
Managing ZFS File Systems in Oracle Solaris
11.4

E61017-19
May 2025

Managing ZFS File Systems in Oracle Solaris 11.4,

E61017-19

Copyright © 2006, 2025, Oracle and/or its affiliates.

Primary Author:

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Copyright © 2006, 2025, Oracle et/ou ses affiliés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont
concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf stipulation expresse de votre
contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par
quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le
désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la
loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle
Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, la documentation du logiciel, les données (telles que définies dans la réglementation "Federal Acquisition
Regulation") ou la documentation afférente sont livrés sous licence au Gouvernement des Etats-Unis, ou à quiconque
qui aurait souscrit la licence de ce logiciel pour le compte du Gouvernement des Etats-Unis, la notice suivante
s'applique :

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations.
Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque, notamment dans
des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou matériel dans le
cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de
sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité.
Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce
logiciel ou matériel pour des applications dangereuses.

Oracle®, Java, MySQL et NetSuite sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre
nom mentionné peut être une marque appartenant à un autre propriétaire qu'Oracle.

Intel et Intel Inside sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont
utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Epyc, et le
logo AMD sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée de
The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant
accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute
responsabilité et excluent toute garantie expresse ou implicite quant aux contenus, produits ou services émanant de
tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses
affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés
par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un
contrat entre vous et Oracle.

Contents

 Using This Documentation

Product Documentation Library xiii

Feedback xiii

1 Introducing the Oracle Solaris ZFS File System

What's New in ZFS for Oracle Solaris 1-1

Oracle Solaris ZFS Features 1-2

Components of a ZFS Storage Pool 1-3

Using Disks in a ZFS Storage Pool 1-3

Using Files in a ZFS Storage Pool 1-4

Redundancy Features of a ZFS Storage Pool 1-5

Mirrored Storage Pool Configuration 1-5

RAID-Z Storage Pool Configuration 1-5

ZFS Hybrid Storage Pool 1-6

Dynamic Striping in a Storage Pool 1-6

2 Getting Started With Oracle Solaris ZFS

Hardware and Software Requirements 2-1

Planning the ZFS Implementation 2-1

Naming ZFS Components 2-1

Identifying Storage Requirements 2-2

Choosing the Type of Data Redundancy 2-2

Determining the ZFS File System Hierarchy 2-2

Selecting the File System Granularity 2-3

Grouping File Systems 2-3

Choosing File System Properties 2-3

3 Creating and Destroying Oracle Solaris ZFS Storage Pools

Creating ZFS Storage Pools 3-1

How to Set Up ZFS on a System 3-1

Creating a Mirrored Storage Pool 3-5

iv

Creating a RAID-Z Storage Pool 3-5

Creating a ZFS Storage Pool With Log Devices 3-6

Creating a ZFS Storage Pool With Cache Devices 3-7

Doing a Dry Run of Storage Pool Creation 3-7

Handling ZFS Storage Pool Creation Issues 3-8

Devices Actively Being Used 3-8

Mismatched Redundancy Levels 3-9

Default Mount Point for Storage Pools Not Empty 3-9

Destroying ZFS Storage Pools 3-9

4 Managing Devices in Oracle Solaris ZFS Storage Pools

Adding Devices to a Storage Pool 4-1

Removing Devices From a Storage Pool 4-3

Attaching and Detaching Devices in a Storage Pool 4-5

Splitting a Mirrored Storage Pool to Create a New Pool 4-6

Taking Devices in a Storage Pool Offline or Returning Online 4-8

Clearing Storage Pool Device Errors 4-9

Replacing Devices in a Storage Pool 4-9

How to Replace a Device in a Storage Pool 4-10

Working With Hot Spares in Storage Pools 4-11

Designating Hot Spares in a Storage Pool 4-11

Activating and Deactivating Hot Spares in Your Storage Pool 4-12

5 Managing Oracle Solaris ZFS Storage Pools

Managing ZFS Storage Pool Properties 5-1

Querying ZFS Storage Pool Status 5-3

Displaying Information About ZFS Storage Pools 5-3

Displaying Information About All Storage Pools or a Specific Pool 5-3

Displaying Specific Storage Pool Statistics 5-4

Displaying Pool Devices by Physical Locations 5-5

Displaying ZFS Storage Pool Command History 5-5

Viewing I/O Statistics for ZFS Storage Pools 5-6

Listing Pool-Wide I/O Statistics 5-7

Listing Virtual Device I/O Statistics 5-7

Determining the Health Status of ZFS Storage Pools 5-9

Storage Pool Health Status 5-10

Gathering ZFS Storage Pool Status Information 5-11

Migrating ZFS Storage Pools 5-12

Preparing for ZFS Storage Pool Migration 5-12

Exporting a ZFS Storage Pool 5-12

v

Determining Available Storage Pools to Import 5-13

Importing ZFS Storage Pools 5-14

Importing a Pool With a Missing Log Device 5-14

Importing a Pool in Read-Only Mode 5-15

Importing a Pool By Using a Specific Device Path 5-16

Recovering Destroyed ZFS Storage Pools 5-16

Upgrading ZFS Storage Pools 5-18

Managing ZFS Pools That Contain Boot Environments 5-19

6 Managing a ZFS Root Pool

Requirements for Configuring the ZFS Root Pool 6-1

ZFS Root Pool Space Requirements 6-1

ZFS Root Pool Configuration Recommendations 6-1

Installing the ZFS Root Pool 6-2

Managing a ZFS Root Pool 6-3

How to Configure a Mirrored Root Pool (SPARC or x86/EFI (GPT)) 6-3

How to Configure a Mirrored Root Pool (SPARC or x86/VTOC) 6-4

How to Update a ZFS Boot Environment 6-5

How to Mount an Alternate BE 6-6

Replacing Disks in a ZFS Root Pool 6-6

How to Replace a Disk in a ZFS Root Pool 6-7

Managing ZFS Swap and Dump Devices 6-10

Viewing Swap and Dump Information 6-11

How to Create a Swap Volume 6-11

How to Delete a Swap Volume 6-12

How to Create a Dump Volume 6-12

Adjusting the Sizes of ZFS Swap and Dump Devices 6-12

Troubleshooting ZFS Dump Device Issues 6-13

Booting From a ZFS Root File System 6-14

Booting From an Alternate Root Pool Disk 6-14

Alternate Boot Disks on SPARC Systems 6-15

Alternate Boot Disks on x86 Systems 6-15

Booting From a ZFS Root File System on a SPARC Based System 6-15

SPARC: How to Select the Boot Environment for Booting 6-16

Booting From a ZFS Root File System on an x86 Based System 6-16

x86: Displaying the Root File System 6-17

x86: Fast Rebooting a ZFS Root File System 6-17

Booting for Recovery Purposes in a ZFS Root Environment 6-17

vi

7 Managing Oracle Solaris ZFS File Systems

Introduction to ZFS File Systems 7-1

Creating ZFS File Systems 7-2

How to Create a ZFS File System 7-2

Destroying or Renaming a ZFS File System 7-3

How to Destroy a ZFS File System 7-3

How to Rename a ZFS File System 7-4

Introducing ZFS Properties 7-4

ZFS Read-Only Native Properties 7-12

Settable ZFS Native Properties 7-12

The canmount Property 7-12

The casesensitivity Property 7-13

The copies Property 7-13

The dedup Property 7-14

The encryption Property 7-15

The mlslabel Property 7-15

The multilevel Property 7-16

The recordsize Property 7-16

The share.smb Property 7-16

The volsize Property 7-17

ZFS User Properties 7-17

Querying ZFS File System Information 7-18

Listing Basic ZFS Information 7-18

Creating Complex ZFS Queries 7-19

Listing Incomplete ZFS Datasets 7-20

Creating Parsable Output with zfs list 7-20

Managing ZFS Properties 7-20

Setting ZFS Properties 7-20

Inheriting ZFS Properties 7-21

Querying ZFS Properties 7-22

Querying ZFS Properties for Scripting 7-24

Mounting ZFS File Systems 7-24

Managing ZFS Mount Points 7-24

Automatic Mount Points 7-25

Legacy Mount Points 7-26

Mounting ZFS File Systems 7-26

Using Temporary Mount Properties 7-27

Unmounting ZFS File Systems 7-28

Sharing and Unsharing ZFS File Systems 7-28

About Sharing Labeled File Systems 7-29

Legacy ZFS Sharing Syntax 7-30

vii

New ZFS Sharing Syntax 7-30

ZFS Sharing with Per-Property Inheritance 7-31

ZFS Sharing Inheritance in Older Pools 7-31

ZFS Named Shares 7-31

ZFS Automatic Shares 7-32

Displaying ZFS Share Information 7-33

Changing ZFS Share Property Values 7-34

Publishing and Unpublishing ZFS Shares 7-34

Removing a ZFS Share 7-35

ZFS File Sharing Within a Non-Global Zone 7-35

ZFS Sharing Migration/Transition Issues 7-35

Troubleshooting ZFS File System Sharing Problems 7-36

Specifying Unicode Versions 7-38

Setting ZFS Quotas 7-39

Setting Quotas on ZFS File Systems 7-40

Setting User and Group Quotas on a ZFS File System 7-41

Setting Default User and Group Quotas 7-42

Setting Reservations on ZFS File Systems 7-43

Setting I/O Bandwidth Limits 7-44

Compressing ZFS File Systems 7-46

Encrypting ZFS File Systems 7-47

Changing an Encrypted ZFS File System's Keys 7-49

Managing ZFS Encryption Keys 7-50

Delegating ZFS Key Operation Permissions 7-50

Mounting an Encrypted ZFS File System 7-50

Upgrading Encrypted ZFS File Systems 7-51

Interactions Between ZFS Compression, Deduplication, and Encryption Properties 7-52

Examples of Encrypting ZFS File Systems 7-52

Retaining Files on Your ZFS File System 7-53

Creating a ZFS File System With File Retention 7-54

ZFS File Retention Properties 7-55

Retaining Your Files 7-56

Retaining Zero-Length Files 7-57

Enabling Automatic File Retention 7-58

File Retention Restrictions 7-58

Migrating ZFS File Systems 7-58

How to Migrate a File System to a ZFS File System 7-59

How to Migrate SMB Filesystems 7-61

Upgrading ZFS File Systems 7-62

viii

8 Working With Oracle Solaris ZFS Snapshots and Clones

Overview of ZFS Snapshots 8-1

Creating and Destroying ZFS Snapshots 8-2

Holding ZFS Snapshots 8-3

Renaming ZFS Snapshots 8-4

Displaying and Accessing ZFS Snapshots 8-4

Disk Space Accounting for ZFS Snapshots 8-5

Rolling Back a ZFS Snapshot 8-6

Identifying ZFS Snapshot Differences (zfs diff) 8-6

Overview of ZFS Clones 8-8

Creating a ZFS Clone 8-8

Destroying a ZFS Clone 8-9

Displaying and Accessing ZFS Clones 8-9

Replacing a ZFS File System With a ZFS Clone 8-10

Saving, Sending, and Receiving ZFS Data 8-11

Saving ZFS Data With Other Backup Products 8-12

Types of ZFS Snapshot Streams 8-12

Sending a ZFS Snapshot 8-14

Using Resumable Replication 8-16

Receiving a ZFS Snapshot 8-16

Applying Different Property Values to a ZFS Snapshot Stream 8-17

Retaining Original Property Values 8-18

Disabling Original Property Values 8-19

Sending and Receiving Complex ZFS Snapshot Streams 8-19

Sending and Receiving Encrypted ZFS Data 8-21

Remote Replication of ZFS Data 8-22

Monitoring ZFS Pool Operations 8-22

Copying ZFS Files 8-25

9 Oracle Solaris ZFS Delegated Administration

Overview of ZFS Delegated Administration 9-1

Delegating ZFS Permissions 9-2

Delegating ZFS Permissions (zfs allow) 9-4

Removing ZFS Delegated Permissions (zfs unallow) 9-5

Delegating ZFS Permissions Examples 9-5

Displaying ZFS Delegated Permissions Examples 9-8

Removing ZFS Delegated Permissions Examples 9-10

ix

10

Oracle Solaris ZFS Advanced Topics

ZFS Volumes 10-1

Using a ZFS Volume as a Swap or Dump Device 10-1

Using a ZFS Volume as an iSCSI LUN 10-2

How to Use a ZFS Volume as an iSCSI LUN 10-2

Using ZFS on an Oracle Solaris System With Zones Installed 10-3

Adding ZFS File Systems to a Non-Global Zone 10-4

Delegating Datasets to a Non-Global Zone 10-5

Adding ZFS Volumes to a Non-Global Zone 10-5

Using ZFS Storage Pools Within a Zone 10-6

Managing ZFS Properties Within a Zone 10-6

Understanding the zoned Property 10-7

Copying Zones to Other Systems 10-8

Using a ZFS Pool With an Alternate Root Location 10-8

Creating a ZFS Pool With an Alternate Root Location 10-8

Importing a Pool With an Alternate Root Location 10-9

Importing a Pool With a Temporary Name 10-9

11

Oracle Solaris ZFS Troubleshooting and Pool Recovery

Identifying ZFS Problems 11-1

Resolving General Hardware Problems 11-1

Identifying Hardware and Device Faults 11-2

Resolving Persistent or Transient Transport Errors 11-2

System Reporting of ZFS Error Messages 11-3

Identifying Problems With ZFS Storage Pools 11-3

Determining If Problems Exist in a ZFS Storage Pool 11-4

Reviewing ZFS Storage Pool Status Information 11-4

Overall Pool Status Information 11-5

ZFS Storage Pool Configuration Information 11-5

ZFS Storage Pool Scrubbing Status 11-6

ZFS Data Corruption Errors 11-6

Resolving ZFS Storage Device Problems 11-7

Resolving a Missing or Removed Device 11-7

Resolving a Removed Device 11-9

Physically Reattaching a Device 11-10

Notifying ZFS of Device Availability 11-10

Replacing or Repairing a Damaged Device 11-10

Determining the Type of Device Failure 11-11

Clearing Transient or Persistent Device Errors 11-12

Replacing a Device in a ZFS Storage Pool 11-13

x

Changing Pool Devices 11-19

Resolving Data Problems in a ZFS Storage Pool 11-19

Resolving ZFS Space Issues 11-19

ZFS File System Space Reporting 11-19

ZFS Storage Pool Space Reporting 11-20

Checking ZFS File System Integrity 11-22

File System Repair 11-22

File System Validation 11-23

Controlling ZFS Data Scrubbing 11-23

Repairing Corrupted ZFS Data 11-25

Identifying the Type of Data Corruption 11-26

Repairing a Corrupted File or Directory 11-27

Repairing ZFS Storage Pool-Wide Damage 11-28

Repairing a Damaged ZFS Configuration 11-29

Repairing an Unbootable System 11-29

12

Recommended Oracle Solaris ZFS Practices

Recommended Storage Pool Practices 12-1

General System Practices 12-1

ZFS Storage Pool Creation Practices 12-2

General Storage Pool Practices 12-2

Root Pool Creation Practices 12-3

Non-Root Pool Creation Practices 12-4

Pool Creation Practices on Local or Network Attached Storage Arrays 12-4

Pool Creation Practices for an Oracle Database 12-5

Using ZFS Storage Pools in VirtualBox 12-5

Storage Pool Practices for Performance 12-6

ZFS Storage Pool Maintenance and Monitoring Practices 12-6

Recommended File System Practices 12-8

Root File System Practices 12-8

File System Creation Practices 12-8

File System Creation Practices for an Oracle Database 12-8

Monitoring ZFS File System Practices 12-8

13

Using Time Slider

About Time Slider 13-1

Enabling and Disabling Time Slider 13-1

How to Enable or Disable Time Slider 13-2

Using Time Slider Advanced Options 13-2

xi

A Oracle Solaris ZFS Version Descriptions

Overview of ZFS Versions A-1

ZFS Pool Versions A-1

ZFS File System Versions A-3

B ZFS Glossary

B B-1

boot environment B-1

C B-1

checksum B-1

clone B-1

D B-1

dataset B-1

deduplication B-1

F B-1

file system B-1

M B-2

mirror B-2

P B-2

pool B-2

R B-2

RAID-Z B-2

resilvering B-2

root pool B-2

S B-2

snapshot B-2

V B-3

virtual device B-3

volume B-3

Index

xii

Using This Documentation

• Overview – Provides information about the Oracle ZFS file system, including information
specific to SPARC and x86 based systems, where appropriate.

• Audience – System administrators.

• Required knowledge – Basic Oracle Solaris or UNIX system administration experience
and general file system administration experience.

Product Documentation Library
Documentation and resources for this product and related products are available at Oracle
Solaris 11.4 Information Library.

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback .

xiii

https://docs.oracle.com/cd/E37838_01/
https://docs.oracle.com/cd/E37838_01/
http://www.oracle.com/goto/docfeedback

1
Introducing the Oracle Solaris ZFS File
System

This chapter provides an overview of the Oracle Solaris ZFS file system and its features and
benefits. It covers the following information:

• What's New in ZFS for Oracle Solaris

• Oracle Solaris ZFS Features

• Components of a ZFS Storage Pool

• Redundancy Features of a ZFS Storage Pool

What's New in ZFS for Oracle Solaris
This Oracle Solaris release introduces the following ZFS features:

• ZFS supports compressed raw send in data replication, which can replicate data by
sending compressed file system blocks as-is from the disk and writing the blocks as-is to
the target. The feature increases efficiency by eliminating the decompression-
recompression processes in previous ZFS replication operations that used to run before
the data blocks are received at the target. See the Sending ZFS Data Using Raw Transfer
example in Sending a ZFS Snapshot.

• Set bandwidth restrictions on a dataset. Such restrictions enable you to limit I/O operations
on datasets to ensure that no one dataset can monopolize the bandwidth of the pool. See
Setting I/O Bandwidth Limits.

• Restart or resume a ZFS data transfer from the point at which the transfer stopped. A data
transfer might be interrupted because of a network outage or ZFS server downtime. See
Using Resumable Replication.

• By default, per-block checksums are enabled when you transfer ZFS data from an Oracle
Solaris 11.4 system. To transfer ZFS data to systems that do not support per-block
checksums, see the Sending ZFS Data From a Oracle Solaris 11.4.0 Dataset example in
Sending a ZFS Snapshot.

• Use the zpool remove command to remove top-level devices from a ZFS pool. This
feature compliments the current capabilities of removing log, cache, and hot spare devices
from pools. See Removing Devices From a Storage Pool.

• Use the clustered zpool property to globally mount a ZFS file system in an Oracle Solaris
Cluster environment. See the Oracle Solaris Cluster 4.4 Documentation Library.

• Use the zfs send command to replicate a cloned dataset in a self-contained manner that
is independent from the origin dataset. See Types of ZFS Snapshot Streams.

• Use the cp -z to copy a file more quickly. See Copying ZFS Files.

• The clone auto-promote feature enables you to do the following:

– Destroy datasets even if these datasets have snapshots that are clone origins. This
capability makes the destruction of snapshots, shares or projects independent of any
dependent clones. You can preserve these clones even after the destroy operation.

1-1

https://docs.oracle.com/cd/E69294_01/index.html

– Directly clone datasets without having to first take a snapshot of the dataset.

– Provide data about the disk space utilization of clones. This data shows how clones
share disk space and how the space used by a clone can change as other datasets
are destroyed and promoted.

• Create policies that enable you to retain files for mandatory time periods starting in Oracle
Solaris 11.4 SRU 45. See Retaining Files on Your ZFS File System.

• Create ZFS clones and mount them under the .zfs/clone directory starting in Oracle
Solaris 11.4 SRU 72. See Displaying and Accessing ZFS Clones.

Oracle Solaris ZFS Features
The Oracle Solaris ZFS file system provides features and benefits not found in other file
systems. The following table compares the features of the ZFS file system with traditional file
systems.

Note:

For a more detailed discussion of the differences between ZFS and historical file
systems, see Oracle Solaris ZFS and Traditional File System Differences.

Table 1-1 Comparison of the ZFS File System and Traditional File Systems

ZFS File System Traditional File Systems

Uses concept of storage pools created on devices. The pool
size grows as more devices are added to the pool, The
additional space is immediately available for use.

Constrained to one device and to the size of that device.

Volume manager unnecessary. Commands configure pools
for data redundancy over multiple devices.

Supports one file system per user or project for easier
management.

Requires volume manager to handle multiple devices to
provide data redundancy, which adds to the complexity of
administration.

Uses one file system to manage multiple subdirectories.

Set up and manage many file systems by issuing commands,
and directly apply properties that can be inherited by the
descendant file systems within the hierarchy. No need to edit
the /etc/vfstab file. File system mounts or unmounts
are automatic based on file system properties.

You can create a snapshot, a read-only copy of a file system
or volume quickly and easily. Initially, snapshots consume no
additional disk space within the pool.

Complex administration due to device and size constraints.
For example, every time you add a new file system, you must
edit the /etc/vfstab file.

Metadata is allocated dynamically. No pre-allocation or
predetermined limits are set. The number of supported file
systems is limited only by the available disk space.

Pre-allocation of metadata results in immediate space cost at
the creation of the file system. Pre-allocation also
predetermines the total number of file systems that can be
supported.

Uses transactional semantics, where data management uses
copy-on-write semantics, not data overwrite. Any sequence
of operations is either entirely committed or entirely ignored.
During accidental loss of power or a system crash, most
recently written pieces of data might be lost but the file
system always remains consistent and uncorrupted.

Overwrites data in place. File system vulnerable to getting
into an inconsistent state, for example, if the system loses
power between the time a data block is allocated and when it
is linked into a directory. Tools such as fsck command or
journaling do not always guarantee a fix and can introduce
unnecessary overhead.

Chapter 1
Oracle Solaris ZFS Features

1-2

https://docs.oracle.com/cd/E26502_01/html/E29007/gbcik.html#ZFSADMINgbcik

Table 1-1 (Cont.) Comparison of the ZFS File System and Traditional File Systems

ZFS File System Traditional File Systems

All checksum verification and data recovery are performed at
the file system layer, and are transparent to applications. All
failures are detected and recovery can be performed.

Supports self-healing data through its varying levels of data
redundancy. A bad data block can be repaired by replacing it
with correct data from another redundant copy.

Checksum verification, if provided, is performed on a per-
block basis. Certain failures, such as writing a complete
block to an incorrect location, can result in data that is
incorrect but has no checksum errors.

ACL (Access Control List) model based on NFSv4
specifications to protect ZFS, similar to NT-style ACL. The
model provides a much more granular set of access
privileges. Richer inheritance semantics designate how
access privileges are applied through the directory hierarchy.

In previous Oracle Solaris releases, ACL implementation was
based on POSIX ACL specifications to protect UFS.

Components of a ZFS Storage Pool
This section describes the components used for creating ZFS pools.

Using Disks in a ZFS Storage Pool
The most basic element of a storage pool is physical storage. Physical storage can be any
block device of at least 128 MB in size. Typically, this device is a hard drive that is visible to the
system in the /dev/dsk directory.

A storage device can be a whole disk (c1t0d0) or an individual slice (c0t0d0s7). From
management, reliability, and performance perspectives, using whole disks is the easiest and
most efficient way to use ZFS. ZFS formats the whole disk to contain a single, large slice. No
special disk formatting is required. With other methods, such as building pools from disk slices,
LUNs in hardware RAID arrays, or volumes presented by software-based volume managers,
management becomes increasingly complex and might provide less-than-optimal performance.

Caution:

Because of potential complexity in managing slices for storage pools, avoid using
slices.

The format command displays the partition table of disks. When Oracle Solaris is installed on
a SPARC® system with GPT aware firmware, an EFI (GPT) label is applied to the disk. The
partition table would be similar to the following example:

Current partition table (original):
Total disk sectors available: 143358287 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector
0 usr wm 256 68.36GB 143358320
1 unassigned wm 0 0 0
2 unassigned wm 0 0 0
3 unassigned wm 0 0 0
4 unassigned wm 0 0 0
5 unassigned wm 0 0 0
6 unassigned wm 0 0 0
8 reserved wm 143358321 8.00MB 143374704

Chapter 1
Components of a ZFS Storage Pool

1-3

When Oracle Solaris is installed on an x86 based system, in most cases a EFI (GPT) label is
applied to root pool disks. The partition table would be similar to the following:

Current partition table (original):
Total disk sectors available: 27246525 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector
0 BIOS_boot wm 256 256.00MB 524543
1 usr wm 524544 12.74GB 27246558
2 unassigned wm 0 0 0
3 unassigned wm 0 0 0
4 unassigned wm 0 0 0
5 unassigned wm 0 0 0
6 unassigned wm 0 0 0
8 reserved wm 27246559 8.00MB 27262942

In the output, partition 0 (BIOS boot) contains required GPT boot information. Similar to
partition 8, partition 0 requires no administration and should not be modified. The root file
system is contained in partition 1.

Note:

For more information about EFI labels, see About EFI (GPT) Disk Labels in
Managing Devices in Oracle Solaris 11.4 .

On an x86 based system, the disk must have a valid Solaris fdisk partition. For more
information about creating or changing an Oracle Solaris fdisk partition, see Configuring Disks
in Managing Devices in Oracle Solaris 11.4 .

Disk names generally follow the /dev/dsk/cNtNdN naming convention. Some third-party
drivers use a different naming convention or place disks in a location other than the /dev/dsk
directory. To use these disks, you must manually label the disk and allocate it to ZFS.

You can specify disks by using either the full path or a shorthand name that consists of the
device name within the /dev/dsk directory. The following examples show valid disk names:

• c1t0d0
• /dev/dsk/c1t0d0
• /dev/tools/disk

Using Files in a ZFS Storage Pool
With ZFS, you can use files as virtual devices in your storage pool. If you adopt this method,
ensure that all files are specified as complete paths and are at least 64 MB in size.

This feature is useful for testing, such as experimenting with more complicated ZFS
configurations when physical devices are insufficient. Do not use this feature in a production
environment.

If you create a ZFS pool backed by files on a UFS file system, then you are implicitly relying on
UFS to guarantee correctness and synchronous semantics. However, creating a ZFS pool
backed by files or volumes that are created on another ZFS pool might cause a system
deadlock or panic.

Chapter 1
Components of a ZFS Storage Pool

1-4

https://docs.oracle.com/cd/E37838_01/html/E61015/disksconcepts-1.html#indexterm-id-115
https://docs.oracle.com/cd/E37838_01/html/E61015/disksconcepts-1.html#indexterm-id-115
https://docs.oracle.com/cd/E37838_01/html/E61015/gnwky.html
https://docs.oracle.com/cd/E37838_01/html/E61015/gnwky.html

Redundancy Features of a ZFS Storage Pool
You should configure your storage pools using ZFS redundancy. Without redundancy, the risk
of losing data is great. Moreover, without ZFS redundancy, the pool can only report data
inconsistencies, but cannot repair those inconsistencies. ZFS provides data redundancy and
self-healing properties in mirrored and RAID-Z configurations.

Mirrored Storage Pool Configuration
A mirrored storage pool configuration requires at least two disks, preferably on separate
controllers. A mirrored configuration can be simple or complex, where more than one mirror
exists in each pool.

For information about creating simple or complex mirrored storage pools, see Creating a
Mirrored Storage Pool.

RAID-Z Storage Pool Configuration
ZFS supports a RAID-Z configuration with the following fault tolerance levels:

• Single-parity (raidz or raidz1) – Similar to RAID-5.

• Double-parity (raidz2) – Similar to RAID-6.

• Triple-parity (raidz3) – For more information, see Triple-Parity RAID and Beyond (https://
queue.acm.org/detail.cfm?id=1670144).

In RAID-Z, ZFS uses variable-width RAID stripes so that all writes are full-stripe writes. ZFS
integrates file system and device management in such a way that the file system's metadata
has enough information about the underlying data redundancy model to handle variable-width
RAID stripes. Thus, RAID-Z avoids issues encountered in traditional RAID algorithms such as
RAID-5's write hole problem.

ZFS provides self-healing data in a mirrored or RAID-Z configuration. When a bad data block is
detected, ZFS fetches the correct data from another redundant copy and repairs the bad data
by replacing it with the good copy.

A RAID-Z configuration with n disks of size x with p parity disks can hold approximately (n-p)*x
bytes and can withstand p devices failing before data integrity is compromised. You need at
least two disks for a single-parity RAID-Z configuration and at least three disks for a double-
parity RAID-Z configuration, and so on. For example, if you have three disks in a single-parity
RAID-Z configuration, parity data occupies disk space equal to one of the three disks.
Otherwise, no special hardware is required to create a RAID-Z configuration.

Just like mirrored configurations, RAID-Z configurations can either be simple or complex.

If you are creating a RAID-Z configuration with many disks, consider splitting the disks into
multiple groupings. For example, a RAID-Z configuration with 14 disks is better split into two 7-
disk groupings. RAID-Z configurations with single-digit groupings of disks commonly perform
better.

See the following sources for more information:

• Creating a RAID-Z Storage Pool – provides information about creating a RAID-Z storage
pool.

Chapter 1
Redundancy Features of a ZFS Storage Pool

1-5

https://queue.acm.org/detail.cfm?id=1670144
https://queue.acm.org/detail.cfm?id=1670144

• When to (and Not to) Use RAID-Z – presents guidelines on choosing between a mirrored
configuration or a RAID-Z configuration based on performance and disk space
considerations.

• Recommended Oracle Solaris ZFS Practices – covers additional RAID-Z storage pool
recommendations.

ZFS Hybrid Storage Pool
The ZFS hybrid storage pool, available in Oracle's Sun Storage 7000 product series, combines
DRAM, SSDs, and HDDs to improve performance and increase capacity, while reducing power
consumption. With this product's management interface, you can select the ZFS redundancy
configuration of the storage pool and easily manage other configuration options.

For more information, see Oracle Unified Storage Systems (https://docs.oracle.com/cd/
F24631_01/index.html).

Dynamic Striping in a Storage Pool
ZFS dynamically stripes data across all top-level virtual devices. The decision about where to
place data is done at write time, so no fixed-width stripes are created at allocation time.

When new virtual devices are added to a pool, ZFS gradually allocates data to the new device
in order to maintain performance and disk space allocation policies. Each virtual device can
also be a mirror or a RAID-Z device that contains other disk devices or files. This configuration
gives you flexibility in controlling the fault characteristics of your pool. For example, you could
create the following configurations out of four disks:

• Four disks using dynamic striping

• One four-way RAID-Z configuration

• Two two-way mirrors using dynamic striping

To ensure efficient use of ZFS, use top-level virtual devices of the same type with the same
redundancy level in each device. Do not combine different types of virtual devices within the
same pool, such as using a two-way mirror and a three-way RAID-Z configuration.

Chapter 1
Redundancy Features of a ZFS Storage Pool

1-6

https://blogs.oracle.com/solaris/post/when-to-and-not-to-use-raid-z
https://docs.oracle.com/cd/F24631_01/index.html
https://docs.oracle.com/cd/F24631_01/index.html

2
Getting Started With Oracle Solaris ZFS

This chapter provides information to help you set up a basic Oracle Solaris ZFS configuration.
Later chapters provide more detailed information. By the end of this chapter, you will have a
basic understanding of how the ZFS commands work and should be able to create a basic
pool and file systems.

This chapter covers the following topics:

• Hardware and Software Requirements

• Planning the ZFS Implementation

Hardware and Software Requirements
Ensure that you meet the following hardware requirements before using the ZFS software:

• A SPARC® or x86 based system that is running a supported Oracle Solaris release.

• Between 7 GB -13 GB of disk space. For information about how ZFS uses disk space, see
ZFS Root Pool Space Requirements.

• Sufficient memory to support your workload.

• Multiple controllers for mirrored pool configurations.

Additionally, to perform ZFS management tasks, you must assume a role with either of the
following profiles:

• ZFS Storage Management – Provides the privilege to create, destroy, and manipulate
devices within a ZFS storage pool

• ZFS File System Management – Provides the privilege to create, destroy, and modify ZFS
file systems

Although you can use a superuser (root) account to configure ZFS, using RBAC (role-based
access control) roles is a best-practice method. For more information about creating or
assigning roles, see Securing Users and Processes in Oracle Solaris 11.4 .

In addition to using RBAC roles for administering ZFS file systems, you might also consider
using ZFS delegated administration for distributed ZFS administration tasks. For more
information, see Oracle Solaris ZFS Delegated Administration.

Planning the ZFS Implementation
This section describes factors you need to consider before configuring ZFS.

Naming ZFS Components
Each ZFS component, such as datasets and pools, must be named according to the following
rules:

• Each component can contain only alphanumeric characters in addition to the following
special characters:

2-1

https://docs.oracle.com/cd/E37838_01/html/E61023/index.html

– Underscore (_)

– Hyphen (-)

– Colon (:)

– Period (.)

– Blank (" ")

Note:

Tabs and other white spaces are not valid.

• Pool names must begin with a letter and can contain only alphanumeric characters as well
as underscore (_), dash (-), and period (.). Note the following pool name restrictions:

– The beginning sequence c [0-9] is not allowed.

– The name log is reserved.

– A name that begins with mirror, raidz, raidz1, raidz2, raidz3, or spare is not
allowed because these names are reserved.

– Pool names must not contain a percent sign (%).

• Dataset names must begin with an alphanumeric character.

• Dataset names must not contain a percent sign (%).

• Empty components are not allowed.

Identifying Storage Requirements
The pool describes the physical characteristics of the storage. You must be create the pool
before any file systems.

Before creating a storage pool, determine which devices will store your data. These devices
must be disks of at least 128 MB in size, and they must not be in use by other parts of the
operating system. Allocate entire disks to ZFS rather than individual slices on a preformatted
disk.

For more information about disks and how they are used and labeled, see Using Disks in a
ZFS Storage Pool.

Choosing the Type of Data Redundancy
ZFS supports multiple types of data redundancy, which determines the types of hardware
failures the pool can withstand. ZFS supports nonredundant (striped) configurations, as well as
mirroring and RAID-Z, which is a variation on RAID-5.

For more information about ZFS redundancy features, see Redundancy Features of a ZFS
Storage Pool.

Determining the ZFS File System Hierarchy
File system hierarchies are created on pools.

Hierarchies are simple, easy to understand, yet powerful mechanisms for organizing
information. This section describes specific issues regarding hierarchy planning.

Chapter 2
Planning the ZFS Implementation

2-2

Selecting the File System Granularity
ZFS supports file systems organized into hierarchies, where each file system has only a single
parent. The root of the hierarchy is always the pool name. ZFS supports property inheritance
so that common you can set properties quickly and easily on entire trees of file systems by
using hierarchies.

ZFS file systems provide a central point of administration. They are lightweight enough that
you can establish one file system per user or project. This model enables you to control
properties, snapshots, and backups on a per-user or per-project basis.

For more information about managing file systems, see Managing Oracle Solaris ZFS File
Systems.

Grouping File Systems
You can group similar ZFS file systems into hierarchies under a common name. The hierarchy
becomes the central point for administering and controlling file systems and their properties.

In Configuring a Mirrored ZFS File System, the two file systems are placed under a file system
named home.

Choosing File System Properties
You determine most file system characteristics properties. These properties control a variety of
behaviors, including where the file systems are mounted, how they are shared, whether they
use compression, or whether any quotas are in effect.

For more information about properties, see Introducing ZFS Properties.

Chapter 2
Planning the ZFS Implementation

2-3

3
Creating and Destroying Oracle Solaris ZFS
Storage Pools

This chapter describes how to create and destroy ZFS storage pools in Oracle Solaris. It
covers the following topics:

• Creating ZFS Storage Pools

• Destroying ZFS Storage Pools

Creating ZFS Storage Pools
This section describes different ways of configuring storage pools. For information about root
pools, see Managing the ZFS Root Pool.

When you create a storage pool, you configure virtual devices for the pool. A virtual device is
an internal representation of the disk devices or files that are used to create the storage pool
and describes the layout of physical storage and the storage pool's fault characteristics. A pool
can have any number of virtual devices at the top of the configuration, known as a pool's top-
level vdev.

If the top-level virtual device contains two or more physical devices, the configuration provides
data redundancy as mirror or RAID-Z virtual devices. Because of the advantages of
redundancy, you should create redundant storage pools. ZFS dynamically stripes data among
all of the top-level virtual devices in a pool.

Even with a redundant configuration, make sure that you also schedule regular backups of
your pool data to non-enterprise grade hardware. Storage pools with ZFS redundancy are not
immune to hardware failures, power failures, or disconnected cables. Performing regular
backups adds another layer of data protection to your enterprise.

After you create the storage pool, you can display information about it by using the following
command:

$ zpool status pool

For more options that you can use with the zpool status command, see Querying ZFS
Storage Pool Status.

Observe the following restrictions when creating storage pools:

• Do not repartition or relabel disks that are part of an existing storage pool. Otherwise, you
might have to reinstall the OS.

• Do not create a storage pool that contains components from another storage pool, such as
files or volumes. Such a configuration can cause deadlocks.

• Do not create a pool to be shared across systems, which is an unsupported configuration.
ZFS is not a cluster file system.

How to Set Up ZFS on a System
1. Assume the root role or an equivalent role with the appropriate ZFS rights profile.

3-1

For more information about the ZFS rights profiles, see Hardware and Software
Requirements.

2. Create the ZFS pool.

$ zpool create pool keyword devices [keyword devices]

pool
Name of the ZFS pool. The pool name must satisfy the naming requirements in Naming
ZFS Components

keyword
Further specifies the pool configuration such as type of redundancy, or whether log
devices or cache will be used.

For the redundancy type, you use either the keyword mirror for a mirrored configuration
or one of the following keywords for a RAID-Z configuration, depending on the parity you
want: raidz or raidz1 for single parity, raidz2 for double parity, and raidz3 for triple
parity.

devices
Specify the devices that are allocated for the pool. The devices cannot be in use or
contain another file system. Otherwise, pool creation fails.

For more information about how device usage is determined, see Devices Actively Being
Used.

3. Display a list of ZFS pools on the system.

$ zpool list
4. Display the status of the pool.

$ zpool status pool
5. Build the file system hierarchy.

a. Create the basic file system.

The basic file system acts as a container for the individual file systems that are
subsequently created.

$ zfs create pool/filesystem

where filesystem is the name of the file system.

When used in a command, the file system name must always include the full path of
the hierarchy: pool/filesystem. This rule also applies to subsequent children file
systems that you create.

b. Set the properties to be shared by children file systems.

$ zfs set property=value pool/filesystem

You can set multiple system properties.

Chapter 3
Creating ZFS Storage Pools

3-2

Tip:

You can simultaneously create a file system and set its properties by using
the following syntax:

$ zfs create -o property=value [-o property=value] pool/filesystem

c. Create the individual file systems that are grouped under the basic file system.

$ zfs create pool/filesystem/fs1
$ zfs create pool/filesystem/fs2
...

where fs1, fs2, and so on are individual file systems.

d. Set properties specific to the individual file system.

$ zfs set property=value pool/filesystem/fs1
6. View the final results.

$ zpool list

For more information about viewing pool status, see Querying ZFS Storage Pool Status.

Example 3-1 Configuring a Mirrored ZFS File System

In the following example, a basic ZFS configuration is created on the system with the following
specifications:

• Two disks are allocated to the ZFS file system: c1t0d0 and c2t0d0.

• The pool system1 uses mirroring.

• The file system home is created over the pool.

• The following properties are set for home: mountpoint, share.nfs, and compression.

• Two children file systems, user1 and user2 are created on home.

• A quota is set for user2. This property restricts the disk space available for user2
regardless of the available disk space of the entire pool.

The command zfs get used example displays file system properties.

$ zpool create system1 mirror c1t0d0 c2t0d0
$ zpool list
NAME SIZE ALLOC FREE CAP HEALTH ALTROOT
system1 80G 137K 80G 0% ONLINE -
$ zpool status system1
pool: system1
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c1t0d0 ONLINE 0 0 0
 c2t0d0 ONLINE 0 0 0

errors: No known data errors
$ zfs create system1/home

Chapter 3
Creating ZFS Storage Pools

3-3

$ zfs set mountpoint=/export/zfs system1/home
$ zfs set share.nfs=on system1/home
$ zfs set compression=on system1/home
$ zfs get compression system1/home
NAME PROPERTY VALUE SOURCE
system1/home compression on local
$ zfs create system1/home/user1
$ zfs create system1/home/user2
$ zfs set quota=10G system1/home/user2
$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
system1 92.0K 67.0G 9.5K /system1
system1/home 24.0K 67.0G 8K /export/zfs
system1/home/user1 8K 67.0G 8K /export/zfs/user1
system1/home/user2 8K 10.0G 8K /export/zfs/user2

Example 3-2 Configuring a RAID-Z ZFS File System

This example creates a RAID-Z file system and shows how you can specify disks by using
either their shorthand device names or their full device names: the disk c6t0d0 is the same
as /dev/dsk/c6t0d0.

• Three disks are allocated to the ZFS file system: c4t0d0, c5t0d0, and c6t0d0.

• The pool rdpool uses a RAID-Z single-parity configuration.

• The file system base is created over the pool.

$ zpool create rdpool raidz c4t0d0 c5t0d0 /dev/dsk/c6t0d0
$ zpool list
NAME SIZE ALLOC FREE CAP HEALTH ALTROOT
rdpool 120G 205K 120G 0% ONLINE -
$ zpool status -v rdpool
 pool: rdpool
 state: ONLINE
 scrub: none requested
config:

 NAME STATE READ WRITE CKSUM
 rdpool ONLINE 0 0 0
 raidz-0 ONLINE 0 0 0
 c4t0d0 ONLINE 0 0 0
 c5t0d0 ONLINE 0 0 0
 c6t0d0 ONLINE 0 0 0

errors: No known data errors
$ zfs create rdpool/base
$ zfs set mountpoint=/export/zfs rdpool/base
$ zfs set share.nfs=on rdpool/base
$ zfs set compression=on rdpool/base
$ zfs get compression rdpool/home
NAME PROPERTY VALUE SOURCE
rdpool/base compression on local
$ zfs create rdpool/base/user1
$ zfs create rdpool/base/user2
$ zfs set quota=10G rdpool/base/user2
$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
rdpool 92.0K 67.0G 9.5K /rdpool
rdpool/base 24.0K 67.0G 8K /export/zfs
rdpool/base/user1 8K 67.0G 8K /export/zfs/user1
rdpool/base/user2 8K 10.0G 8K /export/zfs/user2

Chapter 3
Creating ZFS Storage Pools

3-4

Creating a Mirrored Storage Pool
To create a mirrored pool, use the mirror keyword. To configure multiple mirrors, repeat the
keyword on the command line. The following command creates a pool system1 with two top-
level virtual devices.

zpool create system1 mirror c1d0 c2d0 mirror c3d0 c4d0
Both virtual devices are two-way mirrors. Data is dynamically striped across both mirrors, with
data being redundant between each disk appropriately.

For more information about recommended mirrored configurations, see Recommended Oracle
Solaris ZFS Practices.

You can perform the following operations on ZFS mirrored configurations:

• Add another top-level virtual device with a different set of disks. See Adding Devices to a
Storage Pool.

• Attach additional disks. See Attaching and Detaching Devices in a Storage Pool.

• Replace disks. See Replacing Devices in a Storage Pool.

• Detach disks. See Attaching and Detaching Devices in a Storage Pool.

• Split a mirrored configuration to create a new, identical pool. See Splitting a Mirrored
Storage Pool to Create a New Pool.

For an example of how to configure ZFS with a mirrored storage pool, see Configuring a
Mirrored ZFS File System.

Creating a RAID-Z Storage Pool
To create a storage pool with a RAID-Z configuration, use one of the RAID-Z keywords
depending on the parity that you want for the pool:

• raidz or raidz1 for single-parity configuration.

• raidz2 for double-parity configuration.

• raidz3 for triple-parity configuration.

To create multiple RAID-Z top level virtual devices, repeat the keyword on the command line.
The following command creates a pool rdpool with one top-level virtual device. The virtual
device is a triple-parity RAID-Z configuration that consists of nine disks.

$ zpool create rdpool raidz3 c0t0d0 c1t0d0 c2t0d0 c3t0d0 c4t0d0 \
c5t0d0 c6t0d0 c7t0d0 c8t0d0

For an example of how to configure ZFS with a RAID-Z storage pool, see Configuring a RAID-
Z ZFS File System.

You can perform the following operations on ZFS RAID-Z configurations:

• Add another top-level virtual device with a different set of disks. See Adding Devices to a
Storage Pool.

• Replace disks. See Replacing Devices in a Storage Pool.

You cannot perform the following operations on a RAID-Z configuration:

• Attach an additional disk.

Chapter 3
Creating ZFS Storage Pools

3-5

• Detach a disk, except when you are replacing it with a spare disk, or when you need to
detach a spare disk.

• Remove a device that is not a log device or a cache device.

Creating a ZFS Storage Pool With Log Devices
The ZFS intent log (ZIL) satisfies POSIX requirements for synchronous transactions. For
example, databases often require their transactions to be on stable storage devices when
returning from a system call. NFS and other applications can also use fsync to ensure data
stability.

By default, the ZIL is allocated from blocks within the main pool. However, you can obtain
better performance by using separate intent log devices such as NVRAM or a dedicated disk.

Log devices for the ZFS intent log are not related to database log files. Deploying separate log
devices can improve performance but the improvement also depends on the device type, the
hardware configuration of the pool, and the application workload.

You can configure mirrored log devices only for redundancy and not RAID-Z log devices. If an
unmirrored log device fails, storing log blocks reverts to the storage pool. Further, you can add,
replace, remove, attach, detach, import, and export log devices as part of the larger storage
pool.

Consider the following points about ZFS log devices:

• The minimum size of a log device is the same as the minimum size of each device in a
pool, which is 64 MB. The amount of logged data that might be stored on a log device is
relatively small. Log blocks are freed when the log transaction or system call is committed.

• The maximum size of a log device should be approximately half the size of physical
memory, which is the maximum amount of potential logged data that can be stored. For
example, if a system has 16 GB of physical memory, consider a maximum log device size
of 8 GB.

To create a storage pool with log devices, use the log keyword. The following example shows
how to configure a mirrored storage pool called datap with a mirrored log device.

$ zpool create datap mirror c0t5000C500335F95E3d0 c0t5000C500335F907Fd0 \
mirror c0t5000C500335BD117d0 c0t5000C500335DC60Fd0 \
log mirror c0t5000C500335E106Bd0 c0t5000C500335FC3E7d0

$ zpool status datap
pool: datap
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
datap ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t5000C500335F95E3d0 ONLINE 0 0 0
 c0t5000C500335F907Fd0 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 c0t5000C500335BD117d0 ONLINE 0 0 0
 c0t5000C500335DC60Fd0 ONLINE 0 0 0
 logs
 mirror-2 ONLINE 0 0 0
 c0t5000C500335E106Bd0 ONLINE 0 0 0
 c0t5000C500335FC3E7d0 ONLINE 0 0 0

Chapter 3
Creating ZFS Storage Pools

3-6

errors: No known data errors

Creating a ZFS Storage Pool With Cache Devices
Cache devices provide an additional layer of caching between main memory and disk. These
devices provide the greatest performance improvement for random-read workloads of mostly
static content.

To configure a storage pool with cache devices, use the cache keyword, for example:

$ zpool create system1 mirror c2t0d0 c2t1d0 c2t3d0 cache c2t5d0 c2t8d0
$ zpool status system1
pool: system1
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c2t0d0 ONLINE 0 0 0
 c2t1d0 ONLINE 0 0 0
 c2t3d0 ONLINE 0 0 0
 cache
 c2t5d0 ONLINE 0 0 0
 c2t8d0 ONLINE 0 0 0

errors: No known data errors

You can add single or multiple cache devices to the pool, either while it is being created or after
it is created, as shown in Adding Cache Devices. However, you cannot create mirrored cache
devices or create them as part of a RAID-Z configuration.

Note:

If a read error is encountered on a cache device, that read I/O is reissued to the
original storage pool device, which might be part of a mirrored or a RAID-Z
configuration. The content of cache devices is considered volatile, similar to other
system caches.

After cache devices are added, they gradually fill with content from main memory. The time
before a cache device reaches full capacity varies depending on its size. Use the zpool
iostat command to monitor capacity and reads, as shown in the following example:

$ zpool iostat -v pool 5

For more information about the zpool iostat command, see Viewing I/O Statistics for ZFS
Storage Pools.

Doing a Dry Run of Storage Pool Creation
For testing purposes, you can simulate creating a pool without actually writing to the device.
The zpool create -n command performs the device in-use checking and redundancy-level
validation, and reports any errors in the process. If no errors are found, you see output similar
to the following example:

Chapter 3
Creating ZFS Storage Pools

3-7

$ zpool create -n system1 mirror c1t0d0 c1t1d0
would create 'system1' with the following layout:

system1
 mirror
 c1t0d0
 c1t1d0

Caution:

Some errors, such as specifying the same device twice in the same configuration,
cannot be detected without actually creating the pool. Therefore, the actual pool
creation can still fail even if the dry run is successful.

Handling ZFS Storage Pool Creation Issues
This section groups descriptions of errors during pool creation by those relating to devices,
redundancy, or mount points.

Some error messages suggest using the -f option to override the reported errors. However, as
a general rule, you should repair errors instead of overriding them.

Devices Actively Being Used
When you create ZFS pools on specific devices, ZFS first determines if those devices are in
use either by ZFS itself or some other part of the operating system. If the devices are in use,
then appropriate error messages are displayed.

You must manually correct the errors reported by the following messages before attempting to
create the pool again.

Mounted file system
The disk contains a file system that is currently mounted. To correct this error, use the umount
command.

File system in /etc/vfstab
The disk contains a file system that is listed in the /etc/vfstab file but the file system is not
currently mounted. To correct this error, remove or comment out the line in the /etc/vfstab
file.

Dedicated dump device
The disk is in use as the dedicated dump device for the system. To correct this error, use the
dumpadm command.

Part of a ZFS pool
The disk or file is part of an active ZFS storage pool. To correct this error, use the zpool
destroy command to destroy the other pool provided that the pool is no longer needed. If
that pool is still needed, use the zpool detach command to detach the disk from that pool.
You can detach a disk only from a mirrored storage pool.

The following in-use checks serve as helpful warnings. You can override these warnings by
using the -f option to create the pool:

Chapter 3
Creating ZFS Storage Pools

3-8

Contains a file system
The disk contains a known file system but it is not mounted or being used.

Part of volume
The disk is part of a Solaris Volume Manager volume.

Part of exported ZFS pool
The disk is part of a storage pool that has been exported or manually removed from a system.
In the latter case, the pool is reported as potentially active because the disk might be a
network-attached drive in use by another system. Be cautious when overriding a potentially
active pool.

Mismatched Redundancy Levels
Creating pools with virtual devices of different redundancy levels results in error messages
similar to the following example:

$ zpool create system1 mirror c1t0d0 c2t0d0 mirror c3t0d0 c4t0d0 c5t0d0
invalid vdev specification
use '-f' to override the following errors:
mismatched replication level: 2-way mirror and 3-way mirror vdevs are present

Similar error messages are generated if you create mirrored or RAID-Z pools using devices of
different sizes.

Maintaining mismatched levels of redundancy results in unused disk space on the larger
device, which is an inefficient use of ZFS. You should correct these errors instead of overriding
them.

Default Mount Point for Storage Pools Not Empty
When a pool is created, the default mount point for the top-level file system is /pool-name. If
this directory exists and contains data, an error occurs.

To create a pool with a different default mount point, use the zpool create -m mountpoint
command. For example:

$ zpool create system1 c1t0d0
default mountpoint '/system1' exists and is not empty
use '-m' option to provide a different default
$ zpool create -m /export/zfs system1 c1t0d0

This command creates the new pool system1 and the system1 file system with a mount point
of /export/zfs.

For more information about mount points, see Managing ZFS Mount Points.

Destroying ZFS Storage Pools
You can destroy a pool even if the pool contains mounted datasets by using the zpool
destroy pool command.

Chapter 3
Destroying ZFS Storage Pools

3-9

Caution:

ZFS cannot always keep track of which devices are in use. Ensure that you are
destroying the correct pool and you always have copies of your data. If you
accidentally destroy the wrong pool, see Recovering Destroyed ZFS Storage Pools.

When you destroy a pool, the pool is still available for import. Therefore, confidential data
might remain on the disks that were part of the pool. To completely destroy the data, use a
feature like the format utility's analyze->purge option on every disk in the destroyed pool.

To ensure data confidentiality, create encrypted ZFS file systems. Even if a destroyed pool is
recovered, the data would remain inaccessible without the encryption keys. For more
information, see Encrypting ZFS File Systems.

When a pool with a mix of available and unavailable devices is destroyed, data is written to the
available disks to indicate that the pool is no longer valid. This state information prevents the
devices from being listed as a potential pool when you perform an import. Even with
unavailable devices, the pool can still be destroyed. When the unavailable devices are
repaired, they are reported as potentially active when you create a new pool and appear
as valid devices when you search for pools to import.

A pool itself can become unavailable if a sufficient number of its devices are unavailable. The
state of the pool's top-level virtual device is reported as UNAVAIL. In this case, you can destroy
the pool only by using the zpool destroy -f command.

For more information about pool and device health, see Determining the Health Status of ZFS
Storage Pools.

Chapter 3
Destroying ZFS Storage Pools

3-10

4
Managing Devices in Oracle Solaris ZFS
Storage Pools

This chapter discusses different tasks you can perform to manage the physical devices that
you use for the ZFS pools on the system. It has the following sections:

• Adding Devices to a Storage Pool

• Removing Devices From a Storage Pool

• Attaching and Detaching Devices in a Storage Pool

• Splitting a Mirrored Storage Pool to Create a New Pool

• Taking Devices in a Storage Pool Offline or Returning Online

• Clearing Storage Pool Device Errors

• Replacing Devices in a Storage Pool

• Designating Hot Spares in a Storage Pool

Adding Devices to a Storage Pool
You can dynamically add disk space to a pool by adding a new top-level virtual device. This
disk space is immediately available to all datasets in the pool.

The virtual device that you add should have the same level of redundancy as the existing
virtual device. However, you can change the level of redundancy by using the -f option.

To add a new virtual device to a pool, use the zpool add command.

$ zpool add pool keyword devices

Note:

With zpool add -n, you can perform a dry run before actually adding devices.

Example 4-1 Adding Disks to a Mirrored ZFS Configuration

In the following example, a mirror is added to a ZFS configuration that consists of two top-level
mirrored devices.

$ zpool add mpool mirror c0t3d0 c1t3d0
$ zpool status mpool
pool: mpool
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
mpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0

4-1

 c0t1d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 c0t2d0 ONLINE 0 0 0
 c1t2d0 ONLINE 0 0 0
 mirror-2 ONLINE 0 0 0Added mirrored device.
 c0t3d0 ONLINE 0 0 0
 c1t3d0 ONLINE 0 0 0

errors: No known data errors

Example 4-2 Adding Disks to a RAID-Z Configuration

This example shows how to add one RAID-Z device consisting of three disks to an existing
RAID-Z storage pool that also contains three disks.

$ zpool add rzpool raidz c2t2d0 c2t3d0 c2t4d0
$ zpool status rzpool
pool: rzpool
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
rzpool ONLINE 0 0 0
 raidz1-0 ONLINE 0 0 0
 c1t2d0 ONLINE 0 0 0
 c1t3d0 ONLINE 0 0 0
 c1t4d0 ONLINE 0 0 0
 raidz1-1 ONLINE 0 0 0Added RAID-Z device.
 c2t2d0 ONLINE 0 0 0
 c2t3d0 ONLINE 0 0 0
 c2t4d0 ONLINE 0 0 0

errors: No known data errors

Example 4-3 Adding a Mirrored Log Device

This example shows how to add a mirrored log device to a mirrored storage pool.

$ zpool add newpool log mirror c0t6d0 c0t7d0
$ zpool status newpool
pool: newpool
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
newpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t4d0 ONLINE 0 0 0
 c0t5d0 ONLINE 0 0 0
logs Added mirrored log device.
 mirror-1 ONLINE 0 0 0
 c0t6d0 ONLINE 0 0 0
 c0t7d0 ONLINE 0 0 0

errors: No known data errors

Chapter 4
Adding Devices to a Storage Pool

4-2

Note that mirrored log devices are provided with an identifier, such as mirror-1 in the
example. The identifier is useful when you remove log devices, as shown in Removing a
Mirrored Log Device.

Example 4-4 Adding Cache Devices

This example shows how to add a cache device to a pool.

$ zpool add system1 cache c2t5d0 c2t8d0
$ zpool status system1
pool: system1
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c2t0d0 ONLINE 0 0 0
 c2t1d0 ONLINE 0 0 0
 c2t3d0 ONLINE 0 0 0
 cache Added cache device.
 c2t5d0 ONLINE 0 0 0
 c2t8d0 ONLINE 0 0 0

errors: No known data errors

Removing Devices From a Storage Pool
To remove devices from a pool, use the zpool remove command. This command supports
removing hot spares, cache, log, and top level virtual data devices. You can remove devices by
referring to their identifiers, such as mirror-1 in Adding Disks to a Mirrored ZFS Configuration.

You can cancel a top-level device removal operation by using the command zpool remove
-s.

Note:

The primary use case for removing a top-level data device is when you accidentally
add a device to a pool. You can lessen the potential impact to the running system if
you remove the accidentally added device promptly. For example, system or
application performance might be impacted negatively if you remove a top-level data
device from an existing pool while reading a large amount of cold data that is not re-
written after the device is removed. Such a process might be an RMAN backup of a
data warehouse database. So, only use the zpool remove command to recover a
pool when you have added another device to the pool accidentally. Avoid using the
zpool remove command in cases where you cannot tolerate a performance
degradation or when the pool is nearly full. In such cases, consider creating a new
pool and then using the zfs send and zfs recv commands to migrate the data to
the new pool.

Example 4-5 Removing Top Level Virtual Data Devices

This example shows how to remove mirror-1 and mirror-2 from the pool that was created in
Adding Disks to a Mirrored ZFS Configuration. The example provides two pieces of information
after you issue the command to remove devices:

Chapter 4
Removing Devices From a Storage Pool

4-3

• The status of the pool while the devices are being removed.

• The status of the pool after the device removal is completed.

$ zpool remove mpool mirror-1 mirror-2
zpool status mpool
 pool: mpool
 state: ONLINE
status: One or more devices is currently being removed.
action: Wait for the resilver to complete.
 Run 'zpool status -v' to see device specific details.
 scan: resilver in progress since Mon Jul 7 18:19:35
 2014
 16.7G scanned
 884M resilvered at 52.6M/s, 9.94% done, 0h1m to go
config:

NAME STATE READ WRITE CKSUM
mpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0
 mirror-1 REMOVING 0 0 0
 c0t2d0 ONLINE 0 0 0
 c1t2d0 ONLINE 0 0 0
 mirror-2 REMOVING 0 0 0
 c0t3d0 ONLINE 0 0 0
 c1t3d0 ONLINE 0 0 0
+
+ errors: No known data errors

$ zpool status mpool
pool: mpool
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
 mirror-0 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0
errors: No known data errors

Example 4-6 Removing a Mirrored Log Device

This example shows how to remove the log device mirror-1 that was created in Adding a
Mirrored Log Device. Note that if the log device is not redundant, then remove the device by
referring to the device name, such as c0t6d0.

$ zpool remove newpool mirror-1
$ zpool status newpool
 pool: newpool
 state: ONLINE
 scrub: none requested
config:

NAME STATE READ WRITE CKSUM
newpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t4d0 ONLINE 0 0 0
 c0t5d0 ONLINE 0 0 0

errors: No known data errors

Chapter 4
Removing Devices From a Storage Pool

4-4

Example 4-7 Removing Cache Devices

This example shows how to remove the cache device that was created in Adding Cache
Devices.

$ zpool remove system1 c2t5d0 c2t8d0
$ zpool status system1
pool: system1
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c2t0d0 ONLINE 0 0 0
 c2t1d0 ONLINE 0 0 0
 c2t3d0 ONLINE 0 0 0

errors: No known data errors

Attaching and Detaching Devices in a Storage Pool
To add a new device to an existing virtual device, use the following command:

$ zpool attach pool existing-device new-device

You can use the zpool detach command to detach a device provided one of the following
conditions applies:

• The device belongs to a mirrored pool configuration.

• In a RAID-Z configuration, the detached device is replaced by another physical device or
by a spare.

Outside of these conditions, detaching a device generates an error similar to the following:

cannot detach c1t2d0: only applicable to mirror and replacing vdevs

The following examples show how to apply zfs attach commands.

Example 4-8 Converting a Two-Way Mirrored Storage Pool to a Three-Way Mirrored
Storage Pool

In this example, mpool is an existing two-way mirror pool. It is converted into a three-way mirror
pool by attaching c2t1d0, the new device, to the existing device c1t1d0. The newly attached
device is immediately resilvered.

$ zpool attach mpool c1t1d0 c2t1d0
$ zpool status mpool
pool: mpool
state: ONLINE
scrub: resilver completed after 0h0m with 0 errors on Fri Jan 8 12:59:20 2010
config:

NAME STATE READ WRITE CKSUM
mpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0
 c2t1d0 ONLINE 0 0 0 592K resilveredAttached device creates a 3-
way mirror pool

Chapter 4
Attaching and Detaching Devices in a Storage Pool

4-5

errors: No known data errors

Example 4-9 Converting a Nonredundant Storage Pool to a Mirrored Storage Pool

The zpool attach command also enables you to convert a storage pool or a log device from
a nonredundant to a redundant configuration.

The following example shows the status of the nonredundant pool system1 before and after it
is converted into a redundant pool.

$ zpool status system1
pool: system1
state: ONLINE
scrub: none requested
config:
NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0

errors: No known data errors
$ zpool attach system1 c0t1d0 c1t1d0
$ zpool status system1
pool: system1
state: ONLINE
scrub: resilver completed after 0h0m with 0 errors on Fri Jan 8 14:28:23 2010
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0Pool becomes mirrored
 mirror-0 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0 73.5K resilvered

errors: No known data errors

Splitting a Mirrored Storage Pool to Create a New Pool
You can quickly clone a mirrored ZFS storage pool by using the zpool split command. The
new pool will have identical contents to the original mirrored ZFS storage pool. You can then
import the new pool either to the same system or to another system. For more information
about importing pools, see Importing ZFS Storage Pools.

To split a pool, use the following command:

$ zpool split pool new-pool [device]

Unless you specify the device, the zpool split command by default detaches the last disk of
the pool's virtual device for the newly created pool. If a pool has multiple top-level virtual
devices, the command detaches a disk from each virtual device to create a new pool out of
those disks.

Splitting a pool applies only to mirrored configurations. You cannot split a RAID-Z configured
pool or a nonredundant pool.

If you split a pool that has only a single top-level device consisting of three disks, the new pool
created out of the third disk is nonredundant. The remaining pool retains data redundancy with
its two remaining disks. To convert the new pool into a redundant configuration, attach a new
device to the pool.

Chapter 4
Splitting a Mirrored Storage Pool to Create a New Pool

4-6

For more procedures and examples about splitting a ZFS pool with the zpool split
command, log in to your account at My Oracle Support (https://support.oracle.com) and see
"How to Use 'zpool split' to Split an rpool (Doc ID 1637715.1)".

Ensure the following before splitting a mirrored pool:

• Data and application operations are quiesced.

• No resilvering is in progress.

• Your hardware is configured correctly. For related information about confirming your
hardware's cache flush settings, see General System Practices.

Before the actual split operation occurs, data in memory is flushed to the mirrored disks. After
the data is flushed, the disk is detached from the pool and given a new pool GUID so that the
pool can be imported on the same system on which it was split.

If the pool to be split has non-default file system mount points and the new pool is created on
the same system, then you must use the zpool split -R command to identify an alternate
root directory for the new pool so that any existing mount points do not conflict. For example:

$ zpool split -R /system2 system1 system2

If you don't use the zpool split -R command and you can see that mount points conflict
when you attempt to import the new pool, import the new pool with the -R option. If the new
pool is created on a different system, then specifying an alternate root directory is not
necessary unless mount point conflicts occur.

Example 4-10 Splitting a Mirrored ZFS Pool

In this example, a mirrored storage pool called poolA with three disks is split. The two resulting
pools are the mirrored pool poolA with two disks and the new pool poolB with one disk.

$ zpool status poolA
 pool: poolA
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 poolA ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t0d0 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0
 c0t2d0 ONLINE 0 0 0

errors: No known data errors
$ zpool split poolA poolB
$ zpool import luna
$ zpool status poolA poolB
 pool: luna
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 poolB ONLINE 0 0 0
 c0t2d0 ONLINE 0 0 0

errors: No known data errors

 pool: poolA
 state: ONLINE

Chapter 4
Splitting a Mirrored Storage Pool to Create a New Pool

4-7

https://support.oracle.com

 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 poolA ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t0d0 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0

errors: No known data errors

With the new configuration, you can perform other operations. For example, you can import
poolB on another system for backup purposes. After the backup is complete, you can destroy
poolB and reattach the disk to poolA.

Taking Devices in a Storage Pool Offline or Returning Online
When a device in a storage pool becomes permanently unreliable or non-functional, you can
take the device offline with the following command:

$ zpool offline [option] pool device

where the name of device can either be the short name or the full path.

When you take a device offline, its OFFLINE state becomes persistent. For a nonpersistent
OFFLINE state, use the -t option, which takes the device temporarily offline. When the system
is rebooted, the device is automatically restored to the ONLINE state.

Caution:

Do not take devices offline such that the pool itself becomes unavailable. For
example, you cannot take offline two devices in a raidz1 configuration, nor can you
take offline a top-level virtual device. The following error message would be
displayed:

cannot offline c0t5000C500335F95E3d0: no valid replicas

The OFFLINE state does not mean that the device is detached from the pool. Therefore, you
cannot use that device for another pool. Otherwise, an error message is generated similar to
the following example:

device is part of exported or potentially active ZFS pool. Please see zpool(8)

To use the device for another pool, first restore the device to the ONLINE state, and then
destroy the pool to which the device belongs.

If you do not want to destroy the pool, replace the offline device with a comparable device. The
replaced device then becomes available for a different pool.

Note:

You do not need to take devices offline to replace them.

Chapter 4
Taking Devices in a Storage Pool Offline or Returning Online

4-8

To return a device online, use the following command:

$ zpool online [option] pool device

Any data that has been written to the pool is resynchronized with the newly available device.

If you try to bring online a device whose state is UNAVAIL, a message about a faulted device is
displayed, similar to the following example:

warning: device 'device' onlined, but remains in faulted state
use 'zpool clear' to restore a faulted device

Messages about faulted device might also be displayed on the console or written to
the /var/adm/messages file.

For more information about replacing a faulted device, see Resolving a Missing or Removed
Device.

To expand a LUN, use the zpool online -e command. By default, a LUN that is added to a
pool is not expanded to its full size unless the autoexpand pool property is enabled. If the
property is disabled, use the command to expand the LUN automatically. You can run the
command regardless of whether the LUN is offline or already online.

Clearing Storage Pool Device Errors
Pool device failures, such as temporarily losing connectivity, can cause errors that are also
reported in a zpool status output. To clear such errors, use the following command:

$ zpool clear pool [devices]

If devices are specified, the command clears only those errors that are associated with the
devices. Otherwise, the command clears all device errors within the pool.

For more information about clearing zpool errors, see Clearing Transient or Persistent Device
Errors.

Replacing Devices in a Storage Pool
You can replace a device in a storage pool by using the zpool replace command.

$ zpool replace pool replaced-device [new-device]

If you are installing a device's replacement on the same location in a redundant pool, you might
only need to identify the replaced device. On some hardware, ZFS recognizes the new device
on the same location. However, if you install the replacement on a different location, you must
specify both the replaced device and the new device.

The automatic detection of replaced devices is hardware-dependent and might not be
supported on all platforms. Furthermore, some hardware types support the autoreplace pool
property. If this property is enabled, then a device's replacement on the same location is
automatically formatted and replaced. Running the zpool replace command is
unnecessary.

Note the following guidelines:

• A hot spare device, if available, automatically replaces a device that is removed while the
system is running. After a failed disk is replaced, you might need to detach the spare by
using the zpool detach command. For information about detaching a hot spare, see
Activating and Deactivating Hot Spares in Your Storage Pool.

Chapter 4
Clearing Storage Pool Device Errors

4-9

• A device that is removed and then reinserted is automatically brought online. In this case,
no replacement occurred. The replacement hot spare device is automatically removed
after the reinserted device is brought back online.

When you replace a device with one that has a larger capacity, the new device is not
automatically expanded to its full size after you add it to the pool. The autoexpand pool
property determines the automatic expansion of a replacement LUN. By default, this property
is disabled. You can enable it before or after the larger LUN is added to the pool.

On some systems with SATA disks, you must unconfigure a disk before you can take it offline.
If you are replacing a disk in the same slot position on this system, then you can just run the
zpool replace command as described in Replacing Devices in a Mirrored Poolthe first
example in this section. For an example of replacing a SATA disk, see Replacing a SATA Disk
in a ZFS Storage Pool.

Because of the resilvering of data onto new disks, replacing disks is time-consuming. Between
disk replacements, run the zpool scrub command to ensure that the replacement devices
are operational and that the data is written correctly.

For more information about replacing devices, see Resolving a Missing or Removed Device
and Replacing or Repairing a Damaged Device.

How to Replace a Device in a Storage Pool
1. If necessary, switch the device to the OFFLINE state.

$ zpool offline pool device
2. Physically replace the device with a new device.

In the case of redundant storage pools, ensure that the replacement device is equal to or
larger than the smallest disk in the pool.

3. Run the format command.

Check the following in the output:

• Ensure that the new device is listed.

• Check whether the replacement device is marked as WWN to verify that the device ID
has changed.

4. Replace the device in the pool.

If the new device has a new ID, include the ID in the command.

$ zpool replaced pool replaced-device [new-device-ID]

Note:

If you are replacing multiple devices, make sure that each device is fully
resilvered before you replace the next device.

5. If necessary, bring the device online.

$ zpool online pool new-device
6. If faulted device errors are reported, perform FMA procedures.

a. Run the command fmadm faulty.

b. From the Affects: section of the output, identify the pool name and the GUID of
the virtual device.

Chapter 4
Replacing Devices in a Storage Pool

4-10

c. Run the following command and provide the information from the previous step.

$ fmadm repaired zfs://pool=name/vdev=guid
Example 4-11 Replacing Devices in a Mirrored Pool

In this example, two 16GB disks in the pool system1 are replaced with two 72GB disks. The
autoexpand property is enabled after the disk replacements to expand the full disk sizes.

$ zpool status system1
 pool: system1
 state: ONLINE
 scrub: none requested
config:

 NAME STATE READ WRITE CKSUM
 system1 ONLINE 0 0 0
 mirror ONLINE 0 0 0
 c1t16d0 ONLINE 0 0 0
 c1t17d0 ONLINE 0 0 0

$ zpool list system1
NAME SIZE ALLOC FREE CAP HEALTH ALTROOT
system1 16.8G 76.5K 16.7G 0% ONLINE -
$ zpool replaced system1 c1t16d0 c1t1d0
$ zpool replaced system1 c1t17d0 c1t2d0
$ zpool list system1
NAME SIZE ALLOC FREE CAP HEALTH ALTROOT
system1 16.8G 88.5K 16.7G 0% ONLINE -
$ zpool set autoexpand=on system1
$ zpool list system1
NAME SIZE ALLOC FREE CAP HEALTH ALTROOT
system1 68.2G 117K 68.2G 0% ONLINE -

Working With Hot Spares in Storage Pools
The hot spares feature enables you to identify disks that could be used to replace a failed or
faulted device in a storage pool. A hot spare device is inactive in a pool until the spare replaces
the failed device.

Designating Hot Spares in a Storage Pool
Devices can be designated as hot spares in the following ways:

• When the pool is created.

$ zpool create pool keyword devices spare devices
• After the pool is created.

$ zpool add pool spare devices
To remove a hot spare, use the following command:

$ zpool remove pool spare-device

Note:

You cannot remove a hot spare that is currently being used by the pool.

Chapter 4
Working With Hot Spares in Storage Pools

4-11

A hot spare device must be equal to or larger than the size of the largest disk in the pool.
Otherwise, the smaller spare device can still be designated as a hot spare. However, when that
device is activated to replace a failed device, the operation fails with the following error
message:

cannot replace disk3 with disk4: device is too small

Do not share a spare across multiple pools or multiple systems even if the device is visible for
access by these systems. You can configure a disk to be shared among several pools provided
that only a single system must control all of these pools. However, this practice is risky. For
example, if pool A that is using the shared spare is exported, pool B could unknowingly use the
spare while pool A is exported. When pool A is imported, data corruption could occur because
both pools are using the same disk.

Activating and Deactivating Hot Spares in Your Storage Pool
You activate hot spares in the following ways:

• Manual replacement – Run the zpool replace command to replace a failed device.
When a new device is inserted to replace the failed disk, you activate the new device by
detaching the spare.

• Automatic replacement – An FMA agent detects a fault, determines spare availability, and
automatically replaces the faulted device. A hot spare also replaces a device in the
UNAVAIL state.

If you set the autoreplace pool property to on, the spare is automatically detached and
returned to the spare pool when the new device is inserted and the online operation
completes.

To deactivate a hot spare, perform one of the following actions:

• Remove the hot spare from the storage pool.

• Detach the hot spare after physically replacing a failed disk. See Detaching a Hot Spare
After the Failed Disk Is Replaced.

• Swap in another hot spare either temporarily or permanently. See Detaching a Failed Disk
and Using the Hot Spare.

Example 4-12 Detaching a Hot Spare After the Failed Disk Is Replaced

This example assume the following configuration:

• In system1's mirror-1 configuration, disk c0t5000C500335BA8C3d0 has failed. The
following partial output shows the status of mirror-1:

$ zpool status system1
.
 mirror-1 DEGRADED 0 0 0
 c0t5000C500335BD117d0 ONLINE 0 0 0
 c0t5000C500335BA8C3d0 UNAVAIL 0 0 0Failed disk

• The pool's spare c0t5000C500335E106Bd0 is automatically activated to replace the failed
disk.

• You physically replace the failed disk with a new device c0t5000C500335DC60Fd0.

The example begins with reconfiguring the pool with the new device. First, you run zpool
replace to inform ZFS about the removed device. Then, if necessary, you run zpool detach
to deactivate the spare and return it to the spare pool. The example ends with displaying the

Chapter 4
Working With Hot Spares in Storage Pools

4-12

status of the new configuration and performing the appropriate FMA steps for fault devices, as
shown in Step 6 of How to Replace a Device in a Storage Pool.

$ zpool replace system1 c0t5000C500335BA8C3d0
$ zpool detach system1 c0t5000C500335E106Bd0
$ zpool status system1
.
.
 mirror-1 ONLINE 0 0 0
 c0t5000C500335BD117d0 ONLINE 0 0 0
 c0t5000C500335DC60Fd0 ONLINE 0 0 0Replacement device
 spares
 c0t5000C500335E106Bd0 AVAIL Deactivated spare

$ fmadm faulty
$ fmadm repaired zfs://pool=name/vdev=guid

Example 4-13 Detaching a Failed Disk and Using the Hot Spare

Instead of a new replacement device, you can use the spare device as a permanent
replacement instead. In this case, you simply detach the failed disk. If the failed disk is
subsequently repaired, then you can add it to the pool as a newly designated spare.

This example uses the same assumptions as Detaching a Hot Spare After the Failed Disk Is
Replaced.

• The mirror-1 configuration of the pool system1 is in a degraded state.

$ zpool status system1
.
 mirror-1 DEGRADED 0 0 0
 c0t5000C500335BD117d0 ONLINE 0 0 0
 c0t5000C500335BA8C3d0 UNAVAIL 0 0 0Failed disk

• The pool's spare c0t5000C500335E106Bd0 is automatically activated to replace the failed
disk.

The example begins with detaching the failed disk that has been replaced by the spare.

$ zpool detach system1 c0t5000C500335BA8C3d0
$ zpool status system1
.
.
 mirror-1 ONLINE 0 0 0
 c0t5000C500335BD117d0 ONLINE 0 0 0
 c0t5000C500335E106Bd0 ONLINE 0 0 0Spare replaces failed disk

errors: No known data errors

Subsequently, you add the repaired disk back to the pool as the spare device. You complete
the procedure by performing the appropriate FMA steps for fault devices.

$ zpool add system1 spare c0t5000C500335BA8C3d0
$ zpool status system1
.
.
 mirror-1 ONLINE 0 0 0
 c0t5000C500335BD117d0 ONLINE 0 0 0
 c0t5000C500335E106Bd0 ONLINE 0 0 0Former spare
 spares
 c0t5000C500335BA8C3d0 AVAIL Repaired disk as spare

errors: No known data errors

Chapter 4
Working With Hot Spares in Storage Pools

4-13

$ fmadm faulty
$ fmadm repaired zfs://pool=name/vdev=guid

Chapter 4
Working With Hot Spares in Storage Pools

4-14

5
Managing Oracle Solaris ZFS Storage Pools

This chapter describes how to administer storage pools in Oracle Solaris ZFS. It has the
following sections:

• Managing ZFS Storage Pool Properties

• Querying ZFS Storage Pool Status

• Migrating ZFS Storage Pools

• Upgrading ZFS Storage Pools

• Managing ZFS Pools That Contain Boot Environments

Managing ZFS Storage Pool Properties
To manage ZFS pool properties, you use the following commands:

• zpool get all pool – Lists all the properties of the pool with their corresponding values.

• zpool get property pool – Lists the specified property of the pool with its corresponding
value.

• zpool set property=value pool – Assigns a value to the pool's specified property.

If you attempt to set a pool property on a pool that is full, a message similar to the following is
displayed:

$ zpool set autoreplace=on system1
cannot set property for 'system1': out of space

For information about preventing pool space capacity problems, see Recommended Oracle
Solaris ZFS Practices.

Table 5-1 ZFS Pool Property Descriptions

Property Name Type Default
Value

Description

allocated String N/A Read-only value that identifies the amount of storage space within the pool
that has been physically allocated.

altroot String off Identifies an alternate root directory. If set, this directory is prepended to any
mount points within the pool. This property can be used in the following
situations: when you are examining an unknown pool, if the mount points
cannot be trusted, or in an alternate boot environment where the typical
paths are not valid.

autoreplace Boolean off Controls automatic device replacement. If set to off, you must initiate
device replacement using the zpool replace command. If set to on,
any new device found in the same physical location as a device that
previously belonged to the pool is automatically formatted and replaced.
The property abbreviation is replace.

bootfs Boolean N/A Identifies the default bootable file system for the root pool. This property is
typically set by the installation programs.

5-1

Table 5-1 (Cont.) ZFS Pool Property Descriptions

Property Name Type Default
Value

Description

cachefile String N/A Controls where pool configuration information is cached. All pools in the
cache are automatically imported when the system boots. However,
installation and clustering environments might require this information to be
cached in a different location so that pools are not automatically imported.
You can set this property to cache pool configuration information in a
different location. This information can be imported later by using the
zpool import -c command.

For most ZFS configurations, this property is not used.

capacity Number N/A Read-only value that identifies the percentage of pool space used.

The property abbreviation is cap.

clustered String off Provides support for global mounting of a ZFS file system in an Oracle
Solaris Cluster environment.

dedupditto String N/A Sets a threshold for the reference count for a deduped block. If the count
goes above the threshold, another ditto copy of the block is stored
automatically.

dedupratio String N/A Read-only deduplication ratio achieved for a pool, expressed as a multiplier.

delegation Boolean on Controls whether a nonprivileged user can be granted access permissions
that are defined for a file system. For more information, see Oracle Solaris
ZFS Delegated Administration.

failmode String wait Controls the system behavior if a catastrophic pool failure occurs. This
condition is typically a result of a loss of connectivity to the underlying
storage device or devices or a failure of all devices within the pool. The
behavior of such an event is determined by one of the following values:

• wait – Blocks all I/O requests to the pool until device connectivity is
restored and the errors are cleared by using the zpool clear
command. In this state, I/O operations to the pool are blocked but read
operations might succeed. A pool remains in the wait state until the
device issue is resolved.

• continue – Returns an EIO error to any new write I/O requests but
allows reads to any of the remaining healthy devices. Any write
requests that have yet to be committed to disk are blocked. After the
device is reconnected or replaced, the errors must be cleared with the
zpool clear command.

• panic – Prints a message to the console and generates a system
crash dump.

free String N/A Read-only value that identifies the number of blocks within the pool that are
not allocated.

guid String N/A Read-only property that identifies the unique identifier for the pool.

Caution: If you are using multiple pools, make sure that they all have
unique GUIDs. Shared GUIDs among pools might result in unexpected
behavior.

health String N/A Read-only property that identifies the current health of the pool, as either
ONLINE, DEGRADED, SUSPENDED, REMOVED, or UNAVAIL.

listshares String off Controls whether share information in this pool is displayed with the zfs
list command. The default value is off.

Chapter 5
Managing ZFS Storage Pool Properties

5-2

Table 5-1 (Cont.) ZFS Pool Property Descriptions

Property Name Type Default
Value

Description

listsnapshots String off Controls whether snapshot information that is associated with this pool is
displayed with the zfs list command. If this property is disabled, you
can display snapshot information with the zfs list -t snapshot
command.

readonly Boolean off Identifies whether a pool can be modified. This property is enabled only
when a pool is has been imported in read-only mode. If enabled, any
synchronous data that exists only in the intent log will not be accessible until
the pool is re-imported in read-write mode.

size Number N/A Read-only property that identifies the total size of the storage pool.

version Number N/A Identifies the current on-disk version of the pool. The preferred method of
updating pools is with the zpool upgrade command, although you can
use this property when you need a specific version for backward
compatibility. You can set this property to any number between 1 and the
current version reported by the zpool upgrade -v command.

Querying ZFS Storage Pool Status
The zpool list command provides several ways to request information regarding pool
status. The information available generally falls into three categories: basic usage information,
I/O statistics, and health status. This section discuses all three types of storage pool
information.

Displaying Information About ZFS Storage Pools
The zpool list command displays basic information about pools. You can use the
command in the following ways:

• Without options: zpool list [pool]
If you do not specify a pool, then information for all pools is displayed.

• With options: zpool list options [arguments]

Displaying Information About All Storage Pools or a Specific Pool
The zpool list [pool] command displays the following pool information:

NAME
Name of the pool.

SIZE
Total size of the pool, equal to the sum of the sizes of all top-level virtual devices.

ALLOC
Amount of physical space allocated to all datasets and internal metadata. Note that this
amount differs from the amount of disk space as reported at the file system level.

FREE
Amount of unallocated space in the pool.

Chapter 5
Querying ZFS Storage Pool Status

5-3

CAP (CAPACITY)
Amount of disk space used, expressed as a percentage of the total disk space.

HEALTH
Current health status of the pool.
For more information about pool health, see Determining the Health Status of ZFS Storage
Pools.

ALTROOT
Alternate root of the pool, if one exists.
For more information about alternate root pools, see Using a ZFS Pool With an Alternate Root
Location.

The following example shows sample zpool list command output:

$ zpool list
NAME SIZE ALLOC FREE CAP HEALTH ALTROOT
syspool1 80.0G 22.3G 47.7G 28% ONLINE -
syspool2 1.2T 384G 816G 32% ONLINE -

To obtain statistics for a specific pool, specify the pool name with the command.

Displaying Specific Storage Pool Statistics
You can select the specific pool information to be displayed by issuing options and arguments
with the zpool list command.

The -o option enables you to filter which columns are displayed. The following example shows
how to list only the name and size of each pool:

$ zpool list -o name,size
NAME SIZE
syspool1 80.0G
syspool2 1.2T

You can use the zpool list command as part of a shell script by issuing the combined -Ho
options. The -H option suppresses display of column headings and instead displays tab-
separated pool information. For example:

$ zpool list -Ho name,size
syspool1 80.0G
syspool2 1.2T

The -T option enables you to gather time-stamped statistics about the pools. Use the following
syntax:

$ zpool list -T d interval [count]

d
Specifies to use the standard date format when displaying the date.

interval
Specifies the interval in seconds between which information is displayed.

count
Specifies the number of times to report the information. If you do not specify count then the
information is continuously refreshed at the specified interval until you press Ctl-C.

The following example displays pool information twice, with a 3-second gap between the
reports. The output uses the standard format to display the date.

Chapter 5
Querying ZFS Storage Pool Status

5-4

$ zpool list -T d 3 2
Tue Nov 2 10:36:11 MDT 2010
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
pool 33.8G 83.5K 33.7G 0% 1.00x ONLINE -
rpool 33.8G 12.2G 21.5G 36% 1.00x ONLINE -
Tue Nov 2 10:36:14 MDT 2010
pool 33.8G 83.5K 33.7G 0% 1.00x ONLINE -
rpool 33.8G 12.2G 21.5G 36% 1.00x ONLINE -

Displaying Pool Devices by Physical Locations
Use the zpool status -l command to display information about the physical location of
pool devices. Reviewing the physical location information is helpful when you need to
physically remove or replace a disk.

In addition, you can use the fmadm add-alias command to include a disk alias name that
helps you identify the physical location of disks in your environment. For example:

$ fmadm add-alias SUN-Storage-J4400.1002QCQ015 Lab10Rack5disk

$ zpool status -l system1
 pool: system1
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri Aug 3 16:00:35 2012
config:

 NAME STATE READ WRITE CKSUM
 system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 /dev/chassis/Lab10Rack5.../DISK_02/disk ONLINE 0 0 0
 /dev/chassis/Lab10Rack5.../DISK_20/disk ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 /dev/chassis/Lab10Rack5.../DISK_22/disk ONLINE 0 0 0
 /dev/chassis/Lab10Rack5.../DISK_14/disk ONLINE 0 0 0
 mirror-2 ONLINE 0 0 0
 /dev/chassis/Lab10Rack5.../DISK_10/disk ONLINE 0 0 0
 /dev/chassis/Lab10Rack5.../DISK_16/disk ONLINE 0 0 0
.
.
.
 spares
 /dev/chassis/Lab10Rack5.../DISK_17/disk AVAIL
 /dev/chassis/Lab10Rack5.../DISK_12/disk AVAIL

errors: No known data errors

Displaying ZFS Storage Pool Command History
Use the zpool history command to display the log of zfs and zpool command use. The
log records when these commands were successfully used to modify pool state information or
to troubleshoot an error condition.

Note the following information about the history log:

• You cannot disable the log. The log is saved persistently on disk and is preserved across
system reboots.

• The log is implemented as a ring buffer. The minimum size is 128 KB. The maximum size
is 32 MB.

Chapter 5
Querying ZFS Storage Pool Status

5-5

• For smaller pools, the maximum size is capped at 1 percent of the pool size, where the
size is determined at pool creation time.

• Because the log requires no administration, you do not need to tune the log size or its
location.

The following example shows the zfs and zpool command history on the pool system1.

$ zpool history system1
2012-01-25.16:35:32 zpool create -f system1 mirror c3t1d0 c3t2d0 spare c3t3d0
2012-02-17.13:04:10 zfs create system1/test
2012-02-17.13:05:01 zfs snapshot -r system1/test@snap1

Use the -l option to display a long format that includes the user name, the host name, and the
zone in which the operation was performed. For example:

$ zpool history -l system1
History for 'system1':
2012-01-25.16:35:32 zpool create -f system1 mirror c3t1d0 c3t2d0 spare c3t3d0
[user root on host1:global]
2012-02-17.13:04:10 zfs create system1/test [user root on host1:global]
2012-02-17.13:05:01 zfs snapshot -r system1/test@snap1 [user root on host1:global]

Use the -i option to display internal event information that can be used for diagnostic
purposes. For example:

$ zpool history -i system1
History for 'system1':
2012-01-25.16:35:32 zpool create -f system1 mirror c3t1d0 c3t2d0 spare c3t3d0
2012-01-25.16:35:32 [internal pool create txg:5] pool spa 33; zfs spa 33; zpl 5;
uts host1 5.11 11.1 sun4v
2012-02-17.13:04:10 zfs create system1/test
2012-02-17.13:04:10 [internal property set txg:66094] $share2=2 dataset = 34
2012-02-17.13:04:31 [internal snapshot txg:66095] dataset = 56
2012-02-17.13:05:01 zfs snapshot -r system1/test@snap1
2012-02-17.13:08:00 [internal user hold txg:66102] <.send-4736-1> temp = 1 ...

Viewing I/O Statistics for ZFS Storage Pools
To request I/O statistics for a pool or specific virtual devices, use the zpool iostat
command. Similar to the iostat command, this command can display a static snapshot of all
I/O activity, as well as updated statistics for every specified interval. The following statistics are
reported:

alloc capacity
The amount of data currently stored in the pool or device. This amount differs from the amount
of disk space available to actual file systems by a small margin due to internal implementation
details.

free capacity
The amount of disk space available in the pool or device. Like the used statistic, this amount
differs from the amount of disk space available to datasets by a small margin.

read operations
The number of read I/O operations sent to the pool or device, including metadata requests.

write operations
The number of write I/O operations sent to the pool or device.

Chapter 5
Querying ZFS Storage Pool Status

5-6

read bandwidth
The bandwidth of all read operations (including metadata), expressed as units per second.

write bandwidth
The bandwidth of all write operations, expressed as units per second.

Listing Pool-Wide I/O Statistics
When issued with no options, the zpool iostat command displays the accumulated
statistics since boot for all pools on the system. For example:

$ zpool iostat
capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
rpool 6.05G 61.9G 0 0 786 107
system1 31.3G 36.7G 4 1 296K 86.1K
---------- ----- ----- ----- ----- ----- -----

Because these statistics are cumulative since boot, bandwidth might appear low if the pool is
relatively idle. You can request a more accurate view of current bandwidth usage by specifying
an interval. For example:

$ zpool iostat system1 2
capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ---- ----- ----- -----
system1 18.5G 49.5G 0 187 0 23.3M
system1 18.5G 49.5G 0 464 0 57.7M
system1 18.5G 49.5G 0 457 0 56.6M
system1 18.8G 49.2G 0 435 0 51.3M

In this example, the command displays usage statistics for the pool system1 every two
seconds until you press Control-C. Alternately, you can specify an additional count argument,
which causes the command to terminate after the specified number of iterations.

For example, zpool iostat 2 3 would print a summary every two seconds for three
iterations, for a total of six seconds.

Listing Virtual Device I/O Statistics
The zpool iostat -v command can display I/O statistics for virtual devices. Use this
command to identify abnormally slow devices or to observe the distribution of I/O generated by
ZFS. See the following three examples. The last two examples display a multigroup
configuration.

$ zpool iostat -v tank
 capacity operations bandwidth
pool alloc free read write read write
----------------------- ----- ----- ----- ----- ----- -----
tank 2.69G 1.81T 0 29 252 14.2M
 c0t5000C5001032271Bd0 1.34G 927G 0 14 130 7.09M
 c0t5000C50010349387d0 1.34G 927G 0 14 122 7.09M
----------------------- ----- ----- ----- ----- ----- -----

$ zpool iostat -v tank
 capacity operations bandwidth
pool alloc free read write read write
------------------------- ----- ----- ----- ----- ----- -----
tank 810M 1.81T 0 390 536 32.1M

Chapter 5
Querying ZFS Storage Pool Status

5-7

 mirror-0 405M 928G 0 194 232 16.1M
 c0t5000C5001032271Bd0 - - 0 37 1.07K 16.2M
 c0t5000C50010349387d0 - - 0 38 858 16.1M
 mirror-1 405M 928G 0 195 304 16.1M
 c0t5000C5001033963Fd0 - - 0 37 1.14K 16.2M
 c0t5000C5001033024Fd0 - - 0 38 858 16.2M
------------------------- ----- ----- ----- ----- ----- -----

$ zpool iostat -v tank
 capacity operations bandwidth
pool alloc free read write read write
------------------------- ----- ----- ----- ----- ----- -----
tank 258M 5.44T 0 321 876 31.5M
 raidz1-0 128M 2.72T 0 160 29 15.9M
 c0t5000C5001032271Bd0 - - 0 33 1.40K 8.07M
 c0t5000C50010349387d0 - - 0 30 1.37K 8.07M
 c0t5000C5001033963Fd0 - - 0 30 1.37K 8.07M
 raidz1-1 130M 2.72T 0 160 847 15.5M
 c0t5000C5001033024Fd0 - - 1 34 2.20K 8.10M
 c0t5000C500103C9817d0 - - 0 34 1.37K 7.87M
 c0t5000C50010324F67d0 - - 0 34 1.37K 8.10M
------------------------- ----- ----- ----- ----- ----- -----

The zpool iostat -v command provides specific information for each level of the pool
configuration:

• Pool level shows the sum of the group level data.

• Group level shows the compiled data of the mirror or raidz configuration.

• Leaf level shows information for each physical disk.

Note two important points when viewing I/O statistics for virtual devices:

• Statistics on disk space use are available only for top-level virtual devices. The way in
which disk space is allocated among mirror and RAID-Z virtual devices is particular to the
implementation and not easily expressed as a single number.

• The numbers might not add up exactly as you would expect. In particular, operations
across RAID-Z and mirrored devices will not be exactly equal. This difference is particularly
noticeable immediately after a pool is created because a significant amount of I/O is done
directly to the disks as part of pool creation, which is not accounted for at the mirror level.
Over time, these numbers gradually equalize. However, broken, unresponsive, or offline
devices can affect this symmetry as well.

You can use interval and count when examining virtual device statistics.

You can also display physical location information about the pool's virtual devices. The
following example shows sample output that has been truncated:

$ zpool iostat -lv
 capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
export 2.39T 2.14T 13 27 42.7K 300K
 mirror 490G 438G 2 5 8.53K 60.3K
 /dev/chassis/lab10rack15/SCSI_Device__2/disk - - 1 0 4.47K 60.3K
 /dev/chassis/lab10rack15/SCSI_Device__3/disk - - 1 0 4.45K 60.3K
 mirror 490G 438G 2 5 8.62K 59.9K
 /dev/chassis/lab10rack15/SCSI_Device__4/disk - - 1 0 4.52K 59.9K
 /dev/chassis/lab10rack15/SCSI_Device__5/disk - - 1 0 4.48K 59.9K

Chapter 5
Querying ZFS Storage Pool Status

5-8

Determining the Health Status of ZFS Storage Pools
You can display pool and device health by using the zpool status command. In addition,
the fmd command also reports potential pool and device failures on the system console, and
the /var/adm/messages file.

This section describes only how to determine pool and device health. For data recovery from
unhealthy pools, see Oracle Solaris ZFS Troubleshooting and Pool Recovery.

A pool's health status is described by one of four states:

DEGRADED
A pool with one or more failed devices whose data is still available due to a redundant
configuration.

ONLINE
A pool that has all devices operating normally.

SUSPENDED
A pool that is waiting for device connectivity to be restored. A SUSPENDED pool remains in the
wait state until the device issue is resolved.

UNAVAIL
A pool with corrupted metadata, or one or more unavailable devices, and insufficient replicas
to continue functioning.

Each pool device can fall into one of the following states:

DEGRADED
The virtual device has experienced a failure but can still function. This state is most common
when a mirror or RAID-Z device has lost one or more constituent devices. The fault tolerance
of the pool might be compromised because a subsequent fault in another device might be
unrecoverable.

OFFLINE
The device has been explicitly taken offline by the administrator.

ONLINE
The device or virtual device is in normal working order even though some transient errors
might still occur.

REMOVED
The device was physically removed while the system was running. Device removal detection
is hardware-dependent and might not be supported on all platforms.

UNAVAIL
The device or virtual device cannot be opened. In some cases, pools with UNAVAIL devices
appear in DEGRADED mode. If a top-level virtual device is UNAVAIL, then nothing in the pool can
be accessed.

The health of a pool is determined from the health of all its top-level virtual devices. If all virtual
devices are ONLINE, then the pool is also ONLINE. If any one of the virtual devices is DEGRADED
or UNAVAIL, then the pool is also DEGRADED. If a top-level virtual device is UNAVAIL or OFFLINE,
then the pool is also UNAVAIL or SUSPENDED. A pool in the UNAVAIL or SUSPENDED state is
completely inaccessible. No data can be recovered until the necessary devices are attached or

Chapter 5
Querying ZFS Storage Pool Status

5-9

repaired. A pool in the DEGRADED state continues to run but you might not achieve the same
level of data redundancy or data throughput than if the pool were online.

The zpool status command also displays the state of resilver and scrub operations as
follows:

• Resilver or scrub operations are in progress.

• Resilver or scrub operations have been completed.

Resilver and scrub completion messages persist across system reboots.

• Operations have been canceled.

Storage Pool Health Status
You can review pool health status by using one of the following zpool status command
options:

• zpool status -x [pool] – Displays only the status pools that have errors or are
otherwise unavailable.

• zpool status -v [pool] – Generates verbose output providing detailed information
about the pools and their devices.

You should investigate any pool that is not in the ONLINE state for potential problems.

The following example shows how to generate a verbose status report about the pool system1.

$ zpool status -v system1
 pool: system1
 state: DEGRADED
status: One or more devices are unavailable in response to persistent errors.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or 'fmadm repaired', or replace the device
 with 'zpool replace'.
 scan: scrub repaired 0 in 0h0m with 0 errors on Wed Jun 20 15:38:08 2012
config:

 NAME STATE READ WRITE CKSUM
 system1 DEGRADED 0 0 0
 mirror-0 DEGRADED 0 0 0
 c0t5000C500335F95E3d0 ONLINE 0 0 0
 c0t5000C500335F907Fd0 UNAVAIL 0 0 0
 mirror-1 ONLINE 0 0 0
 c0t5000C500335BD117d0 ONLINE 0 0 0
 c0t5000C500335DC60Fd0 ONLINE 0 0 0

device details:

 c0t5000C500335F907Fd0 UNAVAIL cannot open
 status: ZFS detected errors on this device.
 The device was missing.
 see: URL to My Oracle Support knowledge article for recovery

errors: No known data errors

The READ and WRITE columns provide a count of I/O errors that occurred on the device, while
the CKSUM column provides a count of uncorrectable checksum errors that occurred on the
device. Both error counts indicate a potential device failure for which some corrective action is

Chapter 5
Querying ZFS Storage Pool Status

5-10

needed. If non-zero errors are reported for a top-level virtual device, portions of your data
might have become inaccessible.

The output identifies problems as well as possible causes for the pool's current state. The
output also includes a link to a knowledge article for up-to-date information about the best way
to recover from the problem. From the output, you can determine which device is damaged
and how to repair the pool.

For more information about diagnosing and repairing UNAVAIL pools and data, see Oracle
Solaris ZFS Troubleshooting and Pool Recovery.

Gathering ZFS Storage Pool Status Information
You can use the zpool status interval and count options to gather statistics over a period of
time. In addition, you can display a time stamp by using the -T option. For example:

$ zpool status -T d 3 2
Wed Jun 20 16:10:09 MDT 2012
 pool: pond
 state: ONLINE
 scan: resilvered 9.50K in 0h0m with 0 errors on Wed Jun 20 16:07:34 2012
config:

 NAME STATE READ WRITE CKSUM
 pond ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t5000C500335F95E3d0 ONLINE 0 0 0
 c0t5000C500335F907Fd0 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 c0t5000C500335BD117d0 ONLINE 0 0 0
 c0t5000C500335DC60Fd0 ONLINE 0 0 0

errors: No known data errors

 pool: rpool
 state: ONLINE
 scan: scrub repaired 0 in 0h11m with 0 errors on Wed Jun 20 15:08:23 2012
config:

 NAME STATE READ WRITE CKSUM
 rpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t5000C500335BA8C3d0s0 ONLINE 0 0 0
 c0t5000C500335FC3E7d0s0 ONLINE 0 0 0

errors: No known data errors
Wed Jun 20 16:10:12 MDT 2012

 pool: pond
 state: ONLINE
 scan: resilvered 9.50K in 0h0m with 0 errors on Wed Jun 20 16:07:34 2012
config:

 NAME STATE READ WRITE CKSUM
 pond ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t5000C500335F95E3d0 ONLINE 0 0 0
 c0t5000C500335F907Fd0 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 c0t5000C500335BD117d0 ONLINE 0 0 0
 c0t5000C500335DC60Fd0 ONLINE 0 0 0

Chapter 5
Querying ZFS Storage Pool Status

5-11

errors: No known data errors

 pool: rpool
 state: ONLINE
 scan: scrub repaired 0 in 0h11m with 0 errors on Wed Jun 20 15:08:23 2012
config:

 NAME STATE READ WRITE CKSUM
 rpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t5000C500335BA8C3d0s0 ONLINE 0 0 0
 c0t5000C500335FC3E7d0s0 ONLINE 0 0 0

errors: No known data errors

Migrating ZFS Storage Pools
Occasionally, you might need to move a storage pool between systems. You would disconnect
the storage devices from the original system and reconnect them to the destination system
either by physically recabling the devices or by using multiported devices such as the devices
on a SAN.

ZFS enables you to export the pool from one system and import it on the destination system
even if the systems are of different architectural endianness. For information about replicating
or migrating file systems between different storage pools, which might reside on different
systems, see Saving, Sending, and Receiving ZFS Data.

Preparing for ZFS Storage Pool Migration
To migrate a pool, you must first export it. This operation flushes any unwritten data to disk,
writes data to the disk indicating that the export is complete, and removes all information about
the pool from the system.

If you do not explicitly export the pool but instead remove the disks manually, you can still
import the resulting pool on another system. However, you might lose the last few seconds of
data transactions. Also, because the devices are no longer present, the pool will appear as
UNAVAIL on the original system. By default, the destination system cannot import a pool that
has not been explicitly exported. This condition is necessary to prevent you from accidentally
importing an active pool that consists of network-attached storage that is still in use on another
system.

Exporting a ZFS Storage Pool
To export a pool, use the following command:

$ zpool export [option] pool

The command first unmounts any mounted file systems within the pool. If any of the file
systems fail to unmount, you can forcefully unmount them by using the -f option. However, if
ZFS volumes in the pool are in use, the operation fails even with the -f option. To export a
pool with a ZFS volume, first ensure that all consumers of the volume are no longer active.

For more information, see ZFS Volumes.

After this command is executed, the pool is no longer visible on the system.

Chapter 5
Migrating ZFS Storage Pools

5-12

If devices are unavailable at the time of export, the devices cannot be identified as cleanly
exported. If one of these devices is later attached to a system without any of the other working
devices, it appears as potentially active.

Determining Available Storage Pools to Import
After the pool has been removed from the system, you can attach the devices to the target
system. You do not need to attach them under the same device name. ZFS detects any moved
or renamed devices and adjusts the configuration appropriately. Note that ZFS can handle
some situations in which only some of the devices are available. However, a successful pool
migration depends on the overall health of all the devices.

Use the following general command syntax for all pool import operations:

$ zpool import [options] [pool|ID-number]

To discover available pools that can be imported, run the zpool import command without
specifying pools. In the output, the pools are identified by names and unique number
identifiers. If pools available for import share the same name, use the numeric identifier to
import the correct pool.

If problems exist with a pool to be imported, the command output also provides the appropriate
information to help you determine what action to take.

In the following example, one of the devices is missing but you can still import the pool
because the mirrored data remains accessible.

$ zpool import
 pool: system1
 id: 4715259469716913940
 state: DEGRADED
status: One or more devices are unavailable.
action: The pool can be imported despite missing or damaged devices. The
 fault tolerance of the pool may be compromised if imported.
config:

 system1 DEGRADED
 mirror-0 DEGRADED
 c0t5000C500335E106Bd0 ONLINE
 c0t5000C500335FC3E7d0 UNAVAIL cannot open

device details:

 c0t5000C500335FC3E7d0 UNAVAIL cannot open
 status: ZFS detected errors on this device.
 The device was missing.

In the following example, because two disks are missing from a RAID-Z virtual device, not
enough redundant data exists to reconstruct the pool. With insufficient available devices, ZFS
cannot import the pool.

$ zpool import
pool: mothership
 id: 3702878663042245922
 state: UNAVAIL
status: One or more devices are unavailable.
action: The pool cannot be imported due to unavailable devices or data.
config:

 mothership UNAVAIL insufficient replicas
 raidz1-0 UNAVAIL insufficient replicas

Chapter 5
Migrating ZFS Storage Pools

5-13

 c8t0d0 UNAVAIL cannot open
 c8t1d0 UNAVAIL cannot open
 c8t2d0 ONLINE
 c8t3d0 ONLINE

device details:

 c8t0d0 UNAVAIL cannot open
 status: ZFS detected errors on this device.
 The device was missing.

 c8t1d0 UNAVAIL cannot open
 status: ZFS detected errors on this device.
 The device was missing.

Importing ZFS Storage Pools
To import a specific pool, specify the pool name or its numeric identifier with the zfs import
command. Additionally, you can rename a pool while importing it. For example:

$ zpool import system1 mpool

This command imports the exported pool system1 and renames it mpool. The new pool name
is persistent.

Note:

You cannot rename a pool directly. You can only change the name of a pool while
exporting and importing the pool, which also renames the root dataset to the new
pool name.

Caution:

During an import operation, warnings occur if the pool might be in use on another
system.

cannot import 'pool': pool may be in use on another system
use '-f' to import anyway

Do not attempt to import a pool that is active on one system to another system. ZFS
is not a native cluster, distributed, or parallel file system and cannot provide
concurrent access from multiple, different systems.

You can also import pools under an alternate root by using the -R option. For more
information, see Using a ZFS Pool With an Alternate Root Location.

Importing a Pool With a Missing Log Device
By default, a pool with a missing log device cannot be imported. You can use zpool import
-m command to force a pool to be imported with a missing log device.

In the following example, the output indicates a missing mirrored log when you first import the
pool dozer.

Chapter 5
Migrating ZFS Storage Pools

5-14

$ zpool import dozer
The devices below are missing, use '-m' to import the pool anyway:
mirror-1 [log]
c3t3d0
c3t4d0

cannot import 'dozer': one or more devices is currently unavailable

To proceed with importing the pool with the missing mirrored log, use the -m option.

$ zpool import -m dozer
$ zpool status dozer
pool: dozer
state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist for
the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using 'zpool online'.
see: URL to My Oracle Support knowledge article
scan: scrub repaired 0 in 0h0m with 0 errors on Fri Oct 15 16:51:39 2010
config:

NAME STATE READ WRITE CKSUM
dozer DEGRADED 0 0 0
 mirror-0 ONLINE 0 0 0
 c3t1d0 ONLINE 0 0 0
 c3t2d0 ONLINE 0 0 0
 logs
 mirror-1 UNAVAIL 0 0 0 insufficient replicas
 13514061426445294202 UNAVAIL 0 0 0 was c3t3d0
 16839344638582008929 UNAVAIL 0 0 0 was c3t4d0

The imported pool remains in a DEGRADED state. Based on the output recommendation, attach
the missing log devices. Then, run the zpool clear command to clear the pool errors.

Importing a Pool in Read-Only Mode
If a pool is so damaged that it cannot be accessed, importing in read-only mode might enable
you to recover the pool's data. For example:

$ zpool import -o readonly=on system1
$ zpool scrub system1
cannot scrub system1: pool is read-only

When a pool is imported in read-only mode, the following conditions apply:

• All file systems and volumes are mounted in read-only mode.

• Pool transaction processing is disabled. Any pending synchronous writes in the intent log
are not made until the pool is imported in read-write mode.

• Setting a pool property during the read-only import is ignored.

You can set the pool back to read-write mode by exporting and importing the pool. For
example:

$ zpool export system1
$ zpool import system1
$ zpool scrub system1

Chapter 5
Migrating ZFS Storage Pools

5-15

Importing a Pool By Using a Specific Device Path
By default, the zpool import command searches devices only within the /dev/dsk
directory. If devices exist in another directory, or you are using pools backed by files, you must
use the -d option to search alternate directories. For example:

$ zpool create mpool mirror /file/a /file/b
$ zpool export mpool
$ zpool import -d /file
 pool: mpool
 id: 7318163511366751416
 state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

 mpool ONLINE
 mirror-0 ONLINE
 /file/a ONLINE
 /file/b ONLINE
$ zpool import -d /file mpool

If devices exist in multiple directories, you can specify multiple -d options.

The following command imports the pool mpool by identifying one of the pool's specific
devices, /dev/etc/c2t3d0:

$ zpool import -d /dev/etc/c2t3d0 mpool
$ zpool status mpool
pool: mpool
state: ONLINE
scan: resilvered 952K in 0h0m with 0 errors on Fri Jun 29 16:22:06 2012
config:

NAME STATE READ WRITE CKSUM
mpool ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
 c2t3d0 ONLINE 0 0 0
 c2t1d0 ONLINE 0 0 0

Recovering Destroyed ZFS Storage Pools
You can use the zpool import -D command to recover a storage pool that has been
destroyed.

In the following example, the pool system1 is indicated as destroyed.

$ zpool import -D
 pool: system1
 id: 5154272182900538157
 state: ONLINE (DESTROYED)
action: The pool can be imported using its name or numeric identifier.
config:

 system1 ONLINE
 mirror-0 ONLINE
 c1t0d0 ONLINE
 c1t1d0 ONLINE

To recover the destroyed pool, import it with the -D option.

Chapter 5
Migrating ZFS Storage Pools

5-16

$ zpool import -D system1
$ zpool status system1
 pool: system1
 state: ONLINE
 scrub: none requested
config:

 NAME STATE READ WRITE CKSUM
 system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c1t0d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0

errors: No known data errors

If one of the devices in the destroyed pool is unavailable, you might still recover the destroyed
pool by including the -f option. In this scenario, you would import the degraded pool and then
attempt to fix the device failure. For example:

$ zpool import -D
 pool: dozer
 id: 4107023015970708695
 state: DEGRADED (DESTROYED)
status: One or more devices are unavailable.
action: The pool can be imported despite missing or damaged devices. The
 fault tolerance of the pool may be compromised if imported.
config:

 dozer DEGRADED
 raidz2-0 DEGRADED
 c8t0d0 ONLINE
 c8t1d0 ONLINE
 c8t2d0 ONLINE
 c8t3d0 UNAVAIL cannot open
 c8t4d0 ONLINE

device details:

 c8t3d0 UNAVAIL cannot open
 status: ZFS detected errors on this device.
 The device was missing.
$ zpool import -Df dozer
$ zpool status -x
 pool: dozer
 state: DEGRADED
status: One or more devices are unavailable in response to persistent errors.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or 'fmadm repaired', or replace the device
 with 'zpool replace'.
 Run 'zpool status -v' to see device specific details.
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 dozer DEGRADED 0 0 0
 raidz2-0 DEGRADED 0 0 0
 c8t0d0 ONLINE 0 0 0
 c8t1d0 ONLINE 0 0 0
 c8t2d0 ONLINE 0 0 0
 4881130428504041127 UNAVAIL 0 0 0

Chapter 5
Migrating ZFS Storage Pools

5-17

 c8t4d0 ONLINE 0 0 0

errors: No known data errors
$ zpool online dozer c8t3d0
$ zpool status -x
all pools are healthy

Upgrading ZFS Storage Pools
With the zpool upgrade command, you can upgrade ZFS storage pools from a previous
Oracle Solaris release.

Before using the command, use the zpool status command to check whether the pools
were configured with a ZFS version that is previous to the version currently on the system.
Also, consider displaying the features of the current ZFS version on the system by using the -v
option as shown below:

$ zpool upgrade -v

The list of features would vary depending on the ZFS version number on the system. See ZFS
Pool Versions for a complete list.

Use the -a option to upgrade the pools and take advantage of the latest ZFS features.

$ zpool upgrade -a

After you upgrade the pools, they are no longer accessible on a system that is running a
previous ZFS version.

Example 5-1 Upgrading ZFS Pools

This example shows the actions to upgrade pools.

$ zpool status
 pool: system1
 state: ONLINE
status: The pool is formatted using an older on-disk format. The pool can
 still be used, but some features are unavailable.
action: Upgrade the pool using 'zpool upgrade'. Once this is done, the
 pool will no longer be accessible on older software versions.
 scrub: none requested
config:
 NAME STATE READ WRITE CKSUM
 system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c1t0d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0
errors: No known data errors

$ zpool upgrade -v
This system is currently running ZFS pool version version-number.

The following versions are supported:

VER DESCRIPTION
--- --
1 Initial ZFS version
2 Ditto blocks (replicated metadata)
3 Hot spares and double parity RAID-Z
4 zpool history
5 Compression using the gzip algorithm

Chapter 5
Upgrading ZFS Storage Pools

5-18

.

.
Additional features

$ zpool upgrade -a

Managing ZFS Pools That Contain Boot Environments
Starting with Oracle Solaris 11.4 SRU 30, you can use the zpool command to upgrade the
version of ZFS pools (zpools) on your system without affecting the bootability of related boot
environments (BEs). Also, you can use the beadm command to activate a BE. These
commands compare zpool and zfs module pool versions and notify you when a pool upgrade
would make related BEs unbootable and when a BE activation would fail.

• The zpool upgrade command upgrades a zpool that contains BEs to the specified
system pool version. By default, the zpool is upgraded to the highest supportable pool
version. However, if the upgrade would leave any related BEs unbootable, the upgrade
fails.

Note:

You cannot downgrade a zpool to an earlier version. If you attempt to import a
zpool that has a version that is greater than the version of the zfs module, the
operation fails.

You can use the zpool upgrade -f command to force a zpool upgrade that would
otherwise fail. However, if an active-on-boot BE would become unbootable if you update
the zpool version, the zpool upgrade command fails even if you specify the -f option.

Additionally, the zpool command has a -n option that performs a dry-run of an operation,
such as an upgrade. The dry run of the operation reports the actions it would take without
taking those actions.

Note:

You can no longer use the zpool set -o version= version command to
upgrade a bootable zpool. Instead, you must use the zpool upgrade
command.

• The beadm activate command activates a BE as long as the version of the ZFS pool is
less than or equal to the pool version of a BE's zfs module, otherwise the BE is
unbootable.

Example 5-2 Upgrading Pool Versions of ZPools That Contain Boot Environments

This extended example shows how to use the zpool and beadm commands to upgrade the
pool version of the rpool zpool that contains BEs. The example shows what happens when
pool versions do not match and render related BEs unbootable and how you can address the
situations.

The following command attempts to upgrade the versions of the zpools to the highest workable
version, which is same as the system (zfs module) pool version of 47. This command also
determines that the rpool pool is Version 44 and thus out of date.

Chapter 5
Managing ZFS Pools That Contain Boot Environments

5-19

zpool upgrade
This system is currently running ZFS pool version 47.

The following pools are out of date, and can be upgraded. After being
upgraded, these pools will no longer be accessible by older software versions.

VER POOL
--- ------------
44 rpool

Use 'zpool upgrade -v' for a list of available versions and their associated
features.

The following command attempts to upgrade the rpool pool version from 44 to 47 and
determines that the resulting upgrade would make related BEs unbootable.

zpool upgrade rpool
This system is currently running ZFS pool version 47.

rpool is on version 44 and will not upgrade without making BEs un-bootable

To determine which BEs would be affected by the pool version upgrade, the following
command performs a dry run of the previous command.

The output shows the following list of affected BEs and their pool versions.

zpool upgrade -n -V 47 rpool
This system is currently running ZFS pool version 47.

Upgrading to version 47 will make these BEs un-bootable
FMRI Pool Version
-------------- ------------
be://rpool/BE1 44
be://rpool/BE2 45
be://rpool/BE3 46
use "zpool upgrade -f -V 47 rpool" to force the upgrade.

The following command attempts to force the upgrade of rpool to Version 45 and determines
that the upgrade would make the be://rpool/BE1 BE unbootable. The command does not
perform the upgrade.

zpool upgrade -V 45 rpool
This system is currently running ZFS pool version 47.

Upgrading to version 45 will make this BE un-bootable
FMRI Pool Version
-------------- ------------
be://rpool/BE1 44
use "zpool upgrade -f -V 45 rpool" to force the upgrade.

The following command forces the upgrade of rpool to Version 45. Because the be://
rpool/BE1 BE would remain at Version 44, it becomes unbootable.

zpool upgrade -f -V 45 rpool
This system is currently running ZFS pool version 47.

Upgrading to version 45 will make this BE un-bootable
FMRI Pool Version
-------------- ------------
be://rpool/BE1 44
Pool 'rpool' upgraded from version 44 to version 45

Chapter 5
Managing ZFS Pools That Contain Boot Environments

5-20

When a zpool version is greater than the version supported by a BE, that BE is unbootable and
can no longer be activated. The beadm list output shows an exclamation mark (!) in the
Flags column for unbootable BEs.

The following command attempts to activate BE1 and states that the BE is no longer bootable
because of mismatched versions.

beadm activate BE1
Unable to activate BE BE1:
BE BE1 supports version 44, pool version is 45

If the BE that is active on next boot becomes unbootable, you cannot force the upgrade the
pool version by using the -f option.

The following command successfully activates the BE2 BE:

beadm activate BE2

The following command lists information about existing BEs. The -o option enables you to
specify the type of BE information to show: its name, pool version, and state flags. See the
beadm(8) man page.

beadm list -o name,pool_version,flags
BE Name Pool Version Flags
---------------- ------------ -----
BE1 44 !
BE2 45 R
BE3 46 -
beadm 47 N
solaris 47 -
solaris-backup-1 47 -

The following command attempts to upgrade rpool to Version 46, but because this command
would make BE2 unbootable, the command does not perform the upgrade.

zpool upgrade -V 46 rpool
This system is currently running ZFS pool version 47.

Upgrading to pool version 46 would make the active on boot BE 'BE2' un-bootable

The following command forces the upgrade of rpool to Version 46 and makes BE2 unbootable.

zpool upgrade -V 46 -f rpool
This system is currently running ZFS pool version 47.

Upgrading to pool version 46 would make the active on boot BE 'BE2' un-bootable

The following command attempts to upgrade the rpool2 pool to Version 46. Because this
command would make the TestBE BE unbootable, the command does not perform the
upgrade.

zpool upgrade -V 46 rpool2
This system is currently running ZFS pool version 47.

Upgrading to version 46 will make these BEs un-bootable
FMRI Pool Version
---------------- ------------
TestBE 45
use "zpool upgrade -f -V 46 rpool2" to force the upgrade.

As long as the upgrade of the zpool does not make related BEs unbootable, the zpool is
upgraded.

Chapter 5
Managing ZFS Pools That Contain Boot Environments

5-21

https://docs.oracle.com/cd/E88353_01/html/E72487/beadm-8.html

The following command destroys the TestBE BE. Because this BE is active on boot, the active
BE, be://rpool/beadm, becomes active on boot.

beadm destroy -F TestBE
Warning: BE to be destroyed is the active on boot BE. Making current active BE, be://
rpool/beadm, to be the active on boot BE.

The following command succesfully upgrades rpool2 to Version 46 because the previously
unbootable BE, TestBE, no longer exists.

zpool upgrade -V 46 rpool2
This system is currently running ZFS pool version 47.

Pool 'rpool2' upgraded from version 45 to version 46

The following command fails to upgrade rpool2 to the highest possible version because
upgrading the pool would make other BEs unbootable.

zpool upgrade rpool2
This system is currently running ZFS pool version 47.

rpool2 is on version 46 and will not upgrade without making more BEs un-bootable

You can perform a dry-run of the previous command to discover the affected BEs.

Chapter 5
Managing ZFS Pools That Contain Boot Environments

5-22

6
Managing a ZFS Root Pool

This section provides procedures for managing the ZFS root pool.

Requirements for Configuring the ZFS Root Pool
ZFS is the default root file system of Oracle Solaris. The root pool contains the boot
environment (BE) and is automatically created during the installation.

ZFS Root Pool Space Requirements
The size of the swap dump volumes depend on the amount of physical memory. The minimum
amount of pool space for a bootable ZFS root file system depends upon the amount of physical
memory, the disk space available, and the number of BEs to be created.

The 7GB to 13GB minimum disk space recommended in Hardware and Software
Requirements is consumed as follows:

• Swap area and dump device – The default sizes of the swap and dump volumes that the
installation program creates vary based on variables such as the amount of system
memory. The dump device size is approximately half the size of physical memory or
greater, depending on the system's activity.

You can adjust the sizes of your swap and dump volumes during or after installation. The
new sizes must support system operation. See Adjusting the Sizes of ZFS Swap and
Dump Devices.

• Boot environment – A ZFS BE is approximately 4 GB-6 GB. Each ZFS BE that is cloned
from another ZFS BE does not need additional disk space. The BE size will increase when
it is updated, depending on the updates. All ZFS BEs in the same root pool use the same
swap and dump devices.

• Oracle Solaris Components – All subdirectories of the root file system except /var that
are part of the OS image must be in the root file system. All Oracle Solaris components
except the swap and dump devices must reside in the root pool.

ZFS Root Pool Configuration Recommendations
Follow these guidelines when configuring the ZFS root pool:

• If you are using EFI (GPT) labeled disks, create the root pool on mirrored whole disks. If
you are using SMI (VTOC) labeled disks, create the root pool on mirrored slices.

In most cases, x86 systems and SPARC systems with GPT aware firmware have EFI
(GPT) labeled disks. Otherwise, SPARC systems have SMI (VTOC) labeled disks.

• Do not rename the root pool that is created after an initial installation because the system
might become unbootable. Also, as best practice, do not change any default settings, such
as the mountpoint, of the root pool. Otherwise, errors might occur in subsequent
operations on the boot environment.

• Do not use a thinly provisioned VMware device for a root pool device.

6-1

Root pools have the following limitations:

• RAID-Z or striped configurations are not supported for root pools.

• Root pools cannot have a separate log device.

• You cannot configure multiple top-level virtual devices on root pools. However, you can
expand a mirrored root pool by attaching additional devices.

• The gzip and lz4 compression algorithms are not supported on root pools.

Installing the ZFS Root Pool
As documented in Manually Installing an Oracle Solaris 11.4 System , you can use text installer
or Automated Installer (AI) with the AI manifest to install Oracle Solaris. Both methods
automatically install a ZFS root pool on a single disk. The installation also configures swap and
dump devices on ZFS volumes on the root pool.

Note:

Starting with Oracle Solaris 11.4 SRU 36, the compression property is set to on by
default. This property setting reduces space consumption in the root pool and might
improve system performance.

The AI method offers more flexibility in installing the root pool. In the AI manifest, you can
specify the disks to use to create a mirrored root pool as well as enable ZFS properties, as
shown in Modifying the AI Manifest to Customize Root Pool Installation.

After Oracle Solaris is completely installed, perform the following actions:

• If the installation created a root pool on a single disk, then manually convert the pool into a
mirrored configuration. See How to Configure a Mirrored Root Pool (SPARC or x86/VTOC).

• Set a quota on the ZFS root file system to prevent the root file system from filling up.
Currently, no ZFS root pool space is reserved as a safety net for a full file system. For
example, if you have a 68 GB disk for the root pool, consider setting a 67 GB quota on the
ZFS root file system (rpool/ROOT/solaris) to allow for 1 GB of remaining file system
space. See Setting Quotas on ZFS File Systems.

• Create a root pool recovery archive for disaster recovery or for migration purposes by
using the Oracle Solaris archive utility. For more information, refer to Using Unified
Archives for System Recovery and Cloning in Oracle Solaris 11.4 and the archiveadm(8)
man page.

Example 6-1 Modifying the AI Manifest to Customize Root Pool Installation

This example shows how to customize the AI manifest to perform the following:

• Create a mirrored root pool consisting of c1t0d0 and c2t0d0.

• Enable the root pool's listsnaps property.

<target>
<disk whole_disk="true" in_zpool="rpool" in_vdev="mirrored">
<disk_name name="c1t0d0" name_type="ctd"/>
</disk>
<disk whole_disk="true" in_zpool="rpool" in_vdev="mirrored">
<disk_name name="c2t0d0" name_type="ctd"/>
</disk>
<logical>

Chapter 6
Requirements for Configuring the ZFS Root Pool

6-2

https://docs.oracle.com/cd/E37838_01/html/E69250/index.html
https://docs.oracle.com/cd/E37838_01/html/E60984/index.html
https://docs.oracle.com/cd/E37838_01/html/E60984/index.html
https://docs.oracle.com/cd/E88353_01/html/E72487/archiveadm-8.html

<zpool name="rpool" is_root="true">
<vdev name="mirrored" redundancy="mirror"/>
<!--
...
-->
<filesystem name="export" mountpoint="/export"/>
<filesystem name="export/home"/>
<pool_options>
<option name="listsnaps" value="on"/>
</pool_options>
<be name="solaris"/>
</zpool>
</logical>
</target>

Example 6-2 Sample Root Pool Configuration

The following example shows a mirrored root pool and file system configuration after an AI
installation with a customized manifest.

$ zpool status rpool
pool: rpool
state: ONLINE
scan: none requested
config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c8t0d0 ONLINE 0 0 0
 c8t1d0 ONLINE 0 0 0

$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 11.8G 55.1G 4.58M /rpool
rpool/ROOT 3.57G 55.1G 31K legacy
rpool/ROOT/solaris 3.57G 55.1G 3.40G /
rpool/ROOT/solaris/var 165M 55.1G 163M /var
rpool/VARSHARE 42.5K 55.1G 42.5K /var/share
rpool/dump 6.19G 55.3G 6.00G -
rpool/export 63K 55.1G 32K /export
rpool/export/home 31K 55.1G 31K /export/home
rpool/swap 2.06G 55.2G 2.00G -

Managing a ZFS Root Pool
This section provides procedures for managing the ZFS root pool.

How to Configure a Mirrored Root Pool (SPARC or x86/EFI (GPT))
This procedure describes how to convert the default root pool installation into a redundant
configuration. This procedure applies to most x86 systems and SPARC systems with GPT-
aware firmware whose disks have the EFI (GPT) label.

1. Display the current root pool status.

$ zpool status root-pool
2. Attach a second disk to configure a mirrored root pool.

$ zpool attach root-pool current-disk new-disk

Chapter 6
Managing a ZFS Root Pool

6-3

The correct disk labeling and the boot blocks are applied automatically.

3. View the root pool status to confirm that resilvering is complete.

If resilvering has been completed, the output includes a message similar to the following:

scan: resilvered 11.6G in 0h5m with 0 errors on Fri Jul 20 13:57:25 2014
4. If the new disk is larger than the current disk, enable the ZFS autoexpand property.

$ zpool set autoexpand=on root-pool

The following example shows the difference in the rpool's disk space after the autoexpand
property is enabled.

$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 29.8G 152K 29.7G 0% 1.00x ONLINE -
$ zpool set autoexpand=on rpool
$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 279G 146K 279G 0% 1.00x ONLINE -

5. Verify that you can boot successfully from the new disk.

Note:

Unexpected behavior might occur if the ZFS configuration consists of a root file
system that is built on mirrored iSCSI targets and the second LUN is not
available on the same iSCSI target or session as the boot disk. When the system
is booted, the boot process would report that opening the second iSCSI LUN
failed and the root pool is in a degraded state. However, this status is temporary.
The issue automatically resolves after the ZFS performs a quick resilvering. The
second LUN then goes online and the state of the root pool goes online as well.

How to Configure a Mirrored Root Pool (SPARC or x86/VTOC)
Prepare the second disk to attach to the root pool as follows:

• SPARC: Confirm that the disk has an SMI (VTOC) disk label and that slice 0 contains the
bulk of the disk space. If you need to relabel the disk and create a slice 0, see How to
Replace a ZFS Root Pool Disk in Managing Devices in Oracle Solaris 11.4 .

• x86: Confirm that the disk has an fdisk partition, an SMI disk label, and a slice 0. If you
need to repartition the disk and create a slice 0, see Modifying Slices or Partitions in
Managing Devices in Oracle Solaris 11.4 .

This procedure describes how to convert the default root pool installation into a redundant
configuration. This procedure applies to certain x86 systems and SPARC systems without
GPT-aware firmware whose disks have the SMI (VTOC) label.

1. Display the current root pool status.

$ zpool status root-pool

The configuration would display the disk's slice 0, as shown in the following example for
rpool.

$ zpool status rpool
pool: rpool
state: ONLINE

Chapter 6
Managing a ZFS Root Pool

6-4

https://docs.oracle.com/cd/E37838_01/html/E61015/diskssadd-5.html
https://docs.oracle.com/cd/E37838_01/html/E61015/diskssadd-5.html
https://docs.oracle.com/cd/E37838_01/html/E61015/gnvod.html
https://docs.oracle.com/cd/E37838_01/html/E61015/gnvod.html

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
c2t0d0s0 ONLINE 0 0 0

errors: No known data errors
2. Attach the second disk to configure a mirrored root pool.

$ zpool attach root-pool current-disk new-disk

Make sure that you include the slice when specifying the disk, such as c2t0d0s0. The
correct disk labeling and the boot blocks are applied automatically.

3. View the root pool status to confirm that resilvering is complete.

If resilvering has been completed, the output includes a message similar to the following:

scan: resilvered 11.6G in 0h5m with 0 errors on Fri Jul 20 13:57:25 2014
4. If the new disk is larger than the current disk, enable the ZFS autoexpand property.

$ zpool set autoexpand=on root-pool

The following example shows the difference in the rpool's disk space after the autoexpand
property is enabled.

$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 29.8G 152K 29.7G 0% 1.00x ONLINE -
$ zpool set autoexpand=on rpool
$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 279G 146K 279G 0% 1.00x ONLINE -

5. Verify that you can boot successfully from the new disk.

Note:

Unexpected behavior might occur if the ZFS configuration consists of a root file
system that is built on mirrored iSCSI targets and the second LUN is not
available on the same iSCSI target or session as the boot disk. When the system
is booted, the boot process would report that opening the second iSCSI LUN
failed and the root pool is in a degraded state. However, this status is temporary.
The issue automatically resolves after the ZFS performs a quick resilvering. The
second LUN then goes online and the state of the root pool goes online as well.

How to Update a ZFS Boot Environment
By default, the ZFS BE is named solaris. The pkg update command updates the ZFS BE
by creating and automatically activating a new BE, provided that significant differences exist
between the current and updated BEs.

1. View the current boot environment configuration.

The BE's Active field shows N to indicate that the BE is active, R to indicate that it
becomes active after a system reboot, or both (NR).

Chapter 6
Managing a ZFS Root Pool

6-5

$ beadm list
BE Active Mountpoint Space Policy Created
-- ------ ---------- ----- ------ -------
solaris NR / 3.82G static 2012-07-19 13:44

2. Update the ZFS BE.

$ pkg update
.
DOWNLOAD PKGS FILES XFER (MB)
Completed 707/707 10529/10529 194.9/194.9
.

A new BE, solaris-1, is created automatically and activated.

3. Reboot the system to complete the BE activation. Then, confirm the BE status.

$ init 6
.
.
$ beadm list
BE Active Mountpoint Space Policy Created
-- ------ ---------- ----- ------ -------
solaris - - 46.95M static 2014-07-20 10:25
solaris-1 NR / 3.82G static 2014-07-19 14:45

4. If an error occurs when booting the new BE, activate and boot the previous BE.

$ beadm activate solaris
$ init 6

You use the same beadm activate BE command syntax to activate an existing backup
BE independent of any update operation.

How to Mount an Alternate BE
1. Become an administrator.

2. Mount the alternate BE.

$ beadm mount alt-BE /mnt
3. Access the BE.

$ ls /mnt
4. Unmount the alternate BE when you're finished.

$ beadm umount alt-BE

Replacing Disks in a ZFS Root Pool
You might need to replace a disk in the root pool for the following reasons:

• The root pool is too small and you want to replace it with a larger disk

• The root pool disk is failing. In a non-redundant pool, if the disk is failing and the system no
longer boots, boot from another source such as a CD or the network. Then, replace the
root pool disk.

You can replace disks by using one of two methods:

• Using the zpool replace command.

Chapter 6
Managing a ZFS Root Pool

6-6

This method involves scrubbing and clearing the root pool of dirty time logs (DTLs), then
replacing the disk. After the new disk is installed, you apply the boot blocks manually.

• Using the zpool detach|attach commands.

This method involves attaching the new disk and verifying that it is working properly, then
detaching the faulty disk.

If you are replacing root pool disks that have the SMI (VTOC) label, ensure that you fulfill the
following requirements:

• SPARC: Confirm that the disk has an SMI (VTOC) disk label and a slice 0 that contains the
bulk of the disk space. If you need to relabel the disk and create a slice 0, see How to
Replace a ZFS Root Pool Disk in Managing Devices in Oracle Solaris 11.4 .

• x86: Confirm that the disk has an fdisk partition, an SMI disk label, and a slice 0. If you
need to repartition the disk and create a slice 0, see Modifying Slices or Partitions in
Managing Devices in Oracle Solaris 11.4 .

How to Replace a Disk in a ZFS Root Pool
This procedure uses the zpool attach|detach commands to replace the disk.

1. Physically connect the replacement disk.

2. Attach the new disk to the root pool.

$ zpool attach root-pool current-disk new-disk

Where current-disk becomes old-disk to be detached at the end of this procedure.

The correct disk labeling and the boot blocks are applied automatically.

Note:

If the disks have SMI (VTOC) labels, make sure that you include the slice when
specifying the disk, such as c2t0d0s0.

3. View the root pool status to confirm that resilvering is complete.

If resilvering has been completed, the output includes a message similar to the following:

scan: resilvered 11.6G in 0h5m with 0 errors on Fri Jul 20 13:57:25 2014
4. Verify that you can boot successfully from the new disk.

5. After a successful boot, detach the old disk.

$ zpool detach root-pool old-disk

Where old-disk is the current-disk of Step 2.

Note:

If the disks have SMI (VTOC) labels, make sure that you include the slice when
specifying the disk, such as c2t0d0s0.

6. If the attached disk is larger than the existing disk, enable the ZFS autoexpand
property.

Chapter 6
Managing a ZFS Root Pool

6-7

https://docs.oracle.com/cd/E37838_01/html/E61015/diskssadd-5.html
https://docs.oracle.com/cd/E37838_01/html/E61015/diskssadd-5.html
https://docs.oracle.com/cd/E37838_01/html/E61015/gnvod.html
https://docs.oracle.com/cd/E37838_01/html/E61015/gnvod.html

$ zpool set autoexpand=on root-pool
7. Set the system to boot automatically from the new disk.

• SPARC: Use either the eeprom command or the setenv command from the boot
PROM.

• x86: Reconfigure the system BIOS.

8. If necessary, physically remove the replaced disk from the system.

Example 6-3 Replacing a Disk in a ZFS Root Pool (SPARC or x86/EFI (GPT)

This example replaces c2t0d0 in the root pool named rpool by using the zpool attach|
detach commands. It assumes that the replacement disk c2t1d0 is already physically
connected to the system.

$ zpool attach rpool c2t0d0 c2t1d0
Make sure to wait until resilver is done before rebooting.

$ zpool status rpool
pool: rpool
state: ONLINE
scan: resilvered 11.7G in 0h5m with 0 errors on Fri Jul 20 13:45:37 2012
config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c2t0d0 ONLINE 0 0 0
 c2t1d0 ONLINE 0 0 0

errors: No known data errors

After completing the boot test from the new disk c2t1d0, you would detach c2t0d0 and, if
necessary, enable the autoexpand property.

$ zpool detach rpool c2t0d0
$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 29.8G 152K 29.7G 0% 1.00x ONLINE -
$ zpool set autoexpand=on rpool
$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 279G 146K 279G 0% 1.00x ONLINE -

You would complete the operation by setting the system to automatically boot from the new
disk.

Example 6-4 Replacing SATA Disks in a Root Pool (SPARC or x86/EFI (GPT))

This example replaces c1t0d0 by using the zpool replace command.

Systems with SATA disks require that before replacing a failed disk with the zpool replace
command, you take the disk offline and unconfigure it. As a best practice, scrub and clear the
root pool first before replacing the disk.

Suppose that you are replacing c1t0d0 on the system. You would issue the following
commands:

$ zpool scrub rpool
$ zpool clear rpool
$ zpool offline rpool c1t0d0
$ cfgadm -c unconfigure c1::dsk/c1t0d0

Chapter 6
Managing a ZFS Root Pool

6-8

At this point, you would physically remove the failed disk c1t0d0 and insert the replacement
disk on the same slot. Thus, the new disk is still c1t0d0. On some hardware, you do not have
to bring the disk online or reconfigure the replacement disk after it is inserted.

$ cfgadm -c configure c1::dsk/c1t0d0
$ zpool online rpool c1t0d0
$ zpool replace rpool c1t0d0
$ zpool status rpool

After resilvering is completed, you would install the boot blocks.

$ bootadm install-bootloader

Example 6-5 Replacing a Disk in a ZFS Root Pool (SPARC or x86/VTOC)

This example uses the zpool attach|detach commands to replace c2t0d0s0 in the root
pool named rpool. It assumes that the replacement disk c2t1d0s0 is already physically
connected to the system.

$ zpool attach rpool c2t0d0s0 c2t1d0s0
Make sure to wait until resilver is done before rebooting.

$ zpool status rpool
pool: rpool
state: ONLINE
scan: resilvered 11.7G in 0h5m with 0 errors on Fri Jul 20 13:45:37 2012
config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c2t0d0s0 ONLINE 0 0 0
 c2t1d0s0 ONLINE 0 0 0

errors: No known data errors

You would test booting from the new disk c2t1d0s0. You would also test booting from the old
disk c2t0d0s0 in case c2t1d0s0 fails.

ok boot /pci@1f,700000/scsi@2/disk@1,0

ok boot /pci@1f,700000/scsi@2/disk@0,0

After completing the boot tests, you would detach c2t0d0s0 and, if necessary, enable the
autoexpand property.

$ zpool detach rpool c2t0d0s0
$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 29.8G 152K 29.7G 0% 1.00x ONLINE -
$ zpool set autoexpand=on rpool
$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 279G 146K 279G 0% 1.00x ONLINE -

You would complete the operation by setting the system to automatically boot from the new
disk.

Example 6-6 Replacing SATA Disks in a Root Pool (SPARC or x86 (VTOC))

This example replaces c1t0d0 by using the zpool replace command.

Chapter 6
Managing a ZFS Root Pool

6-9

Systems with SATA disks require that before replacing a failed disk with the zpool replace
command, you take the disk offline and unconfigure it. As a best practice, scrub and clear the
root pool first before replacing the disk.

Suppose that you are replacing c1t0d0 on the system. You would issue the following
commands:

$ zpool scrub rpool
$ zpool clear rpool
$ zpool offline rpool c1t0d0s0
$ cfgadm -c unconfigure c1::dsk/c1t0d0

At this point, you would physically remove the failed disk c1t0d0 and insert the replacement
disk on the same slot. Thus the new disk is still c1t0d0. On some hardware, you do not have to
bring the disk online or reconfigure the replacement disk after it is inserted.

$ cfgadm -c configure c1::dsk/c1t0d0

After confirming that the replacement disk c1t0d0s0 has an SMI label and a slice 0, you would
issue the zpool replace command and proceed with the replacement process.

$ zpool replace rpool c1t0d0s0
$ zpool online rpool c1t0d0s0
$ zpool status rpool

After resilvering is completed, you install the boot blocks.

$ bootadm install-bootloader

Managing ZFS Swap and Dump Devices
The installation process automatically creates a swap area and a dump device on a ZFS
volume in the ZFS root pool.

The dump device is used when the directory where crash dumps are saved has insufficient
space, or if you ran the dumpadm -n command syntax. The -n modifies the dump
configuration to not run savecore automatically running after a system reboot.

Certain systems avail of the deferred dump feature in the current Oracle Solaris release. With
this feature, a system dump is preserved in memory across a system reboot to enable you to
analyze the crash dump after the system reboots. For more information, see About Devices
and the Oracle Hardware Management Pack in Managing Devices in Oracle Solaris 11.4.

You can configure a shared swap and dump volume on which to manage both swap and dump
data. When you configure a shared swap and dump volume, you can no longer take a live
dump.

When your system has a shared swap and dump volume, the swap data is encrypted by
default. However, to encrypt the dump data, you must configure the volume for encryption
explicitly and provide the encryption keys.

Note the following guidelines when managing swap and dump volumes:

• Starting with Oracle Solaris 11.4 SRU 60, the swap and dump devices are identified by the
swap and dump properties on the ZFS volume. These devices are no longer listed in /etc/
vfstab as they were in prior releases.

• During an Oracle Solaris installation, a dump device is automatically created in the root
pool, which is the recommended location for dump and swap devices. If the root pool is too
small for the dump device, it can be relocated to a non-root pool. The non-root pool must

Chapter 6
Managing ZFS Swap and Dump Devices

6-10

https://docs.oracle.com/cd/E37838_01/html/E61015/gdryj.html
https://docs.oracle.com/cd/E37838_01/html/E61015/gdryj.html

be either a single-disk pool, a mirrored pool, or a striped pool. Dump devices are not
supported on a RAIDZ pool.

• Swap data is always encrypted with an ephemeral key when written to ZFS volumes.

• Sparse volumes are not supported for swap volumes.

• Using a swap file on a ZFS file system is not supported.

Viewing Swap and Dump Information
To view the swap area, use the swap -l command. For example:

$ swap -l
swapfile dev swaplo blocks free
/dev/zvol/dsk/rpool/swap 145,2 16 16646128 16646128

To view the dump configuration, use the dumpadm command. For example:

$ dumpadm
Dump content: kernel pages
Dump device: /dev/zvol/dsk/rpool/dump (dedicated)
Savecore directory: /var/crash/
Savecore enabled: yes
Save compressed: on

You can also manually create swap or dump volumes in a non-root pool. After creating a dump
device on the non-root pool, you must also reset it by running the dump -d command.

In the following example, a dump device is created on the non-root pool bpool.

$ zfs create -V 10g bpool/dump2
$ dumpadm -d /dev/zvol/dsk/bpool/dump2
Dump content : kernel with ZFS metadata
Dump device : /dev/zvol/dsk/bpool/dump2 (dedicated)
Savecore directory: /var/crash
Savecore enabled : yes
Save compressed : on

How to Create a Swap Volume
This procedure applies to both root pools and non-root pools. If you need more swap space but
the existing pool is not large enough, just add another swap volume by using this same
procedure. The procedure adds the swap volume permanently such that the swap volume is
added on each boot.

1. Create a ZFS volume to use as swap.

$ zfs create -V size new-pool/swap
2. Activate the new swap volume.

$ swap -a new-pool/swap
3. If necessary, reboot the system.

Example 6-7 Manually Creating a Swap Volume

This example creates a new 4 GB swap volume in the rpool2 pool. This new swap volume is
intended to replace an existing swap volume.

$ zfs create -V 4g rpool2/swap2
$ swap -a rpool2/swap2

Chapter 6
Managing ZFS Swap and Dump Devices

6-11

How to Delete a Swap Volume
This procedure applies to both root pools and non-root pools.

1. Deactivate the swap volume.

$ swap -d pool/swap
2. Delete the ZFS swap volume.

$ zfs destroy pool/swap
Example 6-8 Manually Deleting a Swap Volume

This example deletes the swap2 swap volume in the rpool2 pool.

$ swap -d rpool2/swap2
$ zfs destroy rpool2/swap2

How to Create a Dump Volume
This procedure applies whether you are using a root pool or a non-root pool.

1. Create a ZFS volume to use for dump.

$ zfs create -V size new-pool/dump
2. Activate the new swap volume.

$ dumpadm -d new-pool/dump
3. (Optional) Activate swap on the dump volume.

$ swap -a new-pool/dump

4. If necessary, reboot the system.

Example 6-9 Manually Creating a Dump Volume

This example creates a new 4 GB dump volume in the rpool2 pool.

$ zfs create -V 4g rpool2/dump
$ dumpadm -d rpool2/dump

Adjusting the Sizes of ZFS Swap and Dump Devices
After installation, you might need to adjust the size of swap and dump devices after installation.
Or you might need to recreate the swap and dump volumes.

By default, when you specify n blocks for the swap size, if the device is not a ZFS volume, the
first page of the swap file is automatically skipped. Thus, the actual size that is assigned is n-1
blocks. To configure the swap file size differently, use the swaplow option with the swap
command. For more information about the options for the swap command, see the swap(8)
man page.

The following examples show how to adjust existing swap and dump devices under different
circumstances.

Example 6-10 Resetting the Dump Device volsize Property

Note that resizing a large dump device can be a time-consuming process.

Chapter 6
Managing ZFS Swap and Dump Devices

6-12

https://docs.oracle.com/cd/E88353_01/html/E72487/swap-8.html

$ zfs set volsize=2G rpool/dump
$ zfs get volsize rpool/dump
NAME PROPERTY VALUE SOURCE
rpool/dump volsize 2G -

Example 6-11 Resizing the Swap Volume for Immediate Use

This example shows how to adjust the size of the swap volume.

$ swap -l
swapfile dev swaplo blocks free encrypted
/dev/zvol/dsk/rpool/swap 230,5 0 2097152 2097152 yes
$ zfs get volsize rpool/swap
NAME PROPERTY VALUE SOURCE
rpool/swap volsize 1G local
$ zfs set volsize=2g rpool/swap
$ swap -l
swapfile dev swaplo blocks free encrypted
/dev/zvol/dsk/rpool/swap 230,5 0 2097152 2097152 yes
/dev/zvol/dsk/rpool/swap 230,5 2097152 2097152 2097152 yes

You will see two swap entries temporarily, but you will have access to the extended swap
space.

Example 6-12 Shrinking the Size of a Swap Device

This example shows the steps you must take to shrink the size of a swap device.

While you can grow swap and dump devices, you cannot shrink them directly.

The following example commands show how to shrink the rpool/swap swap device.

Determine the size of the rpool/swap swap device.

zfs get volsize rpool/swap
NAME PROPERTY VALUE SOURCE
rpool/swap volsize 4G local

Delete the rpool/swap swap device.

swap -td rpool/swap

Shrink the zpool/swap device from 4 Gbytes to 2 Gbytes.

zfs set -f volsize=2G rpool/swap

Reconfigure the rpool/swap swap device.

swap -a rpool/swap

Troubleshooting ZFS Dump Device Issues
This section describes certain issues and possible resolutions related to dump devices.

• The size of the dump device is too small.

When you reset the dump device, the output includes a message similar to the following:

dumpadm: dump device dump-path is too small to hold a system dump

To resolve this error, increase the size of the dump device. See Adjusting the Sizes of ZFS
Swap and Dump Devices.

• The dump device is disabled.

Chapter 6
Managing ZFS Swap and Dump Devices

6-13

If necessary, create a new dump device and enable it by using the dumpadm -d
command. See How to Create a Dump Volume.

• If the root pool is too small for the dump device, it can be added to a non-root pool as long
as the pool is not a RAIDZ pool.

When you reset the dump device, the output includes a message similar to the following:

dump is not supported on device 'dump-path':
'pool' has multiple top level vdevs

Adding a dump device to pools with multiple top-level devices is not supported. Add the
dump device to the root pool instead. Root pools support only a single top-level
configuration.

• A crash dump was not created automatically.

In this case, use the savecore command to save the crash dump.

Booting From a ZFS Root File System
Both SPARC based and x86 based systems boot with a boot archive, which is a file system
image that contains the files required for booting. The root file system that is selected for
booting contains the path names of both the boot archive and the kernel file.

In the case of a ZFS boot, a device specifier identifies a storage pool, not a single root file
system. A storage pool can contain multiple bootable ZFS root file systems. Thus, you must
specify a boot device and a root file system within the pool that was identified by the boot
device.

By default, a ZFS boot process uses the file system that is defined in the pool's bootfs
property. However, you can override the default file system. On SPARC systems, you can use
the boot -Z command and specify an alternate bootable file system. On x86 systems, you
can select an alternate boot device from the BIOS.

If you replace a root pool disk with the zpool replace command, you must install the boot
information on the replacement disk. However, installing the boot information is not required if
you merely attach additional disks to the root pool.

To install the boot information, use the bootadm command in one of the following ways:

• To install the boot information on the existing root pool's disk, use the following command:

$ bootadm install-bootloader
• To install the boot information on an alternate pool, use the following command:

$ bootadm install-bootloader -P alt-root-pool

Booting From an Alternate Root Pool Disk

Note:

The information in this section applies only to mirrored root pools.

When booting from an alternate root pool disk, ensure that all the root pool's disks are attached
and online so you can boot from any of the disks, if necessary. On most systems, you cannot

Chapter 6
Booting From a ZFS Root File System

6-14

boot directly from a disk that has been detached, or boot from an active root pool disk that is
currently offline.

Alternate Boot Disks on SPARC Systems
The primary disk in a mirrored root pool is typically the default boot device. To boot from a
different device, you must specify that disk when issuing the command to boot.

If you want to change the default boot device, first display the pool's configuration to select the
device you want. Then, at the OK prompt, update the system's PROM with the selected device.
Boot the system and confirm that your selected device is the active boot device.

The following example assigns c1t1d0 as the default boot device.

$ zpool status
pool: rpool
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c1t0d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0
...

ok boot /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@1

After the system is rebooted, you would confirm which active boot device is in the system.

$ prtconf -vp | grep bootpath
bootpath: '/pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@1,0:a'

Alternate Boot Disks on x86 Systems
On x86 based systems with a modern BIOS where the boot disk order is properly set, the
system boots automatically from the second device if the primary root pool disk is detached,
offline, or unavailable. In such systems, you merely need to confirm which active boot device is
in the system, as shown in the following example.

$ prtconf -v|sed -n '/bootpath/,/value/p'
name='bootpath' type=string items=1
value='/pci@0,0/pci8086,25f8@4/pci108e,286@0/disk@0,0:a'

Booting From a ZFS Root File System on a SPARC Based System
On a system with multiple ZFS BEs, you can boot from any BE by using the beadm
activate command. Both the installation process and the beadm activation process
automatically set the bootfs property.

By default, the bootfs property identifies the bootable file system entry in the / pool-name /
boot/menu.lst file. However, a menu.lst entry can contain a bootfs command that
specifies an alternate file system in the pool. Thus, the menu.lst file can contain entries for
multiple root file systems within the pool.

When a ZFS root file system is installed, an entry similar to the following example is added to
the menu.lst file:

Chapter 6
Booting From a ZFS Root File System

6-15

title release-version SPARC
bootfs rpool/ROOT/solaris

When a new BE is created, the menu.lst file is updated automatically.

title release-version SPARC
bootfs rpool/ROOT/solaris
title solaris
bootfs rpool/ROOT/solaris2

SPARC: How to Select the Boot Environment for Booting
1. After a ZFS BE is activated, display a list of bootable file systems within a ZFS pool.

$ boot -L
2. Select one of the bootable file systems in the list.

Detailed instructions for booting that file system are displayed.

3. Boot the selected file system by following the instructions.

4. Use the boot -Z filesystem command to boot a specific ZFS file system.

5. To make the selected BE persistent across reboots, activate the BE.

Example 6-13 Booting From a Specific ZFS Boot Environment

If you have multiple ZFS BEs in a ZFS storage pool on your system's boot device, use the
beadm activate command to specify a default BE.

In this example, the beadm lists following available ZFS BEs:

$ beadm list
BE Active Mountpoint Space Policy Created
-- ------ ---------- ----- ------ -------
solaris NR / 3.80G static 2012-07-20 10:25
solaris-2 - - 7.68M static 2012-07-19 13:44

To select a specific BE, you would use the boot -L command. For example:

ok boot -L
Boot device: /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@0,0:a File and args: -L
1 release-version SPARC
2 solaris
Select environment to boot: [1 - 2]: 1

To boot the selected entry, invoke:
boot [<root-device>] -Z rpool/ROOT/solaris-2

Program terminated
ok boot -Z rpool/ROOT/solaris-2

To boot automatically from the selected BE, activate that BE.

Booting From a ZFS Root File System on an x86 Based System
Starting in Oracle Solaris 11.1, x86 based systems are installed with GRUB2. The menu.lst
file is replaced by the /rpool/boot/grub/grub.cfg file. Do not edit this file manually.
Instead, use the bootadm sub commands to add, change, and remove menu entries.

Chapter 6
Booting From a ZFS Root File System

6-16

Note:

If your system's Oracle Solaris version still uses legacy GRUB, see Booting From a
ZFS Root File System on an x86 Based System, which describes ZFS root file
system entries in the menu.lst file.

For more information about modifying the GRUB menu items, see Booting and Shutting Down
Oracle Solaris 11.4 Systems .

x86: Displaying the Root File System
When booting from a ZFS root file system on a GRUB2 system, the root device is specified as
follows:

$ bootadm list-menu
the location of the boot loader configuration files is: /rpool/boot/grub
default 0
console text
timeout 30
0 release-version

x86: Fast Rebooting a ZFS Root File System
The fast reboot feature provides the ability to reboot within seconds on x86 based systems.
With the fast reboot feature, you can reboot to a new kernel without experiencing the long
delays that can be imposed by the BIOS and boot loader.

You must still use the init 6 command when transitioning between BEs with the beadm
activate command. For other system operations, use the reboot command as appropriate.

Booting for Recovery Purposes in a ZFS Root Environment
You might need to boot the system to resolve a corrupt bootloader problem, a root password
problem, or a bad shell. For the recovery procedures for each of these cases, see Shutting
Down and Booting a System for Recovery Purposes in Booting and Shutting Down Oracle
Solaris 11.4 Systems .

If you need to replace a disk in root pool, see Replacing Disks in a ZFS Root Pool. If you need
to perform complete system (bare metal) recovery, see Using Unified Archives for System
Recovery and Cloning in Oracle Solaris 11.4 .

Chapter 6
Booting From a ZFS Root File System

6-17

http://docs.oracle.com/cd/E23824_01/html/821-1448/ggpco.html
http://docs.oracle.com/cd/E23824_01/html/821-1448/ggpco.html
https://docs.oracle.com/cd/E37838_01/html/E60978/index.html
https://docs.oracle.com/cd/E37838_01/html/E60978/index.html
https://docs.oracle.com/cd/E37838_01/html/E60978/gkkvi.html
https://docs.oracle.com/cd/E37838_01/html/E60978/gkkvi.html
https://docs.oracle.com/cd/E37838_01/html/E60978/gkkvi.html
https://docs.oracle.com/cd/E37838_01/html/E60984/index.html
https://docs.oracle.com/cd/E37838_01/html/E60984/index.html

7
Managing Oracle Solaris ZFS File Systems

This chapter provides detailed information about managing Oracle Solaris ZFS file systems.
Concepts such as the hierarchical file system layout, property inheritance, and automatic
mount point management and share interactions are included.

This chapter discusses the following topics:

• Introduction to ZFS File Systems

• Creating ZFS File Systems

• Destroying or Renaming a ZFS File System

• Introducing ZFS Properties

• Querying ZFS File System Information

• Managing ZFS Properties

• Mounting ZFS File Systems

• Sharing and Unsharing ZFS File Systems

• Specifying Unicode Versions

• Setting ZFS Quotas

• Setting Reservations on ZFS File Systems

• Setting I/O Bandwidth Limits

• Compressing ZFS File Systems

• Encrypting ZFS File Systems

• Retaining Files on Your ZFS File System

• Migrating ZFS File Systems

• Upgrading ZFS File Systems

Note:

The term dataset is used in this chapter as a generic term to refer to a file system,
snapshot, clone, or volume.

Introduction to ZFS File Systems
You build a ZFS file system on top of a storage pool. ZFS file systems can be dynamically
created and destroyed without requiring you to allocate or format any underlying disk space.
Because these file systems are so lightweight and because they are the central point of
administration in ZFS, you are likely to create many of them.

You can administer ZFS file systems by using the zfs command. The zfs command provides
a set of subcommands that perform specific operations on file systems. This chapter describes
these subcommands in detail. Snapshots, clones, and volumes are also managed by using this

7-1

command, but these features are only covered briefly in this chapter. For detailed information
about snapshots and clones, see Working With Oracle Solaris ZFS Snapshots and Clones. For
detailed information about ZFS volumes, see ZFS Volumes.

All invocations of the zfs command require the name of the file system. The file system name
is specified as a path name starting from the name of the pool as follows:

pool-name/[dataset-path]/filesystem-name

The pool name and the dataset path identify the location of the file system in the hierarchy. The
last part in the name identifies the file system name. The file system name must satisfy the
naming requirements in Naming ZFS Components. For example, the tank/home/sueb file
system name would refer to a ZFS file system named sueb, in the /home dataset path, in the
tank pool,

Creating ZFS File Systems
This section provides steps and examples for creating ZFS file systems.

How to Create a ZFS File System
The zfs create command automatically mounts the newly created file system, if it is created
successfully. By default, file systems are mounted as /dataset, using the dataset name
provided with the create subcommand. In this example, the newly created sueb file system
is mounted at /tank/home/sueb. For more information about automatically managed mount
points, see Managing ZFS Mount Points.

Note:

Encrypting a ZFS file system must be enabled when the file system is created. For
information about encrypting a ZFS file system, see Encrypting ZFS File Systems.

For more information about the zfs create command, see the zfs(8) man page.

1. Assume the root role or an equivalent role with the appropriate ZFS rights profile.

2. Create the ZFS file system.

Example 7-1 Creating a Simple ZFS File System

In the following example, a file system named sueb is created in the tank/home file system.

$ zfs create tank/home/sueb

Example 7-2 Creating a ZFS File System Using File System Properties

You can set file system properties when a file system is created. In the following example, a
mount point of /export/zfs is created for the tank/home file system:

$ zfs create -o mountpoint=/export/zfs tank/home

For more information about file system properties, see Introducing ZFS Properties.

Chapter 7
Creating ZFS File Systems

7-2

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html

Destroying or Renaming a ZFS File System
You can destroy a file system or dataset even if the dataset has dependent clones. Snapshots
of the destroyed dataset automatically become hidden and no longer appear in the dataset
listings. Being hidden, these snapshots cannot be cloned, held, or sent. Further, you cannot roll
back to these snapshots.

By default, the destroy operation is performed asynchronously. The destroyed datasets are
immediately reclaimed after the operation is completed and the destroy command returns to
the caller. To perform a synchronous destroy operation, use the -s option when issuing the
command.

How to Destroy a ZFS File System
To destroy a ZFS file system, use the zfs destroy command. By default, all of the
snapshots for the dataset will be destroyed. The destroyed file system is automatically
unmounted and unshared. For more information about automatically managed mounts or
automatically managed shares, see Automatic Mount Points.

1. Assume the root role or an equivalent role with the appropriate ZFS rights profile.

2. Destroy the ZFS file system.

$ zfs destroy [-rRsf] filesystem

-r
Recursively destroys children datasets.

-R
Recursively destroys dependent datasets, including cloned file systems that are outside
the target hierarchy.

-s
Performs a synchronous destroy operation where the command control does not return to
the caller until the blocks occupied by the destroyed datasets are completely freed.

-f
Forces a file system to be unmounted in order to be destroyed.

filesystem
Is in the format pool-name/[dataset-path]/filesystem-name.

Caution:

No confirmation prompt appears with the destroy subcommand either by itself
or with options. Use this command with extreme caution, especially when using
the -f and -r options. These options can destroy large portions of the pool and
consequently cause unexpected behavior for the mounted file systems that are in
use.

Example 7-3 Synchronously Destroying an Active ZFS File System

If the file system to be destroyed is busy and cannot be unmounted, the zfs destroy
command fails. To destroy an active file system, use the -f option. Use this option with caution

Chapter 7
Destroying or Renaming a ZFS File System

7-3

as it can unmount, unshare, and destroy active file systems, causing unexpected application
behavior.

$ zfs destroy -fs tank/home/matt

Example 7-4 Destroying a ZFS File System with Descendents

The zfs destroy command also fails if a file system has descendents. To recursively
destroy a file system and all its descendents, use the -r option.

$ zfs destroy tank/ws
cannot destroy 'tank/ws': filesystem has children
use '-r' to destroy the following datasets:
tank/ws/sueb
tank/ws/bhall
tank/ws/mork
$ zfs destroy -r tank/ws

How to Rename a ZFS File System
File systems can be renamed by using the zfs rename command. With the rename
subcommand, you can perform the following operations:

• Change the name of a file system.

• Relocate the file system within the ZFS hierarchy.

The new location must be within the same pool and must have enough disk space to
accommodate the new file system.

Note:

Quota limits might become a contributing factor to insufficient disk space. See
Setting ZFS Quotas.

• Change the name of a file system and relocate it within the ZFS hierarchy.

The rename operation attempts an unmount/remount sequence for the file system and any
descendent file systems. The rename command fails if the operation is unable to unmount an
active file system. If this problem occurs, you must forcibly unmount the file system.

1. Assume the root role or an equivalent role with the appropriate ZFS rights profile.

2. Rename the ZFS file system.

For example, to change the name of the file system only, you would type:

$ zfs rename tank/home/soloh tank/home/mindy_old

To relocate a file system, you would type:

$ zfs rename tank/home/mork tank/ws/mork

Introducing ZFS Properties
Properties are the main mechanism that you use to control the behavior of file systems,
volumes, snapshots, and clones. Unless stated otherwise, the properties defined in this section
apply to all the dataset types.

Chapter 7
Introducing ZFS Properties

7-4

Properties are divided into two types, native properties and user-defined properties. Native
properties either provide internal statistics or control ZFS file system behavior. In addition,
native properties are either settable or read-only. User properties have no effect on ZFS file
system behavior, but you can use them to annotate datasets in a way that is meaningful in your
environment. For more information about user properties, see ZFS User Properties.

Most settable properties are also inheritable. An inheritable property is a property that, when
set on a parent file system, is propagated down to all of its descendents.

All inheritable properties have an associated source that indicates how a property was
obtained. The source of a property can have the following values:

local
Indicates that the property was explicitly set on the dataset by using the zfs set command
as described in Setting ZFS Properties.

inherited from dataset-name
Indicates that the property was inherited from the named ancestor.

default
Indicates that the property value was not inherited or set locally. This source is a result of no
ancestor having the property set as source local.

The following table identifies both read-only and settable native ZFS file system properties.
Read-only native properties are identified as such. All other native properties listed in this table
are settable. For information about user properties, see ZFS User Properties.

Table 7-1 ZFS Native Property Descriptions

Property Name Type Default
Value

Description

aclinherit String secure Controls how ACL entries are inherited when files and directories are
created. The values are discard, noallow, passthrough, passthrough-
mode-preserve, passthrough-x, restricted, and secure. For a
description of these values, see ACL Properties in Securing Files and
Verifying File Integrity in Oracle Solaris 11.4 .

aclmode String discard Controls how an ACL entry is modified during a chmod operation. The
values are discard, mask, and passthrough. For a description of these
values, see ACL Properties in Securing Files and Verifying File Integrity in
Oracle Solaris 11.4 .

atime Boolean on Controls whether the access time for files is updated when they are read.
Turning this property off avoids producing write traffic when reading files and
can result in significant performance gains, though it might confuse mailers
and similar utilities.

available Number N/A Read-only property that identifies the amount of disk space available to a
file system and all its children, assuming no other activity in the pool.
Because disk space is shared within a pool, available space can be limited
by various factors including physical pool size, quotas, reservations, and
other datasets within the pool.

The property abbreviation is avail.

Chapter 7
Introducing ZFS Properties

7-5

https://docs.oracle.com/cd/E37838_01/html/E61022/gbacb.html#OSSFVgbaaz
https://docs.oracle.com/cd/E37838_01/html/E61022/gbacb.html#OSSFVgbaaz
https://docs.oracle.com/cd/E37838_01/html/E61022/gbacb.html#OSSFVgbaaz
https://docs.oracle.com/cd/E37838_01/html/E61022/gbacb.html#OSSFVgbaaz

Table 7-1 (Cont.) ZFS Native Property Descriptions

Property Name Type Default
Value

Description

canmount Boolean on Controls whether a file system can be mounted with the zfs mount
command. This property can be set on any file system, and the property
itself is not inheritable. However, when this property is set to off, a mount
point can be inherited to descendent file systems, but the file system itself is
never mounted.

When the noauto option is set, a file system can only be mounted and
unmounted explicitly. The file system is not mounted automatically when the
file system is created or imported, nor is it mounted by the zfs mount -
a command or unmounted by the zfs unmount -a command.

For more information, see The canmount Property.

casesensitivit
y

String mixed This property indicates whether the file name matching algorithm used by
the file system should be casesensitive, caseinsensitive, or allow a
combination of both styles of matching (mixed). Traditionally, UNIX and
POSIX file systems have case-sensitive file names.

The mixed value for this property indicates the file system can support
requests for both case-sensitive and case-insensitive matching behavior.
Currently, case-insensitive matching behavior on a file system that supports
mixed behavior is limited to the Oracle Solaris SMB server product. For
more information about using the mixed value, see The casesensitivity
Property.

Regardless of the casesensitivity property setting, the file system
preserves the case of the name specified to create a file. This property
cannot be changed after the file system is created.

checksum String on Controls the checksum used to verify data integrity. The default value is on,
which automatically selects an appropriate algorithm, currently fletcher4.
The values are on, off, fletcher2, fletcher4, sha256,
sha3-256, and sha256+mac. A value of off disables integrity checking on
user data. A value of off is not recommended.

compression String off Enables or disables compression for a dataset. The values are on, off,
lzjb, lz4, gzip, and gzip- N. Currently, setting this property to lzjb,
gzip, or gzip- N has the same effect as setting this property to on.
Enabling compression on a file system with existing data only compresses
new data. Existing data remains uncompressed.

The property abbreviation is compress.

compressratio Number N/A Read-only property that identifies the compression ratio achieved for a
dataset, expressed as a multiplier. Compression can be enabled by the zfs
set compression=on dataset command.

The value is calculated from the logical size of all files and the amount of
referenced physical data. It includes explicit savings through the use of the
compression property.

copies Number 1 Sets the number of copies of user data per file system. Available values are
1, 2, or 3. These copies are in addition to any pool-level redundancy. Disk
space used by multiple copies of user data is charged to the corresponding
file and dataset, and counts against quotas and reservations. In addition,
the used property is updated when multiple copies are enabled. Consider
setting this property when the file system is created because changing this
property on an existing file system only affects newly written data.

creation String N/A Read-only property that identifies the date and time that a dataset was
created.

Chapter 7
Introducing ZFS Properties

7-6

Table 7-1 (Cont.) ZFS Native Property Descriptions

Property Name Type Default
Value

Description

dedup String off Controls the ability to remove duplicate data in a ZFS file system. Possible
values are on, off, verify, and sha256[,verify]. The default checksum
for deduplication is sha256.

For more information, see The dedup Property.

defaultgroupqu
ota

String None Sets a default group quota. The value applies to all groups who do not have
an explicit group quota specified. The default value is none. For more
information, see Setting Default User and Group Quotas.

defaultuserquo
ta

String None Sets a default user quota. The value applies to all users who do not have an
explicit user quota specified. The default value is none. For more
information, see Setting Default User and Group Quotas.

devices Boolean on Controls whether device files in a file system can be opened.

encryption Boolean off Controls whether a file system is encrypted. An encrypted file system
means that data is encoded and a key is needed by the file system owner to
access the data.

exec Boolean on Controls whether programs in a file system are allowed to be executed.
Also, when set to off, mmap(2) calls with PROT_EXEC are disallowed.

keychangedate String none Read-only property that identifies the date of the last wrapping key change
from a zfs key -c operation for the specified file system. If no key
change operation has occurred, the value of this property is the same as the
file system's creation date.

keysource String none Identifies the format and location of the key that wraps the file system keys.
The valid property values are raw, hex, passphrase,prompt, or file. The
key must be present when the file system is created, mounted, or loaded by
using the zfs key -l command. If encryption is enabled for a new file
system, the default keysource is passphrase,prompt.

keystatus String none Read-only property that identifies the file system's encryption key status.
The availability of a file system's key is indicated by available or
unavailable. For file systems that do not have encryption enabled, none
is displayed.

logbias String latency Controls how ZFS optimizes synchronous requests for this file system. If
logbias is set to latency, ZFS uses the pool's separate log devices, if
any, to handle the requests at low latency. If logbias is set to throughput,
ZFS does not use the pool's separate log devices. Instead, ZFS optimizes
synchronous operations for global pool throughput and efficient use of
resources. The default value is latency.

mlslabel String None Provides a sensitivity label that determines if a file system can be mounted
in a zone. If the labeled file system matches the labeled zone, the file
system can be mounted and accessed from the labeled zone. The default
value is none. This property can only be modified with the appropriate
privilege.

The behavior of the mlslabel property changes depending if Trusted
Extensions is enabled or if the multilevel property is set. See The
mlslabel Property for more information.

mounted Boolean N/A Read-only property that indicates whether a file system, clone, or snapshot
is currently mounted. This property does not apply to volumes. The value
can be either yes or no.

Chapter 7
Introducing ZFS Properties

7-7

Table 7-1 (Cont.) ZFS Native Property Descriptions

Property Name Type Default
Value

Description

mountpoint String N/A Controls the mount point used for this file system. When the mountpoint
property is changed for a file system, the file system and any descendents
that inherit the mount point are unmounted. If the new value is legacy, then
they remain unmounted. Otherwise, they are automatically remounted in the
new location if the property was previously legacy or none, or if they were
mounted before the property was changed. In addition, any shared file
systems are unshared and shared in the new location.

For more information about using this property, see Managing ZFS Mount
Points.

multilevel Boolean off The multilevel property is used to enable the use of labels on the objects
in a ZFS file system. Objects in a multilevel file system are individually
labeled with an explicit sensitivity label attribute that is automatically
generated. Objects can be relabeled in place by changing this label
attribute, by using the setlabel or setflabel commands.

A root file system, an Oracle Solaris Zone file system, or a file system that
contains packaged Oracle Solaris code should not be multilevel.

See The mlslabel Property for more information.

nbmand Boolean off Controls whether the file system should be mounted with nbmand (Non-
blocking mandatory) locks. This property is for SMB clients only. Changes to
this property only take effect when the file system is unmounted and
remounted.

normalization String None This property indicates whether a file system should perform a unicode
normalization of file names whenever two file names are compared, and
which normalization algorithm should be used. File names are always
stored unmodified, names are normalized as part of any comparison
process. If this property is set to a legal value other than none, and the
utf8only property was left unspecified, the utf8only property is
automatically set to on. The default value of the normalization property is
none. This property cannot be changed after the file system is created.

origin String N/A Read-only property for cloned file systems or volumes that identifies the
snapshot from which the clone was created. The origin cannot be destroyed
(even with the -r or -f option) as long as a clone exists.

Non-cloned file systems have an origin of none.

primarycache String all Controls what is cached in the primary cache (ARC). Possible values are
all, none, and metadata. If set to all, both user data and metadata are
cached. If set to none, neither user data nor metadata is cached. If set to
metadata, only metadata is cached. When these properties are set on
existing file systems, only new I/O is cache based on the values of these
properties. Some database environments might benefit from not caching
user data. You must determine if setting cache properties is appropriate for
your environment.

quota Number
(or none)

none Limits the amount of disk space a file system and its descendents can
consume. This property enforces a hard limit on the amount of disk space
used, including all space consumed by descendents, such as file systems
and snapshots. Setting a quota on a descendent of a file system that
already has a quota does not override the ancestor's quota, but rather
imposes an additional limit. Quotas cannot be set on volumes, as the
volsize property acts as an implicit quota.

For information about setting quotas, see Setting Quotas on ZFS File
Systems.

Chapter 7
Introducing ZFS Properties

7-8

Table 7-1 (Cont.) ZFS Native Property Descriptions

Property Name Type Default
Value

Description

readonly Boolean off Controls whether a dataset can be modified. When set to on, no
modifications can be made.

The property abbreviation is rdonly.

recordsize Number 128K Specifies a suggested block size for files in a file system.

The property abbreviation is recsize. For a detailed description, see The
recordsize Property.

referenced Number N/A Read-only property that identifies the amount of data accessible by a
dataset, which might or might not be shared with other datasets in the pool.

When a snapshot or clone is created, it initially references the same amount
of disk space as the file system or snapshot it was created from, because its
contents are identical.

The property abbreviation is refer.

refquota Number
(or none)

none Sets the amount of disk space that a dataset can consume. This property
enforces a hard limit on the amount of space used. This hard limit does not
include disk space used by descendents, such as snapshots and clones.

refreservation Number
(or none)

none Sets the minimum amount of disk space that is guaranteed to a dataset, not
including descendents, such as snapshots and clones. When the amount of
disk space used is below this value, the dataset is treated as if it were taking
up the amount of space specified by refreservation. The
refreservation reservation is accounted for in the parent dataset's disk
space used, and counts against the parent dataset's quotas and
reservations.

If refreservation is set, a snapshot is only allowed if enough free pool
space is available outside of this reservation to accommodate the current
number of referenced bytes in the dataset.

The property abbreviation is refreserv.

rekeydate String N/A Read-only property that indicates the date of the last data encryption key
change from a zfs key -K or zfs clone -K operation on this file
system. If no rekey operation has been performed, the value of this
property is the same as the creation date.

reservation Number
(or none)

none Sets the minimum amount of disk space guaranteed to a file system and its
descendents. When the amount of disk space used is below this value, the
file system is treated as if it were using the amount of space specified by its
reservation. Reservations are accounted for in the parent file system's disk
space used, and count against the parent file system's quotas and
reservations.

The property abbreviation is reserv.

For more information, see Setting Reservations on ZFS File Systems.

rstchown Boolean on Indicates whether the file system owner can grant file ownership changes.
The default is to restrict chown operations. When rstchown is set to off,
the user has the PRIV_FILE_CHOWN_SELF privilege for chown operations.

secondarycache String all Controls what is cached in the secondary cache (L2ARC). Possible values
are all, none, and metadata. If set to all, both user data and metadata
are cached. If set to none, neither user data nor metadata is cached. If set
to metadata, only metadata is cached.

setuid Boolean on Controls whether the setuid bit is honored in a file system.

Chapter 7
Introducing ZFS Properties

7-9

Table 7-1 (Cont.) ZFS Native Property Descriptions

Property Name Type Default
Value

Description

shadow String None Identifies a ZFS file system as a shadow of the file system described by the
URI. Data is migrated to a shadow file system with this property set from the
file system identified by the URI. The file system to be migrated must be
read-only for a complete migration.

share.nfs String off Controls whether an NFS share of a ZFS file system is created and
published and what options are used. You can also publish and unpublish
an NFS share by using the zfs share and zfs unshare commands.
Using the zfs share command to publish an NFS share requires that an
NFS share property is also set. For information about setting NFS share
properties, see Sharing and Unsharing ZFS File Systems.

For more information about sharing ZFS file systems, see Sharing and
Unsharing ZFS File Systems.

share.smb String off Controls whether a SMB share of a ZFS file system is created and
published and what options are used. You can also publish and unpublish
an SMB share by using the zfs share and zfs unshare commands.
Using the zfs share command to publish an SMB share require that an
SMB share property is also set. For information about setting SMB share
properties, see Sharing and Unsharing ZFS File Systems.

snapdir String hidden Controls whether the .zfs directory is hidden or visible in the root of the
file system. For more information about using snapshots, see Overview of
ZFS Snapshots.

sync String standard Determines the synchronous behavior of a file system's transactions.
Possible values are:

• standard, the default value, which means synchronous file system
transactions, such as fsync, O_DSYNC, O_SYNC, and so on, are written
to the intent log.

• always, ensures that every file system transaction is written and
flushed to stable storage by a returning system call. This value has a
significant performance penalty.

• disabled, means that synchronous requests are disabled. File system
transactions are only committed to stable storage on the next
transaction group commit, which might be after many seconds. This
value gives the best performance, with no risk of corrupting the pool.

Caution:

This disabled value is very dangerous because ZFS is
ignoring the synchronous transaction demands of
applications, such as databases or NFS operations. Setting
this value on the currently active root or /var file system
might result in unexpected behavior, application data loss, or
increased vulnerability to replay attacks. You should only use
this value if you fully understand all the associated risks.

type String N/A Read-only property that identifies the dataset type as filesystem (file
system or clone), volume, or snapshot.

used Number N/A Read-only property that identifies the amount of disk space consumed by a
dataset and all its descendents.

For a detailed description, see ZFS Read-Only Native Properties.

Chapter 7
Introducing ZFS Properties

7-10

Table 7-1 (Cont.) ZFS Native Property Descriptions

Property Name Type Default
Value

Description

usedbychildren Number off Read-only property that identifies the amount of disk space that is used by
children of this dataset, which would be freed if all the dataset's children
were destroyed. The property abbreviation is usedchild.

usedbydataset Number off Read-only property that identifies the amount of disk space that is used by a
dataset itself, which would be freed if the dataset was destroyed, after first
destroying any snapshots and removing any refreservation
reservations. The property abbreviation is usedds.

usedbyrefreser
vation

Number off Read-only property that identifies the amount of disk space that is used by a
refreservation set on a dataset, which would be freed if the
refreservation was removed. The property abbreviation is
usedrefreserv.

usedbysnapshot
s

Number off Read-only property that identifies the amount of disk space that is
consumed by snapshots of a dataset. In particular, it is the amount of disk
space that would be freed if all of this dataset's snapshots were destroyed.
Note that this value is not simply the sum of the snapshots' used properties,
because space can be shared by multiple snapshots. The property
abbreviation is usedsnap.

utf8only Boolean Off This property indicates whether a file system should reject file names that
include characters that are not present in the UTF-8 character code set. If
this property is explicitly set to off, the normalization property must
either not be explicitly set or be set to none. The default value for the
utf8only property is off. This property cannot be changed after the file
system is created.

version Number N/A Identifies the on-disk version of a file system, which is independent of the
pool version. This property can only be set to a later version that is available
from the supported software release. For more information, see the zfs
upgrade command.

volblocksize Number 8 KB For volumes, specifies the block size of the volume. The block size cannot
be changed after the volume has been written, so set the block size at
volume creation time. The default block size for volumes is 8 KB. Any power
of 2 from 512 bytes to 128 KB is valid.

The property abbreviation is volblock.

volsize Number N/A For volumes, specifies the logical size of the volume.

For a detailed description, see The volsize Property.

vscan Boolean Off Controls whether regular files should be scanned for viruses when a file is
opened and closed. In addition to enabling this property, a virus scanning
service must also be enabled for virus scanning to occur if you have third-
party virus scanning software. The default value is off.

xattr Boolean on Indicates whether extended attributes are enabled (on) or disabled (off) for
this file system.

zoned Boolean N/A Indicates whether a file system has been added to a non-global zone. If this
property is set, then the mount point is not honored in the global zone, and
ZFS cannot mount such a file system when requested. When a zone is first
installed, this property is set for any added file systems.

For more information about using ZFS with zones installed, see Using ZFS
on an Oracle Solaris System With Zones Installed.

Chapter 7
Introducing ZFS Properties

7-11

ZFS Read-Only Native Properties
Read-only native properties can be retrieved but not set. Read-only native properties are not
inherited. Some native properties are specific to a particular type of dataset. In such cases, the
dataset type is mentioned in the description in ZFS Native Property Descriptions.

The used property is an example of a read-only property. This property identifies the amount of
disk space consumed by this dataset and all its descendents. This value is checked against
the dataset's quota and reservation. The disk space used does not include the dataset's
reservation, but does consider the reservation of any descendent datasets. The amount of disk
space that a dataset consumes from its parent, as well as the amount of disk space that is
freed if the dataset is recursively destroyed, is the greater of its space used and its reservation.

When snapshots are created, their disk space is initially shared between the snapshot and the
file system, and possibly with previous snapshots. As the file system changes, disk space that
was previously shared becomes unique to the snapshot and is counted in the snapshot's
space used. The disk space that is used by a snapshot accounts for its unique data.
Additionally, deleting snapshots can increase the amount of disk space unique to (and used
by) other snapshots.

The amount of disk space used, available, and referenced does not include pending changes.
Pending changes are generally accounted for within a few seconds. Committing a change to a
disk using the fsync(3c) or O_SYNC function does not necessarily guarantee that the disk
space usage information will be updated immediately.

The usedbychildren, usedbydataset, usedbyrefreservation, and usedbysnapshots property
information can be displayed with the zfs list -o space command. These properties
identify the used property into disk space that is consumed by descendents. For more
information, see ZFS Native Property Descriptions.

Settable ZFS Native Properties
Settable native properties are properties whose values can be both retrieved and set. Settable
native properties are set by using the zfs set command, as described in Setting ZFS
Properties or by using the zfs create command as described in How to Create a ZFS File
System. With the exceptions of quotas and reservations, settable native properties are
inherited. For more information about quotas and reservations, see Setting ZFS Quotas.

Some settable native properties are specific to a particular type of dataset. In such cases, the
dataset type is mentioned in the description in ZFS Native Property Descriptions. If not
specifically mentioned, a property applies to all dataset types: file systems, volumes, clones,
and snapshots.

The canmount Property
If the canmount property is set to off, the file system cannot be mounted by using the zfs
mount or zfs mount -a commands. Setting this property to off is similar to setting the
mountpoint property to none, except that the file system still has a normal mountpoint property
that can be inherited. For example, you can set this property to off, establish inheritable
properties for descendent file systems, but the parent file system itself is never mounted nor is
it accessible to users. In this case, the parent file system is serving as a container so that you
can set properties on the container, but the container itself is never accessible.

In the following example, userpool is created, and its canmount property is set to off. Mount
points for descendent user file systems are set to one common mount point, /export/home.

Chapter 7
Introducing ZFS Properties

7-12

Properties that are set on the parent file system are inherited by descendent file systems, but
the parent file system itself is never mounted.

$ zpool create userpool mirror c0t5d0 c1t6d0
$ zfs set canmount=off userpool
$ zfs set mountpoint=/export/home userpool
$ zfs set compression=on userpool
$ zfs create userpool/user1
$ zfs create userpool/user2
$ zfs mount
userpool/user1 /export/home/user1
userpool/user2 /export/home/user2

Setting the canmount property to noauto means that the file system can only be mounted
explicitly, not automatically.

The casesensitivity Property
This property indicates whether the file name matching algorithm used by the file system
should be casesensitive, caseinsensitive, or allow a combination of both styles of matching
(mixed).

When a case-insensitive matching request is made of a mixed sensitivity file system, the
behavior is generally the same as would be expected of a purely case-insensitive file system.
The difference is that a mixed sensitivity file system might contain directories with multiple
names that are unique from a case-sensitive perspective, but not unique from the case-
insensitive perspective.

For example, a directory might contain files foo, Foo, and FOO. If a request is made to case-
insensitively match any of the possible forms of foo, (for example foo, FOO, FoO, fOo, and so
on) one of the three existing files is chosen as the match by the matching algorithm. Exactly
which file the algorithm chooses as a match is not guaranteed, but what is guaranteed is that
the same file is chosen as a match for any of the forms of foo. The file chosen as a case-
insensitive match for foo, FOO, foO, Foo, and so on, is always the same, so long as the
directory remains unchanged.

The utf8only, normalization, and casesensitivity properties also provide new permissions
that can be assigned to non-privileged users by using ZFS delegated administration. For more
information, see Delegating ZFS Permissions.

The copies Property
As a reliability feature, ZFS file system metadata is automatically stored multiple times across
different disks, if possible. This feature is known as ditto blocks.

In this release, you can also store multiple copies of user data is also stored per file system by
using the zfs set copies command. For example:

$ zfs set copies=2 users/home
$ zfs get copies users/home
NAME PROPERTY VALUE SOURCE
users/home copies 2 local

Available values are 1, 2, or 3. The default value is 1. These copies are in addition to any pool-
level redundancy, such as in a mirrored or RAID-Z configuration.

The benefits of storing multiple copies of ZFS user data are as follows:

Chapter 7
Introducing ZFS Properties

7-13

• Improves data retention by enabling recovery from unrecoverable block read faults, such
as media faults (commonly known as bit rot) for all ZFS configurations.

• Provides data protection, even when only a single disk is available.

• Enables you to select data protection policies on a per-file system basis, beyond the
capabilities of the storage pool.

Note:

Depending on the allocation of the ditto blocks in the storage pool, multiple copies
might be placed on a single disk. A subsequent full disk failure might cause all ditto
blocks to be unavailable.

You might consider using ditto blocks when you accidentally create a non-redundant pool and
when you need to set data retention policies.

The dedup Property
The dedup property controls whether duplicate data is removed from a file system. If a file
system has the dedup property enabled, duplicate data blocks are removed synchronously. The
result is that only unique data is stored and common components are shared between files.

Do not enable the dedup property on file systems that reside on production systems until you
review the following considerations:

1. Determine if your data would benefit from deduplication space savings. You can run the
zdb -S command to simulate the potential space savings of enabling dedup on your pool.
This command must be run on a quiet pool. If your data is not dedup-able, then there's not
point in enabling dedup. For example:

$ zdb -S tank
Simulated DDT histogram:
bucket allocated referenced
______ ______________________________ ______________________________
refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE
------ ------ ----- ----- ----- ------ ----- ----- -----
1 2.27M 239G 188G 194G 2.27M 239G 188G 194G
2 327K 34.3G 27.8G 28.1G 698K 73.3G 59.2G 59.9G
4 30.1K 2.91G 2.10G 2.11G 152K 14.9G 10.6G 10.6G
8 7.73K 691M 529M 529M 74.5K 6.25G 4.79G 4.80G
16 673 43.7M 25.8M 25.9M 13.1K 822M 492M 494M
32 197 12.3M 7.02M 7.03M 7.66K 480M 269M 270M
64 47 1.27M 626K 626K 3.86K 103M 51.2M 51.2M
128 22 908K 250K 251K 3.71K 150M 40.3M 40.3M
256 7 302K 48K 53.7K 2.27K 88.6M 17.3M 19.5M
512 4 131K 7.50K 7.75K 2.74K 102M 5.62M 5.79M
2K 1 2K 2K 2K 3.23K 6.47M 6.47M 6.47M
8K 1 128K 5K 5K 13.9K 1.74G 69.5M 69.5M
Total 2.63M 277G 218G 225G 3.22M 337G 263G 270G

dedup = 1.20, compress = 1.28, copies = 1.03, dedup * compress / copies = 1.50

If the estimated dedup ratio is greater than 2, then you might see dedup space savings.

In the above example, the dedup ratio is less than 2, so enabling dedup is not
recommended.

2. Make sure your system has enough memory to support dedup.

Chapter 7
Introducing ZFS Properties

7-14

• Each in-core dedup table entry is approximately 320 bytes

• Multiply the number of allocated blocks times 320. For example:

in-core DDT size = 2.63M x 320 = 841.60M
3. Dedup performance is best when the deduplication table fits into memory. If the dedup

table has to be written to disk, then performance will decrease. For example, removing a
large file system with dedup enabled will severely decrease system performance if the
system does not meet the memory requirements described above.

4. You cannot use deduplication in the case of datasets with encryption. For example, a
filesystem and a volume are two different datasets and deduplication cannot match the two
together.

When dedup is enabled, the dedup checksum algorithm overrides the checksum property.
Setting the property value to verify is equivalent to specifying sha256,verify. If the property
is set to verify and two blocks have the same signature, ZFS does a byte-by-byte comparison
with the existing block to ensure that the contents are identical.

This property can be enabled per file system. For example:

$ zfs set dedup=on tank/home

You can use the zfs get command to determine if the dedup property is set.

Although deduplication is set as a file system property, the scope is pool-wide. For example,
you can identify the deduplication ratio. For example:

$ zpool list tank
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 136G 55.2G 80.8G 40% 2.30x ONLINE -

The DEDUP column indicates how much deduplication has occurred. If the dedup property is not
enabled on any file system or if the dedup property was just enabled on the file system, the
DEDUP ratio is 1.00x.

You can use the zpool get command to determine the value of the dedupratio property. For
example:

$ zpool get dedupratio export
NAME PROPERTY VALUE SOURCE
rpool dedupratio 3.00x -

This pool property illustrates how much data deduplication this pool has achieved.

The encryption Property
You can use the encryption property to encrypt ZFS file systems. For more information, see
Encrypting ZFS File Systems.

The mlslabel Property
The behavior of the mlslabel property changes depending if Trusted Extensions is enabled or
if the multilevel property is set.

If Trusted Extensions is not enabled, then the mlslabel has no meaning unless the
multilevel property is also set. If both properties are set, the mlslabel property is
automatically updated so that it is the maximum label of all files that have been explicitly
labeled in the file system. In this configuration, the mlslabel property cannot be set by an
administrator and cannot be lowered.

Chapter 7
Introducing ZFS Properties

7-15

When Trusted Extensions is enabled, the mlslabel property should be set by an administrator.
For single-level file systems, that is when the multilevel property is not set, the mlslabel
property specifies the label of the zone in which the file system can be mounted. If the
mlslabel property value matches the labeled zone, the file system can be mounted and
accessed from the labeled zone.

If the multilevel property is set, the mlslabel property specifies the maximum label that can
be set on any file in the file system. An attempt to create a file at (or relabel a file to) a label
higher than the mlslabel property value is not allowed. Mount policy based on the mlslabel
property does not apply to a multilevel file system.

Also, for a multilevel file system, the mlslabel property can be set explicitly when the file
system is created. Otherwise, a default mlslabel property of ADMIN_HIGH is automatically
created. After creating a multilevel file system, the mlslabel property can be changed, but it
cannot be set to a lower label, it cannot not be set to none, nor can it be removed.

When Trusted Extensions is enabled, the automatic label that is applied to newly created
objects is the label of the zone in which the caller is executing, and the maximum label that can
be set explicitly is the label of the zone. If Trusted Extensions is not enabled, the automatic
label of newly created objects is the label of their parent directory, and the maximum label is
the label corresponding to the caller’s clearance.

The multilevel Property
The multilevel property is used to enable the use of labels on the objects in a ZFS file
system. Objects in a multilevel file system are individually labeled with an explicit sensitivity
label attribute that is automatically generated. Objects can be relabeled in place by changing
this label attribute, by using the setlabel or setflabel commands.

A root file system, an Oracle Solaris Zone file system, or a file system that contains packaged
Oracle Solaris code should not be multilevel.

The recordsize Property
The recordsize property specifies a suggested block size for files in the file system.

This property is designed solely for use with database workloads that access files in fixed-size
records. ZFS automatically adjust block sizes according to internal algorithms optimized for
typical access patterns. For databases that create very large files but access the files in small
random chunks, these algorithms might be suboptimal. Specifying a recordsize value greater
than or equal to the record size of the database can result in significant performance gains.
Use of this property for general purpose file systems is strongly discouraged and might
adversely affect performance. The size specified must be a power of 2 greater than or equal to
512 bytes and less than or equal to 1 MB. Changing the file system's recordsize value only
affects files created afterward. Existing files are unaffected.

The property abbreviation is recsize.

The share.smb Property
This property enables sharing of ZFS file systems with the Oracle Solaris SMB service, and
identifies options to be used.

When the property is changed from off to on, any shares that inherit the property are re-shared
with their current options. When the property is set to off, the shares that inherit the property
are unshared.For examples of using the share.smb property, see Sharing and Unsharing ZFS
File Systems.

Chapter 7
Introducing ZFS Properties

7-16

The volsize Property
The volsize property specifies the logical size of the volume. By default, creating a volume
establishes a reservation for the same amount. Any changes to volsize are reflected in an
equivalent change to the reservation. These checks are used to prevent unexpected behavior
for users. A volume that contains less space than it claims is available can result in undefined
behavior or data corruption, depending on how the volume is used. These effects can also
occur when the volume size is changed while the volume is in use, particularly when you shrink
the size. Use extreme care when adjusting the volume size.

For more information about using volumes, see ZFS Volumes.

ZFS User Properties
In addition to the native properties, ZFS supports arbitrary user properties. User properties
have no effect on ZFS behavior, but you can use them to annotate datasets with information
that is meaningful in your environment.

User property names must conform to the following conventions:

• They must contain a colon (':') character to distinguish them from native properties.

• They must contain lowercase letters, numbers, or the following punctuation characters: ':',
'+','.', '_'.

• The maximum length of a user property name is 256 characters.

The expected convention is that the property name is divided into the following two
components but this namespace is not enforced by ZFS:

module:property

When making programmatic use of user properties, use a reversed DNS domain name for the
module component of property names to reduce the chance that two independently developed
packages will use the same property name for different purposes. Property names that begin
with com.oracle. are reserved for use by Oracle Corporation.

The values of user properties must conform to the following conventions:

• They must consist of arbitrary strings that are always inherited and are never validated.

• The maximum length of the user property value is 1024 characters.

For example:

$ zfs set dept:users=finance userpool/user1
$ zfs set dept:users=general userpool/user2
$ zfs set dept:users=itops userpool/user3

All of the commands that operate on properties, such as zfs list, zfs get, zfs set, and
so on, can be used to manipulate both native properties and user properties.

For example:

zfs get -r dept:users userpool
NAME PROPERTY VALUE SOURCE
userpool dept:users all local
userpool/user1 dept:users finance local

Chapter 7
Introducing ZFS Properties

7-17

userpool/user2 dept:users general local
userpool/user3 dept:users itops local

To clear a user property, use the zfs inherit command. For example:

$ zfs inherit -r dept:users userpool

If the property is not defined in any parent dataset, it is removed entirely.

Querying ZFS File System Information
The zfs list command provides an extensible mechanism for viewing and querying dataset
information. Both basic and complex queries are explained in this section.

Listing Basic ZFS Information
You can list basic dataset information by using the zfs list command with no options. This
command displays the names of all datasets on the system and the values of their used,
available, referenced, and mountpoint properties. For more information about these
properties, see Introducing ZFS Properties.

For example:

$ zfs list
users 2.00G 64.9G 32K /users
users/home 2.00G 64.9G 35K /users/home
users/home/kaydo 548K 64.9G 548K /users/home/kaydo
users/home/mork 1.00G 64.9G 1.00G /users/home/mork
users/home/nneke 1.00G 64.9G 1.00G /users/home/nneke

You can also use this command to display specific datasets by providing the dataset name on
the command line. Additionally, use the -r option to recursively display all descendents of that
dataset. For example:

$ zfs list -t all -r users/home/mork
NAME USED AVAIL REFER MOUNTPOINT
users/home/mork 1.00G 64.9G 1.00G /users/home/mork
users/home/mork@yesterday 0 - 1.00G -
users/home/mork@today 0 - 1.00G -

You can use the zfs list command with the mount point of a file system. For example:

$ zfs list /user/home/mork
NAME USED AVAIL REFER MOUNTPOINT
users/home/mork 1.00G 64.9G 1.00G /users/home/mork

The following example shows how to display basic information about tank/home/gina and
all of its descendent file systems:

$ zfs list -r users/home/gina
NAME USED AVAIL REFER MOUNTPOINT
users/home/gina 2.00G 62.9G 32K /users/home/gina
users/home/gina/projects 2.00G 62.9G 33K /users/home/gina/projects
users/home/gina/projects/fs1 1.00G 62.9G 1.00G /users/home/gina/projects/fs1
users/home/gina/projects/fs2 1.00G 62.9G 1.00G /users/home/gina/projects/fs2

For additional information about the zfs list command, see the see zfs(8) man page.

Chapter 7
Querying ZFS File System Information

7-18

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html

Creating Complex ZFS Queries
The zfs list output can be customized by using the -o, -t, and -H options.

You can customize property value output by using the -o option and a comma-separated list of
desired properties. You can supply any dataset property as a valid argument. For a list of all
supported dataset properties, see Introducing ZFS Properties. In addition to the properties
defined, the -o option list can also contain the literal name to indicate that the output should
include the name of the dataset.

The following example uses zfs list to display the dataset name, along with the share.nfs
and mountpoint property values.

$ zfs list -r -o name,share.nfs,mountpoint users/home
NAME NFS MOUNTPOINT
users/home on /users/home
users/home/kaydo on /users/home/kaydo
users/home/gina on /users/home/gina
users/home/gina/projects on /users/home/gina/projects
users/home/gina/projects/fs1 on /users/home/gina/projects/fs1
users/home/gina/projects/fs2 on /users/home/gina/projects/fs2
users/home/mork on /users/home/mork
users/home/nneke on /users/home/nneke

You can use the -t option to specify the types of datasets to display. The valid types are:

filesystem
share
snapshot
volume

The -t options takes a comma-separated list of the types of datasets to be displayed. The
following example uses the -t and -o options simultaneously to show the name and used
property for all file systems:

$ zfs list -r -t filesystem -o name,used users/home
NAME USED
users/home 4.00G
users/home/kaydo 548K
users/home/gina 2.00G
users/home/gina/projects 2.00G
users/home/gina/projects/fs1 1.00G
users/home/gina/projects/fs2 1.00G
users/home/mork 1.00G
users/home/nneke 1.00G

You can use the -H option to omit the zfs list header from the generated output. With the -
H option, all white space is replaced by the Tab character. This option can be useful when you
need parseable output, for example, when scripting. The following example shows the output
generated from using the zfs list command with the -H option:

$ zfs list -r -H -o name users/home
users/home
users/home/kaydo
users/home/gina
users/home/gina/projects
users/home/gina/projects/fs1
users/home/gina/projects/fs2

Chapter 7
Querying ZFS File System Information

7-19

users/home/mork
users/home/nneke

Listing Incomplete ZFS Datasets
An incomplete dataset is created when a dataset transfer started by running zfs receive is
interrupted. The zfs list -I command can be used to show which datasets are
incomplete. The state for each dataset can be either receiving or resumable. Arguments with
the -I option are all, resumable or receiving.

$ zfs list -I all
NAME USED AVAIL REFER TYPE STATE
users/home/dst 189M 910G 189M volume resumable

You can use the following command to show just the names of the resumable datasets,

$ zfs list -HI resumable
users/home/dst

Creating Parsable Output with zfs list
The zfs list -o command can be used with the -p option to create exact machine-
parsable numeric output. For example:

$ zfs list -o guid users/home
GUID
3.30E
$ zfs list -po guid users/home
GUID
3807001345661527925

Managing ZFS Properties
Dataset properties are managed through the zfs command's set, inherit, and get
subcommands.

Setting ZFS Properties
You can use the zfs set command to modify any settable dataset property. Or, you can use
the zfs create command to set properties when a dataset is created. For a list of settable
dataset properties, see Settable ZFS Native Properties.

The zfs set command takes a property/value sequence in the format of property=value
followed by a dataset name. Only one property can be set or modified during each zfs set
invocation.

The following example sets the atime property to off for tank/home.

$ zfs set atime=off tank/home

In addition, any file system property can be set when a file system is created. For example:

$ zfs create -o atime=off tank/home

You can specify numeric property values by using the following easy-to-understand suffixes (in
increasing sizes): BKMGTPEZ. Any of these suffixes can be followed by an optional b, indicating
bytes, with the exception of the B suffix, which already indicates bytes. The following four

Chapter 7
Managing ZFS Properties

7-20

invocations of zfs set are equivalent numeric expressions that set the quota property be set
to the value of 20GB on the users/home/mork file system:

$ zfs set quota=20G users/home/mork
$ zfs set quota=20g users/home/mork
$ zfs set quota=20GB users/home/mork
$ zfs set quota=20gb users/home/mork

If you attempt to set a property on a file system that is 100% full, you will see a message
similar to the following:

$ zfs set quota=20gb users/home/mork
cannot set property for '/users/home/mork': out of space

The values of non-numeric properties are case-sensitive and must be in lowercase letters, with
the exception of mountpoint. The values of this property can have mixed upper and lower case
letters.

For more information about the zfs set command, see the zfs(8) man page.

Inheriting ZFS Properties
All settable properties, with the exception of quotas and reservations, inherit their value from
the parent file system, unless a quota or reservation is explicitly set on the descendent file
system. If no ancestor has an explicit value set for an inherited property, the default value for
the property is used. You can use the zfs inherit command to clear a property value, thus
causing the value to be inherited from the parent file system.

The following example uses the zfs set command to turn on compression for the tank/
home/sueb file system. Then, zfs inherit is used to clear the compression property, thus
causing the property to inherit the default value of off. Because neither home nor tank has
the compression property set locally, the default value is used. If both had compression
enabled, the value set in the most immediate ancestor would be used (home in this example).

$ zfs set compression=on tank/home/sueb
$ zfs get -r compression tank/home
NAME PROPERTY VALUE SOURCE
tank/home compression off default
tank/home/glori compression off default
tank/home/glori@today compression - -
tank/home/sueb compression on local
$ zfs inherit compression tank/home/sueb
$ zfs get -r compression tank/home
NAME PROPERTY VALUE SOURCE
tank/home compression off default
tank/home/glori compression off default
tank/home/glori@today compression - -
tank/home/sueb compression off default

The inherit subcommand is applied recursively when the -r option is specified. In the
following example, the command causes the value for the compression property to be inherited
by tank/home and any descendents it might have:

$ zfs inherit -r compression tank/home

Chapter 7
Managing ZFS Properties

7-21

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html

Note:

Be aware that the use of the -r option clears the current property setting for all
descendent file systems.

For more information about the zfs inherit command, see the see zfs(8) man page.

Querying ZFS Properties
The simplest way to query property values is by using the zfs list command. For more
information, see Listing Basic ZFS Information. However, for complicated queries and for
scripting, use the zfs get command to provide more detailed information in a customized
format.

You can use the zfs get command to retrieve any dataset property. The following example
shows how to retrieve a single property value on a dataset:

$ zfs get checksum tank/ws
NAME PROPERTY VALUE SOURCE
tank/ws checksum on default

The fourth column, SOURCE, indicates the origin of this property value. The possible values for
SOURCE are:

default
This property value was never explicitly set for this dataset or any of its ancestors. The default
value for this property is being used.

inherited from dataset-name
This property value is inherited from the parent dataset specified in dataset-name.

local
This property value was explicitly set for this dataset by using zfs set.

temporary
This property value was set by using the zfs mount -o command and is only valid for the
duration of the mount. For more information about temporary mount point properties, see
Using Temporary Mount Properties.

- (none)
This property is read-only. Its value is generated by ZFS.

You can use the special keyword all to retrieve all dataset property values. The following
examples use the all keyword:

$ zfs get all tank/home
NAME PROPERTY VALUE SOURCE
tank/home aclinherit restricted default
tank/home aclmode discard default
tank/home atime on default
tank/home available 274G -
tank/home canmount on default
tank/home casesensitivity mixed -
tank/home checksum on default
tank/home compression off default
tank/home compressratio 1.00x -
tank/home copies 1 default

Chapter 7
Managing ZFS Properties

7-22

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html

tank/home creation Tue Jul 30 10:08 2013 -
tank/home dedup off default
tank/home defaultgroupquota none -
tank/home defaultuserquota none -
tank/home devices on default
tank/home encryption off -
tank/home exec on default
tank/home keychangedate - default
tank/home keysource none default
tank/home keystatus none -
tank/home logbias latency default
tank/home mlslabel none -
tank/home mounted yes -
tank/home mountpoint /tank/home default
tank/home multilevel off -
tank/home nbmand off default
tank/home normalization none -
tank/home primarycache all default
tank/home quota none default
tank/home readonly off default
tank/home recordsize 128K default
tank/home referenced 31K -
tank/home refquota none default
tank/home refreservation none default
tank/home rekeydate - default
tank/home reservation none default
tank/home rstchown on default
tank/home secondarycache all default
tank/home setuid on default
tank/home shadow none -
tank/home share.* ... default
tank/home snapdir hidden default
tank/home sync standard default
tank/home type filesystem -
tank/home used 31K -
tank/home usedbychildren 0 -
tank/home usedbydataset 31K -
tank/home usedbyrefreservation 0 -
tank/home usedbysnapshots 0 -
tank/home utf8only off -
tank/home version 6 -
tank/home vscan off default
tank/home xattr on default
tank/home zoned off default

The -s option to zfs get enables you to specify, by source type, the properties to display.
This option takes a comma-separated list indicating the desired source types. Only properties
with the specified source type are displayed. The valid source types are local, default,
inherited, temporary, and none. The following example shows all properties that have been
locally set on tank/ws.

$ zfs get -s local all tank/ws
NAME PROPERTY VALUE SOURCE
tank/ws compression on local

Any of the above options can be combined with the -r option to recursively display the
specified properties on all children of the specified file system. In the following example, all
temporary properties on all file systems within tank/home are recursively displayed:

$ zfs get -r -s temporary all tank/home
NAME PROPERTY VALUE SOURCE
tank/home atime off temporary

Chapter 7
Managing ZFS Properties

7-23

tank/home/sueb atime off temporary
tank/home/mork quota 20G temporary

You can query property values by using the zfs get command without specifying a target file
system, which means the command operates on all pools or file systems. For example:

$ zfs get -s local all
tank/home atime off local
tank/home/sueb atime off local
tank/home/mork quota 20G local

For more information about the zfs get command, see the zfs(8) man page.

Querying ZFS Properties for Scripting
The zfs get command supports the -H and -o options, which are designed for scripting. You
can use the -H option to omit header information and to replace white space with the Tab
character. Uniform white space allows for easily parsable data. You can use the -o option to
customize the output in the following ways:

• The literal name can be used with a comma-separated list of properties as defined in the
Introducing ZFS Properties section.

• A comma-separated list of literal fields, name, value, property, and source, to be output
followed by a space and an argument, which is a comma-separated list of properties.

The following example shows how to retrieve a single value by using the -H and -o options of
zfs get:

$ zfs get -H -o value compression tank/home
on

The -p option reports numeric values as their exact values. For example, 1 MB would be
reported as 1000000. This option can be used as follows:

$ zfs get -H -o value -p used tank/home
182983742

You can use the -r option, along with any of the preceding options, to recursively retrieve the
requested values for all descendents. The following example uses the -H, -o, and -r options
to retrieve the file system name and the value of the used property for export/home and its
descendents, while omitting the header output:

$ zfs get -H -o name,value -r used export/home

Mounting ZFS File Systems
This section describes how ZFS mounts file systems.

Managing ZFS Mount Points
By default, a ZFS file system is automatically mounted when it is created. You can determine
specific mount-point behavior for a file system as described in this section.

You can also set the default mount point for a pool's file system at creation time by using the
zpool create -m command. For more information about creating pools, see Creating ZFS
Storage Pools.

Chapter 7
Mounting ZFS File Systems

7-24

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html

All ZFS file systems are mounted by ZFS at boot time by using the Service Management
Facility's (SMF) svc://system/filesystem/local service. File systems are mounted
under / path, where path is the name of the file system.

You can override the default mount point by using the zfs set command to set the
mountpoint property to a specific path. ZFS automatically creates the specified mount point, if
needed, and automatically mounts the associated file system.

ZFS file systems are automatically mounted at boot time without requiring you to edit
the /etc/vfstab file.

The mountpoint property is inherited. For example, if pool/home has the mountpoint property
set to /export/stuff, then pool/home/user inherits /export/stuff/user for its
mountpoint property value.

To prevent a file system from being mounted, set the mountpoint property to none. In addition,
the canmount property can be used to control whether a file system can be mounted. For more
information about the canmount property, see The canmount Property.

File systems can also be explicitly managed through legacy mount interfaces by using zfs
set to set the mountpoint property to legacy. Doing so prevents ZFS from automatically
mounting and managing a file system. Legacy tools including the mount and umount
commands, and the /etc/vfstab file must be used instead. For more information about
legacy mounts, see Legacy Mount Points.

Automatic Mount Points
• When you change the mountpoint property from legacy or none to a specific path, ZFS

automatically mounts the file system.

• If ZFS is managing a file system but it is currently unmounted, and the mountpoint
property is changed, the file system remains unmounted.

Any file system whose mountpoint property is not legacy is managed by ZFS. In the following
example, a file system is created whose mount point is automatically managed by ZFS:

$ zfs create pool/filesystem
$ zfs get mountpoint pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mountpoint /pool/filesystem default
$ zfs get mounted pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mounted yes -

You can also explicitly set the mountpoint property as shown in the following example:

$ zfs set mountpoint=/mnt pool/filesystem
$ zfs get mountpoint pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mountpoint /mnt local
$ zfs get mounted pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mounted yes -

When the mountpoint property is changed, the file system is automatically unmounted from
the old mount point and remounted to the new mount point. Mount-point directories are created
as needed. If ZFS is unable to unmount a file system due to it being active, an error is
reported, and a forced manual unmount is necessary.

Chapter 7
Mounting ZFS File Systems

7-25

Legacy Mount Points
You can manage ZFS file systems with legacy tools by setting the mountpoint property to
legacy. Legacy file systems must be managed through the mount and umount commands
and the /etc/vfstab file. ZFS does not automatically mount legacy file systems at boot time,
and the ZFS mount and umount commands do not operate on file systems of this type. The
following examples show how to set up and manage a ZFS file system in legacy mode:

$ zfs set mountpoint=legacy tank/home/glori
$ mount -F zfs tank/home/eschrock /mnt

To automatically mount a legacy file system at boot time, you must add an entry to the /etc/
vfstab file. The following example shows what the entry in the /etc/vfstab file might look
like:

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#

tank/home/glori - /mnt zfs - yes -

The device to fsck and fsck pass entries are set to - because the fsck command is not
applicable to ZFS file systems.

Mounting ZFS File Systems
ZFS automatically mounts file systems when file systems are created or when the system
boots. Use of the zfs mount command is necessary only when you need to change mount
options, or explicitly mount or unmount file systems.

The zfs mount command with no arguments shows all currently mounted file systems that
are managed by ZFS. Legacy managed mount points are not displayed. For example:

$ zfs mount | grep tank/home
zfs mount | grep tank/home
tank/home /tank/home
tank/home/sueb /tank/home/sueb

You can use the -a option to mount all ZFS managed file systems. Legacy managed file
systems are not mounted. For example:

$ zfs mount -a

By default, ZFS does not allow mounting on top of a nonempty directory. For example:

$ zfs mount tank/home/glori
cannot mount 'tank/home/glori': filesystem already mounted

Legacy mount points must be managed through legacy tools. An attempt to use ZFS tools
results in an error. For example:

$ zfs mount tank/home/bhall
cannot mount 'tank/home/bhall': legacy mountpoint
use mount(8) to mount this filesystem
$ mount -F zfs tank/home/bhallm

Chapter 7
Mounting ZFS File Systems

7-26

When a file system is mounted, it uses a set of mount options based on the property values
associated with the file system. The correlation between ZFS properties and mount options is
as follows:

atime
atime/noatime

devices
devices/nodevices

exec
exec/noexec

nbmand
nbmand/nonbmand

readonly
ro/rw

setuid
setuid/nosetuid

xattr
xattr/noaxttr

The mount option nosuid is an alias for nodevices,nosetuid.

You can use the NFSv4 mirror mount features to help you better manage NFS-mounted ZFS
home directories.

When file systems are created on the NFS server, the NFS client can automatically discover
these newly created file systems within their existing mount of a parent file system.

For example, if the server neo already shares the tank file system and client zee has it
mounted, /tank/baz is automatically visible on the client after it is created on the server.

zee$ mount neo:/tank /mnt
zee$ ls /mnt
baa bar

neo$ zfs create tank/baz

zee% ls /mnt
baa bar baz
zee% ls /mnt/baz
file1 file2

Using Temporary Mount Properties
If any of the mount options described in the preceding section are set explicitly by using the -o
option with the zfs mount command, the associated property value is temporarily overridden.
These property values are reported as temporary by the zfs get command and revert back
to their original values when the file system is unmounted. If a property value is changed while
the file system is mounted, the change takes effect immediately, overriding any temporary
setting.

In the following example, the read-only mount option is temporarily set on the tank/home/
nneke file system. The file system is assumed to be unmounted.

Chapter 7
Mounting ZFS File Systems

7-27

$ zfs mount -o ro users/home/nneke

To temporarily change a property value on a file system that is currently mounted, you must
use the special remount option. In the following example, the atime property is temporarily
changed to off for a file system that is currently mounted:

$ zfs mount -o remount,noatime users/home/nneke
NAME PROPERTY VALUE SOURCE
users/home/nneke atime off temporary
$ zfs get atime users/home/perrin

For more information about the zfs mount command, see the zfs(8) man page.

Unmounting ZFS File Systems
You can unmount ZFS file systems by using the zfs unmount subcommand. The unmount
command can take either the mount point or the file system name as an argument.

In the following example, a file system is unmounted by its file system name:

$ zfs unmount users/home/mork

In the following example, the file system is unmounted by its mount point:

$ zfs unmount /users/home/mork

The unmount command fails if the file system is busy. To forcibly unmount a file system, you
can use the -f option. Be cautious when forcibly unmounting a file system if its contents are
actively being used. Unpredictable application behavior can result.

$ zfs unmount tank/home/glori
cannot unmount '/tank/home/glori': Device busy
$ zfs unmount -f tank/home/glori

To provide for backward compatibility, the legacy umount command can be used to unmount
ZFS file systems. For example:

$ umount /tank/home/glori

For more information about the zfs umount command, see the zfs(8) man page.

Sharing and Unsharing ZFS File Systems
The Oracle Solaris 11.1 release simplifies ZFS share administration by leveraging ZFS
property inheritance. The new share syntax is enabled on pools running pool version 34.

The following are the file system packages for NFS and SMB:

• NFS client and server packages

– service/file-system/nfs (server)

– service/file-system/nfs (client)

For additional NFS configuration information, see Managing Network File Systems in
Oracle Solaris 11.4 .

• SMB client and server packages

– service/file-system/smb (server)

Chapter 7
Sharing and Unsharing ZFS File Systems

7-28

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html
https://docs.oracle.com/cd/E37838_01/html/E61004/index.html
https://docs.oracle.com/cd/E37838_01/html/E61004/index.html

– service/file-system/smb (client)

For additional SMB configuration information including SMB password management, see
Managing SMB Mounts in Your Local Environment in Managing SMB File Sharing and
Windows Interoperability in Oracle Solaris 11.4 .

Multiple shares can be defined per file system. A share name uniquely identifies each share.
You can define the properties that are used to share a particular path in a file system. By
default, all file systems are unshared. In general, the NFS server services are not started until
a share is created. If you create a valid share, the NFS services are started automatically. If a
ZFS file system's mountpoint property is set to legacy, the file system can only be shared by
using the legacy share command.

• The share.nfs property replaces the sharenfs property in previous releases to define and
publish an NFS share.

• The share.smb property replaces the sharesmb property in previous releases to define and
publish an SMB share.

• Both the sharenfs property and sharesmb property are aliases to the share.nfs property
and the sharenfs property.

• The /etc/dfs/dfstab file is no longer used to share file systems at boot time. Setting
these properties share file systems automatically. SMF manages ZFS or UFS share
information so that file systems are shared automatically when the system is rebooted.
This feature means that all file systems whose sharenfs or sharesmb property are not set
to off are shared at boot time.

• The sharemgr interface is no longer available. The legacy share command is still available
to create a legacy share. See the examples below.

• The share -a command is like the previous share -ap command so that sharing a file
system is persistent. The share -p command is no longer available.

For example, if you want to share the tank/home file system, use syntax similar to the
following:

$ zfs set share.nfs=on tank/home

In preceding example, where the share.nfs property is set on the tank/home file system, the
share.nfs property value is inherited to any descendent file systems. For example:

$ zfs create tank/home/userA
$ zfs create tank/home/userB

You can also specify additional property values or modify existing property values on existing
file system shares. For example:

$ zfs set share.nfs.nosuid=on tank/home/userA
$ zfs set share.nfs=on tank/home/userA

About Sharing Labeled File Systems
To protect their sensitive contents, your company can label files and file systems With labeled
file systems, stricter security requirements such as encryption and access controls are
enforced.

Oracle Solaris 11.4, by default, prohibits sharing of labeled NFS files. You can grant sharing
permissions to these files through the share.nfs.labeled property. See examples in Changing
ZFS Share Property Values.

Chapter 7
Sharing and Unsharing ZFS File Systems

7-29

https://docs.oracle.com/cd/E37838_01/html/E61013/smbclientusertaskstm.html#indexterm-id-217
https://docs.oracle.com/cd/E37838_01/html/E61013/smbclientusertaskstm.html#indexterm-id-217

For more information about labeled file systems, see the following resources:

• Chapter 3, Labeling Files for Data Loss Protection in Securing Files and Verifying File
Integrity in Oracle Solaris 11.4

• Sharing a Labeled File System in Managing Network File Systems in Oracle Solaris 11.4

Legacy ZFS Sharing Syntax
Oracle Solaris 11 syntax is still supported so that you can share file systems in two steps. This
syntax is supported in all pool versions.

• First, use the zfs set share command to create an NFS or SMB share of ZFS file system.

$ zfs create rpool/fs1
$ zfs set share=name=fs1,path=/rpool/fs1,prot=nfs rpool/fs1
name=fs1,path=/rpool/fs1,prot=nfs

• Then, set the sharenfs or sharesmb property to on to publish the share. For example:

$ zfs set sharenfs=on rpool/fs1
$ grep fs1 /etc/dfs/sharetab
/rpool/fs1 fs1 nfs sec=sys,rw

File system shares can be displayed with the legacy zfs get share command.

$ zfs get share rpool/fs1
NAME PROPERTY VALUE SOURCE
rpool/fs1 share name=fs1,path=/rpool/fs1,prot=nfs local

In addition, the share command to share a file system, similar to the syntax in the Oracle
Solaris 10 release, is still supported to share any directory within a file system. For example, to
share a ZFS file system:

$ share -F nfs /tank/zfsfs
$ grep zfsfs /etc/dfs/sharetab
/tank/zfsfs tank_zfsfs nfs sec=sys,rw

The above syntax is identical to sharing a UFS file system:

$ share -F nfs /ufsfs
$ grep ufsfs /etc/dfs/sharetab
/ufsfs - nfs rw
/tank/zfsfs tank_zfsfs nfs rw

New ZFS Sharing Syntax
The zfs set command is used to share and publish a ZFS file system over the NFS or SMB
protocols. Or, you can set the share.nfs or share.smb property when the file system is
created.

For example, the tank/sales file system is created and shared. The default share
permissions are read-write for everyone. The descendent tank/sales/logs file system is also
shared automatically because the share.nfs property is inherited to descendent file systems
and the tank/sales/log file system is set to read-only access.

$ zfs create -o share.nfs=on tank/sales
$ zfs create -o share.nfs.ro=* tank/sales/logs
$ zfs get -r share.nfs tank/sales
NAME PROPERTY VALUE SOURCE
tank/sales share.nfs on local
tank/sales% share.nfs on inherited from tank/sales

Chapter 7
Sharing and Unsharing ZFS File Systems

7-30

https://docs.oracle.com/cd/E37838_01/html/E61022/flabel-1.html
https://docs.oracle.com/cd/E37838_01/html/E61022/flabel-1.html
https://docs.oracle.com/cd/E37838_01/html/E61004/rfsrefer-45.html#SVNFSgpzwl

tank/sales/log share.nfs on inherited from tank/sales
tank/sales/log% share.nfs on inherited from tank/sales

You can provide root access to a specific system for a shared file system as follows:

$ zfs set share.nfs=on tank/home/data
$ zfs set share.nfs.sec.default.root=neo.daleks.com tank/home/data

ZFS Sharing with Per-Property Inheritance
In pools that have been upgraded to the latest pool version 34, new sharing syntax is available
that makes use of ZFS property inheritance to ease share maintenance. Each sharing
characteristic becomes a separate share property. The share properties are identified by
names that start with the share. prefix. Examples of share properties include share.desc,
share.nfs.nosuid, and share.smb.guestok.

The share.nfs property controls whether NFS sharing is enabled. The share.smb property
controls whether SMB sharing is enabled. The legacy sharenfs and sharesmb property names
can still be used, because in new pools, sharenfs is an alias for share.nfs and sharesmb is an
alias for share.smb. If you want to share the tank/home file system, use syntax similar to the
following:

$ zfs set share.nfs=on tank/home

In this example, the share.nfs property value is inherited to any descendent file systems. For
example:

$ zfs create tank/home/userA
$ zfs create tank/home/userB
$ grep tank/home /etc/dfs/sharetab
/tank/home tank_home nfs sec=sys,rw
/tank/home/userA tank_home_userA nfs sec=sys,rw
/tank/home/userB tank_home_userB nfs sec=sys,rw

ZFS Sharing Inheritance in Older Pools
In older pools, only the sharenfs and sharesmb properties are inherited by descendent file
systems. Other sharing characteristics are stored in the .zfs/shares file for each share and
are not inherited.

A special rule is that whenever a new file system is created that inherits sharenfs or sharesmb
from its parent, a default share is created for that file system from the sharenfs or sharesmb
value. Note that when sharenfs is simply on, the default share that is created in a descendent
file system has only the default NFS characteristics. For example:

$ zpool get version tank
NAME PROPERTY VALUE SOURCE
tank version 33 default
$ zfs create -o sharenfs=on tank/home
$ zfs create tank/home/userA
$ grep tank/home /etc/dfs/sharetab
/tank/home tank_home nfs sec=sys,rw
/tank/home/userA tank_home_userA nfs sec=sys,r

ZFS Named Shares
You can also create a named share, which provides more flexibility in setting permissions and
properties in an SMB environment. For example:

Chapter 7
Sharing and Unsharing ZFS File Systems

7-31

$ zfs share -o share.smb=on tank/workspace%myshare

In the preceding example, the zfs share command creates an SMB share called myshare of
the tank/workspace file system. You can access the SMB share and display or set specific
permissions or ACLs through the .zfs/shares directory of the file system. Each SMB share
is represented by a separate .zfs/shares file. For example:

$ ls -lv /tank/workspace/.zfs/shares
-rwxrwxrwx+ 1 root root 0 May 15 10:31 myshare
0:everyone@:read_data/write_data/append_data/read_xattr/write_xattr
/execute/delete_child/read_attributes/write_attributes/delete
/read_acl/write_acl/write_owner/synchronize:allow

Named shares inherit sharing properties from the parent file system. If you add the
share.smb.guestok property to the parent file system in the previous example, this property is
inherited to the named share. For example:

$ zfs get -r share.smb.guestok tank/workspace
NAME PROPERTY VALUE SOURCE
tank/workspace share.smb.guestok on inherited from tank
tank/workspace%myshare share.smb.guestok on inherited from tank

Named shares can be helpful in the NFS environment when defining shares for a subdirectory
of the file system. For example:

$ zfs create -o share.nfs=on -o share.nfs.anon=99 -o share.auto=off tank/home
$ mkdir /tank/home/userA
$ mkdir /tank/home/userB
$ zfs share -o share.path=/tank/home/userA tank/home%userA
$ zfs share -o share.path=/tank/home/userB tank/home%userB
$ grep tank/home /etc/dfs/sharetab
/tank/home/userA userA nfs anon=99,sec=sys,rw
/tank/home/userB userB nfs anon=99,sec=sys,rw

The above example also illustrates that setting the share.auto to off for a file system turns off
the auto share for that file system while leaving all other property inheritance intact. Unlike
most other sharing properties, the share.auto property is not inheritable.

Named shares are also used when creating a public NFS share. A public share can only be
created on a named NFS share. For example:

$ zfs create -o mountpoint=/pub tank/public
$ zfs share -o share.nfs=on -o share.nfs.public=on tank/public%pubshare
$ grep pub /etc/dfs/sharetab
/pub pubshare nfs public,sec=sys,rw

See the share_nfs(8) and share_smb(8) man pages for a detailed description of NFS and
SMB share properties.

ZFS Automatic Shares
When an automatic (auto) share is created, a unique resource name is constructed from the
file system name. The constructed name is a copy of the file system name except that the
characters in the file system name that would be illegal in the resource name, are replaced
with underscore (_) characters. For example, the resource name of data/home/john is
data_home_john.

Setting a share.autoname property name allows you to replace the file system name with a
specific name when creating the auto share. The specific name is also used to replace the
prefix file system name in the case of inheritance. For example:

Chapter 7
Sharing and Unsharing ZFS File Systems

7-32

https://docs.oracle.com/cd/E88353_01/html/E72487/share-nfs-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/share-smb-8.html

$ zfs create -o share.smb=on -o share.autoname=john data/home/john
$ zfs create data/home/john/backups
$ grep john /etc/dfs/sharetab
/data/home/john john smb
/data/home/john/backups john_backups smb

If a legacy share command or the zfs set share command is used on a file system that
has not yet been shared, its share.auto value is automatically set to off. The legacy
commands always create named shares. This special rule prevents the auto share from
interfering with the named share that is being created.

Displaying ZFS Share Information
Display the value of the file sharing properties by using zfs get command. The following
example shows how to display the share.nfs property for a single file system:

$ zfs get share.nfs tank/sales
NAME PROPERTY VALUE SOURCE
tank/sales share.nfs on local

The following example shows how to display the share.nfs property for descendent file
systems:

$ zfs get -r share.nfs tank/sales
NAME PROPERTY VALUE SOURCE
tank/sales share.nfs on local
tank/sales% share.nfs on inherited from tank/sales
tank/sales/log share.nfs on inherited from tank/sales
tank/sales/log% share.nfs on inherited from tank/sales

The extended share property information is not available in the zfs get all command
syntax.

You can display specific details about NFS or SMB share information by using the following
syntax:

$ zfs get share.nfs.all tank/sales
NAME PROPERTY VALUE SOURCE
tank/sales share.nfs.aclok off default
tank/sales share.nfs.anon default
tank/sales share.nfs.charset.* ... default
tank/sales share.nfs.cksum default
tank/sales share.nfs.index default
tank/sales share.nfs.log default
tank/sales share.nfs.noaclfab off default
tank/sales share.nfs.nosub off default
tank/sales share.nfs.nosuid off default
tank/sales share.nfs.public - -
tank/sales share.nfs.sec default
tank/sales share.nfs.sec.* ... default

Because there are many share properties, consider displaying the properties with a non-default
value. For example:

$ zfs get -e -s local,received,inherited share.all tank/home
NAME PROPERTY VALUE SOURCE
tank/home share.auto off local
tank/home share.nfs on local
tank/home share.nfs.anon 99 local
tank/home share.protocols nfs local
tank/home share.smb.guestok on inherited from tank

Chapter 7
Sharing and Unsharing ZFS File Systems

7-33

Changing ZFS Share Property Values
You can change share property values by specifying new or modified properties on a file
system share. For example, if the read-only property is set when the file system is created, the
property can be set to off.

$ zfs create -o share.nfs.ro=* tank/data
$ zfs get share.nfs.ro tank/data
NAME PROPERTY VALUE SOURCE
tank/data share.nfs.sec.sys.ro * local
$ zfs set share.nfs.ro=none tank/data
$ zfs get share.nfs.ro tank/data
NAME PROPERTY VALUE SOURCE
tank/data share.nfs.sec.sys.ro off local

If you create an SMB share, you can also add the NFS share protocol. For example:

$ zfs set share.smb=on tank/multifs
$ zfs set share.nfs=on tank/multifs
$ grep multifs /etc/dfs/sharetab
/tank/multifs tank_multifs nfs sec=sys,rw
/tank/multifs tank_multifs smb -

Remove the SMB protocol:

$ zfs set share.smb=off tank/multifs
$ grep multifs /etc/dfs/sharetab
/tank/multifs tank_multifs nfs sec=sys,rw

You can rename a named share. For example:

$ zfs share -o share.smb=on tank/home/abc%abcshare
$ grep abc /etc/dfs/sharetab
/tank/home/abc abcshare smb -
$ zfs rename tank/home/abc%abcshare tank/home/abc%a1share
$ grep abc /etc/dfs/sharetab
/tank/home/abc a1share smb -

You can grant sharing access to labeled file systems. In the following example, rpool/
export/home is a labeled file system which is configured to be shared.

$ zfs create -o multilevel=on -o encryption=on rpool/ftp-files
$ zfs set =/ftpsource rpool/ftp-files
$ setlabel "Conf - Internal Use Only" /ftpsource

$ zfs set share.nfs.labeled=on rpool/ftp-files
$ zfs set share.nfs=on rpool/ftp-files

You can also enable sharing of labeled file systems with the zfs share command.

$ zfs share -o nfs=on -o share.nfs.labeled=on rpool/ftp-files

Publishing and Unpublishing ZFS Shares
You can temporarily unshare a named share without destroying it by using the zfs unshare
command. For example:

$ zfs unshare tank/home/abc%a1share
$ grep abc /etc/dfs/sharetab
#

Chapter 7
Sharing and Unsharing ZFS File Systems

7-34

$ zfs share tank/home/abc%a1share
$ grep abc /etc/dfs/sharetab
/tank/home/abc a1share smb -

When the zfs unshare command is issued, all file system shares are unshared. These
shares remain unshared until the zfs share command is issued for the file system or the
share.nfs or share.smb property is set for the file system.

Defined shares are not removed when the zfs unshare command is issued, and they are re-
shared the next time the zfs share command is issued for the file system or the share.nfs
or share.smb property is set for the file system.

Removing a ZFS Share
You can unshare a file system share by setting the share.nfs or share.smb property to off. For
example:

$ zfs set share.nfs=off tank/multifs
$ grep multifs /etc/dfs/sharetab
$

You can permanently remove a named share by using the zfs destroy command. For
example:

$ zfs destroy tank/home/abc%a1share

ZFS File Sharing Within a Non-Global Zone
Starting with Oracle Solaris 11, you can create and publish NFS shares in a non-global zone.

• If a ZFS file system is mounted and available in a non-global zone, it can be shared in that
zone.

• A file system can be shared in the global zone if it is not delegated to a non-global zone
and is not mounted in a non-global zone. If a file system is added to a non-global zone, it
can only be shared by using the legacy share command.

For example, the /export/home/data and /export/home/data1 file systems are
available in the zfszone.

zfszone$ share -F nfs /export/home/data
zfszone# cat /etc/dfs/sharetab

zfszone$ zfs set share.nfs=on tank/zones/export/home/data1
zfszone$ cat /etc/dfs/sharetab

ZFS Sharing Migration/Transition Issues
Review the following transition issues:

• Importing file systems with older sharing properties - When importing a pool or
receiving a file system stream that was created before Oracle Solaris 11, the sharenfs and
sharesmb properties include all the share properties directly in the property value. In most
cases, these legacy share properties are converted to an equivalent set of named shares
as soon as each file system is shared. Since import operations trigger mounting and
sharing in most cases, the conversion to named shares happens directly during the import
process.

Chapter 7
Sharing and Unsharing ZFS File Systems

7-35

• Upgrading from Oracle Solaris 11 - The first file system sharing after a pool upgrade to
version 34 can take a long time because the named shares are converted to the new
format. The named shares created by the upgrade process are correct but cannot take
advantage of share property inheritance.

– Display share property values:

$ zfs get share.nfs filesystem
$ zfs get share.smb filesystem

– If you boot back to an older BE, reset the sharenfs and sharesmb properties to their
original values.

• Upgrading from Oracle Solaris 11 – In Oracle Solaris 11 and Oracle Solaris 11.1, the
sharenfs and sharesmb properties can have only off and on values. These properties are
no longer used to define share characteristics.

The /etc/dfs/dfstab file is no longer used to share file systems at boot time. At boot
time, all mounted ZFS file systems that include enabled file system shares are
automatically shared. A share is enabled when it sharenfs or sharesmb is set to on.

The sharemgr interface is no longer available. The legacy share command is still available
to create a legacy share. The share -a command is like the previous share -ap
command so that sharing a file system is persistent. The share -p command is no longer
available.

• Upgrading your system – ZFS shares are incorrect if you boot back to an Oracle Solaris
11 BE due to property changes in this release. Non-ZFS shares are unaffected. If you plan
to boot back to an older BE, first save a copy of the existing share configuration prior to the
pkg update operation to be able to restore the ZFS share configuration.

In the older BE, use the sharemgr show -vp command to list all shares and their
configuration.

Use the following commands to display share property values:

$ zfs get sharenfs filesystem
$ zfs get sharesmb filesystem

If you back to an older BE, reset the sharenfs and sharesmb properties and any shares
defined with sharemgr to their original values.

• Legacy unsharing behavior – Using the unshare -a command or unshareall
command unshares a file system, but does not update the SMF shares repository. If you
try to re-share the existing share, the shares repository is checked for conflicts, and an
error is displayed.

Troubleshooting ZFS File System Sharing Problems
Review the following share error conditions:

• New shares or previous shares are not shared

– Confirm the pool and the file system versions are current - If new shares are not
shared by setting the share.nfs or share.smb property, then confirm that the pool
version is 34 and the file system version is 6.

– Share must exist before NFS services start- NFS server services do not run until a
file system is shared. Create the NFS share first and then attempt to access the share
remotely.

Chapter 7
Sharing and Unsharing ZFS File Systems

7-36

– System with existing shares was upgraded but shares are not available - A
system with existing shares is upgraded but attempts to reshare the shares fail. The
shares might not be shared because the share.auto property is disabled. If
share.auto is set to off, only named shares are available, which enforces compatibility
with earlier sharing syntax. The existing shares might look like this:

$ zfs get share
NAME PROPERTY VALUE SOURCE
tank/data share name=data,path=/tank/data,prot=nfs local

1. Ensure that the share.auto property is enabled. If not, enable it.

$ zfs get -r share.auto tank/data
$ zfs set share.auto=on tank/data

2. Reshare the file system.

$ zfs set -r share.nfs=on tank/data
3. You might also need to remove named shares and recreate them before the preceding

command is successful.

$ zfs list -t share -Ho name -r tank/data | xargs -n1 zfs destroy
4. If necessary, recreate the named shares.

$ zfs create -o share.nfs=on tank/data%share
• Sharing properties including named shares are not included in snapshots - Share

properties and .zfs/shares files are treated differently in zfs clone and zfs send
operations. The .zfs/shares files are included in snapshots and are preserved in zfs
clone and zfs send operations. For a description of the behavior of properties during
zfs send and zfs receive operations, see Applying Different Property Values to a
ZFS Snapshot Stream. After a clone operation, all files are from the pre-clone snapshot,
whereas the properties are inherited from the clone's new position in the ZFS file system
hierarchy.

• Named share request fails - If a request to create a named share fails because the share
would conflict with the auto share, you may have to disable the auto.share property.

• Pool with shares was previously exported - When a pool is imported read-only, neither
its properties nor its files can be modified so creating a new share fails. If the shares
existed before the pool was exported, the existing sharing characteristics are used, if
possible.

The following table identifies know share states and how to resolve them.

Share State Description Resolution

INVALID The share is invalid because it is
internally inconsistent or because it
conflicts with another share.

Attempt to re-share the invalid share by using
the following command:

$ zfs share FS%share

Using this command displays an error
message about which aspect of the share is
failing validation. Correct this, then retry the
share.

SHARED The share is shared. None needed.

UNSHARED The share is valid but is unshared. Use the zfs share command to re-share
either the individual share or the parent file
system.

Chapter 7
Sharing and Unsharing ZFS File Systems

7-37

Share State Description Resolution

UNVALIDATED The share is not yet validated. The
file system that contains the share
might not be in a shareable state.
For example, it is not mounted or it
is delegated to a zone other than
the current zone. Alternatively, the
ZFS properties representing the
desired share have been created,
but have not yet been validated as
a legal share.

Use the zfs share command to re-share
the individual share or the parent file system.
If the file system itself is shareable, an
attempt to re-share will either succeed in
sharing (and transition the state to shared) or
fail to share (and transition the state to
invalid). Or, you can use the share -A
command to list all shares in all mounted file
systems. This will cause all shares in
mounted file systems to be resolved as either
unshared (valid but not yet shared) or invalid.

Specifying Unicode Versions
Oracle Solaris 11.4 SRU 51 introduces Unicode Version 14.0.0 for ZFS file system
namespaces in ZFS file system Version 8 and ZFS pool Version 49.

The Unicode 14.0.0 update controls case-sensitivity and normalization only. Regardless of the
version, you can use any Unicode character in a file name.

To use the Unicode 14.0.0 mappings, you must upgrade existing ZFS pools and then create a
ZFS file system that sets the unicode property value to 14.0.0. Upgrade to at least ZFS pool
Version 49 and ZFS file system Version 8, as follows:

% zpool upgrade -v|grep Unicode
49 Support for Unicode versioning
% zfs upgrade -v|grep Unicode
8 Support for Unicode versioning

ZFS version upgrades affect the mounting of file systems as well as the sending and receving
of data streams. An updated file system can mount Unicode 5.0.0 and 14.0.0 file systems, and
send and receive Unicode 5.0.0 and 14.0.0 data streams. However, a legacy ZFS file system
can mount only a Unicode 5.0.0 file system, and send and receive only Unicode 5.0.0 data
streams.

The following example shows how Unicode versions are assigned after upgrading to ZFS file
system Version 8 and ZFS pool Version 49:

% zpool create pool
% zfs create -o unicode=5.0.0 pool/fs
% zfs create pool/fs14
% zfs create pool/fs/child
% zfs list -o name,unicode -r pool
NAME UNICODE
pool 14.0.0
pool/fs 5.0.0
pool/fs/child 5.0.0
pool/fs14 14.0.0

The ZFS file system version determines the default Unicode version and which Unicode
versions you can specify. As a result, you can use the version property to indirectly specify the
Unicode version.

The following example shows that creating a file system with ZFS file system Version 7 uses
Unicode 5.0.0 because it's the only available Unicode version:

Chapter 7
Specifying Unicode Versions

7-38

% zfs create -o version=7 pool/fs_v7
% zfs get unicode pool/fs_v7
NAME PROPERTY VALUE SOURCE
pool/fs_v7 unicode 5.0.0 -

This example shows that creating a file system with ZFS file system Version 8 uses Unicode
14.0.0 because it's the latest available Unicode version:

% zfs create -o version=8 pool/fs_v8
% zfs get unicode pool/fs_v8
NAME PROPERTY VALUE SOURCE
pool/fs_v8 unicode 14.0.0 -

The following example shows how you can specify both the unicode property and the version
property to create ZFS file systems. The first command shows that you can specify the
Unicode version (5.0.0) that matches the ZFS file system version (7) to create the pool/
fs_v7 file system. The second command fails to create pool/fs_v7_14 when you specify a
Unicode version (14.0.0) that does not match the ZFS file system version (7).

% zfs create -o version=7 -o unicode=5.0.0 pool/fs_v7
% zfs create -o version=7 -o unicode=14.0.0 pool/fs_v7_14
cannot create 'pool/fs_v7_14': requested property incompatible
with filesystem version

Setting ZFS Quotas
You can use the quota property to set a limit on the amount of disk space a file system can
use. In addition, you can use the reservation property to guarantee that a specified amount of
disk space is available to a file system. Both properties apply to the file system on which they
are set and all descendents of that file system.

That is, if a quota is set on the tank/home file system, the total amount of disk space used by
tank/home and all of its descendents cannot exceed the quota. Similarly, if tank/home is
given a reservation, tank/home and all of its descendents draw from that reservation. The
amount of disk space used by a file system and all of its descendents is reported by the used
property.

The refquota and refreservation properties are used to manage file system space without
accounting for disk space consumed by descendents, such as snapshots and clones.

In this Oracle Solaris release, you can set a user or a group quota on the amount of disk space
consumed by files that are owned by a particular user or group. The user and group quota
properties cannot be set on a volume, on a file system before file system version 4, or on a
pool before pool version 15.

Consider the following points to determine which quota and reservation features might best
help you manage your file systems:

• The quota and reservation properties are convenient for managing disk space consumed
by file systems and their descendents.

• The refquota and refreservation properties are appropriate for managing disk space
consumed by file systems.

• Setting the refquota or refreservation property higher than the quota or reservation
property has no effect. If you set the quota or refquota property, operations that try to
exceed either value fail. It is possible to a exceed a quota that is greater than the
refquota. For example, if some snapshot blocks are modified, you might actually exceed
the quota before you exceed the refquota.

Chapter 7
Setting ZFS Quotas

7-39

• User and group quotas provide a way to more easily manage disk space with many user
accounts, such as in a university environment.

• A convenient way to set a quota on a large file system for many different users is to set a
default user or group quota.

For more information about setting quotas and reservations, see Setting Quotas on ZFS File
Systems and Setting Reservations on ZFS File Systems.

Setting Quotas on ZFS File Systems
Quotas on ZFS file systems can be set and displayed by using the zfs set and zfs get
commands. In the following example, a quota of 10GB is set on tank/home/sueb:

$ zfs set quota=10G tank/home/sueb
$ zfs get quota tank/home/sueb
NAME PROPERTY VALUE SOURCE
tank/home/sueb quota 10G local

Quotas also affect the output of the zfs list and df commands. For example:

$ zfs list -r tank/home
NAME USED AVAIL REFER MOUNTPOINT
tank/home 1.45M 66.9G 36K /tank/home
tank/home/glori 547K 66.9G 547K /tank/home/glori
tank/home/sueb 322K 10.0G 291K /tank/home/sueb
tank/home/sueb/ws 31K 10.0G 31K /tank/home/sueb/ws
tank/home/mork 31K 66.9G 31K /tank/home/mork
$ df -h /tank/home/sueb
Filesystem Size Used Avail Use% Mounted on
tank/home/sueb 10G 306K 10G 1% /tank/home/sueb

Note that although tank/home has 66.9GB of disk space available, tank/home/sueb and
tank/home/sueb/ws each have only 10GB of disk space available, due to the quota on
tank/home/sueb.

You can set a refquota on a file system that limits the amount of disk space that the file
system can consume. This limit does not include disk space that is consumed by descendents.
For example, studentA's 10GB quota is not impacted by space that is consumed by snapshots.

$ zfs set refquota=10g students/studentA
$ zfs list -t all -r students
NAME USED AVAIL REFER MOUNTPOINT
students 150M 66.8G 32K /students
students/studentA 150M 9.85G 150M /students/studentA
students/studentA@yesterday 0 - 150M -
$ zfs snapshot students/studentA@today
$ zfs list -t all -r students
students 150M 66.8G 32K /students
students/studentA 150M 9.90G 100M /students/studentA
students/studentA@yesterday 50.0M - 150M -
students/studentA@today 0 - 100M -

For additional convenience, you can set another quota on a file system to help manage the
disk space that is consumed by snapshots. For example:

$ zfs set quota=20g students/studentA
$ zfs list -t all -r students
NAME USED AVAIL REFER MOUNTPOINT
students 150M 66.8G 32K /students
students/studentA 150M 9.90G 100M /students/studentA

Chapter 7
Setting ZFS Quotas

7-40

students/studentA@yesterday 50.0M - 150M -
students/studentA@today 0 - 100M -

In this scenario, studentA might reach the refquota (10GB) hard limit, but studentA can
remove files to recover, even if snapshots exist.

In the preceding example, the smaller of the two quotas (10GB as compared to 20GB) is
displayed in the zfs list output. To view the value of both quotas, use the zfs get
command. For example:

$ zfs get refquota,quota students/studentA
NAME PROPERTY VALUE SOURCE
students/studentA refquota 10G local
students/studentA quota 20G local

Enforcement of a file system quota might be delayed by several seconds. This delay means
that a user might exceed the file system quota before the system notices that the file system is
over quota and refuses additional writes with the EDQUOT error message.

Setting User and Group Quotas on a ZFS File System
You can set a user quota or a group quota by using the zfs userquota or zfs
groupquota commands, respectively. For example:

$ zfs create students/compsci
$ zfs set userquota@student1=10G students/compsci
$ zfs create students/labstaff
$ zfs set groupquota@labstaff=20GB students/labstaff

Display the current user quota or group quota as follows:

$ zfs get userquota@student1 students/compsci
NAME PROPERTY VALUE SOURCE
students/compsci userquota@student1 10G local
$ zfs get groupquota@labstaff students/labstaff
NAME PROPERTY VALUE SOURCE
students/labstaff groupquota@labstaff 20G local

You can display general user or group disk space usage by querying the following properties:

$ zfs userspace students/compsci
TYPE NAME USED QUOTA
POSIX User root 350M none
POSIX User student1 426M 10G
$ zfs groupspace students/labstaff
TYPE NAME USED QUOTA
POSIX Group labstaff 250M 20G
POSIX Group root 350M none

To identify individual user or group disk space usage, query the following properties:

$ zfs get userused@student1 students/compsci
NAME PROPERTY VALUE SOURCE
students/compsci userused@student1 550M local
$ zfs get groupused@labstaff students/labstaff
NAME PROPERTY VALUE SOURCE
students/labstaff groupused@labstaff 250 local

The user and group quota properties are not displayed by using the zfs get all dataset
command, which displays a list of all of the other file system properties.

Chapter 7
Setting ZFS Quotas

7-41

You can remove a user quota or group quota as follows:

$ zfs set userquota@student1=none students/compsci
$ zfs set groupquota@labstaff=none students/labstaff

User and group quotas on ZFS file systems provide the following features:

• A user quota or group quota that is set on a parent file system is not automatically inherited
by a descendent file system.

• However, the user or group quota is applied when a clone or a snapshot is created from a
file system that has a user or group quota. Likewise, a user or group quota is included with
the file system when a stream is created by using the zfs send command, even without
the -R option.

• Unprivileged users can only access their own disk space usage. The root user or a user
who has been granted the userused or groupused privilege, can access everyone's user or
group disk space accounting information.

• The userquota and groupquota properties cannot be set on ZFS volumes, on a file system
prior to file system version 4, or on a pool prior to pool version 15.

Enforcement of user and group quotas might be delayed by several seconds. This delay
means that a user might exceed the user quota before the system notices that the user is over
quota and refuses additional writes with the EDQUOT error message.

You can use the legacy quota command to review user quotas in an NFS environment, for
example, where a ZFS file system is mounted. Without any options, the quota command only
displays output if the user's quota is exceeded. For example:

$ zfs set userquota@student1=10m students/compsci
$ zfs userspace students/compsci
TYPE NAME USED QUOTA
POSIX User root 350M none
POSIX User student1 550M 10M
$ quota student1
Block limit reached on /students/compsci

If you reset the user quota and the quota limit is no longer exceeded, you can use the quota
-v command to review the user's quota. For example:

$ zfs set userquota@student1=10GB students/compsci
$ zfs userspace students/compsci
TYPE NAME USED QUOTA
POSIX User root 350M none
POSIX User student1 550M 10G
$ quota student1
$ quota -v student1
Disk quotas for student1 (uid 102):
Filesystem usage quota limit timeleft files quota limit timeleft
/students/compsci
563287 10485760 10485760 - - - - -

Setting Default User and Group Quotas
Starting in the Oracle Solaris 11.3 release, you can set a default user quota or a default group
quota that is applied automatically for anyone who does not have a specific quota defined.
Similar to specific user and group quotas, default user and group quotas are not inheritable to
descendent file systems. In addition, if a default user or group quota is set on a top-level file
system, space consumed in descendent file systems is not charged to the top-level file
system's default quota.

Chapter 7
Setting ZFS Quotas

7-42

You can set a default user quota on a large shared file system. For example:

$ zfs set defaultuserquota=30gb students/labstaff/admindata

Using a default user quota on a large shared file system allows you to restrict growth without
specifying individual user quotas. You can also monitor who is using the top-level file system.

$ zfs userspace students/labstaff/admindata
TYPE NAME USED QUOTA SOURCE
POSIX User admin1 2.00G 30G default
POSIX User admin2 4.00G 30G default
POSIX User root 3K 30G default

In the above example, each user that does not have an existing quota is allowed 30GB of disk
space in students/labstaff/admindata. Contrasting this behavior to setting a 30GB file
system quota on students/labstaff/admindata, means that a cumulative quota of 30GB
would apply to all users who didn't have an existing quota.

You can set a default group quota in a similar way. For example, the following syntax sets a
120GB quota on the students/math file system. You can use the zfs groupspace
command to track usage of a top-level file system with a default group quota.

$ zfs set defaultgroupquota=120g students/math
$ zfs groupspace students/math
TYPE NAME USED QUOTA SOURCE
POSIX Group root 6K 120G default
POSIX Group students 40.0G 120G default

Setting Reservations on ZFS File Systems
A ZFS reservation is an allocation of disk space from the pool that is guaranteed to be
available to a dataset. As such, you cannot reserve disk space for a dataset if that space is not
currently available in the pool. The total amount of all outstanding, unconsumed reservations
cannot exceed the amount of unused disk space in the pool. ZFS reservations can be set and
displayed by using the zfs set and zfs get commands. For example:

$ zfs set reservation=5G tank/home/bhall
$ zfs get reservation tank/home/bhall
NAME PROPERTY VALUE SOURCE
tank/home/bhall reservation 5G local

Reservations can affect the output of the zfs list command. For example:

$ zfs list -r tank/home
NAME USED AVAIL REFER MOUNTPOINT
tank/home 5.00G 61.9G 37K /tank/home
tank/home/bhall 31K 66.9G 31K /tank/home/bhall
tank/home/sueb 337K 10.0G 306K /tank/home/sueb
tank/home/glori 547K 61.9G 547K /tank/home/glori
tank/home/mork 31K 61.9G 31K /tank/home/mork

Note that tank/home is using 5GB of disk space, although the total amount of space referred
to by tank/home and its descendents is much less than 5GB. The used space reflects the
space reserved for tank/home/bhall. Reservations are considered in the used disk space
calculation of the parent file system and do count against its quota, reservation, or both.

$ zfs set quota=5G pool/filesystem
$ zfs set reservation=10G pool/filesystem/user1
cannot set reservation for 'pool/filesystem/user1': size is greater than
available space

Chapter 7
Setting Reservations on ZFS File Systems

7-43

A dataset can use more disk space than its reservation, as long as unreserved space is
available in the pool, and the dataset's current usage is below its quota. A dataset cannot
consume disk space that has been reserved for another dataset.

Reservations are not cumulative. That is, a second invocation of zfs set to set a reservation
does not add its reservation to the existing reservation. Rather, the second reservation
replaces the first reservation. For example:

$ zfs set reservation=10G tank/home/bhall
$ zfs set reservation=5G tank/home/bhall
$ zfs get reservation tank/home/bhall
NAME PROPERTY VALUE SOURCE
tank/home/bhall reservation 5G local

You can set a refreservation reservation to guarantee disk space for a dataset that does not
include disk space consumed by snapshots and clones. This reservation is accounted for in
the parent dataset's space used calculation, and counts against the parent dataset's quotas
and reservations. For example:

$ zfs set refreservation=10g profs/prof1
$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
profs 10.0G 23.2G 19K /profs
profs/prof1 10G 33.2G 18K /profs/prof1

You can also set a reservation on the same dataset to guarantee dataset space and snapshot
space. For example:

$ zfs set reservation=20g profs/prof1
$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
profs 20.0G 13.2G 19K /profs
profs/prof1 10G 33.2G 18K /profs/prof1

Regular reservations are accounted for in the parent's used space calculation.

In the preceding example, the smaller of the two quotas (10GB as compared to 20GB) is
displayed in the zfs list output. To view the value of both quotas, use the zfs get
command. For example:

$ zfs get reservation,refreserv profs/prof1
NAME PROPERTY VALUE SOURCE
profs/prof1 reservation 20G local
profs/prof1 refreservation 10G local

If refreservation is set, a snapshot is only allowed if sufficient unreserved pool space exists
outside of this reservation to accommodate the current number of referenced bytes in the
dataset.

Setting I/O Bandwidth Limits
Setting the size of a ZFS dataset can ensure an appropriate allocation of space in a
configuration that contains multiple volumes to service different ZFS clients. However, ZFS
clients of a specific dataset can still monopolize the system's bandwidth if the I/O operations
within the dataset surpasses those operations in other datasets. Monopoly of bandwidth use
effectively denies other ZFS clients of other datasets from accessing the data. By using the
read and write limiting properties, you can assign limits to the I/O operations in datasets to
provide bandwidth to all datasets for their respective clients to use.

• writelimit – Sets the maximum bytes per second that a dataset can write to disk

Chapter 7
Setting I/O Bandwidth Limits

7-44

• readlimit – Sets the maximum bytes per second that a dataset can read from a disk

• defaultwritelimit – Sets the maximum bytes per second that the descendants of a
dataset can write to disk

• defaultreadlimit – Sets the maximum bytes per second that the descendants of a
dataset can read from a disk

• effectivewritelimit – Reports the maximum bytes per second that a dataset can write
to disk

• effectivereadlimit – Reports the maximum bytes per second that a dataset can read
from a disk

Note:

These values are not guaranteed bandwidth and the actual bandwidth may be limited
by other factors including usage and limits set on other datasets in the hierarchy.
Enforcement of these limits may be delayed by several seconds.

The default limits on the descendants of a dataset can be overwritten with the writelimit or
readlimit properties. They can be set to any value, but the throughput on a descendant
dataset will not be more than the rate of a parent dataset. The minimum value for these
properties is 500K.

$ zfs get -r writelimit,defaultwritelimit,effectivewritelimit users/home
NAME PROPERTY VALUE SOURCE
users/home writelimit default default
users/home defaultwritelimit none default
users/home effectivewritelimit none local
users/home/kaydo writelimit default default
users/home/kaydo defaultwritelimit none default
users/home/kaydo effectivewritelimit none local

The writelimit or readlimit properties can be set to none to inherit the limit set on the parent
dataset. Also they can be set to default to use the default limit set on the parent dataset.

Example 7-5 Default Settings for Bandwidth Limiting Properties

If a new dataset is created, it uses the bandwidth limits established by the parent dataset. In
this example, the parent dataset had no bandwidth limiting properties set.

$ zfs get -r writelimit,defaultwritelimit,effectivewritelimit users/home
NAME PROPERTY VALUE SOURCE
users/home writelimit default default
users/home defaultwritelimit none default
users/home effectivewritelimit none local
users/home/nneke writelimit default default
users/home/nneke defaultwritelimit none default
users/home/nneke effectivewritelimit none local

In this example. the parents' defaultwritelimit properties was set to 500K, so that is the
effective write limit for the descendant dataset.

$ zfs get -r writelimit,defaultwritelimit,effectivewritelimit users/home
NAME PROPERTY VALUE SOURCE
users/home writelimit 1M local
users/home defaultwritelimit 500K local
users/home effectivewritelimit 1M local
users/home/nneke writelimit default default

Chapter 7
Setting I/O Bandwidth Limits

7-45

users/home/nneke defaultwritelimit 500K inherited from users/home
users/home/nneke effectivewritelimit 500K local

Example 7-6 Using the Bandwidth Limiting Properties From the Parent Dataset

By default, descendant datasets use the bandwidth limiting values set in the parents'
defaultwritelimit and defaultreadlimit properties. If you want to use the same write
values as the parent dataset instead of the default settings, set the writelimit property for the
descendant dataset to none. In this case, the effective write limit will be reported as the same
as the parent datasets' writelimit property. In this example the effective write limit for the
descendant dataset is 1M which is the effective write limit of the parent, instead of 500K which is
the default write limit set in the parent dataset.

$ zfs set writelimit=none users/home/kaydo
$ zfs get -r writelimit,defaultwritelimit,effectivewritelimit users/home
NAME PROPERTY VALUE SOURCE
users/home writelimit 1M local
users/home defaultwritelimit 500K local
users/home effectivewritelimit 1M local
users/home/kaydo writelimit none local
users/home/kaydo defaultwritelimit 500K inherited from users/home
users/home/kaydo effectivewritelimit 1M local

In this example, the descendants' properties are limited by the write limit set by on the parent
dataset. The descendant dataset will not be given higher bandwidth values than the parent.

$ zfs create -o writelimit=2M users/home/mork
$ zfs get -r writelimit,defaultwritelimit,effectivewritelimit users/home
NAME PROPERTY VALUE SOURCE
users/home writelimit 1M local
users/home defaultwritelimit 500K local
users/home effectivewritelimit 1M local
users/home/mork writelimit 2M local
users/home/mork defaultwritelimit 500K inherited from users/home
users/home/mork effectivewritelimit 1M local

Compressing ZFS File Systems
Compression is the process where data is stored using less disk space. The following
compression algorithms are available:

• gzip - standard UNIX compression.

• gzip- N - selects a specific gzip level. gzip-1 provides the fastest gzip compression.
gzip-9 provides the best data compression. gzip-6 is the default.

• lz4 - provides better compression with lower CPU overhead

• lzjb - optimized for performance while providing decent compression

• zle - zero length encoding is useful for datasets with large blocks of zeros

Note:

Currently, neither lz4 or gzip compression is supported on root pools.

You can choose a specific compression algorithm by setting the compression ZFS property. To
use the LZ4 algorithm, use a command like the following:

Chapter 7
Compressing ZFS File Systems

7-46

$ zfs set compress=lz4 pool/fs

Encrypting ZFS File Systems
Encryption is the process where data is encoded for privacy and a key is needed by the data
owner to access the encoded data. The benefits of using ZFS encryption are as follows:

• ZFS encryption is integrated with the ZFS command set. Like other ZFS operations,
encryption operations such as key changes and rekey are performed online.

• You can use your existing storage pools as long as they are upgraded. You have the
flexibility of encrypting specific file systems.

• Data is encrypted using AES (Advanced Encryption Standard) with key lengths of 128,
192, and 256 in the CCM and GCM operation modes.

• ZFS encryption uses the Oracle Solaris Cryptographic Framework, which gives it access to
any available hardware acceleration or optimized software implementations of the
encryption algorithms automatically.

• Currently, you cannot encrypt the ZFS root file system or other OS components, such as
the /var directory, even if it is a separate file system.

• ZFS encryption is inheritable to descendent file systems.

• A regular user can create an encrypted file system and manage key operations if create,
mount, keysource, checksum, and encryption permissions are assigned to him.

Note:

ZFS wrapping and data encryption keys use AES while Trusted Platform Module
(TPM) support in Oracle Solaris 11 can only store RSA keys. Consequently, ZFS
encryption can not use TPM as the root of trust for storing keys. As best practice, use
a remote key management system instead of TPM, such as Oracle Key
Management, Oracle Key Vault, or any third party product that supports the KMIP
standard. For Oracle Key Manager documentation, see the Storage Encryption
section in Tape Storage Products Documentation Library (https://docs.oracle.com/cd/
F24623_01/index.html#crypto). For Oracle Key Vault documentation, see the
Database Security section in https://docs.oracle.com/en/database/related-
products.html.

You can set an encryption policy when a ZFS file system is created, but the policy cannot be
changed. For example, the tank/home/megr file system is created with the encryption
property enabled. The default encryption policy is to prompt for a passphrase, which must be a
minimum of 8 characters in length.

$ zfs create -o encryption=on tank/home/megr
Enter passphrase for 'tank/home/megr': xxxxxxx
Enter again: xxxxxxxx

Confirm that the file system has encryption enabled. For example:

$ zfs get encryption tank/home/megr
NAME PROPERTY VALUE SOURCE
tank/home/megr encryption on local

The default encryption algorithm is aes-128-ccm when a file system's encryption value is on.

Chapter 7
Encrypting ZFS File Systems

7-47

https://docs.oracle.com/cd/F24623_01/index.html#crypto
https://docs.oracle.com/cd/F24623_01/index.html#crypto
https://docs.oracle.com/en/database/related-products.html
https://docs.oracle.com/en/database/related-products.html

A wrapping key is used to encrypt the actual data encryption keys. The wrapping key is passed
from the zfs command, as in the above example when the encrypted file system is created, to
the kernel. A wrapping key is either in a file (in raw or hex format) or it is derived from a
passphrase.

The format and location of the wrapping key are specified in the keysource property as follows:

keysource=format,location

• format is one of the following:

– raw – The raw key bytes

– hex – A hexadecimal key string

– passphrase – A character string that generates a key

• location is one of the following:

– prompt – You are prompted for a key or a passphrase when the file system is created
or mounted

– file:///filename – The key or a passphrase file location in a file system

– pkcs11 – A URI describing the location of a key or a passphrase in a PKCS#11 token

– https://location – The key or a passphrase file location on a secure server.
Transporting key information in the clear using this method is not recommended. A GET
on the URL returns just the key value or the passphrase, according to what was
requested in the format part of the keysource property.

When using an https:// locator for the keysource, the certificate that the ZFS server
presents must be one that is trusted by libcurl and OpenSSL. Add your own trust
anchor or self signed certificate to the certificate store in /etc/openssl/certs.
Place the PEM format certificate into the /etc/certs/CA directory and run the
following command:

$ svcadm refresh ca-certificates
If the keysource format is passphrase, then the wrapping key is derived from the passphrase.
Otherwise, the keysource property value points to the actual wrapping key, as raw bytes or in
hexadecimal format. You can specify that the passphrase is stored in a file or stored in a raw
stream of bytes that are prompted for, which is likely only suitable for scripting.

When a file system's keysource property values identifies passphrase, then the wrapping key
is derived from the passphrase using PKCS#5 PBKD2 and a per file system randomly generated
salt. This means that the same passphrase generates a different wrapping key if used on
descendent file systems.

A file system's encryption policy is inherited by descendent file systems and cannot be
removed. For example:

$ zfs snapshot tank/home/megr@now
$ zfs clone tank/home/megr@now tank/home/megr-new
Enter passphrase for 'tank/home/megr-new': xxxxxxx
Enter again: xxxxxxxx
$ zfs set encryption=off tank/home/megr-new
cannot set property for 'tank/home/megr-new': 'encryption' is readonly

If you need to copy or migrate encrypted or unencrypted ZFS file systems, then consider the
following points:

Chapter 7
Encrypting ZFS File Systems

7-48

• Currently, you cannot send an unencrypted dataset stream and receive it as an encrypted
stream even if the receiving pool's dataset has encryption enabled.

• You can use the following commands to migrate unencrypted data to a pool/file system
with encryption enabled:

– cp -r
– find | cpio
– tar
– rsync

• A replicated encrypted file system stream can be received into a encrypted file system and
the data remains encrypted. For more information, see Sending and Receiving an
Encrypted ZFS File System.

Note:

Although ZFS encrypted filesystems can restrict access to data at rest, that
protection is lost when the filesystem is mounted. Users who can assume the root
role or use the sudo command can have unconstrained access to these files. To add
a layer of security, use file and process labeling to implement access control
especially to sensitive files. See Chapter 3, Labeling Files for Data Loss Protection in
Securing Files and Verifying File Integrity in Oracle Solaris 11.4.

Changing an Encrypted ZFS File System's Keys
You can change an encrypted file system's wrapping key by using the zfs key -c command.
The existing wrapping key must have been loaded first, either at boot time or by explicitly
loading the file system key (zfs key -l) or by mounting the file system (zfs mount
filesystem). For example:

$ zfs key -c tank/home/megr
Enter new passphrase for 'tank/home/megr': xxxxxxxx
Enter again: xxxxxxxx

In the following example, the wrapping key is changed and the keysource property value is
changed to specify that the wrapping key comes from a file.

$ zfs key -c -o keysource=raw,file:///media/stick/key
tank/home/megr

The data encryption key for an encrypted file system can be changed by using the zfs key -
K command, but the new encryption key is only used for newly written data. This feature can
be used to provide compliance with NIST 800-57 guidelines on a data encryption key's time
limit. For example:

$ zfs key -K tank/home/megr

In the above example, the data encryption key is not visible nor is it directly managed by you.
In addition, you need the keychange delegation to perform a key change operation.

The following encryption algorithms are available:

• aes-128-ccm, aes-192-ccm, aes-256-ccm
• aes-128-gcm, aes-192-gcm, aes-256-gcm

Chapter 7
Encrypting ZFS File Systems

7-49

https://docs.oracle.com/cd/E37838_01/html/E61022/flabel-1.html
https://docs.oracle.com/cd/E37838_01/html/E61022/flabel-1.html

The ZFS keysource property identifies the format and location of the key that wraps the file
system's data encryption keys. For example:

$ zfs get keysource tank/home/megr
NAME PROPERTY VALUE SOURCE
tank/home/megr keysource passphrase,prompt local

The ZFS rekeydate property identifies the date of the last zfs key -K operation. For
example:

$ zfs get rekeydate tank/home/megr
NAME PROPERTY VALUE SOURCE
tank/home/megr rekeydate Wed Jul 25 16:54 2012 local

If an encrypted file system's creation and rekeydate properties have the same value, the file
system has never been rekeyed by an zfs key -K operation.

Managing ZFS Encryption Keys
ZFS encryption keys can be managed in different ways, depending on your needs, either on
the local system or remotely, if a centralized location is needed.

• Locally – The above examples illustrate that the wrapping key can be either a passphrase
prompt or a raw key that is stored in a file on the local system.

• Remotely – Key information can be stored remotely by using a centralized key
management system like Oracle Key Manager or by using a web service that supports a
simple GET request on an http or https URI. Oracle Key Manager key information is
accessible to an Oracle Solaris system by using a PKCS#11 token.

For information about managing ZFS encryption keys, see How to Manage ZFS Data
Encryption (https://www.oracle.com/technical-resources/articles/solaris/how-to-manage-zfs-
encryption.html)

For information about using Oracle Key Manager to manage key information, see:

https://docs.oracle.com/cd/E50985_03/index.html

Delegating ZFS Key Operation Permissions
Review the following permission descriptions for delegating key operations:

• Loading or unloading a file system key by using the zfs key -l and zfs key -u
commands require the key permission. In most cases, you will need the mount permission
as well.

• Changing a file system key by using the zfs key -c and zfs key -K commands
require the keychange permission.

Consider delegating separate permissions for key use (load or unload) and key change, which
allows you to have a two-person key operation model. For example, determine which users
can use the keys verses which users can change them. Or, both users need to be present for a
key change. This model also allows you to build a key escrow system.

Mounting an Encrypted ZFS File System
Review the following considerations when attempting to mount an encrypted ZFS file system:

• If an encrypted file system key is not available during boot time, the file system is not
mounted automatically. For example, a file system with an encryption policy set to

Chapter 7
Encrypting ZFS File Systems

7-50

https://www.oracle.com/technical-resources/articles/solaris/how-to-manage-zfs-encryption.html
https://www.oracle.com/technical-resources/articles/solaris/how-to-manage-zfs-encryption.html
https://www.oracle.com/technical-resources/articles/solaris/how-to-manage-zfs-encryption.html
https://docs.oracle.com/cd/E50985_03/index.html

passphrase,prompt will not mount during boot time because the boot process is not
interrupted to prompt for a passphrase.

• If you want to mount a file system with an encryption policy set to passphrase,prompt at
boot time, you will need to either explicitly mount it with the zfs mount command and
specify the passphrase or use the zfs key -l command to be prompted for the key after
the system is booted.

For example:

$ zfs mount -a
Enter passphrase for 'tank/home/megr': xxxxxxxx
Enter passphrase for 'tank/home/ws': xxxxxxxx
Enter passphrase for 'tank/home/mork': xxxxxxxx

• If an encrypted file system's keysource property points to a file in another file system, the
mount order of the file systems can impact whether the encrypted file system is mounted at
boot, particularly if the file is on removable media.

Upgrading Encrypted ZFS File Systems
Before you upgrade an Oracle Solaris 11 system to Oracle Solaris 11.1, ensure that your
encrypted file systems are mounted. Mount the encrypted file systems and provide the
passphrases, if prompted.

$ zfs mount -a
Enter passphrase for 'pond/jaust': xxxxxxxx
Enter passphrase for 'pond/rori': xxxxxxxx
$ zfs mount | grep pond
pond /pond
pond/jaust /pond/jaust
pond/rori /pond/rori

Then, upgrade the encrypted file systems.

$ zfs upgrade -a

If you attempt to upgrade encrypted ZFS file systems that are unmounted, a message similar
to the following is displayed:

$ zfs upgrade -a
cannot set property for 'pond/jaust': key not present

In addition, the zpool status output might show corrupted data.

$ zpool status -v pond
...
pond/jaust:<0x1>
pond/rori:<0x1>

If the above errors occur, remount the encrypted file systems as directed above. Then, scrub
and clear the pool errors.

$ zpool scrub pond
$ zpool clear pond

For more information about upgrading file systems, see Upgrading ZFS File Systems.

Chapter 7
Encrypting ZFS File Systems

7-51

Interactions Between ZFS Compression, Deduplication, and Encryption
Properties

Review the following considerations when using the ZFS compression, deduplication, and
encryption properties:

• When a file is written, the data is compressed, encrypted, and the checksum is verified.
Then, the data is deduplicated, if possible.

• When a file is read, the checksum is verified and the data is decrypted. Then, the data is
decompressed, if required.

• If the dedup property is enabled on an encrypted file system that is also cloned and the
zfs key -K or zfs clone -K commands have not been used on the clones, data from
all the clones will be deduplicated, if possible.

Examples of Encrypting ZFS File Systems
Example 7-7 Encrypting a ZFS File System by Using a Raw Key

In the following example, an aes-256-ccm encryption key is generated by using the pktool
command and is written to a file, /kaydo.file.

$ pktool genkey keystore=file outkey=/kaydokey.file keytype=aes keylen=256

Then, the /kaydokey.file is specified when the tank/home/kaydo file system is created.

$ zfs create -o encryption=aes-256-ccm -o keysource=raw,file:///kaydokey.file \
tank/home/kaydo

Example 7-8 Encrypting a ZFS File System With a Different Encryption Algorithm

You can create a ZFS storage pool and have all the file systems in the storage pool inherit an
encryption algorithm. In this example, the users pool is created and the users/home file
system is created and encrypted by using a passphrase. The default encryption algorithm is
aes-128-ccm.

Then, the users/home/mork file system is created and encrypted by using the aes-256-
ccm encryption algorithm.

$ zpool create -O encryption=on users mirror c0t1d0 c1t1d0 mirror c2t1d0 c3t1d0
Enter passphrase for 'users': xxxxxxxx
Enter again: xxxxxxxx
$ zfs create users/home
$ zfs get encryption users/home
NAME PROPERTY VALUE SOURCE
users/home encryption on inherited from users
$ zfs create -o encryption=aes-256-ccm users/home/mork
$ zfs get encryption users/home/mork
NAME PROPERTY VALUE SOURCE
users/home/mork encryption aes-256-ccm local

Example 7-9 Cloning an Encrypted ZFS File System

If the clone file system inherits the keysource property from the same file system as its origin
snapshot, then a new keysource is not necessary, and you are not prompted for a new
passphrase if keysource=passphrase,prompt. The same keysource is used for the clone. For
example:

Chapter 7
Encrypting ZFS File Systems

7-52

By default, you are not prompted for a key when cloning a descendent of an encrypted file
system.

$ zfs create -o encryption=on tank/ws
Enter passphrase for 'tank/ws': xxxxxxxx
Enter again: xxxxxxxx
$ zfs create tank/ws/fs1
$ zfs snapshot tank/ws/fs1@snap1
$ zfs clone tank/ws/fs1@snap1 tank/ws/fs1clone

If you want to create a new key for the clone file system, use the zfs clone -K command.

If you clone an encrypted file system rather than a descendent encrypted file system, you are
prompted to provide a new key. For example:

$ zfs create -o encryption=on tank/ws
Enter passphrase for 'tank/ws': xxxxxxxx
Enter again: xxxxxxxx
$ zfs snapshot tank/ws@1
$ zfs clone tank/ws@1 tank/ws1clone
Enter passphrase for 'tank/ws1clone': xxxxxxxx
Enter again: xxxxxxxx

Example 7-10 Sending and Receiving an Encrypted ZFS File System

In the following example, the tank/home/megr@snap1 snapshot is created from the encrypted /
tank/home/megr file system. Then, the snapshot is sent to bpool/snaps, with the encryption
property enabled so the resulting received data is encrypted. However, the tank/home/
megr@snap1 stream is not encrypted during the send process.

$ zfs get encryption tank/home/megr
NAME PROPERTY VALUE SOURCE
tank/home/megr encryption on local
$ zfs snapshot tank/home/megr@snap1
$ zfs get encryption bpool/snaps
NAME PROPERTY VALUE SOURCE
bpool/snaps encryption on inherited from bpool
$ zfs send tank/home/megr@snap1 | zfs receive bpool/snaps/megr
$ zfs get encryption bpool/snaps/megr
NAME PROPERTY VALUE SOURCE
bpool/snaps/megr encryption on inherited from bpool

In this case, a new key is automatically generated for the received encrypted file system.

Retaining Files on Your ZFS File System
Using a file retention policy enables you to specify a uniform rule to indicate how long to retain
your organization's records. Ensure that your policy establishes the retention period for your
data, which relies on the impact and importance of each document type.

The policy dictates the retention period for all your confidential and private official documents
such as email, client correspondence, customer records, employee records, contracts, and
financial records.

Without creating a retention policy, you might face stress or face legal complications if you
destroy some documents too soon.

The Oracle Solaris 11.4 software introduces the ZFS file retention feature that enables you to
implement your organization's file retention policy. You can retain files only on a ZFS file
system that has the file retention feature enabled.

Chapter 7
Retaining Files on Your ZFS File System

7-53

You can retain a regular file (not a directory, link, special file, and so on) for a specified
retention period. During the retention period, the retained file is read-only and cannot be
modified or deleted. When the retention period ends, you can delete a retained file. However,
you cannot modify that file, even after the retention period ends.

The shadow migration feature correctly handles retained files and migrates them with the
retention period property values intact.

This section covers the following topics:

• Creating a ZFS File System With File Retention

• ZFS File Retention Properties

• Retaining Your Files

• Retaining Zero-Length Files

• Enabling Automatic File Retention

• File Retention Restrictions

For more information about the ZFS file retention feature, see the zfs(8) and zpool(8) man
pages.

Creating a ZFS File System With File Retention
You must enable file retention on a ZFS file system when you create it. By default, file retention
is disabled on ZFS file systems.

During the ZFS file system creation process, you must specify the file retention policy:

zfs create -o retention.policy=policy
 pool/fs

Specify one of the following policies as the retention.policy property value:

• privileged - Permits a process with the FILE_RETENTION_OVERRIDE privilege to override
retention protections and delete files. Note that this privilege does not permit you to modify
retained files.

You can destroy the file system and pool without requiring additional privileges if the
contained file systems use the privileged retention policy or have file retention disabled.

• mandatory - Prevents you from deleting a retained file until the retention period ends.

The mandatory policy's protection extends to the file system and pool. As a result, the file
system and pool cannot be destroyed until the retention period of all files in the file system
and pool have expired. A file system that uses the mandatory retention policy also protects
its ancestors and clone descendants from being destroyed.

Note that after you set the retention.policy property on the ZFS file system, you cannot
change the policy value or disable the file retention feature.

A retained file system preserves the full path name of each retained file, which ensures that
you cannot hide a directory's location and cannot change any meaning that is conveyed by the
retained file's path.

Chapter 7
Retaining Files on Your ZFS File System

7-54

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/zpool-8.html

ZFS File Retention Properties
The ZFS file retention feature uses properties to describe the file retention policy of your file
system. For a description of each property, see the zfs(8) man page.

The following zfs get example output shows the file retention properties and their values:

zfs get -e retention.all retain/mand
NAME PROPERTY VALUE SOURCE
retain/mand retention.period.default none -
retain/mand retention.period.deletegrace 60s -
retain/mand retention.period.grace 60s -
retain/mand retention.period.max 5y -
retain/mand retention.period.min none -
retain/mand retention.policy mandatory -
retain/mand retention.policy.changeacl off -
retain/mand retention.policy.onexpiry off -
retain/mand retention.status.expiry - -
retain/mand retention.status.files 0 -

You can change the following file retention properties from these default values:

• retention.period.min=0
• retention.period.max=5years
• retention.period.default=0
• retention.period.grace=0
• retention.period.deletegrace=0
• retention.policy=off
• retention.policy.changeacl=off
• retention.policy.onexpiry=off

Note:

Use the minutes unit to specify minutes, such as 2minutes. The m unit specifies
months.

The retention.status.files property shows the count of retained files.

The retention.status.expiry property shows the latest-expiring retention timestamp of a file.
If that time has passed, the property value appends (expired) to the expiration timestamp.
The retention.status.expiry value depends on how you retain the file, as follows:

• Running the touch -R command with a date, time, or both specifies the date and time at
which the retention period expires.

• Running the touch -R command without a date or time specifies a retention period of the
current date and time plus the retention.period.default property value.

• Removing all write permissions from the file or setting its readonly system attribute retains
the file until the current date and time plus the default retention period. You can use the
access time of a file to set its retention time by running the following commands:

Chapter 7
Retaining Files on Your ZFS File System

7-55

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html

– Use the touch -a command to specify an access time in the future

– Use the chmod command to remove write permissions from the file

• Enabling automatic retention by setting the retention.period.grace value to a positive
integer specifies a retention period to the last time the file was modified (mtime) plus the
retention.period.grace property value and the retention.period.default property
value.

The retention.policy.onexpiry property specifies what occurs when the retention time of a
file (rtime) expires. The following values are valid:

• off: After a file's retention period expires, the file remains. Note that the file might be
deleted by a process that has the appropriate privileges. This is the default value.

• delete: Deletes a retained file automatically after the retention period expires.

• hold: Treats a file that has an expired retention as if the retention period has not expired.
As a result, the ZFS file retention feature continues to block deletions. When set to hold, a
file system that has a mandatory retention policy and its pool are blocked from destruction.

The retention.policy.changeacl property enables you to change the file permissions and
ACL, other than write, on a retained file. The following values are valid:

• on: Enables you to change file permissions and ACL, except for write, on a retained file.

• off: Prevents you from changing file permissions and ACL on a retained file. This is the
default value.

The retention.period.deletegrace property enables you to delay the deletion of a retained
file by a specified amount of time. The default value is 0. This property depends on the
retention.policy.onexpiry property being set to delete. The property value must be less
than 100 years.

Retaining Your Files
You cannot remove a retained file until its retention period expires. You can use the default
retention period or specify your own retention period a the time that you retain a file.

Use one of the following methods to specify the retention period for a file:

• rtime property - Specify the date and time at which you want the retention period to end in
one of the following ways:

– touch -R filename - Changes the retention period of the specified file to the current
date and time plus the default retention period.

If you use the touch -R command to specify a date and time, the specified value
becomes the end of the retention period.

You can use the touch -R command to extend the retention period of a retained file
by specifying a date and time in the future. You can also use the touch -t and
touch -f commands to specify a future date and time. Note that you cannot shorten
the retention period of a retained file.

Use this command only when the ZFS file system is local to the Oracle Solaris system.

You can specify the retention period for a file by using the touch command. These
commands enable you to set the atime property value to a future date and time before
you make the file read-only:

* touch -R MMDDhhmm[YY] filename

Chapter 7
Retaining Files on Your ZFS File System

7-56

* touch -a MMDDhhmm[YY] filename

Note:

If you do not specify an atime property value, the file's retention period is
specified by the retention.period.default property value.

– chmod a-w filename or chmod ugo-w filename - Removes all write permissions from
the file, which triggers file retention.

These commands use the current date and time plus the default retention period
unless atime is set to a future date and time. In that case, these commands use the
atime value.

Use these commands only when the ZFS file system is local or NFS mounted.

– chmod S+cR filename or chmod S+vreadonly filename - Sets the readonly file
attribute on the file over SMB, which triggers file retention.

These commands use the current date and time plus the default retention period
unless atime is set to a future date and time. In that case, these commands use the
atime value.

When a file's retention period ends, the readonly attribute is removed. At that time,
you can retain the file again by specifying a new retention period.

• min and max ZFS properties - Specifies the minimum and maximum values that limit the
retention period.

If you do not specify a time with the touch command, remove write permissions, or set the
readonly attribute on the file, files are retained for the default retention period.

The retention.period.min and retention.period.max property values serve as limits on
both the default retention period and for how long you can use touch -R to retain a file.

Alternately, you can use the access time (atime) as the retention period. When you retain a
file, its retention period is restricted to a range between the min and max property values.
So, if a retention period that exceeds the range, the period is limited by the min and max
property values.

The atime that you set on a file by using touch -a command adheres to the time range
restrictions only if its retained atime value is set to off. For example:

zfs set atime=off filesystem

Optionally, using the min and max method automatically retains files that have remained
unmodified for the default retention period.

You can use the touch -a and touch -R commands to retain a file in a retained ZFS file
system. When run on file systems that have file retention disabled, touch -a sets the
atime property value and touch -R generates an error.

Retaining Zero-Length Files
The ZFS file retention feature treats zero-length files differently than other regular files.

When you retain a zero-length file, the file sets the appendonly attribute. If you retain a file that
has the appendonly attribute set, the file remains append-only.

Chapter 7
Retaining Files on Your ZFS File System

7-57

You can add or remove write permissions from a retained zero-length file or from a retained file
that has the appendonly attribute set.

If you remove all write permissions, the file becomes a typical retained file, which sets the
readonly attribute and unsets the appendonly attribute. You can achieve the same result by
setting the readonly attribute or by unsetting the appendonly attribute.

Enabling Automatic File Retention
You can configure automatic file retention on a retained ZFS file system by setting the
retention.period.grace property value to a non-zero integer. When enabled, any file that has
not been modified for the grace period is retained automatically for the default retention period.

Note that when you enable automatic file retention, you cannot later disable it.

Also, you cannot increase the retention.period.grace property value after you enable
automatic retention.

Dataset and pool protections are extended automatically upon each write and upon each
mount. The new retention period becomes the current date and time plus the
retention.period.grace property value and the retention.period.default property value.
This action presumes that the file just written must be retained.

File Retention Restrictions
The ZFS file retention feature has the following restrictions:

• You cannot rename a retained file or rename any part of that file's path. Note that you can
rename a directory only if the directory is empty.

• You cannot roll back any dataset that uses the mandatory retention policy even if you use
the zfs rollback -F command.

• No privilege exists that permits you to destroy a file system or pool that has unexpired
retained files when the file system uses the mandatory retention policy.

Migrating ZFS File Systems
To migrate a local or remote ZFS or UFS file system to a target ZFS file system, use shadow
migration. The target file system is also called the shadow file system.

Use the following commands to manage shadow migration:

• The shadowadm command stops, resumes, or cancels shadow migration.

• The shadowstat command with its options monitors migrations running on the system.
Use the shadowstat command without options to monitor the progress of migrations. The
displayed information is continuously updated until you type Ctrl-C.

The command's -E and -e options are particularly useful.

– To list all currently running migrations and identify those that could not be completed
because of errors, use the -E option.

– To list a specific migration and check if errors are causing the migration to fail, use the
-e option.

For an example that shows how these commands are used, see Starting and Monitoring File
System Migrations.

Chapter 7
Migrating ZFS File Systems

7-58

Caution:

When migrating file systems, observe the following rules:

• Do not add or remove data from the file system while it is being migrated.
Otherwise, those changes are excluded from migration.

• Do not change the mountpoint property of the shadow file system while
migration is in progress.

How to Migrate a File System to a ZFS File System
1. If you are migrating data from a remote NFS server, confirm that the name service

information is accessible on both remote and local systems.

For a large migration using NFS, you might consider doing a test migration of a subset of
the data to ensure that the UID, GUID, and ACL information migrates correctly.

2. If necessary, install the shadow-migration package on the target system.

$ pkg install shadow-migration
3. Enable the shadowd service.

$ svcadm enable shadowd
4. Set the local or remote file system to be migrated to read-only.

• If you are migrating a local ZFS file system, set it to read-only. For example:

$ zfs set readonly=on tank/home/data
• If you are migrating a remote file system, share it as read-only. For example:

$ share -F nfs -o ro /export/home/ufsdata
5. Create the target file system while setting the shadow file to the file system to be

migrated.

Note:

The new target ZFS file system must be completely empty. Otherwise, migration
will not start.

Specify the shadow setting depending on the type of system you are migrating.

• If you are migrating a local file system, specify the source path.

For example:

$ zfs create -o shadow=file:///west/home/data users/home/shadow
• If you are migrating a NFS file system. specify the source host name and path.

For example:

$ zfs create -o shadow=nfs://neo/export/home/ufsdata users/home/shadow2
6. To check the progress of the migration, issue the shadowstat command.

For examples of how to monitor migrations, see Starting and Monitoring File System
Migrations.

Chapter 7
Migrating ZFS File Systems

7-59

Note:

Migrating file system data over NFS can be slow, depending on your network
bandwidth. If the system is rebooted during migration, the migration continues
after the system boot completes.

Example 7-11 Starting and Monitoring File System Migrations

In this example, multiple migrations are initiated. The shadowadm command lists ongoing
migrations while the shadowstat command monitors their progress.

$ zfs create -o shadow=nfs://system2/rpool/data/jsmith/archive rpool/data/copyarchive
$ shadowadm list
PATH STATE
/rpool/data/copyarchive ACTIVE

$ zfs create -o shadow=nfs://system2/rpool/data/jsmith/datalogs rpool/data/logcopy
$ shadowadm list
PATH STATE
/rpool/data/copyarchive ACTIVE
/rpool/data/logcopy ACTIVE

$ shadowstat
 EST
 BYTES BYTES ELAPSED
DATASET XFRD LEFT ERRORS TIME
rpool/data/copyarchive 34.4M 3.37G - 00:00:36
rpool/data/logcopy 1.12K 155K 1 (completed)Errors are detected.
rpool/data/copyarchive 34.5M 3.37G - 00:00:37
rpool/data/logcopy 1.12K 155K 1 (completed)
rpool/data/copyarchive 35.0M 3.37G - 00:00:38
rpool/data/logcopy 1.12K 155K 1 (completed)
rpool/data/copyarchive 35.2M 3.37G - 00:00:39
rpool/data/logcopy 1.12K 155K 1 (completed)
^C

The previous shadowstat output indicates errors in the migration to rpool/data/logcopy.

The following output from the shadowstat -E and shadowstate -e commands show that
migration to rpool/data/logcopy could not be completed because socket migration is not
supported. The shadowadm command cancels the migration.

$ shadowstat -E
rpool/data/copyarchive:
No errors encountered.
rpool/data/logcopy:
PATH ERROR
errdir/cups-socket Operation not supported

$ shadowstat -e /rpool/data/logcopy
rpool/data/logcopy:
PATH ERROR
errdir/cups-socket Operation not supported

$ shadowadm cancel /rpool/data/logcopy

The following output shows information about the migration to rpool/data/copyarchive,
which continues toward completion.

Chapter 7
Migrating ZFS File Systems

7-60

$ shadowadm list
PATH STATE
/rpool/data/copyarchive ACTIVE$ shadowstat
 EST
 BYTES BYTES ELAPSED
DATASET XFRD LEFT ERRORS TIME
rpool/data/copyarchive 251M 3.16G - 00:01:27
rpool/data/copyarchive 251M 3.16G - 00:01:28
rpool/data/copyarchive 252M 3.16G - 00:01:29
^C

$ shadowstat
No migrations in progress.
$ shadowadm list
$ exit

How to Migrate SMB Filesystems
To migrate SMB filesystems, observe the following requirements:

• If Active Directory is used, then both the source system and the target system must be in
the same AD domain.

• Unlike NFS source filesystems, SMB systems require authentication to grant access.
Therefore, the target system must be aware of the user account on the source system.
Ensure also that the user has backup and restore privileges on the source system.

• The SMB source must be using the SMB 2.0 protocol.

1. Configure the same SMB user account on the target system to enable authentication
to be processed between the source and target systems.

Ensure that the password is persistent in the target system:

• If the domain controller is configured to allow all NT Lan Manager (NTLM) pass-
through authentication requests within the domain, use the smbadm add-key
command to create the persistent password.

• If the domain controller is configured to restrict all NTLM pass-through authentication
requests, enable Kerberos caching. Then, use the kinit command to create a
persistent password.

2. Set the SMB source filesystem to have read-only permissions during the migration.

3. Create the target file system while setting the shadow file to the file system to be
migrated.

Note:

The new target ZFS file system must be completely empty. Otherwise, migration
will not start.

$ zfs create -o shadow=smb://user@host/path target
4. To check the progress of the migration, use the shadowstat command.

Chapter 7
Migrating ZFS File Systems

7-61

Upgrading ZFS File Systems
If you have ZFS file systems from a previous Oracle Solaris release, you can upgrade your file
systems with the zfs upgrade command to take advantage of the file system features in the
current release. In addition, this command notifies you when your file systems are running
older versions.

For example, this file system is at the current version 5.

$ zfs upgrade
This system is currently running ZFS filesystem version 5.

All filesystems are formatted with the current version.

Use this command to identify the features that are available with each file system version.

$ zfs upgrade -v
The following filesystem versions are supported:

VER DESCRIPTION
--- --
1 Initial ZFS filesystem version
2 Enhanced directory entries
3 Case insensitive and File system unique identifier (FUID)
4 userquota, groupquota properties
5 System attributes
6 Multilevel file system support

For more information about a particular version, including supported releases,
see the ZFS Administration Guide.

For information about upgrading encrypted file systems, see Upgrading Encrypted ZFS File
Systems.

Chapter 7
Upgrading ZFS File Systems

7-62

8
Working With Oracle Solaris ZFS Snapshots
and Clones

This chapter describes how to create and manage Oracle Solaris ZFS snapshots and clones. It
also provides information about saving snapshots.

The chapter covers the following topics:

• Overview of ZFS Snapshots.

• Creating and Destroying ZFS Snapshots.

• Displaying and Accessing ZFS Snapshots.

• Rolling Back a ZFS Snapshot.

• Overview of ZFS Clones.

• Creating a ZFS Clone.

• Destroying a ZFS Clone.

• Replacing a ZFS File System With a ZFS Clone.

• Saving, Sending, and Receiving ZFS Data.

• Monitoring ZFS Pool Operations

Overview of ZFS Snapshots
A snapshot is a read-only copy of a file system or volume. Snapshots can be created almost
instantly, and they initially consume no additional disk space within the pool. However, as data
within the active dataset changes, the snapshot consumes disk space by continuing to
reference the old data, thus preventing the disk space from being freed.

A clone is a writable volume or file system whose initial contents are the same as the dataset
from which it was created. Clones can be created only from a snapshot.

ZFS snapshots include the following features:

• They persist across system reboots.

• The theoretical maximum number of snapshots is 264.

• Snapshots use no separate backing store. Snapshots consume disk space directly from
the same storage pool as the file system or volume from which they were created.

• Recursive snapshots are created quickly as one atomic operation. The snapshots are
created together (all at once) or not created at all. The benefit of atomic snapshot
operations is that the snapshot data is always taken at one consistent time, even across
descendant file systems.

Snapshots of volumes cannot be accessed directly, but they can be cloned, backed up, rolled
back to, and so on. For information about backing up a ZFS snapshot, see Saving, Sending,
and Receiving ZFS Data.

This section covers the following topics:

8-1

• Creating and Destroying ZFS Snapshots

• Displaying and Accessing ZFS Snapshots

• Rolling Back a ZFS Snapshot

Note:

Certain snapshot operations can be set by using the Desktop's Time Slider. See
Using Time Slider.

Creating and Destroying ZFS Snapshots
You create snapshots by using the zfs snapshot or the zfs snap command, which takes
as its only argument the name of the snapshot to create. The snapshot name uses one of the
following conventions:

• filesystem@snapname
• volume@snapname
The snapshot name must satisfy the naming requirements in Naming ZFS Components.

The following example creates a snapshot of system1/home/kaydo that is named friday.

$ zfs snapshot system1/home/kaydo@friday

To create snapshots for all descendant file systems, use the rr option. For example:

$ zfs snapshot -r system1/home@snap1
$ zfs list -t snapshot -r system1/home
NAME USED AVAIL REFER MOUNTPOINT
system1/home@snap1 0 - 2.11G -
system1/home/kaydo@snap1 0 - 115M -
system1/home/glori@snap1 0 - 2.00G -
system1/home/hsolo@snap1 0 - 2.00G -
system1/home/cpark@snap1 0 - 57.3M -

Snapshots have no modifiable properties, nor can dataset properties be applied to a snapshot.
For example:

$ zfs set compression=on system1/home/kaydo@friday
cannot set property for 'system1/home/kaydo@friday':
this property can not be modified for snapshots

To destroy snapshots, use the zfs destroy command. For example:

$ zfs destroy system1/home/kaydo@friday

You cannot destroy a dataset if snapshots of the dataset exist. For example:

$ zfs destroy system1/home/kaydo
cannot destroy 'system1/home/kaydo': filesystem has children
use '-r' to destroy the following datasets:
system1/home/kaydo@tuesday
system1/home/kaydo@wednesday
system1/home/kaydo@thursday

In addition, if clones have been created from a snapshot, then you must destroy them before
you can destroy the snapshot.

Chapter 8
Overview of ZFS Snapshots

8-2

For more information about the destroy subcommand, see How to Destroy a ZFS File
System.

Holding ZFS Snapshots
Older snapshots are sometimes inadvertently destroyed due to different automatic snapshot or
data retention policies. If a removed snapshot is part of an ongoing ZFS send and receive
operation, then the operation might fail. To avoid this scenario, consider placing a hold on a
snapshot.

Holding a snapshot prevents it from being destroyed. In addition, this feature allows a snapshot
with clones to be deleted pending the removal of the last clone by using the zfs destroy -d
command. Each snapshot has an associated user-reference count, which is initialized to zero.
This count increases by 1 whenever a hold is put on a snapshot and decreases by 1 whenever
a hold is released.

In the previous Oracle Solaris release, you could destroy a snapshot only by using the zfs
destroy command if it had no clones. In this Oracle Solaris release, the snapshot must also
have a zero user-reference count.

You can hold a snapshot or set of snapshots. For example, the following syntax puts a hold
tag, keep, on system1/home/kaydo/snap@1:

$ zfs hold keep system1/home/kaydo@snap1

To recursively hold the snapshots of all descendant file systems, use the -r option. For
example:

$ zfs snapshot -r system1/home@now
$ zfs hold -r keep system1/home@now

This syntax adds a single reference, keep, to the given snapshot or set of snapshots. Each
snapshot has its own tag namespace and hold tags must be unique within that space. If a hold
exists on a snapshot, attempts to destroy that held snapshot by using the zfs destroy
command will fail. For example:

$ zfs destroy system1/home/kaydo@snap1
cannot destroy 'system1/home/kaydo@snap1': dataset is busy

To destroy a held snapshot, use the -d option. For example:

$ zfs destroy -d system1/home/kaydo@snap1

To display a list of held snapshots, use the zfs holds command. For example:

$ zfs holds system1/home@now
NAME TAG TIMESTAMP
system1/home@now keep Fri Aug 3 15:15:53 2012

$ zfs holds -r system1/home@now
NAME TAG TIMESTAMP
system1/home/kaydo@now keep Fri Aug 3 15:15:53 2012
system1/home/glori@now keep Fri Aug 3 15:15:53 2012
system1/home/hsolo@now keep Fri Aug 3 15:15:53 2012
system1/home/cpark@now keep Fri Aug 3 15:15:53 2012
system1/home@now keep Fri Aug 3 15:15:53 2012

To release a hold on a snapshot or set of snapshots, use the zfs release command. For
example:

Chapter 8
Overview of ZFS Snapshots

8-3

$ zfs release -r keep system1/home@now

If the snapshot is released, the snapshot can be destroyed by using the zfs destroy
command. For example:

$ zfs destroy -r system1/home@now

Two properties identify snapshot hold information.

• The destroyer property is set to on if the snapshot has been marked for deferred
destruction by using the zfs destroy -d command. Otherwise, the property is set to
off.

• The userrefs property is set to the number of holds on this snapshot.

Renaming ZFS Snapshots
You can rename snapshots, but only within the same pool and dataset from which they were
created. For example:

$ zfs rename system1/home/kaydo@snap1 system1/home/kaydo@today

You can also use the following shortcut syntax:

$ zfs rename system1/home/kaydo@snap1 today

The following snapshot rename operation is not supported because the target pool and file
system name are different from the pool and file system where the snapshot was created:

$ zfs rename system1/home/kaydo@today pool/home/kaydo@saturday
cannot rename to 'pool/home/kaydo@today': snapshots must be part of same
dataset

You can recursively rename snapshots by using the zfs rename -r command. For example:

$ zfs list -t snapshot -r users/home
NAME USED AVAIL REFER MOUNTPOINT
users/home@now 23.5K - 35.5K -
users/home@yesterday 0 - 38K -
users/home/glori@yesterday 0 - 2.00G -
users/home/hsolo@yesterday 0 - 1.00G -
users/home/nneke@yesterday 0 - 2.00G -
$ zfs rename -r users/home@yesterday @2daysago
$ zfs list -t snapshot -r users/home
NAME USED AVAIL REFER MOUNTPOINT
users/home@now 23.5K - 35.5K -
users/home@2daysago 0 - 38K -
users/home/glori@2daysago 0 - 2.00G -
users/home/hsolo@2daysago 0 - 1.00G -
users/home/nneke@2daysago 0 - 2.00G -

Displaying and Accessing ZFS Snapshots
By default, snapshots no longer appear in the zfs list output. You must use the zfs list
-t snapshot command to display snapshot information. You can also enable the
listsnapshots pool property instead. For example:

$ zpool get listsnapshots system1
NAME PROPERTY VALUE SOURCE
system1 listsnapshots off default
$ zpool set listsnapshots=on system1

Chapter 8
Overview of ZFS Snapshots

8-4

$ zpool get listsnapshots system1
NAME PROPERTY VALUE SOURCE
system1 listsnapshots on local

Snapshots of file systems are placed in the .zfs/snapshot directory within the root of the file
system. For example, if system1/home/kaydo is mounted on /home/kaydo, then the
system1/home/kaydo@thursday snapshot data is accessible in the /home/kaydo/.zfs/
snapshot/thursday directory.

$ ls /system1/home/kaydo/.zfs/snapshot
thursday tuesday wednesday

The following examples shows how to list snapshots.

$ zfs list -t snapshot -r system1/home
NAME USED AVAIL REFER MOUNTPOINT
system1/home/kaydo@tuesday 45K - 2.11G -
system1/home/kaydo@wednesday 45K - 2.11G -
system1/home/kaydo@thursday 0 - 2.17G -

The following example shows how to list snapshots that were created for a particular file
system.

$ zfs list -r -t snapshot -o name,creation system1/home
NAME CREATION
system1/home/kaydo@tuesday Fri Aug 3 15:18 2012
system1/home/kaydo@wednesday Fri Aug 3 15:19 2012
system1/home/kaydo@thursday Fri Aug 3 15:19 2012
system1/home/glori@today Fri Aug 3 15:24 2012
system1/home/hsolo@today Fri Aug 3 15:24 2012

Disk Space Accounting for ZFS Snapshots
When you create a snapshot, its disk space is initially shared between the snapshot and the
file system, and possibly with previous snapshots. As the file system changes, disk space that
was previously shared becomes unique to the snapshot, and thus is counted in the snapshot's
used property. Additionally, deleting snapshots can increase the amount of disk space unique
to (and thus used by) other snapshots.

A snapshot's space referenced property value is the same as the file system's value was
when the snapshot was created.

You can identify additional information about how the values of the used property are
consumed. New read-only file system properties describe disk space usage for clones, file
systems, and volumes. For example:

$ zfs list -o space -r rpool
NAME AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD
rpool 124G 9.57G 0 302K 0 9.57G
rpool/ROOT 124G 3.38G 0 31K 0 3.38G
rpool/ROOT/solaris 124G 20.5K 0 0 0 20.5K
rpool/ROOT/solaris/var 124G 20.5K 0 20.5K 0 0
rpool/ROOT/solaris-1 124G 3.38G 66.3M 3.14G 0 184M
rpool/ROOT/solaris-1/var 124G 184M 49.9M 134M 0 0
rpool/VARSHARE 124G 39.5K 0 39.5K 0 0
rpool/dump 124G 4.12G 0 4.00G 129M 0
rpool/export 124G 63K 0 32K 0 31K
rpool/export/home 124G 31K 0 31K 0 0
rpool/swap 124G 2.06G 0 2.00G 64.7M 0

For a description of these properties, see the used properties in the zfs(8) man page.

Chapter 8
Overview of ZFS Snapshots

8-5

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html

Rolling Back a ZFS Snapshot
You can to discard all changes made to a file system since a specific snapshot was created by
using the zfs rollback command. The file system reverts to its state at the time the
snapshot was taken. By default, the command cannot roll back to a snapshot other than the
most recent snapshot.

To roll back to an earlier snapshot, you must destroy all intermediate snapshots by specifying
the -r option.

If clones of any intermediate snapshots exist, use the -R option to destroy the clones as well.

Note:

The file system that you want to roll back must be unmounted and remounted, if it is
currently mounted. If the file system cannot be unmounted, the rollback fails. Use the
-f option to force the file system to be unmounted, if necessary.

In the following example, the system1/home/kaydo file system is rolled back to the
tuesday snapshot.

$ zfs rollback system1/home/kaydo@tuesday
cannot rollback to 'system1/home/kaydo@tuesday': more recent snapshots exist
use '-r' to force deletion of the following snapshots:
system1/home/kaydo@wednesday
system1/home/kaydo@thursday
$ zfs rollback -r system1/home/kaydo@tuesday

In the following example, the wednesday and thursday snapshots are destroyed because the
file system is rolled back to the earlier tuesday snapshot.

$ zfs list -r -t snapshot -o name,creation system1/home/kaydo
NAME CREATION
system1/home/kaydo@tuesday Fri Aug 3 15:18 2012

Identifying ZFS Snapshot Differences (zfs diff)
You can determine ZFS snapshot differences by using the zfs diff command.

For example, assume that the following two snapshots are created:

$ ls /system1/home/kaydo
fileA
$ zfs snapshot system1/home/cpark@snap1
$ ls /system1/home/kaydo
fileA fileB
$ zfs snapshot system1/home/cpark@snap2

To identify the differences between the two snapshots, you would use syntax similar to the
following example:

$ zfs diff system1/home/cpark@snap1 system1/home/cpark@snap2
M /system1/home/kaydo/
+ /system1/home/kaydo/fileB

Chapter 8
Overview of ZFS Snapshots

8-6

In the output, the M indicates that the directory has been modified. The + indicates that fileB
exists in the later snapshot.

The R in the following output indicates that a file in a snapshot has been renamed.

$ mv /system1/kaydo/fileB /system1/kaydo/fileC
$ zfs snapshot system1/kaydo@snap2
$ zfs diff system1/kaydo@snap1 system1/kaydo@snap2
M /system1/kaydo/
R /system1/kaydo/fileB -> /system1/kaydo/fileC

The following table summarizes the file or directory changes that are identified by the zfs
diff command.

File or Directory Change Identifier

File or directory has been modified or file or directory link has changed M
File or directory is present in the older snapshot but not in the more recent
snapshot

--

File or directory is present in the more recent snapshot but not in the older
snapshot

+

File or directory has been renamed R

For more information, see the zfs(8) man page.

If you compare different snapshots by using thezfs diff command, the high level
differences are displayed such as a new file system or directory. For example, the sales file
system has 2 descendant file systems, data and logs with files within each descendant file
system.

$ zfs list -r sales
NAME USED AVAIL REFER MOUNTPOINT
sales 1.75M 66.9G 33K /sales
sales/data 806K 66.9G 806K /sales/data
sales/logs 806K 66.9G 806K /sales/logs

The high-level differences can be displayed between sales@snap1 and sales@snap2,
where the primary difference is addition of the sales/logs file system.

$ zfs diff sales@snap1 sales@snap2
M /sales/
+ /sales/logs

You can recursively identify snapshot differences including file names by using syntax similar
to the following:

$ zfs diff -r -E sales@snap1
D /sales/ (sales)
+ /sales/data
D /sales/data/ (sales/data)
+ /sales/data/dfile.1
+ /sales/data/dfile.2
+ /sales/data/dfile.3
$ zfs diff -r -E sales@snap2
D /sales/ (sales)
+ /sales/data
+ /sales/logs
D /sales/logs/ (sales/logs)
+ /sales/logs/lfile.1

Chapter 8
Overview of ZFS Snapshots

8-7

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html

+ /sales/logs/lfile.2
+ /sales/logs/lfile.3
D /sales/data/ (sales/data)
+ /sales/data/dfile.1
+ /sales/data/dfile.2
+ /sales/data/dfile.3

In the output, the lines that begin with D and end with (name) indicate a file system (dataset)
and mount point.

Overview of ZFS Clones
A clone is a writable volume or file system whose initial contents are the same as the dataset
from which it was created. As with snapshots, creating a clone is nearly instantaneous and
initially consumes no additional disk space. In addition, you can snapshot a clone.

Clones do not inherit the properties of the dataset from which they were created. Use the zfs
get and zfs set commands to view and change the properties of a cloned dataset. For more
information, see Setting ZFS Properties.

Because a clone initially shares all its disk space with the original snapshot, its used property
value is initially zero. As changes are made to the clone, it uses more disk space. The used
property of the original snapshot does not include the disk space consumed by the clone.

This section covers the following topics:

• Creating a ZFS Clone

• Destroying a ZFS Clone

• Displaying and Accessing ZFS Clones

• Replacing a ZFS File System With a ZFS Clone

Creating a ZFS Clone
To create a clone, use the zfs clone command, specifying the snapshot or dataset from
which to create the clone and the name of the new file system or volume, which can be located
anywhere in the ZFS hierarchy. The new dataset is the same type (for example, file system or
volume) as the snapshot from which the clone was created. You cannot create a clone of a file
system in a pool that is different from where the original file system snapshot resides.

The following example creates a new clone named system1/home/megra/bug123 with the
same initial contents as the snapshot system1/ws/gate@yesterday.

$ zfs snapshot system1/ws/gate@yesterday
$ zfs clone system1/ws/gate@yesterday system1/home/megra/bug123

The following example creates a cloned workspace from the projects/newproject@today
snapshot for a temporary user as projects/teamA/tempuser. Properties then are set on
the cloned workspace.

$ zfs snapshot projects/newproject@today
$ zfs clone projects/newproject@today projects/teamA/tempuser
$ zfs set share.nfs=on projects/teamA/tempuser
$ zfs set quota=5G projects/teamA/tempuser

Chapter 8
Overview of ZFS Clones

8-8

Destroying a ZFS Clone
You destroy ZFS clones by using the zfs destroy command. For example:

$ zfs destroy system1/home/megra/bug123

Displaying and Accessing ZFS Clones
By setting a clone's mountpoint property to clonedir, you can access the clone in the
mountpoint /.zfs/clone directory that is located in the dataset of which this is a clone. This
dataset is called the head dataset.

When you set a clone's mountpoint property to clonedir, ZFS uses the final part of its dataset
name as the clone subdirectory to add to .zfs/clone. Thus, ensure that each clone for which
you intend to use clonedir has a unique name after the final slash for a given head dataset.

In this example, the head dataset is tank/ds/subds. Create a clone of the tank/ds/
subds@march snapshot called tank/march and mount it on /tank/ds/subds. When you set
its mountpoint property to clonedir, you can access the clone from the /tank/ds/
subds/.zfs/clone/march directory.

To determine whether a file system is a clone, use the zfs command to verify that the value of
the origin property is non-NULL.

To share a clone that has mountpoint=clonedir set, ensure that it is shared from the top-level
directory that houses the .zfs/clone directory. For example, a file system mounted on /a
only permits access to its clonedir clones if /a is shared and not a subdirectory of /a, so the
clonedir clones are available in /a/.zfs/clone.

When you set a clone's mountpoint property to clonedir, ZFS does the following:

• Disables any existing shares of that clone.

• Adds the clone directory to its head dataset's .zfs/clone directory, such as tank/ds/
subds/.zfs/clone/march.

You can mount clones in .zfs/clone in the following ways:

• The tank/ds/subds/march clone is mounted at the tank/ds/subds mount point, which is
tank/ds/subds/.zfs/clone/march.

Create a clone that sets its mountpoint property to clonedir.

zfs clone -o mountpoint=clonedir snapshot-name
 clone-name

The following command creates a clone of the tank/ds/subds@snap snapshot called
tank/ds/subds/march:

zfs clone -o mountpoint=clonedir tank/ds/subds@march tank/ds/subds/march

Assuming that the mount point of tank/ds/subds is /tank/ds/subds, the tank/ds/subds/
march clone is mounted on demand at /tank/ds/subds/.zfs/clone/march.

• Set an existing clone's mountpoint property to clonedir.

Chapter 8
Overview of ZFS Clones

8-9

zfs set -o mountpoint=clonedir clone-name

The following command sets the mountpoint property to clonedir for the
existing tank/ds/subds/march clone:

zfs set -o mountpoint=clonedir tank/ds/subds/march

• Use the mkdir command to create a directory for the clone in .zfs/clone directory.

Note that you can use the mkdir and rmdir commands to create and destroy snapshots
and clones, respectively.

The mkdir command creates a snapshot of the head dataset and then clones it.

mkdir .zfs/clone/clone-name

For example, with tank/ds/subds as the head dataset, the following command does the
following:

– Creates a snapshot called tank/ds/subds@march if it does not exist

– Clones the snapshot as a dataset called tank/ds/subds/march
The resulting mount path is /tank/ds/subds/.zfs/clone/march when the mount point of
tank/ds/subds is the default /tank/ds/subds. Note that you can specify any mount point
for the mount path.

mkdir .zfs/clone/march

As with the zfs destroy command, the rmdir command does not destroy the origin
snapshot.

Replacing a ZFS File System With a ZFS Clone
To replace an active ZFS file system with a clone of that file system, use the zfs promote
command. This feature enables you to clone and replace file systems so that the original file
system becomes the clone of the specified file system. In addition, you can destroy the file
system from which the clone was originally created. Without clone promotion, you cannot
destroy an original file system of active clones. For more information, see Destroying a ZFS
Clone.

In the following example, the system1/test/productA file system is cloned and then the
clone file system, system1/test/productAbeta, becomes the original system1/test/
productA file system.

$ zfs create system1/test
$ zfs create system1/test/productA
$ zfs snapshot system1/test/productA@today
$ zfs clone system1/test/productA@today system1/test/productAbeta
$ zfs list -r system1/test
NAME USED AVAIL REFER MOUNTPOINT
system1/test 104M 66.2G 23K /system1/test
system1/test/productA 104M 66.2G 104M /system1/test/productA
system1/test/productA@today 0 - 104M -
system1/test/productAbeta 0 66.2G 104M /system1/test/productAbeta
$ zfs promote system1/test/productAbeta
$ zfs list -r system1/test
NAME USED AVAIL REFER MOUNTPOINT

Chapter 8
Overview of ZFS Clones

8-10

system1/test 104M 66.2G 24K /system1/test
system1/test/productA 0 66.2G 104M /system1/test/productA
system1/test/productAbeta 104M 66.2G 104M /system1/test/productAbeta
system1/test/productAbeta@today 0 - 104M -

In this zfs list output, note that the disk space accounting information for the original
productA file system has been replaced with the productAbeta file system.

You can complete the clone replacement process by renaming the file systems. For example:

$ zfs rename system1/test/productA system1/test/productAlegacy
$ zfs rename system1/test/productAbeta system1/test/productA
$ zfs list -r system1/test

Optionally, you can remove the legacy file system. For example:

$ zfs destroy system1/test/productAlegacy

Saving, Sending, and Receiving ZFS Data
The zfs send command creates a stream representation of a snapshot that is written to
standard output. By default, a full stream is generated. You can redirect the output to a file or to
a different system. The zfs receive command creates a snapshot whose contents are
specified in the stream that is provided on standard input. If a full stream is received, a new file
system is created as well. You can also send ZFS snapshot data and receive ZFS snapshot
data and file systems.

In this Oracle Solaris release, the zfs send command has been enhanced with -w
compress option. This option enables a system to perform a raw data transfer. In this type of
transfer, data blocks that are compressed are read as is on the source disk and written as is on
the target. No decompression-recompression occurs during the operation.

. This system can still receive data transfers from a source that does not have the zfs send
-w compress option, such as systems running previous Oracle Solaris releases. In this case,
the default behavior applies, where the compressed data blocks are first decompressed before
they are transferred to the target system. After the transfer is complete, the blocks are then
recompressed on the receiving system. For more information, see Sending ZFS Data Using
Raw Transfer.

In addition, this release includes the ability to resume transferring ZFS data. In particular, the
transfer of large amounts of ZFS data can be interrupted due to network outages or system
failure. To prevent having to resend the whole thing again, the zfs send and zfs receive
commands can be run with the -C option to resume sending the ZFS data. For more
information, see Using Resumable Replication.

This section covers the following topics:

• Saving ZFS Data With Other Backup Products

• Types of ZFS Snapshot Streams

• Sending a ZFS Snapshot

• Receiving a ZFS Snapshot

• Applying Different Property Values to a ZFS Snapshot Stream

• Sending and Receiving Complex ZFS Snapshot Streams

• Sending and Receiving Encrypted ZFS Data

• Remote Replication of ZFS Data

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-11

Note the following backup solutions for saving ZFS data:

• Enterprise backup products – These products provide the following features:

– Per-file restoration

– Backup media verification

– Media management

• File system snapshots and rolling back snapshots – Create a copy of a file system and
revert to a previous file system version, if necessary.

For more information about creating and rolling back to a snapshot, see Overview of ZFS
Snapshots.

• Saving snapshots – Using the zfs send and zfs receive commands, you can save
incremental changes between snapshots but you cannot restore files individually. You must
restore the entire file system snapshot..

• Remote replication – Copy a file system from one system to another system. This
process is different from a traditional volume management product that might mirror
devices across a WAN. No special configuration or hardware is required. Using the zfs
send and zfs receive commands to replicate a ZFS file system enables you to re-
create a file system on a storage pool on another system, and specify different levels of
configuration for the newly created pool, such as RAID-Z, but with identical file system
data.

• Archive utilities – Save ZFS data with archive utilities such as tar, cpio, and pax or
third-party backup products. Currently, both tar and cpio translate NFSv4-style ACLs
correctly, but pax does not.

Saving ZFS Data With Other Backup Products
In addition to the zfs send and zfs receive commands, you can also use archive utilities
such as the tar and cpio commands, to save ZFS files. These utilities save and restore ZFS
file attributes and ACLs. Check the appropriate options for both the tar and cpio commands.

Types of ZFS Snapshot Streams
The zfs send command can be used to create a stream of one or more snapshots. Then,
you can use the snapshot stream to re-create a ZFS file system or volume by using the zfs
receive command.

The zfs send options used to create the snapshot stream determine the stream format type
that is generated.

• Full stream – Consists of all dataset content from the time that the dataset was created up
to the specified snapshot.

The default stream generated by the zfs send command is a full stream. It contains one
file system or volume, up to and including the specified snapshot. The stream does not
contain snapshots other than the snapshot specified in the command.

• Incremental stream – Consists of the differences between one snapshot and another
snapshot.

A stream package is a stream type that contains one or more full or incremental streams. The
types of stream packages are:

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-12

• Replication stream package – Consists of the specified dataset and its descendants. It
includes all intermediate snapshots. If the origin of a cloned dataset is not a descendant of
the snapshot specified on the command line, that origin dataset is not included in the
stream package. To receive the stream, the origin dataset must exist in the destination
storage pool.

Note:

A self-contained replication stream does not have external dependencies. See
the section on self-contained replication streams below.

Assume that the following list of datasets and their origins were created in the order in
which they appear.

NAME ORIGIN
pool/a -
pool/a/1 -
pool/a/1@clone -
pool/b -
pool/b/1 pool/a/1@clone
pool/b/1@clone2 -
pool/b/2 pool/b/1@clone2
pool/b@pre-send -
pool/b/1@pre-send -
pool/b/2@pre-send -
pool/b@send -
pool/b/1@send -
pool/b/2@send -

Suppose you have a replication stream package created with the following syntax:

$ zfs send -R pool/b@send

This package would consist of the following full and incremental streams:

TYPE SNAPSHOT INCREMENTAL FROM
full pool/b@pre-send -
incr pool/b@send pool/b@pre-send
incr pool/b/1@clone2 pool/a/1@clone
incr pool/b/1@pre-send pool/b/1@clone2
incr pool/b/1@send pool/b/1@send
incr pool/b/2@pre-send pool/b/1@clone2
incr pool/b/2@send pool/b/2@pre-send

In the output, the pool/a/1@clone snapshot is not included in the replication stream
package. Therefore, this replication stream package can only be received in a pool that
already has pool/a/1@clone snapshot.

• Self-contained replication stream package - This type of package is not dependent on
any datasets that are not included in the stream package. You create a replication stream
package with syntax similar to the following example:

$ zfs send -Rc pool/b@send ...

This example package would consist of the following full and incremental streams:

TYPE SNAPSHOT INCREMENTAL FROM
full pool/b@pre-send -
full pool/b/1@clone2 -
incr pool/b@send pool/b@pre-send

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-13

incr pool/b/1@pre-send pool/b/1@clone2
incr pool/b/1@send pool/b/1@send
incr pool/b/2@pre-send pool/b/1@clone2
incr pool/b/2@send pool/b/2@pre-send

Comparing with the non-self-contained replication stream, notice that this self-contained
replication stream has an integrated full stream of the pool/b/1@clone2 snapshot. This
snapshot is an integrated dataset that has clone origin bits merged into it as data; clone2
is no longer a full clone with a separate origin. This makes it possible to receive the
pool/b/1 snapshot with no external dependencies.

• Recursive stream package – Consists of the specified dataset and its descendants.
Unlike replication stream packages, intermediate snapshots are not included unless they
are the origin of a cloned dataset that is included in the stream. By default, if the origin of a
dataset is not a descendant of the snapshot specified in the command, the behavior is
similar to replication streams. Note that a self-contained recursive stream does not have
external dependencies.

Note:

A self-contained recursive stream does not have external dependencies. See the
section on self-contained recursive streams below.

You create a recursive stream package with syntax similar to the following example:

$ zfs send -r pool/b@send ...

This example package would consist of the following full and incremental streams:

TYPE SNAPSHOT INCREMENTAL FROM
full pool/b@send -
incr pool/b/1@clone2 pool/a/1@clone
incr pool/b/1@send pool/b/1@clone2
incr pool/b/2@send pool/b/1@clone2

In the output, the pool/a/1@clone snapshot is not included in the recursive stream
package. Therefore, similar to the replication stream package,this recursive stream
package can only be received in a pool that already has pool/a/1@clone snapshot. This
behavior is similar to the replication stream package scenario described above.

• Self-contained recursive stream package - This type of package is not dependent on
any datasets that are not included in the stream package. You create a recursive stream
package with syntax similar to the following example:

$ zfs send -rc pool/b@send ...

This example package would consist of the following full and incremental streams:

TYPE SNAPSHOT INCREMENTAL FROM
full pool/b@send -
full pool/b/1@clone2 -
incr pool/b/1@send pool/b/1@clone2
incr pool/b/2@send pool/b/1@clone2

Sending a ZFS Snapshot
You can use the zfs send command to send a copy of a snapshot stream and receive the
snapshot stream in another pool on the same system or in another pool on a different system

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-14

that is used to store backup data. For example, to send the snapshot stream on a different pool
to the same system, use a command similar to the following example:

$ zfs send pool/diant@snap1 | zfs recv spool/ds01

Tip:

You can use zfs recv as an alias for the zfs receive command.

If you are sending the snapshot stream to a different system, pipe the zfs send output
through the ssh command. For example:

sys1$ zfs send pool/diant@snap1 | ssh sys2 zfs recv pool/hsolo

When you send a full stream, the destination file system must not exist.

If you need to store many copies, consider compressing a ZFS snapshot stream
representation with the gzip command. For example:

$ zfs send pool/fs@snap | gzip > backupfile.gz

Example 8-1 Sending Incremental ZFS Data

You can send incremental data by using the zfs send -i option. For example:

sys1$ zfs send -i pool/diant@snap1 system1/diant@snap2 | ssh system2 zfs recv \
pool/hsolo

The first argument (snap1) is the earlier snapshot and the second argument (snap2) is the later
snapshot. In this case, the pool/hsolo file system must already exist for the incremental
receive to be successful.

You can specify the incremental snap1 source as the last component of the snapshot name.
You would then have to specify only the name after the @ sign for snap1, which is assumed to
be from the same file system as snap2. For example:

sys1$ zfs send -i snap1 pool/diant@snap2 | ssh system2 zfs recv pool/hsolo

This shortcut syntax is equivalent to the incremental syntax.

The following message is displayed if you attempt to generate an incremental stream from a
different file system snapshot1:

cannot send 'pool/fs@name': not an earlier snapshot from the same fs

Accessing file information in the original received file system can cause the incremental
snapshot receive operation to fail with a message similar to this one:

cannot receive incremental stream of pool/diant@snap2 into pool/hsolo:
most recent snapshot of pool/diant@snap2 does not match incremental source

Consider setting the atime property to off if you need to access file information in the original
received file system and if you also need to receive incremental snapshots into the received
file system.

If you need to store many copies, consider compressing a ZFS snapshot stream
representation with the gzip command. For example:

$ zfs send pool/fs@snap | gzip > backupfile.gz

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-15

Example 8-2 Sending ZFS Data Using Raw Transfer

To send the stream in raw mode, use the -w compress option.

The following example shows that the raw transfer stream for a given snapshot is smaller, even
though the file system created after receiving the stream is the same as the original. First,
create a file system called pool/compressed-fs which you fill with data.

$ zfs create -o compression=gzip-6 pool/compressed-fs
$ cp /usr/dict/words /pool/compressed-fs/

Next, create a snapshot and check the compression ratio. For comparison purposes, create
two streams to see the difference in sizes between a regular transfer and a raw transfer, Note
that the rawstream file is smaller.

$ zfs snapshot pool/compressed-fs@snap
$ zfs get compressratio pool/compressed-fs@snap
NAME PROPERTY VALUE SOURCE
pool/compressed-fs@snap compressratio 2.80x -
$ zfs send pool/compressed-fs@snap > /tmp/stream
$ zfs send -w compress pool/compressed-fs@snap > /tmp/rawstream
$ ls -lh /tmp/*stream
-rw-r--r-- 1 root root 100K Dec 23 18:23 /tmp/rawstream
-rw-r--r-- 1 root root 304K Dec 23 18:23 /tmp/stream

Next, receive the raw transfer stream on its new location. Then to verify that the content is
identical, compare the new file system to the original.

$ zfs receive pool/rawrecv </tmp/rawstream
$ diff -r /pool/compressed-fs/ /pool/rawrecv/
$

Example 8-3 Sending ZFS Data From a Oracle Solaris 11.4.0 Dataset

The ability to use per record checksums in the output data stream is enabled by default. To
transfer data to older systems, you must disable this feature using the nocheck argument.

$ zfs send -s nocheck pool/diant@snap1 | zfs recv pool/ds01

Using Resumable Replication
If the transfer of data using zfs receive is interrupted, you can restart the process. For
instance, if you started the transfer with this command.

system1$ zfs send pool/diant@snap1 | ssh system2 zfs recv pool/hsolo

If the transfer is interrupted, you will have an incomplete dataset. You can resume the transfer
using this series of commands:

system1$ ssh system2 zfs receive -C pool/hsolo | zfs send -C pool/diant@snap1 | \
ssh system2 zfs receive pool/hsolo

To see which datasets are incomplete use the zfs list -I command, see Listing
Incomplete ZFS Datasets.

Receiving a ZFS Snapshot
Keep the following key points in mind when you receive a file system snapshot:

• Both the snapshot and the file system are received.

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-16

• The file system and all descendant file systems are unmounted.

• The file systems are inaccessible while they are being received.

• A file system with the same name as the source file system to be received must not exist
on the target system. If the file system name exists on the target system, rename the file
system.

For example:

$ zfs send system1/gozer@0830 > /bkups/gozer.083006
$ zfs receive system1/gozer2@today < /bkups/gozer.083006
$ zfs rename system1/gozer system1/gozer.old
$ zfs rename system1/gozer2 system1/gozer

If you make a change to the destination file system and you want to perform another
incremental send of a snapshot, you must first roll back the receiving file system.

Consider the following example. First, make a change to the file system as follows:

sys2$ rm newsys/hsolo/file.1

Then, perform an incremental send of system1/diant@snap3. Note that either you must first
roll back the receiving file system to receive the new incremental snapshot or eliminate the
rollback step by using the -F option. For example:

sys1$ zfs send -i system1/diant@snap2 system1/diant@snap3 | ssh sys2 zfs recv \
-F newsys/hsolo

When you receive an incremental snapshot, the destination file system must already exist.

If you make changes to the file system and you do not roll back the receiving file system to
receive the new incremental snapshot or you use the -F option, a message similar to the
following example is displayed:

sys1$ zfs send -i system1/diant@snap4 system1/diant@snap5 | ssh sys2 zfs recv \
newsys/hsolo
cannot receive: destination has been modified since most recent snapshot

The following checks are performed before the -F option is successful:

• If the most recent snapshot does not match the incremental source, neither the rollback
nor the receive is completed, and an error message is returned.

• If you accidentally provide the name of different file system that does not match the
incremental source specified in the zfs receive command, neither the rollback nor the
receive is completed, and the following error message is returned:

cannot send 'pool/fs@name': not an earlier snapshot from the same fs

Applying Different Property Values to a ZFS Snapshot Stream
You can send a ZFS snapshot stream with a certain file system property value, and then either
specify a different local property value when the snapshot stream is received or specify that the
original property value be used when the snapshot stream is received to re-create the original
file system. In addition, you can disable a file system property when the snapshot stream is
received.

• To revert a local property value to the received value, if any, use the zfs inherit -S
command. If a property does not have a received value, the behavior of the -S option is
the same as if you did not include the option. If the property does have a received value,

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-17

the zfs inherit command masks the received value with the inherited value until
issuing a zfs inherit -S command reverts it to the received value.

• You can determine the columns displayed by the zfs get. Use the -o option to include
the new non-default RECEIVED column. Use the -o all option to include all columns,
including RECEIVED.

• To include properties in the send stream without the -R option, use the -p option.

• To use the last element of the sent snapshot name to determine the new snapshot name,
use the -e option.

The following example sends the poolA/bee/cee@1 snapshot to the poolD/eee file
system and uses only the last element (cee@1) of the snapshot name to create the
received file system and snapshot.

$ zfs list -rt all poolA
NAME USED AVAIL REFER MOUNTPOINT
poolA 134K 134G 23K /poolA
poolA/bee 44K 134G 23K /poolA/bee
poolA/bee/cee 21K 134G 21K /poolA/bee/cee
poolA/bee/cee@1 0 - 21K -
$ zfs send -R poolA/bee/cee@1 | zfs receive -e poolD/eee
$ zfs list -rt all poolD
NAME USED AVAIL REFER MOUNTPOINT
poolD 134K 134G 23K /poolD
poolD/eee 44K 134G 23K /poolD/eee
poolD/eee/cee 21K 134G 21K /poolD/eee/cee
poolD/eee/cee@1 0 - 21K -

Retaining Original Property Values
In some cases, file system properties in a send stream might not apply to the receiving file
system or local file system properties, such as the mountpoint property value, might interfere
with a restore.

For example, suppose that the system1/data file system has the compression property
disabled. A snapshot of the system1/data file system is sent with properties (-p option) to a
backup pool and is received with the compression property enabled.

$ zfs get compression system1/data
NAME PROPERTY VALUE SOURCE
system1/data compression off default
$ zfs snapshot system1/data@snap1
$ zfs send -p system1/data@snap1 | zfs recv -o compression=on -d bpool
$ zfs get -o all compression bpool/data
NAME PROPERTY VALUE RECEIVED SOURCE
bpool/data compression on off local

In the example, the compression property is enabled when the snapshot is received into
bpool. So, for bpool/data, the compression value is on.

If this snapshot stream is sent to a new pool, restorepool, for recovery purposes, you might
want to keep all the original snapshot properties. In this case, you would use the zfs send -
b command to restore the original snapshot properties. For example:

$ zfs send -b bpool/data@snap1 | zfs recv -d restorepool
$ zfs get -o all compression restorepool/data
NAME PROPERTY VALUE RECEIVED SOURCE
restorepool/data compression off off received

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-18

In the example, the compression value is off, which represents the snapshot compression
value from the original system1/data file system.

Disabling Original Property Values
If you have a local file system property value in a snapshot stream and you want to disable the
property when it is received, use the zfs receive -x command. For example, the following
command sends a recursive snapshot stream of home directory file systems with all file system
properties reserved to a backup pool but without the quota property values:

$ zfs send -R system1/home@snap1 | zfs recv -x quota bpool/home
$ zfs get -r quota bpool/home
NAME PROPERTY VALUE SOURCE
bpool/home quota none local
bpool/home@snap1 quota - -
bpool/home/glori quota none default
bpool/home/glori@snap1 quota - -
bpool/home/hsolo quota none default
bpool/home/hsolo@snap1 quota - -

If the recursive snapshot was not received with the -x option, the quota property would be set
in the received file systems.

$ zfs send -R system1/home@snap1 | zfs recv bpool/home
$ zfs get -r quota bpool/home
NAME PROPERTY VALUE SOURCE
bpool/home quota none received
bpool/home@snap1 quota - -
bpool/home/glori quota 10G received
bpool/home/glori@snap1 quota - -
bpool/home/hsolo quota 10G received
bpool/home/hsolo@snap1 quota - -

Sending and Receiving Complex ZFS Snapshot Streams
This section describes how to use the -I and -R options with the zfs send command to
send and receive more complex snapshot streams.

Keep the following points in mind when sending and receiving complex ZFS snapshot streams:

• To send all incremental streams from one snapshot to a cumulative snapshot, use the -I
option. You can also use this option to send an incremental stream from the original
snapshot to create a clone. The original snapshot must already exist on the receiving side
to accept the incremental stream.

• To send a replication stream of all descendant file systems, use the -R option. When the
replication stream is received, all properties, snapshots, descendant file systems, and
clones are preserved.

• Using the zfs send -r command or the zfs send -R command to send package
streams without the -c option will omit the origin of clones in some circumstances. For
more information, see Types of ZFS Snapshot Streams.

• Use both options to send an incremental replication stream.

– Changes to properties are preserved, as are snapshot and file system rename and
destroy operations.

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-19

– If the -F option is not specified when receiving the replication stream, dataset destroy
operations are ignored. Thus, if necessary, you can undo the receive operation and
restore the file system to its previous state.

– When sending incremental streams, if -I is used, all snapshots between snapA and
snapD are sent. If -i is used, only snapD (for all descendants) snapshots are sent.

• To receive any of these types of zfs send streams, the receiving system must be running
a software version capable of sending them. The stream version is incremented.

Example 8-4 Sending and Receiving Complex ZFS Snapshot Streams

You can combine A group of incremental snapshots into one snapshot by using the -I option.
For example:

$ zfs send -I pool/fs@snapA pool/fs@snapD > /snaps/fs@all-I

You would then remove the incremental snapB, snapC, and snapD snapshots.

$ zfs destroy pool/fs@snapB
$ zfs destroy pool/fs@snapC
$ zfs destroy pool/fs@snapD

To receive the combined snapshot, you would use the following command.

$ zfs receive -d -F pool/fs < /snaps/fs@all-I
$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
pool 428K 16.5G 20K /pool
pool/fs 71K 16.5G 21K /pool/fs
pool/fs@snapA 16K - 18.5K -
pool/fs@snapB 17K - 20K -
pool/fs@snapC 17K - 20.5K -
pool/fs@snapD 0 - 21K -

You can also use the -I command to combine a snapshot and a clone snapshot to create a
combined dataset. For example:

$ zfs create pool/fs
$ zfs snapshot pool/fs@snap1
$ zfs clone pool/fs@snap1 pool/clone
$ zfs snapshot pool/clone@snapA
$ zfs send -I pool/fs@snap1 pool/clone@snapA > /snaps/fsclonesnap-I
$ zfs destroy pool/clone@snapA
$ zfs destroy pool/clone
$ zfs receive -F pool/clone < /snaps/fsclonesnap-I

To replicate a ZFS file system and all descendant file systems up to the named snapshot, use
the -R option. When this stream is received, all properties, snapshots, descendant file
systems, and clones are preserved.

The following example creates snapshots for user file systems. One replication stream is
created for all user snapshots. Next, the original file systems and snapshots are destroyed and
then recovered.

$ zfs snapshot -r users@today
$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
users 187K 33.2G 22K /users
users@today 0 - 22K -
users/user1 18K 33.2G 18K /users/user1
users/user1@today 0 - 18K -
users/user2 18K 33.2G 18K /users/user2

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-20

users/user2@today 0 - 18K -
users/user3 18K 33.2G 18K /users/user3
users/user3@today 0 - 18K -
$ zfs send -R users@today > /snaps/users-R
$ zfs destroy -r users
$ zfs receive -F -d users < /snaps/users-R
$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
users 196K 33.2G 22K /users
users@today 0 - 22K -
users/user1 18K 33.2G 18K /users/user1
users/user1@today 0 - 18K -
users/user2 18K 33.2G 18K /users/user2
users/user2@today 0 - 18K -
users/user3 18K 33.2G 18K /users/user3
users/user3@today 0 - 18K -

The following example uses the -R command to replicate the users file system and its
descendants, and to send the replicated stream to another pool, users2.

$ zfs create users2 mirror c0t1d0 c1t1d0
$ zfs receive -F -d users2 < /snaps/users-R
$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
users 224K 33.2G 22K /users
users@today 0 - 22K -
users/user1 33K 33.2G 18K /users/user1
users/user1@today 15K - 18K -
users/user2 18K 33.2G 18K /users/user2
users/user2@today 0 - 18K -
users/user3 18K 33.2G 18K /users/user3
users/user3@today 0 - 18K -
users2 188K 16.5G 22K /users2
users2@today 0 - 22K -
users2/user1 18K 16.5G 18K /users2/user1
users2/user1@today 0 - 18K -
users2/user2 18K 16.5G 18K /users2/user2
users2/user2@today 0 - 18K -
users2/user3 18K 16.5G 18K /users2/user3
users2/user3@today 0 - 18K -

Sending and Receiving Encrypted ZFS Data
By default, the zfs send command transfers encrypted data blocks by first decrypting the
data on the source and then re-encrypting the data on the target. Note that the data blocks are
re-encrypted only if encryption is enabled for the target.

The Oracle Solaris 11.4 SRU 57 release provides a way to avoid the decryption and re-
encryption steps by using the zfs send -w crypto command. This command transfers
encrypted data blocks in rawcrypto mode, which sends encrypted data blocks as-is from the
source to the target.

Using the -w crypto option implicitly specifies the -p option. The -w crypto option is mutually
exclusive with the -D option.

When you do not specify the -w option, the default value is -w compress. The default value for
NDMP is -w none.

Chapter 8
Saving, Sending, and Receiving ZFS Data

8-21

The rawcrypto mode also provides additional security by ensuring that the destruction of a
single key on an external key management server (OKM or KMIP) is sufficient to make the
encrypted data inaccessible.

A target can receive a rawcrypto stream successfully only if the keysource property value is
identical on both the source and target systems. For example, if you use the file:/// method
to specify the location, ensure that the file contents and its location are the same on the source
and target systems.

Only a target that uses at least ZFS Pool Version 50 (Raw Crypto Replication) can receive a
send stream that you create by using the zfs send -w crypto command.

When a target receives a snapshot by using rawcrypto mode, subsequent updates to the
same target dataset that contains that snapshot must use rawcrypto mode, as well.
Conversely, when the target does not use rawcrypto mode to receive a snapshot, subsequent
updates to the same target dataset that contains that snapshot must not use rawcrypto mode
either.

Note:

If you specify the -w crypto option to send an unencrypted snapshot, the zfs send
command does not use rawcrypto mode.

The following example commands show how to transfer the tank/encrypted-fs@snap1
snapshot to the dst/fs1 dataset on the target1 system in rawcrypto mode:

zfs send -w crypto tank/encrypted-fs@snap1 | ssh target1 zfs recv -f dst/fs1

The following example commands show that the zfs send -w crypto command can send
a snapshot that has more than one encryption key:

zfs key -K tank/encrypted-fs
zfs snapshot tank/encrypted-fs@snap2
zfs send -w crypto tank/encrypted-fs@snap2 | ssh target2 zfs recv -f dst/fs2

Remote Replication of ZFS Data
You can use the zfs send and zfs recv commands to remotely copy a snapshot stream
representation from one system to another system. For example:

$ zfs send system1/kaydo@today | ssh newsys zfs recv sandbox/restfs@today

This command sends the system1/kaydo@today snapshot data and receives it into the
sandbox/restfs file system. The command also creates a restfs@today snapshot on the
newsys system. In this example, the user has been configured to use ssh on the remote
system.

Monitoring ZFS Pool Operations
When you issue ZFS commands that initiate background tasks to run on the data such as
sending, receiving, scrubbing, or resilvering data, you can monitor the status and progress of
these tasks in real time. You can specify the frequency rate in which information is displayed.
You can also determine for how long the monitoring should run.

Chapter 8
Monitoring ZFS Pool Operations

8-22

To monitor pool operations, you use the zpool monitor command. Depending on which
options you use, the command provides the following information about the task. The
information is provided for each individual pool.

• Start time.

• Current amount of data.

• Timestamp, if appropriate on a per feature basis.

• Amount of data at start of the task, if appropriate.

You can display information about tasks on an individual pool or on all existing pools on the
system.

Use the zpool monitor command as follows:

zpool monitor -t provider [-T d|u] [pool] [interval [count]]

-t provider
Specifies one of the following providers about which the task information is displayed. For
provider, you can specify one of the following:

• send
• receive or recv
• scrub
• resilver

Note:

For an updated list of providers, type the zpool help monitor command.

-T d|u
Specifies the time stamp and its display format. To display in standard date format, specify d.
To display a printed representation of the internal representation of time, specify u. For more
information about these display formats, see the date(1) and the time(2) man pages.

interval
Rate, in seconds, at which the displayed information is updated.

count
Number of times the command displays task-related information within the specified interval.
If count is specified, then the command updates the information for as many times as
specified by count before exiting. If count is not specified, then the information is updated
continuously until you press Ctrl-C.

Note:

You can also customize the information to display. With the -o option, you can filter
the display fields to be included in the command output. With the -p option, you can
display information in machine-parsable format. For more information, see the
zpool(8) man page.

The command output arranges the information according to specific fields:

Chapter 8
Monitoring ZFS Pool Operations

8-23

https://docs.oracle.com/cd/E88353_01/html/E37839/date-1.html
https://docs.oracle.com/cd/E88353_01/html/E37841/time-2.html
https://docs.oracle.com/cd/E88353_01/html/E72487/zpool-8.html

DONE
Amount of data that has been processed so far since the zpool monitor command was
issued.

OTHER
Additional information depending on the specified provider, such as the current item being
processed, or the current state of the task.

PCTDONE
Percentage of data that has been processed.

POOL
Pool from which the information is retrieved.

PROVIDER
Task that is providing the information.

SPEED
Units per second, usually bytes but dependent on the unit that the provider uses.

STRTTIME
Time the provider started on the displayed task.

TAG
Distinguishes whole operations. The TAG value is unique at any one time but values can
reused in subsequent operations. For example, two simultaneous send operations would have
different TAG values even if both tasks operate on the same dataset.

TIMELEFT
Relative time that a specific task will be completed.

TIMESTMP
Time the monitored data snapshot is taken.

TOTAL
Estimate of total amount of data to be processed.

Example 8-5 Monitoring a ZFS Snapshot Stream Representation

The zfs send command creates a stream representation of a snapshot. The following
example shows how to obtain information about this task. The information would be updated
two times in a 5-second interval.

$ zpool monitor -t send 5 2
POOL PROVIDER PCTDONE TOTAL SPEED TIMELEFT OTHER
poolA send 41.7 10.0G 5.93M 16m49s poolA/fs:1/team3@all
poolB send 53.9 10.0G 7.71M 10m13s poolB/fs1/team3@all
poolC send 97.9 10.0G 14.4M 14s poolC/fs1/team1@all
poolA send 43.5 10.0G 6.17M 15m40s poolA/fs:1/team3@all
poolB send 55.8 10.0G 7.95M 9m30s poolB/fs1/team3@all
poolC send 99.2 10.0G 14.5M 5s poolC/fs1/team1@all

Example 8-6 Monitoring the Reception of a Stream

This example shows how to monitor the status and progress of a receive operation. Without a
designated count, the information is continuously updated every 5 seconds. The monitoring
ends when the administrator presses Ctrl-C.

$ zpool monitor -t recv 5
pool provider pctdone total speed timeleft other

Chapter 8
Monitoring ZFS Pool Operations

8-24

poolA receive 34.0 12.0G 6.01M 22m31s poolA/backup_all/fs2
poolA receive 68.0 6.01G 6.01M 5m28s poolA/backup_fs:1
poolB receive 20.6 10.0G 3.04M 44m39s poolB/backup_all/fs2
poolB receive 100.0 6.01G 9.48M 1s poolB/backup_fs1
poolB receive 16.7 12.0G 4.16M 41m04s poolB/pA-bkup/fs2
poolC receive 26.2 10.0G 3.98M 31m41s poolC/backup_all/fs2
^C

Example 8-7 Monitoring a Resilvering Operation

This example shows how to check the status of a resilvering operation on all the three ZFS
pools on the system.

$ zpool monitor -t resilver 5 4
pool provider pctdone total speed timeleft other
poolA resilver 10.7 12.0G 37.7M 4m50s (2/2)
poolB resilver 7.1 10.0G 31.5M 5m02s (2/2)
poolC resilver 1.8 10.0G 42.9M 3m54s (2/2)
poolA resilver 13.9 12.0G 38.0M 4m38s (2/2)
poolB resilver 9.0 10.0G 30.4M 5m07s (2/2)
poolC resilver 5.3 10.0G 41.7M 3m52s (2/2)
poolA resilver 14.7 12.0G 36.1M 4m50s (2/2)
poolB resilver 10.8 10.0G 29.2M 5m12s (2/2)
poolC resilver 7.2 10.0G 41.0M 3m51s (2/2)
poolA resilver 14.7 12.0G 32.8M 5m19s (2/2)
poolB resilver 10.8 10.0G 29.6M 5m08s (2/2)
poolC resilver 7.2 10.0G 40.7M 3m53s (2/2)

Example 8-8 Monitoring a Scrubbing Operation

This example shows how to monitor the progress of a scrubbing operation on poolB.

$ zpool monitor -t scrub 5 poolB
pool provider pctdone total speed timeleft
poolB scrub 16.3 14.0G 35.3M 5m39s
poolB scrub 16.4 14.0G 33.2M 6m00s
poolB scrub 16.5 14.0G 31.1M 6m25s
poolB scrub 16.5 14.0G 29.3M 6m48s
^C

Copying ZFS Files
You can quickly copy large files using the cp -z command. The -z option copies the
metadata associated with each record, rather than copying the metadata and all of the data.
For files with record sizes of 4K or more, this method can be much faster than using the
standard cp command. It is also very useful if you need to make many copies of one large file,
like an OS image. See the reflink(3C) man page for more information.

Chapter 8
Copying ZFS Files

8-25

https://docs.oracle.com/cd/E88353_01/html/E37843/reflink-3c.html

9
Oracle Solaris ZFS Delegated Administration

This chapter describes how to use delegated administration to allow nonprivileged users to
perform ZFS administration tasks.

The following sections are provided in this chapter:

• Overview of ZFS Delegated Administration.

• Delegating ZFS Permissions.

• Displaying ZFS Delegated Permissions Examples.

• Delegating ZFS Permissions Examples.

• Removing ZFS Delegated Permissions Examples.

Overview of ZFS Delegated Administration
ZFS delegated administration enables you to distribute refined permissions to specific users,
groups, or everyone. Two types of delegated permissions are supported:

• Individual permissions can be explicitly delegated such as create, destroy, mount,
snapshot, and so on.

• Groups of permissions called permission sets can be defined. A permission set can later
be updated, and all of the consumers of the set automatically get the change. Permission
sets begin with the @ symbol and are limited to 64 characters in length. After the @ symbol,
the remaining characters in the set name have the same restrictions as normal ZFS file
system names.

ZFS delegated administration provides features similar to the RBAC security model. ZFS
delegation provides the following advantages for administering ZFS storage pools and file
systems:

• Permissions follow the ZFS storage pool whenever a pool is migrated.

• Provides dynamic inheritance where you can control how the permissions propagate
through the file systems.

• Can be configured so that only the creator of a file system can destroy the file system.

• You can delegate permissions to specific file systems. Newly created file systems can
automatically pick up permissions.

• Provides simple NFS administration. For example, a user with explicit permissions can
create a snapshot over NFS in the appropriate .zfs/snapshot directory.

Consider using delegated administration for distributing ZFS tasks. For information about using
RBAC to manage general Oracle Solaris administration tasks, see Chapter 1, About Using
Rights to Control Users and Processes in Securing Users and Processes in Oracle Solaris
11.4 .

By default, the delegation property is enabled.

You control the delegated administration features by using a pool's delegation property. For
example:

9-1

https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html

$ zpool get delegation users
NAME PROPERTY VALUE SOURCE
users delegation on default
$ zpool set delegation=off users
$ zpool get delegation users
NAME PROPERTY VALUE SOURCE
users delegation off local

Delegating ZFS Permissions
You can use the zfs allow command to delegate permissions on ZFS file systems to non-
root users in the following ways:

• Individual permissions can be delegated to a user, group, or everyone.

• Groups of individual permissions can be delegated as a permission set to a user, group, or
everyone.

• Permissions can be delegated either locally to the current file system only or to all
descendants of the current file system.

The following table describes the operations that can be delegated and any dependent
permissions that are required to perform the delegated operations.

Permission
(Subcommand)

Description Dependencies

allow The permission to grant permissions
that you have to another user.

Must also have the permission that is
being allowed.

clone The permission to clone any of the
dataset's snapshots.

Must also have the create permission
and the mount permission in the original
file system.

create The permission to create descendant
datasets.

Must also have the mount permission.

destroy The permission to destroy a dataset. Must also have the mount permission.

diff The permission to identify paths within
a dataset.

Non-root users need this permission to
use the zfs diff command.

hold The permission to hold a snapshot.

mount The permission to mount and unmount
a file system, and create and destroy
volume device links.

promote The permission to promote a clone to a
dataset.

Must also have the mount permission
and the promote permission in the
original file system.

receive The permission to create descendant
file systems with the zfs receive
command.

Must also have the mount permission
and the create permission.

release The permission to release a snapshot
hold, which might destroy the
snapshot.

rename The permission to rename a dataset. Must also have the create permission
and the mount permission in the new
parent.

rollback The permission to roll back a
snapshot.

Chapter 9
Delegating ZFS Permissions

9-2

Permission
(Subcommand)

Description Dependencies

send The permission to send a snapshot
stream.

share The permission to share and unshare
a file system.

Must have both share and share.nfs
to create an NFS share.

Must have both share and share.smb
to create an SMB share.

snapshot The permission to create a snapshot of
a dataset.

You can delegate the following set of permissions but a permission might be limited to access,
read, or change permission:

• groupquota
• groupused
• key
• keychange
• userprop
• userquota
• userused
In addition, you can delegate administration of the following ZFS properties to non-root users:

• aclinherit
• aclmode
• atime
• canmount
• casesensitivity
• checksum
• compression
• copies
• dedup
• defaultgroupquota
• defaultuserquota
• devices
• encryption
• exec
• keysource
• logbias
• mountpoint
• nbmand

Chapter 9
Delegating ZFS Permissions

9-3

• normalization
• primarycache
• quota
• readonly
• recordsize
• refquota
• refreservation
• reservation
• rstchown
• secondarycache
• setuid
• shadow
• share.nfs
• share.smb
• snapdir
• sync
• utf8only
• version
• volblocksize
• volsize
• vscan
• xattr
• zoned
Some of these properties can be set only at dataset creation time. For a description of these
properties, see zfs(8).

Delegating ZFS Permissions (zfs allow)
The zfs allow syntax follows:

zfs allow -[ldugecs] everyone|user|group[,...] perm|@setname[,...] filesystem|volume

The following zfs allow syntax (in bold) identifies to whom the permissions are delegated:

zfs allow [-uge]|user|group|everyone [,...] filesystem | volume

Multiple entities can be specified as a comma-separated list. If no -uge options are specified,
then the argument is interpreted preferentially as the keyword everyone, then as a user name,
and lastly, as a group name. To specify a user or group named "everyone", use the -u or -g
option. To specify a group with the same name as a user, use the -g option. The -c option
delegates create-time permissions.

Chapter 9
Delegating ZFS Permissions

9-4

https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html

The following zfs allow syntax (in bold) identifies how permissions and permission sets are
specified:

zfs allow [-s] ... perm|@setname [,...] filesystem | volume

Multiple permissions can be specified as a comma-separated list. Permission names are the
same as ZFS subcommands and properties. For more information, see the preceding section.

Permissions can be aggregated into permission sets and are identified by the -s option.
Permission sets can be used by other zfs allow commands for the specified file system and
its descendants. Permission sets are evaluated dynamically, so changes to a set are
immediately updated. Permission sets follow the same naming requirements as ZFS file
systems, but the name must begin with an at sign (@) and can be no more than 64 characters
in length.

The following zfs allow syntax (in bold) identifies how the permissions are delegated:

zfs allow [-ld] filesystem | volume

The -l option indicates that the permissions are allowed for the specified file system and not
its descendants, unless the -d option is also specified. The -d option indicates that the
permissions are allowed for the descendant file systems and not for this file system, unless the
-l option is also specified. If neither option is specified, then the permissions are allowed for
the file system or volume and all of its descendants.

Removing ZFS Delegated Permissions (zfs unallow)
You can remove previously delegated permissions with the zfs unallow command.

For example, assume that you delegated create, destroy, mount, and snapshot permissions
as follows:

$ zfs allow mindy create,destroy,mount,snapshot system1/home/mindy
$ zfs allow system1/home/mindy
---- Permissions on system1/home/mindy ----------------------------------
Local+descendant permissions:
user mindy create,destroy,mount,snapshot

To remove these permissions, you would use the following syntax:

$ zfs unallow mindy system1/home/mindy
$ zfs allow system1/home/mindy

Delegating ZFS Permissions Examples
Example 9-1 Delegating Permissions to an Individual User

When you delegate create and mount permissions to an individual user, you must ensure that
the user has permissions on the underlying mount point.

For example, to delegate user mork create and mount permissions on the system1 file
system, set the permissions first:

$ chmod A+user:mork:add_subdirectory:fd:allow /system1/home

Then, use the zfs allow command to delegate create, destroy, and mount permissions. For
example:

$ zfs allow mork create,destroy,mount system1/home

Chapter 9
Delegating ZFS Permissions Examples

9-5

Now, user mork can create his own file systems in the system1/home file system. For
example:

$ su mork
mork$ zfs create system1/home/mork
mork$ ^D
$ su lp
$ zfs create system1/home/lp
cannot create 'system1/home/lp': permission denied

Example 9-2 Delegating create and destroy Permissions to a Group

The following example shows how to set up a file system so that anyone in the staff group
can create and mount file systems in the system1/home file system, as well as destroy their
own file systems. However, staff group members cannot destroy anyone else's file systems.

$ zfs allow staff create,mount system1/home
$ zfs allow -c create,destroy system1/home
$ zfs allow system1/home
---- Permissions on system1/home --
Create time permissions:
create,destroy
Local+descendant permissions:
group staff create,mount
$ su mindy
mindy% zfs create system1/home/mindy/files
mindy% exit
$ su mork
mork% zfs create system1/home/mork/data
mork% exit
mindy% zfs destroy system1/home/mork/data
cannot destroy 'system1/home/mork/data': permission denied

Example 9-3 Delegating Permissions at the Correct File System Level

Ensure that you delegate users permission at the correct file system level. For example, user
mork is delegated create, destroy, and mount permissions for the local and descendant file
systems. User mork is delegated local permission to snapshot the system1/home file system,
but he is not allowed to snapshot his own file system. So, he has not been delegated the
snapshot permission at the correct file system level.

$ zfs allow -l mork snapshot system1/home
$ zfs allow system1/home
---- Permissions on system1/home --
Create time permissions:
create,destroy
Local permissions:
user mork snapshot
Local+descendant permissions:
group staff create,mount
$ su mork
mork$ zfs snapshot system1/home@snap1
mork$ zfs snapshot system1/home/mork@snap1
cannot create snapshot 'system1/home/mork@snap1': permission denied

To delegate user mork permission at the descendant file system level, use the zfs allow -d
command. For example:

$ zfs unallow -l mork snapshot system1/home
$ zfs allow -d mork snapshot system1/home
$ zfs allow system1/home
---- Permissions on system1/home --

Chapter 9
Delegating ZFS Permissions Examples

9-6

Create time permissions:
create,destroy
descendant permissions:
user mork snapshot
Local+descendant permissions:
group staff create,mount
$ su mork
$ zfs snapshot system1/home@snap2
cannot create snapshot 'system1/home@snap2': permission denied
$ zfs snapshot system1/home/mork@snappy

Now, user mork can only create a snapshot below the system1/home file system level.

Example 9-4 Defining and Using Complex Delegated Permissions

You can delegate specific permissions to users or groups. For example, the following zfs
allow command delegates specific permissions to the staff group. In addition, destroy and
snapshot permissions are delegated after system1/home file systems are created.

$ zfs allow staff create,mount system1/home
$ zfs allow -c destroy,snapshot system1/home
$ zfs allow system1/home
---- Permissions on system1/home --
Create time permissions:
create,destroy,snapshot
Local+descendant permissions:
group staff create,mount

Because user mork is a member of the staff group, he can create file systems in system1/
home. In addition, user mork can create a snapshot of system1/home/mark2 because he
has specific permissions to do so. For example:

$ su mork
$ zfs create system1/home/mark2
$ zfs allow system1/home/mark2
---- Permissions on system1/home/mark2 ----------------------------------
Local permissions:
user mork create,destroy,snapshot
---- Permissions on system1/home --
Create time permissions:
create,destroy,snapshot
Local+descendant permissions:
group staff create,mount

But, user mork cannot create a snapshot in system1/home/mork because he does not have
specific permissions to do so. For example:

$ zfs snapshot system1/home/mork@snap1
cannot create snapshot 'system1/home/mork@snap1': permission denied

In this example, user mork has create permission in his home directory, which means he can
create snapshots. This scenario is helpful when your file system is NFS mounted.

$ cd /system1/home/mark2
$ ls
$ cd .zfs
$ ls
shares snapshot
$ cd snapshot
$ ls -l
total 3
drwxr-xr-x 2 mork staff 2 Sep 27 15:55 snap1

Chapter 9
Delegating ZFS Permissions Examples

9-7

$ pwd
/system1/home/mark2/.zfs/snapshot
$ mkdir snap2
$ zfs list
zfs list -r system1/home
NAME USED AVAIL REFER MOUNTPOINT
system1/home/mork 63K 62.3G 32K /system1/home/mork
system1/home/mark2 49K 62.3G 31K /system1/home/mark2
system1/home/mark2@snap1 18K - 31K -
system1/home/mark2@snap2 0 - 31K -
$ ls
snap1 snap2
$ rmdir snap2
$ ls
snap1

Example 9-5 Defining and Using a ZFS Delegated Permission Set

The following example shows how to create the permission set @myset and delegates the
permission set and the rename permission to the group staff for the system1 file system.
User mindy, a staff group member, has the permission to create a file system in system1.
However, user lp does not have permission to create a file system in system1.

$ zfs allow -s @myset create,destroy,mount,snapshot,promote,clone,readonly \
system1
$ zfs allow system1
---- Permissions on system1 ---
Permission sets:
@myset clone,create,destroy,mount,promote,readonly,snapshot
$ zfs allow staff @myset,rename system1
$ zfs allow system1
---- Permissions on system1 ---
Permission sets:
@myset clone,create,destroy,mount,promote,readonly,snapshot
Local+descendant permissions:
group staff @myset,rename
$ chmod A+group:staff:add_subdirectory:fd:allow system1
su mindy
mindy% zfs create system1/data
mindy% zfs allow system1
---- Permissions on system1 ---
Permission sets:
@myset clone,create,destroy,mount,promote,readonly,snapshot
Local+descendant permissions:
group staff @myset,rename
mindy% ls -l /system1
total 15
drwxr-xr-x 2 mindy staff 2 Jun 24 10:55 data
mindy% exit
$ su lp
$ zfs create system1/lp
cannot create 'system1/lp': permission denied

Displaying ZFS Delegated Permissions Examples
You can use the following command to display permissions:

$ zfs allow dataset

This command displays permissions that are set or allowed on the specified dataset. The
output contains the following components:

Chapter 9
Displaying ZFS Delegated Permissions Examples

9-8

• Permission sets

• Individual permissions or create-time permissions

• Local dataset

• Local and descendant datasets

• Descendant datasets only

Example 9-6 Displaying Basic Delegated Administration Permissions

The following output indicates that user mindy has create, destroy, mount, snapshot
permissions on the system1/mindy file system.

$ zfs allow system1/mindy

Local+descendant permissions on (system1/mindy)
user mindy create,destroy,mount,snapshot

Example 9-7 Displaying Complex Delegated Administration Permissions

The output in this example indicates the following permissions on the pool/glori and pool
file systems.

For the pool/glori file system:

• Two permission sets are defined:

– @eng (create, destroy, snapshot, mount, clone, promote, rename)

– @simple (create, mount)

• Create-time permissions are set for the @eng permission set and the mountpoint property.
Create-time means that after a file system set is created, the @eng permission set and the
permission to set the mountpoint property are delegated.

• User tomi is delegated the @eng permission set, and user joe is granted create, destroy,
and mount permissions for local file systems.

• User glori is delegated the @basic permission set, and share and rename permissions for
the local and descendant file systems.

• User dina and the staff group are delegated the @basic permission set for descendant
file systems only.

For the pool file system:

• The permission set @simple (create, destroy, mount) is defined.

• The group staff is granted the @simple permission set on the local file system.

Here is the output for this example:

$ zfs allow pool/glori
---- Permissions on pool/glori --
Permission sets:
@eng create,destroy,snapshot,mount,clone,promote,rename
@simple create,mount
Create time permissions:
@eng,mountpoint
Local permissions:
user tomi @eng
user joe create,destroy,mount
Local+descendant permissions:
user glori @basic,share,rename

Chapter 9
Displaying ZFS Delegated Permissions Examples

9-9

user dina @basic
group staff @basic
---- Permissions on pool ---
Permission sets:
@simple create,destroy,mount
Local permissions:
group staff @simple

Removing ZFS Delegated Permissions Examples
You can use the zfs unallow command to remove delegated permissions. For example,
user mindy has create, destroy, mount, and snapshot permissions on the system1/mindy
file system.

$ zfs allow mindy create,destroy,mount,snapshot system1/home/mindy
$ zfs allow system1/home/mindy
---- Permissions on system1/home/mindy ----------------------------------
Local+descendant permissions:
user mindy create,destroy,mount,snapshot

The following zfs unallow syntax removes user mindy's snapshot permission from the
system1/home/mindy file system:

$ zfs unallow mindy snapshot system1/home/mindy
$ zfs allow system1/home/mindy
---- Permissions on system1/home/mindy ----------------------------------
Local+descendant permissions:
user mindy create,destroy,mount
mindy% zfs create system1/home/mindy/data
mindy% zfs snapshot system1/home/mindy@today
cannot create snapshot 'system1/home/mindy@today': permission denied

As another example, user mork has the following permissions on the system1/home/mork
file system:

$ zfs allow system1/home/mork
---- Permissions on system1/home/mork ----------------------------------
Local+descendant permissions:
user mork create,destroy,mount

The following zfs unallow syntax removes all permissions for user mork from the system1/
home/mork file system:

$ zfs unallow mork system1/home/mork

The following zfs unallow syntax removes a permission set on the system1 file system.

$ zfs allow system1
---- Permissions on system1 ---
Permission sets:
@myset clone,create,destroy,mount,promote,readonly,snapshot
Create time permissions:
create,destroy,mount
Local+descendant permissions:
group staff create,mount
$ zfs unallow -s @myset system1
$ zfs allow system1
---- Permissions on system1 ---
Create time permissions:
create,destroy,mount

Chapter 9
Removing ZFS Delegated Permissions Examples

9-10

Local+descendant permissions:
group staff create,mount

Chapter 9
Removing ZFS Delegated Permissions Examples

9-11

10
Oracle Solaris ZFS Advanced Topics

This chapter describes ZFS volumes, using ZFS on an Oracle Solaris system with zones
installed, ZFS alternate root pools, and ZFS rights profiles.

The chapter covers the following topics:

• ZFS Volumes.

• Using ZFS on an Oracle Solaris System With Zones Installed.

• Using a ZFS Pool With an Alternate Root Location.

ZFS Volumes
A ZFS volume is a dataset that represents a block device. ZFS volumes are identified as
devices in the /dev/zvol/{dsk,rdsk}/rpool directory.

In the following example, a 5GB ZFS volume, system1/vol, is created:

$ zfs create -V 5gb system1/vol

Be careful when changing the size of the volume. For example, if the size of the volume
shrinks, data corruption might occur. In addition, if you create a snapshot of a volume that
changes in size, you might introduce inconsistencies if you attempt to roll back the snapshot or
create a clone from the snapshot. Thus, when you create a volume, a reservation is
automatically set to the initial size of the volume to ensure data integrity.

You can display a ZFS volume's property information by using the zfs get or zfs get all
command. For example:

$ zfs get all system1/vol

A question mark (?) displayed for volsize in the zfs get output indicates an unknown value
because an I/O error occurred. For example:

$ zfs get -H volsize system1/vol
system1/vol volsize ? local

An I/O error generally indicates a problem with a pool device. For information about resolving
pool device problems, see Identifying Problems With ZFS Storage Pools.

If you are using an Oracle Solaris system with zones installed, you cannot create or clone a
ZFS volume in a native zone.

Using a ZFS Volume as a Swap or Dump Device
During an installation of a ZFS root file system or a migration from a UFS root file system, a
swap device and a dump device are created on a ZFS volume in the ZFS root pool.

A ZFS volume that is used as a swap device is always encrypted regardless of the ZFS
volume's encryption property value. Encryption is performed by using ephemeral keys that
are generated automatically by the system. These ephemeral keys do not require that you set
them or manage them.

10-1

The following examples show how to display information about the swap device and the dump
device.

$ swap -l
swapfile dev swaplo blocks free
/dev/zvol/dsk/rpool/swap 253,3 16 8257520 8257520

$ dumpadm
Dump content: kernel pages
Dump device: /dev/zvol/dsk/rpool/dump (dedicated)
Savecore directory: /var/crash/
Savecore enabled: yes

If you need to change your swap area or dump device after the system is installed, use the
swap and dumpadm commands as in previous Oracle Solaris releases. If you need to create
an additional swap volume, create a ZFS volume of a specific size and then enable swap on
that device. For example:

$ zfs create -V 2G rpool/swap2
$ swap -a rpool/swap2
$ swap -l
swapfile dev swaplo blocks free
/dev/zvol/dsk/rpool/swap 256,1 16 2097136 2097136
/dev/zvol/dsk/rpool/swap2 256,5 16 4194288 4194288

Using files for swap or dump is not supported.

For information about adjusting the size of the swap and dump volumes, see Adjusting the
Sizes of ZFS Swap and Dump Devices.

Using a ZFS Volume as an iSCSI LUN
A ZFS volume as an iSCSI target is managed just like any other ZFS dataset, except that you
cannot rename the dataset, roll back a volume snapshot, or export the pool while the ZFS
volumes are shared as iSCSI LUNs. If you attempt to perform those operations, messages
similar to the following are displayed:

$ zfs rename system1/volumes/v2 system1/volumes/v1
cannot rename 'system1/volumes/v2': dataset is busy
$ zpool export system1
cannot export 'system1': pool is busy

All iSCSI target configuration information is stored within the dataset. Like an NFS shared file
system, an iSCSI target that is imported on a different system is shared appropriately.

The Common Multiprotocol SCSI Target (COMSTAR) software framework enables you to
convert any Oracle Solaris system into a SCSI target device that can be accessed over a
storage network by initiator hosts. You can create and configure a ZFS volume to be shared as
an iSCSI logical unit (LUN).

How to Use a ZFS Volume as an iSCSI LUN
1. First, install the COMSTAR package.

$ pkg install group/feature/storage-server
2. Create a ZFS volume to be used as an iSCSI target.

For example:

$ zfs create -V 2g system1/volumes/v2

Chapter 10
ZFS Volumes

10-2

3. Create the SCSI-block-device-based LUN.

For example:

$ sbdadm create-lu /dev/zvol/rdsk/system1/volumes/v2
Created the following LU:

GUID DATA SIZE SOURCE
-------------------------------- ------------------- ----------------
600144f000144f1dafaa4c0faff20001 2147483648 /dev/zvol/rdsk/system1/
volumes/v2
$ sbdadm list-lu
Found 1 LU(s)

GUID DATA SIZE SOURCE
-------------------------------- ------------------- ----------------
600144f000144f1dafaa4c0faff20001 2147483648 /dev/zvol/rdsk/system1/
volumes/v2

4. Share LUN views to all ZFS clients. or selected ZFS clients.

You can expose the LUN views to all ZFS clients or to a selected list of ZFS clients. In the
following example, the LUN view is shared to all ZFS clients.

a. Identify the LUN GUID.

$ stmfadm list-lu
LU Name: 600144F000144F1DAFAA4C0FAFF20001

b. Share the LUN view.

$ stmfadm add-view 600144F000144F1DAFAA4C0FAFF20001
$ stmfadm list-view -l 600144F000144F1DAFAA4C0FAFF20001
View Entry: 0
Host group : All
Target group : All
LUN : 0

5. Create the iSCSI targets.

For information about creating the iSCSI targets, see Chapter 8, Configuring Storage
Devices With COMSTAR in Managing Devices in Oracle Solaris 11.4 .

Using ZFS on an Oracle Solaris System With Zones Installed
The Oracle Solaris Zones feature in the Oracle Solaris operating system provides an isolated
environment in which to run applications on your system. The following sections describe how
to use ZFS on a system with Oracle Solaris zones:

• Adding ZFS File Systems to a Non-Global Zone.

• Delegating Datasets to a Non-Global Zone.

• Adding ZFS Volumes to a Non-Global Zone.

• Using ZFS Storage Pools Within a Zone.

• Managing ZFS Properties Within a Zone.

• Understanding the zoned Property.

Keep the following points in mind when associating ZFS datasets with zones:

• You can add a ZFS file system or a clone to a native zone with or without delegating
administrative control.

Chapter 10
Using ZFS on an Oracle Solaris System With Zones Installed

10-3

https://docs.oracle.com/cd/E37838_01/html/E61015/fmvcd.html
https://docs.oracle.com/cd/E37838_01/html/E61015/fmvcd.html

• You can add a ZFS volume as a device to native zones.

• You cannot associate ZFS snapshots with zones at this time.

Note:

Oracle Solaris kernel zones use storage differently from native Oracle Solaris zones.
For more information about storage use in kernel zones, see the Storage Access
section of the solaris-kz(7) man page. For information about storage use on
shared storage, see Chapter 13, Oracle Solaris Zones on Shared Storage in Creating
and Using Oracle Solaris Zones .

Adding a ZFS filesystem by using an fs resource enables the native zone to share disk space
with the global or kernel zone. However, the zone administrator cannot control properties or
create new file systems in the underlying file system hierarchy. This operation is identical to
adding any other type of file system to a zone. You should add a file system to a native zone
only for the sole purpose of sharing common disk space.

You can also delegate ZFS datasets to a native zone, which would give the zone administrator
complete control over the dataset and all its children. The zone administrator can create and
destroy file systems or clones within that dataset, as well as modify properties of the datasets.
The zone administrator cannot affect datasets that have not been added to the zone, including
exceeding any top-level quotas set on the delegated dataset.

When both a source zonepath and a target zonepath reside on a ZFS file system and are in
the same pool, the zoneadm clone command, not zfs clone, becomes the command for
cloning zones. The zoneadm clone command creates a ZFS snapshot of the source
zonepath and sets up the target zonepath. For more information, see Creating and Using
Oracle Solaris Zones .

Adding ZFS File Systems to a Non-Global Zone
A ZFS file system that is added to a native zone must have its mountpoint property set to
legacy. For example, for the system1/zone/zion file system, you would type the following
command on the global or kernel zone:

global$ zfs set mountpoint=legacy system1/zone/zion

Then you would add that file system to the native zone by using the add fs subcommand of
the zonecfg command.

Note:

To add the files system, ensure that it is not previously mounted on another location.

global$ zonecfg -z zion
zonecfg:zion> add fs
zonecfg:zion:fs> set type=zfs
zonecfg:zion:fs> set special=system1/zone/zion
zonecfg:zion:fs> set dir=/opt/data
zonecfg:zion:fs> end

Chapter 10
Using ZFS on an Oracle Solaris System With Zones Installed

10-4

https://docs.oracle.com/cd/E88353_01/html/E37853/solaris-kz-7.html
https://docs.oracle.com/cd/E37838_01/html/E61039/z.zoss-1.html
https://docs.oracle.com/cd/E37838_01/html/E61039/z.zoss-1.html
https://docs.oracle.com/cd/E37838_01/html/E61039/index.html
https://docs.oracle.com/cd/E37838_01/html/E61039/index.html

This syntax adds the ZFS file system, system1/zone/zion, to the already configured zion
zone, which is mounted at /opt/data. The zone administrator can create and destroy files
within the file system. The file system cannot be remounted to a different location. Likewise,
the zone administrator cannot change properties on the file system such as atime, readonly,
compression, and so on.

The global zone administrator is responsible for setting and controlling properties of the file
system.

For more information about the zonecfg command and about configuring resource types with
zonecfg, see Creating and Using Oracle Solaris Zones .

Delegating Datasets to a Non-Global Zone
To meet the primary goal of delegating the administration of storage to a zone, ZFS supports
adding datasets to a native zone through the use of the zonecfg add dataset command.

In the following example, a ZFS file system is delegated to a native zone by a global zone
administrator from the global zone or kernel zone.

global$ zonecfg -z zion
zonecfg:zion> add dataset
zonecfg:zion:dataset> set name=system1/zone/zion
zonecfg:zion:dataset> set alias=system1
zonecfg:zion:dataset> end

Unlike adding a file system, this syntax causes the ZFS file system system1/zone/zion to
be visible within the already configured zion zone. Within the zion zone, this file system is not
accessible as system1/zone/zion, but as a virtual pool named system1. The delegated file
system alias provides a view of the original pool to the zone as a virtual pool. The alias
property specifies the name of the virtual pool. If no alias is specified, a default alias matching
the last component of the file system name is used. In the example, the default alias would be
zion.

Within delegated datasets, the zone administrator can set file system properties, as well as
create descendant file systems. In addition, the zone administrator can create snapshots and
clones, and otherwise control the entire file system hierarchy. If ZFS volumes are created
within delegated file systems, these volumes might conflict with ZFS volumes that are added
as device resources.

Adding ZFS Volumes to a Non-Global Zone
You can add or create a ZFS volume in a native zone or you can add access to a volume's
data in a native zone in the following ways:

• In a native zone, a privileged zone administrator can create a ZFS volume as descendant
of a previously delegated file system. For example, you can type the following command
for the file system system1/zone/zion that was delegated in the previous example:

$ zfs create -V 2g system1/zone/zion/vol1

After the volume is created, the zone administrator can manage the volume's properties
and data in the native zone as well as create snapshots.

• In a global or kernel zone, use the zonecfg add device command and specify a ZFS
volume whose data can be accessed in a native zone. For example:

global$ zonecfg -z zion
zonecfg:zion> add device

Chapter 10
Using ZFS on an Oracle Solaris System With Zones Installed

10-5

https://docs.oracle.com/cd/E37838_01/html/E61039/index.html

zonecfg:zion:device> set match=/dev/zvol/dsk/system1/volumes/vol2
zonecfg:zion:device> end

In this example, only the volume data can be accessed in the native zone.

Using ZFS Storage Pools Within a Zone
ZFS storage pools cannot be created or modified within a native zone. The delegated
administration model centralizes control of physical storage devices within the global or kernel
zone and control of virtual storage to native zones. Although a pool-level dataset can be added
to a native zone, any command that modifies the physical characteristics of the pool, such as
creating, adding, or removing devices, is not allowed from within a native zone. Even if
physical devices are added to a native zone by using the zonecfg add device command,
or if files are used, the zpool command does not allow the creation of any new pools within
the native zone.

Kernel zones are more powerful and more flexible in terms of data storage management.
Devices and volumes can be delegated to a kernel zone, much like a global zone. Also, a ZFS
storage pool can be created in a kernel zone.

Managing ZFS Properties Within a Zone
After a dataset is delegated to a zone, the zone administrator can control specific dataset
properties. After a dataset is delegated to a zone, all its ancestors are visible as read-only
datasets, while the dataset itself is writable, as are all of its descendants. For example,
consider the following configuration:

global$ zfs list -Ho name
system1
system1/home
system1/data
system1/data/matrix
system1/data/zion
system1/data/zion/home

If system1/data/zion were added to a zone with the default zion alias, each dataset would
have the following properties.

Dataset Visible Writable Immutable Properties

system1 No - -

system1/home No - -

system1/data No - -

system1/data/zion Yes Yes zoned, quota, reservation
system1/data/zion/home Yes Yes zoned

Note that every parent of system1/zone/zion is invisible and all descendants are writable.
The zone administrator cannot change the zoned property because doing so would expose a
security risk that described in the next section.

Privileged users in the zone can change any other settable property, except for quota and
reservation properties. This behavior allows the global zone administrator to control the disk
space consumption of all datasets used by the native zone.

Chapter 10
Using ZFS on an Oracle Solaris System With Zones Installed

10-6

In addition, the share.nfs and mountpoint properties cannot be changed by the global zone
administrator after a dataset has been delegated to a native zone.

Understanding the zoned Property
When a dataset is delegated to a native zone, the dataset must be specially marked so that
certain properties are not interpreted within the context of the global or kernel zone. After a
dataset has been delegated to a native zone and is under the control of a zone administrator,
its contents can no longer be trusted. As with any file system, setuid binaries, symbolic links,
or otherwise questionable contents might exist that might adversely affect the security of the
global or kernel zone. In addition, the mountpoint property cannot be interpreted in the context
of the global or kernel zone. Otherwise, the zone administrator could affect the global or kernel
zone's namespace. To address the latter, ZFS uses the zoned property to indicate that a
dataset has been delegated to a native zone at one point in time.

The zoned property is a boolean value that is automatically turned on when a zone containing a
ZFS dataset is first booted. A zone administrator does not need to manually set this property. If
the zoned property is set, the dataset cannot be mounted or shared in the global or kernel
zone. In the following example, system1/zone/zion has been delegated to a zone, while
system1/zone/global has not:

$ zfs list -o name,zoned,mountpoint -r system1/zone
NAME ZONED MOUNTPOINT MOUNTED
system1/zone/global off /system1/zone/global yes
system1/zone/zion on /system1/zone/zion yes
$ zfs mount
system1/zone/global /system1/zone/global
system1/zone/zion /export/zone/zion/root/system1/zone/zion

root@kzx-05:~# zonecfg -z sol info
dataset
dataset:
 name: rpool/foo
 alias: foo
root@kzx-05:~# zfs list -o name,zoned,mountpoint,mounted -r
rpool/foo
NAME ZONED MOUNTPOINT MOUNTED
rpool/foo on /system/zones/sol/root/foo yes
root@kzx-05:~# zfs mount | grep /foo
rpool/foo /system/zones/sol/root/foo

When a dataset is removed from a zone or a zone is destroyed, the zoned property is not
automatically cleared. This behavior would avoid the inherent security risks associated with
these tasks. Because an untrusted user has complete access to the dataset and its
descendants, the mountpoint property might be set to bad values, or setuid binaries might
exist on the file systems.

To prevent accidental security risks, the zoned property must be manually cleared by the global
zone administrator if you want to reuse the dataset in any way. Before setting the zoned
property to off, ensure that the mountpoint property for the dataset and all its descendants
are set to reasonable values and that no setuid binaries exist, or turn off the setuid property.

After you have verified that no security vulnerabilities are left, the zoned property can be turned
off by using the zfs set or zfs inherit command. If the zoned property is turned off while
a dataset is in use within a zone, the system might behave in unpredictable ways. Only change
the property if you are sure the dataset is no longer in use by a native zone.

Chapter 10
Using ZFS on an Oracle Solaris System With Zones Installed

10-7

Copying Zones to Other Systems
When you need to migrate one or more zones needs to another system, use Oracle Solaris
Unified Archives, which manage all cloning and recovery operations in the operating system
and which operate on global, native, as well as kernel zones. For more information about
Unified Archives, see Using Unified Archives for System Recovery and Cloning in Oracle
Solaris 11.4 . For instructions about migrating zones, which include copying zones to other
systems, see Chapter 10, Transforming Systems to Oracle Solaris Zones in Creating and
Using Oracle Solaris Zones .

If all zones on one system need to move to another ZFS pool on a different system, consider
using a replication stream because it preserves snapshots and clones. Snapshots and clones
are used extensively by pkg update, beadm create, and the zoneadm clone commands.

In the following example, the sysA's zones are installed in the rpool/zones file system and
they need to be copied to the newpool/zones file system on sysB. The following commands
create a snapshot and copy the data to sysB by using a replication stream:

sysA$ zfs snapshot -r rpool/zones@send-to-sysB
sysA$ zfs send -R rpool/zones@send-to-sysB | ssh sysB zfs receive -d newpool

Note:

The commands refer only to the ZFS aspect of the operation. You would need to
perform other zones-related command to complete the task. For specific information,
refer to Chapter 10, Transforming Systems to Oracle Solaris Zones in Creating and
Using Oracle Solaris Zones .

Using a ZFS Pool With an Alternate Root Location
A pool is intrinsically tied to the host system. The host system maintains information about the
pool so that it can detect when the pool is unavailable. Although useful for normal operations,
this information can prove a hindrance when you are booting from alternate media or creating
a pool on removable media. To solve this problem, ZFS provides an alternate root location pool
feature. An alternate root pool location does not persist across system reboots, and all mount
points are modified to be relative to the root of the pool.

Creating a ZFS Pool With an Alternate Root Location
The most common reason for creating a pool at an alternate location is for use with removable
media. In these circumstances, users typically want a single file system, and they want it to be
mounted wherever they choose on the target system. When a pool is created by using the
zpool create -R command, the mount point of the root file system is automatically set to /,
which is the equivalent of the alternate root value.

In the following example, a pool called morpheus is created with /mnt as the alternate root
location:

$ zpool create -R /mnt morpheus c0t0d0
$ zfs list morpheus
NAME USED AVAIL REFER MOUNTPOINT
morpheus 32.5K 33.5G 8K /mnt

Chapter 10
Using a ZFS Pool With an Alternate Root Location

10-8

https://docs.oracle.com/cd/E37838_01/html/E60984/index.html
https://docs.oracle.com/cd/E37838_01/html/E60984/index.html
https://docs.oracle.com/cd/E37838_01/html/E61039/gcgnc.html
https://docs.oracle.com/cd/E37838_01/html/E61039/gcgnc.html
https://docs.oracle.com/cd/E37838_01/html/E61039/gcgnc.html
https://docs.oracle.com/cd/E37838_01/html/E61039/gcgnc.html

Note the single file system, morpheus, whose mount point is the alternate root location of the
pool, /mnt. The mount point that is stored on disk is / and the full path to /mnt is interpreted
only in this initial context of the pool creation. This file system can then be exported and
imported under an arbitrary alternate root location on a different system by using -R alternate-
root-value syntax.

$ zpool export morpheus
$ zpool import morpheus
cannot mount '/': directory is not empty
$ zpool export morpheus
$ zpool import -R /mnt morpheus
$ zfs list morpheus
NAME USED AVAIL REFER MOUNTPOINT
morpheus 32.5K 33.5G 8K /mnt

Importing a Pool With an Alternate Root Location
Pools can also be imported using an alternate root location. This feature allows for recovery
situations, where the mount points should not be interpreted in context of the current root
mount point, but under some temporary directory where repairs can be performed. This feature
also can be used when you are mounting removable media as described in the preceding
section.

In the following example, a pool called morpheus is imported with /mnt as the alternate root
mount point. This example assumes that morpheus was previously exported.

$ zpool import -R /a pool
$ zpool list morpheus
NAME SIZE ALLOC FREE CAP HEALTH ALTROOT
pool 44.8G 78K 44.7G 0% ONLINE /a
$ zfs list pool
NAME USED AVAIL REFER MOUNTPOINT
pool 73.5K 44.1G 21K /a/pool

Importing a Pool With a Temporary Name
In addition to importing a pool at an alternate root location, you can import a pool with a
temporary name. In certain shared storage or recovery situations, this feature allows two pools
with the same persistent name to be simultaneously imported. One of those pools must be
imported with a temporary name.

In the following example, the rpool pool is imported at an alternate root location and with a
temporary name. Because the persistent pool name conflicts with a pool that is already
imported, it must be imported by pool ID or by specifying the devices.

$ zpool import
pool: rpool
id: 16760479674052375628
state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

rpool ONLINE
c8d1s0 ONLINE
$ zpool import -R /a -t altrpool 16760479674052375628
$ zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
altrpool 97G 22.4G 74G 23% 1.00x ONLINE /a
rpool 465G 75.1G 390G 16% 1.00x ONLINE -

Chapter 10
Using a ZFS Pool With an Alternate Root Location

10-9

A pool can also be created with a temporary name by using the zpool create -t
command.

Chapter 10
Using a ZFS Pool With an Alternate Root Location

10-10

11
Oracle Solaris ZFS Troubleshooting and Pool
Recovery

This chapter describes how to identify and recover from ZFS failures. Information for
preventing failures is provided as well.

This chapter covers the following topics:

• Identifying ZFS Problems.

• Resolving General Hardware Problems.

• Identifying Problems With ZFS Storage Pools.

• Resolving ZFS Storage Device Problems.

• Resolving Data Problems in a ZFS Storage Pool.

• Repairing a Damaged ZFS Configuration.

• Repairing an Unbootable System.

For information about complete root pool recovery, see Using Unified Archives for System
Recovery and Cloning in Oracle Solaris 11.4 .

Identifying ZFS Problems
As a combined file system and volume manager, ZFS can exhibit many different failures. This
chapter outlines how to diagnose general hardware failures and then how to resolve pool
device and file system problems. You can encounter the following types of problems:

• General Hardware Problems – Hardware problems can impact your pool performance
and the availability of your pool data. Rule out general hardware problems, such as faulty
components and memory, before determining problems at a higher level, such as your
pools and file systems.

• ZFS storage pool problems

– Identifying Problems With ZFS Storage Pools.

– Resolving ZFS Storage Device Problems.

• Data is corrupted – Resolving Data Problems in a ZFS Storage Pool.

• Configuration is damaged – Repairing a Damaged ZFS Configuration.

• System won't boot – Repairing an Unbootable System.

Note that a single pool can experience all three errors, so a complete repair procedure involves
finding and correcting one error, proceeding to the next error, and so on.

Resolving General Hardware Problems
Review the following sections to determine whether pool problems or file system unavailability
is related to a hardware problem, such as faulty system board, memory, device, HBA, or a
misconfiguration.

11-1

https://docs.oracle.com/cd/E37838_01/html/E60984/index.html
https://docs.oracle.com/cd/E37838_01/html/E60984/index.html

For example, a failing or faulty disk on a busy ZFS pool can greatly degrade overall system
performance.

If you start by diagnosing and identifying hardware problems first, which can be easier to
detect and all your hardware checks out, you can then move on to diagnosing pool and file
system problems as described in the rest of this chapter. If your hardware, pool, and file
system configurations are healthy, consider diagnosing application problems, which are
generally more complex to unravel and are not covered in this guide.

Identifying Hardware and Device Faults
The Oracle Solaris Fault Manager tracks software, hardware and specific device problems by
identifying error telemetry information that indicate a specific symptom in an error log and then
reporting actual fault diagnosis when the error symptom results in an actual fault.

The following command identifies any software or hardware related fault.

$ fmadm faulty

Use the above command routinely to identify failed services or devices.

Use the following command routinely to identify hardware or device related errors.

$ fmdump -eV | more

Error messages in this log file that describe vdev.open_failed, checksum, or io_failure
issues need your attention or they might evolve into actual faults that are displayed with the
fmadm faulty command.

If the above indicates that a device is failing, then this is a good time to make sure you have a
replacement device available.

You can also track additional device errors by using iostat command. Use the following
syntax to identify a summary of error statistics.

$ iostat -en
---- errors ---
s/w h/w trn tot device
0 0 0 0 c0t5000C500335F95E3d0
0 0 0 0 c0t5000C500335FC3E7d0
0 0 0 0 c0t5000C500335BA8C3d0
0 12 0 12 c2t0d0
0 0 0 0 c0t5000C500335E106Bd0
0 0 0 0 c0t50015179594B6F11d0
0 0 0 0 c0t5000C500335DC60Fd0
0 0 0 0 c0t5000C500335F907Fd0
0 0 0 0 c0t5000C500335BD117d0

In the above output, errors are reported on an internal disk c2t0d0. Use the following syntax to
display more detailed device errors.

Resolving Persistent or Transient Transport Errors
Persistent SCSI transport errors that refer to retries or resets can be caused by down-rev
firmware, a bad disk, a bad cable, or a faulty hardware connection. Some transient transport
errors can be resolved by upgrading your HBA or device firmware. If transport errors persist
after firmware is updated and all devices are deemed operational, then look for a bad cable or
other faulty connection between hardware components.

Chapter 11
Resolving General Hardware Problems

11-2

System Reporting of ZFS Error Messages
In addition to persistently tracking errors within the pool, ZFS also displays syslog messages
when events of interest occur. The following scenarios generate notification events:

• Device state transition – If a device becomes FAULTED, ZFS logs a message indicating
that the fault tolerance of the pool might be compromised. A similar message is sent if the
device is later brought online, restoring the pool to health.

• Data corruption – If any data corruption is detected, ZFS logs a message describing
when and where the corruption was detected. This message is only logged the first time it
is detected. Subsequent accesses do not generate a message.

• Pool failures and device failures – If a pool failure or a device failure occurs, the fault
manager daemon reports these errors through syslog messages as well as the fmdump
command.

If ZFS detects a device error and automatically recovers from it, no notification occurs. Such
errors do not constitute a failure in the pool redundancy or in data integrity. Moreover, such
errors are typically the result of a driver problem accompanied by its own set of error
messages.

Identifying Problems With ZFS Storage Pools
You can use the following features to identify problems with your ZFS configuration:

• Detailed ZFS storage pool information can be displayed by using the zpool status
command.

• Pool and device failures are reported through ZFS/FMA diagnostic messages.

• Previous ZFS commands that modified pool state information can be displayed by using
the zpool history command.

• A ZFS storage pool that is accidentally destroyed can be recovered by using the zpool
import -D command, but its important that the pool is recovered quickly so that the
devices are not reused or accidentally overwritten. For more information, see Recovering
Destroyed ZFS Storage Pools. No similar feature exists to recover ZFS file systems or
data. Always have good backups.

Most ZFS troubleshooting involves the zpool status command. This command analyzes
the various failures in a system and identifies the most severe problem, presenting you with a
suggested action and a link to a knowledge article for more information. Note that the
command only identifies a single problem with a pool, though multiple problems can exist. For
example, data corruption errors generally imply that one of the devices has failed, but replacing
the failed device might not resolve all of the data corruption problems.

In addition, a ZFS diagnostic engine diagnoses and reports pool failures and device failures.
Checksum, I/O, device, and pool errors associated with these failures are also reported. ZFS
failures as reported by fmd are displayed on the console as well as the system messages file.
In most cases, the fmd message directs you to the zpool status command for further
recovery instructions.

The basic recovery process is as follows:

• If appropriate, use the zpool history command to identify the ZFS commands that
preceded the error scenario. For example:

Chapter 11
Identifying Problems With ZFS Storage Pools

11-3

$ zpool history system1
History for 'system1':
2012-11-12.13:01:31 zpool create system1 mirror c0t1d0 c0t2d0 c0t3d0
2012-11-12.13:28:10 zfs create system1/glori
2012-11-12.13:37:48 zfs set checksum=off system1/glori

In this output, note that checksums are disabled for the system1/glori file system. This
configuration is not recommended.

• Identify the errors through the fmd messages that are displayed on the system console or
in the /var/adm/messages file.

• Find further repair instructions by using the zpool status -x command.

• Repair the failures, which involves the following steps:

– Replacing the unavailable or missing device and bring it online.

– Restoring the faulted configuration or corrupted data from a backup.

– Verifying the recovery by using the zpool status -x command.

– Backing up your restored configuration, if applicable.

This section describes how to interpret zpool status output in order to diagnose the type of
failures that can occur. Although most of the work is performed automatically by the command,
it is important to understand exactly what problems are being identified in order to diagnose the
failure. Subsequent sections describe how to repair the various problems that you might
encounter.

Determining If Problems Exist in a ZFS Storage Pool
The easiest way to determine if any known problems exist on a system is to use the zpool
status -x command. This command describes only pools that are exhibiting problems. If no
unhealthy pools exist on the system, then the command displays the following:

$ zpool status -x
all pools are healthy

Without the -x flag, the command displays the complete status for all pools (or the requested
pool, if specified on the command line), even if the pools are otherwise healthy.

For more information about command-line options to the zpool status command, see
Querying ZFS Storage Pool Status.

Reviewing ZFS Storage Pool Status Information
ZFS storage pool status information is displayed by using the zpool status command. For
example:

$ zpool status pond
pool: pond
state: DEGRADED
status: One or more devices are unavailable in response to persistent errors.
Sufficient replicas exist for the pool to continue functioning in a
degraded state.
action: Determine if the device needs to be replaced, and clear the errors
using 'zpool clear' or 'fmadm repaired', or replace the device
with 'zpool replace'.
Run 'zpool status -v' to see device specific details.
scan: scrub repaired 0 in 0h0m with 0 errors on Wed Jun 20 13:16:09 2012
config:

Chapter 11
Identifying Problems With ZFS Storage Pools

11-4

NAME STATE READ WRITE CKSUM
pond DEGRADED 0 0 0
mirror-0 ONLINE 0 0 0
c0t5000C500335F95E3d0 ONLINE 0 0 0
c0t5000C500335F907Fd0 ONLINE 0 0 0
mirror-1 DEGRADED 0 0 0
c0t5000C500335BD117d0 ONLINE 0 0 0
c0t5000C500335DC60Fd0 UNAVAIL 0 0 0

errors: No known data errors

This output is described in the following section.

Overall Pool Status Information
This section in the zpool status output contains the following fields, some of which are only
displayed for pools exhibiting problems:

pool
Identifies the name of the pool.

state
Indicates the current health of the pool. This information refers only to the ability of the pool to
provide the necessary replication level.

status
Describes what is wrong with the pool. This field is omitted if no errors are found.

action
A recommended action for repairing the errors. This field is omitted if no errors are found.

see
Refers to a knowledge article containing detailed repair information. Online articles are
updated more often than this guide can be updated. So, always reference them for the most
up-to-date repair procedures. This field is omitted if no errors are found.

scrub
Identifies the current status of a scrub operation, which might include the date and time that
the last scrub was completed, a scrub is in progress, or if no scrub was requested.

errors
Identifies known data errors or the absence of known data errors.

ZFS Storage Pool Configuration Information
The config field in the zpool status output describes the configuration of the devices in the
pool, as well as their state and any errors generated from the devices. The state can be one of
the following: ONLINE, FAULTED, DEGRADED, or SUSPENDED. If the state is anything but ONLINE, the
fault tolerance of the pool has been compromised.

The second section of the configuration output displays error statistics. These errors are
divided into three categories:

• READ – I/O errors that occurred while issuing a read request

• WRITE – I/O errors that occurred while issuing a write request

Chapter 11
Identifying Problems With ZFS Storage Pools

11-5

• CKSUM – Checksum errors, meaning that the device returned corrupted data as the result of
a read request

These errors can be used to determine if the damage is permanent. A small number of I/O
errors might indicate a temporary outage, while a large number might indicate a permanent
problem with the device. These errors do not necessarily correspond to data corruption as
interpreted by applications. If the device is in a redundant configuration, the devices might
show uncorrectable errors, while no errors appear at the mirror or RAID-Z device level. In such
cases, ZFS successfully retrieved the good data and attempted to heal the damaged data from
existing replicas.

For more information about interpreting these errors, see Determining the Type of Device
Failure.

Finally, additional auxiliary information is displayed in the last column of the zpool status
output. This information expands on the state field, aiding in the diagnosis of failures. If a
device is UNAVAIL, this field indicates whether the device is inaccessible or whether the data on
the device is corrupted. If the device is undergoing resilvering, this field displays the current
progress.

For information about monitoring resilvering progress, see Viewing Resilvering Status.

ZFS Storage Pool Scrubbing Status
The scrub section of the zpool status output describes the current status of any scrubbing
operations. This information is distinct from whether any errors are detected on the system,
though this information can be used to determine the accuracy of the data corruption error
reporting. If the last scrub ended recently, most likely, any known data corruption has been
discovered.

The following zpool status scrub status messages are provided:

• Scrub in-progress report. For example:

scan: scrub in progress since Wed Jun 20 14:56:52 2012
529M scanned out of 71.8G at 48.1M/s, 0h25m to go
0 repaired, 0.72% done

• Scrub completion message. For example:

scan: scrub repaired 0 in 0h11m with 0 errors on Wed Jun 20 15:08:23 2012
• Ongoing scrub cancellation message. For example:

scan: scrub canceled on Wed Jun 20 16:04:40 2012
Scrub completion messages persist across system reboots.

For more information about the data scrubbing and how to interpret this information, see
Checking ZFS File System Integrity.

ZFS Data Corruption Errors
The zpool status command also shows whether any known errors are associated with the
pool. These errors might have been found during data scrubbing or during normal operation.
ZFS maintains a persistent log of all data errors associated with a pool. This log is rotated
whenever a complete scrub of the system finishes.

Data corruption errors are always fatal. Their presence indicates that at least one application
experienced an I/O error due to corrupt data within the pool. Device errors within a redundant
pool do not result in data corruption and are not recorded as part of this log. By default, only

Chapter 11
Identifying Problems With ZFS Storage Pools

11-6

the number of errors found is displayed. A complete list of errors and their specifics can be
found by using the zpool status -v command. For example:

$ zpool status -v system1
pool: system1
state: ONLINE
status: One or more devices has experienced an error resulting in data
corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the
entire pool from backup.
see: http://support.oracle.com/msg/ZFS-8000-8A
scan: scrub repaired 0 in 0h0m with 2 errors on Fri Jun 29 16:58:58 2012
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 2 0 0
 c8t0d0 ONLINE 0 0 0
 c8t1d0 ONLINE 2 0 0

errors: Permanent errors have been detected in the following files:

/system1/file.1

A similar message is also displayed by fmd on the system console and the /var/adm/
messages file. These messages can also be tracked by using the fmdump command.

For more information about interpreting data corruption errors, see Identifying the Type of Data
Corruption.

Resolving ZFS Storage Device Problems
Review the following sections to resolve a missing, removed or faulted device.

Resolving a Missing or Removed Device
If a device cannot be opened, it displays the UNAVAIL state in the zpool status output. This
state means that ZFS was unable to open the device when the pool was first accessed, or the
device has since become unavailable. If the device causes a top-level virtual device to be
unavailable, then nothing in the pool can be accessed. Otherwise, the fault tolerance of the
pool might be compromised. In either case, the device just needs to be reattached to the
system to restore normal operations. If you need to replace a device that is UNAVAIL because it
has failed, see Replacing a Device in a ZFS Storage Pool.

If a device is UNAVAIL in a root pool or a mirrored root pool, see the following references:

• Mirrored root pool disk failed – Booting From an Alternate Root Pool Disk

• Replacing a disk in a root pool – How to Replace a Disk in a ZFS Root Pool

• Full root pool disaster recovery – Using Unified Archives for System Recovery and
Cloning in Oracle Solaris 11.4

For example, you might see a message similar to the following from fmd after a device failure:

SUNW-MSG-ID: ZFS-8000-QJ, TYPE: Fault, VER: 1, SEVERITY: Minor
EVENT-TIME: Wed Jun 20 13:09:55 MDT 2012
...
SOURCE: zfs-diagnosis, REV: 1.0
EVENT-ID: e13312e0-be0a-439b-d7d3-cddaefe717b0
DESC: Outstanding dtls on ZFS device 'id1,sd@n5000c500335dc60f/a' in pool 'pond'.

Chapter 11
Resolving ZFS Storage Device Problems

11-7

https://docs.oracle.com/cd/E37838_01/html/E60984/index.html
https://docs.oracle.com/cd/E37838_01/html/E60984/index.html

AUTO-RESPONSE: No automated response will occur.
IMPACT: None at this time.
REC-ACTION: Use 'fmadm faulty' to provide a more detailed view of this event.
Run 'zpool status -lx' for more information. Please refer to the associated
reference document at http://support.oracle.com/msg/ZFS-8000-QJ for the latest
service procedures and policies regarding this diagnosis.

To view more detailed information about the device problem and the resolution, use the zpool
status -v command. For example:

$ zpool status -v
pool: pond
state: DEGRADED
status: One or more devices are unavailable in response to persistent errors.
Sufficient replicas exist for the pool to continue functioning in a
degraded state.
action: Determine if the device needs to be replaced, and clear the errors
using 'zpool clear' or 'fmadm repaired', or replace the device
with 'zpool replace'.
scan: scrub repaired 0 in 0h0m with 0 errors on Wed Jun 20 13:16:09 2012
config:

NAME STATE READ WRITE CKSUM
pond DEGRADED 0 0 0
mirror-0 ONLINE 0 0 0
c0t5000C500335F95E3d0 ONLINE 0 0 0
c0t5000C500335F907Fd0 ONLINE 0 0 0
mirror-1 DEGRADED 0 0 0
c0t5000C500335BD117d0 ONLINE 0 0 0
c0t5000C500335DC60Fd0 UNAVAIL 0 0 0

device details:

c0t5000C500335DC60Fd0 UNAVAIL cannot open
status: ZFS detected errors on this device.
The device was missing.
see: http://support.oracle.com/msg/ZFS-8000-LR for recovery

You can see from this output that the c0t5000C500335DC60Fd0 device is not functioning. If you
determine that the device is faulty, replace it.

If necessary, use the zpool online command to bring the replaced device online. For
example:

$ zpool online pond c0t5000C500335DC60Fd0

Let FMA know that the device has been replaced if the output of the fmadm faulty identifies
the device error. For example:

$ fmadm faulty
--------------- ------------------------------------ -------------- ---------
TIME EVENT-ID MSG-ID SEVERITY
--------------- ------------------------------------ -------------- ---------
Jun 20 13:15:41 3745f745-371c-c2d3-d940-93acbb881bd8 ZFS-8000-LR Major

Problem Status : solved
Diag Engine : zfs-diagnosis / 1.0
System
Manufacturer : unknown
Name : ORCL,SPARC-T3-4
Part_Number : unknown
Serial_Number : 1120BDRCCD

Chapter 11
Resolving ZFS Storage Device Problems

11-8

Host_ID : 84a02d28

--
Suspect 1 of 1 :
Fault class : fault.fs.zfs.open_failed
Certainty : 100%
Affects : zfs://pool=86124fa573cad84e/
 vdev=25d36cd46e0a7f49/pool_name=pond/
 vdev_name=id1,sd@n5000c500335dc60f/a
Status : faulted and taken out of service

FRU
Name : "zfs://pool=86124fa573cad84e/
vdev=25d36cd46e0a7f49/pool_name=pond/
vdev_name=id1,sd@n5000c500335dc60f/a"
Status : faulty

Description : ZFS device 'id1,sd@n5000c500335dc60f/a'
in pool 'pond' failed to open.

Response : An attempt will be made to activate a hot spare if available.

Impact : Fault tolerance of the pool may be compromised.

Action : Use 'fmadm faulty' to provide a more detailed view of this event.
Run 'zpool status -lx' for more information. Please refer to the
associated reference document at
http://support.oracle.com/msg/ZFS-8000-LR for the latest service
procedures and policies regarding this diagnosis.

Extract the string in the Affects: section of the fmadm faulty output and include it with the
following command to let FMA know that the device is replaced:

$ fmadm repaired zfs://pool=86124fa573cad84e/ \
 vdev=25d36cd46e0a7f49/pool_name=pond/ \
 vdev_name=id1,sd@n5000c500335dc60f/a
fmadm: recorded repair to of zfs://pool=86124fa573cad84e/
 vdev=25d36cd46e0a7f49/pool_name=pond/vdev_
name=id1,sd@n5000c500335dc60f/a

As a last step, confirm that the pool with the replaced device is healthy. For example:

$ zpool status -x system1
pool 'system1' is healthy

Resolving a Removed Device
If a device is completely removed from the system, ZFS detects that the device cannot be
opened and places it in the REMOVED state. Depending on the data replication level of the pool,
this removal might or might not result in the entire pool becoming unavailable. If one disk in a
mirrored or RAID-Z device is removed, the pool continues to be accessible. A pool might
become UNAVAIL, which means no data is accessible until the device is reattached, under the
following conditions:

If a redundant storage pool device is accidentally removed and reinserted, then you can just
clear the device error, in most cases. For example:

$ zpool clear system1 c1t1d0

Chapter 11
Resolving ZFS Storage Device Problems

11-9

Physically Reattaching a Device
Exactly how a missing device is reattached depends on the device in question. If the device is
a network-attached drive, connectivity to the network should be restored. If the device is a USB
device or other removable media, it should be reattached to the system. If the device is a local
disk, a controller might have failed such that the device is no longer visible to the system. In
this case, the controller should be replaced, at which point the disks will again be available.
Other problems can exist and depend on the type of hardware and its configuration. If a drive
fails and it is no longer visible to the system, the device should be treated as a damaged
device. Follow the procedures in Replacing or Repairing a Damaged Device.

A pool might be SUSPENDED if device connectivity is compromised. A SUSPENDED pool remains in
the wait state until the device issue is resolved. For example:

$ zpool status cybermen
pool: cybermen
state: SUSPENDED
status: One or more devices are unavailable in response to IO failures.
The pool is suspended.
action: Make sure the affected devices are connected, then run 'zpool clear' or
'fmadm repaired'.
Run 'zpool status -v' to see device specific details.
see: http://support.oracle.com/msg/ZFS-8000-HC
scan: none requested
config:

NAME STATE READ WRITE CKSUM
cybermen UNAVAIL 0 16 0
c8t3d0 UNAVAIL 0 0 0
c8t1d0 UNAVAIL 0 0 0

After device connectivity is restored, clear the pool or device errors.

$ zpool clear cybermen
$ fmadm repaired zfs://pool=name/vdev=guid

Notifying ZFS of Device Availability
After a device is reattached to the system, ZFS might or might not automatically detect its
availability. If the pool was previously UNAVAIL or SUSPENDED, or the system was rebooted as
part of the attach procedure, then ZFS automatically rescans all devices when it tries to open
the pool. If the pool was degraded and the device was replaced while the system was running,
you must notify ZFS that the device is now available and ready to be reopened by using the
zpool online command. For example:

$ zpool online system1 c0t1d0

For more information about bringing devices online, see Taking Devices in a Storage Pool
Offline or Returning Online.

Replacing or Repairing a Damaged Device
This section describes how to determine device failure types, clear transient errors, and
replacing a device.

Chapter 11
Resolving ZFS Storage Device Problems

11-10

Determining the Type of Device Failure
The term damaged device is rather vague and can describe a number of possible situations:

• Bit rot – Over time, random events such as magnetic influences and cosmic rays can
cause bits stored on disk to flip. These events are relatively rare but common enough to
cause potential data corruption in large or long-running systems.

• Misdirected reads or writes – Firmware bugs or hardware faults can cause reads or
writes of entire blocks to reference the incorrect location on disk. These errors are typically
transient, though a large number of them might indicate a faulty drive.

• Administrator error – Administrators can unknowingly overwrite portions of a disk with
bad data (such as copying /dev/zero over portions of the disk) that cause permanent
corruption on disk. These errors are always transient.

• Temporary outage– A disk might become unavailable for a period of time, causing I/Os to
fail. This situation is typically associated with network-attached devices, though local disks
can experience temporary outages as well. These errors might or might not be transient.

• Bad or flaky hardware – This situation is a catch-all for the various problems that faulty
hardware exhibits, including consistent I/O errors, faulty transports causing random
corruption, or any number of failures. These errors are typically permanent.

• Offline device – If a device is offline, it is assumed that the administrator placed the
device in this state because it is faulty. The administrator who placed the device in this
state can determine if this assumption is accurate.

Determining exactly what is wrong with a device can be a difficult process. The first step is to
examine the error counts in the zpool status output. For example:

$ zpool status -v system1
pool: system1
state: ONLINE
status: One or more devices has experienced an error resulting in data
corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the
entire pool from backup.
see: http://support.oracle.com/msg/ZFS-8000-8A
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 2 0 0
 c8t0d0 ONLINE 0 0 0
 c8t0d0 ONLINE 2 0 0

errors: Permanent errors have been detected in the following files:

/system1/file.1

The errors are divided into I/O errors and checksum errors, both of which might indicate the
possible failure type. Typical operation predicts a very small number of errors (just a few over
long periods of time). If you are seeing a large number of errors, then this situation probably
indicates impending or complete device failure. However, an administrator error can also result
in large error counts. The other source of information is the syslog system log. If the log shows
a large number of SCSI or Fibre Channel driver messages, then this situation probably
indicates serious hardware problems. If no syslog messages are generated, then the damage
is likely transient.

The goal is to answer the following question:

Chapter 11
Resolving ZFS Storage Device Problems

11-11

Is another error likely to occur on this device?

Errors that happen only once are considered transient and do not indicate potential failure.
Errors that are persistent or severe enough to indicate potential hardware failure are
considered fatal. The act of determining the type of error is beyond the scope of any
automated software currently available with ZFS, and so much must be done manually by you,
the administrator. After determination is made, the appropriate action can be taken. Either clear
the transient errors or replace the device due to fatal errors. These repair procedures are
described in the next sections.

Even if the device errors are considered transient, they still might have caused uncorrectable
data errors within the pool. These errors require special repair procedures, even if the
underlying device is deemed healthy or otherwise repaired. For more information about
repairing data errors, see Repairing Corrupted ZFS Data.

Clearing Transient or Persistent Device Errors
If the device errors are deemed transient, in that they are unlikely to affect the future health of
the device, they can be safely cleared to indicate that no fatal error occurred. To clear error
counters for RAID-Z or mirrored devices, use the zpool clear command. For example:

$ zpool clear system1 c1t1d0

This syntax clears any device errors and clears any data error counts associated with the
device.

To clear all errors associated with the virtual devices in a pool, and to clear any data error
counts associated with the pool, use the following syntax:

$ zpool clear system1

For more information about clearing pool errors, see Clearing Storage Pool Device Errors.

Transient device errors are most likely cleared by using the zpool clear command. If a
device has failed, then see the next section about replacing a device. If a redundant device
was accidentally overwritten or was UNAVAIL for a long period of time, then this error might
need to be resolved by using the fmadm repaired command as directed in the zpool
status output. For example:

$ zpool status -v pond
pool: pond
state: DEGRADED
status: One or more devices are unavailable in response to persistent errors.
Sufficient replicas exist for the pool to continue functioning in a
degraded state.
action: Determine if the device needs to be replaced, and clear the errors
using 'zpool clear' or 'fmadm repaired', or replace the device
with 'zpool replace'.
scan: scrub repaired 0 in 0h0m with 0 errors on Wed Jun 20 15:38:08 2012
config:

NAME STATE READ WRITE CKSUM
pond DEGRADED 0 0 0
mirror-0 DEGRADED 0 0 0
c0t5000C500335F95E3d0 ONLINE 0 0 0
c0t5000C500335F907Fd0 UNAVAIL 0 0 0
mirror-1 ONLINE 0 0 0
c0t5000C500335BD117d0 ONLINE 0 0 0
c0t5000C500335DC60Fd0 ONLINE 0 0 0

Chapter 11
Resolving ZFS Storage Device Problems

11-12

device details:

c0t5000C500335F907Fd0 UNAVAIL cannot open
status: ZFS detected errors on this device.
The device was missing.
see: http://support.oracle.com/msg/ZFS-8000-LR for recovery

errors: No known data errors

Replacing a Device in a ZFS Storage Pool
If device damage is permanent or future permanent damage is likely, the device must be
replaced. Whether the device can be replaced depends on the configuration.

• Determining If a Device Can Be Replaced.

• Devices That Cannot be Replaced.

• Replacing a Device in a ZFS Storage Pool.

• Viewing Resilvering Status.

Determining If a Device Can Be Replaced
If the device to be replaced is part of a redundant configuration, sufficient replicas from which
to retrieve good data must exist. For example, if two disks in a four-way mirror are UNAVAIL,
then either disk can be replaced because healthy replicas are available. However, if two disks
in a four-way RAID-Z (raidz1) virtual device are UNAVAIL, then neither disk can be replaced
because insufficient replicas from which to retrieve data exist. If the device is damaged but
otherwise online, it can be replaced as long as the pool is not in the UNAVAIL state. However,
any corrupted data on the device is copied to the new device, unless sufficient replicas with
good data exist.

In the following configuration, the c1t1d0 disk can be replaced, and any data in the pool is
copied from the healthy replica, c1t0d0:

 mirror DEGRADED
c1t0d0 ONLINE
c1t1d0 UNAVAIL

The c1t0d0 disk can also be replaced, though no self-healing of data can take place because
no good replica is available.

In the following configuration, neither UNAVAIL disk can be replaced. The ONLINE disks cannot
be replaced either because the pool itself is UNAVAIL.

 raidz1 UNAVAIL
c1t0d0 ONLINE
c2t0d0 UNAVAIL
c3t0d0 UNAVAIL
c4t0d0 ONLINE

In the following configuration, either top-level disk can be replaced, though any bad data
present on the disk is copied to the new disk.

c1t0d0 ONLINE
c1t1d0 ONLINE

If either disk is UNAVAIL, then no replacement can be performed because the pool itself is
UNAVAIL.

Chapter 11
Resolving ZFS Storage Device Problems

11-13

Devices That Cannot be Replaced
If the loss of a device causes the pool to become UNAVAIL or the device contains too many
data errors in a non-redundant configuration, then the device cannot be safely replaced.
Without sufficient redundancy, no good data with which to heal the damaged device exists. In
this case, the only option is to destroy the pool and re-create the configuration, and then to
restore your data from a backup copy.

For more information about restoring an entire pool, see Repairing ZFS Storage Pool-Wide
Damage.

Replacing a Device in a ZFS Storage Pool
After you have determined that a device can be replaced, use the zpool replace command
to replace the device. If you are replacing the damaged device with different device, use syntax
similar to the following:

$ zpool replace system1 c1t1d0 c2t0d0

This command migrates data to the new device from the damaged device or from other
devices in the pool if it is in a redundant configuration. When the command is finished, it
detaches the damaged device from the configuration, at which point the device can be
removed from the system. If you have already removed the device and replaced it with a new
device in the same location, use the single device form of the command. For example:

$ zpool replace system1 c1t1d0

This command takes an unformatted disk, formats it appropriately, and then resilvers data from
the rest of the configuration.

For more information about the zpool replace command, see Replacing Devices in a
Storage Pool.

Example 11-1 Replacing a SATA Disk in a ZFS Storage Pool

The following example shows how to replace a device (c1t3d0) in a mirrored storage pool
system1 on a system with SATA devices. To replace the disk c1t3d0 with a new disk at the
same location (c1t3d0), then you must unconfigure the disk before you attempt to replace it. If
the disk to be replaced is not a SATA disk, then see Replacing Devices in a Storage Pool.

The basic steps follow:

• Take offline the disk (c1t3d0)to be replaced. You cannot unconfigure a SATA disk that is
currently being used.

• Use the cfgadm command to identify the SATA disk (c1t3d0) to be unconfigured and
unconfigure it. The pool will be degraded with the offline disk in this mirrored configuration,
but the pool will continue to be available.

• Physically replace the disk (c1t3d0). Ensure that the blue Ready to Remove LED is
illuminated before you physically remove the UNAVAIL drive, if available.

• Reconfigure the SATA disk (c1t3d0).

• Bring the new disk (c1t3d0) online.

• Run the zpool replace command to replace the disk (c1t3d0).

Chapter 11
Resolving ZFS Storage Device Problems

11-14

Note:

If you had previously set the pool property autoreplace to on, then any new
device, found in the same physical location as a device that previously belonged
to the pool is automatically formatted and replaced without using the zpool
replace command. This feature might not be supported on all hardware.

• If a failed disk is automatically replaced with a hot spare, you might need to detach the hot
spare after the failed disk is replaced. For example, if c2t4d0 is still an active hot spare
after the failed disk is replaced, then detach it.

$ zpool detach system1 c2t4d0
• If FMA is reporting the failed device, then you should clear the device failure.

$ fmadm faulty
$ fmadm repaired zfs://pool=name/vdev=guid

The following example walks through the steps to replace a disk in a ZFS storage pool.

$ zpool offline system1 c1t3d0
$ cfgadm | grep c1t3d0
sata1/3::dsk/c1t3d0 disk connected configured ok
$ cfgadm -c unconfigure sata1/3
Unconfigure the device at: /devices/pci@0,0/pci1022,7458@2/pci11ab,11ab@1:3
This operation will suspend activity on the SATA device
Continue (yes/no)? yes
$ cfgadm | grep sata1/3
sata1/3 disk connected unconfigured ok
<Physically replace the failed disk c1t3d0>
$ cfgadm -c configure sata1/3
$ cfgadm | grep sata1/3
sata1/3::dsk/c1t3d0 disk connected configured ok
$ zpool online system1 c1t3d0
$ zpool replace system1 c1t3d0
zpool status system1
pool: system1
state: ONLINE
scrub: resilver completed after 0h0m with 0 errors on Tue Feb 2 13:17:32 2010
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 c0t2d0 ONLINE 0 0 0
 c1t2d0 ONLINE 0 0 0
 mirror-2 ONLINE 0 0 0
 c0t3d0 ONLINE 0 0 0
 c1t3d0 ONLINE 0 0 0

errors: No known data errors

Note that the preceding zpool output might show both the new and old disks under a
replacing heading. For example:

replacing DEGRADED 0 0 0
c1t3d0s0/o FAULTED 0 0 0
c1t3d0 ONLINE 0 0 0

Chapter 11
Resolving ZFS Storage Device Problems

11-15

This text means that the replacement process is in progress and the new disk is being
resilvered.

If you are going to replace a disk (c1t3d0) with another disk (c4t3d0), then you only need to
run the zpool replace command. For example:

$ zpool replace system1 c1t3d0 c4t3d0
$ zpool status
pool: system1
state: DEGRADED
scrub: resilver completed after 0h0m with 0 errors on Tue Feb 2 13:35:41 2010
config:

NAME STATE READ WRITE CKSUM
system1 DEGRADED 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 c0t2d0 ONLINE 0 0 0
 c1t2d0 ONLINE 0 0 0
 mirror-2 DEGRADED 0 0 0
 c0t3d0 ONLINE 0 0 0
 replacing DEGRADED 0 0 0
 c1t3d0 OFFLINE 0 0 0
 c4t3d0 ONLINE 0 0 0

errors: No known data errors

You might need to run the zpool status command several times until the disk replacement
is completed.

$ zpool status system1
pool: system1
state: ONLINE
scrub: resilver completed after 0h0m with 0 errors on Tue Feb 2 13:35:41 2010
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 c0t2d0 ONLINE 0 0 0
 c1t2d0 ONLINE 0 0 0
 mirror-2 ONLINE 0 0 0
 c0t3d0 ONLINE 0 0 0
 c4t3d0 ONLINE 0 0 0

Example 11-2 Replacing a Failed Log Device

ZFS identifies intent log failures in the zpool status command output. Fault Management
Architecture (FMA) reports these errors as well. Both ZFS and FMA describe how to recover
from an intent log failure.

The following example shows how to recover from a failed log device (c0t5d0) in the storage
pool (storpool). The basic steps follow:

• Review the zpool status -x output and FMA diagnostic message, described in ZFS
intent log read failure (Doc ID 1021625.1) in https://support.oracle.com/ .

Chapter 11
Resolving ZFS Storage Device Problems

11-16

https://support.oracle.com/

• Physically replace the failed log device.

• Bring the new log device online.

• Clear the pool's error condition.

• Clear the FMA error.

For example, if the system shuts down abruptly before synchronous write operations are
committed to a pool with a separate log device, you see messages similar to the following:

$ zpool status -x
pool: storpool
state: FAULTED
status: One or more of the intent logs could not be read.
Waiting for administrator intervention to fix the faulted pool.
action: Either restore the affected device(s) and run 'zpool online',
or ignore the intent log records by running 'zpool clear'.
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
storpool FAULTED 0 0 0 bad intent log
 mirror-0 ONLINE 0 0 0
 c0t1d0 ONLINE 0 0 0
 c0t4d0 ONLINE 0 0 0
 logs FAULTED 0 0 0 bad intent log
 c0t5d0 UNAVAIL 0 0 0 cannot open
<Physically replace the failed log device>
$ zpool online storpool c0t5d0
$ zpool clear storpool
$ fmadm faulty
$ fmadm repair zfs://pool=name/vdev=guid

You can resolve the log device failure in the following ways:

• Replace or recover the log device. In this example, the log device is c0t5d0.

• Bring the log device back online.

$ zpool online storpool c0t5d0
• Reset the failed log device error condition.

$ zpool clear storpool
To recover from this error without replacing the failed log device, you can clear the error with
the zpool clear command. In this scenario, the pool will operate in a degraded mode and
the log records will be written to the main pool until the separate log device is replaced.

Consider using mirrored log devices to avoid the log device failure scenario.

Viewing Resilvering Status
The process of replacing a device can take an extended period of time, depending on the size
of the device and the amount of data in the pool. The process of moving data from one device
to another device is known as resilvering and can be monitored by using the zpool status
command.

The following zpool status resilver status messages are provided:

• Resilver in-progress report. For example:

Chapter 11
Resolving ZFS Storage Device Problems

11-17

scan: resilver in progress since Mon Jun 7 09:17:27 2010
13.3G scanned
13.3G resilvered at 18.5M/s, 82.34% done, 0h2m to go

• Resilver completion message. For example:

resilvered 16.2G in 0h16m with 0 errors on Mon Jun 7 09:34:21 2010
Resilver completion messages persist across system reboots.

Traditional file systems resilver data at the block level. Because ZFS eliminates the artificial
layering of the volume manager, it can perform resilvering in a much more powerful and
controlled manner. The two main advantages of this feature are as follows:

• ZFS only resilvers the minimum amount of necessary data. In the case of a short outage
(as opposed to a complete device replacement), the entire disk can be resilvered in a
matter of minutes or seconds. When an entire disk is replaced, the resilvering process
takes time proportional to the amount of data used on disk. Replacing a 500GB disk can
take seconds if a pool has only a few gigabytes of used disk space.

• If the system loses power or is rebooted, the resilvering process resumes exactly where it
left off, without any need for manual intervention.

To view the resilvering process, use the zpool status command. For example:

$ zpool status system1
pool: system1
state: ONLINE
status: One or more devices is currently being resilvered. The pool will
continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
scan: resilver in progress since Mon Jun 7 10:49:20 2010
54.6M scanned54.5M resilvered at 5.46M/s, 24.64% done, 0h0m to go

config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 replacing-0 ONLINE 0 0 0
 c1t0d0 ONLINE 0 0 0
 c2t0d0 ONLINE 0 0 0 (resilvering)
 c1t1d0 ONLINE 0 0 0

In this example, the disk c1t0d0 is being replaced by c2t0d0. This event is observed in the
status output by the presence of the replacing virtual device in the configuration. This device
is not real, nor is it possible for you to create a pool by using it. The purpose of this device is
solely to display the resilvering progress and to identify which device is being replaced.

Note that any pool currently undergoing resilvering is placed in the ONLINE or DEGRADED state
because the pool cannot provide the desired level of redundancy until the resilvering process is
completed. Resilvering proceeds as fast as possible, though the I/O is always scheduled with a
lower priority than user-requested I/O, to minimize impact on the system. After the resilvering is
completed, the configuration reverts to the new, complete, configuration. For example:

$ zpool status system1
pool: system1
state: ONLINE
scrub: resilver completed after 0h1m with 0 errors on Tue Feb 2 13:54:30 2010
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0

Chapter 11
Resolving ZFS Storage Device Problems

11-18

 mirror-0 ONLINE 0 0 0
 c2t0d0 ONLINE 0 0 0 377M resilvered
 c1t1d0 ONLINE 0 0 0

errors: No known data errors

The pool is once again ONLINE, and the original failed disk (c1t0d0) has been removed from
the configuration.

Changing Pool Devices
Do not try to change pool devices under an active pool.

Disks are identified both by their path and by their device ID, if available. On systems where
device ID information is available, this identification method allows devices to be reconfigured
without updating ZFS. Because device ID generation and management can vary by system,
export the pool first before moving devices, such as moving a disk from one controller to
another controller. A system event, such as a firmware update or other hardware change,
might change the device IDs in your ZFS storage pool, which can cause the devices to
become unavailable.

An additional problem is that if you attempt to change the devices underneath a pool and then
you use the zpool status command as a non-root user, the previous device names could
be displayed.

Resolving Data Problems in a ZFS Storage Pool
Examples of data problems include the following:

• Pool or file system space is missing

• Transient I/O errors due to a bad disk or controller

• On-disk data corruption due to cosmic rays

• Driver bugs resulting in data being transferred to or from the wrong location

• A user overwriting portions of the physical device by accident

In some cases, these errors are transient, such as a random I/O error while the controller is
having problems. In other cases, the damage is permanent, such as on-disk corruption. Even
still, whether the damage is permanent does not necessarily indicate that the error is likely to
occur again. For example, if you accidentally overwrite part of a disk, no type of hardware
failure has occurred, and the device does not need to be replaced. Identifying the exact
problem with a device is not an easy task and is covered in more detail in a later section.

Resolving ZFS Space Issues
Review the following sections if you are unsure how ZFS reports file system and pool space
accounting.

ZFS File System Space Reporting
The zpool list and zfs list commands are better than the previous df and du
commands for determining your available pool and file system space. With the legacy
commands, you cannot easily discern between pool and file system space, nor do the legacy
commands account for space that is consumed by descendant file systems or snapshots.

Chapter 11
Resolving Data Problems in a ZFS Storage Pool

11-19

For example, the following root pool (rpool) has 5.46 GB allocated and 68.5 GB free.

$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 74G 5.46G 68.5G 7% 1.00x ONLINE -

If you compare the pool space accounting with the file system space accounting by reviewing
the USED column of your individual file systems, you can see that the pool space that is
reported in ALLOC is accounted for in the file systems' USED total. For example:

$ zfs list -r rpool
NAME USED AVAIL REFER MOUNTPOINT
rpool 5.41G 67.4G 74.5K /rpool
rpool/ROOT 3.37G 67.4G 31K legacy
rpool/ROOT/solaris 3.37G 67.4G 3.07G /
rpool/ROOT/solaris/var 302M 67.4G 214M /var
rpool/dump 1.01G 67.5G 1000M -
rpool/export 97.5K 67.4G 32K /rpool/export
rpool/export/home 65.5K 67.4G 32K /rpool/export/home
rpool/export/home/admin 33.5K 67.4G 33.5K /rpool/export/home/admin
rpool/swap 1.03G 67.5G 1.00G -

ZFS Storage Pool Space Reporting
The SIZE value that is reported by the zpool list command is generally the amount of
physical disk space in the pool, but varies depending on the pool's redundancy level. See the
examples below. The zfs list command lists the usable space that is available to file
systems, which is disk space minus ZFS pool redundancy metadata overhead, if any.

The following ZFS dataset configurations are tracked as allocated space by the zfs list
command but they are not tracked as allocated space in the zpool list output:

• ZFS file system quota

• ZFS file system reservation

• ZFS logical volume size

The following items describe how using different pool configurations, ZFS volumes and ZFS
reservations can impact your consumed and available disk space. Depending upon your
configuration, monitoring pool space should be tracked by using the steps listed below.

• Non-redundant storage pool – When a pool is created with one 136GB disk, the zpool
list command reports SIZE and initial FREE values as 136 GB. The initial AVAIL space
reported by the zfs list command is 134 GB, due to a small amount of pool metadata
overhead. For example:

$ zpool create system1 c0t6d0
$ zpool list system1
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
system1 136G 95.5K 136G 0% 1.00x ONLINE -
$ zfs list system1
NAME USED AVAIL REFER MOUNTPOINT
system1 72K 134G 21K /system1

• Mirrored storage pool – When a pool is created with two 136GB disks, zpool list
command reports SIZE as 136 GB and initial FREE value as 136 GB. This reporting is
referred to as the deflated space value. The initial AVAIL space reported by the zfs list
command is 134 GB, due to a small amount of pool metadata overhead. For example:

$ zpool create system1 mirror c0t6d0 c0t7d0
$ zpool list system1

Chapter 11
Resolving Data Problems in a ZFS Storage Pool

11-20

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
system1 136G 95.5K 136G 0% 1.00x ONLINE -
$ zfs list system1
NAME USED AVAIL REFER MOUNTPOINT
system1 72K 134G 21K /system1

• RAID-Z storage pool – When a raidz2 pool is created with three 136GB disks, the zpool
list commands reports SIZE as 408 GB and initial FREE value as 408 GB. This reporting
is referred to as the inflated disk space value, which includes redundancy overhead, such
as parity information. The initial AVAIL space reported by the zfs list command is 133
GB, due to the pool redundancy overhead. The space discrepancy between the zpool
list and the zfs list output for a RAID-Z pool is because zpool list reports the
inflated pool space.

$ zpool create system1 raidz2 c0t6d0 c0t7d0 c0t8d0
$ zpool list system1
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
system1 408G 286K 408G 0% 1.00x ONLINE -
$ zfs list system1
NAME USED AVAIL REFER MOUNTPOINT
system1 73.2K 133G 20.9K /system1

• NFS mounted file system space – Neither the zpool list or the zfs list account
for NFS mounted file system space. However, local data files can be hidden under a
mounted NFS file system. If you are missing file system space, ensure that you do not
have data files hidden under an NFS file system.

• Using ZFS Volumes – When a ZFS file system is created and pool space is consumed,
you can view the file system space consumption by using the zpool list command. For
example:

$ zpool create nova mirror c1t1d0 c2t1d0
$ zfs create nova/fs1
$ mkfile 10g /nova/fs1/file1_10g
$ zpool list nova
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
nova 68G 10.0G 58.0G 14% 1.00x ONLINE -
$ zfs list -r nova
NAME USED AVAIL REFER MOUNTPOINT
nova 10.0G 56.9G 32K /nova
nova/fs1 10.0G 56.9G 10.0G /nova/fs1

If you create a 10GB ZFS volume, the space is not accounted for in the zpool list
command. The space is accounted for in the zfs list command. If you are using ZFS
volumes in your storage pools, monitor ZFS volume space consumption by using the zfs
list command. For example:

$ zfs create -V 10g nova/vol1
$ zpool list nova
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
nova 68G 10.0G 58.0G 14% 1.00x ONLINE -
$ zfs list -r nova
NAME USED AVAIL REFER MOUNTPOINT
nova 20.3G 46.6G 32K /nova
nova/fs1 10.0G 46.6G 10.0G /nova/fs1
nova/vol1 10.3G 56.9G 16K -

Note in the above output that ZFS volume space is not tracked in the zpool list output so
use the zfs list or the zfs list -o space command to identify space that is consumed by ZFS
volumes.

Chapter 11
Resolving Data Problems in a ZFS Storage Pool

11-21

In addition, because ZFS volumes act like raw devices, some amount of space for
metadata is automatically reserved through the refreservation property, which causes
volumes to consume slightly more space then the amount specified when the volume was
created. Do not remove the refreservation on ZFS volumes or you risk running out of
volume space.

• Using ZFS Reservations – If you create a file system with a reservation or add a
reservation to an existing file system, reservations or refreservations are not tracked by the
zpool list command.

Identify space that is consumed by file system reservations by using the zfs list -r
command to identify the increased USED space. For example:

$ zfs create -o reservation=10g nova/fs2
$ zpool list nova
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
nova 68G 10.0G 58.0G 14% 1.00x ONLINE -
$ zfs list -r nova
NAME USED AVAIL REFER MOUNTPOINT
nova 30.3G 36.6G 33K /nova
nova/fs1 10.0G 36.6G 10.0G /nova/fs1
nova/fs2 31K 46.6G 31K /nova/fs2
nova/vol1 10.3G 46.9G 16K -

If you create a file system with a refreservation, it can be identified by using the zfs list -r
command. For example:

$ zfs create -o refreservation=10g nova/fs3
$ zfs list -r nova
NAME USED AVAIL REFER MOUNTPOINT
nova 40.3G 26.6G 35K /nova
nova/fs1 10.0G 26.6G 10.0G /nova/fs1
nova/fs2 31K 36.6G 31K /nova/fs2
nova/fs3 10G 36.6G 31K /nova/fs3
nova/vol1 10.3G 36.9G 16K -

Use the following command to identify all existing reservations to account for total USED
space.

$ zfs get -r reserv,refreserv nova
NAME PROPERTY VALUE SOURCE
nova reservation none default
nova refreservation none default
nova/fs1 reservation none default
nova/fs1 refreservation none default
nova/fs2 reservation 10G local
nova/fs2 refreservation none default
nova/fs3 reservation none default
nova/fs3 refreservation 10G local
nova/vol1 reservation none default
nova/vol1 refreservation 10.3G local

Checking ZFS File System Integrity
No fsck utility equivalent exists for ZFS. This utility has traditionally served two purposes,
those of file system repair and file system validation.

File System Repair
With traditional file systems, the way in which data is written is inherently vulnerable to
unexpected failure causing file system inconsistencies. Because a traditional file system is not

Chapter 11
Resolving Data Problems in a ZFS Storage Pool

11-22

transactional, unreferenced blocks, bad link counts, or other inconsistent file system structures
are possible. The addition of journaling does solve some of these problems, but can introduce
additional problems when the log cannot be rolled back. The only way for inconsistent data to
exist on disk in a ZFS configuration is through hardware failure (in which case the pool should
have been redundant) or when a bug exists in the ZFS software.

The fsck utility repairs known problems specific to UFS file systems. Most ZFS storage pool
problems are generally related to failing hardware or power failures. Many problems can be
avoided by using redundant pools. If your pool is damaged due to failing hardware or a power
outage, see Repairing ZFS Storage Pool-Wide Damage.

If your pool is not redundant, the risk that file system corruption can render some or all of your
data inaccessible is always present.

File System Validation
In addition to performing file system repair, the fsck utility validates that the data on disk has
no problems. Traditionally, this task requires unmounting the file system and running the fsck
utility, possibly taking the system to single-user mode in the process. This scenario results in
downtime that is proportional to the size of the file system being checked. Instead of requiring
an explicit utility to perform the necessary checking, ZFS provides a mechanism to perform
routine checking of all inconsistencies. This feature, known as scrubbing, is commonly used in
memory and other systems as a method of detecting and preventing errors before they result
in a hardware or software failure.

Controlling ZFS Data Scrubbing
Whenever ZFS encounters an error, either through scrubbing or when accessing a file on
demand, the error is logged internally so that you can obtain a quick overview of all known
errors within the pool.

Explicit ZFS Data Scrubbing
The simplest way to check data integrity is to initiate an explicit scrubbing of all data within the
pool. This operation traverses all the data in the pool once and verifies that all blocks can be
read. Scrubbing proceeds as fast as the devices allow, though the priority of any I/O remains
below that of normal operations. This operation might negatively impact performance, though
the pool's data should remain usable and nearly as responsive while the scrubbing occurs. To
initiate an explicit scrub, use the zpool scrub command. For example:

$ zpool scrub system1

The status of the current scrubbing operation can be displayed by using the zpool status
command. For example:

$ zpool status -v system1
pool: system1
state: ONLINE
scan: scrub in progress since Mon Jun 7 12:07:52 2010
201M scanned out of 222M at 9.55M/s, 0h0m to go
0 repaired, 90.44% done
config:

NAME STATE READ WRITE CKSUM
system1 ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c1t0d0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0

Chapter 11
Resolving Data Problems in a ZFS Storage Pool

11-23

errors: No known data errors

Only one active scrubbing operation per pool can occur at one time.

You can stop a scrubbing operation that is in progress by using the -s option. For example:

$ zpool scrub -s system1

In most cases, a scrubbing operation to ensure data integrity should continue to completion.
Stop a scrubbing operation at your own discretion if system performance is impacted by the
operation.

Performing routine scrubbing guarantees continuous I/O to all disks on the system. Routine
scrubbing has the side effect of preventing power management from placing idle disks in low-
power mode. If the system is generally performing I/O all the time, or if power consumption is
not a concern, then this issue can safely be ignored. If the system is largely idle, and you want
to conserve power to the disks, you should consider using a cron scheduled explicit scrub
rather than background scrubbing. This will still perform complete scrubs of data, though it will
only generate a large amount of I/O until the scrubbing is finished, at which point the disks can
be power managed as normal. The downside (besides increased I/O) is that there will be large
periods of time when no scrubbing is being done at all, potentially increasing the risk of
corruption during those periods.

For more information about interpreting zpool status output, see Querying ZFS Storage
Pool Status.

Scheduled Data Scrubbing
Data inconsistencies can occur over time. Scrubbing the data regularly helps to find these
inconsistencies and resolve them early. Thus, regular scrubbing ensures data availability.

In this release, automatic scrubbing is added as a preventative maintenance tool. Automatic or
scheduled data scrubbing is now part of routine operations. The feature is enabled by default
upon installation. Two ZFS properties are associated with scheduled scrubbing:

• scrubinterval determines the time interval between automatic scrubbing. The value is
specified together with the following units of time: s, h, d, w, m, or y. These correspond to
second, hour, day, week, month, or year, respectively. A week can also be specified as 7
days, a month as 30 days, and a year as 365 days. By default, the time interval is set to 30
days.

Note:

Setting the interval to manual disables automatic scrubbing.

When you set the time interval, you must use only a single time unit, not a combination of
units.

– Incorrect

$ zpool set scrubinterval=1w3d
– Correct

$ zpool set scrubinterval=10d

Chapter 11
Resolving Data Problems in a ZFS Storage Pool

11-24

• lastscrub is a read-only property that specifies the start time of the last scrub that either
completed successfully or was canceled. The system uses this value to calculate the next
scrubbing based on the specified interval.

You can manually start the scrub operation outside of the scheduled time. The operation would
fail if a scheduled scrub is already in progress.

Just like with a manual scrub, you can cancel an ongoing scheduled scrub. In this case, a
scrub operation will be scheduled to run at the next period as specified by the interval and
calculated from the start time of the canceled scrub. To cancel an ongoing scrub operation, you
use the following command:

$ zpool scrub -s

A scheduled scrub runs only when no other scrub or a resilver operation is in progress. When
you initiate a resilver operation, an ongoing scheduled scrub is immediately canceled, and will
restart after the resliver completes.

ZFS Data Scrubbing and Resilvering
When a device is replaced, a resilvering operation is initiated to move data from the good
copies to the new device. This action is a form of disk scrubbing. Therefore, only one such
action can occur at a given time in the pool. If a scrubbing operation is in progress, a
resilvering operation suspends the current scrubbing and restarts it after the resilvering is
completed.

For more information about resilvering, see Viewing Resilvering Status.

Repairing Corrupted ZFS Data
Data corruption occurs when one or more device errors (indicating one or more missing or
damaged devices) affects a top-level virtual device. For example, one half of a mirror can
experience thousands of device errors without ever causing data corruption. If an error is
encountered on the other side of the mirror in the exact same location, corrupted data is the
result.

Data corruption is always permanent and requires special consideration during repair. Even if
the underlying devices are repaired or replaced, the original data is lost forever. Most often,
this scenario requires restoring data from backups. Data errors are recorded as they are
encountered, and they can be controlled through routine pool scrubbing as explained in the
following section. When a corrupted block is removed, the next scrubbing pass recognizes that
the corruption is no longer present and removes any trace of the error from the system.

The following sections describe how to identify the type of data corruption and how to repair
the data, if possible.

• Identifying the Type of Data Corruption.

• Repairing a Corrupted File or Directory.

• Repairing ZFS Storage Pool-Wide Damage.

ZFS uses checksums, redundancy, and self-healing data to minimize the risk of data
corruption. Nonetheless, data corruption can occur if a pool isn't redundant, if corruption
occurred while a pool was degraded, or an unlikely series of events conspired to corrupt
multiple copies of a piece of data. Regardless of the source, the result is the same: The data is
corrupted and therefore no longer accessible. The action taken depends on the type of data
being corrupted and its relative value. Two basic types of data can be corrupted:

Chapter 11
Resolving Data Problems in a ZFS Storage Pool

11-25

• Pool metadata – ZFS requires a certain amount of data to be parsed to open a pool and
access datasets. If this data is corrupted, the entire pool or portions of the dataset
hierarchy will become unavailable.

• Object data – In this case, the corruption is within a specific file or directory. This problem
might result in a portion of the file or directory being inaccessible, or this problem might
cause the object to be broken altogether.

Data is verified during normal operations as well as through a scrubbing. For information about
how to verify the integrity of pool data, see Checking ZFS File System Integrity.

Identifying the Type of Data Corruption
By default, the zpool status command shows only that corruption has occurred, but not
where this corruption occurred. For example:

$ zpool status system1
pool: system1
state: ONLINE
status: One or more devices has experienced an error resulting in data
corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the
entire pool from backup.
see: http://support.oracle.com/msg/ZFS-8000-8A
config:

NAME STATE READ WRITE CKSUM
 system1 ONLINE 4 0 0
 c0t5000C500335E106Bd0 ONLINE 0 0 0
 c0t5000C500335FC3E7d0 ONLINE 4 0 0

errors: 2 data errors, use '-v' for a list

Each error indicates only that an error occurred at a given point in time. Each error is not
necessarily still present on the system. Under normal circumstances, this is the case. Certain
temporary outages might result in data corruption that is automatically repaired after the
outage ends. A complete scrub of the pool is guaranteed to examine every active block in the
pool, so the error log is reset whenever a scrub finishes. If you determine that the errors are no
longer present, and you don't want to wait for a scrub to complete, reset all errors in the pool
by using the zpool online command.

If the data corruption is in pool-wide metadata, the output is slightly different. For example:

$ zpool status -v morpheus
pool: morpheus
id: 13289416187275223932
state: UNAVAIL
status: The pool metadata is corrupted.
action: The pool cannot be imported due to damaged devices or data.
see: http://support.oracle.com/msg/ZFS-8000-72
config:

morpheus FAULTED corrupted data
c1t10d0 ONLINE

In the case of pool-wide corruption, the pool is placed into the FAULTED state because the pool
cannot provide the required redundancy level.

Chapter 11
Resolving Data Problems in a ZFS Storage Pool

11-26

Repairing a Corrupted File or Directory
If a file or directory is corrupted, the system might still function, depending on the type of
corruption. Any damage is effectively unrecoverable if no good copies of the data exist on the
system. If the data is valuable, you must restore the affected data from backup. Even so, you
might be able to recover from this corruption without restoring the entire pool.

If the damage is within a file data block, then the file can be safely removed, thereby clearing
the error from the system. Use the zpool status -v command to display a list of file names
with persistent errors. For example:

$ zpool status system1 -v
pool: system1
state: ONLINE
status: One or more devices has experienced an error resulting in data
corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the
entire pool from backup.
see: http://support.oracle.com/msg/ZFS-8000-8A
config:

NAME STATE READ WRITE CKSUM
 system1 ONLINE 4 0 0
 c0t5000C500335E106Bd0 ONLINE 0 0 0
 c0t5000C500335FC3E7d0 ONLINE 4 0 0

errors: Permanent errors have been detected in the following files:
/system1/file.1
/system1/file.2

The list of file names with persistent errors might be described as follows:

• If the full path to the file is found and the dataset is mounted, the full path to the file is
displayed. For example:

/path1/a.txt
• If the full path to the file is found, but the dataset is not mounted, then the dataset name

with no preceding slash (/), followed by the path within the dataset to the file, is displayed.
For example:

path1/documents/e.txt
• If the object number to a file path cannot be successfully translated, either due to an error

or because the object does not have a real file path associated with it, as is the case for a
dnode_t, then the dataset name followed by the object's number is displayed. For
example:

path1/dnode:<0x0>
• If an object in the metaobject set (MOS) is corrupted, then a special tag of <metadata>,

followed by the object number, is displayed.

You can attempt to resolve more minor data corruption by using scrubbing the pool and
clearing the pool errors in multiple iterations. If the first scrub and clear iteration does not
resolve the corrupted files, run them again. For example:

$ zpool scrub system1
$ zpool clear system1

Chapter 11
Resolving Data Problems in a ZFS Storage Pool

11-27

If the corruption is within a directory or a file's metadata, the only choice is to move the file
elsewhere. You can safely move any file or directory to a less convenient location, allowing the
original object to be restored in its place.

If a damaged file system has corrupted data with multiple block references, such as snapshots,
the zpool status -v command cannot display all corrupted data paths. The current zpool
status reporting of corrupted data is limited by the amount of metadata corruption and if any
blocks have been reused after the zpool status command is executed. Deduplicated blocks
makes reporting all corrupted data even more complicated.

If you have corrupted data and the zpool status -v command identifies that snapshot data
is impacted, then considering running the following command to identify additional corrupted
paths:

$ find mount-point -inum $inode -print
$ find mount-point/.zfs/snapshot -inum $inode -print

The first command searches for the inode number of the reported corrupted data in the
specified file system and all its snapshots. The second command searches for snapshots with
the same inode number.

Repairing ZFS Storage Pool-Wide Damage
If the damage is in pool metadata and that damage prevents the pool from being opened or
imported, then the following options are available to you:

• You can attempt to recover the pool by using the zpool clear -F command or the
zpool import -F command. These commands attempt to roll back the last few pool
transactions to an operational state. You can use the zpool status command to review
a damaged pool and the recommended recovery steps. For example:

$ zpool status
pool: storpool
state: UNAVAIL
status: The pool metadata is corrupted and the pool cannot be opened.
action: Recovery is possible, but will result in some data loss.
Returning the pool to its state as of Fri Jun 29 17:22:49 2012
should correct the problem. Approximately 5 seconds of data
must be discarded, irreversibly. Recovery can be attempted
by executing 'zpool clear -F tpool'. A scrub of the pool
is strongly recommended after recovery.
see: http://support.oracle.com/msg/ZFS-8000-72
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
storpool UNAVAIL 0 0 1 corrupted data
 c1t1d0 ONLINE 0 0 2
 c1t3d0 ONLINE 0 0 4

The recovery process as described in the preceding output is to use the following
command:

$ zpool clear -F storpool

If you attempt to import a damaged storage pool, you will see messages similar to the
following:

$ zpool import storpool
cannot import 'storpool': I/O error

Chapter 11
Resolving Data Problems in a ZFS Storage Pool

11-28

Recovery is possible, but will result in some data loss.
Returning the pool to its state as of Fri Jun 29 17:22:49 2012
should correct the problem. Approximately 5 seconds of data
must be discarded, irreversibly. Recovery can be attempted
by executing 'zpool import -F storpool'. A scrub of the pool
is strongly recommended after recovery.

The recovery process as described in the preceding output is to use the following
command:

$ zpool import -F storpool
Pool storpool returned to its state as of Fri Jun 29 17:22:49 2012.
Discarded approximately 5 seconds of transactions

If the damaged pool is in the zpool.cache file, the problem is discovered when the
system is booted, and the damaged pool is reported in the zpool status command. If
the pool isn't in the zpool.cache file, it won't successfully import or open and you will see
the damaged pool messages when you attempt to import the pool.

• You can import a damaged pool in read-only mode. This method enables you to import the
pool so that you can access the data. For example:

$ zpool import -o readonly=on storpool

For more information about importing a pool read-only, see Importing a Pool in Read-Only
Mode.

• You can import a pool with a missing log device by using the zpool import -m
command. For more information, see Importing a Pool With a Missing Log Device.

• If the pool cannot be recovered by either pool recovery method, you must restore the pool
and all its data from a backup copy. The mechanism you use varies widely depending on
the pool configuration and backup strategy. First, save the configuration as displayed by
the zpool status command so that you can re-create it after the pool is destroyed.
Then, use the zpool destroy -f command to destroy the pool.

Also, keep a file describing the layout of the datasets and the various locally set properties
somewhere safe, as this information will become inaccessible if the pool is ever rendered
inaccessible. With the pool configuration and dataset layout, you can reconstruct your
complete configuration after destroying the pool. The data can then be populated by using
whatever backup or restoration strategy you use.

Repairing a Damaged ZFS Configuration
ZFS maintains a cache of active pools and their configuration in the root file system. If this
cache file is corrupted or somehow becomes out of sync with configuration information that is
stored on disk, the pool can no longer be opened. ZFS tries to avoid this situation, though
arbitrary corruption is always possible given the qualities of the underlying storage. This
situation typically results in a pool disappearing from the system when it should otherwise be
available. This situation can also manifest as a partial configuration that is missing an unknown
number of top-level virtual devices. In either case, the configuration can be recovered by
exporting the pool (if it is visible at all) and re-importing it.

For information about importing and exporting pools, see Migrating ZFS Storage Pools.

Repairing an Unbootable System
ZFS is designed to be robust and stable despite errors. Even so, software bugs or certain
unexpected problems might cause the system to panic when a pool is accessed. As part of the

Chapter 11
Repairing a Damaged ZFS Configuration

11-29

boot process, each pool must be opened, which means that such failures will cause a system
to enter into a panic-reboot loop. To recover from this situation, ZFS must be informed not to
look for any pools on startup.

ZFS maintains an internal cache of available pools and their configurations in /etc/zfs/
zpool.cache. The location and contents of this file are private and are subject to change. If
the system becomes unbootable, boot to the milestone none by using the -m
milestone=none boot option. After the system is up, remount your root file system as
writable and then rename or move the /etc/zfs/zpool.cache file to another location.
These actions cause ZFS to forget that any pools exist on the system, preventing it from trying
to access the unhealthy pool causing the problem. You can then proceed to a normal system
state by issuing the svcadm milestone all command. You can use a similar process when
booting from an alternate root to perform repairs.

After the system is up, you can attempt to import the pool by using the zpool import
command. However, doing so will likely cause the same error that occurred during boot,
because the command uses the same mechanism to access pools. If multiple pools exist on
the system, do the following:

• Rename or move the zpool.cache file to another location as discussed in the preceding
text.

• Determine which pool might have problems by using the fmdump -eV command to
display the pools with reported fatal errors.

• Import the pools one by one, skipping the pools that are having problems, as described in
the fmdump output.

Chapter 11
Repairing an Unbootable System

11-30

12
Recommended Oracle Solaris ZFS Practices

This chapter describes recommended practices for creating, monitoring, and maintaining your
ZFS storage pools and file systems.

This chapter covers the following topics:

• Recommended Storage Pool Practices.

• Recommended File System Practices.

For general ZFS tuning information that includes tuning for an Oracle database, see Chapter 3,
Oracle Solaris ZFS Tunable Parameters in Oracle Solaris 11.4 Tunable Parameters Reference
Manual .

Recommended Storage Pool Practices
The following sections provide recommended practices for creating and monitoring ZFS
storage pools. For information about troubleshooting storage pool problems, see Oracle
Solaris ZFS Troubleshooting and Pool Recovery.

General System Practices
• Keep system up-to-date with latest Oracle Solaris updates and releases

• Confirm that your controller honors cache flush commands so that you know your data is
safely written, which is important before changing the pool's devices or splitting a mirrored
storage pool. This is generally not a problem on Oracle/Sun hardware, but it is good
practice to confirm that your hardware's cache flushing setting is enabled.

• Size memory requirements to actual system workload

– With a known application memory footprint, such as for a database application, you
might cap the ARC size so that the application will not need to reclaim its necessary
memory from the ZFS cache.

– Consider deduplication memory requirements

– Identify ZFS memory usage with the following command:

$ mdb -k
> ::memstat
Page Summary Pages MB %Tot
------------ ---------------- ---------------- ----
Kernel 388117 1516 19%
ZFS File Data 81321 317 4%
Anon 29928 116 1%
Exec and libs 1359 5 0%
Page cache 4890 19 0%
Free (cachelist) 6030 23 0%
Free (freelist) 1581183 6176 76%

Total 2092828 8175
Physical 2092827 8175
> $q

12-1

https://docs.oracle.com/cd/E37838_01/html/E61034/chapterzfs-1.html
https://docs.oracle.com/cd/E37838_01/html/E61034/chapterzfs-1.html
https://docs.oracle.com/cd/E37838_01/html/E61034/chapterzfs-1.html

– See Document 1663862.1, Memory Management Between ZFS and Applications in
Oracle Solaris 11.x, in My Oracle Support (MOS) for tips on tuning the ZFS ARC
cache. This document includes a script which you can use to modify the
user_reserve_hint_pct and the zfs_arc_max_percent parameters.

– Consider using ECC memory to protect against memory corruption. Silent memory
corruption can potentially damage your data.

• Perform regular backups – Although a pool that is created with ZFS redundancy can help
reduce down time due to hardware failures, it is not immune to hardware failures, power
failures, or disconnected cables. Make sure you backup your data on a regular basis. If
your data is important, it should be backed up. Different ways to provide copies of your
data are:

– Regular or daily ZFS snapshots

– Weekly backups of ZFS pool data. You can use the zpool split command to create
an exact duplicate of ZFS mirrored storage pool.

– Monthly backups by using an enterprise-level backup product

• Hardware RAID

– ZFS redundancy is recommended over hardware RAID for the following reasons:

* When ZFS manages the storage redundancy, it not only detects underlying
hardware issues but can also repair data inconsistencies.

* Using ZFS redundancy has many benefits. For production environments, configure
ZFS so that it can repair data inconsistencies. Use ZFS redundancy, such as
RAID-Z, RAID-Z-2, RAID-Z-3, or mirroring. With such redundancy, faults in the
underlying storage device or its connections to the host can be discovered and
repaired by ZFS.

– If you must use hardware RAID, present devices in JBOD mode so ZFS can manage
the redundancy. In addition, follow these recommendations:

* Monitor both the ZFS storage pool by using zpool status and the underlying
LUNs by using your hardware RAID monitoring tools.

* Promptly replace any failed devices.

* Scrub your ZFS storage pools routinely, such as monthly, if you are using
datacenter quality services.

* Always have good, recent backups of your important data.

See also Pool Creation Practices on Local or Network Attached Storage Arrays.

• Crash dumps consume more disk space, generally in the 1/2-3/4 size of physical memory
range.

ZFS Storage Pool Creation Practices
The following sections provide general and more specific pool practices.

General Storage Pool Practices
• Use whole disks to enable disk write cache and provide easier maintenance. Creating

pools on slices adds complexity to disk management and recovery.

• Use ZFS redundancy so that ZFS can repair data inconsistencies.

– The following message is displayed when a non-redundant pool is created:

Chapter 12
Recommended Storage Pool Practices

12-2

https://support.oracle.com

$ zpool create system1 c4t1d0 c4t3d0
'system1' successfully created, but with no redundancy; failure
of one device will cause loss of the pool

– For mirrored pools, use mirrored disk pairs

– For RAID-Z pools, group 3-9 disks per VDEV

– Do not mix RAID-Z and mirrored components within the same pool. These pools are
harder to manage and performance might suffer.

• Use hot spares to reduce down time due to hardware failures

• Use similar size disks so that I/O is balanced across devices

– Smaller LUNs can be expanded to large LUNs

– Do not expand LUNs from extremely varied sizes, such as 128 MB to 2 TB, to keep
optimal metaslab sizes

• Consider creating a small root pool and larger data pools to support faster system recovery

• Recommended minimum pool size is 8 GB. Although the minimum pool size is 64 MB,
anything less than 8 GB makes allocating and reclaiming free pool space more difficult.

• Recommended maximum pool size should comfortably fit your workload or data size. Do
not try to store more data than you can routinely back up on a regular basis. Otherwise,
your data is at risk due to some unforeseen event.

See also Pool Creation Practices on Local or Network Attached Storage Arrays.

Root Pool Creation Practices
• SPARC (SMI (VTOC)): Create root pools with slices by using the s* identifier. Do not use

the p* identifier. In general, a system's ZFS root pool is created when the system is
installed. If you are creating a second root pool or re-creating a root pool, use syntax
similar to the following on a SPARC system:

$ zpool create rpool c0t1d0s0

Or, create a mirrored root pool. For example:

$ zpool create rpool mirror c0t1d0s0 c0t2d0s0
• Oracle Solaris 11.1 x86 (EFI (GPT)): Create root pools with whole disks by using the d*

identifier. Do not use the p* identifier. In general, a system's ZFS root pool is created when
the system is installed. If you are creating a second root pool or re-creating a root pool, use
syntax similar to the following:

$ zpool create rpool c0t1d0

Or, create a mirrored root pool. For example:

$ zpool create rpool mirror c0t1d0 c0t2d0
• The root pool must be created as a mirrored configuration or as a single-disk configuration.

Neither a RAID-Z nor a striped configuration is supported. You cannot add additional disks
to create multiple mirrored top-level virtual devices by using the zpool add command, but
you can expand a mirrored virtual device by using the zpool attach command.

• The root pool cannot have a separate log device.

• Pool properties can be set during an AI installation. You can use the lzjb compression
algorithm on root pools. You can use the gzip and lz4 compression algorithms only on
non-root pools.

Chapter 12
Recommended Storage Pool Practices

12-3

• Do not rename the root pool after it is created by an initial installation. Renaming the root
pool might cause an unbootable system.

• Do not create a root pool on a USB stick on a production system because root pool disks
are critical for continuous operation, particularly in an enterprise environment. Consider
using a system's internal disks for the root pool, or at least, use the same quality disks that
you would use for your non-root data. In addition, a USB stick might not be large enough to
support a dump volume size that is equivalent to at least 1/2 the size of physical memory.

• Rather than adding a hot spare to a root pool, consider creating a two- or a three-way
mirror root pool. In addition, do not share a hot spare between a root pool and a data pool.

• Do not use a VMware thinly-provisioned device for a root pool device.

Non-Root Pool Creation Practices
• Create non-root pools with whole disks by using the d* identifier. Do not use the p*

identifier.

– ZFS works best without any additional volume management software.

– For better performance, use individual disks or at least LUNs made up of just a few
disks. By providing ZFS with more visibility into the LUNs setup, ZFS is able to make
better I/O scheduling decisions.

• Create redundant pool configurations across multiple controllers to reduce down time due
to a controller failure.

– Mirrored storage pools – Consume more disk space but generally perform better with
small random reads.

$ zpool create system1 mirror c1d0 c2d0 mirror c3d0 c4d0
– RAID-Z storage pools – Can be created with 3 parity strategies, where parity equals 1

raidz), 2 raidz2), or 3 raidz3). A RAID-Z configuration maximizes disk space and
generally performs well when data is written and read in large chunks (128K or more).

* Consider a single-parity RAID-Z raidz) configuration with 2 VDEVs of 3 disks
(2+1) each.

$ zpool create rzpool raidz1 c1t0d0 c2t0d0 c3t0d0 raidz1 c1t1d0 c2t1d0 c3t1d0
* A RAIDZ-2 configuration offers better data availability, and performs similarly to

RAID-Z. RAIDZ-2 has significantly better mean time to data loss (MTTDL) than
either RAID-Z or 2-way mirrors. Create a double-parity RAID-Z raidz2)
configuration at 6 disks (4+2).

$ zpool create rzpool raidz2 c0t1d0 c1t1d0 c4t1d0 c5t1d0 c6t1d0 c7t1d0
raidz2 c0t2d0 c1t2d0 c4t2d0 c5t2d0 c6t2d0 c7t2d

* A RAIDZ-3 configuration maximizes disk space and offers excellent availability
because it can withstand 3 disk failures. Create a triple-parity RAID-Z (raidz3)
configuration at 9 disks (6+3).

$ zpool create rzpool raidz3 c0t0d0 c1t0d0 c2t0d0 c3t0d0 c4t0d0
c5t0d0 c6t0d0 c7t0d0 c8t0d0

Pool Creation Practices on Local or Network Attached Storage Arrays
Consider the following storage pool practices when creating an a ZFS storage pool on a
storage array that is connected locally or remotely.

Chapter 12
Recommended Storage Pool Practices

12-4

• If you create an pool on SAN devices and the network connection is slow, the pool's
devices might be UNAVAIL for a period of time. You need to assess whether the network
connection is appropriate for providing your data in a continuous fashion. Also, consider
that if you are using SAN devices for your root pool, they might not be available as soon as
the system is booted and the root pool's devices might also be UNAVAIL.

• Confirm with your array vendor that the disk array is not flushing its cache after a flush
write cache request is issued by ZFS.

• Use whole disks, not disk slices, as storage pool devices so that Oracle Solaris ZFS
activates the local small disk caches, which get flushed at appropriate times.

• For best performance, create one LUN for each physical disk in the array. Using only one
large LUN can cause ZFS to queue up too few read I/O operations to actually drive the
storage to optimal performance. Conversely, using many small LUNs could have the effect
of swamping the storage with a large number of pending read I/O operations.

• A storage array that uses dynamic (or thin) provisioning software to implement virtual
space allocation is not recommended for Oracle Solaris ZFS. When Oracle Solaris ZFS
writes the modified data to free space, it writes to the entire LUN. The Oracle Solaris ZFS
write process allocates all the virtual space from the storage array's point of view, which
negates the benefit of dynamic provisioning.

Consider that dynamic provisioning software might be unnecessary when using ZFS:

– You can expand a LUN in an existing ZFS storage pool and it will use the new space.

– Similar behavior works when a smaller LUN is replaced with a larger LUN.

– If you assess the storage needs for your pool and create the pool with smaller LUNs
that equal the required storage needs, then you can always expand the LUNs to a
larger size if you need more space.

• Present individual devices in JBOD-mode and configure ZFS storage redundancy (mirror
or RAID-Z) on this type of array so that ZFS can report and correct data inconsistencies.

Pool Creation Practices for an Oracle Database
Consider the following storage pool practices when creating an Oracle database.

• Use a mirrored pool or hardware RAID for pools

• RAID-Z pools are generally not recommended for random read workloads

• Create a small separate pool with a separate log device for database redo logs

• Create a small separate pool for the archive log

For more information about tuning ZFS for an Oracle database, see Tuning ZFS for Database
Products in Oracle Solaris 11.4 Tunable Parameters Reference Manual .

Using ZFS Storage Pools in VirtualBox
• Virtual Box is configured to ignore cache flush commands from the underlying storage by

default. This means that in the event of a system crash or a hardware failure, data could be
lost.

• Enable cache flushing on Virtual Box by issuing the following command:

VBoxManage setextradata vm-name "VBoxInternal/Devices/type/0/LUN#n/Config/
IgnoreFlush" 0

– vm-name – the name of the virtual machine

Chapter 12
Recommended Storage Pool Practices

12-5

https://docs.oracle.com/cd/E37838_01/html/E61034/chapterzfs-db1.html
https://docs.oracle.com/cd/E37838_01/html/E61034/chapterzfs-db1.html

– type – the controller type, either piix3ide (if you're using the usual IDE virtual
controller) or ahci, if you're using a SATA controller

– n – the disk number

Storage Pool Practices for Performance
• In general, keep pool capacity below 90% for best performance. The percentage where

performance might be impacted depends greatly on workload:

– If data is mostly added (write once, remove never), then it's very easy for ZFS to find
new blocks. In this case, the percentage can be higher than normal; maybe up to 95%.

– If data is made of large files or large blocks (such as 128K files or 1MB blocks) and the
data is removed in bulk operations, the percentage can be higher than normal; maybe
up to 95%.

– If a large percentage (more than 50%) of the pool is made up of 8k chunks (DBfiles,
iSCSI Luns, or many small files) and have constant rewrites, then the 90% rule should
be followed strictly.

– If all of the data is small blocks that have constant rewrites, then you should monitor
your pool closely once the capacity gets over 80%. The sign to watch for is increased
disk IOPS to achieve the same level of client IOPS.

• Mirrored pools are recommended over RAID-Z pools for random read/write workloads

• Separate log devices

– Recommended to improve synchronous write performance

– With a high synchronous write load, prevents fragmentation of writing many log blocks
in the main pool

• Separate cache devices are recommended to improve read performance

• Scrub/resilver - A very large RAID-Z pool with lots of devices will have longer scrub and
resilver times

• Pool performance is slow – Use the zpool status command to rule out any hardware
problems that are causing pool performance problems. If no problems show up in the
zpool status command, use the fmdump command to display hardware faults or use
the fmdump -eV command to review any hardware errors that have not yet resulted in a
reported fault.

ZFS Storage Pool Maintenance and Monitoring Practices
• Make sure that pool capacity is below 90% for best performance.

Pool performance can degrade when a pool is very full and file systems are updated
frequently, such as on a busy mail server. Full pools might cause a performance penalty,
but no other issues. If the primary workload is immutable files, then keep pool in the
95-96% utilization range. Even with mostly static content in the 95-96% range, write, read,
and resilvering performance might suffer.

– Monitor pool and file system space to make sure that they are not full.

– Consider using ZFS quotas and reservations to make sure file system space does not
exceed 90% pool capacity.

• Monitor pool health

– Monitor a redundant pool with zpool status and fmdump at least once per week

Chapter 12
Recommended Storage Pool Practices

12-6

– Monitor a non-redundant pool with zpool status and fmdump at least twice per
week

• Run zpool scrub on a regular basis to identify data integrity problems.

Scrub scheduling is enabled to run every 30 days by default. You can use the
scrubinterval property to disable scrub scheduling or change the interval at which scrubs
run. See the zpool(8) man page.

– If you have consumer-quality drives, consider a weekly scrubbing schedule.

– If you have datacenter-quality drives, consider a monthly scrubbing schedule.

– You should also run a scrub prior to replacing devices or temporarily reducing a pool's
redundancy to ensure that all devices are currently operational.

• Monitoring pool or device failures - Use zpool status as described below. Also use
fmdump or fmdump -eV to see if any device faults or errors have occurred.

– Redundant pools, monitor pool health with zpool status and fmdump on a weekly
basis

– Non-redundant pools, monitor pool health with zpool status and fmdump on a
semiweekly basis

• Pool device is UNAVAIL or OFFLINE – If a pool device is not available, then check to see if
the device is listed in the format command output. If the device is not listed in the
format output, then it will not be visible to ZFS.

If a pool device has UNAVAIL or OFFLINE, then this generally means that the device has
failed or cable has disconnected, or some other hardware problem, such as a bad cable or
bad controller has caused the device to be inaccessible.

• Consider configuring the smtp-notify service to notify you when a hardware component is
diagnosed as faulty. For more information, see the Notification Parameters section of
smf(7) and smtp-notify(8).

By default, some notifications are set up automatically to be sent to the root user. If you
add an alias for your user account as root in the /etc/aliases file, you will receive
electronic mail notifications with information similar to the following:

SUNW-MSG-ID: ZFS-8000-8A, TYPE: Fault, VER: 1, SEVERITY: Critical
EVENT-TIME: Fri Jun 29 16:58:58 MDT 2012
...
SOURCE: zfs-diagnosis, REV: 1.0
EVENT-ID: 76c2d1d1-4631-4220-dbbc-a3574b1ee807
DESC: A file or directory in pool 'pond' could not be read due to corrupt data.
AUTO-RESPONSE: No automated response will occur.
IMPACT: The file or directory is unavailable.
REC-ACTION: Use 'fmadm faulty' to provide a more detailed view of this event.
Run 'zpool status -xv' and examine the list of damaged files to determine what
has been affected. Please refer to the associated reference document at
http://support.oracle.com/msg/ZFS-8000-8A for the latest service procedures
and policies regarding this diagnosis.

• Monitor your storage pool space – Use the zpool list command and the zfs list
command to identify how much disk is consumed by file system data. ZFS snapshots can
consume disk space and if they are not listed by the zfs list command, they can
silently consume disk space. Use the zfs list -t snapshot command to identify disk
space that is consumed by snapshots.

Chapter 12
Recommended Storage Pool Practices

12-7

https://docs.oracle.com/cd/E88353_01/html/E72487/zpool-8.html
https://docs.oracle.com/cd/E88353_01/html/E37853/smf-7.html
https://docs.oracle.com/cd/E88353_01/html/E72487/smtp-notify-8.html

Recommended File System Practices
The following sections describe recommended file system practices.

Root File System Practices
• Consider keeping the root file system small and isolated from other non-root related data

so that root pool recovery is faster.

• Do not include file systems in rpool/ROOT, which is a special container that requires no
administration and should not contain any additional components.

File System Creation Practices
The following sections describe ZFS file system creation practices.

• Create one file system per user for home directories

• Consider using file system quotas and reservations to manage and reserve disk space for
important file systems

• Consider using user and group quotas to manage disk space in an environment with many
users

• Use ZFS property inheritance to apply properties to many descendant file systems

File System Creation Practices for an Oracle Database
Consider the following file system practices when creating an Oracle database.

• Match the ZFS recordsize property to the Oracle db_block_size.

• Create database table and index file systems in main database pool, using an 8 KB
recordsize and the default primarycache value.

• Create temp data and undo table space file systems in the main database pool, using
default recordsize and primarycache values.

• Create archive log file system in the archive pool, enabling compression and default
recordsize value and primarycache set to metadata.

Monitoring ZFS File System Practices
You should monitor your ZFS file systems to ensure they are available and to identify space
consumption issues.

• Weekly, monitor file system space availability with the zpool list and zfs list
commands rather than the du and df commands because legacy commands do not
account for space that is consumed by descendant file systems or snapshots.

For more information, see Resolving ZFS Space Issues.

• Display file system space consumption by using the zfs list -o space command.

• File system space can be unknowingly consumed by snapshots. You can display all
dataset information by using the following syntax:

$ zfs list -t all

Chapter 12
Recommended File System Practices

12-8

• A separate /var file system is created automatically when a system is installed, but you
should set a quota and reservation on this file system to ensure that it does not
unknowingly consume root pool space.

• In addition, you can use the fsstat command to display file operation activity of ZFS file
systems. Activity can be reported by mount point or by file system type. The following
example shows general ZFS file system activity:

$ fsstat /
new name name attr attr lookup rddir read read write write
file remov chng get set ops ops ops bytes ops bytes
832 589 286 837K 3.23K 2.62M 20.8K 1.15M 1.75G 62.5K 348M /

• Backups

– Keep file system snapshots

– Consider enterprise-level software for weekly and monthly backups

– Store root pool snapshots on a remote system for bare metal recovery

Chapter 12
Recommended File System Practices

12-9

13
Using Time Slider

This appendix describes Time Slider as a tool for certain snapshot management tasks. The
appendix covers the following topics:

• About Time Slider

• Enabling and Disabling Time Slider

• Using Time Slider Advanced Options

About Time Slider
Time Slider provides a graphical way for Oracle Solaris desktop users to restore individual files
or directories from automatically scheduled, incremental snapshots of home directories. If
enabled, Time Slider takes a snapshot of every ZFS file system every 15 minutes, by default.
These snapshots are then deleted again over time, such that only one snapshot is kept for
each of the previous 24 hours, one for each of the previous 7 days, and one for each previous
week that the Time Slider service was running.

Time Slider can automate periodic snapshots for any ZFS file system, including boot
environments, even on non-desktop systems.

Note:

If you install the desktop/time-slider package, some desktop component
dependencies might also be included in the installation.

Time Slider uses the following SMF services:

• svc:/system/filesystem/zfs/auto-snapshot:frequent: Takes one snapshot every 15
minutes

• svc:/system/filesystem/zfs/auto-snapshot:hourly: Takes one snapshot every hour

• svc:/system/filesystem/zfs/auto-snapshot:daily: Takes one snapshot every day

• svc:/system/filesystem/zfs/auto-snapshot:weekly: Takes one snapshot every week

• svc:/system/filesystem/zfs/auto-snapshot:monthly: Takes one snapshot every month

• svc:/application/time-slider:default: Manages automatic deletion of snapshots

• svc:/application/time-slider/plugin:rsync: Replicates each snapshot automatically
to a specified external storage device

Enabling and Disabling Time Slider
To configure Time Slider, you must be assigned the Time Slider Management rights profile. If
the profile requires authentication, you will be prompted for a password to gain access to the
configuration dialogs.

13-1

By default, Time Slider is disabled. To enable it, follow this procedure:

How to Enable or Disable Time Slider
1. On the desktop, click Activities to display the dock.

2. From the dock, click Show Applications, and then click Time Slider.

3. Select or deselect the Enable Time Slider option.

4. Click OK to select default settings.

Using Time Slider Advanced Options
Time Slider takes frequent snapshots of all the attached ZFS file systems These snapshots are
taken every 15 minutes, hourly, daily, and weekly.

In turn, automatic snapshots are deleted as follows:

• frequent snapshots are deleted after 1 hour

• hourly snapshots are deleted after 1 day

• daily snapshots are deleted after 1 week

• weekly snapshots are deleted after 1 month

• Older snapshots are deleted when the file system becomes more than 80% full

When enabled, Time Slider provides a set of advanced options so you can customize snapshot
processes as illustrated in the following figure:

Chapter 13
Using Time Slider Advanced Options

13-2

• Select Replicate backups to an external drive to specify a different destination drive to
store the snapshots.

• Select Custom to choose which files will have snapshots instead of using the default
setting that creates snapshots for all files.

• Change the percentage number to set a threshold for storage capacity consumption which,
when exceeded, triggers the deletion of older snapshots.

• Click Delete Snapshots to display a list of existing snapshots from which you can select
those you want to delete.

Chapter 13
Using Time Slider Advanced Options

13-3

Note:

Restoring snapshots is no longer supported in the desktop. To restore snapshots, as
well as perform other snapshot management tasks, you will need to use the
command line. See Working With Oracle Solaris ZFS Snapshots and Clones.

Chapter 13
Using Time Slider Advanced Options

13-4

A
Oracle Solaris ZFS Version Descriptions

This appendix describes available ZFS versions, features of each version, and the Oracle
Solaris OS that provides the ZFS version and feature.

This appendix covers the following topics:

• Overview of ZFS Versions.

• ZFS Pool Versions.

• ZFS File System Versions.

Overview of ZFS Versions
New ZFS pool and file system features are introduced and accessible by using a specific ZFS
version that is available in Oracle Solaris releases. You can use the zpool upgrade or zfs
upgrade to identify whether a pool or file system is at lower version than the currently running
Oracle Solaris release provides. You can also use these commands to upgrade your pool and
file system versions.

For information about using the zpool upgrade and zfs upgrade commands, see
Upgrading ZFS File Systems and Upgrading ZFS Storage Pools.

ZFS Pool Versions
The following table provides a list of ZFS pool versions that are available in the Oracle Solaris
release. This list can be created using the zpool upgrade -v command.

Version Oracle Solaris
Release

Description

1 Solaris 10 6/06 Initial ZFS version

2 Solaris 10 11/06 Ditto blocks (replicated metadata)

3 Solaris 10 11/06 Hot spares and double parity RAID-Z

4 Solaris 10 8/07 zpool history
5 Solaris 10 10/08 gzip compression algorithm

6 Solaris 10 10/08 bootfs pool property

7 Solaris 10 10/08 Separate intent log devices

8 Solaris 10 10/08 Delegated administration

9 Solaris 10 10/08 refquota and refreservation properties

10 Solaris 10 5/09 Cache devices

11 Solaris 10 10/09 Improved scrub performance

12 Solaris 10 10/09 Snapshot properties

13 Solaris 10 10/09 snapused property

A-1

Version Oracle Solaris
Release

Description

14 Solaris 10 10/09 aclinherit passthrough-x property

15 Solaris 10 10/09 user and group space accounting

16 Solaris 10 9/10 stmf property

17 Solaris 10 9/10 Triple-parity RAID-Z

18 Solaris 10 9/10 Snapshot user holds

19 Solaris 10 9/10 Log device removal

20 Solaris 10 9/10 zle (zero-length encoding) compression algorithm

21 Solaris 10 9/10 Deduplication

22 Solaris 10 9/10 Received properties

23 Solaris 10 8/11 Slim ZIL

24 Solaris 10 8/11 System attributes

25 Solaris 10 8/11 Improved scrub stats

26 Solaris 10 8/11 Improved snapshot deletion performance

27 Solaris 10 8/11 Improved snapshot creation performance

28 Solaris 10 8/11 Multiple vdev replacements

29 Solaris 10 8/11 RAID-Z/mirror hybrid allocator

30 Solaris 11 11/11 Encryption

31 Solaris 10 1/13 Improved 'zfs list' performance

32 Solaris 10 1/13 One MB blocksize

33 Oracle Solaris 11 11/11 Improved share support

34 Oracle Solaris 11.1 Sharing with inheritance

35 Oracle Solaris 11.2 Sequential resilver

36 Oracle Solaris 11.3 Efficient log block allocation

37 Oracle Solaris 11.3 lz4 compression

38 Oracle Solaris 11.4 xcopy with encryption

39 Oracle Solaris 11.4 reduce resilver restart

40 Oracle Solaris 11.4 Deduplication 2

41 Oracle Solaris 11.4 Asynchronous dataset destroy

42 Oracle Solaris 11.4 Support for reguid

43 Oracle Solaris 11.4 RAID-Z enhancements and cloud device support

44 Oracle Solaris 11.4 Device Removal

45 Oracle Solaris 11.4
SRU 11

Lazy deadlists

46 Oracle Solaris 11.4
SRU 12

Compact file metadata for encryption

47 Oracle Solaris 11.4
SRU 21

Property support for ZFS volumes

48 Oracle Solaris 11.4
SRU 45

File retention

Appendix A
ZFS Pool Versions

A-2

Version Oracle Solaris
Release

Description

49 Oracle Solaris 11.4
SRU 51

Unicode versioning

50 Oracle Solaris 11.4
SRU 57

Raw crypto replication

51 Oracle Solaris 11.4
SRU 63

Retention onexpiry

52 Oracle Solaris 11.4
SRU 72

clonedir mount point support

53 Oracle Solaris 11.4
SRU 78

Maximize space

ZFS File System Versions
The following table lists the ZFS file system versions that are available in the Oracle Solaris
release. Keep in mind that a feature that is available in a specific file system version requires a
specific pool version.This list can be created using the zfs upgrade -v command.

Version Oracle Solaris
Release

Description

1 Solaris 10 6/06 Initial ZFS file system version

2 Solaris 10 10/08 Enhanced directory entries

3 Solaris 10 10/08 Case insensitivity and file system unique identifier (FUID)

4 Solaris 10 10/09 userquota and groupquota properties

5 Solaris 10 8/11 System attributes

6 Oracle Solaris 11.1 Multilevel file system support

7 Oracle Solaris 11.4
SRU 45

File retention

8 Oracle Solaris 11.4
SRU 51

Unicode versioning

Appendix A
ZFS File System Versions

A-3

B
ZFS Glossary

B

boot environment
A bootable Oracle Solaris environment consisting of a ZFS root file system and, optionally,
other file systems mounted underneath it. Exactly one boot environment can be active at a
time.

C

checksum
A 256-bit hash of the data in a file system block. The checksum capability can range from the
simple and fast fletcher4 (the default) to cryptographically strong hashes such as SHA256.

clone
A file system whose initial contents are identical to the contents of a snapshot.

For information about clones, see Overview of ZFS Clones.

D

dataset
A generic name for the following ZFS components: clones, file systems, snapshots, and
volumes. Each dataset is identified by a unique name in the ZFS namespace.

For more information about datasets, see Managing Oracle Solaris ZFS File Systems.

deduplication
The process of eliminating duplicate blocks of data in a ZFS file system. After removing
duplicate blocks, the unique blocks are stored in the deduplication table.

F

file system
A ZFS dataset of type filesystem that is mounted within the standard system namespace and
behaves like other file systems.

B-1

For more information about file systems, see Managing Oracle Solaris ZFS File Systems.

M

mirror
A virtual device that stores identical copies of data on two or more disks. If any disk in a mirror
fails, any other disk in that mirror can provide the same data.

P

pool
A logical group of devices describing the layout and physical characteristics of the available
storage. Disk space for datasets is allocated from a pool.

For more information about storage pools, see Managing Oracle Solaris ZFS Storage Pools.

R

RAID-Z
A virtual device that stores data and parity on multiple disks. For more information about RAID-
Z, see RAID-Z Storage Pool Configuration.

resilvering
The process of copying data from one device to another device. For example, if a mirror device
is replaced or taken offline, the data from an up-to-date mirror device is copied to the newly
restored mirror device. In traditional volume management products, this process is referred to
as mirror resynchronization.

For more information about ZFS resilvering, see Viewing Resilvering Status.

root pool
A ZFS pool that contains the boot file system.

S

snapshot
A read-only copy of a file system or volume at a given point in time.

For more information about snapshots, see Overview of ZFS Snapshots.

Appendix B
M

B-2

V

virtual device
A logical device in a pool, which can be a physical device, a file, or a collection of devices.

For more information about virtual devices, see Querying ZFS Storage Pool Status.

volume
A dataset that represents a block device. For example, you can create a ZFS volume as a
swap device.

For more information about ZFS volumes, see ZFS Volumes.

Appendix B
V

B-3

Index

Symbols
.zfs/clones directory, 8-9

A
accessing

clones, 8-9
snapshot, 8-4

ACL entries
aclinherit property, 7-4
aclmode property, 7-4

aclinherit property, 7-4
aclmode property, 7-4
adding

cache devices, example of, 4-1
devices to a pool, 4-1
disks to a RAID-Z configuration, example of,

4-1
mirrored log device, 4-1
ZFS file system to native zones, 10-4
ZFS volumes to native zones, 10-5

adjusting swap and dump device sizes, 6-12
allocated property, 5-1
alternate root pools, 10-8
altroot property, 5-1
atime property, 7-4
attaching devices to a pool, 4-5
automatic file retention, 7-58
automatic mount points, 7-24
automatic naming

of a ZFS file system, 7-32
autoreplace property, 5-1
available property, 7-4

B
bandwidth limits

setting for a dataset, 7-44
boot environment (BE), 6-5
bootblocks, installing, 6-14
bootfs property, 5-1
booting

root file system, 6-14
ZFS BE on SPARC systems, 6-16

C
cache devices

adding, example of, 4-1
considerations for using, 3-7
creating a ZFS storage pool with, 3-7
removing, example of, 4-3

cachefile property, 5-1
canmount property

description, 7-4
detailed description, 7-12

capacity property, 5-1
casesensitivity property

description, 7-4
detailed description, 7-13

checking data integrity, 11-22
checksum property, 7-4
clearing

device errors, 11-12
devices in a pool, 4-9

clones
accessing, 8-9
creating, 8-8
destroying, 8-9
displaying, 8-9
features, 8-8
promoting, 8-10

clustered property, 5-1
command history, displaying, 5-5
components

of ZFS storage pools, 1-3
ZFS naming requirements, 2-1

compressing a ZFS file system
overview, 7-46

compression algorithms
in ZFS, 7-46

compression property, 7-4
compressratio property, 7-4
copies property, 7-4

detailed description, 7-13
crash dumps, saving, 6-13
creating

alternate root pools, 10-8
clones, 8-8

Index-1

creating (continued)
double-parity RAID-Z storage pool

example of, 3-1
file system, 3-1
hot spares, 4-11
mirrored ZFS storage pool, 3-5
new pool from a split mirrored pool, 4-6
single-parity RAID-Z storage pool

example of, 3-1
snapshots, 8-2
storage pools, 3-1

cache devices, 3-7
log devices, 3-6

triple-parity RAID-Z storage pool
example of, 3-1

ZFS file system, 7-2
ZFS file system with file retention, 7-54
ZFS volumes, 10-1

creation property, 7-4

D
data

corrupted, 11-25
duplication type, choosing, 2-2
identifying corruption, 11-6
repair, 11-22
saving, 8-14
scrubbing and resilvering, 11-23, 11-25
self-healing, 1-5
sending and receiving, 8-11
validation, 11-23

data scrubbing
automatic, 11-24
scheduled, 11-24

dataset
description, 7-1

dataset types
description, 7-19

datasets
delegating to a native zone, 10-5

dedup property, 7-4
detailed description, 7-14

dedupditto property, 5-1
dedupratio property, 5-1
defaultgroupquota property, 7-4
defaultuserquota property, 7-4
delegated administration, 9-1
delegating

datasets to a native zone, 10-5
permissions

command description, 9-4
groups, 9-5
individual users, 9-5

delegation property
description, 5-1
disabling, 9-1

destroying
clones, 8-9
snapshots, 8-2
storage pools, 3-9
ZFS file system, 7-3

detecting
in-use devices, 3-8
mismatched redundancy levels, 3-9

device failures
determining replaceability, 11-13
types of, 11-11

devices
adding to a storage pool, 4-1
attaching to a pool, 4-5
detaching from ZFS storage pool, 4-5
detecting in-use devices, 3-8
dump devices, enabling, 6-13
log devices, 3-6
removing from a storage pool, 4-3
replaceability of, 11-13
replacing, 4-9
returning online, 4-8
taking offline, 4-8

devices property, 7-4
disks in storage pools, 1-3
displaying

clones, 8-9
delegated permissions, 9-8
pool

health status, 5-9, 5-10
I/O statistics, 5-6, 5-7

syslog reporting of ZFS error messages, 11-3
dump devices, 4-9
dynamic striping, 1-6

E
EFI label

interaction with ZFS, 1-3
enabling

file retention, 7-54
enabling a dump device, 6-13
enabling scheduled scrubbing, 11-24
encrypting a ZFS file system, 7-47

changing keys, 7-49
examples of, 7-52
overview, 7-47

encryption property, 7-4
errors, clearing, 4-9
exec property, 7-4
exporting storage pools, 5-12

Index

Index-2

F
failmode property, 5-1
failures

corrupted data, 11-25
identifying, 11-1
missing (UNAVAIL) devices, 11-9

fast reboot feature, x86, 6-17
file access time updated

atime property, 7-4
file retention, 7-53, 7-54, 7-56

automatic, 7-58
properties, 7-55
restrictions, 7-58

file system
adding to native zones, 10-4
booting

root file system, 6-14
ZFS BE on SPARC, 6-16

components, 2-1
converting to snapshot stream, 8-12
hierarchy, 2-2
managing

properties within a zone, 10-6
migrating, 7-59
replacing with clones, 8-10
rights profiles, 2-1
snapshots

accessing, 8-4
renaming, 8-4

using with zones installed, 10-3
files in storage pools, 1-4
free property, 5-1

G
guid property, 5-1
gzip compression algorithm

in ZFS, 7-46

H
hardware and software requirements, 2-1
health property, 5-1
hot spares

activating and deactivating, 4-12
adding, 4-11
detaching, 4-12

I
I/O limits

setting for a dataset, 7-44
identifying

storage pool for import, 5-13

identifying (continued)
storage requirements, 2-2
type of data corruption, 11-26

importing
alternate root pools, 10-9
storage pools, 5-14, 5-16

in-use devices, 3-8
inheriting

ZFS properties
description, 7-21

installing
bootblocks, 6-14
replacement devices, 4-9
root pool, automatic, 6-2

K
keychangedate property, 7-4
keysource property, 7-4
keystatus property, 7-4

L
legacy mount points, 7-24
listing

descendents of ZFS file systems, 7-18
file systems, 3-1
pool information, 3-1, 5-3
types of ZFS file systems, 7-19
ZFS file systems, 7-18
ZFS file systems without header information,

7-19
ZFS properties, 7-22
ZFS properties by source value, 7-22
ZFS properties for scripting, 7-24

listshares property, 5-1
listsnapshots property, 5-1
log devices

removing, example of, 4-3
log devices, creating a ZFS storage pool with, 3-6
logbias property, 7-4
lz4 compression algorithm

in ZFS, 7-46
lzjb compression algorithm

in ZFS, 7-46

M
migrating

description, 7-58
file systems, 7-58, 7-59
storage pools, 5-12

mirrored configuration
for redundancy, 1-5

Index

Index-3

mirrored configuration (continued)
log devices

adding, 4-1
creating pool with, 3-6

splitting a mirrored pool to create a new pool,
4-6

storage pools, 3-5
mlslabel property, 7-4, 7-15
monitoring

data scrubbing, 8-22
resilvering task, 8-22
send stream progress, 8-22
status of stream reception, 8-22
tasks running on pools, 8-22

mount points
automatic, 7-24
default

storage pools, 3-9
legacy, 7-24
managing ZFS

description, 7-24
mounted property, 7-4
mounting

ZFS file systems, 7-26
mountpoint

default for ZFS file system, 7-2
mountpoint property, 7-4, 8-9
multilevel property, 7-4, 7-16

N
named shares

on a ZFS file system, 7-31
names

for ZFS file systems, 7-1
naming requirements of ZFS components, 2-1
native zones

adding ZFS file system, 10-4
delegating datasets to, 10-5

nbmand property, 7-4
normalization property, 7-4
notifying ZFS of reattached device, 11-10

O
origin property, 7-4

P
permission sets, defined, 9-1
planning ZFS implementation, 2-1
pool properties, list of, 5-1
primarycache property, 7-4
properties of ZFS

description, 7-4

properties of ZFS (continued)
description of heritable properties, 7-4

Q
quota property, 7-4
quotas and reservations

description, 7-39

R
RAID-Z configuration

adding disks to, 4-1
conceptual view, 1-5
double-parity, 1-5
example of, 3-1
redundancy feature, 1-5
single-parity, 1-5

read-only properties of ZFS
description, 7-12

readonly property, 7-4
receiving file system data, 8-16, 8-21
recordsize property, 7-4

detailed description, 7-16
recovering destroyed storage pools, 5-16
recursive stream package, 8-12
redundancy

methods, 1-5
mismatched levels, 3-9

referenced property, 7-4
refquota property, 7-4
refreservation property, 7-4
rekeydate property, 7-4
removing

cache devices, 4-3
devices from a storage pool, 4-3
log devices, 4-3
permissions, 9-5

renaming
snapshots, 8-4
storage pools, 5-14
ZFS file system, 7-4

repairing
an unbootable system, 11-29
corrupted file or directory, 11-27
damaged ZFS configurations, 11-29
pool-wide damage, 11-28

replacing
a missing device, 11-7
devices, 4-9, 11-14, 11-17

replication
stream package, 8-12

reservation property, 7-4
retaining

files, 7-53, 7-56, 7-58

Index

Index-4

retaining (continued)
zero-length files, 7-57

rights profiles for ZFS management, 2-1
rolling back snapshots, 8-6
root pools

alternate location, 10-8
automatic installation, 6-2
considerations for configuration, 6-1
mirrored configuration in

SPARC or x86/EFI (GPT), 6-3
SPARC or x86/VTOC, 6-4

replacing disks, 6-6
space requirements, 6-1

rstchown property, 7-4

S
saving

crash dumps, 6-13
file system data, 8-14

scheduled scrub intervals, 11-24
scripting pool output

pool output, 5-4
scrubbing and resilvering, 11-23, 11-25
secondarycache property, 7-4
sending and receiving file system data, 8-11
separate log devices, considerations for using,

3-6
settable properties of ZFS

description, 7-12
setting

compression property, 3-1
legacy mount points, 7-26
mountpoint property, 3-1
quota property, 3-1
share.nfs property, 3-1
ZFS atime property, 7-20
ZFS file system quota, 7-40
ZFS file system reservation, 7-43
ZFS mount points, 7-25
ZFS quota, 7-20

setuid property, 7-4
shadow migration, 7-58
shadow property, 7-4
share.nfs property

description, 7-4
example, 7-28

share.smb property, 7-4
detailed description, 7-16

sharenfs property
example, 7-28, 7-31

sharesmb property
example, 7-28

sharing
ZFS file systems, 7-28

named shares, 7-31
with automatic naming, 7-32

sharing ZFS file systems
share.smb property, 7-16

size property, 5-1
snapdir property, 7-4
snapshot

accessing, 8-4
applying property values, 8-17
copying, 8-14
creating, 8-2
destroying, 8-2
features, 8-1
monitoring streams

receiving, 8-22
sending, 8-22

performing raw data streams, 8-14
renaming, 8-4
rolling back, 8-6
sending and receiving data streams, 8-14,

8-16, 8-21
space accounting, 8-5

space accounting
snapshots, 8-5

splitting a mirrored pool, 4-6
storage pools

clearing device errors, 4-9, 11-12
components

disks, 1-3
files, 1-4
virtual devices, 3-1

creating
mirrored configuration, 3-5
performing a dry run, 3-7
RAID-Z configuration, 3-1

default mount point, 3-9
destroying, 3-9
device failure in, 11-11
devices

adding, 4-1
attaching and detaching, 4-5
configuring vdevs, 3-1
determining replaceability, 11-13
removing, 4-3
replacing, 4-9, 11-7, 11-14
taking offline and returning online, 4-8

displaying
health status, 5-9, 5-10
I/O statistics, 5-7

dynamic striping, 1-6
exporting, 5-12
files in, 1-4
importing

alternate source directories, 5-16

Index

Index-5

storage pools (continued)
importing (continued)
identifying available pools, 5-13
renaming pools while, 5-14

listing, 5-3
migrating, 5-12
mirrored configuration, 1-5
notifying ZFS of device availability, 11-10
problems in, 11-1, 11-3, 11-4
RAID-Z configuration, 1-5
recovering a destroyed pool, 5-16
rights profiles, 2-1
scripting storage pool output, 5-4
splitting a mirrored pool, 4-6
status information for troubleshooting, 11-5
system error messages, 11-3
upgrading, 5-18
using whole disks, 1-3
viewing resilvering process, 11-17

storage requirements, 2-2
stream package

recursive, 8-12
replication, 8-12

swap and dump devices
adjusting sizes, 6-12
description, 6-10
viewing, 6-11

sync property, 7-4

T
tasks

creating a ZFS file system, 7-2
destroying a ZFS file system, 7-3
renaming a ZFS file system, 7-4

traditional file systems and ZFS, 1-2
troubleshooting

clear device errors, 11-12
data corruption, 11-6, 11-26
determining if a device can be replaced, 11-13
device failure, 11-11
file system migration, 7-58
identifying problems, 11-3, 11-4
missing (UNAVAIL) devices, 11-9
notifying ZFS of reattached device, 11-10
pool status information, 11-5
repairing

corrupted file or directory, 11-27
damaged ZFS configuration, 11-29
pool-wide damage, 11-28
unbootable system, 11-29

replacing
devices, 11-14, 11-17
missing device, 11-7

storage pool creation issues, 3-8
syslog reporting of ZFS error messages, 11-3

troubleshooting (continued)
ZFS failures, 11-1

type property, 7-4

U
unmounting

ZFS file systems, 7-28
unsharing

ZFS file systems, 7-28
upgrading

storage pool, 5-18
ZFS file systems

description, 7-62
used property

description, 7-4
detailed description, 7-12

usedbychildren property, 7-4
usedbydataset property, 7-4
usedbyrefreservation property, 7-4
usedbysnapshots property, 7-4
user properties of ZFS, 7-17
utf8only property, 7-4

V
version property, 5-1, 7-4
virtual devices, 3-1
volblocksize property, 7-4
volsize property, 7-4

detailed description, 7-17
vscan property, 7-4

W
whole disks as components, 1-3

X
xattr property, 7-4

Z
zero-length files

retaining, 7-57
ZFS

comparison with traditional file systems, 1-2
features, 1-2
on zones, 10-3
planning deployment of, 2-1
versions, A-1

zfs create command
description, 7-2

Index

Index-6

ZFS datasets
setting limits on bandwidth use, 7-44

zfs destroy command, 7-3
ZFS file system

description, 7-1
names, 7-1

ZFS file system with file retention, 7-54
creating, 7-54

ZFS file systems
compressing, 7-46
dataset types

description, 7-19
default mountpoint, 7-2
destroying, 7-3
encrypting, 7-47
inheriting property, 7-21
listing

descendents, 7-18
description, 7-18
properties by source value, 7-22
properties for scripting, 7-24
properties of, 7-22
types of datasets, 7-19
without headers, 7-19

managing
automatic mount points, 7-24
legacy mount points, 7-24
mount points, 7-24

mounting, 7-26
renaming, 7-4
setting

a quota, 7-40
a reservation, 7-43
atime property, 7-20
legacy mount points, 7-26
mountpoint property, 7-25
quota property, 7-20

sharing, 7-28
unmounting, 7-28
unsharing, 7-28
upgrading

description, 7-62
zfs get command

-H and -o options, 7-24
-s option (source type), 7-22
description, 7-22

zfs inherit command, 7-21

ZFS intent log (ZIL), 3-6
zfs list command

-H option (without headers), 7-19
-r option (recursive), 7-18
-t option (dataset types), 7-19
description, 7-18

zfs mount command, 7-26
ZFS properties

canmount property, 7-12
casesensitivity property, 7-13
copies property, 7-13
dedup property, 7-14
description, 7-4
description of inheritable, 7-4
file retention, 7-55
list of, 7-4
managing in zones, 10-6
read-only, 7-12
recordsize property, 7-16
settable, 7-12
used property, 7-12
user properties, 7-17
volsize property, 7-17

zfs rename command, 7-4
zfs set command

atime property, 7-20
mountpoint property, 7-25
mountpoint=legacy property, 7-26
quota property, 7-20, 7-40
reservation property, 7-43
share property, 7-30

zfs unmount command, 7-28
zfs upgrade command, 7-62
ZFS volumes

adding to native zones, 10-5
creating, 10-1

zle compression algorithm
in ZFS, 7-46

zoned property, 7-4, 10-7
zones

adding ZFS file system, 10-4
adding ZFS volumes, 10-5
delegating datasets to a native zone, 10-5
managing ZFS properties, 10-6
using with ZFS, 10-3
zoned property, 10-7

Index

Index-7

	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	1 Introducing the Oracle Solaris ZFS File System
	What's New in ZFS for Oracle Solaris
	Oracle Solaris ZFS Features
	Components of a ZFS Storage Pool
	Using Disks in a ZFS Storage Pool
	Using Files in a ZFS Storage Pool

	Redundancy Features of a ZFS Storage Pool
	Mirrored Storage Pool Configuration
	RAID-Z Storage Pool Configuration
	ZFS Hybrid Storage Pool
	Dynamic Striping in a Storage Pool

	2 Getting Started With Oracle Solaris ZFS
	Hardware and Software Requirements
	Planning the ZFS Implementation
	Naming ZFS Components
	Identifying Storage Requirements
	Choosing the Type of Data Redundancy
	Determining the ZFS File System Hierarchy
	Selecting the File System Granularity
	Grouping File Systems
	Choosing File System Properties

	3 Creating and Destroying Oracle Solaris ZFS Storage Pools
	Creating ZFS Storage Pools
	How to Set Up ZFS on a System
	Creating a Mirrored Storage Pool
	Creating a RAID-Z Storage Pool
	Creating a ZFS Storage Pool With Log Devices
	Creating a ZFS Storage Pool With Cache Devices
	Doing a Dry Run of Storage Pool Creation
	Handling ZFS Storage Pool Creation Issues
	Devices Actively Being Used
	Mismatched Redundancy Levels
	Default Mount Point for Storage Pools Not Empty

	Destroying ZFS Storage Pools

	4 Managing Devices in Oracle Solaris ZFS Storage Pools
	Adding Devices to a Storage Pool
	Removing Devices From a Storage Pool
	Attaching and Detaching Devices in a Storage Pool
	Splitting a Mirrored Storage Pool to Create a New Pool
	Taking Devices in a Storage Pool Offline or Returning Online
	Clearing Storage Pool Device Errors
	Replacing Devices in a Storage Pool
	How to Replace a Device in a Storage Pool

	Working With Hot Spares in Storage Pools
	Designating Hot Spares in a Storage Pool
	Activating and Deactivating Hot Spares in Your Storage Pool

	5 Managing Oracle Solaris ZFS Storage Pools
	Managing ZFS Storage Pool Properties
	Querying ZFS Storage Pool Status
	Displaying Information About ZFS Storage Pools
	Displaying Information About All Storage Pools or a Specific Pool
	Displaying Specific Storage Pool Statistics
	Displaying Pool Devices by Physical Locations
	Displaying ZFS Storage Pool Command History

	Viewing I/O Statistics for ZFS Storage Pools
	Listing Pool-Wide I/O Statistics
	Listing Virtual Device I/O Statistics

	Determining the Health Status of ZFS Storage Pools
	Storage Pool Health Status
	Gathering ZFS Storage Pool Status Information

	Migrating ZFS Storage Pools
	Preparing for ZFS Storage Pool Migration
	Exporting a ZFS Storage Pool
	Determining Available Storage Pools to Import
	Importing ZFS Storage Pools
	Importing a Pool With a Missing Log Device
	Importing a Pool in Read-Only Mode
	Importing a Pool By Using a Specific Device Path

	Recovering Destroyed ZFS Storage Pools

	Upgrading ZFS Storage Pools
	Managing ZFS Pools That Contain Boot Environments

	6 Managing a ZFS Root Pool
	Requirements for Configuring the ZFS Root Pool
	ZFS Root Pool Space Requirements
	ZFS Root Pool Configuration Recommendations
	Installing the ZFS Root Pool

	Managing a ZFS Root Pool
	How to Configure a Mirrored Root Pool (SPARC or x86/EFI (GPT))
	How to Configure a Mirrored Root Pool (SPARC or x86/VTOC)
	How to Update a ZFS Boot Environment
	How to Mount an Alternate BE
	Replacing Disks in a ZFS Root Pool
	How to Replace a Disk in a ZFS Root Pool

	Managing ZFS Swap and Dump Devices
	Viewing Swap and Dump Information
	How to Create a Swap Volume
	How to Delete a Swap Volume
	How to Create a Dump Volume

	Adjusting the Sizes of ZFS Swap and Dump Devices
	Troubleshooting ZFS Dump Device Issues

	Booting From a ZFS Root File System
	Booting From an Alternate Root Pool Disk
	Alternate Boot Disks on SPARC Systems
	Alternate Boot Disks on x86 Systems

	Booting From a ZFS Root File System on a SPARC Based System
	SPARC: How to Select the Boot Environment for Booting

	Booting From a ZFS Root File System on an x86 Based System
	x86: Displaying the Root File System
	x86: Fast Rebooting a ZFS Root File System

	Booting for Recovery Purposes in a ZFS Root Environment

	7 Managing Oracle Solaris ZFS File Systems
	Introduction to ZFS File Systems
	Creating ZFS File Systems
	How to Create a ZFS File System

	Destroying or Renaming a ZFS File System
	How to Destroy a ZFS File System
	How to Rename a ZFS File System

	Introducing ZFS Properties
	ZFS Read-Only Native Properties
	Settable ZFS Native Properties
	The canmount Property
	The casesensitivity Property
	The copies Property
	The dedup Property
	The encryption Property
	The mlslabel Property
	The multilevel Property
	The recordsize Property
	The share.smb Property
	The volsize Property

	ZFS User Properties

	Querying ZFS File System Information
	Listing Basic ZFS Information
	Creating Complex ZFS Queries
	Listing Incomplete ZFS Datasets
	Creating Parsable Output with zfs list

	Managing ZFS Properties
	Setting ZFS Properties
	Inheriting ZFS Properties
	Querying ZFS Properties
	Querying ZFS Properties for Scripting

	Mounting ZFS File Systems
	Managing ZFS Mount Points
	Automatic Mount Points
	Legacy Mount Points

	Mounting ZFS File Systems
	Using Temporary Mount Properties
	Unmounting ZFS File Systems

	Sharing and Unsharing ZFS File Systems
	About Sharing Labeled File Systems
	Legacy ZFS Sharing Syntax
	New ZFS Sharing Syntax
	ZFS Sharing with Per-Property Inheritance
	ZFS Sharing Inheritance in Older Pools
	ZFS Named Shares
	ZFS Automatic Shares
	Displaying ZFS Share Information
	Changing ZFS Share Property Values
	Publishing and Unpublishing ZFS Shares
	Removing a ZFS Share
	ZFS File Sharing Within a Non-Global Zone

	ZFS Sharing Migration/Transition Issues
	Troubleshooting ZFS File System Sharing Problems

	Specifying Unicode Versions
	Setting ZFS Quotas
	Setting Quotas on ZFS File Systems
	Setting User and Group Quotas on a ZFS File System
	Setting Default User and Group Quotas

	Setting Reservations on ZFS File Systems
	Setting I/O Bandwidth Limits
	Compressing ZFS File Systems
	Encrypting ZFS File Systems
	Changing an Encrypted ZFS File System's Keys
	Managing ZFS Encryption Keys
	Delegating ZFS Key Operation Permissions

	Mounting an Encrypted ZFS File System
	Upgrading Encrypted ZFS File Systems
	Interactions Between ZFS Compression, Deduplication, and Encryption Properties
	Examples of Encrypting ZFS File Systems

	Retaining Files on Your ZFS File System
	Creating a ZFS File System With File Retention
	ZFS File Retention Properties
	Retaining Your Files
	Retaining Zero-Length Files
	Enabling Automatic File Retention
	File Retention Restrictions

	Migrating ZFS File Systems
	How to Migrate a File System to a ZFS File System
	How to Migrate SMB Filesystems

	Upgrading ZFS File Systems

	8 Working With Oracle Solaris ZFS Snapshots and Clones
	Overview of ZFS Snapshots
	Creating and Destroying ZFS Snapshots
	Holding ZFS Snapshots
	Renaming ZFS Snapshots

	Displaying and Accessing ZFS Snapshots
	Disk Space Accounting for ZFS Snapshots
	Rolling Back a ZFS Snapshot
	Identifying ZFS Snapshot Differences (zfs diff)

	Overview of ZFS Clones
	Creating a ZFS Clone
	Destroying a ZFS Clone
	Displaying and Accessing ZFS Clones
	Replacing a ZFS File System With a ZFS Clone

	Saving, Sending, and Receiving ZFS Data
	Saving ZFS Data With Other Backup Products
	Types of ZFS Snapshot Streams
	Sending a ZFS Snapshot
	Using Resumable Replication
	Receiving a ZFS Snapshot
	Applying Different Property Values to a ZFS Snapshot Stream
	Retaining Original Property Values
	Disabling Original Property Values

	Sending and Receiving Complex ZFS Snapshot Streams
	Sending and Receiving Encrypted ZFS Data
	Remote Replication of ZFS Data

	Monitoring ZFS Pool Operations
	Copying ZFS Files

	9 Oracle Solaris ZFS Delegated Administration
	Overview of ZFS Delegated Administration
	Delegating ZFS Permissions
	Delegating ZFS Permissions (zfs allow)
	Removing ZFS Delegated Permissions (zfs unallow)

	Delegating ZFS Permissions Examples
	Displaying ZFS Delegated Permissions Examples
	Removing ZFS Delegated Permissions Examples

	10 Oracle Solaris ZFS Advanced Topics
	ZFS Volumes
	Using a ZFS Volume as a Swap or Dump Device
	Using a ZFS Volume as an iSCSI LUN
	How to Use a ZFS Volume as an iSCSI LUN

	Using ZFS on an Oracle Solaris System With Zones Installed
	Adding ZFS File Systems to a Non-Global Zone
	Delegating Datasets to a Non-Global Zone
	Adding ZFS Volumes to a Non-Global Zone
	Using ZFS Storage Pools Within a Zone
	Managing ZFS Properties Within a Zone
	Understanding the zoned Property
	Copying Zones to Other Systems

	Using a ZFS Pool With an Alternate Root Location
	Creating a ZFS Pool With an Alternate Root Location
	Importing a Pool With an Alternate Root Location
	Importing a Pool With a Temporary Name

	11 Oracle Solaris ZFS Troubleshooting and Pool Recovery
	Identifying ZFS Problems
	Resolving General Hardware Problems
	Identifying Hardware and Device Faults
	Resolving Persistent or Transient Transport Errors
	System Reporting of ZFS Error Messages

	Identifying Problems With ZFS Storage Pools
	Determining If Problems Exist in a ZFS Storage Pool
	Reviewing ZFS Storage Pool Status Information
	Overall Pool Status Information
	ZFS Storage Pool Configuration Information
	ZFS Storage Pool Scrubbing Status
	ZFS Data Corruption Errors

	Resolving ZFS Storage Device Problems
	Resolving a Missing or Removed Device
	Resolving a Removed Device
	Physically Reattaching a Device
	Notifying ZFS of Device Availability

	Replacing or Repairing a Damaged Device
	Determining the Type of Device Failure
	Clearing Transient or Persistent Device Errors
	Replacing a Device in a ZFS Storage Pool
	Determining If a Device Can Be Replaced
	Devices That Cannot be Replaced
	Replacing a Device in a ZFS Storage Pool
	Viewing Resilvering Status

	Changing Pool Devices

	Resolving Data Problems in a ZFS Storage Pool
	Resolving ZFS Space Issues
	ZFS File System Space Reporting
	ZFS Storage Pool Space Reporting

	Checking ZFS File System Integrity
	File System Repair
	File System Validation
	Controlling ZFS Data Scrubbing
	Explicit ZFS Data Scrubbing
	Scheduled Data Scrubbing
	ZFS Data Scrubbing and Resilvering

	Repairing Corrupted ZFS Data
	Identifying the Type of Data Corruption
	Repairing a Corrupted File or Directory
	Repairing ZFS Storage Pool-Wide Damage

	Repairing a Damaged ZFS Configuration
	Repairing an Unbootable System

	12 Recommended Oracle Solaris ZFS Practices
	Recommended Storage Pool Practices
	General System Practices
	ZFS Storage Pool Creation Practices
	General Storage Pool Practices
	Root Pool Creation Practices
	Non-Root Pool Creation Practices
	Pool Creation Practices on Local or Network Attached Storage Arrays
	Pool Creation Practices for an Oracle Database
	Using ZFS Storage Pools in VirtualBox

	Storage Pool Practices for Performance
	ZFS Storage Pool Maintenance and Monitoring Practices

	Recommended File System Practices
	Root File System Practices
	File System Creation Practices
	File System Creation Practices for an Oracle Database
	Monitoring ZFS File System Practices

	13 Using Time Slider
	About Time Slider
	Enabling and Disabling Time Slider
	How to Enable or Disable Time Slider

	Using Time Slider Advanced Options

	A Oracle Solaris ZFS Version Descriptions
	Overview of ZFS Versions
	ZFS Pool Versions
	ZFS File System Versions

	B ZFS Glossary
	B
	boot environment

	C
	checksum
	clone

	D
	dataset
	deduplication

	F
	file system

	M
	mirror

	P
	pool

	R
	RAID-Z
	resilvering
	root pool

	S
	snapshot

	V
	virtual device
	volume

	Index

