques for mitigating this problem are described in User Process Tracing.

Finally, because the postmortem DTrace debugger commands cannot perform the
frame translation, using ustack with a ring buffer policy always results in raw
ustack data.

The following D program shows an example of ustack that leaves strsize unspecified:

syscall::brk:entry
/execname == $$1/
{
 @[ustack(40)] = count();
}

To run this example for the Oracle Solaris prstat command use the following
command:

dtrace -s brk.d prstat
dtrace: script 'brk.d' matched 1 probe
^C

 libc.so.1`_brk_unlocked+0xa
 libc.so.1`sbrk+0x2d
 libc.so.1`_morecore+0x116
 libc.so.1`_malloc_unlocked+0x193
 libc.so.1`malloc+0x32
 libcurses.so.1`_makenew+0x95
 libcurses.so.1`newwin+0x51
 libcurses.so.1`newscreen+0x593
 libcurses.so.1`initscr32+0x53
 prstat`curses_on+0x2a
 prstat`main+0x7c9
 prstat`0x4057f4
 1

 libc.so.1`_brk_unlocked+0xa
 libc.so.1`sbrk+0x2d
 libc.so.1`_morecore+0x116
 libc.so.1`_malloc_unlocked+0x193
 libc.so.1`malloc+0x32
 libc.so.1`calloc+0x59
 libc.so.1`textdomain+0x36

Chapter 4
DTrace Data Recording Actions

4-14

 prstat`main+0x3d
 prstat`0x4057f4
 1

If the load object contains suitable DWARF then ustack can append the file name and line
number of the corresponding source code to the frame description. For the following
example, prstat, libcurses, and libc have been built with DWARF:

dtrace -x uresolve=basename -s brk.d prstat
dtrace: script 'brk.d' matched 1 probe
^C

 libc.so.1`_brk_unlocked+0xa
 libc.so.1`sbrk+0x2d (sbrk.c:48)
 libc.so.1`_morecore+0x116 (malloc.c:730)
 libc.so.1`_malloc_unlocked+0x193 (malloc.c:260)
 libc.so.1`malloc+0x32 (malloc.c:158)
 libcurses.so.1`_makenew+0x95 (makenew.c:53)
 libcurses.so.1`newwin+0x51 (newwin.c:41)
 libcurses.so.1`newscreen+0x593 (newscreen.c:236)
 libcurses.so.1`initscr32+0x53 (initscr.c:58)
 prstat`curses_on+0x2a (prstat.c:1314)
 prstat`main+0x7c9 (prstat.c:1770)
 prstat`0x4057f4
 1

 libc.so.1`_brk_unlocked+0xa
 libc.so.1`sbrk+0x2d (sbrk.c:48)
 libc.so.1`_morecore+0x116 (malloc.c:730)
 libc.so.1`_malloc_unlocked+0x193 (malloc.c:260)
 libc.so.1`malloc+0x32 (malloc.c:158)
 libc.so.1`calloc+0x59 (calloc.c:36)
 libc.so.1`textdomain+0x36 (gettext.c:88)
 prstat`main+0x3d (prstat.c:1564)
 prstat`0x4057f4
 1

usym Action
_usymaddr usym(uintptr_t address)

The usym action translates the specified address according to the setting of the uresolve
option.

By default, usym formats an address as a symbol. For example, if uaddr produces the
following format:

date`clock_val+0x1

then the usym action would produce the following format:

date`clock_val

The behavior of the usym action can be modified by using the uresolve option. For more
information, see DTrace User Address Symbol Resolution.

Chapter 4
DTrace Data Recording Actions

4-15

DTrace Destructive Actions
Some DTrace actions are destructive in that they change the state of the system in
some well-defined way. Destructive actions may not be used unless they have been
explicitly enabled. When using dtrace, you can enable destructive actions using the -w
option. If an attempt is made to enable destructive actions in dtrace without explicitly
enabling them, dtrace will fail with a message similar to the following example:

dtrace: failed to enable 'syscall': destructive actions not allowed

An administrator may choose to disable destructive actions system-wide by setting the
kernel tunable dtrace_destructive_disallow to 1. This may be done in a number of
ways including rebooting after adding the following line to /etc/system:

set dtrace:dtrace_destructive_disallow = 1

You can set the kernel tunable dtrace_destructive_disallow parameter by using the
mdb utility. For more information about the mdb utility, see mdb(1).

echo "dtrace_destructive_disallow/W 1" | mdb -kw
dtrace_destructive_disallow: 0x0 = 0x1

Process Destructive Actions
Some destructive actions are destructive only to a particular process. These actions
are available to users with the dtrace_proc or dtrace_user privileges. For more
information about DTrace security privileges, see Security in DTrace.

copyout Action
void copyout(void *buf, uintptr_t addr, size_t nbytes)

The copyout action copies nbytes from the buffer specified by buf to the address
specified by addr in the address space of the process associated with the current
thread. If the user-space address does not correspond to a valid, faulted-in page in the
current address space, an error will be generated.

copyoutstr Action
void copyoutstr(string str, uintptr_t addr, size_t maxlen)

The copyoutstr action copies the string specified by str to the address specified by
addr in the address space of the process associated with the current thread. If the
user-space address does not correspond to a valid, faulted-in page in the current
address space, an error will be generated. The string length is limited to the value set
by the strsize option. For more information, see DTrace Options and Tunables.

raise Action
void raise(int signal)

Chapter 4
DTrace Destructive Actions

4-16

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

The raise action sends the specified signal to the currently running process. This action is
similar to using the kill command to send a process a signal. The raise action can be
used to send a signal at a precise point in a process's execution.

stop Action
void stop(void)

The stop action forces the process that fires the enabled probe to stop when it next leaves
the kernel, as if stopped by a proc action. You can use the prun utility to resume a process
that has been stopped by the stop action. For more information, see the prun(1) man page.
The stop action can be used to stop a process at any DTrace probe point. This action can be
used to capture a program in a particular state that would be difficult to achieve with a simple
breakpoint, and then attach a traditional debugger like mdb to the process. You can also use
the gcore utility to save the state of a stopped process in a core file for later analysis. For
more information, see the gcore(1) man page.

system Action
void system(string program, ...)

The system action causes the program specified by program to be executed as if it were
given to the shell as input. The program string can contain any of the printf or printa
format conversions. Arguments must be specified that match the format conversions. For
more information about valid format conversions, see Output Formatting in DTrace.

The following example runs the date command once per second:

dtrace -wqn tick-1sec'{system("date")}'
 Tue Jul 20 11:56:26 CDT 2004
 Tue Jul 20 11:56:27 CDT 2004
 Tue Jul 20 11:56:28 CDT 2004
 Tue Jul 20 11:56:29 CDT 2004
 Tue Jul 20 11:56:30 CDT 2004

The following example shows a more elaborate use of the action, using printf conversions
in the program string along with traditional filtering tools like pipes.

#pragma D option destructive
#pragma D option quiet

proc:::signal-send
/args[2] == SIGINT/
{
 printf("SIGINT sent to %s by ", args[1]->pr_fname);
 system("getent passwd %d | cut -d: -f5", uid);
}

The preceding script results in the following output.

./whosend.d
SIGINT sent to MozillaFirebird- by Jane Doe
SIGINT sent to run-mozilla.sh by Jane Doe
^C
SIGINT sent to dtrace by Jane Doe

The execution of the specified command does not occur in the context of the firing probe. It
occurs when the buffer containing the details of the system action are processed at user-

Chapter 4
DTrace Destructive Actions

4-17

https://docs.oracle.com/cd/E88353_01/html/E37839/prun-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/gcore-1.html

level. How and when this processing occurs depends on the buffering policy. For more
information, see DTrace Buffers and Buffering. With the default buffering policy, the
buffer processing rate is specified by the switchrate option. You can see the delay
inherent in system if you explicitly tune the switchrate higher than its one-second
default, as shown in the following example:

#pragma D option quiet
#pragma D option destructive
#pragma D option switchrate=5sec

tick-1sec
/n++ < 5/
{
 printf("walltime : %Y\n", walltimestamp);
 printf("date : ");
 system("date");
 printf("\n");
}

tick-1sec
/n == 5/
{
 exit(0);
}

Running the preceding script results in the following output.

dtrace -s ./time.d
 walltime : 2004 Jul 20 13:26:30
date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:31
date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:32
date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:33
date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:34
date : Tue Jul 20 13:26:35 CDT 2004

Notice that the walltime values differ, but the date values are identical. This result
reflects the fact that the execution of the date command occurred only when the
buffer was processed, not when the system action was recorded.

Kernel Destructive Actions
Some destructive actions affect the entire system. These actions must be used
carefully, as it can affect every process on the system and any other system implicitly
or explicitly depending upon the affected system's network services.

breakpoint Action
void breakpoint(void)

Chapter 4
DTrace Destructive Actions

4-18

The breakpoint action induces a kernel breakpoint, causing the system to stop and
transfer control to the kernel debugger. The kernel debugger emits a string denoting the
DTrace probe that triggered the action. For example, type the following command:

dtrace -w -n clock:entry'{breakpoint()}'
dtrace: allowing destructive actions
dtrace: description 'clock:entry' matched 1 probe

On Oracle Solaris running on SPARC, the following message might appear on the console:

dtrace: breakpoint action at probe fbt:genunix:clock:entry (ecb 30002765700)
Type 'go' to resume
ok

On Oracle Solaris running on x86, the following message might appear on the console:

dtrace: breakpoint action at probe fbt:genunix:clock:entry (ecb d2b97060)
stopped at int20+0xb: ret
kmdb[0]:

The address following the probe description is the address of the enabling control block
(ECB) within DTrace. You can use this address to determine more details about the probe
enabling that induced the breakpoint action.

A mistake with the breakpoint action may cause it to be called far more often than
intended. This behavior might in turn prevent you from even terminating the DTrace
consumer that is triggering the breakpoint actions. In this situation, set the kernel tunable
dtrace_destructive_disallow to 1. This setting will disable all destructive actions on the
system.

The method for setting dtrace_destructive_disallow, depends on the kernel debugger that
you are using. If you are using the OpenBoot PROM on a SPARC system, use the w! option.

ok 1 dtrace_destructive_disallow w!
ok

Use the w? option to confirm that the dtrace_destructive_disallow variable is set.

ok dtrace_destructive_disallow w?
1
ok

Type go to continue.

ok go

If you are using kmdb on x86 or SPARC systems, use the 4-byte write modifier (W) with the /
formatting dcmd to set dtrace_destructive_disallow.

kmdb[0]: dtrace_destructive_disallow/W 1
dtrace_destructive_disallow: 0x0 = 0x1
kmdb[0]:

Use :c to continue.

kadb[0]: :c

To re-enable destructive actions after continuing, explicitly reset
dtrace_destructive_disallow back to 0 by using mdb. For more information, see the mdb(1)
man page.

Chapter 4
DTrace Destructive Actions

4-19

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

echo "dtrace_destructive_disallow/W 0" | mdb -kw
dtrace_destructive_disallow: 0x1 = 0x0
#

chill Action
void chill(int nanoseconds)

The chill action causes DTrace to spin for the specified number of nanoseconds.
chill is primarily useful for exploring problems that might be timing related. For
example, you can use this action to open race condition windows, or to bring periodic
events into or out of phase with one another. Because interrupts are disabled while in
DTrace probe context, any use of chill can induce interrupt latency, scheduling
latency, and dispatch latency. Therefore, chill can cause unexpected systemic
effects and it must not be used indiscriminately. Because system activity relies on
periodic interrupt handling, DTrace will refuse to execute the chill action for more
than 500 milliseconds out of each one-second interval on any given CPU. If the
maximum chill interval is exceeded, DTrace will report an illegal operation error, as
shown in the following example:

dtrace -w -n syscall::openat:entry'{chill(500000001)}'
dtrace: allowing destructive actions
dtrace: description 'syscall::openat:entry' matched 1 probe
dtrace: 57 errors
CPU ID FUNCTION:NAME
dtrace: error on enabled probe ID 1 (ID 14: syscall::openat:entry): \
 illegal operation in action #1

This limit is enforced even if the time is spread across multiple calls to chill, or
multiple DTrace consumers of a single probe. For example, the same error would be
generated by the following command:

dtrace -w -n syscall::openat:entry'{chill(250000000); chill(250000001);}'

panic Action
void panic(void)

The panic action causes a kernel panic when triggered. This action should be used to
force a system crash dump at a time of interest. You can use this action together with
ring buffering and postmortem analysis to understand a problem. For more
information, see DTrace Buffers and Buffering and Postmortem Tracing in DTrace
respectively. When the panic action is used, a panic message appears that denotes
the probe causing the panic. For example:

panic[cpu0]/thread=30001830b80: dtrace: panic action at probe
 syscall::mmap:entry (ecb 300000acfc8)

 000002a10050b840 dtrace:dtrace_probe+518 (fffe, 0, 1830f88, 1830f88,
 30002fb8040, 300000acfc8)
 %l0-3: 0000000000000000 00000300030e4d80 0000030003418000 00000300018c0800
 %l4-7: 000002a10050b980 0000000000000500 0000000000000000 0000000000000502
 000002a10050ba30 genunix:dtrace_systrace_syscall32+44 (0, 2000, 5,
 80000002, 3, 1898400)
 %l0-3: 00000300030de730 0000000002200008 00000000000000e0 000000000184d928
 %l4-7: 00000300030de000 0000000000000730 0000000000000073 0000000000000010

 syncing file systems... 2 done

Chapter 4
DTrace Destructive Actions

4-20

 dumping to /dev/dsk/c0t0d0s1, offset 214827008, content: kernel
 100% done: 11837 pages dumped, compression ratio 4.66, dump
 succeeded
 rebooting...

syslogd emits a message upon reboot:

Jun 10 16:56:31 machine1 savecore: [ID 570001 auth.error] reboot after panic:
 dtrace: panic action at probe syscall::mmap:entry (ecb 300000acfc8)

The message buffer of the crash dump also contains the probe and ECB responsible for the
panic action.

DTrace Special Actions
This section describes actions that are neither data recording actions nor destructive actions.

Speculative Actions
The actions associated with speculative tracing are speculate, commit, and discard.
These actions are discussed in Speculative Tracing in DTrace.

exit Action
void exit(int status)

The exit action is used to immediately stop tracing, and to inform the DTrace consumer that
it should cease tracing, perform any final processing, and call exitwith the status specified.
Because exit returns a status to user-level, it is a data recording action, However, unlike
other data storing actions, exit cannot be speculatively traced. exit will cause the DTrace
consumer to exit regardless of buffer policy. Because exit is a data recording action, it can
be dropped.

When exit is called, only DTrace actions already in progress on other CPUs will be
completed. No new actions will occur on any CPU. The only exception to this rule is the
processing of the END probe, which will be called after the DTrace consumer has processed
the exit action and indicated that tracing should stop.

DTrace Subroutines
Subroutines differ from actions because they generally only affect internal DTrace state.
Therefore, there are no destructive subroutines, and subroutines never trace data into
buffers. Many subroutines have analogs in the Section 9F or Section 3C interfaces. For more
information, see Intro(9F) and Intro(3) man pages.

alloca Subroutine
void *alloca(size_t size)

alloca allocates size bytes out of scratch space, and returns a pointer to the allocated
memory. The returned pointer is guaranteed to have 8-byte alignment. Scratch space is only
valid for the duration of a clause. Memory allocated with alloca will be deallocated when the

Chapter 4
DTrace Special Actions

4-21

https://docs.oracle.com/cd/E88353_01/html/E37855/intro-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37842/intro-3.html

clause completes. If insufficient scratch space is available, no memory is allocated and
an error is generated.

basename Subroutine
string basename(char *str)

basename is a D analog for basename(1). This subroutine creates a string that consists
of a copy of the specified string, but without any prefix that ends in /. The returned
string is allocated out of scratch memory, and is therefore valid only for the duration of
the clause. If insufficient scratch space is available, basename does not execute and
an error is generated.

bcopy Subroutine
void bcopy(void *src, void *dest, size_t size)

bcopy copies size bytes from the memory pointed to by src to the memory pointed to
by dest. All of the source memory must lie outside of scratch memory and all of the
destination memory must lie within it. If these conditions are not met, no copying takes
place and an error is generated.

cleanpath Subroutine
string cleanpath(char *str)

cleanpath creates a string that consists of a copy of the path indicated by str, but
with certain redundant elements eliminated. In particular, "/./" elements in the path
are removed, and "/../" elements are collapsed. The collapsing of /../ elements in
the path occurs without regard to symbolic links. Therefore, it is possible that
cleanpath could take a valid path and return a shorter, invalid one.

For example, if str were "/foo/../bar" and /foo were a symbolic link to /net/foo/
export, cleanpath would return the string "/bar" even though bar might only be
in /net/foo not /. This limitation is due to the fact that cleanpath is called in the
context of a firing probe, where full symbolic link resolution of arbitrary names is not
possible. The returned string is allocated out of scratch memory, and is therefore valid
only for the duration of the clause. If insufficient scratch space is available,
cleanpath does not execute and an error is generated.

copyin Subroutine
void *copyin(uintptr_t addr, size_t size)

copyin copies the specified size in bytes from the specified user address into a
DTrace scratch buffer, and returns the address of this buffer. The user address is
interpreted as an address in the space of the process associated with the current
thread. The resulting buffer pointer is guaranteed to have 8-byte alignment. The
address in question must correspond to a faulted-in page in the current process. If the
address does not correspond to a faulted-in page, or if insufficient scratch space is
available, NULL is returned, and an error is generated. For information about
techniques to reduce the likelihood of copyin errors, see User Process Tracing.

Chapter 4
DTrace Subroutines

4-22

https://docs.oracle.com/cd/E88353_01/html/E37839/basename-1.html

copyinstr Subroutine
string copyinstr(uintptr_t addr)
string copyinstr(uintptr_t addr, size_t maxlength)

copyinstr copies a null-terminated C string from the specified user address into a DTrace
scratch buffer, and returns the address of this buffer. The user address is interpreted as an
address in the space of the process associated with the current thread. The maxlength
parameter, if specified, sets a limit on the number of bytes past addr which will be examined
(the resulting string will always be null-terminated). The resulting string's length is limited to
the value set by the strsize option; see DTrace Options and Tunables for details. As with
copyin, the specified address must correspond to a faulted-in page in the current process. If
the address does not correspond to a faulted-in page, or if insufficient scratch space is
available, NULL is returned, and an error is generated. See User Process Tracing for
techniques to reduce the likelihood of copyinstr errors.

copyinto Subroutine
void copyinto(uintptr_t addr, size_t size, void *dest)

copyinto copies the specified size in bytes from the specified user address into the DTrace
scratch buffer specified by dest. The user address is interpreted as an address in the space
of the process associated with the current thread. The address in question must correspond
to a faulted-in page in the current process. If the address does not correspond to a faulted-in
page, or if any of the destination memory lies outside scratch space, no copying takes place,
and an error is generated. See User Process Tracing for techniques to reduce the likelihood
of copyinto errors.

dirname Subroutine
string dirname(char *str)

dirname is a D analog for dirname(1). This subroutine creates a string that consists of all but
the last level of the path name specified by str. The returned string is allocated out of scratch
memory, and is therefore valid only for the duration of the clause. If insufficient scratch space
is available, dirname does not execute and an error is generated.

inet_ntoa Subroutine
string inet_ntoa(ipaddr_t *addr)

inet_ntoa takes a pointer to an IPv4 address and returns it as a dotted quad decimal
string. This is similar to inet_ntoa() from libnsl as described in inet(3C), however this D
version takes a pointer to the IPv4 address rather than the address itself. The returned string
is allocated out of scratch memory, and is therefore valid only for the duration of the clause. If
insufficient scratch space is available, inet_ntoa does not execute and an error is
generated.

inet_ntoa6 Subroutine
string inet_ntoa6(in6_addr_t *addr)

Chapter 4
DTrace Subroutines

4-23

https://docs.oracle.com/cd/E88353_01/html/E37839/dirname-1.html

inet_ntoa6 takes a pointer to an IPv6 address and returns it as an RFC 1884
convention 2 string, with lower case hexadecimal digits. The returned string is
allocated out of scratch memory, and is therefore valid only for the duration of the
clause. If insufficient scratch space is available, inet_ntoa6 does not execute and
an error is generated.

inet_ntop Subroutine
string inet_ntop(int af, void *addr)

inet_ntop takes a pointer to an IP address and returns a string version depending
on the provided address family. This is similar to inet_ntop from libnsl as
described in inet(3C). Supported address families are AF_INET and AF_INET6, both of
which have been defined for use in D programs. The returned string is allocated out of
scratch memory, and is therefore valid only for the duration of the clause. If insufficient
scratch space is available, inet_ntop does not execute and an error is generated.

msgdsize Subroutine
size_t msgdsize(mblk_t *mp)

msgdsize returns the number of bytes in the data message pointed to by mp.
msgdsize only includes data blocks of type M_DATA in the count. For more
information, see msgdsize(9F).

msgsize Subroutine
size_t msgsize(mblk_t *mp)

msgsize returns the number of bytes in the message pointed to by mp. Unlike
msgdsize, which returns only the number of data bytes, msgsize returns the total
number of bytes in the message.

mutex_owned Subroutine
int mutex_owned(kmutex_t *mutex)

mutex_owned is an implementation of mutex_owned(9F). mutex_owned returns non-
zero if the calling thread currently holds the specified kernel mutex, or returns zero if
the specified adaptive mutex is currently unowned.

mutex_owner Subroutine
kthread_t *mutex_owner(kmutex_t *mutex)

mutex_owner returns the thread pointer of the current owner of the specified adaptive
kernel mutex. mutex_owner returns NULL if the specified adaptive mutex is currently
unowned, or if the specified mutex is a spin mutex. For more information, see
mutex_owned(9F).

mutex_type_adaptive Subroutine
int mutex_type_adaptive(kmutex_t *mutex)

Chapter 4
DTrace Subroutines

4-24

https://www.rfc-editor.org/info/rfc1884
https://docs.oracle.com/cd/E88353_01/html/E37855/msgdsize-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/mutex-owned-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/mutex-owned-9f.html

mutex_type_adaptive returns non-zero if the specified kernel mutex is of type
MUTEX_ADAPTIVE, or zero if it is not. Mutexes are adaptive if they meet one or more of the
following conditions:

• The mutex is declared statically.

• The mutex is created with an interrupt block cookie of NULL.

• The mutex is created with an interrupt block cookie that does not correspond to a high-
level interrupt.

For more information about mutexes, see mutex_init(9F). The majority of mutexes in the
Oracle Solaris kernel are adaptive.

progenyof Subroutine
int progenyof(pid_t pid)

progenyof returns non-zero if the calling process (the process associated with the thread
that is currently triggering the matched probe) is among the progeny of the specified process
ID.

rand Subroutine
int rand(void)

rand returns a pseudo-random integer. The number returned is a weak pseudo-random
number, and should not be used for any cryptographic application.

rw_iswriter Subroutine
int rw_iswriter(krwlock_t *rwlock)

rw_iswriter returns non-zero if the specified reader-writer lock is either held or desired by
a writer. If the lock is held only by readers and no writer is blocked, or if the lock is not held at
all, rw_iswriter returns zero. See rw_init(9F).

rw_write_held Subroutine
int rw_write_held(krwlock_t *rwlock)

rw_write_held returns non-zero if the specified reader-writer lock is currently held by a
writer. If the lock is held only by readers or not held at all, rw_write_held returns zero. See
rw_init(9F).

speculation Subroutine
int speculation(void)

speculation reserves a speculative trace buffer for use with speculate and returns an
identifier for this buffer. For information, see Speculative Tracing in DTrace.

strchr Subroutine
string strchr(const char *s, char c)

Chapter 4
DTrace Subroutines

4-25

https://docs.oracle.com/cd/E88353_01/html/E37855/mutex-init-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/rw-init-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/rw-init-9f.html

strchr returns a pointer to the first occurrence of the character c in the string s. If no
match is found, strchr returns 0. This function does not work with wide or multi-byte
characters.

strjoin Subroutine
string strjoin(char *str1, char *str2)

strjoin creates a string that consists of str1 concatenated with str2. The returned
string is allocated out of scratch memory, and is therefore valid only for the duration of
the clause. If insufficient scratch space is available, strjoin does not execute and an
error is generated.

strlen Subroutine
size_t strlen(string str)

strlen returns the length of the specified string in bytes, excluding the terminating
null byte.

strrchr Subroutine
string strrchr(const char *s, char c)

strrchr returns a pointer to the last occurrence of the character c in the string s. If no
match is found, strrchr returns 0. This function does not work with wide or multi-byte
characters.

strstr Subroutine
string strstr(const char *s, const char *subs)

strstr returns a pointer to the first occurrence of the substring subs in the string s. If
s is an empty string, strstr returns a pointer to an empty string. If no match is found,
strstr returns 0.

strtok Subroutine
string strtok(const char *s, const char *delim)

strtok parses a string into a sequence of tokens by using delim as the delimiting
string . When you first call strtok, specify the string to be parsed in s. In each
subsequent call to obtain the next token, specify str as NULL. You can specify a
different delimiter for each call. The internal pointer that strtok uses to traverse s is
only valid within multiple calls to the same probe. That is, it behaves like an implicit
clause-local variable. strtok returns NULL if there are no more tokens.

DTrace User Address Symbol Resolution
The way in which DTrace formats user addresses can be modified by using the
uresolve option, which might use one of the following four values.

Chapter 4
DTrace User Address Symbol Resolution

4-26

• no – If uresolve is set to no, symbol resolution is not performed, and the addresses
appear only as an object name and an offset within that object. Applications that contain
many symbols can incur an overhead when DTrace resolves addresses to symbol
names. This overhead can be reduced with by setting uresolve=no. The object name and
offset can be resolved to a symbol name by cross-referencing with the symbol table of
the object.

• symbol – This is the default value. For ustack, the option causes user addresses to be
translated into the following form:

object`symbol+offset

For other actions, user addresses are translated into the following form:

symbol+offset
• basename – The basename value enables an executable user address to be associated

with a name of the corresponding source code file and the line number within the file.

For ustack, the option causes user addresses to be translated into the following form:

object`symbol+offset (file:line)

For other actions, user addresses are translated into the following form:

file:line

This feature requires a suitable DWARF to be present in the underlying load object, which
must be compiled by using the -g option. In addition, DWARF must contain suitable
accelerator tables, which are included by default by gcc (.debug_aranges) and versions
of Oracle Developer Studio greater than 12.4 (.stab.index).

If no suitable DWARF is available, then this option has the same effect as
uresolve=symbol.

• absolute is identical to the basename option except that the absolute paths of the file are
used.

Chapter 4
DTrace User Address Symbol Resolution

4-27

5
DTrace Buffers and Buffering

Data buffering and management is an essential service provided by the DTrace framework
for its clients, such as dtrace. This chapter explores data buffering in detail and describes
options you can use to change the buffer management policies of DTrace.

This chapter contains the following topics:

• Principal Buffers

• Principal Buffer Policies

• Other Buffers

• Buffer Sizes

• Buffer Resizing Policy

Principal Buffers
The principal buffer is present in every DTrace invocation and is the buffer to which tracing
actions record their data by default. The following tracing actions record their data by default
in the principal buffer:

exit()
printa()
printf()
stack()
trace()
tracemem()
ustack()

The principal buffers are always allocated on a per-CPU basis. This policy is not tunable, but
tracing and buffer allocation can be restricted to a single CPU by using the cpu option.

Principal Buffer Policies
DTrace enables tracing in highly constrained contexts in the kernel. In particular, DTrace
enables tracing in contexts in which kernel software may not reliably allocate memory. The
consequence of this flexibility of context is that there always exists a possibility that DTrace
will attempt to trace data when there is no space available. DTrace must have a policy to deal
with such situations when they arise, but you can tune the policy based on the needs of a
given experiment. Sometimes the appropriate policy might be to discard the new data. Other
times it might be desirable to reuse the space containing the oldest recorded data to trace
new data. Most often, the desired policy is to minimize the likelihood of running out of
available space in the first place. To accommodate these varying demands, DTrace supports
several different buffer policies. This support is implemented with the bufpolicy option, and
can be set on a per-consumer basis. For more details about setting options, see DTrace
Options and Tunables.

5-1

switch Policy
By default, the principal buffer has a switch buffer policy. Under this policy, per-CPU
buffers are allocated in pairs: one buffer is active and the other buffer is inactive. When
a DTrace consumer attempts to read a buffer, the kernel first switches the inactive and
active buffers. Buffer switching is done in such a manner that there is no window in
which tracing data may be lost. Once the buffers are switched, the newly inactive
buffer is copied out to the DTrace consumer. This policy assures that the consumer
always sees a self-consistent buffer: a buffer is never simultaneously traced to and
copied out. This technique also avoids introducing a window in which tracing is paused
or otherwise prevented. The rate at which the buffer is switched and read out is
controlled by the consumer with the switchrate option. As with any rate option,
switchrate may be specified with any time suffix, but defaults to rate-per-second. For
more details on switchrate and other options, see DTrace Options and Tunables.

Under the switch policy, if a given enabled probe would trace more data than there is
space available in the active principal buffer, the data is dropped and a per-CPU drop
count is incremented. In the event of one or more drops, dtrace displays a message
similar to the following example:

dtrace: 11 drops on CPU 0

If a given record is larger than the total buffer size, the record will be dropped
regardless of buffer policy. You can reduce or eliminate drops by either increasing the
size of the principal buffer with the bufsize option or by increasing the switching rate
with the switchrate option.

Under the switch policy, scratch space for copyin, copyinstr, and alloca is allocated
out of the active buffer.

fill Policy
For some problems, you might want to use a single in-kernel buffer. While this
approach can be implemented with the switch policy and appropriate D constructs by
incrementing a variable in D and predicating an exit action appropriately, such an
implementation does not eliminate the possibility of drops. To request a single, large
in-kernel buffer, and continue tracing until one or more of the per-CPU buffers has
filled, use the fill buffer policy. Under this policy, tracing continues until an enabled
probe attempts to trace more data than can fit in the remaining principal buffer space.
When insufficient space remains, the buffer is marked as filled and the consumer is
notified that at least one of its per-CPU buffers has filled. Once dtrace detects a
single filled buffer, tracing is stopped, all buffers are processed and dtrace exits. No
further data will be traced to a filled buffer even if the data would fit in the buffer.

To use the fill policy, set the bufpolicy option to fill. For example, the following
command traces every system call entry into a per-CPU 2K buffer with the buffer policy
set to fill:

dtrace -n syscall:::entry -b 2k -x bufpolicy=fill

Chapter 5
Principal Buffer Policies

5-2

fill Policy and END Probes
END probes normally do not fire until tracing has been explicitly stopped by the DTrace
consumer. END probes are guaranteed to only fire on one CPU, but the CPU on which the
probe fires is undefined. With fill buffers, tracing is explicitly stopped when at least one of
the per-CPU principal buffers has been marked as filled. If the fill policy is selected, the END
probe may fire on a CPU that has a filled buffer. To accommodate END tracing in fill buffers,
DTrace calculates the amount of space potentially consumed by END probes and subtracts
this space from the size of the principal buffer. If the net size is negative, DTrace will refuse to
start, and dtrace will output a corresponding error message:

dtrace: END enablings exceed size of principal buffer

The reservation mechanism ensures that a full buffer always has sufficient space for any END
probes.

ring Policy
The DTrace ring buffer policy helps you trace the events leading up to a failure. If
reproducing the failure takes hours or days, you might want to keep only the most recent
data. Once a principal buffer has filled, tracing wraps around to the first entry, thereby
overwriting older tracing data. You establish the ring buffer by setting the bufpolicy option to
the string ring:

dtrace -s foo.d -x bufpolicy=ring

When used to create a ring buffer, dtrace will not display any output until the process is
terminated. At that time, the ring buffer is consumed and processed. dtrace processes each
ring buffer in CPU order. Within a CPU's buffer, trace records are displayed in order from
oldest to youngest. Just as with the switch buffering policy, no ordering exists between
records from different CPUs. If such an ordering is required, you must trace the timestamp
variable as part of your tracing request.

The following example demonstrates the use of a #pragma D option directive to enable ring
buffering:

#pragma D option bufpolicy=ring
#pragma D option bufsize=16k

syscall:::entry
/execname == $1/
{
 trace(timestamp);
}

syscall::rexit:entry
{
 exit(0);
}

Other Buffers
Principal buffers exist in every DTrace enabling. Beyond principal buffers, some DTrace
consumers may have additional in-kernel data buffers: an aggregation buffer and one or more

Chapter 5
Other Buffers

5-3

speculative buffers. For more information about aggregation buffer, see DTrace
Aggregations. For more information about speculative tracing, see Speculative Tracing
in DTrace.

Buffer Sizes
The size of each buffer can be tuned on a per-consumer basis. The following table lists
separate options that are provided to tune each buffer size.

Buffer Size Option

Principal bufsize
Speculative specsize
Aggregation aggsize

Each of these options is set with a value that denotes the size. As with any size option,
the value may have an optional size suffix. For more information, see DTrace Options
and Tunables. For example, you can use one of the following commands to set the
buffer size to one megabyte on the command line to dtrace:

dtrace -P syscall -x bufsize=1m

dtrace -P syscall -b 1m

#pragma D option bufsize=1m

The buffer size you select denotes the size of the buffer on each CPU. Moreover, for
the switch buffer policy, bufsize denotes the size of each buffer on each CPU. The
buffer size defaults to four megabytes.

Buffer Resizing Policy
Occasionally, the system might not have adequate free kernel memory to allocate a
buffer of desired size either because not enough memory is available or because the
DTrace consumer has exceeded one of the tunable limits. For more information about
the tunable limits, see DTrace Options and Tunables. You can configure the policy for
buffer allocation failure using the bufresize option, which defaults to auto. Under the
auto buffer resize policy, the size of a buffer is halved until a successful allocation
occurs. dtrace generates a message if a buffer allocated is smaller than the
requested size:

dtrace -P syscall -b 4g
dtrace: description 'syscall' matched 430 probes
dtrace: buffer size lowered to 128m
...

dtrace might generate the following error message:

dtrace -P syscall'{@a[probefunc] = count()}' -x aggsize=1g
dtrace: description 'syscall' matched 430 probes
dtrace: aggregation size lowered to 128m
...

Chapter 5
Buffer Sizes

5-4

Alternatively, you can require manual intervention after buffer allocation failure by setting
bufresize to manual. Under this policy, a failure to allocate causes DTrace to fail to start:

dtrace -P syscall -x bufsize=1g -x bufresize=manual
dtrace: description 'syscall' matched 430 probes
dtrace: could not enable tracing: Cannot allocate memory
#

The buffer resizing policy of all buffers, principal, speculative and aggregation, is dictated by
the bufresize option.

Chapter 5
Buffer Resizing Policy

5-5

6
Output Formatting in DTrace

DTrace provides built-in formatting functions printf() and printa() that you can use to format
the output. The D compiler provides features that are not found in the printf() function. This
chapter also discusses the formatting behavior of the trace function and the default output
format used by dtrace to display aggregations.

This chapter contains the following topics:

• printf() Function

• printa() Function

• trace Default Format

printf() Function
The printf() function combines the ability to trace data, as if by the trace() function, with the
ability to output the data and other text in a specific format that you describe. The printf()
function tells DTrace to trace the data associated with each argument after the first argument,
and then to format the results using the rules described by the first printf() argument, known
as a format string. The format string is a regular string that contains any number of format
conversions, each beginning with the % character, that describe how to format the
corresponding argument. The first conversion in the format string corresponds to the second
printf() argument, the second conversion to the third argument, and so on. All of the text
between conversions is printed verbatim. The character following the % conversion character
describes the format to use for the corresponding argument.

Unlike the C library printf(), DTrace printf() is a built-in function that is recognized by the D
compiler. The D compiler provides several useful services for DTrace printf() that are not
found in the C library printf():

• The D compiler compares the arguments to the conversions in the format string. If an
argument's type is incompatible with the format conversion, the D compiler provides an
error message explaining the problem.

• The D compiler does not require the use of size prefixes with printf() format
conversions. The C printf() routine requires that you indicate the size of arguments by
adding prefixes such as %ld for long or %lld for long long. The D compiler knows the
size and type of your arguments, so these prefixes are not required in your D printf()
statements.

• DTrace provides additional format characters that are useful for debugging and
observability. For example, the %a format conversion can be used to print a pointer as a
symbol name and offset.

The format string in the DTrace printf() function must be specified as a string constant in
your D program. Format strings may not be dynamic variables of type string.

6-1

Conversion Specifications
Each conversion specification in the format string is introduced by the % character,
after which the following information appears in sequence:

• Zero or more flags (in any order), that modify the meaning of the conversion
specification as described in the next section.

• An optional minimum field width. If the converted value has fewer bytes than the
field width, the value will be padded with spaces on the left by default, or on the
right if the left-adjustment flag (-) is specified. The field width can also be specified
as an asterisk (*), in which case the field width is set dynamically based on the
value of an additional argument of type int.

• An optional precision that indicates the minimum number of digits to appear for the
d, i, o, u, x, and X conversions (the field is padded with leading zeroes); the
number of digits to appear after the radix character for the e, E, and f conversions,
the maximum number of significant digits for the g and G conversions; or the
maximum number of bytes to be printed from a string by the s conversion. The
precision takes the form of a period (.) followed by either an asterisk (*),
described below, or a decimal digit string.

• An optional sequence of size prefixes that indicate the size of the corresponding
argument. For more information, see plockstat Overview. The size prefixes are not
necessary in D and are provided for compatibility with the C printf() function.

• A conversion specifier that indicates the type of conversion to be applied to the
argument.

The printf() function also supports conversion specifications of the form %n$ where n
is a decimal integer. DTrace printf() does not support this type of conversion
specification.

Flag Specifiers
The printf() conversion flags are enabled by specifying one or more of the following
characters, which may appear in any order:

'
The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g, or %G) is
formatted with thousands grouping characters using the non-monetary grouping
character. Some locales, including the POSIX C locale, do not provide non-monetary
grouping characters for use with this flag.

-
The result of the conversion is left-justified within the field. The conversion is right-
justified if this flag is not specified.

+
The result of signed conversion always begins with a sign (+ or -). If this flag is not
specified, the conversion begins with a sign only when a negative value is converted.

Chapter 6
printf() Function

6-2

space
If the first character of a signed conversion is not a sign or if a signed conversion results in
no characters, a space is placed before the result. If the space and + flags both appear, the
space flag is ignored.

#
The value is converted to an alternate form if an alternate form is defined for the selected
conversion. The alternate formats for conversions are described along with the
corresponding conversion.

0
For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeroes (following any indication of
sign or base) are used to pad to the field width. No space padding is performed. If the 0 and
- flags both appear, the 0 flag is ignored. For d, i, o, u, x and X conversions, if a precision is
specified, the 0 flag is ignored. If the 0 and ' flags both appear, the grouping characters are
inserted before the zero padding.

Width and Precision Specifiers
The minimum field width can be specified as a decimal digit string following any flag specifier,
in which case the field width is set to the specified number of columns. The field width can
also be specified as asterisk (*) in which case an additional argument of type int is accessed
to determine the field width. For example, to print an integer x in a field width determined by
the value of the int variable w, you would write the D statement:

printf("%*d", w, x);

The field width can also be specified using a ? character to indicate that the field width should
be set based on the number of characters required to format an address in hexadecimal in
the data model of the operating system kernel. The width is set to 8 if the kernel is using the
32-bit data model, or to 16 if the kernel is using the 64-bit data model. The precision for the
conversion can be specified as a decimal digit string following a period (.) or by an asterisk
(*) following a period. If an asterisk is used to specify the precision, an additional argument of
type int prior to the conversion argument is accessed to determine the precision. If both
width and precision are specified as asterisks, the order of arguments to printf() for the
conversion should appear in the following order: width, precision, value.

Size Prefixes
Size prefixes are required in ANSI-C programs that use printf() in order to indicate the size
and type of the conversion argument. The D compiler performs this processing for your
printf() calls automatically, so size prefixes are not required. Although size prefixes are
provided for C compatibility, their use is explicitly discouraged in D programs because they
bind your code to a particular data model when using derived types. For example, if a
typedef is redefined to different integer base types depending on the data model, it is not
possible to use a single C conversion that works in both data models without explicitly
knowing the two underlying types and including a cast expression, or defining multiple format
strings. The D compiler solves this problem automatically by allowing you to omit size
prefixes and automatically determining the argument size.

The size prefixes can be placed just prior to the format conversion name after any flags,
widths, and precision specifiers. The size prefixes are as follows:

Chapter 6
printf() Function

6-3

h
Specifies that a following d, i, o, u, x, or X conversion applies to a short or unsigned
short.

l
Specifies that a following d, i, o, u, x, or X conversion applies to a long or unsigned
long.

ll
Specifies that a following d, i, o, u, x, or X conversion applies to a long long or
unsigned long long.

L
Specifies that a following e, E, f, g, or G conversion applies to a long double.

l
Specifies that a following c conversion applies to a wint_t argument, and that a
following s conversion character applies to a pointer to a wchar_t argument.

Conversion Formats
Each conversion character sequence results in fetching zero or more arguments. If
insufficient arguments are provided for the format string, or if the format string is
exhausted and arguments remain, the D compiler issues an appropriate error
message. If an undefined conversion format is specified, the D compiler issues an
appropriate error message. The following conversion character sequences are
available:

a
The pointer or uintptr_t argument is printed as a kernel symbol name in the form
module`symbol-name plus an optional hexadecimal byte offset. If the value does not
fall within the range defined by a known kernel symbol, the value is printed as a
hexadecimal integer.

A
A is similar to %a, but for user addresses. The exact behaviour is determined by the
uresolve option. For more information, see DTrace User Address Symbol Resolution.

c
The char, short, or int argument is printed as an ASCII character.

C
The char, short, or int argument is printed as an ASCII character if the character is a
printable ASCII character. If the character is not a printable character, it is printed
using the corresponding escape sequence as shown in D Character Escape
Sequences.

d
The char, short, int, long, or long long argument is printed as a decimal (base 10)
integer. If the argument is signed, it will be printed as a signed value. If the argument
is unsigned, it will be printed as an unsigned value. This conversion has the same
meaning as i.

Chapter 6
printf() Function

6-4

e, E
The float, double, or long double argument is converted to the style [-]d.ddde+/-dd, where
there is one digit before the radix character and the number of digits after it is equal to the
precision. The radix character is non-zero if the argument is non-zero. If the precision is not
specified, the default precision value is 6. If the precision is 0 and the # flag is not specified,
no radix character appears. The E conversion format produces a number with E instead of e
introducing the exponent. The exponent always contains at least two digits. The value is
rounded up to the appropriate number of digits.

f
The float, double, or long double argument is converted to the style [-]ddd.ddd, where the
number of digits after the radix character is equal to the precision specification. If the
precision is not specified, the default precision value is 6. If the precision is 0 and the # flag is
not specified, no radix character appears. If a radix character appears, at least one digit
appears before it. The value is rounded up to the appropriate number of digits.

g, G
The float, double, or long double argument is printed in the style f or e (or in style E in the
case of a G conversion character), with the precision specifying the number of significant
digits. If an explicit precision is 0, it is taken as 1. The style used depends on the value
converted: style e (or E) is used only if the exponent resulting from the conversion is less
than -4 or greater than or equal to the precision. Trailing zeroes are removed from the
fractional part of the result. A radix character appears only if it is followed by a digit. If the #
flag is specified, trailing zeroes are not removed from the result.

i
The char, short, int, long, or long long argument is printed as a decimal (base 10) integer.
If the argument is signed, it will be printed as a signed value. If the argument is unsigned, it
will be printed as an unsigned value. This conversion has the same meaning as d.

k
The stack argument is printed as if by a call to trace(). Handles both user and kernel-level
stacks. Valid only with printa() because, according to the D compiler, stack() and ustack()
may not be called from a D expression (D program context required).

o
The char, short, int, long, or long long argument is printed as an unsigned octal (base 8)
integer. Arguments that are signed or unsigned may be used with this conversion. If the #
flag is specified, the precision of the result will be increased if necessary to force the first
digit of the result to be a zero.

p
The pointer or uintptr_t argument is printed as a hexadecimal (base 16) integer. D accepts
pointer arguments of any type. If the # flag is specified, a non-zero result will have 0x
prepended to it.

s
The argument must be an array of char or a string. Bytes from the array or string are read
up to a terminating null character or the end of the data and interpreted and printed as ASCII
characters. If the precision is not specified, it is taken to be infinite, so all characters up to the
first null character are printed. If the precision is specified, only that portion of the character
array that will display in the corresponding number of screen columns is printed. If an
argument of type char * is to be formatted, it should be cast to string or prefixed with the D

Chapter 6
printf() Function

6-5

stringof operator to indicate that DTrace should trace the bytes of the string and
format them.

S
The argument must be an array of char or a string. The argument is processed as if
by the %s conversion, but any ASCII characters that are not printable are replaced by
the corresponding escape sequence described in D Character Escape Sequences.

u
The char, short, int, long, or long long argument is printed as an unsigned decimal
(base 10) integer. Arguments that are signed or unsigned may be used with this
conversion, and the result is always formatted as unsigned.

wc
The int argument is converted to a wide character (wchar_t) and the resulting wide
character is printed.

ws
The argument must be an array of wchar_t. Bytes from the array are read up to a
terminating null character or the end of the data and interpreted and printed as wide
characters. If the precision is not specified, it is taken to be infinite, so all wide
characters up to the first null character are printed. If the precision is specified, only
that portion of the wide character array that will display in the corresponding number
of screen columns is printed.

x, X
The char, short, int, long, or long long argument is printed as an unsigned
hexadecimal (base 16) integer. Arguments that are signed or unsigned may be used
with this conversion. If the x form of the conversion is used, the letter digits abcdef are
used. If the X form of the conversion is used, the letter digits ABCDEF are used. If the #
flag is specified, a non-zero result will have 0x (for %x) or 0X (for %X) prepended to it.

Y
The uint64_t argument is interpreted to be the number of nanoseconds since 00:00
Universal Coordinated Time, January 1, 1970, and is printed in the following
cftime(3C) form: "%Y %a %b %e %T %Z." The current number of nanoseconds since 00:00
UTC, January 1, 1970 is available in the walltimestamp variable.

%
Print a literal % character. No argument is converted. The entire conversion
specification must be %%.

printa() Function
The printa() function is used to format the results of aggregations in a D program.
The function is invoked using one of the two following forms:

printa(@aggregation-name);
printa(format-string, @aggregation-name);

If the first form of the function is used, the dtrace command takes a consistent
snapshot of the aggregation data and produces output equivalent to the default output
format used for aggregations, described in DTrace Aggregations. If the second form of
the function is used, the dtrace command takes a consistent snapshot of the

Chapter 6
printa() Function

6-6

aggregation data and produces output according to the conversions specified in the format
string, according to the following rules:

• The format conversions must match the tuple signature used to create the aggregation.
Each tuple element may only appear once. For example, aggregate a count using the
following D statements:

@a["hello", 123] = count();
@a["goodbye", 456] = count();

Add the D statement printa(format-string, @a) to a probe clause. The dtrace utility
takes a snapshot of the aggregation data and produces output as if you had entered the
following statements for each tuple defined in the aggregation.

printf(format-string, "hello", 123);
printf(format-string, "goodbye", 456);

• Unlike printf(), the format string you use for printa() need not include all elements of
the tuple. That is, you can have a tuple of length 3 and only one format conversion.
Therefore, you can omit any tuple keys from your printa() output by changing your
aggregation declaration to move the keys you want to omit to the end of the tuple and
then omit corresponding conversion specifiers for them in the printa() format string.

• You can use the additional @ format flag character, which is only valid when used with
printa(), to include the aggregation result in the output. The @ flag can be combined with
any appropriate format conversion specifier, and may appear more than once in a format
string so that your tuple result can appear anywhere in the output and can appear more
than once. The set of conversion specifiers that can be used with each aggregating
function are implied by the aggregating function's result type. The following table lists the
aggregation result types.

Table 6-1 Aggregation Result Types

Aggregation Result Type Argument

avg uint64_t

count uint64_t

lquantize int64_t

max uint64_t

min uint64_t

quantize int64_t

sum uint64_t

For example, to format the results of avg, you can apply the %d, %i, %o, %u, or %x format
conversions. The quantize and lquantize functions format the results as an ASCII table
rather than as a single value.

Chapter 6
printa() Function

6-7

The following D program shows a complete example of printa(), using the profile
provider to sample the value of caller and then formatting the results as a simple
table:

profile:::profile-997
{
 @a[caller] = count();
}

END
{
 printa("%@8u %a\n", @a);
}

If you use dtrace to execute this program, wait a few seconds, and press Control-C,
the following output is displayed:

dtrace -s printa.d
^C
CPU ID FUNCTION:NAME
 1 2 :END 1 0x1
 1 ohci`ohci_handle_root_hub_status_change+0x148
 1 specfs`spec_write+0xe0
 1 0xff14f950
 1 genunix`cyclic_softint+0x588
 1 0xfef2280c
 1 genunix`getf+0xdc
 1 ufs`ufs_icheck+0x50
 1 genunix`infpollinfo+0x80
 1 genunix`kmem_log_enter+0x1e8
 ...

trace Default Format
If the trace() function is used to capture data rather than printf(), the dtrace
command formats the results using a default output format. If the data is 1, 2, 4, or 8
bytes in size, the result is formatted as a decimal integer value. If the data is any other
size and is a sequence of printable characters if interpreted as a sequence of bytes, it
will be printed as an ASCII string. If the data is any other size and is not a sequence of
printable characters, it will be printed as a series of byte values formatted as
hexadecimal integers.

Chapter 6
trace Default Format

6-8

7
Speculative Tracing in DTrace

This chapter discusses the DTrace facility for speculative tracing, the ability to tentatively
trace data and decide whether to commit the data to a tracing buffer or discard it. In DTrace,
the primary mechanism for filtering out uninteresting events is the predicate mechanism. For
more information, see D Program Structure. Predicates are useful when you know at the time
that a probe fires whether or not the probe event is of interest. For example, if you are only
interested in activity associated with a certain process or a certain file descriptor, you know
when the probe fires if it is associated with the process or file descriptor of interest. However,
in other situations, you might not know whether a given probe event is of interest until some
time after the probe fires.

For example, if a system call is occasionally failing with a common error code (such as, EIO
or EINVAL), examine the code path leading to the error condition. To capture the code path,
you could enable every probe but only if the failing call can be isolated in such a way that a
meaningful predicate can be constructed. If the failures are sporadic or non-deterministic, you
would be forced to trace all events that might be interesting, and later post-process the data
to filter out the ones that are not associated with the failing code path. In this case, even
though the number of interesting events may be reasonably small, the number of events that
must be traced is very large, making postprocessing difficult.

You can use the speculative tracing facility in these situations to tentatively trace data at one
or more probe locations, and then decide to commit the data to the principal buffer at another
probe location. As a result, your trace data contains only the output of interest, no
postprocessing is required, and the DTrace overhead is minimized.

This chapter contains the following topics:

• Speculation Interfaces

• Creating a Speculation

• Using a Speculation

• Committing a Speculation

• Discarding a Speculation

• Speculation Example

• Speculation Options and Tuning

Speculation Interfaces
The following table describes the DTrace speculation functions.

Table 7-1 DTrace Speculation Functions

Function Args Description

speculation() None Returns an identifier for a new speculative buffer

7-1

Table 7-1 (Cont.) DTrace Speculation Functions

Function Args Description

speculate() ID Denotes that the remainder of the clause should be traced to the
speculative buffer specified by ID

commit() ID Commits the speculative buffer associated with ID

discard() ID Discards the speculative buffer associated with ID

Creating a Speculation
The speculation() function allocates a speculative buffer, and returns a speculation
identifier. The speculation identifier should be used in subsequent calls to the
speculate() function. Speculative buffers are a finite resource. If speculative buffer is
unavailable when speculation() is called, an ID of zero is returned and a
corresponding DTrace error counter is incremented. An ID of zero is always invalid,
but may be passed to speculate(), commit() or discard(). If a call to speculation()
fails, a dtrace message similar to the following example is generated:

dtrace: 2 failed speculations (no speculative buffer space available)

The number of speculative buffers defaults to one, but may be optionally tuned higher.
For more information, see Speculation Options and Tuning.

Using a Speculation
To use a speculation, an identifier returned from speculation() must be passed to the
speculate() function in a clause before any data-recording actions. All subsequent
data-recording actions in a clause containing a speculate() will be speculatively
traced. The D compiler generates a compile-time error if a call to speculate() follows
data recording actions in a D probe clause. Therefore, clauses may contain either
speculative tracing or non-speculative tracing requests.

Aggregating actions, destructive actions, and the exit action may never be
speculative. Any attempt to take one of these actions in a clause containing a
speculate() results in a compile-time error. A speculate() function must not follow a
speculate() function. You can use only one speculation per clause. A clause that
contains only a speculate() will speculatively trace the default action, which is defined
to trace only the enabled probe ID. For information about the default action, see
DTrace Actions and Subroutines.

Typically, you assign the result of speculation() to a thread-local variable and then
use that variable as a subsequent predicate to other probes as well as an argument to
speculate(). For example:

syscall::openat:entry
{
 self->spec = speculation();
}

syscall:::
/self->spec/
{

Chapter 7
Creating a Speculation

7-2

 speculate(self->spec);
 printf("this is speculative");
}

Committing a Speculation
You commit speculations using the commit() function. When a speculative buffer is
committed, its data is copied into the principal buffer. If there is more data in the specified
speculative buffer than there is available space in the principal buffer, no data is copied and
the drop count for the buffer is incremented. If the buffer has been speculatively traced to on
more than one CPU, the speculative data on the committing CPU is copied immediately,
while speculative data on other CPUs is copied some time after the commit(). Thus, some
time might elapse between a commit() beginning on one CPU and the data being copied from
speculative buffers to principal buffers on all CPUs. This time is guaranteed to be no longer
than the time dictated by the cleaning rate. See Speculation Options and Tuning for more
details.

A committing speculative buffer will not be made available to subsequent speculation() calls
until each per-CPU speculative buffer has been completely copied into its corresponding per-
CPU principal buffer. Similarly, subsequent calls to speculate() to the committing buffer will
be silently discarded, and subsequent calls to commit() or discard() will silently fail. Finally, a
clause containing a commit() cannot contain a data recording action, but a clause may
contain multiple commit() calls to commit disjoint buffers.

Discarding a Speculation
You discard speculations using the discard() function. When a speculative buffer is
discarded, its contents are thrown away. If the speculation has only been active on the CPU
calling discard(), the buffer is immediately available for subsequent calls to speculation(). If
the speculation has been active on more than one CPU, the discarded buffer will be available
for subsequent speculation() some time after the call to discard(). The time between a
discard() on one CPU and the buffer being made available for subsequent speculations is
guaranteed to be no longer than the time dictated by the cleaning rate. If, at the time
speculation() is called, no buffer is available because all speculative buffers are currently
being discarded or committed, a dtrace message similar to the following example is
generated:

dtrace: 905 failed speculations (available buffer(s) still busy)

The likelihood of all buffers being unavailable can be reduced by tuning the number of
speculation buffers or the cleaning rate.

Speculation Example
One potential use for speculations is to highlight a particular code path. The following
example shows the entire code path under the open() system call only when open() fails:

Example 7-1 Showing Code Flow for Failed open() Calls

#!/usr/sbin/dtrace -Fs

syscall::openat:entry,
syscall::openat64:entry
{

Chapter 7
Committing a Speculation

7-3

 /*
 * The call to speculation() creates a new speculation. If this fails,
 * dtrace(8) will generate an error message indicating the reason for
 * the failed speculation(), but subsequent speculative tracing will be
 * silently discarded.
 */
 self->spec = speculation();
 speculate(self->spec);

 /*
 * Because this printf() follows the speculate(), it is being
 * speculatively traced; it will only appear in the data buffer if the
 * speculation is subsequently committed.
 */
 printf("%s", stringof(copyinstr(arg1)));
}

fbt:::
/self->spec/
{
 /*
 * A speculate() with no other actions speculates the default action:
 * tracing the EPID.
 */
 speculate(self->spec);
}

syscall::openat:return,
syscall::openat64:return
/self->spec/
{
 /*
 * To balance the output with the -F option, make sure that
 * every entry has a matching return. Because the open entry was
 * speculated, you must also speculate the open return.
 * This is also a convenient time to trace the errno value.
 */
 speculate(self->spec);
 trace(errno);
}

syscall::openat:return,
syscall::openat64:return
/self->spec && errno != 0/
{
 /*
 * If errno is non-zero, commit the speculation.
 */
 commit(self->spec);
 self->spec = 0;
}

syscall::openat:return,
syscall::openat64:return
/self->spec && errno == 0/
{
 /*
 * If errno is not set, discard the speculation.
 */
 discard(self->spec);

Chapter 7
Speculation Example

7-4

 self->spec = 0;
}

Running the preceding script produces output similar to the following example:

./specopen.d
dtrace: script './specopen.d' matched 24282 probes
CPU FUNCTION
 1 => open /var/ld/ld.config
 1 -> open
 1 -> copen
 1 -> falloc
 1 -> ufalloc
 1 -> fd_find
 1 -> mutex_owned
 1 <- mutex_owned
 1 <- fd_find
 1 -> fd_reserve
 1 -> mutex_owned
 1 <- mutex_owned
 1 -> mutex_owned
 1 <- mutex_owned
 1 <- fd_reserve
 1 <- ufalloc
 1 -> kmem_cache_alloc
 1 -> kmem_cache_alloc_debug
 1 -> verify_and_copy_pattern
 1 <- verify_and_copy_pattern
 1 -> file_cache_constructor
 1 -> mutex_init
 1 <- mutex_init
 1 <- file_cache_constructor
 1 -> tsc_gethrtime
 1 <- tsc_gethrtime
 1 -> getpcstack
 1 <- getpcstack
 1 -> kmem_log_enter
 1 <- kmem_log_enter
 1 <- kmem_cache_alloc_debug
 1 <- kmem_cache_alloc
 1 -> crhold
 1 <- crhold
 1 <- falloc
 1 -> vn_openat
 1 -> lookupnameat
 1 -> copyinstr
 1 <- copyinstr
 1 -> lookuppnat
 1 -> lookuppnvp
 1 -> pn_fixslash
 1 <- pn_fixslash
 1 -> pn_getcomponent
 1 <- pn_getcomponent
 1 -> ufs_lookup
 1 -> dnlc_lookup
 1 -> bcmp
 1 <- bcmp
 1 <- dnlc_lookup
 1 -> ufs_iaccess
 1 -> crgetuid
 1 <- crgetuid

Chapter 7
Speculation Example

7-5

 1 -> groupmember
 1 -> supgroupmember
 1 <- supgroupmember
 1 <- groupmember
 1 <- ufs_iaccess
 1 <- ufs_lookup
 1 -> vn_rele
 1 <- vn_rele
 1 -> pn_getcomponent
 1 <- pn_getcomponent
 1 -> ufs_lookup
 1 -> dnlc_lookup
 1 -> bcmp
 1 <- bcmp
 1 <- dnlc_lookup
 1 -> ufs_iaccess
 1 -> crgetuid
 1 <- crgetuid
 1 <- ufs_iaccess
 1 <- ufs_lookup
 1 -> vn_rele
 1 <- vn_rele
 1 -> pn_getcomponent
 1 <- pn_getcomponent
 1 -> ufs_lookup
 1 -> dnlc_lookup
 1 -> bcmp
 1 <- bcmp
 1 <- dnlc_lookup
 1 -> ufs_iaccess
 1 -> crgetuid
 1 <- crgetuid
 1 <- ufs_iaccess
 1 -> vn_rele
 1 <- vn_rele
 1 <- ufs_lookup
 1 -> vn_rele
 1 <- vn_rele
 1 <- lookuppnvp
 1 <- lookuppnat
 1 <- lookupnameat
 1 <- vn_openat
 1 -> setf
 1 -> fd_reserve
 1 -> mutex_owned
 1 <- mutex_owned
 1 -> mutex_owned
 1 <- mutex_owned
 1 <- fd_reserve
 1 -> cv_broadcast
 1 <- cv_broadcast
 1 <- setf
 1 -> unfalloc
 1 -> mutex_owned
 1 <- mutex_owned
 1 -> crfree
 1 <- crfree
 1 -> kmem_cache_free
 1 -> kmem_cache_free_debug
 1 -> kmem_log_enter
 1 <- kmem_log_enter

Chapter 7
Speculation Example

7-6

 1 -> tsc_gethrtime
 1 <- tsc_gethrtime
 1 -> getpcstack
 1 <- getpcstack
 1 -> kmem_log_enter
 1 <- kmem_log_enter
 1 -> file_cache_destructor
 1 -> mutex_destroy
 1 <- mutex_destroy
 1 <- file_cache_destructor
 1 -> copy_pattern
 1 <- copy_pattern
 1 <- kmem_cache_free_debug
 1 <- kmem_cache_free
 1 <- unfalloc
 1 -> set_errno
 1 <- set_errno
 1 <- copen
 1 <- open
 1 <= open 2

For more information, see the open(2) man page.

Speculation Options and Tuning
If a speculative buffer is full when a speculative tracing action is attempted, no data is stored
in the buffer and a drop count is incremented. In this situation, a dtrace message similar to
the following example is generated:

dtrace: 38 speculative drops

Speculative drops will not prevent the full speculative buffer from being copied into the
principal buffer when the buffer is committed. Similarly, speculative drops can occur even if
drops were experienced on a speculative buffer that was ultimately discarded. Speculative
drops can be reduced by increasing the speculative buffer size, which is tuned using the
specsize option. The specsize option may be specified with any size suffix. The resizing
policy of this buffer is dictated by the bufresize option.

Speculative buffers might be unavailable when speculation() is called. If buffers exist that
have not yet been committed or discarded, a dtrace message similar to the following
example is generated:

dtrace: 1 failed speculation (no speculative buffer available)

You can reduce the likelihood of failed speculations by increasing the number of speculative
buffers with the nspec option. The default value of nspec is one.

Alternatively, speculation() may fail because all speculative buffers are busy. In this case, a
dtrace message similar to the following example is generated:

dtrace: 1 failed speculation (available buffer(s) still busy)

This message indicates that speculation() was called after commit() was called for a
speculative buffer, but before that buffer was actually committed on all CPUs. You can reduce
the likelihood of failed speculations of this nature by increasing the rate at which CPUs are
cleaned with the cleanrate option. The value of cleanrate defaults to 101.

Chapter 7
Speculation Options and Tuning

7-7

https://docs.oracle.com/cd/E88353_01/html/E37841/open-2.html

8
dtrace Utility

The dtrace command is a generic front-end to the DTrace facility. The command
implements a simple interface to invoke the D language compiler, the ability to retrieve
buffered trace data from the DTrace kernel facility, and a set of basic routines to format and
print traced data. This chapter provides a complete reference for the dtrace command.

This chapter contains the following topics:

• dtrace Command Description

• dtrace Command Options

• dtrace Command Operands

• dtrace Command Exit Status Values

dtrace Command Description
The dtrace command provides a generic interface to the following essential services
provided by the DTrace facility:

• Options to list the set of probes and providers currently published by DTrace

• Options to enable probes directly using any of the probe description specifiers (provider,
module, function, name)

• Options to run the D compiler and compile one or more D program files or programs
written directly on the command line

• Options to generate anonymous tracing programs (see Anonymous Tracing in DTrace)

• Options to generate program stability reports (see DTrace Stability Mechanisms)

• Options to modify DTrace tracing and buffering behavior and enable additional D
compiler features (see DTrace Options and Tunables)

The dtrace command can also be used to create D scripts by using it in a #! declaration to
create an interpreter file. For more information, see Scripting in DTrace. Finally, you can use
dtrace to attempt to compile D programs and determine their properties without actually
enabling any tracing by using the -e option.

dtrace Command Options
The dtrace command accepts the following options:

dtrace [-32| -64] [-aACeFGHlqSvVwZ] [-b bufsz] [-c cmd]\
 [-D name[=def]] [-I path] [-L path]\
 [-o output] [-p pid] [-s script] [-U name]\
 [-x arg[=val]] [-X[a| c| s| t]] [-P provider [[predicate]action]]\
 [-m [[provider:]module [[predicate] action]]]\
 [-f [[provider:]module:] func [[predicate] action]]\
 [-n [[[provider:]module:] func:] name [[predicate] action]]\
 [-i probe-id [[predicate] action]]

8-1

where predicate is any D predicate enclosed in slashes / / and action is any D
statement list enclosed in braces { } according to the previously described D
language syntax. If D program code is provided as an argument to the -P, -m, -f, -n,
or -i options this text must be appropriately quoted to avoid interpretation by the shell.
The options are as follows:

-32, -64
The D compiler produces programs using the native data model of the operating
system kernel. You can use the isainfo -b command to determine the current
operating system data model. If the -32 option is specified, dtrace will force the D
compiler to compile a D program using the 32-bit data model. If the -64 option is
specified, dtrace will force the D compiler to compile a D program using the 64-bit
data model. These options are typically not required as dtrace selects the native
data model as the default. The data model affects the sizes of integer types and other
language properties. D programs compiled for either data model may be executed on
both 32-bit and 64-bit kernels. The -32 and -64 options also determine the ELF file
format (ELF32 or ELF64) produced by the -G option.

-a
Claim anonymous tracing state and display the traced data. You can combine the -a
option with the -e option to force dtrace to exit immediately after consuming the
anonymous tracing state rather than continuing to wait for new data. See Anonymous
Tracing in DTrace for more information about anonymous tracing.

-A
Generate driver.conf(5) directives for anonymous tracing. If the -A option is
specified, dtrace compiles any D programs specified using the -s option or on the
command line and constructs a set of dtrace driver configuration file directives to
enable the specified probes for anonymous tracing and then exits. For more
information, see Anonymous Tracing in DTrace. By default, dtrace attempts to store
the directives to the file /kernel/drv/dtrace.conf. This behavior can be
modified using the -o option to specify an alternate output file.

-b
Set principal trace buffer size. The trace buffer size can include any of the size
suffixes k, m, g, or t as described in Anonymous Tracing in DTrace. If the buffer space
cannot be allocated, dtrace attempts to reduce the buffer size or exit depending on
the setting of the bufresize property.

-c
Run the specified command cmd and exit upon its completion. If more than one -c
option is present on the command line, dtrace exits when all commands have
exited, reporting the exit status for each child process as it terminates. The process-ID
of the first command is made available to any D programs specified on the command
line or using the -s option through the $target macro variable. Refer to Scripting in
DTrace for more information about macro variables.

-C
Run the C preprocessor cpp over D programs before compiling them. Options can be
passed to the C preprocessor using the -D, -U, -I, and -H options. The degree of C
standard conformance can be selected using the -X option. Refer to the description of
the -X option for a description of the set of tokens defined by the D compiler when
invoking the C preprocessor.

Chapter 8
dtrace Command Options

8-2

https://docs.oracle.com/cd/E88353_01/html/E37852/driver.conf-5.html

-D
Define the specified name when invoking cpp which is enabled using the -C option). If an
equals sign (=) and additional value are specified, the name is assigned the corresponding
value. This option passes the -D option to each cpp invocation.

-e
Exit after compiling any requests and consuming anonymous tracing state (-a option) but
prior to enabling any probes. This option can be combined with the -a option to print
anonymous tracing data and exit, or it can be combined with D compiler options to verify that
the programs compile without actually executing them and enabling the corresponding
instrumentation.

-f
Specify function name to trace or list (-l option). The corresponding argument can include
any of the probe description forms provider:module:function, module:function, or function.
Unspecified probe description fields are left blank and match any probes regardless of the
values in those fields. If no qualifiers other than function are specified in the description, all
probes with the corresponding function are matched. The -f argument can be suffixed with
an optional D probe clause. More than one -f option may be specified on the command line
at a time.

-F
Coalesce trace output by identifying function entry and return. Function entry probe reports
are indented and their output is prefixed with ->. Function return probe reports are
unindented and their output is prefixed with <-.

-G
Generate an ELF file containing an embedded DTrace program. The DTrace probes
specified in the program are saved inside of a relocatable ELF object that can be linked into
another program. If the -o option is present, the ELF file is saved using the pathname
specified as the argument for this operand. If the -o option is not present and the DTrace
program is contained with a file whose name is filename.s, then the ELF file is saved using
the name file.o; otherwise the ELF file is saved using the name d.out.

-H
Print the path names of included files when invoking cpp (enabled using the -C option). This
option passes the -H option to each cpp invocation, causing it to display the list of
pathnames, one per line, to stderr.

-i
Specify probe identifier to trace or list (-l option). Probe IDs are specified using decimal
integers as shown by dtrace -l. The -i argument can be suffixed with an optional D
probe clause. More than one -i option may be specified on the command line at a time.

-I
Add the specified directory path to the search path for #include files when invoking cpp(1)
(enabled using the -C option). This option passes the -I option to each cpp invocation. The
specified directory is inserted into the search path ahead of the default directory list.

-l
List probes instead of enabling them. If the -l option is specified, dtrace produces a report
of the probes matching the descriptions given using the -P, -m, -f, -n, -i, and -s options. If
none of these options are specified, all probes are listed.

Chapter 8
dtrace Command Options

8-3

-L
Add the specified directory path to the search path for DTrace libraries. DTrace
libraries are used to contain common definitions that may be used when writing D
programs. The specified path is added after the default library search path.

-m
Specify module name to trace or list (-l option). The corresponding argument can
include any of the probe description forms provider:module or module. Unspecified
probe description fields are left blank and match any probes regardless of the values
in those fields. If no qualifiers other than module are specified in the description, all
probes with a corresponding module are matched. The -m argument can be suffixed
with an optional D probe clause. More than one -m option may be specified on the
command line at a time.

-n
Specify probe name to trace or list (-l option). The corresponding argument can
include any of the probe description forms provider:module:function:name,
module:function:name, function:name, or name. Unspecified probe description fields
are left blank and match any probes regardless of the values in those fields. If no
qualifiers other than name are specified in the description, all probes with a
corresponding name are matched. The -n argument can be suffixed with an optional
D probe clause. More than one -n option may be specified on the command line at a
time.

-o
Specify the output file for the -A, -G, and -l options, or for the traced data. If the -A
option is present and -o is not present, the default output file is /kernel/drv/
dtrace.conf. If the -G option is present and the -s option's argument is of the form
filename.d and -o is not present, the default output file is filename.o; otherwise the
default output file is d.out.

-p
Grab the specified process-ID pid, cache its symbol tables, and exit upon its
completion. If more than one -p option is present on the command line, dtrace exits
when all commands have exited, reporting the exit status for each process as it
terminates. The first process-ID is made available to any D programs specified on the
command line or using the -s option through the $target macro variable. Refer to
Scripting in DTrace for more information about macro variables.

-P
Specify provider name to trace or list (-l option). The remaining probe description
fields module, function, and name are left blank and match any probes regardless of
the values in those fields. The -P argument can be suffixed with an optional D probe
clause. More than one -P option may be specified on the command line at a time.

-q
Set quiet mode. dtrace will suppress messages such as the number of probes
matched by the specified options and D programs and will not print column headers,
the CPU ID, the probe ID, or insert newlines into the output. Only data traced and
formatted by D program statements such as trace and printf will be displayed to
stdout.

Chapter 8
dtrace Command Options

8-4

-s
Compile the specified D program source file. If the -e option is present, the program is
compiled but no instrumentation is enabled. If the -l option is present, the program is
compiled and the set of probes matched by it is listed, but no instrumentation will be
enabled. If neither -e nor -l are present, the instrumentation specified by the D program is
enabled and tracing begins.

-S
Show D compiler intermediate code. The D compiler will produce a report of the intermediate
code generated for each D program to stderr.

-U
Undefine the specified name when invoking cpp(1) (enabled using the -C option). This option
passes the -U option to each cpp invocation.

-v
Set verbose mode. If the -v option is specified, dtrace produces a program stability report
showing the minimum interface stability and dependency level for the specified D programs.
DTrace stability levels are explained in further detail in DTrace Stability Mechanisms.

-V
Report the highest D programming interface version supported by dtrace. The version
information is printed to stdout and the dtrace command exits. See Program Versioning in
DTrace for more information about DTrace versioning features.

-w
Permit destructive actions in D programs specified using the -s, -P, -m, -f, -n, or -i options.
If the -w option is not specified, dtrace will not permit the compilation or enabling of a D
program that contains destructive actions. Destructive actions are described in further detail
in DTrace Actions and Subroutines.

-x
Enable or modify a DTrace runtime option or D compiler option. The options are listed in
DTrace Options and Tunables. Boolean options are enabled by specifying their name.
Options with values are set by separating the option name and value with an equals sign (=).

-X
Specify the degree of conformance to the ISO C standard that should be selected when
invoking cpp(1) (enabled using the -C option). The -X option argument affects the value and
presence of the __STDC__ macro depending upon the value of the argument letter:
This option takes the following arguments:

a (default)
ISO C plus K&R compatibility extensions, with semantic changes required by ISO C.
This mode is the default mode if -Xis not specified. The predefined macro __STDC__ has
a value of 0 when cpp is invoked in conjunction with the -Xa option.

c (conformance)
Strictly conformant ISO C, without K&R C compatibility extensions. The predefined
macro __STDC__ has a value of 1 when cpp is invoked in conjunction with the -Xc option.

s (K&R C)
K&R C only. The macro __STDC__ is not defined when cpp is invoked in conjunction with
the -Xs option.

Chapter 8
dtrace Command Options

8-5

t
ISO C plus K&R C compatibility extensions, without semantic changes required
by ISO C. The predefined macro __STDC__ has a value of 0 when cpp is invoked
in conjunction with the -Xt option.

Because the -X option affects only how the D compiler invokes the C preprocessor,
the -Xa and -Xt options are equivalent from the perspective of D. Both options are
provided to ease re-use of settings from a C build environment.
Regardless of the -X mode, the following additional C preprocessor definitions are
always specified and valid in all modes:

• __sun
• __unix
• __SVR4
• __sparc (on SPARC systems only)

• __sparcv9 (on SPARC systems only when 64-bit programs are compiled)

• __i386 (on x86 systems only when 32-bit programs are compiled)

• __amd64 (on x86 systems only when 64-bit programs are compiled)

• ___`uname -s`_`uname -r`_ (for example, __SunOS_5_10)

• __SUNW_D=1
• __SUNW_D_VERSION=0x_MMmmmuuu_ (where _MM_ is the Major release value in

hexadecimal, _mmm_ is the Minor release value in hexadecimal, and _uuu_ is
the Micro release value in hexadecimal; see Program Versioning in DTrace for
more information about DTrace versioning)

-Z
Permit probe descriptions that match zero probes. If the -Z option is not specified,
dtrace will report an error and exit if any probe descriptions specified in D program
files (-s option) or on the command line (-P, -m, -f, -n, or -i options) contain
descriptions that do not match any known probes.

dtrace Command Operands
Zero or more additional arguments may be specified on the dtrace command line to
define a set of macro variables ($1, $2, and so on) to be used in any D programs
specified using the -s option or on the command line. The use of macro variables is
described further in Scripting in DTrace.

dtrace Command Exit Status Values
The following exit values are returned by the dtrace utility:

0
The specified requests were completed successfully. For D program requests, the 0
exit status indicates that programs were successfully compiled, probes were
successfully enabled, or anonymous state was successfully retrieved. dtrace returns
0 even if the specified tracing requests encountered errors or drops.

Chapter 8
dtrace Command Operands

8-6

1
A fatal error occurred. For D program requests, the 1 exit status indicates that program
compilation failed or that the specified request could not be satisfied.

2
Invalid command-line options or arguments were specified.

Chapter 8
dtrace Command Exit Status Values

8-7

9
Scripting in DTrace

You can use the dtrace utility to create interpreter files out of D programs similar to shell
scripts that you can install as reusable interactive DTrace tools. The D compiler and dtrace
command provide a set of macro variables that are expanded by the D compiler that make it
easy to create DTrace scripts. This chapter provides a reference for the macro variable
facility and tips for creating persistent scripts.

This chapter contains the following topics:

• Interpreter Files

• Macro Variables

• Macro Arguments

• Target Process ID

Interpreter Files
Similar to shell utilities such as awk and perl, dtrace can be used to create executable
interpreter files. An interpreter file begins with a line of the form:

#! pathname [arg]

In the preceding example, path name is the path of the interpreter and arg is a single optional
argument. When an interpreter file is executed, the system invokes the specified interpreter. If
arg was specified in the interpreter file, it is passed as an argument to the interpreter. The
path to the interpreter file itself and any additional arguments specified when it was executed
are then appended to the interpreter argument list. Therefore, you will always need to create
DTrace interpreter files with at least these arguments:

#!/usr/sbin/dtrace -s

When the interpreter file is executed, the argument to the -s option will be the path name of
the interpreter file itself. The dtrace utility reads, compiles, and executes the interpreter file
as if you had typed the following command in your shell:

dtrace -s interpreter-file

The following example shows how to create and execute a dtrace interpreter file. Type the
following D source code and save it in a file named interp.d:

#!/usr/sbin/dtrace -s

BEGIN
{
 trace("hello");
 exit(0);
}

Set the execute permissions for the interp.d file and execute it as follows:

9-1

chmod a+rx interp.d
./interp.d
dtrace: script './interp.d' matched 1 probe
CPU ID FUNCTION:NAME
 1 1 :BEGIN hello
#

Remember that the #! directive must comprise the first two characters of your file with
no intervening or preceding whitespace. The D compiler knows to automatically ignore
this line when it processes the interpreter file.

The dtrace utility uses getopt() to process command-line options, so you can
combine multiple options in your single interpreter argument. For more information,
see the getopt(3C) man page. For example, to add the -q option to the preceding
example make the following change to the interpreter directive:

#!/usr/sbin/dtrace -qs

If you specify multiple option letters, the -s option must always end the list of boolean
options so that the next argument (the interpreter file name) is processed as the
argument corresponding to the -s option.

To specify more than one option that requires an argument in the interpreter file, use
the #pragma D option directive syntax. All of the dtrace command-line options have
#pragma equivalents that you can use, as described in DTrace Options and Tunables.

Macro Variables
The D compiler defines a set of built-in macro variables that you can use when writing
D programs or interpreter files. Macro variables are identifiers that are prefixed with a
dollar sign ($) and are expanded once by the D compiler when processing your input
file. The D compiler provides the following macro variables:

Table 9-1 D Macro Variables

D Macro Variables Description Reference

$[0-9]+ macro arguments See Macro Arguments

$egid effective group-ID getegid(2)

$euid effective user-ID geteuid(2)

$gid real group-ID getgid(2)

$pid process ID getpid(2)

$pgid process group ID getpgid(2)

$ppid parent process ID getppid(2)

$projid project ID getprojid(2)

$sid session ID getsid(2)

$target target process ID See Target Process ID

$taskid task ID gettaskid(2)

$uid real user-ID getuid(2)

Chapter 9
Macro Variables

9-2

https://docs.oracle.com/cd/E88353_01/html/E37843/getopt-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37841/getegid-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/geteuid-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/getgid-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/getpid-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/getpgid-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/getppid-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/getprojid-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/getsid-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/gettaskid-2.html
https://docs.oracle.com/cd/E88353_01/html/E37841/getuid-2.html

Except for the $[0-9]+ macro arguments and the $target macro variable, the macro
variables all expand to integers corresponding to system attributes such as the process ID
and user ID. The variables expand to the attribute value associated with the current dtrace
process itself, or whatever process is running the D compiler.

Using macro variables in interpreter files enables you to create persistent D programs that do
not need to be edited each time you use the programs. For example, to count all system calls
except those executed by the dtrace command, you can use the following D program
clause containing $pid:

syscall:::entry
/pid != $pid/
{
 @calls = count();
}

This clause always produces the desired result, even though each invocation of the dtrace
command will have a different process ID. Macro variables can be used anywhere an integer,
identifier, or string can be used in a D program.

Macro variables are expanded only once (that is, not recursively) when the input file is
parsed. Each macro variable is expanded to form a separate input token, and cannot be
concatenated with other text to yield a single token. For example:

123$pid

If $pid expands to the value 456, the D code would expand to the two adjacent tokens 123
and 456, resulting in a syntax error, rather than the single integer token 123456.

Macro variables are expanded and concatenated with adjacent text inside of D probe
descriptions at the start of your program clauses. For example, the following clause uses the
DTrace pid provider to instrument the dtrace command:

pid$pid:libc.so:printf:entry
{
 ...
}

Macro variables are only expanded once within each probe description field; they may not
contain probe description delimiters (:).

Macro Arguments
The D compiler also provides a set of macro variables corresponding to any additional
argument operands specified as part of the dtrace command invocation. These macro
arguments are accessed using the built-in names $0 for name of the D program file or
dtrace command, $1 for the first additional operand, $2 for the second operand, and so on.
If you use the dtrace -s option, $0 expands to the value of the name of the input file used
with this option. For D programs specified on the command-line, $0 expands to the value of
argv[0] used to exec dtrace itself.

Macro arguments can expand to integers, identifiers, or strings, depending on the form of the
corresponding text. As with all macro variables, macro arguments can be used anywhere
integer, identifier, and string tokens can be used in a D program. All of the following examples
could form valid D expressions assuming appropriate macro argument values:

Chapter 9
Macro Arguments

9-3

execname == $1 /* with a string macro argument */
x += $1 /* with an integer macro argument */
trace(x->$1) /* with an identifier macro argument */

Macro arguments can be used to create dtrace interpreter files that act like real
Oracle Solaris commands and use information specified by a user or by another tool to
modify their behavior. For example, the following D interpreter file traces write
system calls executed by a particular process ID:

#!/usr/sbin/dtrace -s
syscall::write:entry
/pid == $1/
{
}

If you make this interpreter file executable, you can specify the value of $1 using an
additional command-line argument to your interpreter file.

chmod a+rx ./tracewrite
./tracewrite 12345

The resulting command invocation counts each write system call executed by
process ID 12345.

If a D program references a macro argument that is not provided on the command-
line, an appropriate error message is printed and the program fails to compile.

./tracewrite
dtrace: failed to compile script ./tracewrite: line 4:
 macro argument $1 is not defined

D programs can reference unspecified macro arguments if the defaultargs option is
set. If defaultargs is set, unspecified arguments will have the value 0. See DTrace
Options and Tunables for more information about D compiler options. The D compiler
will also produce an error message if additional arguments are specified on the
command line that are not referenced by your D program.

The macro argument values must match the form of an integer, identifier, or string. If
the argument does not match any of these forms, the D compiler will report an
appropriate error message. When specifying string macro arguments to a DTrace
interpreter file, surround the argument in an extra pair of single quotes to avoid
interpretation of the double quotes and string contents by your shell:

./foo '"a string argument"'

If you want your D macro arguments to be interpreted as string tokens even if they
match the form of an integer or identifier, prefix the macro variable or argument name
with two leading dollar signs (for example, $$1) to force the D compiler to interpret the
argument value as if it were a string surrounded by double quotes. All the usual D
string escape sequences are expanded inside of any string macro arguments,
regardless of whether they are referenced using the $arg or $$arg form of the macro.
If the defaultargs option is set, unspecified arguments that are referenced with
the $$arg form have the value of the empty string (""). For more information, see D
Character Escape Sequences.

Chapter 9
Macro Arguments

9-4

Target Process ID
Use the $target macro variable to create scripts that can be applied to a particular user
process of interest that is selected on the dtrace command line using the -p option or
created using the -c option. The D programs specified on the command line or using the -s
option are compiled after processes are created or grabbed and the $target variable
expands to the integer process-ID of the first such process. For example, the following D
script could be used to determine the distribution of system calls executed by a particular
subject process:

syscall:::entry
/pid == $target/
{
 @[probefunc] = count();
}

To determine the number of system calls executed by the date command, save the script in
the file syscall.d and execute the following command:

dtrace -s syscall.d -c date
dtrace: script 'syscall.d' matched 227 probes
Fri Jul 30 13:46:06 PDT 2004
dtrace: pid 109058 has exited

 gtime 1
 getpid 1
 getrlimit 1
 rexit 1
 ioctl 1
 resolvepath 1
 read 1
 stat 1
 write 1
 munmap 1
 close 2
 fstat64 2
 setcontext 2
 mmap 2
 open 2
 brk 4

Chapter 9
Target Process ID

9-5

10
DTrace Options and Tunables

To enable customization, DTrace provides its consumers several important degrees of
freedom. To minimize the likelihood of requiring specific tuning, DTrace is implemented using
reasonable default values and flexible default policies. However, situations may arise that
require tuning the behavior of DTrace on a consumer-by-consumer basis. This chapter
describes the DTrace options and tunables and the interfaces you can use to modify them.

This chapter contains the following topics:

• Consumer Options

• Modifying Options

Consumer Options
DTrace is tuned by setting or enabling options. The available options are described in the
following table. For more information, see the dtrace(8) man page.

Table 10-1 DTrace Consumer Options

Option Name Value or
Value
Type

Default
Value

dtrace
Command
Option

Description See Chapter

agghist - - - Print aggregation as
histogram

DTrace Aggregations

aggpack - - - Print aggregation
histograms in packed
form

DTrace Aggregations

aggrate time (ns,
us, ms, s,
hz)

1 hz - Rate of aggregation
reading

DTrace Aggregations

aggsize size (k, m,
g, t)

4 m - Aggregation buffer
size

DTrace Aggregations

aggsortkey - - - Sort aggregation by
key order with ties
broken by value

DTrace Aggregations

aggsortrev - - - Sort aggregation in
the reverse order

DTrace Aggregations

aggsortpos position 0 - Position of the
aggregate variable on
which the output is
sorted

DTrace Aggregations

aggsortkeypos position 0 - Position of the
aggregate key on
which the output is
sorted

DTrace Aggregations

10-1

https://docs.oracle.com/cd/E88353_01/html/E72487/dtrace-8.html

Table 10-1 (Cont.) DTrace Consumer Options

Option Name Value or
Value
Type

Default
Value

dtrace
Command
Option

Description See Chapter

aggzoom - - - Zoom aggregation
histograms to the
maximum value

DTrace Aggregations

bufpolicy fill,
ring,
switch

switch - Buffer policy DTrace Buffers and
Buffering

bufresize auto,
manual

auto - Buffer resizing policy DTrace Buffers and
Buffering

bufsize size 4 m -b Principal buffer size DTrace Buffers and
Buffering

cleanrate time 101 hz - Cleaning rate Speculative Tracing in
DTrace

cpu integer - -c CPU on which to
enable tracing

DTrace Buffers and
Buffering

defaultargs - - - Allow references to
unspecified macro
arguments

Scripting in DTrace

destructive - - -w Allow destructive
actions

DTrace Actions and
Subroutines

dynvarsize size 1 m - Dynamic variable
space size

Variables in DTrace

errexit integer 1 - Exit on error with a
specified status code.
However, if no
arguments are
specified, exits with
the status code 1.

flowindent - - -F Indent function entry
and prefix with >;
unindent function
return and prefix with
<

dtrace Utility

grabanon - - -a Claim anonymous
state

Anonymous Tracing in
DTrace

jstackframes integer 50 - Number of default
stack frames jstack

DTrace Actions and
Subroutines

jstackstrsize integer 512 - Default string space
size for jstack

DTrace Actions and
Subroutines

noresolve - - - Alias for
uresolve=no.

DTrace Actions and
Subroutines

nspec integer 1 - Number of
speculations

Speculative Tracing in
DTrace

quiet - - -q Output only explicitly
traced data

dtrace Utility

Chapter 10
Consumer Options

10-2

Table 10-1 (Cont.) DTrace Consumer Options

Option Name Value or
Value
Type

Default
Value

dtrace
Command
Option

Description See Chapter

rawbytes - - - Always print
tracemem output in
hexadecimal

DTrace Actions and
Subroutines

specsize size 32 k - Speculation buffer
size

Speculative Tracing in
DTrace

strsize size 256 - String size Strings in DTrace

stackframes integer 20 - Number of stack
frames

DTrace Actions and
Subroutines

stackindent integer 14 - Number of whitespace
characters to use
when indenting stack
and ustack output

DTrace Actions and
Subroutines

statusrate time 10 s - Rate of status
checking

switchrate time 1 hz - Rate of buffer
switching

DTrace Buffers and
Buffering

uresolve no,
symbol,
basenam
e,
absolut
e

symbol - Modify resolution of
user addresses

DTrace Actions and
Subroutines

ustackframes integer 20 - Number of user stack
frames

DTrace Actions and
Subroutines

Values that denote sizes may be given an optional suffix of k, m, g, or t to denote kilobytes,
megabytes, gigabytes, and terabytes respectively. Values that denote times may be given an
optional suffix of ns, us, ms, s, or hz to denote nanoseconds, microseconds, milliseconds,
seconds, and number-per-second, respectively.

Modifying Options
Options may be set in a D script by using #pragma D followed by the string option and the
option name. If the option takes a value, the option name should be followed by an equals
sign (=) and the option value. The following examples are all valid option settings:

#pragma D option nspec=4
#pragma D option grabanon
#pragma D option bufsize=2g
#pragma D option switchrate=10hz
#pragma D option aggrate=100us
#pragma D option bufresize=manual

The dtrace command also accepts option settings on the command-line as an argument to
the -x option. For example:

Chapter 10
Modifying Options

10-3

dtrace -x nspec=4 -x grabanon -x bufsize=2g \
-x switchrate=10hz -x aggrate=100us -x bufresize=manual

If an invalid option is specified, dtrace indicates that the option name is invalid and
exits.

dtrace -x wombats=25
dtrace: failed to set option -x wombats: Invalid option name

Similarly, if a value is not valid for the given option, dtrace will indicate that the value
is invalid:

dtrace -x bufsize=100wombats
dtrace: failed to set option -x bufsize: Invalid value for specified option

If an option is set more than once, subsequent settings overwrite earlier settings.
Some options, such as grabanon, may only be set. The presence of such an option
sets it, and you cannot subsequently unset it.

Options that are set for an anonymous enabling will be honored by the DTrace
consumer that claims the anonymous state. For information about enabling
anonymous tracing, see Anonymous Tracing in DTrace.

Chapter 10
Modifying Options

10-4

11
DTrace Providers

This chapter lists and explains the existing DTrace providers.

This chapter contains the following topics:

• cpc Provider

• dtrace Provider

• fbt Provider

• fileops Provider

• fpuinfo Provider

• io Provider

• lockstat Provider

• mib Provider

• pid Provider

• plockstat Provider

• proc Provider

• profile Provider

• sched Provider

• sdt Provider

• syscall Provider

• sysinfo Provider

• vminfo Provider

• Network and Network Service Protocol Providers

cpc Provider
The cpc provider makes available probes associated with CPU performance counter events.
A probe fires when a specified number of events of a given type in a chosen processor mode
have occurred. When a probe fires you can sample aspects of the system state and you can
make inferences to the system behavior. Accurate inferences are possible when high
sampling rates or long sampling times are employed.

cpc Probes
Probes made available by the cpc provider have the following format:

cpc:::event name-mode[-attributes]-count

The format of attributes is:

11-1

attr1_val1[-attr2_val2...]|value

The cpc probe names and meaning are the following:

event name
The platform specific or generic event name. A full list of events can be obtained
using the -h option with the cpustat command.

mode
The privilege mode in which to count events. Valid modes are "user" for user mode
events, "kernel" for kernel mode events and "all" for both user mode and kernel mode
events.

attributes
This component is optional and accepts one or more event attributes. On some
platforms it is possible to specify event attributes to further refine a platform specific
event specification. The attributes can only be specified for platform specific events.
The attributes are specified as name-value pairs or single value in the following
format:

attr1_val1[-attr2_val2...]|value

• The attributes (attr1, attr2, and so on) are the string names of the platform-specific
attributes.

• The values (val1, val2, and so on) are the hex values for the corresponding
attributes.

Note:

• If only a value without attribute name is specified, it is interpreted as a
mask value. The mask value is commonly referred to as a unit mask or
event mask.

• Available attribute names can be obtained through -h option with the
cpustat command.

• The nouser and the sys attributes are not accepted and should be
specified at the mode component.

count
The number of events that must occur on a CPU for a probe to be fired on that CPU.

A sample usage of the cpc provider is as follows:

cpc:::BU_fill_req_missed_L2-all-umask_0x7-cmask_0x0-10000
In this example, the parameters are set to the following values:

• Event name is set to BU_fill_req_missed_L2
• Mode is set to all
• Attributes are set to umask = 0x7 and cmask = 0x0
• Count is set to 10000

Chapter 11
cpc Provider

11-2

The following introductory example fires a probe on a CPU for every 10000 user-mode Level
1 instruction cache misses on a SPARC platform. When the probe fires, record the name of
the executable that was on processor at the time the probe fires.

#!/usr/sbin/dtrace -s

#pragma D option quiet

cpc:::IC_miss-user-10000
{
 @[execname] = count();
}

END
{
 trunc(@, 10);
}

./user-l1miss.d
^C

 dirname 8
 firefox 8
 sed 11
 intrd 12
 run-mozilla.sh 13
 java 64
 sshd 135
 thunderbird-bin 1666
 firefox-bin 2060

Note:

When working with the cpc provider, note that the state available when a probe fires
is valid for the performance counter event that caused the probe to fire and not for
all events counted with that probe. The preceding output shows that the firefox-
bin application caused the cpc:::IC_miss-user-10000 probe to fire 2060 times. As
this probe fires once for every 10000 level 1 instruction cache misses on a CPU, the
firefox-bin application could have contributed anywhere from 2060 to 20600000
of these misses.

For more examples, see Using the cpc Provider.

cpc Probe Arguments
The arguments to cpc probes are the following:

arg0
The program counter (PC) in the kernel at the time that the probe fired, or 0 if the current
process was not executing in the kernel at the time that the probe fired

arg1
The PC in the user-level process at the time that the probe fired, or 0 if the current process
was executing at the kernel at the time that the probe fired

Chapter 11
cpc Provider

11-3

As the descriptions imply, if arg0 is non-zero then arg1 is zero; if arg0 is zero then
arg1 is non-zero.

Probe Availability and CPU Counters
CPU performance counters are a finite resource and the number of probes that can be
enabled depends upon hardware capabilities. Processors that cannot determine which
counter has overflowed when multiple counters are programmed, such as AMD and
UltraSPARC, are only allowed to have a single enabling at any one time. On such
platforms, consumers attempting to enable more than 1 probe will fail as will
consumers attempting to enable a probe when a disparate enabling already exists.
Processors that can detect which counter has overflowed, such as Niagara2 and Intel
P4, are allowed to have as many probes enabled as the hardware allows. This will be,
at most, the number of counters available on a processor. On such configurations,
multiple probes can be enabled at any one time.

Probes are enabled by consumers on a first-come, first-served basis. When hardware
resources are fully utilized subsequent enablings will fail until resources become
available.

cpc Probe Creation
Like the profile provider, the cpc provider creates probes dynamically on an as-
needed basis. Thus, the desired cpc probe might not appear in a listing of all probes
but the probe will be created when it is explicitly enabled. You can use dtrace -l -
P cpc for listing all the cpc probes.

Specifying a small event overflow count for frequently occurring events, such as cycle
count and number of instructions executed, renders the system unusable as a
processor would be continuously servicing performance counter overflow interrupts. To
prevent this situation, the smallest overflow count that can be specified for any probe
is set, by default, at 5000. This can be altered by adjusting the dcpc-min-overflow
variable in the /kernel/drv/dcpc.conf configuration file and then unloading and
reloading the dcpc driver.

Note:

Specify high frequency events such as instructions executed or cycle count.
For example, measuring busy cycles on a fully utilized 3GHz-processor with
a count of 50000 would generate approximately 65000 interrupts/sec. This
rate of interrupt delivery could degrade system performance to some degree.

cpc Probe and Existing Tools
The cpc provider has priority over per-LWP libcpc usage, that is cputrack, for access
to counters. In the same manner as cpustat, enabling probes causes all existing per-
LWP counter contexts to be invalidated. As long as enabled probes remain active, the
counters will remain unavailable to cputrack-type consumers.

Only one of cpustat and DTrace may use the counter hardware at any one time.
Ownership of the counters is given on a first-come, first-served basis.

Chapter 11
cpc Provider

11-4

Using the cpc Provider
Examples of cpc provider usage follow.

Example 11-1 Showing Application Instructions on an AMD Platform

The script displays instructions executed by applications on an AMD platform.

cpc:::FR_retired_x86_instr_w_excp_intr-user-10000
{
 @[execname] = count();
}

./user-insts.d
dtrace: script './user-insts.d' matched 1 probe
^C
[chop]
 init 138
 dtrace 175
 nis_cachemgr 179
 automountd 183
 intrd 235
 run-mozilla.sh 306
 thunderbird 316
 Xorg 453
 thunderbird-bin 2370
 sshd 8114

Example 11-2 Showing Kernel Cycle Usage on an AMD Platform

The following example shows a kernel profiled by cycle usage on an AMD platform.

cpc:::BU_cpu_clk_unhalted-kernel-10000
{
 @[func(arg0)] = count();
}

./kern-cycles.d
dtrace: script './kern-cycles.d' matched 1 probe
^C
[chop]
 genunix`vpm_sync_pages 478948
 genunix`vpm_unmap_pages 496626
 genunix`vpm_map_pages 640785
 unix`mutex_delay_default 916703
 unix`hat_kpm_page2va 988880
 tmpfs`rdtmp 991252
 unix`hat_page_setattr 1077717
 unix`page_try_reclaim_lock 1213379
 genunix`free_vpmap 1914810
 genunix`get_vpmap 2417896
 unix`page_lookup_create 3992197
 unix`mutex_enter 5595647
 unix`do_copy_fault_nta 27803554

Example 11-3 Describing User-Mode Cache Misses on an AMD Platform

This example describes user-mode L2 cache misses and the functions that generated the
cache misses on an AMD platform. The predicate ensures that you only sample function
names when the probe was fired by the brendan executable.

Chapter 11
cpc Provider

11-5

cpc:::BU_fill_req_missed_L2-all-0x7-10000
/execname == "brendan"/
{
 @[ufunc(arg1)] = count();
}

./brendan-l2miss.d
dtrace: script './brendan-l2miss.d' matched 1 probe
CPU ID FUNCTION:NAME
^C

 brendan`func_gamma 930
 brendan`func_beta 1578
 brendan`func_alpha 2945

You can have the same result with the following probe name format.

cpc:::BU_fill_req_missed_L2-all-umask_0x7-10000
 / execname == "brendan" /
 {
 @[ufunc(arg1)] = count();
 }

Example 11-4 Describing a Generic Event on an AMD Platform

This example describes a generic event PAPI_l2_dcm to indicate the interest in L2 data
cache misses instead of the platform event.

cpc:::PAPI_l2_dcm-all-10000
/execname == "brendan"/
{
 @[ufunc(arg1)] = count();
}

./brendan-generic-l2miss.d
dtrace: script './brendan-generic-l2miss.d' matched 1 probe
^C

 brendan`func_gamma 1681
 brendan`func_beta 2521
 brendan`func_alpha 5068

Example 11-5 Probing Offcore Events on an Intel Platform

The following example probes offcore event on an Intel platform:

cpc:::off_core_response_0-all-msr_offcore_0x3001-10000
 {
 @[execname] = count();
 }

 # ./off_core_event.d
 dtrace: script './off_core_event.d' matched 1 probe
 ^C

fmd 3
fsflush 36
sched 175

Example 11-6 Showing the Use of Multiple Attributes

Multiple attributes are allowed using a minus sign (-) between attributes.

Chapter 11
cpc Provider

11-6

The following example sets two attributes to probe L2 miss event in an AMD platform.

cpc:::BU_fill_req_missed_L2-all-umask_0x7-cmask_0x0-10000
 {
 @[execname] = count();
 }

 # ./l2miss.d
 dtrace: script './l2miss.d' matched 1 probe

automountd 1
dtrace 1
fmd 1
in.routed 1
netcfgd 1
nscd 1
sendmail 1
utmpd 1
kcfd 2
syslogd 2
uname 2
file 3
ls 3
sshd 4
zfs 9
bash 10
ksh93 10
ssh 22
fsflush 34
sched 68
beadm 146

cpc Stability
The cpc provider uses the stability mechanism of DTrace to describe its stabilities as shown
in the following table. For more information about the stability mechanism, see DTrace
Stability Mechanisms.

Table 11-1 Stability Mechanism for the cpc Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving CPU

Arguments Evolving Evolving Common

dtrace Provider
The dtrace provider provides several probes related to DTrace. You can use these probes to
initialize state before tracing begins, process state after tracing has completed, and handle
unexpected execution errors in other probes.

Chapter 11
dtrace Provider

11-7

BEGIN Probe
The BEGIN probe fires before any other probe. No other probe fires until all BEGIN
clauses are completed. You can use this probe to initialize any state that is required in
other probes. The following example shows how to use the BEGIN probe to initialize an
associative array to map between mmap protection bits and a textual representation.
For information about the mmap system call, see the mmap(2) man page.

BEGIN
{
 prot[0] = "---";
 prot[1] = "r--";
 prot[2] = "-w-";
 prot[3] = "rw-";
 prot[4] = "--x";
 prot[5] = "r-x";
 prot[6] = "-wx";
 prot[7] = "rwx";
}

syscall::mmap:entry
{
 printf("mmap with prot = %s", prot[arg2 & 0x7]);
}

The BEGIN probe fires in an unspecified context. This means that the output of stack
or ustack, and the value of context-specific variables (for example, execname), are all
arbitrary. These values should not be relied upon or interpreted to infer any meaningful
information. No arguments are defined for the BEGIN probe.

END Probe
The END probe fires after all other probes. This probe will not fire until all other probe
clauses have completed. This probe can be used to process state that has been
gathered or to format the output. Therefore, the END probe often uses the printa
action. You can use the BEGIN and END probes together to measure the total time spent
in tracing.

BEGIN
{
 start = timestamp;
}

/*
 * ... other tracing actions...
 */

END
{
 printf("total time: %d secs", (timestamp - start) / 1000000000);
}

For information about other uses of the END probe, see Data Normalization and printa
Action.

Chapter 11
dtrace Provider

11-8

https://docs.oracle.com/cd/E88353_01/html/E37841/mmap-2.html

No arguments are defined for the END probe. The context in which the END probe fires is
arbitrary.

When tracing with the bufpolicy option set to fill, adequate space is reserved to
accommodate any records traced in the END probe. For more information, see fill Policy and
END Probes.

Note:

The exit action causes tracing to stop and the END probe to fire. However, there is
some delay between the invocation of the exit action and the END probe firing. No
probes fire during this delay. After a probe invokes the exit action, the END probe is
not fired until the DTrace consumer determines that exit has been called and stops
tracing. The rate at which the exit status is checked can be set using the
statusrate option. For more information, see DTrace Options and Tunables.

ERROR Probe
The ERROR probe fires when a run-time error occurs in executing a clause for a DTrace probe.
For example, if a clause attempts to dereference a NULL pointer, the ERROR probe will fire, as
shown in the following example.

Example 11-7 Showing How to Record Errors

BEGIN
{
*(char *)NULL;
}

ERROR
{
printf("Hit an error!");
}

When you run this program, you will see the following output:

.dtrace -s ./error.d
dtrace: script './error.d' matched 2 probes
CPU ID FUNCTION:NAME
2 3 :ERROR Hit an error!
dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address
(0x0) in action #1 at DIF offset 12
dtrace: 1 error on CPU 2

The output shows that the ERROR probe fired, and also illustrates dtrace reporting the error.
dtrace has its own enabling of the ERROR probe to allow it to report errors. Use the ERROR
probe to customize error handling.

The arguments to the ERROR probe are as follows:

• arg1 – Enabled probe identifier (EPID) of the probe that caused the error

• arg2 – Index of the action that caused the fault

• arg3 – DIF offset into that action or -1 if not applicable

• arg4 – Fault type

Chapter 11
dtrace Provider

11-9

• arg5 – Value particular to the fault type

The following table describes the arg4 fault types and the value and its meaning for
the arg5.

Table 11-2 ERROR Probe Fault Types and Values

arg4 Value Description arg5 Meaning

DTRACEFLT_UNKNOWN Unknown fault type None

DTRACEFLT_BADADDR Access to unmapped or invalid address Address accessed

DTRACEFLT_BADALIGN Unaligned memory access Address accessed

DTRACEFLT_ILLOP Illegal or invalid operation None

DTRACEFLT_DIVZERO Integer divide by zero None

DTRACEFLT_NOSCRATC
H

Insufficient scratch space to satisfy scratch
allocation

None

DTRACEFLT_KPRIV Attempt to access a kernel address or
property without sufficient privileges

Address accessed or 0
if not applicable

DTRACEFLT_UPRIV Attempt to access a user address or
property without sufficient privileges

Address accessed or 0
if not applicable

DTRACEFLT_TUPOFLOW DTrace internal parameter stack overflow None

DTRACEFLT_BADSTACK Invalid user process stack Address of invalid stack
pointer

If the error actions taken in the ERROR probe cause an error, the error is dropped and
the ERROR probe is not recursively invoked.

dtrace Provider Stability
The dtrace provider uses the stability mechanism of DTrace to describe its stabilities
as shown in the following table. For more information about the stability mechanism,
see DTrace Stability Mechanisms.

Table 11-3 Stability Mechanism for dtrace

Element Name Stability Data Stability Dependency Class

Provider Stable Stable Common

Module Private Private Unknown

Function Private Private Unknown

Name Stable Stable Common

Arguments Stable Stable Common

fbt Provider
This section describes the Function Boundary Tracing (FBT) provider, which provides
probes associated with the entry to and return from most functions in the Oracle
Solaris kernel. A function is the fundamental unit of program text. In a well-designed

Chapter 11
fbt Provider

11-10

system, each function performs a discrete and well-defined operation on a specified object or
series of like objects. Therefore, even on the smallest Oracle Solaris systems, fbt provides
20,000 probes.

Similar to other DTrace providers, fbt has no probe effect when it is not explicitly enabled.
When enabled, fbt only induces a probe effect in probed functions. While the fbt
implementation is highly specific to the instruction set architecture, fbt has been
implemented on both SPARC and x86 platforms. For each instruction set, there are a small
number of functions that do not call other functions and are highly optimized by the compiler,
called leaf functions, that cannot be instrumented by fbt. Probes for these functions are not
present in DTrace.

Effective use of fbt probes requires knowledge of the operating system implementation.
Therefore, it is recommended that you use fbt only when developing kernel software or
when other providers are not sufficient. Other DTrace providers, including syscall, sched,
proc, and io, can be used to answer most system analysis questions without requiring
operating system implementation knowledge.

fbt Probes
fbt provides a probe at the boundary of most functions in the kernel. The boundary of a
function is crossed by entering the function and by returning from the function. fbt thus
provides two functions for every function in the kernel: one upon entry to the function, and
one upon return from the function. These probes are named entry and return, respectively.
The function name, and module name are specified as part of the probe. All fbt probes
specify a function name and module name.

fbt Probe Arguments
The following probe arguments are supported for the fbt provider.

fbt entry Probes
The arguments to entry probes are the same as the arguments to the corresponding
operating system kernel function. These arguments may be accessed in a typed fashion by
using the args[] array. These arguments may be accessed as int64_t's by using the arg0 ..
arg n variables.

fbt return Probes
While a given function only has a single point of entry, it may have many different points
where it returns to its caller. You are usually interested in either the value that a function
returned or the fact that the function returned at all rather than the specific return path taken.
fbt therefore collects a function's multiple return sites into a single return probe. If you want
to know the exact return path, you can examine the return probe args[0] value, which
indicates the offset in bytes of the returning instruction in the function text.

If the function has a return value, the return value is stored in args[1]. If a function does not
have a return value, args[1] is not defined.

Chapter 11
fbt Provider

11-11

Note:

Using the args[] array works provided that the probe description matches
either a single probe or several probes with the same return type. If the
probes have different return types, then an error message similar to the
following example is displayed:

dtrace: failed to compile script ./gdb.d: line 19: args[] may not be
referenced because probe description fbt:::return matches an unstable
set of probes

For probes with different return types, you might need to use the untyped
argn instead.

Using the fbt Provider
You can use fbt to easily explore the kernel's implementation. The following example
script records the first ioctl from any xclock process and then follows the subsequent
code path through the kernel.

/*
 * To make the output more readable, indent every function entry
 * and unindent every function return. This is done by setting the
 * "flowindent" option.
 */
#pragma D option flowindent

syscall::ioctl:entry
/execname == "xclock" && guard++ == 0/
{
 self->traceme = 1;
 printf("fd: %d", arg0);
}

fbt:::
/self->traceme/
{}

syscall::ioctl:return
/self->traceme/
{
 self->traceme = 0;
 exit(0);
}

Running this script results in output similar to the following example:

dtrace -s ./xioctl.d
dtrace: script './xioctl.d' matched 26254 probes
CPU FUNCTION
 0 => ioctl fd: 3
 0 -> ioctl
 0 -> getf
 0 -> set_active_fd
 0 <- set_active_fd
 0 <- getf
 0 -> fop_ioctl
 0 -> sock_ioctl

Chapter 11
fbt Provider

11-12

 0 -> strioctl
 0 -> job_control_type
 0 <- job_control_type
 0 -> strcopyout
 0 -> copyout
 0 <- copyout
 0 <- strcopyout
 0 <- strioctl
 0 <- sock_ioctl
 0 <- fop_ioctl
 0 -> releasef
 0 -> clear_active_fd
 0 <- clear_active_fd
 0 -> cv_broadcast
 0 <- cv_broadcast
 0 <- releasef
 0 <- ioctl
 0 <= ioctl

The output shows that an xclock process called ioctl on a file descriptor that appears to be
associated with a socket.

You can also use fbt when trying to understand kernel drivers. For example, the ssd driver
has many code paths by which EIO may be returned. fbt can be easily used to determine the
precise code path that resulted in an error condition, as shown in the following example:

fbt:ssd::return
/arg1 == EIO/
{
 printf("%s+%x returned EIO.", probefunc, arg0);
}

For more information about any one return of EIO, you might want to speculatively trace all
fbt probes, and then commitor discard based on the return value of a specific function. For
more information about speculative tracing, see Speculative Tracing in DTrace.

Alternatively, you can use fbt to understand the functions called within a specified module.
The following example lists all of the functions called in UFS:

dtrace -n fbt:ufs::entry'{@a[probefunc] = count()}'
dtrace: description 'fbt:ufs::entry' matched 353 probes
^C
 ufs_ioctl 1
 ufs_statvfs 1
 ufs_readlink 1
 ufs_trans_touch 1
 wrip 1
 ufs_dirlook 1
 bmap_write 1
 ufs_fsync 1
 ufs_iget 1
 ufs_trans_push_inode 1
 ufs_putpages 1
 ufs_putpage 1
 ufs_syncip 1
 ufs_write 1
 ufs_trans_write_resv 1
 ufs_log_amt 1
 ufs_getpage_miss 1
 ufs_trans_syncip 1
 getinoquota 1

Chapter 11
fbt Provider

11-13

 ufs_inode_cache_constructor 1
 ufs_alloc_inode 1
 ufs_iget_alloced 1
 ufs_iget_internal 2
 ufs_reset_vnode 2
 ufs_notclean 2
 ufs_iupdat 2
 blkatoff 3
 ufs_close 5
 ufs_open 5
 ufs_access 6
 ufs_map 8
 ufs_seek 11
 ufs_addmap 15
 rdip 15
 ufs_read 15
 ufs_rwunlock 16
 ufs_rwlock 16
 ufs_delmap 18
 ufs_getattr 19
 ufs_getpage_ra 24
 bmap_read 25
 findextent 25
 ufs_lockfs_begin 27
 ufs_lookup 46
 ufs_iaccess 51
 ufs_imark 92
 ufs_lockfs_begin_getpage 102
 bmap_has_holes 102
 ufs_getpage 102
 ufs_itimes_nolock 107
 ufs_lockfs_end 125
 dirmangled 498
 dirbadname 498

If you know the purpose or arguments of a kernel function, you can use fbt to
understand how or why the function is being called. For example, putnext takes a
pointer to a queue structure as its first member. The q_qinfo member of the queue
structure is a pointer to a qinit structure. The qi_minfo member of the qinit
structure has a pointer to a module_info structure, which contains the module name in
its mi_idname member. For more information, see putnext(9F), queue(9S), qinit(9S),
and module_info(9S) man pages.

The following example puts this information together by using the fbt probe in
putnext to track putnext calls by module name:

fbt::putnext:entry
{
 @calls[stringof(args[0]->q_qinfo->qi_minfo->mi_idname)] = count();
}

Running the preceding script results in output similar to the following example:

dtrace -s ./putnext.d
^C
 iprb

 1
 rpcmod

Chapter 11
fbt Provider

11-14

https://docs.oracle.com/cd/E88353_01/html/E37855/putnext-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37856/queue-9s.html
https://docs.oracle.com/cd/E88353_01/html/E37856/qinit-9s.html
https://docs.oracle.com/cd/E88353_01/html/E37856/module-info-9s.html

 1
 pfmod 1
 timod 2
 vpnmod 2
 pts 40
 conskbd 42
 kb8042 42
 tl 58
 arp 108
 tcp 126
 ptm 249
 ip 313
 ptem 340
 vuid2ps2 361
 ttcompat 412
 ldterm 413
 udp 569
 strwhead 624
 mouse8042 726

This example shows how to determine the processes that call the zio_wait function and how
long the processes run. Note that this example works even if zio_wait is a recursive function.

The script outputs a distribution graph that shows the amount of time each zio_wait process
runs while the DTrace script executes:

fbt::zio_wait:entry
{
 self->in[++self->count] = timestamp;
}

fbt::zio_wait:return
/self->count/
{
 this->count = self->count--;
 @waiters[execname] = quantize(timestamp - self->in[this->count]);
 self->in[this->count] = 0;
}

Use the dtrace -s zio_wait.d command to produce output similar to the following:

dtrace -s zio_wait.d
^C

 dtrace
 value ------------- Distribution ------------- count
 1024 | 0
 2048 |@@@@@@@@ 1
 4096 |@@@@@@@@@@@@@@@@ 2
 8192 |@@@@@@@@@@@@@@@@ 2
 16384 | 0

 zpool-rpool
 value ------------- Distribution ------------- count
 1024 | 0
 2048 |@@@ 1
 4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 10
 8192 |@@@ 1
 16384 | 0

 sched

Chapter 11
fbt Provider

11-15

 value ------------- Distribution ------------- count
 1024 | 0
 2048 |@@@ 1
 4096 |@@@@@@@@@@@ 4
 8192 |@@@ 1
 16384 | 0
 32768 | 0
 65536 | 0
 131072 |@@@ 1
 262144 |@@@ 1
 524288 | 0
 1048576 | 0
 2097152 | 0
 4194304 | 0
 8388608 | 0
 16777216 |@@@ 1
 33554432 | 0
 67108864 |@@@@@@@@@@@ 4
 134217728 | 0
 268435456 |@@@ 1
 536870912 | 0

fbt and Tail-Call Optimization
When one function ends by calling another function, the compiler can engage in tail-
call optimization, in which the function being called reuses the caller's stack frame.
This procedure is most commonly used in the SPARC architecture, where the compiler
reuses the caller's register window in the function being called in order to minimize
register window pressure.

The presence of tail-call optimization causes the return probe of the calling function to
fire before the entry probe of the called function. This ordering can lead to confusion.
For example, if you wanted to record all functions called from a particular function and
any functions that this function calls, you might use the following script:

fbt::foo:entry
{
 self->traceme = 1;
}

fbt:::entry
/self->traceme/
{
 printf("called %s", probefunc);
}

fbt::foo:return
/self->traceme/
{
 self->traceme = 0;
}

However, if foo ends in an optimized tail-call, the tail-called function, and therefore any
functions that it calls, will not be captured. The kernel cannot be dynamically de-
optimized, and DTrace does not engage in a lie about how code is structured.
Therefore, you must be aware of when tail-call optimization might be used.

Tail-call optimization is likely to be used in source code similar to the following
example:

Chapter 11
fbt Provider

11-16

 return (bar());

Tail-call optimization can also be used in a source code similar to the following example:

(void) bar();
 return;

Conversely, function source code that ends like the following example cannot have its call to
bar optimized, because the call to bar is not a tail-call:

bar();
 return (rval);

You can determine whether a call has been tail-call optimized using the following techniques:

• While running DTrace, trace arg0 of the return probe in question. arg0 contains the
offset of the returning instruction in the function.

• After DTrace has stopped, use mdb to look at the function. If the traced offset contains a
call to another function instead of an instruction to return from the function, the call has
been tail-call optimized.

Due to the instruction set architecture, tail-call optimization is far more common on SPARC
systems than on x86 systems. The following example uses mdb to discover tail-call
optimization in the kernel's dup function:

dtrace -q -n fbt::dup:return'{printf("%s+0x%x", probefunc, arg0);}'

While this command is running, run a program that performs a dup(2), such as a bash
process. The preceding command should provide output similar to the following example:

dup+0x10
^C

Now examine the function with mdb:

echo "dup::dis" | mdb -k
dup: sra %o0, 0, %o0
dup+4: mov %o7, %g1
dup+8: clr %o2
dup+0xc: clr %o1
dup+0x10: call -0x1278 <fcntl>
dup+0x14: mov %g1, %o7

The output shows that dup+0x10 is a call to the fcntl() function and not a ret instruction.
Therefore, the call to fcntl is an example of tail-call optimization.

fbt and Assembly Functions
You might observe functions that seem to enter but never return or vice versa. Such rare
functions are generally hand-coded assembly routines that branch to the middle of other
hand-coded assembly functions. These functions should not impede analysis: the branched-
to function must still return to the caller of the branched-from function. That is, if you enable
all FBT probes, you can see the entry to one function and the return from another function at
the same stack depth.

Chapter 11
fbt Provider

11-17

https://docs.oracle.com/cd/E88353_01/html/E37841/dup-2.html

fbt and Instruction Set Limitations
Some functions cannot be instrumented by fbt. The exact nature of those functions is
specific to the instruction set architecture.

x86 Limitations With fbt
Functions that do not create a stack frame on x86 systems cannot be instrumented by
fbt. Because the register set for x86 is extraordinarily small, most functions must put
data on the stack and therefore create a stack frame. However, some x86 functions do
not create a stack frame and therefore cannot be instrumented.

SPARC Limitations With fbt
FBT cannot instrument leaf routines hand-coded in assembly language on SPARC
systems. The majority of the kernel is written in C, and FBT can instrument all
functions written in C.

fbt and Breakpoint Interaction
fbt works by dynamically modifying kernel text. Because kernel breakpoints also work
by modifying kernel text, if a kernel breakpoint is placed at an entry or return site
before loading DTrace, fbt refuses to provide a probe for the function, even if the
kernel breakpoint is subsequently removed. If the kernel breakpoint is placed after
loading DTrace, both the kernel breakpoint and the DTrace probe will correspond to
the same point in text. In this situation, the breakpoint will trigger first, and then the
probe will fire when the debugger resumes the kernel. It is recommended that kernel
breakpoints not be used concurrently with DTrace. If breakpoints are required, use the
DTrace breakpoint action instead.

fbt and Module Loading
The Oracle Solaris kernel can dynamically load and unload kernel modules. When fbt
is loaded and a module is dynamically loaded, fbt automatically provides new probes
associated with the new module. If a loaded module has no enabled fbt probes, the
module may be unloaded; the corresponding probes will be destroyed as the module
is unloaded. If a loaded module has enabled fbt probes, the module is considered
busy, and cannot be unloaded.

FBT Stability Mechanism
The FBT provider uses stability mechanism of DTrace to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
DTrace Stability Mechanisms.

Table 11-4 Stability Mechanism for the fbt Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Chapter 11
fbt Provider

11-18

Table 11-4 (Cont.) Stability Mechanism for the fbt Provider

Element Name Stability Data Stability Dependency Class

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA

As FBT exposes the kernel implementation, nothing about it is Stable and the Module and
Function name and data stability are explicitly Private. The data stability for Provider and
Name are Evolving, but all other data stabilities are Private, which are artifacts of the current
implementation. The dependency class for FBT is ISA. While FBT is available on all current
instruction set architectures, there is no guarantee that FBT will be available on arbitrary
future instruction set architectures.

fileops Provider
The fileops provider makes the probes available pertaining to file operations such as open,
close, read, write and so on. These probes are not specific to any file system type, nor are
they dependent on I/O to external storage devices. For example, the fileops:::read probe
fires on any read from a file, regardless of whether the data comes from disk or is cached in
memory.

fileops Probes
The fileops provider probes fire on the successful completion of the operation. The probes
available in the fileops provider are as follows:

Probe Description

chmod Fires when the mode of a file is changed. The fileinfo_t structure corresponding
to the file is pointed to by args[0]. args[1] contains the latency of the operation.
args[2] contains the new file mode.

chown Fires when the ownership of a file is changed. The fileinfo_t structure
corresponding to the file is pointed to by args[0]. args[1] contains the latency of
the operation. args[2] contains the user ID of the new owner of the file.

chgrp Fires when the group ownership of a file is changed. The fileinfo_t structure
corresponding to the file is pointed to by args[0]. args[1] contains the latency of
the operation. args[2] contains the group ID of the new group owner of the
file.chgrp

chgrp Fires when the group ownership of a file is changed. The fileinfo_t structure
corresponding to the file is pointed to by args[0]. args[1] contains the latency of
the operation. args[2] contains the group ID of the new group owner of the file.

close Fires when an open file is closed. The fileinfo_t structure corresponding to the
file is pointed to by args[0]. args[1] contains the latency of the operation.

create Fires when a file is created. The fileinfo_t structure corresponding to the new
file is pointed to by args[0]. args[1] contains the latency of the operation.
args[2] contains the mode of the new file.

Chapter 11
fileops Provider

11-19

Probe Description

link Fires when a hard link is created to an existing file. The fileinfo_t structure
corresponding to the file is pointed to by args[0]. args[1] contains the latency of
the operation. args[2] contains the fileinfo_t corresponding to the new link.

mkdir Fires when a new directory is created. The fileinfo_t structure corresponding to
the file is pointed to by args[0]. args[1] contains the latency of the operation.
args[2] contains the mode of the new directory.

open Fires when an existing file is opened. The fileinfo_t structure corresponding to
the file is pointed to by args[0]. args[1] contains the latency of the operation.
args[2] contains open(2) flags.

When you call open(2) with theO_CREAT flag and the file does not exist, the
fileops:::create probe will fire first on creation of the file.

read Fires when a read is performed from an open file. The fileinfo_t structure
corresponding to the file is pointed to by args[0]. args[1] contains the latency of
the operation. args[2] contains the file offset. args[3] contains the requested
number of bytes. args[4] contains the actual number of bytes read.

readdir Fires when a directory is read. The fileinfo_t structure corresponding to the
directory is pointed to by args[0]. args[1] contains the latency of the operation.
args[2] contains the number of bytes read.

rename Fires when a file is renamed. The fileinfo_t structure corresponding to the
original file name is pointed to by args[0]. args[1] contains the latency of the
operation. args[2] contains the fileinfo_t corresponding to the new file name.

rmdir Fires when a directory is removed. The fileinfo_t structure corresponding to the
directory is pointed to by args[0]. args[1] contains the latency of the operation.

symlink Fires when a symbolic link to a file is created. The fileinfo_t structure
corresponding to the source file is pointed to by args[0]. args[1] contains the
latency of the operation. args[2] contains the string representing the target of the
symbolic link.

unlink Fires when a link to an existing file is destroyed. The fileinfo_t structure
corresponding to the file is pointed to by args[0]. args[1] contains the latency of
the operation.

write Fires when a write is performed to an open file. The fileinfo_t structure
corresponding to the file is pointed to by args[0]. args[1] contains the latency of
the operation. args[2] contains the file offset. args[3] contains the requested
number of bytes. args[4] contains the actual number of bytes actually written.

For more information, see io fileinfo_t Structure structure.

fileops Probe Arguments
The following table lists the argument types for the fileops probes.

Table 11-5 Argument Types in the fileops Probes

Probe args[0] args[1] args[2] args[3] args[4]
chmod fileinfo_t * hrtime_t mode_t NA NA

chgrp fileinfo_t * hrtime_t gid_t NA NA

Chapter 11
fileops Provider

11-20

Table 11-5 (Cont.) Argument Types in the fileops Probes

Probe args[0] args[1] args[2] args[3] args[4]
chown fileinfo_t * hrtime_t uid_t NA NA

close fileinfo_t * hrtime_t NA NA NA

create fileinfo_t * hrtime_t mode_t NA NA

link fileinfo_t * hrtime_t fileinfo_t * NA NA

mkdir fileinfo_t * hrtime_t mode_t NA NA

open fileinfo_t * hrtime_t int NA NA

read fileinfo_t * hrtime_t off_t ssize_t ssize_t
readdir fileinfo_t * hrtime_t ssize_t NA NA

rename fileinfo_t * hrtime_t fileinfo_t * NA NA

rmdir fileinfo_t * hrtime_t NA NA NA

symlink fileinfo_t * hrtime_t string NA NA

unlink fileinfo_t * hrtime_t NA NA NA

write fileinfo_t * hrtime_t off_t ssize_t ssize_t

Using the fileops read Probe
Example 11-8 Displaying Read Latencies With the read Probe

You can use the read probe to observe read latencies on different file system types. For
example:

fileops:::read
{
 @[args[0]->fi_fs] = quantize(args[1]);
}

Running the example script on a server for several seconds generates an output similar to
the following example:

dtrace -s ./read-latency-by-fs.d
dtrace: script './read-latency-by-fs.d' matched 1 probe
^C

 tmpfs
 value ------------- Distribution ------------- count
 64 | 0
 128 |@@@@@@@@@ 2
 256 |@@@@ 1
 512 | 0
 1024 | 0
 2048 | 0
 4096 | 0
 8192 |@@@@@@@@@@@@@@@@@@ 4
 16384 |@@@@@@@@@ 2
 32768 | 0

 procfs

Chapter 11
fileops Provider

11-21

 value ------------- Distribution ------------- count
 1024 | 0
 2048 |@@@@@@@ 2
 4096 | 0
 8192 |@@@@@@@@@@@@@@@@@@ 5
 16384 |@@@@@@@@@@@@@@@ 4
 32768 | 0

 nfs3
 value ------------- Distribution ------------- count
 128 | 0
 256 |@@@@ 6
 512 |@@@ 5
 1024 |@@@@@ 7
 2048 |@@@@@@@@@@@@@@ 21
 4096 |@@@@@@@ 10
 8192 |@@@@@@@@ 12
 16384 | 0

 sockfs
 value ------------- Distribution ------------- count
 128 | 0
 256 |@@@@@ 16
 512 |@@@@@@@@ 27
 1024 |@@@@@@@ 24
 2048 |@@@@@@@@@@@ 38
 4096 |@@ 8
 8192 |@@@@@@@ 23
 16384 | 1
 32768 | 0
 65536 | 0
 131072 | 0
 262144 | 0
 524288 | 0
 1048576 | 0
 2097152 | 1
 4194304 | 0

 fifofs
 value ------------- Distribution ------------- count
 32 | 0
 64 | 1
 128 |@@@ 8
 256 |@@@@@ 13
 512 |@@ 6
 1024 |@@ 4
 2048 |@@ 4
 4096 |@@@@@@@ 18
 8192 |@ 2
 16384 |@@@ 8
 32768 | 1
 65536 |@ 3
 131072 | 0
 262144 | 0
 524288 |@ 2
 1048576 | 1
 2097152 |@@ 6
 4194304 |@@@@@@@ 17
 8388608 |@ 2
 16777216 | 0
 33554432 | 1

Chapter 11
fileops Provider

11-22

 67108864 | 1
 134217728 | 0

 zfs
 value ------------- Distribution ------------- count
 256 | 0
 512 |@ 85
 1024 |@@ 275
 2048 |@ 116
 4096 |@@@@@@ 982
 8192 |@@@@@@@@@@@@ 1963
 16384 | 72
 32768 | 34
 65536 | 2
 131072 | 39
 262144 | 3
 524288 | 0
 1048576 | 53
 2097152 |@@ 351
 4194304 |@@@@@@@@@ 1360
 8388608 |@@@@@@ 1011
 16777216 | 18
 33554432 | 6
 67108864 | 2
 134217728 | 3
 268435456 | 2
 536870912 | 0

In this example, you can see that memory-resident file systems such as tmpfs and pseudo-
file systems such as procfs satisfy read requests very quickly. You can also see that file
systems such as zfs have a bi-modal distribution. Reads that are satisfied from the in-
memory cache happen very quickly and the reads that must go to disk are orders of
magnitude slower.

Example 11-9 Displaying the Distribution of Write Sizes With the write Probe

You can use the write probe to observe the distribution of write sizes on the system,
independent of file system type. For example:

fileops:::write
{
 @ = quantize(args[4]);
}

Running this briefly on a small server generates an output similar to the following:

dtrace -s ./write-size.d
dtrace: script './write-size.d' matched 1 probe
^C

 value ------------- Distribution ------------- count
 -1 | 0
 0 | 2
 1 |@@@@@@@@@@ 190
 2 | 5
 4 |@ 16
 8 |@ 20
 16 |@ 24
 32 |@@@@ 80
 64 |@@@@@@@@@@@@@ 253

Chapter 11
fileops Provider

11-23

 128 |@@@@@ 96
 256 |@@ 48
 512 | 3
 1024 |@@ 34
 2048 | 2
 4096 | 0
 8192 | 3
 16384 | 0

fileops Stability
The fileops provider uses stability mechanism of DTrace to describe its stabilities as
shown in the following table. For more information about the stability mechanism, see
DTrace Stability Mechanisms.

Table 11-6 fileops Provider Stability

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

fpuinfo Provider
The fpuinfo provider includes probes that correspond to the simulation of floating-
point instructions on SPARC microprocessors. While most floating-point instructions
are executed in hardware, some floating-point operations trap into the operating
system for simulation. The conditions under which floating-point operations require
operating system simulation are specific to a microprocessor implementation. The
operations that require simulation are rare. However, if an application uses one of
these operations frequently, the effect on performance could be severe. The fpuinfo
provider enables rapid investigation of floating-point simulation seen by using the
kstat2 and the fpu_info kernel statistic or trapstat and the fp-xcp-other trap. For
more information, see trapstat(8).

fpuinfo Probes
The fpuinfo provider makes available a probe for each type of floating-point
instruction that can be simulated. The fpuinfo provider has a Name Stability of CPU;
the names of the probes are specific to a microprocessor implementation, and might
not be available on different microprocessors within the same family.

The List of fpuinfo Probes lists the fpuinfo probes and the instructions which are
simulated by the kernel when a specific probe is fired.

Chapter 11
fpuinfo Provider

11-24

https://docs.oracle.com/cd/E88353_01/html/E72487/trapstat-8.html

Table 11-7 List of fpuinfo Probes

Probe Instruction

fpu_sim_fitoq fitoq
fpu_sim_fitod fitod
fpu_sim_fitos fitos
fpu_sim_fxtoq fxtoq
fpu_sim_fxtod fxtod
fpu_sim_fxtos fxtos
fpu_sim_fqtox fqtox
fpu_sim_fdtox fdtox
fpu_sim_fstox fstox
fpu_sim_fqtoi fqtoi
fpu_sim_fdtoi fdtoi
fpu_sim_fstoi fstoi
fpu_sim_fsqrtq fsqrtq
fpu_sim_fsqrtd fsqrtd
fpu_sim_fsqrts fsqrts
fpu_sim_fcmpeq fcmpeq
fpu_sim_fcmped fcmped
fpu_sim_fcmpes fcmpes
fpu_sim_fcmpq fcmpq
fpu_sim_fcmpd fcmpd
fpu_sim_fcmps fcmps
fpu_sim_fdivq fdivq
fpu_sim_fdivd fdivd
fpu_sim_fdivs fdivs
fpu_sim_fdmulx fdmulx
fpu_sim_fsmuld fsmuld
fpu_sim_fmulq fmulq
fpu_sim_fmuld fmuld
fpu_sim_fmuls fmuls
fpu_sim_fsubq fsubq
fpu_sim_fsubd fsubd
fpu_sim_fsubs fsubs
fpu_sim_faddq faddq
fpu_sim_faddd faddd
fpu_sim_fadds fadds

Chapter 11
fpuinfo Provider

11-25

Table 11-7 (Cont.) List of fpuinfo Probes

Probe Instruction

fpu_sim_fnegd fnegd
fpu_sim_fnegq fneqq
fpu_sim_fnegs fnegs
fpu_sim_fabsd fabsd
fpu_sim_fabsq fabsq
fpu_sim_fabss fabss
fpu_sim_fmovd fmovd
fpu_sim_fmovq fmovq
fpu_sim_fmovs fmovs
fpu_sim_fmovr fmovr
fpu_sim_fmovcc fmovcc

fpuinfo Probe Arguments
There are no arguments to fpuinfo probes.

fpuinfo Stability
The fpuinfo provider uses stability mechanism of DTrace to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
DTrace Stability Mechanisms.

Table 11-8 Stability Mechanism for the fpuinfo Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving CPU

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving CPU

Arguments Evolving Evolving CPU

io Provider
The io provider makes available probes related to disk input and output. The io
provider enables quick exploration of behavior observed through I/O monitoring tools
such as iostat. For example, using the io provider, you can understand I/O by
device, by I/O type, by I/O size, by process, by application name, by file name, or by
file offset.

Chapter 11
io Provider

11-26

io Probes
The io probes are the following:

start
Fires when an I/O request is about to be made either to a peripheral device or to an NFS
server. The bufinfo_t corresponding to the I/O request is pointed to by args[0]. The
devinfo_t of the device to which the I/O is being issued is pointed to by args[1]. The
fileinfo_t of the file that corresponds to the I/O request is pointed to by args[2]. Note that
file information availability depends on the filesystem making the I/O request. See
fileinfo_t for more information.

done
Fires after an I/O request has been fulfilled. The bufinfo_t corresponding to the I/O request
is pointed to by args[0]. The done probe fires after the I/O completes, but before completion
processing has been performed on the buffer. As a result B_DONE is not set in b_flags at the
time the done probe fires. The devinfo_t of the device to which the I/O was issued is pointed
to by args[1]. The fileinfo_t of the file that corresponds to the I/O request is pointed to by
args[2].

wait-start
Fires immediately before a thread begins to wait pending completion of a given I/O request.
The bufinfo_t structure corresponding to the I/O request for which the thread will wait is
pointed to by args[0]. The devinfo_t of the device to which the I/O was issued is pointed to
by args[1]. The fileinfo_t of the file that corresponds to the I/O request is pointed to by
args[2]. Some time after the wait-start probe fires, the wait-done probe will fire in the same
thread.

wait-done
Fires when a thread is done waiting for the completion of a given I/O request. The bufinfo_t
corresponding to the I/O request for which the thread will wait is pointed to by args[0]. The
devinfo_t of the device to which the I/O was issued is pointed to by args[1]. The
fileinfo_t of the file that corresponds to the I/O request is pointed to by args[2]. The
wait-done probe fires only after the wait-start probe has fired in the same thread.

Note that the io probes fire for all I/O requests to peripheral devices, and for all file read and
file write requests to an NFS server. Requests for metadata from an NFS server, for example,
do not trigger io probes due to a readdir() request.

io Probe Arguments
The argument types for the io probes are listed in io Probe Arguments. The arguments are
described starting with io bufinfo_t Structure.

Table 11-9 io Probe Arguments

Probe args[0] args[1] args[2]
start bufinfo_t * devinfo_t * fileinfo_t *
done bufinfo_t * devinfo_t * fileinfo_t *
wait-start bufinfo_t * devinfo_t * fileinfo_t *

Chapter 11
io Provider

11-27

Table 11-9 (Cont.) io Probe Arguments

Probe args[0] args[1] args[2]
wait-done bufinfo_t * devinfo_t * fileinfo_t *

Each io probe has arguments consisting of a pointer to a bufinfo_t structure, a
pointer to a devinfo_t, and a pointer to a fileinfo_t. These structures are described
in greater detail in the following section.

io bufinfo_t Structure
The bufinfo_t structure is the abstraction that describes an I/O request. The buffer
corresponding to an I/O request is pointed to by args[0] in the start, done, wait-
start, and wait-done probes. The bufinfo_t structure definition is as follows:

typedef struct bufinfo {
 int b_flags; /* flags */
 size_t b_bcount; /* number of bytes */
 caddr_t b_addr; /* buffer address */
 uint64_t b_blkno; /* expanded block # on device */
 uint64_t b_lblkno; /* block # on device */
 size_t b_resid; /* # of bytes not transferred */
 size_t b_bufsize; /* size of allocated buffer */
 caddr_t b_iodone; /* I/O completion routine */
 int b_error; /* expanded error field */
 dev_t b_edev; /* extended device */
 } bufinfo_t;

The b_flags member indicates the state of the I/O buffer, and consists of a bitwise-or
of different state values. The valid state values are the following:

B_DONE
Indicates that the data transfer has completed.

B_ERROR
Indicates an I/O transfer error. It is set in conjunction with the b_error field.

B_PAGEIO
Indicates that the buffer is being used in a paged I/O request. See the description of
the b_addr field for more information.

B_PHYS
Indicates that the buffer is being used for physical (direct) I/O to a user data area.

B_READ
Indicates that data is to be read from the peripheral device into main memory.

B_WRITE
Indicates that the data is to be transferred from main memory to the peripheral device.

B_ASYNC
The I/O request is asynchronous, and will not be waited upon. The wait-start and
wait-done probes do not fire for asynchronous I/O requests. Note that some I/Os

Chapter 11
io Provider

11-28

directed to be asynchronous might not have B_ASYNC set: the asynchronous I/O subsystem
might implement the asynchronous request by having a separate worker thread perform a
synchronous I/O operation.

The following describes the other fields in the bufinfo structure:

b_bcount
Is the number of bytes to be transferred as part of the I/O request.

b_addr
Is the virtual address of the I/O request, unless B_PAGEIO is set. The address is a kernel
virtual address unless B_PHYS is set, in which case it is a user virtual address. If B_PAGEIO is
set, the b_addr field contains kernel private data. Exactly one of B_PHYS and B_PAGEIO can
be set, or neither flag will be set.

b_lblkno
Identifies which logical block on the device is to be accessed. The mapping from a logical
block to a physical block (such as the cylinder, track, and so on) is defined by the device.

b_resid
Is set to the number of bytes not transferred because of an error.

b_bufsize
Contains the size of the allocated buffer.

b_iodone
Identifies a specific routine in the kernel that is called when the I/O is complete.

b_error
May hold an error code returned from the driver in the event of an I/O error. b_error is set in
conjunction with the B_ERROR bit set in the b_flags member.

b_edev
Contains the major and minor device numbers of the device accessed. Consumers may use
the D subroutines getmajor and getminor to extract the major and minor device numbers
from the b_edev field.

io devinfo_t Structure
The devinfo_t structure provides information about a device. The devinfo_t structure
corresponding to the destination device of an I/O is pointed to by args[1] in the start, done,
wait-start, and wait-done probes. The members of devinfo_t are as follows:

typedef struct devinfo {
 int dev_major; /* major number */
 int dev_minor; /* minor number */
 int dev_instance; /* instance number */
 string dev_name; /* name of device */
 string dev_statname; /* name of device + instance/minor */
 string dev_pathname; /* path name of device */
} devinfo_t;

The dev_major field is the major number of the device. See getmajor(9F) for more
information.

The dev_minor field is the minor number of the device. See getminor(9F) for more
information.

Chapter 11
io Provider

11-29

The dev_instance field is the instance number of the device. The instance of a device
is different from the minor number. The minor number is an abstraction managed by
the device driver. The instance number is a property of the device node. You can
display device node instance numbers with prtconf command. For more information,
see the prtconf(8) man page.

The dev_name field is the name of the device driver that manages the device. You can
display device driver names with the -D option to prtconf(8).

The dev_statname field is the name of the device as reported by iostat. This name
also corresponds to the name of a kernel statistic as reported by the kstat2
command. This field is provided so that aberrant iostat or kstat2 output can be
quickly correlated to actual I/O activity. For more information, see the kstat2(9S) man
page.

The dev_pathname field is the full path of the device. This path may be specified as an
argument to prtconf to obtain detailed device information. The path specified by
dev_pathname includes components expressing the device node, the instance number,
and the minor node. However, all three of these elements are not necessarily
expressed in the statistics name. For some devices, the statistics name consists of the
device name and the instance number. For other devices, the name consists of the
device name and the number of the minor node. As a result, two devices that have the
same dev_statname may differ in dev_pathname.

io fileinfo_t Structure
The fileinfo_t structure provides information about a file. The file to which an I/O
corresponds is pointed to by args[2] in the start, done, wait-start, and wait-done
probes. The presence of file information is contingent upon the filesystem providing
this information when dispatching I/O requests. Some filesystems, especially third-
party filesystems, might not provide this information. Also, I/O requests might emanate
from a filesystem for which no file information exists. For example, any I/O to
filesystem metadata will not be associated with any one file. Finally, some highly
optimized filesystems might aggregate I/O from disjoint files into a single I/O request.
In this case, the filesystem might provide the file information either for the file that
represents the majority of the I/O or for the file that represents some of the I/O.
Alternately, the filesystem might provide no file information at all in this case.

The definition of the fileinfo_t structure is as follows:

typedef struct fileinfo {
 string fi_name; /* name (basename of fi_pathname) */
 string fi_dirname; /* directory (dirname of fi_pathname) */
 string fi_pathname; /* full pathname */
 offset_t fi_offset; /* offset within file */
 string fi_fs; /* filesystem */
 string fi_mount; /* mount point of file system */
} fileinfo_t;

The fi_name field contains the name of the file but does not include any directory
components. If no file information is associated with an I/O, the fi_name field will be
set to the string <none>. In some rare cases, the path name associated with a file
might be unknown. In this case, the fi_name field will be set to the string <unknown>.

Chapter 11
io Provider

11-30

https://docs.oracle.com/cd/E88353_01/html/E72487/prtconf-8.html
https://docs.oracle.com/cd/E88353_01/html/E37856/kstat2-9s.html

The fi_dirname field contains only the directory component of the file name. As with
fi_name, this string may be set to <none> if no file information is present, or <unknown> if the
path name associated with the file is not known.

The fi_pathname field contains the full path name to the file. As with fi_name, this string may
be set to <none> if no file information is present, or <unknown> if the path name associated
with the file is not known.

The fi_offset field contains the offset within the file, or -1 if either file information is not
present or if the offset is otherwise unspecified by the filesystem.

Using the io Provider
The following example script displays pertinent information for every I/O as it is issued:

#pragma D option quiet

BEGIN
{
 printf("%10s %58s %2s\n", "DEVICE", "FILE", "RW");
}

io:::start
{
 printf("%10s %58s %2s\n", args[1]->dev_statname,
 args[2]->fi_pathname, args[0]->b_flags & B_READ ? "R" : "W");
}

The output of the example when cold-starting Acrobat Reader on an x86 laptop system
resembles the following example:

dtrace -s ./iosnoop.d
 DEVICE FILE RW
 cmdk0 /opt/Acrobat4/bin/acroread R
 cmdk0 /opt/Acrobat4/bin/acroread R
 cmdk0 <unknown> R
 cmdk0 /opt/Acrobat4/Reader/AcroVersion R
 cmdk0 <unknown> R
 cmdk0 <unknown> R
 cmdk0 <none> R
 cmdk0 <unknown> R
 cmdk0 <none> R
 cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R
 cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R
 cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R
 cmdk0 <none> R
 cmdk0 <unknown> R
 cmdk0 <unknown> R
 cmdk0 <unknown> R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 <none> R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

Chapter 11
io Provider

11-31

 cmdk0 <unknown> R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
 cmdk0 <none> R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
 cmdk0 <unknown> R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R
 cmdk0 <none> R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R
 ...

The <none> entries in the output indicate that the I/O does not correspond to the data
in any particular file: these I/Os are due to metadata of one form or another. The
<unknown> entries in the output indicate that the path name for the file is not known.
This situation is relatively rare.

You could make the example script slightly more sophisticated by using an associative
array to track the time spent on each I/O, as shown in the following example:

#pragma D option quiet

BEGIN
{
 printf("%10s %58s %2s %7s\n", "DEVICE", "FILE", "RW", "MS");
}

io:::start
{
 start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
 this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
 printf("%10s %58s %2s %3d.%03d\n", args[1]->dev_statname,
 args[2]->fi_pathname, args[0]->b_flags & B_READ ? "R" : "W",
 this->elapsed / 10000000, (this->elapsed / 1000) % 1000);
 start[args[0]->b_edev, args[0]->b_blkno] = 0;
}

The output of the preceding example while hot-plugging a USB storage device into an
otherwise idle x86 laptop system is shown in the following example:

dtrace -s ./iotime.d
 DEVICE FILE RW MS
 cmdk0 /kernel/drv/scsa2usb R 24.781
 cmdk0 /kernel/drv/scsa2usb R 25.208
 cmdk0 /var/adm/messages W 25.981
 cmdk0 /kernel/drv/scsa2usb R 5.448
 cmdk0 <none> W 4.172
 cmdk0 /kernel/drv/scsa2usb R 2.620

Chapter 11
io Provider

11-32

 cmdk0 /var/adm/messages W 0.252
 cmdk0 <unknown> R 3.213
 cmdk0 <none> W 3.011
 cmdk0 <unknown> R 2.197
 cmdk0 /var/adm/messages W 2.680
 cmdk0 <none> W 0.436
 cmdk0 /var/adm/messages W 0.542
 cmdk0 <none> W 0.339
 cmdk0 /var/adm/messages W 0.414
 cmdk0 <none> W 0.344
 cmdk0 /var/adm/messages W 0.361
 cmdk0 <none> W 0.315
 cmdk0 /var/adm/messages W 0.421
 cmdk0 <none> W 0.349
 cmdk0 <none> R 1.524
 cmdk0 <unknown> R 3.648
 cmdk0 /usr/lib/librcm.so.1 R 2.553
 cmdk0 /usr/lib/librcm.so.1 R 1.332
 cmdk0 /usr/lib/librcm.so.1 R 0.222
 cmdk0 /usr/lib/librcm.so.1 R 0.228
 cmdk0 /usr/lib/librcm.so.1 R 0.927
 cmdk0 <none> R 1.189
 ...
 cmdk0 /usr/lib/devfsadm/linkmod R 1.110
 ...

You can make several observations about the mechanics of the system based on this output.
First, note the long time to perform the first several I/Os, which took about 25 milliseconds
each. This time might have been due to the cmdk0 device having been power managed on
the laptop. Second, observe the I/O due to the scsa2usb driver loading to deal with USB
Mass Storage device. Third, note the writes to /var/adm/messages as the device is reported.
Finally, observe the reading of the device link generators (the files ending in link.so), which
presumably deal with the new device.

The io provider enables in-depth understanding of iostat output. Assume you observe
iostat output similar to the following example:

extended device statistics
device r/s w/s kr/s kw/s wait actv svc_t %w %b
cmdk0 8.0 0.0 399.8 0.0 0.0 0.0 0.8 0 1
sd0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
sd2 0.0 109.0 0.0 435.9 0.0 1.0 8.9 0 97
nfs1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
nfs2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

You can use the iotime.d script to see these I/Os as they happen, as shown in the following
example:

DEVICE FILE RW MS
 sd2 /mnt/archives.tar W 0.856
 sd2 /mnt/archives.tar W 0.729
 sd2 /mnt/archives.tar W 0.890
 sd2 /mnt/archives.tar W 0.759
 sd2 /mnt/archives.tar W 0.884
 sd2 /mnt/archives.tar W 0.746
 sd2 /mnt/archives.tar W 0.891
 sd2 /mnt/archives.tar W 0.760
 sd2 /mnt/archives.tar W 0.889
 cmdk0 /export/archives/archives.tar R 0.827
 sd2 /mnt/archives.tar W 0.537

Chapter 11
io Provider

11-33

 sd2 /mnt/archives.tar W 0.887
 sd2 /mnt/archives.tar W 0.763
 sd2 /mnt/archives.tar W 0.878
 sd2 /mnt/archives.tar W 0.751
 sd2 /mnt/archives.tar W 0.884
 sd2 /mnt/archives.tar W 0.760
 sd2 /mnt/archives.tar W 3.994
 sd2 /mnt/archives.tar W 0.653
 sd2 /mnt/archives.tar W 0.896
 sd2 /mnt/archives.tar W 0.975
 sd2 /mnt/archives.tar W 1.405
 sd2 /mnt/archives.tar W 0.724
 sd2 /mnt/archives.tar W 1.841
 cmdk0 /export/archives/archives.tar R 0.549
 sd2 /mnt/archives.tar W 0.543
 sd2 /mnt/archives.tar W 0.863
 sd2 /mnt/archives.tar W 0.734
 sd2 /mnt/archives.tar W 0.859
 sd2 /mnt/archives.tar W 0.754
 sd2 /mnt/archives.tar W 0.914
 sd2 /mnt/archives.tar W 0.751
 sd2 /mnt/archives.tar W 0.902
 sd2 /mnt/archives.tar W 0.735
 sd2 /mnt/archives.tar W 0.908
 sd2 /mnt/archives.tar W 0.753

This output appears to show that the file archives.tar is being read from cmdk0 in /
export/archives, and being written to device sd2 in /mnt. This existence of two files
named archives.tar that are being operated on separately in parallel seems unlikely.
To investigate further, you can aggregate on device, application, process ID and bytes
transferred, as shown in the following example:

#pragma D option quiet

io:::start
{
 @[args[1]->dev_statname, execname, pid] = sum(args[0]->b_bcount);
}

END
{
 printf("%10s %20s %10s %15s\n", "DEVICE", "APP", "PID", "BYTES");
 printa("%10s %20s %10d %15@d\n", @);
}

Running this script for a few seconds results in output similar to the following example:

dtrace -s ./whoio.d
^C
 DEVICE APP PID BYTES
 cmdk0 cp 790 1515520
 sd2 cp 790 1527808

This output shows that this activity is a copy of the file archives.tar from one device
to another. This conclusion leads to another natural question: is one of these devices
faster than the other? Which device acts as the limiter on the copy? To answer these
questions, you need to know the effective throughput of each device rather than the
number of bytes per second each device is transferring. You can determine the
throughput with the following example script:

Chapter 11
io Provider

11-34

#pragma D option quiet

io:::start
{
 start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
 /*
 * You want to get an idea of the throughput to this device in KB/sec.
 * What you have, however, is nanoseconds and bytes. That is what you want
 * to calculate:
 *
 * bytes / 1024
 * ------------------------
 * nanoseconds / 1000000000
 *
 * But you cannot calculate this using integer arithmetic without losing
 * precision (the denominator, for one, is between 0 and 1 for nearly
 * all I/Os). So restate the fraction, and cancel:
 *
 * bytes 1000000000 bytes 976562
 * --------- * ------------- = --------- * -------------
 * 1024 nanoseconds 1 nanoseconds
 *
 * This is easy to calculate using integer arithmetic; this is what
 * you do below.
 */
 this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
 @[args[1]->dev_statname, args[1]->dev_pathname] =
 quantize((args[0]->b_bcount * 976562) / this->elapsed);
 start[args[0]->b_edev, args[0]->b_blkno] = 0;
}

END
{
 printa(" %s (%s)\n%@d\n", @);
}

Running the example script for several seconds yields the following output:

sd2 (/devices/pci@0,0/pci1179,1@1d/storage@2/disk@0,0:r)

 value ------------- Distribution ------------- count
 32 | 0
 64 | 3
 128 | 1
 256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2257
 512 | 1
 1024 | 0

 cmdk0 (/devices/pci@0,0/pci-ide@1f,1/ide@0/cmdk@0,0:a)

 value ------------- Distribution ------------- count
 128 | 0
 256 | 1
 512 | 0
 1024 | 2
 2048 | 0

Chapter 11
io Provider

11-35

 4096 | 2
 8192 |@@@@@@@@@@@@@@@@@@ 172
 16384 |@@@@@ 52
 32768 |@@@@@@@@@@@ 108
 65536 |@@@ 34
 131072 | 0

The output shows that sd2 is clearly the limiting device. The sd2 throughput is between
256K/sec and 512K/sec, while cmdk0 is delivering I/O at anywhere from 8 MB/second
to over 64 MB/second. The script prints out both the name as seen in iostat, and the
full path of the device. To find out more about the device, you could specify the device
path to prtconf, as shown in the following example:

prtconf -v /devices/pci@0,0/pci1179,1@1d/storage@2/disk@0,0
disk, instance #2 (driver name: sd)
 Driver properties:
 name='lba-access-ok' type=boolean dev=(29,128)
 name='removable-media' type=boolean dev=none
 name='pm-components' type=string items=3 dev=none
 value='NAME=spindle-motor' + '0=off' + '1=on'
 name='pm-hardware-state' type=string items=1 dev=none
 value='needs-suspend-resume'
 name='ddi-failfast-supported' type=boolean dev=none
 name='ddi-kernel-ioctl' type=boolean dev=none
 Hardware properties:
 name='inquiry-revision-id' type=string items=1
 value='1.04'
 name='inquiry-product-id' type=string items=1
 value='STORAGE DEVICE'
 name='inquiry-vendor-id' type=string items=1
 value='Generic'
 name='inquiry-device-type' type=int items=1
 value=00000000
 name='usb' type=boolean
 name='compatible' type=string items=1
 value='sd'
 name='lun' type=int items=1
 value=00000000
 name='target' type=int items=1
 value=00000000

As the emphasized terms indicate, this device is a removable USB storage device.

The examples in this section have explored all I/O requests. However, you might only
be interested in one type of request. The following example tracks the directories in
which writes are occurring, along with the applications performing the writes:

#pragma D option quiet

io:::start
/args[0]->b_flags & B_WRITE/
{
 @[execname, args[2]->fi_dirname] = count();
}

END
{
 printf("%20s %51s %5s\n", "WHO", "WHERE", "COUNT");
 printa("%20s %51s %5@d\n", @);
}

Chapter 11
io Provider

11-36

Running this example script on a desktop workload for a period of time yields some
interesting results, as shown in the following example output:

dtrace -s ./whowrite.d
^C
 WHO WHERE COUNT
 su /var/adm 1
 fsflush /etc 1
 fsflush / 1
 fsflush /var/log 1
 fsflush /export/bmc/lisa 1
 esd /export/bmc/.phoenix/default/78cxczuy.slt/Cache 1
 fsflush /export/bmc/.phoenix 1
 esd /export/bmc/.phoenix/default/78cxczuy.slt 1
 vi /var/tmp 2
 vi /etc 2
 cat <none> 2
 bash / 2
 vi <none> 3
 xterm /var/adm 3
 fsflush /export/bmc 7
 MozillaFirebird <none> 8
 vim /export/bmc 9
 MozillaFirebird /export/bmc 10
 fsflush /var/adm 11
 devfsadm /dev 14
 ksh <none> 71
 ksh /export/bmc 71
 fsflush /export/bmc/.phoenix/default/78cxczuy.slt 119
 MozillaFirebird /export/bmc/.phoenix/default/78cxczuy.slt 119
 fsflush <none> 211
 MozillaFirebird /export/bmc/.phoenix/default/78cxczuy.slt/Cache 591
 fsflush /export/bmc/.phoenix/default/78cxczuy.slt/Cache 666
 sched <none> 2385

As the output indicates, virtually all writes are associated with the Mozilla Firebird cache. The
writes labeled <none> are likely due to writes associated with the UFS log, writes that are
themselves induced by other writes in the filesystem. See the ufs(4FS) man page for details
on logging. This example shows how to use the io provider to discover a problem at a much
higher layer of software. In this case, the script has revealed a configuration problem: the
web browser would induce much less I/O (and quite likely none at all) if its cache were in a
directory in a tmpfs filesystem.

The previous examples have used only the start and done probes. You can use the wait-
start and wait-done probes to understand why applications block for I/O – and for how long.
The following example script uses both io probes and sched probes to derive CPU time
compared to I/O wait time for the StarOffice software.

#pragma D option quiet

sched:::on-cpu
/execname == "soffice.bin"/
{
 self->on = vtimestamp;
}

sched:::off-cpu
/self->on/
{
 @time["<on cpu>"] = sum(vtimestamp - self->on);

Chapter 11
io Provider

11-37

https://docs.oracle.com/cd/E88353_01/html/E37851/ufs-4fs.html

 self->on = 0;
}

io:::wait-start
/execname == "soffice.bin"/
{
 self->wait = timestamp;
}

io:::wait-done
/self->wait/
{
 @io[args[2]->fi_name] = sum(timestamp - self->wait);
 @time["<I/O wait>"] = sum(timestamp - self->wait);
 self->wait = 0;
}

END
{
 printf("Time breakdown (milliseconds):\n");
 normalize(@time, 1000000);
 printa(" %-50s %15@d\n", @time);

 printf("\nI/O wait breakdown (milliseconds):\n");
 normalize(@io, 1000000);
 printa(" %-50s %15@d\n", @io);
}

Running the example script during a cold start of the StarOffice software yields the
following output:

Time breakdown (milliseconds):
 <on cpu> 3634
 <I/O wait> 13114

I/O wait breakdown (milliseconds):
 soffice.tmp 0
 Office 0
 unorc 0
 sbasic.cfg 0
 en 0
 smath.cfg 0
 toolboxlayout.xml 0
 sdraw.cfg 0
 swriter.cfg 0
 Linguistic.dat 0
 scalc.cfg 0
 Views.dat 0
 Store.dat 0
 META-INF 0
 Common.xml.tmp 0
 afm 0
 libsimreg.so 1
 xiiimp.so.2 3
 outline 4
 Inet.dat 6
 fontmetric 6
 ...

 libj641si_g.so 46
 libX11.so.4 46

Chapter 11
io Provider

11-38

 liblng641si.so 48
 swriter.db 53
 libwrp641si.so 53
 liblocaledata_ascii.so 56
 libi18npool641si.so 65
 libdbtools2.so 69
 ofa64101.res 74
 libxcr641si.so 82

 libsot641si.so 86
 libcppuhelper3C52.so 98
 libfwl641si.so 100
 libsb641si.so 104
 libcomphelp2.so 105
 libxo641si.so 106
 libucpfile1.so 110
 libcppu.so.3 111
 sw64101.res 114
 libdb-3.2.so 119
 libtk641si.so 126
 libdtransX11641si.so 127
 libgo641si.so 132
 libfwe641si.so 150
 libi18n641si.so 152
 libfwi641si.so 154
 libso641si.so 173
 libpsp641si.so 186
 libtl641si.so 189
 <unknown> 189
 libucbhelper1C52.so 195
 libutl641si.so 213
 libofa641si.so 216
 libfwk641si.so 229
 libsvl641si.so 261
 libcfgmgr2.so 368
 libsvt641si.so 373
 libvcl641si.so 741
 libsvx641si.so 885
 libsfx641si.so 993
 <none> 1096
 libsw641si.so 1365
 applicat.rdb 1580

As this output shows, much of the cold StarOffice start time is due to waiting for I/O. 13.1
seconds waiting for I/O as opposed to 3.6 seconds on CPU. Running the script on a warm
start of the StarOffice software reveals that page caching has eliminated the I/O time, as
shown in the following example output:

Time breakdown (milliseconds):
 <I/O wait> 0
 <on cpu> 2860

I/O wait breakdown (milliseconds):
 temp 0
 soffice.tmp 0
 <unknown> 0
 Office 0

The cold start output shows that the file applicat.rdb accounts for more I/O wait time than
any other file. This result is presumably due to many I/Os to the file. To explore the I/Os
performed to this file, you can use the following D script:

Chapter 11
io Provider

11-39

io:::start
/execname == "soffice.bin" && args[2]->fi_name == "applicat.rdb"/
{
 @ = lquantize(args[2]->fi_offset != -1 ?
 args[2]->fi_offset / (1000 * 1024) : -1, 0, 1000);
}

This script uses the fi_offset field of the fileinfo_t structure to understand which
parts of the file are being accessed, at the granularity of a megabyte. Running this
script during a cold start of the StarOffice software results in output similar to the
following example:

dtrace -s ./applicat.d
dtrace: script './applicat.d' matched 4 probes
^C

 value ------------- Distribution ------------ count
 < 0 | 0
 0 |@@@ 28
 1 |@@ 17
 2 |@@@@ 35
 3 |@@@@@@@@@ 72
 4 |@@@@@@@@@@ 78
 5 |@@@@@@@@ 65
 6 | 0

This output indicates that only the first six megabytes of the file are accessed, perhaps
because the file is six megabytes in size. The output also indicates that the entire file
is not accessed. If you wanted to improve the cold start time of StarOffice, you might
want to understand the access pattern of the file. If the needed sections of the file
could be largely contiguous, one way to improve StarOffice cold start time might be to
have a scout thread run ahead of the application, inducing the I/O to the file before it's
needed. This approach is straightforward if the file is accessed using mmap. However,
the approximate 1.6 seconds that this strategy would gain in cold start time does not
merit the additional complexity and maintenance burden in the application. Either way,
the data gathered with the io provider allows a precise understanding of the benefit
that such work could ultimately deliver.

io Stability
The io provider uses stability mechanism of DTrace to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
DTrace Stability Mechanisms.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

Chapter 11
io Provider

11-40

lockstat Provider
The lockstat provider provides probes that can be used to discern lock contention statistics,
or to understand virtually any aspect of locking behavior. The lockstat command is actually
a DTrace consumer that uses the lockstat provider to gather its raw data. For more
information, see the lockstat(8) man page.

lockstat Overview
The lockstat provider provides two kinds of probes: contention-event probes and hold-event
probes.

Contention-event probes correspond to contention on a synchronization primitive. These
probes fire when a thread is forced to wait for a resource to become available. Oracle Solaris
is generally optimized for the non-contention case, so prolonged contention is not expected.
You must use these probes to understand cases of contention. Because contention is
relatively rare, enabling contention-event probes does not substantially affect performance.

Hold-event probes correspond to acquiring, releasing, or otherwise manipulating a
synchronization primitive. You can use these probes to answer arbitrary questions about the
way synchronization primitives are manipulated. Because Oracle Solaris acquires and
releases synchronization primitives very often, on the order of millions of times per second
per CPU on a busy system, hold-event probes has a much higher probe effect than
contention-event probes. While the probe effect induced by enabling them can be substantial,
it is not pathological; they may still be enabled with confidence on production systems.

The lockstat provider provides probes that correspond to the different synchronization
primitives in Oracle Solaris.

lockstat Adaptive Lock Probes
Adaptive locks enforce mutual exclusion to a critical section, and may be acquired in most
contexts in the kernel. Because adaptive locks have few context restrictions, they comprise
the vast majority of synchronization primitives in the Oracle Solaris kernel. These locks are
adaptive in their behavior with respect to contention: when a thread attempts to acquire a
held adaptive lock, it will determine if the owning thread is currently running on a CPU. If the
owner is running on another CPU, the acquiring thread will spin. If the owner is not running,
the acquiring thread will block.

The following lists the lockstat probes pertaining to adaptive locks. For each probe, arg0
contains a pointer to the kmutex_t structure that represents the adaptive lock.

adaptive-acquire
Hold-event probe that fires immediately after an adaptive lock is acquired

adaptive-block
Contention-event probe that fires after a thread that has blocked on a held adaptive mutex
has reawakened and has acquired the mutex. If both probes are enabled, adaptive-block
fires before adaptive-acquire. At most one of adaptive-block and adaptive-spin will fire
for a single lock acquisition. arg1 for adaptive-block contains the sleep time in
nanoseconds.

Chapter 11
lockstat Provider

11-41

https://docs.oracle.com/cd/E88353_01/html/E72487/lockstat-8.html

adaptive-release
Hold-event probe that fires immediately after an adaptive lock is released.

adaptive-spin
Contention-event probe that fires after a thread that has spun on a held adaptive
mutex has successfully acquired the mutex. If both are enabled, adaptive-spin fires
before adaptive-acquire. At most one of adaptive-spin and adaptive-block will
fire for a single lock acquisition. arg1 for adaptive-spin contains the spin time: the
number of nanoseconds that were spent in the spin loop before the lock was
acquired.

lockstat Spin Lock Probes
Threads cannot block in some contexts in the kernel, such as high-level interrupt
context and any context manipulating dispatcher state. In such contexts, you cannot
use adaptive locks. Instead you must use spin locks to effect mutual exclusion to
critical sections. As the name implies, the behavior of spin locks in the presence of
contention is to spin until the lock is released by the owning thread. The following
describes the probes related to spin locks.

spin-acquire
Hold-event probe that fires immediately after a spin lock is acquired.

spin-release
Hold-event probe that fires immediately after a spin lock is released.

spin-spin
Contention-event probe that fires after a thread that has spun on a held spin lock has
successfully acquired the spin lock. If both are enabled, spin-spin fires before spin-
acquire. arg1 for spin-spin contains the spin time. Spin time is the number of
nanoseconds that were spent in the spin loop before the lock was acquired.

Adaptive locks are much more common than spin locks. The following script displays
the total count for the adaptive and spin lock types to provide data to support this
observation.

lockstat:::adaptive-acquire
/execname == "date"/
{
 @locks["adaptive"] = count();
}

lockstat:::spin-acquire
/execname == "date"/
{
 @locks["spin"] = count();
}

Run this script in one window, and the date command in another window. When you
terminate the DTrace script, you will see output similar to the following example:

dtrace -s ./whatlock.d
dtrace: script './whatlock.d' matched 5 probes
^C
spin 26
adaptive 2981

Chapter 11
lockstat Provider

11-42

As this output indicates, over 99 percent of the locks acquired in running the date command
are adaptive locks. It may be surprising that so many locks are acquired in doing something
as simple as a date. The large number of locks is a natural artifact of the fine-grained locking
required of an extremely scalable system like the Oracle Solaris kernel.

lockstat Thread Locks
Thread locks are a special kind of spin lock that are used to lock a thread for purposes of
changing thread state. Thread lock hold events are available as spin lock hold-event probes,
that is spin-acquire and spin-release, but contention events have their own probe specific
to thread locks.

thread-spin is the contention-event probe that fires after a thread has spun on a thread lock.
Like other contention-event probes, if both the contention-event probe and the hold-event
probe are enabled, thread-spin will fire before spin-acquire. Unlike other contention-event
probes, however, thread-spin fires before the lock is actually acquired. As a result, multiple
thread-spin probe firings may correspond to a single spin-acquire probe firing.

lockstat Reader/Writer Lock Probes
Reader/writer locks enforce a policy of allowing multiple readers or a single writer, but not
both to be in a critical section. These locks are typically used for structures that are searched
more frequently than they are modified and for which there is substantial time in the critical
section. If critical section times are short, readers/writer locks will implicitly serialize over the
shared memory used to implement the lock, giving them no advantage over adaptive locks.
See rwlock(9F) for more details about the readers/writer locks.

The probes pertaining to readers/writer locks are described in the following list. For each
probe, arg0 contains a pointer to the krwlock_t structure that represents the adaptive lock.

rw-acquire
Hold-event probe that fires immediately after a readers/writer lock is acquired. arg1 contains
the constant RW_READER if the lock was acquired as a reader, and RW_WRITER if the lock was
acquired as a writer.

rw-block
Contention-event probe that fires after a thread that has blocked on a held readers/writer
lock has reawakened and has acquired the lock. arg1 contains the length of time (in
nanoseconds) that the current thread had to sleep to acquire the lock. arg2 contains the
constant RW_READER if the lock was acquired as a reader, and RW_WRITER if the lock was
acquired as a writer. arg3 and arg4 contain more information on the reason for blocking.
arg3 is non-zero if and only if the lock was held as a writer when the current thread blocked.
arg4 contains the readers count when the current thread blocked. If both the rw-block and
rw-acquire probes are enabled, rw-block fires before rw-acquire.

rw-upgrade
Hold-event probe that fires after a thread has successfully upgraded a readers/writer lock
from a reader to a writer. Upgrades do not have an associated contention event because
they are only possible through a non-blocking interface, rw_tryupgrade(9F).

rw-downgrade
Hold-event probe that fires after a thread had downgraded its ownership of a readers/writer
lock from writer to reader. Downgrades do not have an associated contention event because
it succeeds without contention.

Chapter 11
lockstat Provider

11-43

https://docs.oracle.com/cd/E88353_01/html/E37855/rwlock-9f.html

rw-release
Hold-event probe that fires immediately after a readers/writer lock is released. arg1
contains the constant RW_READER if the released lock was held as a reader, and
RW_WRITER if the released lock was held as a writer. Due to upgrades and
downgrades, the lock may not have been released as it was acquired.

lockstat Stability
The lockstat provider uses stability mechanism of DTrace to describe its stabilities as
shown in the following table. For more information about the stability mechanism, see
DTrace Stability Mechanisms.

Table 11-10 lockstat Provider Stability

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common

mib Provider
The mib provider makes available probes that correspond to counters in the Oracle
Solaris management information bases (MIBs). MIB counters are used by the simple
network management protocol (SNMP) that allow remote monitoring of heterogeneous
networking entities. You can also view the counters with the kstat2 and netstat
commands. For more information, see the kstat2(8) and netstat(8) man pages. The
mib provider facilitates quick exploration of aberrant networking behavior that is
observed using either remote or local networking monitors.

mib Probes
The mib provider makes available probes for counters from several MIBs. The
protocols that export MIBs instrumented by the mib provider are listed in Descriptions
With Links to Specific mib Probes. The table includes a reference to documentation
that specifies some or all of the MIB, the name of the kernel statistic that may be used
to access the running counts using the kstat2 -g uri and a reference to the table
that has a complete definition of the probes. All MIB counters are also available using
the -s option to netstat.

Table 11-11 Descriptions With Links to Specific mib Probes

Protocol MIB Description kstat2 URIs MIB Probes Table

ICMP RFC 1213 /mib2/ip/
icmp/*

ICMP mib Probes

IP RFC 4293 /mib2/ip/ip/* IP mib Probes

IPsec - /mib2/ip/ip/* IPsec mib Probes

Chapter 11
mib Provider

11-44

https://docs.oracle.com/cd/E88353_01/html/E72487/kstat2-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/netstat-8.html
https://www.rfc-editor.org/info/rfc1213
https://www.rfc-editor.org/info/rfc4293

Table 11-11 (Cont.) Descriptions With Links to Specific mib Probes

Protocol MIB Description kstat2 URIs MIB Probes Table

IPv6 RFC 4293 - IPv6 mib Probes

SCTP SCTP MIB (Internet
draft)

/mib2/sctp/
sctp/*

SCTP mib Probes

TCP RFC 1213 /
mib2/tcp/tcp/
*

TCP mib Probes

UDP RFC 1213 /
mib2/udp/udp/
*

UDP mib Probes

Table 11-12 ICMP mib Probes

Probe Description

icmpInAddrMaskReps Fires whenever an ICMP Address Mask Reply message is received.

icmpInAddrMasks Fires whenever an ICMP Address Mask Request message is received.

icmpInBadRedirects Fires whenever an ICMP Redirect message is received that is determined to
be malformed in some way (unknown ICMP code, sender or target off-link,
and the like).

icmpInCksumErrs Fires whenever an ICMP message with a bad checksum is received.

icmpInDestUnreachs Fires whenever an ICMP Destination Unreachable message is received.

icmpInEchoReps Fires whenever an ICMP Echo Reply message is received.

icmpInEchos Fires whenever an ICMP Echo request message is received.

icmpInErrors Fires whenever an ICMP message is received that is determined to have an
ICMP-specific error, such as bad ICMP checksum and bad length.

icmpInFragNeeded Fires whenever an ICMP Destination Unreachable (Fragmentation Needed)
message is received, indicating that a sent packet was lost because it was
larger than some MTU and the Do not Fragment flag was set.

icmpInMsgs Fires whenever an ICMP message is received. Whenever this probe fires,
the icmpInErrors probe may also fire if the message is determined to
have an ICMP-specific error.

icmpInOverflows Fires whenever an ICMP message is received, but the message is
subsequently dropped due to lack of buffer space.

icmpInParmProbs Fires whenever an ICMP Parameter Problem message is received.

icmpInRedirects Fires whenever an ICMP Redirect message is received.

icmpInSrcQuenchs Fires whenever an ICMP Source Quench message is received.

icmpInTimeExcds Fires whenever an ICMP Time Exceeded message is received.

icmpInTimestampRep
s

Fires whenever an ICMP Timestamp Reply message is received.

icmpInTimestamps Fires whenever an ICMP Timestamp request message is received.

icmpInUnknowns Fires whenever an ICMP message of unknown type is received.

Chapter 11
mib Provider

11-45

https://www.rfc-editor.org/info/rfc4293
https://www.rfc-editor.org/info/rfc1213
https://www.rfc-editor.org/info/rfc1213

Table 11-12 (Cont.) ICMP mib Probes

Probe Description

icmpOutAddrMaskRep
s

Fires whenever an ICMP Address Mask Reply message is sent.

icmpOutDestUnreach
s

Fires whenever an ICMP Destination Unreachable message is sent.

icmpOutDrops Fires whenever an outbound ICMP message is dropped for some reason
(such as memory allocation failure, broadcast/multicast source or
destination, and the like).

icmpOutEchoReps Fires whenever an ICMP Echo Reply message is sent.

icmpOutErrors Fires whenever an ICMP message is not sent due to problems discovered
within ICMP, such as a lack of buffers. This probe will not fire if errors are
discovered outside the ICMP layer, such as the inability of IP to route the
resulting datagram.

icmpOutFragNeeded Fires whenever an ICMP Destination Unreachable (Fragmentation Needed)
message is sent.

icmpOutMsgs Fires whenever an ICMP message is sent. Whenever this probe fires, the
icmpOutErrors probe might also fire if the message is determined to have
ICMP-specific errors.

icmpOutParmProbs Fires whenever an ICMP Parameter Problem message is sent.

icmpOutRedirects Fires whenever an ICMP Redirect message is sent. For a host, this probe
will never fire, because hosts do not send redirects.

icmpOutTimeExcds Fires whenever an ICMP Time Exceeded message is sent.

icmpOutTimestampRe
ps

Fires whenever an ICMP Timestamp Reply message is sent.

Table 11-13 IP mib Probes

Probe Description

ipForwDatagrams Fires whenever a datagram is received that does not have this
machine as its final IP destination, and an attempt is made to find a
route to forward the datagram to that final destination. On machines
that do not act as IP gateways, this probe will only fire for those
packets that are source-routed through this machine, and for which the
source-route option processing was successful.

ipForwProhibits Fires whenever a datagram is received that does not have this
machine as its final IP destination, but because the machine is not
permitted to act as a router, no attempt is made to find a route to
forward the datagram to that final destination.

ipFragCreates Fires whenever an IP datagram fragment is generated as a result of
fragmentation.

ipFragFails Fires whenever an IP datagram is discarded because it could not be
fragmented, for example, because fragmentation was required and the
Do not Fragment flag was set.

ipFragOKs Fires whenever an IP datagram has been successfully fragmented.

Chapter 11
mib Provider

11-46

Table 11-13 (Cont.) IP mib Probes

Probe Description

ipInCksumErrs Fires whenever an input datagram is discarded due to a bad IP header
checksum.

ipInDelivers Fires whenever an input datagram is successfully delivered to IP user
protocols, including ICMP.

ipInDiscards Fires whenever an input IP datagram is discarded for reasons
unrelated to the packet, such as for lack of buffer space. This probe
does not fire for any datagram discarded while awaiting reassembly.

ipInHdrErrors Fires whenever an input datagram is discarded due to an error in its IP
header, including a version number mismatch, a format error, an
exceeded time-to-live, an error discovered in processing IP options,
and the like.

ipInIPv6 Fires whenever an IPv6 packet erroneously arrives on an IPv4 queue.

ipInReceives Fires whenever a datagram is received from an interface, even if that
datagram is received in error.

ipInUnknownProtos Fires whenever a locally addressed datagram is received successfully
but subsequently discarded because of an unknown or unsupported
protocol.

ipOutDiscards Fires whenever an output IP datagram is discarded for reasons
unrelated to the packet (for example, for lack of buffer space). This
probe will fire for a packet counted in the ipForwDatagrams MIB
counter if the packet meets such a (discretionary) discard criterion.

ipOutIPv6 Fires whenever an IPv6 packet is sent over an IPv4 connection.

ipOutNoRoutes Fires whenever an IP datagram is discarded because no route could
be found to transmit it to its destination. This probe will fire for a packet
counted in the ipForwDatagrams MIB counter if the packet meets this
"no-route" criterion. This probe will also fire for any datagrams which
cannot be routed because all default gateways are down.

ipOutRequests Fires whenever an IP datagram is supplied to IP for transmission from
local IP user protocols (include ICMP). Note that this probe will not fire
for any packet counted in the ipForwDatagrams MIB counter.

ipOutSwitchIPv6 Fires whenever a connection changes from using IPv4 to using IPv6
as its IP protocol.

ipReasmDuplicates Fires whenever the IP reassembly algorithm determines that an IP
fragment contains only previously received data.

ipReasmFails Fires whenever any failure is detected by the IP reassembly algorithm.
This probe does not necessarily fire for every discarded IP fragment
because some algorithms, notably the algorithm in RFC 815, can lose
track of fragments by combining them as they are received.

ipReasmOKs Fires whenever an IP datagram is successfully reassembled.

ipReasmPartDups Fires whenever the IP reassembly algorithm determines that an IP
fragment contains both some previously received data and some new
data.

ipReasmReqds Fires whenever an IP fragment is received that needs to be
reassembled.

Chapter 11
mib Provider

11-47

https://www.rfc-editor.org/info/rfc815

Table 11-14 IPsec mib Probes

Probe Description

ipsecInFailed Fires whenever a received packet is dropped because it fails to match
the specified IPsec policy.

ipsecInSucceeded Fires whenever a received packet matches the specified IPsec policy
and processing is allowed to continue.

Table 11-15 IPv6 mib Probes

Probe Description

ipv6ForwProhibits Fires whenever an IPv6 datagram is received that does
not have this machine as its final IPv6 destination, but
because the machine is not permitted to act as a router,
no attempt is made to find a route to forward the
datagram to that final destination.

ipv6IfIcmpBadHoplimit Fires whenever an ICMPv6 neighbor discovery protocol
message is received that is found to have a Hop Limit
less than the defined maximum. Such messages might
not have originated from a neighbor, and are therefore
discarded.

ipv6IfIcmpInAdminProhibs Fires whenever an ICMPv6 Destination Unreachable
(Communication Administratively Prohibited) message is
received.

ipv6IfIcmpInBadNeighborAdver
tisements

Fires whenever an ICMPv6 Neighbor Advertisement
message is received that is malformed in some way.

ipv6IfIcmpInBadNeighborSolic
itations

Fires whenever an ICMPv6 Neighbor Solicit message is
received that is malformed in some way.

ipv6IfIcmpInBadRedirects Fires whenever an ICMPv6 Redirect message is
received that is malformed in some way.

ipv6IfIcmpInDestUnreachs Fires whenever an ICMPv6 Destination Unreachable
message is received.

ipv6IfIcmpInEchoReplies Fires whenever an ICMPv6 Echo Reply message is
received.

ipv6IfIcmpInEchos Fires whenever an ICMPv6 Echo request message is
received.

ipv6IfIcmpInErrors Fires whenever an ICMPv6 message is received that is
determined to have an ICMPv6-specific error (such as
bad ICMPv6 checksum, bad length, and the like).

ipv6IfIcmpInGroupMembBadQuer
ies

Fires whenever an ICMPv6 Group Membership Query
message is received that is malformed in some way.

ipv6IfIcmpInGroupMembBadRepo
rts

Fires whenever an ICMPv6 Group Membership Report
message is received that is malformed in some way.

ipv6IfIcmpInGroupMembOurRepo
rts

Fires whenever an ICMPv6 Group Membership Report
message is received.

ipv6IfIcmpInGroupMembQueries Fires whenever an ICMPv6 Group Membership Query
message is received.

Chapter 11
mib Provider

11-48

Table 11-15 (Cont.) IPv6 mib Probes

Probe Description

ipv6IfIcmpInGroupMembReducti
ons

Fires whenever an ICMPv6 Group Membership
Reduction message is received.

ipv6IfIcmpInGroupMembRespons
es

Fires whenever an ICMPv6 Group Membership
Response message is received.

ipv6IfIcmpInGroupMembTotal Fires whenever an ICMPv6 multicast listener discovery
message is received.

ipv6IfIcmpInMsgs Fires whenever an ICMPv6 message is received. When
this probe fires, the ipv6IfIcmpInErrors probe might
also fire if the message has an ICMPv6-specific error.

ipv6IfIcmpInNeighborAdvertis
ements

Fires whenever an ICMPv6 Neighbor Advertisement
message is received.

ipv6IfIcmpInNeighborSolicits Fires whenever an ICMPv6 Neighbor Solicit message is
received.

ipv6IfIcmpInOverflows Fires whenever an ICMPv6 message is received, but
that message is subsequently dropped due to lack of
buffer space.

ipv6IfIcmpInParmProblems Fires whenever an ICMPv6 Parameter Problem
message is received.

ipv6IfIcmpInRedirects Fires whenever an ICMPv6 Redirect message is
received.

ipv6IfIcmpInRouterAdvertisem
ents

Fires whenever an ICMPv6 Router Advertisement
message is received.

ipv6IfIcmpInRouterSolicits Fires whenever an ICMPv6 Router Solicit message is
received.

ipv6IfIcmpInTimeExcds Fires whenever an ICMPv6 Time Exceeded message is
received.

ipv6IfIcmpOutAdminProhibs Fires whenever an ICMPv6 Destination Unreachable
(Communication Administratively Prohibited) message is
sent.

ipv6IfIcmpOutDestUnreachs Fires whenever an ICMPv6 Destination Unreachable
message is sent.

ipv6IfIcmpOutEchoReplies Fires whenever an ICMPv6 Echo Reply message is
sent.

ipv6IfIcmpOutEchos Fires whenever an ICMPv6 Echo message is sent.

ipv6IfIcmpOutErrors Fires whenever an ICMPv6 message is not sent due to
problems discovered within ICMPv6, such as a lack of
buffers. This probe will not fire if errors are discovered
outside the ICMPv6 layer, such as the inability of IPv6 to
route the resulting datagram.

ipv6IfIcmpOutGroupMembQuerie
s

Fires whenever an ICMPv6 Group Membership Query
message is sent.

ipv6IfIcmpOutGroupMembReduct
ions

Fires whenever an ICMPv6 Group Membership
Reduction message is sent.

Chapter 11
mib Provider

11-49

Table 11-15 (Cont.) IPv6 mib Probes

Probe Description

ipv6IfIcmpOutGroupMembRespon
ses

Fires whenever an ICMPv6 Group Membership
Response message is sent.

ipv6IfIcmpOutMsgs Fires whenever an ICMPv6 message is sent. When this
probe fires, the ipv6IfIcmpOutErrors probe might
also fire if the message has ICMPv6-specific errors.

ipv6IfIcmpOutNeighborAdverti
sements

Fires whenever an ICMPv6 Neighbor Advertisement
message is sent.

ipv6IfIcmpOutNeighborSolicit
s

Fires whenever an ICMPv6 Neighbor Solicitation
message is sent.

ipv6IfIcmpOutParmProblems Fires whenever an ICMPv6 Parameter Problem
message is sent.

ipv6IfIcmpOutPktTooBigs Fires whenever an ICMPv6 Packet Too Big message is
sent.

ipv6IfIcmpOutRedirects Fires whenever an ICMPv6 Redirect message is sent.
For a host, this probe will never fire, because hosts do
not send redirects.

ipv6IfIcmpOutRouterAdvertise
ments

Fires whenever an ICMPv6 Router Advertisement
message is sent.

ipv6IfIcmpOutRouterSolicits Fires whenever an ICMPv6 Router Solicit message is
sent.

ipv6IfIcmpOutTimeExcds Fires whenever an ICMPv6 Time Exceeded message is
sent.

ipv6InAddrErrors Fires whenever an input datagram is discarded because
the IPv6 address in their IPv6 header's destination field
is not a valid address to be received by this entity. This
probe will fire for invalid addresses (for example, ::0) and
for unsupported addresses (for example, addresses with
unallocated prefixes). For machines that are not
configured to act as IPv6 routers and therefore do not
forward datagrams, this probe will fire for datagrams
discarded because the destination address was not a
local address.

ipv6InDelivers Fires whenever an input datagram is successfully
delivered to IPv6 user-protocols (including ICMPv6).

ipv6InDiscards Fires whenever an input IPv6 datagram is discarded for
reasons unrelated to the packet (for example, for lack of
buffer space). This probe does not fire for any datagram
discarded while awaiting reassembly.

ipv6InHdrErrors Fires whenever an input datagram is discarded due to
an error in its IPv6 header, including a version number
mismatch, a format error, an exceeded hop count, an
error discovered in processing IPv6 options, and the
like.

ipv6InIPv4 Fires whenever an IPv4 packet erroneously arrives on
an IPv6 queue.

ipv6InMcastPkts Fires whenever a multicast IPv6 packet is received.

Chapter 11
mib Provider

11-50

Table 11-15 (Cont.) IPv6 mib Probes

Probe Description

ipv6InNoRoutes Fires whenever a routed IPv6 datagram is discarded
because no route could be found to transmit it to its
destination. This probe will only fire for packets that
have originated externally.

ipv6InReceives Fires whenever an IPv6 datagram is received from an
interface, even if that datagram is received in error.

ipv6InTooBigErrors Fires whenever a fragment is received that is larger than
the maximum fragment size.

ipv6InTruncatedPkts Fires whenever an input datagram is discarded because
the datagram frame did not carry enough data.

ipv6InUnknownProtos Fires whenever a locally-addressed IPv6 datagram is
received successfully but subsequently discarded
because of an unknown or unsupported protocol.

ipv6OutDiscards Fires whenever an output IPv6 datagram is discarded
for reasons unrelated to the packet (for example, for lack
of buffer space). This probe will fire for a packet counted
in the ipv6OutForwDatagrams MIB counter if the
packet meets such a (discretionary) discard criterion.

ipv6OutForwDatagrams Fires whenever a datagram is received that does not
have this machine as its final IPv6 destination, and an
attempt is made to find a route to forward the datagram
to that final destination. On a machine that does not act
as an IPv6 router, this probe will only fire for those
packets that are source-routed through the machine,
and for which the source-route option processing was
successful.

ipv6OutFragCreates Fires whenever an IPv6 datagram fragment is generated
as a result of fragmentation.

ipv6OutFragFails Fires whenever an IPv6 datagram is discarded because
it could not be fragmented, for example, because its Do
not Fragment flag was set.

ipv6OutFragOKs Fires whenever an IPv6 datagrams has been
successfully fragmented.

ipv6OutIPv4 Fires whenever an IPv6 packet is sent over an IPv4
connection.

ipv6OutMcastPkts Fires whenever a multicast packet is sent.

ipv6OutNoRoutes Fires whenever an IPv6 datagram is discarded because
no route could be found to transmit it to its destination.
This probe will not fire for packets that have originated
externally.

ipv6OutRequests Fires whenever an IPv6 datagram is supplied to IPv6 for
transmission from local IPv6 user protocols (including
ICMPv6). This probe will not fire for any packet counted
in the ipv6ForwDatagrams MIB counter.

ipv6OutSwitchIPv4 Fires whenever a connection changes from using IPv6
to using IPv4 as its IP protocol.

Chapter 11
mib Provider

11-51

Table 11-15 (Cont.) IPv6 mib Probes

Probe Description

ipv6ReasmDuplicates Fires whenever the IPv6 reassembly algorithm
determines that an IPv6 fragment contains only
previously received data.

ipv6ReasmFails Fires whenever a failure is detected by the IPv6
reassembly algorithm. This probe does not necessarily
fire for every discarded IPv6 fragment since some
algorithms can lose track of fragments by combining
them as they are received.

ipv6ReasmOKs Fires whenever an IPv6 datagram is successfully
reassembled.

ipv6ReasmPartDups Fires whenever the IPv6 reassembly algorithm
determines that an IPv6 fragment contains both some
previously received data and some new data.

ipv6ReasmReqds Fires whenever an IPv6 fragment is received that needs
to be reassembled.

Table 11-16 Raw IP mib Probes

Probe Description

rawipInCksumErrs Fires whenever a raw IP packet is received that has a bad IP
checksum.

rawipInDatagrams Fires whenever a raw IP packet is received.

rawipInErrors Fires whenever a raw IP packet is received that is malformed in some
way.

rawipInOverflows Fires whenever a raw IP packet is received, but that packet is
subsequently dropped due to lack of buffer space.

rawipOutDatagrams Fires whenever a raw IP packet is sent.

rawipOutErrors Fires whenever a raw IP packet is not sent due to some error
condition, typically because the raw IP packet was malformed in some
way.

Table 11-17 SCTP mib Probes

Probe Description

sctpAborted Fires whenever an SCTP association has made a direct transition to
the CLOSED state from any state using the ABORT primitive, denoting
ungraceful termination of the association.

sctpActiveEstab Fires whenever an SCTP association has made a direct transition to
the ESTABLISHED state from the COOKIE-ECHOED state, denoting
that the upper layer has initiated the association attempt.

sctpChecksumError Fires whenever an SCTP packet is received from peers with an invalid
checksum.

Chapter 11
mib Provider

11-52

Table 11-17 (Cont.) SCTP mib Probes

Probe Description

sctpCurrEstab Fires whenever an SCTP association is tallied as a part of reading the
sctpCurrEstab MIB counter. An SCTP association is tallied if its
current state is ESTABLISHED, SHUTDOWN-RECEIVED, or
SHUTDOWN-PENDING.

sctpFragUsrMsgs Fires whenever a user message has to be fragmented because of the
MTU.

sctpInClosed Fires whenever data is received on a closed SCTP association.

sctpInCtrlChunks Fires whenever the sctpInCtrlChunks MIB counter is updated,
either because the MIB counter is explicitly queried or because an
SCTP connection is closed. The value by which the MIB counter is to
be increased is in args[0].

sctpInDupAck Fires whenever a duplicate ACK is received.

sctpInInvalidCook
ie

Fires whenever an invalid cookie is received.

sctpInOrderChunks Fires whenever the sctpInOrderChunks MIB counter is updated,
either because the MIB counter is explicitly queried or because an
SCTP connection is closed. The value by which the MIB counter is to
be increased is in args[0].

sctpInSCTPPkts Fires whenever the sctpInSCTPPkts MIB counter is updated, either
because the MIB counter is explicitly queried or because an SCTP
connection is closed. The value by which the MIB counter is to be
increased is in args[0].

sctpInUnorderChun
ks

Fires whenever the sctpInUnorderChunks MIB counter is updated,
either because the MIB counter is explicitly queried or because an
SCTP connection is closed. The value by which the MIB counter is to
be increased is in args[0].

sctpListenDrop Fires whenever an incoming connection is dropped for any reason.

sctpOutAck Fires whenever a selective acknowledgement is sent.

sctpOutAckDelayed Fires whenever delayed acknowledgement processing is performed for
an SCTP association. Any acknowledgements sent as a part of
delayed acknowledgement processing will cause the sctpOutAck
probe to fire.

sctpOutCtrlChunks Fires whenever the sctpOutCtrlChunks MIB counter is updated,
either because the MIB counter is explicitly queried or because an
SCTP connection is closed. The value by which the MIB counter is to
be increased is in args[0].

sctpOutOfBlue Fires whenever an otherwise correct SCTP packet is received for
which the receiver is not able to identify the association to which the
packet belongs.

sctpOutOrderChunk
s

Fires whenever the sctpOutOrderChunks MIB counter is updated,
either because the MIB counter is explicitly queried or because an
SCTP connection is closed. The value by which the MIB counter is to
be increased is in aRgs[0].

Chapter 11
mib Provider

11-53

Table 11-17 (Cont.) SCTP mib Probes

Probe Description

sctpOutSCTPPkts Fires whenever the sctpOutSCTPPkts MIB counter is updated, either
because the MIB counter is explicitly queried or because an SCTP
connection is closed. The value by which the MIB counter is to be
increased is in args[0].

sctpOutUnorderChu
nks

Fires whenever the sctpOutUnorderChunks MIB counter is updated,
either because the MIB counter is explicitly queried or because an
SCTP connection is closed. The value by which the MIB counter is to
be increased is in args[0].

sctpOutWinProbe Fires whenever a window probe is sent.

sctpOutWinUpdate Fires whenever a window update is sent.

sctpPassiveEstab Fires whenever SCTP associations have made a direct transition to the
ESTABLISHED state from the CLOSED state. The remote endpoint
has initiated the association attempt.

sctpReasmUsrMsgs Fires whenever the sctpReasmUsrMsgs MIB counter is updated,
either because the MIB counter is explicitly queried or because an
SCTP connection is closed. The value by which the MIB counter is to
be increased is in args[0].

sctpRetransChunks Fires whenever the sctpRetransChunks MIB counter is updated,
either because the MIB counter is explicitly queried or because an
SCTP connection is closed. The value by which the MIB counter is to
be increased is in args[0].

sctpShutdowns Fires whenever an SCTP association makes the direct transition to the
CLOSED state from either the SHUTDOWN-SENT state or the
SHUTDOWN-ACK-SENT state, denoting graceful termination of the
association.

sctpTimHeartBeatD
rop

Fires whenever an SCTP association is aborted due to failure to
receive a heartbeat acknowledgement.

sctpTimHeartBeatP
robe

Fires whenever an SCTP heartbeat is sent.

sctpTimRetrans Fires whenever timer-based retransmit processing is performed on an
association.

sctpTimRetransDro
p

Fires whenever prolonged failure to perform timer-based
retransmission results in the association being aborted.

Table 11-18 TCP mib Probes

Probe Description

tcpActiveOpens Fires whenever a TCP connection makes a direct transition from the
CLOSED state to the SYN_SENT state.

tcpAttemptFails Fires whenever a TCP connection makes a direct transition to the
CLOSED state from either the SYN_SENT state or the SYN_RCVD state
and whenever a TCP connection makes a direct transition to the
LISTEN state from the SYN_RCVD state.

Chapter 11
mib Provider

11-54

Table 11-18 (Cont.) TCP mib Probes

Probe Description

tcpCurrEstab Fires whenever a TCP connection is tallied as a part of reading the
tcpCurrEstab MIB counter. A TCP connection is tallied if its current
state is either ESTABLISHED or CLOSE_WAIT.

tcpEstabResets Fires whenever a TCP connection makes the direct transition to the
CLOSED state from either the ESTABLISHED state or the CLOSE_WAIT
state.

tcpHalfOpenDrop Fires whenever a connection is dropped due to a full queue of
connections in the SYN_RCVD state.

tcpInAckBytes Fires whenever an ACK is received for previously sent data. The
number of bytes acknowledged is passed in args[0].

tcpInAckSegs Fires whenever an ACK is received for a previously sent segment.

tcpInAckUnsent Fires whenever an ACK is received for an unsent segment.

tcpInClosed Fires whenever data was received for a connection in a closing state.

tcpInDataDupBytes Fires whenever a segment is received such that all data in the
segment has been previously received. The number of bytes in the
duplicated segment is passed in args[0].

tcpInDataDupSegs Fires whenever a segment is received such that all data in the
segment has been previously received. The number of bytes in the
duplicated segment is passed in args[0].

tcpInDataInorderB
ytes

Fires whenever data is received such that all data prior to the new
data's sequence number has been previously received. The number of
bytes received in-order is passed in args[0].

tcpInDataInorderS
egs

Fires whenever a segment is received such that all data prior to the
new segment's sequence number has been previously received.

tcpInDataPartDupB
ytes

Fires whenever a segment is received such that some of the data in
the segment has been previously received, but some of the data in the
segment is new. The number of duplicate bytes is passed in args[0].

tcpInDataPartDupS
egs

Fires whenever a segment is received such that some of the data in
the segment has been previously received, but some of the data in the
segment is new. The number of duplicate bytes is passed in args[0].

tcpInDataPastWinB
ytes

Fires whenever data is received that lies past the current receive
window. The number of bytes is in args[0].

tcpInDataPastWinS
egs

Fires whenever a segment is received that lies past the current receive
window.

tcpInDataUnorderB
ytes

Fires whenever data is received such that some data prior to the new
data's sequence number is missing. The number of bytes received
unordered is passed in args[0].

tcpInDataUnorderS
egs

Fires whenever a segment is received such that some data prior to the
new data's sequence number is missing.

tcpInDupAck Fires whenever a duplicate ACK is received.

tcpInErrs Fires whenever a TCP error (for example, a bad TCP checksum) is
found on a received segment.

tcpInSegs Fires whenever a segment is received, even if that segment is later
found to have an error that prevents further processing.

Chapter 11
mib Provider

11-55

Table 11-18 (Cont.) TCP mib Probes

Probe Description

tcpInWinProbe Fires whenever a window probe is received.

tcpInWinUpdate Fires whenever a window update is received.

tcpListenDrop Fires whenever an incoming connection is dropped due to a full listen
queue.

tcpListenDropQ0 Fires whenever a connection is dropped due to a full queue of
connections in the SYN_RCVD state.

tcpOutAck Fires whenever an ACK is sent.

tcpOutAckDelayed Fires whenever an ACK is sent after having been initially delayed.

tcpOutControl Fires whenever a SYN, FIN, or RST is sent.

tcpOutDataBytes Fires whenever data is sent. The number of bytes sent is in args[0].

tcpOutDataSegs Fires whenever a segment is sent.

tcpOutFastRetrans Fires whenever a segment is retransmitted as part of the fast
retransmit algorithm.

tcpOutRsts Fires whenever a segment is sent with the RST flag set.

tcpOutSackRetrans
Segs

Fires whenever a segment is retransmitted on a connection that has
selective acknowledgement enabled.

tcpOutSegs Fires whenever a segment is sent that contains at least one non-
retransmitted byte.

tcpOutUrg Fires whenever a segment is sent with the URG flag set, and with a
valid urgent pointer.

tcpOutWinProbe Fires whenever a window probe is sent.

tcpOutWinUpdate Fires whenever a window update is sent.

tcpPassiveOpens Fires whenever a TCP connections have made a direct transition to the
SYN_RCVD state from the LISTEN state.

tcpRetransBytes Fires whenever data is retransmitted. The number of bytes
retransmitted is in args[0].

tcpRetransSegs Fires whenever a segment is sent that contains one or more
retransmitted bytes.

tcpRttNoUpdate Fires whenever data was received, but there was no timestamp
information available with which to update the RTT.

tcpRttUpdate Fires whenever data was received containing the timestamp
information necessary to update the RTT.

tcpTimKeepalive Fires whenever timer-based keep-alive processing is performed on a
connection.

tcpTimKeepaliveDr
op

Fires whenever keep-alive processing results in termination of a
connection.

tcpTimKeepalivePr
obe

Fires whenever a keep-alive probe is sent out as a part of keep-alive
processing.

tcpTimRetrans Fires whenever timer-based retransmit processing is performed on a
connection.

Chapter 11
mib Provider

11-56

Table 11-18 (Cont.) TCP mib Probes

Probe Description

tcpTimRetransDrop Fires whenever prolonged failure to perform timer-based
retransmission results in termination of the connection.

Table 11-19 UDP mib Probes

Probe Description

udpInCksumErrs Fires whenever a datagram is discarded due to a bad UDP checksum.

udpInDatagrams Fires whenever a UDP datagram is received.

udpInErrors Fires whenever a UDP datagram is received, but is discarded due to either a
malformed packet header or the failure to allocate an internal buffer.

udpInOverflows Fires whenever a UDP datagram is received, but subsequently dropped due
to lack of buffer space.

udpNoPorts Fires whenever a UDP datagram is received on a port to which no socket is
bound.

udpOutDatagrams Fires whenever a UDP datagram is sent.

udpOutErrors Fires whenever a UDP datagram is not sent due to some error condition,
typically because the datagram was malformed in some way.

mib Probe Arguments
The sole argument for each mib probe has the same semantics: args[0] contains the value
with which the counter is to be incremented. For most mib probes, args[0] always contains
the value 1, but for some probes args[0] may take arbitrary positive values. For these
probes, the meaning of args[0] is noted in the probe description.

mib Stability
The mib provider uses stability mechanism of DTrace to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see DTrace Stability
Mechanisms.

Table 11-20 Stability Mechanism for the mib Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

Chapter 11
mib Provider

11-57

pid Provider
The pid provider enables tracing of the entry and return of any function in a user
process as well as any instruction as specified by an absolute address or function
offset. The pid provider has no probe effect when probes are not enabled. When
probes are enabled, the probes only induce probe effect on those processes that are
traced.

Note:

When the compiler inlines a function, the pid provider's probe does not fire.
Use one of the following methods to compile a particular C function so that it
will not be inlined.

• Oracle Developer Studio: #pragma no_inline (funcname[, funcname])
• gcc: funcname __attribute__ ((noinline))

Consult your compiler documentation for updates.

Naming pid Probes
The pid provider actually defines a class of providers. Each process can potentially
have its own associated pid provider. A process with ID 123, for example, would be
traced by using the pid123 provider. For probes from one of these providers, the
module portion of the probe description refers to an object loaded in the corresponding
process's address space. The following example uses mdb to display a list of objects:

$ mdb -p 1234
Loading modules: [ld.so.1 libc.so.1]
> ::objects
 BASE LIMIT SIZE NAME
 10000 34000 24000 /usr/bin/csh
ff3c0000 ff3e8000 28000 /lib/ld.so.1
ff200000 ff2be000 be000 /lib/libc.so.1
ff3a0000 ff3a2000 2000 /lib/libdl.so.1

In the probe description, you name the object by the name of the file, not its full path
name. You can also omit the .1 or so.1 suffix. All of the following examples name the
same probe:

pid123:libc.so.1:strcpy:entry
pid123:libc.so:strcpy:entry
pid123:libc:strcpy:entry

The first example is the actual name of the probe. The other examples are convenient
aliases that are replaced with the full load object name internally.

For the load object of the executable, you can use the alias a.out. The following two
probe descriptions name the same probe:

pid123:csh:main:return
pid123:a.out:main:return

Chapter 11
pid Provider

11-58

As with all anchored DTrace probes, the function field of the probe description names a
function in the module field. A user application binary might have several names for the same
function. For example, mutex_lock might be an alternate name for the function
pthread_mutex_lock in libc.so.1. DTrace chooses one canonical name for such functions
and uses that name internally. The following example shows how DTrace internally remaps
module and function names to a canonical form:

dtrace -q -n pid101267:libc:mutex_lock:entry'{ \
 printf("%s:%s:%s:%s\n", probeprov, probemod, probefunc, probename); }'
pid101267:libc.so.1:pthread_mutex_lock:entry
^C

This automatic renaming means that the names of the probes you enable may be slightly
different than those actually enabled. The canonical name will always be consistent between
runs of DTrace on systems running the same Oracle Solaris release.

For examples about how to use the pid provider effectively, see User Process Tracing.

pid Function Boundary Probes
The pid provider enables you to trace function entry and return in user programs just as the
fbt provider provides that capability for the kernel. Most of the examples in this guide that
use the FBT provider to trace kernel function calls can be modified slightly to apply to user
processes.

pid entry Probes
An entry probe fires when the traced function is invoked. The arguments to entry probes are
the values of the arguments to the traced function.

pid return Probes
A return probe fires when the traced function returns or makes a tail call to another function.
The value for arg0 is the offset in the function of the return instruction; arg1 holds the return
value.

In 32-bit processes, for functions that return either a signed long long or an unsigned long
long type, arg1 contains only half of the total bits in the return value. The other half of the
total bits returned is available in arg2. On SPARC systems, arg1 contains the upper 32-bits of
the return value and arg2 contains the lower 32-bits of the return value. On x86 systems,
arg1 contains the lower 32-bits of the return value and arg2 contains the upper 32-bits of the
return value.

pid Function Offset Probes
The pid provider lets you trace any instruction in a function. For example to trace the
instruction 4 bytes into a function main, you can use the following command:

pid123:a.out:main:4

Every time the program executes the instruction at address main+4, this probe will be
activated. The arguments for offset probes are undefined. The uregs[] array will help you to
examine process state at these probe sites. For more information, see uregs[] Array.

Chapter 11
pid Provider

11-59

pid Stability
The pid provider uses stability mechanism of DTrace to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
DTrace Stability Mechanisms.

Table 11-21 Stability Mechanism for the pid Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private Unknown

plockstat Provider
The plockstat provider makes available probes that can be used to observe the
behavior of user-level synchronization primitives including lock contention and hold
times. The plockstat command is a DTrace consumer that uses the plockstat
provider to gather data on user-level locking events. For more information, see the
plockstat(8) man page.

plockstat Overview
The plockstat provider makes available probes for the following types of events:

• Contention Events – These probes correspond to contention on a user-level
synchronization primitive, and fire when a thread is forced to wait for a resource to
become available. Oracle Solaris is generally optimized for the non-contention
case, so prolonged contention is not expected; these probes should be used to
understand those cases where contention does arise. Because contention is
designed to be rare, enabling contention-event probes generally does not have a
serious probe effect; they can be enabled without concern for substantially
affecting performance.

• Hold Events – These probes correspond to acquiring, releasing or otherwise
manipulating a user-level synchronization primitive. As such, these probes can be
used to answer arbitrary questions about the way user-level synchronization
primitives are manipulated. Because applications typically acquire and release
synchronization primitives very often, enabling hold-event probes can have a
greater probe effect than enabling contention-event probes. While the probe effect
induced by enabling them can be substantial, it is not pathological; they may still
be enabled with confidence on production applications.

• Error Events – These probes correspond to any kind of anomalous behavior
encountered when acquiring or releasing a user-level synchronization primitive.
These events can be used to detect errors encountered while a thread is blocking
on a user-level synchronization primitive. Error events should be extremely
uncommon so enabling them would not induce a serious probe effect.

Chapter 11
plockstat Provider

11-60

https://docs.oracle.com/cd/E88353_01/html/E72487/plockstat-8.html

plockstat Mutex Probes
Mutexes enforce mutual exclusion to critical sections. When a thread attempts to acquire a
mutex held by another thread using mutex_lock or pthread_mutex_lock, it will determine if
the owning thread is running on a different CPU. If it is, the acquiring thread will spin for a
short while waiting for the mutex to become available. If the owner is not executing on
another CPU, the acquiring thread will block.

The four plockstat probes pertaining to mutexes are described in the following list. For each
probe, arg0 contains a pointer to the mutex_t or pthread_mutex_t structure that represents
the mutex.

mutex-acquire
Hold event probe that fires immediately after a mutex is acquired. arg1 contains a boolean
value that indicates whether the acquisition was recursive on a recursive mutex. arg2
indicates the number of iterations that the acquiring thread spent spinning on this mutex.
arg2 will be non-zero only if the mutex-spin probe fired on this mutex acquisition.

mutex-block
Contention event probe that fires before a thread blocks on a held mutex. Both mutex-block
and mutex-spin might fire for a single lock acquisition.

mutex-error
Error event probe that fires when an error is encountered on a mutex operation. arg1 is the
errno value for the error encountered.

mutex-release
Hold event probe that fires immediately after an mutex is released. arg1 contains a boolean
value that indicates whether the event corresponds to a recursive release on a recursive
mutex.

mutex-spin
Contention event probe that fires before a thread begins spinning on a held mutex. Both
mutex-block and mutex-spin might fire for a single lock acquisition.

plockstat Reader/Writer Lock Probes
Reader/writer locks enable multiple readers or a single writer, but not both, to be in a critical
section at one time. These locks are typically used for structures that are searched more
frequently than they are modified, or when threads spend substantial time in a critical section.
Users interact with reader/writer locks using the Oracle Solaris rwlock or POSIX
pthread_rwlock_init interfaces.

The probes pertaining to readers/writer locks are described in the following list. For each
probe, arg0 contains a pointer to the rwlock_t or pthread_rwlock_t structure that represents
the adaptive lock. arg1 contains a boolean value that indicates whether the operation was as
a writer.

rw-acquire
Hold event probe that fires immediately after a readers/writer lock is acquired.

Chapter 11
plockstat Provider

11-61

rw-block
Contention event probe that fires before a thread blocks while attempting to acquire a
lock. If enabled, the rw-acquire probe or the rw-error probe will fire after rw-block.

rw-error
Error event probe that fires when an error is encountered during a reader/writer lock
operation. arg1 is the errno value of the error encountered.

rw-release
Hold event probe that fires immediately after a reader/writer lock is released.

plockstat Stability
The plockstat provider uses stability mechanism of DTrace to describe its stabilities,
as shown in the following table. For more information about the stability mechanism,
see DTrace Stability Mechanisms.

Table 11-22 Stability Mechanism for the plockstat Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

proc Provider
The proc provider include probes pertaining to the following activities: process creation
and termination, light weight process (LWP) creation and termination, executing new
program images, and sending and handling signals.

proc Probes
The following table describes the proc probes.

Table 11-23 List of proc Probes

Probe Description

create Fires when a process is created using fork, forkall, fork1, or vfork.
psinfo_t corresponding to the new child process is pointed to by args[0].
You can distinguish vfork from the other fork variants by checking for
PR_VFORKP in the pr_flag member of the forking thread's lwpsinfo_t. You
can distinguish fork1 from forkall by examining the pr_nlwp members of
both the parent process's psinfo_t (curpsinfo) and the child process's
psinfo_t (args[0]). Because the create probe only fires after the process
has been successfully created, and because LWP creation is part of creating
a process, lwp-create will fire for any LWPs created at process creation
time before the create probe fires for the new process.

Chapter 11
proc Provider

11-62

Table 11-23 (Cont.) List of proc Probes

Probe Description

exec Fires whenever a process loads a new process image with a variant of the
exec system call: exec, execle, execlp, execv, execve, and execvp. The
exec probe fires before the process image is loaded. Process variables like
execname and curpsinfo therefore contain the process state before the
image is loaded. Some time after the exec probe fires, either the exec-
failure probe or the exec-success probe will subsequently fire in the same
thread. The path of the new process image is pointed to by args[0].

exec-failure Fires when an exec variant has failed. The exec-failure probe fires only
after the exec probe has fired in the same thread. The errno value is
provided in args[0].

exec-success Fires when an exec variant has succeeded. Like the exec-failure probe,
the exec-success probe fires only after the exec probe has fired in the
same thread. By the time the exec-success probe fires, process variables
like execname and curpsinfo contain the process state after the new
process image has been loaded.

exit Fires when the current process is exiting. The reason for exit, which is
expressed as one of the SIGCHLD siginfo.h(3HEAD) codes, is contained in
args[0].

fault Fires when a thread experiences a machine fault. The fault code, as defined
in proc, is in args[0]. The siginfo structure corresponding to the fault is
pointed to by args[1]. Only those faults that induce a signal can trigger the
fault probe.

lwp-create Fires when an LWP is created, typically as a result of thr_create. The
lwpsinfo_t corresponding to the new thread is pointed to by args[0]. The
psinfo_t of the process containing the thread is pointed to by args[1].

lwp-exit Fires when an LWP is exiting, due either to a signal or to an explicit call to
thr_exit.

lwp-start Fires within the context of a newly created LWP. The lwp-start probe will
fire before any user-level instructions are executed. If the LWP is the first LWP
in the process, the start probe will fire, followed by lwp-start.

signal-clear Probes that fires when a pending signal is cleared because the target thread
was waiting for the signal in sigwait, sigwaitinfo, or sigtimedwait.
Under these conditions, the pending signal is cleared and the signal number
is returned to the caller. The signal number is in args[0]. signal-clear
fires in the context of the formerly waiting thread.

signal-
discard

Fires when a signal is sent to a single-threaded process, and the signal is
both unblocked and ignored by the process. Under these conditions, the
signal is discarded on generation. The lwpsinfo_t and psinfo_t of the
target process and thread are in args[0] and args[1], respectively. The
signal number is in args[2].

signal-
handle

Fires immediately before a thread handles a signal. The signal-handle
probe fires in the context of the thread that will handle the signal. The signal
number is in args[0]. A pointer to the siginfo_t structure that
corresponds to the signal is in args[1]. The address of the signal handler in
the process is in args[2].

Chapter 11
proc Provider

11-63

Table 11-23 (Cont.) List of proc Probes

Probe Description

signal-send Fires when a signal is sent to a thread or process. The signal-send probe
fires in the context of the sending process and thread. The lwpsinfo_t and
psinfo_t of the receiving process and thread are in args[0] and args[1],
respectively. The signal number is in args[2]. signal-send is always
followed by signal-handle or signal-clear in the receiving process and
thread.

start Fires in the context of a newly created process. The start probe will fire
before any user-level instructions are executed in the process.

proc Probe Arguments
The argument types for the proc probes are listed in List of proc Probe Arguments.
The arguments are described in List of proc Probes.

Table 11-24 List of proc Probe Arguments

Name of Probe args[0] args[1] args[2]
create psinfo_t * - -

exec char * - -

exec-failure int - -

exec-success - - -

exit int - -

fault int siginfo_t * -

lwp-create lwpsinfo_t * psinfo_t * -

lwp-exit - - -

lwp-start - - -

signal-clear int - -

signal-discard lwpsinfo_t * psinfo_t * int
signal-handle int siginfo_t * void (*)(void)
signal-send lwpsinfo_t * psinfo_t * int
start - - -

proc lwpsinfo_t Structure
Several proc probes have arguments of type lwpsinfo_t. The definition of the
lwpsinfo_t structure as available to DTrace consumers is as follows:

typedef struct lwpsinfo {
 int pr_flag; /* flags; see below */
 id_t pr_lwpid; /* LWP id */
 uintptr_t pr_addr; /* internal address of thread */
 uintptr_t pr_wchan; /* wait addr for sleeping thread */

Chapter 11
proc Provider

11-64

 char pr_stype; /* synchronization event type */
 char pr_state; /* numeric thread state */
 char pr_sname; /* printable character for pr_state */
 char pr_nice; /* nice for cpu usage */
 short pr_syscall; /* system call number (if in syscall) */
 int pr_pri; /* priority, high value = high priority */
 char pr_clname[PRCLSZ]; /* scheduling class name */
 processorid_t pr_onpro; /* processor which last ran this thread */
 processorid_t pr_bindpro; /* processor to which thread is bound */
 psetid_t pr_bindpset; /* processor set to which thread is bound */
} lwpsinfo_t;

The pr_flag field is a bit-mask holding flags describing the process. These flags and their
meanings are described in proc pr_flag Values.

Table 11-25 proc pr_flag Values

Flags Descriptions

PR_ISSYS The process is a system process.

PR_VFORKP The process is the parent of a vfork child.

PR_FORK The process has its inherit-on-fork mode set.

PR_RLC The process has its run-on-last-close mode set.

PR_KLC The process has its kill-on-last-close mode set.

PR_ASYNC The process has its asynchronous-stop mode set.

PR_MSACCT The process has microstate accounting enabled.

PR_MSFORK The process microstate accounting is inherited on fork.

PR_BPTADJ The process has its breakpoint adjustment mode set.

PR_PTRACE The process has its ptrace compatibility mode set.

PR_STOPPED The thread is an LWP that is stopped.

PR_ISTOP The thread is an LWP stopped on an event of interest.

PR_DSTOP The thread is an LWP that has a stop directive in effect.

PR_STEP The thread is an LWP that has a single-step directive in effect.

PR_ASLEEP The thread is an LWP in an interruptible sleep within a system call.

PR_DETACH The thread is a detached LWP. See the pthread_create(3C) and
pthread_join(3C) man pages.

PR_DAEMON The thread is a daemon LWP. See the pthread_create() function.

PR_AGENT The thread is the agent LWP for the process.

PR_IDLE The thread is the idle thread for a CPU. Idle threads only run on a CPU when the
run queues for the CPU are empty.

The pr_addr field is the address of a private, in-kernel data structure representing the thread.
While the data structure is private, the pr_addr field may be used as a token unique to a
thread for the thread's lifetime.

The pr_wchan field is set when the thread is sleeping on a synchronization object. The
meaning of the pr_wchan field is private to the kernel implementation, but the field may be
used as a token unique to the synchronization object.

Chapter 11
proc Provider

11-65

https://docs.oracle.com/cd/E88353_01/html/E37843/pthread-create-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/pthread-join-3c.html

The pr_stype field is set when the thread is sleeping on a synchronization object. The
following table describes the possible values for the pr_stype field.

Table 11-26 proc pr_stype Values

Value Description

SOBJ_MUTEX Kernel mutex synchronization object. Used to serialize access to shared data
regions in the kernel. For more information about kernel mutex
synchronization objects, see lockstat Stability and the mutex_init(9F) man
page.

SOBJ_RWLOCK Kernel readers/writer synchronization object. Used to synchronize access to
shared objects in the kernel that can allow multiple concurrent readers or a
single writer. For more information about kernel readers/writer
synchronization objects, see lockstat Stability and the rwlock(9F) man page.

SOBJ_CV Condition variable synchronization object. A condition variable is designed to
wait indefinitely until some condition becomes true. Condition variables are
typically used to synchronize for reasons other than access to a shared data
region, and are the mechanism generally used when a process performs a
program-directed indefinite wait. For example, blocking in poll, pause, wait,
and the like.

SOBJ_SEMA Semaphore synchronization object. A general-purpose synchronization object
that – like condition variable objects – does not track a notion of ownership.
Because ownership is required to implement priority inheritance in the Oracle
Solaris kernel, the lack of ownership inherent in semaphore objects inhibits
their widespread use. See the semaphore(9F) man page for details.

SOBJ_USER A user-level synchronization object. All blocking on user-level synchronization
objects is handled with SOBJ_USER synchronization objects. User-level
synchronization objects include those created with mutex_init(),
sema_init(), rwlock_init(), cond_init() and their POSIX equivalents.

SOBJ_USER_PI A user-level synchronization object that implements priority inheritance.
Some user-level synchronization objects that track ownership additionally
allow for priority inheritance. For example, mutex objects created with
pthread_mutex_init() may be made to inherit priority using
pthread_mutexattr_setprotocol().

SOBJ_SHUTTLE A shuttle synchronization object. Shuttle objects are used to implement
doors. See door_create(3DOOR)() for more information.

The pr_state field is set to one of the values in proc pr_state Values. The pr_sname
field is set to a corresponding character shown in parentheses in the same table.

Table 11-27 proc pr_state Values

Value Description

SSLEEP (S) The thread is sleeping. The sched:::sleep probe will fire immediately
before a thread's state is transitioned to SSLEEP.

SRUN (R) The thread is runnable, but is not currently running. The sched:::enqueue
probe will fire immediately before a thread's state is transitioned to SRUN.

SZOMB (Z) The thread is a zombie LWP.

SSTOP (T) The thread is stopped, either due to an explicit proc directive or some other
stopping mechanism.

Chapter 11
proc Provider

11-66

https://docs.oracle.com/cd/E88353_01/html/E37855/mutex-init-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/rwlock-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/semaphore-9f.html

Table 11-27 (Cont.) proc pr_state Values

Value Description

SIDL (I) The thread is an intermediate state during process creation.

SONPROC (O) The thread is running on a CPU. The sched:::on-cpu probe will fire in the
context of the SONPROC thread a short time after the thread's state is
transitioned to SONPROC.

SWAIT (W) The thread is waiting on wait queue. The sched:::cpucaps-sleep probe
will fire immediately before a thread state is transitioned to SWAIT.

proc psinfo_t Structure
Several proc probes have an argument of type psinfo_t, a structure that is documented in
proc. The definition of the psinfo_t structure as available to DTrace consumers is as follows:

typedef struct psinfo {
 int pr_nlwp; /* number of active lwps in the process */
 pid_t pr_pid; /* unique process id */
 pid_t pr_ppid; /* process id of parent */
 pid_t pr_pgid; /* pid of process group leader */
 pid_t pr_sid; /* session id */
 uid_t pr_uid; /* real user id */
 uid_t pr_euid; /* effective user id */
 gid_t pr_gid; /* real group id */
 gid_t pr_egid; /* effective group id */
 uintptr_t pr_addr; /* address of process */
 dev_t pr_ttydev; /* controlling tty device (or PRNODEV) */
 timestruc_t pr_start; /* process start time, from the epoch */
 char pr_fname[PRFNSZ]; /* name of exec'd file */
 char pr_psargs[PRARGSZ]; /* initial characters of arg list */
 int pr_argc; /* initial argument count */
 uintptr_t pr_argv; /* address of initial argument vector */
 uintptr_t pr_envp; /* address of initial environment vector */
 char pr_dmodel; /* data model of the process */
 taskid_t pr_taskid; /* task id */
 projid_t pr_projid; /* project id */
 poolid_t pr_poolid; /* pool id */
 zoneid_t pr_zoneid; /* zone id */
} psinfo_t;

The pr_dmodel field is set to either PR_MODEL_ILP32, denoting a 32-bit process, or
PR_MODEL_LP64, denoting a 64-bit process.

Using the proc Provider

Using the proc exec Probe
You can use the exec probe to determine which programs are being executed, and by whom,
as shown in the following example:

#pragma D option quiet

proc:::exec
{

Chapter 11
proc Provider

11-67

 self->parent = execname;
}

proc:::exec-success
/self->parent != NULL/
{
 @[self->parent, execname] = count();
 self->parent = NULL;
}

proc:::exec-failure
/self->parent != NULL/
{
 self->parent = NULL;
}

END
{
 printf("%-20s %-20s %s\n", "WHO", "WHAT", "COUNT");
 printa("%-20s %-20s %@d\n", @);
}

Running the example script for a short period of time on a build physical machine
results in output similar to the following example:

dtrace -s ./whoexec.d
^C
WHO WHAT COUNT
make.bin yacc 1
tcsh make 1
make.bin spec2map 1
sh grep 1
lint lint2 1
sh lint 1
sh ln 1
cc ld 1
make.bin cc 1
lint lint1 1
sh lex 1
make.bin mv 2
sh sh 3
sh make 3
sh sed 4
sh tr 4
make make.bin 4
sh install.bin 5
sh rm 6
cc ir2hf 33
cc ube 33
sh date 34
sh mcs 34
cc acomp 34
sh cc 34
sh basename 34
basename expr 34
make.bin sh 87

Chapter 11
proc Provider

11-68

Using proc start and proc exit
If you want to know how long programs are running from creation to termination, you can
enable the start and exit probes, as shown in the following example:

proc:::start
{
 self->start = timestamp;
}

proc:::exit
/self->start/
{
 @[execname] = quantize(timestamp - self->start);
 self->start = 0;
}

Running the example script on the build server for several seconds results in output similar to
the following example:

dtrace -s ./progtime.d
dtrace: script './progtime.d' matched 2 probes
^C

 ir2hf
 value ------------- Distribution ------------- count
 4194304 | 0
 8388608 |@ 1
 16777216 |@@@@@@@@@@@@@@@@ 14
 33554432 |@@@@@@@@@@ 9
 67108864 |@@@ 3
 134217728 |@ 1
 268435456 |@@@@ 4
 536870912 |@ 1
 1073741824 | 0

 ube
 value ------------- Distribution ------------- count
 16777216 | 0
 33554432 |@@@@@@@ 6
 67108864 |@@@ 3
 134217728 |@@ 2
 268435456 |@@@@ 4
 536870912 |@@@@@@@@@@@@ 10
 1073741824 |@@@@@@@ 6
 2147483648 |@@ 2
 4294967296 | 0

 acomp
 value ------------- Distribution ------------- count
 8388608 | 0
 16777216 |@@ 2
 33554432 | 0
 67108864 |@ 1
 134217728 |@@@ 3
 268435456 | 0
 536870912 |@@@@@ 5
 1073741824 |@@@@@@@@@@@@@@@@@@@@@@@@@ 22
 2147483648 |@ 1
 4294967296 | 0

Chapter 11
proc Provider

11-69

 cc
 value ------------- Distribution ------------- count
 33554432 | 0
 67108864 |@@@ 3
 134217728 |@ 1
 268435456 | 0
 536870912 |@@@@ 4
 1073741824 |@@@@@@@@@@@@@@ 13
 2147483648 |@@@@@@@@@@@@ 11
 4294967296 |@@@ 3
 8589934592 | 0

 sh
 value ------------- Distribution ------------- count
 262144 | 0
 524288 |@ 5
 1048576 |@@@@@@@ 29
 2097152 | 0
 4194304 | 0
 8388608 |@@@ 12
 16777216 |@@ 9
 33554432 |@@ 9
 67108864 |@@ 8
 134217728 |@ 7
 268435456 |@@@@@ 20
 536870912 |@@@@@@ 26
 1073741824 |@@@ 14
 2147483648 |@@ 11
 4294967296 | 3
 8589934592 | 1
 17179869184 | 0

 make.bin
 value ------------- Distribution ------------- count
 16777216 | 0
 33554432 |@ 1
 67108864 |@ 1
 134217728 |@@ 2
 268435456 | 0
 536870912 |@@ 2
 1073741824 |@@@@@@@@@ 9
 2147483648 |@@@@@@@@@@@@@@@ 14
 4294967296 |@@@@@@ 6
 8589934592 |@@ 2
 17179869184 | 0

Using proc lwp-start and proc lwp-exit
Instead of knowing the amount of time that a particular process takes to run, you might
want to know how long individual threads take to run. The following example shows
how to use the lwp-start and lwp-exit probes for this purpose:

proc:::lwp-start
/tid != 1/
{
 self->start = timestamp;
}

proc:::lwp-exit

Chapter 11
proc Provider

11-70

/self->start/
{
 @[execname] = quantize(timestamp - self->start);
 self->start = 0;
}

Running the example script on an NFS and calendar server results in output similar to the
following example:

dtrace -s ./lwptime.d
dtrace: script './lwptime.d' matched 3 probes
^C

 nscd
 value ------------- Distribution ------------- count
 131072 | 0
 262144 |@ 18
 524288 |@@ 24
 1048576 |@@@@@@@ 75
 2097152 |@@@@@@@@@@@@@@@@@@@@@@@ 245
 4194304 |@@ 22
 8388608 |@@ 24
 16777216 | 6
 33554432 | 3
 67108864 | 1
 134217728 | 1
 268435456 | 0

 mountd
 value ------------- Distribution ------------- count
 524288 | 0
 1048576 |@ 15
 2097152 |@ 24
 4194304 |@@@ 51
 8388608 |@ 17
 16777216 |@ 24
 33554432 |@ 15
 67108864 |@@@@ 57
 134217728 |@ 28
 268435456 |@ 26
 536870912 |@@ 39
 1073741824 |@@@ 45
 2147483648 |@@@@@ 72
 4294967296 |@@@@@ 77
 8589934592 |@@@ 55
 17179869184 | 14
 34359738368 | 2
 68719476736 | 0

 automountd
 value ------------- Distribution ------------- count
 1048576 | 0
 2097152 | 3
 4194304 |@@@@ 146
 8388608 | 6
 16777216 | 6
 33554432 | 9
 67108864 |@@@@@ 203
 134217728 |@@ 87
 268435456 |@@@@@@@@@@@@@@@ 534
 536870912 |@@@@@@ 223

Chapter 11
proc Provider

11-71

 1073741824 |@ 45
 2147483648 | 20
 4294967296 | 26
 8589934592 | 20
 17179869184 | 19
 34359738368 | 7
 68719476736 | 2
 137438953472 | 0

 iCald
 value ------------- Distribution ------------- count
 8388608 | 0
 16777216 |@@@@@@@ 20
 33554432 |@@@ 9
 67108864 |@@ 8
 134217728 |@@@@@ 16
 268435456 |@@@@ 11
 536870912 |@@@@ 11
 1073741824 |@ 4
 2147483648 | 2
 4294967296 | 0
 8589934592 |@@ 8
 17179869184 |@ 5
 34359738368 |@ 4
 68719476736 |@@ 6
 137438953472 |@ 4
 274877906944 | 2
 549755813888 | 0

Using proc signal-send
You can use the signal-send probe to determine the sending and receiving process
associated with any signal, as shown in the following example:

#pragma D option quiet

proc:::signal-send
{
 @[execname, stringof(args[1]->pr_fname), args[2]] = count();
}

END
{
 printf("%20s %20s %12s %s\n",
 "SENDER", "RECIPIENT", "SIG", "COUNT");
 printa("%20s %20s %12d %@d\n", @);
}

Running this script results in output similar to the following example:

dtrace -s ./sig.d
^C
 SENDER RECIPIENT SIG COUNT
 xterm dtrace 2 1
 xterm soffice.bin 2 1
 tr init 18 1
 sched test 18 1
 sched fvwm2 18 1
 bash bash 20 1
 sed init 18 2

Chapter 11
proc Provider

11-72

 sched ksh 18 15
 sched Xsun 22 471

proc Stability
The proc provider uses stability mechanism of DTrace to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see DTrace Stability
Mechanisms.

Table 11-28 Stability Mechanism for the proc Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

profile Provider
The profile provider provides probes associated with a time-based interrupt firing every
fixed, specified time interval. These unanchored probes that are not associated with any
particular point of execution, but rather with the asynchronous interrupt event. These probes
can be used to sample some aspect of system state every unit time and the samples can
then be used to infer system behavior. If the sampling rate is high, or the sampling time is
long, an accurate inference is possible. Using DTrace actions, the profile provider can be
used to sample practically anything in the system. For example, you could sample the state
of the current thread, the state of the CPU, or the current system instruction.

profile-n Probes
A profile-n probe fires every fixed interval on every CPU at high interrupt level. The probe's
firing interval is denoted by the value of n: the interrupt source will fire n times per second. n
may also have an optional time suffix, in which case n is interpreted to be in the units denoted
by the suffix. Valid Time Suffixes for the profile Probe lists the valid suffixes and the units
denoted by the suffix.

Table 11-29 Valid Time Suffixes for the profile Probe

Suffix Time Units

nsec or ns nanoseconds

usec or us microseconds

msec or ms milliseconds

sec or s seconds

min or m minutes

hour or h hours

day or d days

Chapter 11
profile Provider

11-73

Table 11-29 (Cont.) Valid Time Suffixes for the profile Probe

Suffix Time Units

hz hertz (frequency per second)

Example 11-10 Using a Profile Probe to Sample a Process

The following example creates a probe to fire at 97 hertz to sample the currently
running process:

#pragma D option quiet

profile-97
/pid != 0/
{
 @proc[pid, execname] = count();
}

END
{
 printf("%-8s %-40s %s\n", "PID", "CMD", "COUNT");
 printa("%-8d %-40s %@d\n", @proc);
}

Running the preceding example for a brief period of time results in output similar to the
following example:

dtrace -s ./prof.d
^C
PID CMD COUNT
223887 sh 1
100360 httpd 1
100409 mibiisa 1
223887 uname 1
218848 sh 2
218984 adeptedit 2
100224 nscd 3
3 fsflush 4
2 pageout 6
100372 java 7
115279 xterm 7
100460 Xsun 7
100475 perfbar 9
223888 prstat 15

You can also use the profile-n provider to sample information about the running
process. The following example D script uses a 1,001 hertz profile probe to sample the
current priority of a specified process:

profile-1001
/pid == $1/
{
 @proc[execname] = lquantize(curlwpsinfo->pr_pri, 0, 100, 10);
}

To see this example script in action, type the following commands in one window:

Chapter 11
profile Provider

11-74

$ echo $$
494621
$ while true ; do let i=0 ; done

In another window, run the D script for a brief period of time:

dtrace -s ./profpri.d 494621
 dtrace: script './profpri.d' matched 1 probe
^C
ksh
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@ 7443
 10 |@@@@@@ 2235
 20 |@@@@ 1679
 30 |@@@ 1119
 40 |@ 560
 50 |@ 554
 60 | 0

This output shows the bias of the time-sharing scheduling class. Because the shell process is
spinning on the CPU, its priority is constantly being lowered by the system. If the shell
process were running less frequently, its priority would be higher. To see this result, type
Control-C in the spinning shell and run the script again:

dtrace -s ./profpri.d 494621
 dtrace: script './profpri.d' matched 1 probe

Type a few characters in the shell. When you terminate the DTrace script, output like the
following example will appear:

ksh
 value ------------- Distribution ------------- count
 40 | 0
 50 |@@ 14
 60 | 0

Because the shell process was sleeping awaiting user input instead of spinning on the CPU,
when it did run it was run at a much higher priority.

tick-n Probes
Like profile-n probes, tick-n probes fire every fixed interval at high interrupt level.
However, unlike profile-n probes, which fire on every CPU, tick-n probes fire on only one
CPU per interval. The actual CPU may change over time. As with profile-n probes, n
defaults to rate-per-second but might also have an optional time suffix. tick-n probes have
several uses, such as providing some periodic output or taking a periodic action.

profile Probe Arguments
The arguments to the profile probes are as follows:

Argument Description

arg0 The program counter (PC) in the kernel at the time
that the probe fired, or 0 if the current process was
not executing in the kernel at the time that the probe
fired.

Chapter 11
profile Provider

11-75

Argument Description

arg1 The PC in the user-level process at the time that the
probe fired, or 0 if the current process was executing
at the kernel at the time that the probe fired.

As the descriptions imply, if arg0 is non-zero then arg1 is zero; if arg0 is zero then
arg1 is non-zero. Thus, you can use arg0 and arg1 to differentiate user-level from
kernel level, as in this example:

profile-1ms
{
 @ticks[arg0 ? "kernel" : "user"] = count();
}

profile Timer Resolution
The profile provider uses arbitrary resolution interval timers in the operating system.
On architectures that do not support arbitrary resolution time-based interrupts, the
frequency is limited by the system clock frequency, which is specified by the hz kernel
variable. Probes of higher frequency than hz on such architectures will fire some
number of times every 1/hz seconds. For example, a 1000 hertz profile probe on
such an architecture with hz set to 100 would fire ten times in rapid succession every
ten milliseconds. On platforms that support arbitrary resolution, a 1000 hertz profile
probe would fire exactly every one millisecond.

Example 11-11 Reporting Platform Resolution From the Profile Probe

The following example tests a given architecture's resolution:

profile-5000
{
 /*
 * Divide by 1,000,000 to convert nanoseconds to milliseconds, and
 * then take the value mod 10 to get the current millisecond within
 * a 10 millisecond window. On platforms that do not support truly
 * arbitrary resolution profile probes, all of the profile-5000 probes
 * will fire on roughly the same millisecond. On platforms that
 * support a truly arbitrary resolution, the probe firings will be
 * evenly distributed across the milliseconds.
 */
 @ms = lquantize((timestamp / 1000000) % 10, 0, 10, 1);
}

tick-1sec
/i++ >= 10/
{
 exit(0);
}

On an architecture that supports arbitrary resolution profile probes, running the
example script will yield an even distribution:

dtrace -s ./restest.d
 dtrace: script './restest.d' matched 2 probes
CPU ID FUNCTION:NAME
 0 33631 :tick-1sec
 value ------------- Distribution ------------- count

Chapter 11
profile Provider

11-76

 < 0 | 0
 0 |@@@ 10760
 1 |@@@@ 10842
 2 |@@@@ 10861
 3 |@@@ 10820
 4 |@@@ 10819
 5 |@@@ 10817
 6 |@@@@ 10826
 7 |@@@@ 10847
 8 |@@@@ 10830
 9 |@@@@ 10830

On an architecture that does not support arbitrary resolution profile probes, running the
example script will yield an uneven distribution:

dtrace -s ./restest.d
 dtrace: script './restest.d' matched 2 probes
 CPU ID FUNCTION:NAME
 0 28321 :tick-1sec
 value ------------- Distribution ------------- count
 4 | 0
 5 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 107864
 6 | 424
 7 | 255
 8 | 496
 9 | 0

On these architectures, hz may be manually tuned in /etc/system to improve the effective
profile resolution.

Currently, all variants of UltraSPARC (sun4v) support arbitrary resolution profile probes.
Many variants of the x86 architecture (i86pc) also support arbitrary resolution profile
probes, although some older variants do not support arbitrary resolution profile probes.

profile Probe Creation
Unlike other providers, the profile provider creates probes dynamically based on the
requirement. Thus, the desired profile probe might not appear in a listing of all probes but the
probe will be created when it is explicitly enabled. You can use the dtrace -l -P
profile to list all the probes.

On architectures that support arbitrary resolution profile probes, a time interval that is too
short causes the system to continuously field time-based interrupts, thereby denying service
on the system. To prevent this situation, the profile provider silently refuses to create any
probe that would result in an interval of less than two hundred microseconds.

profile Stability
The profile provider uses stability mechanism of DTrace to describe its stabilities as shown
in the following table. For more information about the stability mechanism, see DTrace
Stability Mechanisms.

Chapter 11
profile Provider

11-77

Table 11-30 Stability Mechanism for the profile Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Unstable Unstable Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common

sched Provider
The sched provider makes available probes related to CPU scheduling. Because
CPUs are the one resource that all threads must consume, the sched provider is useful
for understanding systemic behavior. For example, you can use the sched provider to
understand when and why threads sleep, run, change priority, or wake other threads.

sched Probes
The sched probes are described in the following table.

Table 11-31 sched Probes

Probe Description

change-pri Fires whenever a thread's priority is about to be changed. The lwpsinfo_t
of the thread is pointed to by args[0]. The thread's current priority is in the
pr_pri field of this structure. The psinfo_t of the process containing the
thread is pointed to by args[1]. The thread's new priority is contained in
args[2].

cpucaps-
sleep

Fires immediately before the current thread is placed on a wait queue. The
lwpsinfo_t of the waiting thread is pointed to by args[0]. The psinfo_t
of the process containing the waiting thread is pointed to by args[1].

cpucaps-
wakeup

Fires immediately after a thread is removed from a wait queue. The
lwpsinfo_t of the waiting thread is pointed to by args[0]. The psinfo_t
of the process containing the waiting thread is pointed to by args[1].

dequeue Fires immediately before a runnable thread is dequeued from a run queue.
The lwpsinfo_t of the thread being dequeued is pointed to by args[0].
The psinfo_t of the process containing the thread is pointed to by args[1].
The cpuinfo_t of the CPU from which the thread is being dequeued is
pointed to by args[2]. If the thread is being dequeued from a run queue that
is not associated with a particular CPU, the cpu_id member of this structure
will be -1.

Chapter 11
sched Provider

11-78

Table 11-31 (Cont.) sched Probes

Probe Description

enqueue Fires immediately before a runnable thread is enqueued to a run queue. The
lwpsinfo_t of the thread being enqueued is pointed to by args[0]. The
psinfo_t of the process containing the thread is pointed to by args[1]. The
cpuinfo_t of the CPU to which the thread is being enqueued is pointed to
by args[2]. If the thread is being enqueued from a run queue that is not
associated with a particular CPU, the cpu_id member of this structure will be
-1. The value in args[3] is a boolean indicating whether the thread will be
enqueued to the front of the run queue. The value is non-zero if the thread
will be enqueued at the front of the run queue, and zero if the thread will be
enqueued at the back of the run queue.

off-cpu Fires when the current CPU is about to end execution of a thread. The
curcpu variable indicates the current CPU. The curlwpsinfo variable
indicates the thread that is ending execution. The curpsinfo variable
describes the process containing the current thread. The lwpsinfo_t
structure of the thread that the current CPU will next execute is pointed to by
args[0]. The psinfo_t of the process containing the next thread is pointed
to by args[1].

on-cpu Fires when a CPU has just begun execution of a thread. The curcpu variable
indicates the current CPU. The curlwpsinfo variable indicates the thread
that is beginning execution. The curpsinfo variable describes the process
containing the current thread.

preempt Fires immediately before the current thread is preempted. After this probe
fires, the current thread will select a thread to run and the off-cpu probe will
fire for the current thread. In some cases, a thread on one CPU will be
preempted, but the preempting thread will run on another CPU in the
meantime. In this situation, the preempt probe will fire, but the dispatcher will
be unable to find a higher priority thread to run and the remain-cpu probe
will fire instead of the off-cpu probe.

remain-cpu Fires when a scheduling decision has been made, but the dispatcher has
elected to continue to run the current thread. The curcpu variable indicates
the current CPU. The curlwpsinfo variable indicates the thread that is
beginning execution. The curpsinfo variable describes the process
containing the current thread.

schedctl-
nopreempt

Fires when a thread is preempted and then re-enqueued at the front of the
run queue due to a preemption control request. See schedctl_init(3C) for
details on preemption control. As with preempt, either off-cpu or remain-
cpu will fire after schedctl-nopreempt. Because schedctl-nopreempt
denotes a re-enqueuing of the current thread at the front of the run queue,
remain-cpu is more likely to fire after schedctl-nopreempt than off-cpu.
The lwpsinfo_t of the thread being preempted is pointed to by args[0].
The psinfo_t of the process containing the thread is pointed to by args[1].

schedctl-
preempt

Fires when a thread that is using preemption control is nonetheless
preempted and re-enqueued at the back of the run queue. See
schedctl_init(3C) for details on preemption control. As with preempt, either
off-cpu or remain-cpu will fire after schedctl-preempt. Like preempt
(and unlike schedctl-nopreempt), schedctl-preempt denotes a re-
enqueuing of the current thread at the back of the run queue. As a result,
off-cpu is more likely to fire after schedctl-preempt than remain-cpu.
The lwpsinfo_t of the thread being preempted is pointed to by args[0].
The psinfo_t of the process containing the thread is pointed to by args[1].

Chapter 11
sched Provider

11-79

Table 11-31 (Cont.) sched Probes

Probe Description

schedctl-yield Fires when a thread that had preemption control enabled and its time slice
artificially extended executed code to yield the CPU to other threads.

sleep Fires immediately before the current thread sleeps on a synchronization
object. The type of the synchronization object is contained in the pr_stype
member of the lwpsinfo_t pointed to by curlwpsinfo. The address of the
synchronization object is contained in the pr_wchan member of the
lwpsinfo_t pointed to by curlwpsinfo. The meaning of this address is a
private implementation detail, but the address value may be treated as a
token unique to the synchronization object.

surrender Fires when a CPU has been instructed by another CPU to make a scheduling
decision – often because a higher-priority thread has become runnable.

tick Fires as a part of clock tick-based accounting. In clock tick-based accounting,
CPU accounting is performed by examining which threads and processes are
running when a fixed-interval interrupt fires. The lwpsinfo_t that
corresponds to the thread that is being assigned CPU time is pointed to by
args[0]. The psinfo_t that corresponds to the process that contains the
thread is pointed to by args[1].

wakeup Fires immediately before the current thread wakes a thread sleeping on a
synchronization object. The lwpsinfo_t of the sleeping thread is pointed to
by args[0]. The psinfo_t of the process containing the sleeping thread is
pointed to by args[1]. The type of the synchronization object is contained in
the pr_stype member of the lwpsinfo_t of the sleeping thread. The
address of the synchronization object is contained in the pr_wchan member
of the lwpsinfo_t of the sleeping thread. The meaning of this address is a
private implementation detail, but the address value may be treated as a
token unique to the synchronization object.

sched Probe Arguments
The argument types for the sched probes are listed in the following table; the
arguments are described in sched Probes.

Table 11-32 sched Probe Arguments

Probe args[0] args[1] args[2] args[3]

change-pri lwpsinfo_t * psinfo_t * pri_t -

cpucaps-sleep lwpsinfo_t * psinfo_t * - -

cpucaps-
wakeup-

lwpsinfo_t * psinfo_t * - -

dequeue lwpsinfo_t * psinfo_t * cpuinfo_t * -

enqueue lwpsinfo_t * psinfo_t * cpuinfo_t * int
off-cpu lwpsinfo_t * psinfo_t * - -

on-cpu - - - -

preempt - - - -

Chapter 11
sched Provider

11-80

Table 11-32 (Cont.) sched Probe Arguments

Probe args[0] args[1] args[2] args[3]

remain-cpu - - - -

schedctl-
nopreempt

lwpsinfo_t * psinfo_t * - -

schedctl-
preempt

lwpsinfo_t * psinfo_t * - -

schedctl-
yield

lwpsinfo_t * psinfo_t * - -

sleep - - - -

surrender lwpsinfo_t * psinfo_t * - -

tick lwpsinfo_t * psinfo_t * - -

wakeup lwpsinfo_t * psinfo_t * - -

Many sched probes have arguments consisting of a pointer to an lwpsinfo_t and a pointer to
a psinfo_t, indicating a thread and the process containing the thread, respectively. These
structures are described in detail in lwpsinfo_t and psinfo_t, respectively. For more
information, see sched Probe Arguments.

sched cpuinfo_t Structure
The cpuinfo_t structure defines a CPU. Arguments to both the enqueue and dequeue
probes include a pointer to a cpuinfo_t. Additionally, the cpuinfo_t corresponding to the
current CPU is pointed to by the curcpu variable. The definition of the cpuinfo_t structure is
as follows:

typedef struct cpuinfo {
 processorid_t cpu_id; /* CPU identifier */
 psetid_t cpu_pset; /* processor set identifier */
 chipid_t cpu_chip; /* chip identifier */
 lgrp_id_t cpu_lgrp; /* locality group identifier */
 id_t cpu_core; /* CPU core id */
 processor_info_t cpu_info; /* CPU information */
} cpuinfo_t;

The cpu_core member is the identifier of the physical core. For more information, see
psrinfo(8) and p_online(2) man pages.

The cpu_pset member is the processor set that contains the CPU, if any. See psrset(8) for
more details on processor sets.

The cpu_chip member is the identifier of the physical chip. Physical chips may contain
several CPUs. For more information, see the psrinfo(8) man page.

The cpu_lgrp member is the identifier of the latency group associated with the CPU. See
liblgrp(3LIB) for details on latency groups.

The cpu_info member is the processor_info_t structure associated with the CPU, as
returned by processor_info. For more information, see the processor_info(2) man page.

Chapter 11
sched Provider

11-81

https://docs.oracle.com/cd/E88353_01/html/E72487/psrinfo-8.html
https://docs.oracle.com/cd/E88353_01/html/E37841/p-online-2.html
https://docs.oracle.com/cd/E88353_01/html/E72487/psrset-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/psrinfo-8.html
https://docs.oracle.com/cd/E88353_01/html/E37841/processor-info-2.html

Using the sched Provider
This section describes sched provider examples.

Using on-cpu and off-cpu
One common question you might want answered is which CPUs are running threads
and for how long. You can use the on-cpu and off-cpu probes to easily answer this
question on a system-wide basis as shown in the following example:

sched:::on-cpu
{
 self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{
 @[cpu] = quantize(timestamp - self->ts);
 self->ts = 0;
}

Running the preceding script results in output similar to the following example:

dtrace -s ./where.d
dtrace: script './where.d' matched 5 probes
^C

 0
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@@ 37
 8192 |@@@@@@@@@@@@@ 212
 16384 |@ 30
 32768 | 10
 65536 |@ 17
 131072 | 12
 262144 | 9
 524288 | 6
 1048576 | 5
 2097152 | 1
 4194304 | 3
 8388608 |@@@@ 75
 16777216 |@@@@@@@@@@@@ 201
 33554432 | 6
 67108864 | 0

 1
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@ 6
 8192 |@@@@ 23
 16384 |@@@ 18
 32768 |@@@@ 22
 65536 |@@@@ 22
 131072 |@ 7
 262144 | 5
 524288 | 2
 1048576 | 3

Chapter 11
sched Provider

11-82

 2097152 |@ 9
 4194304 | 4
 8388608 |@@@ 18
 16777216 |@@@ 19
 33554432 |@@@ 16
 67108864 |@@@@ 21
 134217728 |@@ 14
 268435456 | 0

The preceding output shows that on CPU 1 threads tend to run for less than 100
microseconds at a stretch, or for approximately 10 milliseconds. A noticeable gap between
the two clusters of data is shown in the histogram. You also might be interested in knowing
which CPUs are running a particular process. You can use the on-cpu and off-cpu probes
for answering this question as well. The following script displays which CPUs run a specified
application over a period of 10 seconds:

#pragma D option quiet

dtrace:::BEGIN
{
 start = timestamp;
}

sched:::on-cpu
/execname == $$1/
{
 self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{
 @[cpu] = sum(timestamp - self->ts);
 self->ts = 0;
}

profile:::tick-1sec
/++x == 10/
{
 exit(0);
}

dtrace:::END
{
 printf("CPU distribution over %d seconds:\n\n",
 (timestamp - start) / 1000000000);
 printf("CPU microseconds\n--- ------------\n");
 normalize(@, 1000);
 printa("%3d %@d\n", @);
}

Running the preceding script on a large mail server and specifying the IMAP daemon results
in output similar to the following example:

dtrace -s ./whererun.d imapd
CPU distribution of imapd over 10 seconds:

CPU microseconds
--- ------------
 15 10102
 12 16377

Chapter 11
sched Provider

11-83

 21 25317
 19 25504
 17 35653
 13 41539
 14 46669
 20 57753
 22 70088
 16 115860
 23 127775
 18 160517

Oracle Solaris takes into account the amount of time that a thread has been sleeping
when selecting a CPU on which to run the thread: a thread that has been sleeping for
less time tends not to migrate. You can use the off-cpu and on-cpu probes to observe
this behavior:

sched:::off-cpu
/curlwpsinfo->pr_state == SSLEEP/
{
 self->cpu = cpu;
 self->ts = timestamp;
}

sched:::on-cpu
/self->ts/
{
 @[self->cpu == cpu ?
 "sleep time, no CPU migration" : "sleep time, CPU migration"] =
 lquantize((timestamp - self->ts) / 1000000, 0, 500, 25);
 self->ts = 0;
 self->cpu = 0;
}

Running the preceding script for approximately 30 seconds results in output similar to
the following example:

dtrace -s ./howlong.d
dtrace: script './howlong.d' matched 5 probes
^C
 sleep time, CPU migration
 value -------------- Distribution ------------ count
 < 0 | 0
 0 |@@@@@@@ 6838
 25 |@@@@@ 4714
 50 |@@@ 3108
 75 |@ 1304
 100 |@ 1557
 125 |@ 1425
 150 | 894
 175 |@ 1526
 200 |@@ 2010
 225 |@@ 1933
 250 |@@ 1982
 275 |@@ 2051
 300 |@@ 2021
 325 |@ 1708
 350 |@ 1113
 375 | 502
 400 | 220
 425 | 106
 450 | 54

Chapter 11
sched Provider

11-84

 475 | 40
 >= 500 |@ 1716

 sleep time, no CPU migration
 value -------------- Distribution ------------ count
 < 0 | 0
 0 |@@@@@@@@@@@@ 58413
 25 |@@@ 14793
 50 |@@ 10050
 75 | 3858
 100 |@ 6242
 125 |@ 6555
 150 | 3980
 175 |@ 5987
 200 |@ 9024
 225 |@ 9070
 250 |@@ 10745
 275 |@@ 11898
 300 |@@ 11704
 325 |@@ 10846
 350 |@ 6962
 375 | 3292
 400 | 1713
 425 | 585
 450 | 201
 475 | 96
 >= 500 | 3946

The example output shows that there are many more occurrences of non-migration than
migration. Also, when sleep times are longer, migrations are more likely. The distributions are
noticeably different in the sub 100 millisecond range, but look very similar as the sleep times
get longer. This result would seem to indicate that sleep time is not factored into the
scheduling decision once a certain threshold is exceeded.

The final example using off-cpu and on-cpu shows how to use these probes along with the
pr_stype field to determine why threads sleep and for how long:

sched:::off-cpu
/curlwpsinfo->pr_state == SSLEEP/
{
 /*
 * In sleeping state. Track the sobj type.
 */
 self->sobj = curlwpsinfo->pr_stype;
 self->bedtime = timestamp;
}

sched:::off-cpu
/curlwpsinfo->pr_state == SRUN/
{
 self->bedtime = timestamp;
}

sched:::on-cpu
/self->bedtime && !self->sobj/
{
 @["preempted"] = quantize(timestamp - self->bedtime);
 self->bedtime = 0;
}

sched:::on-cpu

Chapter 11
sched Provider

11-85

/self->sobj/
{
 @[self->sobj == SOBJ_MUTEX ? "kernel-level lock" :
 self->sobj == SOBJ_RWLOCK ? "rwlock" :
 self->sobj == SOBJ_CV ? "condition variable" :
 self->sobj == SOBJ_SEMA ? "semaphore" :
 self->sobj == SOBJ_USER ? "user-level lock" :
 self->sobj == SOBJ_USER_PI ? "user-level prio-inheriting lock" :
 self->sobj == SOBJ_SHUTTLE ? "shuttle" : "unknown"] =
 quantize(timestamp - self->bedtime);
 self->sobj = 0;
 self->bedtime = 0;
}

Running the preceding script for several seconds results in output similar to the
following example:

dtrace -s ./whatfor.d
dtrace: script './whatfor.d' matched 12 probes
^C
 kernel-level lock
 value -------------- Distribution ------------ count
 16384 | 0
 32768 |@@@@@@@@ 3
 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 11
 131072 |@@ 1
 262144 | 0

 preempted
 value -------------- Distribution ------------ count
 16384 | 0
 32768 | 4
 65536 |@@@@@@@@ 408
 131072 |@@@@@@@@@@@@@@@@@@@@@@ 1031
 262144 |@@@ 156
 524288 |@@ 116
 1048576 |@ 51
 2097152 | 42
 4194304 | 16
 8388608 | 15
 16777216 | 4
 33554432 | 8
 67108864 | 0

 semaphore
 value -------------- Distribution ------------ count
 32768 | 0
 65536 |@@ 61
 131072 |@@@@@@@@@@@@@@@@@@@@@@@@ 553
 262144 |@@ 63
 524288 |@ 36
 1048576 | 7
 2097152 | 22
 4194304 |@ 44
 8388608 |@@@ 84
 16777216 |@ 36
 33554432 | 3
 67108864 | 6
 134217728 | 0
 268435456 | 0
 536870912 | 0

Chapter 11
sched Provider

11-86

 1073741824 | 0
 2147483648 | 0
 4294967296 | 0
 8589934592 | 0
 17179869184 | 1
 34359738368 | 0

 shuttle
 value -------------- Distribution ------------ count
 32768 | 0
 65536 |@@@@@ 2
 131072 |@@@@@@@@@@@@@@@@ 6
 262144 |@@@@@ 2
 524288 | 0
 1048576 | 0
 2097152 | 0
 4194304 |@@@@@ 2
 8388608 | 0
 16777216 | 0
 33554432 | 0
 67108864 | 0
 134217728 | 0
 268435456 | 0
 536870912 | 0
 1073741824 | 0
 2147483648 | 0
 4294967296 |@@@@@ 2
 8589934592 | 0
 17179869184 |@@ 1
 34359738368 | 0

 condition variable
 value -------------- Distribution ------------ count
 32768 | 0
 65536 | 122
 131072 |@@@@@ 1579
 262144 |@ 340
 524288 | 268
 1048576 |@@@ 1028
 2097152 |@@@ 1007
 4194304 |@@@ 1176
 8388608 |@@@@ 1257
 16777216 |@@@@@@@@@@@@@@ 4385
 33554432 | 295
 67108864 | 157
 134217728 | 96
 268435456 | 48
 536870912 | 144
 1073741824 | 10
 2147483648 | 22
 4294967296 | 18
 8589934592 | 5
 17179869184 | 6
 34359738368 | 4
 68719476736 | 0

Chapter 11
sched Provider

11-87

Using sched Probes
When a CPU becomes idle, the dispatcher looks for work enqueued on other non-idle
CPUs. The following example uses the dequeue probe to understand how often
applications are transferred and by which CPU:

#pragma D option quiet

sched:::dequeue
/args[2]->cpu_id != -1 && cpu != args[2]->cpu_id &&
 (curlwpsinfo->pr_flag & PR_IDLE)/
{
 @[stringof(args[1]->pr_fname), args[2]->cpu_id] =
 lquantize(cpu, 0, 100);
}

END
{
 printa("%s stolen from CPU %d by:\n%@d\n", @);
}

The tail of the output from running the preceding script on a four CPU system results in
output similar to the following example:

dtrace -s ./whosteal.d
^C
...
 nscd stolen from CPU 1 by:

 value -------------- Distribution ------------ count
 1 | 0
 2 |@@ 28
 3 | 0

snmpd stolen from CPU 1 by:

 value -------------- Distribution ------------ count
 < 0 | 0
 0 |@ 1
 1 | 0
 2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 31
 3 |@@ 2
 4 | 0

sched stolen from CPU 1 by:

 value -------------- Distribution ------------ count
 < 0 | 0
 0 |@@ 3
 1 | 0
 2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 36
 3 |@@@@ 5
 4 | 0

Instead of knowing which CPUs took which work, you might want to know the CPUs
on which processes and threads are waiting to run. You can use the enqueue and
dequeue probes together to answer this question:

Chapter 11
sched Provider

11-88

sched:::enqueue
{
 a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id] =
 timestamp;
}

sched:::dequeue
/a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id]/
{
 @[args[2]->cpu_id] = quantize(timestamp -
 a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id]);
 a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id] = 0;
}

Running the preceding script for several seconds results in output similar to the following
example:

dtrace -s ./qtime.d
dtrace: script './qtime.d' matched 5 probes
^C

 1
 value ------------- Distribution ------------- count
 1024 | 0
 2048 | 10
 4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 4316
 8192 |@@@@@@@ 1115
 16384 |@@@ 549
 32768 |@@ 337
 65536 |@@ 330
 131072 | 13
 262144 | 6
 524288 | 4
 1048576 | 2
 2097152 | 1
 4194304 | 0

 0
 value ------------- Distribution ------------- count
 1024 | 0
 2048 | 22
 4096 |@@@@@@@@@@@@@@@@ 2747
 8192 |@@@@@@@ 1205
 16384 |@@@@@@@@@@@@ 1942
 32768 |@@@ 469
 65536 |@@ 304
 131072 | 28
 262144 | 16
 524288 | 5
 1048576 | 1
 2097152 | 2
 4194304 | 1
 8388608 | 0

Instead of looking at wait times, you might want to examine the length of the run queue over
time. Using the enqueue and dequeue probes, you can set up an associative array to track the
queue length:

Chapter 11
sched Provider

11-89

sched:::enqueue
{
 this->len = qlen[args[2]->cpu_id]++;
 @[args[2]->cpu_id] = lquantize(this->len, 0, 100);
}

sched:::dequeue
/qlen[args[2]->cpu_id]/
{
 qlen[args[2]->cpu_id]--;
}

Running the preceding script for approximately 30 seconds on a largely idle
uniprocessor laptop system results in output similar to the following example:

dtrace -s ./qlen.d
dtrace: script './qlen.d' matched 5 probes
^C
 0
 value -------------- Distribution ------------ count
 < 0 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@@@@@ 110626
 1 |@@@@@@@@@ 41142
 2 |@@ 12655
 3 |@ 5074
 4 | 1722
 5 | 701
 6 | 302
 7 | 63
 8 | 23
 9 | 12
 10 | 24
 11 | 58
 12 | 14
 13 | 3
 14 | 0

The output is roughly what you would expect for an idle system: the majority of the
time that a runnable thread is enqueued, the run queue was very short, three or fewer
threads in length. However, given that the system was largely idle, the exceptional
data points at the bottom of the table might be unexpected. For example, why was the
run queue as long as 13 runnable threads? To explore this question, you could write a
D script that displays the contents of the run queue when the length of the run queue
is long. This problem is complicated because D enablings cannot iterate over data
structures, and therefore cannot simply iterate over the entire run queue. Even if D
enablings could do so, you should avoid dependencies on the kernel's internal data
structures.

For this type of script, you would enable the enqueue and dequeue probes and use
both speculations and associative arrays. Whenever a thread is enqueued, the script
increments the length of the queue and records the timestamp in an associative array
keyed by the thread. You cannot use a thread-local variable in this case because a
thread might be enqueued by another thread. The script then checks to see if the
queue length exceeds the maximum. If it does, the script starts a new speculation, and
records the timestamp and the new maximum. Then, when a thread is dequeued, the
script compares the enqueue timestamp to the timestamp of the longest length: if the
thread was enqueued before the timestamp of the longest length, the thread was in
the queue when the longest length was recorded. In this case, the script speculatively
traces the thread's information. Once the kernel dequeues the last thread that was

Chapter 11
sched Provider

11-90

enqueued at the timestamp of the longest length, the script commits the speculation data.
This script is shown below:

#pragma D option quiet
#pragma D option nspec=4
#pragma D option specsize=100k

int maxlen;
int spec[int];

sched:::enqueue
{
 this->len = ++qlen[this->cpu = args[2]->cpu_id];
 in[args[0]->pr_addr] = timestamp;
}

sched:::enqueue
/this->len > maxlen && spec[this->cpu]/
{
 /*
 * There is already a speculation for this CPU. As a new record
 * is set, discard the old one.
 */
 discard(spec[this->cpu]);
}

sched:::enqueue
/this->len > maxlen/
{
 /*
 * You have a winner. Set the new maximum length and set the timestamp
 * of the longest length.
 */
 maxlen = this->len;
 longtime[this->cpu] = timestamp;
 /*
 * Now start a new speculation, and speculatively trace the length.
 */
 this->spec = spec[this->cpu] = speculation();
 speculate(this->spec);
 printf("Run queue of length %d:\n", this->len);
}

sched:::dequeue
/(this->in = in[args[0]->pr_addr]) &&
 this->in <= longtime[this->cpu = args[2]->cpu_id]/
{
 speculate(spec[this->cpu]);
 printf(" %d/%d (%s)\n",
 args[1]->pr_pid, args[0]->pr_lwpid,
 stringof(args[1]->pr_fname));
}

sched:::dequeue
/qlen[args[2]->cpu_id]/
{
 in[args[0]->pr_addr] = 0;
 this->len = --qlen[args[2]->cpu_id];
}

sched:::dequeue

Chapter 11
sched Provider

11-91

/this->len == 0 && spec[this->cpu]/
{
 /*
 * As you just processed the last thread that was enqueued at the time
 * of longest length; commit the speculation, which by now contains
 * each thread that was enqueued when the queue was longest.
 */
 commit(spec[this->cpu]);
 spec[this->cpu] = 0;
}

Running the preceding script on the same uniprocessor laptop results in output similar
to the following example:

dtrace -s ./whoqueue.d
Run queue of length 3:
 0/0 (sched)
 0/0 (sched)
 101170/1 (dtrace)
Run queue of length 4:
 0/0 (sched)
 100356/1 (Xsun)
 100420/1 (xterm)
 101170/1 (dtrace)
Run queue of length 5:
 0/0 (sched)
 0/0 (sched)
 100356/1 (Xsun)
 100420/1 (xterm)
 101170/1 (dtrace)
Run queue of length 7:
 0/0 (sched)
 100221/18 (nscd)
 100221/17 (nscd)
 100221/16 (nscd)
 100221/13 (nscd)
 100221/14 (nscd)
 100221/15 (nscd)
Run queue of length 16:
 100821/1 (xterm)
 100768/1 (xterm)
 100365/1 (fvwm2)
 101118/1 (xterm)
 100577/1 (xterm)
 101170/1 (dtrace)
 101020/1 (xterm)
 101089/1 (xterm)
 100795/1 (xterm)
 100741/1 (xterm)
 100710/1 (xterm)
 101048/1 (xterm)
 100697/1 (MozillaFirebird-)
 100420/1 (xterm)
 100394/1 (xterm)
 100368/1 (xterm)
^C

The output reveals that the long run queues are due to many runnable xterm
processes. This experiment coincided with a change in virtual desktop, and therefore
the results are probably due to some sort of X event processing.

Chapter 11
sched Provider

11-92

sleep and wakeup
In enqueue and dequeue, the final example demonstrated that a burst in run queue length was
due to runnable xterm processes. One hypothesis is that the observations resulted from a
change in virtual desktop. You can use the wakeup probe to explore this hypothesis by
determining who is waking the xterm processes, and when, as shown in the following
example:

#pragma D option quiet

dtrace:::BEGIN
{
 start = timestamp;
}

sched:::wakeup
/stringof(args[1]->pr_fname) == "xterm"/
{
 @[execname] = lquantize((timestamp - start) / 1000000000, 0, 10);
}

profile:::tick-1sec
/++x == 10/
{
 exit(0);
}

To investigate the hypothesis, run the preceding script, waiting roughly five seconds, and
switch your virtual desktop exactly once. If the burst of runnable xterm processes is due to
switching the virtual desktop, the output should show a burst of wakeup activity at the five
second mark.

dtrace -s ./xterm.d

 Xsun

 value -------------- Distribution ------------ count
 4 | 0
 5 |@ 1
 6 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 32
 7 | 0

The output does show that the X server is waking xterm processes, clustered around the time
that you switched virtual desktops. If you wanted to understand the interaction between the X
server and the xterm processes, you could aggregate on user stack traces when the X server
fires the wakeup probe.

Understanding the performance of client/server systems like the X windowing system
requires understanding the clients on whose behalf the server is doing work. This kind of
question is difficult to answer with conventional performance analysis tools. However, if you
have a model where a client sends a message to the server and sleeps pending the server's
processing, you can use the wakeup probe to determine the client for whom the request is
being performed, as shown in the following example:

self int last;

sched:::wakeup
/self->last && args[0]->pr_stype == SOBJ_CV/

Chapter 11
sched Provider

11-93

{
 @[stringof(args[1]->pr_fname)] = sum(vtimestamp - self->last);
 self->last = 0;
}

sched:::wakeup
/execname == "Xsun" && self->last == 0/
{
 self->last = vtimestamp;
}

Running the preceding script results in output similar to the following example:

dtrace -s ./xwork.d
dtrace: script './xwork.d' matched 14 probes
^C
 xterm 9522510
 soffice.bin 9912594
 fvwm2 100423123
 MozillaFirebird 312227077
 acroread 345901577

This output reveals that much Xsun work is being done on behalf of the processes
acroread, MozillaFirebird and, to a lesser degree, fvwm2. Notice that the script only
examined wake-ups from condition variable synchronization objects SOBJ_CV. As
described in proc pr_stype Values, condition variables are the type of synchronization
object typically used to synchronize for reasons other than access to a shared data
region. In the case of the X server, a client will wait for data in a pipe by sleeping on a
condition variable.

You can additionally use the sleep probe along with the wakeup probe to understand
which applications are blocking on which applications, and for how long, as shown in
the following example:

#pragma D option quiet

sched:::sleep
/!(curlwpsinfo->pr_flag & PR_ISSYS) && curlwpsinfo->pr_stype == SOBJ_CV/
{
 bedtime[curlwpsinfo->pr_addr] = timestamp;
}

sched:::wakeup
/bedtime[args[0]->pr_addr]/
{
 @[stringof(args[1]->pr_fname), execname] =
 quantize(timestamp - bedtime[args[0]->pr_addr]);
 bedtime[args[0]->pr_addr] = 0;
}

END
{
 printa("%s sleeping on %s:\n%@d\n", @);
}

The tail of the output from running the example script for several seconds on a desktop
system resembles the following example:

dtrace -s ./whofor.d
^C

Chapter 11
sched Provider

11-94

...
 xterm sleeping on Xsun:

 value -------------- Distribution ------------ count
 131072 | 0
 262144 | 12
 524288 | 2
 1048576 | 0
 2097152 | 5
 4194304 |@@@ 45
 8388608 | 1
 16777216 | 9
 33554432 |@@@@@ 83
 67108864 |@@@@@@@@@@@ 164
 134217728 |@@@@@@@@@@ 147
 268435456 |@@@@ 56
 536870912 |@ 17
 1073741824 | 9
 2147483648 | 1
 4294967296 | 3
 8589934592 | 1
 17179869184 | 0

fvwm2 sleeping on Xsun:

 value -------------- Distribution ------------ count
 32768 | 0
 65536 |@@@@@@@@@@@@@@@@@@@@@@ 67
 131072 |@@@@@ 16
 262144 |@@ 6
 524288 |@ 3
 1048576 |@@@@@ 15
 2097152 | 0
 4194304 | 0
 8388608 | 1
 16777216 | 0
 33554432 | 0
 67108864 | 1
 134217728 | 0
 268435456 | 0
 536870912 | 1
 1073741824 | 1
 2147483648 | 2
 4294967296 | 2
 8589934592 | 2
 17179869184 | 0
 34359738368 | 2
 68719476736 | 0

syslogd sleeping on syslogd:

 value -------------- Distribution ------------ count
 17179869184 | 0
 34359738368 |@@ 3
 68719476736 | 0

MozillaFirebird sleeping on MozillaFirebird:

 value -------------- Distribution ------------ count
 65536 | 0
 131072 | 3

Chapter 11
sched Provider

11-95

 262144 |@@ 14
 524288 | 0
 1048576 |@@@ 18
 2097152 | 0
 4194304 | 0
 8388608 | 1
 16777216 | 0
 33554432 | 1
 67108864 | 3
 134217728 |@ 7
 268435456 |@@@@@@@@@@ 53
 536870912 |@@@@@@@@@@@@@@ 78
 1073741824 |@@@@ 25
 2147483648 | 0
 4294967296 | 0
 8589934592 |@ 7
 17179869184 | 0

You might want to understand how and why MozillaFirebird is blocking on itself. You
could modify the preceding script as shown in the following example to answer this
question:

#pragma D option quiet

sched:::sleep
/execname == "MozillaFirebird" && curlwpsinfo->pr_stype == SOBJ_CV/
{
 bedtime[curlwpsinfo->pr_addr] = timestamp;
}

sched:::wakeup
/execname == "MozillaFirebird" && bedtime[args[0]->pr_addr]/
{
 @[args[1]->pr_pid, args[0]->pr_lwpid, pid, curlwpsinfo->pr_lwpid] =
 quantize(timestamp - bedtime[args[0]->pr_addr]);
 bedtime[args[0]->pr_addr] = 0;
}

sched:::wakeup
/bedtime[args[0]->pr_addr]/
{
 bedtime[args[0]->pr_addr] = 0;
}

END
{
 printa("%d/%d sleeping on %d/%d:\n%@d\n", @);
}

Running the modified script for several seconds results in output similar to the
following example:

dtrace -s ./firebird.d
^C

 100459/1 sleeping on 100459/13:

 value -------------- Distribution ------------ count
 262144 | 0
 524288 |@@ 1
 1048576 | 0

Chapter 11
sched Provider

11-96

100459/13 sleeping on 100459/1:

 value -------------- Distribution ------------ count
 16777216 | 0
 33554432 |@@ 1
 67108864 | 0

100459/1 sleeping on 100459/2:

 value -------------- Distribution ------------ count
 16384 | 0
 32768 |@@@@ 5
 65536 |@ 2
 131072 |@@@@@ 6
 262144 | 1
 524288 |@ 2
 1048576 | 0
 2097152 |@@ 3
 4194304 |@@@@ 5
 8388608 |@@@@@@@@ 9
 16777216 |@@@@@ 6
 33554432 |@@ 3
 67108864 | 0

100459/1 sleeping on 100459/5:

 value -------------- Distribution ------------ count
 16384 | 0
 32768 |@@@@@ 12
 65536 |@@ 5
 131072 |@@@@@@ 15
 262144 | 1
 524288 | 1
 1048576 | 2
 2097152 |@ 4
 4194304 |@@@@@ 13
 8388608 |@@@ 8
 16777216 |@@@@@ 13
 33554432 |@@ 6
 67108864 |@@ 5
 134217728 |@ 4
 268435456 | 0
 536870912 | 1
 1073741824 | 0

100459/2 sleeping on 100459/1:

 value -------------- Distribution ------------ count
 16384 | 0
 32768 |@@@@@@@@@@@@@@ 11
 65536 | 0
 131072 |@@ 2
 262144 | 0
 524288 | 0
 1048576 |@@@@ 3
 2097152 |@ 1
 4194304 |@@ 2
 8388608 |@@ 2
 16777216 |@ 1
 33554432 |@@@@@@ 5

Chapter 11
sched Provider

11-97

 67108864 | 0
 134217728 | 0
 268435456 | 0
 536870912 |@ 1
 1073741824 |@ 1
 2147483648 |@ 1
 4294967296 | 0

100459/5 sleeping on 100459/1:

 value -------------- Distribution ------------ count
 16384 | 0
 32768 | 1
 65536 | 2
 131072 | 4
 262144 | 7
 524288 | 1
 1048576 | 5
 2097152 | 10
 4194304 |@@@@@@ 77
 8388608 |@@@@@@@@@@@@@@@@@@@@@@@ 270
 16777216 |@@@ 43
 33554432 |@ 20
 67108864 |@ 14
 134217728 | 5
 268435456 | 2
 536870912 | 1
 1073741824 | 0

You can also use the sleep and wakeup probes to understand the performance of door
servers such as the name service cache daemon, as shown in the following example:

sched:::sleep
/curlwpsinfo->pr_stype == SOBJ_SHUTTLE/
{
 bedtime[curlwpsinfo->pr_addr] = timestamp;
}

sched:::wakeup
/execname == "nscd" && bedtime[args[0]->pr_addr]/
{
 @[stringof(curpsinfo->pr_fname), stringof(args[1]->pr_fname)] =
 quantize(timestamp - bedtime[args[0]->pr_addr]);
 bedtime[args[0]->pr_addr] = 0;
}

sched:::wakeup
/bedtime[args[0]->pr_addr]/
{
 bedtime[args[0]->pr_addr] = 0;
}

The tail of the output from running the preceding script on a large mail server
resembles the following example:

imapd
 value -------------- Distribution ------------ count
 16384 | 0
 32768 | 2
 65536 |@@@@@@@@@@@@@@@@@ 57
 131072 |@@@@@@@@@@@ 37

Chapter 11
sched Provider

11-98

 262144 | 3
 524288 |@@@ 11
 1048576 |@@@ 10
 2097152 |@@ 9
 4194304 | 1
 8388608 | 0

 mountd
 value -------------- Distribution ------------ count
 65536 | 0
 131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 49
 262144 |@@@ 6
 524288 | 1
 1048576 | 0
 2097152 | 0
 4194304 |@@@@ 7
 8388608 |@ 3
 16777216 | 0

 sendmail
 value -------------- Distribution ------------ count
 16384 | 0
 32768 |@ 18
 65536 |@@@@@@@@@@@@@@@@@ 205
 131072 |@@@@@@@@@@@@@ 154
 262144 |@ 23
 524288 | 5
 1048576 |@@@@ 50
 2097152 | 7
 4194304 | 5
 8388608 | 2
 16777216 | 0

 automountd
 value -------------- Distribution ------------ count
 32768 | 0
 65536 |@@@@@@@@@@ 22
 131072 |@@@@@@@@@@@@@@@@@@@@@@@ 51
 262144 |@@ 6
 524288 | 1
 1048576 | 0
 2097152 | 2
 4194304 | 2
 8388608 | 1
 16777216 | 1
 33554432 | 1
 67108864 | 0
 134217728 | 0
 268435456 | 1
 536870912 | 0

You might be interested in the unusual data points for automountd or the persistent data
point at over one millisecond for sendmail. You can add additional predicates to the
preceding script to hone in on the causes of any exceptional or anomalous.

preempt and remain-cpu
Because Oracle Solaris is a preemptive system, higher priority threads preempt lower priority
ones. Preemption can induce a significant latency bubble in the lower priority thread, so you

Chapter 11
sched Provider

11-99

might want to know which threads are being preempted by which other threads. The
following example shows how to use the preempt and remain-cpu probes to display
this information:

#pragma D option quiet

sched:::preempt
{
 self->preempt = 1;
}

sched:::remain-cpu
/self->preempt/
{
 self->preempt = 0;
}

sched:::off-cpu
/self->preempt/
{
 /*
 * If you want to preempt yourself, see who you ended up giving
 * the CPU to.
 */
 @[stringof(args[1]->pr_fname), args[0]->pr_pri, execname,
 curlwpsinfo->pr_pri] = count();
 self->preempt = 0;
}

END
{
 printf("%30s %3s %30s %3s %5s\n", "PREEMPTOR", "PRI",
 "PREEMPTED", "PRI", "#");
 printa("%30s %3d %30s %3d %5@d\n", @);
}

Running the preceding script for several seconds on a desktop system results in
output similar to the following example:

dtrace -s ./whopreempt.d
^C
 PREEMPTOR PRI PREEMPTED PRI #
 sched 60 Xsun 53 1
 xterm 59 Xsun 53 1
 MozillaFirebird 57 Xsun 53 1
 mpstat 100 fvwm2 59 1
 sched 99 MozillaFirebird 57 1
 sched 60 dtrace 30 1
 mpstat 100 Xsun 59 2
 sched 60 Xsun 54 2
 sched 99 sched 60 2
 fvwm2 59 Xsun 44 2
 sched 99 Xsun 44 2
 sched 60 xterm 59 2
 sched 99 Xsun 53 2
 sched 99 Xsun 54 3
 sched 60 fvwm2 59 3
 sched 60 Xsun 59 3
 sched 99 Xsun 59 4
 fvwm2 59 Xsun 54 8
 fvwm2 59 Xsun 53 9

Chapter 11
sched Provider

11-100

 Xsun 59 MozillaFirebird 57 10
 sched 60 MozillaFirebird 57 14
 MozillaFirebird 57 Xsun 44 16
 MozillaFirebird 57 Xsun 54 18

Using change-pri
Preemption is based on priorities, so you might want to observe changes in priority over time.
The following example uses the change-pri probe to display this information:

sched:::change-pri
{
 @[stringof(args[0]->pr_clname)] =
 lquantize(args[2] - args[0]->pr_pri, -50, 50, 5);
}

The example script captures the degree to which priority is raised or lowered, and aggregates
by scheduling class. Running the preceding script results in output similar to the following
example:

dtrace -s ./pri.d
dtrace: script './pri.d' matched 10 probes
^C
 IA
 value -------------- Distribution ------------ count
 < -50 | 20
 -50 |@ 38
 -45 | 4
 -40 | 13
 -35 | 12
 -30 | 18
 -25 | 18
 -20 | 23
 -15 | 6
 -10 |@@@@@@@@ 201
 -5 |@@@@@@ 160
 0 |@@@@@ 138
 5 |@ 47
 10 |@@ 66
 15 |@ 36
 20 |@ 26
 25 |@ 28
 30 | 18
 35 | 22
 40 | 8
 45 | 11
 >= 50 |@ 34

 TS
 value -------------- Distribution ------------ count
 -15 | 0
 -10 |@ 1
 -5 |@@@@@@@@@@@@ 7
 0 |@@@@@@@@@@@@@@@@@@@@ 12
 5 | 0
 10 |@@@@@ 3
 15 | 0

The output shows the priority manipulation of the Interactive (IA) scheduling class. Instead of
seeing priority manipulation, you might want to see the priority values of a particular process

Chapter 11
sched Provider

11-101

and thread over time. The following script uses the change-pri probe to display this
information:

#pragma D option quiet

BEGIN
{
 start = timestamp;
}

sched:::change-pri
/args[1]->pr_pid == $1 && args[0]->pr_lwpid == $2/
{
 printf("%d %d\n", timestamp - start, args[2]);
}

tick-1sec
/++n == 5/
{
 exit(0);
}

To see the change in priorities over time, type the following command in one window:

$ echo $$
139208
$ while true ; do let i=0 ; done

In another window, run the script and redirect the output to a file:

dtrace -s ./pritime.d 139208 1 > /tmp/pritime.out

You can use the file /tmp/pritime.out that is generated from the preceding command
as input to plotting software to graphically display priority over time. gnuplot is a freely
available plotting package that is included in the Oracle Solaris Freeware Companion
CD. By default, gnuplot is installed in /opt/sfw/bin.

Using sched tick
Oracle Solaris uses tick-based CPU accounting, in which a system clock interrupt fires
at a fixed interval and attributes CPU utilization to the threads and processes running
at the time of the tick. The following example shows how to use the tick probe to
observe this attribution:

dtrace -n sched:::tick'{@[stringof(args[1]->pr_fname)] = count()}'
^C
 arch 1
 sh 1
 sed 1
 echo 1
 ls 1
 FvwmAuto 1
 pwd 1
 awk 2
 basename 2
 expr 2
 resize 2
 tput 2
 uname 2
 fsflush 2

Chapter 11
sched Provider

11-102

 dirname 4
 vim 9
 fvwm2 10
 ksh 19
 xterm 21
 Xsun 93
 MozillaFirebird 260

The system clock frequency varies from operating system to operating system, but generally
ranges from 25 hertz to 1024 hertz. The Oracle Solaris system clock frequency is adjustable,
but defaults to 100 hertz.

The tick probe fires only if the system clock detects a runnable thread. To use the tick
probe to observe the system clock's frequency, you must have a thread that is always
runnable. In one window, create a looping shell as shown in the following example:

$ while true ; do let i=0 ; done

In another window, run the following script:

uint64_t last[int];

sched:::tick
/last[cpu]/
{
 @[cpu] = min(timestamp - last[cpu]);
}

sched:::tick
{
 last[cpu] = timestamp;
}

dtrace -s ./ticktime.d
dtrace: script './ticktime.d' matched 2 probes
^C

 0 9883789

The minimum interval is 9.8 millisecond, which indicates that the default clock tick frequency
is 10 milliseconds (100 hertz). The observed minimum is somewhat less than 10 milliseconds
due to jitter.

One deficiency of tick-based accounting is that the system clock that performs accounting is
often also responsible for dispatching any time-related scheduling activity. As a result, if a
thread is to perform some amount of work every clock tick, that is every 10 milliseconds, the
system will either over-account for the thread or under-account for the thread, depending on
whether the accounting is done before or after time-related dispatching scheduling activity. In
Oracle Solaris, accounting is performed before time-related dispatching. As a result, the
system will under-account for threads running at regular interval. If such threads run for less
than the clock tick interval, they can effectively hide behind the clock tick. The following
example shows the degree to which the system has such threads:

sched:::tick,
sched:::enqueue
{
 @[probename] = lquantize((timestamp / 1000000) % 10, 0, 10);
}

Chapter 11
sched Provider

11-103

The output of the example script is two distributions of the millisecond offset within a
ten millisecond interval, one for the tick probe and another for enqueue:

dtrace -s ./tick.d
dtrace: script './tick.d' matched 4 probes
^C
 tick
 value -------------- Distribution ------------ count
 6 | 0
 7 |@ 3
 8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 79
 9 | 0

 enqueue
 value -------------- Distribution ------------ count
 < 0 | 0
 0 |@@ 267
 1 |@@ 300
 2 |@@ 259
 3 |@@ 291
 4 |@@@ 360
 5 |@@ 305
 6 |@@ 295
 7 |@@@@ 522
 8 |@@@@@@@@@@@@ 1315
 9 |@@@ 337

The output histogram named tick shows that the clock tick is firing at an 8 millisecond
offset. If scheduling were not at all associated with the clock tick, the output for
enqueue would be evenly spread across the ten millisecond interval. However, the
output shows a spike at the same 8 millisecond offset, indicating that at least some
threads in the system are being scheduled on a time basis.

Using sched cpucaps-sleep and cpucaps-wakeup
You can use cpucaps-sleep and cpucaps-wakeup probes to understand the impact
CPU Caps have on specific processes and threads. The following example shows how
much various processes spend on wait queues:

sched:::cpucaps-sleep
{
 sleep[args[1]->pr_pid] = timestamp;
}

sched:::cpucaps-wakeup
/sleep[args[1]->pr_pid]/
{
 @sleeps[args[1]->pr_fname] = quantize(timestamp - sleep[args[1]->pr_pid]);
 sleep[args[1]->pr_pid] = 0;
}

Running the preceding script results in output similar to the following example:

dtrace -s /capswait.d
dtrace: script './capswait.d' matched 2 probes
^C

 exmh
 value ------------- Distribution ------------- count
 8388608 | 0

Chapter 11
sched Provider

11-104

 16777216 |@@ 4
 33554432 | 0

 scan
 value ------------- Distribution ------------- count
 16777216 | 0
 33554432 |@@@@@@@@@@@@@@@@@@@@ 1
 67108864 | 0
 134217728 |@@@@@@@@@@@@@@@@@@@@ 1
 268435456 | 0

 firefox-bin
 value ------------- Distribution ------------- count
 4194304 | 0
 8388608 |@@ 1
 16777216 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 19
 33554432 |@@@@ 2
 67108864 | 0

sched Stability
The sched provider uses stability mechanism of DTrace to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see DTrace Stability
Mechanisms.

Table 11-33 Stability Mechanism for the sched Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

sdt Provider
The Statically Defined Tracing (SDT) provider creates probes at sites that a software
programmer has formally designated. The SDT mechanism allows programmers to
consciously choose locations of interest to users of DTrace and to convey some semantic
knowledge about each location through the probe name. The Oracle Solaris kernel has
defined a handful of SDT probes. DTrace also provides a mechanism for user application
developers to define static probes. For more information, see Statically Defined Tracing for
User Applications.

SDT Probes
The SDT probes defined by the Oracle Solaris kernel are listed in the following table. The
name stability and data stability of these probes are both Private because their description
here thus reflects the kernel's implementation and should not be inferred to be an interface
commitment. For more information about the DTrace stability mechanism, see DTrace
Stability Mechanisms.

Chapter 11
sdt Provider

11-105

Table 11-34 List of SDT Probes

Probe Description arg0
callout-start Fires immediately before executing a

callout (see <sys/callo.h>).
Callouts are executed by periodic
system clock, and represent the
implementation for timeout.

Pointer to the callout_t (see
<sys/callo.h>) corresponding to
the callout to be executed.

callout-end Fires immediately after executing a
callout (see <sys/callo.h>).

Pointer to the callout_t (see
<sys/callo.h>) corresponding to
the callout just executed.

interrupt-
start

Fires immediately before calling into
a device's interrupt handler.

Pointer to the dev_info structure
(see <sys/ddi_impldefs.h>)
corresponding to the interrupting
device.

interrupt-
complete

Fires immediately after returning
from a device's interrupt handler.

Pointer to dev_info structure (see
<sys/ddi_impldefs.h>)
corresponding to the interrupting
device.

Using the sdt Provider
The following example is a script to observe callout behavior on a per-second basis:

#pragma D option quiet

sdt:::callout-start
{
 @callouts[((callout_t *)arg0)->c_func] = count();
}

tick-1sec
{
 printa("%40a %10@d\n", @callouts);
 clear(@callouts);
}

Running this example reveals the frequent users of timeout in the system, as shown
in the following output:

dtrace -s ./callout.d
 TS`ts_update 1
 uhci`uhci_cmd_timeout_hdlr 3
 genunix`setrun 5
 genunix`schedpaging 5
 ata`ghd_timeout 10
 uhci`uhci_handle_root_hub_status_change 309
 ip`tcp_time_wait_collector 1
 TS`ts_update 1
 uhci`uhci_cmd_timeout_hdlr 3
 genunix`schedpaging 4
 genunix`setrun 8
 ata`ghd_timeout 10
 uhci`uhci_handle_root_hub_status_change 300
 ip`tcp_time_wait_collector 0

Chapter 11
sdt Provider

11-106

 iprb`mii_portmon 1
 TS`ts_update 1
 uhci`uhci_cmd_timeout_hdlr 3
 genunix`schedpaging 4
 genunix`setrun 7
 ata`ghd_timeout 10
 uhci`uhci_handle_root_hub_status_change 300

The timeout interface only produces a single timer expiration. Consumers of timeout
requiring interval timer functionality typically reinstall their timeout from their timeout handler.
The following example shows this behavior:

#pragma D option quiet

sdt:::callout-start
{
 self->callout = ((callout_t *)arg0)->c_func;
}

fbt::timeout:entry
/self->callout && arg2 <= 100/
{
 /*
 * This case focusses interval timeout(9F)s that
 * are short. Therefore, perform a linear quantization from 0 ticks to
 * 100 ticks. The system clock's frequency - set by the variable
 * "hz" - defaults to 100, so 100 system clock ticks is one second.
 */
 @callout[self->callout] = lquantize(arg2, 0, 100);
}

sdt:::callout-end
{
 self->callout = NULL;
}

END
{
 printa("%a\n%@d\n\n", @callout);
}

Running this script and waiting several seconds before typing Control-C results in output
similar to the following example:

dtrace -s ./interval.d
^C
genunix`schedpaging

 value ------------- Distribution ------------- count
 24 | 0
 25 |@@ 20
 26 | 0

ata`ghd_timeout

 value ------------- Distribution ------------- count
 9 | 0
 10 |@@ 51
 11 | 0

uhci`uhci_handle_root_hub_status_change

Chapter 11
sdt Provider

11-107

 value ------------- Distribution ------------- count
 0 | 0
 1 |@@ 1515
 2 | 0

The output shows that uhci_handle_root_hub_status_change in the uhci driver
represents the shortest interval timer on the system: it is called every system clock
tick.

The interrupt-start probe can be used to understand interrupt activity. The following
example shows how to quantize the time spent executing an interrupt handler by driver
name:

interrupt-start
{
 self->ts = vtimestamp;
}

interrupt-complete
/self->ts/
{
 this->devi = (struct dev_info *)arg0;
 @[stringof(`devnamesp[this->devi->devi_major].dn_name),
 this->devi->devi_instance] = quantize(vtimestamp - self->ts);
}

Running this script results in output similar to the following example:

dtrace -s ./intr.d
dtrace: script './intr.d' matched 2 probes
^C
 pcf8584 0
 value ------------- Distribution ------------- count
 64 | 0
 128 | 2
 256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 157
 512 |@@@@@@ 31
 1024 | 3
 2048 | 0

 pcf8584 1
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 154
 8192 |@@@@@@@ 37
 16384 | 2
 32768 | 0

 qlc 0
 value ------------- Distribution ------------- count
 16384 | 0
 32768 |@@ 9
 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 126
 131072 |@ 5
 262144 | 2
 524288 | 0

 ohci 0
 value ------------- Distribution ------------- count
 8192 | 0

Chapter 11
sdt Provider

11-108

 16384 | 3
 32768 | 1
 65536 |@@@ 143
 131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1368
 262144 | 0

Creating SDT Probes
If you are a device driver developer, you might be interested in creating your own SDT probes
in your Oracle Solaris driver. The disabled probe effect of SDT is essentially the cost of
several no-operation system instructions. You are therefore encouraged to add SDT probes
to your device drivers as needed. Unless these probes negatively affect performance, you
can leave them in your shipping code.

Declaring sdt Probes
SDT probes are declared using the DTRACE_PROBE, DTRACE_PROBE1, DTRACE_PROBE2,
DTRACE_PROBE3 and DTRACE_PROBE4 macros from <sys/sdt.h>. The module name and
function name of an SDT-based probe corresponds to the kernel module and function of the
probe. The name of the probe depends on the name given in the DTRACE_PROBEn macro. If the
name contains no two consecutive underbars (_), the name of the probe is as written in the
macro. If the name contains any two consecutive underbars, the probe name converts the
consecutive underbars to a single dash (-). For example, if a DTRACE_PROBE macro specifies
transaction_start, the SDT probe will be named transaction-start. This substitution
allows C code to provide macro names that are not valid C identifiers without specifying a
string.

DTrace includes the kernel module name and function name as part of the tuple identifying a
probe, so you do not need to include this information in the probe name to prevent name
space collisions. You can use the command dtrace -l -P sdt -m module on your driver
module to list the probes you have installed and the full names that will be seen by users of
DTrace.

sdt Probe Arguments
The arguments for each SDT probe are the arguments specified in the corresponding
DTRACE_PROBEn macro reference. The number of arguments depends on which macro was
used to create the probe: DTRACE_PROBE1 specifies one argument, DTRACE_PROBE2 specifies
two arguments, and so on. When declaring your SDT probes, you can minimize their disabled
probe effect by not dereferencing pointers and not loading from global variables in the probe
arguments. Both pointer dereferencing and global variable loading may be done safely in D
actions that enable probes, so DTrace users can request these actions only when they are
needed.

sdt Stability
The SDT provider uses stability mechanism of DTrace to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see DTrace Stability
Mechanisms.

Chapter 11
sdt Provider

11-109

Table 11-35 Stability Mechanism for the SDT Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Private Private ISA

Arguments Private Private ISA

syscall Provider
The syscall provider makes available a probe at the entry to and return from every
system call in the system. Because system calls are the primary interface between
user-level applications and the operating system kernel, the syscall provider can offer
tremendous insight into application behavior with respect to the system.

syscall Probes
syscall provides a pair of probes for each system call: an entry probe that fires
before the system call is entered, and a return probe that fires after the system call
has completed but before control has transferred back to user-level. For all syscall
probes, the function name is set to be the name of the instrumented system call and
the module name is undefined.

The names of the system calls as provided by the syscall provider may be found in
the /etc/name_to_sysnum file. Often, the system call names provided by syscall
correspond to names in Section 2 of the man pages. However, some probes provided
by the syscall provider do not directly correspond to any documented system call.
The common reasons for this discrepancy are described in this section.

System Call Anachronisms
In some cases, the name of the system call as provided by the syscall provider is
actually a reflection of an ancient implementation detail. For example, for reasons
dating back to the origins of UNIX, the name of exit in /etc/name_to_sysnum is
rexit. Similarly, the name of time is gtime, and the name of execve is exece.

Subcoded System Calls
Some system calls as presented in man page section 2 are implemented as
suboperations of an undocumented system call. For example, the system calls related
to System V semaphores, such as semctl, semget, semids, semop, and semtimedop are
implemented as suboperations of a single system call, semsys. The semsys system call
takes as its first argument an implementation-specific subcode denoting the specific
system call required: SEMCTL, SEMGET, SEMIDS, SEMOP, or SEMTIMEDOP, respectively. As a
result of overloading a single system call to implement multiple system calls, there is
only a single pair of syscall probes for System V semaphores:

syscall::semsys:entry and syscall::semsys:return

Chapter 11
syscall Provider

11-110

New System Calls
Oracle Solaris 11 implements the following system interfaces as individual system calls:

faccessat()
fchmodat()
fchownat()
fstatat()
linkat()
mkdirat()
mknodat()
openat()
readlinkat()
renameat()
symlinkat()
unlinkat()

These system calls implement a superset of the functionality of their old non-at-suffixed
counterparts. They take an additional first argument that is either an open directory file
descriptor, in which case the operation on a relative path name is taken relative to the
specified directory, or is the reserved value AT_FDCWD, in which case the operation takes place
relative to the current working directory.

Deleted System Calls
In Oracle Solaris 11, the following old system calls have been removed from the system. The
libc interfaces remain, but they are reimplemented not as system calls in their own right, but
as calls to the new system calls as indicated:

Removed System Call Equivalent in Oracle Solaris 11

access(p, m) faccessat(AT_FDCWD, p, m, 0)

chmod(p, m) fchmodat(AT_FDCWD, p, m, 0)

chown(p, u, g) fchownat(AT_FDCWD, p, u, g, 0)

creat(p, m) openat(AT_FDCWD, p, O_WRONLY | O_CREAT | O_TRUNC, m)

fchmod(fd, m) fchmodat(fd, NULL, m, 0)

fchown(fd, u, g) fchownat(fd, NULL, u, g, 0)

fstat(fd, s) fstatat(fd, NULL, s, 0)

lchown(p, u, g) fchownat(AT_FDCWD, p, u, g, AT_SYMLINK_NOFOLLOW)

Chapter 11
syscall Provider

11-111

Removed System Call Equivalent in Oracle Solaris 11

link(p1, p2) linkat(AT_FDCWD, p1, AT_FDCWD, p2, 0)

lstat(p, s) fstatat(AT_FDCWD, p, s, AT_SYMLINK_NOFOLLOW)

mkdir(p, m) mkdirat(AT_FDCWD, p, m)

mknod(p, m. d) mknodat(AT_FDCWD, p, m, d)

open(p, o, m) openat(AT_FDCWD, p, o, m)

readlink(p, b, s) readlinkat(AT_FDCWD, p, b, s)

rename(p1, p2) renameat(AT_FDCWD, p1, AT_FDCWD, p2)

rmdir(p) unlinkat(AT_FDCWD, p, AT_REMOVEDIR)

stat(p, s) fstatat(AT_FDCWD, p, s, 0)

symlink(p1, p2) symlinkat(p1, AT_FDCWD, p2)

unlink(p) unlinkat(AT_FDCWD, p, 0)

Large File System Calls
A 32-bit program that supports large files that exceed two gigabytes in size must be
able to process 64-bit file offsets. Because large files require use of large offsets,
these files are manipulated through a parallel set of system interfaces. For more
information, see the lf64(7) man page. These interfaces are documented in lf64, but
they do not have individual man pages. Each of these large file system call interfaces
appears as its own syscall probe as shown in the following table.

Table 11-36 syscall Large File Probes

Large File syscall Probe System Call

fstatat64 fstatat
fstatvfs64 fstatvfs
getdents64 fgetdents
getrlimit64 getrlimit
mmap64 mmap
openat64 openat
pread64 pread

Chapter 11
syscall Provider

11-112

https://docs.oracle.com/cd/E88353_01/html/E37853/lf64-7.html

Table 11-36 (Cont.) syscall Large File Probes

Large File syscall Probe System Call

pwrite64 pwrite
setrlimit64 setrlimit
statvfs64 statvfs

Private System Calls
Some system calls are private implementation details of Oracle Solaris subsystems that span
the user-kernel boundary. As such, these system calls do not have man pages in man page
section 2. Examples of system calls in this category include the signotify system call, which
is used as part of the implementation of POSIX.4 message queues, and the utssys system
call, which is used to implement fuser. For more information, see the fuser(8) man page.

syscall Probe Arguments
For entry probes, the arguments arg0 .. argn are the arguments to the system call. For
return probes, both arg0 and arg1 contain the return value. A non-zero value in the D
variable errno indicates system call failure.

syscall Stability
The syscall provider uses stability mechanism of DTrace to describe its stabilities as shown
in the following table. For more information about the stability mechanism, refer to DTrace
Stability Mechanisms.

Table 11-37 Stability Mechanism for the syscall Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Unstable Unstable ISA

Name Evolving Evolving Common

Arguments Unstable Unstable ISA

sysinfo Provider
The sysinfo provider include probes that correspond to kernel statistics classified by the
name sys. Because these statistics provide the input for system monitoring utilities like
mpstat, the sysinfo provider enables quick exploration of observed aberrant behavior.

sysinfo Probes
The sysinfo provider makes available probes that correspond to the fields in the sys named
kernel statistic: a probe provided by sysinfo fires immediately before the corresponding sys

Chapter 11
sysinfo Provider

11-113

https://docs.oracle.com/cd/E88353_01/html/E72487/fuser-8.html

value is incremented. The following example shows how to display both the names
and the current values of the sys named kernel statistic using the kstat2 command.
For more information about the kstat command, see the kstat2(8) man page.

$ kstat2 -g '/system/cpu/*/sys'
kstat:/system/cpu/0/sys
 bawrite 0
 bread 0
 bwrite 0
 canch 9
 cpu_load_intr 0%
 cpu_nsec_idle 944039523309871ns elapsed
 cpu_nsec_intr 3400721873472ns elapsed
 cpu_nsec_kernel 14270503585569ns elapsed
 cpu_nsec_stolen 0ns elapsed
 cpu_nsec_user 10374706268624ns elapsed

The sysinfo probes are described in the following table.

Table 11-38 sysinfo Probes

Probe Description

bawrite Fires whenever a buffer is about to be asynchronously written out to a device.

bread Fires whenever a buffer is physically read from a device. bread fires after the
buffer has been requested from the device, but before blocking pending its
completion.

bwrite Fires whenever a buffer is about to be written out to a device, whether
synchronously or asynchronously.

idlethread Fires whenever a CPU enters the idle loop.

intrblk Fires whenever an interrupt thread blocks.

inv_swtch Fires whenever a running thread is forced to involuntarily give up the CPU.

lread Fires whenever a buffer is logically read from a device.

lwrite Fires whenever a buffer is logically written to a device.

modload Fires whenever a kernel module is loaded.

modunload Fires whenever a kernel module is unloaded.

msg Fires whenever a msgsnd or msgrcv system call is made, but before the
message queue operations are performed.

mutex_adente
rs

Fires whenever an attempt is made to acquire an owned adaptive lock. If this
probe fires, one of the lockstat provider's adaptive-block or adaptive-
spin probes will also fire. For more information, see lockstat Stability.

namei Fires whenever a name lookup is attempted in the filesystem.

nthreads Fires whenever a thread is created.

phread Fires whenever a raw I/O read is about to be performed.

phwrite Fires whenever a raw I/O write is about to be performed.

procovf Fires whenever a new process cannot be created because the system is out
of process table entries.

pswitch Fires whenever a CPU switches from executing one thread to executing
another.

Chapter 11
sysinfo Provider

11-114

https://docs.oracle.com/cd/E88353_01/html/E72487/kstat2-8.html

Table 11-38 (Cont.) sysinfo Probes

Probe Description

readch Fires after each successful read, but before control is returned to the thread
performing the read. A read may occur through the read, readv, or pread
system calls. arg0 contains the number of bytes that were successfully read.

rw_rdfails Fires whenever an attempt is made to read-lock a readers/writer when the
lock is either held by a writer, or desired by a writer. If this probe fires, the
lockstat provider's rw-block probe will also fire. For more information, see
lockstat Stability.

rw_wrfails Fires whenever an attempt is made to write-lock a readers/writer lock when
the lock is held either by some number of readers or by another writer. If this
probe fires, the lockstat provider's rw-block probe will also fire. For more
information, see lockstat Stability.

sema Fires whenever a semop system call is made, but before any semaphore
operations have been performed.

sysexec Fires whenever an exec system call is made.

sysfork Fires whenever a fork system call is made.

sysread Fires whenever a read, readv, or pread system call is made.

sysvfork Fires whenever a vfork system call is made.

syswrite Fires whenever a write, writev, or pwrite system call is made.

trap Fires whenever a processor trap occurs. Note that some processors, in
particular UltraSPARC variants, handle some light-weight traps through a
mechanism that does not cause this probe to fire.

ufsdirblk Fires whenever a directory block is read from the UFS file system. For more
information, see the ufs(4FS) man page.

ufsiget Fires whenever an inode is retrieved.

ufsinopage. Fires after an in-core inode without any associated data pages has been
made available for reuse.

ufsipage Fires after an in-core inode with associated data pages has been made
available for reuse. This probe fires after the associated data pages have
been flushed to disk.

wait_ticks_i
o

Fires when the periodic system clock has made the determination that a CPU
is otherwise idle but some threads are waiting for I/O on the CPU. This probe
fires in the context of the system clock and therefore fires on the CPU running
the system clock. The cpu_t argument (arg2) indicates the CPU that is
described as waiting for I/O. For more information about arg2, see sysinfo
Probe Arguments. wait_ticks_io exists solely for historical reasons.

writech Fires after each successful write, but before control is returned to the thread
performing the write. A write may occur through the write, writev, or
pwrite system calls. arg0 contains the number of bytes that were
successfully written.

xcalls Fires whenever a cross-call is about to be made. A cross-call is the operating
system's mechanism for one CPU to request immediate work of another
CPU.

Chapter 11
sysinfo Provider

11-115

https://docs.oracle.com/cd/E88353_01/html/E37851/ufs-4fs.html

sysinfo Probe Arguments
The following list describes the arguments to sysinfo probes.

arg0
The value by which the statistic is to be incremented. For most probes, this argument
is always 1, but for some probes this argument may take other values.

arg1
A pointer to the current value of the statistic to be incremented. This value is a 64-bit
quantity that will be incremented by the value in arg0. Dereferencing this pointer
enables consumers to determine the current count of the statistic corresponding to the
probe.

arg2
A pointer to the cpu_t structure that corresponds to the CPU on which the statistic is
to be incremented. This structure is defined in <sys/cpuvar.h>, but it is part of the
kernel implementation and should be considered Private.

The value of arg0 is 1 for most sysinfo probes. However, the readch and writech
probes set arg0 to the number of bytes read or written, respectively. This features
permits you to determine the size of reads by executable name, as shown in the
following example:

dtrace -n readch'{@[execname] = quantize(arg0)}'
dtrace: description 'readch' matched 4 probes
^C
 xclock
 value ------------- Distribution ------------- count
 16 | 0
 32 |@@ 1
 64 | 0

 acroread
 value ------------- Distribution ------------- count
 16 | 0
 32 |@@ 3
 64 | 0

 FvwmAuto
 value ------------- Distribution ------------- count
 2 | 0
 4 |@@@@@@@@@@@@@ 13
 8 |@@@@@@@@@@@@@@@@@@@@@ 21
 16 |@@@@@ 5
 32 | 0

 xterm
 value ------------- Distribution ------------- count
 16 | 0
 32 |@@@@@@@@@@@@@@@@@@@@@@@@ 19
 64 |@@@@@@@@@ 7
 128 |@@@@@@ 5
 256 | 0

 fvwm2
 value ------------- Distribution ------------- count

Chapter 11
sysinfo Provider

11-116

 -1 | 0
 0 |@@@@@@@@@ 186
 1 | 0
 2 | 0
 4 |@@ 51
 8 | 17
 16 | 0
 32 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 503
 64 | 9
 128 | 0

 Xsun
 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@@@@@@@@@@ 269
 1 | 0
 2 | 0
 4 | 2
 8 |@ 31
 16 |@@@@@ 128
 32 |@@@@@@@ 171
 64 |@ 33
 128 |@@@ 85
 256 |@ 24
 512 | 8
 1024 | 21
 2048 |@ 26
 4096 | 21
 8192 |@@@@ 94
 16384 | 0

Using sysinfo mpstat
Examine the following output from mpstat:

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 12 90 22 5760 422 299 435 26 71 116 11 1372 5 19 17 60
 13 46 18 4585 193 162 431 25 69 117 12 1039 3 17 14 66
 14 33 13 3186 405 381 397 21 58 105 10 770 2 17 11 70
 15 34 19 4769 109 78 417 23 57 115 13 962 3 14 14 69
 16 74 16 4421 437 406 448 29 77 111 8 1020 4 23 14 59
 17 51 15 4493 139 110 378 23 62 109 9 928 4 18 14 65
 18 41 14 4204 494 468 360 23 56 102 9 849 4 17 12 68
 19 37 14 4229 115 87 363 22 50 106 10 845 3 15 14 67
 20 78 17 5170 200 169 456 26 69 108 9 1119 5 21 25 49
 21 53 16 4817 78 51 394 22 56 106 9 978 4 17 22 57
 22 32 13 3474 486 463 347 22 48 106 9 769 3 17 17 63
 23 43 15 4572 59 34 361 21 46 102 10 947 4 15 22 59

From the preceding output, you might conclude that the xcal field seems too high, especially
given the relative idleness of the system. mpstat determines the value in the xcal field by
examining the xcalls field of the sys kernel statistic. This aberration can therefore be
explored easily by enabling the xcalls sysinfo probe, as shown in the following example:

dtrace -n xcalls'{@[execname] = count()}'
dtrace: description 'xcalls' matched 4 probes
^C
 dtterm 1
 nsrd 1
 in.mpathd 2

Chapter 11
sysinfo Provider

11-117

 top 3
 lockd 4
 java_vm 10
 ksh 19
 iCald.pl6+RPATH 28
 nwadmin 30
 fsflush 34
 nsrindexd 45
 in.rlogind 56
 in.routed 100
 dtrace 153
 rpc.rstatd 246
 imapd 377
 sched 431
 nfsd 1227
 find 3767

The output shows where to look for the source of the cross-calls. Some number of
find processes are causing the majority of the cross-calls. The following D script can
be used to understand the problem in further detail:

syscall:::entry
/execname == "find"/
{
 self->syscall = probefunc;
 self->insys = 1;
}

sysinfo:::xcalls
/execname == "find"/
{
 @[self->insys ? self->syscall : "<none>"] = count();
}

syscall:::return
/self->insys/
{
 self->insys = 0;
 self->syscall = NULL;
}

This script uses the syscall provider to attribute cross-calls from find to a particular
system call. Some cross-calls, such as those resulting from page faults, might not
emanate from system calls. The script prints <none> in these cases. Running the script
results in output similar to the following example:

dtrace -s ./find.d
 dtrace: script './find.d' matched 444 probes
^C
 <none> 2
 lstat64 2433
 getdents64 14873

This output indicates that the majority of cross-calls induced by find are in turn
induced by getdents system calls. Further exploration would depend on the direction
you want to explore. To understand why find processes are making calls to getdents,
you can write a D script to aggregate on ustack when find induces a cross-call. To
understand why calls to getdents are inducing cross-calls, you can write a D script to
aggregate on stack when find induces a cross-call. Whatever your next step, the

Chapter 11
sysinfo Provider

11-118

presence of the xcalls probe has enabled you to quickly discover the root cause of the
unusual monitoring output.

sysinfo Stability
The sysinfo provider uses stability mechanism of DTrace to describe its stabilities, as shown
in the following table. For more information about the stability mechanism, see DTrace
Stability Mechanisms.

Table 11-39 Stability Mechanism for the sysinfo Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA

vminfo Provider
The vminfo provider makes available probes that correspond to the vm kernel statistics.
Because these statistics provide the input for system monitoring utilities like vmstat, the
vminfo provider enables quick exploration of observed aberrant behavior.

vminfo Probes
The vminfo provider makes available probes that correspond to the fields in the vm named
kernel statistic: a probe provided by vminfo fires immediately before the corresponding vm
value is incremented. To display both the names and the current values of the vm named
kernel statistic, use the kstat2 command, as shown in the following example:

$ kstat2 /system/cpu/0/vm
kstat:/system/cpu/0/vm
 anonfree 0
 anonpgin 0
 anonpgout 0
 as_fault 164243072
 cow_fault 14804500
 crtime 1210605854957637ns
 dfree 0
 execfree 0
 execpgin 110
 execpgout 0
 fsfree 0

The following table describes the probes for the vminfo provider.

Chapter 11
vminfo Provider

11-119

Table 11-40 List of vminfo Probes

Probe Description

anonfree Fires when an unmodified anonymous page is freed as part of paging activity.
Anonymous pages are those that are not associated with a file. Memory
containing such pages includes heap memory, stack memory, or memory
obtained by explicitly mapping zero.

anonpgin Fires when an anonymous page is paged in from a swap device.

anonpgout Fires when a modified anonymous page is paged out to a swap device.

as_fault Fires when a fault is taken on a page and the fault is neither a protection fault
nor a copy-on-write fault.

cow_fault Fires when a copy-on-write fault is taken on a page. arg0 contains the
number of pages that are created as a result of the copy-on-write.

dfree Fires when a page is freed as a result of paging activity. Whenever dfree
fires, exactly one of anonfree, execfree, or fsfree will also subsequently
fire.

execfree Fires when an unmodified executable page is freed as a result of paging
activity.

execpgin Fires when an executable page is paged in from the backing store.

execpgout Fires when a modified executable page is paged out to the backing store.
Most paging of executable pages occurs in terms of execfree. execpgout
can only fire if an executable page is modified in memory, an uncommon
occurrence in most systems.

fsfree Fires when an unmodified file system data page is freed as part of paging
activity.

fspgin Fires when a file system page is paged in from the backing store.

fspgout Fires when a modified file system page is paged out to the backing store.

kernel_asflt Fires when a page fault is taken by the kernel on a page in its own address
space. Whenever kernel_asflt fires, it will be immediately preceded by a
firing of the as_fault probe.

maj_fault Fires when a page fault is taken that results in I/O from a backing store or
swap device. Whenever maj_fault fires, it is immediately preceded by a
firing of the pgin probe.

pgfrec Fires when a page is reclaimed off of the free page list.

pgin Fires when a page is paged in from the backing store or from a swap device.
This probe differs from maj_fault in that maj_fault only fires when a page
is paged in as a result of a page fault. pgin fires every time a page is paged
in, regardless of the reason.

pgout Fires when a page is paged out to the backing store or to a swap device.

pgpgin Fires whenever a page is paged in from the backing store or from a swap
device. The only difference between pgpgin and pgin is that pgpgin
contains the number of pages paged in as arg0. pgin always contains 1 in
arg0.

pgpgout Fires when a page is paged out to the backing store or to a swap device. The
only difference between pgpgout and pgout is that pgpgout contains the
number of pages paged out as arg0. pgout always contains 1 in arg0.

pgrec Fires when a page is reclaimed.

Chapter 11
vminfo Provider

11-120

Table 11-40 (Cont.) List of vminfo Probes

Probe Description

pgrrun Fires when the pager is scheduled.

pgswapin Fires when pages from a swapped-out process are swapped in. The number
of pages swapped in is contained in arg0.

pgswapout Fires when pages are swapped out as part of swapping out a process. The
number of pages swapped out is contained in arg0.

prot_fault Fires when a page fault is taken due to a protection violation.

rev Fires when the page daemon begins a new revolution through all pages.

scan Fires when the page daemon examines a page.

softlock Fires when a page is faulted as a part of placing a software lock on the page.

swapin Fires when a swapped-out process is swapped back in.

swapout Fires when a process is swapped out.

zfod Fires when a zero-filled page is created on demand.

vminfo Probe Arguments
The vminfo provider arguments are described in the following list.

arg0
The value by which the statistic is to be incremented. For most probes, this argument is
always 1, but for some it may take other values.

arg1
A pointer to the current value of the statistic to be incremented. This value is a 64-bit quantity
that will be incremented by the value in arg0. Dereferencing this pointer allows consumers to
determine the current count of the statistic corresponding to the probe.

Using vminfo vmstat
Examine the following output from the vmstat command:

kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr cd s0 - - in sy cs us sy id
 0 1 0 1341844 836720 26 311 1644 0 0 0 0 216 0 0 0 797 817 697 9 10 81
 0 1 0 1341344 835300 238 934 1576 0 0 0 0 194 0 0 0 750 2795 791 7 14 79
 0 1 0 1340764 833668 24 165 1149 0 0 0 0 133 0 0 0 637 813 547 5 4 91
 0 1 0 1340420 833024 24 394 1002 0 0 0 0 130 0 0 0 621 2284 653 14 7 79
 0 1 0 1340068 831520 14 202 380 0 0 0 0 59 0 0 0 482 5688 1434 25 7 68

The pi column in the preceding output denotes the number of pages paged in. The vminfo
provider enables you to learn more about the source of these page-ins, as shown in the
following example:

dtrace -n pgin'{@[execname] = count()}'
dtrace: description 'pgin' matched 1 probe
^C
 xterm 1
 ksh 1

Chapter 11
vminfo Provider

11-121

 ls 2
 lpstat 7
 sh 17
 soffice 39
 javaldx 103
 soffice.bin 3065

The output shows that a process associated with the StarOffice™ software,
soffice.bin, is responsible for most of the page-ins. To get a better picture of
soffice.bin in terms of virtual memory behavior, you could enable all vminfo probes.
The following example runs dtrace while launching the StarOffice software:

dtrace -P vminfo'/execname == "soffice.bin"/{@[probename] = count()}'
dtrace: description 'vminfo' matched 42 probes
^C

 kernel_asflt 1
 fspgin 10
 pgout 16
 execfree 16
 execpgout 16
 fsfree 16
 fspgout 16
 anonfree 16
 anonpgout 16
 pgpgout 16
 dfree 16
 execpgin 80
 prot_fault 85
 maj_fault 88
 pgin 90
 pgpgin 90
 cow_fault 859
 zfod 1619
 pgfrec 8811
 pgrec 8827
 as_fault 9495

The following example script provides more information about the virtual memory
behavior of the StarOffice software during its startup:

vminfo:::maj_fault,
vminfo:::zfod,
vminfo:::as_fault
/execname == "soffice.bin" && start == 0/
{
 /*
 * This is the first time that a vminfo probe has been hit; record
 * the initial timestamp.
 */
 start = timestamp;
}

vminfo:::maj_fault,
vminfo:::zfod,
vminfo:::as_fault
/execname == "soffice.bin"/
{
 /*
 * Aggregate on the probename, and lquantize() the number of seconds
 * since the initial timestamp. (There are 1,000,000,000 nanoseconds

Chapter 11
vminfo Provider

11-122

 * in a second.) Assume that the script will be terminated before
 * 60 seconds elapses.
 */
 @[probename] =
 lquantize((timestamp - start) / 1000000000, 0, 60);
}

Run the script while again starting the StarOffice software. Then, create a new drawing,
create a new presentation, and then close all files and quit the application. Press Control-C in
the shell running the D script. The results provide a view of some virtual memory behavior
over time:

dtrace -s ./soffice.d
dtrace: script './soffice.d' matched 10 probes
^C

 maj_fault
 value ------------- Distribution ------------- count
 7 | 0
 8 |@@@@@@@@@ 88
 9 |@@@@@@@@@@@@@@@@@@@@ 194
 10 |@ 18
 11 | 0
 12 | 0
 13 | 2
 14 | 0
 15 | 1
 16 |@@@@@@@@ 82
 17 | 0
 18 | 0
 19 | 2
 20 | 0

 zfod
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@ 525
 1 |@@@@@@@@ 605
 2 |@@ 208
 3 |@@@ 280
 4 | 4
 5 | 0
 6 | 0
 7 | 0
 8 | 44
 9 |@@ 161
 10 | 2
 11 | 0
 12 | 0
 13 | 4
 14 | 0
 15 | 29
 16 |@@@@@@@@@@@@@@ 1048
 17 | 24
 18 | 0
 19 | 0
 20 | 1
 21 | 0
 22 | 3
 23 | 0

Chapter 11
vminfo Provider

11-123

 as_fault
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@@@@@@@ 4139
 1 |@@@@@@@ 2249
 2 |@@@@@@@ 2402
 3 |@ 594
 4 | 56
 5 | 0
 6 | 0
 7 | 0
 8 | 189
 9 |@@ 929
 10 | 39
 11 | 0
 12 | 0
 13 | 6
 14 | 0
 15 | 297
 16 |@@@@ 1349
 17 | 24
 18 | 0
 19 | 21
 20 | 1
 21 | 0
 22 | 92
 23 | 0

The output shows some StarOffice behavior with respect to the virtual memory system.
For example, the maj_fault probe did not fire until a new instance of the application
was started. As you would hope, a warm start of StarOffice did not result in new major
faults. The as_fault output shows an initial burst of activity, latency while the user
located the menu to create a new drawing, another period of idleness, and a final burst
of activity when the user clicked on a new presentation. The zfod output shows that
creating the new presentation induced significant pressure for zero-filled pages, but
only for a short period of time.

The next iteration of DTrace investigation in this example would depend on the
direction you want to explore. If you want to understand the source of the demand for
zero-filled pages, you could aggregate on ustack in a zfod enabling. You might want
to establish a threshold for zero-filled pages and use the stop destructive action to stop
the offending process when the threshold is exceeded. This approach would enable
you to use more traditional debugging tools like truss or mdb. The vminfo provider
enables you to associate statistics seen in the output of conventional tools like vmstat
with the applications that are inducing the systemic behavior.

vminfo Stability
The vminfo provider uses stability mechanism of DTrace to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
DTrace Stability Mechanisms.

Table 11-41 Stability Mechanism for the vminfo Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Chapter 11
vminfo Provider

11-124

Table 11-41 (Cont.) Stability Mechanism for the vminfo Provider

Element Name Stability Data Stability Dependency Class

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA

Network and Network Service Protocol Providers
This section lists all the network and network services protocol providers.

Note:

IP addresses in this guide conform to RFC 5737 (https://tools.ietf.org/html/rfc5737),
IPv4 Address Blocks Reserved for Documentation and rfc 3849 (https://
tools.ietf.org/html/rfc3849), IPv6 Address Prefix Reserved for Documentation. IPv4
addresses used in this documentation are blocks 192.0.2.0/24, 198.51.100.0/24,
and 203.0.113.0/24. IPv6 addresses have prefix 2001:DB8::/32. To show a subnet,
the block is divided into multiple subnets by borrowing enough bits from the host to
create the required subnet. For example, host address 192.0.2.0 might have
subnets 192.0.2.32/27 and 192.0.2.64/27.

icmp Provider
The icmp provider provides probes for tracing the Internet Control Message Protocol (ICMP).

ICMP Probes
The icmp probes are:

send
Probe that fires whenever ICMP sends a message.

receive
Probe that fires whenever ICMP receives a message.

The send and receive probes cover ICMP messages on IP interfaces, and cover both IPv4
and IPv6 ICMP traffic.

ICMP Probe Arguments
The argument types for the icmp probes are listed in the table below. The arguments are
described in the following section.

Chapter 11
Network and Network Service Protocol Providers

11-125

https://tools.ietf.org/html/rfc5737
https://tools.ietf.org/html/rfc3849
https://tools.ietf.org/html/rfc3849

Table 11-42 icmp Probe Arguments

Probe args[0] args[1] args[2] args[3] args[4]
send pktinfo_t * csinfo_t * ipinfo_t * NULL icmpinfo_t

*
receive pktinfo_t * csinfo_t * ipinfo_t * NULL icmpinfo_t

*

ICMP pktinfo_t Structure
The pktinfo structure is where packet ID info can be made available for deeper
analysis, if packet IDs become supported by the kernel. The pkt_addr member is a
pointer to the mblk holding the packet, with b_rptr pointing at the start of the relevant
protocol specified by pkt_pcap to support packet capture.

typedef struct pktinfo {
 mblk_t *pkt_addr;
 int pkt_pcap;
} pktinfo_t;

ICMP csinfo_t Structure
The csinfo_t structure is where connection state info is made available. It contains a
unique (system-wide) connection ID, and the process ID and zone ID associated with
the connection. For ICMP, the connection information is populated for ICMP errors
received, which are sent to a specific connection. Other ICMP data received such as
ICMP echo requests/replies is not directed to a specific connection, so the connection
ID is 0. For outbound ICMP data, the pid and zoneid are specified but the connection
ID (cid) is 0.

typedef struct csinfo {
 uintptr_t cs_addr;
 uint64_t cs_cid;
 pid_t cs_pid;
 zoneid_t cs_zoneid;
 } csinfo_t;

The following list describes the csinfo_t members:

cs_addr
Address of translated ip_xmit_attr_t *.

cs_cid
Connection ID. A unique per-connection identifier, which identifies the connection
during its lifetime.

cs_pid
Process ID associated with the connection.

cs_zoneid
Zone ID associated with the connection.

Chapter 11
Network and Network Service Protocol Providers

11-126

ICMP ipinfo_t Structure
The ipinfo_t structure contains common IP info for both IPv4 and IPv6.

typedef struct ipinfo {
 uint8_t ip_ver; /* IP version (4, 6) */
 uint16_t ip_plength; /* payload length */
 string ip_saddr; /* source address */
 string ip_daddr; /* destination address */
} ipinfo_t;

The following The following list describes describes the ipinfo_t members:

ip_ver
IP version number. Currently either 4 or 6.

ip_plength
Payload length in bytes. This is the length of the packet at the time of tracing, excluding the
IP header.

ip_saddr
Source IP address, as a string. For IPv4, this is a dotted decimal quad, IPv6 follows RFC
1884 convention 2 with lower case hexadecimal digits.

ip_daddr
Destination IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6 follows RFC
1884 convention 2 with lower case hexadecimal digits.

ICMP icmpinfo_t Structure
The icmpinfo_t structure is a DTrace translated version of the information contained in the
various forms of ICMP and ICMP6 headers.

typedef struct icmpinfo {
 uint8_t icmp_version;
 uint8_t icmp_type;
 uint8_t icmp_code;
 uint16_t icmp_checksum;
 uint32_t icmp_address_mask;
 uint16_t icmp_echo_id;
 uint16_t icmp_echo_seq;
 uint32_t icmp_param_problem_ptr;
 uint32_t icmp_pmtu_update;
 uint8_t icmp_radv_num_addrs;
 uint16_t icmp_radv_lifetime;
 uint32_t *icmp_radv_addrs;
 string icmp_redirect_gateway;
 uint32_t icmp_timestamp_otime;
 uint32_t icmp_timestamp_rtime;
 uint32_t icmp_timestamp_ttime;
 string icmp6_mld_addr;
 uint8_t icmp6_mld_v2_num_mars;
 uintptr_t icmp6_mld_v2_mars;
 string icmp6_nd_target;
 string icmp6_nd_redirect_destination;
 uint32_t icmp6_nd_radv_reachable;
 uint32_t icmp6_nd_radv_retransmit;
 uint8_t icmp6_rr_segnum;

Chapter 11
Network and Network Service Protocol Providers

11-127

https://www.rfc-editor.org/info/rfc1884
https://www.rfc-editor.org/info/rfc1884
https://www.rfc-editor.org/info/rfc1884
https://www.rfc-editor.org/info/rfc1884

 uint8_t icmp6_rr_flags;
 uint16_t icmp6_rr_maxdelay;
 /* Original data that triggered ICMP error - NULL/0 if not ICMP error */
 ipha_t *icmp_error_ip_hdr; /* Orig. IP hdr for ICMP error */
 ip6_t *icmp_error_ip6_hdr; /* Orig. IPv6 hdr for ICMP error */
 uint16_t icmp_error_sport;
 uint16_t icmp_error_dport;
 struct icmp *icmp_hdr;
 icmp6_t *icmp6_hdr;
} icmpinfo_t;

Table 11-43 List of ICMP icmpinfo_t Members

Member Description

icmp_type ICMP/ICMPv6 message type.

icmp_code ICMP/ICMPv6 message code.

icmp_checksum Checksum of ICMP header and payload.

icmp_hdr Pointer to raw ICMP header at the time of tracing.

icmp6_hdr Pointer to raw ICMPv6 header at the time of tracing.

icmp_address_mask ICMP address mask reply.

icmp_echo_id ICMP echo request/response ID.

icmp_echo_seq ICMP echo request/response sequence number.

icmp_param_problem_
ptr

Offset of parameter in original datagram that caused the ICMP/
ICMPv6 parameter problem.

icmp_pmtu_update Path MTU update for ICMP "destination unreachable/needs
fragmentation" and ICMPv6 "packet too big".

icmp_radv_num_addrs Number of ICMP router advertisements to follow.

icmp_radv_lifetime Lifetime of router advertisements.

icmp_radv_addrs Pointer to router advertisements.

icmp_redirect_gatew
ay

Gateway for ICMP redirect.

icmp_timestamp_otim
e

Originating time set in ICMP timestamp request - number of
seconds since 0:00 UT.

icmp_timestamp_rtim
e

Receive time of timestamp request set in ICMP timestamp
response.

icmp_timestamp_ttim
e

Transmit time of timestamp reply sent in response to ICMP
timestamp request.

icmp6_mld_addr ICMP6 Multicast layer discovery address.

icmp6_mld_v2_num_ma
rs

Number of ICMPv6 Multicast Address Records.

icmp6_mld_v2_mars Pointer to first ICMPv6 Multicast Address Record.

icmp6_nd_target ICMPv6 neighbor discovery target.

icmp6_nd_redirect_d
estination

ICMPv6 neighbor discovery redirect destination.

icmp6_nd_radv_reach
able

ICMPv6 neighbor discovery router advertisement reachable.

Chapter 11
Network and Network Service Protocol Providers

11-128

Table 11-43 (Cont.) List of ICMP icmpinfo_t Members

Member Description

icmp6_nd_radv_retra
nsmit

ICMPv6 neighbor discovery router advertisement.

icmp6_rr_segnum ICMPv6 router renumbering segment number.

icmp6_rr_flags ICMPv6 router renumbering flags.

icmp6_rr_maxdelay ICMPv6 router renumbering maximum delay.

icmp_error_ip_hdr Original IP hdr for ICMP/ICMPv6 error.

icmp_error_ip6_hdr Original IPv6 hdr for ICMP/ICMPv6 error.

icmp_error_sport Original layer 4 source port for ICMP/ICMPv6 error.

icmp_error_dport Original layer 4 destination port for ICMP/ICMPv6 error.

icmp_hdr Pointer to original ICMP header, NULL for ICMP6.

icmp6_hdr Pointer to original ICMPv6 header, NULL for ICMP.

For more information about the various ICMP/ICMPv6 message header formats, see RFC
792, 1256, and 2463.

Using the ICMP Provider
The following examples show the usage of simple the icmp provider.

ICMP Errors Sent by Remote Host/Port
This DTrace one-liner monitors ICMP errors sent, by aggregating the originating host and
target port:

dtrace -n 'icmp:::send / args[4]->icmp_error_dport != 0 / { @[args[2]->ip_daddr,
args[4]->icmp_error_dport] = count(); }'
dtrace: description 'icmp:::send ' matched 9 probes
^C

 203.0.113.5 517 21

The output shows 21 ICMP errors sent in response to packets sent from the system to the
local port 517. These UDP packets are generated by running the talk() program when the
associated inetd service is not enabled. The ICMP errors are destination unreachable/port
unreachable errors, and this script can be used to catch UDP service connection refusal.

ICMP Packets by Process
This DTrace one-liner counts ICMP sent/received packets by process:

dtrace -n 'icmp:::send,icmp:::receive { @[args[1]->cs_pid] = count(); }'
dtrace: description 'icmp:::send,icmp:::receive ' matched 20 probes
^C

 100961 1
 100965 1
 100968 1

Chapter 11
Network and Network Service Protocol Providers

11-129

These represent 3 ICMP messages received in response to ping - U requests.

Count Events by ICMP
This DTrace one-liner count events by ICMP:

dtrace -n 'icmp:::send,icmp:::receive { @i[icmp_type_string[args[4]-
>icmp_type]] = count(); }'
dtrace: description 'icmp:::send,icmp:::receive ' matched 25 probes
^C

 Echo reply 7
 Echo request 7

ICMP Stability
The icmp provider uses DTrace's stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
DTrace Stability Mechanisms.

Table 11-44 Stability Mechanism for the icmp Provider

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

igmp Provider
The igmp provider provides probes for tracing the Internet Group Management
Protocol (IGMP).

igmp Probes
The igmp probes are:

send
Probe that fires whenever IGMP sends a message.

receive
Probe that fires whenever IGMP receives a message.

igmp Probe Arguments
The argument types for the igmp probes are listed in the table below. The arguments
are described in the following section.

Chapter 11
Network and Network Service Protocol Providers

11-130

Table 11-45 List of igmp Probe Arguments

Probe args[0] args[1] args[2] args[3] args[4]
send pktinfo_t * csinfo_t * ipinfo_t * NULL igmpinfo_t *
receive pktinfo_t * csinfo_t * ipinfo_t * NULL igmpinfo_t *

IGMP pktinfo_t Structure
The pktinfo structure is where packet ID info can be made available for deeper analysis, if
packet IDs become supported by the kernel. The pkt_addr member is a pointer to the mblk
holding the packet, with b_rptr pointing at the start of the relevant protocol specified by
pkt_pcap to support packet capture.

typedef struct pktinfo {
 mblk_t *pkt_addr;
 int pkt_pcap;
} pktinfo_t;

IGMP csinfo_t Structure
The csinfo_t structure is where connection state information is made available. For IGMP,
the connection ID and process ID fields are unused since IGMP events are not tied to
particular processes or connections.

typedef struct csinfo {
 uintptr_t cs_addr;
 uint64_t cs_cid;
 pid_t cs_pid;
 zoneid_t cs_zoneid;
 } csinfo_t;

The following list describes the csinfo_t members:

cs_addr
Address of translated ill_t *.

cs_cid
Connection ID. Unused for IGMP.

cs_pid
Process ID. Unused for IGMP.

cs_zoneid
Zone ID associated with the connection.

IGMP ipinfo_t Structure
The ipinfo_t structure contains common IP info for both IPv4 and IPv6.

typedef struct ipinfo {
 uint8_t ip_ver; /* IP version (4, 6) */
 uint16_t ip_plength; /* payload length */
 string ip_saddr; /* source address */
 string ip_daddr; /* destination address */
} ipinfo_t;

Chapter 11
Network and Network Service Protocol Providers

11-131

The following list describes the IGMP ipinfo_t members:

ip_ver
IP version number. Currently either 4 or 6. For IGMP, the version number is 4 since it
is an IPv4-only protocol.

ip_plength
Payload length in bytes. This is the length of the packet at the time of tracing,
excluding the IP header.

ip_saddr
Source IP address, as a string. For IPv4 this is a dotted decimal quad.

ip_daddr
Destination IP address, as a string. For IPv4 this is a dotted decimal quad.

IGMP igmpinfo_t Structure
The igmpinfo_t structure is a DTrace translated version of the information contained
in the various forms of IGMP header.

typedef struct igmpinfo {
 uint8_t igmp_type;
 uint8_t igmp_code;
 uint16_t igmp_checksum;
 string igmp_group_addr;
 uint8_t igmp_query_version;
 uint8_t igmp_v3_query_max_response_time;
 uint16_t igmp_v3_query_num_sources;
 uintptr_t igmp_v3_query_sources;
 uint16_t igmp_v3_report_num_records;
 struct grphdr *igmp_v3_report_records;
 struct igmp *igmp_hdr;
} igmpinfo_t;

Table 11-46 List of IGMP igmpinfo_t Members

Member Description

igmp_type IGMP message type.

igmp_code IGMP message code.

igmp_checksum Checksum of IGMP header and payload.

igmp_group_addr String representation of IGMP multicast group address. Not
valid for IGMPv3 membership reports.

igmp_query_version For an IGMP membership query, this field is set to 1, 2, or 3.
Otherwise 0.

igmp_v3_query_max_respon
se_time

Valid for an IGMPv3 membership query.

igmp_v3_query_num_source
s

Number of IPv4 addresses specifying sources for group-and-
source queries.

igmp_v3_query_sources Array of IPv4 addresses specifying sources for group-and-
source queries.

igmp_v3_report_num_recor
ds

Number of IGMPv3 group records specifying sources for
group-and-source queries.

Chapter 11
Network and Network Service Protocol Providers

11-132

Table 11-46 (Cont.) List of IGMP igmpinfo_t Members

Member Description

igmp_v3_report_records Array of IGMPv3 group records specifying group and sources
for group-and-source reports.

igmp_hdr Pointer to raw IGMP header at time of tracing.

For more information about the various IGMP message header formats, see RFCs 1112,
2236, and 3376.

Monitoring IGMP Traffic by Zone
The following is an example of how to monitor IGMP traffic by zone.

This DTrace one-liner monitors IGMP traffic sent and received by type.

dtrace -n 'igmp:::send,igmp:::receive { @[igmp_type_string[args[4]->igmp_type],
probename, args[1]->cs_zoneid] = count(); }'
dtrace: description 'igmp:::send,igmp:::receive ' matched 3 probes

^C

 membership query receive 0 1
 v1 membership report receive 0 1
 v1 membership report send 0 1

In this example, the global zone with the zoneid 0, you receive has one membership query
and one membership report, and sent has one membership report.

IGMP Stability
The igmp provider uses DTrace's stability mechanism to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see DTrace Stability
Mechanisms.

Table 11-47 Stability Mechanism for the igmp Provider

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

ip Provider
The ip provider provides probes for tracing both IPv4 and IPv6 protocols.

Chapter 11
Network and Network Service Protocol Providers

11-133

ip Probes
The ip probes are described in the following table.

Table 11-48 List of ip Probes

Probe Description

send Fires when the kernel network stack sends an ip packet.

receive Fires when the kernel network stack receives an ip packet.

drop-in Fires when the kernel network stack drops an incoming ip
packet.

drop-out Fires when the kernel network stack drops an outgoing ip packet.

address-add IP address added to the system.

address-delete IP address removed from the system.

address-state-change IP interface state (flags) change.

route-add IP route added.

route-change IP route changed.

route-delete IP route removed.

route-losing IP route is failing or Kernel suspects partitioning.

route-miss Route lookup failed on this address.

route-redirect Use different route.

These probes trace packets on physical interfaces and also packets on loopback
interfaces that are processed by ip. An IP packet must have a full IP header to be
visible by these probes.

Note:

Loopback tcp packets on Oracle Solaris may be processed by tcp fusion, a
performance feature that by-passes the ip layer. These fused packets will
not be visible using the ip:::send and ip:::receive probes. They are
typically all loopback tcp packets after the tcp handshake.

ip Probe Arguments
The argument types for the ip probes are listed in the table below. The arguments are
described in the following section.

Table 11-49 ip Probe Arguments

Probe args[0] args[1] args[2] args[3] args[4] args[5]
send pktinfo_t

*
csinfo_t
*

ipinfo_t
*

ifinfo_t
*

ipv4info_
t *

ipv6info_t
*

Chapter 11
Network and Network Service Protocol Providers

11-134

Table 11-49 (Cont.) ip Probe Arguments

Probe args[0] args[1] args[2] args[3] args[4] args[5]
receive pktinfo_t

*
csinfo_t
*

ipinfo_t
*

ifinfo_t
*

ipv4info_
t *

ipv6info_t
*

drop-in pktinfo_t
*

csinfo_t
*

ipinfo_t
*

ifinfo_t
*

ipv4info_
t *

ipv6info_t
*

drop-out pktinfo_t
*

csinfo_t
*

ipinfo_t
*

ifinfo_t
*

ipv4info_
t *

ipv6info_t
*

address-
add

NULL csinfo_t
*

NULL NULL ipaddrinf
o_t*

address-
delete

NULL csinfo_t
*

NULL NULL ipaddrinf
o_t*

address-
state-
change

NULL csinfo_t
*

NULL NULL ipaddrinf
o_t*

route-
add

NULL csinfo_t
*

NULL NULL routeinfo
_t *

route-
change

NULL csinfo_t
*

NULL NULL routeinfo
_t *

route-
delete

NULL csinfo_t
*

NULL NULL routeinfo
_t *

route-
losing

NULL csinfo_t
*

NULL NULL routeinfo
_t *

route-
miss

NULL csinfo_t
*

NULL NULL routeinfo
_t *

route-
redirect

NULL csinfo_t
*

NULL NULL routeinfo
_t *

pktinfo_t Structure
The pktinfo structure is where packet ID info can be made available for deeper analysis, if
packet IDs become supported by the kernel. The pkt_addr member is a pointer to the mblk
holding the packet, with b_rptr pointing at the start of the relevant protocol specified by
pkt_pcap to support packet capture.

typedef struct pktinfo {
 mblk_t *pkt_addr;
 int pkt_pcap;
} pktinfo_t;

csinfo_t Structure
The csinfo_t structure is where connection state information can be made available if
connection IDs become supported by the kernel in the future.

The cs_addr member is currently always NULL.

Chapter 11
Network and Network Service Protocol Providers

11-135

typedef struct csinfo {
 uintptr_t cs_addr; /* currently always NULL */
} csinfo_t;

ipinfo_t Structure
The ipinfo_t structure contains common IP information for both IPv4 and IPv6.

typedef struct ipinfo {
 uint8_t ip_ver; /* IP version (4, 6) */
 uint16_t ip_plength; /* payload length */
 string ip_saddr; /* source address */
 string ip_daddr; /* destination address */
} ipinfo_t;

Table 11-50 ipinfo_t Members

Member Description

ip_ver IP version number. Currently either 4 or 6.

ip_plength Payload length in bytes. This is the length of the packet at the time of
tracing, excluding the IP header.

ip_saddr. Source IP address, as a string. For IPv4 this is a dotted decimal quad,
IPv6 follows RFC 1884 convention 2 with lower case hexadecimal
digits.

ip_daddr Destination IP address, as a string. For IPv4 this is a dotted decimal
quad, IPv6 follows RFC 1884 convention 2 with lower case
hexadecimal digits.

ifinfo_t Structure
The ifinfo_t structure contains network interface information.

typedef struct ifinfo {
 string if_name; /* interface name */
 int8_t if_local; /* is delivered locally */
 netstackid_t if_ipstack; /* ipstack ID */
 uintptr_t if_addr; /* pointer to raw ill_t */
} ifinfo_t;

The following list describes the ifinfo_t members:

if_name
Interface name as a string. For example, "eri0", "lo0", "ip.tun0", "<unknown>".

if_local
Is-local status. 1: is a local interface, 0: is not a local interface, -1: is unknown.

if_ipstack
ipstack ID, for associating ip stack instances, or NULL.

if_addr
Pointer to raw kernel structure for advanced debugging only.

The ifinfo_t details are provided for debugging convenience in the ip layer, if that
information is available. There may be some types of traffic where some or all of that

Chapter 11
Network and Network Service Protocol Providers

11-136

https://www.rfc-editor.org/info/rfc1884
https://www.rfc-editor.org/info/rfc1884

information is not available during the ip layer, for which the members may be: "<null>", -1,
NULL, NULL.

ipv4info_t Structure
The ipv4info_t structure is a DTrace translated version of the IPv4 header.

typedef struct ipv4info {
 uint8_t ipv4_ver; /* IP version (4) */
 uint8_t ipv4_ihl; /* header length, bytes */
 uint8_t ipv4_tos; /* type of service field */
 uint16_t ipv4_length; /* length (header + payload) */
 uint16_t ipv4_ident; /* identification */
 uint8_t ipv4_flags; /* IP flags */
 uint16_t ipv4_offset; /* fragment offset */
 uint8_t ipv4_ttl; /* time to live */
 uint8_t ipv4_protocol; /* next level protocol */
 string ipv4_protostr; /* next level protocol, as a string */
 uint16_t ipv4_checksum; /* header checksum */
 ipaddr_t ipv4_src; /* source address */
 ipaddr_t ipv4_dst; /* destination address */
 string ipv4_saddr; /* source address, string */
 string ipv4_daddr; /* destination address, string */
 ipha_t *ipv4_hdr; /* pointer to raw header */
} ipv4info_t;

Table 11-51 ipv4info_t Members

Member Description

ipv4_ver IP version 4.

ipv4_ihl IPv4 header length, in bytes.

ipv4_tos Contents of IPv4 type of service field.

ipv4_length IPv4 packet length (header + payload) at time of tracing, in bytes.

ipv4_ident IPv4 identification field.

ipv4_flags IPv4 flags. See the ipv4_flags table below for bitwise values.

ipv4_offset IPv4 fragment offset, in bytes.

ipv4_ttl IPv4 time to live.

ipv4_protocol IPv4 encapsulated protocol number. See /usr/include/netinet/in.h for
the protocol list (IPPROTO_*).

ipv4_protostr IPv4 encapsulated protocol, as a string. For example, "TCP".

ipv4_checksum IPv4 header checksum, if available at time of tracing.

ipv4_src IPv4 source address, as an ipaddr_t.

ipv4_dst IPv4 destination address, as an ipaddr_t.

ipv4_saddr IPv4 source address, as a dotted decimal quad string.

ipv4_daddr IPv4 destination address, as a dotted decimal quad string.

ipv4_hdr Pointer to raw IPv4 header at the time of tracing.

See RFC 791 for a detailed explanation for these IPv4 header fields. If the packet is IPv6,
these members are either "<null>", 0, or NULL depending on type.

Chapter 11
Network and Network Service Protocol Providers

11-137

https://www.rfc-editor.org/info/rfc791

Table 11-52 ipv4_flags Values

Value Description

IPH_DF Do not fragment

IPH_MF More fragments

ipaddrinfo_t Structure
The ipaddrinfo_t structure is a translated version of the ifa_msghdr_t associated
with the routing socket message associated with the IP address event.

typedef struct ipaddrinfo {
 string ipaddr_ifname;
 int ipaddr_ifflags;
 uint16_t ipaddr_ifindex;
 int ipaddr_metric;
 int ipaddr_addresses;
 string ipaddr_address;
 string ipaddr_netmask;
 string ipaddr_broadcast;
 uintptr_t ipaddr_addr;
} ipaddrinfo_t;

routeinfo_t Structure
The routeinfo_t structure represents a translated version of the rt_msghdr
associated with the routing socket event.

typedef struct routeinfo {
 uint8_t route_version;
 uint8_t route_type;
 uint16_t route_ifindex;
 int route_flags;
 int route_seq;
 pid_t route_pid;
 int route_metrics;
 /* Metric values */
 uint32_t route_mtu_metric;
 uint32_t route_hopcount_metric;
 uint32_t route_expire_metric;
 uint32_t route_recvpipe_metric;
 uint32_t route_sendpipe_metric;
 uint32_t route_ssthresh_metric;
 uint32_t route_rtt_metric;
 uint32_t route_rtt_variance_metric;
 uint32_t route_packets_sent;
 /* Addresses etc in message */
 int route_addresses;
 string route_destination_address;
 string route_gateway_address;
 string route_netmask_address;
 string route_source_address;
 string route_redirect_author_address;
 rt_msghdr_t *route_addr;
} routeinfo_t;

Chapter 11
Network and Network Service Protocol Providers

11-138

ipv6info_t Structure
The ipv6info_t structure is a DTrace translated version of the IPv6 header.

typedef struct ipv6info {
 uint8_t ipv6_ver; /* IP version (6) */
 uint8_t ipv6_tclass; /* traffic class */
 uint32_t ipv6_flow; /* flow label */
 uint16_t ipv6_plen; /* payload length */
 uint8_t ipv6_nexthdr; /* next header protocol */
 string ipv6_nextstr; /* next header protocol, as a string*/
 uint8_t ipv6_hlim; /* hop limit */
 in6_addr_t *ipv6_src; /* source address */
 in6_addr_t *ipv6_dst; /* destination address */
 string ipv6_saddr; /* source address, string */
 string ipv6_daddr; /* destination address, string */
 ip6_t *ipv6_hdr; /* pointer to raw header */
} ipv6info_t;

Table 11-53 ipv6info_t Members

Member Description

ipv6_ver IP version 6.

ipv6_tclass IPv6 traffic class.

ipv6_plen IPv6 payload length at time of tracing, in bytes.

ipv6_nexthdr IPv6 next header protocol number. See /usr/include/netinet/in.h for the
protocol list (IPPROTO_*).

ipv6_nextstr IPv6 next header protocol, as a string. For example, "TCP".

ipv6_hlim IPv6 hop limit.

ipv6_src IPv6 source address, as an in6_addr_t.

ipv6_dst IPv6 destination address, as an in6_addr_t.

ipv6_saddr IPv6 source address, as an RFC 1884 convention 2 string with lower case
hexadecimal digits.

ipv6_daddr IPv6 destination address, as an RFC 1884 convention 2 string with lower case
hexadecimal digits.

ipv6_hdr Pointer to raw IPv6 header at the time of tracing.

See RFC 2460 for a detailed explanation for these IPv6 header fields. If the packet is IPv4,
these members are either "<null>", 0, or NULL depending on type.

Using the ip Provider
Some simple examples of ip provider usage follow.

Counting Received Packets by Host Address
This DTrace one-liner counts received packets by host address:

dtrace -n 'ip:::receive { @[args[2]->ip_saddr] = count(); }'
dtrace: description 'ip:::receive ' matched 4 probes
^C

Chapter 11
Network and Network Service Protocol Providers

11-139

https://www.rfc-editor.org/info/rfc1884
https://www.rfc-editor.org/info/rfc1884
https://www.rfc-editor.org/info/rfc2460

 192.0.2.5/27 1
 192.0.2.20/27 4
 fe80::214:4fff:fe3b:76c8 9
 127.0.0.1 14
 192.0.2.25/27 28

The preceding output shows that 28 IP packets were received from 192.0.2.25/27, 14
IP packets from 127.0.0.1, and so on.

Sent Size Distribution
This DTrace one-liner prints distribution plots of sent payload size by destination:

dtrace -n 'ip:::send { @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }'
dtrace: description 'ip:::send ' matched 11 probes
^C

 192.0.2.35/27
 value ------------- Distribution ------------- count
 8 | 0
 16 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 7
 32 |@@@@ 1
 64 |@@@@ 1
 128 | 0

 192.0.2.25/27
 value ------------- Distribution ------------- count
 8 | 0
 16 |@@@@@ 5
 32 |@@@ 3
 64 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 24
 128 |@ 1
 256 |@ 1
 512 |@@ 2
 1024 |@ 1
 2048 | 0

Using ipio.d
The following DTrace script traces IP packets and prints various details:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10hz

dtrace:::BEGIN
{
 printf(" %3s %10s %15s %15s %8s %6s\n", "CPU", "DELTA(us)",
 "SOURCE", "DEST", "INT", "BYTES");
 last = timestamp;
}

ip:::send
{
 this->elapsed = (timestamp - last) / 1000;
 printf(" %3d %10d %15s -> %15s %8s %6d\n", cpu, this->elapsed,
 args[2]->ip_saddr, args[2]->ip_daddr, args[3]->if_name,
 args[2]->ip_plength);

Chapter 11
Network and Network Service Protocol Providers

11-140

 last = timestamp;
}

ip:::receive
{
 this->elapsed = (timestamp - last) / 1000;
 printf(" %3d %10d %15s <- %15s %8s %6d\n", cpu, this->elapsed,
 args[2]->ip_daddr, args[2]->ip_saddr, args[3]->if_name,
 args[2]->ip_plength);
 last = timestamp;
}

This example output shows tracing packets as they pass in and out of tunnels:

./ipio.d
 CPU DELTA(us) SOURCE DEST INT BYTES
 1 598913 203.0.113.1 -> 192.0.2.55/27 ip.tun0 68
 1 73 192.0.2.3/27 -> 192.0.2.1/27 nge0 140
 1 18325 192.0.2.3/27 <- 192.0.2.1/27 nge0 140
 1 69 203.0.113.1 <- 192.0.2.55/27 ip.tun0 68
 0 102921 203.0.113.1 -> 192.0.2.55/27 ip.tun0 20
 0 79 192.0.2.3/27 -> 192.0.2.1/27 nge0 92

The following fields are printed:

CPU
CPU ID that event occurred on

DELTA (us)
Elapsed time since previous event

SOURCE
Source IP address

DEST
Destination IP address

INT
Interface

BYTES
Payload bytes

Tip:

Multi-CPU servers may shuffle the output slightly due to DTrace per-CPU buffering.
Monitor changes in the CPU column, or add a timestamp column and post sort.

ipproto.d for IP Traffic Summary
This DTrace script provides a neat summary for both send and receive IP traffic, including the
next level protocol:

#!/usr/sbin/dtrace -s

#pragma D option quiet

Chapter 11
Network and Network Service Protocol Providers

11-141

dtrace:::BEGIN
{
 printf("Tracing... Hit Ctrl-C to end.\n");
}

ip:::send,
ip:::receive
{
 this->protostr = args[2]->ip_ver == 4 ?
 args[4]->ipv4_protostr : args[5]->ipv6_nextstr;
 @num[args[2]->ip_saddr, args[2]->ip_daddr, this->protostr] = count();
}

dtrace:::END
{
 printf(" %-28s %-28s %6s %8s\n", "SADDR", "DADDR", "PROTO", "COUNT");
 printa(" %-28s %-28s %6s %@8d\n", @num);
}

This script was run on a system with both IPv4 and IPv6 interfaces for several
seconds:

./ipproto.d
Tracing... Hit Ctrl-C to end.
^C
 SADDR DADDR PROTO COUNT
 192.0.2.3/27 192.0.2.40/27 UDP 1
 192.0.2.3/27 192.0.38/27 UDP 1
 192.0.2.3/27 192.0.130/27 UDP 1
 192.0.2.3/27 192.0.2.5/27 UDP 1
 192.0.2.3/27 192.0.2.35/27 ICMP 1
 192.0.2.20/27 192.0.70/27 UDP 1
 192.0.2.5/27 192.0.2.3/27 UDP 1
 192.0.2.35/27 192.0.2.3/27 ICMP 1
 fe80::214:4fff:fe3b:76c8 ff02::1 ICMPV6 1
 fe80::2e0:81ff:fe5e:8308 fe80::214:4fff:fe3b:76c8 ICMPV6 1
 fe80::2e0:81ff:fe5e:8308 ff02::1:2 UDP 1
 192.0.2.10/27 192.0.2.31/27 UDP 2
 192.0.2.12/27 192.0.2.31/27 UDP 3
 192.0.2.14/27 192.0.2.3/27 TCP 428
 192.0.2.16/27 192.0.2.14/27 TCP 789

The following fields are printed:

SADDR
Source IP address

DADDR
Destination IP address

PROTO
IP next level protocol

COUNT
Number of packets

The preceding output provides a quick summary of network activity with host address
details; you can see that both 192.0.2.14/27 and 192.0.2.16/27 are swapping many
packets via TCP.

Chapter 11
Network and Network Service Protocol Providers

11-142

Diagnosing Route Flaps
You can diagnose route flaps by aggregating the count of add or remove route by IP address.

dtrace -qn 'ip:::route-add,ip:::route-delete { @events[args[4]-
>route_destination_address] = count(); }'
^C

203.0.113.5 2

We can also print additional information from the routeinfo_t structure such as process ID
to show the responsible process.

ip Stability
The ip provider uses stability mechanism of DTrace to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see DTrace Stability
Mechanisms.

Table 11-54 Stability Mechanism for the ip Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

iscsi Provider
The iscsi provider provides probes for tracing iSCSI target activity.

This is a kernel provider built into the COMSTAR iSCSI target port provider. The COMSTAR
iSCSI target and the user-land iSCSI target /usr/sbin/iscsitgtd are mutually exclusive.
Only one of the targets can be enabled at a time. The COMSTAR iSCSI target DTrace
provider provides all the probes that are provided by the user-land iSCSI provider, so that any
DTrace script written for the userland provider built into the iSCSI target daemon (iscsitgtd)
will work with the COMSTAR iSCSI target port provider as well without any modification.
Since this provider instruments the iSCSI target activity, DTrace commands and scripts must
be run on the iSCSI target server to observe these probes.

iscsi Probes

SCSI Event Probes

SCSI command/response iscsi:::scsi-commandiscsi:::scsi-response
Data out/in/request (rtt) iscsi:::data-sendiscsi:::data-

receiveiscsi:::data-request

Chapter 11
Network and Network Service Protocol Providers

11-143

SCSI Event Probes

Login and logout command/response iscsi:::login-commandiscsi:::login-
responseiscsi:::logout-commandiscsi:::logout-
response

NOP out/in (pings) iscsi:::nop-receiveiscsi:::nop-send
Text and task command/response iscsi:::task-commandiscsi:::task-

responseiscsi:::text-commandiscsi:::text-
response

Asynchronous message from target iscsi:::async-send
Buffer dispatch and completion (not
available with the USDT provider)

iscsi:::xfer-startiscsi:::xfer-done

iscsi Probe Arguments

Table 11-55 Probe Arguments for the iscsi Provider

Probes Variable Type Description

* args[0] conninfo_t * Connection information

* args[1] iscsiinfo_t * Common iSCSI properties

scsi-command args[2] scsicmd_t * SCSI command block
(cdb)

xfer-startxfer-
done

args[2] xferinfo_t * Buffer information

COMSTAR iSCSI Argument Types
All COMSTAR iSCSI target probes have the first and second argument in common:

• args[0] conninfo_t * connection information

• conninfo_t
typedef struct conninfo {
 string ci_local; /* local host IP address */
 string ci_remote; /* remote host IP address */
 string ci_protocol; /* protocol ("ipv4", "ipv6") */
} conninfo_t;
The conninfo_t structure is used by NFSv4 provider,
Fibre Channel provider and is intended for use by all
application protocol providers as the first argument
to indicate some basic information about the connection.

• args[1] iscsiinfo_t * common iSCSI properties

• iscsiinfo_t
typedef struct iscsiinfo {
 string ii_target; /* target iqn */
 string ii_initiator; /* initiator iqn */
 string ii_isid; /* initiator session identifier */
 string ii_tsih; /* target session identifying handle */

Chapter 11
Network and Network Service Protocol Providers

11-144

 string ii_transport; /* transport type ("iser-ib", "sockets") */

 uint64_t ii_lun; /* target logical unit number */

 uint32_t ii_itt; /* initiator task tag */
 uint32_t ii_ttt; /* target transfer tag */

 uint32_t ii_cmdsn; /* command sequence number */
 uint32_t ii_statsn; /* status sequence number */
 uint32_t ii_datasn; /* data sequence number */

 uint32_t ii_datalen; /* length of data payload */
 uint32_t ii_flags; /* probe-specific flags */
} iscsiinfo_t;
The iscsiinfo_t structure is used to provide identifying
information about the target and the initiator and
also some PDU level information such as lun, data length and sequence numbers.

The third argument is only used for the SCSI command probe or the data transfer probe:

• args[2] scsicmd_t * SCSI command block (cdb)

• scsicmd_t
typedef struct scsicmd {
 uint64_t ic_len; /* CDB length */
 uint8_t *ic_cdb; /* CDB data */
} scsicmd_t;
The scsicmd_t structure is used by the SCSI command probe
and it contains information about the SCSI command
blocks and is intended for use by all the application
protocols that deal with SCSI data.

Although the transport layer is transparent to the user, the COMSTAR iSCSI target also
supports iSCSI over Remote DMA (RDMA), also known as iSER. Since the data transfer
phases are mapped to RDMA operations in iSER, the data-send, data-receive, and data-
request probes cannot be used with iSER. Instead the xfer-start and xfer-done probes
can be used to trace the data transfer irrespective of the transport used. The data-receive,
data-request, and data-send probes can be used when a user wants to track the SCSI
Data-IN and Data-OUT PDUs specifically.

• args[2] xferinfo_t * data transfer information

• xferinfo_t
typedef struct xferinfo {
 uintptr_t xfer_laddr; /* local buffer address */
 uint32_t xfer_loffset; /* offset within the local buffer */
 uint32_t xfer_lkey; /* access control to local memory */
 uintptr_t xfer_raddr; /* remote virtual address */
 uint32_t xfer_roffset; /* offset from the remote address */
 uint32_t xfer_rkey; /* access control to remote virtual address */
 uint32_t xfer_len; /* transfer length */
 uint32_t xfer_type; /* Read or Write */
} xferinfo_t;
The xferinfo_t structure is used by the xfer-start
and the xfer-done probes and contain information about the
data transfer. When the transport type is iSER,
the remote buffer information is given by the xfer_raddr,
xfer_rkey and xfer_roffset fields. It is set to 0 when the transport type is sockets.

Chapter 11
Network and Network Service Protocol Providers

11-145

Using the iscsi Provider

iscsi One-Line Probes
Frequency of iSCSI command types:

dtrace -n 'iscsi*::: { @[probename] = count(); }'

Frequency of iSCSI client IP addresses:

dtrace -n 'iscsi*::: { @[args[0]->ci_remote] = count(); }'

Payload bytes by iSCSI command type:

dtrace -n 'iscsi*::: { @[probename] = sum(args[1]->ii_datalen); }'

Payload byte distribution by iSCSI command type:

dtrace -n 'iscsi*::: { @[probename] = quantize(args[1]->ii_datalen); }'

iscsiwho.d Script
This is a simple script to produce a report of the remote IP addresses and a count of
iSCSI events. This is intended to provide a quick summary of iSCSI activity when run
on the iSCSI target server:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("Tracing... Hit Ctrl-C to end.\n");
}

iscsi*:::
{
 @events[args[0]->ci_remote, probename] = count();
}

dtrace:::END
{
 printf(" %-26s %14s %8s\n", "REMOTE IP", "iSCSI EVENT", "COUNT");
 printa(" %-26s %14s %@8d\n", @events);
}

This output shows the host and the number of iSCSI operations:

./iscsiwho.d
Tracing... Hit Ctrl-C to end.
^C
 REMOTE IP iSCSI EVENT COUNT
 192.0.2.14/27 nop-receive 1
 192.0.2.14/27 nop-send 1
 192.0.2.14/27 scsi-response 126
 192.0.2.14/27 scsi-command 208
 192.0.2.14/27 data-request 1207
 192.0.2.14/27 data-receive 1207

Chapter 11
Network and Network Service Protocol Providers

11-146

The following table describes the output fields of the iscsiwho.d script.

Field Description

REMOTE IP IP address of the client

iSCSI EVENT iSCSI event type

COUNT Number of events traced

The example output shows normal traffic. For this simple script, these event names are not
translated beyond their iSCSI provider probe names, and require some thought to
comprehend as they are from the perspective of the iSCSI target server.

iscsixfer.d Probes
Although the transport layer is transparent to the user, the COMSTAR iSCSI target also
supports iSCSI over RDMA, also known as iSER. An iSER initiator should be able to read
and write data from an iSER target at high data rates with relatively low CPU utilization
compared to iSCSI using TCP/IP. In order to see the transport layer in use, display the
ii_transport field from the iscsiinfo_t structure.

Since the data transfer phases are mapped to RDMA operations in iSER, the data-send,
data-receive and data-request probes cannot be used with iSER. Instead here is a simple
script to print an aggregation of all the data transferred between two points using the xfer-
start probe. This can be used for iSCSI using TCP/IP and iSCSI over Remote DMA.

The data-receive, data-request, and data-send probes can be used when a user wants to
track the SCSI Data-IN and Data-OUT PDUs specifically. For example, if the PDUs are
received out of order, you might want to trace the ii_ttt, ii_datasn, and ii_statsn. To just
get a trace of IO activity, the xfer-start/xfer-done probes should suffice.

#!/usr/sbin/dtrace -s

#pragma D option quiet

iscsi:::xfer-start
{
 @[args[0]->ci_remote, args[2]->xfer_type] = sum(args[2]->xfer_len);
}

END
{
 printf("%26s %10s %8s\n", "REMOTE IP", "READ/WRITE", "BYTES");
 printa("%26s %10s %15@d\n", @);
}

This output shows the transfer of bytes:

./iscsixfer.d
Tracing... Hit Ctrl-C to end.
^C

 REMOTE IP READ/WRITE BYTES
 192.0.2.14 write 464
 192.0.2.14 read 1024

The output fields are described in the following table.

Chapter 11
Network and Network Service Protocol Providers

11-147

Field Description

REMOTE IP IP address of the client

READ/WRITE Read or write

BYTES Number of bytes transferred

You can use the following script to see the data read or write as it happens.

#!/usr/sbin/dtrace -s

#pragma D option quiet

BEGIN
{
 printf(" %-26s %8s %10s\n", "REMOTE IP", "BYTES", "READ/WRITE");

}

iscsi:::xfer-start
{
 printf("%26s %%8d %108s\n", args[0]->ci_remote,
args[2]->xfer_len, args[2]->xfer_type);
}

The following table provides the interpretation for some of these events.

iSCSI event Interpretation

scsi-command A SCSI command was issued, such as a read or a write. Use other
scripts for a breakdown on the SCSI command type.

data-send Data was sent from the iSCSI target server to the client; the client is
performing a read.

data-receive Data was received on the iSCSI target server from the client. The
client is performing a write.

nfsv3 Server Provider
The nfsv3 provider provides probes for tracing NFS version 3 server activity.

nfsv3 Probe Arguments
All NFS operation probes have the first argument in common:

 args[0] conninfo_t * socket connection information

The conninfo_t structure is already used by the iSCSI target provider (iscsi) and the
NFS v4 provider (nfsv4), and is intended for use by all provider which are providing
some higher level protocol, such as iscsi, nfs, http, and ftp.

typedef struct conninfo {
 string ci_local; /* local host address */
 string ci_remote; /* remote host address */
 string ci_protocol; /* protocol (ipv4, ipv6, and so on) */
 } conninfo_t;

Chapter 11
Network and Network Service Protocol Providers

11-148

Operation probes have their second argument in common:

 args[1] nfsv3opinfo_t * NFS v3 operation properties

 typedef struct nfsv3opinfo {
 string noi_curpath; /* current file handle path (if any) */
 cred_t *noi_cred; /* credentials */
 uint64_t noi_xid; /* transaction ID */
 } nfsv4opinfo_t;

NFSv3 Probes
The following table lists the probes along with the specific argument for each whose type is
defined by the NFS version 3 specification.

Probe args[2]
nfsv3:::op-access-start ACCESS3args *
nfsv3:::op-access-done ACCESS3res *
nfsv3:::op-commit-start COMMIT3args *
nfsv3:::op-commit-done COMMIT3res *
nfsv3:::op-create-start CREATE3args *
nfsv3:::op-create-done CREATE3res *
nfsv3:::op-fsinfo-start FSINFO3args *
nfsv3:::op-fsinfo-done FSINFO3res *
nfsv3:::op-fsstat-start FSSTAT3args *
nfsv3:::op-fsstat-done FSSTAT3res *
nfsv3:::op-getattr-start GETATTR3args *
nfsv3:::op-getattr-done GETATTR3res *
nfsv3:::op-lookup-start LOOKUP3args *
nfsv3:::op-lookup-done LOOKUP3res *
nfsv3:::op-link-start LINK3args *
nfsv3:::op-link-done LINK3res *
nfsv3:::op-mkdir-start MKDIR3args *
nfsv3:::op-mkdir-done MKDIR3res *
nfsv3:::op-mknod-start MKNOD3args *
nfsv3:::op-mknod-done- MKNOD3res *
nfsv3:::op-null-start -
nfsv3:::op-null-done -
nfsv3:::op-pathconf-start PATHCONF3args *
nfsv3:::op-pathconf-done PATHCONF3res *
nfsv3:::op-read-start READ3args *
nfsv3:::op-read-done READ3res *
nfsv3:::op-readdir-start READDIR3args *

Chapter 11
Network and Network Service Protocol Providers

11-149

Probe args[2]
nfsv3:::op-readdir-done READDIR3res *
nfsv3:::op-readdirplus-start READDIRPLUS3args *
nfsv3:::op-readdirplus-done READDIRPLUS3res *
nfsv3:::op-readlink-start READLINK3args *
nfsv3:::op-readlink-done READLINK3res *
nfsv3:::op-remove-start REMOVE3args *
nfsv3:::op-remove-done REMOVE3res *
nfsv3:::op-renamestart RENAME3args *
nfsv3:::op-rename-done RENAME3res *
nfsv3:::op-rmdir-start RMDIR3args *
nfsv3:::op-rmdir-done RMDIR3res *
nfsv3:::op-setattr-start SETATTR3args *
nfsv3:::op-setattr-done SETATTR3res *
nfsv3:::op-symlink-start SYMLINK3args *
nfsv3:::op-symlink-done SYMLINK3res *
nfsv3:::op-write-start WRITE3args *
nfsv3:::op-write-done WRITE3res *

Note:

The op-null-* probes have an undefined args[2].

Using the nfsv3 Provider
Some examples of nfsv3 provider usage are as follows.

Tracing NFSv3 Read and Writer Requests Using nfsv3rwsnoop.d
This DTrace script traces NFS version 3 read and write requests, showing details of
each operation.

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10hz

dtrace:::BEGIN
{
 printf("%-16s %-18s %2s %-8s %6s %s\n", "TIME(us)",
 "CLIENT", "OP", "OFFSET", "BYTES", "PATHNAME");
}

nfsv3:::op-read-start
{

Chapter 11
Network and Network Service Protocol Providers

11-150

 printf("%-16d %-18s %2s %-8d %6d %s\n", timestamp / 1000,
 args[0]->ci_remote, "R", args[2]->offset / 1024, args[2]->count,
 args[1]->noi_curpath);
}

nfsv3:::op-write-start
{
 printf("%-16d %-18s %2s %-8d %6d %s\n", timestamp / 1000,
 args[0]->ci_remote, "W", args[2]->offset / 1024,
 args[2]->data.data_len, args[1]->noi_curpath);
}

The following output shows a read of /export/stuff/bin/ghex2, then a read of /export/
stuff/bin/gksu, and finally a write of /export/stuff/words12:

./nfsv3iosnoop.d
TIME(us) CLIENT OP OFFSET BYTES PATHNAME
4299383207 192.0.2.75 R 0 4096 /export/stuff/bin/ghex2
4299391813 192.0.2.75 R 4 28672 /export/stuff/bin/ghex2
4299395700 192.0.2.75 R 32 32768 /export/stuff/bin/ghex2
4299396038 192.0.2.75 R 96 32768 /export/stuff/bin/ghex2
4299396462 192.0.2.75 R 128 8192 /export/stuff/bin/ghex2
4299396550 192.0.2.75 R 64 32768 /export/stuff/bin/ghex2
4320233417 192.0.2.75 R 0 4096 /export/stuff/bin/gksu
4320240902 192.0.2.75 R 4 28672 /export/stuff/bin/gksu
4320242434 192.0.2.75 R 32 32768 /export/stuff/bin/gksu
4320242730 192.0.2.75 R 64 24576 /export/stuff/bin/gksu
4333460565 192.0.2.75 W 0 32768 /export/stuff/words12
4333461477 192.0.2.75 W 32 32768 /export/stuff/words12
4333463264 192.0.2.75 W 64 32768 /export/stuff/words12
4333463567 192.0.2.75 W 96 32768 /export/stuff/words12
4333463893 192.0.2.75 W 128 32768 /export/stuff/words12
4333464202 192.0.2.75 W 160 32768 /export/stuff/words12
4333464451 192.0.2.75 W 192 10055 /export/stuff/words12

The fields printed are:

Field Description

TIME(us) Time of event in microseconds

CLIENT Remote client IP address

OP R == read, W == write

OFFSET File offset of I/O, in Kbytes

BYTES Tbytes of I/O

PATHNAME Path name of file, if known

Note:

The output may be shuffled slightly on multi-CPU servers due to DTrace per-CPU
buffering; post sort the TIME column if needed.

Chapter 11
Network and Network Service Protocol Providers

11-151

nfsv3ops.d Counts NFSv3 Client Operations
This DTrace script counts NFS version 3 operations by client, printing a summary
every 5 seconds:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 trace("Tracing... Interval 5 secs.\n");
}

nfsv3:::op-*
{
 @ops[args[0]->ci_remote, probename] = count();
}

profile:::tick-5sec,
dtrace:::END
{
 printf("\n %-32s %-28s %8s\n", "Client", "Operation", "Count");
 printa(" %-32s %-28s %@8d\n", @ops);
 trunc(@ops);
}

The following output shows which client is sending which NFS version 3 operations:

./nfsv3ops.d
Tracing... Interval 5 secs.

 Client Operation Count
 192.0.2.75 op-commit-done 1
 192.0.2.75 op-commit-start 1
 192.0.2.75 op-create-done 1
 192.0.2.75 op-create-start 1
 192.0.2.75 op-access-done 6
 192.0.2.75 op-access-start 6
 192.0.2.75 op-read-done 6
 192.0.2.75 op-read-start 6
 192.0.2.75 op-write-done 7
 192.0.2.75 op-write-start 7
 192.0.2.75 op-lookup-done 8
 192.0.2.75 op-lookup-start 8
 192.0.2.75 op-getattr-done 10
 192.0.2.75 op-getattr-start 10

 Client Operation Count

 Client Operation Count
 192.0.2.75 op-getattr-done 1
 192.0.2.75 op-getattr-start 1

The following table list the fields that are printed by the nfsv3ops.d script.

Field Description

Client Remote client IP address

Chapter 11
Network and Network Service Protocol Providers

11-152

Field Description

Operation NFS version 3 operation, described using the nfsv3 provider
probename

Count Operations during this interval

nfsv3fileio.d Reports Read and Writes
This DTrace script prints a summary of file read and write bytes:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 trace("Tracing... Hit Ctrl-C to end.\n");
}

nfsv3:::op-read-done
{
 @readbytes[args[1]->noi_curpath] = sum(args[2]->res_u.ok.data.data_len);
}

nfsv3:::op-write-done
{
 @writebytes[args[1]->noi_curpath] = sum(args[2]->res_u.ok.count);
}

dtrace:::END
{
 printf("\n%12s %12s %s\n", "Rbytes", "Wbytes", "Pathname");
 printa("%@12d %@12d %s\n", @readbytes, @writebytes);
}

This output shows a few files were read, and one was written:

./nfsv3fileio.d
Tracing... Hit Ctrl-C to end.
^C

 Rbytes Wbytes Pathname
 0 206663 /export/stuff/words10
 8624 0 /export/stuff/bin/echo-client-2
 13228 0 /export/stuff/bin/echo
 496292 0 /export/stuff/bin/ecpg

The following table describes the fields that are printed by the nfsv3fileio.d script.

Field Description

Rbytes Bytes read for this path name

Wbytes Bytes written to this path name

Pathname Path name of NFS file

Chapter 11
Network and Network Service Protocol Providers

11-153

nfsv3rwtime.d Reports Read and Write Elapsed Times
This DTrace script prints a summary NFS version 3 read and write elapsed times,
along with other details.

#!/usr/sbin/dtrace -s

#pragma D option quiet

inline int TOP_FILES = 10;

dtrace:::BEGIN
{
 printf("Tracing... Hit Ctrl-C to end.\n");
}

nfsv3:::op-read-start,
nfsv3:::op-write-start
{
 start[args[1]->noi_xid] = timestamp;
}

nfsv3:::op-read-done,
nfsv3:::op-write-done
/start[args[1]->noi_xid] != 0/
{
 this->elapsed = timestamp - start[args[1]->noi_xid];
 @rw[probename == "op-read-done" ? "read" : "write"] =
 quantize(this->elapsed / 1000);
 @host[args[0]->ci_remote] = sum(this->elapsed);
 @file[args[1]->noi_curpath] = sum(this->elapsed);
 start[args[1]->noi_xid] = 0;
}

dtrace:::END
{
 printf("NFSv3 read/write distributions (us):\n");
 printa(@rw);

 printf("\nNFSv3 read/write by host (total us):\n");
 normalize(@host, 1000);
 printa(@host);

 printf("\nNFSv3 read/write top %d files (total us):\n", TOP_FILES);
 normalize(@file, 1000);
 trunc(@file, TOP_FILES);
 printa(@file);
}

This output below shows a clear peak in the read time distribution plot in the 64 to 127
microsecond range, and a second smaller peak between 4 and 16 milliseconds:

./nfsv3rwtime.d
Tracing... Hit Ctrl-C to end.
^C
NFSv3 read/write distributions (us):

 write
 value ------------- Distribution ------------- count
 16 | 0

Chapter 11
Network and Network Service Protocol Providers

11-154

 32 |@@ 1
 64 | 0

 read
 value ------------- Distribution ------------- count
 8 | 0
 16 |@ 1
 32 |@ 1
 64 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 36
 128 |@ 1
 256 |@ 1
 512 | 0
 1024 | 0
 2048 |@ 1
 4096 |@@@ 3
 8192 |@@@ 4
 16384 | 0

NFSv3 read/write by host (total us):

 192.0.2.75 14089

NFSv4 read/write top 10 files (total us):

 /export/stuff/motd 63
 /export/stuff/bin/daps 5876
 /export/stuff/bin/date 8150

Other details are printed, such as total read/write latency by host, and the top 10 files by
latency.

The next example also shows a pair of peaks, the first around a fraction of a millisecond, the
second at around 4 milliseconds:

./nfsv3rwtime.d
Tracing... Hit Ctrl-C to end.
^C
NFSv3 read/write distributions (us):

 read
 value ------------- Distribution ------------- count
 8 | 0
 16 |@ 4
 32 |@ 5
 64 |@@@@@@ 22
 128 |@@@@ 13
 256 |@@@@@@@@@ 30
 512 |@@ 7
 1024 |@ 3
 2048 |@@@ 12
 4096 |@@@@@@@ 26
 8192 |@@@@ 15
 16384 |@ 2
 32768 | 0

NFSv3 read/write by host (total us):

 192.0.2.75 414458

Chapter 11
Network and Network Service Protocol Providers

11-155

NFSv3 read/write top 10 files (total us):

 /export/stuff/bin/cal 11225
 /export/stuff/bin/cjpeg 11947
 /export/stuff/bin/charmap 12347
 /export/stuff/bin/cdda2wav.bin 13449
 /export/stuff/bin/chkey 13963
 /export/stuff/bin/cputrack 14533
 /export/stuff/bin/catman 15535
 /export/stuff/bin/csslint-0.6 18302
 /export/stuff/bin/col 19926
 /export/stuff/bin/cdrecord.bin 40622

The first peak is likely to be NFS operations hitting the memory cache, and the second
those that missed and went to disk. Further use of DTrace can confirm this theory.

The fields from the distribution plot are:

Field Description

value Minimum elapsed time for this event in microseconds

count Number of events in this time range

nfsv3io.d Reports Host I/O
This is a simple DTrace script to provide basic I/O details by host every 5 seconds:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 interval = 5;
 printf("Tracing... Interval %d secs.\n", interval);
 tick = interval;
}

nfsv3:::op-*
{
 @ops[args[0]->ci_remote] = count();
}

nfsv3:::op-read-done
{
 @reads[args[0]->ci_remote] = count();
 @readbytes[args[0]->ci_remote] = sum(args[2]->res_u.ok.data.data_len);
}

nfsv3:::op-write-done
{
 @writes[args[0]->ci_remote] = count();
 @writebytes[args[0]->ci_remote] = sum(args[2]->res_u.ok.count);
}

profile:::tick-1sec
/tick-- == 0/
{
 normalize(@ops, interval);

Chapter 11
Network and Network Service Protocol Providers

11-156

 normalize(@reads, interval);
 normalize(@writes, interval);
 normalize(@writebytes, 1024 * interval);
 normalize(@readbytes, 1024 * interval);
 printf("\n %-32s %6s %6s %6s %6s %8s\n", "Client", "r/s", "w/s",
 "kr/s", "kw/s", "ops/s");
 printa(" %-32s %@6d %@6d %@6d %@6d %@8d\n", @reads, @writes,
 @readbytes, @writebytes, @ops);
 trunc(@ops);
 trunc(@reads);
 trunc(@writes);
 trunc(@readbytes);
 trunc(@writebytes);
 tick = interval;
}

This output shows 192.0.2.75 calling NFS version 3 reads and writes:

./nfsv3io.d
Tracing... Interval 5 secs.

 Client r/s w/s kr/s kw/s ops/s
 192.0.2.75 27 1 686 40 100

 Client r/s w/s kr/s kw/s ops/s
 192.0.2.75 0 0 0 0 8

 Client r/s w/s kr/s kw/s ops/s
 0.0.0.0 0 0 0 0 0
 192.0.2.75 2 0 28 0 18
^C

Other details can be calculated from the output, such as average read and write size, for
example, 686(kr/s) / 27(r/s) = 25.4 average kr. These could also be added to the script to be
printed as columns.

The fields printed are:

Field Description

Client Remote client IP address

r/s reads per second

w/s writes per second

kr/s kilobytes read per second

kw/s kilobytes written per second

ops/s Total NFSv3 operations per second (including the reads and writes)

nfsv4 Provider
The nfsv4 provider provides probes for tracing NFS version 4 server activity.

nfsv4 Probe Arguments
All NFS operation probes have the first argument in common:

 args[0] conninfo_t * socket connection information

Chapter 11
Network and Network Service Protocol Providers

11-157

The conninfo_t structure is already used by the iSCSI target provider (iscsi), and is
intended for use by all provider which are providing some higher level protocol, such
as iscsi, nfs, http, and ftp.

typedef struct conninfo {
 string ci_local; /* local host address */
 string ci_remote; /* remote host address */
 string ci_protocol; /* protocol (ipv4, ipv6, and so on) */
 } conninfo_t;

Operation probes have their second argument in common:

 args[1] nfsv4opinfo_t * NFS v4 operation properties

 typedef struct nfsv4opinfo {
 string noi_curpath; /* current file handle path (if any) */
 cred_t *noi_cred; /* credentials */
 uint64_t noi_xid; /* transaction ID */
 } nfsv4opinfo_t;

Callback operation probes have their second argument in common:

 args[1] nfsv4cbinfo_t * NFS v4 callback properties

 typedef struct nfsv4cbinfo {
 string nci_curpath; /* file handle path (if any) */
 } nfsv4cbinfo_t;

NFSv4 Top-Level Probes
The following table lists the top level operation probes along with the specific argument
for each whose type is defined by the NFS version 4 specification.

Probe args[2]
nfsv4:::compound-op-start COMPOUND4args *
nfsv4:::compound-op-done COMPOUND4res *

The following table lists the operation probes along with the specific argument for each
whose type is defined by the NFS version 4 specification.

Probe args[2]
nfsv4:::op-access-start ACCESS4args *
nfsv4:::op-access-done ACCESS4res *
nfsv4:::op-close-start CLOSE4args *
nfsv4:::op-close-done CLOSE4res *
nfsv4:::op-commit-start COMMIT4args *
nfsv4:::op-commit-done COMMIT4res *
nfsv4:::op-create-start CREATE4args *
nfsv4:::op-create-done CREATE4res *
nfsv4:::op-delegpurge-start DELEGPURGE4args *
nfsv4:::op-delegpurge-done DELEGPURGE4res *

Chapter 11
Network and Network Service Protocol Providers

11-158

Probe args[2]
nfsv4:::op-delegreturn-start DELEGRETURN4args *
nfsv4:::op-delegreturn-done DELEGRETURN4res *
nfsv4:::op-getattr-start GETATTR4args *
nfsv4:::op-getattr-done GETATTR4res *
nfsv4:::op-getfh-start GETFH4args *
nfsv4:::op-getfh-done GETFH4res *
nfsv4:::op-link-start LINK4args *
nfsv4:::op-link-done LINK4res *
nfsv4:::op-lock-start LOCK4args *
nfsv4:::op-lock-done LOCK4res *
nfsv4:::op-lockt-start LOCKT4args *
nfsv4:::op-lockt-done LOCKT4res *
nfsv4:::op-locku-start LOCKU4args *
nfsv4:::op-locku-done LOCKU4res *
nfsv4:::op-lookup-start LOOKUP4args *
nfsv4:::op-lookup-done LOOKUP4res *
nfsv4:::op-lookupp-start LOOKUPP4args *
nfsv4:::op-lookupp-done LOOKUPP4res *
nfsv4:::op-nverify-start NVERIFY4args *
nfsv4:::op-nverify-done NVERIFY4res *
nfsv4:::op-open-start OPEN4args *
nfsv4:::op-open-done OPEN4res *
nfsv4:::op-open-confirm-start OPEN_CONFIRM4args *
nfsv4:::op-open-confirm-done OPEN_CONFIRM4res *
nfsv4:::op-open-downgrade-start OPEN_DOWNGRADE4args *
nfsv4:::op-open-downgrade-done OPEN_DOWNGRADE4args *
nfsv4:::op-openattr-start OPENATTR4args *
nfsv4:::op-openattr-done OPENATTR4res *
nfsv4:::op-putfh-start PUTFH4args *
nfsv4:::op-putfh-done PUTFH4res *
nfsv4:::op-putpubfh-start PUTPUBFH4args *
nfsv4:::op-putpubfh-done PUTPUBFH4res *
nfsv4:::op-putrootfh-start PUTROOTFH4args *
nfsv4:::op-putrootfh-done PUTROOTFH4res *
nfsv4:::op-read-start READ4args *
nfsv4:::op-read-done READ4res *

Chapter 11
Network and Network Service Protocol Providers

11-159

Probe args[2]
nfsv4:::op-readdir-start READDIR4args *
nfsv4:::op-readdir-done READDIR4res *
nfsv4:::op-readlink-start READLINK4args *
nfsv4:::op-readlink-done READLINK4res *
nfsv4:::op-release-lockowner-start RELEASE_LOCKOWNER4args *
nfsv4:::op-release-lockowner-done RELEASE_LOCKOWNER4res *
nfsv4:::op-remove-start REMOVE4args *
nfsv4:::op-remove-don REMOVE4res *
nfsv4:::op-rename-start RENAME4args *
nfsv4:::op-rename-done RENAME4res *
nfsv4:::op-renew-start RENEW4args *
nfsv4:::op-renew-done RENEW4res *
nfsv4:::op-restorefh-start <none>

nfsv4:::op-restorefh-done <none>

nfsv4:::op-savefh-start SAVEFH4args *
nfsv4:::op-savefh-done SAVEFH4res *
nfsv4:::op-secinfo-start SECINFO4args *
nfsv4:::op-secinfo-done SECINFO4res *
nfsv4:::op-setattr-start SETATTR4args *
nfsv4:::op-setattr-done SETATTR4res *
nfsv4:::op-setclientid-start SETCLIENTID4args *
nfsv4:::op-setclientid-done SETCLIENTID4res *
nfsv4:::op-setclientid-confirm-start SETCLIENTID_CONFIRM4args *
nfsv4:::op-setclientid-confirm-done SETCLIENTID_CONFIRM4res *
nfsv4:::op-verify-start VERIFY4args *
nfsv4:::op-verify-done VERIFY4res *
nfsv4:::op-write-start WRITE4args *
nfsv4:::op-write-done WRITE4res *

Callback compound probes have an undefined second argument; this slot is reserved
for future use.

The following table lists the top-level callback probes, along with the specific argument
for each whose type is defined by the NFS version 4 specification.

Probe args[2]
nfsv4:::compound-cb-
start

CB_COMPOUND4args *

nfsv4:::compound-cb-done CB_COMPOUND4res *

Chapter 11
Network and Network Service Protocol Providers

11-160

The following table lists the callback probes, along with the specific argument for each probe
whose type is defined by the NFS version 4 specification.

Probe args[2]
nfsv4:::cb-getattr-start CB_GETATTR4args*
nfsv4:::cb-getattr-done CB_GETATTR4res *
nfsv4:::cb-recall-start CB_RECALL4args *
nfsv4:::cb-recall-done CB_RECALL4res *

Note:

Since the Oracle Solaris NFS v4 implementation does not yet use the 'getattr'
callback, the probe will not be implemented; it is noted here in anticipation of a
future implementation.

Using the nfsv4 Provider
Examples of nfsv4 provider usage are as follows.

Tracing NFSv4 Read and Writer Requests Using nfsv4rwsnoop.d
This DTrace script traces NFS version 4 reads and writes:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10hz

dtrace:::BEGIN
{
 printf("%-16s %-18s %2s %-8s %6s %s\n", "TIME(us)",
 "CLIENT", "OP", "OFFSET", "BYTES", "PATHNAME");
}

nfsv4:::op-read-start
{
 printf("%-16d %-18s %2s %-8d %6d %s\n", timestamp / 1000,
 args[0]->ci_remote, "R", args[2]->offset / 1024, args[2]->count,
 args[1]->noi_curpath);
}

nfsv4:::op-write-start
{
 printf("%-16d %-18s %2s %-8d %6d %s\n", timestamp / 1000,
 args[0]->ci_remote, "W", args[2]->offset / 1024, args[2]->data_len,
 args[1]->noi_curpath);
}

This output shows a few files were read, and one was written:

./nfsv4rwsnoop.d
TIME(us) CLIENT OP OFFSET BYTES PATHNAME
156889725960 192.0.2.14 R 0 4096 /export/share/bin/nawk
156889735515 192.0.2.14 R 4 28672 /export/share/bin/nawk

Chapter 11
Network and Network Service Protocol Providers

11-161

156889736298 192.0.2.14 R 32 32768 /export/share/bin/nawk
156889736544 192.0.2.14 R 96 32768 /export/share/bin/nawk
156889736902 192.0.2.14 R 64 32768 /export/share/bin/nawk
156916061653 192.0.2.14 R 0 4096 /export/share/bin/ssh
156916069375 192.0.2.14 R 4 28672 /export/share/bin/ssh
156916070098 192.0.2.14 R 32 32768 /export/share/bin/ssh
156916070435 192.0.2.14 R 96 32768 /export/share/bin/ssh
156916070758 192.0.2.14 R 64 32768 /export/share/bin/ssh
156916071036 192.0.2.14 R 128 32768 /export/share/bin/ssh
156916071352 192.0.2.14 R 160 32768 /export/share/bin/ssh
156916071582 192.0.2.14 R 192 32768 /export/share/bin/ssh
156916071696 192.0.2.14 R 72 4096 /export/share/bin/ssh
156916080508 192.0.2.14 R 224 4096 /export/share/bin/ssh
156916080844 192.0.2.14 R 228 28672 /export/share/bin/ssh
156916081566 192.0.2.14 R 256 32768 /export/share/bin/ssh
156916081833 192.0.2.14 R 288 32768 /export/share/bin/ssh
156916082237 192.0.2.14 R 320 20480 /export/share/bin/ssh
156933373074 192.0.2.14 W 0 32768 /export/share/words
156933373351 192.0.2.14 W 32 32768 /export/share/words
156933373855 192.0.2.14 W 64 32768 /export/share/words
156933374185 192.0.2.14 W 96 32768 /export/share/words
156933375442 192.0.2.14 W 128 32768 /export/share/words
156933375864 192.0.2.14 W 160 32768 /export/share/words
156933376105 192.0.2.14 W 192 10055 /export/share/words

The fields printed are:

Field Description

TIME(us) Time of event in microseconds

CLIENT Remote client IP address

OP R == read, W == write

OFFSET File offset of I/O, in Kbytes

BYTES Bytes of I/O

PATHNAME Path name of file, if known

nfsv4ops.d Reports Client Operations
This DTrace script counts NFS version 4 operations by client, printing a summary
every 5 seconds:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 trace("Tracing... Interval 5 secs.\n");
}

nfsv4:::op-*
{
 @ops[args[0]->ci_remote, probename] = count();
}

profile:::tick-5sec,
dtrace:::END

Chapter 11
Network and Network Service Protocol Providers

11-162

{
 printf("\n %-32s %-28s %8s\n", "Client", "Operation", "Count");
 printa(" %-32s %-28s %@8d\n", @ops);
 trunc(@ops);
}

The following output shows which client is sending which NFS version 4 operations:

./nfsv4ops.d
Tracing... Interval 5 secs.

 Client Operation Count
 192.0.2.14 op-getattr-done 1
 192.0.2.14 op-getattr-start 1
 192.0.2.14 op-putfh-done 1
 192.0.2.14 op-putfh-start 1

 Client Operation Count
 192.0.2.14 op-access-done 1
 192.0.2.14 op-access-start 1
 192.0.2.14 op-close-done 1
 192.0.2.14 op-close-start 1
 192.0.2.14 op-getfh-done 1
 192.0.2.14 op-getfh-start 1
 192.0.2.14 op-open-done 1
 192.0.2.14 op-open-start 1
 192.0.2.14 op-getattr-done 3
 192.0.2.14 op-getattr-start 3
 192.0.2.14 op-read-done 9
 192.0.2.14 op-read-start 9
 192.0.2.14 op-putfh-done 12
 192.0.2.14 op-putfh-start 12
^C

 Client Operation Count

The fields printed are:

Field Description

Client Remote client IP address

Operation NFSv4 operation, described using the nfsv4 provider probename

Count Operations during this interval

nfsv4fileio.d Reports Reads and Writes
This DTrace script prints a summary of file read and write bytes:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 trace("Tracing... Hit Ctrl-C to end.\n");
}

nfsv4:::op-read-done
{

Chapter 11
Network and Network Service Protocol Providers

11-163

 @readbytes[args[1]->noi_curpath] = sum(args[2]->data_len);
}

nfsv4:::op-write-done
{
 @writebytes[args[1]->noi_curpath] = sum(args[2]->count);
}

dtrace:::END
{
 printf("\n%12s %12s %s\n", "Rbytes", "Wbytes", "Pathname");
 printa("%@12d %@12d %s\n", @readbytes, @writebytes);
}

This output shows a few files were read, and one was written:

./nfsv4fileio.d
Tracing... Hit Ctrl-C to end.
^C

 Rbytes Wbytes Pathname
 0 206663 /export/share/words1
 24528 0 /export/share/bin/xargs
 44864 0 /export/share/bin/ed
 232476 0 /export/share/bin/vi

The fields printed are:

Field Description

Rbytes Bytes read for this path name

Wbytes Bytes written to this path name

Pathname Path name of NFS file

nfsv4rwtime.d Reports Read and Writer Elapsed Times
This DTrace script prints a summary NFS version 4 read and write elapsed times,
along with other details:

#!/usr/sbin/dtrace -s

#pragma D option quiet

inline int TOP_FILES = 10;

dtrace:::BEGIN
{
 printf("Tracing... Hit Ctrl-C to end.\n");
}

nfsv4:::op-read-start,
nfsv4:::op-write-start
{
 start[args[1]->noi_xid] = timestamp;
}

nfsv4:::op-read-done,
nfsv4:::op-write-done

Chapter 11
Network and Network Service Protocol Providers

11-164

{
 this->elapsed = timestamp - start[args[1]->noi_xid];
 @rw[probename == "op-read-done" ? "read" : "write"] =
 quantize(this->elapsed / 1000);
 @host[args[0]->ci_remote] = sum(this->elapsed);
 @file[args[1]->noi_curpath] = sum(this->elapsed);
 start[args[1]->noi_xid] = 0;
}

dtrace:::END
{
 printf("NFSv4 read/write distributions (us):\n");
 printa(@rw);

 printf("\nNFSv4 read/write by host (total us):\n");
 normalize(@host, 1000);
 printa(@host);

 printf("\nNFSv4 read/write top %d files (total us):\n", TOP_FILES);
 normalize(@file, 1000);
 trunc(@file, TOP_FILES);
 printa(@file);
}

This output below shows a peak in the read time distribution plot in the 64 to 127
microsecond range, and a second peak between 2 and 8 milliseconds:

./nfsv4rwtime.d
Tracing... Hit Ctrl-C to end.
^C
NFSv4 read/write distributions (us):

 write
 value ------------- Distribution ------------- count
 32 | 0
 64 |@@@@@@ 1
 128 |@@@@@@@@@@@ 2
 256 |@@@@@@@@@@@@@@@@@ 3
 512 |@@@@@@ 1
 1024 | 0

 read
 value ------------- Distribution ------------- count
 16 | 0
 32 |@@@@ 6
 64 |@@@@@@@@@@@@ 17
 128 |@ 1
 256 |@@ 3
 512 |@ 1
 1024 |@@ 3
 2048 |@@@@@@@@ 12
 4096 |@@@@@@@@@@ 15
 8192 |@ 1
 16384 | 0

NFSv4 read/write by host (total us):

 192.0.2.14 148215

NFSv4 read/write top 10 files (total us):

Chapter 11
Network and Network Service Protocol Providers

11-165

 /export/share/bin/man 5020
 /export/share/bin/makeuuid 5132
 /export/share/bin/mc68030 5836
 /export/share/bin/m4 6446
 /export/share/bin/msgfmt 6669
 /export/share/bin/mkmsgs 6674
 /export/share/bin/mailstats 6935
 /export/share/bin/mkdir 7009
 /export/share/bin/mac 7693
 /export/share/bin/make 27903

Other details are printed, such as total read/write latency by host, and the top 10 files
by latency.

The first peak in the read distribution is likely to be NFS operations hitting the memory
cache, and the second those that missed and read from disk. The writes were all fast
as they are likely to written to the memory cache and returned asynchronously. Further
use of DTrace can confirm these theories.

The fields from the distribution plot are:

Field Description

value Minimum elapsed time for this event in microseconds

count Number of events in this time range

nfsv4io.d Reports Host I/O
This is a simple DTrace script to provide basic I/O details by host every 5 seconds:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 interval = 5;
 printf("Tracing... Interval %d secs.\n", interval);
 tick = interval;
}

nfsv4:::op-*
{
 @ops[args[0]->ci_remote] = count();
}

nfsv4:::op-read-done
{
 @reads[args[0]->ci_remote] = count();
 @readbytes[args[0]->ci_remote] = sum(args[2]->data_len);
}

nfsv4:::op-write-done
{
 @writes[args[0]->ci_remote] = count();
 @writebytes[args[0]->ci_remote] = sum(args[2]->count);
}

Chapter 11
Network and Network Service Protocol Providers

11-166

profile:::tick-1sec
/tick-- == 0/
{
 normalize(@ops, interval);
 normalize(@reads, interval);
 normalize(@writes, interval);
 normalize(@writebytes, 1024 * interval);
 normalize(@readbytes, 1024 * interval);
 printf("\n %-32s %6s %6s %6s %6s %8s\n", "Client", "r/s", "w/s",
 "kr/s", "kw/s", "ops/s");
 printa(" %-32s %@6d %@6d %@6d %@6d %@8d\n", @reads, @writes,
 @readbytes, @writebytes, @ops);
 trunc(@ops);
 trunc(@reads);
 trunc(@writes);
 trunc(@readbytes);
 trunc(@writebytes);
 tick = interval;
}

This output shows 192.0.2.14 calling NFSv4 reads and writes:

./nfsv4io.d
Tracing... Interval 5 secs.

 Client r/s w/s kr/s kw/s ops/s
 192.0.2.14 17 1 331 40 290

 Client r/s w/s kr/s kw/s ops/s
 192.0.2.14 9 0 197 0 152

 Client r/s w/s kr/s kw/s ops/s
 192.0.2.14 16 0 269 0 363

 Client r/s w/s kr/s kw/s ops/s
^C

Other details can be calculated from the output, such as average read and write size, for
example 331(kr/s) / 17(r/s) = 19.5 average kr. These could also be added to the script to be
printed as columns.

The fields printed are:

Field Description

Client Remote client IP address

r/s Reads per second

w/s Writes per second

kr/s Kbytes read per second

kw/s Kbytes written per second

ops/s Total NFSv4 operations per second (including the reads and
writes)

Chapter 11
Network and Network Service Protocol Providers

11-167

nlmv4 Provider
For purposes of file locking, the NFSv3 protocol relies on Network Lock Manager
version 4 (NLMv4). The nlmv4 provider exposes a set of probes tracking NLMv4
operations on the server, thus providing possibility to track NFSv3 locking operations.

nlmv4 Probe Arguments
All NLMv4 operation probes have the first argument in common:

args[0] conninfo_t * socket connection information

The conninfo_t structure is already used by the iSCSI target provider and the NFS
providers (NFSv4, NFSv3, and NFSv2), and is intended for use by all providers related
to a higher level protocol such as iscsi, nfs, http, and ftp.

typedef struct conninfo {
 string ci_local; /* NULL (local host address) */
 string ci_remote; /* remote host address */
 string ci_protocol; /* protocol (ipv4, ipv6, etc) */
 } conninfo_t;

Operation probes have their second argument in common:

args[1] nlmv4opinfo_t * NLMv4 operation properties

typedef struct nlmv4opinfo {
 string noi_curpath; /* current file handle path (if any) */
 cred_t *noi_cred; /* NULL (credentials) */
 uint64_t noi_xid; /* transaction ID */
 } nlmv4opinfo_t;

nlmv4 Probes
All the probes work for both synchronous and asynchronous NLMv4 procedures. The
information about remote host is not available in the op-null-* probes.

Probe args[2]
nlmv4:::op-cancel-start nlm4_probe_cancargs_t
nlmv4:::op-cancel-done nlm4_probe_res_t
nlmv4:::op-free-all-
start

nlm4_probe_notify_t

nlmv4:::op-free-all-done none

nlmv4:::op-lock-start nlm4_probe_lockargs_t
nlmv4:::op-lock-done nlm4_probe_res_t
nlmv4:::op-nm-lock-start nlm4_probe_lockargs_t
nlmv4:::op-nm-lock-done nlm4_probe_res_t
nlmv4:::op-null-start none

nlmv4:::op-null-done none

nlmv4:::op-share-start nlm4_probe_shareargs_t

Chapter 11
Network and Network Service Protocol Providers

11-168

Probe args[2]
nlmv4:::op-share-done nlm4_probe_shareres_t
nlmv4:::op-test-start nlm4_probe_testargs_t
nlmv4:::op-test-done nlm4_probe_testres_t
nlmv4:::op-unlock-start nlm4_probe_unlockargs_t
nlmv4:::op-unlock-done nlm4_probe_res_t
nlmv4:::op-unshare-start nlm4_probe_shareargs_t
nlmv4:::op-unshare-done nlm4_probe_shareres_t

The following table lists the probes that track the NLMv4 GRANTED callback procedure. The
server notifies the client that a formerly blocked request has now been granted.

Probes args[2]
nlmv4:::op-granted-start nlm4_probe_testargs_t
nlmv4:::op-granted-done nlm4_probe_res_t
nlmv4:::op-granted-res-
start

nlm4_probe_testargs_t

nlmv4:::op-granted-res-done nlm4_probe_res_t
nlmv4:::notify-granted-
start

nlm4_probe_testargs_t

nlmv4:::notify-granted-done nlm4_probe_notify_granted_res_t

When there is conflicting NFSv4 delegation, the following probe is fired:

nlmv4:::conflicting-delegation nlm4_probe_conflicting_delegation_t

nlm4_probe_cancargs_t Arguments

nlm4_probe_cancargs_t Structure
The nlm4_probe_cancargs_t structure contains a pointer to raw header.

typedef struct nlm4_probe_cancargs
 nlm4_cancargs *ca; /* pointer to raw header */
} nlm4_probe_cancargs_t;

nlm4_probe_res_t Structure
The nlm4_probe_res_t structure contains a pointer to raw header.

typedef struct nlm4_probe_res {
 nlm4_res *r; /* pointer to raw header */
} nlm4_probe_res_t;

nlm4_probe_conflicting_delegation_t Structure
The nlm4_probe_conflicting_delegation_t structure contains a pointer to raw header.

Chapter 11
Network and Network Service Protocol Providers

11-169

typedef struct nlm4_probe_conflicting_delegation {
 nlm4_res *r; /* pointer to raw header */
 int delegation_recalled;
} nlm4_probe_conflicting_delegation_t;

The delegation_recalled flag is true when the delegation is successfully recalled.

nlm4_probe_notify_granted_res_t Structure
The nlm4_probe_notify_granted_res_t structure contains a pointer to raw header.

typedef struct nlm4_probe_notify_granted_res {
 nlm4_res *r; /* pointer to raw header */
 int last_errno;
} nlm4_probe_notify_granted_res_t;

The last_errno member of the structure shows the returned error code of the RPC
call of the granted procedure.

nlm4_probe_notify_t Structure
The nlm4_probe_notify_t structure contains a pointer to raw header.

typedef struct nlm4_probe_notify
 nlm4_notify *n; /* pointer to raw header */
} nlm4_probe_notify_t;

nlm4_probe_lockargs_t Structure
The nlm4_probe_lockargs_t structure contains a pointer to raw header.

typedef struct nlm4_probe_lockargs
 nlm4_lockargs *la; /* pointer to raw header */
} nlm4_probe_lockargs_t;

nlm4_probe_shareargs_t Structure
The nlm4_probe_shareargs_t structure contains a pointer to raw header.

typedef struct nlm4_probe_shareargs
 nlm4_shareargs *sa; /* pointer to raw header */
} nlm4_probe_shareargs_t;

nlm4_probe_shareres_t Structure
The nlm4_probe_shareres_t structure contains a pointer to raw header.

typedef struct nlm4_probe_shareres
 nlm4_shareres *sr; /* pointer to raw header */
} nlm4_probe_shareres_t;

nlm4_probe_testargs_t Structure
The nlm4_probe_testargs_t structure contains a pointer to raw header.

typedef struct nlm4_probe_testargs
 nlm4_testargs *ta; /* pointer to raw header */
} nlm4_probe_testargs_t;

Chapter 11
Network and Network Service Protocol Providers

11-170

nlm4_probe_testres_t Structure
The nlm4_probe_testres_t structure contains a pointer to raw header.

typedef struct nlm4_probe_testres
 nlm4_testres *tr; /* pointer to raw header */
} nlm4_probe_testres_t;

nlm4_probe_unlockargs_t Structure
The nlm4_probe_unlockargs_t structure contains a pointer to raw header.

typedef struct nlm4_probe_unlockargs
 nlm4_unlockargs *ua; /* pointer to raw header */
} nlm4_probe_unlockargs_t;

nlmv4 Stability
The nlmv4 provider uses stability mechanism of DTrace to describe its stabilities, as shown
in the following table. For more information about the stability mechanism, see DTrace
Stability Mechanisms.

Table 11-56 Stability Mechanism for the nlmv4 Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

scsi Provider
The scsi provider provides probes for tracing SCSI T10 command protocol in an Oracle
Solaris host.

SCSI Probes
The scsi probes are described in the following table.

Probes Description

cmd-request SCSI command request.

cmd-request-mapin SCSI command request. Also, executes bp_mapin on the data
buffer. For more information, see the bp_mapin(9F) man page.

cmd-response SCSI command response.

tmf-request Task Management Function (TMF) request.

tmf-response Task Management Function (TMF) response.

Chapter 11
Network and Network Service Protocol Providers

11-171

https://docs.oracle.com/cd/E88353_01/html/E37855/bp-mapin-9f.html

scsi Probe Arguments
The argument types for the scsi probes are listed in the following table.

Table 11-57 Probe Arguments for the scsi Provider

Probe args[0] args[1] args[2] args[3] args[4]
cmd-request scsi_addr_t scsi_cdb_t scsi_data_t scsi_id_t -

cmd-
request-
mapin

scsi_addr_t scsi_cdb_t scsi_data_t scsi_id_t -

cmd-
response

scsi_addr_t scsi_cdb_t scsi_data_t scsi_id_t scsi_rsp_t

tmf-request scsi_addr_t scsi_tmf_co
de_t

scsi_id_t - -

tmf-
response

scsi_addr_t scsi_tmf_co
de_t

scsi_id_t int -

The description of the data types used by the scsi probes are as follows:

Data Type Description

scsi_addr_t Address information

scsi_cdb_t Command Descriptor Block (CDB)

scsi_data_t DATA IN/OUT buffer

scsi_id_t Task ID

scsi_rsp_t Response / Status, Sense Data

scsi_tmf_code
_t

Task Management Function (TMF)

int TMF Result

scsi_addr_t Structure
The scsi_addr_t structure provides the address information of I_T_L
(initiator_target_LUN) nexus.

typedef struct scsi_addr {
 string addr_ctrl;
 uint16_t addr_ctrl_inst;
 string addr_dev;
 string addr_path;
 string addr_devid;
} scsi_addr_t

Chapter 11
Network and Network Service Protocol Providers

11-172

Table 11-58 scsi_addr_t Members

Member Description

addr_ctrl Controller name such as fp, scsi, and scsi_vhci, and so on.

addr_ctrl_inst Controller instance.

addr_dev Device address.

For example:

• g600a0b80005adf90000006a24ea580cc (pHCI enumerated with
vHCI)

• w500110a0008aa98a,0 (not enumerated with vHCI)

addr_path This is present only for pHCI commands when pHCI is enumerated with
vHCI. The addr_path includes target and logical unit number
information.

For example: w202500a0b85adf90,1

addr_devid Oracle Solaris unique device identifier.

For example: id1,sd@n600a0b80005adf90000006a24ea580cc

scsi_cdb_t Structure
The scsi_cdb_t contains Command Descriptor Block (CDB) information.

typedef struct scsi_cdb {
 uint64_t cdb_len; /* CDB length */
 uint8_t *cdb_data; /* CDB data */
} scsi_cdb_t;

scsi_data_t Structure
The scsi_data_t structure is a DATA IN/OUT buffer.

typedef struct scsi_data {
 size_t data_size; /* DATA IN/OUT buffer size */
 uint8_t *data_ptr; /* DATA IN/OUT buffer */
 int data_mapped; /* data_ptr is kernel mapped, boolean */
 buf_t *data_buf; /* pointer to buf(9S), internal */
} scsi_data_t;

The data_ptr member points to a DATA IN/OUT payload associated with some SCSI
commands such as INQUIRY, READ, WRITE, and REPORT LUNS. You can read the data from the
data_ptr only when data_mapped is set to 1.

While using the scsi:::cmd-request probe, the data_ptr is not set in the following
conditions:

• When buf(9S) is sent with the B_PAGEIO flag or the B_MVECTOR flag in b_flags.

• If the data buffer is not mapped to a kernel virtual address space.

You can overcome this condition by using the scsi:::cmd-request-mapin probe. This probe
behaves like cmd-request and also executes the bp_mapin() function, which sets the
data_mapped flag to 1. You can then access the data buffer from the kernel memory by using
data_ptr.

Chapter 11
Network and Network Service Protocol Providers

11-173

Caution:

The cmd-request-mapin probe might have significant performance impact.

The cmd-request-mapin probe also ensures that the same data buffer is accessible
during the cmd-response probe.

For more information, see the buf(9S) and bp_mapin(9F) man pages.

scsi_id_t Structure
The scsi_id_t structure provides command ID information.

typedef struct scsi_id {
 uint64_t id_cmd;
 uint64_t id_timestamp;
} scsi_id_t

The id_cmd member represents an identifier of the command. It can be used to match
a SCSI request with a SCSI response. The value of the id_cmd member can be reused
when the command execution is complete. Therefore, the id_cmd member must be
used with the id_timestamp member or you must sort the script output according to
the another time stamp.

The id_timestamp member is a time stamp of the SCSI command request in
nanoseconds. It can be used with a DTrace build-in variable time stamp to do various
time related calculations.

scsi_rsp_t Structure
The scsi_rsp_t structure provides the SCSI response and status information.

typedef struct scsi_rsp {
 uint8_t rsp_tran_ret; /* scsi_transport(9F) return value */
 uint8_t rsp_reason; /* value of pkt_reason */
 uint8_t rsp_status; /* SCSI Status */
 uint8_t rsp_sense_key; /* sense key */
 uint8_t rsp_sense_asc; /* ASC */
 uint8_t rsp_sense_ascq; /* ASCQ */
 size_t rsp_resid; /* number of bytes not transferred */
 uint64_t rsp_latency; /* latency of the SCSI command in
nanoseconds */
} scsi_rsp_t

The scsi:::cmd-response fires if one of the following conditions is true:

• When you receive a response from the target device.

• When the SCSI command fails to reach the target because of transport failure.

Values in the scsi_rsp_t structure provide details on the failure or success of the
SCSI command.

The rsp_tran_ret member provides a return value of scsi_transport(). The return
values denote if the SCSI command was accepted by the SCSI transport. Values other
than TRAN_ACCEPT indicates that the SCSI command was not accepted and all other
members of the structure scsi_rsp were not set.

Chapter 11
Network and Network Service Protocol Providers

11-174

https://docs.oracle.com/cd/E88353_01/html/E37856/buf-9s.html
https://docs.oracle.com/cd/E88353_01/html/E37855/bp-mapin-9f.html

The rsp_reason member denotes the SCSI command completion reason. The value of
CMD_CMPLT is set for a normal completion when the command has reached the target. Then
the SCSI status is set by using the rsp_status member. The value of the rsp_status is not
set for any other values of rsp_reason. To know the value of TRAN_ACCEPT and CMD_CMPLT,
see the scsi_pkt.h file. For more information, see scsi_pkt(9S).

scsi_tmf_code_t Structure
The scsi_tmf_code_t specifies Task Management Function.

typedef enum scsi_tmf_code {SCSI_TMF_UNKNOWN, SCSI_TMF_ABORT_TASK,
 SCSI_TMF_ABORT_TASK_SET, SCSI_TMF_CLEAR_ACA,
 SCSI_TMF_CLEAR_TASK_SET, SCSI_TMF_I_T_NEXUS_RESET,
 SCSI_TMF_LOGICAL_UNIT_RESET, SCSI_TMF_TARGET_RESET,
 SCSI_TMF_WAKEUP, SCSI_TMF_QUERY_TASK} scsi_tmf_code_t

Task ID is used only with ABORT_TASK and QUERY_TASK TMF to specify I_T_L_Q nexus with
scsi_addr_t information.

If the TMF result is 1 then the function execution is a success. If the TMF result is 0 then the
function execution is a failure.

Note:

Only HBA drivers which implement SCSI_HBA_ADDR_COMPLEX addressing method
and utilize scsi_hba_pkt_comp(9F) are supported by the scsi provider. All SCSAv3
HBA drivers, scsi_vhci, fcp, and iscsi comply to this requirement.

The probe cmd-response might not fire and some addressing information might not be
available with non-complying HBA drivers.

Note:

The scsi_data_t is provided only when HBA drivers implement
tran_setup_pkt(9E). For example, SCSAv3 HBA drivers and fcp comply to this
requirement.

Some simple examples of scsi provider usage follow.

Using the scsi Provider
Some simple examples of scsi provider usage follow.

Tracing SCSI Commands
This DTrace command traces all the SCSI command requests:

dtrace -qn 'scsi:::cmd-request {
 printf("%s#%d %s: Opcode: %02x\n",
 args[0]->addr_ctrl, args[0]->addr_ctrl_inst,
 args[0]->addr_dev, args[1]->cdb_data[0]);}'

Chapter 11
Network and Network Service Protocol Providers

11-175

https://docs.oracle.com/cd/E88353_01/html/E37856/scsi-pkt-9s.html

In this example, traced commands can appear twice in the output. First, as commands
issued to scsi_vhci (vHCI) and second, as commands issued to a physical HBA
driver (pHCI).

Tracing Target Resets
This DTrace command traces target resets and paths to where the resets are sent:

dtrace -n 'scsi:::tmf-request
 /(args[1] == SCSI_TMF_TARGET_RESET) &&
 (args[0]->addr_path != "NULL")/ {
 printf("Target Reset sent to %s", args[0]->addr_path);}'

Displaying TPGS Bits Received
The following script displays TPGS bits received in standard INQUIRY data.

#!/usr/sbin/dtrace -s
 /*
 * Response to INQUIRY with EVPD bit not set, i.e. DATA IN
 * contains standard INQUIRY data.
 * Tracing only on vHCI enumerated paths (addr_path != "NULL")
 * with DATA IN buffer mapped to a kernel virtual memory space.
 */
 scsi:::cmd-response
 /(args[1]->cdb_data[0] == 0x12) &&
 !(args[1]->cdb_data[1] & 0x01) &&
 (args[0]->addr_path != "NULL") &&
 (args[2]->data_mapped)/
 {
 printf("TPGS bits 0x%x received from %s\n",
 (args[2]->data_ptr[5] & 0x30) >> 4,
 args[0]->addr_path);
 }

Tracing Reservation Keys
The following script can be used to trace reservation keys sent in the PERSISTENT
RESERVE OUT command to any path associated with a particular LU.

#!/usr/sbin/dtrace -qs
/*
 * Explanation of predicate expressions:
 * * 0x5f is an opcode of PERSISTENT RESERVE OUT
 * * tracing on pHCI level only, i.e. addr_path must be set
 * * DATA OUT buffer must be mapped to a kernel virtual memory
 * * Sanity check for the data buffer size
 * * Specification of the logical unit GUID
 */
scsi:::cmd-request
/(args[1]->cdb_data[0] == 0x5f) &&
 (args[0]->addr_path != "NULL") &&
 args[2]->data_mapped &&
 (args[2]->data_size >= 16) &&
 (args[0]->addr_dev == "g600144f0ecf10e000000562915af0001")/
{
 printf("%s#%d:%s\n", args[0]->addr_ctrl,
 args[0]->addr_ctrl_inst, args[0]->addr_path);

 printf("Service Action: %02x\n",

Chapter 11
Network and Network Service Protocol Providers

11-176

 args[1]->cdb_data[1] & 0x1f);

 printf("Reservation Key: ");
 tracemem(&args[2]->data_ptr[0], 8);

 printf("SA Reservation Key: ");
 tracemem(&args[2]->data_ptr[8], 8);

 printf("\n\n");
}

scsi Stability
The scsi provider uses stability mechanism of DTrace to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see DTrace Stability
Mechanisms.

Table 11-59 Stability Mechanism for the scsi Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

sctp Provider
The sctp provider provides probes for tracing the Stream Control Transmission Protocol
(SCTP).

SCTP Probes
The sctp probes are described in the following table:

Probes Description

state-change Probe that fires when an SCTP session changes its SCTP state.
Previous state is noted in the sctplsinfo_t * probe argument.
The sctpinfo_t * and ipinfo_t * arguments are NULL.

send Probe that fires whenever SCTP sends a segment (either control
or data).

receive Probe that fires whenever SCTP receives a segment (either
control or data).

The send and receive probes trace packets on physical interfaces and also packets on
loopback interfaces that are processed by the sctp provider.

Chapter 11
Network and Network Service Protocol Providers

11-177

SCTP Probe Arguments
The argument types for the sctp probes are listed in the following table. The
arguments are described in the following section. All probes expect state-change
have 5 arguments. The state-change probe has 6 arguments.

Table 11-60 sctp Probe Arguments

Probe args[0] args[1] args[2] args[3] args[4] args[5]
state-
change

null csinfo_t
*

null sctpsinfo
_t

null sctplsinfo
_t*

send pktinfo_t
*

csinfo_t
*

ipinfo_t
*

sctpsinfo
_t

sctpinfo_
t*

receive pktinfo_t
*

csinfo_t
*

ipinfo_t
*

sctpsinfo
_t

sctpinfo_
t*

pktinfo_t Structure
The pktinfo structure is where packet ID info can be made available for deeper
analysis, if packet IDs become supported by the kernel. The pkt_addr member is a
pointer to the mblk holding the packet, with b_rptr pointing at the start of the relevant
protocol specified by pkt_pcap to support packet capture.

typedef struct pktinfo {
 mblk_t *pkt_addr;
 int pkt_pcap;
} pktinfo_t;

csinfo_t Structure
The csinfo_t structure is where connection state info is made available. It contains a
unique (system-wide) connection ID, and the process ID and zone ID associated with
the connection.

typedef struct csinfo {
 uintptr_t cs_addr;
 uint64_t cs_cid;
 pid_t cs_pid;
 zoneid_t cs_zoneid;
 } csinfo_t;

Table 11-61 csinfo_t Members

Member Description

cs_addr Address of translated ip_xmit_attr_t *
cs_cid Connection ID. A unique per-connection identifier which identifies the

connection during its lifetime.

cs_pid Process ID associated with the connection.

cs_zoneid Zone ID associated with the connection.

Chapter 11
Network and Network Service Protocol Providers

11-178

ipinfo_t Structure
The ipinfo_t structure contains common IP information for both IPv4 and IPv6.

typedef struct ipinfo {
 uint8_t ip_ver; /* IP version (4, 6) */
 uint16_t ip_plength; /* payload length */
 string ip_saddr; /* source address */
 string ip_daddr; /* destination address */
} ipinfo_t;

Table 11-62 ipinfo_t Members

Member Description

ip_ver IP version number. Currently either 4 or 6.

ip_plength Payload length in bytes. This is the length of the packet at the time of tracing,
excluding the IP header.

ip_saddr Source IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6
follows RFC 1884 convention 2 with lower case hexadecimal digits.

ip_daddr Destination IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6
follows RFC 1884 convention 2 with lower case hexadecimal digits.

sctpsinfo_t Structure
The sctpsinfo_t structure contains informations about stable SCTP details from sctp_t.

typedef struct sctpsinfo {
 uintptr_t sctps_addr; /* pointer to sctp_t */
 int sctps_num_raddrs; /* number of remote addresses*/
 uintptr_t sctps_raddrs; /* pointer to sctp_faddrs */
 int sctps_num_laddrs;
 uintptr_t sctps_laddrs; /* pointer to sctp_saddrs */
 uint16_t sctps_lport; /* local port */
 uint16_t sctps_rport; /* remote port */
 string sctps_laddr; /* local address, as a string */
 string sctps_raddr; /* remote address, as a string */
 int32_t sctps_state;
} sctpsinfo_t;

It might seem redundant to supply the local and remote ports and addresses here and in the
sctpinfo_t, but the sctp:::state-change probes do not have associated sctpinfo_t data.
To map the state change to a specific port, we need the associated sctpinfo_t data.

The following table contains the members of scptsinfo_t structure:

Table 11-63 sctpsinfo_t Members

Member Description

sctps_addr Address of translated sctp_t *.

sctps_num_raddrs Number of remote addresses.

sctps_raddrs Pointer to first sctp_faddr_t *.

sctps_num_laddrs Number of local addresses.

Chapter 11
Network and Network Service Protocol Providers

11-179

https://www.rfc-editor.org/info/rfc1884
https://www.rfc-editor.org/info/rfc1884

Table 11-63 (Cont.) sctpsinfo_t Members

Member Description

sctps_laddrs Pointer to sctp_saddrs* address.

sctps_lport Local port associated with the SCTP connection.

sctps_rport Remote port associated with the SCTP connection.

sctps_laddr Local address associated with the SCTP connection, as a string.

sctps_raddr Remote address associated with the SCTP connection, as a
string.

sctps_state SCTP state. Inline definitions are provided for the various SCTP
states such as SCTP_STATE_CLOSE and SCTP_STATE_IDLE. Use
inline sctp_state_string[] to convert state to a string.

sctplsinfo_t Structure
The sctplsinfo_t structure contains the previous sctp state during a state change.

typedef struct sctplsinfo {
 int32_t sctps_state; /* SCTP state */
} sctplsinfo_t;

The sctps_state member is the previous SCTP state. Inline definitions are provided
for the various SCTP states such as SCTP_STATE_CLOSED and SCTP_STATE_IDLE. Use
inline sctp_state_string[] to convert state to a string.

sctpinfo_t Structure
The sctpinfo_t structure is a DTrace translated version of the SCTP header.

typedef struct sctpinfo {
 uint16_t sctp_sport; /* source port */
 uint16_t sctp_dport; /* destination port */
 uint32_t sctp_verify; /* verification tag */
 uint32_t sctp_checksum; /* headers + data checksum */
 sctp_hdr_t *sctp_hdr; /* raw SCTP header */
} sctpinfo_t;

The following table contains the members of scptrinfo_t structure:

Table 11-64 sctpinfo_t Members

Name of Member Description

sctp_sport SCTP source port.

sctp_dport SCTP destination port.

sctp_verify SCTP verification tag.

sctp_checksum Checksum of SCTP header and payload.

sctp_chunk_hdr Pointer to SCTP chunk header.

sctp_hdr Pointer to raw SCTP header at time of tracing.

Chapter 11
Network and Network Service Protocol Providers

11-180

Using the sctp Provider
The following example shows a simple example for the sctp provider.

sctpstate.d Tracing State Changes
This following DTrace script demonstrates the capability to trace SCTP state changes:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10

int last[int];

dtrace:::BEGIN
{
 printf(" %3s %12s %-20s %-20s\n", "CPU", "DELTA(us)", "OLD", "NEW");
 last = timestamp;
}

sctp:::state-change
/ last[args[1]->cs_cid] /
{
 this->elapsed = (timestamp - last[args[1]->cs_cid]) / 1000;
 printf(" %3d %12d %-20s -> %-20s\n", cpu, this->elapsed,
 sctp_state_string[args[5]->sctps_state], sctp_state_string[args[3]-
>sctps_state]);
 last[args[1]->cs_cid] = timestamp;
}

sctp:::state-change
/ last[args[1]->cs_cid] == 0 /
{
 printf(" %3d %12s %-20s -> %-20s\n", cpu, "-",
 sctp_state_string[args[5]->sctps_state],
 sctp_state_string[args[3]->sctps_state]);
 last[args[1]->cs_cid] = timestamp;
}

The fields printed are as follows:

Field Description

CPU CPU ID of the event

DELTA Time since previous event for that connection, microseconds

OLD Old SCTP state

NEW New SCTP state

sctpio.d Traces SCTP Packets
The following DTrace script traces SCTP packets and prints various details:

#!/usr/sbin/dtrace -s

#pragma D option quiet

Chapter 11
Network and Network Service Protocol Providers

11-181

#pragma D option switchrate=10hz

dtrace:::BEGIN
{
 printf(" %3s %15s:%-5s %15s:%-5s\n", "CPU",
 "LADDR", "LPORT", "RADDR", "RPORT");
}

sctp:::send
{
 printf(" %3d %16s:%-5d -> %16s:%-5d\n", cpu,
 args[2]->ip_saddr, args[4]->sctp_sport,
 args[2]->ip_daddr, args[4]->sctp_dport);
}

sctp:::receive
{
 printf(" %3d %16s:%-5d <- %16s:%-5d\n", cpu,
 args[2]->ip_daddr, args[4]->sctp_dport,
 args[2]->ip_saddr, args[4]->sctp_sport);
}

The fields printed are as follows:

Field Description

CPU CPU ID that the event occurred on

LADDR Local IP address

LPORT Local SCTP port

RADDR Remote IP address

RPORT Remote SCTP port

sctp Stability
The sctp provider uses DTrace's stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
DTrace Stability Mechanisms.

Table 11-65 Stability Mechanism for the sctp Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

srp Provider
The srp provider provides probes for tracing srp port provider activity.

This is a kernel provider built into the COMSTAR srp target port provider.

Chapter 11
Network and Network Service Protocol Providers

11-182

srp Probes

srp Probes Overview

Header Header

Service up/down srp:::service-up, srp:::service-down
Remote Port login/logout srp:::login-command, srp:::login-response,

srp:::logout-command
SRP command/response srp:::task-command, srp:::task-response
SCSI command/response srp:::scsi-command, srp:::scsi-response
Data transfer srp:::xfer-start, srp:::xfer-done

For the following providers, string fields that are not known contain the string <unknown>.
Integer fields that are not known contain 0.

Service Up/Down Event Probes
srp:::service-up and srp:::service-down trace SRP target online and offline events.
Remote port information ci_remote is unavailable for both probes.

Probes Variable Type Description

srp:::service-up
srp:::service-down

args[0] conninfo_t * Connection information

srp:::service-up
srp:::service-down

args[1] srp_portinfo_t * Local and remote port
information

Remote Port Login/Logout Event Probes

Probes Variable Type Description

srp:::login-
command
srp:::login-
response
srp:::logout-
command

args[0] conninfo_t * Connection information

srp:::login-
command
srp:::login-
response
srp:::logout-
command

args[1] srp_portinfo_t * Local and remote port
information

Chapter 11
Network and Network Service Protocol Providers

11-183

Probes Variable Type Description

srp:::login-
command
srp:::login-
response

args[2] srp_logininfo_t * Login command/
response information

SRP Command Event Probes

Probes Variable Type Description

srp:::task-
command
srp:::task-
response

args[0] conninfo_t * Connection
information

srp:::task-
command
srp:::task-
response

args[1] srp_portinfo_t * Local and remote port
information

srp:::scsi-
response
srp:::scsi-
command

args[2] srp_taskinfo_t * srp task information

SCSI Command Event Probes

Probes Variable Type Description

srp:::scsi-
command
srp:::scsi-
response

args[0] conninfo_t * Connection
information

srp:::scsi-
command
srp:::scsi-
response

args[1] srp_portinfo_t * Local and remote port
information

srp:::scsi-
command

args[2] scsicmd_t * SCSI command block
(cdb)

srp:::scsi-
response

args[2] srp_taskinfo_t * srp task information

srp:::scsi-
command

args[3] srp_taskinfo_t * srp task information

Chapter 11
Network and Network Service Protocol Providers

11-184

Data Transfer Probes

Probes Variable Type Description

srp:::xfer-start
srp:::xfer-done

args[0] conninfo_t * Connection information

srp:::xfer-start
srp:::xfer-done

args[1] fc_port_info_t * Local port information

srp:::xfer-start
srp:::xfer-done

args[2] xferinfo_t * RDMA transfer
information

srp:::xfer-start
srp:::xfer-done

args[3] srp_taskinfo_t * srp task information

SRP Argument Types
scsicmd_t, conninfo_t, and xferinfo_t are common types that are used by other providers.

scsicmd_t Structure
typedef struct scsicmd {
 uint64_t ic_len; /* CDB length */
 uint8_t *ic_cdb; /* CDB data */
} scsicmd_t;

conninfo_t Structure
typedef struct conninfo {
 string ci_local; /* GID of the local HCA */
 string ci_remote; /* GID of the remote HCA */
 string ci_protocol; /* protocol ("ib") */
} conninfo_t;

srp_portinfo_t Structure
typedef struct srp_portinfo {
 /* initiator */
 string pi_initiator; /* Initiator: eui.xxxxxxxxxxxxxxx */
 string pi_i_sid; /* Initiator seiion id */

 /* target */
 string pi_target; /* Target: eui.xxxxxxxxxxxxxxx */
 string pi_t_sid; /* Target session id */

 uintptr_t pi_chan_id; /* Channel identifier */
} srp_portinfo_t;

srp_logininfo_t Structure
typedef struct srp_logininfo {
 uint64_t li_task_tag; /* SRP task tag */
 uint32_t li_max_it_iu_len; /* Maximum iu length that initiator can
 send to target */
 uint32_t li_max_ti_iu_len; /* Maximum iu length that target can

Chapter 11
Network and Network Service Protocol Providers

11-185

 send to initiator */
 uint32_t li_request_limit; /* Maximun number of SRP requests
 that initiator can send on a channel */
 uint32_t reason_code; /* Reason code */
} srp_logininfo_t;

srp_taskinfo_t Structure
typedef struct srp_taskinfo {
 uint64_t ti_task_tag; /* SRP task tag */
 uint64_t ti_lun; /* Target logical unit number */
 uint8_t ti_function; /* Task management function */
 uint32_t ti_req_limit_delta; /* Increment of channel's request limit */
 uint8_t ti_flag; /* bit 2:DOOVER 3:DOUNDER 4:DIOVER
5:DIUNDER */
 uint32_t ti_do_resid_cnt; /* Data-out residual count */
 uint32_t ti_di_resid_cnt; /* Data-in residual count */
 uint8_t ti_status; /* Status of this task */
} srp_taskinfo_t;

xferinfo_t Structure
typedef struct xferinfo {
 uintptr_t xfer_laddr; /* Local buffer address */
 uint32_t xfer_loffset; /* Relative offset from local buffer */
 uint32_t xfer_lkey; /* Access control to local memory */
 uintptr_t xfer_raddr; /* Remote virtual address */
 uint32_t xfer_roffset; /* Offset from the remote address */
 uint32_t xfer_rkey; /* Access control to remote address */
 uint32_t xfer_len; /* Transfer length */
 uint8_t xfer_type; /* 0: read; 1: write; */
} xferinfo_t;

Using the srp Provider

service.d Reports Events
This is a script to produce a report of target online or offline events.

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("Tracing... Hit Ctrl-C to end.\n\n");
 printf("%-14s %-35s %-20s\n", "SRP EVENT",

\
"LOCAL PORT", "EUI NAME");
};

srp:::service-up
{
 printf("%-14s %-35s %-20s\n", probename,

\
args[0]->ci_local, args[1]->pi_target);
}

Chapter 11
Network and Network Service Protocol Providers

11-186

srp:::service-down
{
 printf("%-14s %-35s %-20s\n", probename,

\
args[0]->ci_local, args[1]->pi_target);
}

This output shows the host and the number of iSCSI operations:

dtrace -s ~/src/service.d
Tracing... Hit Ctrl-C to end.
^C
SRP EVENT LOCAL PORT EUI NAME
service-down fe80000000000000:0003ba0001004d31 eui.0003BA0001004D30
service-down fe80000000000000:0003ba0001004d32 eui.0003BA0001004D30
service-up fe80000000000000:0003ba0001004d31 eui.0003BA0001004D30
service-up fe80000000000000:0003ba0001004d32 eui.0003BA0001004D30
#

The following table describe the fields in the output.

Field Description

SRP EVENT srp event type

LOCAL PORT GID of the local port

EUI NAME EUI name of the local port

srpwho.d Reports SRP Events on a Remote HCA Port
This simple script produces a report of the remote HCA port and a count of srp events. This is
intended to provide a quick summary of srp activity when run on the SRP target server:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("Tracing... Hit Ctrl-C to end.\n");
}

srp:::login-command,
srp:::login-response,
srp:::task-command,
srp:::task-response,
srp:::scsi-command,
srp:::scsi-response,
srp:::xfer-start,
srp:::xfer-done
{
 @events[args[0]->ci_remote, probename] = count();
}

dtrace:::END
{
 printf(" %-33s %14s %8s\n", "REMOTE GID", "iSCSI EVENT", "COUNT");

Chapter 11
Network and Network Service Protocol Providers

11-187

 printa(" %-33s %14s %@8d\n", @events);
}

This output shows the host and the number of iSCSI operations:

dtrace -s ./srpwho.d
Tracing... Hit Ctrl-C to end.
^C
 REMOTE GID iSCSI EVENT COUNT
 fe80000000000000:0003ba000100386d login-command 1
 fe80000000000000:0003ba000100386d login-response 1
 fe80000000000000:0003ba0001003851 login-command 2
 fe80000000000000:0003ba0001003851 login-response 2
 fe80000000000000:0003ba0001003852 login-command 2
 fe80000000000000:0003ba0001003852 login-response 2
 fe80000000000000:0003ba0001004d32 xfer-done 9
 fe80000000000000:0003ba0001004d32 xfer-start 9
 fe80000000000000:0003ba0001004d31 xfer-done 18
 fe80000000000000:0003ba0001004d31 xfer-start 18
 fe80000000000000:0003ba0001004d32 scsi-command 22
 fe80000000000000:0003ba0001004d32 scsi-response 22
 fe80000000000000:0003ba0001004d32 task-command 22
 fe80000000000000:0003ba0001004d32 task-response 22
 fe80000000000000:0003ba0001004d31 scsi-command 42
 fe80000000000000:0003ba0001004d31 scsi-response 42
 fe80000000000000:0003ba0001004d31 task-command 42
 fe80000000000000:0003ba0001004d31 task-response 42

The following table describes the command output fields.

Field Description

REMOTE GID GID of the client HCA port

SRP EVENT srp event type

COUNT Number of events traced

srpsnoop.d Snoops Local Events on a Server
This simple script snoops srp events when run on a srp target server.

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10

dtrace:::BEGIN
{
 printf("%17s %3s %-40s %-14s %6s %10s %6s\n", "TIMESTAMP",
 "CPU", "REMOTE GID", "EVENT", "BYTES", "TAG", "SCSIOP");

 /*
 * SCSI opcode to string translation hash. This is from
 * /usrp/include/sys/scsi/generic/commands.h. If you would
 * rather all hex, comment this out.
 */
 scsiop[0x08] = "read";
 scsiop[0x0a] = "write";
 scsiop[0x0b] = "seek";
 scsiop[0x28] = "read(10)";

Chapter 11
Network and Network Service Protocol Providers

11-188

 scsiop[0x2a] = "write(10)";
 scsiop[0x2b] = "seek(10)";
}

srp:::login-*
{
 printf("%17d %3d %-40s %-14s %17d -\n", timestamp, cpu,
 args[0]->ci_remote,
 probename, args[2]->li_task_tag);
}
srp:::task-command,
srp:::task-response,
srp:::scsi-response
{
 printf("%17d %3d %-40s %-14s %6d %10d -\n", timestamp, cpu,
 args[0]->ci_remote,
 probename, 0, args[2]->ti_task_tag);
}

srp:::scsi-command
/scsiop[args[2]->ic_cdb[0]] != NULL/
{
 printf("%17d %3d %-40s %-14s %6d %10d %s\n", timestamp, cpu,
 args[0]->ci_remote,
 probename, 0, args[3]->ti_task_tag, scsiop[args[2]->ic_cdb[0]]);
}

srp:::scsi-command
/scsiop[args[2]->ic_cdb[0]] == NULL/
{
 printf("%17d %3d %-40s %-14s %6d %10d 0x%x\n", timestamp, cpu,
 args[0]->ci_remote,
 probename, 0, args[3]->ti_task_tag, args[2]->ic_cdb[0]);
}

srp:::xfer-start,
srp:::xfer-done
{
 printf("%17d %3d %-40s %-14s %6d %10d %s\n", timestamp,
 cpu, args[0]->ci_remote,
 probename,args[2]->xfer_len, args[3]->ti_task_tag,
 args[2]->xfer_type > 0 ? "READ" : "WRITE");
}

This output shows the snoop on dd commands executed by the initiator.

dtrace -s ./srpsnoop.d
TIMESTAMP CPU REMOTE GID EVENT BYTES TAG
SCSIOP
22644410404019 3 fe80000000000000:0003ba0001004d31 task-command 0 26 -
22644410493068 3 fe80000000000000:0003ba0001004d31 scsi-command 0 26
read(10)
22644410511422 3 fe80000000000000:0003ba0001004d31 task-command 0 30 -
22644410541494 3 fe80000000000000:0003ba0001004d31 scsi-command 0 30
read(10)
22644410621049 0 fe80000000000000:0003ba0001004d31 xfer-start 2048 26
READ
22644410720486 1 fe80000000000000:0003ba0001004d31 xfer-start 49152 30
READ
22644410681390 3 fe80000000000000:0003ba0001004d31 xfer-done 2048 26
READ

Chapter 11
Network and Network Service Protocol Providers

11-189

22644410694719 3 fe80000000000000:0003ba0001004d31 scsi-response 0
26 -
22644410703358 3 fe80000000000000:0003ba0001004d31 task-response 0
26 -
22644410895424 3 fe80000000000000:0003ba0001004d31 xfer-done 49152
30 READ
22644410901576 3 fe80000000000000:0003ba0001004d31 scsi-response 0
30 -
22644410905717 3 fe80000000000000:0003ba0001004d31 task-response 0
30 -
22727363721107 3 fe80000000000000:0003ba0001004d31 task-command 0
59 -
22727363919179 0 fe80000000000000:0003ba0001004d31 xfer-start 10240
59 WRITE
22727364095164 0 fe80000000000000:0003ba0001004d31 scsi-response 0
59 -
22727364105406 0 fe80000000000000:0003ba0001004d31 task-response 0
59 -
22727363812953 3 fe80000000000000:0003ba0001004d31 scsi-command 0
59 write(10)
22727363986185 3 fe80000000000000:0003ba0001004d31 xfer-done 10240
59 WRITE

The following table describes the output fields.

Field Description

CPU CPU event occurred on

REMOTE GID GID of the client HCA port

EVENT srp event type

BYTES Data bytes

TAG Initiator task tag

SCSIOP SCSI opcode as a description, as hex, or '-'

tcp Provider
The tcp provider provides probes for tracing the TCP protocol.

tcp Probes
The tcp probes are described in the following table.

Table 11-66 tcp Probes

Probe Description

state-change Fires a TCP session changes its TCP state. Previous state is noted
in the tcplsinfo_t * probe argument. The tcpinfo_t * and
ipinfo_t * arguments are NULL.

send Fires when TCP sends a segment (either control or data).

receive Fires when TCP receives a segment (either control or data).

Chapter 11
Network and Network Service Protocol Providers

11-190

Table 11-66 (Cont.) tcp Probes

Probe Description

connect-request Fires when a TCP active open is initiated by sending an initial SYN
segment. The tcpinfo_t * and ipinfo_t * probe arguments
represent the TCP and IP headers associated with the initial SYN
segment sent.

connect-established Fires when either of the following occurs: either a TCP active OPEN
succeeds - the initial SYN has been sent and a valid SYN,ACK
segment has been received in response. TCP enters the
ESTABLISHED state, and the tcpinfo_t * and ipinfo_t *
probe arguments represent the TCP and IP headers associated
with the SYN,ACK segment received; or a simultaneous active
OPEN succeeds and a final ACK is received from the peer TCP.
TCP has entered the ESTABLISHED state and the tcpinfo_t *
and ipinfo_t * probe arguments represent the TCP and IP
headers of the final ACK received. The common thread in these
cases is that an active-OPEN connection is established at this point,
in contrast with tcp:::accept-established which fires on
passive connection establishment. In both of the preceding cases,
the TCP segment that is presented via the tcpinfo_t * is the
segment that triggers the transition to ESTABLISHED - the received
SYN,ACK in the first case and the final ACK segment in the second.

connect-refused A TCP active OPEN connection attempt was refused by the peer - a
RST segment was received in acknowledgment of the initial SYN.
The tcpinfo_t * and ipinfo_t * probe arguments represent
the TCP and IP headers associated with the RST,ACK segment
received.

accept-established A passive open has succeeded - an initial active OPEN initiation
SYN has been received, TCP responded with a SYN,ACK and a final
ACK has been received. TCP has entered the ESTABLISHED state.
The tcpinfo_t * and ipinfo_t * probe arguments represent
the TCP and IP headers associated with the final ACK segment
received.

accept-refused An incoming SYN has arrived for a destination port with no listening
connection, so the connection initiation request is rejected by
sending a RST segment acknowledging the SYN. The tcpinfo_t *
and ipinfo_t * probe arguments represent the TCP and IP
headers associated with the RST segment sent.

The send and receive probes trace packets on physical interfaces and also packets on
loopback interfaces that are processed by tcp. On Oracle Solaris, loopback TCP connections
can bypass the TCP layer when transferring data packets - this is a performance feature
called tcp fusion; these packets are also traced by the tcp provider.

Argument Types for the tcp Provider
The argument types for the tcp probes are listed in the table below. The arguments are
described in the following section. All probes expect state-change have five arguments,
state-change has six arguments.

Chapter 11
Network and Network Service Protocol Providers

11-191

Probe args[0] args[1] args[2] args[3] args[4] args[5]
state-change null csinfo_t

*
null tcpsinfo

_t *
null tcplsinf

o_t *
send pktinfo_

t *
csinfo_t
*

ipinfo_t
*

tcpsinfo
_t *

tcpinfo_
t *

receive pktinfo_
t *

csinfo_t
*

ipinfo_t
*

tcpsinfo
_t *

tcpinfo_
t *

connect-request pktinfo_
t *

csinfo_t
*

ipinfo_t
*

tcpsinfo
_t *

tcpinfo_
t *

connect-
established

pktinfo_
t *

csinfo_t
*

ipinfo_t
*

tcpsinfo
_t *

tcpinfo_
t *

connect-refused pktinfo_
t *

csinfo_t
*

ipinfo_t
*

tcpsinfo
_t *

tcpinfo_
t *

accept-
established

pktinfo_
t *

csinfo_t
*

ipinfo_t
*

tcpsinfo
_t *

tcpinfo_
t *

accept-refused pktinfo_
t *

csinfo_t
*

ipinfo_t
*

tcpsinfo
_t *

tcpinfo_
t *

pktinfo_t Structure
The pktinfo structure is where packet ID info can be made available for deeper
analysis, if packet IDs become supported by the kernel. The pkt_addr member is a
pointer to the mblk holding the packet, with b_rptr pointing at the start of the relevant
protocol specified by pkt_pcap to support packet capture.

typedef struct pktinfo {
 mblk_t *pkt_addr;
 int pkt_pcap;
} pktinfo_t;

csinfo_t Structure
The csinfo_t structure is where connection state info is made available. It contains a
unique system wide connection ID, and the process ID and zone ID associated with
the connection.

typedef struct csinfo {
 uintptr_t cs_addr;
 uint64_t cs_cid;
 pid_t cs_pid;
 zoneid_t cs_zoneid;
 } csinfo_t;

Element Description

cs_addr Address of translated ip_xmit_attr_t *.

cs_cid Connection id. A unique per-connection identifier which identifies the
connection during its lifetime.

cs_pid Process ID associated with the connection.

cs_zoneid Zone ID associated with the connection.

Chapter 11
Network and Network Service Protocol Providers

11-192

ipinfo_t Structure
The ipinfo_t structure contains common IP info for both IPv4 and IPv6.

typedef struct ipinfo {
 uint8_t ip_ver; /* IP version (4, 6) */
 uint16_t ip_plength; /* payload length */
 string ip_saddr; /* source address */
 string ip_daddr; /* destination address */
} ipinfo_t;

These values are read at the time the probe fired in TCP, and so ip_plength is the expected
IP payload length. However, the IP layer may add headers such as AH and ESP, which will
increase the actual payload length. To examine this, also trace packets using the ip provider.

Table 11-67 ipinfo_t Members

Member Description

ip_ver IP version number. Currently either 4 or 6.

ip_plength Payload length in bytes. This is the length of the packet at the time of tracing,
excluding the IP header.

ip_saddr Source IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6
follows RFC 1884 convention 2 with lower case hexadecimal digits.

ip_daddr Destination IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6
follows RFC 1884 convention 2 with lower case hexadecimal digits.

tcpsinfo_t Structure
The tcpsinfo_t structure contains tcp state information.

typedef struct tcpsinfo {
 uintptr tcps_addr;
 int tcps_local; /* is delivered locally, boolean */
 int tcps_active; /* active open (from here), boolean */
 uint16_t tcps_lport; /* local port */
 uint16_t tcps_rport; /* remote port */
string tcps_laddr; /* local address, as a string */
string tcps_raddr; /* remote address, as a string */
int32_t tcps_state;/* TCP state. Use inline tcp_state_string[]to convert to string */
 uint32_t tcps_iss; /* initial sequence # sent */
 uint32_t tcps_suna; /* sequence # sent but unacked */
 uint32_t tcps_snxt; /* next sequence # to send */
 uint32_t tcps_rack; /* sequence # acked */
 uint32_t tcps_rnxt; /* next sequence # expected */
 uint32_t tcps_swnd; /* send window size */
 uint32_t tcps_snd_ws; /* send window scaling */
 uint32_t tcps_rwnd; /* receive window size */
 uint32_t tcps_rcv_ws; /* receive window scaling */
 uint32_t tcps_cwnd; /* congestion window */
 uint32_t tcps_cwnd_ssthresh; /* threshold for congestion avoidance */
 uint32_t tcps_sack_fack; /* SACK sequence # acked */
 uint32_t tcps_sack_snxt; /* next SACK seq # for retransmission */
 uint32_t tcps_rto; /* round-trip timeout, msec */
 uint32_t tcps_mss; /* max segment size */

Chapter 11
Network and Network Service Protocol Providers

11-193

https://www.rfc-editor.org/info/rfc1884
https://www.rfc-editor.org/info/rfc1884

 int tcps_retransmit; /* retransmit send event, boolean */
} tcpsinfo_t;

It may seem redundant to supply the local and remote ports and addresses here as
well as in the tcpinfo_t below, but the tcp:::state-change probes do not have
associated tcpinfo_t data, so in order to map the state change to a specific port, you
require this data here.

Table 11-68 tcpsinfo_t Members

Member Description

tcps_addr Address of translated tcp_t *.

tcps_local Local, boolean. 0: is not delivered locally and uses a physical network
interface, 1: is delivered locally including loopback interfaces, such as lo0.

tcps_active Active open, boolean. 0: TCP connection was created from a remote host,
1: TCP connection was created from this host.

tcps_lport Local port associated with the TCP connection.

tcps_rport Remote port associated with the TCP connection.

tcps_laddr Local address associated with the TCP connection, as a string.

tcps_raddr Remote address associated with the TCP connection, as a string.

tcps_state The following states are available for a tcps_state member:

• TCP_STATE_CLOSED
• TCP_STATE_IDLE
• TCP_STATE_BOUND
• TCP_STATE_LISTEN
• TCP_STATE_SYN_SENT
• TCP_STATE_SYN_RECEIVED
• TCP_STATE_ESTABLISHED
• TCP_STATE_CLOSE_WAIT
• TCP_STATE_FIN_WAIT_1
• TCP_STATE_CLOSING
• TCP_STATE_LAST_ACK
• TCP_STATE_FIN_WAIT_2
• TCP_STATE_TIME_WAIT
Use inline tcp_state_string[] to convert state to a string.

tcps_iss Initial sequence number sent.

tcps_suna Lowest sequence number for which you have sent data but not received
acknowledgement.

tcps_snxt Next sequence number to send. tcps_snxt - tcps_suna gives the
number of bytes pending acknowledgement for the TCP connection.

tcps_rack Highest sequence number for which you have received and sent
acknowledgement.

tcps_rnxt Next sequence number expected on receive side. tcps_rnxt - tcps_rack
gives the number of bytes you have received but not yet acknowledged for
the TCP connection.

tcps_swnd TCP send window size.

Chapter 11
Network and Network Service Protocol Providers

11-194

Table 11-68 (Cont.) tcpsinfo_t Members

Member Description

tcps_snd_ws TCP send window scale. tcps_swnd << tcp_snd_ws gives the scaled
window size if window scaling options are in use.

tcps_rwnd TCP receive window size.

tcps_rcv_ws TCP receive window scale. tcps_rwnd << tcp_rcv_ws gives the scaled
window size if window scaling options are in use.

tcps_cwnd TCP congestion window size. tcps_cwnd_ssthresh TCP congestion
window threshold. When the congestion window is greater than ssthresh,
congestion avoidance begins.

tcps_cwnd_ssthr
esh

TCP congestion window threshold. When the congestion window is greater
than ssthresh, congestion avoidance begins.

tcps_sack_fack Highest SACK-acked sequence number.

tcps_sack_snxt Next sequence num to be retransmitted using SACK.

tcps_rto Round-trip timeout. If you do not receive acknowledgement of data sent
tcps_rto msec ago, retransmit is required.

tcps_mss Maximum segment size.

tcps_retransmit Send is a retransmit, boolean. 1 for tcp:::send events that are
retransmissions, 0 for tcp events that are not send events, and for send
events that are not retransmissions.

tcplsinfo_t Structure
The tcplsinfo_t structure contains the previous tcp state during a state change.

typedef struct tcplsinfo {
 int32_t tcps_state; /* TCP state */
} tcplsinfo_t;

The tcps_state member of tcplsinfo_t contains the previous TCP state. Inline definitions
are provided for the various TCP states: TCP_STATE_CLOSED, TCP_STATE_SYN_SENT, and so on.
Use inline tcp_state_string[] to convert state to a string.

tcpinfo_t Structure
The tcpinfo_t structure is a DTrace translated version of the TCP header.

typedef struct tcpinfo {
 uint16_t tcp_sport; /* source port */
 uint16_t tcp_dport; /* destination port */
 uint32_t tcp_seq; /* sequence number */
 uint32_t tcp_ack; /* acknowledgment number */
 uint8_t tcp_offset; /* data offset, in bytes */
 uint8_t tcp_flags; /* flags */
 uint16_t tcp_window; /* window size */
 uint16_t tcp_checksum; /* checksum */
 uint16_t tcp_urgent; /* urgent data pointer */
 tcph_t *tcp_hdr; /* raw TCP header */
} tcpinfo_t;

Chapter 11
Network and Network Service Protocol Providers

11-195

Table 11-69 tcpinfo_t Members

Member Description

tcp_sport TCP source port.

tcp_dport TCP destination port.

tcp_seq TCP sequence number.

tcp_ack TCP acknowledgment number.

tcp_offset Payload data offset, in bytes not 32-bit words.

tcp_flags TCP flags. See the tcp_flagstable below for available macros.

tcp_window TCP window size, bytes.

tcp_checksum Checksum of TCP header and payload.

tcp_urgent TCP urgent data pointer, bytes.

tcp_hdr Pointer to raw TCP header at time of tracing.

Table 11-70 tcp_flags Values

Value Description

TH_FIN No more data from sender (finish).

TH_SYN Synchronize sequence numbers (connect).

TH_RST Reset the connection.

TH_PUSH TCP push function.

TH_ACK Acknowledgment field is set.

TH_URG Urgent pointer field is set.

TH_ECE Explicit congestion notification echo. For more information, see RFC 3168.

TH_CWR Congestion window reduction.

See RFC 793 for a detailed explanation of the standard TCP header fields and flags.

Using the tcp Provider
Some simple examples of tcp provider usage follow.

Connections by Host Address
This DTrace one-liner counts inbound TCP connections by source IP address:

dtrace -n 'tcp:::accept-established { @[args[3]->tcps_raddr] = count(); }'
dtrace: description 'tcp:::state-change' matched 1 probes
^C

 127.0.0.1 1
 192.0.2.35/27 1
 fe80::214:4fff:fe8d:59aa 1
 192.0.2.14/27 3

Chapter 11
Network and Network Service Protocol Providers

11-196

https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc793

The preceding output shows there were 3 TCP connections from 192.0.2.14, a single TCP
connection from the IPv6 host fe80::214:4fff:fe8d:59aa.

Connections by TCP Port
This DTrace one-liner counts inbound TCP connections by local TCP port:

dtrace -n 'tcp:::accept-established { @[args[3]->tcps_lport] = count(); }'
dtrace: description 'tcp:::state-change' matched 1 probes
^C

 40648 1
 22 3

The preceding output shows there were 3 TCP connections for port 22 ssh, a single TCP
connection for port 40648 (an RPC port).

Who is Connecting to What
Combining the previous two examples produces a useful one liner, to quickly identify who is
connecting to what:

dtrace -n 'tcp:::accept-established \
{ @[args[3]->tcps_raddr, args[3]->tcps_lport] = count(); }'
dtrace: description 'tcp:::state-change' matched 1 probes
^C

 192.0.2.35/27 40648 1
 fe80::214:4fff:fe8d:59aa 22 1
 192.0.2.14/27 22 3

The preceding output shows there were three TCP connections from 192.0.2.14/27 to port
22 (ssh).

Who is not Connecting to What
It may be useful when troubleshooting connection issues to see who is failing to connect to
their requested ports. This is equivalent to seeing where incoming SYNs arrive when no
listener is present, as per RFC 793:

dtrace -n 'tcp:::accept-refused \
{ @[args[2]->ip_daddr, args[4]->tcp_sport] = count(); }'
dtrace: description 'tcp:::receive ' matched 1 probes
^C

 192.0.2.14/27 23 2

Here you traced two failed attempts by host 192.0.2.14 to connect to port 23 (telnet).

Packets by Host Address
This DTrace one-liner counts TCP received packets by host address:

dtrace -n 'tcp:::receive { @[args[2]->ip_saddr] = count(); }'
dtrace: description 'tcp:::receive ' matched 5 probes
^C

 127.0.0.1 7
 fe80::214:4fff:fe8d:59aa 14

Chapter 11
Network and Network Service Protocol Providers

11-197

https://www.rfc-editor.org/info/rfc793

 192.0.2.65/27 43
 192.0.2.14/27 44
 192.0.2.35/27 3722

The preceding output shows that 7 TCP packets were received from 127.0.0.1, 14
TCP packets from the IPv6 host fe80::214:4fff:fe8d:59aa.

Packets by Local Port
This DTrace one-liner counts TCP received packets by the local TCP port:

dtrace -n 'tcp:::receive { @[args[4]->tcp_dport] = count(); }'
dtrace: description 'tcp:::receive ' matched 5 probes
^C

 42303 3
 42634 3
 2049 27
 40648 36
 22 162

The preceding output shows that 162 packets were received for port 22 (ssh), 36
packets were received for port 40648 (an RPC port), 27 packets for 2049 (NFS), and a
few packets to high numbered client ports.

Sent Size Distribution
This DTrace one-liner prints distribution plots of IP payload size by destination, for
TCP sends:

dtrace -n 'tcp:::send { @[args[2]->ip_daddr] = quantize(args[2]-
>ip_plength); }'
dtrace: description 'tcp:::send ' matched 3 probes
^C

 192.0.2.14/27
 value ------------- Distribution ------------- count
 32 | 0
 64 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 14
 128 |@@@ 1
 256 | 0

 192.0.2.30/27
 value ------------- Distribution ------------- count
 16 | 0
 32 |@@@@@@@@@@@@@@@@@@@@ 7
 64 |@@@@@@@@@ 3
 128 |@@@ 1
 256 |@@@@@@ 2
 512 |@@@ 1
 1024 | 0

tcpstate.d Reports TCP State Changes
This DTrace script demonstrates the capability to trace TCP state changes:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10

Chapter 11
Network and Network Service Protocol Providers

11-198

int last[int];

dtrace:::BEGIN
{
 printf(" %3s %12s %-20s %-20s\n", "CPU", "DELTA(us)", "OLD", "NEW");
}

tcp:::state-change
/ last[args[1]->cs_cid] /
{
 this->elapsed = (timestamp - last[args[1]->cs_cid]) / 1000;
 printf(" %3d %12d %-20s -> %-20s\n", cpu, this->elapsed,
 tcp_state_string[args[5]->tcps_state],
 tcp_state_string[args[3]->tcps_state]);
 last[args[1]->cs_cid] = timestamp;
}

tcp:::state-change
/ last[args[1]->cs_cid] == 0 /
{
 printf(" %3d %12s %-20s -> %-20s\n", cpu, "-",
 tcp_state_string[args[5]->tcps_state],
 tcp_state_string[args[3]->tcps_state]);
 last[args[1]->cs_cid] = timestamp;

Run this script on a system for couple of minutes:

./tcpstate.d

 CPU DELTA(us) OLD NEW
 0 - state-listen -> state-syn-received
 0 613 state-syn-received -> state-established
 0 - state-idle -> state-bound
 0 63 state-bound -> state-syn-sent
 0 685 state-syn-sent -> state-bound
 0 22 state-bound -> state-idle
 0 114 state-idle -> state-closed

In the preceding output, an inbound connection is traced, It takes 613 us to go from syn-
received to established. An outbound connection attempt is also made to a closed port. It
takes 63 us to go from bound to syn-sent, 685 us to go from syn-sent to bound.

The following table describes the output fields.

Field Description

CPU CPU id for the event

DELTA(us) time since previous event for that connection, microseconds

OLD old TCP state

NEW new TCP state

tcpio.d Reports TCP Packet Details
The following DTrace script traces TCP packets and prints various details:

#!/usr/sbin/dtrace -s

Chapter 11
Network and Network Service Protocol Providers

11-199

#pragma D option quiet
#pragma D option switchrate=10hz

dtrace:::BEGIN
{
 printf(" %3s %15s:%-5s %15s:%-5s %6s %s\n", "CPU",
 "LADDR", "LPORT", "RADDR", "RPORT", "BYTES", "FLAGS");
}

tcp:::send
{
 this->length = args[2]->ip_plength - args[4]->tcp_offset;
 printf(" %3d %16s:%-5d -> %16s:%-5d %6d (", cpu,
 args[2]->ip_saddr, args[4]->tcp_sport,
 args[2]->ip_daddr, args[4]->tcp_dport, this->length);
}

tcp:::receive
{
 this->length = args[2]->ip_plength - args[4]->tcp_offset;
 printf(" %3d %16s:%-5d <- %16s:%-5d %6d (", cpu,
 args[2]->ip_daddr, args[4]->tcp_dport,
 args[2]->ip_saddr, args[4]->tcp_sport, this->length);
}

tcp:::send,
tcp:::receive
{
 printf("%s", args[4]->tcp_flags & TH_FIN ? "FIN|" : "");
 printf("%s", args[4]->tcp_flags & TH_SYN ? "SYN|" : "");
 printf("%s", args[4]->tcp_flags & TH_RST ? "RST|" : "");
 printf("%s", args[4]->tcp_flags & TH_PUSH ? "PUSH|" : "");
 printf("%s", args[4]->tcp_flags & TH_ACK ? "ACK|" : "");
 printf("%s", args[4]->tcp_flags & TH_URG ? "URG|" : "");
 printf("%s", args[4]->tcp_flags & TH_ECE ? "ECE|" : "");
 printf("%s", args[4]->tcp_flags & TH_CWR ? "CWR|" : "");
 printf("%s", args[4]->tcp_flags == 0 ? "null " : "");
 printf("\b)\n");
}

This example output has captured a TCP handshake:

./tcpio.d
 CPU LADDR:LPORT RADDR:RPORT BYTES FLAGS
 1 192.0.2.8/27:22 -> 192.0.2.40/27:60337 464 (PUSH|ACK)
 1 192.0.2.8/27:22 -> 192.0.2.40/27:60337 48 (PUSH|ACK)
 2 192.0.2.8/27:22 -> 192.0.2.40/27:60337 20 (PUSH|ACK)
 3 192.0.2.8/27:22 <- 192.0.2.40/27:60337 0 (SYN)
 3 192.0.2.8/27:22 -> 192.0.2.40/27:60337 0 (SYN|ACK)
 3 192.0.2.8/27:22 <- 192.0.2.40/27:60337 0 (ACK)
 3 192.0.2.8/27:22 <- 192.0.2.40/27:60337 0 (ACK)
 3 192.0.2.8/27:22 <- 192.0.2.40/27:60337 20 (PUSH|ACK)
 3 192.0.2.8/27:22 -> 192.0.2.40/27:60337 0 (ACK)
 3 192.0.2.8/27:22 <- 192.0.2.40/27:60337 0 (ACK)
 3 192.0.2.8/27:22 <- 192.0.2.40/27:60337 376 (PUSH|ACK)
 3 192.0.2.8/27:22 -> 192.0.2.40/27:60337 0 (ACK)
 3 192.0.2.8/27:22 <- 192.0.2.40/27:60337 24 (PUSH|ACK)
 2 192.0.2.8/27:22 -> 192.0.2.40/27:60337 736 (PUSH|ACK)
 3 192.0.2.8/27:22 <- 192.0.2.40/27:60337 0 (ACK)

The following table describes the output fields.

Chapter 11
Network and Network Service Protocol Providers

11-200

Field Description

CPU CPU id that event occurred on

LADDR Local IP address

LPORT Local TCP port

RADDR Remote IP address

RPORT Remote TCP port

BYTES TCP payload bytes

FLAGS TCP flags

Note:

The output may be shuffled slightly on multi-CPU servers due to DTrace per-CPU
buffering, and events such as the TCP handshake can be printed out of order. Keep
an eye on changes in the CPU column, or add a timestamp column to this script
and post sort.

tcp Stability
The tcp provider uses stability mechanism of DTrace to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see DTrace Stability
Mechanisms.

Table 11-71 Stability Mechanism for the tcp Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

udp Provider
The udp provider provides probes for tracing the UDP protocol.

udp Probes
The udp probes are described in the table below.

Table 11-72 udp Probes Overview

Probe Description

send Fires whenever UDP sends a datagram.

Chapter 11
Network and Network Service Protocol Providers

11-201

Table 11-72 (Cont.) udp Probes Overview

Probe Description

receive Fires whenever UDP receives a datagram.

The send and receive probes trace datagrams on physical interfaces and also
packets on loopback interfaces that are processed by udp.

udp Probe Arguments
The argument types for the udp probes are listed in the table below. The arguments
are described in the following section.

Table 11-73 udp Probe Arguments

Probe args[0] args[1] args[2] args[3] args[4]
send pktinfo_t * csinfo_t * ipinfo_t * udpsinfo_t

*
udpinfo_t *

receive pktinfo_t * csinfo_t * ipinfo_t * udpsinfo_t
*

udpinfo_t *

pktinfo_t Structure
The pktinfo structure is where packet ID info can be made available for deeper
analysis, if packet IDs become supported by the kernel. The pkt_addr member is a
pointer to the mblk holding the packet, with b_rptr pointing at the start of the relevant
protocol specified by pkt_pcap to support packet capture.

typedef struct pktinfo {
 mblk_t *pkt_addr;
 int pkt_pcap;
} pktinfo_t;

csinfo_t Structure
The csinfo_t structure is where connection state info is made available. It contains a
unique (system-wide) connection ID, and the process ID and zone ID associated with
the connection.

typedef struct csinfo {
 uintptr_t cs_addr;
 uint64_t cs_cid;
 pid_t cs_pid;
 zoneid_t cs_zoneid;
 } csinfo_t;

Table 11-74 csinfo_t Members

Member Description

cs_addr Address of translated ip_xmit_attr_t *.

Chapter 11
Network and Network Service Protocol Providers

11-202

Table 11-74 (Cont.) csinfo_t Members

Member Description

cs_cid Connection id. A unique per-connection identifier which identifies
the connection during its lifetime.

cs_pid Process ID associated with the connection.

cs_zoneid Zone ID associated with the connection.

ipinfo_t Structure
The ipinfo_t structure contains common IP info for both IPv4 and IPv6.

typedef struct ipinfo {
 uint8_t ip_ver; /* IP version (4, 6) */
 uint16_t ip_plength; /* payload length */
 string ip_saddr; /* source address */
 string ip_daddr; /* destination address */
} ipinfo_t;

These values are read at the time the probe fired in UDP, and so ip_plength is the expected
IP payload length. However, the IP layer may add headers such as AH and ESP, which will
increase the actual payload length. To examine this, also trace packets using the ip provider.

Table 11-75 ipinfo_t Members

Member Description

ip_ver IP version number. Currently either 4 or 6.

ip_plength Payload length in bytes. This is the length of the packet at the time of
tracing, excluding the IP header.

ip_saddr Source IP address, as a string. For IPv4 this is a dotted decimal quad,
IPv6 follows RFC 1884 convention 2 with lower case hexadecimal digits.

ip_daddr Destination IP address, as a string. For IPv4 this is a dotted decimal
quad, IPv6 follows RFC 1884 convention 2 with lower case hexadecimal
digits.

udpsinfo_t Structure
The udpsinfo_t structure contains udp state info.

typedef struct udpsinfo {
 uintptr_t udps_addr;
 uint16_t upds_lport; /* local port */
 uint16_t udps_rport; /* remote port */
 string udps_laddr; /* local address, as a string */
 string udps_raddr; /* remote address, as a string */
} udpsinfo_t;

Chapter 11
Network and Network Service Protocol Providers

11-203

https://www.rfc-editor.org/info/rfc1884
https://www.rfc-editor.org/info/rfc1884

Table 11-76 udpsinfo_t Members

Member Description

udps_addr Address of translated udp_t *.

udps_lport Local port associated with the UDP connection.

udps_rport Remote port associated with the UDP connection.

udps_laddr Local address associated with the UDP connection, as a string

udps_raddr Remote address associated with the UDP connection, as a string

udpsinfo_t Structure
The udpinfo_t structure is a DTrace translated version of the UDP header.

typedef struct udpinfo {
 uint16_t udp_sport; /* source port */
 uint16_t udp_dport; /* destination port */
 uint16_t udp_length; /* total length */
 uint16_t udp_checksum; /* headers + data checksum */
 udpha_t *udp_hdr; /* raw UDP header */
} udpinfo_t;

Table 11-77 udpinfo_t Members

Member Description

udp_sport UDP source port.

udp_dport UDP destination port.

udp_length Payload length in bytes.

udp_checksum Checksum of UDP header and payload.

udp_hdr Pointer to raw UDP header at time of tracing.

See RFC 768 for a detailed explanation of the standard UDP header fields and flags.

Using the udp Provider
Some simple examples of udp provider usage follow.

Count of Packets by Host Address
This DTrace one-liner counts UDP received packets by host address:

dtrace -n 'udp:::receive { @[args[2]->ip_saddr] = count(); }'
dtrace: description 'udp:::receive ' matched 5 probes
^C

 127.0.0.1 7
 fe80::214:4fff:fe8d:59aa 14
 192.0.2.35/27 43
 192.0.2.14/27 44
 192.0.2.45/27 3722

Chapter 11
Network and Network Service Protocol Providers

11-204

https://www.rfc-editor.org/info/rfc768

The preceding output shows that 7 UDP packets were received from 127.0.0.1, 14 UDP
packets from the IPv6 host fe80::214:4fff:fe8d:59aa.

Count of Packets by Local Port
This DTrace one-liner counts UDP received packets by the local UDP port:

dtrace -n 'udp:::receive { @[args[4]->udp_dport] = count(); }'
dtrace: description 'udp:::receive ' matched 1 probe
^C

 33294 1
 33822 1
 38961 1
 44433 1
 46258 1
 46317 1
 47511 1
 50581 1
 54685 1
 56491 1
 59056 1
 62171 1
 62769 1
 64231 1

The preceding output shows that 1 packet was received for port 33294, 1 packet was received
for port 33822, and so on.

IP Payload Sent Size Distribution
This DTrace one-liner prints distribution plots of IP payload size by destination, for UDP
sends:

dtrace -n 'udp:::send { @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }'
dtrace: description 'udp:::send ' matched 6 probes
^C

 198.51.100.5
 value ------------- Distribution ------------- count
 16 | 0
 32 |@@ 14
 64 | 0

udp Stability
The udp provider uses stability mechanism of DTrace to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see DTrace Stability
Mechanisms.

Table 11-78 Stability Mechanism for the udp Provider

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Chapter 11
Network and Network Service Protocol Providers

11-205

Table 11-78 (Cont.) Stability Mechanism for the udp Provider

Element Name Stability Data Stability Dependency Class

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

Chapter 11
Network and Network Service Protocol Providers

11-206

12
User Process Tracing

DTrace is a powerful tool for understanding the behavior of user processes. DTrace can be
invaluable when debugging, analyzing performance problems, or simply understanding the
behavior of a complex application. This chapter focuses on the DTrace facilities relevant for
tracing user process activity and provides examples to illustrate their use.

This chapter contains the following topics:

• copyin and copyinstr Subroutines

• Eliminating dtrace Interference

• syscall Provider

• ustack Action

• uregs[] Array

• pid Provider

copyin and copyinstr Subroutines
DTrace's interaction with processes is a little different than most traditional debuggers or
observability tools. Many such tools appear to execute within the scope of the process, letting
users dereference pointers to program variables directly. Rather than appearing to execute
within or as part of the process itself, DTrace probes execute in the Oracle Solaris kernel. To
access process data, a probe needs to use the copyin or copyinstr subroutines to copy
user process data into the address space of the kernel.

Subroutine Examples
For example, consider the following write system call:

ssize_t write(int fd, const void *buf, size_t nbytes);

The following D program illustrates an incorrect attempt to print the contents of a string
passed to the write system call:

syscall::write:entry
{
 printf("%s", stringof(arg1)); /* incorrect use of arg1 */
}

If you try to run this script, DTrace will produce error messages similar to the following
example:

dtrace: error on enabled probe ID 1 (ID 37: syscall::write:entry): \
 invalid address (0x10038a000) in action #1

The arg1 variable, containing the value of the buf parameter, is an address that refers to
memory in the process executing the system call. To read the string at that address, use the
copyinstr subroutine and record its result with the printf action:

12-1

syscall::write:entry
{
 printf("%s", copyinstr(arg1)); /* correct use of arg1 */
}

The output of this script shows all of the strings being passed to the write system
call. Occasionally, however, you might see irregular output similar to the following
example:

 0 37 write:entry mada&^%**&

The copyinstr subroutine acts on an input argument that is the user address of a
null-terminated ASCII string. However, buffers passed to the write system call might
refer to binary data rather than ASCII strings or to ASCII strings which do not include a
terminating null byte. To print only as much of the string as the caller intended, use the
two parameter version of the copyinstr subroutine which includes the size of the
targeted string buffer:

syscall::write:entry
{
 printf("%s", copyinstr(arg1, arg2));
}

An alternate way to accomplish the same end would be to use the copyin subroutine
which takes an address and size:

syscall::write:entry
{
 printf("%s", stringof(copyin(arg1, arg2)));
}

Notice that the stringof operator is necessary so that DTrace properly converts the
user data retrieved using copyin to a string. The use of stringof is not necessary
when using copyinstr because this function always returns type string.

Avoiding Errors
The copyin and copyinstr subroutines cannot read from user addresses that have
not yet been accessed. So, even a valid address may cause an error if the page
containing that address has not yet been faulted in by being accessed. Consider the
following example:

dtrace -n syscall::openat:entry'{ trace(copyinstr(arg1)); }'
dtrace: description 'syscall::openat:entry' matched 1 probe
CPU ID FUNCTION:NAME
dtrace: error on enabled probe ID 2 (ID 50: syscall::openat:entry): invalid
address
(0x9af1b) in action #1 at DIF offset 52

In the preceding output, the application was functioning properly, and the address in
arg0 was valid, but it referred to a page that had not yet been accessed by the
corresponding process. To resolve this issue, wait for kernel or application to use the
data before tracing it. For example, you might wait until the system call returns to apply
copyinstr, as shown in the following example:

dtrace -n syscall::openat:entry'{ self->file = arg1; }' \
-n syscall::openat:return'{ trace(copyinstr(self->file)); self->file = 0; }'
dtrace: description 'syscall::openat:entry' matched 1 probe

Chapter 12
copyin and copyinstr Subroutines

12-2

CPU ID FUNCTION:NAME
 2 51 open:return /dev/null

Eliminating dtrace Interference
If you trace every call to the write system call, you will cause a cascade of output. Each call
to write causes the dtrace command to call write as it displays the output, and so on.
This feedback loop is a good example of how the dtrace command can interfere with the
desired data. You can use a simple predicate to prevent these unwanted data from being
traced:

syscall::write:entry
/pid != $pid/
{
 printf("%s", stringof(copyin(arg1, arg2)));
}

The $pid macro variable expands to the process identifier of the process that enabled the
probes. The pid variable contains the process identifier of the process whose thread was
running on the CPU where the probe was fired. Therefore the predicate /pid != $pid/
ensures that the script does not trace any events related to the running of this script itself.

syscall Provider
The syscall provider enables you to trace every system call entry and return. System calls
can be a good starting point for understanding a process's behavior, especially if the process
seems to be spending a large amount of time executing or blocked in the kernel. You can use
the prstat command to see where processes are spending time:

$ prstat -m -p 31337
 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP
 31337 user1 53 44 0.0 0.0 0.0 0.0 2.5 0.0 4K 24 9K 0 mystery/6

This example shows that the process is consuming a large amount of system time. One
possible explanation for this behavior is that the process is executing a large number of
system calls. You can use a simple D program specified on the command-line to see which
system calls are happening most often:

dtrace -n syscall:::entry'/pid == 31337/{ @syscalls[probefunc] = count(); }'
dtrace: description 'syscall:::entry' matched 215 probes
^C

 open 1
 lwp_park 2
 times 4
 fcntl 5
 close 6
 sigaction 6
 read 10
 ioctl 14
 sigprocmask 106
 write 1092

This report shows which system calls are being called most often, in this case, the write
system call. You can use the syscall provider to further examine the source of all the
write system calls:

Chapter 12
Eliminating dtrace Interference

12-3

dtrace -n syscall::write:entry'/pid == 31337/{ @writes = quantize(arg2); }'
dtrace: description 'syscall::write:entry' matched 1 probe
^C

 value ------------- Distribution ------------- count
 0 | 0
 1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1037
 2 |@ 3
 4 | 0
 8 | 0
 16 | 0
 32 |@ 3
 64 | 0
 128 | 0
 256 | 0
 512 | 0
 1024 |@ 5
 2048 | 0

The output shows that the process is executing many write system calls with a
relatively small amount of data. This ratio could be the source of the performance
problem for this particular process. This example illustrates a general methodology for
investigating system call behavior.

ustack Action
Tracing a process thread's stack at the time a particular probe is activated, is often
useful for examining a problem in more detail. The ustack action traces the user
thread's stack. For example, if a process that opens many files occasionally fails in the
open system call, you can use the ustack action to discover the code path that
executes the failed open:

syscall::openat:entry
/pid == $1/
{
 self->path = copyinstr(arg1);
}

syscall::openat:return
/self->path != NULL && arg1 == -1/
{
 printf("open for '%s' failed", self->path);
 ustack();
}

This script also illustrates the use of the $1 macro variable which takes the value of the
first operand specified on the dtrace command line:

dtrace -s ./badopen.d 31337
dtrace: script './badopen.d' matched 2 probes
CPU ID FUNCTION:NAME
 0 40 open:return open for '/usr/lib/foo' failed
 libc.so.1`__open+0x4
 libc.so.1`open+0x6c
 420b0
 tcsh`dosource+0xe0
 tcsh`execute+0x978
 tcsh`execute+0xba0
 tcsh`process+0x50c

Chapter 12
ustack Action

12-4

 tcsh`main+0x1d54
 tcsh`_start+0xdc

The ustack action records program counter (PC) values for the stack and dtrace resolves
those PC values to symbol names by looking though the process's symbol tables. If dtrace
is unable to resolve the PC value to a symbol, it prints out the value as a hexadecimal
integer.

If a process exits or is killed before the ustack data is formatted for output, dtrace might be
unable to convert the PC values in the stack trace to symbol names, and will be forced to
display them as hexadecimal integers. To work around this limitation, specify a process of
interest with the -c or -p option to the dtrace command. For information about the dtrace
command options, see dtrace Utility. If the process ID or command is not known in advance,
the following example D program can be used to work around the limitation:

/*
 * This example uses the open(2) system call probe, but this technique
 * is applicable to any script using the ustack() action where the stack
 * being traced is in a process that may exit soon.
 */
syscall::openat:entry
{
 ustack();
 stop_pids[pid] = 1;
}

syscall::rexit:entry
/stop_pids[pid] != 0/
{
 printf("stopping pid %d", pid);
 stop();
 stop_pids[pid] = 0;
}

The preceding script stops a process just before it exits if the ustack action has been
applied to a thread in that process. This technique ensures that the dtrace command will be
able to resolve the PC values to symbolic names. Notice that the value of stop_pidspid is set
to 0 after it has been used to clear the dynamic variable. Remember to set stopped
processes running again using the prun command or your system will accumulate many
stopped processes. For more information, see prun(1).

uregs[] Array
The uregs[] array enables you to access individual user registers. The following tables list
indices into the uregs[] array corresponding to each supported Oracle Solaris system
architecture.

Table 12-1 SPARC uregs[] Constants

Constant Register

R_G0..R_G7 %g0..%g7 global registers

R_O0..R_O7 %o0..%o7 out registers

R_L0..R_L7 %l0..%l7 local registers

R_I0..R_I7 %i0..%i7 in registers

Chapter 12
uregs[] Array

12-5

https://docs.oracle.com/cd/E88353_01/html/E37839/prun-1.html

Table 12-1 (Cont.) SPARC uregs[] Constants

Constant Register

R_CCR %ccr condition code register

R_PC %pc program counter

R_NPC %npc next program counter

R_Y %y multiply/divide register

R_ASI %asi address space identifier register

R_FPRS %fprs floating-point registers state

Table 12-2 x86 uregs[] Constants

Constant Register

R_CS %cs
R_GS %gs
R_ES %es
R_DS %ds
R_EDI %edi
R_ESI %esi
R_EBP %ebp
R_EAX %eax
R_ESP %esp
R_EAX %eax
R_EBX %ebx
R_ECX %ecx
R_EDX %edx
R_TRAPNO %trapno
R_ERR %err
R_EIP %eip
R_CS %cs
R_ERR %err
R_EFL %efl
R_UESP %uesp
R_SS %ss

On AMD64 platforms, the uregs array has the same content as it does on x86
platforms, plus the additional elements listed in the following table:

Chapter 12
uregs[] Array

12-6

Table 12-3 AMD64 uregs[] Constants

Constant Register

R_RSP %rsp
R_RFL %rfl
R_RIP %rip
R_RAX %rax
R_RCX %rcx
R_RDX %rdx
R_RBX %rbx
R_RBP %rbp
R_RSI %rsi
R_RDI %rdi
R_R8 %r8
R_R9 %r9
R_R10 %r10
R_R11 %r11
R_R12 %r12
R_R13 %r13
R_R14 %r14
R_R15 %r15

The aliases listed in the following table can be used on all platforms:

Constant Register

R_PC program counter register

R_SP stack pointer register

R_R0 first return code

R_R1 second return code

pid Provider
The pid provider enables you to trace any instruction in a process. Unlike most other
providers, pid probes are created on-demand, based on the probe descriptions found in your
D programs. As a result, no pid probes are listed in the output of dtrace -l until you have
enabled the probes.

User Function Boundary Tracing
The simplest mode of operation for the pid provider is as the user space, analogous to the
fbt provider. The following example program traces all function entries and returns that are

Chapter 12
pid Provider

12-7

made from a single function. The $1 macro variable, that is the first operand on the
command line, is the process ID for the process to trace. The $2 macro variable, that is
the second operand on the command line, is the name of the function from which all
function calls are traced.

Example 12-1 Tracing User Function Entry and Return With userfunc.d
#!/usr/sbin/dtrace -s

#pragma D option flowindent

pid$1::$2:entry
{
 self->trace = 1;
}

pid$1::$2:return
/self->trace/
{
 self->trace = 0;
}

pid$1:::entry,
pid$1:::return
/self->trace/
{
}

Type in the preceding example script and save it in a file named userfunc.d, and then
use the chmod command to set the execute permission. This script produces output
similar to the following example:

./userfunc.d 15032 execute
dtrace: script './userfunc.d' matched 11594 probes
 0 -> execute
 0 -> execute
 0 -> Dfix
 0 <- Dfix
 0 -> s_strsave
 0 -> malloc
 0 <- malloc
 0 <- s_strsave
 0 -> set
 0 -> malloc
 0 <- malloc
 0 <- set
 0 -> set1
 0 -> tglob
 0 <- tglob
 0 <- set1
 0 -> setq
 0 -> s_strcmp
 0 <- s_strcmp
...

The pid provider can only be used on processes that are already running. You can use
the $target macro variable and the dtrace -c and -p options to create and grab
processes of interest and instrument them using DTrace. For more information about
macro variables, see Scripting in DTrace. For example, the following D script can be

Chapter 12
pid Provider

12-8

used to determine the distribution of function calls made to libc by a particular subject
process:

pid$target:libc.so::entry
{
 @[probefunc] = count();
}

To determine the distribution of such calls made by the date command, save the script in a
file named libc.d and execute the following command:

dtrace -s libc.d -c date
dtrace: script 'libc.d' matched 2476 probes
Fri Jul 30 14:08:54 PDT 2004
dtrace: pid 109196 has exited

 pthread_rwlock_unlock 1
 _fflush_u 1
 rwlock_lock 1
 rw_write_held 1
 strftime 1
 _close 1
 _read 1
 __open 1
 _open 1
 strstr 1
 load_zoneinfo 1

...
 _ti_bind_guard 47
 _ti_bind_clear 94

Tracing Arbitrary Instructions
You can use the pid provider to trace any instruction in any user function. Upon demand, the
pid provider will create a probe for every instruction in a function. The name of each probe is
the offset of its corresponding instruction in the function expressed as a hexadecimal integer.
For example, to enable a probe associated with the instruction at offset 0x1c in function foo
of module bar.so in the process with PID 123, you can use the following command:

dtrace -n pid123:bar.so:foo:1c

To enable all of the probes in the function foo, including the probe for each instruction, you
can use the following command:

dtrace -n pid123:bar.so:foo:

This command demonstrates an extremely powerful technique for debugging and analyzing
user applications. Infrequent errors can be difficult to debug because they can be difficult to
reproduce. Often, you can identify a problem after the failure has occurred, too late to
reconstruct the code path. The following example demonstrates how to combine the pid
provider with speculative tracing to solve this problem by tracing every instruction in a
function. For more information about speculative tracing, see Speculative Tracing in DTrace.

Example 12-2 Tracing User Function Call Error Path With errorpath.d
pid$1::$2:entry
{
 self->spec = speculation();

Chapter 12
pid Provider

12-9

 speculate(self->spec);
 printf("%x %x %x %x %x", arg0, arg1, arg2, arg3, arg4);
}

pid$1::$2:
/self->spec/
{
 speculate(self->spec);
}

pid$1::$2:return
/self->spec && arg1 == 0/
{
 discard(self->spec);
 self->spec = 0;
}

pid$1::$2:return
/self->spec && arg1 != 0/
{
 commit(self->spec);
 self->spec = 0;
}

Executing errorpath.d results in output similar to the following example:

./errorpath.d 100461 _chdir
dtrace: script './errorpath.d' matched 19 probes
CPU ID FUNCTION:NAME
 0 25253 _chdir:entry 81e08 6d140 ffbfcb20 656c73 0
 0 25253 _chdir:entry
 0 25269 _chdir:0
 0 25270 _chdir:4
 0 25271 _chdir:8
 0 25272 _chdir:c
 0 25273 _chdir:10
 0 25274 _chdir:14
 0 25275 _chdir:18
 0 25276 _chdir:1c
 0 25277 _chdir:20
 0 25278 _chdir:24
 0 25279 _chdir:28
 0 25280 _chdir:2c
 0 25268 _chdir:return

Chapter 12
pid Provider

12-10

13
Statically Defined Tracing for User
Applications

DTrace provides a facility for user application developers to define customized probes in
application code to augment the capabilities of the pid provider. These static probes impose
little to no overhead when disabled and are dynamically enabled like all other DTrace probes.
You can use static probes to describe application semantics to users of DTrace without
exposing or requiring implementation knowledge of your applications. This chapter describes
how to define static probes in user applications and how to use DTrace to enable such
probes in user processes.

This chapter contains the following topics:

• Choosing the Probe Points

• Adding Probes to an Application

Choosing the Probe Points
DTrace enables developers to embed static probe points in application code, both complete
applications and also shared libraries. These probes can be enabled wherever the application
or library is running, either in development or in production. You should define probes that
have a semantic meaning that is readily understood by your DTrace user community. For
example, you could define query-receive and query-respond probes for a web server that
correspond to a client submitting a request and the web server responding to that request.
These example probes are easily understood by most DTrace users and correspond to the
highest level abstractions for the application, rather than lower level implementation details.
DTrace users might use these probes to understand the time distribution of requests. If your
query-receive probe presented the URL request strings as an argument, a DTrace user
could determine which requests were generating the most disk I/O by combining this probe
with the io provider.

You should also consider the stability of the abstractions you describe when choosing probe
names and locations. Will this probe persist in future releases of the application, even if the
implementation changes? Does the probe make sense on all system architectures or is it
specific to a particular instruction set? This chapter will discuss the details of how these
decisions guide your static tracing definitions.

Adding Probes to an Application
DTrace probes for libraries and executables are defined in an ELF section in the
corresponding application binary. This section describes how to define your probes, add them
to your application source code, and augment your application's build process to include the
DTrace probe definitions.

13-1

Defining Providers and Probes
You define DTrace probes in a .d source file which is then used when compiling and
linking your application. First, select an appropriate name for your user application
provider. The provider name you choose will be appended with the process identifier
for each process that is executing your application code. For example, if you chose the
provider name myserv for a web server that was executing as process ID 1203, the
DTrace provider name corresponding to this process would be myserv1203. In your .d
source file, add a provider definition similar to the following example:

provider myserv {
 ...
};

Next, add a definition for each probe and the corresponding arguments. The following
example defines the two probes: probe_query_receive and probe query__respond.
The first probe has two arguments, both of type string, and the second probe has no
arguments. For more information about the probes in this example, see Choosing the
Probe Points. The D compiler converts two consecutive underscores (__) in any probe
name to a hyphen (-).

provider myserv {
 probe query__receive(string, string);
 probe query__respond();
};

You should add stability attributes to your provider definition so that consumers of your
probes understand the likelihood of change in future versions of your application. For
more information about the DTrace stability attributes, see DTrace Stability
Mechanisms. Stability attributes are defined as shown in the following example:

Example 13-1 Using Statically Defined Application Probes With myserv.d
#pragma D attributes Evolving/Evolving/Common provider myserv provider
#pragma D attributes Private/Private/Unknown provider myserv module
#pragma D attributes Private/Private/Unknown provider myserv function
#pragma D attributes Evolving/Evolving/Common provider myserv name
#pragma D attributes Evolving/Evolving/Common provider myserv args

provider myserv {
 probe query__receive(string, string);
 probe query__respond();
};

Adding Probes to Application Code
After you define your probes in a .d file, you then augment your source code to
indicate the locations that should trigger your probes. For example:

void
main_look(void)
{
 ...
 query = wait_for_new_query();
 process_query(query)
 ...
}

Chapter 13
Adding Probes to an Application

13-2

To add a probe site, add a reference to the DTRACE_PROBE() macro defined in <sys/sdt.h> as
shown in the following example:

...
void
main_look(void)
{
 ...
 query = wait_for_new_query();
 DTRACE_PROBE2(myserv, query__receive, query->clientname, query->msg);
 process_query(query)
 ...
}

The suffix 2 in the macro name DTRACE_PROBE2 refers to the number of arguments that are
passed to the probe. The first two arguments to the probe macro are the provider name and
probe name and must correspond to your D provider and probe definitions. The remaining
macro arguments are the arguments assigned to the DTrace arg0..9 variables (or the
args[] array) when the probes fire. The application source code can contain multiple
references to the same provider and probe name. If multiple references to the same probe
are present in the source code, any of the macro references will cause the probe to fire.

Building Applications With Probes
You must augment the build process for your application to include the DTrace provider and
probe definitions. A typical build process takes each source file and compiles it to create a
corresponding object file. The compiled object files are then linked together to create the
finished application binary, as shown in the following example:

cc -c src1.c
cc -c src2.c
...
cc -o myserv src1.o src2.o ...

To include DTrace probe definitions in your application, add appropriate Makefile rules to your
build process to execute the dtrace command as shown in the following example:

cc -c src1.c
cc -c src2.c
...
dtrace -G -32 -s myserv.d src1.o src2.o ...
cc -o myserv myserv.o src1.o src2.o ...

The preceding dtrace command post-processes the object files generated by the preceding
compiler commands and generates the object file myserv.o from myserv.d and the other
object files. The dtrace -G option is used to link provider and probe definitions with a user
application. The -32 option is used to build 32-bit application binaries. The -64 option is used
to build 64-bit application binaries.

If a user-land object contains a very large number of statically-defined probes, then there may
be a measurable delay when the object is first executed or loaded. In this case, you can use
the lazyload option when building the object. For example:

dtrace -x lazyload -G ...

Objects built in this way do not advertise their probes to the kernel until required to do so.

dtrace -l | fgrep myserv

Chapter 13
Adding Probes to an Application

13-3

The preceding command might not show any results until after running. For example:

dtrace -n myserv1203:::query-receive ...

You can also type the following command:

dtrace -l -n myserv1203:::

Chapter 13
Adding Probes to an Application

13-4

14
Security in DTrace

This chapter describes the privileges that system administrators can use to grant access to
DTrace to particular users or processes. DTrace enables visibility into all aspects of the
system including user-level functions, system calls, kernel functions, and more. It allows for
powerful actions, some of which can modify a program's state. Just as it would be
inappropriate to allow a user access to another user's private files, a system administrator
must not grant every user full access to all the facilities that DTrace offers. By default, only
the root account can use DTrace. The RBAC facility controls the use of DTrace by other
accounts.

This chapter contains the following topics:

• Privileges in Oracle Solaris

• Privileged Use of DTrace

• dtrace_proc Privilege

• dtrace_user Privilege

• dtrace_kernel Privilege

• Users Granted All Privileges

Privileges in Oracle Solaris
The Oracle Solaris Least Privilege facility enables administrators to grant specific privileges
to specific Oracle Solaris users. To give a user a privilege on login, use the usermod -K
command. For example:

$ usermod -K defaultpriv='basic,proc_clock_highres' jdoe

For more information about assigning privileges directly to a user, see Expanding Users’
Rights in Securing Users and Processes in Oracle Solaris 11.4 guide. For a list of all the
privileges that can be assigned to a user, see the privileges(7) man page.

To give a running process an additional privilege, use the ppriv(1) command:

ppriv -s A+privilege process-ID

The three privileges that control a user's access to DTrace features are dtrace_proc,
dtrace_user, and dtrace_kernel. Each privilege permits the use of a certain set of DTrace
providers, actions, and variables, and each corresponds to a particular type of use of DTrace.
The privilege modes are described in detail in the following sections. System administrators
should carefully weigh each user's needs against the visibility and performance impact of the
different privilege modes. Users need at least one of the three DTrace privileges in order to
use any of the DTrace functionality.

14-1

https://docs.oracle.com/cd/E37838_01/html/E61023/rbac-expuser-1.html#indexterm-id-310
https://docs.oracle.com/cd/E37838_01/html/E61023/rbac-expuser-1.html#indexterm-id-310
https://docs.oracle.com/cd/E88353_01/html/E37853/privileges-7.html
https://docs.oracle.com/cd/E88353_01/html/E37839/ppriv-1.html

Privileged Use of DTrace
Users with any of the three DTrace privileges can enable probes provided by the
dtrace provider. From the dtrace provider, you can use the following actions and
variables:

• Provider – dtrace
• Actions – discard, exit, printa, printf, speculate, trace, and

tracemem
• Variables – args, epid, id, probefunc, probemod, probename, probeprov, self,

this, timestamp, and vtimestamp
• Address Spaces – None

For more information, see dtrace Provider.

dtrace_proc Privilege
The dtrace_proc privilege enables the use of pid and fasttrap providers for process-
level tracing. You can use the following actions and variables:

• Provider – pid.

• Actions – copyin, copyinstr, copyout, raise, stop. and ustack
• Variables – execname, pid, and uregs
• Address Spaces – User

This privilege does not grant any visibility to Oracle Solaris kernel data structures or to
processes for which the user does not have permission.

Users with this privilege may create and enable probes in processes that they own. If
the user also has the proc_owner privilege, probes may be created and enabled in any
process. The dtrace_proc privilege is intended for users interested in the debugging
or performance analysis of user processes. This privilege is ideal for a developer
working on a new application or an engineer trying to improve an application's
performance in a production environment.

Note:

Users with the dtrace_proc and proc_owner privileges may enable any pid
probe from any process, but can only create probes in processes whose
privilege set is a subset of their own privilege set. Refer to the Least Privilege
documentation for complete details.

The dtrace_proc privilege allows access to DTrace that can impose a performance
penalty only on those processes to which the user has permission. The instrumented
processes will impose more of a load on the system resources, and as such it may
have some small impact on the overall system performance. Aside from this increase
in overall load, this privilege does not allow any instrumentation that impacts
performance for any processes other than those being traced. As this privilege grants
users no additional visibility into other processes or the kernel itself, it is recommended

Chapter 14
Privileged Use of DTrace

14-2

that this privilege be granted to all users that may need to better understand the inner-
workings of their own processes.

dtrace_user Privilege
The dtrace_user privilege enables use of the profile and syscall providers with some
caveats. You can use the following action and variables:

• Providers – profile, syscall, and fasttrap.

• Actions – copyin, copyout, and stop.

• Variables – execname, copyinstr, pid, raise, uregs, and ustack..

• Address Spaces – User

The dtrace_user privilege provides visibility only to those processes to which the user
already has permission; it does not allow any visibility into kernel state or activity. With this
privilege, users may enable the syscall provider, but the enabled probes will activate only in
processes to which the user has permission. Similarly, you can enable the profile provider,
but the enabled probes will activate only in processes to which the user has permission. The
profile provider cannot be activated in the Oracle Solaris kernel.

This privilege enables the use of instrumentation that, while only allowing visibility into
particular processes, can affect overall system performance. The syscall provider has some
small performance impact on every system call for every process. The profile provider
affects overall system performance by executing every time interval, similar to a real-time
timer. Neither of these performance degradations severely limit the system's progress, but
system administrators should consider the implications of granting a user this privilege. For
information about the performance impact of the syscall and profile providers, see syscall
Provider and profile Provider.

dtrace_kernel Privilege
The dtrace_kernel privilege permits the use of every provider except for the use of the pid
and fasttrap providers on processes that are not owned by the user. This privilege also
permits the use of all actions and variables except for kernel destructive actions, such as
breakpoint, panic, and chill. This privilege permits complete visibility into kernel and user
state. The facilities enabled by the dtrace_user privilege are a strict subset of those enabled
by dtrace_kernel.

For the dtrace_kernel privilege, you can use the following actions and variables:

• Providers – all, except the previously specified restrictions

• Actions – all, except the previously specified destructive actions

• Variables – All

• Address Spaces – User

Chapter 14
dtrace_user Privilege

14-3

Note:

Not all functionalities of DTrace are available when you are running DTrace
in a non-global zone. For more information, see Running DTrace in a Non-
Global Zone in Creating and Using Oracle Solaris Zones.

Users Granted All Privileges
The role root and any user with all privileges may use every provider and every
action, including the kernel destructive actions unavailable to any other user.

• Providers – all

• Actions – all, including destructive actions

• Variables – all

• Address Spaces – User

Chapter 14
Users Granted All Privileges

14-4

https://docs.oracle.com/cd/E37838_01/html/E61039/z-monitorngz.html#indexterm-id-348
https://docs.oracle.com/cd/E37838_01/html/E61039/z-monitorngz.html#indexterm-id-348

15
Anonymous Tracing in DTrace

This chapter describes anonymous tracing, tracing that is not associated with any DTrace
consumer. Anonymous tracing is used in situations when no DTrace consumer processes
can run. The most common use of anonymous tracing is to permit device driver developers to
debug and trace activity that occurs during system boot. Any tracing that you can perform
interactively can also be done anonymously. However, only the super user may create an
anonymous enabling, and only one anonymous enabling can exist at any time.

This chapter contains the following topics:

• Anonymous Enablings

• Claiming Anonymous State

• Anonymous Tracing Examples

Anonymous Enablings
To create an anonymous enabling, use the -A option with a dtrace invocation that specifies
the desired probes, predicates, actions, and options. dtrace adds a series of driver
properties representing your request to the dtrace driver's configuration file, typically /
kernel/drv/dtrace.conf. These properties will be read by the dtrace driver when it is
loaded. The driver will enable the specified probes with the specified actions, and create an
anonymous state to associate with the new enabling. Normally, the dtrace driver is loaded
on-demand, similar to any drivers that act as DTrace providers. To allow tracing during boot,
the dtrace driver must be loaded as early as possible. dtrace adds the necessary
forceload statements to /etc/system for each required DTrace provider and for dtrace
itself.

Thereafter, when the system boots, a message is emitted by dtrace to indicate that the
configuration file has been successfully processed.

All options may be set with an anonymous enabling, including buffer size, dynamic variable
size, speculation size, number of speculations, and so on.

To remove an anonymous enabling, use the dtrace -A command without any probe
descriptions.

Claiming Anonymous State
Once the system has completely booted, any anonymous state may be claimed by specifying
the -a option with dtrace. By default, -a claims the anonymous state, processes the existing
data, and continues to run. To consume the anonymous state and then exit, add the -e
option.

Once anonymous state has been consumed from the kernel, it cannot be replaced as the in-
kernel buffers that contained the anonymous state are reused. If you attempt to claim
anonymous tracing state where none exists, dtrace generates a message similar to the
following example:

15-1

dtrace: could not enable tracing: No anonymous tracing state

If drops or errors have occurred, dtrace will generate the appropriate messages
when the anonymous state is claimed. The messages for drops and errors are the
same for both anonymous and non-anonymous state.

Anonymous Tracing Examples
Example 15-1 Enabling Anonymous Tracing for the iprb Module

The following example shows an anonymous DTrace enabling for every probe in the
iprb module:

dtrace -A -m iprb
dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf
dtrace: added forceload directives to /etc/system
dtrace: run update_drv(8) or reboot to enable changes
reboot

After rebooting, dtrace prints a message on the console to indicate that it is enabling
the specified probes:

 ...
 Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.
 Use is subject to license terms.
 NOTICE: enabling probe 0 (:iprb::)
 NOTICE: enabling probe 1 (dtrace:::ERROR)
 configuring IPv4 interfaces: iprb0.
 ...

When the system has rebooted, the anonymous state may be consumed by specifying
the -a option with dtrace:

dtrace -a
 CPU ID FUNCTION:NAME
 0 22954 _init:entry
 0 22955 _init:return
 0 22800 iprbprobe:entry
 0 22934 iprb_get_dev_type:entry
 0 22935 iprb_get_dev_type:return
 0 22801 iprbprobe:return
 0 22802 iprbattach:entry
 0 22874 iprb_getprop:entry
 0 22875 iprb_getprop:return
 0 22934 iprb_get_dev_type:entry
 0 22935 iprb_get_dev_type:return
 0 22870 iprb_self_test:entry
 0 22871 iprb_self_test:return
 0 22958 iprb_hard_reset:entry
 0 22959 iprb_hard_reset:return
 0 22862 iprb_get_eeprom_size:entry
 0 22826 iprb_shiftout:entry
 0 22828 iprb_raiseclock:entry
 0 22829 iprb_raiseclock:return
 ...

Chapter 15
Anonymous Tracing Examples

15-2

Example 15-2 Enabling Anonymous Tracing for Functions Called From iprbattach
The following example focuses only on those functions called from iprbattach. In an editor,
type the following script and save it in a file named iprb.d.

fbt::iprbattach:entry
{
 self->trace = 1;
}

fbt:::
/self->trace/
{}

fbt::iprbattach:return
{
 self->trace = 0;
}

Run the following commands to clear the previous settings from the driver configuration file,
install the new anonymous tracing request, and reboot:

dtrace -AFs iprb.d
dtrace: cleaned up old anonymous enabling in /kernel/drv/dtrace.conf
dtrace: cleaned up forceload directives in /etc/system
dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf
dtrace: added forceload directives to /etc/system
dtrace: run update_drv(8) or reboot to enable changes
reboot

After rebooting, dtrace prints a different message on the console to indicate the slightly
different enabling:

...
 Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.
 Use is subject to license terms.
 NOTICE: enabling probe 0 (fbt::iprbattach:entry)
 NOTICE: enabling probe 1 (fbt:::)
 NOTICE: enabling probe 2 (fbt::iprbattach:return)
 NOTICE: enabling probe 3 (dtrace:::ERROR)
 configuring IPv4 interfaces: iprb0.
 ...

After the system has completely booted, run the dtrace -a command with the -e option to
consume the anonymous data and then exit.

dtrace -ae
 CPU FUNCTION
 0 -> iprbattach
 0 -> gld_mac_alloc
 0 -> kmem_zalloc
 0 -> kmem_cache_alloc
 0 -> kmem_cache_alloc_debug
 0 -> verify_and_copy_pattern
 0 <- verify_and_copy_pattern
 0 -> tsc_gethrtime
 0 <- tsc_gethrtime
 0 -> getpcstack
 0 <- getpcstack
 0 -> kmem_log_enter
 0 <- kmem_log_enter

Chapter 15
Anonymous Tracing Examples

15-3

 0 <- kmem_cache_alloc_debug
 0 <- kmem_cache_alloc
 0 <- kmem_zalloc
 0 <- gld_mac_alloc
 0 -> kmem_zalloc
 0 -> kmem_alloc
 0 -> vmem_alloc
 0 -> highbit
 0 <- highbit
 0 -> lowbit
 0 <- lowbit
 0 -> vmem_xalloc
 0 -> highbit
 0 <- highbit
 0 -> lowbit
 0 <- lowbit
 0 -> segkmem_alloc
 0 -> segkmem_xalloc
 0 -> vmem_alloc
 0 -> highbit
 0 <- highbit
 0 -> lowbit
 0 <- lowbit
 0 -> vmem_seg_alloc
 0 -> highbit
 0 <- highbit
 0 -> highbit
 0 <- highbit
 0 -> vmem_seg_create
 ...

Chapter 15
Anonymous Tracing Examples

15-4

16
Postmortem Tracing in DTrace

This chapter describes the DTrace facilities for postmortem extraction and processing of the
in-kernel data of DTrace consumers. In the event of a system crash, the information that has
been recorded with DTrace may provide the crucial clues to root-cause the system failure.
DTrace data may be extracted and processed from the system crash dump to aid you in
understanding fatal system failures. By coupling these postmortem capabilities of DTrace with
its ring buffering buffer policy, DTrace can be used as an operating system analog to the
black box flight data recorder present on commercial aircraft. For more information about
buffering policies, see DTrace Buffers and Buffering.

To extract DTrace data from a specific crash dump, you must begin by running the Oracle
Solaris Modular Debugger, mdb, on the crash dump of interest. The MDB module containing
the DTrace functionality will be loaded automatically. To learn more about MDB, see Oracle
Solaris Modular Debugger Guide.

This chapter contains the following topics:

• Displaying DTrace Consumers

• Displaying Trace Data

Displaying DTrace Consumers
To extract DTrace data from a DTrace consumer, you must first determine the DTrace
consumer of interest by running the ::dtrace_state MDB dcmd:

> ::dtrace_state
 ADDR MINOR PROC NAME FILE
ccaba400 2 - <anonymous> -
ccab9d80 3 d1d6d7e0 intrstat cda37078
cbfb56c0 4 d71377f0 dtrace ceb51bd0
ccabb100 5 d713b0c0 lockstat ceb51b60
d7ac97c0 6 d713b7e8 dtrace ceb51ab8

This command displays a table of DTrace state structures. Each row of the table consists of
the following information:

• The address of the state structure

• The minor number associated with the dtrace device

• The address of the process structure that corresponds to the DTrace consumer

• The name of the DTrace consumer (or <anonymous> for anonymous consumers)

• The name of the file structure that corresponds to the open dtrace device

To obtain further information about a specific DTrace consumer, specify the address of its
process structure to the ::ps dcmd:

> d71377f0::ps
S PID PPID PGID SID UID FLAGS ADDR NAME
R 100647 100642 100647 100638 0 0x00004008 d71377f0 dtrace

16-1

https://docs.oracle.com/cd/E37838_01/html/E61056/index.html
https://docs.oracle.com/cd/E37838_01/html/E61056/index.html

Displaying Trace Data
Once you determine the consumer of interest, you can retrieve the data corresponding
to any unconsumed buffers by specifying the address of the state structure to
the ::dtrace dcmd. The following example shows the output of the ::dtrace dcmd
on an anonymous enabling of syscall:::entry with the action trace(execname):

> ::dtrace_state
 ADDR MINOR PROC NAME FILE
cbfb7a40 2 - <anonymous> -

> cbfb7a40::dtrace
CPU ID FUNCTION:NAME
 0 344 resolvepath:entry init
 0 16 close:entry init
 0 202 xstat:entry init
 0 202 xstat:entry init
 0 14 open:entry init
 0 206 fxstat:entry init
 0 186 mmap:entry init
 0 186 mmap:entry init
 0 186 mmap:entry init
 0 190 munmap:entry init
 0 344 resolvepath:entry init
 0 216 memcntl:entry init
 0 16 close:entry init
 0 202 xstat:entry init
 0 14 open:entry init
 0 206 fxstat:entry init
 0 186 mmap:entry init
 0 186 mmap:entry init
 0 186 mmap:entry init
 0 190 munmap:entry init
...

The ::dtrace dcmd handles errors in the same way as dtrace. If drops, errors,
speculative drops, or the like are encountered, ::dtrace will emit a message
corresponding to the dtrace message.

The order of events as displayed by ::dtrace is always oldest to youngest within a
given CPU. The CPU buffers themselves are displayed in numerical order. If an
ordering is required for events on different CPUs, trace the timestamp variable.

You can display only the data for a specific CPU by specifying the -c option
to ::dtrace:

> cbfb7a40::dtrace -c 1
CPU ID FUNCTION:NAME
 1 14 open:entry init
 1 206 fxstat:entry init
 1 186 mmap:entry init
 1 344 resolvepath:entry init
 1 16 close:entry init
 1 202 xstat:entry init
 1 202 xstat:entry init
 1 14 open:entry init
 1 206 fxstat:entry init

Chapter 16
Displaying Trace Data

16-2

 1 186 mmap:entry init
...

Notice that ::dtrace only processes in-kernel DTrace data. Data that has been consumed
from the kernel and processed through dtrace will not be available to be processed
with ::dtrace. To assure that the most amount of data possible is available at the time of
failure, use a ring buffer buffering policy. For more information about buffer policies, see
DTrace Buffers and Buffering.

The following example creates a 16K ring buffer and records all system calls and the process
making the ring buffer:

dtrace -P syscall'{trace(curpsinfo->pr_psargs)}' -b 16k -x bufpolicy=ring
dtrace: description 'syscall:::entry' matched 214 probes

Looking at a crash dump taken when the preceding command was running, results in output
similar to the following example:

> ::dtrace_state
 ADDR MINOR PROC NAME FILE
cdccd400 3 d15e80a0 dtrace ced065f0

> cdccd400::dtrace
CPU ID FUNCTION:NAME
 0 139 getmsg:return mibiisa -r -p 25216
 0 138 getmsg:entry mibiisa -r -p 25216
 0 139 getmsg:return mibiisa -r -p 25216
 0 138 getmsg:entry mibiisa -r -p 25216
 0 139 getmsg:return mibiisa -r -p 25216
 0 138 getmsg:entry mibiisa -r -p 25216
 0 139 getmsg:return mibiisa -r -p 25216
 0 138 getmsg:entry mibiisa -r -p 25216
 0 139 getmsg:return mibiisa -r -p 25216
 0 138 getmsg:entry mibiisa -r -p 25216
 0 17 close:return mibiisa -r -p 25216
...
 0 96 ioctl:entry mibiisa -r -p 25216
 0 97 ioctl:return mibiisa -r -p 25216
 0 96 ioctl:entry mibiisa -r -p 25216
 0 97 ioctl:return mibiisa -r -p 25216
 0 96 ioctl:entry mibiisa -r -p 25216
 0 97 ioctl:return mibiisa -r -p 25216
 0 96 ioctl:entry mibiisa -r -p 25216
 0 97 ioctl:return mibiisa -r -p 25216
 0 16 close:entry mibiisa -r -p 25216
 0 17 close:return mibiisa -r -p 25216
 0 124 lwp_park:entry mibiisa -r -p 25216
 1 68 access:entry mdb -kw
 1 69 access:return mdb -kw
 1 202 xstat:entry mdb -kw
 1 203 xstat:return mdb -kw
 1 14 open:entry mdb -kw
 1 15 open:return mdb -kw
 1 206 fxstat:entry mdb -kw
 1 207 fxstat:return mdb -kw
 1 186 mmap:entry mdb -kw
...
 1 13 write:return mdb -kw
 1 10 read:entry mdb -kw
 1 11 read:return mdb -kw
 1 12 write:entry mdb -kw

Chapter 16
Displaying Trace Data

16-3

 1 13 write:return mdb -kw
 1 96 ioctl:entry mdb -kw
 1 97 ioctl:return mdb -kw
 1 364 pread64:entry mdb -kw
 1 365 pread64:return mdb -kw
 1 366 pwrite64:entry mdb -kw
 1 367 pwrite64:return mdb -kw
 1 364 pread64:entry mdb -kw
 1 365 pread64:return mdb -kw
 1 38 brk:entry mdb -kw
 1 39 brk:return mdb -kw
>

Note that CPU 1's youngest records include a series of write system calls by an mdb
-kw process. This result is likely related to the reason for the system failure because a
user can modify running kernel data or text with mdb when run with the -k and -w
options. In this case, the DTrace data provides at least an interesting avenue of
investigation, if not the root cause of the failure.

Chapter 16
Displaying Trace Data

16-4

17
Performance Considerations in DTrace

Because DTrace causes additional work in the system, enabling DTrace always affects
system performance in some way. Often, this effect is negligible, but it can become
substantial if many probes are enabled with costly enablings. This chapter describes
techniques for minimizing the performance effect of DTrace.

This chapter contains the following topics:

• Limit Enabled Probes

• plockstat Provider

• Use Cacheable Predicates

Limit Enabled Probes
Dynamic instrumentation techniques enable DTrace to provide unparalleled tracing coverage
of the kernel and of arbitrary user processes. While this coverage allows revolutionary new
insight into system behavior, it also can cause enormous probe effect. If tens of thousands or
hundreds of thousands of probes are enabled, the effect on the system can easily be
substantial. Therefore, you should only enable as many probes as you need to solve a
problem. Do not, for example, enable all FBT probes if a more concise enabling answers your
question. For example, your question might allow you to concentrate on a specific module of
interest or a specific function.

When using the pid provider, you should be especially careful. Because the pid provider can
instrument every instruction, you could enable millions of probes in an application, and
therefore slow the target process to a crawl.

DTrace can also be used in situations where large numbers of probes must be enabled for a
question to be answered. Enabling a large number of probes might slow down the system
quite a bit, but it will never induce fatal failure on the system. You should therefore not
hesitate to enable many probes if required.

Use Aggregations
DTrace's aggregations enable for a scalable way of aggregating data. Associative arrays
might appear to offer similar functionality to aggregations. However, by nature of being global,
general-purpose variables, they cannot offer the linear scalability of aggregations. You must
therefore prefer to use aggregations over associative arrays when possible. For more
information, see DTrace Aggregations.

The following example is not recommended:

syscall:::entry
{
 totals[execname]++;
}

syscall::rexit:entry
{

17-1

 printf("%40s %d\n", execname, totals[execname]);
 totals[execname] = 0;
}

The following example is preferable:

syscall:::entry
{
 @totals[execname] = count();
}

END
{
 printa("%40s %@d\n", @totals);
}

Use Cacheable Predicates
DTrace predicates are used to filter unwanted data from the experiment by tracing
data only if a specified condition is found to be true. When enabling many probes, you
generally use predicates of a form that identifies a specific thread or threads of
interest, such as /self->traceme/ or /pid == 12345/. Although many of these
predicates evaluate to a false value for most threads in most probes, the evaluation
itself can become costly when done for many thousands of probes. To reduce this
cost, DTrace caches the evaluation of a predicate if it includes only thread-local
variables, for example /self->traceme/, or immutable variables, for example /pid ==
12345/. The cost of evaluating a cached predicate is much smaller than the cost of
evaluating a non-cached predicate, especially if the predicate involves thread-local
variables, string comparisons, or other relatively costly operations. While predicate
caching is transparent to the user, it does imply some guidelines for constructing
optimal predicates, as shown in the following table.

Cacheable Uncacheable

self->mumble mumblecurthread, mumblepid, tid

execname curpsinfo->pr_fname, curthread->t_procp->p_user.u_comm
pid curpsinfo->pr_pid, curthread->t_procp->p_pipd->pid_id
tid curlwpsinfo->pr_lwpid, curthread->t_tid
curthread curthread-> any member, curlwpsinfo-> any member, curpsinfo->

any member

The following example is not recommended:

syscall::read:entry
{
 follow[pid, tid] = 1;
}

fbt:::
/follow[pid, tid]/
{}

syscall::read:return
/follow[pid, tid]/
{

Chapter 17
Use Cacheable Predicates

17-2

 follow[pid, tid] = 0;
}

The following example using thread-local variables is preferable:

syscall::read:entry
{
 self->follow = 1;
}

fbt:::
/self->follow/
{}

syscall::read:return
/self->follow/
{
 self->follow = 0;
}

A predicate must consist exclusively of cacheable expressions in order to be cacheable. The
following predicates are all cacheable:

/execname == "myprogram"/
/execname == $$1/
/pid == 12345/
/pid == $1/
/self->traceme == 1/

The following examples, which use global variables, are not cacheable:

/execname == one_to_watch/
/traceme[execname]/
/pid == pid_i_care_about/
/self->traceme == my_global/

Chapter 17
Use Cacheable Predicates

17-3

18
DTrace Stability Mechanisms

Developers are provided with early access to new technologies as well as observability tools
that allow users to peer into the internal implementation details of user and kernel software.
Unfortunately, new technologies and internal implementation details are both prone to
changes as interfaces and implementations evolve and mature when software is upgraded or
patched. Application and interface stability levels are documented using a set of labels
described in the attributes(7) man page to help set user expectations for what kinds of
changes might occur in different kinds of future releases.

No one stability attribute appropriately describes the arbitrary set of entities and services that
can be accessed from a D program. DTrace and the D compiler therefore include features to
dynamically compute and describe the stability levels of D programs you create. This chapter
discusses the DTrace features for determining program stability to help you design stable D
programs. You can use the DTrace stability features to inform you of the stability attributes of
D programs, or to produce compile-time errors when a D program has undesirable interface
dependencies.

This chapter contains the following topics:

• Stability Levels

• Stability Dependency Classes

• Stability Interface Attributes

• Stability Interfaces Defined for USDT Providers

• Stability Computations and Reports

• Stability Enforcement

Stability Levels
DTrace provides two types of stability attributes for entities such as built-in variables,
functions, and probes: a stability level and an architectural dependency class. The DTrace
stability level assists you in making risk assessments when developing scripts and tools
based on DTrace by indicating how likely an interface or DTrace entity is to change in a future
release or patch. The DTrace dependency class tells you whether an interface is common to
all Oracle Solaris platforms and processors, or whether the interface is associated with a
particular architecture such as SPARC processors only. The two types of attributes used to
describe interfaces can vary independently.

The stability values used by DTrace appear in the following list in order from lowest to highest
stability. Applications that depend only on Stable interfaces should reliably continue to
function correctly on future minor releases and will not be broken by interim patches. The less
stable interfaces allow experimentation, prototyping, tuning, and debugging on your current
system, but should be used with the understanding that they might change incompatibly or
even be dropped or replaced with alternatives in future minor releases.

The DTrace stability values also help you understand the stability of the software entities you
are observing, in addition to the stability of the DTrace interfaces themselves. Therefore, the
following DTrace stability values also tell you how likely your D programs and layered tools

18-1

https://docs.oracle.com/cd/E88353_01/html/E37853/attributes-7.html

are to require corresponding changes when you upgrade or change the software stack
you are observing:

• Internal – The interface is private to DTrace and represents an implementation
detail of DTrace. Internal interfaces might change in minor or micro releases.

• Private – The interface is private to Oracle and represents an interface developed
for use by other Oracle products that is not yet publicly documented for use by
customers and ISVs. Private interfaces might change in minor or micro releases.

• Obsolete – The interface is supported in the current release but is scheduled to be
removed, most likely in a future minor release. The D compiler might produce
warning messages if you attempt to use an Obsolete interface.

• External – The interface is controlled by an entity other than Oracle. Oracle makes
no claims regarding either source or binary compatibility for External interfaces
between any two releases. Applications based on these interfaces might not work
in future releases, including patches that contain External interfaces.

• Unstable – The interface is provided to give developers early access to new or
rapidly changing technology or to an implementation artifact that is essential for
observing or debugging system behavior for which a more stable solution is
anticipated in the future. Oracle makes no claims about either source or binary
compatibility for Unstable interfaces from one minor release to another.

• Evolving – The interface might eventually become Standard or Stable but is still in
transition. When non-upward compatible changes become necessary, they will
occur in minor and major releases. These changes will be avoided in micro
releases whenever possible. If such a change is necessary, it will be documented
in the release notes for the affected release, and when feasible, migration aids will
be provided for binary compatibility and continued D program development.

• Stable – The interface is a mature interface.

• Standard – The interface complies with an industry standard. The corresponding
documentation for the interface will describe the standard to which the interface
conforms. Standards are typically controlled by a standards development
organization, and changes can be made to the interface in accordance with
approved changes to the standard. This stability level can also apply to interfaces
that have been adopted, without a formal standard, by an industry convention.
Support is provided for only the specified versions of a standard; support for later
versions is not guaranteed.

Stability Dependency Classes
Since Oracle Solaris and DTrace support a variety of operating platforms and
processors, DTrace also labels interfaces with a dependency class that tells you
whether an interface is common to all Oracle Solaris platforms and processors, or
whether the interface is associated with a particular system architecture. The
dependency class is orthogonal to the stability levels described earlier. For example, a
DTrace interface can be Stable but only supported on SPARC microprocessors, or it
can be Unstable but common to all Oracle Solaris systems. The DTrace dependency
classes are described in the following list in order from least common, that is most
specific to a particular architecture, to most common, that is common to all
architectures:

• Unknown – The interface has an unknown set of architectural dependencies.
DTrace does not necessarily know the architectural dependencies of all entities,

Chapter 18
Stability Dependency Classes

18-2

such as data types defined in the operating system implementation. The Unknown label
is typically applied to interfaces of very low stability for which dependencies cannot be
computed. The interface might not be available when using DTrace on any architecture
other than the one you are currently using.

• CPU – The interface is specific to the CPU model of the current system. You can use the
psrinfo -v command to display the current CPU model and implementation names.
Interfaces with CPU model dependencies might not be available on other CPU
implementations, even if those CPUs export the same instruction set architecture (ISA).

• Platform – The interface is specific to the hardware platform of the current system. A
platform typically associates a set of system components and architectural characteristics
such as a set of supported CPU models with a system name. You can display the current
platform name using the uname -i command. The interface might not be available on
other hardware platforms.

• Group – The interface is specific to the hardware platform group of the current system. A
platform group typically associates a set of platforms with related characteristics together
under a single name, such as sun4v. You can display the current platform group name
using the uname -m option. The interface is available on other platforms in the platform
group, but might not be available on hardware platforms that are not members of the
group

• ISA – The interface is specific to the instruction set architecture (ISA) supported by the
microprocessors on this system. The ISA describes a specification for software that can
be executed on the microprocessor, including details such as assembly language
instructions and registers. You can display the native instruction sets supported by the
system using the isainfo utility. The interface might not be supported on systems that do
not export any of the same instruction sets. For example, an ISA-dependent interface on
an Oracle Solaris SPARC system might not be supported on an Oracle Solaris x86
system.

• Common – The interface is common to all Oracle Solaris systems regardless of the
underlying hardware. DTrace programs and layered applications that depend only on
Common interfaces can be executed and deployed on other Oracle Solaris systems with
the same Oracle Solaris and DTrace revisions. The majority of DTrace interfaces are
Common, so you can use them wherever you use Oracle Solaris.

Stability Interface Attributes
DTrace describes interfaces using a triplet of attributes consisting of two stability levels and a
dependency class. By convention, the interface attributes are written in the following order,
separated by slashes:

name-stability / data-stability / dependency-class

The name stability of an interface describes the stability level associated with its name as it
appears in your D program or on the dtrace command. For example, the execname D
variable is a Stable name.

The data stability of an interface is distinct from the stability associated with the interface
name. This stability level describes the commitment to maintain the data formats used by the
interface and any associated data semantics.

The dependency class of an interface is distinct from its name and data stability, and
describes whether the interface is specific to the current operating platform or
microprocessor.

Chapter 18
Stability Interface Attributes

18-3

DTrace and the D compiler track the stability attributes for all of the DTrace interface
entities, including providers, probe descriptions, D variables, D functions, types, and
program statements themselves. Notice that all three values can vary independently.
For example, the curthread D variable has Stable/Private/Common attributes: the
variable name is Stable and is common to all Oracle Solaris operating platforms, but
this variable provides access to a Private data format that is an artifact of the Oracle
Solaris kernel implementation. Most D variables are provided with Stable/Stable/
Common attributes, as are the variables you define.

Stability Interfaces Defined for USDT Providers
USDT providers require that stabilities be defined for the following five interface groups
that fully specify a DTrace probe:

• Provider

• Modules

• Functions

• Probes

• Arguments

This will generally be done in the D program file where the provider is declared with
pragmas using the triplets discussed in Stability Interface Attributes. For example:

#pragma D attributes Evolving/Evolving/Common provider providername provider
#pragma D attributes Private/Private/Common provider providername module
#pragma D attributes Private/Private/Common provider providername function
#pragma D attributes Evolving/Evolving/Common provider providername name
#pragma D attributes Evolving/Evolving/Common provider providername args

Stability Computations and Reports
The D compiler performs stability computations for each of the probe descriptions and
action statements in your D programs. You can use the dtrace -v option to display a
report of your program's stability. The following example uses a program written on the
command line:

dtrace -v -n dtrace:::BEGIN'{exit(0);}'
dtrace: description 'dtrace:::BEGIN' matched 1 probe
Stability data for description dtrace:::BEGIN:
 Minimum probe description attributes
 Identifier Names: Evolving
 Data Semantics: Evolving
 Dependency Class: Common
 Minimum probe statement attributes
 Identifier Names: Stable
 Data Semantics: Stable
 Dependency Class: Common
CPU ID FUNCTION:NAME
 0 1 :BEGIN

You can also combine the dtrace -v option with the -e option, which only compiles
but not execute your D program, so that you can determine program stability without
having to enable any probes and execute your program. Here is another example
stability report:

Chapter 18
Stability Interfaces Defined for USDT Providers

18-4

dtrace -ev -n dtrace:::BEGIN'{trace(curthread->t_procp);}'
Stability data for description dtrace:::BEGIN:
 Minimum probe description attributes
 Identifier Names: Evolving
 Data Semantics: Evolving
 Dependency Class: Common
 Minimum probe statement attributes
 Identifier Names: Stable
 Data Semantics: Private
 Dependency Class: Common
#

This example references the D variable curthread, which has a Stable name, but Private
data semantics, which is accessing Private implementation details of the kernel, and this
status is now reflected in the program's stability report. Stability attributes in the program
report are computed by selecting the minimum stability level and class out of the
corresponding values for each interface attributes triplet.

Stability attributes are computed for a probe description by taking the minimum stability
attributes of all specified probe description fields according to the attributes published by the
provider. The attributes of the available DTrace providers are shown in the chapter
corresponding to each provider. DTrace providers export a stability attributes triplet for each
of the four description fields for all probes published by that provider. Therefore, a provider's
name may have a greater stability than the individual probes it exports. For example, the
probe description:

fbt:::

This example probe indicates that DTrace should trace entry and return from all kernel
functions as this has greater stability than the probe description:

fbt:foo:bar:entry

This probe names a specific internal function bar in the kernel module foo. For simplicity,
most providers use a single set of attributes for all of the individual module function name
values that they publish. Providers also specify attributes for the args[] array, as the stability
of any probe arguments varies by provider.

If the provider field is not specified in a probe description, then the description is assigned the
stability attributes Unstable/Unstable/Common because the description might end up
matching probes of providers that do not yet exist when used on a future Oracle Solaris
version. As such, Oracle is not able to provide guarantees about the future stability and
behavior of this program. You must always explicitly specify the provider when writing the D
program clauses. In addition, any probe description fields that contain pattern matching
characters are treated as if they are unspecified because these description patterns might
expand to match providers or probes released in future versions of DTrace and the Oracle
Solaris OS. For more information about pattern matching characters, see D Program
Structure or macro variables such as $1, see Scripting in DTrace.

Stability attributes are computed for most D language statements by taking the minimum
stability and class of the entities in the statement. For example, the following D language
entities have the following attributes:

• D built-in variable curthread – Stable/Private/Common
• D user-defined variable x – Stable/Stable/Common
For example, write the following D program statement:

x += curthread->t_pri;

Chapter 18
Stability Computations and Reports

18-5

The resulting attributes of the statement are Stable/Private/Common, the minimum
attributes associated with the operands curthread and x. The stability of an
expression is computed by taking the minimum stability attributes of each of the
operands.

Any D variables you define in your program are automatically assigned the attributes
Stable/Stable/Common. In addition, the D language grammar and D operators are
implicitly assigned the attributes Stable/Stable/Common. References to kernel
symbols using the backquote (`) operator are always assigned the attributes Private/
Private/Unknown because they reflect implementation artifacts. Types that you define
in your D program source code, specifically those that are associated with the C and D
type namespace, are assigned the attributes Stable/Stable/Common. Types that are
defined in the operating system implementation and provided by other type
namespaces are assigned the attributes Private/Private/Unknown. The D type cast
operator yields an expression whose stability attributes are the minimum of the input
expression's attributes and the attributes of the cast output type.

If you use the C preprocessor to include C system header files, these types will be
associated with the C type namespace and will be assigned the attributes Stable/
Stable/Common as the D compiler has no choice but to assume that you are taking
responsibility for these declarations. Therefore, you might be misled about the
program's stability if you use the C preprocessor to include a header file containing
implementation artifacts. You should always consult the documentation corresponding
to the header files you are including in order to determine the correct stability levels.

Stability Enforcement
When developing a DTrace script or layered tool, you might want to identify the
specific source of stability issues or ensure that your program has a desired set of
stability attributes. You can use the dtrace -x amin=_attributes_ option to
force the D compiler to produce an error when any attributes computation results in a
triplet of attributes less than the minimum values you specify on the command-line.
The following example demonstrates the use of -x amin using a snippet of D program
source. Notice that attributes are specified using three labels delimited by / in the
usual order.

dtrace -x amin=Evolving/Evolving/Common \
 -ev -n dtrace:::BEGIN'{trace(curthread->t_procp);}'
dtrace: invalid probe specifier dtrace:::BEGIN{trace(curthread->t_procp);}: \
 in action list: attributes for scalar curthread (Stable/Private/Common) \
 are less than predefined minimum
#

Chapter 18
Stability Enforcement

18-6

19
DTrace Translators

DTrace computes and reports program stability attributes. Ideally, you might like to construct
DTrace programs by consuming only Stable or Evolving interfaces. However, when
debugging a low-level problem or measuring system performance, you might need to enable
probes that are associated with internal operating system routines such as functions in the
kernel, rather than probes associated with more stable interfaces such as system calls. The
data available at probe locations deep within the software stack is often a collection of
implementation artifacts rather than more stable data structures such as those associated
with the Oracle Solaris system call interfaces. In order to aid you in writing stable D
programs, DTrace provides a facility to translate implementation artifacts into stable data
structures accessible from your D program statements.

This chapter contains the following topics:

• Translator Declarations

• Translator Operator

• Process Model Translators

• Stable Translations

Translator Declarations
A translator is a collection of D assignment statements provided by the supplier of an
interface that can be used to translate an input expression into an object of struct type. To
understand the need for and use of translators, consider the ANSI-C standard library routines
defined in stdio.h as an example. These routines operate on a data structure named FILE
whose implementation artifacts are abstracted away from C programmers. A standard
technique for creating a data structure abstraction is to provide only a forward declaration of a
data structure in public header files, while keeping the corresponding struct definition in a
separate private header file.

If you are writing a C program and wish to know the file descriptor corresponding to a FILE
struct, you can use the fileno() function to obtain the descriptor rather than dereferencing a
member of the FILE struct directly. The Oracle Solaris header files enforce this rule by
defining FILE as an opaque forward declaration tag so it cannot be dereferenced directly by
C programs that include stdio.h. Inside the libc.so.1 library, you can suppose that fileno
is implemented in C as follows:

int fileno(FILE *fp) {
struct file_impl *ip = (struct file_impl *)fp;

 return (ip->fd);
}

The hypothetical fileno takes a FILE pointer as an argument and casts it to a pointer to a
corresponding internal libc structure, struct file_impl, and then returns the value of the
fd member of the implementation structure. By abstracting the details of the current libc
implementation away from client programs, it is possible to maintain a commitment to strong
binary compatibility while continuing to evolve and change the internal implementation details

19-1

of libc. In this example, the fd member could change size or position within struct
file_impl, even in a patch, and existing binaries calling fileno would not be affected
by this change because they do not depend on these artifacts.

However, observability software such as DTrace must peer inside the implementation
in order to provide useful results, and does not have the luxury of calling arbitrary C
functions defined in Oracle Solaris libraries or in the kernel. You could declare a copy
of struct file_impl in the D program in order to instrument the routines declared in
stdio.h, but then the D program would rely on Private implementation artifacts of the
library that might break in a future micro or minor release, or even in a patch. Ideally,
you would provide a construct for use in D programs that is bound to the
implementation of the library and is updated accordingly, but still provides an additional
layer of abstraction associated with greater stability.

A new translator is created by using a declaration of the form:

translator output-type <input-type> input-identifier {
member-name = expression ;
member-name = expression ;
 ...
};

The output-type names a struct that will be the result type for the translation. The
input-type specifies the type of the input expression, and is surrounded in angle
brackets < > and followed by an input-identifier that can be used in the translator
expressions as an alias for the input expression. The body of the translator is
surrounded in braces { } and terminated with a semicolon (;), and consists of a list of
member-name and identifiers corresponding translation expressions. Each member
declaration must name a unique member of the output-type and must be assigned an
expression of a type compatible with the member type, according to the rules for the D
assignment (=) operator.

For example, define a struct of stable information about stdio files based on some of
the available libc interfaces:

struct file_info {
 int file_fd; /* file descriptor from fileno(3C) */
 int file_eof; /* eof flag from feof(3C) */
};

A hypothetical D translator from FILE to file_info can be declared in D as follows:

translator struct file_info < FILE *F > {
 file_fd = ((struct file_impl *)F)->fd;
 file_eof = ((struct file_impl *)F)->eof;
};

In the example translator, the input expression is of the type FILE * and is assigned
the input-identifier F. The identifier F can then be used in the translator member
expressions as a variable of type FILE * that is only visible within the body of the
translator declaration. To determine the value of the output file_fd member, the
translator performs a cast and dereference similar to the hypothetical implementation
of fileno shown in the preceding example. A similar translation is performed to obtain
the value of the EOF indicator.

Chapter 19
Translator Declarations

19-2

Translator Operator
The D operator xlate is used to perform a translation from an input expression to one of the
defined translation output structures. The xlate operator is used in an expression of the form:

xlate < output-type > (input-expression)

For example, to invoke the hypothetical translator for FILE structs defined in the preceding
section and access the file_fd member, you can write the expression:

xlate <struct file_info *>(f)->file_fd;

where f is a D variable of type FILE *.

The xlate expression itself is assigned the type defined by the output type. Once a translator
is defined, it can be used to translate input expressions to either the translator output struct
type, or to a pointer to that struct.

If you translate an input expression to a struct, you can either dereference a particular
member of the output immediately using the "." operator, or you can assign the entire
translated struct to another D variable to make a copy of the values of all the members. If you
dereference a single member, the D compiler will only generate code corresponding to the
expression for that member. You may not apply the & operator to a translated struct to obtain
its address, as the data object itself does not exist until it is copied or one of its members is
referenced.

If you translate an input expression to a pointer to a struct, you can either dereference a
particular member of the output immediately using the -> operator, or you can dereference
the pointer using the unary * operator, in which case the result behaves as if you translated
the expression to a struct. If you dereference a single member, the D compiler will only
generate code corresponding to the expression for that member. You may not assign a
translated pointer to another D variable as the data object itself does not exist until it is copied
or one of its members is referenced, and therefore cannot be addressed.

A translator declaration may omit expressions for one or more members of the output type. If
an xlate expression is used to access a member for which no translation expression is
defined, the D compiler will produce an appropriate error message and abort the program
compilation. If the entire output type is copied by means of a structure assignment, any
members for which no translation expressions are defined will be filled with zeroes.

In order to find a matching translator for an xlate operation, the D compiler examines the set
of available translators in the following order:

1. The compiler looks for a translation from the exact input expression type to the exact
output type.

2. The compiler resolves the input and output types by following any typedef aliases to the
underlying type names, and then looks for a translation from the resolved input type to
the resolved output type.

3. The compiler looks for a translation from a compatible input type to the resolved output
type. The compiler uses the same rules as it does for determining compatibility of
function call arguments with function prototypes in order to determine if an input
expression type is compatible with a translator's input type.

If no matching translator can be found according to these rules, the D compiler produces an
appropriate error message and program compilation fails.

Chapter 19
Translator Operator

19-3

Process Model Translators
The DTrace library file /usr/lib/dtrace/procfs.d provides a set of translators
for use in your D programs to translate from the operating system kernel
implementation structures for processes and threads to the stable proc structures
psinfo and lwpsinfo. These structures are also used in the Oracle Solaris /proc file
system files /proc/ pid /psinfo and /proc/ pid /lwps/ lwpid /lwpsinfo, and are
defined in the system header file /usr/include/sys/procfs.h. These structures
define useful Stable information about processes and threads such as the process ID,
LWP ID, initial arguments, and other data displayed by the ps command. For
description of the struct members and semantics, see proc(5).

Table 19-1 procfs.d Translators

Input Type Input Type Attributes Output Type Output Type Attributes

proc_t * Private/Private/Common psinfo_t * Stable/Stable/Common

kthread_t * Private/Private/Common lwpsinfo_t * Stable/Stable/Common

Stable Translations
While a translator provides the ability to convert information into a stable data
structure, it does not necessarily resolve all stability issues that can arise in translating
data. For example, if the input expression for an xlate operation itself references
Unstable data, the resulting D program is also Unstable because program stability is
always computed as the minimum stability of the accumulated D program statements
and expressions. Therefore, you must define a specific stable input expression for a
translator in order to permit stable programs to be constructed. The D inline
mechanism can be used to facilitate such stable translations.

The DTrace procfs.d library provides the curlwpsinfo and curpsinfo variables
described earlier as stable translations. For example, the curlwpsinfo variable is
actually an inline declared as follows:

inline lwpsinfo_t *curlwpsinfo = xlate <lwpsinfo_t *> (curthread);
#pragma D attributes Stable/Stable/Common curlwpsinfo

The curlwpsinfo variable is defined as an inlined translation from the curthread
variable, a pointer to the kernel's Private data structure representing a thread, to the
Stable lwpsinfo_t type. The D compiler processes this library file and caches the
inline declaration, making curlwpsinfo appear as any other D variable. The #pragma
statement following the declaration is used to explicitly reset the attributes of the
curlwpsinfo identifier to Stable/Stable/Common, masking the reference to curthread
in the inlined expression.

Chapter 19
Process Model Translators

19-4

https://docs.oracle.com/cd/E88353_01/html/E37852/proc-5.html

20
Writing DTrace Consumers

A consumer is a program that interacts with the DTrace framework to enable instrumentation
and consumes tracing data for further processing. In addition to the DTrace IPS package,
which includes lockstat, plockstat, intrastat, and powertop consumers, you can
write your own custom consumer by using APIs in the libdtrace library. For more
information, see the lockstat(8), plockstat(8), intrstat(8), and powertop(8) man pages.

This chapter discusses the APIs available in the libdtrace library. It also describes the
functions to aggregate data and interfaces to create custom handlers for events such as
drops and runtime errors.

This chapter contains the following topics:

• Creating Custom DTrace Consumers

• DTrace Consumer Functions

• Processing Traced Data in DTrace

• Processing Aggregation Data in DTrace

• Processing of Aggregations in DTrace

• DTrace Handler Interfaces

• Process Control Interface in DTrace

For more information about these APIs, see DTrace Consumer Functions and libdtrace API
Reference.

Creating Custom DTrace Consumers
You can create custom DTrace consumers when you want to modify the default operation of
the DTrace framework. The following list provides a few scenarios when you want to create
custom DTrace consumer:

• Modify the format or frequency of the default dtrace output format.

• Change the sort order of the output when using an aggregation.

• Simplify the parsing of dtrace output.

For more information, see the libdtrace(3LIB) man page.

DTrace Consumer Functions
When a consumer is invoked, it performs the following activities using a few DTrace
consumer functions:

• Compile a D program

• Pass the resulting object to the DTrace framework

• Set any options to allow the program to run

20-1

https://docs.oracle.com/cd/E88353_01/html/E72487/lockstat-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/plockstat-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/intrstat-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/powertop-8.html
https://docs.oracle.com/cd/E88353_01/html/E37842/libdtrace-3lib.html

• Run the program

• Generate output

Example 20-1 Embedding DTrace in a Consumer

The example shows a consumer that runs an embedded D program to perform kernel
stack profiling.

#include <dtrace.h>
#include <stdarg.h>
#include <stdlib.h>
#include <strings.h>
static char *g_prog = ""
"profile-997"
"/arg0 && curthread->t_pri != -1/"
"{"
" @c[stack()] = count();"
"}";
static dtrace_hdl_t *g_dtp;

static void
fatal(const char *fmt, ...)
{
 va_list ap;
 va_start(ap, fmt);

 (void) vfprintf(stderr, fmt, ap);

 if (fmt[strlen(fmt) - 1] != '\n')
 (void) fprintf(stderr, ": %s\n",
 dtrace_errmsg(g_dtp, dtrace_errno(g_dtp)));
 exit(EXIT_FAILURE);
}

static int
chewrec(const dtrace_probedata_t *data, const dtrace_recdesc_t *rec,
 void *arg)
{
 return (DTRACE_CONSUME_THIS);
}

static int
chew(const dtrace_probedata_t *data, void *arg)
{
 return (DTRACE_CONSUME_THIS);
}

int
main()
{
 dtrace_prog_t *prog;
 dtrace_proginfo_t info;
 dtrace_optval_t statustime;
 int err;

 if ((g_dtp = dtrace_open(DTRACE_VERSION, 0, &err)) == NULL)
 fatal("cannot open dtrace library: %s\n",
 dtrace_errmsg(NULL, err));

 if ((prog = dtrace_program_strcompile(g_dtp, g_prog,
 DTRACE_PROBESPEC_NAME, 0, 0, NULL)) == NULL)

Chapter 20
DTrace Consumer Functions

20-2

 fatal("invalid program");

 if (dtrace_program_exec(g_dtp, prog, &info) == -1)
 fatal("failed to enable probes");

 if (dtrace_setopt(g_dtp, "aggsize", "512k") == -1)
 fatal("failed to set aggsize");

 if (dtrace_go(g_dtp) != 0)
 fatal("dtrace_go()");

 for (int i = 0; i < 10; i++) {

 dtrace_sleep(g_dtp);
 switch (dtrace_work(g_dtp, stdout, chew, chewrec, NULL)) {
 case DTRACE_WORKSTATUS_DONE:
 break;
 case DTRACE_WORKSTATUS_OKAY:
 break;
 default:
 fatal("processing aborted");
 }
 }

 if (dtrace_stop(g_dtp) == -1)
 fatal("dtrace_stop()");

 if (dtrace_aggregate_print(g_dtp, stdout, NULL) == -1)
 fatal("failed to print aggregation");

 dtrace_close(g_dtp);
 return (0);
}

dtrace_open() Function
The dtrace_open() function opens the DTrace driver and returns a handle to the consumer,
which can be used for subsequent interactions with DTrace. dtrace_hdl_t is an opaque data
structure that contains all the information related to the invocation of DTrace. The DTrace
handle is passed to the other libdtrace functions, but a consumer does not need to access
individual members of the dtrace_hdl_t structure.

dtrace_hdl_t *dtrace_open(int version, int flags, int *errp)

The arguments to the dtrace_open() function are:

• The DTrace version in use, DTRACE_VERSION. Specifying any version other than the
current version causes DTrace to fail.

• Flags. The available flags are:

DTRACE_O_NODEV
Does not open the DTrace device. This flag is used when instrumentation is not enabled.
For example, the -G option to dtrace generates an ELF file that contain an embedded
D program but does not enable the specified probes.

Chapter 20
DTrace Consumer Functions

20-3

DTRACE_O_NOSYS
Does not load the /system/object modules. By default, the libdtrace library
gathers information about each of the loaded kernel modules. This flag is also
used in a typical consumer.

DTRACE_O_LP64
Forces the D compiler to be 64-bit.

DTRACE_O_ILP32
Forces the D compiler to be 32-bit.

• A pass-by-reference error variable. The dtrace_errmsg() function uses the value
passed back by this variable to generate an error string.

In Embedding DTrace in a Consumer, the consumer first calls the dtrace_open()
function to open the DTrace driver and return the DTrace handle.

dtrace_program_strcompile() Function
After the program has a DTrace handle, the next step is to compile the D program. The
consumer uses the dtrace_program_strcompile() function to compile the string that
contains the D program. You can also use the dtrace_program_fcompile() function to
compile a file that contains a D program. Both of these functions return a pointer to a
data structure that describes the compiled program.

dtrace_prog_t *dtrace_program_strcompile(dtrace_hdl_t *dtp, const char *s,
dtrace_probespec_t spec, uint_t cflags, int argc, char *const argv[])

The arguments to the dtrace_program_strcompile() function are:

• The DTrace handle.

• A string containing the D program. The dtrace_program_fcompile() function
passes a file handle.

• A dtrace_probespec_t spec to indicate the context of the probe you are using,
which can be a provider, a module, a function, or a name. For example, if you
specify the DTRACE_PROBESPEC_PROVIDER probe, you can specify only provider
names. The typical consumer uses only the DTRACE_PROBESPEC_NAME probe.

• Flags. The full list of flags can be found in the /usr/include/dtrace.h file.
Some of the common options are:

DTRACE_C_DIFV
Shows the target language instructions that results from the compilation and
additional information to execute the target language instructions.

DTRACE_C_ZDEFS
Instructs the compiler to permit probes, whose definitions do not match the
existing probes. By default, the compiler does not allow probe definitions that do
not match existing probes.

DTRACE_C_CPP
Instructs the compiler to preprocess the input program with the C preprocessor.
For more information, see the cpp(1) man page.

• Number of arguments, which are passed to the program.

Chapter 20
DTrace Consumer Functions

20-4

https://docs.oracle.com/cd/E88353_01/html/E37839/cpp-1.html

• Arguments passed to the program.

The arguments to the dtrace_program_fcompile() function are fewer because the
dtrace_probespec_t argument is not passed. You can modify the consumer to accept a file
specified in the command line by replacing the dtrace_program_strcompile() function with
code similar to the following example:

if ((fp = fopen(argv[1], "r")) == NULL)
 fatal("failed to open %s", argv[1]);

if ((prog = dtrace_program_fcompile(g_dtp, fp, 0, 0, NULL)) == NULL)
 fatal("invalid program");

dtrace_program_exec() Function
After the D program is compiled, the consumer calls the dtrace_program_exec() function to
create the object file for the program and download the object file to the kernel. The object file
contains all the information necessary for the DTrace framework in the kernel to execute the
D program.

int dtrace_program_exec(dtrace_hdl_t *dtp, dtrace_prog_t *pgp, dtrace_proginfo_t *pip)

The arguments to the dtrace_program_exec() function are as follows:

• The DTrace handle.

• A pointer to the data structure representing the compiled program. This pointer is
returned by the dtrace_strcompile() function.

• A pass-by-reference variable, which contains information about the D program. The
definition of the dtrace_proginfo_t structure is provided in the /usr/include/
dtrace.h file.

dtrace_setopt() Function
Use the setopt() function options for a D program. The arguments to the dtrace_setopt()
function are DTrace handle and the name and value of any argument.

int dtrace_setopt(dtrace_hdl_t *dtp, const char *opt, const char *val)

Embedding DTrace in a Consumer uses aggregation in the D program and uses aggsize to
specify the size of the aggregation buffer. For non-aggregation tracing, you must use bufsize
specify the size of the primary buffer.

Note:

The dtrace_getopt() function gets the value of a DTrace option.

dtrace_go() Function
After setting the options, the consumer prepares the D program to run, and the dtrace_go()
function starts the execution of the program. This action enables the specified probes so that
the probes become active and execute the associated clauses. The dtrace_go() function has
only one argument, the DTrace handle that contains information about the program to run.

Chapter 20
DTrace Consumer Functions

20-5

int dtrace_go(dtrace_hdl_t *dtp)

After the dtrace_go() function is called, the probes start to generate data. The buffers
in the DTrace framework that hold the generated data start filling. The consumer
periodically consumes the generated data.

dtrace_sleep() Function
The dtrace_sleep() function determines the minimum amount of time a consumer
needs to pause before it interacts with the framework. This function has only one
argument, the DTrace handle.

void dtrace_sleep(dtrace_hdl_t *dtp)

DTrace maintains three values that specify the rate at which a consumer needs to
interact with the framework. These values also indicate whether the tracing continues
or is stopped for some reason. The values that DTrace maintains are:

• switchrate – Specifies how often the principal buffers must be consumed.
Principal buffers are maintained as active and passive pairs per-CPU. These pairs
can switch, which allows the data to be consumed from one while the new data is
written to the other. The rate at which these buffers switch determines the
switchrate.

• statusrate – Specifies how often the consumer should check the DTrace status.

• aggrate – Specifies how often the aggregation buffers are consumed. Aggregation
buffers are not maintained as pairs in the same way as principal buffers. There is a
single aggregation buffer per CPU. For more information about the buffer
management mechanism, see DTrace Buffers and Buffering.

These three rates determine the amount of time that the dtrace_sleep() function must
pause. The dtrace_sleep() function calculates the earliest time for it to wake up based
on the last occurrence of these three events and their associated rates. If that earliest
time is in the past, the dtrace_sleep() function returns, otherwise it sleeps until that
time. If the wakeup time is in the past, the dtrace_sleep() function returns
immediately, otherwise, it sleeps until the calculated wakeup time before returning.

You do not have to call the dtrace_sleep() function itself from a consumer. For
example, neither intrstat or lockstat use the dtrace_sleep() function to control the
rate of data consumption. You can use the dtrace_getopt() function to get the values
of the appropriate rate and use timers based on those values. For more information,
see the intrstat(8) and lockstat(8) man pages.

dtrace_work() Function
The dtrace_work() function performs all of the work that must to be done periodically
by a consumer. This work corresponds to the statusrate, switchrate, and aggrate
rates. The dtrace_work() function first calls dtrace_status() to determine the status of
the trace and then calls dtrace_aggregate_snap() and dtrace_consume() to consume
any aggregation buffer or principal buffer data. The dtrace_work() function is a
wrapper around these three function calls and a DTrace consumer can call these three
functions separately. For more information about the dtrace_aggregate_snap()
function, see Periodic Processing of Aggregation.

Chapter 20
DTrace Consumer Functions

20-6

https://docs.oracle.com/cd/E88353_01/html/E72487/intrstat-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/lockstat-8.html

dtrace_workstatus_t dtrace_work(dtrace_hdl_t *dtp, FILE *fp, dtrace_consume_probe_f
*pfunc, dtrace_consume_rec_f *rfunc, void *arg)

The arguments to the dtrace_work() function are:

• The DTrace handle.

• A file handle for output.

• Two function pointers.

• An optional argument to be passed to the two function pointers. This argument can
maintain any state between successive invocations of the functions.

The two function pointers passed to dtrace_work() in the Embedding DTrace in a Consumer
are chew() and chewrec(). They are called while processing the data from the primary buffer.
The following figure shows the layout of a primary buffer. For more information about the
DTrace buffer mechanism, see DTrace Buffers and Buffering.

DTrace Primary Buffer

The EPID is the enabled probe ID, which maps to a specific clause in a D program and
determines the length and layout of the data after the EPID.

In Embedding DTrace in a Consumer, for each EPID that is processed from the buffer, the
chew() function is called. The data that corresponds to an EPID might consist of a number of
records. For each record that is processed for an EPID, the chewrec() function is called.
These two function pointers enable you to augment or replace the default format for this data
provided by the libdtrace library.

The return value for these two functions pointers can be one of the following four values:

DTRACE_CONSUME_THIS
Indicates that the libdtrace library must consume the EPID or record. A consumer uses this
value to augment the default behavior. In Embedding DTrace in a Consumer, both the chew()
and chewrec() functions return DTRACE_CONSUME_THIS without adding any output.

Chapter 20
DTrace Consumer Functions

20-7

DTRACE_CONSUME_NEXT
Indicates that the libdtrace library must proceed to the next EPID or record. In
Embedding DTrace in a Consumer, the consumer processes the EPID or record itself.
If the action specified in a record is an exit(), the chewrec() function extracts the exit
code from the record and returns DTRACE_CONSUME_NEXT to indicate that the record has
been processed.

DTRACE_CONSUME_ERROR
Indicates that an error has occurred while processing an EPID or record.

DTRACE_CONSUME_ABORT
Indicates that consumption of the buffer must be terminated.

If a record specifies an exit() function, the chewrec() function extracts the exit code.
The function also outputs a newline after processing the final record for an EPID. The
chew() function prints the information about the CPU on which the probe was fired, and
the probe ID, function, and name for each EPID processed. It also handles the
flowindent output processing if that option is specified.

The source for dtrace in the usr/src/cmd/dtrace/dtrace.c file provides good
examples of the chew() and chewrec() functions.

dtrace_stop() Function
In Embedding DTrace in a Consumer, the consumer exits the loop and stops the data
consumption but continues to generate data. The call to the dtrace_stop() function
communicates to the kernel that this consumer no longer consumes data. The kernel
disables any enabled probe and frees the memory for the buffers associated with this
DTrace handle.

int dtrace_stop(dtrace_hdl_t *dtp)

If the consumer does not call the dtrace_stop() function, the kernel eventually
performs the cleanup. The data gathering stops either when the deadman timer fires or
when the DTrace device is closed. The buffers are freed when the device closes. The
DTrace device closes either when the consumer calls the dtrace_close() function or
when the consumer exits. It is best practice is for the consumer to call the
dtrace_stop() function.

dtrace_aggregate_print() Function
In Embedding DTrace in a Consumer, when the loop is finished, the consumer calls
the dtrace_aggregate_print() function to print the results of any aggregation data
that was collected during the run.

int dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp, dtrace_aggregate_walk_f
*func)

The arguments to the dtrace_aggregate_print() function are:

• DTrace handle.

• File handle to which the output data is directed.

• Pointer to a function, which controls how the data is printed. The libdtrace library
provides a number of options to print aggregation data. You can also write a

Chapter 20
DTrace Consumer Functions

20-8

custom printing function. If the consumer does not specify any function, the default
DTrace behavior prints the output sorted by the aggregated value for each tuple.

dtrace_close() Function
The final action performed by the consumer is to call the dtrace_close() function on the
DTrace handle. This function performs user space cleanup if required, such as freeing any
memory and closing any open file descriptors associated with this DTrace handle.

void dtrace_close(dtrace_hdl_t *dtp)

dtrace_errmsg() and dtrace_errno() Functions
Embedding DTrace in a Consumer uses two functions, dtrace_errno() and dtrace_errmsg(),
for error reporting. The dtrace_errno() function returns the error number set by the last call
to the DTrace API by using a particular DTrace handle. The dtrace_errmsg() function takes a
DTrace handle and an error number, and returns a corresponding error message. The
messages for most errors are stored in a table in the libdtrace library. For compiler errors,
the error string is written to an error message buffer of the DTrace handle. Errors that deal
with compact C type format (CTF) are handled separately based on a CTF-specific error
number stored in the DTrace handle. For more information, see the libdtrace(3LIB) man
page.

const char *dtrace_errmsg(dtrace_hdl_t *dtp, int error)
int dtrace_errno(dtrace_hdl_t *dtp)

Processing Traced Data in DTrace
This section describes the processing of traced data. The dtrace_recdesc_t structure
describes a record that contains data stored by DTrace.

typedef struct dtrace_recdesc {
 dtrace_actkind_t dtrd_action; /* kind of action */
 uint32_t dtrd_size; /* size of record */
 uint32_t dtrd_offset; /* offset in ECB's data */
 uint16_t dtrd_alignment; /* required alignment */
 uint16_t dtrd_format; /* format, if any */
 uint64_t dtrd_arg; /* action argument */
 uint64_t dtrd_uarg; /* user argument */} dtrace_recdesc_t;

For simple values, the size of the type is stored in the dtrd_size member. If you have a
pointer to the ECB data and a pointer to the record description, you can extract the value for
the dtrace_recdesc_t record, as shown in the following example:

uint64_t val;
 /* _base_ is a pointer to the ECB data */
 /* _rdp_ is a pointer to the record description */

 void *record = _base_+_rdp_->dtrd_offset;
 switch (rdp->dtrd_size) {
 case sizeof (uint64_t):
 val = *((uint64_t *)(record));
 break;
 case sizeof (uint32_t):
 val = *((uint32_t *)(record));
 break;
 case sizeof (uint16_t):

Chapter 20
Processing Traced Data in DTrace

20-9

https://docs.oracle.com/cd/E88353_01/html/E37842/libdtrace-3lib.html

 val = *((uint16_t *)(record));
 break;
 case sizeof (uint8_t):
 val = *((uint8_t *)(record));
 break;
 default:
 break;
 }

The values for some actions might require further processing. If dtrd_action is either
DTRACEACT_SYM or DTRACEACT_MOD, the 64-bit value represents an address in kernel
space that needs to be resolved to a symbol or module by using the
dtrace_lookup_by_addr() function.

Strings in DTrace
In DTrace, strings are stored as fixed-length character arrays. You can use the
dtrace_getopt() function to determine the string size. The strsize option specifies
the value of the size.

Note:

In DTrace, a string is not necessarily a null terminated value. If one of the
characters in the array is a NUL, the array can be treated as a C-style string.
If the character array is not null terminated, the consumer must create a null
terminated string.

DTrace Compound Data
A single record stores the data of various actions. This section discusses the formats
of these data types.

stack() Function
The stack() action stores a sequence of kernel addresses that represents the kernel
stack. These addresses are stored as an array of 64-bit or 32-bit values.

dtrd_action == DTRACEACT_STACK

The length of this array is stored in the dtrd_arg member of the dtrace_recdesc_t
structure. The length of the array represents the depth of the stack. To calculate the
size of the individual stored address, divide the value of dtrd_size by the value of
dtrd_arg.

The first element of this array is the program counter (PC) in the function that executes
when the DTrace probe is fired. Similarly, the next element is the PC of the calling
function.

Chapter 20
Processing Traced Data in DTrace

20-10

Note:

Some of the PCs might be NULL. When a NULL PC is encountered, the bottom of
the stack has been reached.

Data Format for the stack() Action

ustack() and jstack() Functions
The ustack() and jstack() actions store an array of 64-bit values regardless of whether the
process is a 32-bit or 64-bit process. The first element of this array is the PID of the process.
The remaining elements of the array are the PCs in the process that represent the user stack.

dtrd_action == DTRACEACT_USTACK
dtrd_action == DTRACEACT_JSTACK

The length of this array is stored in the lower 32-bits of the dtrd_arg member of the
dtrace_recdesc_t structure.

Data Format for the ustack() and jstack() Actions

Chapter 20
Processing Traced Data in DTrace

20-11

tracemem() Function
The tracemem() action stores an array of bytes intended to be treated as raw values.
The number of bytes in this buffer is given by the dtrd_size member of the
dtrace_recdesc_t structure.

dtrd_action == DTRACEACT_TRACEMEM

The tracemem() action takes an optional third argument, the number of bytes to
display. If a third argument is specified, the dtrd_arg member of the
dtrace_recdesc_t structure contains the DTRACE_TRACEMEM_DYNAMIC value. In this
case, the subsequent data record is also a DTRACEACT_TRACEMEM record. The dtrd_arg
value for this subsequent record is either DTRACE_TRACEMEM_SIZE or
DTRACE_TRACEMEM_SSIZE, and the value contained in the data for this subsequent
record is the number of bytes displayed.

if (rec->dtrd_arg == DTRACE_TRACEMEM_STATIC)
 process rec->dtrd_size bytes of data
else if (rec->dtrd_arg == DTRACE_TRACEMEM_DYNAMIC)
 nrec = next record
 if nrec->dtrd_arg == DTRACE_TRACEMEM_SIZE
 extract display size from nrec's data as unsigned value
 else if nrec->dtrd_arg == DTRACE_TRACEMEM_SSIZE
 extract display size from nrec's data as signed value
 process data based on values of rec->dtrd_size and display size

umod(), usym(), and uaddr() Functions
The umod(), usym(), and uaddr() actions store two 64-bit values. The first value is the
PID of the process and the second value is a user address within the process.

Typically, the second value is the address that was passed to the action. However, if
the action was used as a key in an aggregation then the address may have been
modified.

dtrd_action == DTRACEACT_UMOD
dtrd_action == DTRACEACT_USYM
dtrd_action == DTRACEACT_UADDR

Data Format for the umod() Action

Processing Aggregation Data in DTrace
Aggregations have two sets of records: the key (or keys) and the value corresponding
to the key (or keys). The following example shows a sample dtrace_aggdesc_t
structure.

Chapter 20
Processing Aggregation Data in DTrace

20-12

typedef struct dtrace_aggdesc {
 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
 int dtagd_flags; /* not filled in by kernel */
 dtrace_aggid_t dtagd_id; /* aggregation ID */
 dtrace_epid_t dtagd_epid; /* enabled probe ID */
 uint32_t dtagd_size; /* size in bytes */
 int dtagd_nrecs; /* number of records */
 uint32_t dtagd_pad; /* explicit padding */
 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
} dtrace_aggdesc_t;

The dtagd_nrecs member of this structure specifies the number of record descriptions in the
dtagd_rec array. dtagd_rec[1] through dtagd_rec[dtagd_nrecs - 2] contains the record
description for the keys. The dtagd_rec[0] does not contain a key. The final record in this
array, dtagd_rec[dtagd_nrecs - 1], is the record description for the value. The values for
these aggregations are stored as simple values. The formats for the different value types are
as follows:

count()
dtrd_action == DTRACEAGG_COUNT

sum()
dtrd_action == DTRACEAGG_SUM

min()
dtrd_action == DTRACEAGG_MIN

max()
dtrd_action == DTRACEAGG_MAX

avg() Function
The value for the avg() action is stored as a two-element array of 64-bit values. The first
element of this array is a count of the individual data points, and the second element is a sum
of those data points.

avg() (dtrd_action == DTRACEAGG_AVG)

stddev() Function
The value for the stddev() action is stored as a four-element array of 64-bit values. As with
avg(), the first two values are a count of the individual data points and a sum of those data
points. The lower two values contain a 128-bit representation of the sum of the squares of the
individual data points. The third element contains the higher 64 bits of the value, and the
fourth element contains the lower 64 bits. Standard deviation can be calculated as the square
root of the average of the squares minus the square of the average: sqrt(average(x**2) -
average(x)**2).

stddev() (dtrd_action == DTRACEAGG_STDDDEV)

Data Format for the stdev() Action

Chapter 20
Processing Aggregation Data in DTrace

20-13

quantize() Function
quantize() (dtrd_action == DTRACEAGG_QUANTIZE)

The quantize() action stores unsigned 64-bit values in power-of-2 buckets, from -2^63
to 2^63. Thus, the data are stored as a 127-element array of unsigned 64-bit values,
as shown in the following figure.

Data Format for the quantize() Action

Chapter 20
Processing Aggregation Data in DTrace

20-14

This action provides the following macros:

• DTRACE_QUANTIZE_NBUCKETS – Number of buckets

• DTRACE_QUANTIZE_ZEROBUCKET – Index of the zero bucket

• DTRACE_QUANTIZE_BUCKETVAL(bucket) – Value for the specified bucket

lquantize() Function
The lquantize() action stores unsigned 64-bit values in buckets similar to the quantize()
action. However, the number and range of buckets is specified in the arguments to the
lquantize() action. The arguments to the lquantize() action are:

• Value of interest

• Lower bound of the linear quantization

• Upper bound of the linear quantization

• Step value between levels

The first 64 bits of the data encode the following values:

• DTRACE_LQUANTIZE_BASE(x) – Lower bound

• DTRACE_LQUANTIZE_LEVELS(x) – Number of steps between the lower and upper bounds

• DTRACE_LQUANTIZE_STEPS(x) – Step value between levels

The remaining values in the data are:

• The underflow bucket, which is the count of values less than the lower bound

• The buckets in the range of the linear quantization

• The overflow bucket, which is the count of values greater than or equal to the upper
bound

lquantize() (dtrd_action == DTRACEAGG_LQUANTIZE)

The following diagram shows the layout.

Data Format for the lquantize() Action

Chapter 20
Processing Aggregation Data in DTrace

20-15

llquantize() Function
The llquantize() action stores unsigned 64-bit values in buckets similar to the
lquantize() action. Because llquantize() presents a log-linear quantization, the
arguments to llquantize() are different from those for lquantize(). The arguments to
the llquantize() action are:

• Value of interest

• A factor – The base of the logarithm

• Lower magnitude of the log-linear quantization, which is the first set of buckets that
cover the values n * factor ^ lower magnitude

• Upper magnitude of the log-linear quantization, which is the last set of buckets that
cover the values n * factor ^ upper magnitude

• Step value – Each magnitude contains this number of buckets

The first 64-bit word in the data encodes the factor, low magnitude, high magnitude,
and steps. Each is encoded as an unsigned 16-bit integer. You can extract these
values of encoded data by using the following macros:

• DTRACE_LLQUANTIZE_FACTOR(x)
• DTRACE_LLQUANTIZE_LMAG(x)
• DTRACE_LLQUANTIZE_HMAG(x)
• DTRACE_LLQUANTIZE_STEPS(x)
The remaining values in the data are:

• The underflow bucket

Chapter 20
Processing Aggregation Data in DTrace

20-16

• Sets of buckets for each magnitude

• Overflow data

The factor and the value of the steps determines the number of buckets at each level. If the
magnitude is zero, there are only factor-1 buckets. If the magnitude is other zero, there are
steps - steps/factor buckets per magnitude.

For example, if factor == 10 and steps == 20, there are 20 - 20/10 == 18 buckets per
magnitude. However, if the magnitude is 0, there are 10 - 1 == 9 buckets: 1x10^0 through
9x10^0.

llquantize() (dtrd_action == DTRACEAGG_LLQUANTIZE)

Data Format for the llquantize() Action

Processing of Aggregations in DTrace
In addition to the basic functions, the libdtrace library also provides finer-grained control for
certain operations. For example, the dtrace_work() function is composed of calls to the
dtrace_status(), dtrace_aggregate_snap(), and dtrace_consume() functions. A consumer
can call these three functions separately. In some cases, all the three functions are not called.
This section discusses some of the other useful functions provided by the API.

Chapter 20
Processing of Aggregations in DTrace

20-17

Aggregation Walkers
The libdtrace library provides control over how to handle the data from the
aggregations. By default, dtrace outputs the elements of an aggregation sorted by
the values stored in the aggregation. The API provides a number of options to print the
values in aggregations. It also provides the ability to process the aggregations in
alternate ways rather than printing the keys and values. The available functions to sort
the output order are:

• By key – dtrace_aggregate_walk_keysorted() Function

• By value – dtrace_aggregate_walk_valsorted() Function

• Reverse order by key – dtrace_aggregate_walk_keyrevsorted() Function

• Reverse order by value – dtrace_aggregate_walk_valrevsorted() Function

• First by key and then by aggregation variable ID –
dtrace_aggregate_walk_keyvarsorted() Function

• First by value and then by aggregation variable ID –
dtrace_aggregate_walk_valvarsorted() Function

• First reverse order by key and then by aggregation variable ID –
dtrace_aggregate_walk_keyvarrevsorted() Function

• First reverse order by value and then by aggregation variable ID –
dtrace_aggregate_walk_valvarrevsorted() Function

dtrace_aggregate_walk_keysorted() Function
This function walks aggregations in order sorted by key. For example, a five-second
count of system calls prints by using this function and displays output similar to the
following example.

brk 4
close 2
fchmod 1
getpid 1
gtime 5
ioctl 650
lstat 1
lwp_cond_wait 2
lwp_park 53
lwp_sigmask 2
mkdir 1
mmap 1
nanosleep 3
open 4
p_online 256
pollsys 178
portfs 40
pset 3
read 26
rename 1
schedctl 1
sysconfig 3
write 27
yield 1

Chapter 20
Processing of Aggregations in DTrace

20-18

Note:

This result also can be achieved by setting the undocumented aggsortkey option in
a D script.

dtrace_aggregate_walk_valsorted() Function
This function walks aggregations in order sorted by value. This aggregation is the default
behavior of dtrace and the dtrace_aggregate_print() function. This function displays
output similar to the following example.

fchmod 1
getpid 1
lstat 1
mkdir 1
mmap 1
rename 1
schedctl 1
yield 1
close 2
lwp_cond_wait 2
lwp_sigmask 2
nanosleep 3
pset 3
sysconfig 3
brk 4
open 4
gtime 5
read 26
write 27
portfs 40
lwp_park 53
pollsys 178
p_online 256
ioctl 650

dtrace_aggregate_walk_keyrevsorted() Function
This function walks aggregations in reverse order sorted by key. This function displays output
similar to the following example.

yield 1
write 27
sysconfig 3
schedctl 1
rename 1
read 26
pset 3
portfs 40
pollsys 178
p_online 256
open 4
nanosleep 3
mmap 1
mkdir 1
lwp_sigmask 2
lwp_park 53

Chapter 20
Processing of Aggregations in DTrace

20-19

lwp_cond_wait 2
lstat 1
ioctl 650
gtime 5
getpid 1
fchmod 1
close 2
brk 4

Note:

This result also can be achieved by setting both the aggsortkey and
aggsortrev options in a D program.

dtrace_aggregate_walk_valrevsorted() Function
This function walks aggregations in reverse order sorted by value. This function
displays output similar to the following example.

ioctl 650
p_online 256
pollsys 178
lwp_park 53
portfs 40
write 27
read 26
gtime 5
open 4
brk 4
sysconfig 3
pset 3
nanosleep 3
lwp_sigmask 2
lwp_cond_wait 2
close 2
yield 1
schedctl 1
rename 1
mmap 1
mkdir 1
lstat 1
getpid 1
fchmod 1

Note:

This aggregation also can be achieved by setting the aggsortrev option in a
D program.

This function appear to process data from separate aggregations. For example, the
function prints the data from aggregation A before printing the data from aggregation
B. The data from all aggregations are processed, but the function sorts the data by
aggregation variable ID first before sorting by value in reverse order. The remaining
functions change this order so that data from separate aggregations might intermingle.

Chapter 20
Processing of Aggregations in DTrace

20-20

dtrace_aggregate_walk_keyvarsorted() Function
This function walks aggregations sorted by key first and then by the aggregation's variable ID.
For example, the following D program would print the minimum, average, and maximum
latency for the specified system calls:

syscall::p*:entry
{
 self->ts = timestamp;
}
syscall::p*:return
/ self->ts /
{
 @c[probefunc] = min(timestamp - self->ts);
 @d[probefunc] = avg(timestamp - self->ts);
 @e[probefunc] = max(timestamp - self->ts);
 self->ts = 0;
}

When the D program is processed by using dtrace_aggregate_walk_keyvarsorted(), output
similar to the following example is displayed. This function sorts the system call names first,
and then sorts the entries with the same system call name, and then by the aggregation's
variable ID. These IDs are assigned in the order in which the aggregation first appears in the
D program, so, for example, the ID for @c is less than the ID for @d, which is less than the
ID for @e. The system calls are grouped on consecutive lines and the minimum, average,
and maximum values print in that order.

p_online 968
p_online 1051
p_online 9685
pollsys 7161
pollsys 120515277
pollsys 4159836122
portfs 1668
portfs 2583
portfs 6948
pset 1165
pset 1911
pset 3369

Note:

The data is not sorted by value, though this example might give that impression.

dtrace_aggregate_walk_valvarsorted() Function
This function walks aggregations in order sorted by value first and then by the aggregation's
variable ID. Because the data stored by the aggregating actions derive the values for the
aggregation, DTrace only performs value comparisons between aggregations from the same
aggregating action. For example, DTrace only compares min() values to min() values and
max() values to max() values. DTrace also compares aggregations based on the number of
records stored for the aggregation. This policy might yield slightly unexpected results. For
example, when the data is processed by using the dtrace_aggregate_walk_valvarsorted()
function, output is generated similar to the following example.

Chapter 20
Processing of Aggregations in DTrace

20-21

p_online 968
pset 1165
portfs 1668
pollsys 7161
pset 3369
portfs 6948
p_online 9685
pollsys 4159836122
p_online 1051
pset 1911
portfs 2583
pollsys 120515277

Note:

The values are grouped as min(), max(), and avg() values.

dtrace_aggregate_walk_keyvarrevsorted() Function
This function walks aggregations in reverse order sorted first by key and then by the
aggregation's variable ID. This function displays output similar to the following
example.

pset 3369
pset 1911
pset 1165
portfs 6948
portfs 2583
portfs 1668
pollsys 4159836122
pollsys 120515277
pollsys 7161
p_online 9685
p_online 1051
p_online 968

dtrace_aggregate_walk_valvarrevsorted() Function
This function walks aggregations in reverse order sorted by value and then by
aggregation variable ID. This function displays an output similar to the following:

pollsys 120515277
portfs 2583
pset 1911
p_online 1051
pollsys 4159836122
p_online 9685
portfs 6948
pset 3369
pollsys 7161
portfs 1668
pset 1165
p_online 968

These functions can be used in two ways. First, they can be passed as the third
argument to the dtrace_aggregate_print() function to control how the data from
aggregations prints. For example, you can replace the call to the

Chapter 20
Processing of Aggregations in DTrace

20-22

dtrace_aggregate_print() function with the following code to print the data by using the
dtrace_aggregate_walk_keysorted() function:

if (dtrace_aggregate_print(g_dtp, stdout,
 dtrace_aggregate_walk_keysorted) == -1)
 fatal("failed to print aggregation");

A second use is to call the aggregation functions directly and specify an alternate function to
handle each aggregation record. This method is useful if you want custom output for the data
or if you want to do something other than output the data.

The DTrace stddev() aggregating action calculates the standard deviation over a set of
samples but because of the limitations of DTrace, the values are given as integers. In some
cases, this level of precision might be insufficient. For example, consider the following D
program:

BEGIN
{
 @c["foo"] = stddev(1);
 @c["foo"] = stddev(2);
 @c["foo"] = stddev(3);
 @c["foo"] = stddev(4);
 @c["foo"] = stddev(5);
 @c["bar"] = stddev(6);
 @c["bar"] = stddev(8);
 @c["bar"] = stddev(10);
 @c["bar"] = stddev(12);
 @c["bar"] = stddev(14);
 @c["baz"] = stddev(17);
 @c["baz"] = stddev(20);
 @c["baz"] = stddev(23);
 @c["baz"] = stddev(26);
 @c["baz"] = stddev(29);
 exit(0);
}

The default dtrace output for this program would appear as follows:

foo 1
bar 2
baz 4

The values in the output are rounded to the closest integer value. However, the actual values
are 1.414, 2.828, and 4.243. To get better approximation of the correct values, you can write
a custom DTrace consumer that uses aggregation to process the raw data.

Aggregation stores a small amount of data in the aggregation buffer, and this data is copied
from the kernel periodically by the consumer. Some aggregations, such as count(), min(),
max(), and sum(), store a single value. For example, count() stores a running count, and sum()
stores a running sum. No further processing of this data is needed before the output is
displayed. The avg() aggregation stores two values, a count of the number of data points and
the sum of those data points. Before displaying the output, the final sum is divided by the final
count to yield the average. Similarly, stddev() stores three values: the count, the sum, and
the sum of the squares of the values. The standard deviation is computed from these values.
For information, see DTrace Buffers and Buffering.

If you know how the stddev() aggregation is implemented, you can implement a function to
extract the raw aggregation data and use it to calculate the standard deviation with more
precision. Because the data is stored by the stddev() aggregation is a superset of the data

Chapter 20
Processing of Aggregations in DTrace

20-23

stored for the avg() aggregation, you can also report the count of data points and their
average.

Example 20-2 Using the walk() Function

This example shows the walk() function.

static int
walk(const dtrace_aggdata_t *data, void *arg)
{
 dtrace_aggdesc_t *aggdesc = data->dtada_desc;
 dtrace_recdesc_t *namerec, *datarec;
 char *name;
 uint64_t count, sum, sumsquares;
 double avg, avgsquares, stddev;
 int i;
 namerec = &aggdesc->dtagd_rec[1];
 name = data->dtada_data + namerec->dtrd_offset;
 datarec = &aggdesc->dtagd_rec[2];
 count = *((uint64_t *)(data->dtada_data + datarec->dtrd_offset));
 sum = *((uint64_t *)(data->dtada_data + datarec->dtrd_offset) + 1);
 sumsquares = *((uint64_t *)(data->dtada_data + datarec->dtrd_offset)+
2);
 avg = (double)sum / count;
 avgsquares = (double)sumsquares / count;
 stddev = sqrt (avgsquares - avg * avg);
 printf("%10s %10lu %11.3f %11.3f\n", name, count, avg, stddev);
 return (DTRACE_AGGWALK_NEXT);
}

The walk() function is passed as an argument to the
dtrace_aggregate_walk_keysorted() function, as shown in the following example:

printf("%10s %10s %11s %11s\n", "NAME", "COUNT", "AVG", "STDDEV");

if (dtrace_aggregate_walk_keysorted(g_dtp, walk, NULL) == -1)
 fatal("aggregation walk failed");

When the D program is run, the consumer generates the following output:

NAME COUNT AVG STDDEV
bar 5 10.000 2.828
baz 5 23.000 4.243
foo 5 3.000 1.414

The walk() function uses dtrace_aggdata_t, dtrace_aggdesc_t, and
dtrace_recdesc_t data structures. The function passes a pointer to the
dtrace_aggdata_t structure, which describes the data for a single entry in an
aggregation.

struct dtrace_aggdata {
 dtrace_hdl_t *dtada_handle; /* handle to DTrace
library */
 dtrace_aggdesc_t *dtada_desc; /* aggregation
description */
 dtrace_eprobedesc_t *dtada_edesc; /* enabled probe
description */
 dtrace_probedesc_t *dtada_pdesc; /* probe description
*/
 caddr_t dtada_data; /* pointer to raw data
*/

Chapter 20
Processing of Aggregations in DTrace

20-24

 uint64_t dtada_normal; /* the normal -- 1 for
denorm */
 size_t dtada_size; /* total size of the data */
 caddr_t dtada_delta; /* delta data, if available
*/
 caddr_t *dtada_percpu; /* per CPU data, if avail */
 caddr_t *dtada_percpu_delta; /* per CPU delta, if avail */
};

Using the walk() Function uses of two of the fields. It first pulls the aggregation description out
of the structure by using the dtada_desc member. It later accesses the raw data stored in the
aggregation by using the dtada_data member.

The aggregation description is contained in the dtrace_aggdesc_t data structure.

typedef struct dtrace_aggdesc {
 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
 int dtagd_flags; /* not filled in by kernel */
 dtrace_aggid_t dtagd_id; /* aggregation ID */
 dtrace_epid_t dtagd_epid; /* enabled probe ID */
 uint32_t dtagd_size; /* size in bytes */
 int dtagd_nrecs; /* number of records */
 uint32_t dtagd_pad; /* explicit padding */
 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
} dtrace_aggdesc_t;

Using the walk() Function uses only the dtagd_rec array. This is an array of descriptions of
the records for this entry. You can use these record descriptions to access the name and the
data associated with this entry. Though only a single entry is statically-allocated for the
dtagd_rec array, the array dynamically allocates to contain dtagd_nrecs entries.

The record descriptions are contained in the dtrace_recdesc_t data structure:

typedef struct dtrace_recdesc {
 dtrace_actkind_t dtrd_action; /* kind of action */
 uint32_t dtrd_size; /* size of record */
 uint32_t dtrd_offset; /* offset in ECB's data */
 uint16_t dtrd_alignment; /* required alignment */
 uint16_t dtrd_format; /* format, if any */
 uint64_t dtrd_arg; /* action argument */
 uint64_t dtrd_uarg; /* user argument */
} dtrace_recdesc_t;

Using the walk() Function uses only the dtrd_offset member. The consumer deals with the
single stddev() action type and you do not require any of the other members. For example, if
you want to include min() and max() aggregation data, you must examine the dtrd_action
member to determine which data is contained in the current aggregation entry.

The definitions of these data structures are in the /usr/include/dtrace.h and /usr/
include/sys/dtrace.h files. The following diagram shows the interaction between these
data structures in this consumer.

Interactions Between the Data Structures

Chapter 20
Processing of Aggregations in DTrace

20-25

This figure shows that sumsquares is stored in two pieces. To avoid overflow, the
stddev() aggregation stores and operates on the value as a 128-bit value. Note that
the Using the walk() Function is only an approximation to how the stddev()
aggregation works, because it assumes that the sum of the squares never exceeds
the maximum 64-bit value.

Periodic Processing of Aggregation
In addition to different ways to process aggregations after the data collection is
complete, you can also process aggregation data periodically as the data is being
collected. You can use the dtrace_aggregate_snap() and dtrace_aggregate_clear()
functions to process aggregation data periodically.

The dtrace_work() function transfers the existing aggregation data from the kernel,
clears the in-kernel buffers, and adds the data to the copies of the aggregation data,
which is maintained in user space. However, if a consumer wants to generate only
aggregation data, it is more efficient to call the dtrace_aggregate_snap() function and
skip the call to the dtrace_consume() function. You must also use the dtrace_status()
function because the deadman timer fires if the aggregation is not performed
periodically.

The dtrace_aggregate_clear() function clears the aggregate data associated with a
DTrace handle. Although the function does not free the data structures holding this
data, it zeros those parts of the data structures that hold aggregation data. This
distinction is important because the entries in an aggregation remains with zeroed
values. For example, suppose you modify the Embedding DTrace in a Consumer by

Chapter 20
Processing of Aggregations in DTrace

20-26

replacing the work() loop with the following code. You can also use dtrace_getopt() to
determine the rate at which the dtrace_status() and dtrace_aggregate_snap() functions are
called. You can also use aggrate.

if (dtrace_getopt(g_dtp, "statusrate", &statustime) == -1)
 fatal("failed to get 'statusrate'");

for (int i = 0; i < 10; i++) {
 usleep(statustime / 1000);

 if (dtrace_status(g_dtp) == -1)
 fatal("dtrace_status()");

 if (dtrace_aggregate_snap(g_dtp) != 0)
 fatal("failed to add to aggregate");

 if (dtrace_aggregate_print(g_dtp, stdout, NULL) == -1)
 fatal("failed to print aggregation");

 dtrace_aggregate_clear(g_dtp);
}

If you run this consumer by using a D program that counts system calls, you can see the
output for each iteration of the loop. The output for the final iteration of the loop would be
similar to the following example.

brk 0
close 0
fchmod 0
fcntl 0
getdents64 0
getpid 0
lstat 0
mkdir 0
p_online 0
pread 0
pset 0
rename 0
stat64 0
statvfs64 0
sysconfig 0
yield 0
gtime 1
lwp_cond_wait 1
open 1
writev 1
clock_gettime 2
nanosleep 2
setitimer 2
lwp_sigmask 18
portfs 22
read 28
lwp_park 30
write 55
ioctl 63
pollsys 102

The zeroed entries in this output correspond to system calls that have been made since the D
program is executing but are not called during the final loop. The dtrace_aggregate_clear()
function zeros the data for the entries but does not remove the entries themselves. The

Chapter 20
Processing of Aggregations in DTrace

20-27

dtrace_aggregate_print() function prints the value for every entry, including the
entries with a zero value.

Per-CPU Data for Aggregations
DTrace offers the option to gather per-CPU data for aggregations. This capability can
be useful when the combined aggregation data does not provide sufficient resolution.
For example, the intrstat command uses per-CPU aggregation data to report
statistics about CPUs that handle interrupts for each device. You can enable the
collection of per-CPU aggregation data by setting the aggpercpu option.

When per-CPU aggregation data is collected, the dtada_percpu array in the
dtrace_aggdata structure references the location to store the collected data. The
dtada_data member of that structure references the location to store the total
aggregation data. The following figure shows the per-CPU aggregation.

Using Per-CPU Data for Aggregations

You do not need an offset to index these buffers because the first two fields in the
dtada_data buffer are not duplicated in the per-CPU buffers. You can add the following
code to the end of the Using the walk() Function, to examine the data in the per-CPU
buffers.

if (!data->dtada_percpu)
 fatal("No per-cpu data\n");

for (i = 0; i < g_max_cpus; i++) {
 if (!g_present[i])

Chapter 20
Processing of Aggregations in DTrace

20-28

 continue;

 count = *((uint64_t *)(data->dtada_percpu[i]) + 0);
 sum = *((uint64_t *)(data->dtada_percpu[i]) + 1);
 sumsquares = *((uint64_t *)(data->dtada_percpu[i]) + 2);

 avg = (double)sum / count;
 avgsquares = (double)sumsquares / count;
 stddev = sqrt (avgsquares - avg * avg);

 if (count)
 printf("%11s %2d %10lu %17.3f %17.3f\n", "CPU", i,
 count, avg, stddev);
 else
 printf("%11s %2d %10lu %17s %17s\n", "CPU", i,
 count, "-", "-");
}
printf("\n");

The variable g_max_cpus is set to make a call to the sysconf() function. Because the value
might be larger than the number of CPUs present, the entries in the g_present array are set
to indicate whether a particular CPU is present. The function iterates over the set of possible
CPU IDs. If a CPU is present, the function extracts and processes this data from the per-CPU
buffer.

When this version of the consumer is run by using a D program to measure the standard
deviation of system call latency, the output displays the overall values and the per-CPU
breakdowns; as shown in the following example.

NAME COUNT AVG STDDEV
 brk 30 3811.167 3460.861
 CPU 0 16 3350.438 2969.729
 CPU 1 14 4337.714 3881.644

clock_gettime 3 1694.000 501.488
 CPU 0 3 1694.000 501.488
 CPU 1 0 - -

 close 5 5091.800 1613.886
 CPU 0 0 - -
 CPU 1 5 5091.800 1613.886

 fchmod 1 3994.000 0.000
 CPU 0 0 - -
 CPU 1 1 3994.000 0.000

 fcntl 3 1445.333 482.400
 CPU 0 0 - -
 CPU 1 3 1445.333 482.400

 fsat 3 31520.000 6722.756
 CPU 0 0 - -
 CPU 1 3 31520.000 6722.756

 fstat64 3 2520.667 537.064
 CPU 0 0 - -
 CPU 1 3 2520.667 537.064

Chapter 20
Processing of Aggregations in DTrace

20-29

Joining Data From Multiple Aggregations
DTrace offers the option to process data from multiple aggregations with similar keys,
for example, processing statistical data on system call latency, which is the minimum,
maximum, average, and standard deviation of time spent in system calls. The printa()
action enables you to print multiple aggregations, as shown in the following example.

cat syscall-latency-stats.d
#!/usr/sbin/dtrace -qs

#pragma D option aggsortpos=2

syscall:::entry
{
 self->ts = timestamp;
}
syscall:::return
/ self->ts /
{
 this->lat = timestamp - self->ts;
 @m[probefunc] = min(this->lat);
 @M[probefunc] = max(this->lat);
 @a[probefunc] = avg(this->lat);
 self->ts = 0;
}
END
{
 printa("%-20s min: %12@d max:%12@d avg:%12@d\n", @m, @M, @a);
}#
./syscall-latency-stats.d
^C
[...]
close min: 19559 max: 38758 avg: 29158
schedctl min: 36407 max: 36407 avg: 36407
write min: 5156 max: 170056 avg: 87716
send min: 97028 max: 97028 avg: 97028
connect min: 169528 max: 169528 avg: 169528
lwp_cond_wait min: 75977 max: 1001221741 avg: 47341037
read min: 1253 max: 1000786548 avg: 55212840
lwp_park min: 2275 max: 2000410123 avg: 521297430
pollsys min: 2611 max: 5000232030 avg: 545102592
#

A custom consumer can use the dtrace_aggregation_walk_joined() function to
process multiple aggregations similar to this DTrace script. This function has the
following signature:

int dtrace_aggregate_walk_joined(dtrace_hdl_t *,
 dtrace_aggvarid_t *, int, dtrace_aggregate_walk_joined_f *, void *)

The arguments to the dtrace_aggregate_walk_joined()function are as follows:

• DTrace handle

• Array of dtrace_aggvarid_t – The identifiers for the aggregations to be joined

• Number of elements in that array – The number of aggregations to be joined

• Function to process each entry in the aggregation

Chapter 20
Processing of Aggregations in DTrace

20-30

• Private argument to be passed

The dtrace_aggregate_walk_joined() function bundles aggregations data with the values
containing the same key. The specified function is called on each bundle. The function syntax
is as follows:

typedef int dtrace_aggregate_walk_joined_f(const dtrace_aggdata_t **,
 const int, void *);

The arguments to the dtrace_aggregate_walk_joined_f() function are:

• Array of dtrace_aggdata_t pointers. The bundle of data with similar values to be
processed.

• Number of elements in the bundle

• Private argument originally passed to the dtrace_aggregate_walk_joined() function

The dtrace_aggregate_walk_joined() function is similar to the walk() function that is passed
to the other aggregation walkers except that the function passes an array of pointers to
aggregation data rather than a single pointer. This function processes the aggregation data
from each of the elements in this array.

The following example shows the dtrace_aggregate_walk_joined() function. This function
processes the data to gather statistics on system call latency and then prints the data after
the data is extracted.

In this example, the key for this bundle is stored in the zeroth element of data, but the values
start at data[1]. The value in data[1] contains the same value as data[0].

static int
walk_joined(const dtrace_aggdata_t **data, const int naggs, void *arg)
{
 dtrace_aggdesc_t *aggdesc;
 dtrace_recdesc_t *keyrec, *datarec;
 char *syscall;
 int64_t stats[4], *avgdata;
 int i;

 aggdesc = data[0]->dtada_desc;
 keyrec = &aggdesc->dtagd_rec[1];
 syscall = data[0]->dtada_data + keyrec->dtrd_offset;

 for (i = 1; i < naggs; i++) {
 aggdesc = data[i]->dtada_desc;
 datarec = &aggdesc->dtagd_rec[2];

 switch (datarec->dtrd_action) {
 case DTRACEAGG_MIN:
 case DTRACEAGG_MAX:
 stats[i] = *((int64_t *)(data[i]->dtada_data +
 datarec->dtrd_offset));
 break;
 case DTRACEAGG_AVG:
 avgdata = (int64_t *)(data[i]->dtada_data +
 datarec->dtrd_offset);
 stats[i] = avgdata[0] ? avgdata[1] / avgdata[0] : 0;
 break;
 default:
 fatal("Incorrect record type in walk_joined()\n");
 break;
 }

Chapter 20
Processing of Aggregations in DTrace

20-31

 }

 printf("%-20s min: %12lld max: %12lld avg: %12lld\n", syscall,
 stats[1], stats[2], stats[3]);

 return (DTRACE_AGGWALK_NEXT);
}

For the call to dtrace_aggregate_walk_joined(), you must know the IDs for the
aggregations you wish to process. In the following example, the chewrec() function
shows how to extract the aggregation IDs when processing the record for the printa()
action.

static int
chewrec(const dtrace_probedata_t *data, const dtrace_recdesc_t *rec,
 void *arg)
{
 dtrace_actkind_t act;
 dtrace_eprobedesc_t *epd = data->dtpda_edesc;
 dtrace_aggvarid_t aggvars[3];
 const void *buf;
 int i, nagv;

 if (rec == NULL)
 return (DTRACE_CONSUME_NEXT);
 act = rec->dtrd_action;
 buf = data->dtpda_data - rec->dtrd_offset;

 if (act == DTRACEACT_EXIT)
 return (DTRACE_CONSUME_NEXT);

 if (act == DTRACEACT_PRINTA) {
 for (nagv = 0, i = 0; i < 3; i++) {
 const dtrace_recdesc_t *nrec = &rec[i];

 if (nrec->dtrd_uarg != rec->dtrd_uarg)
 break;

 aggvars[nagv++] = *((dtrace_aggvarid_t *)
 ((caddr_t)buf + nrec->dtrd_offset));
 }
 if (nagv == 3)
 if (dtrace_aggregate_walk_joined(g_dtp, aggvars, nagv,
 walk_joined, NULL) == -1)
 fatal("dtrace_aggregate_walk_joined failed");
 }
 return (DTRACE_CONSUME_NEXT);
}

DTrace Handler Interfaces
A DTrace consumer might encounter certain errors while running a D program and
consuming the data it generates. For example, the DTrace framework might drop data,
or terminate an instrumented process. The libdtrace library has a default behavior to
handle such cases, but this behavior might not be appropriate for a particular
consumer. You can specify alternate behavior through the handler interface provided
by the libdtrace library.

Chapter 20
DTrace Handler Interfaces

20-32

Drop Handler
Because DTrace uses fixed-size buffers in the kernel and the mechanism for transferring data
from these buffers is driven by the consumer, the system is designed to drop data when there
is no space in the buffers. The DTrace framework has a mechanism to inform the consumer
about how much data is dropped and why the data is being dropped.

By default, the libdtrace library aborts the process when the consumer is informed about
data drop. You can see this behavior if you run a simple consumer by using the following D
program:

#pragma D option dynvarsize=1k

syscall:::entry
{
 self->ts = timestamp;
}
syscall:::return
/self->ts/
{
 @c[probefunc] = avg(timestamp - self->ts);
 self->ts = 0;
}

By setting the dynvarsize tunable to a small value, you can guarantee that the program runs
out of dynamic variable space while the program is executing. The following consumer does
not implement a drop handler:

./consumer-no-drophandler
processing aborted: Abort due to drop
#

The dtrace_handle_drop() interface provided by the libdtrace library specifies a drop
handler.

The arguments to the dtrace_handle_drop() function are:

• DTrace handle

• Pointer to a function to handle the drop

• Pointer to a private argument to be passed to the drop handler

The dtrace_handle_drop() function takes two arguments: a pointer to the dtrace_dropdata
data structure and a pointer to the private argument originally passed to the
dtrace_handle_drop() function. It returns one of two values: DTRACE_HANDLE_ABORT or
DTRACE_HANDLE_OK.

The dtrace_dropdata data structure contains information about the data drop since the last
time the handler was called.

typedef struct dtrace_dropdata {
 dtrace_hdl_t *dtdda_handle; /* handle to DTrace library */
 processorid_t dtdda_cpu; /* CPU, if any */
 dtrace_dropkind_t dtdda_kind; /* kind of drop */
 uint64_t dtdda_drops; /* number of drops */
 uint64_t dtdda_total; /* total drops */
 const char *dtdda_msg; /* preconstructed message */
} dtrace_dropdata_t;

Chapter 20
DTrace Handler Interfaces

20-33

The drop handler has access to the following information:

• DTrace handle

• CPU on which the drops occur

• Number and kind of drop for the call, including the total number

• Predefined message

A simple drop handler returns DTRACE_HANDLE_OK to ignore all data drops. However,
the following example alerts the person running the D program about the data drop by
printing a predefined message.

static int
drophandler(const dtrace_dropdata_t *dropdata, void *arg)
{
 fprintf(stderr, "%s", dropdata->dtdda_msg);
 return (DTRACE_HANDLE_OK);
}

The output of example consumer would appear similar to the following when using this
drop handler:

./consumer-drophandler
255 dynamic variable drops with non-empty dirty list
417 dynamic variable drops with non-empty dirty list
385 dynamic variable drops with non-empty dirty list
407 dynamic variable drops with non-empty dirty list
428 dynamic variable drops with non-empty dirty list
417 dynamic variable drops with non-empty dirty list
2 dynamic variable drops
447 dynamic variable drops with non-empty dirty list
431 dynamic variable drops with non-empty dirty list
440 dynamic variable drops with non-empty dirty list
29 dynamic variable drops
497 dynamic variable drops with non-empty dirty list
273 dynamic variable drops with non-empty dirty list
 getpid 1633
 sysconfig 1651
 p_online 1977
 gtime 2279
 pset 2924
 clock_gettime 3046
[...]

A more sophisticated drop handler might choose to terminate processing under certain
conditions. A consumer might choose to terminate under the following conditions:

• Number of drops exceeds a threshold within a certain period.

• Total number of drops exceeds a certain threshold, only upon seeing the drops
from a particular CPU, or only upon seeing certain types of drops.

For example, a process aborts on seeing the aggregation drops but not on seeing the
dynamic variable drops.

Error Handler
The libdtrace library enables you to install an error handler similar to the drop
handler. Errors can be events such as a process attempting to access an invalid
pointer or attempting to divide by zero. The default behavior for errors is to terminate

Chapter 20
DTrace Handler Interfaces

20-34

the process, which is the same behavior as for drops. You can see this behavior if you run the
Embedding DTrace in a Consumer with the following D program:

BEGIN
{
 trace(strlen(0));
}
syscall:::entry
{
 @c[probefunc] = count();
}

When you run this program, the following output is displayed:

./consumer-no-errhandler
processing aborted: Abort due to error
#

The dtrace_handle_err() interface provided by the libdtrace library specifies an error
handler. The arguments to the dtrace_handle_err() function are:

• DTrace handle

• Pointer to a function to handle the error

• Pointer to a private argument to be passed to the error handler

The error handler function takes two arguments: a pointer to the dtrace_errdata data
structure and a pointer to the private argument originally passed to the dtrace_handle_err()
function. It returns one of the two values, DTRACE_HANDLE_ABORT or DTRACE_HANDLE_OK.

The dtrace_errdata data structure contains information about the error that occurred.

typedef struct dtrace_errdata {
 dtrace_hdl_t *dteda_handle; /* handle to DTrace library */
 dtrace_eprobedesc_t *dteda_edesc; /* enabled probe inducing err */
 dtrace_probedesc_t *dteda_pdesc; /* probe inducing error */
 processorid_t dteda_cpu; /* CPU of error */
 int dteda_action; /* action inducing error */
 int dteda_offset; /* offset in DIFO of error */
 int dteda_fault; /* specific fault */
 uint64_t dteda_addr; /* address of fault, if any */
 const char *dteda_msg; /* preconstructed message */
} dtrace_errdata_t;

Aside from the self-evident members of this structure, the dteda_pdesc probe description
contains the names of the provider, module, function, and name, and predefined error
message. The simplest error handler returns DTRACE_HANDLE_OK to ignore any errors. A
more sophisticated error handler also prints the predefined error message.

static int
errhandler(const dtrace_errdata_t *data, void *arg)
{
 fprintf(stderr, "%s", data->dteda_msg);
 return(DTRACE_HANDLE_OK);
}

The error handler used in Embedding DTrace in a Consumer displays output similar to the
following example:

./consumer-errhandler
error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address (0x0) in

Chapter 20
DTrace Handler Interfaces

20-35

action #1 at DIF offset 28
 fstat64 1
 mmap 1
 schedctl 1
 sendto 1
 pset 3
 sysconfig 3
 brk 6
 gtime 6
 write 11
 lwp_park 13
 setitimer 16
 read 18
 p_online 256
 pollsys 315
 lwp_sigmask 570
 ioctl 1410
#

A more sophisticated error handler might choose to terminate processing under certain
conditions. A consumer might choose to terminate in the following conditions:

• Number of errors exceeds a threshold within a certain period.

• Total number of errors exceeds a certain threshold, only upon seeing the errors
from a particular CPU, or only upon seeing certain types of errors.

For example, a process might terminate on a division by zero but not on accessing an
invalid address.

Process Handler
DTrace provides the ability to insert user space probes in processes. DTrace can
inform the consumer when certain events occur with respect to a process. You can
install a process handler that runs when such events occur. For more information,
about the APIs that provide the ability to insert user space probes in processes, see
Process Control Interface in DTrace.

A process handler is invoked when a traced process terminates, or if DTrace cannot
open or reopen a process (the process is untraceable), or if a shared library is loaded
but an error occurred when instrumenting the library it invokes the process handler.
For more information about controlling the process interface, see Using the Process
Control Interface.

setopt Handler
Options affecting the behavior of DTrace can be set in one of the following ways:

• Directly by the consumer

• Indirectly by using a pragma in the D program

• From within a D program with the setopt() action.

In the first two cases, the option is set prior to running the D program. In the third case,
the option is set at runtime.

Chapter 20
DTrace Handler Interfaces

20-36

Note:

Certain options, such as buffer sizes, might only be set prior to executing a D
program.

The consumer must be informed when the values of certain options change during the
execution of a D program. The setopt handler informs the consumer about any change in the
options during runtime. In the absence of the setopt handler, the processing continues when
options are changed. This behavior differs from the behavior for errors and drops, but setting
options is not considered to be an abnormal occurrence.

The dtrace_handle_setopt() interface provided by the libdtrace library specifies a setopt
handler. The arguments to the dtrace_handle_setopt() function are:

• DTrace handle

• Pointer to a function to handle the setopt
• Pointer to a private argument to be passed to the setopt handler

The setopt handler is a function that takes two arguments: a pointer to the
dtrace_setoptdata data structure and a pointer to the private argument originally passed to
the dtrace_handle_setopt() function. It returns one of two values: DTRACE_HANDLE_ABORT or
DTRACE_HANDLE_OK.

The dtrace_setoptdata data structure contains information about the option that was set,
including which option was set and the old and new values for that option.

typedef struct dtrace_setoptdata {
 dtrace_hdl_t *dtsda_handle; /* handle to DTrace library */
 const dtrace_probedata_t *dtsda_probe; /* probe data */
 const char *dtsda_option; /* option that was set */
 dtrace_optval_t dtsda_oldval; /* old value */
 dtrace_optval_t dtsda_newval; /* new value */
} dtrace_setoptdata_t;

Because the changing of values is not an abnormal occurrence, there is no predefined
message is included in this data structure. So there is no setopt handler to parallel the drop
and error handlers where the prepared message is displayed to the user. You can ignore a
setopt either by installing a handler that only returns DTRACE_HANDLE_OK or by relying on the
default behavior.

There might be cases in which the consumer might alter its behavior based on the value of
certain options. In the following example, the setopt handler for dtrace checks whether the
value for the quiet or flowindent option has been set.

static int
setopthandler(const dtrace_setoptdata_t *data, void *arg)
{
 if (strcmp(data->dtsda_option, "quiet") == 0)
 g_quiet = data->dtsda_newval != DTRACEOPT_UNSET;

 if (strcmp(data->dtsda_option, "flowindent") == 0)
 g_flowindent = data->dtsda_newval != DTRACEOPT_UNSET;

 return (DTRACE_HANDLE_OK);
}

Chapter 20
DTrace Handler Interfaces

20-37

The dtrace utility predicates certain behavior on those options. The chew() function
for DTrace prints extra information, such as the probe ID and the CPU on which a
probe fired, when the quiet option is not set. The chew() function also implements the
formatting for the flowindent processing.

Process Control Interface in DTrace
One of the strengths of DTrace is its ability to insert probes in user space and in the
kernel. The libdtrace library provides the following functions to consumers to
manipulate processes:

• struct ps_prochandle *dtrace_proc_create(dtrace_hdl_t *dtp, const char
*file, char *const *argv);

• struct ps_prochandle *dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int
flags);

• void dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P);
• void dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P);
• dtrace_proc_create(): Creates a process to run the specified program, file, with

the specified arguments, argv. When the process is created it is in a stop state so
that DTrace can instrument the process before it runs.

Note:

Either the dtrace_proc_create() function or the dtrace_proc_grab()
function must be called before a D program is compiled by the
consumer. Certain variables, such as $target, are set based on values
set by these functions.

• dtrace_proc_grab(): Attaches to an existing process specified by PID. By default,
the process is left in a stop state so that DTrace can instrument the process before
it continues to run. You can modify this process by specifying the PGRAB_NOSTOP
flag in the flags argument. The flags argument is passed to the pgrab() function
from the libproc library. For more information, see the libproc.h man page.

• dtrace_proc_release(): Releases a process, which is then grabbed or created by
using the dtrace_proc_create() or the dtrace_proc_grab() functions. A process
that is created by the consumer terminates after being released.

• dtrace_proc_continue(): Starts the stopped grabbed or created process.

Example 20-3 Using the Process Control Interface

You can perform simple profiling on an application by using the following D program:

pid$target:::entry
{
 @c[probefunc] = count();
}

You can modify the consumer example to perform simple profiling on an application.
First, you must either create or grab the process you want to profile. If you want to
create a process, add the following code before the calling the
dtrace_program_strcompile() function. Because the consumer example is simple, it

Chapter 20
Process Control Interface in DTrace

20-38

takes no arguments and you can pass the remaining arguments to the dtrace_proc_create()
function.

if ((g_pr = dtrace_proc_create(g_dtp, argv[1], &argv[1])) == NULL)
 fatal("cannot create process");

If you want to grab a existing process, call the dtrace_proc_grab() function:

if ((g_pr = dtrace_proc_grab(g_dtp, (pid_t)atoi(argv[1]), 0)) == NULL)
 fatal("cannot grab process");

In each case, you must also call the dtrace_proc_continue() function after calling the
dtrace_go() function, which starts the process again.

The original consumer loops a specified number of times before printing the gathered data
and exiting. If you have grabbed a process, and want to grab a sample profile without waiting
for the process to exit, you can use the same loop. However, if you want to follow either a
grabbed or created process to its completion, you must modify the loop as follows:

do {
 dtrace_sleep(g_dtp);

 if (g_done) {
 if (dtrace_stop(g_dtp) == -1)
 fatal("dtrace_stop()");
 }

 switch (dtrace_work(g_dtp, stdout, chew, chewrec, NULL)) {
 case DTRACE_WORKSTATUS_DONE:
 g_done = 1;
 break;
 case DTRACE_WORKSTATUS_OKAY:
 break;
 default:
 fatal("processing aborted");
 }
 } while (!g_done);

This loop does not terminate by itself when the process exits. The consumer requires a
process handler to catch the process termination:

static void
prochandler(struct ps_prochandle *P, const char *msg, void *arg)
{
 if (Pstate(P) == PS_UNDEAD)
 g_done = 1;
 return;
}

You can install this handler as follows:

if (dtrace_handle_proc(g_dtp, &prochandler, NULL) == -1)
 fatal("failed to install proc handler");

When you run this consumer example, you can see the following output:

./consumer-proc-create /bin/ls /
bin devices home media opt root system var
boot etc kernel mnt platform rpool tmp
dev export lib net proc sbin usr
 ___lwp_private 1

Chapter 20
Process Control Interface in DTrace

20-39

 __close 1
 __fcntl_syscall 1
[...]
 mutex_lock 35
 mutex_lock_impl 35
 mutex_unlock 35
 ferror 44
 strlen 45
 _ti_bind_clear 54
 set_cancel_pending_flag 56
 rt_bind_clear 58
 strcol 67
 __time 70
 time 70
 __strcoll_C 78
 compar 78
 strcoll 78
 sigon 97
 _flsbuf 109
 strcmp 113
 _realbufend 134
 getxfdat 135

Chapter 20
Process Control Interface in DTrace

20-40

21
Program Versioning in DTrace

You can use the DTrace features for determining the stability attributes of D programs that
you create. After you create a D program with the appropriate stability attributes, you might
also want to bind this program to a particular version of the D programming interface. The D
interface version is a label applied to a particular set of types, variables, functions, constants,
and translators made available to you by the D compiler. If you specify a binding to a specific
version of the D programming interface, you ensure that you can recompile your program on
future versions of DTrace without encountering conflicts between program identifiers that you
define and identifiers defined in future versions of the D programming interface. You must
establish version bindings for any D programs that you want to install as persistent scripts or
use in layered tools. For more information about persistent scripts, see Scripting in DTrace.

Versions and Releases
The D compiler labels set of types, variables, functions, constants, and translators
corresponding to a particular software release using a version string. A version string is a
period-delimited sequence of decimal integers of the form "x" for a major release, "x.y" for a
minor release, or "x.y.z" for a micro release. Versions are compared by comparing the
integers from left to right. If the leftmost integers are not equal, the string with the greater
integer is the greater version. If the leftmost integers are equal, the comparison proceeds to
the next integer in order from left to right to determine the result. All unspecified integers in a
version string are interpreted as having the value zero during a version comparison.

The DTrace version strings correspond to the standard nomenclature for interface versions.
For information about nomenclature for interface versions, see attributes(7).

A change in the D programming interface is accompanied by a new version string, indicating
a Major, Minor, or Micro release. The release definitions are as follows:

x.0
Major
A Major release might contain major feature additions, adhere to different or possibly
incompatible Standard revisions, and change, drop, or replace Standard or Stable interfaces.
For more information about stability, see DTrace Stability Mechanisms. The initial version of
the D programming interface is labeled as version 1.0.

x.y
Minor
Compared to an x.0 or earlier version, where y is not equal to zero, a new Minor release is
likely to contain minor feature additions, compatible Standard and Stable interfaces, possibly
incompatible Evolving interfaces, or likely incompatible Unstable interfaces. These changes
may include new built-in D types, variables, functions, constants, and translators. In addition,
a Minor release may remove support for interfaces previously labeled as Obsolete. For more
information, see DTrace Stability Mechanisms.

x.y.z
Micro

21-1

https://docs.oracle.com/cd/E88353_01/html/E37853/attributes-7.html

Micro releases are intended to be interface compatible with the previous release,
where z is not equal to zero, but are likely to include bug fixes, performance
enhancements, and support for additional hardware.

In general, each new version of the D programming interface will provide a superset of
the capabilities offered by the previous version, with the exception of any Obsolete
interfaces that have been removed.

Versioning Options
By default, any D programs you compile using dtrace -s or specify using the
dtrace -P, -m, -f, -n, or -i command-line options are bound to the most recent D
programming interface version offered by the D compiler. You can determine the
current D programming interface version using the dtrace -V command.

$ dtrace -V
dtrace: Oracle D 1.11.4
$

If you need to establish a binding to a specific version of the D programming interface,
you can set the version option to an appropriate version string. Similar to other
DTrace options, you can set the version option either on the command-line using
dtrace -x:

dtrace -x version=1.0 -n 'BEGIN{trace("hello");}'

For more information about options, see DTrace Options and Tunables.

You can use the #pragma D option syntax to set the option in your D program source
file:

#pragma D option version=1.0

BEGIN
{
 trace("hello");
}

If you use the #pragma D option syntax to request a version binding, you must place
this directive at the top of your D program file prior to any other declarations and probe
clauses. If the version binding argument is not a valid version string or refers to a
version not offered by the D compiler, an appropriate error message will be produced
and compilation will fail. You can therefore also use the version binding facility to
cause execution of a D script on an older version of DTrace to fail with an obvious
error message.

Prior to compiling your program declarations and clauses, the D compiler loads the set
of D types, functions, constants, and translators for the appropriate interface version
into the compiler namespaces. Therefore, any version binding options you specify
simply control the set of identifiers, types, and translators that are visible to your
program in addition to the variables, types, and translators that your program defines.
Version binding prevents the D compiler from loading newer interfaces that may define
identifiers or translators that conflict with declarations in your program source code
and would therefore cause a compilation error. See Identifier Names and Keywords for
tips on how to pick identifier names that are unlikely to conflict with interfaces offered
by future versions of DTrace.

Chapter 21
Versioning Options

21-2

Provider Versioning
Unlike interfaces offered by the D compiler, interfaces offered by DTrace providers, that is
probes and probe arguments, are not affected by or associated with the D programming
interface or the previously described version binding options. The available provider
interfaces are established as part of loading your compiled instrumentation into the DTrace
software in the operating system kernel and vary depending on your instruction set
architecture, operating platform, processor, the software installed on your Oracle Solaris
system, and your current security privileges. The D compiler and DTrace runtime examine the
probes described in your D program clauses and report appropriate error messages when
probes requested by your D program are not available. These features are orthogonal to the
D programming interface version because DTrace providers do not export interfaces that can
conflict with definitions in your D programs; that is, you can only enable probes in D, you
cannot define them, and probe names are kept in a separate namespace from other D
program identifiers.

DTrace providers are delivered with a particular release of Oracle Solaris and are described
in the corresponding version of the Oracle Solaris Dynamic Tracing Guide. You can use the
dtrace -l command to explore the set of providers and probes available on your Oracle
Solaris system. Providers label their interfaces using the DTrace stability attributes, and you
can use the DTrace stability reporting features to determine whether the provider interfaces
used by your D program are likely to change or be offered in future Oracle Solaris releases.
For more information, see DTrace Stability Mechanisms.

Chapter 21
Provider Versioning

21-3

A
libdtrace API Reference

This appendix describes the libdtrace APIs in groups based on functionality:

• General Purpose APIs

• Programming APIs

• Data Consumption APIs

• Formatting Output APIs

• Handler APIs

• Aggregation APIs

• Process Control APIs

• Object, Type, and Symbol APIs

• Probe APIs

• Utility APIs

For more information about the libdtrace library, see the libdtrace(3LIB) man page.

General Purpose APIs
dtrace_hdl_t *dtrace_open(int version, int flags, int *errp)
Creates a DTrace handle, which is passed to other libdtrace functions. See
dtrace_open(3DTRACE).

dtrace_hdl_t *dtrace_vopen(int version, int flags, int *errp,const
dtrace_vector_t *vector, void *arg)
Creates a vectored DTrace open. This API contains pointers to functions to be used instead
of the communication with DTrace. See dtrace_vopen(3DTRACE).

int dtrace_go(dtrace_hdl_t *dtp)
Causes tracing to begin for a D program that has been compiled by using
dtrace_program_strcompile() or dtrace_program_fcompile() and downloaded into the
kernel by using dtrace_program_exec(). See dtrace_go(3DTRACE).

int dtrace_stop(dtrace_hdl_t *dtp)
Disables all the probes associated with the DTrace handle. dtrace_stop also stops
collecting data. See dtrace_stop(3DTRACE).

void dtrace_sleep(dtrace_hdl_t *dtp)
Suspends the execution for an interval time. The duration of the suspension is determined by
certain rates specified in DTrace handle. See dtrace_sleep(3DTRACE).

void dtrace_close(dtrace_hdl_t *dtp)
Closes the DTrace handle and frees any resources associated with it. See
dtrace_close(3DTRACE).

A-1

https://docs.oracle.com/cd/E88353_01/html/E37842/libdtrace-3lib.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-open-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-vopen-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-go-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-stop-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-sleep-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-close-3dtrace.html

int dtrace_errno(dtrace_hdl_t *dtp)
Returns the error number associated with this DTrace handle. The error number will
be set on failure of a libdtrace function call. See dtrace_errno(3DTRACE).

const char *dtrace_errmsg(dtrace_hdl_t *dtp, int error)
Returns a string associated with a particular DTrace error number. For example:

if (dtrace_foo(dtp) == -1) {
 fprintf(stderr, "%s\n",
 dtrace_errmsg(dtp, dtrace_errno(dtp)));
 exit(1);
 }

See dtrace_errmsg(3DTRACE).

const char *dtrace_faultstr(dtrace_hdl_t *dtp, int fault)
Returns a string associated with a particular DTrace fault number. See
dtrace_faultstr(3DTRACE).

const char *dtrace_subrstr(dtrace_hdl_t *dtp, int subr)
Returns the name of a DTrace subroutine given the constant associated with that
subroutine. See dtrace_subrstr(3DTRACE).

int dtrace_setopt(dtrace_hdl_t *dtp, const char *opt, const char *val)
Sets certain options for the DTrace handle for data collection. The full list of options is
provided in DTrace Options and Tunables. Certain options must be set for data
collection. Specifically, if any regular data is collected by using trace(), tracemem(), or
printf(), the bufsize option must be set so that principal buffers are allocated. If any
aggregations are used, the aggsize option must be set so that aggregation buffers
are allocated. The option is specified in the second argument, and the value is
specified as a string in the third argument. See dtrace_setopt(3DTRACE).

int dtrace_getopt(dtrace_hdl_t *dtp, const char *opt, dtrace_optval_t
*val)
Gets the current value of an option, returning the value in the third argument. See
dtrace_getopt(3DTRACE).

void dtrace_update(dtrace_hdl_t *dtp)
Clears the DTrace cache of CTF and other information about the system, and
repopulates the data. See dtrace_update(3DTRACE).

int dtrace_ctlfd(dtrace_hdl_t *dtp)
Returns the file descriptor that is being used to communicate with /dev/dtrace.
See dtrace_ctlfd(3DTRACE).

int dtrace_fire_extern(dtrace_hdl_t *dtp, uint64_t arg1, unit64_t arg2,
uint64_t arg3)
Fires when dtrace_fire_extern is called in the consumer. The EXTERN probe allows a
consumer to pass information to a running DTrace script. The arguments to
dtrace_fire_extern are passed as arguments to the EXTERN probe. See
dtrace_fire_extern(3DTRACE).

Appendix A
General Purpose APIs

A-2

https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-errno-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-errmsg-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-faultstr-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-subrstr-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-setopt-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-getopt-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-update-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-ctlfd-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-fire-extern-3dtrace.html

Programming APIs
dtrace_prog_t *dtrace_program_strcompile(dtrace_hdl_t *dtp, const char *s,
dtrace_probespec_t spec, uint_t cflags, int argc, char *const argv[])
Compiles a D script that is contained in a string. The value returned is passed to some other
functions, like dtrace_program_exec(). See dtrace_program_strcompile(3DTRACE).

dtrace_prog_t *dtrace_program_fcompile(dtrace_hdl_t *dtp, FILE *fp, uint_t
cflags, int argc, char *const argv[])
Compiles a D script contained in an external file. The value returned is passed to some of
the functions below, like dtrace_program_exec(). See
dtrace_program_fcompile(3DTRACE).

int dtrace_program_exec(dtrace_hdl_t *dtp, dtrace_prog_t *pgp,
dtrace_proginfo_t *pip)
Downloads a compiled DTrace program into the kernel DTrace framework. Probes are
enabled during this function call. Information about the program being executed is returned
in the pip argument. For more information, see dtrace_program_info(). See
dtrace_program_exec(3DTRACE).

void dtrace_program_info(dtrace_hdl_t *dtp, dtrace_prog_t
*pgp,dtrace_proginfo_t *pip)
Provides information about the program pgp is returned in the pip argument. This
information is described in the dtrace_proginfo_t data structure. See
dtrace_program_info(3DTRACE).

int dtrace_program_link(dtrace_hdl_t *dtp, dtrace_prog_t *pgp, uint_t dflags,
const char *file, int objc, char *const objv[])
Processes the object files specified in _objv_ (with a count of those files in _objc_) to create
the probe points for that provider, with a given compiled USDT provider definition as _pgp_.
See dtrace_program_link(3DTRACE).

int dtrace_program_header(dtrace_hdl_t *dtp, FILE *out, const char *fname)
Generates a C header file containing the macro definitions for a USDT provider. This header
file is written to _out_. The name of the file, _fname_, is used in the header file. The name of
the file, _fname_, is used in the header file. The information about the provider is stored in
the DTrace handle _dtp_ after dtrace_program_strcompile() or
dtrace_program_fcompile() is called to compile the D language provider definition. See
dtrace_program_header(3DTRACE).

void *dtrace_dof_create(dtrace_hdl_t *dtp, dtrace_prog_t *pgp, uint_t flags)
Returns a pointer to the D object for this program for a given compiled DTrace program pgp.
DOF is the D Object Format, which is the DTrace equivalent of ELF. DOF is downloaded into
the kernel during dtrace_program_exec(). See dtrace_dof_create(3DTRACE).

void dtrace_dof_destroy(dtrace_hdl_t *dtp, void *dof)
Frees any resources associated with the DOF. See dtrace_dof_destroy(3DTRACE).

void *dtrace_getopt_dof(dtrace_hdl_t *dtp)
Returns the DOF containing information about options that have been set by using
dtrace_setopt(). This information is an array containing option identifiers and their values.
See dtrace_getopt(3DTRACE).

Appendix A
Programming APIs

A-3

https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-program-strcompile-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-program-fcompile-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-program-exec-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-program-info-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-program-link-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-program-header-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-dof-create-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-dof-destroy-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-getopt-3dtrace.html

void *dtrace_geterr_dof(dtrace_hdl_t *dtp)
Returns the DOF containing the code to execute for any ERROR clauses in a D
script. These clauses are handled differently from the BEGIN and END clauses.

int dtrace_stmt_iter(dtrace_hdl_t *dtp, dtrace_prog_t *pgp,dtrace_stmt_f
*func, void *data)
Iterates over the statements associated with _pgp_, calling the function _func_ on
each statement. See dtrace_stmt_iter(3DTRACE).

Data Consumption APIs
int dtrace_consume(dtrace_hdl_t *dtp, FILE *fp, dtrace_consume_probe_f
*pf, dtrace_consume_rec_f *rf, void *arg)
Consumes data from the principal buffers. This function walks the CPUs and
processes the data from each in turn. The function is passed two function pointers, pf
and rf, the first to process an ECB (Enabling Control Block, essentially a clause from
a D program) and the second to process individual records. See
dtrace_consume(3DTRACE).

int dtrace_status(dtrace_hdl_t *dtp)
Determines the status of the running DTrace instance (identified by the dtp
argument). See dtrace_status(3DTRACE).

dtrace_workstatus_t dtrace_work(dtrace_hdl_t *dtp, FILE *fp,
dtrace_consume_probe_f *pfunc, dtrace_consume_rec_f *rfunc, void *arg)
Consumes traced data and snapshots aggregation data. dtp is the DTrace handle as
returned by dtrace_open(). See dtrace_work(3DTRACE).

Formatting Output APIs
void *dtrace_printf_create(dtrace_hdl_t *dtp, const char *s)
Generates formatted data from a string, s. dtp is the DTrace handle returned by
dtrace_open(). See dtrace_printf_create(3DTRACE).

void *dtrace_printa_create(dtrace_hdl_t *dtp, const char *s)
Generates formatted data from a string, s. dtp is the DTrace handle returned by
dtrace_open(). See dtrace_printa_create(3DTRACE).

size_t dtrace_printf_format(dtrace_hdl_t *dtp, void *fmtdata, char *s,
size_t len)
Extracts the formatted string from fmtdata and writes at most len bytes of this string
into buf. dtp is the DTrace handle returned by dtrace_open(). See
dtrace_printf_format(3DTRACE).

int dtrace_fprintf(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata, const
dtrace_probedata_t *data, const dtrace_recdesc_t *recp, uint_t nrecs,
const void *buf, size_t len)
Process the data from the printf() action in a D program. See
dtrace_fprintf(3DTRACE).

Appendix A
Data Consumption APIs

A-4

https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-stmt-iter-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-consume-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-status-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-work-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-printf-create-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-printa-create-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-printf-format-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-fprintf-3dtrace.html

int dtrace_fprinta(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata, const
dtrace_probedata_t *data, const dtrace_recdesc_t *recs, uint_t nrecs, const
void *buf, size_t len)
Process the data from the printa() action in a D program. See dtrace_fprinta(3DTRACE).

int dtrace_system(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata, const
dtrace_probedata_t *data, const dtrace_recdesc_t *recp, uint_t nrecs, const
void *buf, size_t len)
Process the data from the system() action in a D program. See dtrace_system(3DTRACE).

int dtrace_freopen(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata, const
dtrace_probedata_t *data, const dtrace_recdesc_t *recp, uint_t nrecs, const
void *buf, size_t len)
Process the data from the freopen() action in a D program. See
dtrace_freopen(3DTRACE).

Handler APIs
int dtrace_handle_err(dtrace_hdl_t *dtp, dtrace_handle_err_f *hdlr, void *arg)
Registers an error handler for a DTrace consumer. The error handler is called when an error
occurs in a running D program such as accessing an invalid address or dividing by zero.
Information about the error is stored in the dtrace_errdata_t argument. The error handler
can return a DTRACE_HANDLE_OK value to continue processing or DTRACE_HANDLE_ABORT to
abort. An error handler has the following signature:

int dtrace_handle_err_f(const dtrace_errdata_t *, void *);

See dtrace_handle_err(3DTRACE).

int dtrace_handle_drop(dtrace_hdl_t *dtp, dtrace_handle_drop_f *hdlr, void
*arg)
Registers a drop handler for a DTrace consumer. The drop handler is called when the data is
dropped by the running D program. Information about the drop (including the drop type) is
stored in the dtrace_dropdata_t argument. The drop handler can return a value to continue
processing DTRACE_HANDLE_OK or DTRACE_HANDLE_ABORT to abort. A drop handler has the
following signature:

int dtrace_handle_drop_f(const dtrace_dropdata_t *, void *);

See dtrace_handle_drop(3DTRACE).

int dtrace_handle_proc(dtrace_hdl_t *dtp, dtrace_handle_proc_f *hdlr, void
*arg)
Registers a process handler for a DTrace consumer. The process handler is called when
certain events occur for a process under DTrace control, such as dynamic linker activity or
the process exiting. The process handler is called whenever certain events occur for a
process under DTrace control, such as dynamic linker activity or the process exiting. A
libproc handle to the process is passed as the first argument, and a predefined message is
passed as the second argument. A proc handler has the following signature:

void dtrace_handle_proc_f(struct ps_prochandle *, const char *, void *);

See dtrace_handle_proc(3DTRACE).

Appendix A
Handler APIs

A-5

https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-fprinta-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-system-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-freopen-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-handle-err-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-handle-drop-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-handle-proc-3dtrace.html

int dtrace_handle_buffered(dtrace_hdl_t *dtp, dtrace_handle_buffered_f
*hdlr, void *arg)
Registers a buffered I/O handler for a DTrace consumer. A buffered I/O handler allows
the consumer to perform its own buffered I/O. If a NULL pointer is passed to
dtrace_work(), dtrace_consume(), or dtrace_aggregate_print(), libdtrace() will
make use of the buffered I/O handler. Output goes into the dtbda_buffered member
of the dtrace_bufdata_t data structure. A simple buffered I/O handler can just print
that output. Information about the probe and the record or aggregation data being
processed is also included. The buffered I/O handler can return a DTRACE_HANDLE_OK
value to continue processing or DTRACE_HANDLE_ABORT to abort. See
dtrace_handle_buffered(3DTRACE).

int dtrace_handle_setopt(dtrace_hdl_t *dtp, dtrace_handle_setopt_f *hdlr,
void *arg)
Registers a setopt handler for a DTrace consumer. The setopt handler is called
when a DTrace option is set from within a D program by using the setopt() action.
Information about the option being set and the old and new values of the option are
passed in the dtrace_setoptdata_t argument. The setopt handler can return a
DTRACE_HANDLE_OK value to continue processing or DTRACE_HANDLE_ABORT to abort.
See dtrace_handle_setopt(3DTRACE).

Aggregation APIs
void dtrace_aggregate_clear(dtrace_hdl_t *dtp)
Clears the aggregation data being stored in user space in the consumer. See
dtrace_aggregate_clear(3DTRACE).

int dtrace_aggregate_snap(dtrace_hdl_t *dtp)
Transfers data in the (in-kernel) aggregation buffers to user space. The data is not
processed at this point, it is stored in the consumer. See
dtrace_aggregate_snap(3DTRACE).

int dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp,
dtrace_aggregate_walk_f *func)
Prints DTrace aggregate data. See dtrace_aggregate_print(3DTRACE).

int dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func,
void *arg)
Processes the aggregate data with no sorting. See
dtrace_aggregate_walk(3DTRACE).

int dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t
*aggvars, int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg)
Processes multiple aggregations at the same time, similar to a database join
operation. See dtrace_aggregate_walk_joined(3DTRACE).

int dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp, dtrace_aggregate_f
*func, void *arg)
Processes the aggregate data as described in dtrace_aggregate_walk()) sorted first
by variable name (if there are multiple aggregations) and within each aggregation by
value. See dtrace_aggregate_walk_sorted(3DTRACE).

Appendix A
Aggregation APIs

A-6

https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-handle-buffered-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-handle-setopt-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-clear-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-snap-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-print-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-walk-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-walk-joined-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-walk-sorted-3dtrace.html

int dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp, dtrace_aggregate_f
*func, void *arg)
Processes the aggregate data (as described in dtrace_aggregate_walk()) sorted first by
variable name (if there are multiple aggregations) and within each aggregation by key. See
dtrace_aggregate_walk_keysorted(3DTRACE).

int dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp, dtrace_aggregate_f
*func, void *arg)
Processes the aggregate data (as described in dtrace_aggregate_walk()) sorted first by
variable name (if there are multiple aggregations) and within each aggregation by value. See
dtrace_aggregate_walk_valsorted(3DTRACE).

int dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp, dtrace_aggregate_f
*func, void *arg)
Processes the aggregate data (as described in dtrace_aggregate_walk()) sorted first by
key. When the same key occurs in two different aggregations, it sorts by aggregation ID. See
dtrace_aggregate_walk_keyvarsorted(3DTRACE).

int dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp, dtrace_aggregate_f
*func, void *arg)
Processes the aggregate data as described in dtrace_aggregate_walk() sorted first by value
and then by variable or aggregation ID. See
dtrace_aggregate_walk_valvarsorted(3DTRACE).

int dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp, dtrace_aggregate_f
*func, void *arg)
Processes the aggregate data (as described in dtrace_aggregate_walk()) in the reverse
order as the dtrace_aggregate_walk_keysorted() function. Specifically, it will sort in reverse
order by variable or aggregation ID and then in reverse order by key. See
dtrace_aggregate_walk_keyrevsorted(3DTRACE).

int dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp, dtrace_aggregate_f
*func, void *arg)
Processes the aggregate data (as described in dtrace_aggregate_walk()) in the reverse
order as the dtrace_aggregate_walk_valsorted() function. Specifically, it will sort in reverse
order by variable or aggregation ID and then in reverse order by value. See
dtrace_aggregate_walk_valrevsorted(3DTRACE).

int dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp, dtrace_aggregate_f
*func, void *arg)
Process the aggregate data (as described in dtrace_aggregate_walk()) in the reverse order
as the dtrace_aggregate_walk_keyvarsorted() function. Specifically, it will sort in reverse
order by key. and then, in the case of collisions, in reverse order by variable or aggregation
ID See dtrace_aggregate_walk_keyvarrevsorted(3DTRACE).

int dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp, dtrace_aggregate_f
*func, void *arg)
Process the aggregate data (as described under dtrace_aggregate_walk()) in the reverse
order as the dtrace_aggregate_walk_valvarsorted() function. Specifically, it will sort in
reverse order by value and then in reverse order by variable or aggregation ID. See
dtrace_aggregate_walk_valrevsorted(3DTRACE).

Appendix A
Aggregation APIs

A-7

https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-walk-keysorted-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-walk-valsorted-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-walk-keyvarsorted-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-walk-valvarsorted-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-walk-keyrevsorted-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-walk-valrevsorted-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregate-walk-keyvarrevsorted-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-aggregated-walk-valrevsorted-3dtrace.html

Process Control APIs
struct ps_prochandle *dtrace_proc_create(dtrace_hdl_t *dtp, const char
*file, char *const *argv)
Creates a process under the control of DTrace. The file argument is the program to
be executed. The argv argument is argv for the executed process. The process is left
in a stopped state and needs to be restarted by calling dtrace_proc_continue(). See
dtrace_proc_create(3DTRACE).

struct ps_prochandle *dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int
flags)
Places an existing process under the control of DTrace. The pid argument is the pid
of the process in question. The possible values for the flag's argument are defined by
libproc, which is a private API. See dtrace_proc_grab(3DTRACE).

void dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
Releases a process under DTrace control. The second argument, P, is the value
returned by a previous call to dtrace_proc_create() or dtrace_proc_grab(). See
dtrace_proc_release(3DTRACE).

void dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
Starts a stopped process. See dtrace_proc_continue(3DTRACE).

Object, Type, and Symbol APIs
int dtrace_object_iter(dtrace_hdl_t *dtp, dtrace_obj_f *func, void *data)
Iterates the object files that DTrace has knowledge of and calls the specified function.
See dtrace_object_iter(3DTRACE).

int dtrace_object_info(dtrace_hdl_t *dtp, const char *object,
dtrace_objinfo_t *dto)
Returns the object information as described for dtrace_object_iter() for the named
module object. The information is returned by using the dto argument. See
dtrace_object_info(3DTRACE).

int dtrace_lookup_by_name(dtrace_hdl_t *dtp, const char *object, const
char *name, GElf_Sym *symp, dtrace_syminfo_t *sip)
Performs a lookup of the symbol name in the module object. The ELF information for
the symbol is returned in symp. The DTrace information is returned in sip. See
dtrace_lookup_by_name(3DTRACE).

int dtrace_lookup_by_addr(dtrace_hdl_t *dtp, GElf_Addr addr, GElf_Sym
*symp, dtrace_syminfo_t *sip)
Performs a lookup of the symbol at the specified address addr. The ELF information
for the symbol is returned in symp. The DTrace information is returned in sip. See
dtrace_lookup_by_addr(3DTRACE).

int dtrace_lookup_by_type(dtrace_hdl_t *dtp, const char *object, const
char *name, dtrace_typeinfo_t *tip)
Performs a lookup of the type name in the module object. The information returned in
tip contains a handle to the CTF container and the ID for that type within that
container. See dtrace_lookup_by_type(3DTRACE).

Appendix A
Process Control APIs

A-8

https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-proc-create-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-proc-grab-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-proc-release-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-proc-continue-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-object-inter-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-object-info-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-lookup-by-name-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-lookup-by-addr-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-lookup-by-type-3dtrace.html

int dtrace_symbol_type(dtrace_hdl_t *dtp, const GElf_Sym *symp, const
dtrace_syminfo_t *sip, dtrace_typeinfo_t *tip)
Returns the type information for the symbol described by symp and sip. See
dtrace_symbol_type(3DTRACE).

int dtrace_type_strcompile(dtrace_hdl_t *dtp, const char *s, dtrace_typeinfo_t
*dtt)
Takes a D language type in a string s, adds the type information to the information stored in
dtp, and returns a reference to that type in tip. See dtrace_type_strcompile(3DTRACE).

int dtrace_type_fcompile(dtrace_hdl_t *dtp, FILE *fp, dtrace_typeinfo_t *dtt)
Takes a D language type in a file referred to by fp, adds the type information to the
information stored in dtp, and returns a reference to that type in tip. See
dtrace_type_fcompile(3DTRACE).

Probe APIs
int dtrace_probe_info(dtrace_hdl_t *dtp, const dtrace_probedesc_t *pdp,
dtrace_probeinfo_t *pip)
Returns information about the probe described in pdp. The information is returned by using
the argument pip. See dtrace_probe_info(3DTRACE).

int dtrace_probe_iter(dtrace_hdl_t *dtp, const dtrace_probedesc_t *pdp,
dtrace_probe_f *func, void *arg)
Iterates the probes that are registered with the DTrace framework, calling the func() function
for each one. See dtrace_probe_iter(3DTRACE).

Utility APIs
int dtrace_addr2str(dtrace_hdl_t *dtp, uint64_t addr, char *str, int nbytes)
Takes a kernel address addr and writes the name of the symbol associated with that address
into the provided buffer str. See dtrace_addr2str(3DTRACE).

int dtrace_uaddr2str(dtrace_hdl_t *dtp, pid_t pid, uint64_t addr, char *str,
int nbytes)
Takes a user space address addr and writes its string representation into the provided buffer
str. The exact behaviour is determined by the uresolve option. See
dtrace_uaddr2str(3DTRACE).

int dtrace_xstr2desc(dtrace_hdl_t *dtp, dtrace_probespec_t spec, const char *s,
int argc, char *const argv[], dtrace_probedesc_t *pdp)
Takes a string, s, containing the name of a DTrace probe that might contain macros, and
populates the dtrace_probedesc_t referenced by pdp with the appropriate data. See
dtrace_xstr2desc(3DTRACE).

int dtrace_str2desc(dtrace_hdl_t *dtp, dtrace_probespec_t spec, const char *s,
dtrace_probedesc_t *pdp)
Takes a string, s, containing the name of a DTrace probe that does not contain macros and
populates the dtrace_probedesc_t referenced by pdp with the appropriate data. See
dtrace_str2desc(3DTRACE).

Appendix A
Probe APIs

A-9

https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-symbol-type-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-type-strcompile-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-type-fcompile-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-probe-info-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-probe-inter-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-addr2str-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-uaddr2str-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-xstr2desc-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-str2desc-3dtrace.html

int dtrace_id2desc(dtrace_hdl_t *dtp, dtrace_id_t id, dtrace_probedesc_t
*pdp)
Takes a DTrace probe ID, id, and populates the fields of the dtrace_probedesc_t
referenced by pdp with the data corresponding to that probe. See
dtrace_id2desc(3DTRACE).

char * dtrace_desc2str(const dtrace_probedesc_t *pdp, char *buf, size_t
len)
Takes a dtrace_probedesc_t() referenced by pdp and returns the description of the
probe in the provided buffer, buf. See dtrace_desc2str(3DTRACE).

char * dtrace_attr2str(dtrace_attribute_t attr, char *buf, size_t len)
Takes a DTrace interface attribute dtrace_attribute_t, attr and returns the string
describing that attribute in the provided buffer, buf. See dtrace_attr2str(3DTRACE).

int dtrace_str2attr(const char *str, dtrace_attribute_t *attr)
Takes a string, str, containing an attribute description and populates the
dtrace_attribute_t referenced by attr with the appropriate data. See
dtrace_str2attr(3DTRACE).

const char * dtrace_stability_name(dtrace_stability_t s)
Takes a DTrace stability value, s, and returns the string corresponding to that stability
value. See dtrace_stability_name(3DTRACE).

const char * dtrace_class_name(dtrace_class_t c)
Takes a value representing a DTrace dependency class and returns the string
corresponding to that value. See dtrace_class_name(3DTRACE).

int dtrace_provider_modules(dtrace_hdl_t *dtp, const char **mods, int
nmods)
Retrieves the list of kernel modules functioning as DTrace providers. The function
writes at most nmods module names into the array mods. See
dtrace_provider_modules(3DTRACE).

Appendix A
Utility APIs

A-10

https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-id2desc-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-desc2str-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-attr2str-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-str2attr-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-stability-name-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-class-name-3dtrace.html
https://docs.oracle.com/cd/E88353_01/html/E37846/dtrace-provider-modules-3dtrace.html

Index

Symbols
/usr/include/dtrace.h

dtrace_program_strcompile() flags, 20-4
$ (dollar sign), 2-51
$ macro variable prefixes, 9-2
$n macro argument, 9-3
$target macro variable, 9-5

A
actions

data recording, 4-2
default, 4-1
defined, 4-1
destructive, 4-16
kernel destructive, 4-18
probes, 2-7
process destructive, 4-16
special, 4-21
speculative, 4-21
subroutines and, 4-1
ustack, 12-4

address spaces
pointers and, 2-42

aggrate value, 3-19, 10-1, 20-6
aggregation walkers

dtrace_aggregate_walk_keyrevsorted(),
20-19

dtrace_aggregate_walk_keysorted(), 20-18
dtrace_aggregate_walk_keyvarrevsorted(),

20-22
dtrace_aggregate_walk_keyvarsorted(),

20-21
dtrace_aggregate_walk_valrevsorted(),

20-20
dtrace_aggregate_walk_valsorted(), 20-19
dtrace_aggregate_walk_valvarrevsorted(),

20-22
dtrace_aggregate_walk_valvarsorted(),

20-21
aggregations

clearing, 3-16
data normalization, 3-13

aggregations (continued)
drops, 3-19
examples, 20-12
examples of use, 3-2
functions, 3-1
joining multiple, 20-30
overview, 3-2
printing, 3-12
processing, 20-17
processing data, 20-12
sorting, 3-16
truncating, 3-18
use, 17-1

alloca subroutine, 4-21
anonymous enabling, 15-1
anonymous tracing

DTrace, 15-1
examples, 15-2

APIs, A-1
arguments

fileops provider, 11-20
profile provider, 11-75

arithmetic
expressions, 2-9

arrays
associative, 2-28
declaration, 2-39
DTrace, 2-14
multi-dimensional, 2-42
pointers and, 2-36
registers and, 12-5
relationship with pointers, 2-40
storage, 2-39

assembly functions, 11-17
avoiding errors, 12-2

B
basename subroutine, 4-22
bcopy subroutine, 4-22
bit fields, 2-54
breakpoint action, 4-18
breakpoint interaction, 11-18

Index-1

buffer policy
END probes, 5-3
fill, 5-2
resizing, 5-4
ring, 5-3
switch, 5-2

buffers
DTrace, 5-1
not principal, 5-3
policies, 5-1
principal, 5-1
resizing policy, 5-4
sizes, 5-4

bufinfo_t structure, 11-28

C
C preprocessor use, 2-7
cacheable predicates, 17-2
chill action, 4-20
claiming anonymous state, 15-1
cleanpath subroutine, 4-22
clear action, 4-2
clear() aggregation function, 3-16
compilation, 2-7
compound data

avg(), 20-13
jstack(), 20-11
llquantize(), 20-15, 20-16
quantize(), 20-14
stack(), 20-10
stddev(), 20-13
tracemem(), 20-12
uaddr(), 20-12
umod(), 20-12
ustack(), 20-11
usym(), 20-12

constants
definitions, 2-54
DTrace, 2-19

consumer functions
dtrace_aggregate_print(), 20-8
dtrace_close(), 20-9
dtrace_errmsg(), 20-9
dtrace_errno(), 20-9
dtrace_go(), 20-5
dtrace_open(), 20-3
dtrace_program_exec(), 20-5
dtrace_program_strcompile(), 20-4
dtrace_setopt(), 20-5
dtrace_sleep(), 20-6
dtrace_stop(), 20-8
dtrace_work(), 20-6

consumers
creating custom, 20-1
DTrace example, 20-1
functions, 20-1
handlers, 20-32
options, 10-1

conversion
formats, 6-4
specifications, 6-2

copyin subroutine, 4-22, 12-1
copyinstr subroutine, 4-23, 12-1
copyinto subroutine, 4-23
copyout action, 4-16
copyoutstr action, 4-16
cpc provider

arguments, 11-3
definition, 11-1
examples, 11-5
stability, 11-7

cpp command, 2-7, 8-1, 20-4
creating

custom consumers, 20-1
csinfo_t structure

icmp provider, 11-126
igmp provider, 11-131

curlwpsinfo built-in variable, 2-33, 19-4
curpsinfo built-in variable, 2-33, 19-4
curthread built-in variable, 2-33

D
D programming

actions, 4-1
address symbol resolution, 4-26
aggregations, 3-1
arithmetic expressions, 2-9
arrays, 2-14
compiling, 2-7
compound data, 20-10
consumers, 20-1
data recording actions, 4-2
default action, 4-1
destructive actions, 4-16
DTrace consumers, A-4
formatting output, 2-11
handler interfaces, 20-32
introduction, 1-1
kernel destructive actions, 4-18
language, 2-1
operators, 2-16
pointers, 2-36
process control interface, 20-38
process destructive actions, 4-16
program structure, 2-1

Index

Index-2

D programming (continued)
strings, 2-43, 20-10
structs, 2-45
subroutines, 4-21
symbols, 2-15
type definitions, 2-54
variables, 2-27

data
normalization, 3-13
processing aggregation data, 20-12
processing traced, 20-9

data recording
clear, 4-2
denormalize, 3-13
freopen, 4-2
ftruncate, 4-3
func, 4-4
jstack, 4-4
mod, 4-4
normalize, 3-13
pcap, 4-4
print, 4-5
printa, 4-6
printf, 4-6
setopt, 4-7
stack, 4-7
sym, 4-8
trace, 4-8
tracemem, 4-9
uaddr, 4-9
ufunc, 4-11
umod, 4-11
ustack, 4-12
usym, 4-15

data types, 2-18
declarations, 2-1
default format

trace, 6-8
defaultargs option, 9-3
denormalize action, 3-13
dependency classes

stability and, 18-2
stability attribute, 18-3

dirname subroutine, 4-23
dtrace

description, 8-1
displaying consumers, 16-1
displaying data, 16-2
eliminating interference, 12-3
exit status, 8-6
interpreter files, 9-1
macro variables, 9-2
operands, 8-6

dtrace (continued)
options, 8-1
privileged use, 14-2
program versioning, 21-1
provider, 11-7
scripting, 9-1
stability of provider, 11-10
utility, 8-1

DTrace, 1-1
dtrace_addr2str(), A-9
dtrace_aggregate_clear(), A-6
dtrace_aggregate_print(), 20-8, A-6
dtrace_aggregate_snap(), A-6
dtrace_aggregate_walk_joined(), A-6
dtrace_aggregate_walk_keyrevsorted(), 20-19,

A-6
dtrace_aggregate_walk_keysorted(), 20-18, A-6
dtrace_aggregate_walk_keyvarrevsorted(),

20-22, A-6
dtrace_aggregate_walk_keyvarsorted(), 20-21,

A-6
dtrace_aggregate_walk_sorted(), A-6
dtrace_aggregate_walk_valrevsorted(), 20-20,

A-6
dtrace_aggregate_walk_valsorted(), 20-19, A-6
dtrace_aggregate_walk_valvarrevsorted(),

20-22, A-6
dtrace_aggregate_walk_valvarsorted(), 20-21,

A-6
dtrace_aggregate_walk(), A-6
dtrace_aggregation_walk_joined(), 20-30
dtrace_attr2str(), A-9
dtrace_class_name(), A-9
dtrace_close(), 20-9
dtrace_close() function, A-1
dtrace_consume(), A-4
dtrace_ctlfd() function, A-1
dtrace_desc2str(), A-9
dtrace_dof_create(), A-3
dtrace_dof_destroy(), A-3
dtrace_errmsg(), 20-9
dtrace_errmsg() function, A-1
dtrace_errno(), 20-9
dtrace_errno() function, A-1
dtrace_faultstr() function, A-1
dtrace_fire_extern() function, A-1
dtrace_fprinta(), A-4
dtrace_fprintf(), A-4
dtrace_freopen(), A-4
dtrace_geterr_dof(), A-3
dtrace_getopt_dof(), A-3
dtrace_getopt() function, A-1
dtrace_go(), 20-5

Index

Index-3

dtrace_go() function, A-1
dtrace_handle_buffered(), A-5
dtrace_handle_drop(), A-5
dtrace_handle_err(), A-5
dtrace_handle_proc(), A-5
dtrace_handle_setopt(), A-5
dtrace_id2desc(), A-9
dtrace_lookup_by_addr(), A-8
dtrace_lookup_by_name(), A-8
dtrace_lookup_by_type(), A-8
dtrace_object_info(), A-8
dtrace_object_iter(), A-8
dtrace_open(), 20-3, A-1
dtrace_printa_create(), A-4
dtrace_printf_create(), A-4
dtrace_printf_format(), A-4
dtrace_probe_info(), A-9
dtrace_probe_iter(), A-9
dtrace_probespec_t, 20-4
dtrace_proc_continue(), A-8
dtrace_proc_create(), A-8
dtrace_proc_grab(), A-8
dtrace_proc_release(), A-8
dtrace_program_exec(), 20-5, A-3
dtrace_program_fcompile(), 20-4, A-3
dtrace_program_header(), A-3
dtrace_program_info(), A-3
dtrace_program_link(), A-3
dtrace_program_strcompile(), 20-4, A-3
dtrace_provider_modules(), A-9
dtrace_recdesc_t structure, 20-9
dtrace_setopt() function, 20-5, A-1
dtrace_sleep() function, 20-6, A-1
dtrace_stability_name(), A-9
dtrace_status(), A-4
dtrace_stmt_iter(), A-3
dtrace_stop() function, 20-8, A-1
dtrace_str2attr(), A-9
dtrace_str2desc(), A-9
dtrace_subrstr() function, A-1
dtrace_symbol_type(), A-8
dtrace_system(), A-4
dtrace_type_fcompile(), A-8
dtrace_type_strcompile(), A-8
dtrace_uaddr2str(), A-9
dtrace_update() function, A-1
dtrace_vopen() function, A-1
dtrace_work(), A-4
dtrace_work() function, 20-6
dtrace_xstr2desc(), A-9

E
enumeration, 2-55
examples

adding probes to applications, 13-2
aggregation function, 3-2
aggregation rather than associative arrays,

17-1
anonymous tracing, 15-2
application profiling, 20-38
consumer embedded D program, 20-1
cpc provider, 11-5
crash dump, 16-2
customizing mblk, 4-4
Hello World, 1-1
icmp provider, 11-129
integer output, 6-3
interpreter files, 9-1
iprbattach source, 15-2
print action, 4-5
printa() action, 6-6
probe descriptions, 2-2
probes, 1-1
processing aggregation data, 20-12
sctpio.d tracing, 11-181
sctpstate.d tracing, 11-181
setting options, 10-3
speculation code path, 7-3
speculation() failure, 7-2
stability reports, 18-4
static application probes, 13-2
sysinfo provider, 11-117
system call frequency, 12-3
timeshare scheduling, 4-1
trace actions, 4-8
truncating stderr, 4-3
uaddr action, 4-9
using timers, 2-3
ustack action, 4-12
vminfo provider, 11-121

execution order, 2-7
exit action, 4-21
expressions

conditional, 2-24
DTrace, 2-16

external symbols, 2-15

F
fbt provider, 11-10

entry probes, 11-11
examples, 11-12
probes, 11-11
return probes, 11-11

Index

Index-4

fbt provider (continued)
stability, 11-18

fileops provider, 11-19
stability, 11-24

formatting output, 2-11, 6-1
fpuinfo provider, 11-24

arguments, 11-26
stability, 11-26

freopen action, 4-2
ftruncate action, 4-3
func action, 4-4
function boundary

probes, 11-59
functions

DTrace consumer, 20-1, 20-32

H
handlers

drop, 20-33
error handler, 20-34
process, 20-36
setopt, 20-36

Hello World example, 1-1

I
icmp provider

arguments, 11-125
definition, 11-125
example, 11-129
stability, 11-130

icmpinfo_t structure
icmp provider, 11-127

identifier names, 2-16
igmp provider

arguments, 11-130
stability, 11-133

igmpinfo_t structure
igmp provider, 11-132

inet_ntoa subroutine, 4-23
inet_ntoa6 subroutine, 4-23
inet_ntop subroutine, 4-24
inline, 2-56
instruction set

limitations, 11-18
instrumentation, 2-7
interfaces

handler, 20-32
process control, 20-38
stability attributes, 18-3

invocation options, 8-1
io provider

arguments, 11-27

io provider (continued)
description, 11-26
examples, 11-31
probes, 11-27
stability, 11-40

ip provider
arguments, 11-134
description, 11-133
examples, 11-139
probes, 11-134
stability, 11-143

ipinfo_t structure
icmp provider, 11-127
igmp provider, 11-131
sctp provider, 11-179

iprb module, 15-2
iprbattach module, 15-2
iscsi provider

arguments, 11-144
description, 11-143
examples, 11-146
probes, 11-143
types, 11-144

J
joining data

multiple aggregations from, 20-30
jstack() action, 4-4, 20-11

K
kernel destructive actions

breakpoint, 4-18
chill, 4-20
panic, 4-20

keywords, 2-16

L
libdtrace APIs

aggregations, A-6
DTrace consumers, A-4
formatters, A-4
general purpose, A-1
handlers, A-5
objects, A-8
probes, A-9
process controls, A-8
programming, A-3
symbols, A-8
types, A-8
utilities, A-9

Index

Index-5

libdtrace library
API reference, A-1
custom consumers, 1-3, 20-1

libraries
libdtrace, 1-3, A-1

lockstat provider, 11-41
stability, 11-44

M
macros

$target variable, 9-5
arguments, 9-3
variables, 9-2

mib provider, 11-44
arguments, 11-57
stability, 11-57

mod action, 4-4
modifying options, 10-3
module loading, 11-18
msgdsize subroutine, 4-24
msgsize subroutine, 4-24
multiple aggregations, 20-30
mutex_owned subroutine, 4-24
mutex_owner subroutine, 4-24
mutex_type_adaptive subroutine, 4-24

N
network services

protocols, 11-125
nfsv3 provider

arguments, 11-148
definition, 11-148
examples, 11-150
probes, 11-149

nfsv4 provider
arguments, 11-157
definition, 11-157
examples, 11-161
probes, 11-158

nlmv4 provider
arguments, 11-168
definition, 11-168
probes, 11-168
stability, 11-171

normalize action, 3-13

O
offsets, 2-53
operators

arithmetic, 2-20
assignment, 2-23

operators (continued)
bitwise, 2-22
decrement, 2-24
DTrace, 2-16
increment, 2-24
logical, 2-22
relational, 2-21

options, 10-1
order of executing DTrace actions, 2-7

P
panic action, 4-20
pcap action, 4-4
performance considerations, 17-1
pid

provider, 12-7
pid provider

definition, 11-58
entry probes, 11-59
function offset probes, 11-59
return probes, 11-59
stability, 11-60

pktinfo_t structure
icmp provider, 11-126
igmp provider, 11-131
ip provider, 11-135
sctp provider, 11-178
tcp provider, 11-192
udp provider, 11-202

platform limitations
SPARC, 11-18
x86, 11-18

plockstat provider
definition, 11-60
mutex probes, 11-61
overview, 11-60
reader/writer lock probes, 11-61
stability, 11-62

pointer arithmetic, 2-40
pointers

address, 2-37
address spaces and, 2-42
arithmetic in, 2-40
arrays and, 2-36
DTrace objects, to, 2-42
generic, 2-41
relationship with arrays, 2-40
safety, 2-38

postmortem tracing, 16-1
precedence, 2-25
predicates, 2-3
print action

example, 4-5

Index

Index-6

printa action, 4-6
printf action, 4-6
printing

DTrace APIs, A-4
printing aggregations, 3-12
privileges

all, 14-4
super user, 14-4

privileges and DTrace, 14-1
PROBE definition, 13-2
probeprov variable, 2-3
probes

adaptive lock, 11-41
adding to an application, 13-1
adding to application code, 13-2
availability, 11-4
BEGIN, 11-8
building applications, 13-3
choosing position of, 13-1
clauses, 2-1
cpc, 11-1
creation, 11-4
descriptions, 2-2
DTrace, 1-1
END, 5-3, 11-8
ERROR, 11-9
fpuinfo provider, 11-24
icmp provider, 11-125
igmp provider, 11-130
limit enabled, 17-1
mib provider, 11-44
pid provider, 11-58
proc provider, 11-62
profile-n, 11-73
providers and, 1-3
readers/writer lock, 11-43
sched provider, 11-78
sctp provider, 11-177
sdt provider, 11-105
spin lock, 11-42
syscall provider, 11-110
sysinfo provider, 11-113
tick-n, 11-75
vminfo, 11-119

proc provider
arguments, 11-64
definition, 11-62
examples, 11-67
stability, 11-73

process control interface, 20-38
Process Control Interface

example, 20-38
process destructive actions

copyout, 4-16

process destructive actions (continued)
copyoutstr, 4-16
raise, 4-16
stop, 4-17
system, 4-17

processing
aggregation data, 20-12
aggregations, 20-17
traced data, 20-9

profile provider
definition, 11-73
probe creation, 11-77
stability, 11-77

profile timer resolution, 11-76
progenyof subroutine, 4-25
protocols

network services, 11-125
providers

cpc, 11-1
defining probes, 13-2
dtrace, 11-7
DTrace, 11-1
fbt, 11-10
fileops, 11-19
fpuinfo, 11-24
icmp, 11-125
igmp, 11-130
io, 11-26
ip, 11-133
iscsi, 11-143
lockstat, 11-41
mib, 11-44
network service protocol, 11-125
nfsv3, 11-148
nfsv4, 11-157
nlmv4, 11-168
pid, 11-58
plockstat, 11-60
probes and, 1-3
proc, 11-62
profile, 11-73
sched, 11-78
scsi, 11-171
sctp, 11-177
sdt, 11-105
srp, 11-182
syscall, 11-110
sysinfo, 11-113
tcp, 11-190
udp, 11-201
USDT stability requirements, 18-4
vminfo, 11-119

Index

Index-7

R
raise action, 4-16
rand subroutine, 4-25
registers

uregs access, 12-5
releases

D compiler labels and, 21-1
rw_iswriter subroutine, 4-25
rw_write_held subroutine, 4-25

S
sched provider

arguments, 11-80
definition, 11-78
examples, 11-82
stability, 11-105

scsi provider
arguments, 11-172
definition, 11-171
examples, 11-175
probes, 11-171
stability, 11-177
structures, 11-172

scsi_addr structure, 11-172
scsi_cdb_t structure, 11-173
scsi_data_t structure, 11-173
scsi_id_t structure, 11-174
scsi_rsp_t structure, 11-174
scsi_tmf_code_t structure, 11-175
sctp provider

arguments, 11-178
definition, 11-177

sctpinfo_t structure, 11-180
sctpio.d example, 11-181
sctplsinfo_t structure, 11-180
sctpsinfo_t structure, 11-179
sctpstate.d example, 11-181
sdt provider

creating probes, 11-109
declaring probes, 11-109
definition, 11-105
examples, 11-106
probe arguments, 11-109
stability, 11-109

security, 14-1
self identifier, 2-29
setopt action, 4-7
sizes

buffers, of, 5-4
bytes, in, 2-53
data types, 2-18

sizes (continued)
prefixes for conversion arg, 6-3

sorting
aggregated data, 3-16

special actions
exit, 4-21

specifiers
flag, 6-2
precision, 6-3
width, 6-3

speculation
committing, 7-3
creating, 7-2
discarding, 7-3
example, 7-3
options, 7-7
tuning, 7-7
using, 7-2

speculation subroutine, 4-25
speculationsubroutine, 7-1
speculative

exit action, 4-21
interfaces, 7-1
tracing, 7-1

srp provider
data transfer probes, 11-185
definition, 11-182
examples, 11-186
probes, 11-183
remote login/logout probes, 11-183
scsi command robe, 11-184
service up/down probes, 11-183
srp command probes, 11-184
types, 11-185

stability
computation and reports, 18-4
dependency classes, 18-2
enforcement, 18-6
interface attribute triplets, 18-3
levels, 18-1
mechanisms, 18-1
USDT requirements, 18-4

stable and unstable translations, 19-4
stack action, 4-7, 20-10
statically defined tracing

user applications, 13-1
statusrate value, 10-1, 20-6
stop action, 4-17
strchr subroutine, 4-25
strings

assignment, 2-44
comparison, 2-45
constants, 2-44
conversion, 2-44

Index

Index-8

strings (continued)
DTrace, 2-43
fixed-length character arrays, 20-10
representation, 2-43

strjoin subroutine, 4-26
strlen subroutine, 4-26
strrchr subroutine, 4-26
strstr subroutine, 4-26
strtok subroutine, 4-26
struct

definition, 2-46
pointers, 2-47
unions and, 2-45

subroutines
actions and, 4-1
alloca, 4-21
basename, 4-22
bcopy, 4-22
cleanpath, 4-22
copyin, 4-22, 12-1
copyinstr, 4-23, 12-1
copyinto, 4-23
dirname, 4-23
DTrace, 4-21
getmajor, 11-28
getminor, 11-28
inet_ntoa, 4-23
inet_ntoa6, 4-23
inet_ntop, 4-24
msgdsize, 4-24
msgsize, 4-24
mutex_owned, 4-24
mutex_owner, 4-24
mutex_type_adaptive, 4-24
progenyof, 4-25
rand, 4-25
rw_iswriter, 4-25
rw_write_held, 4-25
speculation, 4-25, 7-1
strchr, 4-25
strjoin, 4-26
strlen, 4-26
strrchr, 4-26
strstr, 4-26
strtok, 4-26

switchrate, 20-6
switchrate value, 10-1, 20-6
sym action, 4-8
syscall provider

arguments, 11-113
DTrace, 11-110
stability, 11-113
tracing calls, 12-3

sysinfo provider
arguments, 11-116
definition, 11-113
example, 11-117
stability, 11-119

system action, 4-17
system calls

anachronisms, 11-110
deleted, 11-111
large file, 11-112
new, 11-111
private, 11-113
subcoded, 11-110

T
tail-call

optimization, 11-16
tcp provider

arguments, 11-191
DTrace, 11-190
examples, 11-196
probes, 11-190
stability, 11-201

this identifier, 2-31
thread lock, 11-43
timeshare scheduling, 4-1
trace action, 4-8
tracemem action, 4-9, 20-12
tracing

anonymous, 15-1
displaying DTrace consumers, 16-1
examples of anonymous, 15-2
postmortem, 16-1

tracing arbitrary instructions, 12-9
translators

declarations, 19-1
input expression to struct type, 19-1
operating system kernel, for, 19-4
operator, 19-3
process models, of, 19-4
stable data structures and, 19-4

trunc() aggregation function, 3-18
truncating

aggregated data, 3-18
tunables, 10-1
types, 2-15, 2-16

conversions, 2-25
definitions, 2-54
namespaces and, 2-57

U
uaddr action, 4-9, 20-12

Index

Index-9

udp provider
arguments, 11-202
examples, 11-204
probes, 11-201
stability, 11-205

ufunc action, 4-11
umod action, 4-11, 20-12
union, 2-45, 2-51
uregs array, 12-5
USDT interfaces

stability and, 18-4
use aggregations, 17-1
user function boundary tracing, 12-7
user process tracing, 12-1
ustack action, 4-12, 12-4, 20-11
usym action, 4-15, 20-12

V
variables, 2-9, 2-27

built-in, 2-33
clause-local, 2-31

variables (continued)
external, 2-35
scalar, 2-27
thread-local, 2-29

versioning
DTrace conventions, 21-1
DTrace programs, 21-1
options for recent program versions, 21-2
stability and providers, 21-3

vminfo provider
arguments, 11-121
definition, 11-119
example, 11-121
stability, 11-124

W
writing

DTrace consumers, 20-1

X
xlate operator, 19-3

Index

Index-10

	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	1 About DTrace
	Getting Started
	What's New in Dynamic Tracing in Oracle Solaris 11.4
	Providers and Probes

	2 D Programming Language
	D Program Structure
	Probe Clauses and Declarations
	Probe Descriptions
	Predicates in DTrace
	Probe Actions
	Order of Executing DTrace Actions
	Use of the C Preprocessor

	Compilation and Instrumentation in DTrace
	Variables and Arithmetic Expressions in DTrace
	Output Formatting in DTrace
	Arrays in DTrace
	External Symbols and Types in DTrace
	Types, Operators, and Expressions in DTrace
	Identifier Names and Keywords
	Data Types and Sizes
	Constants in DTrace
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Increment and Decrement Operators
	Conditional Expressions
	Type Conversions
	Precedence DTrace Rules

	Variables in DTrace
	Scalar Variables
	Associative Arrays
	Thread-Local Variables
	Clause-Local Variables
	Built-In Variables
	External Variables

	Pointers and Arrays in DTrace
	Pointers and Addresses
	Pointer Safety
	Array Declarations and Storage
	Pointer and Array Relationship
	Pointer Arithmetic
	Generic Pointers
	Multi-Dimensional Arrays
	Pointers to DTrace Objects
	Pointers and Address Spaces

	Strings in DTrace
	String Representation
	String Constants
	String Assignment
	String Conversion
	String Comparison

	Structs and Unions in DTrace
	Structs in DTrace
	Pointers to Structs
	Union Types in DTrace
	Member Sizes and Offsets
	Bit Fields

	Type and Constant Definitions in DTrace
	typedef Keyword
	Enumerations in DTrace
	Inlines in DTrace
	Type Namespaces in DTrace

	3 DTrace Aggregations
	Aggregating Functions
	About Aggregations
	Printing Aggregations
	Data Normalization
	Clearing Aggregations
	Sorting Aggregations
	Truncating Aggregations
	Minimizing Drops

	4 DTrace Actions and Subroutines
	DTrace Actions
	DTrace Default Action
	DTrace Data Recording Actions
	clear Action
	denormalize Action
	freopen Action
	ftruncate Action
	func Action
	jstack Action
	mod Action
	normalize Action
	pcap Action
	print Action
	printa Action
	printf Action
	setopt Action
	stack Action
	sym Action
	trace Action
	tracemem Action
	trunc Action
	uaddr Action
	ufunc Action
	umod Action
	ustack Action
	usym Action

	DTrace Destructive Actions
	Process Destructive Actions
	copyout Action
	copyoutstr Action
	raise Action
	stop Action
	system Action

	Kernel Destructive Actions
	breakpoint Action
	chill Action
	panic Action

	DTrace Special Actions
	Speculative Actions
	exit Action

	DTrace Subroutines
	alloca Subroutine
	basename Subroutine
	bcopy Subroutine
	cleanpath Subroutine
	copyin Subroutine
	copyinstr Subroutine
	copyinto Subroutine
	dirname Subroutine
	inet_ntoa Subroutine
	inet_ntoa6 Subroutine
	inet_ntop Subroutine
	msgdsize Subroutine
	msgsize Subroutine
	mutex_owned Subroutine
	mutex_owner Subroutine
	mutex_type_adaptive Subroutine
	progenyof Subroutine
	rand Subroutine
	rw_iswriter Subroutine
	rw_write_held Subroutine
	speculation Subroutine
	strchr Subroutine
	strjoin Subroutine
	strlen Subroutine
	strrchr Subroutine
	strstr Subroutine
	strtok Subroutine

	DTrace User Address Symbol Resolution

	5 DTrace Buffers and Buffering
	Principal Buffers
	Principal Buffer Policies
	switch Policy
	fill Policy
	fill Policy and END Probes
	ring Policy

	Other Buffers
	Buffer Sizes
	Buffer Resizing Policy

	6 Output Formatting in DTrace
	printf() Function
	Conversion Specifications
	Flag Specifiers
	Width and Precision Specifiers
	Size Prefixes
	Conversion Formats

	printa() Function
	trace Default Format

	7 Speculative Tracing in DTrace
	Speculation Interfaces
	Creating a Speculation
	Using a Speculation
	Committing a Speculation
	Discarding a Speculation
	Speculation Example
	Speculation Options and Tuning

	8 dtrace Utility
	dtrace Command Description
	dtrace Command Options
	dtrace Command Operands
	dtrace Command Exit Status Values

	9 Scripting in DTrace
	Interpreter Files
	Macro Variables
	Macro Arguments
	Target Process ID

	10 DTrace Options and Tunables
	Consumer Options
	Modifying Options

	11 DTrace Providers
	cpc Provider
	cpc Probes
	cpc Probe Arguments
	Probe Availability and CPU Counters
	cpc Probe Creation
	cpc Probe and Existing Tools
	Using the cpc Provider
	cpc Stability

	dtrace Provider
	BEGIN Probe
	END Probe
	ERROR Probe
	dtrace Provider Stability

	fbt Provider
	fbt Probes
	fbt Probe Arguments
	fbt entry Probes
	fbt return Probes

	Using the fbt Provider
	fbt and Tail-Call Optimization
	fbt and Assembly Functions
	fbt and Instruction Set Limitations
	x86 Limitations With fbt
	SPARC Limitations With fbt

	fbt and Breakpoint Interaction
	fbt and Module Loading
	FBT Stability Mechanism

	fileops Provider
	fileops Probes
	fileops Probe Arguments
	Using the fileops read Probe
	fileops Stability

	fpuinfo Provider
	fpuinfo Probes
	fpuinfo Probe Arguments
	fpuinfo Stability

	io Provider
	io Probes
	io Probe Arguments
	io bufinfo_t Structure
	io devinfo_t Structure
	io fileinfo_t Structure
	Using the io Provider
	io Stability

	lockstat Provider
	lockstat Overview
	lockstat Adaptive Lock Probes
	lockstat Spin Lock Probes
	lockstat Thread Locks
	lockstat Reader/Writer Lock Probes
	lockstat Stability

	mib Provider
	mib Probes
	mib Probe Arguments
	mib Stability

	pid Provider
	Naming pid Probes
	pid Function Boundary Probes
	pid entry Probes
	pid return Probes

	pid Function Offset Probes
	pid Stability

	plockstat Provider
	plockstat Overview
	plockstat Mutex Probes
	plockstat Reader/Writer Lock Probes
	plockstat Stability

	proc Provider
	proc Probes
	proc Probe Arguments
	proc lwpsinfo_t Structure
	proc psinfo_t Structure
	Using the proc Provider
	Using the proc exec Probe
	Using proc start and proc exit
	Using proc lwp-start and proc lwp-exit
	Using proc signal-send

	proc Stability

	profile Provider
	profile-n Probes
	tick-n Probes
	profile Probe Arguments
	profile Timer Resolution
	profile Probe Creation
	profile Stability

	sched Provider
	sched Probes
	sched Probe Arguments
	sched cpuinfo_t Structure
	Using the sched Provider
	Using on-cpu and off-cpu
	Using sched Probes
	sleep and wakeup
	preempt and remain-cpu
	Using change-pri
	Using sched tick
	Using sched cpucaps-sleep and cpucaps-wakeup

	sched Stability

	sdt Provider
	SDT Probes
	Using the sdt Provider
	Creating SDT Probes
	Declaring sdt Probes
	sdt Probe Arguments

	sdt Stability

	syscall Provider
	syscall Probes
	System Call Anachronisms
	Subcoded System Calls
	New System Calls
	Deleted System Calls
	Large File System Calls
	Private System Calls

	syscall Probe Arguments
	syscall Stability

	sysinfo Provider
	sysinfo Probes
	sysinfo Probe Arguments
	Using sysinfo mpstat
	sysinfo Stability

	vminfo Provider
	vminfo Probes
	vminfo Probe Arguments
	Using vminfo vmstat
	vminfo Stability

	Network and Network Service Protocol Providers
	icmp Provider
	ICMP Probes
	ICMP Probe Arguments
	ICMP pktinfo_t Structure
	ICMP csinfo_t Structure
	ICMP ipinfo_t Structure
	ICMP icmpinfo_t Structure

	Using the ICMP Provider
	ICMP Errors Sent by Remote Host/Port
	ICMP Packets by Process
	Count Events by ICMP

	ICMP Stability

	igmp Provider
	igmp Probes
	igmp Probe Arguments
	IGMP pktinfo_t Structure
	IGMP csinfo_t Structure
	IGMP ipinfo_t Structure
	IGMP igmpinfo_t Structure

	Monitoring IGMP Traffic by Zone
	IGMP Stability

	ip Provider
	ip Probes
	ip Probe Arguments
	pktinfo_t Structure
	csinfo_t Structure
	ipinfo_t Structure
	ifinfo_t Structure
	ipv4info_t Structure
	ipaddrinfo_t Structure
	routeinfo_t Structure
	ipv6info_t Structure

	Using the ip Provider
	Counting Received Packets by Host Address
	Sent Size Distribution
	Using ipio.d
	ipproto.d for IP Traffic Summary
	Diagnosing Route Flaps

	ip Stability

	iscsi Provider
	iscsi Probes
	iscsi Probe Arguments
	COMSTAR iSCSI Argument Types
	Using the iscsi Provider
	iscsi One-Line Probes
	iscsiwho.d Script
	iscsixfer.d Probes

	nfsv3 Server Provider
	nfsv3 Probe Arguments
	NFSv3 Probes
	Using the nfsv3 Provider
	Tracing NFSv3 Read and Writer Requests Using nfsv3rwsnoop.d
	nfsv3ops.d Counts NFSv3 Client Operations
	nfsv3fileio.d Reports Read and Writes
	nfsv3rwtime.d Reports Read and Write Elapsed Times
	nfsv3io.d Reports Host I/O

	nfsv4 Provider
	nfsv4 Probe Arguments
	NFSv4 Top-Level Probes
	Using the nfsv4 Provider
	Tracing NFSv4 Read and Writer Requests Using nfsv4rwsnoop.d
	nfsv4ops.d Reports Client Operations
	nfsv4fileio.d Reports Reads and Writes
	nfsv4rwtime.d Reports Read and Writer Elapsed Times
	nfsv4io.d Reports Host I/O

	nlmv4 Provider
	nlmv4 Probe Arguments
	nlmv4 Probes
	nlm4_probe_cancargs_t Arguments
	nlm4_probe_cancargs_t Structure
	nlm4_probe_res_t Structure
	nlm4_probe_conflicting_delegation_t Structure
	nlm4_probe_notify_granted_res_t Structure
	nlm4_probe_notify_t Structure
	nlm4_probe_lockargs_t Structure
	nlm4_probe_shareargs_t Structure
	nlm4_probe_shareres_t Structure
	nlm4_probe_testargs_t Structure
	nlm4_probe_testres_t Structure
	nlm4_probe_unlockargs_t Structure

	nlmv4 Stability

	scsi Provider
	SCSI Probes
	scsi Probe Arguments
	scsi_addr_t Structure
	scsi_cdb_t Structure
	scsi_data_t Structure
	scsi_id_t Structure
	scsi_rsp_t Structure
	scsi_tmf_code_t Structure

	Using the scsi Provider
	Tracing SCSI Commands
	Tracing Target Resets
	Displaying TPGS Bits Received
	Tracing Reservation Keys

	scsi Stability

	sctp Provider
	SCTP Probes
	SCTP Probe Arguments
	pktinfo_t Structure
	csinfo_t Structure
	ipinfo_t Structure
	sctpsinfo_t Structure
	sctplsinfo_t Structure
	sctpinfo_t Structure

	Using the sctp Provider
	sctpstate.d Tracing State Changes
	sctpio.d Traces SCTP Packets

	sctp Stability

	srp Provider
	srp Probes
	srp Probes Overview
	Service Up/Down Event Probes
	Remote Port Login/Logout Event Probes
	SRP Command Event Probes
	SCSI Command Event Probes
	Data Transfer Probes

	SRP Argument Types
	scsicmd_t Structure
	conninfo_t Structure
	srp_portinfo_t Structure
	srp_logininfo_t Structure
	srp_taskinfo_t Structure
	xferinfo_t Structure

	Using the srp Provider
	service.d Reports Events
	srpwho.d Reports SRP Events on a Remote HCA Port
	srpsnoop.d Snoops Local Events on a Server

	tcp Provider
	tcp Probes
	Argument Types for the tcp Provider
	pktinfo_t Structure
	csinfo_t Structure
	ipinfo_t Structure
	tcpsinfo_t Structure
	tcplsinfo_t Structure
	tcpinfo_t Structure

	Using the tcp Provider
	Connections by Host Address
	Connections by TCP Port
	Who is Connecting to What
	Who is not Connecting to What
	Packets by Host Address
	Packets by Local Port
	Sent Size Distribution
	tcpstate.d Reports TCP State Changes
	tcpio.d Reports TCP Packet Details

	tcp Stability

	udp Provider
	udp Probes
	udp Probe Arguments
	pktinfo_t Structure
	csinfo_t Structure
	ipinfo_t Structure
	udpsinfo_t Structure
	udpsinfo_t Structure

	Using the udp Provider
	Count of Packets by Host Address
	Count of Packets by Local Port
	IP Payload Sent Size Distribution

	udp Stability

	12 User Process Tracing
	copyin and copyinstr Subroutines
	Subroutine Examples
	Avoiding Errors

	Eliminating dtrace Interference
	syscall Provider
	ustack Action
	uregs[] Array
	pid Provider
	User Function Boundary Tracing
	Tracing Arbitrary Instructions

	13 Statically Defined Tracing for User Applications
	Choosing the Probe Points
	Adding Probes to an Application
	Defining Providers and Probes
	Adding Probes to Application Code
	Building Applications With Probes

	14 Security in DTrace
	Privileges in Oracle Solaris
	Privileged Use of DTrace
	dtrace_proc Privilege
	dtrace_user Privilege
	dtrace_kernel Privilege
	Users Granted All Privileges

	15 Anonymous Tracing in DTrace
	Anonymous Enablings
	Claiming Anonymous State
	Anonymous Tracing Examples

	16 Postmortem Tracing in DTrace
	Displaying DTrace Consumers
	Displaying Trace Data

	17 Performance Considerations in DTrace
	Limit Enabled Probes
	Use Aggregations
	Use Cacheable Predicates

	18 DTrace Stability Mechanisms
	Stability Levels
	Stability Dependency Classes
	Stability Interface Attributes
	Stability Interfaces Defined for USDT Providers
	Stability Computations and Reports
	Stability Enforcement

	19 DTrace Translators
	Translator Declarations
	Translator Operator
	Process Model Translators
	Stable Translations

	20 Writing DTrace Consumers
	Creating Custom DTrace Consumers
	DTrace Consumer Functions
	dtrace_open() Function
	dtrace_program_strcompile() Function
	dtrace_program_exec() Function
	dtrace_setopt() Function
	dtrace_go() Function
	dtrace_sleep() Function
	dtrace_work() Function
	dtrace_stop() Function
	dtrace_aggregate_print() Function
	dtrace_close() Function
	dtrace_errmsg() and dtrace_errno() Functions

	Processing Traced Data in DTrace
	Strings in DTrace
	DTrace Compound Data
	stack() Function
	ustack() and jstack() Functions
	tracemem() Function
	umod(), usym(), and uaddr() Functions

	Processing Aggregation Data in DTrace
	avg() Function
	stddev() Function
	quantize() Function
	lquantize() Function
	llquantize() Function

	Processing of Aggregations in DTrace
	Aggregation Walkers
	dtrace_aggregate_walk_keysorted() Function
	dtrace_aggregate_walk_valsorted() Function
	dtrace_aggregate_walk_keyrevsorted() Function
	dtrace_aggregate_walk_valrevsorted() Function
	dtrace_aggregate_walk_keyvarsorted() Function
	dtrace_aggregate_walk_valvarsorted() Function
	dtrace_aggregate_walk_keyvarrevsorted() Function
	dtrace_aggregate_walk_valvarrevsorted() Function

	Periodic Processing of Aggregation
	Per-CPU Data for Aggregations
	Joining Data From Multiple Aggregations

	DTrace Handler Interfaces
	Drop Handler
	Error Handler
	Process Handler
	setopt Handler

	Process Control Interface in DTrace

	21 Program Versioning in DTrace
	Versions and Releases
	Versioning Options
	Provider Versioning

	A libdtrace API Reference
	General Purpose APIs
	Programming APIs
	Data Consumption APIs
	Formatting Output APIs
	Handler APIs
	Aggregation APIs
	Process Control APIs
	Object, Type, and Symbol APIs
	Probe APIs
	Utility APIs

	Index

