
Managing Encryption and Certificates in
Oracle Solaris 11.4

E61024-02
February 2024

Managing Encryption and Certificates in Oracle Solaris 11.4,

E61024-02

Copyright © 2002, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Copyright © 2002, 2024, Oracle et/ou ses affiliés.

Ce logiciel et la documentation connexe sont fournis en vertu d'un contrat de licence assorti de restrictions relatives à
leur utilisation et divulgation. Ils sont protégés en vertu des lois sur la propriété intellectuelle. Sauf dispositions
contraires prévues de manière expresse dans votre contrat de licence ou permises par la loi, vous ne pouvez pas
utiliser, copier, reproduire, traduire, diffuser, modifier, mettre sous licence, transmettre, distribuer, présenter, effectuer,
publier ou afficher à toutes fins une partie de ces derniers sous quelque forme que ce soit, par quelque moyen que ce
soit. Sont interdits l'ingénierie inverse, le désassemblage ou la décompilation de ce logiciel, sauf à des fins
d'interopérabilité selon les dispositions prévues par la loi.

L'information contenue dans les présentes est sujette à changement sans préavis. Nous ne garantissons pas qu'elle
est exempte d'erreur. Si vous y relevez des erreurs, veuillez nous les signaler par écrit.

Si ce logiciel, la documentation du logiciel ou les données (comme défini dans la réglementation Federal Acquisition
Regulation) ou la documentation afférente sont livrés sous licence au gouvernement des États-Unis d'Amérique ou à
quiconque qui aurait souscrit la licence de ce logiciel pour le compte du gouvernement des États-Unis d'Amérique, la
notice suivante s'applique :

UTILISATEURS DE FIN DU GOUVERNEMENT É.-U. : programmes Oracle (y compris tout système d'exploitation,
logiciel intégré, tout programme intégré, installé ou activé sur le matériel livré et les modifications de tels programmes)
et documentation sur l'ordinateur d'Oracle ou autres logiciels OracleLes données fournies aux utilisateurs finaux du
gouvernement des États-Unis ou auxquelles ils ont accès sont des "logiciels informatiques commerciaux", des
"documents sur les logiciels informatiques commerciaux" ou des "données relatives aux droits limités" conformément
au règlement fédéral sur l'acquisition applicable et aux règlements supplémentaires propres à l'organisme. À ce titre,
l'utilisation, la reproduction, la duplication, la publication, l'affichage, la divulgation, la modification, la préparation des
œuvres dérivées et/ou l'adaptation des i) programmes Oracle (y compris tout système d'exploitation, logiciel intégré,
tout programme intégré, installé, ou activé sur le matériel livré et les modifications de ces programmes), ii) la
documentation informatique d'Oracle et/ou iii) d'autres données d'Oracle, sont assujetties aux droits et aux limitations
spécifiés dans la licence contenue dans le contrat applicable. Les conditions régissant l'utilisation par le
gouvernement des États-Unis des services en nuage d'Oracle sont définies par le contrat applicable à ces services.
Aucun autre droit n'est accordé au gouvernement américain.

Ce logiciel ou matériel informatique est destiné à un usage général, dans diverses applications de gestion de
l'information. Il n'a pas été conçu pour être utilisé dans le cadre d'applications dangereuses, y compris des
applications susceptibles de causer des blessures corporelles. Si vous utilisez ce logiciel ou matériel informatique
dans des applications dangereuses, il vous revient d'adopter les mesures relatives à la protection contre les
interruptions, aux copies de sauvegarde et à la redondance ainsi que toute autre mesure visant à garantir son
utilisation en toute sécurité. Oracle Corporation et ses sociétés affiliées déclinent toute responsabilité relativement
aux dommages pouvant résulter de l'utilisation du logiciel ou du matériel informatique dans des applications
dangereuses.

Oracle®, Java, MySQL et NetSuite sont des marques de commerce enregistrées d'Oracle Corporation et/ou de ses
sociétés affiliées. Les autres noms ou raisons sociales peuvent être des marques de commerce de leurs propriétaires
respectifs.

Intel et Intel Inside sont des marques de commerce ou des marques de commerce enregistrées de Intel Corporation.
Toutes les marques de commerce SPARC sont utilisées sous licence et sont des marques de commerce ou des
marques de commerce enregistrées de SPARC International, Inc. AMD, Epyc et le logo AMD sont des marques de
commerce ou des marques de commerce enregistrées de Advanced Micro Devices. UNIX est une marque de
commerce enregistrée de The Open Group.

Ce logiciel ou matériel informatique et sa documentation peuvent fournir de l'information sur du contenu, des produits
et des services tiers, ou y donner accès. Oracle Corporation et ses sociétés affiliées déclinent toute responsabilité
quant aux garanties de quelque nature que ce soit relatives au contenu, aux produits et aux services offerts par des
tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. Oracle Corporation et ses sociétés affiliées
ne pourront être tenus responsable des pertes, frais et dommages de quelque nature que ce soit découlant de l'accès
à du contenu, des produits ou des services tiers, ou de leur utilisation, sauf mention contraire stipulée dans un contrat
entre vous et Oracle.

Contents

 Using This Documentation

Product Documentation Library vii

Feedback vii

1 About Cryptographic Providers in Oracle Solaris

What's New in Cryptography for Oracle Solaris 11.4 1-1

About Cryptography in Oracle Solaris 1-2

The Cryptographic Framework 1-2

Concepts in the Cryptographic Framework 1-4

Cryptographic Framework Commands and Plugins 1-5

Administrative Commands in the Cryptographic Framework 1-6

User-Level Commands in the Cryptographic Framework 1-6

Elfsign Enhancements 1-7

Plugins to the Cryptographic Framework 1-7

Cryptographic Framework and Zones 1-8

Cryptographic Sources and FIPS 140-2 1-8

Simple and Fast ucrypto Provider 1-9

Operations Supported by the ucrypto Provider 1-9

Disabling libucrypto Mechanisms 1-10

OpenSSL and Oracle Solaris 1-11

2 Cryptographic Optimizations and Hardware Acceleration on SPARC
Based Systems

Cryptographic Framework Optimizations for SPARC Based Systems 2-1

SPARC Acceleration of Optimized Cryptographic Functions 2-1

3 Using the Cryptographic Framework

Protecting Files With the Cryptographic Framework 3-1

How to Generate a Symmetric Key by Using the pktool Command 3-1

How to Compute a Digest of a File 3-5

iv

How to Compute a MAC of a File 3-6

How to Encrypt and Decrypt a File 3-8

Administering the Cryptographic Framework 3-11

Listing Available Providers 3-12

Adding a Software Provider 3-16

How to Add a Software Provider 3-16

Enabling FIPS 140-2 Mode in Oracle Solaris 3-17

How to Create a Boot Environment With FIPS 140-2 Enabled 3-18

Preventing the Use of Mechanisms 3-19

How to Prevent the Use of a User-Level Mechanism 3-19

How to Prevent the Use of a Kernel Software Mechanism 3-21

How to Disable Hardware Provider Mechanisms and Features 3-23

Refreshing or Restarting All Cryptographic Services 3-25

How to Refresh or Restart All Cryptographic Services 3-25

4 Managing Certificates in Oracle Solaris

Managing Public Key Technologies With the Key Management Framework 4-1

Key Management Framework Utilities 4-2

KMF Policy Management 4-2

KMF Plugin Management 4-2

KMF Keystore Management 4-2

Using the Key Management Framework 4-3

How to Create a Certificate by Using the pktool Command 4-4

How to Import a Certificate Into Your Keystore 4-5

How to Export a Certificate and Private Key in PKCS #12 Format 4-6

How to Create a PKCS #11 Keystore 4-8

How to Generate a Passphrase by Using the pktool Command 4-9

How to Generate a Key Pair by Using the pktool genkeypair Command 4-10

How to Sign a Certificate Request by Using the pktool signcsr Command 4-13

How to Manage Third-Party Plugins in KMF 4-15

Managing Certificates in the Oracle Solaris CA Keystore 4-16

How to Add a Certificate to the Oracle Solaris CA Keystore 4-16

How to Exclude Certificates From the Oracle Solaris CA Keystore 4-17

5 KMIP and PKCS #11 Client Applications

Using KMIP in Oracle Solaris 5-1

What pkcs11_kmip Supports 5-2

Creating and Configuring a KMIP Server Group 5-2

kmipcfg info Command 5-3

v

KMIP and the Oracle Key Vault 5-4

Benefits for Oracle Solaris Clients Using KMIP 5-4

6 Cryptographic Services Glossary

consumer 6-1

cryptographic primitive 6-1

hardware provider 6-1

MAC 6-1

mechanism 6-1

password policy 6-2

policy 6-2

policy in the Cryptographic Framework 6-2

policy for public key technologies 6-2

primitive 6-2

provider 6-2

rights 6-3

rights profile 6-3

security mechanism 6-3

security policy 6-3

software provider 6-3

superuser model 6-3

swrand 6-3

Index

vi

Using This Documentation

• Overview – Describes how to administer encryption, keys, and public/private certificates
on Oracle Solaris systems.

• Audience – System administrators who must implement security on the enterprise.

• Required knowledge – Familiarity with security concepts and terminology.

Product Documentation Library
Documentation and resources for this product and related products are available at http://
www.oracle.com/pls/topic/lookup?ctx=E37838-01.

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback .

vii

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/goto/docfeedback

1
About Cryptographic Providers in Oracle
Solaris

This chapter describes the providers of cryptography to the Oracle Solaris operating system,
and covers the following topics:

• What's New in Cryptography for Oracle Solaris 11.4

• The Cryptographic Framework

• OpenSSL and Oracle Solaris

What's New in Cryptography for Oracle Solaris 11.4
This section highlights information for existing customers about new cryptographic services in
this release.

• The Cryptographic Framework is based on the latest version of the PKCS #11
Cryptographic Token Interface Standard, PKCS #11 v2.40. Several new cryptographic
algorithms and security standards have been revised and published in this upgrade. For
more information, see the OASIS PKCS #11 Technical Committee website: https://
www.oasis-open.org/committees/pkcs11/.

• ucrypto is a simple and fast cryptographic interface to user-level cryptographic
primitives. ucrypto is useful for applications with simple needs for pure cryptographic
functionality. In particular, ucrypto is useful when programs cannot or should not use
PKCS #11 or OpenSSL APIs. The faster path to cryptographic functionality through
ucrypto can significantly improve the performance of applications. For more information,
see Simple and Fast ucrypto Provider

• An enhanced elfsign command makes it more difficult for attackers get at your data.
elfsign also separates the signature cryptographic algorithm calculation from the data
range algorithm, making it easier for you to add and maintain new algorithms.

For more information, see Elfsign Enhancements.

• Configurable keystore

As of this Oracle Solaris release, token labels are configurable. You can simultaneously
create a new token, set its PIN, and assign a label to it with a single pktool
inittoken command. You can also use the same command to change the labels of
existing tokens. However, to change the PINs of existing tokens, you continue to use the
pktool setpin command.

Although the pktool setpin command remains a valid command to create a token,
you cannot set the label name using this method. Instead, the default label name is used,
which is Sun Software PKCS #11 softtoken.

If you are running applications or scripts that use pktool setpin to create tokens, you
must revise them to include pktool inittoken to configure token labels as well. For
examples of the use of the pktool inittoken command, see How to Create a PKCS
#11 Keystore.

1-1

https://www.oasis-open.org/committees/pkcs11/
https://www.oasis-open.org/committees/pkcs11/

• The cryptoadm command creates a new BE, thus retains the original BE. For
more information, see Enabling FIPS 140-2 Mode in Oracle Solaris.

About Cryptography in Oracle Solaris
Oracle Solaris provides the Cryptographic Framework to handle cryptographic
requirements. Third parties can add their cryptographic services as plugins to the
Cryptographic Framework. See The Cryptographic Framework.

For faster access to cryptographic primitives, Oracle Solaris offers the ucrypto
provider for access to user-level algorithms. See Simple and Fast ucrypto Provider.

OpenSSL, an open source project, is a source of cryptographic services for Transport
Layer Security (TLS) and Secure Sockets in Oracle Solaris. Oracle Solaris supports
both the non-FIPS 140-2 and the FIPS 140-2 versions of OpenSSL. See OpenSSL
and Oracle Solaris.

The Cryptographic Framework
The Cryptographic Framework provides a common store of algorithms and PKCS #11
libraries to handle cryptographic requirements. The PKCS #11 libraries are
implemented according to the RSA Security Inc. PKCS #11 Cryptographic Token
Interface (Cryptoki) standard.

Chapter 1
About Cryptography in Oracle Solaris

1-2

Figure 1-1 Cryptographic Framework Levels

At the kernel level, the framework currently handles cryptographic requirements for ZFS,
Kerberos and IPsec, as well as hardware. User-level consumers include the OpenSSL
engine, Java Cryptographic Extensions (JCE) and IKE (Internet Key Protocol).

Export law in the United States requires that the use of open cryptographic interfaces be
licensed. The Cryptographic Framework satisfies the current law by requiring that kernel
cryptographic providers and PKCS #11 cryptographic providers be signed. For further
discussion, see the information about the elfsign command in User-Level Commands in
the Cryptographic Framework.

The framework enables providers of cryptographic services to have their services used by
many consumers in Oracle Solaris. Another name for providers is plugins. The framework
supports three types of plugins:

• User-level plugins – Shared objects that provide services by using PKCS #11 libraries,
such as /var/user/$USER/pkcs11_softtoken.so.1.

• Kernel-level plugins – Kernel modules that provide implementations of cryptographic
algorithms in software, such as AES.

Chapter 1
The Cryptographic Framework

1-3

Many of the algorithms in the framework are optimized for x86 with SSSE3
instructions and AVX instructions and for SPARC hardware. For T-Series
optimizations, see Cryptographic Framework Optimizations for SPARC Based
Systems.

• Hardware plugins – Device drivers and their associated hardware accelerators.
The Niagara chips are one example. A hardware accelerator offloads expensive
cryptographic functions from the operating system.

The framework implements a standard interface, the PKCS #11, v2.40 amendment 3
library, for user-level providers. The library can be used by third-party applications to
reach providers. Third parties can also add signed libraries, signed kernel algorithm
modules, and signed device drivers to the framework. These plugins are added when
the Image Packaging System (IPS) installs the third-party software. For a diagram of
the major components of the framework, see Figure 1-1.

Concepts in the Cryptographic Framework
Note the following descriptions of concepts and corresponding examples that are
useful when working with the Cryptographic Framework.

• Algorithms – Cryptographic algorithms are established, recursive computational
procedures that encrypt or hash input. Encryption algorithms can be symmetric or
asymmetric. Symmetric algorithms use the same key for encryption and
decryption. Asymmetric algorithms, which are used in public-key cryptography,
require two keys. Hashing functions are also algorithms.

Examples of algorithms include:

– Symmetric algorithms, such as AES

– Asymmetric algorithms, such as RSA

– Hashing functions, such as SHA256

• Consumers – Users of the cryptographic services that come from providers.
Consumers can be applications, end users, or kernel operations.

Examples of consumers include:

– Applications, such as IKE

– End users, such as a regular user who runs the encrypt command

– Kernel operations, such as IPsec

• Keystore – In the Cryptographic Framework, persistent storage for token objects,
often used interchangeably with token. For information about a reserved keystore,
see Metaslot in this list of definitions.

Token labels are configurable. You can simultaneously create a new token, set its
PIN, and assign it a label with a single pktool inittoken command. You can
also use the same command to change the labels of existing tokens. To change
the PINs of existing tokens, you continue to use the pktool setpin command.

• Mechanism – The application of a mode of an algorithm for a particular purpose.

For example, a DES mechanism that is applied to authentication, such as
CKM_DES_MAC, is a separate mechanism from a DES mechanism that is applied
to encryption, CKM_DES_CBC_PAD.

• Metaslot – A single slot that presents a union of the capabilities of other slots
which are loaded in the framework. The metaslot eases the work of dealing with all

Chapter 1
The Cryptographic Framework

1-4

of the capabilities of the providers that are available through the framework. When an
application that uses the metaslot requests an operation, the metaslot determines which
actual slot will perform the operation. Metaslot capabilities are configurable, but
configuration is not required. The metaslot is on by default. For more information, see the
cryptoadm(8) man page.

The metaslot does not have its own keystore. Rather, the metaslot reserves the use of a
keystore from one of the actual slots in the Cryptographic Framework. By default, the
metaslot reserves the Sun Crypto Softtoken keystore. The keystore that is used by the
metaslot is not shown as one of the available slots.

Users can specify an alternate keystore for metaslot by setting the environment
variables ${METASLOT_OBJECTSTORE_SLOT} and $
{METASLOT_OBJECTSTORE_TOKEN}, or by running the cryptoadm command. For
more information, see the libpkcs11(3LIB), pkcs11_softtoken(7), and cryptoadm(8) man
pages.

• Mode – A version of a cryptographic algorithm. For example, CBC (Cipher Block
Chaining) is a different mode from ECB (Electronic Code Book). The AES algorithm has
modes such as CKM_AES_ECB and CKM_AES_CBC.

• Policy – The choice, by an administrator, of which mechanisms to make available for use.
By default, all providers and all mechanisms are available for use. The enabling or
disabling of any mechanism would be an application of policy. For examples of setting
and applying policy, see Administering the Cryptographic Framework.

• Providers – Cryptographic services that consumers use. Providers plug in to the
framework, and so are also called plugins.

Examples of providers include:

– PKCS #11 libraries, such as /var/user/$USER/pkcs11_softtoken.so
– Modules of cryptographic algorithms, such as aes and arcfour
– Device drivers and their associated hardware accelerators, such as the mca driver for

the Sun Crypto Accelerator 6000

• Slot – An interface to one or more cryptographic devices. Each slot, which corresponds to
a physical reader or other device interface, might contain a token. A token provides a
logical view of a cryptographic device in the framework.

• Token – In a slot, a token provides a logical view of a cryptographic device in the
framework.

Cryptographic Framework Commands and Plugins
The framework provides commands for administrators, for users, and for developers who
supply providers.

• Administrative commands – The cryptoadm command provides a ‐list subcommand to
list the available providers and their capabilities. Regular users can run the cryptoadm
list and the cryptoadm --help commands.

All other cryptoadm subcommands require you to assume a role that includes the
Crypto Management rights profile, or to become superuser. Subcommands such as ‐
disable, ‐install, and ‐uninstall are available for administering the framework. For more
information, see the cryptoadm(8) man page.

The svcadm command is used to manage the kcfd daemon and to refresh
cryptographic policy in the kernel. For more information, see the svcadm(8) man page.

Chapter 1
The Cryptographic Framework

1-5

https://docs.oracle.com/cd/E88353_01/html/E72487/cryptoadm-8.html#REFMAN8cryptoadm-8
https://docs.oracle.com/cd/E88353_01/html/E37842/libpkcs11-3lib.html#REFMAN3Flibpkcs11-3lib
https://docs.oracle.com/cd/E88353_01/html/E37853/pkcs11-softtoken-7.html#REFMAN7pkcs11-softtoken-7
https://docs.oracle.com/cd/E88353_01/html/E72487/cryptoadm-8.html#REFMAN8cryptoadm-8
https://docs.oracle.com/cd/E88353_01/html/E72487/cryptoadm-8.html#REFMAN8cryptoadm-8
https://docs.oracle.com/cd/E88353_01/html/E72487/svcadm-8.html#REFMAN8svcadm-8

• User-level commands – The digest and mac commands provide file integrity
services. The encrypt and decrypt commands protect files from
eavesdropping. To use these commands, see Protecting Files With the
Cryptographic Framework.

Administrative Commands in the Cryptographic Framework
The cryptoadm command administers a running Cryptographic Framework. The
command is part of the Crypto Management rights profile. This profile can be assigned
to a role for secure administration of the Cryptographic Framework. You use the
cryptoadm command to do the following:

• Disable or enable provider mechanisms

• Disable or enable the metaslot

You use the svcadm command to enable, refresh, and disable the cryptographic
services daemon, kcfd. This command is part of the Service Management Facility
(SMF) feature of Oracle Solaris. svc:/system/cryptosvcs is the service instance for
the Cryptographic Framework. For more information, see the smf(7) and svcadm(8)
man pages.

User-Level Commands in the Cryptographic Framework
The Cryptographic Framework provides user-level commands to check the integrity of
files, to encrypt files, and to decrypt files.

• digest command – Computes a message digest for one or more files or for stdin.
A digest is useful for verifying the integrity of a file. SHA1 and SHA384 are
examples of digest functions.

• mac command – Computes a MAC for one or more files or for stdin. A MAC
associates data with an authenticated message. A MAC enables a receiver to
verify that the message came from the sender and that the message has not been
tampered with. The sha1_mac and sha384_hmac mechanisms can compute a
MAC.

• encrypt command – Encrypts files or stdin with a symmetric cipher. The
encrypt -l command lists the algorithms that are available. Mechanisms that
are listed under a user-level library are available to the encrypt command. The
framework provides AES, 3DES (Triple-DES), and Camellia mechanisms for user
encryption.

• decrypt command – Decrypts files or stdin that were encrypted with the
encrypt command. The decrypt command uses the identical key and
mechanism that were used to encrypt the original file.

• elfsign command – Provides a means to sign providers to be used with the
Cryptographic Framework. Typically, this command is run by the developer of a
provider. The elfsign command has subcommands to sign binaries and verify
the signature on a binary. Unsigned binaries cannot be used by the Cryptographic
Framework. Providers that have verifiable signed binaries can use the framework.
For further information, see Elfsign Enhancements.

Chapter 1
The Cryptographic Framework

1-6

https://docs.oracle.com/cd/E88353_01/html/E37853/smf-7.html#REFMAN7smf-7
https://docs.oracle.com/cd/E88353_01/html/E72487/svcadm-8.html#REFMAN8svcadm-8

Elfsign Enhancements
The enhanced elfsign command makes it more difficult for attackers get at your data.
elfsign also separates the signature cryptographic algorithm calculation from the data
range algorithm, making it easier for you to add and maintain new algorithms.

The data range algorithm determines what parts of the ELF file will be signed. The algorithm
used depends on the ELF file type, such as relocatable or executable. The elfsign process
now automatically uses the most appropriate data range algorithm. For relocatable ELF files,
elfsign signs the ELF headers and ELF sections, except for the signature section. For
executable files, elfsign signs the ELF headers and ELF program segments. These
enhancements provide further protection from attack.

You can use the ‐d option to specify what part of the ELF file should be signed.

The default cryptographic algorithm used is rsa_sha256. Use the ‐F option to specify a
different cryptographic algorithm. Alternatively, you can use the new ‐O option to specify an
algorithm's OID, although that OID will not be validated.

The elfsign data subcommand creates a file containing all the data from the ELF file to
be signed, rather than creating a file with a digest. Therefore, signing servers can create a
signature without needing to parse and extract data from the ELF file. Since the elfsign
functionality and an Oracle Solaris system are no longer needed for signature generation,
signatures can be computed off-site.

Note:

The elfsign command continues to support the previous elfsign formats.
Verified boot, however, accepts the new elfsign format and sends a warning or
error message when an older format is used.

For more information and examples, see the elfsign(1) man page.

Plugins to the Cryptographic Framework
Third parties can plug their providers into the Cryptographic Framework. A third-party
provider can be one of the following objects:

• PKCS #11 shared library

• Loadable kernel software module, such as an encryption algorithm, MAC function, or
digest function

• Kernel device driver for a hardware accelerator

The objects from a provider must be signed with a certificate from Oracle. The certificate
request is based on a private key that the third party selects, and a certificate that Oracle
provides. The certificate request is sent to Oracle, which registers the third party and then
issues the certificate. The third party then signs its provider object with the certificate from
Oracle.

The loadable kernel software modules and the kernel device drivers for hardware
accelerators must also register with the kernel. Registration is through the Cryptographic
Framework SPI (service provider interface).

Chapter 1
The Cryptographic Framework

1-7

https://docs.oracle.com/cd/E88353_01/html/E37839/elfsign-1.html#REFMAN1elfsign-1

Cryptographic Framework and Zones
The global zone and each non-global zone has its own /system/cryptosvc service.
When the cryptographic service is enabled or refreshed in the global zone, the kcfd
daemon starts in the global zone, user-level policy for the global zone is set, and
kernel policy for the system is set. When the service is enabled or refreshed in a non-
global zone, the kcfd daemon starts in the zone, and user-level policy for the zone is
set. Kernel policy was set by the global zone.

For more information about zones, see Introduction to Oracle Solaris Zones. For more
information about using SMF to manage persistent applications, see Chapter 1,
Introduction to the Service Management Facility in Managing System Services in
Oracle Solaris 11.4 and the smf(7) man page.

Cryptographic Sources and FIPS 140-2
FIPS 140-2 is a U.S. Government computer security standard for cryptography
modules.

Oracle Solaris systems offer two providers of cryptographic algorithms that are
approved for FIPS 140-2 Level 1.

• The Cryptographic Framework of Oracle Solaris is a provider of two FIPS 140-2
approved modules. The userland module supplies cryptography for applications
that run in user space. The kernel module provides cryptography for kernel-level
processes.

• Oracle Solaris 11.4 ships with FIPS 140-2 capable OpenSSL libraries which
statically link to the Oracle OpenSSL FIPS Object Module (FOM) 1.0. The FOM
provides cryptography for all consumers whose code supports FIPS 140-2. For
more information, see About OpenSSL in FIPS 140-2 Mode in Oracle Solaris in
Using a FIPS 140-2 Enabled System in Oracle Solaris 11.4.

• The ucrypto provider – Provides low-level cryptographic routines to programs that
cannot or should not use PKCS #11 or OpenSSL APIs.

Note the following key considerations:

• Because FIPS 140-2 provider modules are CPU intensive, they are not enabled by
default. As the system administrator, you are responsible for enabling the
providers in FIPS 140-2 mode and configuring applications that use the FIPS
140-2 approved algorithms.

• If you have a strict requirement to use only FIPS 140-2 validated cryptography,
you must be running the Oracle Solaris 11.3 SRU 5.6 release. Oracle completed a
FIPS 140-2 validation against the Cryptographic Framework in this specific
release. Oracle Solaris 11.4 builds on this validated foundation and includes
software improvements that address performance, functionality, and reliability.
Whenever possible, you should configure Oracle Solaris 11.4 in FIPS 140-2 mode
to take advantage of these improvements.

For more information, review the following:

• Using a FIPS 140-2 Enabled System in Oracle Solaris 11.4

• Enabling FIPS 140-2 Mode in Oracle Solaris

Chapter 1
The Cryptographic Framework

1-8

https://docs.oracle.com/cd/E37838_01/html/E61038/index.html
https://docs.oracle.com/cd/E37838_01/html/E60998/gmteb.html#SVSVFgmteb
https://docs.oracle.com/cd/E37838_01/html/E60998/gmteb.html#SVSVFgmteb
https://docs.oracle.com/cd/E37838_01/html/E60998/gmteb.html#SVSVFgmteb
https://docs.oracle.com/cd/E88353_01/html/E37853/smf-7.html#REFMAN7smf-7
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-providers-1.html#OSFIPfips-aboutopenssl
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-providers-1.html#OSFIPfips-aboutopenssl
https://docs.oracle.com/cd/E37838_01/html/E61028/index.html

Simple and Fast ucrypto Provider
The ucrypto provider enables you to directly access user-level cryptographic primitives.

Note:

Cryptographic primitives are well-established, low-level algorithms that function as
basic building blocks in security systems. Primitives are designed to perform single
tasks in a highly reliable fashion.

ucrypto is an alternative to the Cryptographic Framework. ucrypto provides user-level
cryptographic support only, and is intended for use by applications with simple needs for pure
cryptographic functionality. In particular, ucrypto is useful when programs cannot or should
not use PKCS #11 or OpenSSL APIs. The faster path to cryptographic functionality through
ucrypto can significantly improve the performance of applications.

ucrypto meets the requirements for FIPS 140-2 validation. The cryptographic library for
ucrypto, libucrypto, includes all cryptographic algorithms supported by Oracle Solaris.
pkcs11_softtoken is a consumer of libucrypto.

Operations Supported by the ucrypto Provider
The ucrypto provider supports atomic and multi-part cryptographic operations with no locking
and no session management. Atomic operations are performed using one function call. Each
multi-part operation uses a series of three function calls to initialize, update zero or more
times, and finalize each cryptographic operation.

Note:

During multi-part operations, the context is maintained in the caller's address space.
The caller has the responsibility to pass the untouched context between multi-part
operations and to ensure that the context is not used by multiple threads at the
same time.

Table 1-1 ucrypto Operations

Cryptographic Operation Description Function

Encryption Performs atomic or multi-part encryption crypto_encrypt
Decryption Performs atomic or multi-part decryption crypto_decrypt
Signing Performs digital signature operations on atomic or

multi-part data
crypto_sign

Verification Verifies a digital signature on atomic or multi-part
data

crypto_verify

Digest Performs digest operations on atomic or multi-part
data

crypto_digest

Chapter 1
Simple and Fast ucrypto Provider

1-9

Table 1-1 (Cont.) ucrypto Operations

Cryptographic Operation Description Function

Message authentication
code (Mac) operations

Computes a message authentication code for
atomic or multi-part data

crypto_mac

Symmetric and asymmetric
key generation

Generates keys for symmetric operations or key
pairs for asymmetric operations

crypto_keygen

Utility functions Performs various tasks such as returning the ID
number for a specified mechanism

crypto_util

For further information, review the libucrypto* man pages on the command line. The
man pages list the algorithms and algorithm modes that each function supports.

Disabling libucrypto Mechanisms
Administrators can use the Service Management Facility (SMF) to disable the
libucrypto mechanisms. Each mechanism is a property in the svc:/system/
cryptosvc service. The properties are stated using the following format:

policy/libucrypto/algorithm-name

policy/libucrypto/algorithm-name{-[mode]}

For example, to disable the deprecated CRYPTO_MD5 algorithm, type the following
command:

pfbash svccfg -s svc:/system/cryptosvc \
 setprop policy/libucrypto/md5=disabled

where:

• disabled specifies that no functions of the algorithm are permitted.

• enabled specifies that the algorithm is capable of performing all supported
functions. For an encryption algorithm, both encryption and decryption are
permitted. For signature algorithms, both signing and verification are permitted.
Key or keypair generation for that algorithm is permitted.

• deprecated means the algorithm should not be used to create any new
cryptographic data. However, legacy data is still accessible. Decryption or
verification is permitted. Encryption or signing is disabled. Key or keypair
generation for that algorithm is not permitted.

Note:

Digests and MACs can only be enabled or disabled.

For more information, see the setprop subcommand description in the svccfg(8)
man page.

Chapter 1
Simple and Fast ucrypto Provider

1-10

OpenSSL and Oracle Solaris
Oracle Solaris supports two implementations of OpenSSL:

• FIPS 140-2 capable OpenSSL

• Non-FIPS 140-2 capable OpenSSL

Both implementations are compatible with the latest OpenSSL version from the OpenSSL
project. Use the openssl version command to determine the OpenSSL version that is
running on your system. This version is enhanced by code that incorporates Oracle Solaris
features, such as rights profiles, into the OpenSSL project version. The libraries of the FIPS
140-2 and non-FIPS 140-2 OpenSSL implementations are API/ABI compatible.

While both implementations are present in the operating system, only one implementation
can be active at a time. For an example of installing the FIPS 140-2 capable OpenSSL and
switching implementations, see Example of Running in FIPS 140-2 Mode on an Oracle
Solaris 11.4 System in Using a FIPS 140-2 Enabled System in Oracle Solaris 11.4.

Chapter 1
OpenSSL and Oracle Solaris

1-11

https://docs.oracle.com/cd/E37838_01/html/E61028/fips-example-s114.html#OSFIPfips-example-s114
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-example-s114.html#OSFIPfips-example-s114

2
Cryptographic Optimizations and Hardware
Acceleration on SPARC Based Systems

This chapter describes the optimization of cryptographic functions by the Cryptographic
Framework, and the hardware acceleration of these optimized functions on current SPARC
based systems. Affected systems include Oracle's SPARC T4, SPARC T5, SPARC M5,
SPARC M6, SPARC T7, SPARC M7, SPARC S7, and SPARC M8 Servers. The Fujitsu M10
servers and Fujitsu SPARC M12 servers provide similar hardware acceleration.

Cryptographic Framework Optimizations for SPARC Based
Systems

The Cryptographic Framework supplies M-Series Servers beginning with SPARC M5, T-
Series Servers beginning with SPARC T4, and SPARC S7 servers, with cryptographic
mechanisms. Several mechanisms are optimized for these servers, including some
symmetric key algorithms, asymmetric key algorithms, checksums, and digests.

Three cryptographic mechanisms are optimized for data at rest and in motion: AES-CBC, AES-
CFB128, and ARCFOUR. The RSA and DSA cryptographic mechanisms are optimized for
OpenSSL by optimizing arbitrary-precision arithmetic (bignum). Other optimizations include
small packet performance for handshakes and data in motion.

In turn, the SPARC based systems provide hardware acceleration of these cryptographic
mechanisms to both the Cryptographic Framework and OpenSSL.

SPARC Acceleration of Optimized Cryptographic Functions
Beginning with the SPARC T4 microprocessor, new instructions to perform cryptographic
functions are available directly in hardware. The instructions are non-privileged. Thus, any
program can use the instructions. Because cryptography is performed directly on the
hardware, cryptographic operations are faster than operations on legacy systems whose
SPARC processors have separate processing units for cryptography.

The following table provides a detailed comparison of cryptographic functions in SPARC T4
microprocessor units combined with specific Oracle Solaris releases.

Table 2-1 Cryptographic Performance on SPARC T4 and Later SPARC Based Systems

Feature/
Software

Consumer

T4 and Newer Systems
Running Oracle Solaris 10

T4 and Newer Systems
Running Oracle Solaris 11.3

SRUs

T4 and Newer Systems
Running Oracle Solaris 11.4

Secure Shell Requires patch 148104-25.

Disable/Enable with the
UseOpenSSLEngine
option in /etc/ssh/
sshd_config.

Automatically enabled.

For SunSSH, disable/enable
with the UseOpenSSLEngine
option in /etc/ssh/
sshd_config.

The T4 optimizations are
automatically used.

2-1

Table 2-1 (Cont.) Cryptographic Performance on SPARC T4 and Later SPARC Based Systems

Feature/
Software

Consumer

T4 and Newer Systems
Running Oracle Solaris 10

T4 and Newer Systems
Running Oracle Solaris 11.3

SRUs

T4 and Newer Systems
Running Oracle Solaris 11.4

Java/JCE Automatically enabled.

Configure
in $JAVA_HOME/jre/lib
/ security/
java.security

Automatically enabled.

Configure
in $JAVA_HOME/jre/lib/
security/
java.security

Automatically enabled.

Configure
in $JAVA_HOME/jre/lib/
security/
java.security

ZFS Crypto Not available. HW crypto automatically
enabled if dataset is encrypted.

HW crypto automatically
enabled if dataset is encrypted.

IPsec Automatically enabled. Automatically enabled. Automatically enabled.

OpenSSL Requires patch 151912-02 or
newer.

Use ‐engine pkcs11 option.

The T4 optimization is
automatically used.

(Optionally use ‐engine pkcs11.)
To use T4 crypto functions for
RSA or DSA, use this engine.

The T4 optimization is
automatically used.

(Optionally use ‐engine pkcs11.)
To use T4 crypto functions for
RSA or DSA, use this engine.

Oracle TDE Pending patch. Automatically enabled with
Oracle DB 11.2.0.3 and ASO.

Automatically enabled with
Oracle DB 11.2.0.3 and ASO.

Apache SSL Configure with
SSLCryptoDevice
pkcs11.

The T4 optimization is
automatically used.

The T4 optimization is
automatically used.

Logical
Domains

Functionality always
available, no configuration
required.

Functionality always available,
no configuration required.

Functionality always available,
no configuration required.

The T4 and later microprocessors provide on-chip encryption instruction accelerators
with direct nonprivileged support for 15 industry-standard cryptographic algorithms:
AES, Camellia, CRC32c, DES, 3DES, DH, DSA, ECC, MD5, RSA, SHA-1, SHA-224,
SHA-256, SHA-384, SHA-512.

For AES, the instructions include the following encryption and decryption
optimizations:

• Key expansion – Expansions of the 128-bit, 192-bit, or 256-bit user-provided AES
key into a key schedule. The schedule is used internally during encryption and
decryption.

• Rounds or transformations – The number of rounds used (for example 10, 12, or
14) varies according to AES key length. By using larger keys, the user indicates a
desire for more robust encryption at the cost of more computation.

These hardware cryptographic instructions are available and used automatically. The
instructions are also embedded in the OpenSSL upstream code, so beginning with
OpenSSL 1.0.1e, OpenSSL uses the instructions. To determine the version, run the
openssl version command in a terminal window.

Example 2-1 Determining Whether Your SPARC System Supports
Cryptographic Optimizations

Chapter 2
SPARC Acceleration of Optimized Cryptographic Functions

2-2

To determine whether the cryptographic optimizations are supported, use the isainfo
command. The inclusion of sparcv9 and aes in the output indicates that the system supports
the optimizations.

$ isainfo -v
64-bit sparcv9 applications
 crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi
 des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc

Example 2-2 Determining Whether Your SPARC System Is Running Cryptographic
Optimizations

To determine whether your system is running SPARC T4 microprocessor optimizations, check
for the aes_t4 instruction in the OpenSSL libcrypto.so library. If the following command
does not generate output, then your system does not use the SPARC T4 microprocessor
optimizations.

$ nm /lib/libcrypto.so.1.0.0 | grep aes_t4 | head -5
[1273] | 1840096| 52|OBJT |LOCL |0 |20 |aes_t4_128_cbc
[1344] | 1842800| 52|OBJT |LOCL |0 |20 |aes_t4_128_ccm
[1283] | 1840408| 52|OBJT |LOCL |0 |20 |aes_t4_128_cfb
[1286] | 1840512| 52|OBJT |LOCL |0 |20 |aes_t4_128_cfb1
[1289] | 1840616| 52|OBJT |LOCL |0 |20 |aes_t4_128_cfb8

For more information, refer to the following articles.

• "SPARC T4 OpenSSL Engine" (https://blogs.oracle.com/danx/entry/
sparc_t4_openssl_engine)

• "How to tell if SPARC T4 crypto is being used?" (https://blogs.oracle.com/danx/entry/
how_to_tell_if_sparc)

• "Exciting Crypto Advances with the T4 processor and Oracle Solaris 11" (http://
bubbva.blogspot.com/2011/11/exciting-crypto-advances-with-t4.html)

• "SPARC T4 Digest and Crypto Optimizations in Solaris 11.1" (https://blogs.oracle.com/
danx/sparc-t4-digest-and-crypto-optimizations-in-solaris-111)

• Oracle SPARC T7-1 Data Sheet (http://www.oracle.com/us/products/servers-storage/
sparc-t7-1-server-ds-2687047.pdf)

Chapter 2
SPARC Acceleration of Optimized Cryptographic Functions

2-3

https://blogs.oracle.com/danx/entry/sparc_t4_openssl_engine
https://blogs.oracle.com/danx/entry/sparc_t4_openssl_engine
https://blogs.oracle.com/danx/entry/how_to_tell_if_sparc
https://blogs.oracle.com/danx/entry/how_to_tell_if_sparc
http://bubbva.blogspot.com/2011/11/exciting-crypto-advances-with-t4.html
http://bubbva.blogspot.com/2011/11/exciting-crypto-advances-with-t4.html
https://blogs.oracle.com/danx/sparc-t4-digest-and-crypto-optimizations-in-solaris-111
https://blogs.oracle.com/danx/sparc-t4-digest-and-crypto-optimizations-in-solaris-111
http://www.oracle.com/us/products/servers-storage/sparc-t7-1-server-ds-2687047.pdf
http://www.oracle.com/us/products/servers-storage/sparc-t7-1-server-ds-2687047.pdf

3
Using the Cryptographic Framework

This chapter describes how to use the Cryptographic Framework, and covers the following
topics:

• Protecting Files With the Cryptographic Framework

• Administering the Cryptographic Framework

Protecting Files With the Cryptographic Framework
This section describes how to generate symmetric keys, how to create checksums for file
integrity, and how to protect files from eavesdropping. System users can run the commands
described in this section, and developers can write scripts that use them.

To configure your system in FIPS 140-2 mode, you must use FIPS 140-2 validated
algorithms, modes, and key lengths. See FIPS 140-2 Algorithms in the Cryptographic
Framework in Using a FIPS 140-2 Enabled System in Oracle Solaris 11.4.

The Cryptographic Framework can help you protect your files. The following task map points
to procedures for listing the available algorithms, and for protecting your files
cryptographically.

Table 3-1 Protecting Files With the Cryptographic Framework Task Map

Task Description For Instructions

Generate a symmetric key. Generates a key of user-specified length.
Optionally, stores the key in a file or in a PKCS
#11 keystore.

For FIPS 140-2 approved mode, select a key
type, mode, and key length that has been
validated for FIPS 140-2. See FIPS 140-2
Algorithms in the Cryptographic Framework in
Using a FIPS 140-2 Enabled System in Oracle
Solaris 11.4.

How to Generate a Symmetric Key
by Using the pktool Command

Provide a checksum that
ensures the integrity of a
file.

Verifies that the receiver's copy of a file is
identical to the file that was sent.

How to Compute a Digest of a File

Protect a file with a
message authentication
code (MAC).

Verifies to the receiver of your message that
you were the sender.

How to Compute a MAC of a File

Encrypt a file, and then
decrypt the encrypted file.

Protects the content of files by encrypting the
file. Provides the encryption parameters to
decrypt the file.

How to Encrypt and Decrypt a File

How to Generate a Symmetric Key by Using the pktool Command
Some applications require a symmetric key for encryption and decryption of communications.
In this procedure, you create a symmetric key and store it.

3-1

https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1

If your site has a random number generator, you can use the generator to create a
random number for the key. This procedure does not use your site's random number
generator.

1. If you plan to use a keystore, create it.

To create and initialize a PKCS #11 keystore, see How to Generate a Passphrase
by Using the pktool setpin Command.

2. Generate a random number for use as a symmetric key.

For FIPS 140-2 approved algorithms, select a key length that has been validated
for FIPS 140-2. See FIPS 140-2 Algorithms in the Cryptographic Framework in
Using a FIPS 140-2 Enabled System in Oracle Solaris 11.4.

Use one of the following methods.

• Generate a key and store it in a file.

The advantage of a file-stored key is that you can extract the key from this file
to use in an application's key file, such as the /etc/inet/secret/
ipseckeys file or IPsec. The usage statement shows the arguments.

$ pktool genkey keystore=file
...genkey keystore=file
outkey=key-fn
[keytype=aes|arcfour|des|3des|generic]
[keylen=key-size (AES, ARCFOUR or GENERIC only)]
[print=y|n]

outkey= key-fn
The filename where the key is stored.

keytype= specific-symmetric-algorithm
For a symmetric key of any length, the value is generic. For a particular
algorithm, specify aes, arcfour, des, or 3des.

keylen= size-in-bits
The length of the key in bits. The number must be divisible by 8. Do not
specify for des or 3des.

print=y
Prints the key to the terminal window. By default, the value of print is n.

• Generate a key and store it in a PKCS #11 keystore.

The advantage of the PKCS #11 keystore is that you can retrieve the key by
its label. This method is useful for keys that encrypt and decrypt files. You
must complete Step 1 before using this method. The usage statement shows
the arguments. The brackets around the keystore argument indicate that when
the keystore argument is not specified, the key is stored in the PKCS #11
keystore.

$ pktool genkey keystore=pkcs11
...genkey [keystore=pkcs11]
label=key-label
[keytype=aes|arcfour|des|3des|generic]
[keylen=key-size (AES, ARCFOUR or GENERIC only)]
[token=token[:manuf[:serial]]]
[sensitive=y|n]

Chapter 3
Protecting Files With the Cryptographic Framework

3-2

https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1

[extractable=y|n]
[print=y|n]

label= key-label
A user-specified label for the key. The key can be retrieved from the keystore by its
label.

keytype= specific-symmetric-algorithm
For a symmetric key of any length, the value is generic. For a particular algorithm,
specify aes, arcfour, des, or 3des.

keylen= size-in-bits
The length of the key in bits. The number must be divisible by 8. Do not specify for
des or 3des.

token= token
The token name. By default, it is Sun Software PKCS#11 softtoken.

sensitive=n
Specifies the sensitivity of the key. When the value is y, the key cannot be printed by
using the print=y argument. By default, the value of sensitive is n.

extractable=y
Specifies that the key can be extracted from the keystore. Specify n to prevent the
key from being extracted.

print=y
Prints the key to the terminal window. By default, the value of print is n.

3. Verify that the key exists.

Use one of the following commands, depending on where you stored the key.

• Verify the key in the key-fn file.

$ pktool list keystore=file objtype=key [infile=key-fn]
Found n keys.
Key #1 - keytype:location (keylen)

• Verify the key in the PKCS #11 keystore.

For PKCS #11, use the following command:

$ pktool list keystore=pkcs11 objtype=key
Enter PIN for keystore:
Found n keys.
Key #1 - keytype:location (keylen)

Example 3-1 Creating a Symmetric Key by Using the pktool Command

In the following example, a user creates a PKCS #11 keystore for the first time and then
generates a large symmetric key for an application. Finally, the user verifies that the key is in
the keystore.

Note that the initial password for a PKCS #11 keystore is changeme.

$ pktool setpin
Create new passphrase:xxxxxxxx

Chapter 3
Protecting Files With the Cryptographic Framework

3-3

Re-enter new passphrase:xxxxxxxx
Passphrase changed.
$ pktool genkey label=specialappkey keytype=generic keylen=1024
Enter PIN for Sun Software PKCS#11 softtoken :xxxxxxxx

$ pktool list objtype=key
Enter PIN for Sun Software PKCS#11 softtoken :Type password
No. Key Type Key Len. Key Label
--
Symmetric keys:
1 Symmetric 1024 specialappkey

Example 3-2 Creating a FIPS 140-2 Approved AES Key by Using the pktool
Command

In the following example, a secret key for the AES algorithm is created using a FIPS
140-2 approved algorithm and key length. The key is stored in a local file for later
decryption. The command protects the file with 400 permissions. When the key is
created, the print=y option displays the generated key in the terminal window.

The user who owns the keyfile retrieves the key by using the od command.

$ pktool genkey keystore=file outkey=256bit.file1 keytype=aes keylen=256 print=y
Key Value ="aaa2df1d10f02eaee2595d48964847757a6a49cf86c4339cd5205c24ac8c8873"
$ od -x 256bit.file1

0000000 aaa2 df1d 10f0 2eae e259 5d48 9648 4775
0000020 7a6a 49cf 86c4 339c d520 5c24 ac8c 8873
0000040

Example 3-3 Creating a Symmetric Key for IPsec Security Associations

In the following example, the administrator manually creates the keying material for
IPsec SAs and stores them in files. Then, the administrator copies the keys to
the /etc/inet/secret/ipseckeys file, destroys the original files, and sends the
ipseckeys file to the communicating system by a secure mechanism.

First, the administrator creates and displays the keys that the IPsec policy requires:

$ pktool genkey keystore=file outkey=ipencrin1 keytype=aes keylen=256 print=y
Key Value ="294979e512cb8e79370dabeca...................dc3fcbb849e78d2d6bd2049"
$ pktool genkey keystore=file outkey=ipencrout1 keytype=aes keylen=256 print=y
Key Value ="9678f80e33406c86e3d1686e5...................0406bd0434819c20d09d204"
$ pktool genkey keystore=file outkey=ipspi1 keytype=aes keylen=32 print=y
Key Value ="acb...0"
$ pktool genkey keystore=file outkey=ipspi2 keytype=aes keylen=32 print=y
Key Value ="191...5"
$ pktool genkey keystore=file outkey=ipsha21 keytype=aes keylen=256 print=y
Key Value ="659c20f2d6c3f9570bcee93e9...................3369f72c5c786af4177fe9e"
$ pktool genkey keystore=file outkey=ipsha22 keytype=aes keylen=256 print=y
Key Value ="b041975a0e1fce0503665c396....................cf87b0a837b2da5d82c810"

Then, the administrator creates the following /etc/inet/secret/ipseckeys file:

SPI values require a leading 0x.
Backslashes indicate command continuation.
##
for outbound packets on this system
add esp spi 0xacb...20 \
src 192.0.2.1 dst 192.0.2.2 \
encr_alg aes auth_alg sha256 \

Chapter 3
Protecting Files With the Cryptographic Framework

3-4

encrkey 294979e512cb8e79370dabeca...................dc3fcbb849e78d2d6bd2049 \
authkey 659c20f2d6c3f9570bcee93e9...................3369f72c5c786af4177fe9e
##
for inbound packets
add esp spi 0x191...5 \
src 192.0.2.2 dst 192.0.2.1 \
encr_alg aes auth_alg sha256 \
encrkey 9678f80e33406c86e3d1686e5...................0406bd0434819c20d09d204 \
authkey b041975a0e1fce0503665c396....................cf87b0a837b2da5d82c810

After verifying that the syntax of the ipseckeys file is valid, the administrator destroys the
original key files.

$ ipseckey -c /etc/inet/secret/ipseckeys
$ rm ipencrin1 ipencrout1 ipspi1 ipspi2 ipsha21 ipsha22

The administrator copies the ipseckeys file to the communicating system by using the ssh
command or another secure mechanism. On the communicating system, the protections are
reversed. The first entry in the ipseckeys file protects inbound packets, and the second
entry protects outbound packets. No keys are generated on the communicating system.

To proceed with using the key to create a message authentication code (MAC) for a file, see
How to Compute a MAC of a File.

How to Compute a Digest of a File
When you compute a digest of a file, you can check to see that the file has not been
tampered with by comparing digest outputs. A digest does not alter the original file.

1. digest command syntax List the available digest algorithms.

$ digest -l
sha1
md5
sha224
sha256
sha384
sha512
sha512_t
sha3_224
sha3_256
sha3_384
sha3_512

Note:

Whenever possible, select a FIPS 140-2 approved algorithm. See FIPS 140-2
Algorithms in the Cryptographic Framework in Using a FIPS 140-2 Enabled
System in Oracle Solaris 11.4.

2. Compute the digest of the file and save the digest listing.

Provide an algorithm with the digest command.

$ digest -v -a algorithm input-file > digest-listing

Chapter 3
Protecting Files With the Cryptographic Framework

3-5

https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1

‐v
Displays the output in the following format:

algorithm (input-file) = digest

‐a algorithm
The algorithm to use to compute a digest of the file. Type the algorithm as the
algorithm appears in the output of Step 1.

Note:

Whenever possible, select a FIPS 140-2 approved algorithm. See FIPS
140-2 Algorithms in the Cryptographic Framework in Using a FIPS
140-2 Enabled System in Oracle Solaris 11.4.

input-file
The input file for the digest command.

digest-listing
The output file for the digest command.

Example 3-4 Computing a Digest With a SHA2 Mechanism

In the following example, the digest command uses a SHA2 mechanism to provide a
directory listing. The results are placed in a file.

$ digest -v -a sha512 docs/* > $HOME/digest.docs.legal.05.07
$ more ~/digest.docs.legal.05.07
sha512 (docs/legal1) = a269d...c618e1bf19b3d5c9f835242708eb2b572d7b
sha512 (docs/legal2) = 57be3...59a7168564296c142715cc9ed979dd838a7b
sha512 (docs/legal3) = ed31d...0fb3b80d4cd58327bcc29b2e7b90a0af6770
sha512 (docs/legal4) = 67ce1...0ba0c55695614329110d0686bc2773630b5f

How to Compute a MAC of a File
A message authentication code, or MAC, computes a digest for the file and uses a
secret key to further protect the digest. A MAC does not alter the original file.

1. mac command syntax List the available mechanisms.

$ mac -l
Algorithm Keysize: Min Max

sha1_hmac 8 512
md5_hmac 8 512
sha224_hmac 8 512
sha256_hmac 8 512
sha384_hmac 8 1024
sha512_hmac 8 1024
sha512_t_hmac 8 1024

Chapter 3
Protecting Files With the Cryptographic Framework

3-6

https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1

Note:

Each supported algorithm is an alias to the most commonly used and least
restricted version of a particular algorithm type. The preceding output shows
available algorithm names and the keysize for each algorithm. Whenever
possible, use a supported algorithm that matches a FIPS 140-2 approved
algorithm with a FIPS 140-2 approved key length, listed at FIPS 140-2
Algorithms in the Cryptographic Framework in Using a FIPS 140-2 Enabled
System in Oracle Solaris 11.4.

2. Generate a symmetric key of the appropriate length.

You can provide either a passphrase from which a key will be generated or you can
provide a key.

• If you provide a passphrase, you must store or remember the passphrase. If you
store the passphrase online, the passphrase file should be readable only by you.

• If you provide a key, it must be the correct size for the mechanism. You can use the
pktool command. For the procedure and some examples, see How to Generate a
Symmetric Key by Using the pktool Command.

3. Create a MAC for a file.

Provide a key and use a symmetric key algorithm with the mac command.

$ mac [-v] -a algorithm [-k keyfile | -K key-label [-T token]] input-file

‐v
Displays the output in the following format:

algorithm (input-file) = mac

‐a algorithm
The algorithm to use to compute the MAC. Type the algorithm as the algorithm appears
in the output of the mac -l command.

‐k keyfile
The file that contains a key of algorithm-specified length.

‐K key-label
The label of a key in the PKCS #11 keystore.

‐T token
The token name. By default, it is Sun Software PKCS#11 softtoken. It is used only
when the ‐K key-label option is used.

input-file
The input file for the MAC.

Example 3-5 Computing a MAC With SHA256_HMAC and a Passphrase

In the following example, the email attachment is authenticated with the SHA256_HMAC
mechanism and a key that is derived from a passphrase. The MAC listing is saved to a file. If
the passphrase is stored in a file, the file should not be readable by anyone but the user.

Chapter 3
Protecting Files With the Cryptographic Framework

3-7

https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1

$ mac -v -a sha256_hmac email.attach
Enter passphrase: Type passphrase
sha256_hmac (email.attach) = 9c1ee...d6eb74e5d693b7605c96a23df238e52
$ echo "sha256_hmac (email.attach) = 9c1ee...d6eb74e5d693b7605c96a23df238e52" \
>> ~/sha256hmac.daily.05.13

Example 3-6 Computing a MAC With SHA256_HMAC and a Key File

In the following example, the directory manifest is authenticated with the
SHA256_HMAC mechanism and a secret key. The results are placed in a file.

$ mac -v -a sha256_hmac \
-k $HOME/keyf/05.07.mack64 docs/* > $HOME/mac.docs.legal.05.07
$ more ~/mac.docs.legal.05.07
sha256_hmac (docs/legal1) = e1eb...814a595fb6f0aa8c77f6ef35a7f24ae07d1b9a55
sha256_hmac (docs/legal2) = 0460...88a34b895687ecfd97d1647b90fe3618f5114ff9
sha256_hmac (docs/legal3) = 9c1e...eee8a9913d6eb74e5d693b7605c96a23df238e52
sha256_hmac (docs/legal4) = 389f...cb340d33cca5e4aaa18534c06426d32594bdedf6

Example 3-7 Computing a MAC With SHA256_HMAC and a Key Label

In the following example, the directory manifest is authenticated with the
SHA256_HMAC mechanism and a secret key. The results are placed in the user's
PKCS #11 keystore. The user initially created the keystore and the password to the
keystore by using the pktool setpin command.

$ mac -a sha256_hmac -K legaldocs0507 docs/*
Enter pin for Sun Software PKCS#11 softtoken:Type password

To retrieve the MAC from the keystore, the user uses the verbose option, and provides
the key label and the name of the directory that was authenticated.

$ mac -v -a sha256_hmac -K legaldocs0507 docs/*
Enter pin for Sun Software PKCS#11 softtoken:Type password
sha256_hmac (docs/legal1) = e1eb...814a595fb6f0aa8c77f6ef35a7f24ae07d1b9a55
sha256_hmac (docs/legal2) = 0460...88a34b895687ecfd97d1647b90fe3618f5114ff9
sha256_hmac (docs/legal3) = 9c1e...eee8a9913d6eb74e5d693b7605c96a23df238e52
sha256_hmac (docs/legal4) = 389f...cb340d33cca5e4aaa18534c06426d32594bdedf6

How to Encrypt and Decrypt a File
When you encrypt a file, the original file is not removed or changed. The output file is
encrypted.

For solutions to common errors related to the encrypt command, see the section that
follows the examples.

Note:

When encrypting and decrypting files, try to use FIPS 140-2 approved
algorithms with approved key lengths whenever possible. See FIPS 140-2
Algorithms in the Cryptographic Framework in Using a FIPS 140-2 Enabled
System in Oracle Solaris 11.4. Run the encrypt -l command to view
available algorithms and their key lengths.

1. Create a symmetric key of the appropriate length.

Chapter 3
Protecting Files With the Cryptographic Framework

3-8

https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1

You can provide either a passphrase from which a key will be generated or you can
provide a key.

• If you provide a passphrase, you must store or remember the passphrase. If you
store the passphrase online, the passphrase file should be readable only by you.

• If you provide a key, it must be the correct size for the mechanism. You can use the
pktool command. For the procedure and some examples, see How to Generate a
Symmetric Key by Using the pktool Command.

2. List the encryption algorithms.

$ encrypt -l
Algorithm Keysize: Min Max (bits)
--
aes 128 256
arcfour 8 2048
des 64 64
3des 128 192
camellia 128 256

3. Encrypt a file.

Provide a key and use a symmetric key algorithm with the encrypt command.

$ encrypt -a algorithm [-v] \
[-k keyfile | -K key-label [-T token]] [-i input-file] [-o output-file]

‐a algorithm
The algorithm to use to encrypt the file. Type the algorithm as the algorithm appears in
the output of the encrypt -l command. Whenever possible, select a FIPS 140-2
approved algorithm. See “FIPS 140-2 Algorithms in the Cryptographic Framework” in
Using a FIPS 140-2 Enabled System in Oracle Solaris 11.4.

‐k keyfile
The file that contains a key of algorithm-specified length. The key length for each
algorithm is listed, in bits, in the output of the encrypt -l command.

‐K key-label
The label of a key in the PKCS #11 keystore.

‐T token
The token name. By default, it is Sun Software PKCS#11 softtoken. It is used only
when the ‐K key-label option is used.

‐i input-file
The input file that you want to encrypt. This file is left unchanged by the command.

‐o output-file
The output file that is the encrypted form of the input file.

Example 3-8 Creating an AES Key for Encrypting Your Files

In the following example, a user creates and stores an AES key in an existing PKCS #11
keystore for use in encryption and decryption. The user can verify that the key exists and can
use the key, but cannot view the key itself.

$ pktool genkey label=MyAESkeynumber1 keytype=aes keylen=256
Enter PIN for Sun Software PKCS#11 softtoken :xxxxxxxx

Chapter 3
Protecting Files With the Cryptographic Framework

3-9

https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1

$ pktool list objtype=key
Enter PIN for Sun Software PKCS#11 softtoken :xxxxxxxx
No. Key Type Key Len. Key Label
--
Symmetric keys:
1 AES 256 MyAESkeynumber1

To use the key to encrypt a file, the user retrieves the key by its label.

$ encrypt -a aes -K MyAESkeynumber1 -i encryptthisfile -o encryptedthisfile

To decrypt the encryptedthisfile file, the user retrieves the key by its label.

$ decrypt -a aes -K MyAESkeynumber1 -i encryptedthisfile -o sameasencryptthisfile

Example 3-9 Encrypting and Decrypting With AES and a Passphrase

In this example, a file is encrypted with the AES algorithm. The key is generated from
the passphrase. If the passphrase is stored in a file, the file should not be readable by
anyone but the user.

$ encrypt -a aes -i ticket.to.ride -o ~/enc/e.ticket.to.ride
Enter passphrase: xxxxxxxx
Re-enter passphrase: xxxxxxxx

The input file, ticket.to.ride, still exists in its original form.

To decrypt the output file, the user uses the same passphrase and encryption
mechanism that encrypted the file.

$ decrypt -a aes -i ~/enc/e.ticket.to.ride -o ~/d.ticket.to.ride
Enter passphrase: xxxxxxxx

Example 3-10 Encrypting and Decrypting With AES and a Key File

In this example, a file is encrypted with the AES algorithm. AES mechanisms use a
key of 128 bits, or 16 bytes.

$ encrypt -a aes -k ~/keyf/05.07.aes128 \
 -i ticket.to.ride -o ~/enc/e.ticket.to.ride

The input file, ticket.to.ride, still exists in its original form.

To decrypt the output file, the user uses the same key and encryption mechanism that
encrypted the file.

$ decrypt -a aes -k ~/keyf/05.07.aes128 \
 -i ~/enc/e.ticket.to.ride -o ~/d.ticket.to.ride

The following messages indicate that the key that you provided to the encrypt
command is not permitted by the algorithm that you are using.

• encrypt: unable to create key for crypto operation:
CKR_ATTRIBUTE_VALUE_INVALID

Chapter 3
Protecting Files With the Cryptographic Framework

3-10

• encrypt: failed to initialize crypto operation: CKR_KEY_SIZE_RANGE
If you pass a key that does not meet the requirements of the algorithm, you must supply a
better key by using one of the following methods:

• Use a passphrase. The framework then provides a key that meets the requirements.

• Pass a key size that the algorithm accepts. For example, the DES algorithm requires a
key of 64 bits. The 3DES algorithm requires a key of 192 bits.

Administering the Cryptographic Framework
This section describes how to administer the software providers and the hardware providers
in the Cryptographic Framework. You can, for example, disable the implementation of an
algorithm from one software provider. You can then force the system to use the algorithm
from a different software provider.

Caution:

Do not disable the default providers that are included with the Oracle Solaris
operating system. In particular, the pkcs11_softtoken provider is a required part of
Oracle Solaris and must not be disabled by using the cryptoadm command. Some
of the cryptographic algorithms may be hardware accelerated. Administrators can
run the following command to view a list of cryptographic algorithms for their system
and check the HW column in the output:

$ cryptoadm list -vm provider='/usr/lib/security/$ISA/pkcs11_softtoken.so'`

For more information, see the pkcs11_softtoken(7) man page.

Note:

An important component of administering the Cryptographic Framework is to plan
and implement your policy regarding FIPS 140-2, the U.S. Government computer
security standard for cryptography modules. If you have a strict requirement to use
only FIPS 140-2 validated cryptography, you must be running the Oracle Solaris
11.3 SRU 5.6 release. Oracle completed a FIPS 140-2 validation against the
Cryptographic Framework in this specific release. Oracle Solaris 11.4 builds on this
validated foundation and includes software improvements that address
performance, functionality, and reliability. Whenever possible, you should configure
Oracle Solaris 11.4 in FIPS 140-2 mode to take advantage of these improvements.
Review Using a FIPS 140-2 Enabled System in Oracle Solaris 11.4 and plan an
overall FIPS 140-2 policy for your systems.

The following task map points to procedures for administering software and hardware
providers in the Cryptographic Framework.

Chapter 3
Administering the Cryptographic Framework

3-11

https://docs.oracle.com/cd/E88353_01/html/E37853/pkcs11-softtoken-7.html#REFMAN7pkcs11-softtoken-7
https://docs.oracle.com/cd/E37838_01/html/E61028/index.html

Table 3-2 Administering the Cryptographic Framework Task Map

Task Description For Instructions

Plan the FIPS 140-2 policy
for your systems.

Decide on your plan for enabling FIPS 140-2
approved providers and consumers and
implement your plan.

Using a FIPS 140-2 Enabled System in
Oracle Solaris 11.4

List the providers in the
Cryptographic Framework.

Lists the algorithms, libraries, and hardware
devices that are available for use in the
Cryptographic Framework.

Listing Available Providers

Enable FIPS 140-2 mode. Runs the Cryptographic Framework to a
U.S. government standard for cryptography
modules.

How to Create a Boot Environment
With FIPS 140-2 Enabled

Add a software provider. Adds a PKCS #11 library or a kernel module
to the Cryptographic Framework. The
provider must be signed.

How to Add a Software Provider

Prevent the use of a user-
level mechanism.

Removes a software mechanism from use.
The mechanism can be enabled again.

How to Prevent the Use of a User-
Level Mechanism

Temporarily disable
mechanisms from a kernel
module.

Temporarily removes a mechanism from
use. Usually used for testing.

How to Prevent the Use of a Kernel
Software Mechanism

Uninstall a library. Removes a user-level software provider
from use.

Permanently Removing a User-Level
Library

Uninstall a kernel provider. Removes a kernel software provider from
use.

Temporarily Removing Kernel Software
Provider Availability

Disable mechanisms from
a hardware provider.

Ensures that selected mechanisms on a
hardware accelerator are not used.

How to Disable Hardware Provider
Mechanisms and Features

Restart or refresh
cryptographic services.

Ensures that cryptographic services are
available.

How to Refresh or Restart All
Cryptographic Services

Listing Available Providers
Hardware providers are automatically located and loaded. For more information, see
the driver.conf(5) man page.

When you have hardware that expects to plug in to the Cryptographic Framework, the
hardware registers with the SPI in the kernel. The framework checks that the hardware
driver is signed. Specifically, the framework checks that the object file of the driver is
signed with a certificate that Oracle issues.

For information about getting your provider signed, see the information about the
elfsign command in User-Level Commands in the Cryptographic Framework.

To list available providers, you use the cryptoadm list commands with different
options depending on the specific information you want to obtain.

• Listing all the providers on the system.

The contents and format of the providers list varies for different Oracle Solaris
releases and different hardware platforms. Run the cryptoadm list command
on your system to see the providers that your system supports. Only those
mechanisms at the user level are available for direct use by regular users.

Chapter 3
Administering the Cryptographic Framework

3-12

https://docs.oracle.com/cd/E37838_01/html/E61028/index.html
https://docs.oracle.com/cd/E37838_01/html/E61028/index.html
https://docs.oracle.com/cd/E88353_01/html/E37852/driver.conf-5.html#REFMAN5driver.conf-5

$ cryptoadm list
User-level providers:/* for applications */
Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so

Kernel providers:/* for IPsec, Kerberos */
 des
 aes
 arcfour
 blowfish
 camellia
 ecc
 sha1
 sha2
 sha3
 md5
 rsa
 swrand
n2rng/0 /* for hardware */

• Listing the providers and their mechanisms in the Cryptographic Framework.

You can view the strength and modes, such as ECB and CBC, of the available
mechanisms. However, some of the listed mechanisms might be unavailable for use. See
the next item for instructions about how to list which mechanisms can be used.

The following output is truncated for display purposes.

$ cryptoadm list -m [provider=provider]
User-level providers:
=====================

Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so
Mechanisms:
CKM_CAMELLIA_CBC
CKM_CAMELLIA_CBC_PAD
CKM_CAMELLIA_CTR
CKM_CAMELLIA_ECB
CKM_CAMELLIA_KEY_GEN
CKM_DES_CBC
...
CKM_ECDSA_SHA1
CKM_ECDH1_DERIVE

Kernel providers:
==========================
des: CKM_DES_ECB,CKM_DES_CBC,CKM_DES3_ECB,CKM_DES3_CBC
aes: CKM_AES_ECB,CKM_AES_CBC,CKM_AES_CTR,...CKM_AES_CFB8
arcfour: CKM_RC4
blowfish: CKM_BLOWFISH_ECB,CKM_BLOWFISH_CBC
camellia: CKM_CAMELLIA_CBC,CKM_CAMELLIA_CTR,CKM_CAMELLIA_CTS,CKM_CAMELLIA_ECB
ecc: CKM_EC_KEY_PAIR_GEN,CKM_ECDH1_DERIVE,CKM_ECDSA, \
 CKM_ECDSA_SHA1
sha1: CKM_SHA_1,CKM_SHA_1_HMAC,CKM_SHA_1_HMAC_GENERAL
sha2: CKM_SHA224,CKM_SHA224_HMAC,...CKM_SHA512_256_HMAC_GENERAL
sha3: CKM_SHA3_224,CKM_SHA3_224_HMAC,CKM_SHA3_256,...CKM_SHA3_512_HMAC
md5: CKM_MD5,CKM_MD5_HMAC,CKM_MD5_HMAC_GENERAL
rsa: CKM_RSA_PKCS,CKM_RSA_X_509,...CKM_SHA512_RSA_PKCS
swrand: No mechanisms presented.
n2rng/0: No mechanisms presented.

• Listing the available cryptographic mechanisms.

Chapter 3
Administering the Cryptographic Framework

3-13

Policy determines which mechanisms are available for use. The administrator sets
the policy. An administrator can choose to disable mechanisms from a particular
provider. The ‐p option displays the list of mechanisms that are permitted by the
policy that the administrator has set.

$ cryptoadm list -p [provider=provider]
User-level providers:
=====================
/usr/lib/security/$ISA/pkcs11_softtoken.so: \
 all mechanisms are enabled, random is enabled.

Kernel providers:
==========================
des: all mechanisms are enabled.
aes: all mechanisms are enabled.
arcfour: all mechanisms are enabled.
blowfish: all mechanisms are enabled.
camellia: all mechanisms are enabled.
ecc: all mechanisms are enabled.
sha1: all mechanisms are enabled.
sha2: all mechanisms are enabled.
sha3: all mechanisms are enabled.
md5: all mechanisms are enabled.
rsa: all mechanisms are enabled.
swrand: random is enabled.
n2rng/0: all mechanisms are enabled. random is enabled.

The following examples show additional specific uses of the cryptoadm list
command.

Example 3-11 Listing Cryptographic Information of a Specific Provider

Specifying the provider in the cryptoadm options command limits the output only
to information that is applicable to the provider.

$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled, except
CKM_DES_CMC, CKM_DES_ECB,...random is disabled.

The following output shows that only the mechanisms have been enabled. The
random generator continues to be disabled.

$ cryptoadm enable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
mechanism=all
$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled. random
is disabled.

The following output shows that every feature and mechanism on the board has been
enabled.

$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms ar enabled, except
CKM_DES_ECB,CKM_DES3_ECB. random is disabled.
$ cryptoadm enable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so all
$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled. random
is enabled.

Chapter 3
Administering the Cryptographic Framework

3-14

Example 3-12 Finding User-Level Cryptographic Mechanisms Only

In the following example, all mechanisms that the user-level library, pkcs11_softtoken, offers
are listed.

$ cryptoadm list -m provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
Mechanisms:
CKM_CAMELLIA_CBC
CKM_CAMELLIA_CBC_PAD
CKM_CAMELLIA_CTR
CKM_CAMELLIA_ECB
CKM_CAMELLIA_KEY_GEN
CKM_DES_CBC
…
CKM_ECDSA
CKM_ECDSA_SHA1
CKM_ECDH1_DERIVE

Example 3-13 Determining Which Cryptographic Mechanisms Perform Which
Functions

Mechanisms perform specific cryptographic functions, such as signing or key generation. The
‐v ‐m options display every mechanism and its functions.

In this example, the administrator wants to determine the functions for which the CKM_ECDSA*
mechanisms can be used.

$ cryptoadm list -vm
...

Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so
Description: Sun Crypto Softtoken
Manufacturer: Oracle Corporation
PKCS#11 Version: 2.40
...
Mechanisms:
 E D S V P E E
 n e D i V e K a U D x C
 c c i g e r e i n e t
 r r g S + r + y r W w r e C
 y y e i R i R G G r r i n a
 H p p s g e f e e e a a v s p
Mechanism Name Minimum Maximum W t t t n c y c n n p p e n s
---------------------- ------- ---------- - - - - - - - - - - - - - - -
...
CKM_ECDSA_SHA1 112 571 X . X
CKM_ECDH1_DERIVE 112 571 X . .
...
Kernel providers:
=================
...
ecc: CKM_EC_KEY_PAIR_GEN,CKM_ECDH1_DERIVE,CKM_ECDSA,CKM_ECDSA_SHA1
...

Each item in an entry represents a piece of information about the mechanism. For these ECC
mechanisms, the listing indicates the following:

• Minimum length – 112 bytes

Chapter 3
Administering the Cryptographic Framework

3-15

• Maximum length – 571 bytes

• Hardware – Is or is not available on hardware.

• Encrypt – Is not used to encrypt data.

• Decrypt – Is not used to decrypt data.

• Digest – Is not used to create message digests.

• Sign – Is used to sign data.

• Sign + Recover – Is not used to sign data, where the data can be recovered from
the signature.

• Verify – Is used to verify signed data.

• Verify + Recover – Is not used to verify data that can be recovered from the
signature.

• Key generation – Is not used to generate a private key.

• Pair generation – Is not used to generate a key pair.

• Wrap – Is not used to wrap. that is, encrypt, an existing key.

• Unwrap – Is not used to unwrap a wrapped key.

• Derive – Is not used to derive a new key from a base key.

• EC Caps – Absent EC capabilities that are not covered by previous items

Adding a Software Provider
The following procedure explains how to add providers to the system. You must
become an administrator who is assigned the Crypto Management rights profile. For
more information, see Using Your Assigned Administrative Rights in Securing Users
and Processes in Oracle Solaris 11.4.

How to Add a Software Provider
1. Updated output s11.4 May 2018-

List the software providers that are available to the system.

$ cryptoadm list

User-level providers:
Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so

Kernel providers:
 des
 aes
 arcfour
 blowfish
 camellia
 ecc
 sha1
 sha2
 sha3
 md5
 rsa
 swrand
 n2rng/0

Chapter 3
Administering the Cryptographic Framework

3-16

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28

2. repository installing third-party providers Add the package for a new provider from a
repository.

This example installs the pkcs11_kmip package. For information about KMIP, see KMIP
and PKCS #11 Client Applications.

$ pkg install pkcs11_kmip

 Packages to install: 2
 Create boot environment: No
Create backup boot environment: No

DOWNLOAD PKGS FILES XFER
(MB) SPEED
Completed 2/2 18/18 0.6/0.6 251k/s

PHASE ITEMS
Installing new actions 50/50
Updating package state database Done
Updating package cache 0/0
Updating image state Done
Creating fast lookup database Done
Updating package cache 1/1

3. Register the new provider with the Cryptographic Framework.

$ cryptoadm install provider='/usr/lib/security/$ISA/pkcs11_kmip.so'

4. Locate the new provider on the list.

In this case, a new user-level software provider was installed.

$ cryptoadm list

User-level providers:
Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so
Provider: /usr/lib/security/$ISA/pkcs11_kmip.so <-- added provider

Kernel providers:
 des
 aes
 arcfour
 blowfish
 camellia
 ecc
 sha1
 sha2
 sha3
 md5
 rsa
 swrand
 n2rng/0

Enabling FIPS 140-2 Mode in Oracle Solaris
By default, FIPS 140-2 mode is disabled in Oracle Solaris. In this procedure, you create a
boot environment (BE) for FIPS 140-2 mode, then activate and boot the new BE.

Chapter 3
Administering the Cryptographic Framework

3-17

How to Create a Boot Environment With FIPS 140-2 Enabled
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

1. Determine whether the system is in FIPS 140-2 mode.

$ cryptoadm list fips-140
User-level providers:
=====================
/usr/lib/security/$ISA/pkcs11_softtoken: FIPS 140 mode is disabled.

Kernel providers:
=================
des: FIPS 140 mode is disabled.
aes: FIPS 140 mode is disabled.
ecc: FIPS 140 mode is disabled.
sha1: FIPS 140 mode is disabled.
sha2: FIPS 140 mode is disabled.
sha3: FIPS 140 mode is disabled.
rsa: FIPS 140 mode is disabled.
swrand: FIPS 140 mode is disabled.

2. Enable FIPS 140-2 mode.

This command creates a BE in FIPS 140-2 mode. If the fips-140 package is not
yet loaded, this command also loads the package.

cryptoadm enable fips-140
3. List the BEs.

$ beadm list
BE Flags Mountpoint Space Policy Created
-- ------ ---------- ------ ------ ----------------
S114Jan - - 48.22G static 2018-01-10 10:10
S114Jan-1 NR / 287.01M static 2018-01-20 10:10

Caution:

A FIPS 140-2 enabled system runs compliance tests that can cause a
panic if they fail. Therefore, retain the original BE.

4. Activate the FIPS 140-2 BE and reboot.

beadm activate S114Jan-1
reboot

You are now running in FIPS 140-2 mode.

Chapter 3
Administering the Cryptographic Framework

3-18

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28

Note:

FIPS 140-2 mode does not disable the non-FIPS 140-2 approved algorithms
from the user-level pkcs11_softtoken library and the kernel software
providers. The consumers of the framework are responsible for using only FIPS
140-2 approved algorithms. For more information, see Using a FIPS 140-2
Enabled System in Oracle Solaris 11.4 and the cryptoadm(8) man page.

5. To run without FIPS 140-2 enabled, boot a non-FIPS 140-2 BE.

In this example, you reboot to the original BE.

$ beadm list
BE Flags Mountpoint Space Policy Created
-- ------ ---------- -------- ------ -----------------
S114Jan - - 48.22G static 2018-01-10 10:10
S114Jan-1 NR / 287.01M static 2018-01-20 10:10
beadm activate S114Jan
beadm list
BE Flags Mountpoint Space Policy Created
-- ------ ---------- ------- ------ -----------------
S114Jan R - 48.22G static 2018-01-10 10:10
114Jan-1 N / 287.01M static 2018-01-20 10:10
reboot

Preventing the Use of Mechanisms
If some of the cryptographic mechanisms from a library provider should not be used, you can
remove selected mechanisms. You might consider preventing the use of mechanisms if, for
example, the same mechanism in another library performs better, or if a security vulnerability
is being investigated.

If the Cryptographic Framework provides multiple modes of a provider such as AES, you
might remove a slow mechanism from use, or a corrupted mechanism. You might also use
this procedure to remove an algorithm with proven security vulnerabilities.

You can selectively disable mechanisms and the random number feature from a hardware
provider. To enable them again, see Selectively Enabling Mechanisms and Features on a
Provider. The hardware in this example provides a random number generator.

How to Prevent the Use of a User-Level Mechanism
You must become an administrator who is assigned the Crypto Management rights profile.
For more information, see Using Your Assigned Administrative Rights in Securing Users and
Processes in Oracle Solaris 11.4.

1. List the mechanisms that are offered by a particular user-level software provider.

$ cryptoadm list -m provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
Mechanisms:
CKM_CAMELLIA_CBC
CKM_CAMELLIA_CBC_PAD
CKM_CAMELLIA_CTR
...
CKM_ECDSA_SHA1
CKM_ECDH1_DERIVE

2. List the mechanisms that are available for use.

Chapter 3
Administering the Cryptographic Framework

3-19

https://docs.oracle.com/cd/E37838_01/html/E61028/index.html
https://docs.oracle.com/cd/E37838_01/html/E61028/index.html
https://docs.oracle.com/cd/E37838_01/html/E61028/index.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28

$ cryptoadm list -p
user-level providers:
=====================
...
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled.
random is enabled.…

3. Disable the mechanisms that should not be used.

$ cryptoadm disable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so \
> mechanism=CKM_DES_CBC,CKM_DES_CBC_PAD,CKM_DES_ECB

4. List the mechanisms that are available for use.

$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled,
except CKM_DES_ECB,CKM_DES_CBC_PAD,CKM_DES_CBC. random is enabled.

Example 3-14 Enabling a User-Level Software Provider Mechanism

In this example, a disabled AES mechanism is again made available for use.

$ cryptoadm list -m provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
Mechanisms:
CKM_CAMELLIA_CBC
CKM_CAMELLIA_CBC_PAD
CKM_CAMELLIA_CTR
...
CKM_ECDSA_SHA1
CKM_ECDH1_DERIVE
$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled,
except CKM_AES_ECB,CKM_DES_CBC_PAD,CKM_DES_CBC. random is enabled.
$ cryptoadm enable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so \
> mechanism=CKM_AES_ECB
$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled,
except CKM_DES_CBC_PAD,CKM_DES_CBC. random is enabled.

Example 3-15 Enabling All User-Level Software Provider Mechanisms

In the following example, all mechanisms from the user-level library are enabled.

$ cryptoadm enable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so all
$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled. random
is enabled.

Example 3-16 Permanently Removing a User-Level Library

In this example, a libpkcs11.so.1 library from the /opt directory is removed.

$ cryptoadm uninstall provider=/opt/lib/\$ISA/libpkcs11.so.1
$ cryptoadm list
User-level providers:
Provider: /usr/lib/security/$ISA/pkcs11_softtoken.so

Kernel providers:
...

Chapter 3
Administering the Cryptographic Framework

3-20

How to Prevent the Use of a Kernel Software Mechanism
You must become an administrator who is assigned the Crypto Management rights profile.
For more information, see Using Your Assigned Administrative Rights in Securing Users and
Processes in Oracle Solaris 11.4.

1. List the mechanisms that are offered by a particular kernel software provider.

$ cryptoadm list -m provider=aes
aes: CKM_AES_ECB,CKM_AES_CBC,CKM_AES_CTR,CKM_AES_CCM,CKM_AES_GCM,\
CKM_AES_GMAC,CKM_AES_CFB128,CKM_AES_XTS,CKM_AES_XCBC_MAC,\
CKM_AES_XCBC_MAC_96,CKM_AES_CMAC,CKM_AES_CTS,CKM_AES_CFB8

2. List the mechanisms that are available for use.

$ cryptoadm list -p provider=aes
aes: all mechanisms are enabled.

3. Disable the mechanism that should not be used.

$ cryptoadm disable provider=aes mechanism=CKM_AES_ECB

4. List the mechanisms that are available for use.

$ cryptoadm list -p provider=aes
aes: all mechanisms are enabled, except CKM_AES_ECB.

Example 3-17 Enabling a Kernel Software Provider Mechanism

In this example, a disabled AES mechanism is again made available for use.

cryptoadm list -m provider=aes
aes: CKM_AES_ECB,CKM_AES_CBC,CKM_AES_CTR,CKM_AES_CCM,CKM_AES_GCM,\
CKM_AES_GMAC,CKM_AES_CFB128,CKM_AES_XTS,CKM_AES_XCBC_MAC,\
CKM_AES_XCBC_MAC_96,CKM_AES_CMAC,CKM_AES_CTS,CKM_AES_CFB8
$ cryptoadm list -p provider=aes
aes: all mechanisms are enabled, except CKM_AES_ECB.
$ cryptoadm enable provider=aes mechanism=CKM_AES_ECB
$ cryptoadm list -p provider=aes
aes: all mechanisms are enabled.

Example 3-18 Temporarily Removing Kernel Software Provider Availability

In the following example, the AES provider is temporarily removed from use. The unload
subcommand is useful to prevent a provider from being loaded automatically while the
provider is being uninstalled. For example, the unload subcommand might be used when
modifying a mechanism of this provider.

$ cryptoadm unload provider=aes

$ cryptoadm list
...
Kernel software providers:
des
aes (inactive)
arcfour
blowfish
ecc

Chapter 3
Administering the Cryptographic Framework

3-21

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28

sha1
sha2
sha3
md5
rsa
swrand
n2rng/0

The AES provider is unavailable until the Cryptographic Framework is refreshed.

$ svcadm refresh system/cryptosvc

$ cryptoadm list
...
Kernel software providers:
des
aes
arcfour
blowfish
camellia
ecc
sha1
sha2
sha3
md5
rsa
swrand
n2rng/0

If a kernel consumer is using the kernel software provider, the software is not
unloaded. An error message is displayed and the provider continues to be available for
use.

Example 3-19 Permanently Removing Software Provider Availability

In the following example, the AES provider is removed from use. Once removed, the
AES provider does not appear in the policy listing of kernel software providers.

$ cryptoadm uninstall provider=aes

$ cryptoadm list
...
Kernel software providers:
des
arcfour
blowfish
camellia
ecc
sha1
sha2
sha3
md5
rsa
swrand
n2rng/0

Chapter 3
Administering the Cryptographic Framework

3-22

Example 3-20 Reinstalling a Removed Kernel Software Provider

In the following example, the AES kernel software provider is reinstalled. To reinstall a
removed kernel provider, you must enumerate the mechanisms to be installed.

$ cryptoadm install provider=aes \
mechanism=CKM_AES_ECB,CKM_AES_CBC,CKM_AES_CTR,CKM_AES_CCM,CKM_AES_GCM,
CKM_AES_GMAC,CKM_AES_CFB128,CKM_AES_XTS,CKM_AES_XCBC_MAC,
CKM_AES_XCBC_MAC_96,CKM_AES_CMAC,CKM_AES_CTS,CKM_AES_CFB8

$ cryptoadm list
...;
Kernel software providers:
des
aes
arcfour
blowfish
camellia
ecc
sha1
sha2md5
rsa
swrand
n2rng/0

How to Disable Hardware Provider Mechanisms and Features
You must become an administrator who is assigned the Crypto Management rights profile.
For more information, see Using Your Assigned Administrative Rights in Securing Users and
Processes in Oracle Solaris 11.4.

• Choose the mechanisms or feature to disable.

List the provider.

$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled except
CKM_DES_ECB,CKM_DES3_ECB. random is enabled.

• To disable selected mechanisms:

$ cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled except
CKM_DES_ECB,CKM_DES3_ECB. random is enabled.
cryptoadm disable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
mechanism=CKM_DES3_CBC
cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled except
CKM_DES_ECB,CKM_DES3_CBC,CKM_DES3_ECB. random is enabled.

• To disable the random number generator:

cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled except
CKM_DES_ECB,CKM_DES3_CBC,CKM_DES3_ECB.
random is enabled.
cryptoadm disable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so random
cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled except
CKM_DES_ECB,CKM_DES3_CBC,CKM_DES3_ECB. random is disabled.

Chapter 3
Administering the Cryptographic Framework

3-23

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28

• To disable all mechanisms without disabling the random number generator,
use mechanism=all:

cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled
except CKM_DES_ECB,CKM_DES3_CBC,CKM_DES3_ECB.
random is enabled.
cryptoadm disable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
mechanism=all
cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are disabled.
random is enabled.

• To disable every feature and mechanism on the hardware, including the
random number generator, use the all option:

cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled.
random is enabled.
cryptoadm disable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
all
cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are disabled.
random is disabled.

For examples of these options, see Selectively Enabling Mechanisms and
Features on a Provider.

Example 3-21 Selectively Enabling Mechanisms and Features on a Provider

In these examples, disabled mechanisms on a provider are selectively enabled or
disabled.

cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled except
CKM_RSA_PKCS,CKM_DES_ECB,CKM_DES3_ECB. random is enabled.

cryptoadm enable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
mechanism=CKM_RSA_PKCS
cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled except
CKM_DES_ECB,CKM_DES3_ECB. random is enabled.

In this example, only the random generator is enabled.

cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled, except
CKM_MD5,CKM_MD5_HMAC,…. random is disabled.
cryptoadm enable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so random
cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled, except
CKM_MD5,CKM_MD5_HMAC,…. random is enabled.

In this example, only the mechanisms are enabled. The random generator continues
to be disabled.

cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled, except
CKM_RSA_PKCS,CKM_RSA_X_509,…. random is disabled.
cryptoadm enable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
mechanism=all
cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so

Chapter 3
Administering the Cryptographic Framework

3-24

/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled. random is
disabled.

In this example, every feature and mechanism on the board is enabled.

cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled, except
CKM_RSA_PKCS,CKM_RSA_X_509. random is disabled.
cryptoadm enable provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so all
cryptoadm list -p provider=/usr/lib/security/\$ISA/pkcs11_softtoken.so
/usr/lib/security/$ISA/pkcs11_softtoken.so: all mechanisms are enabled. random is
enabled.

Refreshing or Restarting All Cryptographic Services
By default, the Cryptographic Framework is enabled. When the kcfd daemon fails for any
reason, the Service Management Facility (SMF) can be used to restart cryptographic
services. For more information, see the smf(7) and svcadm(8) man pages. For the effect on
zones of restarting cryptographic services, see Cryptographic Framework and Zones.

How to Refresh or Restart All Cryptographic Services
Before you begin, you must become an administrator who is assigned the Crypto
Management rights profile. For more information, see Using Your Assigned Administrative
Rights in Securing Users and Processes in Oracle Solaris 11.4.

1. Check the status of cryptographic services.

$ svcs cryptosvc
STATE STIME FMRI
offline Dec_09 svc:/system/cryptosvc:default

2. Enable cryptographic services.

$ svcadm enable svc:/system/cryptosvc
Example 3-22 Refreshing Cryptographic Services

In the following example, cryptographic services are refreshed in the global zone. Therefore,
kernel-level cryptographic policy in every non-global zone is also refreshed.

$ svcadm refresh system/cryptosvc

Chapter 3
Administering the Cryptographic Framework

3-25

https://docs.oracle.com/cd/E88353_01/html/E37853/smf-7.html#REFMAN7smf-7
https://docs.oracle.com/cd/E88353_01/html/E72487/svcadm-8.html#REFMAN8svcadm-8
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28

4
Managing Certificates in Oracle Solaris

The Key Management Framework (KMF) feature of Oracle Solaris provides tools and
programming interfaces for managing public key objects. Public key objects include X.509
certificates and public/private key pairs. The formats for storing these objects can vary. KMF
also provides a tool for managing policies that define the use of X.509 certificates by
applications. KMF supports third-party plugins. Key management can require manual
intervention, such as adding CA certificates to the directory where Oracle Solaris stores
them.

This chapter covers the following topics:

• Managing Public Key Technologies With the Key Management Framework

• Managing Certificates in the Oracle Solaris CA Keystore

Managing Public Key Technologies With the Key Management
Framework

KMF centralizes the management of public key technologies (PKI). Oracle Solaris has
several different applications that make use of PKI technologies. Each application provides its
own programming interfaces, key storage mechanisms, and administrative utilities. If an
application provides a policy enforcement mechanism, the mechanism applies to that
application only. With KMF, applications use a unified set of administrative tools, a single set
of programming interfaces, and a single policy enforcement mechanism. These features
manage the PKI needs of all applications that adopt these interfaces.

KMF unifies the management of public key technologies with the following interfaces:

• pktool command – Manages PKI objects, such as certificates, in a variety of keystores.

• kmfcfg command – Manages the PKI policy database and third-party plugins.

PKI policy decisions include operations such as the validation method for an operation.
Also, PKI policy can limit the scope of a certificate. For example, PKI policy might assert
that a certificate can be used only for specific purposes. Such a policy would prevent that
certificate from being used for other requests.

• KMF library – Contains programming interfaces that abstract the underlying keystore
mechanism.

Applications do not have to choose one particular keystore mechanism, but can migrate
from one mechanism to another mechanism. The supported keystores are PKCS #11,
NSS, and OpenSSL. The library includes a pluggable framework so that new keystore
mechanisms can be added. Therefore, applications that use the new mechanisms would
require only minor modifications to use a new keystore.

4-1

Key Management Framework Utilities
KMF provides methods for managing the storage of keys and provides the overall
policy for the use of those keys. KMF can manage the policy, keys, and certificates for
three public key technologies:

• Tokens from PKCS #11 providers, that is, from the Cryptographic Framework

• NSS, that is, Network Security Services

• OpenSSL, a file-based keystore

The kmfcfg tool can create, modify, or delete KMF policy entries. The tool also
manages plugins to the framework. KMF manages keystores through the pktool
command. For more information, see the kmfcfg(1) and pktool(1) man pages, and the
following sections.

KMF Policy Management
KMF policy is stored in a database. This policy database is accessed internally by all
applications that use the KMF programming interfaces. The database can constrain
the use of the keys and certificates that are managed by the KMF library. When an
application attempts to verify a certificate, the application checks the policy database.
The kmfcfg command modifies the policy database.

KMF Plugin Management
The kmfcfg command provides the following subcommands for plugins:

• list plugin – Lists plugins that are managed by KMF.

• install plugin – Installs the plugin by the module's path name and creates a
keystore for the plugin. To remove the plugin from KMF, you remove the keystore.

• uninstall plugin – Removes the plugin from KMF by removing its keystore.

• modify plugin – Enables the plugin to be run with an option that is defined in the
code for the plugin, such as debug.

For more information, see the kmfcfg(1) man page. For the procedure, see How to
Manage Third-Party Plugins in KMF.

KMF Keystore Management
KMF manages the keystores for three public key technologies, PKCS #11 tokens,
NSS, and OpenSSL. For all of these technologies, the pktool command enables you
to do the following:

• Generate a self-signed certificate

• Generate a certificate request

• Generate and configure a token

• Generate a symmetric key

• Generate a public/private key pair

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-2

https://docs.oracle.com/cd/E88353_01/html/E37839/kmfcfg-1.html#REFMAN1kmfcfg-1
https://docs.oracle.com/cd/E88353_01/html/E37839/pktool-1.html#REFMAN1pktool-1
https://docs.oracle.com/cd/E88353_01/html/E37839/kmfcfg-1.html#REFMAN1kmfcfg-1

• Generate a PKCS #10 certificate signing request (CSR) to be sent to an external
certificate authority (CA) to be signed

• Sign a PKCS #10 CSR

• Import objects into the keystore

• List the objects in the keystore

• Delete objects from the keystore

• Download a CRL

For the PKCS #11 and NSS technologies, the pktool command also enables you to set a
PIN by generating a passphrase for the keystore or for an object in the keystore.

For examples of using the pktool utility, see the pktool(1) man page and Using the Key
Management Framework Task Map.

Using the Key Management Framework
This section describes how to use the pktool command to manage your public key objects,
such as passwords, passphrases, files, keystores, certificates, and CRLs.

The Key Management Framework (KMF) enables you to centrally manage public key
technologies.

Table 4-1 Using the Key Management Framework Task Map

Task Description For Instructions

Create a certificate. Creates a certificate for use by PKCS #11, NSS, or
OpenSSL.

How to Create a Certificate by
Using the pktool gencert
Command

Export a certificate. Creates a file with the certificate and its supporting
keys. The file can be protected with a password.

How to Export a Certificate and
Private Key in PKCS #12 Format

Import a certificate. Imports a certificate from another system. How to Import a Certificate Into
Your Keystore

Imports a certificate in PKCS #12 format from
another system.

How to Import a Certificate Into
Your Keystore

Create a keystore or
token.

Creates a token, assigns a PIN, and names a label. How to Create a PKCS #11
Keystore

Generate a
passphrase.

Generates a passphrase for access to a PKCS #11
keystore or an NSS keystore.

How to Generate a Passphrase by
Using the pktool setpin Command

Generate a symmetric
key.

Generates symmetric keys for use in encrypting files,
in creating a MAC of a file, and for applications.

How to Generate a Symmetric Key
by Using the pktool Command

Generate a key pair. Generates a public/private key pair for use with
applications.

How to Generate a Key Pair by
Using the pktool genkeypair
Command

Generate a PKCS
#10 CSR.

Generates a PKCS #10 certificate signing request
(CSR) for an external certificate authority (CA) to
sign.

pktool(1) man page

Sign a PKCS #10
CSR.

Signs a PKCS #10 CSR. How to Sign a Certificate Request
by Using the pktool signcsr
Command

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-3

https://docs.oracle.com/cd/E88353_01/html/E37839/pktool-1.html#REFMAN1pktool-1
https://docs.oracle.com/cd/E88353_01/html/E37839/pktool-1.html#REFMAN1pktool-1

Table 4-1 (Cont.) Using the Key Management Framework Task Map

Task Description For Instructions

Add a plugin to KMF. Installs, modifies, and lists a plugin. Also, removes the
plugin from the KMF.

How to Manage Third-Party
Plugins in KMF

How to Create a Certificate by Using the pktool Command
This procedure creates a self-signed certificate and stores the certificate in the PKCS
#11 keystore. As a part of this operation, an RSA public/private key pair is also
created. The private key is stored in the keystore with the certificate.

1. Generate a self-signed certificate.

$ pktool gencert [keystore=keystore] label=label-name \
subject=subject-DN serial=hex-serial-number keytype=rsa/dsa keylen=key-size

‐keystore=keystore
Specifies the keystore by type of public key object. The value can be nss, pkcs11,
or file. This keyword is optional.

‐label=label-name
Specifies a unique name that the issuer gives to the certificate.

‐subject=subject-DN
Specifies the distinguished name for the certificate.

‐serial=hex-serial-number
Specifies the serial number in hexadecimal format. The issuer of the certificate
chooses the number, such as 0x0102030405.

‐keytype=key type
Optional variable that specifies the type of private key associated with the
certificate. Check the pktool(1) man page to find available key types for the
selected keystore.

To use a FIPS 140-2 approved key, check the approved key types at FIPS 140-2
Algorithms in the Cryptographic Framework in Using a FIPS 140-2 Enabled
System in Oracle Solaris 11.4.

‐keylen=key size
Optional variable that specifies the length of the private key associated with the
certificate.

To use a FIPS 140-2 approved key, check the approved key lengths for the key
type that you selected at FIPS 140-2 Algorithms in the Cryptographic Framework
in Using a FIPS 140-2 Enabled System in Oracle Solaris 11.4.

2. keystoreslisting contentslistingcontents of keystorepktool commandlist
subcommandlist subcommandpktool commandVerify the contents of the keystore.

$ pktool list
Found number certificates.
1. (X.509 certificate)
Label: label-name
ID: fingerprint that binds certificate to private key

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-4

https://docs.oracle.com/cd/E88353_01/html/E37839/pktool-1.html#REFMAN1pktool-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1
https://docs.oracle.com/cd/E37838_01/html/E61028/fips-refs.html#OSFIPfips-ok-1

Subject: subject-DN
Issuer: distinguished-name
Serial: hex-serial-number
n. ...

This command lists all certificates in the keystore. In the following example, the keystore
contains one certificate only.

Example 4-1 Creating a Self-Signed Certificate by Using pktool
In the following example, a user at My Company creates a self-signed certificate and stores the
certificate in a keystore for PKCS #11 objects. The keystore is initially empty. If the keystore
has not been initialized, the PIN for the softtoken is changeme, and you can use the pktool
setpin command to reset the PIN. Note that a FIPS 140-2 approved key type and key
length, RSA 2048, is specified in the command options.

$ pktool gencert keystore=pkcs11 label="My Cert" \
 subject="C=US, O=My Company, OU=Security Engineering Group, CN=MyCA" \
 serial=0x000000001 keytype=rsa keylen=2048
Enter pin for Sun Software PKCS#11 softtoken:Type PIN for token

$ pktool list
No. Key Type Key Len. Key Label
--
Asymmetric public keys:
1 RSA My Cert
Certificates:
1 X.509 certificate
Label: My Cert
ID: d2:7e:20:04:a5:66:e6:31:90:d8:53:28:bc:ef:55:55:dc:a3:69:93
Subject: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA
Issuer: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA
...
...
Serial: 0x00000010
...

How to Import a Certificate Into Your Keystore
This procedure describes how to import a file with PKI information that is encoded with PEM
or with raw DER into your keystore. For an export procedure, see How to Export a Certificate
and Private Key in PKCS #12 Format.

1. Import the certificate.

$ pktool import keystore=keystore infile=infile-name label=label-name

2. If you are importing certificates and private keys in PKCS #12 format, provide passwords
when prompted.

a. At the prompt, type the password for the file.

If you are importing PKI information that is private, such as an export file in PKCS
#12 format, the file requires a password. The creator of the file that you are importing
provides you with the PKCS #12 password.

Enter password to use for accessing the PKCS12 file:Type PKCS #12 password
b. At the prompt, type the password for your keystore.

Enter pin for Sun Software PKCS#11 softtoken: Type PIN for token

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-5

3. Verify the contents of the keystore.

$ pktool list
Found number certificates.
1. (X.509 certificate)
Label: label-name
ID: fingerprint that binds certificate to private key
Subject: subject-DN
Issuer: distinguished-name
Serial: hex-serial-number

2. ...
Example 4-2 Importing a PKCS #12 File Into Your Keystore

In the following example, the user imports a PKCS #12 file from a third party. The
pktool import command extracts the private key and the certificate from the
gracedata.p12 file and stores them in the user's preferred keystore.

$ pktool import keystore=pkcs11 infile=gracedata.p12 label=GraceCert
Enter password to use for accessing the PKCS12 file:Type PKCS #12 password
Enter pin for Sun Software PKCS#11 softtoken: Type PIN for token
Found 1 certificate(s) and 1 key(s) in gracedata.p12
$ pktool list
No. Key Type Key Len. Key Label
--
Asymmetric public keys:
1 RSA GraceCert
Certificates:
1 X.509 certificate
Label: GraceCert
ID: 71:8f:11:f5:62:10:35:c2:5d:b4:31:38:96:04:80:25:2e:ad:71:b3
Subject: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA
Issuer: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA
Serial: 0x00000010

Example 4-3 Importing an X.509 Certificate Into Your Keystore

In the following example, the user imports an X.509 certificate in PEM format into the
user's preferred keystore. This public certificate is not protected with a password. The
user's public keystore is also not protected by a password.

$ pktool import keystore=pkcs11 infile=somecert.pem label="TheirCompany Root
Cert"
$ pktool list
No. Key Type Key Len. Key Label
Certificates:
1 X.509 certificate
Label: TheirCompany Root Cert
ID: ec:a2:58:af:83:b9:30:9d:de:b2:06:62:46:a7:34:49:f1:39:00:0e
Subject: C=US, O=TheirCompany, OU=Security, CN=TheirCompany Root CA
Issuer: C=US, O=TheirCompany, OU=Security, CN=TheirCompany Root CA
Serial: 0x00000001

How to Export a Certificate and Private Key in PKCS #12 Format
You can create a file in PKCS #12 format to export private keys and their associated
X.509 certificate to other systems. Access to the file is protected by a password.

1. Find the certificate to export.

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-6

$ pktool list
Found number certificates.
1. (X.509 certificate)
Label: label-name
ID: fingerprint that binds certificate to private key
Subject: subject-DN
Issuer: distinguished-name
Serial: hex-serial-number

2. ...
2. Export the keys and certificate.

Use the keystore and label from the pktool list command. Provide a file name for the
export file. If the name contains a space, surround the name with double quotes.

$ pktool export keystore=keystore outfile=outfile-name label=label-name

3. Protect the export file with a password.

At the prompt, type the current password for the keystore. At this point, you create a
password for the export file. The receiver must provide this password when importing the
file.

Enter pin for Sun Software PKCS#11 softtoken: Type PIN for token
Enter password to use for accessing the PKCS12 file:Create PKCS #12 password

Tip:

Send the password separately from the export file. Best practice suggests that
you provide the password out of band, such as during a telephone call.

Example 4-4 Exporting a Certificate and Private Key in PKCS #12 Format

In the following example, a user exports the private keys with their associated X.509
certificate into a standard PKCS #12 file. This file can be imported into other keystores. The
PKCS #11 password protects the source keystore. The PKCS #12 password is used to
protect private data in the PKCS #12 file. This password is required to import the file.

$ pktool list
No. Key Type Key Len. Key Label
--
Asymmetric public keys:
1 RSA My Cert
Certificates:
1 X.509 certificate
Label: My Cert
ID: d2:7e:20:04:a5:66:e6:31:90:d8:53:28:bc:ef:55:55:dc:a3:69:93
Subject: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA
Issuer: C=US, O=My Company, OU=Security Engineering Group, CN=MyCA
Serial: 0x000001

$ pktool export keystore=pkcs11 outfile=mydata.p12 label="My Cert"
Enter pin for Sun Software PKCS#11 softtoken: Type PIN for token
Enter password to use for accessing the PKCS12 file:Create PKCS #12 password

The user then telephones the recipient and provides the PKCS #12 password.

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-7

How to Create a PKCS #11 Keystore
Use this procedure to create a brand new PKCS #11 keystore. This same procedure
also applies if you want to re-create a keystore that has been previously used. When
creating keystores, you should use the pktool inittoken command as a preferred
method instead of the traditional pktool setpin command.

Caution:

Using the pktool inittoken command in this procedure destroys all of
the existing objects in the keystore. If you are re-creating a keystore that has
been previously used, export the keystore's objects to a secure location.
After you have completed the procedure, you can import the objects.

1. Export the objects in the current keystore.

See How to Export a Certificate and Private Key in PKCS #12 Format.

2. Create the keystore.

pktool inittoken

If you create a brand new keystore without assigning it a name, then the default
label Sun Software PKCS#11 softtoken is assigned to the keystore.

Depending on the conditions that apply, you can create the keystore in different
ways. Refer to the pktool(1) man page and the following example to see how the
pktool inittoken command can be used.

3. Import the objects to be used in the new keystore.

See How to Import a Certificate Into Your Keystore.

4. Display a list of tokens by using the pktool tokens command.

Note that the output of the pktool tokens command will include the metaslot
only if the metaslot is enabled. Also, note that the metaslot is softtoken by default,
but it can also be TPM, or other tokens if the user manually set up the metaslot.
For further information, see Metaslot in Concepts in the Cryptographic Framework.

Example 4-5 Creating a Brand New Keystore With a New Name

This example shows how to assign a new name to the keystore that you are creating.

Note that you will be prompted to enter your Security Officer PIN to complete the
process.

pktool inittoken currlabel="Sun Software PKCS#11 softtoken" \
newlabel="Company XYZ softtoken"
Enter SO PIN: Type Security Officer PIN
Token Company XYZ softtoken initialized.
pktool tokens
ID Slot Name Token Name Flags
-- --------- ---------- -----
1 Sun Crypto Softtoken Company XYZ softtoken LI
Flags: L=Login required, I=Initialized, X=User PIN expired,
S=SO PIN expired, R=Write protected

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-8

https://docs.oracle.com/cd/E88353_01/html/E37839/pktool-1.html#REFMAN1pktool-1

How to Generate a Passphrase by Using the pktool Command
You can generate a passphrase for an object in a keystore, and for the keystore itself. The
passphrase is required to access the object or keystore. For an example of generating a
passphrase for an object in a keystore, see Exporting a Certificate and Private Key in PKCS
#12 Format.

1. Generate a passphrase for access to a keystore.

$ pktool setpin keystore=nss|pkcs11 [dir=directory]

The default directory for key storage is /var/ username.

The initial password for a PKCS #11 keystore is changeme. The initial password for an
NSS keystore is an empty password.

2. Answer the prompts.

When prompted for the current token passphrase, type the token PIN for a PKCS #11
keystore, or press the Return key for an NSS keystore.

Enter current token passphrase:Type PIN or press the Return key
Create new passphrase:Type the passphrase that you want to use
Re-enter new passphrase:Retype the passphrase
Passphrase changed.

The keystore is now protected by passphrase. If you lose the passphrase, you lose
access to the objects in the keystore.

3. Display a list of tokens.

$ pktool tokens

The output depends on whether the metaslot is enabled. Moreover, when the metaslot is
enabled, or when there are more than two tokens present, the metaslot will also be
presented as a virtual token in the list.

For more information about the metaslot, see Concepts in the Cryptographic Framework.

• If the metaslot is enabled, the pktool token command generates output similar to
the following:

ID Slot Name Token Name Flags
-- --------- ---------- -----
0 Sun Metaslot Sun Metaslot V
1 Sun Crypto Softtoken softy LI
2 PKCS#11 Interface for TPM TPM LIS
3 Oracle Key Management System KMS LI

• If the metaslot is disabled, the pktool token command generates output similar to
the following:

ID Slot Name Token Name Flags
-- --------- ---------- -----
1 Sun Crypto Softtoken Sun Software PKCS#11 softtoken LIX
2 PKCS#11 Interface for TPM TPM LXS

In the two output versions, flags can be any combination of the following:

• L – login required

• I – initialized

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-9

• X – User PIN expired

• S – SO PIN expired

• R – Write protected

• V – Virtual

Example 4-6 Protecting a Keystore With a Passphrase

The following example shows how to set the passphrase for an NSS database.
Because no passphrase has been created, the user presses the Return key at the first
prompt.

$ pktool setpin keystore=nss dir=/var/nss
Enter current token passphrase:Press the Return key
Create new passphrase: xxxx xxx xxx
Re-enter new passphrase: xxxx xxx xxx
Passphrase changed.

How to Generate a Key Pair by Using the pktool genkeypair Command
Some applications require a public/private key pair. In this procedure, you create these
key pairs and store them.

1. If you plan to use a keystore, create the keystore.

• To create and initialize a PKCS #11 keystore, see How to Generate a
Passphrase by Using the pktool setpin Command.

• To create and initialize an NSS keystore, see Protecting a Keystore With a
Passphrase.

2. Create the key pair.

Use one of the following methods.

• Create the key pair and store the key pair in a file.

File-based keys are created for applications that read keys directly from files
on the disk. Typically, applications that directly use OpenSSL cryptographic
libraries require that you store the keys and certificates for the application in
files.

Note:

The file keystore does not support elliptic curve (ec) keys and
certificates.

$ pktool genkeypair keystore=file outkey=key-filename \
[format=der|pem] [keytype=rsa|dsa] [keylen=key-size]

keystore=file
The value file specifies the file type of storage location for the key.

outkey= key-filename
Specifies the name of the file where the key pair is stored.

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-10

format=der|pem
Specifies the encoding format of the key pair. der output is binary, and pem output is
ASCII.

keytype=rsa|dsa
Specifies the type of key pair that can be stored in a file keystore. For definitions,
see DSA and RSA.

keylen= key-size
Specifies the length of the key in bits. The number must be divisible by 8. To
determine possible key sizes, use the cryptoadm list -vm command.

• Create the key pair and store it in a PKCS #11 keystore.

You must complete Step 1 before using this method.

The PKCS #11 keystore is used to store objects on a hardware device. The device
could be a trusted platform module (TPM) device or a smart card that is plugged into
the Cryptographic Framework. PKCS #11 can also be used to store objects in the
softtoken, or software-based token, which stores the objects in a private
subdirectory on the disk. For more information, see the pkcs11_softtoken(7) man
page.

You can retrieve the key pair from the keystore by a label that you specify.

$ pktool genkeypair label=key-label \
[token=token[:manuf[:serial]]] \
[keytype=rsa|dsa|ec] [curve=ECC-Curve-Name]]\
[keylen=key-size] [listcurves]

label= key-label
Specifies a label for the key pair. The key pair can be retrieved from the keystore by
its label.

token= token[:manuf[:serial]]
Specifies the token name. By default, it is Sun Software PKCS#11 softtoken.

keytype=rsa|dsa|ec [curve=ECC-Curve-Name]
Specifies the keypair type. For the elliptic curve type, optionally specifies a curve
name. Curve names are listed as output to the listcurves option.

keylen= key-size
Specifies the length of the key in bits. The number must be divisible by 8.

listcurves
Lists the elliptic curve names that can be used as values to the curve= option for an
ec key type.

• Generate the key pair and store it in an NSS keystore.

The NSS keystore is used by servers that rely on NSS as their primary cryptographic
interface.

You must complete Step 1 before using this method.

$ pktool keystore=nss genkeypair label=key-nickname \
[token=token[:manuf[:serial]]] \
[dir=directory-path] [prefix=database-prefix] \

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-11

https://docs.oracle.com/cd/E88353_01/html/E37853/pkcs11-softtoken-7.html#REFMAN7pkcs11-softtoken-7

[keytype=rsa|dsa|ec] [curve=ECC-Curve-Name]] \
[keylen=key-size] [listcurves]

keystore=nss
The value nss specifies the NSS type of storage location for the key.

label= nickname
Specifies a label for the key pair. The key pair can be retrieved from the
keystore by its label.

token= token[:manuf[:serial]]
Specifies the token name. By default, it is Sun Software PKCS#11 softtoken.

dir= directory
Specifies the directory path to the NSS database. By default, directory is the
current directory.

prefix= database-prefix
Specifies the prefix to the NSS database. The default is no prefix.

keytype=rsa|dsa|ec [curve=ECC-Curve-Name]
Specifies the keypair type. For the elliptic curve type, optionally specifies a
curve name. Curve names are listed as output to the listcurves option.

keylen= key-size
Specifies the length of the key in bits. The number must be divisible by 8.

listcurves
Lists the elliptic curve names that can be used as values to the curve= option
for an ec key type.

3. Verify that the key exists.

Use one of the following commands, depending on where you stored the key.

• Verify the key in the key-filename file.

$ pktool list keystore=file objtype=key infile=key-filename
Found n keys.
Key #1 - keytype:location (keylen)

• Verify the key in the PKCS #11 keystore.

$ pktool list objtype=key
Enter PIN for keystore:
Found n keys.
Key #1 - keytype:location (keylen)

• Verify the key in the NSS keystore.

$ pktool list keystore=nss dir=directory objtype=key
Example 4-7 Creating a Key Pair by Using the pktool Command

In the following example, a user creates a PKCS #11 keystore for the first time. After
determining the key sizes for RSA key pairs, the user then generates a key pair for an
application. Finally, the user verifies that the key pair is in the keystore. The user notes
that the second occurrence of the RSA key pair can be stored on hardware. Because
the user does not specify a token argument, the key pair is stored as a Sun Software
PKCS#11 softtoken.

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-12

pktool setpin
Create new passphrase:
Re-enter new passphrase:xxxxxxxxxx
Passphrase changed.
$ cryptoadm list -vm | grep PAIR
...
CKM_DSA_KEY_PAIR_GEN 512 3072 X
CKM_RSA_PKCS_KEY_PAIR_GEN 256 8192 X
...
CKM_RSA_PKCS_KEY_PAIR_GEN 256 2048 X X
ecc: CKM_EC_KEY_PAIR_GEN,CKM_ECDH1_DERIVE,CKM_ECDSA,CKM_ECDSA_SHA1
$ pktool genkeypair label=specialappkeypair keytype=rsa keylen=2048
Enter PIN for Sun Software PKCS#11 softtoken : xxxxxxxxxx

$ pktool list
Enter PIN for Sun Software PKCS#11 softtoken : xxxxxxxxxx
No. Key Type Key Len. Key Label
--
Asymmetric public keys:
1 RSA specialappkeypair

Example 4-8 Creating a Key Pair That Uses the Elliptic Curve Algorithm

In the following example, a user adds an elliptic curve (ec) key pair to the keystore, specifies
a curve name, and verifies that the key pair is in the keystore.

$ pktool genkeypair listcurves
secp112r1, secp112r2, secp128r1, secp128r2, secp160k1
.
.
.
c2pnb304w1, c2tnb359v1, c2pnb368w1, c2tnb431r1, prime192v2
prime192v3
$ pktool genkeypair label=eckeypair keytype=ec curves=c2tnb431r1
$ pktool list
Enter PIN for Sun Software PKCS#11 softtoken : xxxxxxxxxx
No. Key Type Key Len. Key Label
--
Asymmetric public keys:
1 ECDSA eckeypair

How to Sign a Certificate Request by Using the pktool signcsr Command
This procedure assumes that you are a certificate authority (CA), you have received a CSR,
and it is stored in a file. For an example of creating a CSR, see Generating a CSR.

This procedure is used to sign a PKCS #10 certificate signing request (CSR). The CSR can
be in PEM or DER format. The signing process issues an X.509 v3 certificate. To generate a
PKCS #10 CSR, see the pktool(1) man page.

1. Collect the following information for the required arguments to the pktool signcsr
command:

signkey
If you have stored the signer's key in a PKCS #11 keystore, signkey is the label that
retrieves this private key.

If you have stored the signer's key in an NSS keystore or a file keystore, signkey is the
file name that holds this private key.

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-13

https://docs.oracle.com/cd/E88353_01/html/E37839/pktool-1.html#REFMAN1pktool-1

csr
Specifies the file name of the CSR.

serial
Specifies the serial number of the signed certificate.

outcert
Specifies the file name for the signed certificate.

issuer
Specifies your CA issuer name in distinguished name (DN) format.

For information about optional arguments to the signcsr subcommand, see the
pktool(1) man page.

2. Sign the request and issue the certificate.

For example, the following command signs the certificate with the signer's key
from the PKCS #11 repository:

pktool signcsr signkey=CASigningKey \
 csr=fromExampleCoCSR \
 serial=0x12345678 \
 outcert=ExampleCoCert2010 \
 issuer="O=Oracle Corporation, \
OU=Oracle Solaris Security Technology, L=Redwood City, ST=CA, C=US, \
CN=rootsign Oracle"

The following command signs the certificate with the signer's key from a file:

pktool signcsr signkey=CASigningKey \
 csr=fromExampleCoCSR \
 serial=0x12345678 \
 outcert=ExampleCoCert2010 \
 issuer="O=Oracle Corporation, \
OU=Oracle Solaris Security Technology, L=Redwood City, ST=CA, C=US, \
CN=rootsign Oracle"

3. Send the certificate to the requester.

You can use email, a web site, or another mechanism to deliver the certificate to
the requester.

For example, you could use email to send the ExampleCoCert2010 file to the
requester.

Example 4-9 Generating a CSR

This example shows two methods to generate a CSR.

• Use the pktool command and store the CSR in the PKCS #11 keystore. You
must provide the password to the keystore.

$ pktool gencsr keystore=pkcs11 label=example3csr \
 keytype=rsa keylen=2048 hash=sha2 \
 format=pem outcsr=/var/tmp/example3.csr-1 \
 subject="CN=example3.company.au, OU=HR Department, O=Example3, L=Sydney,
ST=NSW, C=AU"

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-14

https://docs.oracle.com/cd/E88353_01/html/E37839/pktool-1.html#REFMAN1pktool-1

• Use the openssl command to generate the CSR.

$ openssl req -text -noout -in /var/tmp/example3.csr-1

How to Manage Third-Party Plugins in KMF
You identify your plugin by giving it a keystore name. When you add the plugin to KMF, the
software identifies it by its keystore name. The plugin can be defined to accept an option.
This procedure includes how to remove the plugin from KMF.

1. Install the plugin.

$ /usr/bin/kmfcfg install keystore=keystore-name \
modulepath=path-to-plugin [option="option-string"]

where:

keystore-name
Specifies a unique name for the keystore that you provide.

path-to-plugin
Specifies the full path to the shared library object for the KMF plugin.

option-string
Specifies an optional argument to the shared library object.

2. List the plugins.

$ kmfcfg list plugin
keystore-name:path-to-plugin [(built-in)] | [;option=option-string]

3. To remove the plugin, uninstall it and verify its removal.

$ kmfcfg uninstall keystore=keystore-name
$ kmfcfg plugin list

Example 4-10 Calling a KMF Plugin With an Option

In the following example, the administrator stores a KMF plugin in a site-specific directory.
The plugin is defined to accept a debug option. The administrator adds the plugin and verifies
that the plugin is installed.

/usr/bin/kmfcfg install keystore=mykmfplug \
modulepath=/lib/security/site-modules/mykmfplug.so
$ kmfcfg list plugin
KMF plugin information:

pkcs11:kmf_pkcs11.so.1 (built-in)
file:kmf_openssl.so.1 (built-in)
nss:kmf_nss.so.1 (built-in)
mykmfplug:/lib/security/site-modules/mykmfplug.so
kmfcfg modify plugin keystore=mykmfplug option="debug"
kmfcfg list plugin
KMF plugin information:

...
mykmfplug:/lib/security/site-modules/mykmfplug.so;option=debug

The plugin now runs in debugging mode.

Chapter 4
Managing Public Key Technologies With the Key Management Framework

4-15

Managing Certificates in the Oracle Solaris CA Keystore
Oracle Solaris provides a keystore for Certificate Authority (CA) certificate files. To
manage the keystore, you restart the SMF ca-certificates service after you add,
remove, or exclude certificates from the keystore.

X.509 certificates contain an RSA public key and the key's signer ("CN" or "Subject").
The key and signer verifies that some file or object was signed with the key holder's
private key. CA certificates are issued by well-known organizations to verify that a
certificate is legitimate and that the public key in the certificate can be trusted.

Oracle Solaris keeps the CA certificates in the /etc/certs/CA directory. Hashed
links to the CA certificates are in the /etc/openssl/certs directory to enable fast
lookup and access, typically by OpenSSL. Usually, each filename in the /etc/
certs/CA directory is the certificate holder's CN with spaces replaced by underscores
("_") and appended with a .pem extension. For example, the file /etc/certs/CA/
ExampleCo-_G3.pem contains the certificate for CN "ExampleCo Class 4 Public
Primary Certification Authority - G3".

Note:

Certificates in the /etc/certs directory are not automatically included in
the Java keystore. You must add them separately.

You can add certificates and exclude certificates.

• How to Add a Certificate to the Oracle Solaris CA Keystore.

• How to Exclude Certificates From the Oracle Solaris CA Keystore.

How to Add a Certificate to the Oracle Solaris CA Keystore
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

1. Verify that the CA certificate is legitimate.

Check with the issuer of the CA certificate directly.

Caution:

Do not rely on verification from an entity that did not issue the CA
certificate. Do not install invalid CA certificates on your system that your
software would treat as trustworthy.

2. Strip extra text from the certificate.

Remove any text that surrounds the "-----BEGIN CERTIFICATE-----" and "-----
END CERTIFICATE-----" lines. Some applications are not able to handle the extra
text.

3. Verify that the certificate is not corrupt.

Chapter 4
Managing Certificates in the Oracle Solaris CA Keystore

4-16

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28

For example, display the text of a certificate by using the openssl command.

openssl x509 -noout -text -in Example_Root_CA.pem

The output should display the issuer, owner (Subject/DN), validity dates, signature
algorithm, and public key, among other information.

4. Verify that the certificate file is world-readable.

If it is not, use the chmod command to make the file world-readable.

chmod a+r Example_Root_CA.pem; ls -l Example_Root_CA.pem
-rw-r--r-- 1 root sys 1500 Sep 10 10:10 Example_Root_CA.pem

5. Copy the certificate to the /etc/certs/CA directory.

For example:

cp -p Example_Root_CA.pem /etc/certs/CA/
6. Restart the ca-certificates service.

/usr/sbin/svcadm restart /system/ca-certificates

The service adds the certificate to the /etc/certs/ca-certificates.crt file and
adds a hashed link in the /etc/openssl/certs directory.

7. Verify that the CA certificate service has restarted.

When the service restarts, it processes your new CA certificate.

$ svcs -x ca-certificates
svc:/system/ca-certificates:default (CA Certificates Service)
 State: online since 10:10:10 2017
 See: openssl(5)
 See: /var/svc/log/system-ca-certificates:default.log
Impact: None.

If the service hasn't started, the certificate could be corrupt or could be a duplicate of an
existing CA certificate. Look for error messages in the log file listed in the svcs -x command
output. Also check the /system/volatile/system-ca-certificates:default.log
file.

How to Exclude Certificates From the Oracle Solaris CA Keystore
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

Excluding prevents Oracle Solaris libraries and programs from using the excluded CA
certificate. Excluded certificates are not copied to the /etc/certs/ca-
certificates.crt and are not linked to from the OpenSSL CA certificate directory, /etc/
openssl/certs.

1. Collect the names of excluded certificates.

2. Add the certificates to the ca-certificates SMF service.

In this example, the administrator adds three excluded certificates and verifies that they
are in the exclusion list.

svccfg -s ca-certificates
svc:/system/ca-certificates> addpropvalue config/exclude/example astring:
Example_Root_CA1.pem

Chapter 4
Managing Certificates in the Oracle Solaris CA Keystore

4-17

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html#OSSUPrbactask-28

svc:/system/ca-certificates> addpropvalue config/exclude/example astring:
Example_root_CA_temp1.pem
svc:/system/ca-certificates> addpropvalue config/exclude/example astring:
Example_root_CA_temp2.pem
svc:/system/ca-certificates> listprop config/exclude
config/exclude application
config/exclude/example astring 'Example_Root_CA1.pem'
'Example_root_CA_temp1.pem' 'Example_root_CA_temp2.pem'
svc:/system/ca-certificates> exit

3. Restart the ca-certificates service.

/usr/sbin/svcadm restart /system/ca-certificates
4. Verify that the CA certificate service has restarted.

When the service restarts, it removes the excluded certificates from the /etc/
certs/ca-certificates.crt file and the /etc/openssl/certs directory.

$ svcs -x ca-certificates
svc:/system/ca-certificates:default (CA Certificates Service)
 State: online since 10:10:10 2017
 See: openssl(5)
 See: /var/svc/log/system-ca-certificates:default.log
Impact: None.

Chapter 4
Managing Certificates in the Oracle Solaris CA Keystore

4-18

5
KMIP and PKCS #11 Client Applications

Your PKCS #11 applications can now function as clients that use the Key Management
Interoperability Protocol (KMIP). These client applications communicate with KMIP-compliant
servers to create and use symmetric keys. Oracle Solaris provides client support for KMIP
v1.1: OASIS Standard, enabling clients to communicate with KMIP-compliant servers such as
the Oracle Key Vault.

In addition to Version 1.1, Oracle Solaris provides client support for versions 1.2, 1.3, and 1.4.
Also see:

• Key Management Interoperability Protocol Specification Version 1.2 (http://docs.oasis-
open.org/kmip/spec/v1.2/kmip-spec-v1.2.html)

• Key Management Interoperability Protocol Specification Version 1.3 (http://docs.oasis-
open.org/kmip/spec/v1.3/kmip-spec-v1.3.html)

• Key Management Interoperability Protocol Specification Version 1.4 (http://docs.oasis-
open.org/kmip/spec/v1.4/kmip-spec-v1.4.html)

Note that the supported functions and operations are at the 1.1 level.

This chapter covers the following topics:

• Using KMIP in Oracle Solaris

• KMIP and the Oracle Key Vault

• Benefits for Oracle Solaris Clients Using KMIP

Using KMIP in Oracle Solaris
The new pkcs11_kmip provider in the Cryptographic Framework enables PKCS #11
applications to function as KMIP clients and communicate to KMIP-compliant servers. You
use the kmipcfg command to initialize and manage states of the pkcs11_kmip provider.

The pkcs11_kmip provider connects PKCS #11 applications to KMIP-compliant servers. In
Oracle Solaris, each KMIP server group is implemented as a PKCS #11 token plugged into a
PKCS #11 slot. The kmipcfg command is used to configure the KMIP server groups. The
pktool command can be used to review the state of these tokens from the PKCS #11
perspective.

To set up KMIP communications for clients in Oracle Solaris, administrators perform the
following steps:

1. Install the pkcs11_kmip package.

$ pkg install pkcs11_kmip

This package loads the software provider into the Cryptographic Framework.

2. Create and configure a KMIP server group with the kmipcfg command.

See configuration examples in the pkcs11_kmip(7) man page and Using kmipcfg to
Manage the pkcs11_kmip Provider.

5-1

http://docs.oasis-open.org/kmip/spec/v1.1/os/kmip-spec-v1.1-os.html
http://docs.oasis-open.org/kmip/spec/v1.1/os/kmip-spec-v1.1-os.html
http://docs.oasis-open.org/kmip/spec/v1.2/kmip-spec-v1.2.html
http://docs.oasis-open.org/kmip/spec/v1.2/kmip-spec-v1.2.html
http://docs.oasis-open.org/kmip/spec/v1.3/kmip-spec-v1.3.html
http://docs.oasis-open.org/kmip/spec/v1.3/kmip-spec-v1.3.html
http://docs.oasis-open.org/kmip/spec/v1.4/kmip-spec-v1.4.html
http://docs.oasis-open.org/kmip/spec/v1.4/kmip-spec-v1.4.html
https://docs.oracle.com/cd/E88353_01/html/E37853/pkcs11-kmip-7.html#REFMAN7pkcs11-kmip-7

What pkcs11_kmip Supports
The pkcs11_kmip provider supports a specific set of PKCS #11 interfaces that are
useful during KMIP communications, including interfaces such as C_login,
C_OpenSession, and C_CreateObject. To review the full list of supported interfaces,
see the pkcs11_kmip(7) man page.

In this Oracle Solaris release, the pkcs11_kmip provider supports only symmetric keys
with AES algorithms and encryption and decryption operations. The following
mechanisms are supported:

• CKM_AES_KEY_GEN
• CKM_AES_CBC_PAD
• CKM_AES_CBC
For further information, see the pkcs11_kmip(7) man page.

Creating and Configuring a KMIP Server Group
The kmipcfg command enables you to initialize and manage states of the PKCS#11
KMIP provider by using the Solaris Cryptographic Framework (SCF).

Note:

The kmipcfg command does not verify that the configuration is valid or
guarantee that libkmip can connect to the server.

Example 5-1 Using kmipcfg to Manage the pkcs11_kmip Provider

The following example shows one way to use the kmipcfg command. For more
examples, see the kmipcfg(8) man page.

This kmipcfg create command creates a server group, cluster1, with three KMIP-
compliant servers. The three servers have the following host names:

• server1.example.com
• server2.example.com
• server3.example.com
kmipcfg create \
-o server_list=server1.example.com,server2.example.com,server3.example.com \
-o client_p12=cluster1_cred.p12 \
-o failover_limit=3 cluster1

Note the following:

• Each ‐o option specifies one property in the server group configuration. See the
kmipcfg(8) man page for a full list of configuration properties.

• KMIP currently supports versions 1.1, 1.2, 1.3, and 1.4. By default, the KMIP
library selects the best version match based on the server version, though you can
specify the version you want to use for each server group.

Chapter 5
Using KMIP in Oracle Solaris

5-2

https://docs.oracle.com/cd/E88353_01/html/E37853/pkcs11-kmip-7.html#REFMAN7pkcs11-kmip-7
https://docs.oracle.com/cd/E88353_01/html/E37853/pkcs11-kmip-7.html#REFMAN7pkcs11-kmip-7
https://docs.oracle.com/cd/E88353_01/html/E72487/kmipcfg-8.html#REFMAN8kmipcfg-8
https://docs.oracle.com/cd/E88353_01/html/E72487/kmipcfg-8.html#REFMAN8kmipcfg-8

• Since the port numbers for the servers in this example are not specified, the default port
5696 will be used.

• In this example, the credentials that authenticate and secure the communication are
provided in the cluster1_cred.p12 PKCS #12 bundle. For more information about
managing certificates, see the pktool(1) man page.

• In this example, if one server in the group fails, the connection will fail over to the next
server defined in the server_list property. The failover_limit property specifies that
up to three failovers will be possible.

• This example is non-interactive. For an interactive example, see the kmipcfg(8) man
page.

After you create at least one server group, use the kmipcfg list command to view
configured parameters for the server groups, as in:

kmipcfg list
Server group: cluster1
State: enabled
Hosts: server1.example.com:5696
 server2.example.com:5696
 server3.example.com:5696
Required version: auto
Connection timeout: 5
Cache object time to live: 300
Encoding: TTLV
Failover limit: 3
Client keystore: /var/user/testuser/kmip/cluster1
Client PKCS#12 bundle: cluster1_cred.p12
Secondary authentication type: none

kmipcfg info Command
The kmipcfg info command enables you to obtain information about the server such as
the protocol versions and available functionality. See the kmipcfg(8) man page.

The kmipcfg info command connects to the specified server group and lists the server's
supported KMIP versions and their capabilities. Note that this information might include
capabilities that are not supported by the Oracle Solaris client (KMIP library).

Example 5-2 Obtaining Information About a KMIP Server

The following example shows how the kmipcfg info command outputs information about
the kmip_vbox server group:

kmipcfg info kmip_vbox
Enter PIN for kmip_vbox: PIN
Server group:
 kmip_vbox
Supported versions:
 1.4, 1.3, 1.2, 1.1, 1.0
Server info:
 Gemalto, Inc.
Operations:
 Create, Create Keypair, Register, Locate, Get, Get Attributes,
 Get Attribute List, Add Attribute, Modify Attribute,
 Delete Attribute, Activate, Revoke, Destroy, Query, Rekey,
 Rekey Keypair, Check, Discover Versions
Object types:
 Symmetric Key, Public Key, Private Key, Secret Data, Opaque

Chapter 5
Using KMIP in Oracle Solaris

5-3

https://docs.oracle.com/cd/E88353_01/html/E37839/pktool-1.html#REFMAN1pktool-1
https://docs.oracle.com/cd/E88353_01/html/E72487/kmipcfg-8.html#REFMAN8kmipcfg-8
https://docs.oracle.com/cd/E88353_01/html/E72487/kmipcfg-8.html#REFMAN8kmipcfg-8

KMIP and the Oracle Key Vault
KMIP version 1.1, enables KMIP clients to communicate with KMIP-compliant servers
such as the Oracle Key Vault. To communicate with the Oracle Key Vault, you must
first integrate the Oracle Solaris KMIP client with the Oracle Key Vault. In the
terminology of the Oracle Key Vault, the Oracle Solaris system must be set up as an
Oracle Key Vault endpoint.

For instructions, see About Endpoint Enrollment and Provisioning in Oracle Key Vault
Administrator's Guide and Endpoints That Do Not Use the Oracle Key Vault Client
Software in Oracle Key Vault Administrator's Guide.

Benefits for Oracle Solaris Clients Using KMIP
In Oracle Solaris, KMIP client support provides the following advantages:

• KMIP is an industry protocol. KMIP support enables clients to communicate to any
server that is KMIP-compliant. In Oracle Solaris, you can use your PKCS #11
applications as KMIP clients. By connecting these applications to KMIP-compliant
servers, you reduce the costs and complexity of key management.

Note:

See What pkcs11_kmip Supports for information about the specific
PKCS #11 interfaces and mechanisms that are supported in this release.

• With KMIP server groups, you can ensure that a failed connection to a KMIP
server will be passed on and completed by one of the backup servers in that
group.

• With multiple server groups, your KMIP clients can open and run multiple KMIP
sessions simultaneously. You can access keys from different KMIP-compliant
servers on multiple hosts at the same time.

Chapter 5
KMIP and the Oracle Key Vault

5-4

https://docs.oracle.com/en/database/oracle/key-vault/21.1/okvag/okv_endpoints.html
https://docs.oracle.com/en/database/oracle/key-vault/21.1/okvag/okv_endpoints.html
https://docs.oracle.com/en/database/oracle/key-vault/21.1/okvag/okv_endpoints.html#GUID-8884DF93-C62E-4722-98D6-45C265DFE759
https://docs.oracle.com/en/database/oracle/key-vault/21.1/okvag/okv_endpoints.html#GUID-8884DF93-C62E-4722-98D6-45C265DFE759

6
Cryptographic Services Glossary

These glossary entries cover words that can be ambiguous because they are used differently
in different parts of the operating system, or have meanings in Oracle Solaris that are distinct
from other operating systems.

consumer
In the Cryptographic Framework feature of Oracle Solaris, a consumer is a user of the
cryptographic services that come from providers. Consumers can be applications, end users,
or kernel operations. Kerberos, IKE, and IPsec are examples of consumers. For examples of
providers, see provider.

cryptographic primitive
See primitive.

hardware provider
In the Cryptographic Framework feature of Oracle Solaris, a device driver and its hardware
accelerator. Hardware providers offload expensive cryptographic operations from the
computer system, thus freeing CPU resources for other uses. See also provider.

MAC
1. A message authentication code (MAC).

2. Also called labeling. In government security terminology, MAC is Mandatory Access
Control. Labels such as Top Secret and Confidential are examples of MAC. MAC contrasts
with DAC, which is Discretionary Access Control. UNIX permissions are an example of DAC.

3. In hardware, the unique system address on a LAN. If the system is on an Ethernet, the
MAC is the Ethernet address.

mechanism
1. A software package that specifies cryptographic techniques to achieve data authentication
or confidentiality. Examples: Kerberos V5, Diffie-Hellman public key.

2. In the Cryptographic Framework feature of Oracle Solaris, an implementation of an
algorithm for a particular purpose. For example, a DES mechanism that is applied to
authentication, such as CKM_DES_MAC, is a separate mechanism from a DES mechanism
that is applied to encryption, CKM_DES_CBC_PAD.

6-1

password policy
The encryption algorithms that can be used to generate passwords. Can also refer to
more general issues around passwords, such as how often the passwords must be
changed, how many password attempts are permitted, and other security
considerations. Security policy requires passwords. Password policy might require
passwords to be encrypted with the AES algorithm, and might make further
requirements related to password strength.

policy
Generally, a plan or course of action that influences or determines decisions and
actions. For computer systems, policy typically means security policy. Your site's
security policy is the set of rules that define the sensitivity of the information that is
being processed and the measures that are used to protect the information from
unauthorized access. For example, security policy might require that systems be
audited, that devices must be allocated for use, and that passwords be changed every
six weeks.

For the implementation of policy in specific areas of the Oracle Solaris OS, see policy
in the Cryptographic Framework and password policy.

policy in the Cryptographic Framework
In the Cryptographic Framework feature of Oracle Solaris, policy is the disabling of
existing cryptographic mechanisms. The mechanisms then cannot be used. Policy in
the Cryptographic Framework might prevent the use of a particular mechanism, such
as CKM_DES_CBC, from a provider, such as DES.

policy for public key technologies
In the Key Management Framework (KMF), policy is the management of certificate
usage. The KMF policy database can put constraints on the use of the keys and
certificates that are managed by the KMF library.

primitive
A well-established, low-level algorithm that functions as a basic building block in
security systems. Primitives are designed to perform single tasks in a highly reliable
fashion.

provider
In the Cryptographic Framework feature of Oracle Solaris, a cryptographic service that
is provided to consumers. PKCS #11 libraries, kernel cryptographic modules, and
hardware accelerators are examples of providers. Providers plug in to the framework,
so are also called plugins. For examples of consumers, see consumer.

Chapter 6
password policy

6-2

rights
An alternative to the all-or-nothing superuser model. User rights management and process
rights management enable an organization to divide up superuser's privileges and assign
them to users or roles. Rights in Oracle Solaris are implemented as kernel privileges,
authorizations, and the ability to run a process as a specific UID or GID. Rights can be
collected in a rights profile.

rights profile
Also referred to as a profile. A collection of security overrides that can be assigned to a role
or user. A rights profile can include authorizations, privileges, commands with security
attributes, and other rights profiles that are called supplementary profiles.

security mechanism
See mechanism.

security policy
See policy.

software provider
In the Cryptographic Framework feature of Oracle Solaris, a kernel software module or a
PKCS #11 library that provides cryptographic services. See also provider.

superuser model
The typical UNIX model of security on a computer system. In the superuser model, an
administrator has all-or-nothing control of the system. Typically, to administer the system, a
user becomes superuser (root) and can do all administrative activities.

swrand
Entropy provider in kernel. Both kernel and userland have a NIST approved DRBG
(Deterministic Random Bit Generator). See NIST Special Publication 800-90A.

Chapter 6
rights

6-3

Index

A
adding

pkcs11_kmip package, 5-1
provider mechanisms and features, 3-23

algorithms
definition in Cryptographic Framework, 1-4
enabling, 3-20

C
CA certificates, 1-1
certificate signing requests (CSR)

generating, 4-14
certificates

administering, 4-1
consumers

Cryptographic Framework, 1-4
cryptoadm command

FIPS 140-2 mode and, 1-1
restoring kernel software provider, 3-21

Cryptographic Framework
elfsign command, 1-1, 1-6
error messages, 3-8
registering providers, 1-7
signing providers, 1-7
SPARC based system optimizations, 2-2
SPARC based system optimizations and, 2-2

cryptographic mechanisms
enabling, 3-20

D
decrypt command

description, 1-6
syntax, 3-10

decrypting files, 3-10
digest command

description, 1-6

E
elfsign command, 1-6

enhancements, 1-1

enabling
algorithms in the Cryptographic Framework,

3-20
cryptographic mechanisms, 3-20
kernel software provider use, 3-21
mechanisms and features on a provider, 3-23
mechanisms in the Cryptographic

Framework, 3-20
encrypt command

description, 1-6
error messages, 3-8
troubleshooting, 3-8

error messages
encrypt command, 3-8

examples
Cryptographic Framework algorithms, 1-4
Cryptographic Framework consumers, 1-4

F
files

decrypting, 3-10
PKCS #12, 4-6

FIPS 140-2 mode
cryptoadm and, 1-1

Fujitsu M10 Servers, 2-1
Fujitsu SPARC M12 Servers, 2-1

G
generating

certificate signing requests (CSR), 4-14

H
hardware

determining SPARC available cryptographic
optimizations, 2-2

K
Key Management Interoperability Protocol, 1-1
keystores

Cryptographic Framework, 1-4

Index-1

keystores (continued)
supported by KMF, 4-1

KMF
administering

PKI policy, 4-2
creating

passphrases for keystores, 4-2
keystores, 4-1
library, 4-1

kmfcfg command
plugin subcommands, 4-1

KMIP
PKCS #11 clients, 5-1
pkcs11_kmip provider, 5-1

M
M5 Series Servers, 2-1
M6 Series Servers, 2-1
M7 Series Servers, 2-1
M8 Servers, 2-1
mac command

description, 1-6
managing, 4-1
mechanisms

Cryptographic Framework, 1-4
enabling, 3-20
enabling some on a provider, 3-23
listing all available for use, 3-12

metaslot
Cryptographic Framework, 1-4

mode in Cryptographic Framework, 1-4

N
NSS

default password, 4-9

O
OpenSSL

list of SPARC cryptographic optimizations,
2-3

SPARC based system optimizations and, 2-1
version, 2-1

Oracle Key Vault, 5-1

P
passphrases

encrypt command, 3-8
mac command, 3-6
storing safely, 3-10
using for MAC, 3-7

password protection
keystore, 4-6
PKCS #12 file, 4-6

PKCS #11
KMIP clients, 5-1
version, 1-1

PKCS #12
protecting files, 4-6

pkcs11_kmip provider, 5-1
PKI

policy managed by KMF, 4-2
pktool command

configuring token labels, 1-1
generating CSR, 4-14
inittoken subcommand, 1-1
managing PKI objects, 4-1

policy
Cryptographic Framework, 1-4

protecting
contents of keystore, 4-6

providers
Cryptographic Framework, 1-4
registering, 1-7
restoring use of kernel software provider,

3-21
signing, 1-7
ucrypto, 1-1

R
registering providers

Cryptographic Framework, 1-7
removing

cryptographic providers, 3-20
software providers

permanently, 3-23
software providers permanently, 3-22
software providers temporarily, 3-21
user-level library, 3-20

restoring
cryptographic providers, 3-21

S
S7 Servers, 2-1
security

Cryptographic Framework, 1-1
key management framework, 4-1

signing
providers in Cryptographic Framework, 1-7

slot
definition in Cryptographic Framework, 1-4

SMF
Cryptographic Framework service, 1-6

Index

Index-2

SMF (continued)
kcfd service, 1-6

SPARC based systems
OpenSSL version and, 2-1
optimized for, 2-1

T
T4 Series Servers, 2-1
T5 Series Servers, 2-1
T7 Series Servers, 2-1
task maps

administering Cryptographic Framework,
3-11

token
configure labels for, 1-1
definition in Cryptographic Framework, 1-4

troubleshooting
encrypt command, 3-8

U
ucrypto, 1-1, 1-8

uninstalling
cryptographic providers, 3-20

V
viewing

available cryptographic mechanisms, 3-12
cryptographic mechanisms

available, 3-12
existing, 3-12, 3-15
purpose, 3-15

existing cryptographic mechanisms, 3-15
hardware providers, 3-14
running of SPARC cryptographic

optimizations, 2-3
support of SPARC cryptographic

optimizations, 2-2
verbose listing of cryptographic mechanisms,

3-15

Index

Index-3

	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	1 About Cryptographic Providers in Oracle Solaris
	What's New in Cryptography for Oracle Solaris 11.4
	About Cryptography in Oracle Solaris
	The Cryptographic Framework
	Concepts in the Cryptographic Framework
	Cryptographic Framework Commands and Plugins
	Administrative Commands in the Cryptographic Framework
	User-Level Commands in the Cryptographic Framework
	Elfsign Enhancements
	Plugins to the Cryptographic Framework

	Cryptographic Framework and Zones
	Cryptographic Sources and FIPS 140-2

	Simple and Fast ucrypto Provider
	Operations Supported by the ucrypto Provider
	Disabling libucrypto Mechanisms

	OpenSSL and Oracle Solaris

	2 Cryptographic Optimizations and Hardware Acceleration on SPARC Based Systems
	Cryptographic Framework Optimizations for SPARC Based Systems
	SPARC Acceleration of Optimized Cryptographic Functions

	3 Using the Cryptographic Framework
	Protecting Files With the Cryptographic Framework
	How to Generate a Symmetric Key by Using the pktool Command
	How to Compute a Digest of a File
	How to Compute a MAC of a File
	How to Encrypt and Decrypt a File

	Administering the Cryptographic Framework
	Listing Available Providers
	Adding a Software Provider
	How to Add a Software Provider

	Enabling FIPS 140-2 Mode in Oracle Solaris
	How to Create a Boot Environment With FIPS 140-2 Enabled

	Preventing the Use of Mechanisms
	How to Prevent the Use of a User-Level Mechanism
	How to Prevent the Use of a Kernel Software Mechanism
	How to Disable Hardware Provider Mechanisms and Features

	Refreshing or Restarting All Cryptographic Services
	How to Refresh or Restart All Cryptographic Services

	4 Managing Certificates in Oracle Solaris
	Managing Public Key Technologies With the Key Management Framework
	Key Management Framework Utilities
	KMF Policy Management
	KMF Plugin Management
	KMF Keystore Management

	Using the Key Management Framework
	How to Create a Certificate by Using the pktool Command
	How to Import a Certificate Into Your Keystore
	How to Export a Certificate and Private Key in PKCS #12 Format
	How to Create a PKCS #11 Keystore
	How to Generate a Passphrase by Using the pktool Command
	How to Generate a Key Pair by Using the pktool genkeypair Command
	How to Sign a Certificate Request by Using the pktool signcsr Command
	How to Manage Third-Party Plugins in KMF

	Managing Certificates in the Oracle Solaris CA Keystore
	How to Add a Certificate to the Oracle Solaris CA Keystore
	How to Exclude Certificates From the Oracle Solaris CA Keystore

	5 KMIP and PKCS #11 Client Applications
	Using KMIP in Oracle Solaris
	What pkcs11_kmip Supports
	Creating and Configuring a KMIP Server Group
	kmipcfg info Command

	KMIP and the Oracle Key Vault
	Benefits for Oracle Solaris Clients Using KMIP

	6 Cryptographic Services Glossary
	consumer
	cryptographic primitive
	hardware provider
	MAC
	mechanism
	password policy
	policy
	policy in the Cryptographic Framework
	policy for public key technologies
	primitive
	provider
	rights
	rights profile
	security mechanism
	security policy
	software provider
	superuser model
	swrand

	Index

