
Remote Administration Daemon Client User's
Guide

E68270-03
August 2023

Remote Administration Daemon Client User's Guide,

E68270-03

Copyright © 2012, 2023, Oracle and/or its affiliates.

Primary Author: Veach Sharon, Cathleen Reiher

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Copyright © 2012, 2023, Oracle et/ou ses affiliés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont
concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf stipulation expresse de votre
contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et
par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le
désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par
la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle
Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par
écrit.

Si ce logiciel, la documentation du logiciel, les données (telles que définies dans la réglementation "Federal
Acquisition Regulation") ou la documentation qui l'accompagne sont livrés sous licence au Gouvernement des Etats-
Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le compte du Gouvernement des Etats-Unis, la
notice suivante s'applique :

UTILISATEURS DE FIN DU GOUVERNEMENT É.-U. : programmes Oracle (y compris tout système d'exploitation,
logiciel intégré, tout programme intégré, installé ou activé sur le matériel livré et les modifications de tels programmes)
et documentation sur l'ordinateur d'Oracle ou autres logiciels OracleLes données fournies aux utilisateurs finaux du
gouvernement des États-Unis ou auxquelles ils ont accès sont des "logiciels informatiques commerciaux", des
"documents sur les logiciels informatiques commerciaux" ou des "données relatives aux droits limités" conformément
au règlement fédéral sur l'acquisition applicable et aux règlements supplémentaires propres à l'organisme. À ce titre,
l'utilisation, la reproduction, la duplication, la publication, l'affichage, la divulgation, la modification, la préparation des
œuvres dérivées et/ou l'adaptation des i) programmes Oracle (y compris tout système d'exploitation, logiciel intégré,
tout programme intégré, installé, ou activé sur le matériel livré et les modifications de ces programmes), ii) la
documentation informatique d'Oracle et/ou iii) d'autres données d'Oracle, sont assujetties aux droits et aux limitations
spécifiés dans la licence contenue dans le contrat applicable. Les conditions régissant l'utilisation par le
gouvernement des États-Unis des services en nuage d'Oracle sont définies par le contrat applicable à ces services.
Aucun autre droit n'est accordé au gouvernement américain.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des
informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque,
notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou
matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de
secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions
optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l'utilisation de ce logiciel ou matériel pour des applications dangereuses.

Oracle®, Java, et MySQL sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom
mentionné peut être une marque appartenant à un autre propriétaire qu'Oracle.

Intel et Intel Inside sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont
utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Epyc, et le
logo AMD sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée
de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant
accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute
responsabilité et excluent toute garantie expresse ou implicite quant aux contenus, produits ou services émanant de
tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses
affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages
causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée
dans un contrat entre vous et Oracle.

Contents

 Using This Documentation

Product Documentation Library vii

Feedback vii

1 Introduction to the Remote Administration Daemon

What's New in the RAD API in Oracle Solaris 11.4 1-1

Remote Administration Daemon 1-1

How RAD Works 1-2

Tips for Using RAD Modules 1-4

Configuring RAD Transports 1-4

Configuring RAD Transports to Accept X.509 Client Certificates 1-4

Configuring the RAD Transport to Specify a Particular IP Address 1-5

2 Connecting to RAD

RAD C Client 2-1

Building RAD C Clients 2-1

Connecting to RAD in C 2-1

Connecting to a Local RAD Instance in C 2-1

Connecting to a Remote Instance and Authenticating in C Using RAD 2-2

Connecting to a RAD Instance by Using a URI in C 2-2

RAD Namespace in C 2-3

Creating a Name for a RAD Object in C 2-4

Searching for RAD Objects in C 2-4

Obtaining a Reference to a RAD Singleton in C 2-4

Listing RAD Instances of an Interface in C 2-5

Obtaining a Remote Object Reference From a Name in C 2-5

Sophisticated RAD Searches in C 2-6

RAD Interface Components in C 2-7

RAD Enumerations in C 2-8

RAD Structures in C 2-8

Dictionary Support in C for RAD 2-9

iv

RAD Interfaces in C 2-10

RAD TLS Client in C 2-13

RAD Java Client 2-14

Connecting to RAD in Java 2-14

Connecting to a RAD Local Instance in Java 2-14

Connecting to a Remote RAD Instance and Authenticating in Java 2-14

Connecting to a RAD Instance by Using a URI in Java 2-15

RAD Namespace in Java 2-16

Creating a Name for a RAD Object in Java 2-16

Searching for RAD Objects in Java 2-16

RAD Singletons in Java 2-17

Listing RAD Interface Instances in Java 2-17

Remote Object References and RAD Names in Java 2-18

Sophisticated RAD Searches in Java 2-18

Interface Components for RAD in Java 2-20

RAD Property Enumerations in Java 2-20

RAD Structs in Java 2-20

Dictionary Support for RAD in Java 2-21

RAD Interfaces in Java 2-21

RAD TLS Client in Java 2-24

RAD Python Client 2-24

Connecting to RAD in Python 2-25

Connecting to a Local RAD Instance in Python 2-25

Connecting to a RAD Remote Instance and Authenticating in Python 2-25

Connecting to a RAD Instance by Using a URI in Python 2-26

RAD Namespace in Python 2-26

Creating a Name for a RAD Object in Python 2-27

RAD Singletons in Python 2-27

Listing RAD Instances of an Interface in Python 2-27

Obtaining a RAD Remote Object Reference From a Name in Python 2-28

Sophisticated RAD Searches in Python 2-28

RAD Interface Components in Python 2-29

RAD Enumerations in Python 2-30

RAD Structure Types in Python 2-30

Dictionary Support in Python for RAD 2-30

RAD Interfaces in Python 2-31

Connecting in Python to a RAD Instance by Using a URI 2-33

RAD TLS Client in Python 2-34

Generic Security Services API Transport in RAD 2-34

Securing Messages Using G-RAD 2-34

v

G-RAD Applications Using Kerberos 2-34

3 REST APIs for RAD Clients

RESTful Interface and RAD 3-1

URI Specifications for RAD Resources 3-3

URI for an Individual RAD Resource 3-4

URI for a RAD Resource Collection 3-4

Invoking RAD Interface Methods 3-4

REST Requests 3-5

REST Request Examples 3-5

REST Responses 3-7

HTTP Status Codes and REST 3-7

Error Responses to a RAD Request 3-7

RAD Authentication 3-8

RAD Authenticating Remote Clients 3-9

How to Enable a RAD Remote Client Connection 3-9

REST API Reference 3-15

A RAD Module Descriptions

RAD Modules in Oracle Solaris 11.4 A-1

Index

vi

Using This Documentation

Product Documentation Library
Documentation and resources for this product and related products are available at http://
www.oracle.com/pls/topic/lookup?ctx=E37838-01.

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

vii

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/goto/docfeedback

1
Introduction to the Remote Administration
Daemon

What's New in the RAD API in Oracle Solaris 11.4
The RAD authentication API is significantly different in Oracle Solaris 11.4.

• The authentication API moved from version 1.0 to version 2.0, which required changes to
the client code that uses the API. Some of the source code changes are small, such as
using a different header file, library, Python module, or Java jar file. Some changes are
large, such as the authentication API now interacts with the RAD HTTP/REST APIs
directly. These changes are incompatible with the Oracle Solaris 11.3 authentication API.

• RAD C client bindings support only 64-bit RAD clients and modules.

• Ensure that you use the RAD client bindings for the latest version of Python, which is
Python 3.7.

The community is ending support for Python 2.7 and Python 3.5, so the RAD client
bindings for these older Python versions will no longer work.

Remote Administration Daemon
RAD provides programmable interfaces that enable developers and administrators to
configure and manage Oracle Solaris system components. You can configure and manage
system components using C, Java, Python, and REpresentational State Transfer (REST)
APIs. RAD also enables developers to create custom interfaces using these APIs to manage
the system components.

RAD is designed to provide a remote administrative interface for operating system
components or subsystems. The remote interfaces support easy administration of a
distributed systems. However, RAD interfaces are not intended to build distributed systems.
You can use RPC, RMI, CORBA, MPI, and other technologies to build distributed
applications.

A RAD interface defines how a client can interact with a system through a set of methods,
attributes, and events using a well-defined namespace.

Developers and administrators, who previously used $EDITOR can now use one the
following approaches to modify system components locally:

• Using a command-line interface (CLI) or an interactive user interface (UI)

• Using a browser or a remote client

• Using a CLI, an interactive UI, and a browser or a client with an enterprise-scale
provisioning tool

All of these methods require programmable access to configuration.

1-1

RAD uses a client-server design to support different types of clients such as clients
written in different languages, clients running without privilege, and clients running
remotely. In a client-server design, RAD acts as a server that services remote
procedure calls and clients act as consumers.

By providing a procedure call interface, RAD enables non-privileged local consumers
to perform actions on behalf of their users that require elevated privilege, without
resorting to a CLI-based implementation. By establishing a stream protocol, RAD
enables the consumers to perform actions on any system or device over a range of
secure transport options.

The rad protocol is efficient and easy to implement, which makes it simple to support
all administrative tasks provided by an interface. The protocol used by RAD is efficient
and is easy to implement.

RAD differs from remote procedure call (RPC) in the following ways:

• Procedure calls in RAD are made against server objects in a browsable, structured
namespace. This process permits a more logical progression of program than
central allocation of program numbers.

• Procedure calls can be asynchronous. Depending on the protocol in use, a client
might have multiple simultaneous outstanding requests.

• You can inspect and modify the interfaces exported by the server objects. This
inspection facilitates interactive usage, debugging environments, and enables
clients to use dynamically-typed languages such as Python.

• Using RAD interfaces, you can define properties and asynchronous event sources.

Note:

The native RAD protocol supports asynchronous procedure calls after the
client is authenticated. The underlying implementation of other protocols,
such as XML-RPC, might not support asynchronous calls.

How RAD Works
In RAD architecture, the clients can be local or remote, and the clients interact with the
RAD modules to perform various administrative activities. For example, a client
interacts with the ZFS management RAD module to perform storage-related activities.
These RAD clients can be written in C, Java, or Python.

The following figure shows the architecture of RAD.

Architecture of RAD

Chapter 1
How RAD Works

1-2

RAD uses three different types of authentication:

• Implicit – Used for local connections, for example, using rc_connect_unix(NULL, ...).
The RAD daemon reads the user's credentials from the calling process.

• Explicit with PAM – Performed by using APIs such as rc_auth_login() and
rc_connect_uri() in C client, rad.auth.RadAuth class in Python, and RadAuthHandler in
Java.

• Explicit with GSS – Performed by using APIs rc_connect_gss() or rc_connect_uri() in C
client. This requires Kerberos setup. For more information about using Kerberos with
RAD, see Generic Security Services API Transport in RAD.

To use the client bindings you must install the appropriate client program packages.

• For C – solaris/system/management/rad/client/rad-c
• For Java – solaris/system/management/rad/client/rad-java

Chapter 1
How RAD Works

1-3

• For Python – solaris/system/management/rad/client/rad-python-37, solaris/
system/management/rad/client/rad-python-35, or solaris/system/
management/rad/client/rad-python-27, depending on the Python version
required

To use radadrgen to generate API-specific language client and server bindings, see
radadrgen Processing Tool in Remote Administration Daemon Module Developer's
Guide.

Tips for Using RAD Modules
• Man pages for the RAD modules are available for C client bindings and for Python.

– For C, the man pages are in section 3RAD. For example, to view the man
page of the com.oracle.solaris.rad.kstat module, type:

$ man -s 3RAD kstat
– For Python man pages, use the pydoc command. Prefix the module name

with rad.bindings, and include the API version. For example, to view the man
page of the com.oracle.solaris.rad.kstat module, type:

$ pydoc3.7 rad.bindings.com.oracle.solaris.rad.kstat_

Note:

The 3RAD man pages include the API version of each RAD module.

• Some operations, such as adding a new user, require additional privileges. You
must ensure that the user has the appropriate rights profiles to execute the
operation. For more information, see Assigning Rights to Users in Securing Users
and Processes in Oracle Solaris 11.4.

• By default, RAD log messages are available in the /var/svc/log/system-
rad:local.log file. To enable logging of debug messages, set the config/
debug property of the RAD SMF instance and restart the instance:

svccfg -s rad setprop config/debug=true
svcadm refresh rad:local
svcadm restart rad:local

Configuring RAD Transports
This section covers how to configure RAD transports:

• Configuring RAD Transports to Accept X.509 Client Certificates

• Configuring the RAD Transport to Specify a Particular IP Address

Configuring RAD Transports to Accept X.509 Client Certificates
The rad daemon permits you to configure transports to accept X.509 (x509) client
certificates that authenticate the client holder of the certificate as a user (root or
privileged user) on the server system.

Chapter 1
Tips for Using RAD Modules

1-4

https://docs.oracle.com/cd/E37838_01/html/E61054/gmfkz.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gmfkz.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-22.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-22.html

You can configure the RAD TLS transport by configuring properties in the ssl_port property
group of the svc:/system/rad:remote SMF instance.

Use the following configuration options to configure the RAD TLS transport:

allow_client_certificate
Specifies whether to permit the clients to authenticate by using an X.509 client certificate.
The default value is true.
The certificate must be signed by a specific CA, which defaults to the one specified by
client_ca_path. If the certificate contains UID= logname in the Subject and user logname
exists, the RAD daemon authenticates the connection to that user.

client_ca_path
Specifies the location of the PEM-formatted file that includes a CA certificate with which all
client X.509 certificates must be signed. The value defaults to the certificate/ca/uri
property value of the svc:/system/identity:cert SMF instance.

map_host_certificate_to_root
Specifies whether to permit mapping a client X.509 certificate to the root user. The default
value is false.
If the value is true and the client X.509 does not have a UID set in the Subject, the RAD
daemon determines whether the network peer host is listed in Subject CommonName or in
Subject Alternative Name. If the RAD (rad) daemon finds the network peer host, the RAD
daemon authenticates the connection as the root user.

require_client_certificate
Specifies whether all clients authenticate by using an X.509 client certificate. The default
value is false.

The following shell commands show how to enable the client certificates to map to the root
user. This capability is useful when the client program is an HTTP client that can send TLS
client certificates and the HTTP client uses the RAD HTTP/REST interface. Map the host
certificate to the root user for the rad:remote service instance by setting the https_port/
map_host_certificate_to_root property value to true as follows:

svccfg -s rad:remote setprop https_port/map_host_certificate_to_root = boolean: true
svcadm refresh rad:remote
svcadm restart rad:remote

Configuring the RAD Transport to Specify a Particular IP Address
The RAD daemon uses the TCP, TLS, and GSS transports to listen and service incoming
connections. By default, these transports permit you to configure a port on which the daemon
listens for any address on the particular system.

In addition, the RAD daemon permits you to use the addr option to fine-tune a RAD transport
configuration to bind to a specific IP address and to specify whether the connection from the
client comes over a public or a private network interface. The IP address can be a host name
or a network address.

When the RAD daemon binds to a specific address, you can separate traffic on public and
private networking interfaces. For example, you might want to support different settings such
as certificate and pam_service.

You can configure this behavior by modifying the existing rad:remote SMF service.

Chapter 1
Configuring RAD Transports

1-5

For example, you can use the addr option to distinguish between connections coming
over private and public network interfaces and configure specific certificate and
pam_service settings for each interface.

Example 1-1 Using the addr Option to Specify IP Addresses for the TCP
Transport

The following command shows you how to configure the tcp transport to use the
192.168.18.18, 192.168.18.48, and host1.example.com IP addresses:

svccfg -s rad:remote setprop https_port/addr = host: {192.168.18.18
192.168.18.48 host1.example.com}
svcadm refresh rad:remote
svcadm restart rad:remote

The following commands configure an additional RAD transport in the rad:remote
SMF instance to listen on addresses 10.0.0.10 and that of system1 on port 9999:

svccfg -s rad:remote
svc:/system/rad:remote> addpg tls_port xport_tls
svc:/system/rad:remote> select tls_port
svc:/system/rad:remote> setprop tls_port/addr=host: (10.0.0.10 system1)
svc:/system/rad:remote> setprop tls_port/port=9999
svc:/system/rad:remote> setprop tls_port/pam_service=rad-tls
svc:/system/rad:remote> setprop tls_port/certificate=/etc/certs/localhost/
host.crt
svc:/system/rad:remote> setprop tls_port/privatekey=/etc/certs/localhost/host.key
svc:/system/rad:remote> setprop tls_port/proto=rad
svcadm refresh rad:remote
svcam restart rad:remote

Chapter 1
Configuring RAD Transports

1-6

2
Connecting to RAD

RAD C Client
The public interfaces that are not specific to RAD modules, are exported in the /usr/lib/
libradclient.so library and are defined in the following headers:

• /usr/include/rad/radclient.h – The client function and datatype definitions

• /usr/include/rad/radclient_basetypes.h – Helper routines for managing the
built-in RAD types

The list of #include statements at the beginning of each example shows the headers that are
required for that specific functionality.

Building RAD C Clients
A C client program must include the <rad/radclient.h> header file. To authenticate a
connection to a remote instance by using the rc_auth_login() function, the client application
must use the #include <rad/client/c/2/auth_login.h> header. To include signatures of
functions to interact with a RAD module, the client application must use the #include </rad/
client/c/<module_version>/<module_name>.h> header.

Connecting to RAD in C
RAD instances establish connections by using the rc_connect_*() set of functions. You can
obtain connections for various transports such as TLS, TCP, and local UNIX socket. Each
function returns a rc_conn_t reference. This reference acts as a handle for interactions with
RAD over its connection. Every connect function has one common argument, a locale to use
for the connection. When locale is NULL, the locale of the local client is used.

To close the connection, you must call the rc_disconnect() function with the connection
handle.

Connecting to a Local RAD Instance in C
You can connect to a local instance using the rc_connect_unix() function. An implicit
authentication is performed against your user ID and most RAD tasks that you request with
this connection are performed with the privileges available to your user account.

The rc_connect_unix() function takes the following arguments:

• A string, path of the UNIX socket

• A string, locale for the connection

If the value of socket path is NULL, the default RAD UNIX socket path is used. If the value of
locale is NULL, the locale of the local client is used.

2-1

Example 2-1 C Language – Creating a RAD Local Connection

#include <rad/radclient.h>
rc_conn_t conn = rc_connect_unix(NULL, NULL);

Connecting to a Remote Instance and Authenticating in C Using RAD
When connecting to a remote instance, no implicit authentication is performed. The
connection is not established until you authenticate. You can authenticate a connection
to a remote instance by using the rc_auth_login() function. The client application
must use the #include <rad/client/2/auth_login.h> header and link to the
authentication module C binding library, /usr/lib/rad/client/c/
libauthentication2_client.so.

Authentication is non-interactive, and a username and a password must be provided.
Optionally, a handle to the PAM authentication object is returned if a reference is
provided as the second argument to the rc_auth_login() function.

Example 2-2 C Language – Creating a RAD Remote Connection Over TCP IPv4
on Port 7777

#include <rad/radclient.h>
#include <rad/client/2/auth_login.h>

rc_instance_t *pam_inst;
rc_conn_t conn = rc_connect_tcp("host1",7777, NULL);

if (conn !=NULL) {
 rc_err_t status = rc_auth_login(conn, &pam_inst, "user", "password");
 if (status == RCE_OK){
 printf("Connected and authenticated!\n");
 }
}

RAD is deployed as two cooperating processes. A proxy process is responsible for
authentication and establishing communications. A slave process is created by the
proxy and handles module processing. A slave is created for each client connection.

Connecting to a RAD Instance by Using a URI in C
You can use a uniform resource identifier (URI) to connect to a local or remote RAD
instance. For more information, see Connecting in Python to a RAD Instance by Using
a URI.

The following functions are supported in C:

• rc_uri_t *rc_alloc_uri(const char *src, rc_scheme_t schemes)
• rc_credentials_t *rc_alloc_pam_credentials(const char *pass)
• void rc_free_credentials(rc_credentials_t *cred)
• rc_credentials_class_t rc_uri_get_cred_class(rc_uri_t *uri)
• rc_uri_t *rc_alloc_uri(const char *src, rc_scheme_t schemes)
• rc_conn_t * rc_connect_uri(const char *uri, rc_credentials_t *cred)
• void rc_uri_set_cred_class(rc_uri_t *uri, rc_credentials_class_t class)
• rc_scheme_t rc_uri_get_schemes(rc_uri_t *uri)

Chapter 2
RAD C Client

2-2

• int rc_uri_get_port(rc_uri_t *uri)
• const char *rc_uri_get_host(rc_uri_t *uri)
• rc_scheme_t rc_uri_get_scheme(rc_uri_t *uri)
• const char *rc_uri_scheme_tostr(rc_scheme_t scheme)
• const char *rc_uri_get_src(rc_uri_t *uri)
• const char *rc_uri_get_user(rc_uri_t *uri)
• const char *rc_uri_get_path(rc_uri_t *uri)
• void rc_free_uri(rc_uri_t *uri)
You can use the rc_uri_t structure to connect to a RAD instance. rc_uri_t is the main
structure with which you interact.

You can allocate a rc_uri_t structure with the rc_alloc_uri() function. This function
returns NULL on failure or a pointer to a valid rc_uri_t structure. For example, if you require
PAM authentication for a remote connection, you must allocate a rc_credentials_t
structure using one of the alloc() credential functions. This allocation depends on the
authentication type. RAD supports two types of authentication, PAM and generic security
service (GSS).

You can connect to RAD by using the rc_connect_uri() function. This returns a rc_conn_t()
function that can be used to establish the connection by using rc_connect_unix(),
rc_connect_tcp(), or other functions. You can use the other informative functions to interact
with the allocated structure to obtain useful information. The various rc_free_uri() functions
can clean the memory after you finish using the structures.

RAD Namespace in C
Most RAD objects are represented in the abstract data representation (ADR) document as
interfaces. You can search RAD objects by searching the RAD namespace.

To access a RAD object, you need the following:

• A proxy, which can be used to search the RAD namespace. An interface proxy class
allows you to use a proxy to search the RAD namespace. Interface proxy is defined in the
binding module of each interface.

• The list and lookup functions (module_interface__rad_list() and module_interface__
rad_lookup()) provided by client binding library of a module. These functions also provide
the option to perform either strict or relaxed versioning.

Note:

These functions use a double underscore between interface and the following
function.

As RAD interfaces become more extensive in Oracle Solaris, the probability of two clients
interoperating increases when using the strict and relaxed API versioning. Each versioning
mode is applicable on a per-interface and per-connection basis.

Relaxed versioning is the default mode for RAD communication. In this mode, RAD accepts
connections for any minor version of an interface if the major version of the server module

Chapter 2
RAD C Client

2-3

matches the major version of the client binding. Relaxed versioning mode maximizes
the cross-system compatibility of the interfaces. In strict versioning mode, RAD rejects
the client unless the minor version of the module at the server is greater than or equal
to the minor version of the client binding.

The proxy automatically provides the base name and the version details using
functions for the interface instances. It is structured as follows:

<domain name>:type=<interface name>[,optional additional key value pairs]

The <domain name> and the <interface name> are automatically derived from the
ADR interface description language (IDL) definition and are stored in the module
binding.

Certain interfaces return or accept object references directly to or from clients. These
objects might not be named. Objects that are not named are anonymous. Anonymous
objects cannot be looked up in the RAD namespace, but the interface provides access
methods that make it simple to interact with them.

Creating a Name for a RAD Object in C
The client is not required to create an object name, as module_interface__rad_list()
creates it internally.

Searching for RAD Objects in C
Client binding of a module provides a search function for each interface defined in the
form: module_interface__rad_list(). You can provide a pattern (glob or regex) to
narrow the search within the objects of an interface type.

In addition, the libradclient library provides the function rc_list(), where the caller
provides the entire name or pattern and version to search the objects.

Obtaining a Reference to a RAD Singleton in C
A module developer creates a singleton to represent an interface. This interface can
be accessed easily. For example, the zonemgr module defines a singleton interface,
ZoneInfo. It contains information about the zone that contains the RAD instance with
which you are communicating.

Example 2-3 C Language – Obtaining a Reference to a RAD Singleton

#include <rad/radclient.h>
#include<rad/client/1/zonemgr.h>

rc_instance_t *inst;
rc_err_t status;
char *name;

rc_conn_t *conn = rc_connect_unix(NULL, NULL);
if (conn !=NULL) {
 status = zonemgr_ZoneInfo__rad_lookup(conn, B_TRUE, &inst, 0);
 if(status == RCE_OK) {
 status =zonemgr_ZoneInfo_get_name(inst, &name);
 if (status ==RCE_OK)
 printf("Zone name: %s\n", name);
 }
}

Chapter 2
RAD C Client

2-4

In the preceding example, you have connected to a local RAD instance, and have obtained a
remote object reference directly using the lookup function provided by the zonemgr binding.
After you have the remote reference, you can access the properties with the
module_interface__get_<property>() function.

Listing RAD Instances of an Interface in C
An interface can contain multiple RAD instances. For example, the zonemgr module defines a
Zone interface and an instance of this interface exists for each zone on the system. A module
provides a list function for each of its interfaces in the form, module_interface__rad_list().

Example 2-4 C Language – Listing RAD Interface Instances

#include<rad/radclient.h>
#include<rad/radclient_basetypes.h>
#include<rad/client/1/zonemgr.h>

rc_err_t status;
adr_name_t **name_list;
int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, NULL);
if (conn !=NULL) {
 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, &name_list,
 &name_count, 0);
 if(status == RCE_OK) {
 for (int i =0; i < name_count; i++) {
 char*name =adr_name_tostr(name_list[i]);
 printf("%s\n", name);
 }
 name_array_free(name_list, name_count);
 }
 }

Obtaining a Remote Object Reference From a Name in C
The list function returns a name, in the form of a adr_name_t reference. Once you retrieve a
name, you can obtain a remote object reference as shown in the following example.

Example 2-5 C Language – Obtaining a Remote Object Reference From a Name

#include <rad/radclient.h>
#include <rad/radclient_basetypes.h>
#include<rad/client/1/zonemgr.h>

rc_err_t status;
adr_name_t **name_list;
rc_instance_t *zone_inst;
int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, NULL);
if (conn != NULL) {
 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, &name_list,
 &name_count, 0);
 if (status == RCE_OK) {
 status = rc_lookup(conn, name_list[0],
 NULL, B_TRUE, &zone_inst);
 if (status == RCE_OK) {
 char *name;

Chapter 2
RAD C Client

2-5

 status = zonemgr_Zone_get_name(zone_inst, &name);
 if (status == RCE_OK)
 printf("Zone name: %s\n",
 name);
 free(name);
 }
 name_array_free(name_list, name_count);
 }
}

Sophisticated RAD Searches in C
You can search for a zone by its name or ID, or search for a set of zones by pattern
matching. Use the list function to restrict the results. For example, if zones are
identified by name, you can search for a zone named test-0 by using glob patterns as
follows.

Example 2-6 C Language – Using Glob Patterns

#include <rad/radclient.h>
#include <rad/radclient_basetypes.h>
#include <rad/client/1/zonemgr.h>

rc_err_t status;
adr_name_t **name_list;
int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);
if (conn != NULL) {
 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, B_TRUE, &name_list,
 &name_count, 1, "name", "test-0");
 if (status == RCE_OK) {
 for (int i = 0; i < name_count; i++) {
 const char *name = adr_name_tostr(name_list[i]);
 printf("%s\n", name);
 }
 name_array_free(name_list, name_count);
 }
}

Glob Pattern Searching in RAD in C
You can use a glob pattern to find zones with wildcard pattern matching. Keys or
values in the pattern may contain an asterisk, *, for wildcard pattern matching. For
example, you can search all the zones with a name that begins with test as follows.

Example 2-7 C Language – Using Glob Patterns With Wildcards

#include <rad/radclient.h>
#include <rad/radclient_basetypes.h>
#include <rad/client/1/zonemgr.h>

rc_err_t status;
adr_name_t **name_list;
int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);
if (conn != NULL) {
 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_GLOB, &name_list,
 &name_count, 1, "name", "test*");

Chapter 2
RAD C Client

2-6

 if (status == RCE_OK) {
 for (int i = 0; i < name_count; i++) {
 const char *name = adr_name_tostr(name_list[i]);
 printf("%s\n", name);
 }
 name_array_free(name_list, name_count);
 }
}

Regex Pattern Searching in RAD in C
You can also use the extended regular expression (ERE) search capabilities of RAD to
search for a zone. For example, you can find only zones with the name test-0 or test-1 as
follows.

Example 2-8 C Language – Using Regex Patterns

#include <rad/radclient.h>
#include <rad/radclient_basetypes.h>
#include <rad/client/1/zonemgr.h>

rc_err_t status;
adr_name_t **name_list;
int name_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);
if (conn != NULL) {
 status = zonemgr_Zone__rad_list(conn, B_TRUE, NS_REGEX,
 &name_list, &name_count, 1, "name", "test-0|test-1");
 if (status == RCE_OK) {
 for (int i = 0; i < name_count; i++) {
 const char *name = adr_name_tostr(name_list[i]);
 printf("%s\n", name);
 }
 name_array_free(name_list, name_count);
 }
}

The key and the value must be valid EREs as determined by the connected RAD instance.
The expression is compiled and executed on the server.

RAD Interface Components in C
The module developer defines an API in an ADR IDL document. It contains one or more of
the following components, each of which performs a task:

• Enumerations

– Values

• Structures

– Fields

• Dictionary

• Interfaces

– Properties

– Methods

Chapter 2
RAD C Client

2-7

– Events

The radadrgen utility is used to process the document to generate language-specific
components, which facilitates client-server interaction within RAD. For more
information about the role of ADR and RAD, see Chapter 2, Abstract Data
Representation for RAD in Remote Administration Daemon Module Developer's
Guide. The following sections describe each component.

RAD Enumerations in C
Enumerations provide a restricted range of choices for a property, an interface method
parameter, a result, or an error.

Using RAD Enumeration Types in C
Enumerated types are defined in the binding header with the type prepended with the
module name. The values of the enumerated types are prepended to follow the C
coding standard naming conventions.

Example 2-9 C Language – zonemgr ErrorCode Enumeration for RAD in C

typedef enum zonemgr_ErrorCode {
 ZEC_NONE =0,
 ZEC_FRAMEWORK_ERROR = 1,
 ZEC_SNAPSHOT_ERROR = 2,
 ZEC_COMMAND_ERROR = 3,
 ZEC_RESOURCE_ALREADY_EXISTS = 4,
 ZEC_RESOURCE_NOT_FOUND = 5,
 ZEC_RESOURCE_TOO_MANY = 6,
 ZEC_RESOURCE_UNKNOWN = 7,
 ZEC_ALREADY_EDITING = 8,
 ZEC_PROPERTY_UNKNOWN = 9,
 ZEC_NOT_EDITING = 10,
 ZEC_SYSTEM_ERROR = 11,
 ZEC_INVALID_ARGUMENT = 12,
 ZEC_INVALID_ZONE_STATE = 13,
}zonemgr_ErrorCode_t;

RAD Structures in C
Structures (Structs) are used to define new types and are composed from existing
built-in types and other user defined types. Structs are simple forms of interfaces with
no methods or events. They are not included in the RAD namespace.

Using RAD Struct Types in C
The zonemgr module defines a property struct, which represents an individual zone
configuration property. The structure has the following members, name, type, value,
listValue, and complexValue. Like enumerations, structures are defined in the
binding header and follow similar naming conventions.

To free a structure, free functions module_structure_free() are provided by the binding
to ensure proper cleanup of any memory held in the nested data.

Chapter 2
RAD C Client

2-8

https://docs.oracle.com/cd/E37838_01/html/E61054/gmfhx.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gmfhx.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gmfhx.html

Example 2-10 C Language – zonemgr Property Struct Definition and Its Free Function

typedef enum zonemgr_PropertyValueType {
 ZPVT_PROP_SIMPLE = 0,
 ZPVT_PROP_LIST = 1,
 ZPVT_PROP_COMPLEX = 2,
} zonemgr_PropertyValueType_t;

typedef struct zonemgr_Property {
 char * zp_name;
 char * zp_value;
 zonemgr_PropertyValueType_t zp_type;
 char * * zp_listvalue;
 int zp_listvalue_count;
 char * * zp_complexvalue;
 int zp_complexvalue_count;
} zonemgr_Property_t;

void zonemgr_Property_free(zonemgr_Property_t *);

Dictionary Support in C for RAD
C does not support dictionary data types natively. To support dictionary in types and
functions, you must enable the dictionary functionality for each dictionary type as part of a
module's C binding. You can create, free, and query a dictionary for its size. The supported
operations on a dictionary include getting, putting, and removing an element. The functions
_keys() and _values() return an array of all keys and values, respectively. The _map() function
is called with a pointer to a function that is invoked with each key-value pair. For more
information about dictionary, see Dictionary Definitions in RAD Modules in Remote
Administration Daemon Module Developer's Guide.

The C binding dictionary is a wrapper around the libadr library. The libadr library functions
that are supported for dictionary are similar to the functions supported by C. The functions
are in the native C type instead of the libadr (adr_data_t()) type. For more information, see
Dictionary Support in libadr in Remote Administration Daemon Module Developer's Guide.

The following is an example of a generated type and API of a dictionary where the key type is
integer and the value type is string. In this example, <module> is the name of the module.

typedef struct <module>__rad_dict_integer_string
 <module>__rad_dict_integer_string_t;

<module>__rad_dict_integer_string_t *
 <module>__rad_dict_integer_string_create(
 const rc_instance_t *inst);

void <module>__rad_dict_integer_string_free(
 <module>__rad_dict_integer_string_t *dict);
rc_err_t <module>__rad_dict_integer_string_contains(
 <module>__rad_dict_integer_string_t *dict, int key);
unsigned int <module>__rad_dict_integer_string_size(
 <module>__rad_dict_integer_string_t *dict);
rc_err_t <module>__rad_dict_integer_string_remove(
 <module>__rad_dict_integer_string_t *dict, int key,
 char **value);
rc_err_t <module>__rad_dict_integer_string_get(
 <module>__rad_dict_integer_string_t *dict, int key,
 char **value);
rc_err_t <module>__rad_dict_integer_string_put(
 <module>__rad_dict_integer_string_t *dict, int key,

Chapter 2
RAD C Client

2-9

https://docs.oracle.com/cd/E37838_01/html/E61054/gnnaw.html#OSRADgpfod
https://docs.oracle.com/cd/E37838_01/html/E61054/gnnaw.html#OSRADgpfod
https://docs.oracle.com/cd/E37838_01/html/E61054/gpfof.html

 const char *value, char **old_value);
int *<module>__rad_dict_integer_string_keys(
 <module>__rad_dict_integer_string_t *dict);
char **<module>__rad_dict_integer_string_values(
 <module>__rad_dict_integer_string_t *dict);
int <module>__rad_dict_integer_string_map(
 <module>__rad_dict_integer_string_t *dict,
int (*func)(int, const char *, void *), void *arg);

The generated type can be used like any other type in RAD. A sample C client binding
definition is as follows:

rc_err_t <module>_<interface>_set_DictProp(rc_instance_t *,
 <module>__rad_dict_integer_string_t *);

Note:

The dictionary type and associated functions are thread-safe.

RAD Interfaces in C
Interfaces, also known as objects, are the entities which populate the RAD
namespace. They must have a name. An interface is composed of events, properties,
and methods.

Obtaining a RAD Object Reference in C
See the RAD Namespace in C section.

Working With RAD Object References in C
Once you have an object reference, you can use this object reference to interact with
RAD directly. All attributes and methods defined in IDL are accessible by invoking
calling functions in the generated client binding.

The following example shows how to work with the object references. In this example,
you get a reference to a zone and then boot the zone.

Example 2-11 C Language – Working With RAD Object References

#include <rad/radclient.h>
#include <rad/radclient_basetypes.h>
#include <rad/client/1/zonemgr.h>

rc_err_t status;
rc_instance_t *zone_inst;
zonemgr_Result_t *result;
zonemgr_Result_t *error;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);
if (conn != NULL) {
 status = zonemgr_Zone__rad_lookup(conn, B_TRUE, &zone_inst, 1, "name",
"test-0");
 if (status == RCE_OK) {
 status = zonemgr_Zone_boot(zone_inst, NULL, 0, &result, &error);
 rc_instance_rele(zone_inst);

Chapter 2
RAD C Client

2-10

 }
}

Accessing a Remote Property in RAD in C
This example shows how to access a remote property.

Example 2-12 C Language – Accessing a RAD Remote Property

#include <rad/radclient.h>
#include <rad/radclient_basetypes.h>
#include <rad/client/1/zonemgr.h>

int
main(int argc, char **argv)
{
 rc_err_t status;
 rc_instance_t *zone_inst;
 char *name;
 zonemgr_Property_t **result;
 zonemgr_Result_t *error;
 int result_count;

 rc_conn_t *conn = rc_connect_unix(NULL, NULL);

 if (conn != NULL) {
 status = zonemgr_Zone__rad_lookup(conn, B_TRUE, &zone_inst,
1,
 "name", "test-0");
 if (status == RCE_OK) {
 zonemgr_Resource_t global = { .zr_type = "global"};
 status =
zonemgr_Zone_getResourceProperties(zone_inst,
 &global, NULL, 0, &result, &result_count, &error);
 if (status == RCE_OK) {
 for (int i = 0; i < result_count; i++){
 if (result[i]->zp_value != NULL &&
 result[i]->zp_value[0] != '\0') {
 printf("%s=%s\n",
 result[i]->zp_name,
 result[i]->zp_value);
 }
 }
 zonemgr_Property_array_free(result,
result_count);
 }
 rc_instance_rele(zone_inst);
 }
 }
}

In this example, you have accessed the list of global resource properties of the Zone and
printed the name and value of every property that has a value.

RAD Event Handling in C
An event is an asynchronous notification generated by RAD and consumed by clients. For
more information, see RAD Events in Remote Administration Daemon Module Developer's
Guide.

Chapter 2
RAD C Client

2-11

https://docs.oracle.com/cd/E37838_01/html/E61054/gpvwe.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gpvwe.html

The following example shows how to subscribe to and handle events. The
ZoneManager instance defines a StateChange event that clients can subscribe to
information about the changes in the runtime state of a zone.

Example 2-13 C Language – Subscribing to and Handling RAD Events

#include <unistd.h>
#include <time.h>
#include <rad/radclient.h>
#include <rad/radclient_basetypes.h>
#include <rad/client/1/zonemgr.h>

void stateChange_handler(rc_instance_t *inst, zonemgr_StateChange_t *payload,
struct timespec timestamp, void *arg)
{
 printf("event: zone state change\n");
 printf("payload:\n zone: %s\n old state: %s\n new state: %s\n",
 payload->zsc_zone, payload->zsc_oldstate, payload->zsc_newstate);

 zonemgr_StateChange_free(payload);
}

rc_err_t status;
rc_instance_t *zm_inst;
int result_count;

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);
if (conn != NULL) {
 status = zonemgr_ZoneManager__rad_lookup(conn, B_TRUE, &zm_inst, 0);
 if (status == RCE_OK) {
 status = zonemgr_ZoneManager_subscribe_stateChange(zm_inst,
stateChange_handler, NULL);
 if (status == RCE_OK)
 printf("Successfully subscribed to statechange event!\n");
 rc_instance_rele(zm_inst);
 }
 }
 for (;;)
 sleep(1);

In this example, you have subscribed to a single event by passing a handler and a
handle for the ZoneManager object. The handler is invoked asynchronously by the
framework with various event details and user data. In this example, the user data is
NULL.

RAD Error Handling in C
The list of possible errors are defined by the rc_err_t enumeration. The following
example shows how it can be used.

Example 2-14 C Language – Handling RAD Errors

#include <rad/radclient.h>
#include <rad/radclient_basetypes.h>
#include <rad/client/1/zonemgr.h>

rc_err_t status;
rc_instance_t *zone_inst;
zonemgr_Result_t *result;
zonemgr_Result_t *error;

Chapter 2
RAD C Client

2-12

rc_conn_t *conn = rc_connect_unix(NULL, B_TRUE, NULL);
if (conn != NULL) {
 status = zonemgr_Zone__rad_lookup(conn, B_TRUE, &zone_inst, 1, "name", "test-0");
 if (status == RCE_OK) {
 status = zonemgr_Zone_boot(zone_inst, NULL, 0, &result, &error);
 if (status == RCE_SERVER_OBJECT) {
 printf("Error Code %d\n", error->zr_code);
 if (error->zr_stdout != NULL)
 printf("stdout: %s\n", error->zr_stdout);
 if (error->zr_stderr != NULL)
 printf("stderr: %s\n", error->zr_stderr);
 zonemgr_Result_free(error);
 }
 rc_instance_rele(zone_inst);
 }
}

Note:

You might get a payload with rc_err_t, value RCE_SERVER_OBJECT. This means that
the server is sending additional information about the error. This payload is only
present if your interface method or property has defined an error element, where
the payload is the content of that error. If the interface method or property defines
no error element for the interface method or property, no payload exists and no
error reference argument exists for the get or set functions.

RAD TLS Client in C
The libradclient C implementation includes the rc_connect_tls_ex() function that permits
the client to connect to the RAD service over TLS. The connection requires that you specify
the X.509 client certificate and its key file. For information about the server setup, see
Configuring RAD Transports.

The rc_connect_tls() and rc_connect_tls_ex() functions take the following arguments:

rc_conn_t *
rc_connect_tls(const char *host, int port, const char *cert_files,
 char *locale);

rc_conn_t *
rc_connect_tls_ex(const char *host, int port, const char *cert_files,
 char *locale, const char *cert, const char *key);

host
Name of the host.

port
Port number.

cert_files
A colon-separated list of locations for server certificate validation. This value can be null.

Chapter 2
RAD C Client

2-13

locale
Name of the locale. If locale is NULL, the value is set to the locale that the client
system uses.

cert
Location of the X.509 client certificate. This value can be null.

key
Location of the key file associated with the client certificate. This value can be null.

RAD Java Client
The public Java interfaces are exported in the following packages:

• com.oracle.solaris.rad.client – The client implementation of the RAD protocol
and associated functionality

• com.oracle.solaris.rad.connect – The classes for connecting to a RAD
instance

Note:

Most of the examples are based on the zonemgr interface. To better
understand these examples, see Appendix A, zonemgr ADR Interface
Description Language Example in Remote Administration Daemon Module
Developer's Guide.

Connecting to RAD in Java
RAD instances can communicate through the Connection class. Various factory
interfaces are available to get different types of connections to a RAD instance. Each
mechanism returns a connection instance that provides a standard interface to interact
with RAD. The connection can be closed with the close() method.

Connecting to a RAD Local Instance in Java
You can connect to a local instance by using the Connection.connectUnix() class. An
implicit authentication is performed against your user ID and most RAD tasks you
request with this connection are performed with the privileges available to your user
account.

Example 2-15 Java Language – Creating a Local RAD Connection

import com.oracle.solaris.rad.connect.Connection;

Connection con = Connection.connectUnix();

Connecting to a Remote RAD Instance and Authenticating in Java
When connecting to a remote instance, no implicit authentication is performed. The
connection is not established until you authenticate. The
com.oracle.solaris.rad.client package provides a utility class (RadAuthHandler)

Chapter 2
RAD Java Client

2-14

https://docs.oracle.com/cd/E37838_01/html/E61054/gogkc.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gogkc.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gogkc.html

which can be used to perform a PAM login. If you provide a locale, username and password,
authentication is non-interactive. If locale is null, then C is used.

The following example shows how to connect to a TCP instance on port 7777.

Example 2-16 Java Language – Creating Remote RAD Connection Over TCP IPv4 on
Port 7777

import com.oracle.solaris.rad.client.RadAuthHandler;
import com.oracle.solaris.rad.connect.Connection;

Connection con = Connection.connectTCP("host1", 7777);
System.out.println("Connected: " + con.toString());
RadAuthHandler hdl = new RadAuthHandler(con);
hdl.login("C", "user", "password"); // First argument is locale
con.close();

RAD is deployed as two cooperating processes. A proxy process is responsible for
authentication and establishing communications. A slave process is created by the proxy and
handles module processing. A slave is created for each client connection.

Connecting to a RAD Instance by Using a URI in Java
You can use a URI to connect to a local or remote RAD instance. You can use the class
URIconnection in Java for connecting using a URI. For more information, see Connecting in
Python to a RAD Instance by Using a URI.

The following constructors are supported.

public URIConnection(String src) throws IOException {
 this(src, DEFAULT_SCHEMES);
}

public URIConnection(String src, Set<String> schemes)
 throws IOException {
}

public URIConnection(String src, Set<String> schemes,
 Set<String> certfiles) throws IOException {
}

Use the different constructors depending on how much control you need over the connection.

For methods, the following functions are supported for adding or removing certificates for TLS
connections, and connecting and processing PAM information.

public void addCertFile(String certfile) {
}

public void rmCertFile(String certfile) {
}

public Connection connect(Credentials cred) throws IOException {
}

public void processPAMAuth(PAMCredentials cred, Connection con) throws IOException {
}

The following utility functions are supported for providing information about a RAD instance:

Chapter 2
RAD Java Client

2-15

• public String getAuth()
• public String getCredClass()
• public void setCredClass(String klass) throws IOException
• public String getHost()
• public String getPath()
• public int getPort()
• public String getSrc()
• public String getScheme()
• public Set<String> getSchemes()
• public String getUser()
You can use the class PAMCredentials to create a set of PAM credentials for
authentication. The supported constructor is public PAMCredentials(String pass).

RAD Namespace in Java
Most RAD objects that are represented in the ADR document as <interfaces>. You can
search RAD objects by searching the RAD namespace. To access a RAD object, you
need a proxy, which is used to search the RAD namespace. An interface proxy class
enables you to use a proxy to search the RAD namespace. The interface proxy is
defined in the binding module of each interface.

The proxy provides the base name and the version details for the interface instances
and is structured as follows:

<domain name>:type=<interface name>[,optional additional key value pairs]

The <domain name> and the <interface name> are automatically derived from the
ADR IDL definition and are stored in the module binding.

Certain interfaces return or accept object references directly to or from clients. These
objects might not be named. Objects that are not named are anonymous. Anonymous
objects cannot be looked up in the RAD namespace, but the interface provides access
methods that make it simple to interact with them.

Creating a Name for a RAD Object in Java
The names are changed to be represented by a domain string and a Map <String,
String> for the key or value pairs. The ADRName constructors are expanded to include:

ADRName(String domain, Map<String, String> kvpairs)
ADRName(String domain, Map<String, String> kvpairs,
ProxyInterface proxy, Version version)

Searching for RAD Objects in Java
Using the Connection class, you can list the objects by name and obtain a remote
object reference.

Chapter 2
RAD Java Client

2-16

RAD Singletons in Java
A module developer creates a singleton to represent an interface. This interface can be
accessed easily. For example, the zonemgr module defines a singleton interface, ZoneInfo. It
contains information about the zone that contains the RAD instance with which you are
communicating.

In Java, you need to compile the code with the language binding in the CLASSPATH. RAD Java
Language bindings are in the system/management/rad/client/rad-java package.

The JAR files for the various bindings are installed in /usr/lib/rad/java. Each major
interface version is accessible in a JAR file which is named after the source ADR document
and it's major version number. For example, to access major version 1 of the zonemgr API,
use /usr/lib/rad/java/zonemgr_1.jar. Symbolic links are provided as an indication of the
default version a client should use.

Example 2-17 Java Language – Obtaining a Reference to a RAD Singleton

import com.oracle.solaris.rad.connect.Connection;
import com.oracle.solaris.rad.zonemgr.ZoneInfo;

Connection con = Connection.connectUnix();
System.out.println("Connected: " + con.toString());
ZoneInfo zi = con.getObject(new ZoneInfo());
System.out.println("ZoneInfo: " + zi.getname());

In this example, you have performed the following:

• Imported ZoneInfo and Connection from the zonemgr binding and the rad.connect
package

• Connected to the local RAD instance

• Obtained a remote object reference directly by using a proxy instance

After you have the remote reference, you can access the properties and the methods directly.
In the RAD Java implementation, all properties are accessed using the getter or setter
syntax. Thus, you invoke getname() to access the name property.

Listing RAD Interface Instances in Java
An interface can contain multiple RAD instances. For example, the zonemgr module defines a
Zone interface and there is an instance for each zone on the system. The Connection class
provides the list_objects() method to list the interface instances as shown in the following
example.

Example 2-18 Java Language – Listing RAD Interface Instances

import com.oracle.solaris.rad.client.ADRName;
import com.oracle.solaris.rad.connect.Connection;
import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();
System.out.println("Connected: " + con.toString());

for (ADRName name: con.listObjects(new Zone())) {
 System.out.println("ADR Name: " + name.toString());
}

Chapter 2
RAD Java Client

2-17

Remote Object References and RAD Names in Java
A list of names (ADRName is the class name) are returned by the list_objects()
method from the Connection class. After you have a name, you can obtain a remote
object reference easily as shown in the following example.

Example 2-19 Java Language – Obtaining a Remote Object Reference From a
RAD Name

import com.oracle.solaris.rad.client.ADRName;
import com.oracle.solaris.rad.connect.Connection;
import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();
System.out.println("Connected: " + con.toString());

for (ADRName name: con.listObjects(new Zone())) {
 Zone zone = con.getObject(name);
 System.out.println("Name: " + zone.getname());
}

Sophisticated RAD Searches in Java
You can search for a zone by its name or ID or a set of zones by pattern matching. You
can extend the definition of a name provided by a proxy. For example, if zones are
uniquely identified by a key name, then you can find a zone with name test-0 as shown
in the following example. This example uses glob patterns to find a zone.

Example 2-20 Java Language – Using Glob Patterns

import com.oracle.solaris.rad.client.ADRName;
import com.oracle.solaris.rad.client.ADRGlobPattern;
import com.oracle.solaris.rad.connect.Connection;
import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();
System.out.println("Connected: " + con.toString());

String keys[] = { "name" };
String values[] = { "test-0" };
ADRGlobPattern pat = new ADRGlobPattern(keys, values);
for (ADRName name: con.listObjects(new Zone(), pat)) {
 System.out.println("ADR Name: " + name.toString());
}

In this example, the ADRGlobPattern class (imported from the
com.oracle.solaris.rad.client package) is used to refine the search. The
list_objects() method from the Connection class is used, but the search is refined
by extending the name definition. The ADRGlobPattern class takes an array of keys
and an array of values and extends the name used in the search.

Glob Pattern Searching in RAD in Java
You can use a glob pattern to find zones with wildcard pattern matching. Keys or
Values in the pattern may contain *, which is interpreted as wildcard pattern matching.
For example, you can find all zones with a name which begins with test as follows.

Chapter 2
RAD Java Client

2-18

Example 2-21 Java Language – Using Glob Patterns With Wildcards

import com.oracle.solaris.rad.client.ADRName;
import com.oracle.solaris.rad.client.ADRGlobPattern;
import com.oracle.solaris.rad.connect.Connection;
import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();
System.out.println("Connected: " + con.toString());

String keys[] = { "name" };
String values[] = { "test*" };
ADRGlobPattern pat = new ADRGlobPattern(keys, values);
for (ADRName name: con.listObjects(new Zone(), pat)) {
 System.out.println("ADR Name: " + name.toString());
}

Using Maps When Pattern Searching in RAD in Java
It can be simpler to use Map rather than arrays of keys and values. This example uses a map
of keys and values rather than arrays of keys and values.

Example 2-22 Java Language – Using Maps With Patterns

import com.oracle.solaris.rad.client.ADRName;
import com.oracle.solaris.rad.client.ADRGlobPattern;
import com.oracle.solaris.rad.connect.Connection;
import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();
System.out.println("Connected: " + con.toString());

Map<String, String> kvpairs = new HashMap<String, String>();
kvpairs.put("name", "test*");
ADRGlobPattern pat = new ADRGlobPattern(kvpairs);
for (ADRName name: con.listObjects(new Zone(), pat)) {
 System.out.println("ADR Name: " + name.toString());
}

Regex Pattern Searching in RAD in Java
You can also use RAD's ERE search capabilities to search a zone. For example, you can find
only zones with the name test-0 or test-1 as shown in the following example.

Example 2-23 Java Language – Using Regex Patterns

import com.oracle.solaris.rad.client.ADRName;
import com.oracle.solaris.rad.client.ADRRegexPattern;
import com.oracle.solaris.rad.connect.Connection;
import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();
System.out.println("Connected: " + con.toString());

String keys[] = { "name" };
String values[] = { "test-0|test-1" };
ADRRegexPattern pat = new ADRRegexPattern(keys, values);
for (ADRName name: con.listObjects(new Zone(), pat)) {
 System.out.println("ADR Name: " + name.toString());
}

Chapter 2
RAD Java Client

2-19

The key and the value must be valid ERE as determined by the instance of RAD to
that you are connected. The expression is compiled and executed on the server.

Interface Components for RAD in Java
An API is defined by a module developer. It contains one or more of the following
components, each of which performs a task:

• Enumerations

– Values

• Structures

– Fields

• Dictionary

• Interfaces

– Properties

– Methods

– Events

These components are defined in an ADR IDL document. The radadrgen utility is
used to process the document to generate language specific components which
facilitates client-server interactions within RAD. For more information about the role of
ADR and RAD, see Chapter 2, Abstract Data Representation for RAD in Remote
Administration Daemon Module Developer's Guide. The following sections describe
each component.

RAD Property Enumerations in Java
Enumerations provide a restricted range of choices for a property, an interface method
parameter, result, or error.

Using RAD Enumeration Types in Java
To access an enumerated type, import the generated class and interact with the
enumeration.

Example 2-24 Java Language – Using RAD Enumerations

import com.oracle.solaris.rad.zonemgr.ErrorCode;

System.out.println(ErrorCode.NONE);
System.out.println(ErrorCode.COMMAND_ERROR);

RAD Structs in Java
Structs are used to define new types and are composed from existing built-in types
and other user defined types. Structs are simple forms of interfaces with no methods
or events. They are not included in the RAD namespace.

Using RAD Struct Types in Java
The zonemgr module defines a Property struct, which represents an individual zone
configuration property. The structure has the following members name, type, value,

Chapter 2
RAD Java Client

2-20

https://docs.oracle.com/cd/E37838_01/html/E61054/gmfhx.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gmfhx.html

listValue, and complexValue. Like enumerations, structs can be interacted directly once the
binding is imported.

Example 2-25 Java Language – Using RAD Structs

import com.oracle.solaris.rad.zonemgr.Property;

Property prop = new Property();
prop.setName("my name");
prop.setValue("a value");
System.out.println(prop.getName());
System.out.println(prop.getValue());

Dictionary Support for RAD in Java
To support the dictionary type, Java client uses the java.util.Map<K,V> interface. For more
information about dictionary, see Dictionary Definitions in RAD Modules in Remote
Administration Daemon Module Developer's Guide.

The following example shows how to read and write a property defined in a dictionary. For
more information, see Defining a Dictionary for RAD in Remote Administration Daemon
Module Developer's Guide.

//reading a property value
Map<Integer, String> property = o.getDictProp();

//writing a property value
Map<Integer, String> property = new HashMap<Integer, String>();
....
o.setDictProp(property);

RAD Interfaces in Java
Interfaces, also known as objects, are the entities, which populate the RAD namespace. They
must have a name. An interface is composed of events, properties, and methods.

Obtaining a RAD Object Reference in Java
For more information, see RAD Namespace in Java.

Working With RAD Object References in Java
Once you have an object reference, you can use this object reference to interact with RAD
directly. All attributes and methods defined in the IDL are accessible directly as attributes and
methods of the Java objects that are returned by the getObject() function. The attributes are
accessed using the automatically generated getter or setter. For example, if the property is
name, you would use getname or setname(<value>). In this example, you get a reference to a
zone and then boot the zone.

Example 2-26 Java Language – Invoking a RAD Remote Method

import com.oracle.solaris.rad.client.ADRName;
import com.oracle.solaris.rad.client.ADRGlobPattern;
import com.oracle.solaris.rad.connect.Connection;
import com.oracle.solaris.rad.zonemgr.Zone;

Connection con = Connection.connectUnix();
System.out.println("Connected: " + con.toString());

Chapter 2
RAD Java Client

2-21

https://docs.oracle.com/cd/E37838_01/html/E61054/gnnaw.html#OSRADgpfod
https://docs.oracle.com/cd/E37838_01/html/E61054/gnnaw.html#OSRADgpfod
https://docs.oracle.com/cd/E37838_01/html/E61054/gnnaw.html#OSRADgpfod
https://docs.oracle.com/cd/E37838_01/html/E61054/gnnaw.html#OSRADgpfod

String keys[] = { "name" };
String values[] = { "test-0" };
ADRGlobPattern pat = new ADRGlobPattern(keys, values);
for (ADRName name: con.listObjects(new Zone(), pat)) {
 Zone z = (Zone) con.getObject(name);
 z.boot(null);
}

In this example, you have connected to the RAD instance, created a search for a
specific object, retrieved a reference to the object, and invoked a remote method on
the object.

RAD Remote Property Example in Java
Accessing a remote property is similar to using a remote method.

Example 2-27 Java Language – Accessing a RAD Remote Property

import com.oracle.solaris.rad.client.ADRName;
import com.oracle.solaris.rad.client.ADRGlobPattern;
import com.oracle.solaris.rad.connect.Connection;
import com.oracle.solaris.rad.zonemgr.*;

Connection con = Connection.connectUnix();
System.out.println("Connected: " + con.toString());

String keys[] = { "name" };
String values[] = { "test-0" };
ADRGlobPattern pat = new ADRGlobPattern(keys, values);
for (ADRName name: con.listObjects(new Zone(), pat)) {
 Zone z = (Zone) con.getObject(name);
 Resource filter = new Resource("global", null, null);
 List<Property> props = z.getResourceProperties(filter, null);
 System.out.println("Properties:");
 for (Property prop: props) {
 System.out.printf("\t%s = %s\n",prop.getName(), prop.getValue());
 }
}

In this example, you have accessed the list of global resource properties of the Zone
and printed the name and value of every Property.

RAD Event Handling in Java
This example shows how to subscribe and handle events. The ZoneManager instance
defines a stateChange event, which clients can subscribe for information about
changes in the runtime state of a zone.

Example 2-28 Java Language – Subscribing to and Handling RAD Events

import com.oracle.solaris.rad.client.ADRName;
import com.oracle.solaris.rad.client.RadEvent;
import com.oracle.solaris.rad.client.RadEventHandler;
import com.oracle.solaris.rad.connect.Connection;
import com.oracle.solaris.rad.zonemgr.*;

ZoneManager zmgr = con.getObject(new ZoneManager());
 con.subscribe(zmgr, "statechange", new StateChangeHandler());
 Thread.currentThread().sleep(100000000);

Chapter 2
RAD Java Client

2-22

class StateChangeHandler extends RadEventHandler {

 public void handleEvent(RadEvent event, Object payload) {
 StateChange obj = (StateChange) payload;
 System.out.printf("Event: %s", event.toString());
 System.out.printf("\tcode: %s\n", obj.getZone());
 System.out.printf("\told: %s\n", obj.getOldstate());
 System.out.printf("\tnew: %s\n", obj.getNewstate());
 }
}

To handle an event, implement the RadEventInterface class. The
com.oracle.solaris.rad.client package provides a default implementation
(RadEventHandler) with limited functions. This class can be extended to provide additional
event handling logic as in the example above.

In this example, you have subscribed to a single event by passing a handler and a reference
to the ZoneManager object. The handler is invoked asynchronously by the framework with
various event details and provided the user data.

Java Error Handling in RAD
Java provides a exception handling mechanism and RAD errors are propagated using this
method. RAD delivers a variety of errors, but the error that requires handling is
RadObjectException. The following example shows how to handle RAD errors.

Example 2-29 Java Language – Handling RAD Errors

<imports..>

Connection con = Connection.connectUnix();
 for (ADRName name: con.listObjects(new Zone())) {
 Zone zone = con.getObject(name);
 try {
 zone.boot(null);
 }catch (RadObjectException oe) {
 Result res = (Result) oe.getPayload();
 System.out.println(res.getCode());
 if (res.getStdout() != null)
 System.out.println(res.getStdout());
 if (res.getStderr() != null)
 System.out.println(res.getStderr());
 }
}

Note:

With RadException exceptions, you might get a payload. This payload is only
present if your interface method or property has defined an error element, where
the payload is the content of that error. If the interface method or property defines
no error element for the interface method or property, then no payload exists and
error has a value of null.

Chapter 2
RAD Java Client

2-23

RAD TLS Client in Java
The Java implementation has the Connection.connectTLS(hostname, port,
certfiles, locale, keystorefname, keystorepassfname) method. This method
enables you to specify a PKCS #12 archive (keystorefname) and the file that holds the
password (keystorepassfname) used to unlock the PKCS #12 archive.

The following example test code verifies the functionality of the RAD TLS client X.509
authentication implementation:

Because Java cannot use the default X.509 certificates and their corresponding key
file like C and Python can, a Java user must first create a PKCS #12 archive from the
certificate and key files. The following example test code fragment shows how to
create the archive:

Create a PKCS#12 keystore that Java can use

pkcs12_password=$(od -An -N6 -x /dev/urandom | nawk '{print $1$2$3;}')
echo "$pkcs12_password" > ${CERT_HOST_PKCS12_PASS}
openssl pkcs12 -export \
 -password file:${CERT_HOST_PKCS12_PASS} \
 -in ${CERT_HOST_CRT} \
 -inkey ${CERT_HOST_KEY} \
-out ${CERT_HOST_PKCS12}

RAD Python Client
The public interfaces are exported in the following three modules:

• rad.auth – Useful functions or classes for performing authentication

• rad.client – The client implementation of the RAD protocol and associated
useful functionality

• rad.connect – Useful functions or classes for connecting to a RAD instance

Note:

Most of the examples are based on the zonemgr interface. To understand
the examples for this module better, see Appendix A, zonemgr ADR Interface
Description Language Example in Remote Administration Daemon Module
Developer's Guide.

Alternatively, you can import the module and examine the module help.

Example 2-30 Accessing Help for a Binding Module

user@host1:/var/tmp# python3.7
Python 3.7.5 (default, Aug 20 2020, 02:25:50)
[GCC 9.3.0] on sunos5
Type "help", "copyright", "credits" or "license" for more information.
>>> import rad.bindings.com.oracle.solaris.rad.zonemgr_1 as zonemgr
>>> help(zonemgr)

Chapter 2
RAD Python Client

2-24

https://docs.oracle.com/cd/E37838_01/html/E61054/gogkc.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gogkc.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gogkc.html

Connecting to RAD in Python
The RAD instances can communicate through the RADConnection class. There are various
mechanism to get different types of connections to RAD. Each mechanism returns a
RADConnection instance, which provides a standard interface to interact with RAD.

The preferred method for managing a connection is to use the with keyword. The connection
uses the system resources and this ensures that the resource is closed correctly when the
object goes out of scope. If the system resources are not used, the system resources can be
reclaimed explicitly with the close() method.

Note:

If you print the RADConnection object, it displays the state of the connection and lets
you know if the connection is closed.

Connecting to a Local RAD Instance in Python
You can connect to a local instance using the radcon.connect_unix() function. An implicit
authentication is performed against your user ID and most RAD tasks you request with this
connection are performed with the privileges available to your user account.

Example 2-31 Python Language – Creating a RAD Local Connection

>>> import rad.connect as radcon

>>> with radcon.connect_unix() as rc:

Connecting to a RAD Remote Instance and Authenticating in Python
When connecting to a remote instance, no implicit authentication is performed. The
connection is not established until you authenticate. The rad.auth module provides a utility
class (RadAuth), which may be used to perform a PAM login. If you provide a username and
password, authentication is non-interactive. If you do not provide username and password,
you will receive a console prompt for the missing information.

Example 2-32 Python Language – Creating a RAD Remote Connection Over TLS

>>> import rad.connect as radcon
>>> import rad.auth as rada

>>> rc=radcon.connect_tls("host1")
>>> # Illustrate examining RadConnection state.
>>> print rc
<open RadConnection >
>>> auth = rada.RadAuth(rc)
>>> auth.authenticate("jdoe", "xxxpasswordxxx")
>>> <now authenticated and can use this connection>
>>> rc.close()
>>> print rc
<closed RadConnection >
>>>

Chapter 2
RAD Python Client

2-25

RAD is deployed as two cooperating processes. A proxy process is responsible for
authentication and establishing communications. A slave process is created by the
proxy and handles module processing. A slave is created for each client connection.

Connecting to a RAD Instance by Using a URI in Python
You can use a URI to connect to a local or remote RAD instance. You can use the
class RadURI() to connect to a RAD instance. The methods or functions are not
required in Python because you can read the attributes of the RAD instances that you
create instead of using defined methods. For more information, see Connecting in
Python to a RAD Instance by Using a URI.

The following constructor is supported.

def __init__(self, src, schemes = RAD_SCHEMES):

src
String, which is the URI of a RAD instance

schemes
List of strings that specify the schemes to be recognized

The following method is supported:

def connect(self, cred = None):

cred
Credentials that are required for authentication

You can use PAMCredentials class to create PAM credentials for PAM authentication
or you can use def get_pam_cred(passw) function, which returns a PAMCredentials
object for use in the RadURI.connect() method.

RAD Namespace in Python
Most RAD objects that are represented in the ADR document as <interfaces>. You can
find RAD objects by searching the RAD namespace. To access a RAD object, you
need a proxy, which is used to search the RAD namespace. An interface proxy class
enables you to use a proxy to search the RAD namespace. The interface proxy is
defined in the binding module of each interface.

The proxy provides the base name and version details for interface instances and is
structured as follows:

<domain name>:type=<interface name>[,optional additional key value pairs]

The <domain name> and the <interface name> are automatically derived from the
ADR IDL definition and are stored in the module binding.

Certain interfaces return or accept object references directly to or from clients. These
objects might not be named. Objects that are not named are anonymous. Anonymous
objects cannot be looked up in the RAD namespace, but the interface provides access
methods that make it simple to interact with them.

Chapter 2
RAD Python Client

2-26

Creating a Name for a RAD Object in Python
The RAD object names are structured, consisting of a domain and one or more key-value
pairs.

For example, you can create a name for a zonemgr zone instance as follows:

>>> ADRName("com.oracle.solaris.rad.zonemgr", { "type": "Zone",
 "name" : "radtest-zone", "id" : "1" })

When you create a name, you can handle key-value pairs. This removes any issues in
processing names where values contain special characters (for example, commas (,), and
equal signs (=).

The RADConnection class provides methods for listing objects by name and for obtaining a
remote object reference.

RAD Singletons in Python
A module developer creates a singleton to represent an interface. This interface can be
accessed easily. For example, the zonemgr module defines a singleton interface, ZoneInfo. It
contains information about the zone that contains the RAD instance with which you are
communicating.

Example 2-33 Python Language – Obtaining a Reference to a RAD Singleton

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
>>> import rad.connect as radcon
>>> with radcon.connect_unix() as rc:
... zi = rc.get_object(zonemgr.ZoneInfo())
... print zi.name
...
global
>>>

In this example, you have imported the RAD bindings and the rad.connect module, and
connected to the local RAD instance. After connecting to the local RAD instance, obtain a
remote object reference directly by using a proxy instance. After you have the remote
reference, you can access properties and methods directly as you would with any Python
object.

Listing RAD Instances of an Interface in Python
An interface can contain multiple RAD instances. For example, the zonemgr module defines a
Zone interface and there is an instance for each zone on the system. The RADConnection
class provides the list_objects() method to list the interface instances as shown in the
following example.

Example 2-34 Python Language – Listing RAD Interface Instances

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
>>> import rad.connect as radcon
>>> with radcon.connect_unix() as rc:
... zonelist = rc.list_objects(zonemgr.Zone())
... print zonelist
...
[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0),

Chapter 2
RAD Python Client

2-27

Name:
com.oracle.solaris.rad.zonemgr:type=Zone,name=test-1,id=-1 Version: (1.0), Name:
com.oracle.solaris.rad.zonemgr:type=Zone,name=NOT-TEST,id=-1 Version: (1.0)]
>>>

Obtaining a RAD Remote Object Reference From a Name in Python
Names (ADRName is the class name) are returned by the RADConnection list_objects
method. Once you have a name, you can obtain a remote object reference easily.

Example 2-35 Python Language – Obtaining a RAD Remote Object Reference

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
>>> import rad.connect as radcon
>>> with radcon.connect_unix() as rc:
... zonelist = rc.list_objects(zonemgr.Zone())
... zone = rc.get_object(zonelist[0])
... print zone.name
...
test-0
>>>

You can get values of individual components of an ADRName object by using the dot
notation nameObj.key or by using the getattr(nameObj, key) function call.

zonelist[0].name

Sophisticated RAD Searches in Python
You can search for a zone by its name or ID or a set of zones by pattern matching. You
can extend the basic definition of a name provided by a proxy. For example, if zones
are uniquely identified by the key name, then you can find a zone with the name
test-0 as shown in the following example. The example uses glob patterns to find a
zone.

Example 2-36 Python Language – Using Glob Patterns

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
>>> import rad.client as radc
>>> import rad.connect as radcon
>>> with radcon.connect_unix() as rc:
... zonelist = rc.list_objects(zonemgr.Zone(), radc.ADRGlobPattern({"name" :
"test-0"}))
... print zonelist
...
[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0)]
>>>

In this example, the ADRGlobPattern class (imported from the rad.client module) is
used to refine the search. The list_objects() method from the RADConnection class
is used, but the search is refined by extending the name definition. The
ADRGlobPattern class takes a key:value dictionary and extends the name used for the
search.

Glob Pattern Searching in RAD in Python
You can use a glob pattern to find zones with wildcard pattern matching. Keys and
values in the pattern may contain an asterisk (*), which is interpreted as wildcard

Chapter 2
RAD Python Client

2-28

pattern matching. The following example shows how to find all zones with a name which
begins with test.

Example 2-37 Python Language – Using Glob Patterns With Wildcards in RAD

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
>>> import rad.client as radc
>>> import rad.connect as radcon
>>> with radcon.connect_unix() as rc:
... zonelist = rc.list_objects(zonemgr.Zone(), radc.ADRGlobPattern({"name" :
"test*"}))
... print zonelist
...
[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0), Name:
com.oracle.solaris.rad.zonemgr:type=Zone,name=test-1,id=-1 Version: (1.0)]
>>>

Regex Pattern Searching in RAD in Python
You can also use ERE search capabilities of RAD. The following example shows how to find
only zones with name test-0 or test-1.

Example 2-38 Python Language – Using Regex Patterns in RAD

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
>>> import rad.client as radc
>>> import rad.connect as radcon
>>> with radcon.connect_unix() as rc:
... zonelist = rc.list_objects(zonemgr.Zone(), radc.ADRRegexPattern({"name" : "test-0|
test-1"}))
... print zonelist...
[Name: com.oracle.solaris.rad.zonemgr:type=Zone,name=test-0,id=-1 Version: (1.0), Name:
com.oracle.solaris.rad.zonemgr:type=Zone,name=test-1,id=-1 Version: (1.0)]
>>>

The key and the value must be valid EREs as determined by the instance of RAD to which
you are connected. The expression is compiled and executed on the server.

RAD Interface Components in Python
An API is defined by a module developer. It contains one or more of the following
components, each of which performs a task:

• Enumerations

– Values

• Structures

– Fields

• Dictionary

• Interfaces

– Properties

– Methods

– Events

These components are defined in an ADR IDL document. The radadrgen utility is used to
process the document to generate language specific components which facilitate client-

Chapter 2
RAD Python Client

2-29

server interactions within RAD. For more information about the role of ADR and RAD,
see Chapter 2, Abstract Data Representation for RAD in Remote Administration
Daemon Module Developer's Guide. Brief descriptions of each component follows.

RAD Enumerations in Python
Enumerations are primarily used to offer a restricted range of choices for a property,
an interface method parameter, result, or error.

Using RAD Enumeration Types in Python
To access an enumerated type, import the binding and interact with the enumeration.

Example 2-39 Python Language – Using RAD Enumerations

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
>>> print zonemgr.ErrorCode.NONE
NONE
>>> print zonemgr.ErrorCode.COMMAND_ERROR
COMMAND_ERROR
>>>

RAD Structure Types in Python
Structures, or "structs", are used to define new types and are composed from existing
built-in types and other user defined types. Structs are simple form of interfaces with
no methods or events. They are not included in the RAD namespace.

Using RAD Structs in Python
The zonemgr module defines a Property struct which represents an individual zone
configuration property. The structure has the following members: name, type, value,
value, listValue, and complexValue. Like enumerations, structures can be interacted
with directly once the binding is imported.

Example 2-40 Python Language – Using RAD Structs

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
>>> prop = zonemgr.Property("autoboot", "false")
>>> print prop
Property(name = 'autoboot', value = 'false', type = None, listvalue = None,
complexvalue = None)
>>> prop.name = "my name"
>>> prop.value = "a value"
>>> print prop.name
my name
>>> print prop.value
a value
>>>

Dictionary Support in Python for RAD
You can use the built-in dictionary type in Python. For example, the following Python
code sets the sample dictionary property as defined in Defining a Dictionary for RAD in
Remote Administration Daemon Module Developer's Guide:

object.DictProp = {1: 'value1', 2: 'value2'}

Chapter 2
RAD Python Client

2-30

https://docs.oracle.com/cd/E37838_01/html/E61054/gmfhx.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gmfhx.html
https://docs.oracle.com/cd/E37838_01/html/E61054/gnnaw.html#OSRADgpfod
https://docs.oracle.com/cd/E37838_01/html/E61054/gnnaw.html#OSRADgpfod

RAD Interfaces in Python
Interfaces, also known as objects, are the entities which populate the RAD namespace. They
must have a name. An interface is composed of events, properties, and methods.

Obtaining a RAD Object Reference in Python
See the RAD Namespace in Python section.

Working With RAD Object References in Python
Once you have an object reference, you can use this object reference to interact with RAD
directly. All attributes and methods defined in the IDL are accessible directly as Python object
attributes that are returned by the get_object() function.

The following example gets a reference to a zone and then boots the zone.

Example 2-41 Python Language – Working With RAD Object References

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
>>> import rad.client as radc
>>> import rad.connect as radcon
>>> with radcon.connect_unix() as rc:
... patt = radc.ADRGlobPattern({"name" : "test-0"})
... zone = rc.get_object(zonemgr.Zone(), patt)
... print zone.name
... zone.boot(None)
>>>

In this example, you have connected to the RAD instance, created a search for a specific
object, retrieved a reference to the object, and accessed a remote property on it. No error
handling occurred.

Accessing a RAD Remote Property in Python
The following example shows how to access a remote property.

Example 2-42 Python Language – Accessing a Remote RAD Property

>>> import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
>>> import rad.client as radc
>>> import rad.connect as radcon
>>> with radcon.connect_unix() as rc:
... name = rc.list_objects(zonemgr.Zone(), radc.ADRGlobPattern({"name" :
"test-0"}))
... zone = rc.get_object(name[0])
... for prop in zone.getResourceProperties(zonemgr.Resource("global")):
... if prop.name == "brand":
... print "Zone: %s, brand: %s" % (zone.name, prop.value)
... break
...
Zone: test-0, brand: solaris
>>>

In this example, you have accessed the list of global resource properties of the Zone and
searched the list of properties for the brand property. When you find it, print the value of the
brand property and then terminate the loop.

Chapter 2
RAD Python Client

2-31

RAD Event Handling in Python
This example shows how to subscribe to and handle events. The ZoneManager
instance defines a stateChange event, which clients can subscribe to for information
about changes in the runtime state of a zone.

Example 2-43 Python Language – Subscribing to and Handling RAD Events

import rad.connect as radcon
import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
import signal

def handler(event, payload, user):
 print "event: %s" % str(event)
 print "payload: %s" % str(payload)
 print "zone: %s" % str(payload.zone)
 print "old: %s" % str(payload.oldstate)
 print "new: %s" % str(payload.newstate)

with radcon.connect_unix() as rc:
 zm = rc.get_object(zonemgr.ZoneManager())
 rc.subscribe(zm, "stateChange", handler, zm)
 signal.pause()

In this example, you have subscribed to a single event by passing a handler and a
reference to the ZoneManager object. The handler is invoked asynchronously by the
framework with various event details and user data. The user data is an optional
argument at subscription. If the user data is not provided, the handler receives None as
the user parameter.

Python Error Handling in RAD
Python provides a exception handling mechanism and propagates RAD errors by
using this mechanism. RAD delivers a variety of error codes that you can handle with
rad.client.ObjectError. The following example shows how to handle RAD errors.

Example 2-44 Python Language – Handling RAD Errors

import rad.client as radc
import rad.conect as radcon
import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr
import logging
import sys

logging.basicConfig(filename='/tmp/example.log', level=logging.DEBUG)
with radcon.connect_unix() as rc:
 patt = radc.ADRGlobPattern({"name" : "test-0"})
 test0 = rc.get_object(zonemgr.Zone(), patt)
 print test0.name
 try:
 test0.boot(None)
 except radc.ObjectError as ex:
 error = ex.get_payload()
 if not error:
 sys.exit(1)
 if error.stdout is not None:
 logging.info(error.stdout)
 if error.stderr is not None:

Chapter 2
RAD Python Client

2-32

 logging.info(error.stderr)
 sys.exit(1)

Note:

With ObjectError exceptions, you might get a payload. This payload is present only
if your interface method or property has defined an error element, where the
payload is the content of that error. If no error element for the interface method (or
property) is declared, then no payload exists and error will have a value of None.

Connecting in Python to a RAD Instance by Using a URI
You can use the standard URI format to connect to a RAD instance. The URI format is as
follows:

scheme://user?@host:port?auth=value

scheme
(Mandatory) The supported schemes are unix, rad, rads, and ssh.

user
(Optional) The user who is connecting to the remote RAD instance. If you do not specify the
user, the current user is assumed.

host
(Mandatory) The system that contains the remote RAD instance.

port
(Optional) The port number. The default port is 12302 (RAD IANA port).

auth
(Optional) The authentication method that is used to connect to the remote RAD instance.
The supported values are pam and gss. If you do not specify the authentication, then pam is
assumed. If you are using SSH as the transport protocol, you must not specify the
authentication mechanism.

Example 2-45 Python Language – Connecting to a RAD Instance by Using a URI

The following example shows how to open a TCP connection as jdoe to the host abc at port
10000 with default authentication.

rads://jdoe@abc.example.com:10000

The following example shows how to open a TLS connection as hg to the host abc at the
default RAD port with gss authentication.

radg://hg@abc.example.com?auth=gss

The following example shows how to open an SSH connection as the current user to the host
abc at the default SSH port.

ssh://abc.example.com

The following example shows how to open a connection to a local RAD instance.

unix:///path

Chapter 2
RAD Python Client

2-33

RAD TLS Client in Python
The Python implementation has the rad.connect.connect_tls(host,
port=RAD_PORT_TLS, locale=None, ca_certs=RAD_DEFAULT_CERT_PATHS,
client_cert=None, client_key=None) function. The client_cert and client_key
arguments can point to /etc/certs/localhost/host.crt and host.key,
respectively.

Generic Security Services API Transport in RAD
RAD includes a Generic Security Services API (GSS-API) transport, which allows
secure administrative communication between the client and the server.

The following examples shows the configuration parameters when configuring GSS-
API transport in RAD:

DNS domain name = example.com
RAD client = client.example.com
RAD server = server.example.com
Kerberos realm name = EXAMPLE.COM
Kerberos administrative principal = adjdoe/admin
User/principal = jdoe

Securing Messages Using G-RAD
The GSS-API transport allows secure messaging for RAD applications.

The GSS-API transport leverages environments that have deployed secure
authentication protocols, such as Kerberos. A URI transport element is added to the
existing schema to indicate the GSS-API RAD (G-RAD) transport as follows:

radg://[user@]host[:port]

radg specifies the transport indicating G-RAD support.

If the user is not specified, then the invoking user is utilized. In the case of Kerberos,
the user is mapped into a user principal.

If the host is not specified, then failure is returned.

If the port is not specified, then the default port is 6789.

G-RAD Applications Using Kerberos
The RAD server must be configured to host Kerberos and to utilize the G-RAD
transport for Kerberos. Configuring the RAD server includes creating a rad service
principal for the system and adding the associated keys to its key table. For more
information about configuring the RAD server with Kerberos, see Configuring Kerberos
Clients in Managing Kerberos in Oracle Solaris 11.4.

After the system is configured for Kerberos, create the rad service principal, such as
rad/server.example.com, on the RAD server. You can authenticate as a RAD user on
the RAD client by using the kinit command or by authenticating through PAM with
pam_krb5.

Chapter 2
Generic Security Services API Transport in RAD

2-34

https://docs.oracle.com/cd/E37838_01/html/E61026/kerbtask-kclient.html
https://docs.oracle.com/cd/E37838_01/html/E61026/kerbtask-kclient.html

Using the RAD client's initial authentication through the system key table file (/etc/krb5/
krb5.keytab), the root user can also be configured as a RAD user in Kerberos. The host
service principal is used in this scenario, therefore the client must be configured as a
Kerberos system. For more information, see Configuring Kerberos Clients in Managing
Kerberos in Oracle Solaris 11.4.

To authorize RAD requests as root, the RAD server must also map the authenticated host
service principal of the client to the local root user. For example, on the RAD server,
the /etc/krb5/krb5.conf file is updated to include auth_to_local_names in the realms
section as follows:

server# cat /etc/krb5/krb5.conf
...
[realms]
 EXAMPLE.COM = {
 ...
 auth_to_local_names = {
 host/client.example.com = root
 }
 }

Example 2-46 G-RAD Application Example

The following example shows G-RAD transport utilization with live zone migration as a
privileged user:

client$ id
uid=1234567(mre) gid=1(other)
client $ profiles
Zone Configuration
Zone Migration
Basic Solaris User
All
client$ auths
solaris.admin.wusb.read,solaris.mail.mailq,solaris.network.autoconf.read,
solaris.zone.config/zone1,solaris.zone.migrate/zone1
client$ kinit
Password for mre@EXAMPLE.COM:
client$ pfexec /usr/sbin/zoneadm -z zone1 migrate radg://server
zoneadm: zone 'zone1': Using existing zone configuration on
destination.
zoneadm: zone 'zone1': Attaching zone.
zoneadm: zone 'zone1': Booting zone in 'migrating-in' mode.
zoneadm: zone 'zone1': Checking migration compatibility.
zoneadm: zone 'zone1': Performing initial copy (total 8192MB).
...
zoneadm: zone 'zone1': Migration successful.

Chapter 2
Generic Security Services API Transport in RAD

2-35

https://docs.oracle.com/cd/E37838_01/html/E61026/kerbtask-kclient.html
https://docs.oracle.com/cd/E37838_01/html/E61026/kerbtask-kclient.html

3
REST APIs for RAD Clients

RESTful Interface and RAD
The RESTful interface can be accessed by any HTTP client that supports either normal TCP
(or TLS) connections or UNIX domain sockets. Two RAD SMF service instances provide the
access:

rad:local
Enables communication with local HTTP clients that can communicate over UNIX domain
sockets. Enabled by default. For more information, see the --unix-socket option in the
curl(1) man page.

rad:remote
Enables communication over normal TCP sockets with HTTPS clients. Disabled by default.

Oracle Solaris 11.4 introduces RAD HTTP authentication API version 2.0. This updated API
exposes the entire PAM (Pluggable Authentication Module) conversation. Developers can
take advantage of the exposed PAM conversation to improve the user experience. The
Oracle Solaris Analytics Web UI application uses this updated API.

Note:

Communication with RAD over HTTP uses the application/json content type only.
The RAD server will refuse to communicate if a request states a payload content
type or an Accept content type from the client that is not application/json.

The following example illustrates the REST interaction with RAD. Interacting With RAD by
Using the REST Authentication Module 2.0 is a similar example that uses the API that
handles multiple authentication requests, such as requests from an OTP application. These
examples assume that you have installed the web/curl developer package.

For more information about the two distinct authentication APIs, see RAD Authenticating
Remote Clients.

Example 3-1 Interacting With RAD by Using the REST Authentication Module 1.0

This example assumes that you have installed the web/curl developer package. The
example illustrates a password-based PAM authentication stack, and shows how you can use
RAD with non-global zones.

1. Create a new authentication session.

Replace the username and password with values for any user on your system.

curl -X POST -c cookiejar -b cookiejar \
--header 'Content-Type:application/json'
--data '{"username":"username","password":"password","scheme":"pam","timeout":-1,

3-1

https://docs.oracle.com/cd/E88353_01/html/E37839/curl-1.html

"preserve":true}' \
https://radserver.example.com/api/com.oracle.solaris.rad.authentication/1.0/
Session/

2. Request a list of all the zones running on your system.

curl -H 'Content-Type:application/json' -X GET -b cookiejar \
https://radserver.example.com/api/com.oracle.solaris.rad.zonemgr/1.0/Zone?
_rad_detail

Sample response:

{
 "status": "success",
 "payload": [
 {
 "href": "api/com.oracle.solaris.rad.zonemgr/1.2/Zone/
testzone1",
 "Zone": {
 "auxstate": [],
 "brand": "solaris",
 "id": 1,
 "uuid": "b54e20c1-3ecb-407f-ad26-
befed9221860",
 "name": "testzone1",
 "state": "running"
 }
 },
 {
 "href": "api/com.oracle.solaris.rad.zonemgr/1.2/Zone/
testzone2",
 "Zone": {
 "auxstate": [],
 "brand": "solaris",
 "id": 2,
 "uuid": "358b43ba-32f9-4f27-9efa-
de15ae4100a6",
 "name": "testzone2",
 "state": "running"
 }
 }
]
}

Example 3-2 Mapping the Connection to the root User

Create a Python script to connect to RAD, map the connection to the root user, and
list all non-global and kernel zones that are present on the specified system,
hostname. Run the script as the root user.

Note that the map_host_certificate_to_root property value must be true. See
Configuring RAD Transports to Accept X.509 Client Certificates.

Ensure that your script contains the following Python 3 example code fragment:

import requests
import json
from pprint import pprint
r = requests.get('https://hostname>:6788/api/com.oracle.solaris.rad.zonemgr/1.8/
Zone?_rad_detail', cert=('/etc/certs/localhost/host.crt', '/etc/certs/localhost/
host.key'))
pprint(json.loads(r.text))

Chapter 3
RESTful Interface and RAD

3-2

Note:

RAD over HTTP/REST permits a client to provide a certificate and hence permits it
to perform non-interactive authentication. This behavior requires that the HTTP
client support the sending of TLS client certificates.

URI Specifications for RAD Resources
In a RESTful architecture, RAD objects are modeled as resources. A resource is an entity
with a type, associated data, relationships to other resources, and a set of methods that
operate on it. A URI is used to identify a resource. Resources can exist individually or as a
collection. And a collection can be nested within an individual resource.

The URI format to access RAD resources can include a variety of parameters, for example:

• https://host:port/api/{namespace}/[{version}]/{collection}[?query-params]
• https://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}[?query-params]
• https://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}/{property}[?

query-params]

• https://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}/{sub-
collection}[?query-params]

• https://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}/{sub-
collection}/{sub-coll-ID}[?query-params]

• https://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}/{sub-
collection}/{sub-coll-ID}/{property}[?query-params]

• https://host:port/api/{namespace}/[{version}]/{collection}/{coll-ID}/{sub-
collection}/{sub-coll-ID}/{sub-collection}/{sub-coll-ID}/{sub-collection}......[?
query-params]

The components in the URIs are as follows:

• namespace – Name associated with a RAD module, generally the module API name or
domain name of the RAD module.

• version – Optional version number that specifies the RAD module version.

• collection – Collection resource.

• coll-ID – Identifier or path to an individual resource within a collection that identifies a
specific RAD instance.

• sub-collection – Collection nested within an individual resource. It is an interface property
of type struct, a list, a dictionary, or a reference.

• sub-coll-ID – Identifier or path to an individual resource within a subcollection. It consists
of a struct field, a list index, a dictionary key, or a reference property.

• property – An interface property within a specific individual resource.

Sample URI:

https://host:port/api/com.oracle.solaris.rad.zonemgr/1.6/Zone/testzone1?_rad_detail

Chapter 3
URI Specifications for RAD Resources

3-3

All REST requests take the optional _rad_detail query parameter. If this query
parameter is set to true, you will get the full details of an object in the response. The
default setting is false.

In some cases, a server object does not have a name and the use of a standard URI
to refer to a RAD instance does not make sense. This situation might occur when a
reference to a RAD instance is returned as an error or as the result from a method. In
this case, the server generates a URI path that includes a _rad_reference field. For
example, the following is a possible URI:

/api/com.oracle.solaris.rad.zonemgr/1.6/Zone/_rad_reference/1234

The URI is valid to use in the remainder of the session but is valid only for the lifetime
of a session.

URI for an Individual RAD Resource
Individual resources are identified by a URI that includes a comma-separated list of all
primary keys. For example, an individual zone object might be represented by the
following URI:

/api/com.oracle.solaris.rad.zonemgr/1.6/Zone/testzone1

URI for a RAD Resource Collection
Collections are identified by a URI which includes the name of the collection. For
example, a zone collection object is represented by the following URI:

/api/com.oracle.solaris.rad.zonemgr/1.6/Zone

Invoking RAD Interface Methods
To invoke a method supported by an interface in a URI, include the method name and
an ordered list of arguments in the request. The response includes any results or
errors returned by the interface method.

Example 3-3 Listing the anet Properties of a Zone in RAD

The following example shows how to get the anet properties of a zone and the sample
response.

curl -H 'Content-Type:application/json' -X PUT \
https://radserver.example.com/api/com.oracle.solaris.rad.zonemgr/1.6/Zone/
testzone1/_rad_method/getResourceProperties \
--data '{"filter": {"type": "anet"}}'

Sample output:

{
 "status": "success",
 "payload": [
 {
 "name": "linkname",
 "value": "net0",
 "type": "PROP_SIMPLE",
 "listvalue": null,
 "complexvalue": null
 },

Chapter 3
URI Specifications for RAD Resources

3-4

 {
 "name": "lower-link",
 "value": "auto",
 "type": "PROP_SIMPLE",
 "listvalue": null,
 "complexvalue": null
 },.....
....]}

In this example, the getResourceProperties method of the Zone interface is invoked. For
more information about the methods supported by the Zone interface, see the zonemgr(3RAD)
man page.

Note:

When using the _rad_method parameter, the request should be of type PUT.

REST Requests
A REST request is associated with an HTTP operation and can use any of the following
HTTP operations based on the type of request:

• GET – Retrieve a resource or a collection of resources

• POST – Create a new resource

• PUT – Update a resource

• DELETE – Delete a resource

Because REST for RAD supports only JSON as the content type, you must include one of the
following values in the HTTP header of a REST request:

• Set the value of the Content-Type field to application/json.

• Set the value of the Accept field to */* or application/json.

REST Request Examples
The following examples show how to use REST to create, read, update, and delete RAD
resources.

Example 3-4 Creating a Resource by Using REST

This example shows how to create a ZFS file system named p2 in rpool/export/home/
testuser.

Sample request:

curl -H 'Content-Type:application/json' -X PUT -b cookiejar \
https://radserver.example.com/api/com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/rpool/
_rad_method/create_filesystem \
--data '{"name":"rpool/export/home/testuser/p2"}'

Sample response:

{
 "status": "success",

Chapter 3
REST Requests

3-5

 "payload": {
 "href": "/api/com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/
_rad_reference/5889"
 }
}

Example 3-5 Updating a Resource by Using REST

This example shows how to update the value of the maxbw property for the net0
interface.

Sample request:

curl -H 'Content-Type:application/json' -X PUT -b cookiejar \
https://radserver.example.com/api/com.oracle.solaris.rad.dlmgr/1.1/Datalink/net0/
_rad_method/setProperty \
--data '{"properties":"maxbw=300","flags":1}'

Sample response:

{
 "status": "success",
 "payload": null
}

Example 3-6 Querying a Resource by Using REST

This example shows how to get a list of all the ZFS file systems available in rpool.

Sample request:

curl -H 'Content-Type:application/json' -X PUT -b cookiejar \
https://radserver.example.com/api/com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/
rpool/_rad_method/get_filesystems \
--data'{"recursive":true}'

Sample response:

{
 "status": "success",
 "payload": [
 "rpool/ROOT",
 "rpool/ROOT/solaris",
 "rpool/ROOT/solaris/var",
 "rpool/VARSHARE",
 "rpool/VARSHARE/zones",
 "rpool/VARSHARE/pkg",
 "rpool/VARSHARE/pkg/repositories",
 "rpool/export",
 "rpool/export/home",
 "rpool/export/home/testuser"
]
}

Example 3-7 Deleting a Resource by Using REST

This example shows how to delete a user named tuser4.

Sample request:

curl -H 'Content-Type:application/json' -X PUT -b cookiejar \
https://radserver.example.com/api/com.oracle.solaris.rad.usermgr/1.0/UserMgr/

Chapter 3
REST Requests

3-6

_rad_method/deleteUser \
--data '{"username":"tuser4"}'

Sample response:

{
 "status": "success",
 "payload": null
}

REST Responses
All REST responses have the following basic JSON structure:

{
 "status": "success" ||
 "object-specific error" ||
 "not found error" ...
 "payload": null || <resource specific>
}

HTTP Status Codes and REST
Because REST requests are made over HTTP, the client receives HTTP status codes in a
response. Some of the common HTTP return codes and their corresponding meaning in the
context of RAD are as follows:

• 200 OK – Request succeeded.

• 201 Created – Request succeeded and a new resource is created.

• 204 No Content – Request succeeded but the server did not return a message body.

• 400 Bad Request – Request did not succeed, possibly because of a data-type mismatch
or a illegal access.

• 401 Unauthorized – Insufficient privileges.

• 404 Not found – Specified resource was not found.

Error Responses to a RAD Request
For non-fatal errors, the server responds with information about the issue. The basic JSON
structure of an error response is as follows:

{
 "status": text-of-the-RAD error,
 "payload": payload
}

In case of a HTTP 503 error, the value is defined and returned by the RAD module that is
mentioned in the request. For all other errors, the payload value has the following format:

{
 "Message": description-of-error,

 "HTTP Method": ("HEAD"|"GET"|"POST"|"PUT"|"DELETE"),

 "URI": full-URI-with-all-query-parameters,

Chapter 3
REST Responses

3-7

 "RAD Operation": ("INVOKE"|"GETATTR"|"SETATTR"|"LOOKUP"|"LIST"|null),

 "Request payload": { Arguments provided by the client },

 "Method": name of a method for INVOKE operation,

 "Attribute": name of an attribute/property for GETATTR, SETATTR ops,

 "Pattern": URI translated to RAD list pattern for LIST operation,

 "Name": URI translated to RAD name for LOOKUP operation,

 "Object": { URI translated to RAD object (any operation but LIST)

 "Name": name of a module, also known as domain

 "Interface": name of the interface,
 },

 "Reference": RAD reference ID found in the special _rad_reference URIs,

 "Version": { Module version as found in the URI

 "Major": int,

 "Minor": int
 }
 }

Information that is not provided in the request or could not be decoded from the
request is included in the response as a JSON null.

Some of the examples of possible error messages are as follows:

Decoding request body as JSON failed: too big integer near '18446744073709551615'

Invalid (array) argument 'arg'='[true,false,true,false]' - element [0]
- integer out of bounds (-2147483648, 2147483647)

RAD Authentication
With RAD, all communications between client and server are encapsulated within a
connection. When a connection closes, all state associated with the connection is
reclaimed by the RAD daemon. However, because RESTful interactions that happen
over HTTP are stateless, a client must establish a connection and authenticate each
request.

RAD authentication is performed using the authentication module API. This module
has some special features, but in general one interacts with it much as with any other
module. Oracle Solaris 11.4 delivers two major, incompatible authentication module
versions.

RAD Authentication Module Version 1.0
Authenticates the client in one request where the client provides both username and
password.
This version assumes that the server-side PAM configuration only ever requires a
username and password. Use this version if that is a safe assumption, or if the same
RAD client needs to interoperate with Oracle Solaris 11.3 and earlier releases.

Chapter 3
RAD Authentication

3-8

RAD Authentication Module Version 2.0
Authenticates the client in multiple request-responses, thus fully exposing the underlying
PAM conversation
Where the server-side PAM configuration may prompt the user for multiple credentials, such
as OTP or RADIUS requests, you must use this version. You should use the authentication
module version 2.0 API when the client is an interactive application rather than scripted
automation. The Oracle Solaris WebUI SMF service uses the authentication module
version 2.0 API.

Instead of having to re-authenticate for every request, RAD provides a token. When a client
connects to RAD and successfully authenticates, RAD generates a unique token for the client
and then services the request. At the same time, RAD stores the token and details about the
client connection. On subsequent requests, if a token is supplied, RAD uses the token to
retrieve the previously authenticated connection, associates it with the incoming request, and
processes the request.

Because a token is generated when a client connects to RAD for the first time, the token is
absent from the request. Tokens have the following characteristics:

• Tokens are a 256-bit opaque value constructed from a random number, which provides
security and minimizes the likelihood of collisions.

• Tokens have a finite, configurable lifetime of up to a maximum of 24 hours. The default
lifetime is 1 hour. The lifetime is configured as part of the initial authentication request.
The expiry time of the token is reset or extended whenever an authenticated request is
received.

• If the token received in a request is invalid or has expired, an error is returned and the
client must re-authenticate.

• If the RAD slave is killed or if RAD is terminated, all tokens and their corresponding
sessions are destroyed.

RAD Authenticating Remote Clients
Unlike in Oracle Solaris 11.3, RAD in Oracle Solaris 11.4 accepts REST connections locally
with the rad:local SMF instance and remotely with the rad:remote SMF instance.

The rad:remote SMF instance is delivered disabled by default. When enabled, rad:remote
expects RPC connections on port 12302 and HTTP/REST connections on port 6788. All
remote communications with RAD are transported over TLS/HTTPS.

How to Enable a RAD Remote Client Connection
The rad:remote service must be enabled, and the RAD server's certificate must be trusted
on the client.

1. Enable the rad:remote instance.

svcadm enable rad:remote
2. Ensure that the RAD server's certificate will be trusted.

Perform this procedure once per client. Choose the steps for your certificate source.

• RAD server is using a self-signed certificate.

a. From the client, safely copy the server certificate to the client.

Chapter 3
RAD Authenticating Remote Clients

3-9

RADclient # scp user@RADserver:/etc/certs/localhost/host-ca/
hostca.crt /etc/certs/CA

b. Restart the ca-certificates service on the client.

RADclient # svcadm restart ca-certificates
• RAD server is using a CA certificate.

a. Ensure that the certificate for the issuing CA is in the /etc/certs/CA
directory on the client.

RADclient # ls /etc/certs/CA
...
Example-Security_EV_RootCA1.pem
Example-Security_RootCA2.pem
Example-Security_Root_CA.pem
...

b. If necessary, restart the ca-certificates service.

RADclient # svcadm restart ca-certificates
Example 3-8 RAD Authenticating Using Version 1.0 of the Authentication
Module

This example shows how to use the authentication module version 1.0 to connect to
a remote server.

1. Establish a session and generate a token.

2. # curl -X POST -c cookiejar -b cookiejar \
--header 'Content-Type:application/json' \
--data
'{"username":"username","password":"password","scheme":"pam","timeout":-1,
"preserve":true}' \
https://radserver.example.com/api/com.oracle.solaris.rad.authentication/1.0/
Session/

3. If the username and password credentials are valid, you will get a response similar
to the following:

Set-Cookie: _rad_instance=26368; Path=/api; Max-Age=3600
Set-Cookie: _rad_token=9432a53c-8034-4729-8cac-fb713a56827b; Path=/api;Max-
Age=3600

{
 "status": "success",
 "payload": {
 "href": "/api/com.oracle.solaris.rad.authentication/1.0/
Session/_rad_reference/2304"
 }
}

As the Set-Cookie implies, to resume a session, a client must present this cookie
in the HTTP header as part of each future request. Because the Set-Cookie
directive instructs the client to include this cookie in future requests, the session
resumes automatically. In this example, invoking the curl command again with
the same cookiejar file and a new request would result in RAD processing the
new request as part of the initial session.

4. For subsequent requests, you would use the token, as shown in the following
example:

Chapter 3
RAD Authenticating Remote Clients

3-10

curl -v -X GET -c cookiejar -b cookiejar \
https://radserver.example.com/api/com.oracle.solaris.rad.zonemgr/1.0/Zone?
_rad_detail

The _rad_token cookie contains a string token that is the external representation of the
session. If the token needs to be directly accessed, you can obtain the string token by
reading the session's token property. This value may be used to later gain access to the
session by writing the token to the session's token property.

Only the owner of a session may delete and thus invalidate the session.

Note that a session token can be used across multiple connections, which allows an
authenticated client to make multiple concurrent requests.

Example 3-9 RAD Authenticating Using Version 2.0 of the Authentication Module

This example shows how to use the authentication module version 2.0 to connect to a
remote server.

1. Establish a session and generate a token that is sent back to the client in the form of an
HTTP cookie.

curl -b cookiejar -c cookiejar -X POST -H 'Content-Type:application/json' \
--data '{"username":"jdoe", "preserve":true}' \
https://radserver.example.com/api/authentication/2.0/Session/

2. The HTTP cookie is similar to the following:

Set-Cookie: _rad_token=9432a53c-8034-4729-8cac-fb713a56827b; Path=/api;Max-Age=3600

{
 "status": "success",
 "payload": {
 "href": "/api/com.oracle.solaris.rad.authentication/2.0/Session/
_rad_reference/2560"
 }
}

Unlike the version 1.0 API, the session is not authenticated at this point. The server
expects further interaction with client and user.

3. To determine the session state on the server, the client inspects it as follows:

curl -b cookiejar -c cookiejar -X GET \
https://radserver.example.com/api/com.oracle.solaris.rad.authentication/2.0/
Session/_rad_reference/2560/state

Sample response:

 {
 "status": "success",
 "payload": {
 "scheme": "PAM",
 "pam": {
 "state": "CONTINUE",
 "messages": [
 {
 "style": "PROMPT_ECHO_OFF",
 "message": "Password: "
 }
],
 "responses": null
 },

Chapter 3
RAD Authenticating Remote Clients

3-11

 "error": null,
 "generation": 1
 }
}

This response tells the client that the server (PAM) expects to continue the
authentication conversation (string CONTINUE in the JSON structure). Note that the
string is under the keys payload, pam, and state. Also, under the key messages,
the server tells the client application to display the message "Password: " and to
hide the user response "style":"PROMPT_ECHO_OFF".

The messages key can contain multiple messages. The client application must
collect and respond to all of those in one subsequent HTTP request.

The possible values for "state" are:

CONTINUE
Server will send another set of messages to process

SUCCESS
Server successfully authenticated the session

ERROR
An error occurred when authenticating the session

The possible values for style are:

PROMPT_ECHO_OFF
PROMPT_ECHO_ON
TEXT_INFO
ERROR_MSG

For more information, see the pam_start(3PAM) man page.

4. The client application gathers the requested user input:

curl -b cookiejar -c cookiejar -X PUT -H "Content-type: application/json" \
--data '{"value": {"pam": {"responses": ["secret"]}, "generation": 1}}' \
https://radserver.example.com/api/com.oracle.solaris.rad.authentication/2.0/
Session/_rad_reference/2560/state

5. The client responds to the server by updating the state resource similar to the
following:

{
 "status": "success",
 "payload": {
 "scheme": "PAM",
 "pam": {
 "state": "SUCCESS",
 "messages": null,
 "responses": null
 },
 "error": null,
 "generation": 2
 }
}

Chapter 3
RAD Authenticating Remote Clients

3-12

https://docs.oracle.com/cd/E88353_01/html/E37847/pam-start-3pam.html

Note that the server sends a generation number with each of its JSON payload
responses. The client must repeat the same key and value in any of its subsequent
requests to update the state resource.

This example shows that the RAD server used PAM to authenticate the user successfully in
just one generation. However, because of the configuration of the PAM stack, the client must
repeat the GET and PUT loop: (GET ... /state, gather the user's unput and PUT ... /
state) for as long as the value of the state key remains CONTINUE.

Example 3-10 Interacting With RAD by Using the REST Authentication Module 2.0

1. Create a new authentication session.

curl -b cookiejar -c cookiejar -X POST --header 'Content-Type:application/json' \
--data '{"username":"jdoe", "preserve":true}' \
https://radserver.example.com/api/authentication/2.0/Session/

Sample response:

{
 "status": "success",
 "payload": {
 "href": "/api/com.oracle.solaris.rad.authentication/2.0/Session/
_rad_reference/2560"
 }
}

The preceding command creates a new authentication session for user jdoe, as shown in
the response. Along with the response, the server sends HTTP cookies for the client to
store and send back with every subsequent request to the server during this particular
session.

2. Determine the state of the session.

The state key shows that PAM requires more input for successful session authentication.

curl -b cookiejar -c cookiejar -X GET \
https://radserver.example.com/api/com.oracle.solaris.rad.authentication/2.0/
Session/_rad_reference/2560/state

Sample response:

{
 "status": "success",
 "payload": {
 "scheme": "PAM",
 "pam": {
 "state": "CONTINUE",
 "messages": [
 {
 "style": "PROMPT_ECHO_OFF",
 "message": "Password: "
 }
],
 "responses": null
 },
 "error": null,
 "generation": 1
 }
}

Chapter 3
RAD Authenticating Remote Clients

3-13

For information about the meaning of the response, see RAD Authenticating
Remote Clients.

3. In this example, PAM is configured for password-based authentication. Therefore,
the client needs to send to the server the password that the client program
gathered from the user:

curl -b cookiejar -c cookiejar -X PUT -H "Content-type: application/json" \
--data '{"value": {"pam": {"responses": ["secret"]}, "generation": 1}}' \
https://radserver.example.com/api/com.oracle.solaris.rad.authentication/2.0/
Session/_rad_reference/2560/state

Sample response:

{
 "status": "success",
 "payload": {
 "scheme": "PAM",
 "pam": {
 "state": "SUCCESS",
 "messages": null,
 "responses": null
 },
 "error": null,
 "generation": 2
 }
}

The SUCCESS value of the state key indicates that the session is fully authenticated
and the client can proceed with sending other requests to interact with different
modules. Further success depends on the client sending back the session
cookie(s), and the session cannot have expired.

4. If your system has non-global zones, send the following request.

curl -H 'Content-Type:application/json' -X GET \
https://radserver.example.com/api/com.oracle.solaris.rad.zonemgr/1.6/Zone?
_rad_detail

Sample response:

{
 "status": "success",
 "payload": [
 {
 "href": "api/com.oracle.solaris.rad.zonemgr/1.6/Zone/
testzone1",
 "Zone": {
 "auxstate": [],
 "brand": "solaris",
 "id": 1,
 "uuid": "b54e20c1-3ecb-407f-ad26-befed9221860",
 "name": "testzone1",
 "state": "running"
 }
 },
 {
 "href": "api/com.oracle.solaris.rad.zonemgr/1.6/Zone/
testzone2",
 "Zone": {
 "auxstate": [],
 "brand": "solaris",

Chapter 3
RAD Authenticating Remote Clients

3-14

 "id": 2,
 "uuid": "358b43ba-32f9-4f27-9efa-de15ae4100a6",
 "name": "testzone2",
 "state": "running"
 }
 }
]
}

REST API Reference
Although all RAD modules support REST, from a client perspective only some of the modules
will be accessed over REST. The tables in this section list some of the URIs for commonly-
accessed RAD modules along with sample requests.

Table 3-1 REST APIs for Datalink Management – com.oracle.solaris.rad.dlmgr

Resource URI Description Sample Request

GET /api/
com.oracle.solaris.rad.dlmgr
/1.1?_rad_detail

List the details of all
the interfaces
available for datalink
management.

curl -H 'Content-Type:application/json' -X GET
 https://radserver.example.com/api/
com.oracle.solaris.rad.dlmgr/1.1?_rad_detail
 -b cookiejar

PUT /api/
com.oracle.solaris.rad.dlmgr
/1.1/Datalink/net0/
_rad_method/getProperty

Get the details of the
priority property
from net0.

curl -H 'Content-Type:application/json' -X PUT
 https://radserver.example.com/api/
com.oracle.solaris.rad.dlmgr/1.1/Datalink/net0/
_rad_method/getProperty
 --data '{"properties":"priority"}' -b
cookiejar

Table 3-2 REST APIs for Kernel Statistics – com.oracle.solaris.rad.kstat

Resource URI Description Sample Request

GET /api/
com.oracle.solaris.rad.kstat
/2.0?_rad_detail

List the details for all
the interfaces
available for kernel
statistics.

curl -H 'Content-Type:application/json' -X GET
 https://radserver.example.com/api/
com.oracle.solaris.rad.kstat/2.0?_rad_detail
 -b cookiejar

GET /api/
com.oracle.solaris.rad.kstat
/2.0/Kstat/
misc,cpu_info0,cpu_info,
{CPU number}?_rad_detail

Get the information
for a particular CPU
on a system.

curl -H 'Content-Type:application/json' -X GET
 https://radserver.example.com/api/
com.oracle.solaris.rad.kstat/2.0/Kstat/
misc,cpu_info0,cpu_info,0?_rad_detail
 -b cookiejar

GET /api/
com.oracle.solaris.rad.kstat
/2.0/Kstat/misc,vm,cpu,{CPU
number}?_rad_detail

Get the VM statistics
for a particular CPU
on a system.

curl -H 'Content-Type:application/json' -X GET
 https://radserver.example.com/api/
com.oracle.solaris.rad.kstat/2.0/Kstat/
misc,vm,cpu,0?_rad_detail
 -b cookiejar

Chapter 3
REST API Reference

3-15

Table 3-3 REST APIs for SMF Management – com.oracle.solaris.rad.smf

Resource URI Description Sample Request

GET /api/
com.oracle.solaris.rad.smf/
1.0?_rad_detail

List the details of all
the interfaces
available for SMF
management.

curl -H 'Content-Type:application/json' -X
 GET https://radserver.example.com/api/
com.oracle.solaris.rad.smf/1.0?_rad_detail
 -b cookiejar

GET /api/
com.oracle.solaris.rad.smf/1
.0/Instance/
network%2Fhttp,apache24/
state

Get the status of the
apache24 service.

curl -H 'Content-Type:application/json' -X
 GET https://radserver.example.com/api/
com.oracle.solaris.rad.smf/1.0/Instance/
network%2Fhttp,apache24/state
 -b cookiejar

PUT /api/
com.oracle.solaris.rad.smf/1
.0/Instance/
network%2Fhttp,apache24/
_rad_method/enable

Enable the
apache24 service.

curl -H 'Content-Type:application/json' -X
 PUT https://radserver.example.com/api/
com.oracle.solaris.rad.smf/1.0/Instance/
network%2Fhttp,apache24/_rad_method/enable
 -b cookiejar --data '{"temporary": true}'

PUT /api/
com.oracle.solaris.rad.smf/1
.0/Instance/
network%2Fhttp,apache24/
_rad_method/disable

Disable the
apache24 service.

curl -H 'Content-Type:application/json' -X
 PUT https://radserver.example.com/api/
com.oracle.solaris.rad.smf/1.0/Instance/
network%2Fhttp,apache24/_rad_method/disable
 -b cookiejar --data '{"temporary": true}'

Table 3-4 REST APIs for User Management – com.oracle.solaris.rad.usermgr

Resource URI Description Sample Request

PUT /api/
com.oracle.solaris.rad.userm
gr/1.0/UserMgr/_rad_method/
getUser

Get the information
of a particular user
on the system.

curl -H 'Content-Type:application/json' -X PUT
-b cookiejar
 https://radserver.example.com/api/
com.oracle.solaris.rad.usermgr/1.0/UserMgr/
_rad_method/getUser
 --data '{"username":"testuser"}'

GET /api/
com.oracle.solaris.rad.userm
gr/1.0/UserMgr/shells?
_rad_detail

Get the list of all the
shells on the system.

curl -H 'Content-Type:application/json' -X GET
-b cookiejar
 https://radserver.example.com/api/
com.oracle.solaris.rad.usermgr/1.0/UserMgr/
shells?_rad_detail

Chapter 3
REST API Reference

3-16

Table 3-4 (Cont.) REST APIs for User Management – com.oracle.solaris.rad.usermgr

Resource URI Description Sample Request

PUT /api/
com.oracle.solaris.rad.userm
gr/1.0/UserMgr/_rad_method/
addUser

Add a user. curl -H 'Content-Type:application/json' -X PUT
-b cookiejar
 https://radserver.example.com/api/
com.oracle.solaris.rad.usermgr/1.0/UserMgr/
_rad_method/addUser
 --data '{"user":{"username":"tuser4",
"userID": 9992, "groupID":
 10, "inactive": 0, "min": -1, "max": -1,
"warn": -1},"password":"test123"}'

PUT https://
radserver.example.com/api/
com.oracle.solaris.rad.userm
gr/1.0/UserMgr/_rad_method/
deleteUser

Delete a user. curl -H 'Content-Type:application/json' -X PUT
-b cookiejar
 https://radserver.example.com/api/
com.oracle.solaris.rad.usermgr/1.0/UserMgr/
_rad_method/deleteUser
 --data '{"username":"tuser4"}'

Table 3-5 REST APIs for ZFS Management – com.oracle.solaris.rad.zfsmgr

Resource URI Description Sample Request

GET /api/
com.oracle.solaris.rad.zfsmg
r/1.0?_rad_detail

List the details of all
the interfaces
available for ZFS
management.

curl -H 'Content-Type:application/json' -X GET
 https://radserver.example.com/api/
com.oracle.solaris.rad.zfsmgr/1.0?_rad_detail
 -b cookiejar

PUT /api/
com.oracle.solaris.rad.zfsmg
r/1.0/ZfsDataset/rpool/
_rad_method/get_filesystems

List all the ZFS file
systems in rpool.

curl -H 'Content-Type:application/json' -X PUT
 https://radserver.example.com/api/
com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/
rpool/_rad_method/get_filesystems
 --data '{"recursive":true}' -b cookiejar

PUT /api/
com.oracle.solaris.rad.zfsmg
r/1.0/ZfsDataset/rpool/
_rad_method/get_snapshots

List all the ZFS
snapshots.

curl -H 'Content-Type:application/json' -X PUT
 https://radserver.example.com/api/
com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/
rpool/_rad_method/get_snapshots
 --data '{"recursive":true}' -b cookiejar

PUT /api/
com.oracle.solaris.rad.zfsmg
r/1.0/ZfsUtil/_rad_method/
valid_zfs_name

Check whether a
specified string can
be used as a ZFS
name.

curl -H 'Content-Type:application/json' -X PUT
 https://radserver.example.com/api/
com.oracle.solaris.rad.zfsmgr/1.0/ZfsUtil/
_rad_method/valid_zfs_name
 --data '{"name":"test@test"}' -b cookiejar

Chapter 3
REST API Reference

3-17

Table 3-5 (Cont.) REST APIs for ZFS Management – com.oracle.solaris.rad.zfsmgr

Resource URI Description Sample Request

PUT https://
radserver.example.com/api/
com.oracle.solaris.rad.zfsmg
r/1.0/ZfsDataset/rpool/
_rad_method/
create_filesystem

Create a ZFS file
system.

curl -H 'Content-Type:application/json' -X PUT
-b cookiejar
 https://radserver.example.com/api/
com.oracle.solaris.rad.zfsmgr/1.0/ZfsDataset/
rpool/_rad_method/create_filesystem
 --data '{"name":"rpool/export/home/testuser/
p2"}'

Table 3-6 REST APIs for Zone Management – com.oracle.solaris.rad.zonemgr

Resource URI Description Sample Request

GET /api/
com.oracle.solaris.rad.zonem
gr/1.6?_rad_detail

List the details of all
the interfaces
available for Zone
management.

curl -H 'Content-Type:application/json' -X GET
-b cookiejar
 https://radserver.example.com/api/
com.oracle.solaris.rad.zonemgr/1.6?_rad_detail

GET /api/
com.oracle.solaris.rad.zonem
gr/1.6/Zone/{zone-name}?
_rad_detail

Get the details of a
zone.

curl -H 'Content-Type:application/json' -X GET
-b cookiejar
 https://radserver.example.com/api/
com.oracle.solaris.rad.zonemgr/1.6/Zone/
testzone1?_rad_detail

GET /api/
com.oracle.solaris.rad.zonem
gr/1.6/ZoneInfo?_rad_detail

Get the details of the
zone for which the
interface is executing.

curl -H 'Content-Type:application/json' -X GET
-b cookiejar
 https://radserver.example.com/api/
com.oracle.solaris.rad.zonemgr/1.6/ZoneInfo?
_rad_detail

Chapter 3
REST API Reference

3-18

A
RAD Module Descriptions

RAD Modules in Oracle Solaris 11.4
The following RAD modules are available in this release.

Note:

See Tips for Using RAD Modules for how to display the man page for a RAD
module. For more information, see the rad(8) man page.

com.oracle.solaris.rad.archivemgr
Provides functionality for creating and interacting with a Unified Archive (UA).

com.oracle.solaris.rad.authentication
Provides functionality for authentication using PAM and session management through the
use of secure tokens.

com.oracle.solaris.rad.autoinstall
Provides functionality for administering an Automated Install (AI) Server.

com.oracle.solaris.rad.bemgr
Provides functionality for getting information about Boot Environments (BE) on the system.

com.oracle.solaris.rad.compliance_mgr
Provides functionality for administering compliance operations, including remote
assessments and central storage for reports.

com.oracle.solaris.rad.dlmgr
Exposes common operations for configuring and administering datalinks and data flows.

com.oracle.solaris.rad.ips
Exposes common package operations in IPS to RAD clients.

com.oracle.solaris.rad.kstat
Exposes v2 kernel statistics (kstat2) to RAD clients.

com.oracle.solaris.rad.labelmgr
Provides functionality for selecting and combining labels and clearances that are used for
mandatory access control.

com.oracle.solaris.rad.modules
Provides enumeration of RAD modules.

com.oracle.solaris.rad.odocprovider
Provides functionality for accessing and searching Oracle Solaris online documentation.

A-1

https://docs.oracle.com/cd/E88353_01/html/E72487/rad-8.html

com.oracle.solaris.rad.smf
Exposes common SMF configuration, actions, and state to RAD clients.

com.oracle.solaris.rad.sstore
Exposes libsstore interfaces for reading data, info, or namespaces for different
SSIDs and for enabling or disabling the persistent recording of statistics and events. It
also provides a batch interface to perform multiple read operations in a single request.

com.oracle.solaris.rad.sysmgr
Provides functionality for controlling system state.

com.oracle.solaris.rad.usermgr
Exposes user, group, and role administration to RAD clients.

com.oracle.solaris.rad.webuiprefs
Provides functionality for the setting and viewing of Oracle Solaris WebUI
preferences.

com.oracle.solaris.rad.zfsmgr
Provides functionality for managing ZFS storage pools, ZFS datasets and ZFS
snapshots.

com.oracle.solaris.rad.zonemgr
Provides functionality for the configuration and administration of zones.

com.oracle.solaris.rad.zonesbridge
Provides connectivity to a non-global zone through its global zone for RAD clients.

Appendix A
RAD Modules in Oracle Solaris 11.4

A-2

Index

Symbols
/usr/include/rad/client/c/2/

module_version/module_name .h, 2-1
/usr/include/rad/client/c/2/

auth_login.h, 2-1
/usr/include/rad/

radclient_basetypes.h header file,
2-1

/usr/include/rad/radclient.h header
file, 2-1

/usr/lib/rad/java JAR files, 2-17

A
APIs

C for RAD clients, 2-1
GSSAPI, 2-34
Java for RAD clients, 2-14
Python for RAD clients, 2-24
RAD, 1-1

application/json payload
REST, 3-1

architecture of RAD, 1-2
archivemgr RAD module, A-1
authenticating

differences from Oracle Solaris 11.3, 1-1
RAD, 1-2

authentication RAD module, A-1
autoinstall RAD module, A-1

B
bemgr RAD module, A-1

C
C language environment

RAD client, 2-1
RAD enumerations, 2-8
RAD error handling, 2-12
RAD event handling, 2-11
RAD interface components, 2-7
RAD interface instances, 2-5

C language environment (continued)
RAD interfaces, 2-10
RAD namespace, 2-3
RAD remote object references, 2-5
RAD singletons, 2-4
RAD structures, 2-8
searching

using glob patterns, 2-6
using regex patterns, 2-7

com.oracle.solaris.rad.client package, 2-14
com.oracle.solaris.rad.connect package,

2-14
com.oracle.solaris.rad.dlmgr REST

client URI, 3-15
com.oracle.solaris.rad.kstat REST

client URI, 3-15
compliance_mgr RAD module, A-1
connecting to

RAD in C, 2-1
RAD in Java, 2-14
RAD in Python, 2-25

D
dlmgr RAD module, A-1
dlmgr REST client URI, 3-15

E
examples

requests in REST, 3-5

G
G-RAD

Kerberos and, 2-34
secure messaging, 2-34

glob pattern search
in C, 2-6
in Java, 2-28
in Python, 2-28

glob wildcard search
in C, 2-6
in Java, 2-18

Index-1

glob wildcard search (continued)
in Python, 2-28

GSSAPI transport API, 2-34

H
HTTP status codes in REST, 3-7

I
interfaces

REST, 3-1
ips RAD module, A-1

J
Java language environment

authenticating, 2-14
connecting to

RAD, 2-14
RAD instance using URI, 2-14, 2-15
RAD remote instance, 2-14

dictionary support for RAD, 2-21
JAR file location, 2-17
maps with pattern searches, 2-19
naming RAD object, 2-16
RAD client, 2-14
RAD enumeration types, 2-20
RAD enumerations, 2-20
RAD event handling, 2-22
RAD interface components, 2-20
RAD interface instances, 2-17
RAD interfaces, 2-21
RAD names, 2-18
RAD namespace, 2-16
RAD object references, 2-21
RAD property enumerations, 2-20
RAD remote object references, 2-18
RAD singletons, 2-17
RAD struct types, 2-20
RAD structs, 2-20
searching

for RAD objects, 2-16
using glob patterns, 2-18
using glob wildcards, 2-18
using regex patterns, 2-19

system/management/rad/client/rad-java
package, 2-17

java.util.Map<K,V>, 2-21

K
kstat RAD module, A-1
kstat REST client URI, 3-15

L
labelmgr RAD module, A-1
libradclient library, 2-4

M
modules

available, A-1
tips for using RAD, 1-4

modules RAD module, A-1

N
namespaces

C, 2-3
Java, 2-16
Python, 2-26

O
odocprovider RAD module, A-1

P
packages

Java for RAD, 2-14
RAD client, 1-2
REST, 3-1
web/curl, 3-1

Python language environment
accessing remote RAD property, 2-31
connecting to

local RAD instance, 2-25
RAD, 2-25
RAD instance using URI, 2-26, 2-33
remote RAD instance, 2-25

dictionary support for RAD, 2-30
naming, 2-27
RAD client, 2-24
RAD enumeration types, 2-30
RAD enumerations, 2-30
RAD error handling, 2-32
RAD event handling, 2-32
RAD interface components, 2-29
RAD interface instances, 2-27
RAD interfaces, 2-31
RAD namespace, 2-26
RAD object references, 2-31
RAD remote object references, 2-28
RAD singletons, 2-27
RAD structure types, 2-30
RAD structures, 2-30

Index

Index-2

Python language environment (continued)
searching

using glob patterns, 2-28
using glob wildcards, 2-28
using regex patterns, 2-29

R
RAD

architecture, 1-2
authenticating in REST, 3-8
authentication, 1-2
available modules, A-1
C language environment, 2-1
enabling logging, 1-4
enumerations

in C, 2-8
in Java, 2-20
in Python, 2-29

error handling
in C, 2-12
in Python, 2-32

error responses in REST, 3-7
event handling

in C, 2-11
in Java, 2-22
in Python, 2-32

glob pattern search, 2-6
in C, 2-6
in Java, 2-18
in Python, 2-28

header files, 2-1
individual resource in REST, 3-4
interface components

in C, 2-7
in Java, 2-20
in Python, 2-29

interface instances
in C, 2-5
in Java, 2-21
in Python, 2-27

interface methods in REST, 3-4
interfaces

in C, 2-10
in Java, 2-21
in Python, 2-31

Java language environment, 2-14
libradclient library, 2-1
man pages, 1-4
module descriptions, A-1
namespace

in C, 2-3
in Java, 2-16
in Python, 2-26

new features, 1-1

RAD (continued)
object references

obtaining in C, 2-10
obtaining in Java, 2-21
obtaining in Python, 2-31

Python language environment, 2-24
regex pattern searching

in C, 2-7
in Java, 2-19
in Python, 2-29

remote object references
obtaining in C, 2-5
obtaining in Java, 2-18
obtaining in Python, 2-28

requests in REST, 3-5
required privileges, 1-4
resource collection in REST, 3-4
resources in REST, 3-3
REST API reference, 3-15
searching

in C, 2-4
in Java, 2-16
in Python, 2-28

singletons
in C, 2-4
in Java, 2-17
in Python, 2-27
obtaining in Python, 2-27

sophisticated searches, 2-6
structures

in C, 2-8
in Java, 2-20
in Python, 2-29

tips for using, 1-4
rad:local SMF service, 3-1, 3-9
rad:remote SMF service, 3-1, 3-9
rad.auth Python class, 2-24
rad.client Python class, 2-24
rad.connect Python class, 2-24
RadAuthHandler, 2-14
RadURI() connection, 2-26
rc_auth_login(), 2-2
rc_connect_*() set of functions, 2-1
rc_connect_unix(), 2-1
rc_disconnect(), 2-1
regex pattern search

in C, 2-7
in Java, 2-19
in Python, 2-29

responses
requests in REST, to, 3-7

REST language environment
API reference, 3-15
application/json payload, 3-1

Index

Index-3

REST language environment (continued)
authenticating, 3-8
datalink management module, 3-15
error responses to requests, 3-7
HTTP status codes, 3-7
individual RAD resource, 3-4
kernel statistics module, 3-15
packages, 3-1
RAD interface methods, 3-4
RAD resource collection, 3-4
request examples, 3-5
requests, 3-5
responses, 3-7
SMF services and, 3-1
URI specifications, 3-3

S
searching in RAD

in C, 2-4
in Java, 2-16
in Python, 2-28

smf RAD module, A-1
SMF services

rad:local, 3-1, 3-9
rad:remote, 3-1, 3-9

sophisticated searches
in RAD using C, 2-6

sophisticated searches (continued)
in RAD using Java, 2-18
in RAD using Python, 2-28

sstore RAD module, A-1
sysmgr RAD module, A-1
system/management/rad/client/rad-c package,

1-2
system/management/rad/client/rad-java

package, 1-2, 2-17
system/management/rad/client/rad-python

package, 1-2

U
URI specifications in REST, 3-3, 3-15
usermgr RAD module, A-1

W
web/curl developer package, 3-1
webuiprefs RAD module, A-1

Z
zfsmgr RAD module, A-1
zonemgr RAD module, A-1
zonesbridge RAD module, A-1

Index

Index-4

	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	1 Introduction to the Remote Administration Daemon
	What's New in the RAD API in Oracle Solaris 11.4
	Remote Administration Daemon
	How RAD Works
	Tips for Using RAD Modules
	Configuring RAD Transports
	Configuring RAD Transports to Accept X.509 Client Certificates
	Configuring the RAD Transport to Specify a Particular IP Address

	2 Connecting to RAD
	RAD C Client
	Building RAD C Clients
	Connecting to RAD in C
	Connecting to a Local RAD Instance in C
	Connecting to a Remote Instance and Authenticating in C Using RAD
	Connecting to a RAD Instance by Using a URI in C

	RAD Namespace in C
	Creating a Name for a RAD Object in C
	Searching for RAD Objects in C
	Obtaining a Reference to a RAD Singleton in C
	Listing RAD Instances of an Interface in C
	Obtaining a Remote Object Reference From a Name in C
	Sophisticated RAD Searches in C
	Glob Pattern Searching in RAD in C
	Regex Pattern Searching in RAD in C

	RAD Interface Components in C
	RAD Enumerations in C
	Using RAD Enumeration Types in C

	RAD Structures in C
	Using RAD Struct Types in C

	Dictionary Support in C for RAD
	RAD Interfaces in C
	Obtaining a RAD Object Reference in C
	Working With RAD Object References in C
	Accessing a Remote Property in RAD in C
	RAD Event Handling in C
	RAD Error Handling in C

	RAD TLS Client in C

	RAD Java Client
	Connecting to RAD in Java
	Connecting to a RAD Local Instance in Java
	Connecting to a Remote RAD Instance and Authenticating in Java
	Connecting to a RAD Instance by Using a URI in Java

	RAD Namespace in Java
	Creating a Name for a RAD Object in Java
	Searching for RAD Objects in Java
	RAD Singletons in Java
	Listing RAD Interface Instances in Java
	Remote Object References and RAD Names in Java
	Sophisticated RAD Searches in Java
	Glob Pattern Searching in RAD in Java
	Using Maps When Pattern Searching in RAD in Java
	Regex Pattern Searching in RAD in Java

	Interface Components for RAD in Java
	RAD Property Enumerations in Java
	Using RAD Enumeration Types in Java

	RAD Structs in Java
	Using RAD Struct Types in Java

	Dictionary Support for RAD in Java
	RAD Interfaces in Java
	Obtaining a RAD Object Reference in Java
	Working With RAD Object References in Java
	RAD Remote Property Example in Java
	RAD Event Handling in Java
	Java Error Handling in RAD

	RAD TLS Client in Java

	RAD Python Client
	Connecting to RAD in Python
	Connecting to a Local RAD Instance in Python
	Connecting to a RAD Remote Instance and Authenticating in Python
	Connecting to a RAD Instance by Using a URI in Python

	RAD Namespace in Python
	Creating a Name for a RAD Object in Python
	RAD Singletons in Python
	Listing RAD Instances of an Interface in Python
	Obtaining a RAD Remote Object Reference From a Name in Python
	Sophisticated RAD Searches in Python
	Glob Pattern Searching in RAD in Python
	Regex Pattern Searching in RAD in Python

	RAD Interface Components in Python
	RAD Enumerations in Python
	Using RAD Enumeration Types in Python

	RAD Structure Types in Python
	Using RAD Structs in Python

	Dictionary Support in Python for RAD
	RAD Interfaces in Python
	Obtaining a RAD Object Reference in Python
	Working With RAD Object References in Python
	Accessing a RAD Remote Property in Python
	RAD Event Handling in Python
	Python Error Handling in RAD

	Connecting in Python to a RAD Instance by Using a URI
	RAD TLS Client in Python

	Generic Security Services API Transport in RAD
	Securing Messages Using G-RAD
	G-RAD Applications Using Kerberos

	3 REST APIs for RAD Clients
	RESTful Interface and RAD
	URI Specifications for RAD Resources
	URI for an Individual RAD Resource
	URI for a RAD Resource Collection
	Invoking RAD Interface Methods

	REST Requests
	REST Request Examples

	REST Responses
	HTTP Status Codes and REST
	Error Responses to a RAD Request

	RAD Authentication
	RAD Authenticating Remote Clients
	How to Enable a RAD Remote Client Connection

	REST API Reference

	A RAD Module Descriptions
	RAD Modules in Oracle Solaris 11.4

	Index

