
Oracle Solaris Modular Debugger Guide

E61056-01
February 2022

Oracle Solaris Modular Debugger Guide,

E61056-01

Copyright © 1999, 2022, Oracle and/or its affiliates.

Primary Author: Cathleen Reiher

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Using This Documentation

Product Documentation Library ix

Feedback ix

1 Modular Debugger Overview

Introduction to MDB 1-1

MDB Features 1-1

Using MDB 1-2

MDB Extensibility 1-3

2 MDB Concepts

Building Blocks of MDB 2-1

Modular Architecture of MDB 2-2

3 MDB Language Syntax

MDB Syntax 3-1

MDB Commands 3-2

MDB Comments 3-3

Arithmetic Expansion in MDB 3-3

Unary Operators in MDB 3-4

Binary Operators in MDB 3-5

MDB Quoting Metacharacter 3-6

Shell Escapes in MDB 3-6

MDB Variables 3-6

MDB Symbol Name Resolution 3-7

MDB Symbol Tables 3-7

MDB Symbol Name Scoping 3-8

MDB Scoping Within User-Level Applications and Shared Libraries 3-8

MDB Object Identifier 3-8

MDB Link Map Identifier 3-9

iii

MDB Scoping Within the Kernel 3-9

Kernel Debug Information 3-9

Using the Scoping Operator With a Kernel Module 3-9

Dcmd and Walker Name Resolution 3-11

Dcmd Pipelines 3-12

Dcmd Formatting Characters 3-12

4 Using MDB Commands Interactively

MDB Command Reentry 4-1

MDB Inline Editing 4-1

MDB Keyboard Shortcuts 4-3

MDB Output Pager 4-3

MDB Signal Handling 4-3

5 Built-In Commands in MDB

MDB Built-In Dcmds 5-1

6 Execution Control in MDB

MDB Execution Control 6-1

Event Callbacks in MDB 6-2

Thread Support in MDB 6-2

Thread Spinning Functionality in KMDB 6-3

Execution Control Built-in Dcmds 6-3

MDB Interaction With exec 6-9

MDB Interaction With Job Control 6-10

MDB Process Attach and Release 6-10

7 Kernel Execution Control Using kmdb

Booting, Loading, and Unloading kmdb 7-1

Terminal Handling by kmdb 7-2

kmdb Debugger Entry 7-3

Processor-Specific Features of kmdb 7-4

8 Kernel Debugging Modules

Generic Kernel Debugging Support (genunix) 8-1

Kernel Memory Allocator 8-1

Kernel Memory Allocator Dcmds 8-1

iv

Kernel Memory Allocator Walkers 8-3

File Systems and MDB 8-4

File Systems Dcmds 8-4

File Systems Walkers 8-5

Virtual Memory and MDB 8-5

Virtual Memory Dcmds 8-5

Virtual Memory Walkers 8-6

CPU Structures, the Kernel Dispatcher, and MDB 8-6

CPU and Dispatcher Dcmds 8-6

CPU and Dispatcher Walkers 8-6

Device Drivers, DDI Framework, and MDB 8-7

Device Driver Dcmds 8-7

Device Drivers, DDI framework, and MDB 8-8

STREAMS Debugging 8-8

STREAMS Dcmds 8-8

STREAMS Walkers 8-10

Networking Debugging 8-10

Networking Dcmds 8-10

Networking Walkers 8-11

Files, Processes, Threads, and MDB 8-11

Files, Processes, and Threads Dcmds 8-12

Files, Processes, and Threads Walkers 8-13

Synchronization Primitives and MDB 8-13

Synchronization Primitives Dcmds 8-13

Synchronization Primitives Walkers 8-14

Cyclics Debugging 8-14

Cyclics Dcmds 8-14

Cyclics Walkers 8-14

Task Queues and MDB 8-15

Task Queues Dcmds 8-15

Task Queues Walkers 8-15

Error Queues and MDB 8-15

Error Queues Dcmds 8-15

Error Queues Walkers 8-15

System Configuration and MDB 8-15

System Configuration Dcmds 8-15

Interprocess Communication Debugging Support (ipc) 8-16

Interprocess Communication Dcmds 8-16

Interprocess Communication Walkers 8-17

Loopback File System Debugging Support (lofs) 8-17

Loopback File System Dcmds 8-17

v

Loopback File System Walkers 8-17

Internet Protocol Module Debugging Support (ip) 8-17

Internet Protocol Dcmds 8-18

Internet Protocol Walkers 8-18

Kernel Runtime Link Editor Debugging Support (krtld) 8-18

Kernel Runtime Link Editor Dcmds 8-18

Kernel Runtime Link Editor Walkers 8-18

USB Framework Debugging Support (uhci) 8-18

USB Host Controller Dcmds 8-18

USB Host Controller Walkers 8-19

USB Framework Debugging Support (usba) 8-19

USB Framework Dcmds 8-19

USB Framework Walkers 8-19

x86 Platform Debugging Support (unix) 8-20

x86 Platform Dcmds 8-20

x86 Platform Walkers 8-20

9 Debugging With the Kernel Memory Allocator

Getting Started With MDB: Creating a Sample Crash Dump 9-1

Setting kmem_flags 9-1

Forcing a Crash Dump 9-2

Saving a Crash Dump 9-4

Starting MDB 9-5

Allocator Basics 9-6

Buffer States 9-6

Kmem Transactions 9-6

Sleeping and Non-Sleeping Allocations 9-6

Kernel Memory Caches 9-6

Kernel Memory Caches 9-7

Detecting Memory Corruption 9-10

Freed Buffer Checking: 0xdeadbeef 9-10

Redzone: 0xfeedface 9-11

Uninitialized Data: 0xbaddcafe 9-13

Associating Panic Messages With Failures 9-13

Memory Allocation Logging 9-14

Buftag Data Integrity 9-14

bufctl Pointer in buftag Region 9-15

Advanced Memory Analysis 9-16

Finding Memory Leaks 9-16

Finding References to Data 9-16

vi

Finding Corrupt Buffers With ::kmem_verify 9-17

Allocator Logging Facility 9-18

10

MDB Debugger Module Programming API

Debugger Module Linkage 10-1

_mdb_init() Function 10-1

_mdb_fini() Function 10-2

MDB Dcmd Definitions 10-2

MDB Walker Definitions 10-4

MDB API Functions 10-7

mdb_openfd() and mdb_closefd() Functions 10-7

mdb_preadfd() and mdb_pwritefd() Functions 10-7

mdb_pwalk() Function 10-7

mdb_walk() Function 10-7

mdb_pwalk_dcmd() Function 10-8

mdb_walk_dcmd() Function 10-8

mdb_call_dcmd() Function 10-8

mdb_layered_walk() Function 10-8

mdb_add_walker() Function 10-9

mdb_remove_walker() Function 10-9

mdb_vread() and mdb_vwrite() Functions 10-9

mdb_fread() and mdb_fwrite() Functions 10-10

mdb_pread() and mdb_pwrite() Functions 10-10

mdb_readstr() Function 10-10

mdb_writestr() Function 10-10

mdb_readsym() Function 10-10

mdb_writesym() Function 10-11

mdb_writevar() Function 10-11

mdb_lookup_by_name() and mdb_lookup_by_obj() Functions 10-11

mdb_lookup_by_addr() Function 10-12

mdb_getopts() Function 10-12

mdb_strtoull() Function 10-14

mdb_alloc(), mdb_zalloc() and mdb_free() Functions 10-14

mdb_printf() Function 10-15

Flag Specifiers 10-15

Field Width Specifiers 10-16

Integer Specifiers 10-16

Terminal Attribute Specifiers 10-16

Format Specifiers 10-17

mdb_vprintf() Function 10-20

vii

mdb_help_print() Function 10-20

mdb_help_print_section() Function 10-21

mdb_help_print_defs() Function 10-21

mdb_help_print_examples() Function 10-21

mdb_snprintf() Function 10-22

mdb_vsnprintf() Function 10-22

mdb_asprintf() and mdb_vasprintf() Functions 10-22

mdb_warn() Function 10-22

mdb_flush() Function 10-23

mdb_nhconvert() Function 10-23

mdb_dumpptr() and mdb_dump64() Functions 10-23

mdb_one_bit() Function 10-24

mdb_inval_bits() Function 10-25

mdb_inc_indent() and mdb_dec_indent() Functions 10-25

mdb_eval() Function 10-25

mdb_set_dot() and mdb_get_dot() Functions 10-26

mdb_get_pipe() Function 10-26

mdb_set_pipe() Function 10-26

mdb_get_xdata() Function 10-26

Additional MDB Functions for Module Programmers 10-27

A Transition From adb and kadb to MDB

Command-Line Option Differences Between adb and MDB A-1

Syntax Differences Between adb and MDB A-1

Watchpoint Length Specifier Differences Between adb and MDB A-2

Address Map Modifier Differences Between adb and MDB A-2

Command Output Differences Between adb and MDB A-2

Deferred Breakpoint Differences Between adb and MDB A-2

x86: I/O Port Access in adb and MDB A-3

B Transition From crash to MDB

Command-Line Option Differences Between crash and MDB B-1

Input Differences Between crash and MDB B-1

Crash Functions and MDB Dcmds B-1

Index

viii

Using This Documentation

• Overview – Describes the Oracle Solaris Modular Debugger (MDB), a highly extensible,
general purpose debugging tool for the Oracle Solaris operating system. This guide
describes how to use MDB to debug complex software systems, with a particular
emphasis on the facilities available for debugging the Oracle Solaris kernel and
associated device drivers and modules. This guide also includes a complete reference for
and discussion of the MDB language syntax, debugger features, and MDB module
programming API.

• Audience – This guide is intended for use by system administrators, systems
programmers, and support engineers, who can debug the software program failures.
Often, software program failures divide into two classes: problems that can be solved
with source-level debugging tools, and problems that require low-level debugging
facilities, examination of core files, and knowledge of assembly language to diagnose and
correct. MDB facilitates analysis of this second class of problems.

MDB is most useful when you are programming a complex low-level software system
such as an operating system. The MDB debugging framework allows you to construct
your own custom analysis tools to aid in the diagnosis of these low-level problems. MDB
also provides a powerful set of built-in commands that enable you to analyze the state of
your program at the assembly language level.

• Required knowledge – You should disassemble various functions of interest in the
programs you will be debugging in order to familiarize yourself with the relationship
between your program's source code and the corresponding assembly language code. If
you are planning to use MDB for debugging Oracle Solaris kernel software, read carefully
Kernel Debugging Modules and Debugging With the Kernel Memory Allocator. These
chapters provide more detailed information on the MDB commands and facilities provided
for debugging the kernel software.

Product Documentation Library
Documentation and resources for this product and related products are available at http://
www.oracle.com/pls/topic/lookup?ctx=E37838-01.

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

ix

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/goto/docfeedback

1
Modular Debugger Overview

The Modular Debugger (MDB) is a general purpose debugging tool for the Oracle Solaris OS
whose primary feature is its extensibility. This guide describes how to use MDB to debug
complex software systems, with a particular emphasis on the facilities available for debugging
the Oracle Solaris kernel and associated device drivers and modules. The guide also
includes a complete reference for and discussion of the MDB language syntax, debugger
features, and MDB Module Programming API.

For detailed information about the mdb command-line syntax, see the mdb(1) man page.

Introduction to MDB
Debugging is the process of analyzing the execution and state of a software program to
locate and remove defects. Traditional debugging tools provide facilities for execution control
so that programmers can execute programs in a controlled environment and either display
the current state of program data or evaluate expressions in the source language that was
used to develop the program. Unfortunately, these techniques are often insufficient for
debugging complex software systems.

The following examples describe complex software systems that MDB is well suited to
examine and debug:

• An operating system, where bugs might not be reproducible and program state is
massive and distributed

• Programs that are highly optimized or have had their debug information removed

• Programs that are themselves low-level debugging tools

• Customer situations where the developer can only access post-mortem information

MDB provides a completely customizable environment for debugging these programs and
scenarios, including a dynamic module facility that you can use to implement your own
debugging commands for program-specific analysis. Each MDB module can be used to
examine the program in several different contexts, including live and post-mortem. The
Oracle Solaris OS includes a set of MDB modules that help you debug the kernel and related
device drivers and kernel modules. Third-party developers might want to develop and deliver
their own debugging modules for supervisor or user software.

For detailed information about the mdb command-line syntax, see the mdb(1) man page.

MDB Features
MDB provides an extensive collection of features for analyzing the Oracle Solaris kernel and
other target programs.

The following examples show some of the tasks you can do with MDB:

• Perform post-mortem analysis of kernel crash dumps and user process core dumps.
MDB includes a collection of debugger modules that facilitate sophisticated analysis of
kernel and process state, in addition to standard data display and formatting capabilities.

1-1

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

These debugger modules enable you to formulate complex queries to investigate
kernel and process state in the following ways:

– Locate all the memory allocated by a particular thread

– Print a visual picture of a kernel STREAM

– Determine what type of structure a particular address refers to

– Locate leaked memory blocks in the kernel

– Analyze memory to locate stack traces

• Use the MDB module programming API to implement your own debugger
commands and analysis tools without having to recompile or modify MDB. In MDB,
debugging support is implemented as a set of loadable modules (shared libraries
that the debugger can open with the dlopen(3C) function), each of which
provides a set of commands that extends the capabilities of MDB. MDB provides
an API of core services, such as the ability to read and write memory and access
symbol table information. MDB provides a framework for you to implement
debugging support for your own drivers and modules. Your command and tools
can then be made available for everyone to use.

• Learn to use MDB. MDB provides backward compatibility with the legacy
debugging tools adb and crash.

The MDB language is a superset of the adb language. All existing adb macros
and commands work within MDB. Thus, developers who use adb can immediately
use MDB without knowing any MDB-specific commands. For more information,
see Transition From adb and kadb to MDB.

MDB commands surpass the functionality available from the crash utility. For
more information, see Transition From crash to MDB.

• Benefit from enhanced usability features, including the following:

– Command-line editing

– Command history

– Built-in output pager

– Syntax error checking and handling

– Online help

– Interactive session logging

Using MDB
MDB is available on Oracle Solaris systems as two commands that share common
features: mdb and kmdb.

• You can use the mdb command interactively or in scripts to debug live user
processes, user process core files, kernel crash dumps, the live operating system,
object files, and other files.

To start mdb, use the mdb command as described in the mdb(1) man page.

• You can use the kmdb command to debug the live operating system kernel and
device drivers when you also need to control and halt the execution of the kernel.

Chapter 1
Using MDB

1-2

https://docs.oracle.com/cd/E88353_01/html/E37843/dlopen-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

To start kmdb, boot the system as described in the kmdb(1) man page, or run one of the
mdb -K commands. For information about these commands, see kmdb Debugger Entry
and the mdb(1) man page.

MDB Extensibility
MDB provides a stable foundation for developing advanced post-mortem analysis tools. You
can use MDB to debug existing software programs, and you can develop your own modules
to improve your ability to debug your own Oracle Solaris drivers and applications.

Chapter 1
MDB Extensibility

1-3

https://docs.oracle.com/cd/E88353_01/html/E37839/kmdb-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

2
MDB Concepts

This chapter discusses the significant features of MDB and the benefits of MDB architecture.

Building Blocks of MDB
The target is the program being inspected by the debugger.

MDB provides support for the following types of targets:

• User processes

• User process core files

• Live operating system without kernel execution control (through /dev/kmem and /dev/
ksyms)

• Live operating system with kernel execution control (through the kmdb(1) command)

• Operating system crash dumps

• User process images recorded inside an operating system crash dump

• ELF object files

• Raw data files

Each target exports a standard set of properties, including one or more address spaces, one
or more symbol tables, a set of load objects, and a set of threads. The next figure shows an
overview of the MDB architecture, including two of the built-in targets and a pair of sample
modules.

A debugger command, or dcmd (pronounced dee-command) in MDB terminology, is a
routine in the debugger that can access any of the properties of the current target. MDB
parses commands from standard input, then executes the corresponding dcmds. Each dcmd
can also accept a list of string or numerical arguments, as shown in MDB Syntax. MDB
contains a set of built-in dcmds that are always available. These built-in dcmds are described
in Built-In Commands in MDB. You can also extend the capabilities of MDB by writing dcmds
using a programming API provided with MDB.

A walker is a set of routines that describe how to walk, or iterate, through the elements of a
particular program data structure. A walker encapsulates the data structure's implementation
from dcmds and from MDB. You can use walkers interactively, or you can use walkers as
primitives to build other dcmds or walkers. As with dcmds, you can extend MDB by
implementing additional walkers as part of a debugger module.

A debugger module, or dmod (pronounced dee-mod), is a dynamically loaded library that
contains a set of dcmds and walkers. During initialization, MDB attempts to load dmods
corresponding to the load objects present in the target. You can subsequently load or unload
dmods at any time while running MDB. MDB provides a set of standard dmods for debugging
the Oracle Solaris kernel.

A macro file is a text file that contains a set of commands to execute. Macro files are
typically used to automate the process of displaying a simple data structure. MDB provides

2-1

https://docs.oracle.com/cd/E88353_01/html/E37839/kmdb-1.html

complete backward compatibility for the execution of macro files written for adb. The
set of macro files provided with the Oracle Solaris installation can therefore be used
with either tool.

MDB architecture

Modular Architecture of MDB
The benefit of MDB's modular architecture extends beyond the ability to load a module
containing additional debugger commands. The MDB architecture defines clear
interface boundaries between each of the layers shown in the MDB architecture figure.
Macro files execute commands written in the MDB or adb language. Dcmds and
walkers in debugger modules are written using the MDB Module API. The MDB
Module API is the basis of an application binary interface that allows the debugger and
its modules to evolve independently.

The MDB name space of walkers and dcmds also defines a second set of layers
between debugging code. These layers maximize code sharing and limit the amount of
code that must be modified as the target program evolves. For example, one of the
primary data structures in the Oracle Solaris kernel is the list of proc_t structures that
represent active processes in the system. The ::ps dcmd must iterate over this list in
order to produce its output. However, the code to iterate over the list is not in the ::ps
dcmd. The code to iterate over the list of proc_t structures is encapsulated in the
genunix module's proc walker.

MDB provides both ::ps and ::ptree dcmds, but neither of these dcmds has any
knowledge of how proc_t structures are accessed in the kernel. Instead, these dcmds
invoke the proc walker programmatically and format the set of returned structures
appropriately. If the data structure used for proc_t structures ever changed, MDB
could provide a new proc walker, and none of the dependent dcmds would need to

Chapter 2
Modular Architecture of MDB

2-2

change. The proc walker can also be accessed interactively using the ::walk dcmd in order
to create novel commands as you work during a debugging session.

In addition to facilitating layering and code sharing, the MDB Module API provides dcmds and
walkers with a single stable interface for accessing various properties of the underlying
target. The same API functions are used to access information from user process or kernel
targets, simplifying the task of developing new debugging facilities.

In addition, you can use a custom MDB module to perform debugging tasks in a variety of
contexts. For example, you might want to develop an MDB module for a user program you
are developing. Once you have done so, you can use this module when MDB examines a live
process executing your program, a core dump of your program, or even a kernel crash dump
taken on a system where your program was executing.

The Module API provides facilities for accessing the following target properties:

Address Spaces
The module API provides facilities for reading and writing data from the target's virtual
address space. Functions for reading and writing using physical addresses are also provided
for kernel debugging modules.

Symbol Tables
The module API provides access to the static and dynamic symbol tables of the target's
primary executable file, its runtime link-editor, and a set of load objects. Load objects are
shared libraries in a user process or loadable modules in the Oracle Solaris kernel.

External Data
The module API provides a facility for retrieving a collection of named external data buffers
associated with the target. For example, MDB provides programmatic access to the proc(5)
structures associated with a user process or user core file target.

In addition, you can use built-in MDB dcmds to access information about target memory
mappings, load objects, register values, and control the execution of user process targets.

Chapter 2
Modular Architecture of MDB

2-3

https://docs.oracle.com/cd/E88353_01/html/E37852/proc-5.html

3
MDB Language Syntax

This chapter describes the MDB language syntax, operators, and rules for command and
symbol name resolution.

• MDB Syntax

• MDB Commands

• MDB Comments

• Arithmetic Expansion in MDB

• MDB Quoting Metacharacter

• Shell Escapes in MDB

• MDB Variables

• MDB Symbol Name Resolution

• Dcmd and Walker Name Resolution

• Dcmd Pipelines

• Dcmd Formatting Characters

MDB Syntax
MDB processes commands from standard input. If standard input is a terminal, MDB provides
terminal editing capabilities. MDB can also process commands from macro files and from
dcmd pipelines.

The MDB language syntax defines the following behavior:

1. Compute the value of an expression. This value typically is a memory address in the
target. The current address location is referred to as dot. Use the dot or period character
(.) to reference the value of the current address.

2. Apply a dcmd to the computed address.

A metacharacter is a newline, space, or tab character, or one of the following characters:

[] | ! / \ ? = > $: ;

A blank is a space or tab character.

A word is a sequence of characters separated by one or more non-quoted metacharacters.

An expression is a sequence of words that is evaluated to compute a 64-bit unsigned integer
value. The words are evaluated using the rules described in Arithmetic Expansion in MDB.

An identifier is a sequence of letters, digits, underscores, periods, or back quotation marks.
An identifier begins with a letter, underscore, or period. Identifiers are used as the names of
symbols, variables, dcmds, and walkers. Commands are delimited by a newline or semicolon
(;).

3-1

A dcmd is denoted by one of the following words or metacharacters:

/ \ ? = > $character :character ::identifier

Dcmds named by metacharacters or prefixed by a single dollar sign ($) or colon
character (:) are provided as built-in operators. These dcmds implement complete
compatibility with the command set of the legacy adb(1) utility. After a dcmd has been
parsed, the /, \, ?, =, >, $, and : characters are no longer recognized as
metacharacters until the termination of the argument list.

A simple-command is a dcmd followed by a sequence of zero or more blank-
separated words. The words are passed as arguments to the invoked dcmd, except as
specified under Arithmetic Expansion in MDB and MDB Quoting Metacharacter.

Each dcmd returns an exit status value that indicates one of the following occurred:

• The dcmd succeeded.

• The dcmd failed.

• The dcmd was invoked with invalid arguments.

A pipeline is a sequence of one or more simple-commands, each separated by the
vertical bar or pipe character (|). After the pipeline has been parsed, each dcmd is
invoked in order from left to right. The output of each dcmd is processed and stored as
described in Dcmd Pipelines. After the first dcmd in the pipeline is complete, its
processed output is used as input for the second dcmd in the pipeline. When the
second dcmd is complete, its output is used as input for the third dcmd in the pipeline,
and so on. If any dcmd does not return a successful exit status, the pipeline is aborted.

MDB Commands
A command is one of the following:

pipeline [! word ...] [;]
A simple-command or pipeline can be optionally followed by the exclamation point or
bang character (!), indicating that the debugger should open a pipe(2). The standard
output of the last dcmd in the MDB pipeline is sent to an external process created by
executing $SHELL -c followed by the string formed by concatenating the words after
the ! character. For more details, refer to Shell Escapes in MDB.

expression pipeline [! word ...] [;]
A simple-command or pipeline can be prefixed with an expression. Before execution
of the pipeline, any occurrence of the dot or period character (.) in the pipeline is set
to the value of the expression.

expression1, expression2 pipeline [! word ...] [;]
A simple-command or pipeline can be prefixed with two expressions. The value of the
first expression is the new value of dot. The value of the second expression is a
repeat count for the first dcmd in the pipeline. The first dcmd in the pipeline is
executed expression2 times before the next dcmd in the pipeline is executed. The
repeat count applies only to the first dcmd in the pipeline.

Chapter 3
MDB Commands

3-2

https://docs.oracle.com/cd/E88353_01/html/E37839/adb-1.html
https://docs.oracle.com/cd/E88353_01/html/E37841/pipe-2.html

, expression pipeline [! word ...] [;]
If the first expression is omitted, dot is not modified. The value of the second expression (the
expression after the comma character) is used exactly the same way as expression2 above.

expression [! word ...] [;]
A command can consist of only an arithmetic expression. The value of the expression is the
new value of dot. The previous dcmd pipeline is re-executed using the new value of dot.

expression1, expression2 [! word ...] [;]
A command can consist of only a dot expression and repeat count expression. The value of
expression1 is the new value of dot. The previous dcmd pipeline is re-executed expression2
times using the new value of dot.

, expression [! word ...] [;]
If the first expression is omitted, dot is not modified. The value of the second expression (the
expression after the comma character) is used exactly the same way as expression2 above.

! word ... [;]
If the command begins with the ! character, no dcmds are executed. The debugger
executes $SHELL -c followed by the string formed by concatenating the words after the !
character.

MDB Comments
A word that begins with two forward slash characters (//) causes that word and all the
subsequent characters up to a newline to be ignored.

Arithmetic Expansion in MDB
Arithmetic expansion is performed to determine the value of an expression. MDB commands
can be preceded by expressions that represent a start address or a repeat count. Arithmetic
expansion can also be performed to compute a numeric argument for a dcmd. An expression
can appear in an argument list enclosed in square brackets preceded by a dollar sign ($
[expr]). In this case, the expression is replaced by its arithmetic value.

Expressions can contain any of the following special words:

integer
The specified integer value. Integer values can be prefixed with 0i or 0I to indicate binary
values, 0o or 0O to indicate octal values, 0t or 0T to indicate decimal values, and 0x or 0X to
indicate hexadecimal values (the default).

0[tT][0-9]+.[0-9]+
The specified decimal floating point value, converted to its IEEE double-precision floating
point representation.

'cccccccc'
The integer value computed by converting each character to a byte equal to its ASCII value.
Up to eight characters can be specified in a character constant. Characters are packed into
the integer in reverse order (right-to-left), beginning at the least significant byte.

<identifier
The value of the variable named by identifier.

Chapter 3
MDB Comments

3-3

identifier
The value of the symbol named by identifier.

(expression)
The value of expression.

.
The value of dot.

&
The most recent value of dot used to execute a dcmd.

+
The value of dot incremented by the current increment.

^
The value of dot decremented by the current increment.

The increment is a global variable that stores the total bytes read by the last formatting
dcmd. For more information about the increment, refer to the discussion of Dcmd
Formatting Characters.

Unary Operators in MDB
Unary operators are right associative and have higher precedence than binary
operators. The unary operators are:

#expression
Logical negation

~expression
Bitwise complement

-expression
Integer negation

%expression
Value of a pointer-sized quantity at the object file location corresponding to virtual
address expression in the target's virtual address space

%/[csil]/expression
Value of a char-sized, short-sized, int-sized, or long-sized quantity at the object file
location corresponding to virtual address expression in the target's virtual address
space

%/[1248]/expression
Value of a one-byte, two-byte, four-byte, or eight-byte quantity at the object file
location corresponding to virtual address expression in the target's virtual address
space

<%/var/expression
Value from the object file location corresponding to virtual address expression. The
size of the value is read from the variable var.

Chapter 3
Arithmetic Expansion in MDB

3-4

*expression
Value of a pointer-sized quantity at virtual address expression in the target's virtual address
space

*/[csil]/expression
Value of a char-sized, short-sized, int-sized, or long-sized quantity at virtual address
expression in the target's virtual address space

*/[1248]/expression
Value of a one-byte, two-byte, four-byte, or eight-byte quantity at virtual address expression
in the target's virtual address space

*/type member/expression
Value of the data structure member from the target's virtual address space corresponding to
virtual address expression. The size and offset that are read are specified by member. For
example, to list all processes in a kernel that do not have a UID of zero (0):

> ::walk proc | ::grep '*/proc p_cred->cr_uid/.!=0'

<*/var/expression
Value from the target's virtual address space corresponding to virtual address expression.
The size of the value is read from the variable var.

Binary Operators in MDB
Binary operators are left associative and have lower precedence than unary operators. The
binary operators, in order of precedence from highest to lowest, are:

*
Integer multiplication

%
Integer division

#
Left-hand side rounded up to next multiple of right-hand side

+
Integer addition

-
Integer subtraction

<<
Bitwise shift left

>>
Bitwise shift right

==
Logical equality

!=
Logical inequality

Chapter 3
Arithmetic Expansion in MDB

3-5

&
Bitwise AND

^
Bitwise exclusive OR

|
Bitwise inclusive OR

MDB Quoting Metacharacter
Each metacharacter described in MDB Syntax terminates a word unless the
metacharacter is quoted. Characters can be quoted by enclosing them in a pair of
single quotation marks (') or double quotation marks ("). Quoting characters forces
MDB to interpret each character as itself without any special significance. A single
quotation mark cannot appear inside single quotation marks. Inside double quotation
marks, MDB recognizes the C programming language character escape sequences.

Shell Escapes in MDB
The ! character can be used to create a pipeline between an MDB command and the
user's shell. Shell escapes are available only when using mdb and not when using
kmdb. If the $SHELL environment variable is set, MDB will fork and exec this $SHELL
program for shell escapes. If $SHELL is not set, /bin/sh is used. The shell is invoked
with the -c option followed by a string formed by concatenating the words after the !
character.

The ! character takes precedence over all other metacharacters, except semicolon (;)
and newline. After a shell escape is detected, the remaining characters up to the next
semicolon or newline are passed as is to the shell. The output of shell commands
cannot be piped to MDB dcmds. The output of commands executed by a shell escape
is sent directly to the terminal, not to MDB.

MDB Variables
A variable is a variable name, a corresponding integer value, and a set of attributes. A
variable name is a sequence of letters, digits, underscores, or periods. Use the > dcmd
or ::typeset dcmd to assign a value to a variable. Use the ::typeset dcmd to
manipulate the attributes of a variable. Each variable's value is represented as a 64-bit
unsigned integer. A variable can have one or more of the following attributes: read-
only (cannot be modified by the user), persistent (cannot be unset by the user), and
tagged (user-defined indicator).

The following variables are defined as persistent:

0
Most recent value printed using the /, \, ?, or = dcmd.

9
Most recent count used with the $< dcmd.

b
Virtual address of the base of the data section.

Chapter 3
MDB Quoting Metacharacter

3-6

cpuid
The CPU identifier corresponding to the CPU on which kmdb is currently executing.

d
Size of the data section in bytes.

e
Virtual address of the entry point.

hits
The count of the number of times the matched software event specifier has been matched.
See Event Callbacks in MDB.

m
Initial bytes (magic number) of the target's primary object file, or zero if no object file has
been read yet.

t
Size of the text section in bytes.

thread
The thread identifier of the current representative thread. The value of the identifier depends
on the threading model used by the current target. See Thread Support in MDB.

In addition, the MDB kernel and process targets export the current values of the
representative thread's register set as named variables. The names of these variables
depend on the target's platform and instruction set architecture.

MDB Symbol Name Resolution
As explained in MDB Syntax, a symbol identifier in an expression evaluates to the value of
that symbol. The value typically denotes the virtual address of the storage associated with the
symbol in the target's virtual address space.

Tip:

In the case of a naming conflict between a symbol and a hexadecimal integer value,
MDB attempts to evaluate an ambiguous token as a symbol first, before evaluating
it as an integer value. For example, the token f can refer to the decimal integer
value 15 specified in hexadecimal (the default base), or f can refer to a global
variable in the symbol table of the target. To avoid ambiguity, use an explicit 0x or
0X prefix to specify an integer value.

MDB Symbol Tables
A target can support multiple symbol tables. The following examples are some of the symbol
tables that a target can support:

• Primary executable symbol table

• Primary dynamic symbol table

• Runtime link-editor symbol table

Chapter 3
MDB Symbol Name Resolution

3-7

• Standard and dynamic symbol tables for each of a number of load objects (such
as shared libraries in a user process, or kernel modules in the Oracle Solaris
kernel)

The target typically searches the symbol tables of the primary executable first, then
one or more of the other symbol tables. Note that ELF symbol tables contain only
entries for external, global, and static symbols. Automatic symbols do not appear in
the symbol tables processed by MDB.

Additionally, MDB provides a private user-defined symbol table that is searched prior
to any of the target symbol tables. The private symbol table is initially empty. Use
the ::nmadd and ::nmdel dcmds to manipulate the private symbol table.

Use the ::nm -P dcmd to display the contents of the private symbol table. The private
symbol table enables you to create symbol definitions for program functions or data
that were either missing from the original program or stripped out. These definitions
are then used whenever MDB converts a symbolic name to an address, or converts an
address to the nearest symbol.

MDB Symbol Name Scoping
A target can support multiple symbol tables, and each symbol table can include
symbols from multiple object files. Therefore, different symbols with the same name
can exist. When two different symbols have the same name, use the symbol-name
scoping operator to obtain the value of the desired symbol. The symbol-name scoping
operator is the back quotation mark (`).

Use one of the following three forms to specify the scope used to resolve a symbol
name:

object`name
file`name
object`file`name

The object identifier refers to the name of a load object. The file identifier refers to the
base name of a source file that has a symbol of type STT_FILE in the specified object's
symbol table. Interpretation of the object identifier depends on the target type. A target
can be a process target or a kernel target.

MDB Scoping Within User-Level Applications and Shared Libraries
The MDB process target expects object to specify the name of the executable or of a
loaded shared library.

MDB Object Identifier
The object identifier can take any of the following four forms:

• Exact match (that is, a full path name): /usr/lib/libc.so.1
• Exact basename match: libc.so.1
• Initial basename match up to a period or dot character (.) suffix: libc.so or libc
• Literal string a.out, which is accepted as an alias for the executable

Chapter 3
MDB Symbol Name Resolution

3-8

MDB Link Map Identifier
The process target also accepts any of the four forms described above preceded by an
optional link-map id (lmid). The lmid prefix is specified by an initial LM followed by the link-
map id in hexadecimal followed by an additional back quotation mark (`). For example, the
following symbol name evaluates to the value of the _init symbol in the libc.so.1 library
that is loaded on link-map 0 (LM_ID_BASE):

LM0`libc.so.1`_init

The link-map specifier might be necessary to resolve symbol naming conflicts if the same
library is loaded on more than one link map. For more information about link maps, refer to
the Oracle Solaris 11.4 Linkers and Libraries Guide and the dlopen(3C) man page. Link-
map identifiers are displayed when symbols are printed according to the setting of the
showlmid option, as described in the mdb(1) man page.

MDB Scoping Within the Kernel
The MDB kernel target expects object to specify the base name of a loaded kernel module.
For example, the following symbol name evaluates to the value of the _init symbol in the
specfs kernel module:

specfs`_init

Kernel Debug Information
MDB uses CTF debug information to read and display structures correctly. CTF (Compact C
Type Format) is a reduced form of debug information similar to DWARF and stab. CTF
describes types (structures, unions, and typedefs, for example) and function prototypes.
Oracle Solaris kernel binaries embed CTF data as an ELF section (.SUNW_ctf).

As much as possible, CTF data is stored in one place to minimize duplication of common
types. Other occurrences of each type reference the one unique definition. When a kernel
update is released, existing CTF structure definitions must be preserved because some
kernel modules might not be updated and might still be using the old definitions. When a
kernel update is released but not all modules are updated, the CTF definitions are held in the
module in which they are defined. When you use MDB to examine a crash dump, you might
see a message that the structure you want to examine does not exist, or you might see an
indication that the structure has changed. If the structure definition has changed, the data
might look corrupt, for example. If you encounter either of these conditions, use the scoping
operator to specify the module where the structure is defined.

Using the Scoping Operator With a Kernel Module
The genunix module contains many common types. The ip module also contains types that
are used by many kernel modules but that are not found in genunix. Therefore, you might
need to use scoping with the ip module more often than with other kernel modules.

Notice the use of the scoping operator with the ip module in the second versions of the
following examples.

Chapter 3
MDB Symbol Name Resolution

3-9

https://docs.oracle.com/cd/E37838_01/html/E36783/index.html
https://docs.oracle.com/cd/E88353_01/html/E37843/dlopen-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

Example 3-1 Failed to Find Member of Structure

> ::print -at conn_t conn_udp mdb: failed to find member conn_udp of conn_t: no
such member of structure or union
>
> ::print -at ip`conn_t conn_udp
30 struct udp_s *conn_udp
>

Example 3-2 Data Looks Wrong: Structure Definition Might Have Changed

> 0x300b038cc38::print queue_t q_ptr | print -at conn_t
{
3021e581780 kmutex_t conn_lock = {
3021e581780 void *[1] _opaque = [0]
}
3021e581788 uint32_t conn_ref = 0x3
3021e58178c uint_t conn_state_flags = 0
3021e581790 ire_t *conn_ire_cache = 0x600b102f598
3021e581798 uint32_t conn_flags = 0x49000001
3021e58179c unsigned conn_on_sqp = 0
3021e58179c unsigned conn_dontroute = 0
3021e58179c unsigned conn_loopback = 0
3021e58179c unsigned conn_broadcast = 0
3021e58179c unsigned conn_reuseaddr = 1
3021e58179c unsigned conn_multicast_loop = 0
3021e58179c unsigned conn_multi_router = 0
3021e58179c unsigned conn_draining = 0
3021e58179d unsigned conn_did_putbq = 0
3021e58179d unsigned conn_unspec_src = 0
3021e58179d unsigned conn_policy_cached = 0
3021e58179d unsigned conn_in_enforce_policy = 0
3021e58179d unsigned conn_out_enforce_policy = 0
3021e58179d unsigned conn_af_isv6 = 0
3021e58179d unsigned conn_pkt_isv6 = 0
3021e58179d unsigned conn_ipv6_recvpktinfo = 0
3021e58179e unsigned conn_ipv6_recvhoplimit = 0
3021e58179e unsigned conn_ipv6_recvhopopts = 0
3021e58179e unsigned conn_ipv6_recvdstopts = 0
3021e58179e unsigned conn_ipv6_recvrthdr = 0
3021e58179e unsigned conn_ipv6_recvrtdstopts = 0
3021e58179e unsigned conn_ipv6_v6only = 0
3021e58179e unsigned conn_ipv6_recvtclass = 0
3021e58179e unsigned conn_ipv6_recvpathmtu = 0
3021e58179f unsigned conn_pathmtu_valid = 0
3021e58179f unsigned conn_ipv6_dontfrag = 0
3021e58179f unsigned conn_fully_bound = 1
3021e58179f unsigned conn_recvif = 0
3021e58179f unsigned conn_recvslla = 0
3021e58179f unsigned conn_mdt_ok
3021e58179f unsigned pad_to_bit_31 = 0
3021e5817a0 tcp_t *conn_tcp = 0
3021e5817a8 squeue_t *conn_sqp = 0x3021e581980
3021e5817b0 edesc_rpf conn_recv = 0
3021e5817b8 void *conn_pad1 = 0x600b082ba40 // Should have 0's in this
field. Data looks
3021e5817c0 ill_t *conn_xmit_if_ill = tcp_input // wrong starting from the
conn_pad1 field.
3021e5817c8 ill_t *conn_nofailover_ill = 0
3021e5817d0 ipsec_latch_t *conn_latch = 0
3021e5817d8 ill_t *conn_outgoing_ill = 0

Chapter 3
MDB Symbol Name Resolution

3-10

3021e5817e0 edesc_spf conn_send = 0
3021e5817e8 queue_t *conn_rq = 0
3021e5817f0 queue_t *conn_wq = ip_output
3021e5817f8 dev_t conn_dev = 0
...
}

> 0x300b038cc38::print queue_t q_ptr | print -at ip`conn_t
{
....
3021e5817c8 void *conn_pad1 = 0 // Now the data looks correct from here on.
3021e5817d0 ill_t *conn_xmit_if_ill = 0
3021e5817d8 ill_t *conn_nofailover_ill = 0
3021e5817e0 ipsec_latch_t *conn_latch = 0
3021e5817e8 ill_t *conn_outgoing_ill = 0
3021e5817f0 edesc_spf conn_send = ip_output
3021e5817f8 queue_t *conn_rq = 0
3021e581800 queue_t *conn_wq = 0
3021e581808 dev_t conn_dev = 0x1d2b
...
}

Dcmd and Walker Name Resolution
As described earlier, each MDB dmod provides a set of dcmds and walkers. Dcmds and
walkers are tracked in two distinct, global namespaces. MDB also keeps track of a dcmd and
walker namespace associated with each dmod. Identically named dcmds or walkers within a
given dmod are not allowed. A dmod with this type of naming conflict will fail to load.

Name conflicts between dcmds or walkers from different dmods are allowed in the global
namespace. In the case of a conflict, the first dcmd or walker with that particular name to be
loaded is given precedence in the global namespace. Alternate definitions are kept in a list in
load order.

Use the backquote character (`) in a dcmd or walker name as a scoping operator to select an
alternate definition. For example, if dmods m1 and m2 each provide a dcmd d, and m1 is loaded
prior to m2, then you can use the scoping operator as shown below to specify the dcmd you
want:

::d
Executes m1's definition of d

::m1`d
Executes m1's definition of d

::m2`d
Executes m2's definition of d

If module m1 is unloaded, the next dcmd on the global definition list (m2`d) is promoted to
global visibility. Use the ::which dcmd to determine the current definition of a dcmd or
walker. Use the ::which -v dcmd to display the global definition list.

Chapter 3
Dcmd and Walker Name Resolution

3-11

Dcmd Pipelines
Use the vertical bar (|) operator to pipeline dcmds. The purpose of a pipeline is to
pass values from one dcmd or walker to another. The values passed usually are virtual
addresses. Pipeline stages might be used to map a pointer from one type of data
structure to a pointer to a corresponding data structure, to sort a list of addresses, or to
select the addresses of structures with certain properties.

MDB executes each dcmd in the pipeline in order from left to right. The left-most dcmd
is executed using the current value of dot, or using the value specified by an explicit
expression at the start of the command. A pipe operator (|) causes MDB to create a
shared buffer between the output of the dcmd to its left and the MDB parser, and an
empty list of values.

As the dcmd executes, its standard output is placed in the pipe and then consumed
and evaluated by the parser, as if MDB were reading this data from standard input.
Each line must consist of an arithmetic expression terminated by a newline or
semicolon (;). The value of the expression is appended to the list of values associated
with the pipe. If a syntax error is detected, the pipeline is aborted.

When the dcmd to the left of a | operator completes, the list of values associated with
the pipe is then used to invoke the dcmd to the right of the | operator. For each value
in the list, dot is set to this value, and the right-hand dcmd is executed. Only the output
of the rightmost dcmd in the pipeline is written to standard output. If any dcmd in the
pipeline produces output to standard error, these messages are written directly to
standard error and are not processed as part of the pipeline.

Dcmd Formatting Characters
The /, \, ?, and = metacharacters are used to denote the special output formatting
dcmds. Each of these dcmds accepts an argument list consisting of one or more
format characters, repeat counts, or quoted strings. A format character is one of the
ASCII characters described below.

Format characters are used to read and format data from the target. A repeat count is
a positive integer preceding the format character that is always interpreted in base 10
(decimal). A repeat count can also be specified as an expression enclosed in square
brackets preceded by a dollar sign ($[expr]). A string argument must be enclosed in
double quotation marks ("str"). No blanks are necessary between format arguments.

The formatting dcmds are:

/
Display data from the target's virtual address space starting at the virtual address
specified by dot.

\
Display data from the target's physical address space starting at the physical address
specified by dot.

?
Display data from the target's primary object file starting at the object file location
corresponding to the virtual address specified by dot.

Chapter 3
Dcmd Pipelines

3-12

=
Display the value of dot in each of the specified data formats. The = dcmd is useful for
converting between bases and performing arithmetic.

In addition to dot, MDB keeps track of another global value called the increment. The
increment represents the distance between dot and the address following all the data read by
the last formatting dcmd.

For example, let dot equal address addr, where addr displays as a 4-byte integer. After a
formatting dcmd is executed with dot equal to addr, the increment is set to 4. The plus (+)
operator, described in Arithmetic Expansion in MDB, would now evaluate to the value A+4,
and could be used to reset dot to the address of the next data object for a subsequent dcmd.

Most format characters increase the value of the increment by the number of bytes
corresponding to the size of the data format. The number of bytes in various data formats are
shown below. Use the ::formats dcmd to display the list of format characters from within
MDB.

The format characters are:

+
Increment dot by the count (variable size)

-
Decrement dot by the count (variable size)

B
Hexadecimal int (1 byte)

C
Character using C character notation (1 byte)

D
Decimal signed int (4 bytes)

E
Decimal unsigned long long (8 bytes)

F
Double (8 bytes)

G
Octal unsigned long long (8 bytes)

H
Swap bytes and shorts (4 bytes)

I
Address and disassembled instruction (variable size)

J
Hexadecimal long long (8 bytes)

K
Hexadecimal uintptr_t (4 or 8 bytes)

Chapter 3
Dcmd Formatting Characters

3-13

N
Newline

O
Octal unsigned int (4 bytes)

P
Symbol (4 or 8 bytes)

Q
Octal signed int (4 bytes)

R
Binary int (8 bytes)

S
String using C string notation (variable size)

T
Horizontal tab

U
Decimal unsigned int (4 bytes)

V
Decimal unsigned int (1 byte)

W
Default radix unsigned int (4 bytes)

X
Hexadecimal int (4 bytes)

Y
Decoded time32_t (4 bytes)

Z
Hexadecimal long long (8 bytes)

^
Decrement dot by increment * count (variable size)

a
Dot as symbol+offset

b
Octal unsigned int (1 byte)

c
Character (1 byte)

d
Decimal signed short (2 bytes)

e
Decimal signed long long (8 bytes)

Chapter 3
Dcmd Formatting Characters

3-14

f
Float (4 bytes)

g
Octal signed long long (8 bytes)

h
Swap bytes (2 bytes)

i
Disassembled instruction (variable size)

n
Newline

o
Octal unsigned short (2 bytes)

p
Symbol (4 or 8 bytes)

q
Octal signed short (2 bytes)

r
Whitespace

s
Raw string (variable size)

t
Horizontal tab

u
Decimal unsigned short (2 bytes)

v
Decimal signed int (1 byte)

w
Default radix unsigned short (2 bytes)

x
Hexadecimal short (2 bytes)

y
Decoded time64_t (8 bytes)

You can also use the /, \, and ? formatting dcmds to write to the target's virtual address
space, physical address space, or object file. First, specify one of the following modifiers as
the first format character, and then specify a list of words. The words in the list are either
immediate values or expressions enclosed in square brackets preceded by a dollar sign ($
[expr]).

The write modifiers are:

Chapter 3
Dcmd Formatting Characters

3-15

v
Write the lowest byte of the value of each expression to the target beginning at the
location specified by dot

w
Write the lowest 2 bytes of the value of each expression to the target beginning at the
location specified by dot

W
Write the lowest 4 bytes of the value of each expression to the target beginning at the
location specified by dot

Z
Write the complete 8 bytes of the value of each expression to the target beginning at
the location specified by dot

You can also use the /, \, and ? formatting dcmds to search for a particular integer
value in the target's virtual address space, physical address space, and object file,
respectively. First specify one of the following modifiers as the first format character,
and then specify a value and optional mask. The value and mask are each either
immediate values or expressions enclosed in square brackets preceded by a dollar
sign.

If only a value is specified, MDB reads integers of the appropriate size and stops at the
address that contains the matching value. If a value V and mask M are specified, MDB
reads integers of the appropriate size and stops at the address that contains a value X
where (X & M) == V. At the completion of the dcmd, dot is updated to the address of
the match. If no match is found, dot is left at the last address that was read.

The search modifiers are:

l
Search for the specified 2-byte value

L
Search for the specified 4-byte value

M
Search for the specified 8-byte value

For both user and kernel targets, an address space is typically composed of a set of
discontiguous segments. It is not legal to read from an address that does not have a
corresponding segment. If a search reaches a segment boundary without finding a
match, the search aborts when the read past the end of the segment boundary fails.

Chapter 3
Dcmd Formatting Characters

3-16

4
Using MDB Commands Interactively

This chapter describes the MDB interactive command line editing and history functions, the
output pager, and debugger signal handling.

MDB Command Reentry
The text of the last HISTSIZE (default 128) commands entered from a terminal device is
saved in memory. The inline editing facility provides key mappings for searching and fetching
elements from the history list.

MDB Inline Editing
If standard input is a terminal device, MDB provides some simple Emacs style facilities for
editing the command line. The search, previous, and next commands in edit mode provide
access to the history list. Only strings, not patterns, are matched when searching. In the list
below, the notation for control characters is the caret character (^) followed by a character
shown in uppercase. The notation for escape sequences is M- followed by a character. For
example, M-f (pronounced meta-eff) is entered by pressing the ESC keyboard key followed
by the f key, or by pressing the Meta key followed by the f key on keyboards that support a
Meta key. A command line is committed and executed using RETURN or NEWLINE. The edit
commands are:

^F
Move cursor forward (right) one character.

M-f
Move cursor forward one word.

^B
Move cursor backward (left) one character.

M-b
Move cursor backward one word.

^A
Move cursor to start of line.

^E
Move cursor to end of line.

^D
Delete current character, if the current line is not empty. If the current line is empty, ^D
denotes EOF and the debugger will exit.

M-^H
(meta-backspace) Delete previous word.

4-1

^K
Delete from the cursor to the end of the line.

^L
Reprint the current line.

^T
Transpose the current character with the next character.

^N
Fetch the next command from the history. Each time ^N is entered, the next command
forward in time is retrieved.

^P
Fetch the previous command from the history. Each time ^P is entered, the next
command backward in time is retrieved.

^R[string]
Search backward in the history for a previous command line containing string. The
string should be terminated by a RETURN or NEWLINE. If string is omitted, the previous
history element containing the most recent string is retrieved.

The editing mode also interprets the following user-defined sequences as editing
commands. User-defined sequences can be read or modified using the stty(1)
command.

erase
User-defined erase character (usually ^H or ^?). Delete previous character.

intr
User-defined interrupt character (usually ^C). Abort the current command and print a
new prompt.

kill
User-defined kill character (usually ^U). Kill the entire current command line.

quit
User-defined quit character (usually ^\). Quit the debugger.

suspend
User-defined suspend character (usually ^Z). Suspend the debugger.

werase
User-defined word erase character (usually ^W). Erase the preceding word.

On keyboards that support an extended keypad with arrow keys, mdb interprets these
keystrokes as editing commands:

Up arrow
Fetch the previous command from the history (same as ^P).

Down arrow
Fetch the next command from the history (same as ^N).

Left arrow
Move cursor backward one character (same as ^B).

Chapter 4
MDB Inline Editing

4-2

https://docs.oracle.com/cd/E88353_01/html/E37839/stty-1.html

Right arrow
Move cursor forward one character (same as ^F).

MDB Keyboard Shortcuts
MDB provides a set of keyboard shortcuts that bind individual keystrokes to common MDB
commands when the keystroke is typed as the first character following the MDB prompt. The
keyboard shortcuts are:

[
Execute the command ::step over.

]
Execute the command ::step.

MDB Output Pager
MDB provides a built-in output pager. The output pager is enabled if the debugger's standard
output is a terminal device. Each time a command is executed, mdb pauses after each
screenful of output is written and displays a pager prompt:

>> More [<space>, <cr>, q, n, c, a] ?

The following key sequences are recognized by the pager:

SPACE
Display the next screenful of output.

a, A
Abort the current top-level command and return to the prompt.

c, C
Continue displaying output without pausing at each screenful, until the current top-level
command is complete.

n, N, NEWLINE, RETURN
Display the next line of output.

q, Q, ^C, ^\
Quit the current dcmd only.

MDB Signal Handling
MDB ignores the PIPE and QUIT signals. The INT signal aborts the command that is
currently executing. The debugger intercepts and provides special handling for the ILL, TRAP,
EMT, FPE, BUS, and SEGV signals. If any of these signals is generated asynchronously
(delivered from another process using the kill(2) call), MDB restores the signal to its default
disposition and dumps core. However, if any of these signals is generated synchronously by
the debugger process itself and a dcmd from an externally loaded dmod is currently executing,
and standard input is a terminal, MDB will provide a menu of choices allowing the user to
force a core dump, quit without producing a core dump, stop for attach by a debugger, or
attempt to resume. The resume option will abort all active commands and unload the dmod
whose dcmd was active at the time the fault occurred. It can then be subsequently re-loaded

Chapter 4
MDB Keyboard Shortcuts

4-3

https://docs.oracle.com/cd/E88353_01/html/E37841/kill-2.html

by the user. The resume option provides limited protection against buggy dcmds. See
the mdb(1) man page.

Chapter 4
MDB Signal Handling

4-4

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

5
Built-In Commands in MDB

MDB provides a set of built-in dcmds that are always defined. Some of these dcmds are
applicable only to certain targets: if a dcmd is not applicable to the current target, it fails and
prints a message indicating "command is not supported by current target".

In many cases, MDB provides a mnemonic equivalent (::identifier) for the legacy
adb(1) dcmd names. For example, ::quit is provided as the equivalent of $q. Programmers
who are familiar with adb(1) or who appreciate brevity might prefer the $ or : forms of the
built-ins. Programmers who are not familiar with MDB might prefer the more verbose :: form.
The built-ins are shown in alphabetical order. If a $ or : form has a ::identifier
equivalent, it is shown under the ::identifier form.

MDB Built-In Dcmds
> variable-name
> /modifier/ variable-name
Assign the value of dot to the specified named variable. Some variables are read-only and
cannot be modified. If the > is followed by a modifier character surrounded by //, then the
value is modified as part of the assignment. The modifier characters are:

c
Unsigned char quantity (1-byte)

s
Unsigned short quantity (2-byte)

i
Unsigned int quantity (4-byte)

l
Unsigned long quantity (4-byte in 32-bit, 8-byte in 64-bit)

Notice that these operators do not perform a cast; they instead fetch the specified number of
low-order bytes (on little-endian architectures) or high-order bytes (big-endian architectures).
These modifiers are provided for backward compatibility; the MDB */modifier/ and %/
modifier/ syntax should be used instead.

$< macro-name
Read and execute commands from the specified macro file. The file name can be given as
an absolute or relative path. If the file name is a simple name (that is, if it does not contain a
'/'), MDB searches for it in the macro file include path. If another macro file is currently being
processed, this file is closed and replaced with the new file.

$<< macro-name
Read and execute commands from the specified macro file (as with $<), but do not close the
current open macro file.

5-1

https://docs.oracle.com/cd/E88353_01/html/E37839/adb-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/adb-1.html

$?
Print the process-ID and current signal of the target if it is a user process or core file,
and then print the general register set of the representative thread.

[address] $C [count]
Print a C stack backtrace, including stack frame pointer information. If the dcmd is
preceded by an explicit address, a backtrace beginning at this virtual memory address
is displayed. Otherwise, the stack of the representative thread is displayed. If an
optional count value is given as an argument, no more than count arguments are
displayed for each stack frame in the output.

Note:

SPARC 64-bit systems: The biased frame pointer value (that is, the virtual
address minus 0x7ff) should be used as the address when requesting a
stack trace.

[base] $d
Get or set the default output radix. If the dcmd is preceded by an explicit expression,
the default output radix is set to the given base; otherwise, the current radix is printed
in base 10 (decimal). The default radix is base 16 (hexadecimal).

$e
Print a list of all known external (global) symbols of type object or function, the value
of the symbol, and the first 4 (32-bit mdb) or 8 (64-bit mdb) bytes stored at this location
in the target's virtual address space. The ::nm dcmd provides more flexible options
for displaying symbol tables.

$P prompt-string
Set the prompt to the specified prompt-string. The default prompt is ' > '. The prompt
can also be set using ::set -P or the -P command-line option.

$M
In kmdb only, list the macro files that are cached by kmdb for use with the $< dcmd.

distance $s
Get or set the symbol matching distance for address-to-symbol-name conversions.
For detailed information about the mdb command-line syntax, see the mdb(1) man
page. The symbol matching distance can also be modified using the ::set -s option.
If no distance is specified, the current setting is displayed.

$v
Print a list of the named variables that have non-zero values. The ::vars dcmd
provides other options for listing variables.

width $w
Set the output page width to the specified value. Typically, this command is not
necessary, as MDB queries the terminal for its width and handles resize events.

$W
Reopen the target for writing, as if MDB had been executed with the -w option on the
command line. Write mode can also be enabled with the ::set -w option.

Chapter 5
MDB Built-In Dcmds

5-2

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

::alias [[{-a | -A | -e | -l | -m | -r}]
[{+/-}o {forceflags | init_usage | noaddrin | readonly | verbose }
[-D description | +D] [-H help | +H] [-U usage | +U]
[+/-t template [+/-t template ...]] [-I init | +I] [-F fini | +F] name [expansion ...]]
Create or remove a shorthand term or shortcut for an mdb expression, with different
functionality. ::alias assigns the mdb expression (expansion) to the alias.
With no arguments, ::alias lists all the aliases that are currently defined. With one
argument, it lists just that alias.
When creating an alias, the ::alias dcmd attempts to generate correct help, usage and
descriptions of the alias based on the expansion. You can override these options. When
modifying an alias, if the expansion, init, help or fini options start with a '+' sign, then the new
value without the '+' sign is appended to the existing entry.
Aliases accept command-line arguments and flags, which are defined by using templates.
Templates can then be used within the expansion using shell-like expressions.
Aliases use templates to define their expansions, in a string of the form:

[X]:[help-string]:var[=value]

Where:

X
The option value for the alias. It can be any letter, "+", or no value.
If the option value is "+", then the option is added to the global options. If it is a letter,
then that letter becomes a valid option for the alias. If no value is given, then the value is
taken from the option's argument.
If no option value is assigned, then the value is set to a string that can be used as a
unique variable while the alias is running.

help-string
Help that is displayed by the ::help dcmd for this option.

var
Name of the variable to assign.

value
Value that is assigned to var. Not required.

Expansions can be declared either as $var or ${var}. When the alias is run, the expansions
are expanded and the result is then executed.
::alias supports the following expansions:

$$
Substitute a single '$'.

$*
All the positional parameters that have not been used by flags.

$0
The name of this alias.

$1 through $999
The unused positional parameters.

$MDB_ADDRSPEC
Expands to "" if an address was supplied as an argument.

Chapter 5
MDB Built-In Dcmds

5-3

$MDB_LOOP
Expands to "" if the alias was invoked in a loop with the ",cnt" syntax.

$MDB_LOOP_COUNT
Expands to the value of cnt if the alias was invoked in a loop with the ",cnt"
syntax.

$MDB_PIPE
Expands to "" if the alias was invoked with the input from a pipe.

$MDB_PIPE_OUT
Expands to "" if the alias was invoked with the output to a pipe.

$MDB_KERNEL
Expands to "" if debugging the kernel.

$MDB_POSTMORTEM
Expands to "" if debugging a postmortem core dump.

$MDB_ARCH_I386
Expands to "" if the target architecture is i386.

$MDB_ARCH_AMD64
Expands to "" if the current architecture is amd64.

$MDB_ARCH_SPARC
Expands to "" if the target architecture is SPARC.

$MDB_ARCH_SPARCV9
Expands to "" if the current target architecture is SPARCV9.

$MDB_KMDB
Expands to "" if in kmdb.

${parameter:-word}
If parameter is set, substitute its value; otherwise substitute word.

${parameter:+word}
If parameter is set, substitute its value; otherwise substitute nothing.

${parameter:?word}
If parameter is set, substitute its value; otherwise print word to standard error and
report the usage.

${parameter:@word}
If parameter is set, print word to standard error and report the usage.

Note:

Do not create expansions that begin with 'MDB'. Expansions beginning with
MDB aliases are reserved for internal use.

The ::alias dcmd recognizes the following options:

Chapter 5
MDB Built-In Dcmds

5-4

-a
Add an alias.

-A
Add an alias, overwriting an alias of the same name if it already exists.

-e
Export the alias as the series of mdb expressions that can be used to reproduce the
alias.

-l
List an alias.

-m
Modify an alias.

-r
Remove an alias.

o
Using -o, set this option. Using +o, unset this option. Possible option values are:

forceflags
Set or unset flag checking for this alias. By default, aliases that have no flags will not
consume flags and pass them as positional parameters to the expansion. With flag
checking enabled, the alias will treat flags as a usage error.

init_usage
Set or unset checking of dot after any INIT expression is run. If the value is not zero,
return a usage message.

noaddrin
Set or unset noaddrin mode.

readonly
Set or unset the alias to readonly. Readonly aliases can not be modified, except to
remove the readonly flag or delete the alias.

verbose
Set or unset verbose mode.

-t
Specify a template.

+t
When modifying an alias, delete this template.

-U
Specify a usage string.

+u
When modifying an alias, delete the usage string.

-D
Specify a description string.

Chapter 5
MDB Built-In Dcmds

5-5

+D
When modifying an alias, delete the description.

-H
Specify a help string.

+h
When modifying an alias, delete the help string.

-F
Specify a fini expression. This mdb expression is evaluated after the expansion is
run. The value of dot is not updated by this expression.

+F
When modifying an alias, delete the fini expression.

-I
Specify an mdb expression to initialize any state. MDB evaluates the value of -I
before the expansion is run and does not update the value of dot.

+I
When modifying an alias, delete the initialization expression.

For more information and examples, see the mdb(1) man page.

addr ::array [-t member_type | -s member_size | -S array_size] [-v variable]
[type] [member] [count] [variable] [|::dcmd …]
Print the address of each element of an array. The type of the array elements should
be specified as the first argument, type, and the number of elements to be computed
should be specified as the second argument, count.
In its first form, ::array treats dot as the start of an array of type type and length
count:

::array type count

In its second form, ::array treats dot as the address of a structure or union of type
type with a member that is either a pointer to an array or an embedded array:

::array type member count

In this form, count can be an integer, variable or structure/union field, in which case
the value of that field is used. You can also specify the size of the array by using an -
s, -S, or -t option. This is useful when the array is pointed to using a void * so the
correct size cannot be inferred from the type of the pointer.
The output of ::array can be pipelined to the ::print dcmd to print the elements
of an array data structure.

[pid] ::attach [core | pid]
[pid] :A [core | pid]
If the user process target is active, attach to and debug the specified process-ID or
core file. The core file path name should be specified as a string argument. The
process-ID can be specified as the string argument, or as the value of the expression
preceding the dcmd. Recall that the default base is hexadecimal, so decimal PIDs
obtained using pgrep(1) or ps(1) should be preceded with "0t" when specified as
expressions.

Chapter 5
MDB Built-In Dcmds

5-6

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/pgrep-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/ps-1.html

::branches [-v]
Display the most recent branches taken by the current CPU. This dcmd is currently only
available when using kmdb on x86 systems where the appropriate processor-specific feature
is enabled. The number and type of branches that can be displayed is determined by the
processor architecture. If the -v option is present, the instructions prior to each branch are
displayed.

::cat [-v variable-name] filename ...
Concatenate and display files. Each file name can be specified as a relative or absolute path
name. The file contents will print to standard output, but will not pass through the output
pager. This dcmd is intended to be used with the | operator; the programmer can initiate a
pipeline using a list of addresses stored in an external file.
With the -v option, the return value is stored in variable-name.

::cont [SIG]
:c [SIG]
Suspend the debugger, continue the target program, and wait for it to terminate or stop
following a software event of interest. If the target is already running because the debugger
was attached to a running program with the -o nostop option enabled, this dcmd waits for
the target to terminate or stop after an event of interest. With an optional signal name or
number, the signal is immediately delivered to the target as part of resuming its execution. If
the SIGINT signal is traced, control can be asynchronously returned to the debugger by
typing the interrupt character, usually Ctrl-C. This SIGINT signal is automatically cleared. If
no target program is currently running, ::cont starts a new program running as if
by ::run.

address ::context
address $p
Context switch to the specified process. A context switch operation is valid only when using
the kernel target. The process context is specified using the address of its proc structure in
the kernel's virtual address space. The special context address 0 is used to denote the
context of the kernel itself. MDB can only perform a context switch when examining a crash
dump if the dump contains the physical memory pages of the specified user process (as
opposed to just kernel pages). The kernel crash dump facility can be configured to dump all
pages or the pages of the current user process using dumpadm(8). The ::status dcmd can
be used to display the contents of the current crash dump.
When the user requests a context switch from the kernel target, MDB constructs a new
target representing the specified user process. After the switch occurs, the new target
interposes its dcmds at the global level: thus the / dcmd can now format and display data
from the virtual address space of the user process, the ::mappings dcmd can display the
mappings in the address space of the user process, and so on. The kernel target can be
restored by executing 0::context.

::cpuregs [-c cpuid]
Display the current general-purpose register set for the current CPU or the specified cpuid.
This command is only available when using kmdb.

::cpustack [-c cpuid]
Display a C stack backtrace for the thread executing on the current CPU or the specified
cpuid. This command is only available when using kmdb.

::dcmds [-v] [[-n] [-d] [--] RE]
List all the dcmds that are currently available or provide a regular expression (RE) to limit the
list.

Chapter 5
MDB Built-In Dcmds

5-7

https://docs.oracle.com/cd/E88353_01/html/E72487/dumpadm-8.html

The ::dcmds dcmd recognizes the following options:

-v
Verbose. Print the usage output of each dcmd.

-n RE
Name. Search the name for a match.

-d RE
Description. Search the description for a match.

[address] ::dis [-abfw] [-n count] [address]
Disassemble starting at or around the address specified by the final argument, or the
current value of dot. If the address matches the start of a known function, the entire
function is disassembled. Otherwise, a "window" of instructions before and after the
specified address is printed in order to provide context. By default, instructions are
read from the target's virtual address space; if the -f option is present, instructions
are read from the target's object file instead. The -f option is enabled by default if the
debugger is not currently attached to a live process, core file, or crash dump. The -w
option can be used to force window-mode, even if the address is the start of a known
function. The size of the window defaults to ten instructions; use the -n option to
explicitly specify the number of instructions. If the -a option is present, addresses are
printed as numeric values rather than symbolically. The -b option displays both
address and symbol names of the disassembled code.

::disasms
List the available disassembler modes. When a target is initialized, MDB attempts to
select the appropriate disassembler mode. The user can change the mode to any of
the modes listed using the ::dismode dcmd.

::dismode [mode]
$V [mode]
Get or set the disassembler mode. If no argument is specified, print the current
disassembler mode. If a mode argument is specified, switch the disassembler to the
specified mode. The list of available disassemblers can be displayed using
the ::disasms dcmd.

::dmods [-l] [module-name]
List the loaded debugger modules. If the -l option is specified, the list of the dcmds
and walkers associated with each dmod is printed below its name. The output can be
restricted to a particular dmod by specifying its name as an additional argument.

[address] ::dump [-eqrstu] [-f|-p] [-g bytes] [-w paragraphs]
Print a hexadecimal and ASCII memory dump of the 16-byte aligned region of virtual
memory containing the address specified by dot. If a repeat count is specified
for ::dump, this is interpreted as a number of bytes to dump rather than a number of
iterations. The ::dump dcmd also recognizes the following options:

-e
Adjust for endianness. The -e option assumes 4-byte words; the -g option can be
used to change the default word size.

Chapter 5
MDB Built-In Dcmds

5-8

-f
Read data from the object file location corresponding to the given virtual address instead
of from the target's virtual address space. The -f option is enabled by default if the
debugger is not currently attached to a live process, core file, or crash dump.

-g group
Display bytes in groups of bytes. The default group size is 4 bytes. The group size must
be a power of two that divides the line width

-p
Interpret address as a physical address location in the target's address space instead of
a virtual address.

-q
Do not print an ASCII decoding of the data.

-r
Number lines relative to the start address instead of with the explicit address of each
line. This option implies the -u option.

-s
Elide repeated lines.

-t
Only read from and display the contents of the specified addresses, instead of reading
and printing entire lines.

-u
Unalign output instead of aligning the output at a paragraph boundary.

-w paragraphs
Display paragraphs 16-byte paragraphs per line. The default number of paragraphs is
one. The maximum value accepted for -w is 16.

::echo [-N] [--] [string | value ...]
Print the arguments. If the first print argument begins with a '-', you must signify the end of
option processing with the argument '--'. Expressions enclosed in $[] are evaluated to a
value and printed in the default base. The -N option places each argument on a new line.

::eval command
Evaluate and execute the specified string as a command. If the command contains
metacharacters or white space, it should be enclosed in double or single quotes.

::files
$f
Print a list of the known source files (symbols of type STT_FILE present in the various target
symbol tables).

[address] ::findsym [-g] [address | symbol ...]
Search instruction text for instructions that refer to the specified symbols or addresses. The
search list should consist of one or more addresses or symbol names specified as an
address preceding the dcmd or one or more symbol names or expressions following the
dcmd. The -g option restricts the search to instruction text that is part of a globally visible
function in the target's symbol table.

Chapter 5
MDB Built-In Dcmds

5-9

Note:

SPARC: The ::findsym dcmd is only available when debugging a target
that uses the SPARC instruction set architecture.

::formats
List the available output format characters for use with the /, \, ?, and = formatting
dcmds. The formats and their use is described in Dcmd Formatting Characters.

[thread] ::fpregs [-dqs]
[thread] $x, $X, $y, $Y
Print the floating-point register set of the representative thread. If a thread is specified,
the floating point registers of that thread are displayed. The thread expression should
be one of the thread identifiers described under Thread Support in MDB.

Note:

SPARC: The -d, -q, and -s options can be used to display the floating point
registers as a collection of double-precision (-d), quad-precision (-q), or
single-precision (-s) floating point values.

::grep command
Evaluate the specified command string, then print the old value of dot if the new value
of dot is non-zero. If the command contains white space or metacharacters, it must be
quoted. The ::grep dcmd can be used in pipelines to filter a list of addresses.

[addr] ::head [+/-] num | [+/-]n num [|::dcmd ...]
Limit the number of elements in the pipe.

-n num
- num
Passes only the first num elements in the pipe.

+n num
+ num
Passes all except the last num elements in the pipe. (num is in decimal).

::help [dcmd-name]
With no arguments, the ::help dcmd prints a brief overview of the help facilities
available in MDB. If a dcmd-name is specified, MDB prints a usage summary for that
dcmd.

[address] ::if [-p] {type member tests | [type] [at off] test}
Evaluate the tests and then print the old value of dot if the tests are true. With the -p
option, use physical rather than virtual addresses.
MDB recognizes two kinds of tests. You can test the value of a member of a structure
or union. You can also test an offset from dot. To build more complex tests, join the
tests with AND or OR.
The following tests are possible:

Chapter 5
MDB Built-In Dcmds

5-10

&
The values ANDed together are non-zero

%
The left value modulus the right is non-zero

^
The values XORed together are non-zero

streq
The strings exactly match

strneq
The strings don't match

strcaseeq
The strings match case insensitively

strcaseneq
The strings do not match case insensitively

strstr
The string contains the string

strcasestr
The string contains the case insensitive string

strnstr
The string does not contain the string

strcasenstr
The string does not contain the case insensitive string

strleneq
The string is this length

strlenne
The string is not this length

strlengt
The string is longer than this

strlenlt
The string is shorter than this

strlenge
The string is this long or longer

strlenle
The string is this long or shorter

For examples and options to the tests, see the mdb(1) man page.

[address [, len]] ::in [-L len]
Read and display len bytes from the I/O port specified by address. The value of the -L
option, if present, takes precedence over the repeat count specified on the left-hand side.

Chapter 5
MDB Built-In Dcmds

5-11

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

The len must be 1, 2, or 4 bytes and the port address must be aligned according to
the length. This command is only available when using kmdb on x86 systems.

[address] ::list [-b member [[[-M back_mask] | [-I back_inverse_mask] |
[-S back_shift]] |
[-E back_evalstr]]] [[[[-m mask] | [-i inverse_mask]] [-s left_shift]] | [-e
evalstr]]
[-p] [-L] [type] member [variable] [|::dcmd ...]
Walk list using member as link pointer. type may be omitted if the C type of address
can be inferred. When the -s option is used with -m or -M, the address is masked and
then shifted. The address of the first element in the list can be specified using an
optional address; otherwise the list is assumed to start at the current value of dot.
The ::list dcmd will continue iterating until a NULL pointer is encountered, the first
element is reached again (a circular list), or an error occurs while reading an element.
If the optional variable is specified, the specified variable will be assigned the value
returned at each step of the walk when MDB invokes the next stage of a pipeline.
The ::list dcmd recognizes the following options:

-b
Verify back pointers in doubly linked lists

-e
Pass the forward pointer through this mdb evaluation

-E
Pass the back pointer through this mdb evaluation

-i
Mask the forward pointer with the inverse of this value

-I
Mask the back pointer with the inverse of this value

-L
Check for loops in the list

-m
Mask the forward pointer with this value

-M
Mask the back pointer with this value

-p
Use physical addresses

-s
Shift left the forward pointer this many bits

-S
Shift left the back pointer this many bits

::load [-s] module-name
Load the specified dmod. The module name can be given as an absolute or relative
path. If module-name is a simple name (that is, does not contain a '/'), MDB searches
for it in the module library path. Modules with conflicting names cannot be loaded; the
existing module must be unloaded first. If the -s option is present, MDB will remain

Chapter 5
MDB Built-In Dcmds

5-12

silent and not issue any error messages if the module is not found or could not be loaded.

::log [-d | [-e] filename]
$> [filename]
Enable or disable the output log. MDB provides an interactive logging facility where both the
input commands and standard output can be logged to a file while still interacting with the
user. The -e option enables logging to the specified file, or re-enables logging to the
previous log file if no file name is given. The -d option disables logging. If the $> dcmd is
used, logging is enabled if a file name argument is specified; otherwise, logging is disabled.
If the specified log file already exists, MDB appends any new log output to the file.

::map command
Map the value of dot to a corresponding value using the command specified as a string
argument, then print the new value of dot. If the command contains white space or
metacharacters, it must be quoted. The ::map dcmd can be used in pipelines to transform
the list of addresses into a new list of addresses.

[address] ::mappings [name]
[address] $m [name]
Print a list of each mapping in the target's virtual address space, including the address, size,
and description of each mapping. If the dcmd is preceded by an address, MDB shows only
the mapping that contains the given address. If a string name argument is given, MDB
shows only the mapping that matched the description.

[address] ::nm [-DPdghnopuvx] [-t types] [-f format] [object]
Print the symbol tables associated with the current target. If an optional address preceding
the dcmd is specified, only the symbol table entry for the symbol corresponding to address is
displayed. If an object name is specified, only the symbol table for this load object is
displayed. The ::nm dcmd also recognizes the following options:

-D
Prints .dynsym (dynamic symbol table) instead of .symtab.

-P
Prints the private symbol table instead of .symtab.

-d
Prints value and size fields in decimal.

-f format [,format...]
Print only the specified symbol information. The valid format argument strings are:

ndx
symbol table index

val
symbol table

size
size in bytes

type
symbol type

Chapter 5
MDB Built-In Dcmds

5-13

bind
binding

oth
other

shndx
section index

name
symbol name

ctype
C type for symbol (if known)

obj
object which defines symbol

-g
Prints only global symbols.

-h
Suppresses the header line.

-n
Sorts symbols by name.

-o
Prints value and size fields in octal.

-p
Prints symbols as a series of ::nmadd commands. This option can be used with
-P to produce a macro file that can be subsequently read into the debugger
with $<.

-t type [,type...]
Prints only symbols of the specified types. The valid type argument strings are:

noty
STT_NOTYPE

objt
STT_OBJECT

func
STT_FUNC

sect
STT_SECTION

file
STT_FILE

comm
STT_COMMON

Chapter 5
MDB Built-In Dcmds

5-14

tls
STT_TLS

regi
STT_SPARC_REGISTER

-u
Prints only undefined symbols.

-v
Sorts symbols by value.

-x
Prints value and size fields in hexadecimal.

value ::nmadd [-fo] [-e end] [-s size] name
Add the specified symbol name to the private symbol table. MDB provides a private,
configurable symbol table that can be used to interpose on the target's symbol table, as
described in MDB Symbol Name Resolution. The ::nmadd dcmd also recognizes the
following options:

-e
Set the size of the symbol to end - value.

-f
Set the type of the symbol to STT_FUNC.

-o
Set the type of the symbol to STT_OBJECT.

-s
Set the size of the symbol to size.

::nmdel name
Delete the specified symbol name from the private symbol table.

::objects [-v]
Print a map of the target's virtual address space, showing only those mappings that
correspond to the primary mapping (usually the text section) of each of the known load
objects. If the -v option is present, the command displays the version of each object if
version information is know. If no version information is known, a version of Unknown will be
displayed in the output.

::offsetof type member
Print the offset of the specified member of the specified type. The type should be the name
of a C structure. The offset is printed in bytes, unless the member is a bit-field in which case
the offset may be printed in bits. The output is always suffixed with the appropriate units for
clarity. The type name may use the backquote (`) scoping operator described in MDB
Symbol Name Resolution.

[address [, len]] ::out [-L len]
Write the specified value to the I/O port specified by address. The value of the -L option, if
present, takes precedence over the repeat count specified on the left-hand side. The len
must be 1, 2, or 4 bytes and the port address must be aligned according to the length. This
command is only available when using kmdb on x86 systems.

Chapter 5
MDB Built-In Dcmds

5-15

[address] ::print [-aCdiLptx] [-c lim] [-l lim] [type [member|offset ...]]
Print the data structure at the specified virtual address using the given type
information. The type parameter may name a C structure, union, enum, fundamental
integer type, or a pointer to any of these types. If the type name contains whitespace
(for example, struct foo), it must be enclosed in single quotation marks or double
quotation marks. The type name can use the backquote (`) scoping operator
described under MDB Symbol Name Resolution. If the type is a structured type,
the ::print dcmd recursively prints each member of the struct or union. If the type
argument is not present and a static or global STT_OBJECT symbol matches the
address, ::print infers the appropriate type automatically.
The type argument can be followed by an optional list of member or offset
expressions, in which case only those members and submembers of the specified
type are displayed. Members can be specified using C syntax that includes the array
index operator ([]), the structure member operator (->), and the structure pointer
operator (.). Offsets can be specified using the MDB arithmetic expansion syntax ($
[]).After displaying the data structure, ::print increments dot by the size of type in
bytes.
If the -a option is present, the address of each member is displayed. If the -i option is
present, the expression on the left-hand side is interpreted as an immediate value to
be displayed using the specified type. If the -p option is present, ::print interprets
address as a physical memory address instead of a virtual memory address. If the -t
option is present, the type of each member is displayed. If the -d or -x options are
present, all integers are displayed in decimal (-d) or hexadecimal (-x); by default a
heuristic is used to determine if the value should be displayed in decimal or
hexadecimal. The number of characters in a character array that will be read and
displayed as a string can be limited with the -c option. If the -C option is present, no
limit is enforced. The number of elements in a standard array that will be read and
displayed can be limited with the -l option. If the -L option is present, no limit is
enforced and all array elements are shown. The default values for -c and -l can be
modified using ::set or the -o command-line option as described in the mdb(1) man
page.

address ::printf [-t format ...] format [type] ...
Print the data structure using the printf format command. Arguments to the
command are:

• An element in the structure or union

• The value from a symbol

• An absolute value

• The value of the var variable

The optional -t argument is used to specify a title. The title is printed once before any
other output is produced. For possible expansions in the format string, see
the ::help printf command.

::quit [-u]
$q [-u]
Quit the debugger. When using kmdb only, the -u option causes the debugger to
resume execution of the operating system and unload the debugger. The -u option
cannot be used if kmdb was loaded at boot. If the -u option is not present, ::quit
causes kmdb to exit to the firmware (on SPARC systems) or causes the system to
reboot (on x86 systems).

Chapter 5
MDB Built-In Dcmds

5-16

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

[thread] ::regs
[thread] $r
Print the general-purpose register set of the representative thread. If a thread is specified,
the general purpose register set of that thread is displayed. The thread expression should be
one of the thread identifiers described under Thread Support in MDB.

::release [-a]
:R [-a]
Release the previously attached process or core file. If the -a option is present, the process
is released and left stopped and abandoned. It can subsequently be continued by prun(1) or
it can be resumed by applying MDB or another debugger. By default, a released process is
forcibly terminated if it was created by MDB using ::run, or it is released and set running if
it was attached to by MDB using the -p option or using the ::attach or :A dcmds.

::set [-wF] [+/-o option] [-s distance] [-I path] [-L path] [-P prompt]
Get or set miscellaneous debugger properties. If no options are specified, the current set of
debugger properties is displayed. The ::set dcmd recognizes the following options:

-F
Forcibly take over the next user process that ::attach is applied to, as if mdb had been
executed with the -F option on the command line.

-I
Set the default path for locating macro files. The path argument can contain any of the
special tokens described for the -I command-line option in the mdb(1) man page.

-L
Set the default path for locating debugger modules. The path argument can contain any
of the special tokens described for the -I command-line option in the mdb(1) man page.

-o
Enable the specified debugger option. If the +o form is used, the option is disabled. The
option strings are described along with the -o command-line option in the mdb(1) man
page.

-P
Set the command prompt to the specified prompt string.

-s
Set the symbol matching distance to the specified distance. Refer to the description of
the -s command-line option in the mdb(1) man page.

-w
Re-open the target for writing, as if mdb had been executed with the -w option on the
command line.

::showrev [-pv]
Display revision information for the hardware and software corresponding the current target.
If no options are specified, general system information is displayed. If the -p option is
present, information for each load object that is part of a patch is displayed. If the -v option is
present, information for each load object is displayed. Load objects without version
information will be omitted from the output for the -p option. Load objects without version
information will report Unknown in the output of the -v option.

Chapter 5
MDB Built-In Dcmds

5-17

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

::sizeof type
Print the size of the specified type in bytes. The type parameter may name a C
structure, union, enum, fundamental integer type, or a pointer to any of these types.
The type name may use the backquote (`) scoping operator described in MDB
Symbol Name Resolution.

... | ::sort [-u [-c] [-v var]] [type] [-s [-i]] [-r] [at] offset | member
[[-s [-i]] [-r] [-u] member]… [| dcmd …]
Sort the addresses based on the rules given.

• With no arguments, ::sort sorts the address based on its numeric values.

• If a type is given, then ::sort sorts based on the member of structure or union
given.

• If an n offset is given, then the sort is based on the value of the simple type at that
value.

• Multiple sort keys can be given and each sort key can have its own options. See
SORT KEY OPTIONS.

::sort recognizes the following simple types:

addr
int
uint
char
char
uchar
short
ushort
long
ulong
longlong
ulonglong
pointer

::sort recognizes the following options:

-u
Unique. Only prints addresses that match according to the sort criteria once.

-R
Not unique. Suppresses lines that do not have matches according to the sort.

-U
Really unique. Only prints entries that are unique according to the sort.

-c
If not outputting to a pipe and using the unique flag, then print a count of matches
before each address.

-v
Stores the count of unique entries in variable var.

SORT KEY OPTIONS

Chapter 5
MDB Built-In Dcmds

5-18

-r
Reverse the order of this test.

-s
Treat this item as a string.

-i
If sorting strings, ignore case.

-u
Unique for this key. Sort using the remaining keys but only output the last entry that
matches on this key. See ::help sort for examples.

-l len
If sorting pointers, dereference the pointer and compare len bytes.

[address] ::stack [count]
[address] $c [count]
Print a C stack back trace. If the dcmd is preceded by an explicit address, a back trace
beginning at this virtual memory address is displayed. Otherwise, the stack of the
representative thread is displayed. If an optional count value is given as an argument, no
more than count arguments are displayed for each stack frame in the output.

Note:

SPARC 64-bit systems: The biased frame pointer value (that is, the virtual address
minus 0x7ff) should be used as the address when requesting a stack trace.

[address] ::stackinfo [-h|-a]
Display kthread_t stack usage.
Shows the real utilization of the kernel stack if the /etc/system kmem_stackinfo tunable
(an unsigned integer) is nonzero at kthread creation time. For example:

 THREAD STACK SIZE CUR MAX CMD/LWPID
ffffff014f5f2c20 ffffff0004153000 4f00 4% 43% init/1

The current stack size utilization for this kthread is 4% of its maximum size. The stack size
utilization for this kthread has been up to 43% of its maximum size. Stack size is 4f00 bytes.
The MAX value can be shown as n/a (not available) in the following cases:

• For the very first kthread (sched/1)

• If kmem_stackinfo was zero at kthread creation time

• If the kthread has not yet run

The -a option shows TS_FREE kthreads (interrupt kthreads). The -h option shows history
(dead kthreads that used their kernel stack the most).
If the /etc/system kmem_stackinfo tunable is nonzero, then the DTrace probe
sdt:genunix:stkinfo_end:stack-usage is activated for dead kthreads as follows:

arg0 kthread_t * A dead kthread

arg1 size_t The kernel stack size of the dead kthread

Chapter 5
MDB Built-In Dcmds

5-19

arg2 size_t A percentage that is the maximum use of the kernel stack for
this dead kthread

If the /etc/system kmem_stackinfo tunable is nonzero, then the performance of
creating and deleting kthreads is decreased.

::status
Print a summary of information related to the current target.

[addr] ::sum [type [member]]
Add up list of numbers from pipe. These can be read directly or acquired from a
member in a structure specified by addr.

[addr] ::strlen
Print the length of a string.

cpuid ::switch
cpuid :x
When using kmdb only, switch to the CPU indicated by the specified cpuid and use
this CPU's current register state as the representative for debugging.

[addr] ::tail [+/-] num | [+/-]n num [|::dcmd ...]
Print the last elements in the pipe.

-n num
- num
Passes only the last num elements in the pipe.

+n num
+ num
Passes all except the first num elements in the pipe. (num is in decimal).

::term
Print the name of the terminal type that MDB is using to perform any terminal-
dependent input and output operations, such as command-line editing.

thread ::tls symbol
Print the address of the storage for the specified thread-local storage (TLS) symbol in
the context of the specified thread. The thread expression should be one of the thread
identifiers described under Thread Support in MDB. The symbol name may use any of
the scoping operators described under MDB Symbol Name Resolution.

::typeset [+/-t] variable-name ...
Set attributes for named variables. If one or more variable names are specified, they
are defined and set to the value of dot. If the -t option is present, the user-defined tag
associated with each variable is set. If the +t option is present, the tag is cleared. If no
variable names are specified, the list of variables and their values is printed.

::unload module-name
Unload the specified dmod. The list of active dmods can be printed using
the ::dmods dcmd. Built-in modules cannot be unloaded. Modules that are busy (that
is, provide dcmds that are currently executing) cannot be unloaded.

Chapter 5
MDB Built-In Dcmds

5-20

::unset variable-name ...
Unset (remove) the specified variables from the list of defined variables. Some variables are
exported by MDB are marked as persistent, and cannot be unset by the user.

::vars [-npt]
Print a listing of named variables. If the -n option is present, the output is restricted to
variables that currently have non-zero values. If the -p option is present, the variables are
printed in a form suitable for re-processing by the debugger using the $< dcmd. This option
can be used to record the variables to a macro file, then restore these values later. If the -t
option is present, only the tagged variables are printed. Variables can be tagged using the -t
option of the ::typeset dcmd.

::version
Print the debugger version number.

address ::vtop [-a as]
Print the physical address mapping for the specified virtual address, if possible. The ::vtop
dcmd is only available when examining a kernel target, or when examining a user process
inside a kernel crash dump (after a ::context dcmd has been issued).
When examining a kernel target from the kernel context, the -a option can be used to specify
the address (as) of an alternate address space structure that should be used for the virtual to
physical translation. By default, the kernel's address space is used for translation. This
option is available for active address spaces even when the dump content only contains
kernel pages.

[address] ::walk walker-name [variable-name]
Walk through the elements of a data structure using the specified walker. The available
walkers can be listed using the ::walkers dcmd. Some walkers operate on a global data
structure and do not require a starting address. For example, walk the list of proc structures
in the kernel. Other walkers operate on a specific data structure whose address must be
specified explicitly. For example, given a pointer to an address space, walk the list of
segments.
When used interactively, the ::walk dcmd will print the address of each element of the data
structure in the default base. The dcmd can also be used to provide a list of addresses for a
pipeline. The walker name can use the backquote " ` " scoping operator described in Dcmd
and Walker Name Resolution. If the optional variable-name is specified, the specified
variable will be assigned the value returned at each step of the walk when MDB invokes the
next stage of the pipeline.

::walkers [[-n] [-d] [--] RE]
List all the walkers that are currently available or provide a regular expression (RE) to limit
the list.
The ::walkers dcmd recognizes the following options:

-n RE
Name. Search the name for a match.

-d RE
Description. Search the description for a match.

... | ::wc [-x]
Count the elements in a pipe. With the -x option, output the value in hexadecimal.

Chapter 5
MDB Built-In Dcmds

5-21

::whence [-v] name ...
::which [-v] name ...
Print the dmod that exports the specified dcmds and walkers. These dcmds can be
used to determine which dmod is currently providing the global definition of the given
dcmd or walker. Refer to Dcmd and Walker Name Resolution for more information
about global name resolution. The -v option causes the dcmd to print the alternate
definitions of each dcmd, dcmd alias, and walker in order of precedence.

::xdata
List the external data buffers exported by the current target. External data buffers
represent information associated with the target that cannot be accessed through
standard target facilities (that is, an address space, symbol table, or register set).
These buffers can be consumed by dcmds; for more information, refer to
mdb_get_xdata() Function.

Chapter 5
MDB Built-In Dcmds

5-22

6
Execution Control in MDB

MDB provides facilities for controlling and tracing the execution of live running programs,
including both user applications and the live operating system kernel and device drivers. You
can use the mdb command to control user processes that are already running, or create new
processes under the control of the debugger. You can boot or load kmdb to control the
execution of the operating system kernel itself, or debug a device driver. This chapter
describes the built-in dcmds that can be used to control target execution. These commands
can be used in either mdb or kmdb, except as noted in the descriptions. Additional topics
relating only to execution control in kmdb are discussed in Kernel Execution Control Using
kmdb.

MDB Execution Control
MDB provides a simple model of execution control: a target process can be started from
within the debugger using ::run, or MDB can attach to an existing process
using :A, ::attach, or the -p command-line option (see Built-In Commands in MDB).
Alternately, the kernel can be booted using kmdb or kmdb can be loaded afterward. In either
case, a list of traced software events can be specified by the user. Each time a traced event
occurs in the target program, all threads in the target stop, the thread that triggered the event
is chosen as the representative thread, and control returns to the debugger. Once the target
program is set running, control can be asynchronously returned to the debugger by typing the
user-defined interrupt character (typically Control-C).

A software event is a state transition in the target program that is observed by the debugger.
For example, the debugger may observe the transition of a program counter register to a
value of interest (a breakpoint) or the delivery of a particular signal.

A software event specifier is a description of a class of software events that is used by the
debugger to instrument the target program in order to observe these events. The ::events
dcmd is used to list the software event specifiers. A set of standard properties is associated
with each event specifier, as described under ::events in Execution Control Built-in Dcmds.

Lifecycle of MDB Event Specifiers

6-1

As the preceding figure shows, with the introduction of the ::spin command, the
cont operation of software events is extended to a spin state in KMDB.

The debugger can observe a variety of different software events, including
breakpoints, watchpoints, signals, machine faults, and system calls. New specifiers
can be created using ::bp, ::fltbp, :: sigbp, ::sysbp, or ::wp. Each specifier
has an associated callback (an MDB command string to execute as if it had been
typed at the command prompt) and a set of properties, as described under ::events
in Execution Control Built-in Dcmds. Any number of specifiers for the same event may
be created, each with different callbacks and properties. The current list of traced
events and the properties of the corresponding event specifiers can be displayed using
the ::events dcmd. The event specifier properties are defined as part of the
description of the ::events and ::evset dcmds, in Execution Control Built-in
Dcmds.

The execution control built-in dcmds, described in Execution Control Built-in Dcmds,
are always available, but will issue an error message indicating they are not supported
if applied to a target that does not support execution control.

Event Callbacks in MDB
The ::evset dcmd and event tracing dcmds allow you to associate an event callback
(using the -c option) with each event specifier. The event callbacks are strings that
represent MDB commands to execute when the corresponding event occurs in the
target. These commands are executed as if they had been typed at the command
prompt. Prior to executing each callback, the dot variable is set to the value of the
representative thread's program counter and the hits variable is set to the number of
times this specifier has been matched, including the current match.

If the event callbacks themselves contain one or more commands to continue the
target (for example, ::cont or ::step), these commands do not immediately
continue the target and wait for it to stop again. Instead, inside of an event callback,
the continue dcmds note that a continue operation is now pending, and then return
immediately. Therefore, if multiple dcmds are included in an event callback, the step or
continue dcmd should be the last command specified. Following the execution of all
event callbacks, the target will immediately resume execution if all matching event
callbacks requested a continue. If conflicting continue operations are requested, the
operation with the highest precedence determines what type of continue will occur.
The order of precedence from highest to lowest is: step, step-over (next), step-out,
continue.

Thread Support in MDB
MDB provides facilities to examine the stacks and registers of each thread associated
with the target. The persistent thread variable contains the current representative
thread identifier. The format of the thread identifier depends on the target. The ::regs
and ::fpregs dcmds can be used to examine the register set of the representative
thread, or of another thread if its register set is currently available. In addition, the
register set of the representative thread is exported as a set of named variables. The
user can modify the value of one or more registers by applying the '>' dcmd to the
corresponding named variable.

The MDB kernel target exports the virtual address of the corresponding internal thread
structure as the identifier for a given thread. This address corresponds to the

Chapter 6
Event Callbacks in MDB

6-2

kthread_t data structure in the operating system source code. When using kmdb, the CPU
identifier for the CPU running kmdb is stored in the cpuid variable.

The MDB process target provides proper support for examination of multi-threaded user
processes that use the native lwp_* interfaces, /usr/lib/libthread.so, or /usr/lib/
libpthread.so. When debugging a live user process, MDB will detect if a single threaded
process dlopens or closes libthread and will automatically adjust its view of the threading
model on-the-fly. The process target thread identifiers will correspond to either the lwpid_t,
thread_t, or pthread_t of the representative, depending on the threading model used by the
application.

If MDB is debugging a user process target and the target makes use of compiler-supported
thread-local storage, MDB will automatically evaluate symbol names referring to thread-local
storage to the address of the storage corresponding to the current representative thread.
The ::tls built-in dcmd can be used to display the value of the symbol for threads other
than the representative thread.

Thread Spinning Functionality in KMDB
kmdb provides the thread spin functionality to debug and reproduce the race or hang
condition where the race window is very narrow. The thread spin functionality allows kmdb to
instruct the threads to go into a spin state at a desired point. kmdb supports the following spin
functions:

• ::spin arm – Extend the continue state of the software event in a thread lifecycle.
Multiple threads can be in the spin state simultaneously. Use ::spin resume to resume
thread execution.

• ::spin resume – Resume execution of the thread that was in the spin state. Invoke
this command manually.

• ::spin list – List all threads that are in the spin state. In contrast, ::events displays
only software events and their states.

Execution Control Built-in Dcmds
[addr] ::bp [+/-dDestT] [-c cmd] [-n count] sym ...
addr :b [cmd ...]
Set a breakpoint at the specified locations. The ::bp dcmd sets a breakpoint at each
address or symbol specified, including an optional address specified by an explicit
expression preceding the dcmd, and each string or immediate value following the dcmd. The
arguments may either be symbol names or immediate values denoting a particular virtual
address of interest. If a symbol name is specified, it may refer to a symbol that cannot yet be
evaluated in the target process: that is, it may consist of an object name and function name
in a load object that has not yet been opened. In this case, the breakpoint is deferred and it
will not be active in the target until an object matching the given name is loaded. The
breakpoint will be automatically enabled when the load object is opened. Breakpoints on
symbols defined in a shared library should always be set using a symbol name and not using
an address expression, as the address may refer to the corresponding Procedure Linkage
Table (PLT) entry instead of the actual symbol definition. Breakpoints set on PLT entries may
be overwritten by the run-time link-editor when the PLT entry is subsequently resolved to the
actual symbol definition. The -d, -D, -e, -s, -t, -T, -c, and -n options have the same
meaning as they do for the ::evset dcmd, as described later in this section. If the :b form
of the dcmd is used, a breakpoint is only set at the virtual address specified by the

Chapter 6
Execution Control Built-in Dcmds

6-3

expression preceding the dcmd. The arguments following the :b dcmd are
concatenated together to form the callback string. If this string contains meta-
characters, it must be quoted.

function ::call [arg ...]
When using kmdb only, call the specified function defined in the operating system
kernel. The function expression must match the address of a defined function in a
symbol table of one of the known kernel modules. If expression arguments are
specified, these arguments as passed by value. If string arguments are specified,
these arguments are passed by reference.

Note:

Use the ::call command with extreme caution and never apply it to a
production system. The operating system kernel will not resume execution
in order to execute the specified function. Therefore, the function being
called must not use arbitrary kernel services and must not block for any
reason. Be fully aware of the side-effects of any function you call using this
command.

::cont [SIG]
:c [SIG]
Suspend the debugger, continue the target program, and wait for it to terminate or
stop following a software event of interest. If the target is already running because the
debugger was attached to a running program with the -o nostop option enabled, this
dcmd simply waits for the target to terminate or stop after an event of interest. If an
optional signal name or number is specified as an argument (see the
signal(3HEAD) man page), the signal is immediately delivered to the target as part
of resuming its execution. If the SIGINT signal is traced, control may be
asynchronously returned to the debugger by typing the user-defined interrupt
character (usually ^C). This SIGINT signal will be automatically cleared and will not be
observed by the target the next time it is continued. If no target program is currently
running, ::cont will start a new program running as if by ::run.

address ::delete [id | all]
address :d [id | all]
Delete the event specifiers with the given id number. The id number argument is
interpreted in decimal by default. If an optional address is specified preceding the
dcmd, all event specifiers that are associated with the given virtual address are
deleted (for example, all breakpoints or watchpoints affecting that address). If the
special argument all is given, all event specifiers are deleted, except those that are
marked sticky (T flag). The ::events dcmd displays the current list of event
specifiers.

::events [-av]
$b [-av]
Display the list of software event specifiers. Each event specifier is assigned a unique
ID number that can be used to delete or modify it at a later time. The debugger may
also have its own internal events enabled for tracing; these will only be displayed if
the -a option is present. If the -v option is present, a more verbose display including
the reason for any specifier inactivity will be shown. The following ::events dcmd
shows example output:

Chapter 6
Execution Control Built-in Dcmds

6-4

https://docs.oracle.com/cd/E88353_01/html/E37842/signal-3head.html

> ::events
 ID S TA HT LM Description Action
----- - -- -- -- -- -------------
[1] - T 1 0 stop on SIGINT -
[2] - T 0 0 stop on SIGQUIT -
[3] - T 0 0 stop on SIGILL -
 ...
[11] - T 0 0 stop on SIGXCPU -
[12] - T 0 0 stop on SIGXFSZ -
[13] - 2 0 stop at libc`printf ::echo printf
>

The following discussion explains the meaning of each column. A summary of this
information is available using ::help events.

ID
The event specifier identifier. The identifier will be shown in square brackets [] if the
specifier is enabled, in parentheses () if the specifier is disabled, or in angle brackets <
> if the target program is currently stopped on an event that matches the given specifier.

S
The event specifier state. The state will be one of the following symbols:

-
The event specifier is idle. When no target program is running, all specifiers are idle.
When the target program is running, a specifier may be idle if it cannot be evaluated
(such as a deferred breakpoint in a shared object that is not yet loaded).

+
The event specifier is active. When the target is continued, events of this type will be
detected by the debugger.

*
The event specifier is armed. This state means that the target is currently running
with instrumentation for this type of event. This state is only visible if the debugger is
attached to a running program with the -o nostop option.

!
The event specifier was not armed due to an operating system error. The ::events
-v option can be used to display more information about the reason the
instrumentation failed.

TA
The Temporary, Sticky, and Automatic event specifier properties. One or more of the
following symbols may be shown:

t
The event specifier is temporary, and will be deleted the next time the target stops,
regardless of whether it is matched.

T
The event specifier is sticky, and will be not be deleted by ::delete all or :z. The
specifier can be deleted by explicitly specifying its id number to::delete.

Chapter 6
Execution Control Built-in Dcmds

6-5

d
The event specifier will be automatically disabled when the hit count is equal
to the hit limit.

D
The event specifier will be automatically deleted when the hit count is equal to
the hit limit.

s
The target will automatically stop when the hit count is equal to the hit limit.

HT
The current hit count. This column displays the number of times the
corresponding software event has occurred in the target since the creation of this
event specifier.

LM
The current hit limit. This column displays the limit on the hit count at which the
auto-disable, auto-delete, or auto-stop behavior will take effect. These behaviors
can be configured using the ::evset dcmd.

Description
A description of the type of software event that is matched by the given specifier.

Action
The callback string to execute when the corresponding software event occurs.
This callback is executed as if it had been typed at the command prompt.

id ::evset [+/-dDestT] [-c cmd] [-n count] id ...
Modify the properties of one or more software event specifiers. The properties are set
for each specifier identified by the optional expression preceding the dcmd and an
optional list of arguments following the dcmd. The argument list is interpreted as a list
of decimal integers, unless an explicit radix is specified. The ::evset dcmd
recognizes the following options:

-d
Disable the event specifier when the hit count reaches the hit limit. If the +d form
of the option is given, this behavior is disabled. Once an event specifier is
disabled, the debugger will remove any corresponding instrumentation and will
ignore the corresponding software events until the specifier is subsequently re-
enabled. If the -n option is not present, the specifier is disabled immediately.

-D
Delete the event specifier when the hit count reaches the hit limit. If the +D form of
the option is given, this behavior is disabled. The -D option takes precedence over
the -d option. The hit limit can be configured using the -n option.

-e
Enable the event specifier. If the +e form of the option is given, the specifier is
disabled.

-s
Stop the target program when the hit count reaches the hit limit. If the +s form of
the option is given, this behavior is disabled. The -s behavior tells the debugger

Chapter 6
Execution Control Built-in Dcmds

6-6

to act as if ::cont were issued following each execution of the specifier's callback,
except for the Nth execution, where N is the current value of the specifier's hit limit. The
-s option takes precedence over both the -D option and the -d option.

-t
Mark the event specifier as temporary. Temporary specifiers are automatically deleted
the next time the target stops, regardless of whether it stopped as the result of a
software event corresponding to the given specifier. If the +t form of the option is given,
the temporary marker is removed. The -t option takes precedence over the -T option.

-T
Mark the event specifier as sticky. Sticky specifiers will not be deleted by ::delete
all or :z. They can be deleted by specifying the corresponding specifier ID as an
explicit argument to ::delete. If the +T form of the option is given, the sticky property is
removed. The default set of event specifiers are all initially marked sticky.

-c
Execute the specified cmd string each time the corresponding software event occurs in
the target program. The current callback string can be displayed using ::events.

-n
Set the current value of the hit limit to count. If no hit limit is currently set and the -n
option does not accompany -s or -D, the hit limit will be set to one.

A summary of this information is available using ::help evset.

flt ::fltbp [+/-dDestT] [-c cmd] [-n count] flt ...
Trace the specified machine faults. The faults are identified using an optional fault number
preceding the dcmd, or a list of fault names or numbers (see <sys/fault.h>) following the
dcmd. The -d, -D, -e, -s, -t, -T, -c, and -n options have the same meaning as they do for
the ::evset dcmd. The ::fltbp command applies to user process debugging only.

signal :i
If the target is a live user process, ignore the specified signal and allow it to be delivered
transparently to the target. All event specifiers that are tracing delivery of the specified signal
will be deleted from the list of traced events. By default, the set of ignored signals is
initialized to the complement of the set of signals that cause a process to dump core by
default (see the signal(3HEAD)) man page), except for SIGINT, which is traced by default.
The :i command applies to user process debugging only.

$i
Display the list of signals that are ignored by the debugger and will be handled directly by the
target. More information about traced signals can be obtained using the ::events dcmd.
The $i command applies to user process debugging only.

::kill
:k
Forcibly terminate the target if it is a live user process. The target will also be forcibly
terminated when the debugger exits if it was created by the debugger using ::run.
The ::kill command applies to user process debugging only.

$l
Print the LWPID of the representative thread, if the target is a user process.

Chapter 6
Execution Control Built-in Dcmds

6-7

https://docs.oracle.com/cd/E88353_01/html/E37842/signal-3head.html

$L
Print the LWPIDs of each LWP in the target, if the target is a user process.

::next [SIG]
:e [SIG]
Step the target program one instruction, but step over subroutine calls. If an optional
signal name or number (see signal(3HEAD)) is specified as an argument, the signal
is immediately delivered to the target as part of resuming its execution. If no target
program is currently running, ::next will start a new program running as if by ::run
and stop at the first instruction.

::run [args ...]
:r [args ...]
Start a new target program running with the specified arguments and attach to it. The
arguments are not interpreted by the shell. If the debugger is already examining a live
running program, it will first detach from this program as if by ::release.

[signal] ::sigbp [+/-dDestT] [-c cmd] [-n count] SIG ...
[signal] :t [+/-dDestT] [-c cmd] [-n count] SIG ...
Trace delivery of the specified signals. The signals are identified using an optional
signal number preceding the dcmd, or a list of signal names or numbers (see
signal(3HEAD)) following the dcmd. The -d, -D, -e, -s, -t, -T, -c, and -n options
have the same meaning as they do for the ::evset dcmd. Initially, the set of signals
that cause the process to dump core by default (see signal(3HEAD)) and SIGINT
are traced. The ::sigbp command applies to user process debugging only.

::spin [arm | list | resume]
See Thread Spinning Functionality in KMDB.

::step [branch | over | out] [SIG]
:s SIG
:u SIG
Step the target program one instruction. The :s dcmd is similar to the ::step
command.
If an optional signal name or number (see the signal(3HEAD)) is specified as an
argument and the target is a user process, the signal is immediately delivered to the
target as part of resuming its execution.

• x86 Only – If you specify the branch argument, the target program continues until
the next instruction that branches the control flow of the processor. This feature is
available only when using kmdb on x86 systems with appropriate processor-
specific features enabled.

• If you specify the over argument, ::step steps over subroutine calls.
The ::step over argument is the same as the ::next dcmd.

• If you specify the out argument, the target program continues until the
representative thread returns from the current function. If no target program is
currently running, ::step over starts a new program running as if by ::run
and stops at the first instruction. The :u dcmd is similar to the ::step out
command.

On SPARC systems, you cannot use the ::step dcmd to step ta. This step
command fails. For information about ta, see SPARC Servers Documentation.

Chapter 6
Execution Control Built-in Dcmds

6-8

https://docs.oracle.com/cd/E88353_01/html/E37842/signal-3head.html
https://docs.oracle.com/cd/E88353_01/html/E37842/signal-3head.html
https://docs.oracle.com/cd/E88353_01/html/E37842/signal-3head.html
https://docs.oracle.com/cd/E88353_01/html/E37842/signal-3head.html
https://www.oracle.com/servers/technologies/enterprise-sparc-servers-resources.html

[syscall] ::sysbp [+/-dDestT] [-io] [-c cmd] [-n count] syscall ...
Trace entry to or exit from the specified system calls. The system calls are identified using an
optional system call number preceding the dcmd, or a list of system call names or numbers
(see sys/syscall.h) following the dcmd. If the -i option is specified (the default), the
event specifiers trigger on entry into the kernel for each system call. If the -o option is
specified, the event specifiers trigger on exit out from the kernel. The -d, -D, -e, -s, -t, -T, -
c, and -n options have the same meaning as they do for the ::evset dcmd. The ::sysbp
command applies to user process debugging only.

addr [,len]::wp [+/-dDestT] [-rwx] [-ip] [-c cmd] [-n count]
addr [,len]:a [cmd...]
addr [,len]:p [cmd...]
addr [,len]:w [cmd...]
Set a watchpoint at the specified address. The length in bytes of the watched region may be
set by specifying an optional repeat count preceding the dcmd. If no length is explicitly set,
the default is one byte. The ::wp dcmd allows the watchpoint to be configured to trigger on
any combination of read (-r option), write (-w option), or execute (-x option) access. The -d,
-D, -e, -s, -t, -T, -c, and -n options have the same meaning as they do for the ::evset
dcmd. When using kmdb on x86 systems only, the -i option can be used to indicate that a
watchpoint should be set on the address of an I/O port. When using kmdb only, the -p option
can be used to indicate that the specified address should be interpreted as a physical
address. The :a dcmd sets a read access watchpoint at the specified address. The :p dcmd
sets an execute access watchpoint at the specified address. The :w dcmd sets a write
access watchpoint at the specified address. The arguments following the :a. :p, and :w
dcmds are concatenated together to form the callback string. If this string contains meta-
characters, it must be quoted.

:z
Delete all event specifiers from the list of traced software events. Event specifiers can also
be deleted using ::delete.

MDB Interaction With exec
When a controlled user process performs a successful exec(2), the behavior of the debugger
is controlled by the ::set -o follow_exec_mode option, as described in the mdb(1) man
page. If the debugger and victim process (or victim process) have the same data model, then
the stop and follow modes determine whether MDB automatically continues the target or
returns to the debugger prompt following the exec. If the debugger and victim process have
a different data model, then the follow behavior causes MDB to automatically re-exec the
MDB binary with the appropriate data model and reattach to the process, still stopped on
return from the exec. Not all debugger state is preserved across this re-exec.

If a 32-bit victim process execs a 64-bit program, then stop will return to the command
prompt, but the debugger will no longer be able to examine the process because it is now
using the 64-bit data model. To resume debugging, execute the ::release -a dcmd, quit
MDB, and then execute mdb -p pid to re-attach the 64-bit debugger to the process.

If a 64-bit victim process execs a 32-bit program, then stop will return to the command
prompt, but the debugger will only provide limited capabilities for examining the new process.
All built-in dcmds will work as advertised, but loadable dcmds will not since they do not
perform data model conversion of structures. The user should release and reattach the
debugger to the process as described above in order to restore full debugging capabilities.

Chapter 6
MDB Interaction With exec

6-9

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

MDB Interaction With Job Control
If the debugger is attached to a user process that is stopped by job control (that is, it
stopped in response to SIGTSTP, SIGTTIN, or SIGTTOU), the process may not be
able to be set running again when it is continued by a continue dcmd. If the victim
process is a member of the same session (that is, it shares the same controlling
terminal as MDB), MDB will attempt to bring the associated process group to the
foreground and continue the process with SIGCONT to resume it from job control stop.
When MDB is detached from such a process, it will restore the process group to the
background before exiting. If the victim process is not a member of the same session,
MDB cannot safely bring the process group to the foreground, so it will continue the
process with respect to the debugger but the process will remain stopped by job
control. MDB will print a warning in this case, and the user must issue a fg command
from the appropriate shell in order to resume the process.

MDB Process Attach and Release
When MDB attaches to a running user process, the process is stopped and remains
stopped until one of the continue dcmds is applied, or the debugger quits. If the -o
nostop option is enabled prior to attaching the debugger to a process with -p or prior
to issuing an ::attach or :A command, MDB will attach to the process but not stop
it. While the process is still running, it may be inspected as usual (albeit with
inconsistent results) and breakpoints or other tracing flags may be enabled. If the :c
or ::cont dcmds are run while the process is running, the debugger will wait for the
process to stop. If no traced software events occur, the user can send an interrupt (^C)
after :c or ::cont to force the process to stop and return control to the debugger.

MDB releases the current running process (if any) when
the :R, ::release, :r, ::run, $q, or ::quit dcmds are executed, or when the
debugger terminates as the result of an EOF or signal. If the process was originally
created by the debugger using :r or ::run, it will be forcibly terminated as if by
SIGKILL when it is released. If the process was already running prior to attaching MDB
to it, it will be set running again when it is released. A process may be released and
left stopped and abandoned using the ::release -a option.

Chapter 6
MDB Interaction With Job Control

6-10

7
Kernel Execution Control Using kmdb

This chapter describes the MDB features for execution control of the live operating system
kernel available when running kmdb. kmdb is a version of MDB specifically designed for
kernel execution control and live kernel debugging. Using kmdb, the kernel can be controlled
and observed in much the same way that a user process can be controlled and observed
using mdb. The kernel execution control functionality includes instruction-level control of
kernel threads executing on each CPU, enabling developers to single-step the kernel and
inspect data structures in real time.

Both mdb and kmdb share the same user interface. All of the execution control functionality
described in Execution Control in MDB is available in kmdb, and is identical to the set of
commands used to control user processes. The commands used to inspect kernel state,
described in MDB Language Syntax and Built-In Commands in MDB, are also available when
using kmdb. Finally, the commands specific to the Oracle Solaris kernel implementation,
described in Kernel Debugging Modules, are available unless otherwise noted. This chapter
describes the remaining features that are specific to kmdb.

Booting, Loading, and Unloading kmdb
To facilitate the debugging of kernel startup, kmdb can be loaded during the earliest stages of
the boot process, before control has passed from the kernel runtime linker (krtld) to the
kernel.

On an Oracle Solaris 11 x86 system, grub is loaded first. You can boot kmdb by adding the -k
or -kd options to the grub kernel line.

On an Oracle Solaris 11.1 x86 system, grub is loaded first, and you can change the boot
options to load kmdb in one of the following ways:

• Run the following command as root:

bootadm change-entry boot-environment kargs=-kd

Use the beadm(8) command to find the boot environment.

• Edit the grub entry by adding the -k or -kd options to the boot-archive line in grub before
the ${kern} entry.

If kmdb is loaded at boot, the debugger cannot be unloaded until the system subsequently
reboots. Some functionality is not immediately available during the earliest stages of boot. In
particular, debugging modules are not loaded until the kernel module subsystem has
initialized. Processor-specific functionality is not enabled until the kernel has completed the
processor identification process.

If you boot your system using the -k option, kmdb automatically loads during the boot
process. You can use the -d boot option to request a debugger breakpoint prior to starting the
kernel. This feature works with the default kernel as well as alternate kernels. For example, to
boot a SPARC system with kmdb and request immediate entry to the debugger, type any of
the following commands:

7-1

https://docs.oracle.com/cd/E88353_01/html/E72487/beadm-8.html

ok boot -kd
ok boot kmdb -d
ok boot kadb -d

To boot an x86 system in the same manner, type any of the following commands:

Select (b)oot or (i)nterpreter: b -kd
Select (b)oot or (i)nterpreter: b kmdb -d
Select (b)oot or (i)nterpreter: b kadb -d

To boot a SPARC system with kmdb and load an alternate 64-bit kernel, type the
following command:

ok boot kernel.test/sparcv9/unix -k

To boot an x86 system with kmdb and load an alternate 64-bit kernel, type the
following command:

Select (b)oot or (i)nterpreter: b kernel.test/amd64/unix -k

If the boot file is set to the string kmdb or kadb and you want to boot an alternate kernel,
use the -D option to specify the name of the kernel to boot. To boot a SPARC system
in this manner, type the following command:

ok boot kmdb -D kernel.test/sparcv9/unix

To boot a 64-bit x86 system in this manner, type the following command:

Select (b) or (i)nterpreter: b kmdb -D kernel.test/amd64/unix

To debug a system that has already booted, use one of the mdb -K commands to load
kmdb and stop kernel execution. For information about these commands, see kmdb
Debugger Entry and the mdb(1) man page. When the debugger is loaded by using this
method, it can be subsequently unloaded. You can unload kmdb when you are done
debugging by specifying the -u option to the ::quit dcmd. Alternatively, you can
resume execution of the operating system by using the mdb -U command.

Terminal Handling by kmdb
kmdb always uses the system console for interaction.

kmdb determines the appropriate terminal type according to the following rules:

• If the system being debugged uses an attached keyboard and monitor for its
console and the debugger is loaded at boot, the terminal type is determined
automatically based upon the platform architecture and console terminal settings.

• If the system being debugged uses a serial console and the debugger is loaded at
boot, the default terminal type is vt100.

• If the debugger is loaded by running one of the mdb -K commands on the
console, the debugger uses the value of the $TERM environment variable as the
terminal type.

For information about the various mdb -K commands, see kmdb Debugger Entry.

• If the debugger is loaded by running one of the mdb -K commands on a terminal
that is not the console, the debugger uses the terminal type that is configured for

Chapter 7
Terminal Handling by kmdb

7-2

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

use with the system console login prompt. When you run this command from the
terminal, you must include the -F option on the command line.

For information about the -F option, see the mdb(1) man page.

You can use the ::term dcmd from within kmdb to display the terminal type.

kmdb Debugger Entry
The operating system kernel implicitly stops executing and enters kmdb when a breakpoint is
reached or according to the other execution control settings described in Execution Control in
MDB.

You can use the mdb command to access the kmdb kernel debugger in the following ways:

• Stop the entire cluster node and then drop in to the kmdb kernel debugger.

mdb -K --stop-entire-cluster-node

If you run this command from a terminal, specify the -F as follows:

mdb -K -F --stop-entire-cluster-node

Note that you can use the --stop-entire-cluster-node option only on a cluster.

• Stop the entire system and the drop in to the kmdb kernel debugger.

mdb -K --stop-entire-system

If you run this command from a terminal, specify the -F as follows:

mdb -K -F --stop-entire-system
• Stop the entire non-cluster system and then enable the cluster to take over.

mdb -K --stop-entire-system --stop-entire-cluster-node

Caution:

This is an advanced mdb command usage. Only experts should use this
command as it might result in the total loss of any file systems or any pools that
have been imported by this node. Never use this command on a production
system.

• Load the kmdb kernel debugger and to continue running the OS.

mdb -K --load-debugger

If you run this command from a terminal, specify the -F as follows:

mdb -K -F --load-debugger
• Access addresses that are mapped to I/O devices by means of /dev/allmem .

mdb --kernel --unsafe-io-access
• Obtain write access to the live kernel.

mdb --kernel -w --unsafe-write-access

Note that the --kernel option and the -k option are the same.

Chapter 7
kmdb Debugger Entry

7-3

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

On a SPARC system console, use the STOP-A key sequence to send a break and
enter kmdb. On an x86 system console, use the F1–A key sequence to send a break
and enter kmdb. You can use the kbd command to customize the escape sequence
on your Oracle Solaris system. To enter kmdb on a system with a serial console, use
the appropriate serial console command to send a break sequence.

Processor-Specific Features of kmdb
Some kmdb functionality is specific to an individual processor architecture. For
example, various x86 processors support a hardware branch tracing capability that is
not found on some other processor architectures. Access to processor-specific
features is provided through processor-specific dcmds that are only present on
systems that support them. The availability of processor-specific support is shown in
the output of the ::status dcmd. The debugger relies upon the kernel to determine
the processor type. Therefore, even though the debugger might provide features for a
given processor architecture, this support is not exposed until the kernel has
progressed to the point where processor identification has completed.

Chapter 7
Processor-Specific Features of kmdb

7-4

8
Kernel Debugging Modules

This chapter describes the debugger modules, dcmds, and walkers provided to debug the
Oracle Solaris kernel. Each kernel debugger module is named after the corresponding kernel
module, so that it will be loaded automatically by MDB. The facilities described here reflect
the current kernel implementation. In general, the kernel debugging facilities described in this
chapter are meaningful only in the context of the corresponding kernel subsystem
implementation. See Using This Documentation for references that provide additional
information about the Oracle Solaris kernel implementation.

Note:

MDB exposes kernel implementation details that are subject to change at any time.
This guide reflects the Oracle Solaris kernel implementation as of the date of
publication of this guide. Information provided in this guide about modules, dcmds,
walkers, and their output formats and arguments might not be correct or applicable
to past or future Oracle Solaris releases.

Generic Kernel Debugging Support (genunix)
This section discusses kernel debugging support for generic features, such as memory, CPU,
file systems, devices, and system configuration.

Kernel Memory Allocator
This section discusses the dcmds and walkers used to debug problems identified by the
Oracle Solaris kernel memory allocator and to examine memory and memory usage. The
dcmds and walkers described here are discussed in more detail in Debugging With the
Kernel Memory Allocator.

Kernel Memory Allocator Dcmds
thread ::allocdby
Given the address of a kernel thread, print a list of memory allocations it has performed in
reverse chronological order.

bufctl ::bufctl [-a address] [-c caller] [-e earliest] [-l latest] [-t thread]
Print a summary of the bufctl information for the specified bufctl address. If one or more
options are present, the bufctl information is printed only if it matches the criteria defined by
the option arguments; in this way, the dcmd can be used as a filter for input from a pipeline.
The -a option indicates that the bufctl's corresponding buffer address must equal the
specified address. The -c option indicates that a program counter value from the specified
caller must be present in the bufctl's saved stack trace. The -e option indicates that the
bufctl's timestamp must be greater than or equal to the specified earliest timestamp. The -l
option indicates that the bufctl's timestamp must be less than or equal to the specified latest

8-1

timestamp. The -t option indicates that the bufctl's thread pointer must be equal to
the specified thread address.

[address] ::findleaks [-v]
The ::findleaks dcmd provides powerful and efficient detection of memory leaks in
kernel crash dumps where the full set of kmem debug features has been enabled.
The first execution of ::findleaks processes the dump for memory leaks (this can
take a few minutes), then coalesces the leaks by the allocation stack trace. The
findleaks report shows a bufctl address and the topmost stack frame for each memory
leak that was identified.
If the -v option is specified, the dcmd prints more verbose messages as it executes. If
an explicit address is specified prior to the dcmd, the report is filtered and only leaks
whose allocation stack traces contain the specified function address are displayed.

thread ::freedby
Given the address of a kernel thread, print a list of memory frees it has performed, in
reverse chronological order.

value ::kgrep
Search the kernel address space for pointer-aligned addresses that contain the
specified pointer-sized value. The list of addresses that contain matching values is
then printed. Unlike MDB's built-in search operators, ::kgrep searches every
segment of the kernel's address space and searches across discontiguous segment
boundaries. On large kernels, ::kgrep can take a considerable amount of time to
execute.

::kmalog [slab | fail]
Display events in a kernel memory allocator transaction log. Events are displayed in
time-reverse order, with the most recent event displayed first. For each
event, ::kmalog displays the time relative to the most recent event in T-minus
notation (for example, T-0.000151879), the bufctl, the buffer address, the kmem
cache name, and the stack trace at the time of the event. Without
arguments, ::kmalog displays the kmem transaction log, which is present only if
KMF_AUDIT is set in kmem_flags. ::kmalog fail displays the allocation failure log,
which is always present; this can be useful in debugging drivers that don't cope with
allocation failure correctly. ::kmalog slab displays the slab create log, which is
always present. ::kmalog slab can be useful when searching for memory leaks.

::kmastat
Display the list of kernel memory allocator caches and virtual memory arenas, along
with corresponding statistics.

::kmausers [-ef] [cache ...]
Print information about the medium and large users of the kernel memory allocator
that have current memory allocations. The output consists of one entry for each
unique stack trace specifying the total amount of memory and number of allocations
that was made with that stack trace. This dcmd requires that the KMF_AUDIT flag is set
in kmem_flags.
If one or more cache names (for example, kmem_alloc_256) are specified, the scan of
memory usage is restricted to those caches. By default all caches are included. If the
-e option is used, the small users of the allocator are included. The small users are
allocations that total less than 1024 bytes of memory or for which there are less than
10 allocations with the same stack trace. If the -f option is used, the stack traces are
printed for each individual allocation.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-2

[address] ::kmem_cache
Format and display the kmem_cache structure stored at the specified address, or the
complete set of active kmem_cache structures.

::kmem_log
Display the complete set of kmem transaction logs, sorted in reverse chronological order.
This dcmd uses a more concise tabular output format than ::kmalog.

[address] ::kmem_verify
Verify the integrity of the kmem_cache structure stored at the specified address, or the
complete set of active kmem_cache structures. If an explicit cache address is specified, the
dcmd displays more verbose information regarding errors; otherwise, a summary report is
displayed. The ::kmem_verify dcmd is discussed in more detail in Kernel Memory
Caches.

[address] ::vmem
Format and display the vmem structure stored at the specified address, or the complete set of
activevmem structures. This structure is defined in <sys/vmem_impl.h>.

address ::vmem_seg
Format and display the vmem_seg structure stored at the specified address. This structure is
defined in <sys/vmem_impl.h>.

address ::whatis [-abv]
Report information about the specified address. In particular, ::whatis will attempt to
determine if the address is a pointer to a kmem-managed buffer or another type of special
memory region, such as a thread stack, and report its findings. If the -a option is present, the
dcmd reports all matches instead of just the first match to its queries. If the -b option is
present, the dcmd also attempts to determine if the address is referred to by a known kmem
bufctl. If the -v option is present, the dcmd reports its progress as it searches various
kernel data structures.

Kernel Memory Allocator Walkers
allocdby
Given the address of a kthread_t structure as a starting point, iterate over the set of bufctl
structures corresponding to memory allocations performed by this kernel thread.

bufctl
Given the address of a kmem_cache_t structure as a starting point, iterate over the set of
allocated bufctls associated with this cache.

freectl
Given the address of a kmem_cache_t structure as a starting point, iterate over the set of free
bufctls associated with this cache.

freedby
Given the address of a kthread_t structure as a starting point, iterate over the set of bufctl
structures corresponding to memory deallocations performed by this kernel thread.

freemem
Given the address of a kmem_cache_t structure as a starting point, iterate over the set of free
buffers associated with this cache.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-3

kmem
Given the address of a kmem_cache_t structure as a starting point, iterate over the set
of allocated buffers associated with this cache.

kmem_cache
Iterate over the active set of kmem_cache_t structures. This structure is defined in
<sys/kmem_impl.h>.

kmem_cpu_cache
Given the address of a kmem_cache_t structure as a starting point, iterate over the
per-CPU kmem_cpu_cache_t structures associated with this cache. This structure is
defined in <sys/kmem_impl.h>.

kmem_slab
Given the address of a kmem_cache_t structure as a starting point, iterate over the set
of associated kmem_slab_t structures. This structure is defined in <sys/kmem_impl.h>.

kmem_log
Iterate over the set of bufctls stored in the kmem allocator transaction log.

leak
Given the address of a bufctl structure, iterate over the set of bufctl structures
corresponding to leaked memory buffers with similar allocation stack traces.
The ::findleaks dcmd must be applied to locate memory leaks before the leak
walker can be used

leakbuf
Given the address of a bufctl structure, iterate over the set of buffer addresses
corresponding to leaked memory buffers with similar allocation stack traces.
The ::findleaks dcmd must be applied to locate memory leaks before the leakbuf
walker can be used.

File Systems and MDB
The MDB file systems debugging support includes a built-in facility to convert vnode
pointers to the corresponding file system path name. This conversion is performed
using the Directory Name Lookup Cache (DNLC); because the cache does not hold all
active vnodes, some vnodes might not be able to be converted to path names and "??"
is displayed instead of a name.

File Systems Dcmds
::fsinfo
Display a table of mounted file systems, including the vfs_t address, ops vector, and
mount point of each file system.

::lminfo
Display a table of vnodes with active network locks registered with the lock manager.
The pathname corresponding to each vnode is shown.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-4

address ::vnode2path [-v]
Display the pathname corresponding to the given vnode address. If the -v option is
specified, the dcmd prints a more verbose display, including the vnode pointer of each
intermediate path component.

File Systems Walkers
buf
Iterate over the set of active block I/O transfer structures (buf_t structures). The buf
structure is defined in <sys/buf.h> and is described in more detail in buf(9S).

Virtual Memory and MDB
This section describes the debugging support for the kernel virtual memory subsystem.

Virtual Memory Dcmds
address ::addr2smap [offset]
Print the smap structure address that corresponds to the given address in the kernel's
segmap address space segment.

as ::as2proc
Display the proc_t address for the process corresponding to the as_t address as.

[address] ::memlist [-aiv]
Display the specified memlist structure or one of the well-known memlist structures. If no
memlist address and options are present or if the -i option is present, the memlist
representing physically installed memory is displayed. If the -a option is present, the memlist
representing available physical memory is displayed. If the -v option is present, the memlist
representing available virtual memory is displayed.

::memstat
Display a system-wide memory usage summary. The amount and percentage of system
memory consumed by different classes of pages (kernel, anonymous memory, executables
and libraries, page cache, and free lists) are displayed, along with the total amount of system
memory.

[address] ::page
Display the properties of the specified page_t. If no page_t address is specified, the dcmd
displays the properties of all system pages.

seg ::seg
Format and display the specified address space segment (seg_t address).

[address] ::swapinfo
Display information about all active swapinfo structures or about the specified struct
swapinfo. The vnode, filename, and statistics for each structure are displayed.

vnode ::vnode2smap [offset]
Print the smap structure address that corresponds to the given vnode_t address and offset.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-5

https://docs.oracle.com/cd/E88353_01/html/E37856/buf-9s.html

Virtual Memory Walkers
anon
Given the address of an anon_map structure as a starting point, iterate over the set of
related anon structures. The anon map implementation is defined in <vm/anon.h>.

memlist
Iterate over the spans of the specified memlist structure. This walker can be used in
conjunction with the ::memlist dcmd to display each span.

page
Iterate over all system page structures. If an explicit address is specified for the walk,
this is taken to be the address of a vnode and the walker iterates over only those
pages associated with the vnode.

seg
Given the address of an as_t structure as a starting point, iterate over the set of
address space segments (seg structures) associated with the specified address
space. The seg structure is defined in <vm/seg.h>.

swapinfo
Iterate over the list of active swapinfo structures. This walker may be used in
conjunction with the ::swapinfo dcmd.

CPU Structures, the Kernel Dispatcher, and MDB
This section describes the facilities for examining the state of the CPU structures and
the kernel dispatcher.

CPU and Dispatcher Dcmds
::callout
Display the callout table. The function, argument, and expiration time for each callout
is displayed.

::class
Display the scheduling class table.

[cpuid] ::cpuinfo [-v]
Display a table of the threads currently executing on each CPU. If an optional CPU ID
number or CPU structure address is specified prior to the dcmd name, only the
information for the specified CPU is displayed. If the -v option is present, ::cpuinfo
also displays the runnable threads waiting to execute on each CPU as well as the
active interrupt threads.

CPU and Dispatcher Walkers
cpu
Iterate over the set of kernel CPU structures. The cpu_t structure is defined in <sys/
cpuvar.h>.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-6

Device Drivers, DDI Framework, and MDB
This section describes dcmds and walkers that are useful for kernel developers as well as
third-party device driver developers.

Device Driver Dcmds
address ::binding_hash_entry
Given the address of a kernel name-to-major number binding hash table entry (struct bind),
display the node binding name, major number, and pointer to the next element.

::devbindings device-name
Display the list of all instances of the named driver. The output consists of an entry for each
instance, beginning with the pointer to the struct dev_info (viewable with $<devinfo
or ::devinfo), the driver name, the instance number, and the driver and system properties
associated with that instance.

address ::devinfo [-q]
Print the system and driver properties associated with a devinfo node. If the -q option is
specified, only a quick summary of the device node is shown.

address ::devinfo2driver
Print the name of the driver (if any) associated with the devinfo node.

[address] ::devnames [-v]
Display the kernel's devnames table along with the dn_head pointer, which points at the driver
instance list. If the -v flag is specified, additional information stored at each entry in the
devnames table is displayed.

[devinfo] ::prtconf [-cpv]
Display the kernel device tree starting at the device node specified by devinfo. If devinfo is
not provided, the root of the device tree is assumed by default. If the -c option is specified,
only children of the given device node are displayed. If the -p option is specified, only
ancestors of the given device node are displayed. If -v is specified, the properties associated
with each node are displayed.

[major-num] ::major2name [major-num]
Display the driver name corresponding to the specified major number. The major number
can be specified as an expression preceding the dcmd or as a command-line argument.

[address] ::modctl2devinfo
Print all of the device nodes that correspond to the specified modctl address.

::name2major driver-name
Given a device driver name, display its major number.

[address] ::softstate [instance-number]
Given a softstate state pointer (see ddi_soft_state_init(9F)) and a device instance
number, display the soft state for that instance.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-7

https://docs.oracle.com/cd/E88353_01/html/E37855/ddi-soft-state-init-9f.html

Device Drivers, DDI framework, and MDB
binding_hash
Given the address of an array of kernel binding hash table entries (struct bind **),
walk all entries in the hash table and return the address of each struct bind.

devinfo
First, iterate over the parents of the given devinfo and return them in order of seniority
from most to least senior. Second, return the given devinfo itself. Third, iterate over
the children of the given devinfo in order of seniority from most to least senior. The
dev_info struct is defined in <sys/ddi_impldefs.h>.

devinfo_children
First, return the given devinfo, then iterate over the children of the given devinfo in
order of seniority from most to least senior. The dev_info struct is defined in <sys/
ddi_impldefs.h>.

devinfo_parents
Iterate over the parents of the given devinfo in order of seniority from most to least
senior, and then return the given devinfo. The dev_info struct is defined in <sys/
ddi_impldefs.h>.

devi_next
Iterate over the siblings of the given devinfo. The dev_info struct is defined in <sys/
ddi_impldefs.h>.

devnames
Iterate over the entries in the devnames array. This structure is defined in <sys/
autoconf.h>.

softstate
Given a softstate pointer (see ddi_soft_state_init(9F)) display all non-NULL
pointers to driver state structures.

softstate_all
Given a softstate pointer (see ddi_soft_state_init(9F)) display all pointers to
driver state structures. Note that the pointers for unused instances will be NULL.

STREAMS Debugging
This section describes dcmds and walkers that are useful for kernel developers as well
as developers of third-party STREAMS modules and drivers.

STREAMS Dcmds
address ::mblk2dblk
Given the address of an mblk_t, print the address of the corresponding dblk_t.

[address] ::mblk_verify
Verify the integrity of one or more message blocks. If an explicit message block
address is specified, the integrity of this message block is checked. If no address is

Chapter 8
Generic Kernel Debugging Support (genunix)

8-8

specified, the integrity of all active message blocks are checked. This dcmd produces output
for any invalid message block state that is detected.

address ::queue [-v] [-f flag] [-F flag] [-s syncq]
Filter and display the specified queue_t data structure. With no options, various properties of
the queue_t are shown. If the -v option is present, the queue flags are decoded in greater
detail. If the -f, -F, or -m options are present, the queue is displayed only if it matches the
criteria defined by the arguments to these options; in this way, the dcmd can be used as a
filter for input from a pipeline. The -f option indicates that the specified flag (one of the Q
flag names from <sys/stream.h>) must be present in the queue flags. The -F option
indicates that the specified flag must be absent from the queue flags. The -m option indicates
that the module name associated with the queue must match the specified modname. The -
s option indicates that the syncq_t associated with the queue must match the specified
syncq_t address.

address ::q2syncq
Given the address of a queue_t, print the address of the corresponding syncq_t data
structure.

address ::q2otherq
Given the address of a queue_t, print the address of the peer read or write queue structure.

address ::q2rdq
Given the address of a queue_t, print the address of the corresponding read queue.

address ::q2wrq
Given the address of a queue_t, print the address of the corresponding write queue.

[address] ::stream
Display a visual picture of a kernel STREAM data structure, given the address of the
stdata_t structure representing the STREAM head. The read and write queue pointers, byte
count, and flags for each module are shown, and in some cases additional information for
the specific queue is shown in the margin.

address ::syncq [-v] [-f flag] [-F flag] [-t type] [-T type]
Filter and display the specified syncq_t data structure. With no options, various properties of
the syncq_t are shown. If the -v option is present, the syncq flags are decoded in greater
detail. If the -f, -F, -t, or -T options are present, the syncq is displayed only if it matches the
criteria defined by the arguments to these options; in this way, the dcmd can be used as a
filter for input from a pipeline. The -f option indicates that the specified flag (one of the SQ_
flag names from <sys/strsubr.h>) must be present in the syncq flags. The -F option
indicates that the specified flag must be absent from the syncq flags. The -t option indicates
that the specified type (one of the SQ_CI or SQ_CO type names from <sys/strsubr.h>) must
be present in the syncq type bits. The -T option indicates that the specified type must be
absent from the syncq type bits.

address ::syncq2q
Given the address of a syncq_t, print the address of the corresponding queue_t data
structure.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-9

STREAMS Walkers
b_cont
Given the address of an mblk_t, iterate over the set of associated message structures
by following the b_cont pointer. The b_cont pointer is used to link a given message
block to the next associated message block that is the continuation of the same
message. The message block is described in more detail in msgb(9S)

b_next
Given the address of an mblk_t, iterate over the set of associated message structures
by following the b_next pointer. The b_next pointer is used to link a given message
block to the next associated message block on a given queue. The message block is
described in more detail in msgb(9S).

qlink
Given the address of a queue_t structure, walk the list of related queues using the
q_link pointer. This structure is defined in <sys/stream.h>.

qnext
Given the address of a queue_t structure, walk the list of related queues using the
q_next pointer. This structure is defined in <sys/stream.h>.

readq
Given the address of an stdata_t structure, walk the list of read-side queue
structures.

writeq
Given the address of an stdata_t structure, walk the list of write-side queue
structures.

Networking Debugging
The following dcmds and walkers are provided to help debug the core kernel
networking stack protocols.

Networking Dcmds
address ::mi [-p] [-d | -m]
Given the address of a kernel MI_O, filter and display the MI_O or its payload. If the -
p option is specified, then the address of the corresponding payload of the MI_O is
displayed, otherwise the MI_O itself is displayed. Specifying filter -d or -m enables the
dcmd to filter device or module MI_O objects respectively.

::netstat [-av] [-f inet | inet6 | unix] [-P tcp | udp]
Show network statistics and active connections. If the -a option is present, the state of
all sockets is displayed. If the -v option is present, more verbose output is displayed.
If the -f option is present, only connections associated with the specified address
family are displayed. If the -P option is present, only connections associated with the
specified protocols are displayed.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-10

[address] ::sonode [-f inet | inet6 | unix | id] [-t stream | dgram | raw | id] [-p id]
Filters and displays sonode objects. If no address is given, then the list of AF_UNIX sockets
is displayed, otherwise only the specified sonode is displayed. If the -f option is present,
then only sockets of the given family will be output. If the -t option is present, then only
sonodes of the given type will be output. If the -p option is present, then only sockets of the
given protocol will be displayed.

[address] ::tcpb [-av] [-P v4 | v6]
Filters and displays tcpb objects. If no address is specified, all connections are walked,
otherwise only the specified tcpb is filtered/displayed. Specifying -a filters for only active
connections and -P can be used to filter for TCP IPv4 or IPv6 connections. The tcpb dcmd
is intelligent about filtering TCP connections, and if a IPv6 TCP connection is in a state that
would still facilitate a IPv4 connection, the -P filter considers the connection as both IPv4 and
IPv6 in much the same way that ::netstat does. If the dcmd is not being used as a filter
and the -v option is specified, then the output of the dcmd will be verbose.

Networking Walkers
ar
Given the address of an ar, this walker walks all ar objects from the given ar to the final ar. If
no address is specified, all ar objects are walked.

icmp
Given the address of an icmp, this walker walks all icmp objects from the given icmp to the
final icmp. If no address is specified, all icmp objects are walked.

ill
Given the address of an interface link layer structure (ill), this walker walks all ill objects from
the given ill to the final. If no address is specified, all ill objects are walked.

ipc
Given the address of an ipc, this walker walks all ipc objects from the given ipc to the final
ipc. If no address is specified, all ipc objects are walked.

mi
Given the address of a MI_O, walk all the MI_O's in this MI.

sonode
Given the address of a AF_UNIX sonode, walk the associated list of AF_UNIX sonodes
beginning with the given sonode. If no address is specified, this walker walks the list of all
AF_UNIX sockets.

tcpb
Given the address of a tcpb, this walker walks all TCP connections from the given tcpb to the
final TCP connection. If no address is specified, all tcpb objects are walked.

udp
Given the address of a udp, this walker walks all udp objects from the given udp to the final
udp. If no address is specified, all udp objects are walked.

Files, Processes, Threads, and MDB
This section describes dcmds and walkers used to format and examine various fundamental
file, process, and thread structures in the Oracle Solaris kernel.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-11

Files, Processes, and Threads Dcmds
process ::fd fd-num
Print the file_t address corresponding to the file descriptor fd-num associated with
the specified process. The process is specified using the virtual address of its proc_t
structure.

thread ::findstack [command]
Print the stack trace associated with the given kernel thread, identified by the virtual
address of its kthread_t structure. The dcmd employs several different algorithms to
locate the appropriate stack backtrace. If an optional command string is specified, the
dot variable is reset to the frame pointer address of the topmost stack frame, and the
specified command is evaluated as if it had been typed at the command line. The
default command string is "<.$C0" that is, print a stack trace including frame pointers
but no arguments.

::pgrep [-x] [-n|-o] regexp
Display process information for processes whose name matches the regexp regular
expression pattern. The ::pgrep dcmd is similar to the pgrep(1) command.
The ::pgrep dcmd is used to pattern match against all processes. When the -n
option is used, display only the newest process that matches the pattern. When the -o
option is used, display only the oldest process that matches the pattern. When the -x
option is used, display only those processes whose names are exactly the same as
the search pattern.
In kmdb(1), the regexp used with ::pgrep must be a plain alpha-numeric text string.

pid ::pid2proc
Print the proc_t address corresponding to the specified PID. Recall that MDB's
default base is hexadecimal, so decimal PIDs obtained using pgrep(1) or ps(1)
should be prefixed with 0t.

process ::pmap [-q]
Print the memory map of the process indicated by the given process address. The
dcmd displays output using a format similar to pmap(1). If the -q option is present, the
dcmd displays an abbreviated form of its output that requires less processing time.

[address] ::ps [-fltTP]
Print a summary of the information related to the specified process, or all active
system processes, similar to ps(1). If the -f option is specified, the full command
name and initial arguments are printed. If the -l option is specified, the LWPs
associated with each process are printed. If the -t option is specified, the kernel
threads associated with each process LWP are printed. If the -T option is specified,
the task ID associated with each process is displayed. If the -P option is specified, the
project ID associated with each process is displayed.

::ptree
Print a process tree, with child processes indented from their respective parent
processes. The dcmd displays output using a format similar to ptree(1).

address ::task
Print a list of the active kernel task structures and their associated ID numbers and
attributes. The process task ID is described in more detail in settaskid(2).

Chapter 8
Generic Kernel Debugging Support (genunix)

8-12

https://docs.oracle.com/cd/E88353_01/html/E37839/pgrep-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/kmdb-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/pgrep-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/ps-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/pmap-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/ps-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/ptree-1.html

[address] ::thread [-bdfimps]
Display properties of the specified kernel kthread_t structure. If no kthread_t address is
specified, the properties of all kernel threads are displayed. The dcmd options are used to
control which output columns are shown. If no options are present, the -i option is enabled
by default. If the -b option is present, information relating to the thread's turnstile and
blocking synchronization object is shown. If the -d option is present, the thread's dispatcher
priority, binding, and last dispatch time is shown. If the -f option is present, threads whose
state is TS_FREE are elided from the output. If the -i option is present (the default), thread
state, flags, priority, and interrupt information is shown. If the -m option is present, all of the
other output options are merged together on to a single output line. If the -p option is
present, the thread's process, LWP, and credential pointers are displayed. If the -s option is
present, the thread's signal queue and masks of pending and held signals are shown.

vnode ::whereopen
Given a vnode_t address, print the proc_t addresses of all processes that have this vnode
currently open in their file table.

Files, Processes, and Threads Walkers
file
Given the address of a proc_t structure as a starting point, iterate over the set of open files
(file_t structures) associated with the specified process. The file_t structure is defined in
<sys/file.h>.

proc
Iterate over the active process (proc_t) structures. This structure is defined in <sys/proc.h>.

task
Given a task pointer, iterate over the list of proc_t structures for processes that are
members of the given task.

thread
Iterate over a set of kernel thread (kthread_t) structures. If the global walk is invoked, all
kernel threads are returned by the walker. If a local walk is invoked using a proc_t address
as the starting point, the set of threads associated with the specified process is returned. The
kthread_t structure is defined in <sys/thread.h>.

Synchronization Primitives and MDB
This section describes dcmds and walkers used to examine particular kernel synchronization
primitives. The semantics of each primitive are discussed in the corresponding (9f) section of
the manual pages.

Synchronization Primitives Dcmds
rwlock ::rwlock
Given the address of a readers-writers lock (see rwlock(9F)), display the current state of
the lock and the list of waiting threads.

address ::sobj2ts
Convert the address of a synchronization object to the address of the corresponding turnstile
and print the turnstile address.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-13

https://docs.oracle.com/cd/E88353_01/html/E37855/rwlock-9f.html

[address] ::turnstile
Display the properties of the specified turnstile_t. If no turnstile_t address is
specified, the dcmd displays the properties of all turnstiles.

[address] ::wchaninfo [-v]
Given the address of a condition variable (see condvar(9F)) or semaphore (see
semaphore(9F)), display the current number of waiters on this object. If no explicit
address is specified, display all such objects that have waiting threads. If the -v option
is specified, display the list of threads that are blocked on each object.

Synchronization Primitives Walkers
blocked
Given the address of a synchronization object (such as a mutex(9F) or rwlock(9F)),
iterate over the list of blocked kernel threads.

wchan
Given the address of a condition variable (see condvar(9F)) or semaphore (see
semaphore(9F)), iterate over the list of blocked kernel threads.

Cyclics Debugging
The cyclic subsystem is a low-level kernel subsystem that provides high resolution,
per-CPU interval timer facilities to other kernel services and programming interfaces.

Cyclics Dcmds
::cycinfo [-vV]
Display the cyclic subsystem per-CPU state for each CPU. If the -v option is present,
a more verbose display is shown. If the -V option is present, an even more verbose
display than -v is shown.

address ::cyclic
Format and display the cyclic_t at the specified address.

::cyccover
Display cyclic subsystem code coverage information. This information is available
only in a DEBUG kernel.

::cyctrace
Display cyclic subsystem trace information. This information is available only in a
DEBUG kernel.

Cyclics Walkers
cyccpu
Iterate over the per-CPU cyc_cpu_t structures. This structure is defined in <sys/
cyclic_impl.h>.

cyctrace
Iterate over the cyclic trace buffer structures. This information is only available in a
DEBUG kernel.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-14

https://docs.oracle.com/cd/E88353_01/html/E37855/condvar-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/semaphore-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/mutex-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/rwlock-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/condvar-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/semaphore-9f.html

Task Queues and MDB
The task queue subsystem provides general-purpose asynchronous task scheduling for a
variety of clients in the kernel.

Task Queues Dcmds
address ::taskq_entry
Print the contents of the specified struct taskq_entry.

Task Queues Walkers
taskq_entry
Given the address of a taskq structure, iterate over the list of taskq_entry structures.

Error Queues and MDB
The error queue subsystem provides general-purpose asynchronous error event processing
for platform-specific error handling code.

Error Queues Dcmds
[address] ::errorq
Display a summary of information relating to the specified error queue. If no address is
given, display information relating to all system error queues. The address, name, queue
length, and data element size for each queue are displayed, along with various queue
statistics.

Error Queues Walkers
errorq
Walk the list of system error queues and return the address of each individual error queue.

errorq_data
Given the address of an error queue, return the address of each pending error event data
buffer.

System Configuration and MDB
This section describes dcmds that can be used to examine system configuration data.

System Configuration Dcmds
::system
Display the contents of the system(4) configuration file at the time the kernel parsed the file
during system initialization.

Chapter 8
Generic Kernel Debugging Support (genunix)

8-15

Interprocess Communication Debugging Support (ipc)
The ipc module provides debugging support for the implementation of the message
queue, semaphore, and shared memory interprocess communication primitives.

Interprocess Communication Dcmds
::ipcs [-l]
Display a listing of system-wide IPC identifiers, corresponding to known message
queues, semaphores, and shared memory segments. If the -l option is specified, a
longer listing of information is shown.

address ::msg [-l] [-t type]
Display the properties of the specified message queue element (struct msg). If the -l
option is present, the raw contents of the message are displayed in hexadecimal and
ASCII. If the -t option is present, it can be used to filter the output and only display
messages of the specified type. This can be useful when piping the output of the
msgqueue walker to ::msg.

id ::msqid [-k]
Convert the specified message queue IPC identifier to a pointer to the corresponding
kernel implementation structure and print the address of this kernel structure. If the -k
option is present, the id is instead interpreted as a message queue key to match (see
msgget(2)).

[address] ::msqid_ds [-l]
Print the specified msqid_ds structure or a table of the active msqid_ds structures
(message queue identifiers). If the -l option is specified, a longer listing of information
is displayed.

id ::semid [-k]
Convert the specified semaphore IPC identifier to a pointer to the corresponding
kernel implementation structure and print the address of this kernel structure. If the -k
option is present, the id is instead interpreted as a semaphore key to match (see
semget(2)).

[address] ::semid_ds [-l]
Print the specified semid_ds structure or a table of the active semid_ds structures
(semaphore identifiers). If the -l option is specified, a longer listing of information is
displayed.

id ::shmid [-k]
Convert the specified shared memory IPC identifier to a pointer to the corresponding
kernel implementation structure and print the address of this kernel structure. If the -k
option is present, the id is instead interpreted as a shared memory key to match (see
shmget(2)).

[address] ::shmid_ds [-l]
Print the specified shmid_ds structure or a table of the active shmid_ds structures
(shared memory segment identifiers). If the -l option is specified, a longer listing of
information is displayed.

Chapter 8
Interprocess Communication Debugging Support (ipc)

8-16

Interprocess Communication Walkers
msg
Walk the active msqid_ds structures corresponding to message queue identifiers. This
structure is defined in <sys/msg.h>.

msgqueue
Iterate over the message structures that are currently enqueued on the specified message
queue.

sem
Walk the active semid_ds structures corresponding to semaphore identifiers. This structure is
defined in <sys/sem.h>.

shm
Walk the active shmid_ds structures corresponding to shared memory segment identifiers.
This structure is defined in <sys/shm.h>.

Loopback File System Debugging Support (lofs)
The lofs module provides debugging support for the lofs(4FS) file system.

Loopback File System Dcmds
[address] ::lnode
Print the specified lnode_t, or a table of the active lnode_t structures in the kernel.

address ::lnode2dev
Print the dev_t (vfs_dev) for the underlying loopback mounted filesystem corresponding to
the given lnode_t address.

address ::lnode2rdev
Print the dev_t (li_rdev) for the underlying loopback mounted file system corresponding to
the given lnode_t address.

Loopback File System Walkers
lnode
Walk the active lnode_t structures in the kernel. This structure is defined in <sys/fs/
lofs_node.h>.

Internet Protocol Module Debugging Support (ip)
The ip module provides debugging support for the ip(4P) driver.

Chapter 8
Loopback File System Debugging Support (lofs)

8-17

https://docs.oracle.com/cd/E88353_01/html/E37851/lofs-4fs.html
https://docs.oracle.com/cd/E88353_01/html/E37851/ip-4p.html

Internet Protocol Dcmds
[address] ::ire [-q]
Print the specified ire_t, or a table of the active ire_t structures in the kernel. If the -
q flag is specified, the send and receive queue pointers are printed instead of the
source and destination addresses.

Internet Protocol Walkers
ire
Walk the active ire (Internet Route Entry) structures in the kernel. This structure is
defined in <inet/ip.h>.

Kernel Runtime Link Editor Debugging Support (krtld)
This section describes the debugging support for the kernel runtime link editor, which
is responsible for loading kernel modules and drivers.

Kernel Runtime Link Editor Dcmds
[address] ::modctl
Print the specified modctl, or a table of the active modctl structures in the kernel.

address ::modhdrs
Given the address of a modctl structure, print the module's ELF executable header
and section headers.

::modinfo
Print information about the active kernel modules, similar to the output of the /usr/
sbin/modinfo command.

Kernel Runtime Link Editor Walkers
modctl
Walk the list of active modctl structures in the kernel. This structure is defined in <sys/
modctl.h>.

USB Framework Debugging Support (uhci)
The uchi module provides debugging support for the host controller interface portion
of the Universal Serial Bus (USB) framework.

USB Host Controller Dcmds
address ::uhci_qh [-bd]
Given the address of a USB UHCI controller Queue Head (QH) structure, print the
contents of the structure. If the -b option is present iterate over the link_ptr chain,

Chapter 8
Kernel Runtime Link Editor Debugging Support (krtld)

8-18

printing all QHs found. If the -d option is present, iterate over the element_ptr chain, printing
all TDs found.

address ::uhci_td [-d]
Given the address of a USB UHCI controller Transaction Descriptor (TD) structure, print the
contents of the structure. Note this only works for Control and Interrupt TDs. If the -d option
is present, iterate over the element_ptr chain, printing all TDs found.

USB Host Controller Walkers
uhci_qh
Given the address of a USB UHCI controller Queue Head (QH) structure, iterate over the list
of such structures.

uhci_td
Given the address of a USB UHCI controller Queue Head Descriptor (TD) structure, iterate
over the list of such structures.

USB Framework Debugging Support (usba)
The usba module provides debugging support for the platform-independent Universal Serial
Bus (USB) framework.

USB Framework Dcmds
::usba_debug_buf
Print the USB debugging information buffer.

::usba_clear_debug_buf
Empty the USB debugging information buffer.

[address] ::usba_device [-pv]
Given the address of a usba_device structure, print summary information. If no address is
supplied, this dcmd walks the global list of usba_device structures. If the -p option is
present, also list information for all open pipes on this device. If the -v option is present, list
verbose information for each device.

address ::usb_pipe_handle
Given the address of a USB pipe handle structure (struct usba_ph_impl), print summary
information for this handle.

USB Framework Walkers
usba_list_entry
Given the address of a usba_list_entry structure, iterate over the chain of such structures.

usba_device
Walk the global list of usba_device_t structures.

usb_pipe_handle
Given a usba_device_t address, walk USB pipe handles.

Chapter 8
USB Framework Debugging Support (usba)

8-19

x86 Platform Debugging Support (unix)
These dcmds and walkers are specific to x86 platforms.

x86 Platform Dcmds
[cpuid | address] ::ttrace [-x]
Display trap trace records in reverse chronological order. The trap trace facility is
available only in DEBUG kernels. If an explicit dot value is specified, this is interpreted
as either a CPU ID number or a trap trace record address, depending on the precise
value. If a CPU ID is specified, the output is restricted to the buffer from that CPU. If a
record address is specified, only that record is formatted. If the -x option is specified,
the complete raw record is displayed.

x86 Platform Walkers
ttrace
Walk the list of trap trace record addresses in reverse chronological order. The trap
trace facility is available only in DEBUG kernels.

Chapter 8
x86 Platform Debugging Support (unix)

8-20

9
Debugging With the Kernel Memory Allocator

The Oracle Solaris kernel memory (kmem) allocator provides a powerful set of debugging
features that can facilitate analysis of a kernel crash dump. This chapter discusses these
debugging features, and the MDB dcmds and walkers designed specifically for the allocator.
Bonwick (see Using This Documentation) provides an overview of the principles of the
allocator itself. Refer to the header file <sys/kmem_impl.h> for the definitions of allocator data
structures. The kmem debugging features can be enabled on a production system to
enhance problem analysis, or on development systems to aid in debugging kernel software
and device drivers.

Note:

MDB exposes kernel implementation details that are subject to change at any time.
This guide reflects the Oracle Solaris kernel implementation as of the date of
publication of this guide. Information provided in this guide about the kernel memory
allocator might not be correct or applicable to past or future Oracle Solaris releases.

Getting Started With MDB: Creating a Sample Crash Dump
This section shows you how to obtain a sample crash dump, and how to invoke MDB in order
to examine it.

Setting kmem_flags
The kernel memory allocator contains many advanced debugging features, but these are not
enabled by default because they can cause performance degradation. In order to follow the
examples in this guide, you should turn on these features. You should enable these features
only on a test system, as they can cause performance degradation or expose latent
problems.

The allocator's debugging functionality is controlled by the kmem_flags tunable. To get
started, make sure kmem_flags is set properly:

mdb --kernel
> kmem_flags/X
kmem_flags:
kmem_flags: f

If kmem_flags is not set to f, you should add the following line to the /etc/system file:

set kmem_flags=0xf

The reboot the system. When the system reboots, confirm that kmem_flags is set to f.
Remember to remove your /etc/system modifications before returning this system to
production use.

9-1

Forcing a Crash Dump
The next step is to make sure crash dumps are properly configured. First, confirm that
dumpadm is configured to save kernel crash dumps and that savecore is enabled.
See the dumpadm(8) man page for more information about crash dump parameters.

dumpadm
Dump content : kernel with ZFS metadata
Dump device : /dev/zvol/dsk/rpool/dump (dedicated)
Savecore directory: /var/crash
Savecore enabled : yes
Save compressed : on

Starting with the Oracle Solaris 11.2 release, dump content is organized into sections.
By default, dump content includes following two sections:

• Core kernel pages

• ZFS metadata pages

Note:

The line labeled Dump content in the above dumpadm output shows kernel
with ZFS metadata.

You can optionally disable dumping of ZFS metadata pages by running the dumpadm
command as shown in the following example:

dumpadm -c kernel-zfs
Dump content : kernel without ZFS metadata
Dump device : /dev/zvol/dsk/rpool/dump (dedicated)
Savecore directory: /var/crash
Savecore enabled : yes
Save compressed : on

See the dumpadm(8) man page for further details about other optional components of
dump content that can be configured. In rest of the example, we assume default dump
content configuration, that is, dump content includes both core kernel pages and ZFS
metadata pages.

Next, reboot the system using the -d flag to reboot(8), which forces the kernel to
panic and save a crash dump.

reboot -d
Oct 15 12:54:30 testsystem reboot: initiated by jack on /dev/console
updating /platform/sun4v/boot_archive

panic[cpu101]/thread=4c078b08f80: forced crash dump initiated at user request

000002a10a3b7930 genunix:kadmin+600 (fc, 0, 10, 4, 5, 1)
 %l0-3: 00000000012ec6f8 00000000012ec400 0000000000000004 0000000000000004
 %l4-7: 00000000000005cc 0000000000000010 0000000000000004 0000000000000004
000002a10a3b7a00 genunix:uadmin+1d0 (1, 4c07a1b5088, 0, 6d7000, ff00, 5)
 %l0-3: 0000040000923280 000000000003787c 0000000000000004 000000000003787c
 %l4-7: 000000000003787b 0000000000000000 0000000000000000 0000000000000000

Chapter 9
Getting Started With MDB: Creating a Sample Crash Dump

9-2

https://docs.oracle.com/cd/E88353_01/html/E72487/dumpadm-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/dumpadm-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/reboot-8.html

syncing file systems... done
dumping to /dev/zvol/dsk/rpool/dump, offset 65536, content: kernel
sections: zfs
0:10 96% done (kernel)
0:11 100% done (zfs)
100% done: 404632 (kernel) + 14302 (zfs) pages dumped, dump succeeded
rebooting...
Resetting...

When the system reboots, savecore runs automatically to preserve each section of the
crash dump in a separate file. In this example, we have two sections in the dump: core kernel
and ZFS metadata. Therefore, two compressed dump files are produced when savecore
finishes. The two files are vmdump.n and vmdump-zfs.n.

When finished, a message similar to the following is displayed on the system console:

Oct 15 12:57:42 testsystem savecore: Decompress all crash dump files with
'(cd /var/crash/data/
cbc9822c-2f13-63c6-d440-d2f118516775 && savecore -v 0)'
or individual files with
'savecore -vf /var/crash/data/
cbc9822c-2f13-63c6-d440-d2f118516775/vmdump{,-<secname>}.0'

If the message does not appear immediately, check if savecore is still running.

pgrep savecore
 864
cd /var/crash/
ls
 0 bounds data
ls -l 0
lrwxrwxrwx 1 root root 41 Oct 15 12:57 0 -> data/cbc9822c-2f13-63c6-d440-d2f118516775
ls data/cbc9822c-2f13-63c6-d440-d2f118516775
 vmdump-zfs.0 vmdump.0

savecore performs the following two tasks:

• Creates a sub-directory with name data/uuid under configured save directory and
produces dump files in that sub-directory. In the above example, cbc9822c-2f13-63c6-
d440-d2f118516775 is the uuid of the operating system image for which crash dump is
generated.

• Creates a symbolic link with numerical suffix as its name to data/uuid directory. In above
example 0 is the name of symbolic link created by savecore.

Chapter 9
Getting Started With MDB: Creating a Sample Crash Dump

9-3

Note:

If your dump directory contains no dump files, that partition might be out of
space. You can free up space and run savecore(8) manually as root to
save the dump. If your dump directory contains multiple crash dumps, the
ones you just created will be in one of the following file formats with the most
recent modification time:

• vmcore.n

• vmcore-<section>.n

• vmdump.n

• vmdump-<section>n

Saving a Crash Dump
When the system panics, or when you enter reboot -d, messages similar to the
following are displayed on the system console:

Oct 15 12:57:42 testsystem savecore: Decompress all crash dump files with
'(cd /var/crash/data/
cbc9822c-2f13-63c6-d440-d2f118516775 && savecore -v 0)'
or individual files with
'savecore -vf /var/crash/data/
cbc9822c-2f13-63c6-d440-d2f118516775/vmdump{,-<secname>}.0'

Enter the following command to decompress all the compressed dump files.

root@testsystem # (cd /var/crash/data/
cbc9822c-2f13-63c6-d440-d2f118516775 && savecore -v 0)
savecore: System dump time: Tue Oct 15 12:54:49 2013

savecore: saving system crash dump in /var/crash/data/
cbc9822c-2f13-63c6-d440-d2f118516775/vmcore.0
Constructing corefile /var/crash/data/cbc9822c-2f13-63c6-d440-d2f118516775/
vmcore.0
0:31 100% done: 404632 of 404632 pages saved
119246 (29%) zero pages were not written
dump decompression took 0 minutes and 31 seconds
savecore: saving system crash dump in /var/crash/data/
cbc9822c-2f13-63c6-d440-d2f118516775/vmcore-zfs.0
Constructing corefile /var/crash/data/cbc9822c-2f13-63c6-d440-d2f118516775/
vmcore-zfs.0
0:00 100% done: 14302 of 14302 pages saved
82 (0%) zero pages were not written
dump decompression took 307.711 milliseconds

Starting with the Oracle Solaris 11.2 release, kernel symbol table file unix.n is not
created during the decompression of a compressed dump file. The required symbol
table is already embedded in the vmcore.n file. The unix.n file is not required for
loading the crash dump using mdb.

Now you can use mdb.

root@testsystem# cd /var/crash/0
root@testsystem# ls

Chapter 9
Getting Started With MDB: Creating a Sample Crash Dump

9-4

https://docs.oracle.com/cd/E88353_01/html/E72487/savecore-8.html

root@testsystem# ls
vmcore-zfs.0 vmcore.0 vmdump-zfs.0 vmdump.0
root@testsystem#mdb 0
Loading modules: [unix genunix specfs dtrace
zfs scsi_vhci sd mpt mac px
ldc ds ip hook neti arp usba fctl random sockfs
idm cpc crypto fcip ufs logindmux ptm sppp nfs]
>

You can copy the vmdump*.n file to another system for analysis. You can use savecore
either locally or remotely to uncompress the dump file. Use the dumpadm command to control
the dump content, particular paths of the dump device, and the savecore directory.

You can use the file command to examine files in the directory.

root@testsystem# pwd
/var/crash/0
root@testsystem# file *
vmcore-zfs.0: SunOS 5.11 11.2 64-bit SPARC crash dump from 'testsystem'
vmcore.0: SunOS 5.11 11.2 64-bit SPARC crash dump from 'testsystem'
vmdump-zfs.0: SunOS 5.11 11.2 64-bit SPARC compressed crash dump from 'testsystem'
vmdump.0: SunOS 5.11 11.2 64-bit SPARC compressed crash dump from 'testsystem'

Starting MDB
Now, run mdb on the crash dump you created, and check its status. To load all vmcore*. n
files using mdb, you need to provide the suffix n as an argument to mdb.

root@testsystem# pwd
/var/crash/0
root@testsystem# mdb 0
Loading modules: [unix genunix specfs dtrace
zfs scsi_vhci sd mpt mac px ldc ds ip
hook neti Apr SBA ESL fact random
socks ism cc crypt flip Ufa logindmux Pym supp nfs]
> ::status
debugging crash dump vmcore.0 (64-bit) from test system
operating system: 5.11 11.2 (sun4v)
usr/src version: 19659:c7a2c30fcc60:0.175.2.0.0.24.0:on11u2_24+3
usr/closed version: 1797:4b89b1471513:0.175.2.0.0.24.0:on11u2_24+2
image quid: cbc9822c-2f13-63c6-d440-d2f118516775
panic message: forced crash dump initiated at user request
complete: yes, all pages present as configured
dump content: kernel [LOADED,UNVERIFIED] (core kernel pages)
 zfs [LOADED,UNVERIFIED] (ZFS meta data (ZIA buffers))
panicking PEED: 3667 (not dumped)
>

If you want to load vmcore.n crash dump using mdb, explicitly specify file name as an
argument to mdb.

root@testsystem# mdb vmcore.0
Loading modules: [unix genunix specs trace
zfs scsi_vhci sd NT mac px ldc DDS ip
hook net Apr SBA ESL fact random socks
ism cc crypt flip Ufa logindmux Pym supp nfs]
> ::status
debugging crash dump vmcore.0 (64-bit) from t6340-tvp540-c
operating system: 5.11 11.2 (sun4v)
usr/src version: 19659:c7a2c30fcc60:0.175.2.0.0.24.0:on11u2_24+3

Chapter 9
Getting Started With MDB: Creating a Sample Crash Dump

9-5

usr/closed version: 1797:4b89b1471513:0.175.2.0.0.24.0:on11u2_24+2
image quid: cbc9822c-2f13-63c6-d440-d2f118516775
panic message: forced crash dump initiated at user request
complete: yes, all pages present as configured
dump content: kernel [LOADED,UNVERIFIED] (core kernel pages)
 zfs [MISSING] (ZFS meta data (ZIA buffers))
panicking PEED: 3667 (not dumped)
>

You cannot load only vmcore-zfs.n using mdb, vmcore.n is mandatory. Thus,
following invocation fails:

root@testsystem# mdb vmcore-zfs.0
mdb: vmcore-zfs.0 doesn't contain core kernel pages, ./vmcore.0 expected
mdb: failed to initialize target: Error 0
root@testsystem#

Allocator Basics
The kernel memory allocator's job is to parcel out regions of virtual memory to other
kernel subsystems (these are commonly called clients). This section explains the
basics of the allocator's operation and introduces some terms used later in this guide.

Buffer States
The functional domain of the kernel memory allocator is the set of buffers of virtual
memory that make up the kernel heap. These buffers are grouped together into sets of
uniform size and purpose, known as caches. Each cache contains a set of buffers.
Some of these buffers are currently free, which means that they have not yet been
allocated to any client of the allocator. The remaining buffers are allocated, which
means that a pointer to that buffer has been provided to a client of the allocator. If no
client of the allocator holds a pointer to an allocated buffer, this buffer is said to be
leaked, because it cannot be freed. Leaked buffers indicate incorrect code that is
wasting kernel resources.

Kmem Transactions
A kmem transaction is a transition on a buffer between the allocated and free states.
The allocator can verify that the state of a buffer is valid as part of each transaction.
Additionally, the allocator has facilities for logging transactions for post-mortem
examination.

Sleeping and Non-Sleeping Allocations
Unlike the Standard C Library's malloc(3C) function, the kernel memory allocator can
block (or sleep), waiting until enough virtual memory is available to satisfy the client's
request. This is controlled by the flag parameter to kmem_alloc(9F). A call to
kmem_alloc() that has the KM_SLEEP flag set can never fail; it will block forever waiting
for resources to become available.

Kernel Memory Caches
The kernel memory allocator divides the memory it manages into a set of caches. All
allocations are supplied from these caches, which are represented by the

Chapter 9
Allocator Basics

9-6

https://docs.oracle.com/cd/E88353_01/html/E37843/malloc-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37855/kmem-alloc-9f.html

kmem_cache_t data structure. Each cache has a fixed buffer size, which represents the
maximum allocation size satisfied by that cache. Each cache has a string name indicating the
type of data it manages.

Some kernel memory caches are special purpose and are initialized to allocate only a
particular kind of data structure. An example of this is the "thread_cache," which allocates
only structures of type kthread_t. Memory from these caches is allocated to clients by the
kmem_cache_alloc() function and freed by the kmem_cache_free() function.

Note:

kmem_cache_alloc() and kmem_cache_free() are not public DDI interfaces. Do not
write code that relies on them, because they are subject to change or removal in
future releases of Oracle Solaris.

Caches whose name begins with "kmem_alloc_" implement the kernel's general memory
allocation scheme. These caches provide memory to clients of kmem_alloc(9F) and
kmem_zalloc(9F). Each of these caches satisfies requests whose size is between the buffer
size of that cache and the buffer size of the next smallest cache. For example, the kernel has
kmem_alloc_8 and kmem_alloc_16 caches. In this case, the kmem_alloc_16 cache handles all
client requests for 9-16 bytes of memory. Remember that the size of each buffer in the
kmem_alloc_16 cache is 16 bytes, regardless of the size of the client request. In a 14 byte
request, two bytes of the resulting buffer are unused, since the request is satisfied from the
kmem_alloc_16 cache.

The last set of caches are those used internally by the kernel memory allocator for its own
bookkeeping. These include those caches whose names start with "kmem_magazine_" or
"kmem_va_", the kmem_slab_cache, the kmem_bufctl_cache and others.

Kernel Memory Caches
This section explains how to find and examine kernel memory caches. You can learn about
the various kmem caches on the system by issuing the ::kmastat command.

> ::kmastat
cache buf buf buf memory alloc alloc
name size in use total in use succeed fail
------------------------- ------ ------ ------ --------- --------- -----
kmem_magazine_1 8 24 1020 8192 24 0
kmem_magazine_3 16 141 510 8192 141 0
kmem_magazine_7 32 96 255 8192 96 0
...
kmem_alloc_8 8 3614 3751 90112 9834113 0
kmem_alloc_16 16 2781 3072 98304 8278603 0
kmem_alloc_24 24 517 612 24576 680537 0
kmem_alloc_32 32 398 510 24576 903214 0
kmem_alloc_40 40 482 584 32768 672089 0
...
thread_cache 368 107 126 49152 669881 0
lwp_cache 576 107 117 73728 182 0
turnstile_cache 36 149 292 16384 670506 0
cred_cache 96 6 73 8192 2677787 0
...

Chapter 9
Kernel Memory Caches

9-7

https://docs.oracle.com/cd/E88353_01/html/E37855/kmem-alloc-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/kmem-zalloc-9f.html

If you run ::kmastat you get a feel for what a "normal" system looks like. This will
help you to spot excessively large caches on systems that are leaking memory. The
results of ::kmastat will vary depending on the system you are running on, how
many processes are running, and so forth.

Another way to list the various kmem caches is with the ::kmem_cache command:

> ::kmem_cache
ADDR NAME FLAG CFLAG BUFSIZE BUFTOTL
70036028 kmem_magazine_1 0020 0e0000 8 1020
700362a8 kmem_magazine_3 0020 0e0000 16 510
70036528 kmem_magazine_7 0020 0e0000 32 255
...
70039428 kmem_alloc_8 020f 000000 8 3751
700396a8 kmem_alloc_16 020f 000000 16 3072
70039928 kmem_alloc_24 020f 000000 24 612
70039ba8 kmem_alloc_32 020f 000000 32 510
7003a028 kmem_alloc_40 020f 000000 40 584
...

This command is useful because it maps cache names to addresses, and provides the
debugging flags for each cache in the FLAG column. It is important to understand that
the allocator's selection of debugging features is derived on a per-cache basis from
this set of flags. These are set in conjunction with the global kmem_flags variable at
cache creation time. Setting kmem_flags while the system is running has no effect on
the debugging behavior, except for subsequently created caches (which is rare after
boot-up).

Next, walk the list of kmem caches directly using MDB's kmem_cache walker:

> ::walk kmem_cache
70036028
700362a8
70036528
700367a8
...

This produces a list of pointers that correspond to each kmem cache in the kernel. To
find out about a specific cache, apply the kmem_cache macro:

> 0x70039928$<kmem_cache
0x70039928: lock
0x70039928: owner/waiters
 0
0x70039930: flags freelist offset
 20f 707c86a0 24
0x7003993c: global_alloc global_free alloc_fail
 523 0 0
0x70039948: hash_shift hash_mask hash_table
 5 1ff 70444858
0x70039954: nullslab
0x70039954: cache base next
 70039928 0 702d5de0
0x70039960: prev head tail
 707c86a0 0 0
0x7003996c: refcnt chunks
 -1 0
0x70039974: constructor destructor reclaim
 0 0 0
0x70039980: private arena cflags

Chapter 9
Kernel Memory Caches

9-8

 0 104444f8 0
0x70039994: bufsize align chunksize
 24 8 40
0x700399a0: slabsize color maxcolor
 8192 24 32
0x700399ac: slab_create slab_destroy buftotal
 3 0 612
0x700399b8: bufmax rescale lookup_depth
 612 1 0
0x700399c4: kstat next prev
 702c8608 70039ba8 700396a8
0x700399d0: name kmem_alloc_24
0x700399f0: bufctl_cache magazine_cache magazine_size
 70037ba8 700367a8 15
...

Important fields for debugging include 'bufsize', 'flags' and 'name'. The name of the
kmem_cache (in this case "kmem_alloc_24") indicates its purpose in the system. Bufsize
indicates the size of each buffer in this cache; in this case, the cache is used for allocations of
size 24 and smaller. 'flags' indicates what debugging features are turned on for this cache.
You can find the debugging flags listed in <sys/kmem_impl.h>. In this case 'flags' is 0x20f,
which is KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS | KMF_HASH. This
document explains each of the debugging features in subsequent sections.

When you are interested in looking at buffers in a particular cache, you can walk the allocated
and freed buffers in that cache directly:

> 0x70039928::walk kmem
704ba010
702ba008
704ba038
702ba030
...

> 0x70039928::walk freemem
70a9ae50
70a9ae28
704bb730
704bb2f8
...

MDB provides a shortcut to supplying the cache address to the kmem walker: a specific
walker is provided for each kmem cache, and its name is the same as the name of the cache.
For example:

> ::walk kmem_alloc_24
704ba010
702ba008
704ba038
702ba030
...

> ::walk thread_cache
70b38080
70aac060
705c4020
70aac1e0
...

Chapter 9
Kernel Memory Caches

9-9

Now you know how to iterate over the kernel memory allocator's internal data
structures and examine the most important members of the kmem_cache data structure.

Detecting Memory Corruption
One of the primary debugging facilities of the allocator is that it includes algorithms to
recognize data corruption quickly. When corruption is detected, the allocator
immediately panics the system. This section describes how the allocator recognizes
data corruption. You must understand this to be able to debug these problems.

Memory abuse typically falls into one of the following categories:

• Writing past the end of a buffer

• Accessing uninitialized data

• Continuing to use a freed buffer

• Corrupting kernel memory

Keep these problems in mind as you read the next three sections. They will help you
to understand the allocator's design, and enable you to diagnose problems more
efficiently.

Freed Buffer Checking: 0xdeadbeef
When the KMF_DEADBEEF (0x2) bit is set in the flags field of a kmem_cache, the allocator
tries to make memory corruption easy to detect by writing a special pattern into all
freed buffers. This pattern is 0xdeadbeef. Since a typical region of memory contains
both allocated and freed memory, sections of each kind of block will be interspersed.
The following example is from the kmem_alloc_24 cache:

0x70a9add8: deadbeef deadbeef
0x70a9ade0: deadbeef deadbeef
0x70a9ade8: deadbeef deadbeef
0x70a9adf0: feedface feedface
0x70a9adf8: 70ae3260 8440c68e
0x70a9ae00: 5 4ef83
0x70a9ae08: 0 0
0x70a9ae10: 1 bbddcafe
0x70a9ae18: feedface 139d
0x70a9ae20: 70ae3200 d1befaed
0x70a9ae28: deadbeef deadbeef
0x70a9ae30: deadbeef deadbeef
0x70a9ae38: deadbeef deadbeef
0x70a9ae40: feedface feedface
0x70a9ae48: 70ae31a0 8440c54e

The buffers at 0x70a9add8 and 0x70a9ae28 are filled with 0xdeadbeefdeadbeef, which
shows that these buffers are free. The buffer redzones are filled with
0xfeedfacefeedface, which indicates they are untouched (no buffer overrun has
occurred). See the following section for an explanation of redzones. At 0x70a9ae00 an
allocated buffer is located between the two free buffers.

Chapter 9
Detecting Memory Corruption

9-10

Redzone: 0xfeedface
Note the pattern 0xfeedface in the buffer shown in the previous section. This pattern is
known as the redzone indicator. This pattern enables the allocator (and a programmer
debugging a problem) to determine whether the boundaries of a buffer have been violated.
Following the redzone is some additional information. The content of that data depends on
other factors (see Memory Allocation Logging). The redzone and its suffix are collectively
called the buftag region. The following figure summarizes this information.

Redzone Indicator

The buftag is appended to each buffer in a cache when any of the KMF_AUDIT, KMF_DEADBEEF,
or KMF_REDZONE flags is set in that buffer's cache. The content of the buftag depends on
whether KMF_AUDIT is set.

Decomposing the memory region presented above into distinct buffers is now simple:

0x70a9add8: deadbeef deadbeef \
0x70a9ade0: deadbeef deadbeef +- User Data (free)
0x70a9ade8: deadbeef deadbeef /
0x70a9adf0: feedface feedface -- REDZONE
0x70a9adf8: 70ae3260 8440c68e -- Debugging Data

0x70a9ae00: 5 4ef83 \
0x70a9ae08: 0 0 +- User Data (allocated)
0x70a9ae10: 1 bbddcafe /
0x70a9ae18: feedface 139d -- REDZONE
0x70a9ae20: 70ae3200 d1befaed -- Debugging Data

0x70a9ae28: deadbeef deadbeef \
0x70a9ae30: deadbeef deadbeef +- User Data (free)
0x70a9ae38: deadbeef deadbeef /
0x70a9ae40: feedface feedface -- REDZONE
0x70a9ae48: 70ae31a0 8440c54e -- Debugging Data

The buffers at 0x70a9add8 and 0x70a9ae28 are filled with 0xdeadbeefdeadbeef, which shows
that these buffers are free. The buffer redzones are filled with 0xfeedfacefeedface, which
indicates they are untouched (no buffer overrun has occurred).

0xbaddcafe
Buffer is allocated but uninitialized (see Uninitialized Data: 0xbaddcafe).

0xdeadbeef
Buffer is free.

0xfeedface
Buffer limits were respected (no overflow).

Chapter 9
Detecting Memory Corruption

9-11

In the allocated buffer beginning at 0x70a9ae00, the situation is different. Recall from
Allocator Basics that there are two allocation types:

1. The client requested memory using kmem_cache_alloc(9F), in which case the
size of the requested buffer is equal to the bufsize of the cache.

2. The client requested memory using kmem_alloc(9F), in which case the size of
the requested buffer is less than or equal to the bufsize of the cache. For example,
a request for 20 bytes will be fulfilled from the kmem_alloc_24 cache. The
allocator enforces the buffer boundary by placing a marker, the redzone byte,
immediately following the client data:

0x70a9ae00: 5 4ef83 \
0x70a9ae08: 0 0 +- User Data (allocated)
0x70a9ae10: 1 bbddcafe /
0x70a9ae18: feedface 139d -- REDZONE
0x70a9ae20: 70ae3200 d1befaed -- Debugging Data

The 0xfeedface value at 0x70a9ae18 is followed by a 32-bit word containing what
seems to be a random value. This number is actually an encoded representation of the
size of the buffer. To decode this number and find the size of the allocated buffer, use
the formula:

size = redzone_value / 251

So, in this example,

size = 0x139d / 251 = 20 bytes.

This indicates that the buffer requested was of size 20 bytes. The allocator performs
this decoding operation and finds that the redzone byte should be at offset 20. The
redzone byte is the hex pattern 0xbb, which is present at 0x729084e4 (0x729084d0 +
0t20) as expected.

Sample kmem_alloc(9F) Buffer

The following figure shows the general form of this memory layout.

Redzone Byte

Chapter 9
Detecting Memory Corruption

9-12

https://docs.oracle.com/cd/E88353_01/html/E37855/kmem-cache-alloc-9f.html
https://docs.oracle.com/cd/E88353_01/html/E37855/kmem-alloc-9f.html

If the allocation size is the same as the bufsize of the cache, the redzone byte overwrites the
first byte of the redzone itself, as shown in the following figure.

Redzone Byte at the Beginning of the Redzone

This overwriting results in the first 32-bit word of the redzone being 0xbbedface, or
0xfeedfabb depending on the endianness of the hardware on which the system is running.

Note:

Why is the allocation size encoded this way? To encode the size, the allocator uses
the formula (251 * size + 1). When the size decode occurs, the integer division
discards the remainder of '+1'. However, the addition of 1 is valuable because the
allocator can check whether the size is valid by testing whether (size % 251 == 1).
In this way, the allocator defends against corruption of the redzone byte index.

Uninitialized Data: 0xbaddcafe
You might be wondering what the suspicious 0xbbddcafe at address 0x729084d4 was before
the redzone byte got placed over the first byte in the word. It was 0xbaddcafe. When the
KMF_DEADBEEF flag is set in the cache, allocated but uninitialized memory is filled with the
0xbaddcafe pattern. When the allocator performs an allocation, it loops across the words of
the buffer and verifies that each word contains 0xdeadbeef, then fills that word with
0xbaddcafe.

A system can panic with a message such as:

panic[cpu1]/thread=e1979420: BAD TRAP: type=e (Page Fault)
rp=ef641e88 addr=baddcafe occurred in module "unix" due to an
illegal access to a user address

In this case, the address that caused the fault was 0xbaddcafe: the panicking thread has
accessed some data that was never initialized.

Associating Panic Messages With Failures
The kernel memory allocator emits panic messages corresponding to the failure modes
described earlier. For example, a system can panic with a message such as:

kernel memory allocator: buffer modified after being freed
modification occurred at offset 0x30

The allocator was able to detect this case because it tried to validate that the buffer in
question was filled with 0xdeadbeef. At offset 0x30, this condition was not met. Since this
condition indicates memory corruption, the allocator panicked the system.

Another example failure message is:

Chapter 9
Detecting Memory Corruption

9-13

kernel memory allocator: redzone violation: write past end of buffer

The allocator was able to detect this case because it tried to validate that the redzone
byte (0xbb) was in the location it determined from the redzone size encoding. It failed
to find the signature byte in the correct location. Since this indicates memory
corruption, the allocator panicked the system. Other allocator panic messages are
discussed later.

Memory Allocation Logging
This section explains the logging features of the kernel memory allocator and how you
can employ them to debug system crashes.

Buftag Data Integrity
As explained earlier, the second half of each buftag contains extra information about
the corresponding buffer. Some of this data is debugging information, and some is
data private to the allocator. While this auxiliary data can take several different forms, it
is collectively known as "Buffer Control" or bufctl data.

However, the allocator needs to know whether a buffer's bufctl pointer is valid, since
this pointer might also have been corrupted by malfunctioning code. The allocator
confirms the integrity of its auxiliary pointer by storing the pointer and an encoded
version of that pointer, and then cross-checking the two versions.

As shown in the following figure, these pointers are the bcp (buffer control pointer) and
bxstat (buffer control XOR status). The allocator arranges bcp and bxstat so that the
expression bcp XOR bxstat equals a well-known value.

Extra Debugging Data in the Buftag

In the event that one or both of these pointers becomes corrupted, the allocator can
easily detect such corruption and panic the system. When a buffer is allocated, bcp
XOR bxstat = 0xa110c8ed ("allocated"). When a buffer is free, bcp XOR bxstat =
0xf4eef4ee ("freefree").

Note:

To confirm that the buftag pointers are consistent, re-examine the example
provided in Freed Buffer Checking: 0xdeadbeef.

In the event that the allocator finds a corrupt buftag, it panics the system and produces
a message similar to the following:

kernel memory allocator: boundary tag corrupted
 bcp ^ bxstat = 0xffeef4ee, should be f4eef4ee

Chapter 9
Memory Allocation Logging

9-14

Remember, if bcp is corrupt, it is still possible to retrieve its value by taking the value of
bxstat XOR 0xf4eef4ee or bxstat XOR 0xa110c8ed, depending on whether the buffer is
allocated or free.

bufctl Pointer in buftag Region
The buffer control (bufctl) pointer contained in the buftag region can have different meanings,
depending on the cache's kmem_flags. The behavior toggled by the KMF_AUDIT flag is of
particular interest: when the KMF_AUDIT flag is not set, the kernel memory allocator
allocates a kmem_bufctl_t structure for each buffer. This structure contains some minimal
accounting information about each buffer. When the KMF_AUDIT flag is set, the allocator
instead allocates a kmem_bufctl_audit_t, an extended version of the kmem_bufctl_t.

This section presumes the KMF_AUDIT flag is set. For caches that do not have this bit set, the
amount of available debugging information is reduced.

The kmem_bufctl_audit_t (bufctl_audit for short) contains additional information about the
last transaction that occurred on this buffer. The following example shows how to apply the
bufctl_audit macro to examine an audit record. The buffer shown is the example buffer
used in Detecting Memory Corruption:

> 0x70a9ae00,5/KKn
0x70a9ae00: 5 4ef83
 0 0
 1 bbddcafe
 feedface 139d
 70ae3200 d1befaed

Using the techniques presented above, it is easy to see that 0x70ae3200 points to the
bufctl_audit record: it is the first pointer following the redzone. To examine the
bufctl_audit record it points to, apply the bufctl_audit macro:

> 0x70ae3200$<bufctl_audit
0x70ae3200: next addr slab
 70378000 70a9ae00 707c86a0
0x70ae320c: cache timestamp thread
 70039928 e1bd0e26afe 70aac4e0
0x70ae321c: lastlog contents stackdepth
 7011c7c0 7018a0b0 4
0x70ae3228:
 kmem_zalloc+0x30
 pid_assign+8
 getproc+0x68
 cfork+0x60

The 'addr' field is the address of the buffer corresponding to this bufctl_audit record. This is
the original address: 0x70a9ae00. The 'cache' field points at the kmem_cache that allocated
this buffer. You can use the ::kmem_cache dcmd to examine it as follows:

> 0x70039928::kmem_cache
ADDR NAME FLAG CFLAG BUFSIZE BUFTOTL
70039928 kmem_alloc_24 020f 000000 24 612

The 'timestamp' field represents the time this transaction occurred. This time is expressed in
the same manner as gethrtime(3C).

Chapter 9
Memory Allocation Logging

9-15

https://docs.oracle.com/cd/E88353_01/html/E37843/gethrtime-3c.html

'thread' is a pointer to the thread that performed the last transaction on this buffer. The
'lastlog' and 'contents' pointers point to locations in the allocator's transaction logs.
These logs are discussed in detail in Allocator Logging Facility.

Typically, the most useful piece of information provided by bufctl_audit is the stack
trace recorded at the point at which the transaction took place. In this case, the
transaction was an allocation called as part of executing fork(2).

Advanced Memory Analysis
This section describes facilities for performing advanced memory analysis, including
locating memory leaks and sources of data corruption.

Finding Memory Leaks
The ::findleaks dcmd provides powerful and efficient detection of memory leaks in
kernel crash dumps where the full set of kmem debug features has been enabled. The
first execution of ::findleaks processes the dump for memory leaks (this can take
a few minutes), and then coalesces the leaks by the allocation stack trace. The
findleaks report shows a bufctl address and the topmost stack frame for each memory
leak that was identified:

> ::findleaks
CACHE LEAKED BUFCTL CALLER
70039ba8 1 703746c0 pm_autoconfig+0x708
70039ba8 1 703748a0 pm_autoconfig+0x708
7003a028 1 70d3b1a0 sigaddq+0x108
7003c7a8 1 70515200 pm_ioctl+0x187c
--
 Total 4 buffers, 376 bytes

Using the bufctl pointers, you can obtain the complete stack backtrace of the allocation
by applying the bufctl_audit macro:

> 70d3b1a0$<bufctl_audit
0x70d3b1a0: next addr slab
 70a049c0 70d03b28 70bb7480
0x70d3b1ac: cache timestamp thread
 7003a028 13f7cf63b3 70b38380
0x70d3b1bc: lastlog contents stackdepth
 700d6e60 0 5
0x70d3b1c8:
 kmem_alloc+0x30
 sigaddq+0x108
 sigsendproc+0x210
 sigqkill+0x90
 kill+0x28

The programmer can usually use the bufctl_audit information and the allocation
stack trace to quickly track down the code path that leaks the given buffer.

Finding References to Data
When trying to diagnose a memory corruption problem, you should know what other
kernel entities hold a copy of a particular pointer. This is important because it can
reveal which thread accessed a data structure after it was freed. It can also make it

Chapter 9
Advanced Memory Analysis

9-16

https://docs.oracle.com/cd/E88353_01/html/E37841/fork-2.html

easier to understand what kernel entities are sharing knowledge of a particular (valid) data
item. The ::whatis and ::kgrep dcmds can be used to answer these questions. You can
apply ::whatis to a value of interest:

> 0x705d8640::whatis
705d8640 is 705d8640+0, allocated from streams_mblk

In this case, 0x705d8640 is revealed to be a pointer to a STREAMS mblk structure. To see the
entire allocation tree, use ::whatis -a instead:

> 0x705d8640::whatis -a
705d8640 is 705d8640+0, allocated from streams_mblk
705d8640 is 705d8000+640, allocated from kmem_va_8192
705d8640 is 705d8000+640 from kmem_default vmem arena
705d8640 is 705d2000+2640 from kmem_va vmem arena
705d8640 is 705d2000+2640 from heap vmem arena

This reveals that the allocation also appears in the kmem_va_8192 cache. The kmem_va_8192
cache is a kmem cache that is fronting the kmem_va vmem arena. It also shows the full stack
of vmem allocations.

The complete list of kmem caches and vmem arenas is displayed by the ::kmastat dcmd.
You can use ::kgrep to locate other kernel addresses that contain a pointer to this mblk.
This illustrates the hierarchical nature of memory allocations in the system; in general, you
can determine the type of object referred to by the given address from the name of the most
specific kmem cache.

> 0x705d8640::kgrep
400a3720
70580d24
7069d7f0
706a37ec
706add34

and investigate them by applying ::whatis again:

> 400a3720::whatis
400a3720 is in thread 7095b240's stack

> 706add34::whatis
706add34 is 706add20+14, allocated from streams_dblk_120

Here one pointer is located on the stack of a known kernel thread, and another is the mblk
pointer inside of the corresponding STREAMS dblk structure.

Finding Corrupt Buffers With ::kmem_verify
MDB's ::kmem_verify dcmd implements most of the same checks that the kmem allocator
does at runtime. ::kmem_verify can be invoked in order to scan every kmem cache with
appropriate kmem_flags, or to examine a particular cache.

Here is an example of using ::kmem_verify to isolate a problem:

> ::kmem_verify
Cache Name Addr Cache Integrity
kmem_alloc_8 70039428 clean
kmem_alloc_16 700396a8 clean
kmem_alloc_24 70039928 1 corrupt buffer
kmem_alloc_32 70039ba8 clean

Chapter 9
Advanced Memory Analysis

9-17

kmem_alloc_40 7003a028 clean
kmem_alloc_48 7003a2a8 clean
...

It is easy to see here that the kmem_alloc_24 cache contains what ::kmem_verify
believes to be a problem. With an explicit cache argument, the ::kmem_verify dcmd
provides more detailed information about the problem:

> 70039928::kmem_verify
Summary for cache 'kmem_alloc_24'
 buffer 702babc0 (free) seems corrupted, at 702babc0

The next step is to examine the buffer which ::kmem_verify believes to be corrupt:

> 0x702babc0,5/KKn
0x702babc0: 0 deadbeef
 deadbeef deadbeef
 deadbeef deadbeef
 feedface feedface
 703785a0 84d9714e

The reason that ::kmem_verify flagged this buffer is now clear: The first word in the
buffer (at 0x702babc0) should probably be filled with the 0xdeadbeef pattern, not with a
0. At this point, examining the bufctl_audit for this buffer might yield clues about
what code recently wrote to the buffer, indicating where and when it was freed.

Another useful technique in this situation is to use ::kgrep to search the address
space for references to address 0x702babc0, in order to discover what threads or data
structures are still holding references to this freed data.

Allocator Logging Facility
When KMF_AUDIT is set for a cache, the kernel memory allocator maintains a log that
records the recent history of its activity. This transaction log records bufctl_audit
records. If the KMF_AUDIT and the KMF_CONTENTS flags are both set, the allocator
generates a contents log that records portions of the actual contents of allocated and
freed buffers. The structure and use of the contents log is outside the scope of this
document. The transaction log is discussed in this section.

MDB provides several facilities for displaying the transaction log. The simplest
is ::walk kmem_log, which prints out the transaction in the log as a series of
bufctl_audit_t pointers:

> ::walk kmem_log
70128340
701282e0
70128280
70128220
701281c0
...
> 70128340$<bufctl_audit
0x70128340: next addr slab
 70ac1d40 70bc4ea8 70bb7c00
0x7012834c: cache timestamp thread
 70039428 e1bd7abe721 70aacde0
0x7012835c: lastlog contents stackdepth
 701282e0 7018f340 4
0x70128368:
 kmem_cache_free+0x24

Chapter 9
Advanced Memory Analysis

9-18

 nfs3_sync+0x3c
 vfs_sync+0x84
 syssync+4

A more elegant way to view the entire transaction log is by using the ::kmem_log command:

> ::kmem_log
CPU ADDR BUFADDR TIMESTAMP THREAD
 0 70128340 70bc4ea8 e1bd7abe721 70aacde0
 0 701282e0 70bc4ea8 e1bd7aa86fa 70aacde0
 0 70128280 70bc4ea8 e1bd7aa27dd 70aacde0
 0 70128220 70bc4ea8 e1bd7a98a6e 70aacde0
 0 701281c0 70d03738 e1bd7a8e3e0 70aacde0
 ...
 0 70127140 70cf78a0 e1bd78035ad 70aacde0
 0 701270e0 709cf6c0 e1bd6d2573a 40033e60
 0 70127080 70cedf20 e1bd6d1e984 40033e60
 0 70127020 70b09578 e1bd5fc1791 40033e60
 0 70126fc0 70cf78a0 e1bd5fb6b5a 40033e60
 0 70126f60 705ed388 e1bd5fb080d 40033e60
 0 70126f00 705ed388 e1bd551ff73 70aacde0
 ...

The output of ::kmem_log is sorted in descending order by timestamp. The ADDR column is
the bufctl_audit structure corresponding to that transaction; BUFADDR points to the actual
buffer.

These figures represent transactions on buffers (both allocations and frees). When a
particular buffer is corrupted, it can be helpful to locate that buffer in the transaction log, then
determine in which other transactions the transacting thread was involved. This can help to
assemble a picture of the sequence of events that occurred prior to and after the allocation
(or free) of a buffer.

You can employ the ::bufctl command to filter the output of walking the transaction log.
The ::bufctl -a command filters the buffers in the transaction log by buffer address. This
example filters on buffer 0x70b09578:

> ::walk kmem_log | ::bufctl -a 0x70b09578
ADDR BUFADDR TIMESTAMP THREAD CALLER
70127020 70b09578 e1bd5fc1791 40033e60 biodone+0x108
70126e40 70b09578 e1bd55062da 70aacde0 pageio_setup+0x268
70126de0 70b09578 e1bd52b2317 40033e60 biodone+0x108
70126c00 70b09578 e1bd497ee8e 70aacde0 pageio_setup+0x268
70120480 70b09578 e1bd21c5e2a 70aacde0 elfexec+0x9f0
70120060 70b09578 e1bd20f5ab5 70aacde0 getelfhead+0x100
7011ef20 70b09578 e1bd1e9a1dd 70aacde0 ufs_getpage_miss+0x354
7011d720 70b09578 e1bd1170dc4 70aacde0 pageio_setup+0x268
70117d80 70b09578 e1bcff6ff27 70bc2480 elfexec+0x9f0
70117960 70b09578 e1bcfea4a9f 70bc2480 getelfhead+0x100
...

This example illustrates that a particular buffer can be used in numerous transactions.

Note:

Remember that the kmem transaction log is an incomplete record of the
transactions made by the kernel memory allocator. Older entries in the log are
evicted as needed in order to keep the size of the log constant.

Chapter 9
Advanced Memory Analysis

9-19

The ::allocdby and ::freedby dcmds provide a convenient way to summarize
transactions associated with a particular thread. Here is an example of listing the
recent allocations performed by thread 0x70aacde0:

> 0x70aacde0::allocdby
BUFCTL TIMESTAMP CALLER
70d4d8c0 e1edb14511a allocb+0x88
70d4e8a0 e1edb142472 dblk_constructor+0xc
70d4a240 e1edb13dd4f allocb+0x88
70d4e840 e1edb13aeec dblk_constructor+0xc
70d4d860 e1ed8344071 allocb+0x88
70d4e7e0 e1ed8342536 dblk_constructor+0xc
70d4a1e0 e1ed82b3a3c allocb+0x88
70a53f80 e1ed82b0b91 dblk_constructor+0xc
70d4d800 e1e9b663b92 allocb+0x88

By examining bufctl_audit records, you can understand the recent activities of a
particular thread.

Chapter 9
Advanced Memory Analysis

9-20

10
MDB Debugger Module Programming API

This chapter describes the structures and functions contained in the MDB debugger module
API. The header file <sys/mdb_modapi.h> contains prototypes for these functions, and the
source/demo/mdb-examples package provides source code for an example module in
the directory /usr/demo/mdb.

Debugger Module Linkage

_mdb_init() Function
const mdb_modinfo_t *_mdb_init(void);

Each debugger module is required to provide, for linkage and identification purposes, a
function named _mdb_init(). This function returns a pointer to a persistent (that is, not
declared as an automatic variable) mdb_modinfo_t structure, as defined in <sys/
mdb_modapi.h>:

type def struct mdb_modinfo {
 ushort_t mi_dvers; /* Debugger API version number */
 const mdb_dcmd_t *mi_dcmds; /* NULL-terminated list of dcmds */
 const mdb_walker_t *mi_walkers; /* NULL-terminated list of walks */
 ulong_t mi_flags; /* module-level flags */
} mdb_modinfo_t;

The mi_dvers member is used to identify the API version number, and should always be set
to MDB_API_VERSION. The current version number is therefore compiled into each debugger
module, allowing the debugger to identify and verify the application binary interface used by
the module. The debugger does not load modules that are compiled for an API version that is
more recent than the debugger itself.

The mi_dcmds and mi_walkers members, if not NULL, point to arrays of dcmd and walker
definition structures, respectively. Each array must be terminated by a NULL element. These
dcmds and walkers are installed and registered with the debugger as part of the module
loading process. The debugger will refuse to load the module if one or more dcmds or
walkers are defined improperly or if they have conflicting or invalid names. Dcmd and walker
names are prohibited from containing characters that have special meaning to the debugger,
such as quotation marks and parentheses.

The mi_flags field should be zero or a logically-ORed set of flags. The only defined flag right
now is MDB_MI_ENFORCE_USAGE, which causes MDB to check the proper usage of this
module's dcmds before calling them.

The module can also execute code in _mdb_init() using the module API to determine if it is
appropriate to load. For example, a module can only be appropriate for a particular target if
certain symbols are present. If these symbols are not found, the module can return NULL
from the _mdb_init() function. In this case, the debugger will refuse to load the module and
an appropriate error message is printed.

10-1

_mdb_fini() Function
void _mdb_fini(void);

If the module performs certain tasks prior to unloading, such as freeing persistent
memory previously allocated with mdb_alloc(), it can declare a function named
_mdb_fini() for this purpose. This function is not required by the debugger. If declared,
it is called once prior to unloading the module. Modules are unloaded when the user
requests that the debugger terminate or when the user explicitly unloads a module
using the ::unload built-in dcmd.

MDB Dcmd Definitions
int dcmd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv);

A dcmd is implemented with a function similar to the dcmd() declaration. This function
receives four arguments and returns an integer status. The function arguments are:

addr
Current address, also called dot. At the start of the dcmd, this address corresponds to
the value of the dot "." variable in the debugger.

flags
Integer containing the logical OR of one or more of the following flags:

DCMD_ADDRSPEC
An explicit address was specified to the left of ::dcmd.

DCMD_LOOP
The dcmd was invoked in a loop using the ,count syntax, or the dcmd was
invoked in a loop by a pipeline.

DCMD_LOOPFIRST
This invocation of the dcmd function corresponds to the first loop or pipeline
invocation.

DCMD_PIPE
The dcmd was invoked with input from a pipeline.

DCMD_PIPE_OUT
The dcmd was invoked with output set to a pipeline.

As a convenience, the DCMD_HDRSPEC() macro is provided to allow a dcmd to test its
flags to determine if it should print a header line (that is, it was not invoked as part of a
loop, or it was invoked as the first iteration of a loop or pipeline).

argc
Number of arguments in the argv array.

argv
Array of arguments specified to the right of ::dcmd on the command line. These
arguments can be either strings or integer values.

Chapter 10
MDB Dcmd Definitions

10-2

The dcmd function is expected to return one of the following integer values, defined in <sys/
mdb_modapi.h>.

DCMD_OK
The dcmd completed successfully.

DCMD_ERR
The dcmd failed for some reason.

DCMD_USAGE
The dcmd failed because invalid arguments were specified. When this value is returned, the
dcmd usage message (described below) prints automatically.

DCMD_NEXT
The next dcmd definition (if one is present) is automatically invoked with the same
arguments.

DCMD_ABORT
The dcmd failed, and the current loop or pipeline should be aborted. This is like DCMD_ERR,
but indicates that no further progress is possible in the current loop or pipe.

Each dcmd consists of a function defined according to the example dcmd() prototype, and a
corresponding mdb_dcmd_t structure, as defined in <sys/mdb_modapi.h>. This structure
consists of the following fields:

const char *dc_name
The string name of the dcmd, without the leading "::". The name cannot contain any of the
MDB meta-characters, such as $ or `.

const char *dc_usage
An optional usage string for the dcmd, to be printed when the dcmd returns DCMD_USAGE. For
example, if the dcmd accepts options -a and -b, dc_usage might be specified as "[-ab]". If
the dcmd accepts no arguments, dc_usage can be set to NULL. If the usage string begins
with ":", this is shorthand for indicating that the dcmd requires an explicit address (that is, it
requires DCMD_ADDRSPEC to be set in its flags parameter). If the usage string begins with "?",
this indicates that the dcmd optionally accepts an address. These hints modify the usage
message accordingly. If the usage string begins with "|", this indicates that the dcmd's input
must be from a pipe.
A string which describes how the dcmd may be invoked. If NULL, this is treated as an empty
string. Certain aspects of the string determine how the dcmd must be invoked:

Begins with ':'
The dcmd requires an address (flags must include DCMD_ADDRSPEC)

Begins with '?'
The dcmd optionally takes an address (flags may include DCMD_ADDRSPEC)

Begins with '|'
The dcmd must have input from a pipe (flags must include DCMD_ADDRSPECand
DCMD_PIPE)

Begins with neither ':' nor '?' nor '|'
The dcmd does not take an address (flags must not include DCMD_ADDRSPEC)

Chapter 10
MDB Dcmd Definitions

10-3

Ends with '|'
The dcmd supports outputting into a pipe (flags may include DCMD_PIPE_OUT)

Does not end with '|'
The dcmd does not support outputting into a pipe (flags must not include
DCMD_PIPE_OUT)

The string is empty
Other than ':', '?', '|', and whitespace. No arguments are allowed (argc must be
zero). The specified characters will be stripped from the usage string before it is
printed.
These restrictions will be reflected in the usage message printed for the dcmd. If
MDB_MI_ENFORCE_USAGE is set in the mdb_modinfo_t's mi_flags field, and the
"nostrict" MDB option is not set, these restrictions will be enforced by MDB before
invoking the dcmd.

const char *dc_descr
A mandatory description string, briefly explaining the purpose of the dcmd. This string
should consist of only a single line of text.

mdb_dcmd_f *dc_funcp
A pointer to the function that will be called to execute the dcmd.

void (*dc_help)(void)
An optional function pointer to a help function for the dcmd. If this pointer is not NULL,
this function will be called when the user executes ::help dcmd. This function can
use mdb_printf() to display further information or examples.

MDB Walker Definitions
int walk_init(mdb_walk_state_t *wsp);
int walk_step(mdb_walk_state_t *wsp);
void walk_fini(mdb_walk_state_t *wsp);

A walker is composed of three functions, init, step, and fini, which are defined
according to the example prototypes above. A walker is invoked by the debugger
when one of the walk functions (such as mdb_walk()) is called, or when the user
executes the ::walk built-in dcmd. When the walk begins, MDB calls the walker's init
function, passing it the address of a new mdb_walk_state_t structure, as defined in
<sys/mdb_modapi.h>:

typedef struct mdb_walk_state {
 mdb_walk_cb_t walk_callback; /* Callback to issue */
 void *walk_cbdata; /* Callback private data */
 uintptr_t walk_addr; /* Current address */
 void *walk_data; /* Walk private data */
 void *walk_arg; /* Walk private argument */
 void *walk_layer; /* Data from underlying layer */
} mdb_walk_state_t;

A separate mdb_walk_state_t is created for each walk, so that multiple instances of
the same walker can be active simultaneously. The state structure contains the
callback the walker should invoke at each step (walk_callback), and the private data
for the callback (walk_cbdata), as specified to mdb_walk(), for example. The
walk_cbdata pointer is opaque to the walker: it must not modify or dereference this
value, nor can it assume it is a pointer to valid memory.

Chapter 10
MDB Walker Definitions

10-4

The starting address for the walk is stored in walk_addr. This is either NULL if mdb_walk()
was called, or the address parameter specified to mdb_pwalk(). If the ::walk built-in was
used, walk_addr will be non-NULL if an explicit address was specified on the left-hand side
of ::walk. A walk with a starting address of NULL is referred to as global. A walk with an
explicit non-NULL starting address is referred to as local.

The walk_data and walk_arg fields are provided for use as private storage for the walker.
Complex walkers might need to allocate an auxiliary state structure and set walk_data to
point to this structure. Each time a walk is initiated, walk_arg is initialized to the value of the
walk_init_arg member of the corresponding walker's mdb_walker_t structure.

In some cases, it is useful to have several walkers share the same init, step, and fini routines.
For example, the MDB genunix module provides walkers for each kernel memory cache.
These share the same init, step, and fini functions, and use the walk_init_arg member of
the mdb_walker_t to specify the address of the appropriate cache as the walk_arg.

If the walker calls mdb_layered_walk() to instantiate an underlying layer, then the underlying
layer will reset walk_addr and walk_layer prior to each call to the walker's step function. The
underlying layer sets walk_addr to the target virtual address of the underlying object, and set
walk_layer to point to the walker's local copy of the underlying object. For more information
on layered walks, refer to the discussion of mdb_layered_walk() below.

The walker init and step functions are expected to return one of the following status values:

WALK_NEXT
Proceed to the next step. When the walk init function returns WALK_NEXT, MDB invokes the
walk step function. When the walk step function returns WALK_NEXT, this indicates that MDB
should call the step function again.

WALK_DONE
The walk has completed successfully. WALK_DONE can be returned by either the step function
to indicate that the walk is complete, or by the init function to indicate that no steps are
needed (for example, if the given data structure is empty).

WALK_ERR
The walk has terminated due to an error. If WALK_ERR is returned by the init function,
mdb_walk() (or any of its counterparts) returns –1 to indicate that the walker failed to initialize.
If WALK_ERR is returned by the step function, the walk terminates but mdb_walk() returns
success.

The walk_callback is also expected to return one of the values above. Therefore, the walk
step function's job is to determine the address of the next object, read in a local copy of this
object, call the walk_callback function, then return its status. The step function can also return
WALK_DONE or WALK_ERR without invoking the callback if the walk is complete or if an error
occurred.

The walker itself is defined using the mdb_walker_t structure, defined in:

typedef struct mdb_walker {
 const char *walk_name; /* Walk type name */
 const char *walk_descr; /* Walk description */
 int (*walk_init)(mdb_walk_state_t *); /* Walk constructor */
 int (*walk_step)(mdb_walk_state_t *); /* Walk iterator */
 void (*walk_fini)(mdb_walk_state_t *); /* Walk destructor */
 void *walk_init_arg; /* Constructor argument */
} mdb_walker_t;

Chapter 10
MDB Walker Definitions

10-5

The walk_name and walk_descr fields should be initialized to point to strings containing
the name and a brief description of the walker, respectively. A walker is required to
have a non-NULL name and description, and the name cannot contain any of the MDB
meta-characters. The description string is printed by the ::walkers and ::dmods
built-in dcmds.

The walk_init, walk_step, and walk_fini members refer to the walk functions
themselves, as described earlier. The walk_init and walk_fini members can be set
to NULL to indicate that no special initialization or cleanup actions need to be taken.
The walk_step member cannot be set to NULL. The walk_init_arg member is used
to initialize the walk_arg member of each new mdb_walk_state_t created for the given
walker, as described earlier. The following figure shows a flowchart for the algorithm of
a typical walker.

Sample Walker

The walker is designed to iterate over the list of proc_t structures in the kernel. The
head of the list is stored in the global practive variable, and each element's p_next
pointer points to the next proc_t in the list. The list is terminated with a NULL pointer.
In the walker's init routine, the practive symbol is located using
mdb_lookup_by_name() step (1), and its value is copied into the mdb_walk_state_t
pointed to by wsp.

In the walker's step function, the next proc_t structure in the list is copied into the
debugger's address space using mdb_vread() step (2), the callback function is invoked
with a pointer to this local copy, step (3), and then the mdb_walk_state_t is updated
with the address of the proc_t structure for the next iteration. This update corresponds
to following the pointer, step (4), to the next element in the list.

Chapter 10
MDB Walker Definitions

10-6

These steps demonstrate the structure of a typical walker: the init routine locates the global
information for a particular data structure, the step function reads in a local copy of the next
data item and passes it to the callback function, and the address of the next element is read.
Finally, when the walk terminates, the fini function frees any private storage.

MDB API Functions

mdb_openfd() and mdb_closefd() Functions
void *mdb_openfd(const char *path, int flag, mode_t mode);
void mdb_closefd(void * handle);

The mdb_openfd() function takes the identical arguments as the open() system call. It opens
the specified file and registers a callback to close the file descriptor if it has not been closed
already. mdb_openfd() returns an opaque token that can be passed to the mdb_preadfd() and
mdb_pwritefd() functions.

The mdb_close() function closes the file descriptor for the specified file.

mdb_preadfd() and mdb_pwritefd() Functions
size_t mdb_preadfd(void *handle, void *buf, size_t nbytes, off_t offset);
size_t mdb_pwritefd(void *handle, const void *buf, size_t nbytes, off_t offset);

The mdb_readfd() and mdb_writefd() functions take the opaque token passed from
mdb_openfd() to read from and write to the specified file. Note that these functions use the
same arguments as the pread() and pwrite() system calls.

mdb_pwalk() Function
int mdb_pwalk(const char *name, mdb_walk_cb_t func, void *data, uintptr_t addr);

Initiate a local walk starting at addr using the walker specified by name, and invoke the
callback function func at each step. If addr is NULL, a global walk is performed (that is, the
mdb_pwalk() invocation is equivalent to the identical call to mdb_walk() without the trailing addr
parameter). This function returns 0 for success, or -1 for error. The mdb_pwalk() function fails
if the walker itself returns a fatal error, or if the specified walker name is not known to the
debugger. The walker name may be scoped using the backquote (`) operator if there are
naming conflicts. The data parameter is an opaque argument that has meaning only to the
caller; it is passed back to func at each step of the walk.

mdb_walk() Function
int mdb_walk(const char *name, mdb_walk_cb_t func, void *data);

Initiate a global walk using the walker specified by name, and invoke the callback function
func at each step. This function returns 0 for success, or -1 for error. The mdb_walk() function
fails if the walker itself returns a fatal error, or if the specified walker name is not known to the
debugger. The walker name can be scoped using the backquote (`) operator if there are
naming conflicts. The data parameter is an opaque argument that has meaning only to the
caller; it is passed back to func at each step of the walk.

Chapter 10
MDB API Functions

10-7

mdb_pwalk_dcmd() Function
int mdb_pwalk_dcmd(const char *wname, const char *dcname, int argc,
 const mdb_arg_t *argv, uintptr_t addr);

Initiate a local walk starting at addr using the walker specified by wname, and invoke
the dcmd specified by dcname with the specified argc and argv at each step. This
function returns 0 for success, or -1 for error. The function fails if the walker itself
returns a fatal error, if the specified walker name or dcmd name is not known to the
debugger, or if the dcmd itself returns DCMD_ABORT or DCMD_USAGE to the walker. The
walker name and dcmd name can each be scoped using the backquote (`) operator if
there are naming conflicts. When invoked from mdb_pwalk_dcmd(), the dcmd will have
the DCMD_LOOP and DCMD_ADDRSPEC bits set in its flags parameter, and the first call will
have DCMD_LOOPFIRST set.

mdb_walk_dcmd() Function
int mdb_walk_dcmd(const char *wname, const char *dcname, int argc,
 const mdb_arg_t *argv);

Initiate a global walk using the walker specified by wname, and invoke the dcmd
specified by dcname with the specified argc and argv at each step. This function
returns 0 for success, or -1 for error. The function fails if the walker itself returns a fatal
error, if the specified walker name or dcmd name is not known to the debugger, or if
the dcmd itself returns DCMD_ABORT or DCMD_USAGE to the walker. The walker name and
dcmd name can each be scoped using the backquote (`) operator if there are naming
conflicts. When invoked from mdb_walk_dcmd(), the dcmd will have the DCMD_LOOP and
DCMD_ADDRSPEC bits set in its flags parameter, and the first call will have
DCMD_LOOPFIRST set.

mdb_call_dcmd() Function
int mdb_call_dcmd(const char *name, uintptr_t addr, uint_t flags,
 int argc, const mdb_arg_t *argv);

Invoke the specified dcmd name with the given parameters. The dot variable is reset
to addr, and addr, flags, argc, and argv are passed to the dcmd. The function returns 0
for success, or -1 for error. The function fails if the dcmd returns DCMD_ERR,
DCMD_ABORT, or DCMD_USAGE, or if the specified dcmd name is not known to the
debugger. The dcmd name can be scoped using the backquote (`) operator if there
are naming conflicts.

mdb_layered_walk() Function
int mdb_layered_walk(const char *name, mdb_walk_state_t *wsp);

Layer the walk denoted by wsp on top of a walk initiated using the specified walker
name. The name can be scoped using the backquote (`) operator if there are naming
conflicts. Layered walks can be used, for example, to facilitate constructing walkers for
data structures that are embedded in other data structures.

For example, suppose that each CPU structure in the kernel contains a pointer to an
embedded structure. To write a walker for the embedded structure type, you could

Chapter 10
MDB API Functions

10-8

replicate the code to iterate over CPU structures and dereference the appropriate member of
each CPU structure, or you could layer the embedded structure's walker on top of the existing
CPU walker.

The mdb_layered_walk() function is used from within a walker's init routine to add a new layer
to the current walk. The underlying layer is initialized as part of the call to
mdb_layered_walk(). The calling walk routine passes in a pointer to its current walk state; this
state is used to construct the layered walk. Each layered walk is cleaned up after the caller's
walk fini function is called. If more than one layer is added to a walk, the caller's walk step
function will step through each element returned by the first layer, then the second layer, and
so forth.

The mdb_layered_walk() function returns 0 for success, or -1 for error. The function fails if the
specified walker name is not known to the debugger, if the wsp pointer is not a valid, active
walk state pointer, if the layered walker itself fails to initialize, or if the caller attempts to layer
the walker on top of itself.

mdb_add_walker() Function
int mdb_add_walker(const mdb_walker_t *w);

Register a new walker with the debugger. The walker is added to the module's namespace,
and to the debugger's global namespace according to the name resolution rules described in
Dcmd and Walker Name Resolution. This function returns 0 for success, or -1 for error if the
given walker name is already registered by this module, or if the walker structure w is
improperly constructed. The information in the mdb_walker_t w is copied to internal debugger
structures, so the caller can reuse or free this structure after the call to mdb_add_walker().

mdb_remove_walker() Function
int mdb_remove_walker(const char *name);

Remove the walker with the specified name. This function returns 0 for success, or -1 for
error. The walker is removed from the current module's namespace. The function fails if the
walker name is unknown, or is registered only in another module's namespace. The
mdb_remove_walker() function can be used to remove walkers that were added dynamically
using mdb_add_walker(), or walkers that were added statically as part of the module's linkage
structure. The scoping operator cannot be used in the walker name; it is not legal for the
caller of mdb_remove_walker() to attempt to remove a walker exported by a different module.

mdb_vread() and mdb_vwrite() Functions
ssize_t mdb_vread(void *buf, size_t nbytes, uintptr_t addr);
ssize_t mdb_vwrite(const void *buf, size_t nbytes, uintptr_t addr);

These functions provide the ability to read and write data from a given target virtual address,
specified by the addr parameter. The mdb_vread() function returns nbytes for success, or -1
for error; if a read is truncated because only a portion of the data can be read from the
specified address, -1 is returned. The mdb_vwrite() function returns the number of bytes
actually written upon success; -1 is returned upon error.

Chapter 10
MDB API Functions

10-9

mdb_fread() and mdb_fwrite() Functions
ssize_t mdb_fread(void *buf, size_t nbytes, uintptr_t addr);
ssize_t mdb_fwrite(const void *buf, size_t nbytes, uintptr_t addr);

These functions provide the ability to read and write data from the object file location
corresponding to the given target virtual address, specified by the addr parameter. The
mdb_fread() function returns nbytes for success, or -1 for error; if a read is truncated
because only a portion of the data can be read from the specified address, -1 is
returned. The mdb_fwrite() function returns the number of bytes actually written upon
success; -1 is returned upon error.

mdb_pread() and mdb_pwrite() Functions
ssize_t mdb_pread(void *buf, size_t nbytes, uint64_t addr);
ssize_t mdb_pwrite(const void *buf, size_t nbytes, uint64_t addr);

These functions provide the ability to read and write data from a given target physical
address, specified by the addr parameter. The mdb_pread() function returns nbytes for
success, or -1 for error; if a read is truncated because only a portion of the data can be
read from the specified address, -1 is returned. The mdb_pwrite() function returns the
number of bytes actually written upon success; -1 is returned upon error.

mdb_readstr() Function
ssize_t mdb_readstr(char *s, size_t nbytes, uintptr_t addr);

The mdb_readstr() function reads a null-terminated C string beginning at the target
virtual address addr into the buffer addressed by s. The size of the buffer is specified
by nbytes. If the string is longer than can fit in the buffer, the string is truncated to the
buffer size and a null byte is stored at s[nbytes - 1]. The length of the string stored
in s (not including the terminating null byte) is returned upon success; otherwise -1 is
returned to indicate an error.

mdb_writestr() Function
ssize_t mdb_writestr(const char *s, uintptr_t addr);

The mdb_writestr() function writes a null-terminated C string from s (including the
trailing null byte) to the target's virtual address space at the address specified by addr.
The number of bytes written (not including the terminating null byte) is returned upon
success; otherwise, -1 is returned to indicate an error.

mdb_readsym() Function
ssize_t mdb_readsym(void *buf, size_t nbytes, const char *name);

The mdb_readsym() function is similar to the mdb_vread() function. However, the
mdb_readsym() function obtains the virtual address at which to begin reading from the
symbol that is specified by the name argument. If the specified name symbol is not
found, mdb_readsym() returns a value of -1. Otherwise, the number of bytes that are
read successfully is returned on success or -1 on error. Note that the caller can first

Chapter 10
MDB API Functions

10-10

look up the symbol separately to distinguish between a symbol lookup failure and a read
failure.

mdb_writesym() Function
ssize_t mdb_writesym(const void *buf, size_t nbytes, const char *name);

mdb_writesym() is identical to mdb_vwrite(), except that the virtual address at which writing
begins is obtained from the value of the symbol specified by name. If no symbol by that name
is found, -1 is returned. Otherwise, the number of bytes successfully written is returned on
success, and -1 is returned on error. The primary executable's symbol table is used for the
symbol lookup; if the symbol resides in another symbol table, you must first apply
mdb_lookup_by_obj(), then mdb_vwrite().

mdb_writevar() Function
ssize_t mdb_writevar(const void *buf, const char *name);

The mdb_writevar() function is identical to the mdb_vwrite() function. However, the
mdb_writevar() function obtains the virtual address at which to begin writing and the number
of bytes to write from the value and size of the symbol that is specified by the name argument.
If the specified name symbol is not found, mdb_writevar() returns a value of -1. Otherwise,
the number of bytes that are written successfully is returned on success or -1 on error.

mdb_lookup_by_name() and mdb_lookup_by_obj() Functions
int mdb_lookup_by_name(const char *name, GElf_Sym *sym);
int mdb_lookup_by_obj(const char *object, const char *name, GElf_Sym *sym);

Look up the specified symbol name and copy the ELF symbol information into the GElf_Sym
pointed to by sym. If the symbol is found, the function returns 0; otherwise, -1 is returned. The
name parameter specifies the symbol name. The object parameter tells the debugger where
to look for the symbol. For the mdb_lookup_by_name() function, the object file defaults to
MDB_OBJ_EXEC. For mdb_lookup_by_obj(), the object name should be one of the following:

MDB_OBJ_EXEC
Look in the executable's symbol table (.symtab section). For kernel crash dumps, this
corresponds to the symbol table from the unix.X file or from /dev/ksyms.

MDB_OBJ_RTLD
Look in the runtime link-editor's symbol table. For kernel crash dumps, this corresponds to
the symbol table for the krtld module.

MDB_OBJ_EVERY
Look in all known symbol tables. For kernel crash dumps, this includes the .symtab
and .dynsym sections from the unix.X file or /dev/ksyms, as well as per-module symbol
tables if these have been processed.

object
If the name of a particular load object is explicitly specified, the search is restricted to the
symbol table of this object. The object can be named according to the naming convention for
load objects described in MDB Symbol Name Resolution.

Chapter 10
MDB API Functions

10-11

mdb_lookup_by_addr() Function
int mdb_lookup_by_addr(uintptr_t addr, uint_t flag, char *buf,
 size_t len, GElf_Sym *sym);

Locate the symbol corresponding to the specified address and copy the ELF symbol
information into the GElf_Sym pointed to by sym and the symbol name into the
character array addressed by buf. If a corresponding symbol is found, the function
returns 0; otherwise -1 is returned.

The flag parameter specifies the lookup mode and should be one of the following:

MDB_SYM_FUZZY
Allow fuzzy matching to take place, based on the current symbol distance setting. The
symbol distance can be controlled using the ::set -s built-in. If an explicit symbol
distance has been set (absolute mode), the address can match a symbol if the
distance from the symbol's value to the address does not exceed the absolute symbol
distance. If smart mode is enabled (symbol distance = 0), then the address can match
the symbol if it is in the range [symbol value, symbol value + symbol size).

MDB_SYM_EXACT
Disallow fuzzy matching. The symbol can match only the address if the symbol value
exactly equals the specified address.

If a symbol match occurs, the name of the symbol is copied into the buf supplied by
the caller. The len parameter specifies the length of this buffer in bytes. The caller's buf
should be at least of size MDB_SYM_NAMLEN bytes. The debugger copies the name to
this buffer and appends a trailing null byte. If the name length exceeds the length of
the buffer, the name is truncated but always includes a trailing null byte.

mdb_getopts() Function
int mdb_getopts(int argc, const mdb_arg_t *argv, ...);

Parse and process options and option arguments from the specified argument array
(argv). The argc parameter denotes the length of the argument array. This function
processes each argument in order, and stops and returns the array index of the first
argument that could not be processed. If all arguments are processed successfully,
argc is returned.

Following the argc and argv parameters, the mdb_getopts() function accepts a variable
list of arguments describing the options that are expected to appear in the argv array.
Each option is described by an option letter (char argument), an option type (uint_t
argument), and one or two additional arguments, as shown in the table below. The list
of option arguments is terminated with a NULL argument. The type should be one of
the following:

MDB_OPT_SETBITS
The option will OR the specified bits into a flag word. The option is described by these
parameters:
char c, uint_t type, uint_t bits, uint_t *p
If type is MDB_OPT_SETBITS and option c is detected in the argv list, the debugger will
OR bits into the integer referenced by pointer p.

Chapter 10
MDB API Functions

10-12

MDB_OPT_CLRBITS
The option clears the specified bits from a flag word. The option is described by these
parameters:
char c, uint_t type, uint_t bits, uint_t *p
If type is MDB_OPT_CLRBITS and option c is detected in the argv list, the debugger clears bits
from the integer referenced by pointer p.

MDB_OPT_LISTCB
The option will separate any arguments into ','-separated portions, and, call the callback
function on each portion. The option is described by these parameters:

char c, uint_t type, mdb_opt_listcb_f *func, void *arg

Where mdb_opt_listcb_f() is a function type:

typedef int mdb_opt_listcb_f(char c, char *buf, size_t len, void
*arg)

If type is MDB_OPT_LISTCB and option c is detected in the argv list, the string argument is split
up into ','-separated pieces, each piece is copied into a temporary array, and <func> is called
with <c>, a pointer to the temporary copy, the length of the temporary copy (including the
terminating NULL), and <arg>. If successful, <func> should return MDB_LISTCB_OK.
Otherwise, <func> should print an error message with mdb_warn() and return
MDB_LISTCB_FAIL, which will cause option processing to stop.

MDB_OPT_STR
The option accepts a string argument. The option is described by these parameters:

char c, uint_t type, const char **p

If type is MDB_OPT_STR and option c is detected in the argv list, the debugger stores a pointer
to the string argument following c in the pointer referenced by p.

MDB_OPT_UINTPTR
The option accepts a uintptr_t argument. The option is described by these parameters:
char c, uint_t type, uintptr_t *p
If type is MDB_OPT_UINTPTR and option c is detected in the argv list, the debugger stores the
integer argument following c in the uintptr_t referenced by p.

MDB_OPT_UINTPTR_SET
The option accepts a uintptr_t argument. The option is described by these parameters:

char c, uint_t type, boolean_t *flag, uintptr_t *p

If type is MDB_OPT_UINTPTR_SET and option c is detected in the argv list, the debugger stores
the value '1' (TRUE) into the boolean_t referenced by flag, and the integer argument
following c in the uintptr_t referenced by p.

MDB_OPT_UINT64
The option accepts a uint64_t argument. The option is described by these parameters:
char c, uint_t type, uint64_t *p
If type is MDB_OPT_UINT64 and option c is detected in the argv list, the debugger stores the
integer argument following c in the uint64_t referenced by p.

For example, the following source code:

int
dcmd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)

Chapter 10
MDB API Functions

10-13

{
 uint_t opt_v = FALSE;
 const char *opt_s = NULL;

 if (mdb_getopts(argc, argv,
 'v', MDB_OPT_SETBITS, TRUE, &opt_v,
 's', MDB_OPT_STR, &opt_s, NULL) != argc)
 return (DCMD_USAGE);

 /* ... */
}

demonstrates how mdb_getopts() might be used in a dcmd to accept a boolean option
"-v" that sets the opt_v variable to TRUE, and an option "-s" that accepts a string
argument that is stored in the opt_s variable. The mdb_getopts() function also
automatically issues warning messages if it detects an invalid option letter or missing
option argument before returning to the caller. The storage for argument strings and
the argv array is automatically garbage-collected by the debugger upon completion of
the dcmd.

mdb_strtoull() Function
u_longlong_t mdb_strtoull(const char *s);

Convert the specified string s to an unsigned long long representation. This function
is intended for use in processing and converting string arguments in situations where
mdb_getopts() is not appropriate. If the string argument cannot be converted to a valid
integer representation, the function fails by printing an appropriate error message and
aborting the dcmd. Therefore, error checking code is not required. The string can be
prefixed with any of the valid base specifiers (0i, 0I, 0o, 0O, 0t, 0T, 0x, or 0X);
otherwise, it is interpreted using the default base. The function will fail and abort the
dcmd if any of the characters in s are not appropriate for the base, or if integer
overflow occurs.

mdb_alloc(), mdb_zalloc() and mdb_free() Functions
void *mdb_alloc(size_t size, uint_t flags);
void *mdb_zalloc(size_t size, uint_t flags);
void mdb_free(void *buf, size_t size);
void mdb_free_gc(void *buf, size_t size);

mdb_alloc() allocates size bytes of debugger memory and returns a pointer to the
allocated memory. The allocated memory is at least double-word aligned, so it can
hold any C data structure. No greater alignment can be assumed. The flags parameter
should be the bitwise OR of one or more of the following values:

UM_NOSLEEP
If sufficient memory to fulfill the request is not immediately available, return NULL to
indicate failure. The caller must check for NULL and handle this case appropriately.

UM_SLEEP
If sufficient memory to fulfill the request is not immediately available, sleep until such
time as the request can be fulfilled. As a result, UM_SLEEP allocations are guaranteed
to succeed. The caller need not check for a NULL return value.

Chapter 10
MDB API Functions

10-14

UM_GC
Garbage-collect allocation automatically at the end of this debugger command. The caller
should not subsequently call mdb_free() on this block, as the debugger will take care of
deallocation automatically. All memory allocation from within a dcmd must use UM_GC so that
if the dcmd is interrupted by the user, the debugger can garbage-collect the memory.

mdb_zalloc() is like mdb_alloc(), but the allocated memory is filled with zeroes before
returning it to the caller. No guarantees are made about the initial contents of memory
returned by mdb_alloc(). mdb_free() is used to free previously allocated memory (unless it
was allocated UM_GC). The buffer address and size must exactly match the original allocation.
It is not legal to free only a portion of an allocation with mdb_free(). It is not legal to free an
allocation more than once. An allocation of zero bytes always returns NULL; freeing a NULL
pointer with size zero always succeeds. mdb_free_gc() can be used to free memory
previously allocated with UM_GC. It should only be used for larger buffers which are no longer
in use.

mdb_printf() Function
void mdb_printf(const char *format, ...);

Print formatted output using the specified format string and arguments. Module writers should
use mdb_printf() for all output, except for warning and error messages. This function
automatically triggers the built-in output pager when appropriate. The mdb_printf() function
is similar to printf(3C), with certain exceptions: the %C, %S, and %ws specifiers for wide
character strings are not supported, the %f floating-point format is not supported, the %e, %E,
%g, and %G specifiers for alternative double formats produce only a single style of output, and
precision specifications of the form %.n are not supported. The list of specifiers that are
supported follows.

Flag Specifiers
%#
If the # sign is found in the format string, this selects the alternate form of the given format.
Not all formats have an alternate form; the alternate form is different depending on the
format. Refer to the format descriptions below for details on the alternate format.

%+
When printing signed values, always display the sign (prefix with either '+' or '-'). Without %+,
positive values have no sign prefix, and negative values have a '-' prefix prepended to them.

%-
Left-justify the output within the specified field width. If the width of the output is less than the
specified field width, the output will be padded with blanks on the right-hand side. Without %-,
values are right-justified by default.

%0
Zero-fill the output field if the output is right-justified and the width of the output is less than
the specified field width. Without %0, right-justified values are prepended with blanks in order
to fill the field.

Chapter 10
MDB API Functions

10-15

https://docs.oracle.com/cd/E88353_01/html/E37843/printf-3c.html

Field Width Specifiers
%n
Field width is set to the specified decimal value.

%?
Field width is set to the maximum width of a hexadecimal pointer value. This is 8 in an
ILP32 environment, and 16 in an LP64 environment.

%*
Field width is set to the value specified at the current position in the argument list.
This value is assumed to be an int. Note that in the 64-bit compilation environment, it
may be necessary to cast long values to int.

Integer Specifiers
%h
Integer value to be printed is a short.

%l
Integer value to be printed is a long.

%ll
Integer value to be printed is a long long.

Terminal Attribute Specifiers
If standard output for the debugger is a terminal, and terminal attributes can be
obtained by the terminfo database, the following terminal escape constructs can be
used:

%<n>
Enable the terminal attribute corresponding to n. Only a single attribute can be
enabled with each instance of %<>.

%</n>
Disable the terminal attribute corresponding to n. Note that in the case of reverse
video, dim text, and bold text, the terminal codes to disable these attributes might be
identical. Therefore, it might not be possible to disable these attributes independently
of one another.

If no terminal information is available, each terminal attribute construct is ignored by
mdb_printf(). For more information about terminal attributes, see terminfo(5). The
available terminfo attributes are:

a
Alternate character set

b
Bold text

d
Dim text

Chapter 10
MDB API Functions

10-16

https://docs.oracle.com/cd/E88353_01/html/E37852/esc-terminfo-5.html

r
Reverse video

s
Best standout capability

u
Underlining

Format Specifiers
%%
The percent sign (%) symbol is printed.

%a
Prints an address in symbolic form. The minimum size of the value associated with %a is a
uintptr_t; specifying %la is not necessary. If address-to-symbol conversion is on, the
debugger will attempt to convert the address to a symbol name followed by an offset in the
current output radix and print this string; otherwise, the value is printed in the default output
radix. If %#a is used, the alternate format adds a ':' suffix to the output.

%A
This format is identical to %a, except when an address cannot be converted to a symbol
name plus an offset, nothing is printed. If %#A is used, the alternate format prints a question
mark (?) when address conversion fails.

%b
Decode and print a bit field in symbolic form. This specifier expects two consecutive
arguments: the bit field value (int for %b, long for %lb, and so forth), and a pointer to an
array of mdb_bitmask_t structures:

typedef struct mdb_bitmask {
 const char *bm_name; /* String name to print */
 u_longlong_t bm_mask; /* Mask for bits */
 u_longlong_t bm_bits; /* Result for value & mask */
} mdb_bitmask_t;

The array should be terminated by a structure whose bm_name field is set to NULL. When %b
is used, the debugger reads the value argument, then iterates through each mdb_bitmask
structure checking to see if:
(value & bitmask->bm_mask) == bitmask->bm_bits
If this expression is true, the bm_name string is printed. Each string printed is separated by a
comma. The following example shows how %b can be used to decode the t_flag field in a
kthread_t:

const mdb_bitmask_t t_flag_bits[] = {
 { "T_INTR_THREAD", T_INTR_THREAD, T_INTR_THREAD },
 { "T_WAKEABLE", T_WAKEABLE, T_WAKEABLE },
 { "T_TOMASK", T_TOMASK, T_TOMASK },
 { "T_TALLOCSTK", T_TALLOCSTK, T_TALLOCSTK },
 /* ... */
 { NULL, 0, 0 }
};

void

Chapter 10
MDB API Functions

10-17

thr_dump(kthread_t *t)
{
 mdb_printf("t_flag = <%hb>\n", t->t_flag, t_flag_bits);
 /* ... */
}

If t_flag was set to 0x000a, the function would print:

t_flag = <T_WAKEABLE,T_TALLOCSTK>

If %#b is specified, the union of all bits that were not matched by an element in the
bitmask array is printed as a hexadecimal value following the decoded names.

%c
Print the specified integer as an ASCII character.

%d
Print the specified integer as a signed decimal value. Same as %i. If %#d is specified,
the alternate format prefixes the value with '0t'.

%e
Print the specified double in the floating-point format [+/-]d.ddddddde[+/-]dd, where
there is one digit before the radix character, seven digits of precision, and at least two
digits following the exponent.

%E
Print the specified double using the same rules as %e, except that the exponent
character will be 'E' instead of 'e'.

%g
Print the specified double in the same floating-point format as %e, but with sixteen
digits of precision. If %llg is specified, the argument is expected to be of type long
double (quad-precision floating-point value).

%G
Print the specified double using the same rules as %g, except that the exponent
character will be 'E' instead of 'e'.

%H
Print the specified 64-bit signed integer with byte count value in human readable form
(for example, 1345433533242 would print as 1.2T). The default format will use
standard unit notation per SI for the unit letters. Alternately, you can use the %#H
format to print all lower case letters.

%i
Print the specified integer as a signed decimal value. Same as %d. If %#i is specified,
the alternate format prefixes the value with '0t'.

%I
Print the specified 32-bit unsigned integer as an Internet IPv4 address in dotted-
decimal format (for example, the hexadecimal value 0xffffffff would print as
255.255.255.255).

Chapter 10
MDB API Functions

10-18

%m
Print a margin of whitespace. If no field is specified, the default output margin width is used;
otherwise, the field width determines the number of characters of white space that are
printed.

%N
Dereference a pointer to a 128-bit value, convert it to network order, and reformat the value
as an IPv6 address. If the value represents an IPv4 address, the value is formatted as
follows:

• Dotted-decimal format preceded by two colon characters (::) for IPv4 compatibility
addresses

• Dotted-decimal format preceded by ::ffff: for IPv4 mapped addresses

The value is formatted as eight 16-bit hexadecimal values that are separated by colon (:)
characters.
The following list shows the network order and format of the various address types:

• IPv4: Network order is 000000000000000000000000ffffffff and the format
is ::255.255.255.255

• IPv4 mapped: Network order is 00000000000000000000ffffffffffff and the format
is ::ffff:255.255.255.255

• IPv6: Network order is ffffffff0000ffff0000ffff0000ffff and the format is
ffff:ffff:0:ffff:0:ffff:0:ffff

%o
Print the specified integer as an unsigned octal value. If %#o is used, the alternate format
prefixes the output with '0'.

%p
Print the specified pointer (void *) as a hexadecimal value.

%q
Print the specified integer as a signed octal value. If %#o is used, the alternate format
prefixes the output with '0'.

%r
Print the specified integer as an unsigned value in the current output radix. The user can
change the output radix using the $d dcmd. If %#r is specified, the alternate format prefixes
the value with the appropriate base prefix: '0i' for binary, '0o' for octal, '0t' for decimal, or '0x'
for hexadecimal.

%R
Print the specified integer as a signed value in the current output radix. If %#R is specified, the
alternate format prefixes the value with the appropriate base prefix.

%s
Print the specified string (char *). If the string pointer is NULL, the string '<NULL>' is printed.

%t
Advance one or more tab stops. If no width is specified, output advances to the next tab
stop; otherwise the field width determines how many tab stops are advanced.

Chapter 10
MDB API Functions

10-19

%T
Advance the output column to the next multiple of the field width. If no field width is
specified, no action is taken. If the current output column is not a multiple of the field
width, white space is added to advance the output column.

%u
Print the specified integer as an unsigned decimal value. If %#u is specified, the
alternate format prefixes the value with '0t'.

%x
Print the specified integer as a hexadecimal value. The characters a-f are used as the
digits for the values 10-15. If %#x is specified, the alternate format prefixes the value
with '0x'.

%X
Print the specified integer as a hexadecimal value. The characters A-F are used as
the digits for the values 10-15. If %#X is specified, the alternate format prefixes the
value with '0X'.

%Y
The specified time_t is printed as the string 'year month day HH:MM:SS'.

mdb_vprintf() Function
void mdb_vprintf(const char *format, va_list alist);

Behaves the same way as mdb_printf(). Instead of being called with a variable
number of arguments, mdb_vprintf() is called with an argument list va_list as
defined in the stdarg.h header file.

mdb_help_print() Function
void mdb_help_print(const char *message);

Print <message> to standard output, wrapping it at spaces and tabs as necessary.
Recognizes only the "%%", "%<n>" and "%</n>" formatting characters from
mdb_printf(), to allow for setting terminal attributes. If formatted output is needed,
mdb_help_print() can be interspersed with calls to mdb_printf() to achieve it. Unlike
mdb_printf(), mdb_help_print() is designed for wrapping regular text.

A useful idiom is to arrange the continuing spaces in paragraphs at the beginning of
the following line:

mdb_help_print(
"This is a long set of sentences which will need to be"
" wrapped on output. We move the continuing spaces to"
" the beginning of the following line and put"
" double-newlines on their own line, to separate"
" paragraphs visually."
"\n\n"
"Here's a new paragraph. Additional text can go here"
" to say whatever needs saying."
"\n\n");

Chapter 10
MDB API Functions

10-20

mdb_help_print_section() Function
void mdb_help_print_section(const char *name);

Print a section break in a ::help message, similar to the section headers provided by MDB.

mdb_help_print_defs() Function
void mdb_help_print_defs(const mdb_help_def_t *defs, uint_t flags);

Prints an array of {term, definition} pairs in a uniform way. mdb_help_def_t is defined as:

typedef struct mdb_help_def {
 const char *mh_term; /* Term ("-v") */
 const char *mh_def; /* Definition ("verbose") */
 } mdb_help_def_t;

The 'defs' array is terminated by an entry with a NULL mh_term. If flag is
MDB_HPD_TERM_RIGHT, the "term" field will be right-justified if appropriate.

mh_term and mh_def are processed the same way mdb_help_print() processes its
argument, so "%%", "%<n>", and "%</n>" may be used.

The output format will be either a two-column output:

term1 def1
 term2 this is a long definition which
 wraps to a new line
 term3 def3

or a multi-line output:

term1 is a long term
 def1
term2
 this is a long definition which wraps
 to a new line
term3
 def3

mdb_help_print_examples() Function
void mdb_help_print_examples(const char *title, const mdb_help_example_t *examples)

Prints examples of dcmds. examples is a NULL terminated array of mdb_help_example_t
entries.

If the title is not NULL then it is printed as a title. If title is NULL then the title is automatically
set to "EXAMPLES" if the examples array has more than one non NULL entry or "EXAMPLE"
if there is just a single example. If title points to a zero length string no title is printed.

It then prints the examples array of {description, example} pairs in a uniform way on
alternating lines with appropriate indentation and the description terminated with a ":". The
mdb_help_example_t is defined thus:

typedef struct mdb_help_example {
 const char *mhe_desc; /* Description */

Chapter 10
MDB API Functions

10-21

 const char *mhe_example; /* example "::walk walker | ::dcmd"*/
 } mdb_help_example_t;

mdb_snprintf() Function
size_t mdb_snprintf(char *buf, size_t len, const char *format, ...);

Construct a formatted string based on the specified format string and arguments, and
store the resulting string into the specified buf. The mdb_snprintf() function accepts
the same format specifiers and arguments as the mdb_printf() function. The len
parameter specifies the size of buf in bytes. No more than len - 1 formatted bytes are
placed in buf; mdb_snprintf() always terminates buf with a null byte. The function
returns the number of bytes required for the complete formatted string, not including
the terminating null byte. If the buf parameter is NULL and len is set to zero, the
function will not store any characters to buf and returns the number of bytes required
for the complete formatted string; this technique can be used to determine the
appropriate size of a buffer for dynamic memory allocation.

mdb_vsnprintf() Function
size_t mdb_vsnprintf(char *buf, size_t nbytes, const char *format, va_list
alist);

Behaves the same way as mdb_snprintf(). Instead of being called with a variable
number of arguments, mdb_vsnprintf() is called with an argument list va_list as
defined in the stdarg.h header file.

mdb_asprintf() and mdb_vasprintf() Functions
size_t mdb_asprintf(char **ret, uint_t flags, const char *format, ...);
size_t mdb_vasprintf(char **ret, uint_t flags, const char *format, va_list);

The mdb_asprintf() and mdb_vasprintf() functions behave similarly to the
mdb_snprintf() and mdb_vsnprintf() functions. However, the mdb_asprintf() and
mdb_vasprintf() functions use the ret argument to return a pointer to a sufficiently
sized buffer that contains the output string. The mdb_alloc() function uses the flags
argument to allocate the buffer. You can use the mdb_strfree() function to free data in
that buffer. If the flags argument does not contain UM_SLEEP, the allocation might fail.
If the allocation fails, these functions return -1 and the ret pointer has NULL written into
it. If these functions succeed, they return the length of the string that is stored in the
buffer.

mdb_warn() Function
void mdb_warn(const char *format, ...);

Print an error or warning message to standard error. The mdb_warn() function accepts
a format string and variable argument list that can contain any of the specifiers
documented for mdb_printf(). However, the output of mdb_warn() is sent to standard
error, which is not buffered and is not sent through the output pager or processed as
part of a dcmd pipeline. All error messages are automatically prefixed with the string
"mdb:".

Chapter 10
MDB API Functions

10-22

In addition, if the format parameter does not contain a newline (\n) character, the format
string is implicitly suffixed with the string ":%s\n", where %s is replaced by the error message
string corresponding to the last error recorded by a module API function. For example, the
following source code:

if (mdb_lookup_by_name("no_such_symbol", &sym) == -1)
 mdb_warn("lookup_by_name failed");

produces this output:

mdb: lookup_by_name failed: unknown symbol name

mdb_flush() Function
void mdb_flush(void);

Flush all currently buffered output. Normally, mdb's standard output is line-buffered; output
generated using mdb_printf() is not flushed to the terminal (or other standard output
destination) until a newline is encountered, or at the end of the current dcmd. However, in
some situations you might want to explicitly flush standard output prior to printing a newline;
mdb_flush() can be used for this purpose.

mdb_nhconvert() Function
void mdb_nhconvert(void *dst, const void *src, size_t nbytes);

Convert a sequence of nbytes bytes stored at the address specified by src from network byte
order to host byte order and store the result at the address specified by dst. The src and dst
parameters may be the same, in which case the object is converted in place. This function
may be used to convert from host order to network order or from network order to host order,
since the conversion is the same in either case.

mdb_dumpptr() and mdb_dump64() Functions
int mdb_dumpptr(uintptr_t addr, size_t nbytes, uint_t flags,
 mdb_dumpptr_cb_t func, void *data);
int mdb_dump64(uint64_t addr, uint64_t nbytes, uint_t flags,
 mdb_dump64_cb_t func, void *data);

These functions can be used to generate formatted hexadecimal and ASCII data dumps that
are printed to standard output. Each function accepts an addr parameter specifying the
starting location, a nbytes parameter specifying the number of bytes to display, a set of flags
described below, a func callback function to use to read the data to display, and a data
parameter that is passed to each invocation of the callback func as its last argument. The
functions are identical in every regard except that mdb_dumpptr uses uintptr_t for its
address parameters and mdb_dump64 uses uint64_t. This distinction is useful when
combining mdb_dump64 with mdb_pread, for example. The built-in ::dump dcmd uses these
functions to perform its data display.

The flags parameter should be the bitwise OR of one or more of the following values:

MDB_DUMP_RELATIVE
Number lines relative to the start address instead of with the explicit address of each line.

Chapter 10
MDB API Functions

10-23

MDB_DUMP_ALIGN
Align the output at a paragraph boundary.

MDB_DUMP_PEDANT
Display full-width addresses instead of truncating the address to fit the output in 80
columns.

MDB_DUMP_ASCII
Display ASCII values next to the hexadecimal data.

MDB_DUMP_HEADER
Display a header line about the data.

MDB_DUMP_TRIM
Only read from and display the contents of the specified addresses, instead of reading
and printing entire lines.

MDB_DUMP_SQUISH
Elide repeated lines by placing a "*" on a line that is a repeat of the previous line.

MDB_DUMP_NEWDOT
Update the value of dot to the address beyond the last address read by the function.

MDB_DUMP_ENDIAN
Adjust for endianness. This option assumes that the word size is equal to the current
group size, specified by MDB_DUMP_GROUP(). This option will always turn off alignment,
headers, and ASCII display to avoid confusing output. If MDB_DUMP_TRIM is set with
MDB_DUMP_ENDIAN, the number of bytes dumped will be rounded down to the nearest
word size bytes.

MDB_DUMP_WIDTH(width)
Increase the number of 16-byte paragraphs per line that are displayed. The default
value of width is one, and the maximum value is 16.

MDB_DUMP_GROUP(group)
Set the byte group size to group. The default group size is four bytes. The group size
must be a power of two that divides the line width.

mdb_one_bit() Function
const char *mdb_one_bit(int width, int bit, int on);

The mdb_one_bit() function can be used to print a graphical representation of a bit
field in which a single bit of interest is turned on or off. This function is useful for
creating verbose displays of bit fields similar to the output from snoop -v. For
example, the following source code:

#define FLAG_BUSY 0x1

uint_t flags;

/* ... */

mdb_printf("%s = BUSY\n", mdb_one_bit(8, 0, flags & FLAG_BUSY));

produces this output:

Chapter 10
MDB API Functions

10-24

.... ...1 = BUSY

Each bit in the bit field is printed as a period (.), with each 4-bit sequence separated by a
white space. The bit of interest is printed as 1 or 0, depending on the setting of the on
parameter. The total width of the bit field in bits is specified by the width parameter, and the
bit position of the bit of interest is specified by the bit parameter. Bits are numbered starting
from zero. The function returns a pointer to an appropriately sized, null-terminated string
containing the formatted bit representation. The string is automatically garbage-collected
upon completion of the current dcmd.

mdb_inval_bits() Function
const char *mdb_inval_bits(int width, int start, int stop);

The mdb_inval_bits() function is used, along with mdb_one_bit(), to print a graphical
representation of a bit field. This function marks a sequence of bits as invalid or reserved by
displaying an 'x' at the appropriate bit location. Each bit in the bit field is represented as a
period (.), except for those bits in the range of bit positions specified by the start and stop
parameters. Bits are numbered starting from zero. For example, the following source code:

mdb_printf("%s = reserved\n", mdb_inval_bits(8, 7, 7));

produces this output:

x... = reserved

The function returns a pointer to an appropriately sized, null-terminated string containing the
formatted bit representation. The string is automatically garbage-collected upon completion of
the current dcmd.

mdb_inc_indent() and mdb_dec_indent() Functions
ulong_t mdb_inc_indent(ulong_t n);
ulong_t mdb_dec_indent(ulong_t n);

These functions increment and decrement the numbers of columns that MDB will auto-indent
with white space before printing a line of output. The size of the delta is specified by n, a
number of columns. Each function returns the previous absolute value of the indent. Attempts
to decrement the indent below zero have no effect. Following a call to either function,
subsequent calls to mdb_printf() are indented appropriately. If the dcmd completes or is
forcibly aborted by the user, the indent is restored automatically to its default setting by the
debugger.

mdb_eval() Function
int mdb_eval(const char *s);

Evaluate and execute the specified command string s, as if it had been read from standard
input by the debugger. This function returns 0 for success, or -1 for error. mdb_eval() fails if
the command string contains a syntax error, or if the command string executed by mdb_eval()
is forcibly terminated by the user using the pager or by issuing an interrupt.

Chapter 10
MDB API Functions

10-25

mdb_set_dot() and mdb_get_dot() Functions
void mdb_set_dot(uintmax_t dot);
uintmax_t mdb_get_dot(void);

Set or get the current value of dot (the "." variable). Module developers might want to
reposition dot so that, for example, it refers to the address following the last address
read by the dcmd.

mdb_get_pipe() Function
void mdb_get_pipe(mdb_pipe_t *p);

Retrieve the contents of the pipeline input buffer for the current dcmd. The
mdb_get_pipe() function is intended to be used by dcmds that want to consume the
complete set of pipe input and execute only once, instead of being invoked repeatedly
by the debugger for each pipe input element. Once mdb_get_pipe() is invoked, the
dcmd will not be invoked again by the debugger as part of the current command. This
can be used, for example, to construct a dcmd that sorts a set of input values.

The pipe contents are placed in an array that is garbage-collected upon termination of
the dcmd, and the array pointer is stored in p->pipe_data. The length of the array is
placed in p->pipe_len. If the dcmd was not executed on the right-hand side of a
pipeline (that is, the DCMD_PIPE flag was not set in its flags parameter), p->pipe_data
is set to NULL and p->pipe_len is set to zero.

mdb_set_pipe() Function
void mdb_set_pipe(const mdb_pipe_t *p);

Set the pipeline output buffer to the contents described by the pipe structure p. The
pipe values are placed in the array p->pipe_data, and the length of the array is stored
in p->pipe_len. The debugger makes its own copy of this information, so the caller
must remember to free p->pipe_data if necessary. If the pipeline output buffer was
previously non-empty, its contents are replaced by the new array. If the dcmd was not
executed on the left side of a pipeline (that is, the DCMD_PIPE_OUT flag was not set in its
flags parameter), this function has no effect.

mdb_get_xdata() Function
ssize_t mdb_get_xdata(const char *name, void *buf, size_t nbytes);

Read the contents of the target external data buffer specified by name into the buffer
specified by buf. The size of buf is specified by the nbytes parameter; no more than
nbytes will be copied to the caller's buffer. The total number of bytes read will be
returned upon success; -1 will be returned upon error. If the caller wants to determine
the size of a particular named buffer, buf should be specified as NULL and nbytes
should be specified as zero. In this case, mdb_get_xdata() will return the total size of
the buffer in bytes but no data will be read. External data buffers provide module
writers access to target data that is not otherwise accessible through the module API.
The set of named buffers exported by the current target can be viewed using
the ::xdata built-in dcmd.

Chapter 10
MDB API Functions

10-26

Additional MDB Functions for Module Programmers
Additionally, module writers can use the following string(3C) and bstring(3C) functions.
They are guaranteed to have the same semantics as the functions described in the
corresponding Oracle Solaris man page.

For information about these string functions, see the bcmp(3C), bcopy(3C), bsearch(3C),
bzero(3C), qsort(3C), strcasecmp(3C), strcasestr(3C), strcat(3C), strchr(3C),
strcmp(3C), strcpy(3C), strlcat(3C), strlcpy(3C), strlen(3C), strncasecmp(3C),
strncmp(3C), strncpy(3C), strnlen(3C), strnstr(3C), strrchr(3C), strsep(3C), and
strspn(3C) man pages.

Chapter 10
MDB API Functions

10-27

https://docs.oracle.com/cd/E88353_01/html/E37843/string-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/bstring-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/bcmp-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/bcopy-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/bsearch-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/bzero-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/qsort-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strcasecmp-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strcasestr-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strcat-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strchr-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strcmp-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strcpy-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strlcat-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strlcpy-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strlen-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strncasecmp-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strncmp-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strncpy-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strnlen-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strnstr-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strrchr-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strsep-3c.html
https://docs.oracle.com/cd/E88353_01/html/E37843/strspn-3c.html

A
Transition From adb and kadb to MDB

The transition from using the legacy adb(1) utility to using mdb(1) is relatively simple: MDB
provides evolutionary compatibility for the adb syntax, built-in commands, and command-line
options. MDB attempts to provide compatibility for all existing adb features, but it is not bug-
for-bug compatible with adb. This appendix briefly discusses several features of adb that are
not precisely emulated by MDB in order to guide users to the new functionality.

Command-Line Option Differences Between adb and MDB
MDB provides a superset of the command-line options recognized by adb. All the adb
options are supported and have the same meaning as before. The /usr/bin/adb
pathname is delivered as a link that invokes mdb(1), and automatically enables enhanced
adb compatibility mode. Executing the /usr/bin/adb link is equivalent to executing mdb
with the -o adb option, or executing ::set -o adb once the debugger has started.

Syntax Differences Between adb and MDB
The MDB language adheres to the same syntax as the adb language, in order to provide
compatibility for legacy macros and script files. New MDB dcmds use the extended
form ::name, in order to distinguish them from legacy commands that are prefixed with
either : or $. Expressions can also be evaluated on the right-hand side of a dcmd name by
enclosing them in square brackets preceded by a dollar sign ($[]). Similar to adb, an input
line that begins with an exclamation mark (!) indicates that the command line should be
executed by the user's shell. In MDB, a debugger command may also be suffixed with an
exclamation mark to indicate that its output should be piped to the shell command following
the exclamation mark.

In adb, binary operators are left associative and have lower precedence than unary
operators. Binary operators are evaluated in strict left-to-right order on the input line. In MDB,
binary operators are left associative and have lower precedence than unary operators, but
the binary operators operate in order of precedence according to the table in Binary
Operators in MDB. The operators conform to the order of precedence in ANSI C. Legacy adb
macro files that do not explicitly parenthesize ambiguous expressions may need to be
updated to work with MDB. For example, in adb the following command evaluates to the
integer value nine:

$ echo "4-1*3=X" | adb
 9

In MDB, as in ANSI C, operator * has higher precedence than - and therefore the result is
the integer value one:

$ echo "4-1*3=X" | mdb
 1

A-1

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

Watchpoint Length Specifier Differences Between adb and
MDB

The watchpoint length specifier syntax recognized by MDB is different from the syntax
described in adb. In particular, the adb watchpoint commands :w, :a, and :p allow an
integer length in bytes to be inserted between the colon and the command character.
In MDB, the count should be specified following the initial address as a repeat count.
Stated simply, these adb commands:

123:456w
123:456a
123:456p

are specified in MDB as:

123,456:w
123,456:a
123,456:p

The MDB ::wp dcmd provides more complete facilities for creating user process
watchpoints. Similarly, the legacy kadb length modifier command $l is not supported.
Therefore, the watchpoint size should be specified to each ::wp command used in
kmdb.

Address Map Modifier Differences Between adb and MDB
The adb commands to modify segments of the virtual address map and object file map
are not present in MDB. Specifically, the /m, /*m, ?m, and ?*m format specifiers are not
recognized or supported by MDB. These specifiers were used to manually modify the
valid addressable range of the current object and core files. MDB properly recognizes
the addressable range of such files automatically, and updates the ranges when a live
process is being debugged, so these commands are no longer necessary.

Command Output Differences Between adb and MDB
The precise text output form of some commands is different in MDB. Macro files are
formatted using the same basic rules, but shell scripts that depend on the precise
character-by-character output of certain commands may need to change. Users who
have shell scripts that parse the output of adb commands will need to revalidate and
update such scripts as part of the transition to MDB.

Deferred Breakpoint Differences Between adb and MDB
The legacy kadb utility supported a syntax for deferred breakpoints that was
incompatible with the existing adb syntax. These deferred breakpoints were specified
using the syntax module # symbol :b in kadb. To set a deferred breakpoint in kmdb,
use the MDB ::bp dcmd as described in Execution Control in MDB.

Appendix A
Watchpoint Length Specifier Differences Between adb and MDB

A-2

x86: I/O Port Access in adb and MDB
The legacy kadb utility provided access to I/O ports on x86 systems using the :i and :o
commands. These commands are not supported in mdb or kmdb. Access to I/O ports on x86
systems is provided by the ::in and ::out commands.

Appendix A
x86: I/O Port Access in adb and MDB

A-3

B
Transition From crash to MDB

The transition from using the legacy crash utility to using mdb(1) is relatively simple: MDB
provides most of the "canned" crash commands. The additional extensibility and interactive
features of MDB allow the programmer to explore aspects of the system not examined by the
current set of commands. This appendix briefly discusses several features of crash and
provides pointers to equivalent MDB functionality.

Command-Line Option Differences Between crash and MDB
The crash -d, -n, and -w command-line options are not supported by mdb. The crash dump
file and name list (symbol table file) are specified as arguments to mdb in the order of name
list, crash dump file. To examine the live kernel, the mdb --Kernel command should be
specified with no additional arguments. Users who want to redirect the output of mdb to a file
or other output destination, should either employ the appropriate shell redirection operator
following the mdb invocation on the command line, or use the ::log built-in dcmd.

Input Differences Between crash and MDB
In general, input in MDB is similar to crash, except that function names (in MDB, dcmd
names) are prefixed with ::. Some MDB dcmds accept a leading expression argument that
precedes the dcmd name. Like crash, string options can follow the dcmd name. If a !
character follows a function invocation, MDB will also create a pipeline to the specified shell
pipeline. All immediate values specified in MDB are interpreted in hexadecimal by default.
The radix specifiers for immediate values are different in crash and MDB as shown in Radix
Specifiers in crash and MDB.

Table B-1 Radix Specifiers in crash and MDB

crash mdb Radix

0x 0x hexadecimal (base 16)

0d 0t decimal (base 10)

0b 0i binary (base 2)

Many crash commands accepted slot numbers or slot ranges as input arguments. The
Oracle Solaris operating system is no longer structured in terms of slots, so MDB dcmds do
not provide support for slot-number processing.

Crash Functions and MDB Dcmds

crash function mdb dcmd Comments

? ::dcmds List available functions.

!command !command Escape to the shell and execute command.

B-1

https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html

crash function mdb dcmd Comments

base = In mdb, the = format character can be used to convert the left-
hand expression value to any of the known formats. Formats for
octal, decimal, and hexadecimal are provided.

callout ::callout Print the callout table.

class ::class Print scheduling classes.

cpu ::cpuinfo Print information about the threads dispatched on the system
CPUs. If the contents of a particular CPU structure are needed,
the user should apply the $<cpu macro to the CPU address in
mdb.

help ::help Print a description of the named dcmd, or general help
information.

kfp ::regs The mdb ::regs dcmd displays the complete kernel register set,
including the current stack frame pointer. The $C dcmd can be
used to display a stack backtrace including frame pointers.

kmalog ::kmalog Display events in kernel memory allocator transaction log.

kmastat ::kmastat Print kernel memory allocator transaction log.

kmausers ::kmausers Print information about the medium and large users of the kernel
memory allocator that have current memory allocations.

mount ::fsinfo Print information about mounted file systems.

nm ::nm Print symbol type and value information.

od ::dump Print a formatted memory dump of a given region. In
mdb, ::dump displays a mixed ASCII and hexadecimal display of
the region.

proc ::ps Print a table of the active processes.

quit ::quit Quit the debugger.

rd ::dump Print a formatted memory dump of a given region. In
mdb, ::dump displays a mixed ASCII and hexadecimal display of
the region.

redirect ::log In mdb, output for input and output can be globally redirected to
a log file using ::log.

search ::kgrep In mdb, the ::kgrep dcmd can be used to search the kernel's
address space for a particular value. The pattern match built-in
dcmds can also be used to search the physical, virtual, or object
files address spaces for patterns.

stack ::stack The current stack trace can be obtained using ::stack. The stack
trace of a particular kernel thread can be determined using
the ::findstack dcmd. A memory dump of the current stack can
be obtained using the / or ::dump dcmds and the current stack
pointer. The $<stackregs macro can be applied to a stack
pointer to obtain the per-frame saved register values.

status ::status Display status information about the system or dump being
examined by the debugger.

stream ::stream The mdb ::stream dcmd can be used to format and display the
structure of a particular kernel STREAM. If the list of active
STREAM structures is needed, the user should execute ::walk
stream_head_cache in mdb and pipe the resulting addresses to
an appropriate formatting dcmd or macro.

Appendix B
Crash Functions and MDB Dcmds

B-2

crash function mdb dcmd Comments

strstat ::kmastat The ::kmastat dcmd displays a superset of the information
reported by the strstat function.

trace ::stack The current stack trace can be obtained using ::stack. The stack
trace of a particular kernel thread can be determined using
the ::findstack dcmd. A memory dump of the current stack can
be obtained using the / or ::dump dcmds and the current stack
pointer. The $<stackregs macro can be applied to a stack
pointer to obtain the per-frame saved register values.

var $<v Print the tunable system parameters in the global var structure.

vfs ::fsinfo Print information about mounted file systems.

vtop ::vtop Print the physical address translation of the given virtual
address.

Appendix B
Crash Functions and MDB Dcmds

B-3

Index

Symbols
_mdb_fini() function, 10-2
_mdb_init() function, 10-1
::alias dcmd, 5-1
::array dcmd, 5-1
::attach dcmd, 5-1
::bp dcmd, 6-3
::branches dcmd, 5-1
::call dcmd, 6-3
::cat dcmd, 5-1
::cont dcmd, 5-1, 6-3
::context dcmd, 5-1
::cpuregs dcmd, 5-1
::cpustack dcmd, 5-1
::dcmds dcmd, 5-1
::delete dcmd, 6-3
::dis dcmd, 5-1
::disasms dcmd, 5-1
::dismode dcmd, 5-1
::dmods dcmd, 5-1
::dump dcmd, 5-1
::echo dcmd, 5-1
::eval dcmd, 5-1
::events dcmd, 6-3
::evset dcmd, 6-3
::files dcmd, 5-1
::findsym dcmd, 5-1
::fltbp dcmd, 6-3
::formats dcmd, 3-12, 5-1
::fpregs dcmd, 5-1
::grep dcmd, 5-1
::head dcmd, 5-1
::help dcmd, 5-1
::if dcmd, 5-1
::kill dcmd, 6-3
::len dcmd, 5-1
::list dcmd, 5-1
::load dcmd, 5-1
::log dcmd, 5-1
::map dcmd, 5-1
::mappings dcmd, 5-1

::next dcmd, 6-3
::nm dcmd, 5-1
::nmadd dcmd, 5-1
::nmdel dcmd, 5-1
::objects dcmd, 5-1
::offsetof dcmd, 5-1
::out dcmd, 5-1
::print dcmd, 5-1
::printf dcmd, 5-1
::quit dcmd, 5-1
::regs dcmd, 5-1
::release dcmd, 5-1
::run dcmd, 6-3
::set dcmd, 5-1
::showrev dcmd, 5-1
::sigbp dcmd, 6-3
::sizeof dcmd, 5-1
::sort dcmd, 5-1
::spin dcmd, 6-3
::stack dcmd, 5-1
::stackinfo dcmd, 5-1
::status dcmd, 5-1
::step dcmd, 6-3
::strlen dcmd, 5-1
::sum dcmd, 5-1
::switch dcmd, 5-1
::sysbp dcmd, 6-3
::tail dcmd, 5-1
::term dcmd, 5-1
::thread dcmd, 5-1
::typeset dcmd, 5-1
::unload dcmd, 5-1
::unset dcmd, 5-1
::vars dcmd, 5-1
::version dcmd, 5-1
::vtop dcmd, 5-1
::walk dcmd, 5-1
::walkers dcmd, 5-1
::wc dcmd, 5-1
::whence dcmd, 5-1
::which dcmd, 3-11, 5-1
::wp dcmd, 6-3

Index-1

::xdata dcmd, 5-1
:a dcmd, 6-3
:A dcmd, 5-1
:b dcmd, 6-3
:c dcmd, 6-3
:d dcmd, 6-3
:e dcmd, 6-3
:i dcmd, 6-3
:p dcmd, 6-3
:r dcmd, 6-3
:R dcmd, 5-1
:s dcmd, 6-3
:t dcmd, 6-3
:u dcmd, 6-3
:w dcmd, 6-3
:x dcmd, 5-1
:z dcmd, 6-3
. (period character), 3-1
> dcmd, 5-1
$? dcmd, 5-1
$< dcmd, 5-1
$<< dcmd, 5-1
$b dcmd, 6-3
$C dcmd, 5-1
$d dcmd, 5-1
$e dcmd, 5-1
$i dcmd, 6-3
$I dcmd, 6-3
$L dcmd, 6-3
$M dcmd, 5-1
$P dcmd, 5-1
$s dcmd, 5-1
$v dcmd, 5-1
$w dcmd, 5-1
$W dcmd, 5-1

Numerics
0xbaddcafe uninitialized memory indicator, 9-13
0xdeadbeef freed memory indicator, 9-10
0xfeedface redzone indicator, 9-11

A
arithmetic expansion

definition, 3-3
arrow keys, 4-1

B
bcp pointer, 9-14
blank character definition, 3-1

bufctl data, 9-14
bufctl pointer, 9-15
buftag region, 9-11
bxstat pointer, 9-14

C
command

definition, 3-2
reentry, 4-1
shell escapes, 3-6

comment definition, 3-3
contents log, 9-18
CPUs and the dispatcher

dcmds
::callout, 8-6
::class, 8-6
::cpuinfo, 8-6

walkers
cpu, 8-6

crash command, B-1
cyclics

dcmds
::cyccover, 8-14
::cycinfo, 8-14
::cyclic, 8-14
::cyctrace, 8-14

walkers
cyccpu, 8-14
cyctrace, 8-14

D
DCMD_ABORT argument, 10-2
DCMD_ADDRSPEC argument, 10-2
DCMD_ERR argument, 10-2
DCMD_LOOP argument, 10-2
DCMD_LOOPFIRST argument, 10-2
DCMD_NEXT argument, 10-2
DCMD_OK argument, 10-2
DCMD_PIPE argument, 10-2
DCMD_PIPE_OUT argument, 10-2
DCMD_USAGE argument, 10-2
dcmds

::addr2smap, 8-5
::alias, 5-1
::allocdby, 8-1, 9-18
::array, 5-1
::as2proc, 8-5
::attach, 5-1
::binding_hash_entry, 8-7
::bp, 6-3
::branches, 5-1

Index

Index-2

dcmds (continued)
::bufctl, 8-1, 9-18
::call, 6-3
::callout, 8-6
::cat, 5-1
::class, 8-6
::cont, 5-1, 6-3
::context, 5-1
::cpuinfo, 8-6
::cpuregs, 5-1
::cpustack, 5-1
::cyccover, 8-14
::cycinfo, 8-14
::cyclic, 8-14
::cyctrace, 8-14
::dcmds, 5-1
::delete, 6-3
::devbindings, 8-7
::devinfo, 8-7
::devinfo2driver, 8-7
::devnames, 8-7
::dis, 5-1
::disasms, 5-1
::dismode, 5-1
::dmods, 5-1
::dump, 5-1
::echo, 5-1
::errorq, 8-15
::eval, 5-1
::events, 6-3
::evset, 6-3
::fd, 8-12
::files, 5-1
::findleaks, 8-1, 9-16
::findstack, 8-12
::findsym, 5-1
::fltbp, 6-3
::formats, 3-12, 5-1
::fpregs, 5-1
::freedby, 8-1, 9-18
::fsinfo, 8-4
::grep, 5-1
::head, 5-1
::help, 5-1
::if, 5-1
::ipcs, 8-16
::ire, 8-18
::kgrep, 8-1, 9-16
::kill, 6-3
::kmalog, 8-1
::kmastat, 8-1, 9-7
::kmausers, 8-1

dcmds (continued)
::kmem_cache, 8-1, 9-7
::kmem_log, 8-1, 9-18
::kmem_verify, 8-1, 9-17
::len, 5-1
::list, 5-1
::lminfo, 8-4
::lnode, 8-17
::lnode2dev, 8-17
::lnode2rdev, 8-17
::load, 5-1
::log, 5-1
::major2name, 8-7
::map, 5-1
::mappings, 5-1
::memlist, 8-5
::memstat, 8-5
::mi, 8-10
::modctl, 8-18
::modctl2devinfo, 8-7
::modhdrs, 8-18
::modinfo, 8-18
::msg, 8-16
::msqid, 8-16
::msqid_ds, 8-16
::name2major, 8-7
::netstat, 8-10
::next, 6-3
::nm, 5-1
::nmadd, 5-1
::nmdel, 5-1
::objects, 5-1
::offsetof, 5-1
::out, 5-1
::page, 8-5
::pgrep, 8-12
::pid2proc, 8-12
::pmap, 8-12
::print, 5-1
::printf, 5-1
::prtconf, 8-7
::ps, 8-12
::ptree, 8-12
::q2otherq, 8-8
::q2rdq, 8-8
::q2syncq, 8-8
::q2wrq, 8-8
::queue, 8-8
::quit, 5-1
::regs, 5-1
::release, 5-1
::run, 6-3

Index

Index-3

dcmds (continued)
::rwlock, 8-13
::seg, 8-5
::semid, 8-16
::semid_ds, 8-16
::set, 5-1
::shmid, 8-16
::shmid_ds, 8-16
::showrev, 5-1
::sigbp, 6-3
::sizeof, 5-1
::sobj2ts, 8-13
::softstate, 8-7
::sonode, 8-10
::sort, 5-1
::spin, 6-3
::stack, 5-1
::stackinfo, 5-1
::status, 5-1
::step, 6-3
::stream, 8-8
::strlen, 5-1
::sum, 5-1
::swapinfo, 8-5
::switch, 5-1
::syncq, 8-8
::syncq2q, 8-8
::sysbp, 6-3
::system, 8-15
::tail, 5-1
::task, 8-12
::taskq_entry, 8-15
::tcpb, 8-10
::term, 5-1
::thread, 5-1, 8-12
::ttrace, 8-20
::turnstile, 8-13
::typeset, 5-1
::uhci_qh, 8-18
::uhci_td, 8-18
::unload, 5-1
::unset, 5-1
::usb_pipe_handle, 8-19
::usba_clear_debug_buf,

8-19
::usba_debug_buf, 8-19
::usba_device, 8-19
::vars, 5-1
::version, 5-1
::vmem, 8-1
::vmem_seg, 8-1
::vnode2path, 8-4

dcmds (continued)
::vnode2smap, 8-5
::vtop, 5-1
::walk, 5-1
::walkers, 5-1
::wc, 5-1
::wchaninfo, 8-13
::whatis, 8-1, 9-16
::whence, 5-1
::whereopen, 8-12
::which, 3-11, 5-1
::wp, 6-3
::xdata, 5-1, 10-26
:a, 6-3
:A, 5-1
:b, 6-3
:c, 6-3
:d, 6-3
:e, 6-3
:i, 6-3
:p, 6-3
:r, 6-3
:R, 5-1
:s, 6-3
:t, 6-3
:u, 6-3
:w, 6-3
:x, 5-1
:z, 6-3
>, 5-1
$?, 5-1
$<, 5-1
$<<, 5-1
$>, 5-1
$b, 6-3
$c, 5-1
$C, 5-1
$d, 5-1
$e, 5-1
$f, 5-1
$i, 6-3
$I, 6-3
$L, 6-3
$m, 5-1
$M, 5-1
$p, 5-1
$P, 5-1
$q, 5-1
$r, 5-1
$s, 5-1
$v, 5-1
$V, 5-1

Index

Index-4

dcmds (continued)
$w, 5-1
$W, 5-1
$x, 5-1
$X, 5-1
$y, 5-1
$Y, 5-1
built-in operators, 3-1
execution control

built-ins, 6-3
formatting, 3-12
mdb built-ins, 5-1
metacharacters, 3-1
name resolution, 3-11

dcmds definition, 2-1
device drivers and DDI framework

dcmds
::binding_hash_entry, 8-7
::devbindings, 8-7
::devinfo, 8-7
::devinfo2driver, 8-7
::devnames, 8-7
::major2name, 8-7
::modctl2devinfo, 8-7
::name2major, 8-7
::prtconf, 8-7
::softstate, 8-7

walkers
binding_hash, 8-8
devi_next, 8-8
devinfo_children, 8-8
devinfo_parents, 8-8
devnames, 8-8
softstate, 8-8
softstate_all, 8-8

Directory Name Lookup Cache (DNLC), 8-4
dmod definition, 2-1
dot address definition, 3-1
dumpadm command, 9-2

E
editing commands, 4-1
error queues

dcmds
::errorq, 8-15

walkers
errorq, 8-15
errorq_data, 8-15

execution control built-in dcmds, 6-3
expression

components, 3-3
evaluation, 3-3

expression definition, 3-1

F
field width specifiers, 10-16
file systems

dcmds
::fsinfo, 8-4
::lminfo, 8-4
::vnode2path, 8-4

walkers
buf, 8-5

files, processes, and threads
dcmds

::fd, 8-12
::findstack, 8-12
::pgrep, 8-12
::pid2proc, 8-12
::pmap, 8-12
::ps, 8-12
::ptree, 8-12
::task, 8-12
::thread, 8-12
::whereopen, 8-12

walkers
file, 8-13
proc, 8-13
thread, 8-13

flag specifiers, 10-15
formatting

format characters, 3-12
search modifiers, 3-12
specifiers, 10-17
write modifiers, 3-12

full stop character, 3-1

I
identifier definition, 3-1
increment definition, 3-12
inline editing, 4-1
integer specifiers, 10-16
IP module debugging support (ip)

dcmds
::ire, 8-18

walkers
ire, 8-18

IPC debugging support (ipc)
dcmds

::ipcs, 8-16
::msg, 8-16
::msqid, 8-16
::msqid_ds, 8-16
::semid, 8-16
::semid_ds, 8-16

Index

Index-5

IPC debugging support (ipc) (continued)
dcmds (continued)
::shmid, 8-16
::shmid_ds, 8-16

walkers
msg, 8-17
msgqueue, 8-17
sem, 8-17
shm, 8-17

K
kernel debugging modules, 8-1
kernel memory allocator

dcmds
::allocdby, 8-1
::bufctl, 8-1
::findleaks, 8-1
::freedby, 8-1
::kgrep, 8-1
::kmalog, 8-1
::kmastat, 8-1
::kmausers, 8-1
::kmem_cache, 8-1
::kmem_log, 8-1
::kmem_verify, 8-1
::vmem, 8-1
::vmem_seg, 8-1
::whatis, 8-1

walkers
allocdby, 8-3
bufctl, 8-3
freectl, 8-3
freedby, 8-3
freemem, 8-3
kmem, 8-3
kmem_cache, 8-3
kmem_cpu_cache, 8-3
kmem_log, 8-3
kmem_slab, 8-3

kernel runtime link editor debugging support
(krtld)

dcmds
::modctl, 8-18
::modhdrs, 8-18
::modinfo, 8-18

walkers
modctl, 8-18

keyboard shortcuts, 4-3
kmem_alloc() function, 9-6, 9-11
kmem_bufctl_audit_t structure, 9-15
kmem_bufctl_t structure, 9-15
kmem_cache_alloc() function, 9-6, 9-11

kmem_cache_free() function, 9-6
kmem_cache_t structure, 9-6
kmem_flags tunable, 9-1
kmem_zalloc() function, 9-6

L
lookup modes

MDB_SYM_EXACT, 10-12
MDB_SYM_FUZZY, 10-12

loopback file system debugging support (lofs)
dcmds

::lnode, 8-17
::lnode2dev, 8-17
::lnode2rdev, 8-17

walkers
lnode, 8-17

M
macros

bufctl_audit, 9-15, 9-16
kmem_cache, 9-7
macro file, 2-1

mdb built-in dcmds, 5-1
mdb_add_walker() function, 10-9
mdb_alloc() function, 10-14
MDB_API_VERSION constant, 10-1
mdb_asprintf() function, 10-22
mdb_bitmask_t structure, 10-17
mdb_call_dcmd() function, 10-8
mdb_closefd() function, 10-7
mdb_dcmd_t structure, 10-2
mdb_dec_indent() function, 10-25
MDB_DUMP_ALIGN value, 10-23
MDB_DUMP_ASCII value, 10-23
MDB_DUMP_ENDIAN value, 10-23
MDB_DUMP_GROUP value, 10-23
MDB_DUMP_HEADER value, 10-23
MDB_DUMP_NEWDOT value, 10-23
MDB_DUMP_PEDANT value, 10-23
MDB_DUMP_RELATIVE value, 10-23
MDB_DUMP_SQUISH value, 10-23
MDB_DUMP_TRIM value, 10-23
MDB_DUMP_WIDTH value, 10-23
mdb_dump64() function, 10-23
mdb_dumpptr() function, 10-23
mdb_eval() function, 10-25
mdb_flush() function, 10-23
mdb_fread() function, 10-10
mdb_free() function, 10-14
mdb_fwrite() function, 10-10

Index

Index-6

mdb_get_dot() function, 10-26
mdb_get_pipe() function, 10-26
mdb_get_xdata() function, 10-26
mdb_getopts() function, 10-12
mdb_help_print() function, 10-20
mdb_inc_indent() function, 10-25
mdb_inval_bits() function, 10-25
mdb_layered_walk() function, 10-8
mdb_lookup_by_addr() function, 10-12
mdb_lookup_by_name() function, 10-11
mdb_lookup_by_obj() function, 10-11
mdb_modinfo_t structure, 10-1
mdb_nhconvert() function, 10-23
MDB_OBJ_EVERY object name, 10-11
MDB_OBJ_EXEC object name, 10-11
MDB_OBJ_RTLD object name, 10-11
mdb_one_bit() function, 10-24
mdb_openfd() function, 10-7
MDB_OPT_CLRBITS type, 10-12
MDB_OPT_SETBITS type, 10-12
MDB_OPT_STR type, 10-12
MDB_OPT_UINT64 type, 10-12
MDB_OPT_UINTPTR type, 10-12
mdb_pread() function, 10-10
mdb_preadfd() function, 10-7
mdb_printf() function, 10-15
mdb_pwalk_dcmd() function, 10-8
mdb_pwalk() function, 10-7
mdb_pwrite() function, 10-10
mdb_pwritefd() function, 10-7
mdb_readstr() function, 10-10
mdb_readsym() function, 10-10
mdb_remove_walker() function, 10-9
mdb_set_dot() function, 10-26
mdb_snprintf() function, 10-22
mdb_strtoull() function, 10-14
MDB_SYM_EXACT lookup mode, 10-12
MDB_SYM_FUZZY lookup mode, 10-12
mdb_vasprintf() function, 10-22
mdb_vprintf() function, 10-20
mdb_vread() function, 10-9
mdb_vsnprintf() function, 10-22
mdb_vwrite() function, 10-9
mdb_walk_dcmd() function, 10-8
mdb_walk_state_t structure, 10-4
mdb_walk() function, 10-7
mdb_walker_t structure, 10-4
mdb_warn() function, 10-22
mdb_writestr() function, 10-10
mdb_writesym() function, 10-11
mdb_writevar() function, 10-11
mdb_zalloc() function, 10-14

memory corruption, 9-10
metacharacter definition, 3-1
metacharacters

dcmds, 3-1
quoting, 3-6

N
networking

dcmds
::mi, 8-10
::netstat, 8-10
::sonode, 8-10
::tcpb, 8-10

walkers
ar, 8-11
icmp, 8-11
ill, 8-11
ipc, 8-11
mi, 8-11
sonode, 8-11
tcpb, 8-11

O
operators

binary, 3-5
unary, 3-4

output pager, 4-3

P
period character, 3-1
pipeline definition, 3-1
pipelines, 3-12
platform debugging support

dcmds
::ttrace, 8-20

walkers
ttrace, 8-20

Q
quoting characters, 3-6

R
reboot, 9-2
redzone, 9-11
redzone byte, 9-11
resolving symbol names, 3-7

Index

Index-7

S
scoping operator, 3-8, 3-11
shell escapes, 3-6
signal handling, 4-3
simple-command definition, 3-1
stack bias, 5-1
step command, 4-3
step over command, 4-3
STREAMS

dcmds
::q2otherq, 8-8
::q2rdq, 8-8
::q2syncq, 8-8
::q2wrq, 8-8
::queue, 8-8
::stream, 8-8
::syncq, 8-8
::syncq2q, 8-8

walkers
qlink, 8-10
qnext, 8-10
readq, 8-10
writeq, 8-10

string functions, 10-27
symbol names

resolving, 3-7
scope, 3-8

symbol tables, 3-7
synchronization primitives

dcmds
::rwlock, 8-13
::sobj2ts, 8-13
::turnstile, 8-13
::wchaninfo, 8-13

walkers
blocked, 8-14
wchan, 8-14

syntax
definitions, 2-1, 3-1
symbol name resolution, 3-7

system configuration
dcmds

::system, 8-15

T
target definition, 2-1
task queues

dcmds
::taskq_entry, 8-15

walkers
taskq_entry, 8-15

terminal attribute specifiers, 10-16

transaction log, 9-18

U
UM_GC value, 10-14
UM_NOSLEEP value, 10-14
UM_SLEEP value, 10-14
uninitialized data, 9-13
USB framework debugging support (uhci)

dcmds
::uhci_qh, 8-18
::uhci_td, 8-18

walkers
uhci_qh, 8-19
uhci_td, 8-19

USB framework debugging support (usba)
dcmds

::usb_pipe_handle, 8-19
::usba_clear_debug_buf, 8-19
::usba_debug_buf, 8-19
::usba_device, 8-19

walkers
usb_pipe_handle, 8-19
usba_device, 8-19
usba_list_entry, 8-19

V
variable definition, 3-6
virtual memory

dcmds
::addr2smap, 8-5
::as2proc, 8-5
::memlist, 8-5
::memstat, 8-5
::page, 8-5
::seg, 8-5
::swapinfo, 8-5
::vnode2smap, 8-5

walkers
anon, 8-6
memlist, 8-6
page, 8-6
seg, 8-6
swapinfo, 8-6

W
WALK_DONE status, 10-4
WALK_ERR status, 10-4
WALK_NEXT status, 10-4
walkers

allocdby, 8-3

Index

Index-8

walkers (continued)
anon, 8-6
ar, 8-11
binding_hash, 8-8
blocked, 8-14
buf, 8-5
bufctl, 8-3
cpu, 8-6
cyccpu, 8-14
cyctrace, 8-14
devi_next, 8-8
devinfo_children, 8-8
devinfo_parents, 8-8
devnames, 8-8
errorq, 8-15
errorq_data, 8-15
file, 8-13
freectl, 8-3
freedby, 8-3
freemem, 8-3, 9-7
icmp, 8-11
ill, 8-11
ipc, 8-11
ire, 8-18
kmem, 8-3, 9-7
kmem_cache, 8-3, 9-7
kmem_cpu_cache, 8-3
kmem_log, 8-3, 9-18
kmem_slab, 8-3
lnode, 8-17
memlist, 8-6

walkers (continued)
mi, 8-11
modctl, 8-18
msg, 8-17
msgqueue, 8-17
name resolution, 3-11
page, 8-6
proc, 8-13
qlink, 8-10
qnext, 8-10
readq, 8-10
seg, 8-6
sem, 8-17
shm, 8-17
softstate, 8-8
softstate_all, 8-8
sonode, 8-11
swapinfo, 8-6
taskq_entry, 8-15
tcpb, 8-11
thread, 8-13
ttrace, 8-20
uhci_qh, 8-19
uhci_td, 8-19
usb_pipe_handle, 8-19
usba_device, 8-19
usba_list_entry, 8-19
wchan, 8-14
writeq, 8-10

walkers definition, 2-1
word definition, 3-1

Index

Index-9

	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	1 Modular Debugger Overview
	Introduction to MDB
	MDB Features
	Using MDB
	MDB Extensibility

	2 MDB Concepts
	Building Blocks of MDB
	Modular Architecture of MDB

	3 MDB Language Syntax
	MDB Syntax
	MDB Commands
	MDB Comments
	Arithmetic Expansion in MDB
	Unary Operators in MDB
	Binary Operators in MDB

	MDB Quoting Metacharacter
	Shell Escapes in MDB
	MDB Variables
	MDB Symbol Name Resolution
	MDB Symbol Tables
	MDB Symbol Name Scoping
	MDB Scoping Within User-Level Applications and Shared Libraries
	MDB Object Identifier
	MDB Link Map Identifier

	MDB Scoping Within the Kernel
	Kernel Debug Information
	Using the Scoping Operator With a Kernel Module

	Dcmd and Walker Name Resolution
	Dcmd Pipelines
	Dcmd Formatting Characters

	4 Using MDB Commands Interactively
	MDB Command Reentry
	MDB Inline Editing
	MDB Keyboard Shortcuts
	MDB Output Pager
	MDB Signal Handling

	5 Built-In Commands in MDB
	MDB Built-In Dcmds

	6 Execution Control in MDB
	MDB Execution Control
	Event Callbacks in MDB
	Thread Support in MDB
	Thread Spinning Functionality in KMDB

	Execution Control Built-in Dcmds
	MDB Interaction With exec
	MDB Interaction With Job Control
	MDB Process Attach and Release

	7 Kernel Execution Control Using kmdb
	Booting, Loading, and Unloading kmdb
	Terminal Handling by kmdb
	kmdb Debugger Entry
	Processor-Specific Features of kmdb

	8 Kernel Debugging Modules
	Generic Kernel Debugging Support (genunix)
	Kernel Memory Allocator
	Kernel Memory Allocator Dcmds
	Kernel Memory Allocator Walkers

	File Systems and MDB
	File Systems Dcmds
	File Systems Walkers

	Virtual Memory and MDB
	Virtual Memory Dcmds
	Virtual Memory Walkers

	CPU Structures, the Kernel Dispatcher, and MDB
	CPU and Dispatcher Dcmds
	CPU and Dispatcher Walkers

	Device Drivers, DDI Framework, and MDB
	Device Driver Dcmds
	Device Drivers, DDI framework, and MDB

	STREAMS Debugging
	STREAMS Dcmds
	STREAMS Walkers

	Networking Debugging
	Networking Dcmds
	Networking Walkers

	Files, Processes, Threads, and MDB
	Files, Processes, and Threads Dcmds
	Files, Processes, and Threads Walkers

	Synchronization Primitives and MDB
	Synchronization Primitives Dcmds
	Synchronization Primitives Walkers

	Cyclics Debugging
	Cyclics Dcmds
	Cyclics Walkers

	Task Queues and MDB
	Task Queues Dcmds
	Task Queues Walkers

	Error Queues and MDB
	Error Queues Dcmds
	Error Queues Walkers

	System Configuration and MDB
	System Configuration Dcmds

	Interprocess Communication Debugging Support (ipc)
	Interprocess Communication Dcmds
	Interprocess Communication Walkers

	Loopback File System Debugging Support (lofs)
	Loopback File System Dcmds
	Loopback File System Walkers

	Internet Protocol Module Debugging Support (ip)
	Internet Protocol Dcmds
	Internet Protocol Walkers

	Kernel Runtime Link Editor Debugging Support (krtld)
	Kernel Runtime Link Editor Dcmds
	Kernel Runtime Link Editor Walkers

	USB Framework Debugging Support (uhci)
	USB Host Controller Dcmds
	USB Host Controller Walkers

	USB Framework Debugging Support (usba)
	USB Framework Dcmds
	USB Framework Walkers

	x86 Platform Debugging Support (unix)
	x86 Platform Dcmds
	x86 Platform Walkers

	9 Debugging With the Kernel Memory Allocator
	Getting Started With MDB: Creating a Sample Crash Dump
	Setting kmem_flags
	Forcing a Crash Dump
	Saving a Crash Dump
	Starting MDB

	Allocator Basics
	Buffer States
	Kmem Transactions
	Sleeping and Non-Sleeping Allocations
	Kernel Memory Caches

	Kernel Memory Caches
	Detecting Memory Corruption
	Freed Buffer Checking: 0xdeadbeef
	Redzone: 0xfeedface
	Uninitialized Data: 0xbaddcafe
	Associating Panic Messages With Failures

	Memory Allocation Logging
	Buftag Data Integrity
	bufctl Pointer in buftag Region

	Advanced Memory Analysis
	Finding Memory Leaks
	Finding References to Data
	Finding Corrupt Buffers With ::kmem_verify
	Allocator Logging Facility

	10 MDB Debugger Module Programming API
	Debugger Module Linkage
	_mdb_init() Function
	_mdb_fini() Function

	MDB Dcmd Definitions
	MDB Walker Definitions
	MDB API Functions
	mdb_openfd() and mdb_closefd() Functions
	mdb_preadfd() and mdb_pwritefd() Functions
	mdb_pwalk() Function
	mdb_walk() Function
	mdb_pwalk_dcmd() Function
	mdb_walk_dcmd() Function
	mdb_call_dcmd() Function
	mdb_layered_walk() Function
	mdb_add_walker() Function
	mdb_remove_walker() Function
	mdb_vread() and mdb_vwrite() Functions
	mdb_fread() and mdb_fwrite() Functions
	mdb_pread() and mdb_pwrite() Functions
	mdb_readstr() Function
	mdb_writestr() Function
	mdb_readsym() Function
	mdb_writesym() Function
	mdb_writevar() Function
	mdb_lookup_by_name() and mdb_lookup_by_obj() Functions
	mdb_lookup_by_addr() Function
	mdb_getopts() Function
	mdb_strtoull() Function
	mdb_alloc(), mdb_zalloc() and mdb_free() Functions
	mdb_printf() Function
	Flag Specifiers
	Field Width Specifiers
	Integer Specifiers
	Terminal Attribute Specifiers
	Format Specifiers

	mdb_vprintf() Function
	mdb_help_print() Function
	mdb_help_print_section() Function
	mdb_help_print_defs() Function
	mdb_help_print_examples() Function
	mdb_snprintf() Function
	mdb_vsnprintf() Function
	mdb_asprintf() and mdb_vasprintf() Functions
	mdb_warn() Function
	mdb_flush() Function
	mdb_nhconvert() Function
	mdb_dumpptr() and mdb_dump64() Functions
	mdb_one_bit() Function
	mdb_inval_bits() Function
	mdb_inc_indent() and mdb_dec_indent() Functions
	mdb_eval() Function
	mdb_set_dot() and mdb_get_dot() Functions
	mdb_get_pipe() Function
	mdb_set_pipe() Function
	mdb_get_xdata() Function
	Additional MDB Functions for Module Programmers

	A Transition From adb and kadb to MDB
	Command-Line Option Differences Between adb and MDB
	Syntax Differences Between adb and MDB
	Watchpoint Length Specifier Differences Between adb and MDB
	Address Map Modifier Differences Between adb and MDB
	Command Output Differences Between adb and MDB
	Deferred Breakpoint Differences Between adb and MDB
	x86: I/O Port Access in adb and MDB

	B Transition From crash to MDB
	Command-Line Option Differences Between crash and MDB
	Input Differences Between crash and MDB
	Crash Functions and MDB Dcmds

	Index

