
Remote Administration Daemon Module
Developer's Guide

E61054-02
November 2020

Remote Administration Daemon Module Developer's Guide,

E61054-02

Copyright © 2012, 2020, Oracle and/or its affiliates.

Primary Author: Cathleen Reiher, Sharon Veach

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Copyright © 2012, 2020, Oracle et/ou ses affiliés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont
concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf stipulation expresse de votre
contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et
par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le
désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par
la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle
Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par
écrit.

Si ce logiciel, la documentation du logiciel, les données (telles que définies dans la réglementation "Federal
Acquisition Regulation") ou la documentation qui l'accompagne sont livrés sous licence au Gouvernement des Etats-
Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le compte du Gouvernement des Etats-Unis, la
notice suivante s'applique :

UTILISATEURS DE FIN DU GOUVERNEMENT É.-U. : programmes Oracle (y compris tout système d'exploitation,
logiciel intégré, tout programme intégré, installé ou activé sur le matériel livré et les modifications de tels programmes)
et documentation sur l'ordinateur d'Oracle ou autres logiciels OracleLes données fournies aux utilisateurs finaux du
gouvernement des États-Unis ou auxquelles ils ont accès sont des "logiciels informatiques commerciaux", des
"documents sur les logiciels informatiques commerciaux" ou des "données relatives aux droits limités" conformément
au règlement fédéral sur l'acquisition applicable et aux règlements supplémentaires propres à l'organisme. À ce titre,
l'utilisation, la reproduction, la duplication, la publication, l'affichage, la divulgation, la modification, la préparation des
œuvres dérivées et/ou l'adaptation des i) programmes Oracle (y compris tout système d'exploitation, logiciel intégré,
tout programme intégré, installé, ou activé sur le matériel livré et les modifications de ces programmes), ii) la
documentation informatique d'Oracle et/ou iii) d'autres données d'Oracle, sont assujetties aux droits et aux limitations
spécifiés dans la licence contenue dans le contrat applicable. Les conditions régissant l'utilisation par le
gouvernement des États-Unis des services en nuage d'Oracle sont définies par le contrat applicable à ces services.
Aucun autre droit n'est accordé au gouvernement américain.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des
informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque,
notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou
matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de
secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions
optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l'utilisation de ce logiciel ou matériel pour des applications dangereuses.

Oracle®, Java, et MySQL sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom
mentionné peut être une marque appartenant à un autre propriétaire qu'Oracle.

Intel et Intel Inside sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont
utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Epyc, et le
logo AMD sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée
de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant
accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute
responsabilité et excluent toute garantie expresse ou implicite quant aux contenus, produits ou services émanant de
tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses
affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages
causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée
dans un contrat entre vous et Oracle.

Contents

 Using This Documentation

Product Documentation Library viii

Feedback viii

1 Introduction to Developing a Remote Administration Daemon
Module

Remote Administration Daemon 1-1

How RAD Works 1-1

RAD Functionality 1-2

Designing RAD Components 1-4

RAD APIs 1-4

RAD API Versions 1-4

RAD API Namespace and Restricted Names 1-4

Synchronous and Asynchronous Invocation in RAD 1-5

Legacy Constraints for RAD APIs 1-5

RAD Client Library Support 1-5

RAD API Design Examples 1-5

RAD Interface 1-7

RAD Interface Names 1-7

RAD Feature Types 1-9

RAD Commitment Levels 1-12

RAD Interface Versioning 1-12

RAD Namespace 1-13

Data Types Supported in RAD 1-14

RAD Base Types 1-14

RAD Derived Types 1-15

Optional Data in RAD 1-15

RBAC Support for RAD 1-15

2 Abstract Data Representation for RAD

ADR Interface Description Language for RAD 2-1

iv

ADR Definition Document for a RAD Module 2-1

Documentation Definitions for RAD Modules 2-2

<summary /> Element in RAD Modules 2-2

<doc /> Element in RAD Modules 2-3

Version Element in RAD Modules 2-3

Enumeration Definitions in RAD Modules 2-3

Structure Definitions in RAD Modules 2-4

Dictionary Definitions in RAD Modules 2-5

Interface Definitions for a RAD Module 2-6

Interface Methods for a RAD Module 2-6

Interface Attributes for a RAD Module 2-6

Interface Events for a RAD Module 2-7

Including IDL Files in a Parent IDL File 2-7

RAD Module Example 2-8

radadrgen Processing Tool 2-12

3 libadr Library

Data Management in libadr 3-1

adr_type_t Type 3-1

adr_data_t Type 3-2

Allocating adr_data_t Values 3-3

Allocating Strings in libadr 3-3

Allocating boolean in libadr 3-4

Allocating Numeric Types in libadr 3-4

Allocating Times in libadr 3-4

Allocating Opaques in libadr 3-4

Allocating Secrets in libadr 3-4

Allocating Names in libadr 3-5

Allocating Enumerations in libadr 3-5

Allocating Structures in libadr 3-5

Allocating Arrays in libadr 3-5

Accessing Simple adr_data_t Values 3-6

Manipulating Derived Type adr_data_t 3-6

Manipulating Array adr_data_t Values 3-6

Manipulating the Structure of an adr_data_t Type 3-7

Validating adr_data_t Values 3-8

ADR Object Name Operations 3-9

adr_name_t Type 3-9

Creating adr_name_t Type 3-10

Inspecting adr_name_t Type 3-10

v

String Representation in libadr 3-11

Dictionary Support in libadr 3-11

API Management in libadr 3-12

radadrgen-Generated Definitions 3-12

Running radadrgen 3-12

Generating Server Bindings for C in libadr 3-12

Generating Server Bindings for Python in libadr 3-14

4 RAD Module Development

C APIs for RAD 4-1

Entry Points in C for RAD 4-1

Error Codes in C for RAD 4-2

System Errors in C for RAD 4-2

RAD Module Defined Errors in C for RAD 4-2

Global Variables in C for RAD 4-2

Module Registration in C for RAD 4-3

Instance Management in C for RAD 4-3

Container Interactions in C for RAD 4-3

Logging in C for RAD 4-4

Using Threads in C for RAD 4-4

Synchronization in C for RAD 4-5

Subprocesses in C for RAD 4-5

Utilities in C for RAD 4-6

Locales in C for RAD 4-6

Transactional Processing in C for RAD 4-6

Asynchronous Methods and Progress Reporting in C for RAD 4-7

Python APIs for RAD 4-7

rad.server Python Module 4-8

RADInstance Python Class 4-8

RADContainer Python Class 4-9

RADException Python Class 4-9

RAD Namespace Objects 4-10

RAD Static Objects 4-10

RAD Dynamic Handlers 4-10

RAD Module Linkage 4-11

A zonemgr ADR Interface Description Language Example

vi

Index

vii

Using This Documentation

Product Documentation Library
Documentation and resources for this product and related products are available at
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01.

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/
docfeedback.

Using This Documentation

viii

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/goto/docfeedback
http://www.oracle.com/goto/docfeedback

1
Introduction to Developing a Remote
Administration Daemon Module

Remote Administration Daemon
RAD provides programmable interfaces that enable developers and administrators to
configure and manage Oracle Solaris system components. You can configure and manage
system components using C, Java, Python, and REpresentational State Transfer (REST)
APIs. RAD also enables developers to create custom interfaces using these APIs to manage
the system components. RAD is the central point where system developers can expose their
components for configuration or administration, and where the various programmatic
consumers can go to perform such activities. For more information, see Remote
Administration Daemon Client Guide.

A RAD interface defines how a client can interact with a system through a set of methods,
attributes, and events using a structured namespace. The interface enables developers and
administrators to configure and administer Oracle Solaris. Developers create these interfaces
and program the access to them.

RAD uses a client-server design to support different types of clients such as clients written in
different languages, clients running without privilege, and clients running remotely. In a client-
server design, RAD acts as a server that services remote procedure calls and clients act as
consumers.

By providing a procedure call interface, RAD enables non-privileged local consumers to
perform actions on behalf of their users that require elevated privilege, without resorting to a
CLI-based implementation. By establishing a stream protocol, RAD enables the consumers to
perform actions on any system or device over a range of secure transport options.

RAD offers the following benefits:

• Procedure calls in RAD are made against server objects in a browsable, structured
namespace. This process permits a logical program progression.

• Procedure calls can be asynchronous. Depending on the protocol in use, a client might
have multiple simultaneous outstanding requests.

• You can inspect and modify the interfaces exported by the server objects. This inspection
facilitates interactive usage, debugging environments, and enables clients to use
dynamically-typed languages such as Python.

• Using RAD interfaces, you can define properties and asynchronous event sources.

How RAD Works
In the RAD architecture, the clients can be local or remote. These clients can be written in C,
Java, or Python. The following figure shows the architecture of RAD.

Architecture of RAD

1-1

RAD Functionality
RAD provides the following main functionalities:

• Management and Configuration

– Two SMF services: svc:/system/rad:local and svc:/system/rad:remote
– Structured and browsable namespace.

– Inspectable, typed, and versioned interfaces.

– Asynchronous event sources.

– XML-based interactive data language (IDL) abstract data representation
(ADR) that supports formal definitions of APIs. The IDL compiler radadrgen
generates client language bindings.

• Security

– Full PAM conversation support including use of pam_setcred(3PAM) to set the
audit context.

Chapter 1
RAD Functionality

1-2

– Authentication by using GSSAPI in deployments where Kerberos is configured.

– Implicit authentication by using getpeerucred(3C) when possible.

– Non-local network connectivity is not available by default. RAD is preconfigured to
use TLS.

– Most operations are automatically delegated to lesser-privileged processes.

– Defines two authorizations and two rights profiles to provide fine-grained separation
of powers for managing and configuring the RAD SMF services.

* RAD authorizations

* solaris.smf.manage.rad – Grants the authorization to enable, disable, or
restart the RAD SMF services.

* solaris.smf.value.rad – Grants the authorization to change RAD SMF
property values.

* RAD rights profiles

* RAD Management – Includes the solaris.smf.manage.rad
authorization.

* RAD Configuration – Includes the solaris.smf.value.rad authorization.

– Generates AUE_rad_login, AUE_logout, AUE_role_login, AUE_role_logout, and
AUE_passwd audit events.

– Customizes the process attributes for each RAD module to conform to the Principle
of Least Privilege.

• Connectivity

– Local access by using AF_UNIX sockets.

– Remote access by using TCP sockets.

– Secure remote access by using TLS sockets.

– Captive execution with access through a pipe.

– Connection points are completely configurable at the command line or by using SMF.

• Client support

– Java language binding provides access to all defined server interfaces.

– Python language binding provides access to all defined server interfaces.

– C language binding provides access to all defined server interfaces.

• Extension

– A public native C module interface supports addition of third-party content.

– radadrgen can generate server-side type definitions and stubs from IDL input.

– A native execution system can automatically run modules with authenticated user's
privilege and audit context, simplifying authentication and auditing.

– Private module interfaces enable the defining of new transports.

Chapter 1
RAD Functionality

1-3

Designing RAD Components
The components that are fundamental to RAD are interfaces, objects that implement
those interfaces, and the namespace in which those objects can be found and
operated upon.

RAD APIs
A RAD API is the starting point for designing a new RAD component. An API consists
of a collection of other subsidiary components: derived types and interfaces. APIs are
versioned so that a client can specify which API version to use.

The users of the RAD APIs belong to two categories. administrators and developers.
Accommodating both categories of consumers within one interface is difficult.
Administrators require task-based APIs which match directly onto well-understood and
defined administrative activities. Developers require detailed, operation-based
interfaces which may be aggregated to better support unusual or niche administrative
activities.

For any given subsystem, you can view existing command-line utilities (CLIs) and
libraries (APIs) as expressions of the rad APIs. The CLIs represent the task-based
administrative interfaces and the APIs represent the operation-based developer
interfaces. The goal of using a RAD module is to provide interfaces that address the
lowest-level objectives of the target audience. If you are targeting administrators (task-
based), your goal could translate to matching existing CLIs. If you are targeting
developers, your goal could mean significantly less aggregation of the lower-level
APIs.

An API name defines the namespace, which identifies objects to the clients. APIs can
have versions and a single RAD instance is capable of offering different major versions
of APIs to different clients. RAD modules are a grouping of interfaces, events,
methods, and properties which enable a user to interact with a subsystem.

When exposing the elements of a subsystem, you should consider how existing
functions can be grouped together to form an interface. Imperative languages such as
C tend to pass structures as the first argument to functions. The structures provide a
clear indication of where to group functions into APIs.

RAD API Versions
A version element is required for all APIs. For more information about API versions,
see RAD Interface Versioning.

RAD API Namespace and Restricted Names
An API defines all top-level elements in a namespace. Names of components must be
unique. Names must not begin with "_rad" because this string is reserved for the RAD
toolchain.

Chapter 1
Designing RAD Components

1-4

Synchronous and Asynchronous Invocation in RAD
All method invocations in RAD are synchronous. Asynchronous behavior can be obtained by
requiring events to provide notifications. For more information, see Synchronization in C for
RAD.

Legacy Constraints for RAD APIs
Some CLIs contain processing capabilities that are not accessible from an existing API. Such
constraints must be considered in the RAD API design.

Existing CLI functionality should be migrated to an API rather than duplicating the
functionality in the new RAD interface. Duplication introduces redundancy and significantly
increase maintenance complexity. One particular area where RAD interface developers need
to be careful is around parameter checking and transformation.

RAD modules must be written in C. Some subsystems, for instance, those written in other
languages, have no mechanism for a C module to access API functionality. In these cases,
RAD module creators must access whatever functionality is available in the CLI or make a
potentially significant engineering effort to access the existing functionality. Possible ways are
to rewrite existing code in C or embed a language interpreter in their C module.

RAD Client Library Support
RAD modules are designed to have a language-agnostic interface. However, you might want
to provide additional language support through the delivery of a language-specific extension.
You should restrict the use of such extensions. Use them only to help improve the fit of an
interface into a language idiom.

RAD API Design Examples
Combining these RAD tools to design an API can be a challenge. Several possible solutions
for a particular problem are often available. The following User Management examples
illustrate some best practices.

RAD User Management Example

Note:

This example does not reflect the user management modules in Oracle Solaris.

Object or interface granularity is subjective. For example, imagine an interface for managing
a user. The user has a few modifiable properties:

• name property of type string
• shell property of type string
• admin property of type boolean
The interface for managing this user might consist solely of a set of attributes corresponding
to these properties. Alternatively, it could consist of a single attribute that is a structure
containing fields that correspond to the properties. A possibly more efficient implementation

Chapter 1
Designing RAD Components

1-5

would read or write all properties together. The object implementing this might be
named as follows:

com.example.users:type=TheOnlyUser

If instead of managing a single user you need to manage multiple users, you have a
couple of options. One option would be to modify the interface to use methods instead
of attributes, and to add a "username" argument to the methods, for example:

setUserAttributes(username, attributes) throws UserError
attributes getUserAttributes(username) throws UserError

This option is sufficient for a single user, as well as provides support to other global
operations such as adding a user, deleting a user, getting a list of users and so on.
This option could use a more appropriate name, for example:

com.example.users:type=UserManagement

However, suppose users have more properties and you want to perform more
operations, such as, sending them email, giving them a bonus and so on. As the
server functionality grows, the UserManagement's API becomes cluttered and the API
will have code for both global and per-user operations. The need to specify a user and
the associated errors for each per-user operation would start looking redundant.

username[] listUsers()
addUser(username, attributes)
giveRaise(username, dollars) throws UserError
rif(username) throws UserError
sendEmail(username, message) throws UserError
setUserAttributes(username, attributes) throws UserError
attributes getUserAttributes(username) throws UserError

A better alternative would be to create two interfaces that separate the global
operations from the user-specific operations. The UserManagement object would use
the global operations interface:

username[] listUsers()
addUser(username, attributes)

A separate object for each user would implement the user-specific interface:

setAttributes(attributes)
attributes getAttributes()
giveRaise(dollars)
rif()
sendEmail(message)

Note:

If rif operates more on the namespace than the user, it should be present in
UserManagement where it would need to take a username argument.

Finally, the different objects would be named such that each object could be directly
accessed by the client:

com.example.users:type=UserManagement
com.example.users:type=User,name=ONeill

Chapter 1
Designing RAD Components

1-6

com.example.users:type=User,name=Sheppard
...

This example also highlights a situation where you do not want the RAD server to enumerate
all objects when a client issues a LIST request. Pulling down a list of potentially thousands of
objects on every LIST call does not benefit the majority of clients.

RAD Interface
An interface defines how a RAD client can interact with an object. Put another way, an object
implements an interface, providing a concrete behavior to be invoked when a client makes a
request.

The primary purpose of RAD is to consistently expose the various pieces of the system for
administration. Not all subsystems are alike. However, each subsystem has a data and state
model tuned to the problems they are solving. Although the use of a common model across
components offers major benefits, uniformity comes with trade-offs. A common model can be
inefficient and create client complexity, thereby risking decreased developer adoption.

An interface is a formal definition of how a client may interact with a RAD server object. An
interface may be shared amongst several objects. A RAD interface is analogous to an
interface or pure abstract class in an object oriented programming language. In the case of
RAD, an interface consists of a name, a set of features a client may interact with, a set of
derived types that are referenced by the features (optional), and a version. The features that
are supported include:

• Methods, which are procedure calls made in the context of a specific object

• Properties, which are functionally equivalent to methods but differ semantically

• Asynchronous event sources

RAD Interface Names
Each interface has a name. This name is used by the toolchain to construct identifier names
when a generating code. When naming an API, interface, or object, module developers have
broad leeway to choose illustrative names. However, some conventions can help avoid
problems that might arise when retrieving objects from the RAD server.

RAD Object Naming Conventions
RAD object names follow naming conventions and should be easy for clients to recognize.

• The domain portion of RAD object names follows a reverse-dotted naming convention
that prevents collisions in rad's flat object namespace. This convention typically
resembles a Java package naming scheme:

com.oracle.solaris.rad.zonemgr
com.oracle.solaris.rad.usermgr
org.example.os.rad.ips
...

• To distinguish a rad API from a native API designed and implemented for a specific
language, include "rad." in the API name.

name="com.oracle.solaris.rad.zonemgr"
• With the goal of storing objects with names consumers would expect, APIs, and the

domains of the objects defined within them, should share the same name. This practice

Chapter 1
Designing RAD Components

1-7

makes the mapping between the two easily identifiable by both the module
consumer and module developer.

• Identifying an interface object is made simpler by adhering to a "type=interface"
convention within the object name.

property name="name" access="ro" type="integer"
A a typical API might look like the following:

<api xmlns="https://xmlns.oracle.com/radadr"
 name="com.oracle.solaris.rad.zonemgr">
 <version major="1" minor="0"/>
 <interface name="ZoneInfo"> <!-- Information about the current zone -->
 <property name="name" access="ro" type="integer"/>

 ...

 </interface>
</api>

Within the module, the API would look like the following:

int
_rad_init(void)

 {
 ...
 adr_name _t *zname = adr_name_vcreate(MOD_DOMAIN, 1, "type",
"ZoneInfo");
 conerr_t cerr = rad_cont_insert_singleton(&rad_container, zname,
&interface_ZoneInfo_svr);
 adr_name_rele(zname);

 if (cerr != CE_OK) {
 rad_log(RL_ERROR, "failed to insert module in container");
 return(-1);
 }
 return (0);
}

On the consumer side (Python), the API would look like the following:

import rad.connect as radcon
import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr

Create a connection and retrieve the ZoneInfo object
with radcon.connect_unix() as rc:
 zinfo = rc.get_object(zonemgr.ZoneInfo())
 print zinfo.name

RAD Component Naming Conventions
For consistency in the names of methods, interfaces, and property names across
modules, use the following case guidelines.

Chapter 1
Designing RAD Components

1-8

Module
The base of the API or domain name. For a module describing an interface
domain.prefix.base.adr, module spec files should be named base.adr, and the resulting
shared library mod_ base.so.
Examples:

/usr/lib/rad/interfaces/zonemgr/version/1/zonemgr.adr
/usr/lib/rad/module/mod_zonemgr.so

API
Reverse-dotted domain, all lowercase.
Examples:

com.oracle.solaris.rad.usermgr
com.oracle.solaris.rad.zonemgr

Interface, struct, union, enum
Non-qualified, camel case, starting with uppercase.
Examples:

Time
NameService
LDAPConfig
ErrorCode

Enum value and fallback
Non-qualified, uppercase, underscores.
Examples:

CHAR
INVALID_TOKEN
REQUIRE_ALL

Interface property and method, struct field, event
Non-qualified, camel case, starting with lowercase.
Examples:

count
addHostName
deleteUser

RAD Feature Types
The common similarity between the three RAD feature types – methods, attributes, and
events – is that they are named. Because the names of these three feature types exist in the
same interface namespace, they must be unique. For example, you cannot have both a
method and an attribute that is called foo. This exclusion avoids the majority of conflicts that
could arise when mapping these interface features to a client environment. As in the API
namespace, features must not begin with the reserved prefix "_rad".

Chapter 1
Designing RAD Components

1-9

Note:

Enforcing a common namespace for interface features is not always enough.
Some language environments place additional constraints on naming. For
instance, a Java client will see an interface with synthetic methods of the
form getfunction_name, setfunction_name, or isfunction_name for
accessing attribute function_name that must coexist with other method
names. Explicitly defining methods with those names might cause a conflict.

RAD Methods
A RAD method is a procedure call made in the context of the object it is called on. In
addition to a name, a method may define a return type, can define zero or more
arguments, and may declare that it returns an error, optionally with an error return
type. If a method does not define a return type, it returns no value.

Each method argument has a name and a type. If a method does not declare that it
returns an error, it theoretically cannot fail. However, because the connection to RAD
could be broken either due to a network problem or a catastrophic failure in RAD itself,
all method calls can fail with an I/O error. If a method declares that it returns an error
but does not specify a type, the method may fail due to API-specific reasons. Clients
will be able to distinguish this failure type from I/O failures.

Finally, if a method also defines an error return type, data of that type may be provided
to the client in the case where the API-specific failure occurs.

Note:

Method names cannot be overloaded.

The following are the guidelines for methods:

• Methods provide mechanisms for examining and modifying administrative state.

• Consider grouping together existing native APIs into aggregated RAD functions
which enable higher order operations to be exposed.

• Follow established good practice for RPC style development. RAD is primarily for
remote administration, and avoiding excessive network load is good practice.

RAD Property Attributes
A RAD attribute is metaphorically a property of the object. Attributes have the following
characteristics:

• A name

• A type

• A definition as read-only, read-write, or write-only

Reading a read-only or read-write attribute returns the value of that attribute. Writing a
write-only or read-write attribute sets the value of that attribute. Reading a write-only
attribute or writing a read-only attribute is invalid. Clients may treat attempts to write to
a read-only attribute as a write to an attribute that does not exist. Likewise, attempts to

Chapter 1
Designing RAD Components

1-10

read from a write-only attribute may be treated as an attempt to read from an attribute that
does not exist.

An attribute's type value may be nullable. An attribute may optionally declare that it returns an
error, with the same semantics as declaring (or not declaring) an error for a method. Unlike a
method, an attribute may have different error declarations for reading the attribute and writing
the attribute.

Attribute names may not be overloaded. Defining a read-only attribute and a write-only
attribute with the same name is not valid.

Because methods exist in RAD, attributes are arguably a superfluous interface feature.
Writing an attribute of type X can be implemented with a method that takes one argument of
type X and returns nothing, and reading an attribute of type X can be implemented with a
method that takes no arguments and returns a value of type X. Attributes are included
because they offer a simpler interface.

The attribute mechanism has the following characteristics:

• Enforces symmetric access for reading and writing read-write attributes.

• Is easily and automatically translated to a form that is natural to the client language-
environment.

• Communicates the nature of the interaction. Reading an attribute ideally should not affect
system state. The value written to a read-write attribute should be the value returned on
subsequent reads unless an intervening change to the system effectively writes a new
value.

RAD Events
A RAD event is an asynchronous notification generated by RAD and consumed by clients. A
client might subscribe to events by name to register interest in them. The subscription is
performed on an object which implements an interface. In addition to a name, each event has
a type.

Events have the following characteristics:

• Sequential

• Volatile

• Guaranteed

A client can rely on sequential delivery of events from a server as long as the connection to
the server is maintained. If the connection fails, then events will be lost. On reconnection, a
client must resubscribe to resume the flow of events.

Once a client has subscribed to an event, event notifications will be received until the client
unsubscribes from the event. On receipt of a subscribed event, a client receives a payload of
the defined type.

The following are the guidelines for events:

• Provide a sequence number. Modules that provide a monotonically increasing sequence
numbers are best, because such sequences are most useful to clients.

• Consider providing mechanisms for allowing a client to throttle event generation.

• Design event payloads to minimize network load.

• Do not duplicate the functionality of network monitoring protocols such as SNMP.

Chapter 1
Designing RAD Components

1-11

RAD Commitment Levels
To solve the problem of different features being intended for different consumers, RAD
defines two commitment levels: private and committed. All API components: derived
types, interfaces and the various interface sub-components (method, attribute, and
event) define their commitment levels independently.

Commitment levels suggest to API consumers the anticipated use and expected
stability of a feature. A feature with a commitment of committed can be used reliably.
The private features are likely to be subject to change and represent implementation
details not intended for public consumption.

RAD Interface Versioning
RAD interfaces are versioned for several reasons:

• APIs change over time.

• A change to an API might be incompatible with existing consumers.

• A change might be compatible with existing consumers but new consumers might
not be able to use the original API.

• Some features represent committed interfaces whose compatibility is paramount,
but others are private interfaces that are changed only in lockstep with the
software that uses them.

RAD Version Numbering
RAD uses a major.minor versioning scheme. When a compatible change to an
interface is made, its minor version number is incremented. When an incompatible
change is made, its major version number is incremented and its minor version
number is reset to 0.

In other words, an implementation of an interface that claims to be version X.Y (where
X is the major version and Y is the minor version) must support any client expecting
version X.Z, where Z <= Y.

The following interface changes are considered compatible:

• Adding a new event

• Adding a new method

• Adding a new attribute

• Expanding the access supported by an attribute, for example, from read-only to
read-write

• A change from nullable to non-nullable for a method return value or readable
property, that is, decreasing the range of a feature

• A change from non-nullable to nullable for a method argument or writable property,
that is, increasing the domain of a feature

The following interface changes are considered incompatible:

• Removing an event

• Removing a method

Chapter 1
Designing RAD Components

1-12

• Removing an attribute

• Changing the type of an attribute, method, or event

• Changing a type definition referenced by an attribute, method, or event

• Decreasing the access supported by an attribute, for example, from read-write to read-
only

• Adding or removing method arguments

• A change from non-nullable to nullable for a method return value or readable property,
that is, increasing the range of a feature

• A change from nullable to non-nullable for a method argument or writable property, that
is, decreasing the domain of a feature

Note:

An interface is more than just a set of methods, attributes, and events. Associated
with those features are well-defined behaviors. If those behaviors change, even if
the structure of the interface remains the same, a change to the version number
might be required.

A RAD client can access version information from a client binding. The mechanism for
accessing the information depends on the client language like C, Java, and Python. For
example, in Python, the rad.client module contains the rad_get_version function, which
may be used to get the version of an API.

RAD Namespace
The RAD namespace acts as a gatekeeper by associating a name with each object,
dispatching requests to the proper object, and providing meta-operations that enable the
client to make queries about what objects are available and what interfaces they implement.

A RAD server may provide access to several objects that in turn expose a variety of different
components of the system or even third-party software. A client merely knowing that
interfaces exist, or even that a specific interface exists, is not sufficient. A simple, special-
purpose client needs some way to identify the object implementing the correct interface with
the correct behavior, and an adaptive or general-purpose client needs some way to
determine what functionality the RAD server has made available to it.

RAD organizes the server objects it exposes in a namespace. Much like files in a file system,
objects in the RAD namespace have names that enable clients to identify them, can be acted
upon or inspected using that name, and can be discovered by browsing the namespace. You
can see the namespace either as the place one goes to find objects or as the intermediary
that sits between the client and the objects it accesses. Either way, it is central to interactions
between a client and the RAD server.

RAD uses a structured namespace, as shown in RAD Object Naming Conventions. An
object's name consists of a mandatory reverse-dotted domain combined with a non-empty set
of key-value pairs. Two names are considered equal if they have the same domain and the
same set of keys, and each key has been assigned the same value.

Chapter 1
RAD Namespace

1-13

Some situations call for referring to groups of objects. In these situations, use a glob-
style pattern or a regex style pattern. For more information, see Sophisticated RAD
Searches in C in Remote Administration Daemon Client User's Guide.

Data Types Supported in RAD
All data returned, submitted to, or obtained from RAD APIs adhere to a strong typing
system similar to that defined by XDR: External Data Representation Standard (https://
www.rfc-editor.org/info/rfc4506). Strong typing simplifies defining interfaces that have
precise semantics, and developing server extensions (which are written in C). Of
course, the rigidity of the typing exposed to an API's consumer is primarily a function
of the client language and implementation.

RAD Base Types
RAD supports the following base types:

boolean
A boolean value (true or false).

integer
A 32-bit signed integer value.

uinteger
A 32-bit unsigned integer value.

long
A 64-bit signed integer value.

ulong
A 64-bit unsigned integer value.

float
A 32-bit floating-point value.

double
A 64-bit floating-point value.

string
A UTF-8 string.

opaque
Raw binary data.

secret
An 8-bit clean character array. The encoding is defined by the interface using the
type. Client/server implementations may take additional steps, for example, zeroing
buffers after use, to protect the contents of secret data.

time
An absolute UTC time value.

name
The name of an object in the RAD namespace.

Chapter 1
Data Types Supported in RAD

1-14

https://docs.oracle.com/cd/E37838_01/html/E68270/gnmoq.html
https://docs.oracle.com/cd/E37838_01/html/E68270/gnmoq.html
https://www.rfc-editor.org/info/rfc4506
https://www.rfc-editor.org/info/rfc4506

reference
A reference to an object.

RAD Derived Types
In addition to the base types, RAD supports the following derived types:

• Enumeration – A set of user-defined tokens. Like C enumerations, RAD enumerations
may have specific integer values associated with them. Unlike C enumerations, RAD
enumerations and integers are not interchangeable. Among other things, this lack of
interchangeability means that an enumeration data value may not take on values outside
those defined by the enumeration, which precludes the common but questionable
practice of using enumerated types for bit-field values.

• Array – An ordered list of data items of a fixed type. Arrays do not have a predefined size.

• Structure – A record consisting of a fixed set of typed, uniquely named fields. A field's
type may be a base type or derived type, or even another structure type.

Derived types offer enormous flexibility. However, one important constraint imposed on
derived types is that recursive type references are prohibited. Thus, complex self-referencing
data types, for example, linked lists or trees, must be mapped into simpler forms before
consumption.

Optional Data in RAD
In some situations, data might be declared as nullable. Nullable data can take on a "non-
value", for example, NULL in C, None in Python, or null in Java. Conversely, non-nullable data
cannot be NULL. Only data of type opaque, string, secret, array, or structure can be
declared nullable. Additionally, only structure fields and certain API types can be nullable.
Specifically, array data cannot be nullable because the array type in RAD is actually more like
a list than an array.

RBAC Support for RAD
When a client application connects to a local or a remote RAD service, it initiates a new RAD
slave process to execute remote procedure calls on behalf of the user and client. The RAD
slave processes that are initiated by a normal user include basic privileges. However, if a
RAD method wants to call a library function which requires root privileges, the user must
authenticate as root to the RAD daemon before RBAC is added to RAD. This authentication
requirement limits the utility of existing modules that have not been authenticated to. Also, all
modules associated with a connection in legacy Oracle Solaris executed within a single slave
process. Therefore, you could not associate module privileges at a process level.

Starting with Oracle Solaris 11.4, each module executes its own slave process, therefore you
can apply process attributes for each module. This feature also ensures that each slave
process can apply process attributes independently. To provide process attributes to a
module, you create a rights profile that assigns privileges to a module. For details, see
Creating a Rights Profile That Includes Privileged Commands in Securing Users and
Processes in Oracle Solaris 11.4.

A possible exec_attr entry for a RAD User Security rights profile might display as follows:

RAD User Security:solaris:cmd:::/usr/lib/rad/module/mod_RADusermgr.so.1:privs=proc_zone

For more information, see the privileges(7) and exec_attr(5) man pages.

Chapter 1
RBAC Support for RAD

1-15

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-createrights-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-createrights-1.html
https://docs.oracle.com/cd/E88353_01/html/E37853/privileges-7.html
https://docs.oracle.com/cd/E88353_01/html/E37852/exec-attr-5.html

For more information RBAC, see Chapter 1, About Using Rights to Control Users and
Processes in Securing Users and Processes in Oracle Solaris 11.4.

Chapter 1
RBAC Support for RAD

1-16

https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html

2
Abstract Data Representation for RAD

ADR Interface Description Language for RAD
RAD APIs use an XML-based IDL. The normative schema for this language are in the /usr/
share/lib/xml/rng/radadr.rng.1 file. The namespace name is https://
xmlns.oracle.com/radadr.

ADR Definition Document for a RAD Module
The top-level element in an ADR definition document is an api. The api element has one
mandatory attribute, name, which is used to name the output files. The element contains one
or more derived type definitions or interface definitions. Note that either a derived type or an
interface must be defined.

Three derived types are available for definition and use by interfaces: a structured type that
can be defined with a struct element, an enumeration type that can be defined with an enum
element, and a dictionary type that can be defined with a dictionary element. Interfaces are
defined using interface elements. The derived types defined in an API document are
available for use by all interfaces defined in that document.

The following is an example of an API.

Example 2-1 Skeleton RAD Module document

<api xmlns="https://xmlns.oracle.com/radadr" name="com.oracle.solaris.rad.example"
register="true">
 <summary>
 An API Example
 </summary>
 <doc>...</doc>

 <version/>

 <struct>...</struct>
 <struct>...</struct>
 <enum>...</enum>
 <interface>...</interface>
 <interface>...</interface>
</api>

The xmlns line is required to indicate the type of the XML document. The name attribute
identifies the name of the API, the namespace within which all subsidiary interfaces are to be
found. Additional attributes can assist in the generation of server module code.

The register attribute is a boolean, which is optional and true by default. If true, then
radadrgen automatically generates a _rad_reg function when generating server
implementation code. If false, the function is not generated and the module author will need
to provide a _rad_reg function. This option is primarily used to create special types of

2-1

modules, such as protocol or transport modules. In general, it does not need to be
specified, because the default generated function is enough for most purposes.

Documentation Definitions for RAD Modules
The documentation elements allow you to document the RAD module APIs and are
defined by the schema specification in the /usr/share/lib/xml/rng/radadr-
doc.rng.1 file.

The two main documentation elements are:

<summary />
Container for inline elements

<doc />
Container for block elements

<summary /> Element in RAD Modules
The <summary /> element is a mandatory element. It represents a short text synopsis
of the parent element. The <summary /> element can only text data annotated with the
inline elements described in the following list. The output of a <summary /> element is
running text with possible typographic modifications from the available inline elements:

<code />
Indicates small fragments of code.

<emphasis />
Emphasizes a phrase or word in italics.

Emphasizes a phrase or word in bold.

<link />
Displays hypertext based on the following values for the hyperlink:

url
An external URL.

interface, [method, property, event]
An interface, method, property, or an event defined within the ADR document.

enum, [value]
An enum data type or an enum value defined within the ADR document.

struct, [field]
A struct data type or a struct field defined within the ADR document.

Note:

The text within the <link> element can be empty. If the value is empty, the
text data is auto-generated based on the value of the method attribute.

Chapter 2
ADR Interface Description Language for RAD

2-2

<doc /> Element in RAD Modules
Use the <doc /> element to define larger blocks of content. The <doc /> element might
contain inline elements, block elements or text data. The <doc /> element is displayed as
separate blocks of data and can contain the following elements:

<heading />
Defines a section heading.

<para />
Defines a paragraph.

<list />
Defines a list of items. Items in the list are defined by an <item /> element. The <list />
element takes an optional attribute that defines the type of list to display using the ordered
attribute for a numbered list or unordered attribute for a bullet list. The default list type is an
unordered list.

<item />
Defines an item in a list. It might contain block or inline elements.

<example />
Displays a program listing. Available attributes are:

language
A mandatory attribute which defines the programming language. It can have any one of
c, python, java, rest, or curl. The value must be in lowercase.

caption
An optional attribute, which provides a label for the example.

numbered
An optional attribute. Displays line numbers. Default is to omit line numbers.

<verbatim />
Defines a block of text in which line breaks and whitespace are preserved.

For more information about how to use the documentation definitions, see RAD Module
Example.

Version Element in RAD Modules
A version element is required for all APIs.

The initial version of an API must always be defined as follows:

<version major="1" minor="0"/>

This indicates that the module is starting at version 1.0.

Enumeration Definitions in RAD Modules
The enum element has a single mandatory attribute, name. The name is used when referring to
the enumeration from other derived type or interface definitions. An enum contains one or
more value elements, one for each user-defined enumerated value. A value element has a

Chapter 2
ADR Interface Description Language for RAD

2-3

mandatory name attribute that gives the enumerated value a symbolic name. The
symbolic name is not used elsewhere in the API definition, only in the server and
various client environments. The symbolic name that is exposed in these
environments are environment-dependent. An environment offering an explicit
interface to RAD must provide an interface that accepts the exact string values defined
by the value elements' name attributes.

Some language environments support associating scalar values with enumerated type
values, for example C. To provide richer support for these environments, ADR
supports this concept as well. By default, an enumerated value has an associated
scalar value 1 greater than the preceding enumerated value's associated scalar value.
The first enumerated value is assigned a scalar value of 0. Any enumerated value
element may override this policy by defining a value attribute with the desired value. A
value attribute must not specify a scalar value already assigned, implicitly or explicitly,
to an earlier value in the enumeration and value elements contain no other elements.

Example 2-2 Defining Enumerations for a RAD Module

<enum name="Colors">
<value name="RED" /> <!-- scalar value: 0 -->
<value name="ORANGE" /> <!-- scalar value: 1 -->
<value name="YELLOW" /> <!-- scalar value: 2 -->
<value name="GREEN" /> <!-- scalar value: 3 -->
<value name="BLUE" /> <!-- scalar value: 4 -->
<value name="VIOLET" value="6" /> <!-- indigo is EOL -->
</enum>

Structure Definitions in RAD Modules
Similar to the enum element, the struct element has a single mandatory attribute,
name. The name is used when referring to the structure from other derived type or
interface definitions. A struct contains one or more field elements, one for each field
of the structure. A field element has a mandatory name attribute that gives the field a
symbolic name. The symbolic name isn't used elsewhere in the API definition, only in
the server and various client environments. In addition to a name, each field must
specify a type.

You can define the type of a field in multiple ways. If a field is a plain base type or a
derived type defined elsewhere in the API document, that type is defined with a type
attribute. If a field is an array of some type (base or derived), that type is defined with a
nested list element. The type of the array is defined in the same fashion as the type
of the field: either with a type attribute, or another nested list element.

A field's value might be declared nullable by setting the field element's nullable
attribute to true.

Note:

The structure fields, methods return values, method arguments, attributes,
error return values, and events have types, and in the IDL, use identical
mechanisms for defining those types.

Chapter 2
ADR Interface Description Language for RAD

2-4

Example 2-3 Defining a struct for a RAD Module

<struct name="Name">
 <field name="familyName" type="string" />
 <field name="givenNames">
 <list type="string" />
 </field>
</struct>

<struct name="Person">
 <field name="name" type="Name" />
 <field name="title" type="string" nullable="true" />
 <field name="shoeSize" type="int" />
</struct>

Dictionary Definitions in RAD Modules
You can use dictionaries to add a data structure in which the key-value pair mappings can be
stored and retrieved. The following example shows how to use the dictionary tag.

<dictionary>
 <key type="<key type>">
 <value type="<value type>">
</dictionary>

You can use the dictionary type similar to any other RAD type such as a field in a structure, a
method argument or a return value, a property, an error payload, or as an event payload.

Example 2-4 Defining a Dictionary for RAD

This example shows how to define a dictionary with a key type of integer and value type of
string as a read-write property.

...
 <property name="DictProp" access="rw" >
 <dictionary>
 <key type="integer" />
 <value type="string" />
 </dictionary>
 </property>
...

Values can be of any type except for list and dictionary. The value can be a derived type
or a reference, use the "type" tag. However, the key must belong to any one of the following
basic types:

• boolean

• integer

• unsigned integer

• long

• unsigned long

• float

• double

• time

• string

Chapter 2
ADR Interface Description Language for RAD

2-5

• name

Interface Definitions for a RAD Module
An interface definition has a name, and one or more attributes, methods, or events. An
interface's name is defined with the interface element's mandatory name attribute.
This name is used when referring to the inherited interface from other interface
definitions, as well as in the server and various client environments. The other
characteristics of an interface are defined by using child elements of the interface
element.

Interface Methods for a RAD Module
Each method in an interface is defined by a method element. The name of a method is
defined by this element's mandatory name attribute. The other properties of a method
are defined by child elements of the method.

If a method has a return value, it is defined using a single result element. The type of
the return value is specified in the same way the type is specified for a structure field.
If no result element is present, the method has no return value.

If a method can fail for an API-specific reason, it is defined using a single error
element. The type of an error is specified the same way the type is specified for a
structure field. Unlike a structure field, an error need not specify a type. Such a
situation is indicated by an error element with no attributes or child elements. If no
error element is present, the method will only fail if there is a connectivity problem
between the client and the server.

A method's arguments are defined, in order, with zero or more argument elements.
Each argument element has a mandatory name attribute. The type of an argument is
specified in the same way the type is specified for a structure field.

Example 2-5 Defining a Method for a RAD Module

<struct name="Meal">...</struct>
<struct name="Ingredient">...</struct>

<method name="cook">
 <result type="Meal" />
 <error />
 <argument type="string" name="name" nullable="true" />
 <argument name="ingredients">
 <list type="Ingredient" />
 </argument>
</method>

Interface Attributes for a RAD Module
Each attribute in an interface is defined by a property element. The name of an
attribute is defined by this element's mandatory name attribute. The types of access
permitted are defined by the mandatory access attribute, which takes a value of ro, wo,
or rw, corresponding to read-only access, write-only access, or read-write access,
respectively.

The type of an attribute is specified in the same way the type is specified for a
structure field.

Chapter 2
ADR Interface Description Language for RAD

2-6

If access to an attribute can fail for an API-specific reason, it is defined using one or more
error elements. An error element in a property may specify a for attribute, which takes a
value of ro, wo, or rw, corresponding to the types of access the error return definition applies
to. An error element with no for attribute is equivalent to one with a for attribute set to the
access level defined on the property. Two error elements may not specify overlapping
access types. For example, on a read-write property it is invalid for one error to have no for
attribute (implying rw) and one to have a for attribute of wo as they both specify an error for
writing.

The type of an error is specified the same way the type is specified for a method. It is
identical to defining the type of a structure, with the exception that a type need not be
defined.

Example 2-6 Defining an Interface Attribute for a RAD Module

<struct name="PrivilegeError">...</struct>

<property name="guestList" access="rw">
 <list type="string" />
 <error for="wo" type="PrivilegeError" />
 <!-- Reads cannot fail -->
</property>

Interface Events for a RAD Module
Each event in an interface is defined by an event element. The name of an event is defined
by this element's mandatory name attribute. The type of an event is specified in the same way
the type is specified for a structure field.

Example 2-7 Defining an Event for a RAD Module

<struct name="TremorInfo">...</struct>

<event name="earthquakes" type="TremorInfo" />

Including IDL Files in a Parent IDL File
ADR include feature allows you to include an XML-based IDL file within the parent IDL file.
The following example shows how to include the fragment.xml file within the parent.adr
file.

/*fragment.xml*/
<?xml version="1.0" encoding="UTF-8"?>
<fragment xmlns="https://xmlns.oracle.com/radadr">
<version major="1" minor="0"/>
 <para>
 Paragraph 1
 </para>
 <para>
 Paragraph 2
 </para>
</fragment>

/*parent.adr*/
 <?xml version="1.0" encoding="UTF-8"?>
 .
 .
 .

Chapter 2
ADR Interface Description Language for RAD

2-7

 .
<?include href="fragment.xml" major="1" minor="0"?>

The <?include ?> processing instruction has the following mandatory attributes:

href
Path to the included file.

major
Expected major version of the included fragment.

minor
Expected minor version of the included fragment

Version checking provides a warning in case of minor version mismatch and fail with
an error in case of major version mismatch.

Note:

You cannot use the standard xi:include directive to include IDL files.

RAD Module Example
Example 2-8 Using Various RAD Module Elements

This example API demonstrates the use of various RAD module elements.

<?xml version="1.0" encoding="UTF-8"?>

<api xmlns="https://xmlns.oracle.com/radadr"
name="com.oracle.solaris.rad.example">

 <summary>
 Example API
 </summary>

 <!-- A introductory paragraph to describe the API -->
 <doc>
 <para>
 This API defines PAM authentication methods that may be used to
authenticate
 a rad(8) client. <emphasis>NOTE: this is only an example
 and may not represent a working authentication interface!</emphasis>
 </para>
 </doc>

 <version major="1" minor="0"/>

 <!-- An ADR enum type -->
 <!-- Each value in the enum has a short one-line description -->
 <enum name="BlockType" stability="private">
 <value name="CONV">
 <summary>
 conversation must continue
 </summary>
 </value>
 <value name="SUCCESS">

Chapter 2
ADR Interface Description Language for RAD

2-8

 <summary>
 authentication has succeeded
 </summary>
 </value>
 <value name="ERROR">
 <summary>
 authentication has failed
 </summary>
 </value>
 </enum>

 <!-- An ADR struct type -->
 <!-- Each field in the struct has a short one-line description -->
 <struct name="Block" stability="private">
 <field type="BlockType" name="type">
 <summary>
 the status of the conversation
 </summary>
 </field>
 <field name="messages" nullable="true">
 <summary>
 the messages to display to the user
 </summary>
 <list type="Message"/>
 </field>
 </struct>

 <!-- Another ADR enum type -->
 <!-- Use of the verbatim tag to document the enum values -->
 <enum name="MsgType" stability="private">
 <summary>Types of messages that may be returned from a PAM
 conversation </summary>
 <doc>
 <verbatim>
+-----------------+-------------------------------------+
| MsgType | Action |
+-----------------+-------------------------------------|
| PROMPT_ECHO_OFF | Prompt the user for sensitive data, |
| | disabling echo of their response |
| PROMPT_ECHO_ON | Prompt the user for non-sensitive |
| | data, echoing their response |
| TEXT_INFO | Print a general information message |
| TEXT_INFO | Print an error message |
+-----------------+-------------------------------------+
 </verbatim>
 </doc>
 <value name="PROMPT_ECHO_OFF" />
 <value name="PROMPT_ECHO_ON" />
 <value name="ERROR_MSG" />
 <value name="TEXT_INFO" />
 </enum>

 <!-- Another ADR struct type -->
 <struct name="Message" stability="private">
 <field type="MsgType" name="style">
 <summary>
 this message's type
 </summary>
 </field>
 <field type="string" name="message">
 <summary>

Chapter 2
ADR Interface Description Language for RAD

2-9

 the message text
 </summary>
 </field>
 </struct>

 <interface name="Authentication" stability="private">
 <doc>
 <!-- A paragraph that describes the interface -->
 <para>
 The <code>Authentication</code> interface implements a PAM exchange to
 authenticate rad(8) clients. Handles to this type of
 object can be retrieved from the RAD server using an object name built
 with:
 </para>

 <!-- An ordered list - items are numbered -->
 <list type="ordered">
 <item>
 the "<code>com.oracle.solaris.rad.pam</code>" domain name
 </item>
 <item>
 a key named "<code>type</code>" paired with a value of
 "<code>Authentication</code>"
 </item>
 </list>

 <!-- A link to the login() method in the Authentication interface -->
 <!-- A link to the Block struct -->
 <para>
 The <link interface="Authentication" method="login">login()</link> method
 begins a PAM conversation to authenticate as a user. It returns a list
 of <link struct="Block">Block</link> objects encapsulating the status of
 the conversation, the messages that should be displayed, and the input
 that should be collected.
 </para>

 <para>
 At each step, when the requested input has been collected, it is
 submitted using <link interface="Authentication"
 method="submit">submit()</link>. This method also returns a list of
 <link struct="Block">Block</link> objects, allowing the conversation to
 continue indefinitely until authentication is complete.
 </para>

 <!-- A link to a struct field, and an enum value -->
 <para>
 When either of the two returns a <link struct="Block">Block</link> whose
 <link struct="Block" field="type">type</link> is <link enum="BlockType"
 value="SUCCESS">SUCCESS</link>, authentication has succeeded and <link
 interface="Authentication" method="complete">complete()</link> should be
 called to close the conversation.
 </para>

 <para>
 A typical algorithm for walking through this conversation might be:
 </para>

 <!-- A program listing, with a caption -->
 <example caption="Authentication interface" language="python">
import rad.connect as radcon
import rad.auth as rada

Chapter 2
ADR Interface Description Language for RAD

2-10

Create a connection
rc=radcon.connect_tls("host")
Get a native-looking python object that throws RAD exceptions
auth = rada.RadAuth(rc)
login with username and password
auth.pam_login("jdoe", "******")
print rc
rc.close()
print rc
</example>

 <para>
 This example uses the rad.auth module which makes simplifying
 assumptions for a default Solaris install.
 </para>
 </doc>

 <!-- User Identity -->
 <property name="user" type="string" access="ro" nullable="true" stability="private">
 <summary>
 gets the username of the connected user
 </summary>
 </property>

 <!-- PAM Authentication -->
 <method name="login" stability="private">
 <summary>
 begins a PAM conversation to authenticate as the specified user
 </summary>
 <result type="Block"/>
 <error/>
 <argument type="string" name="locale"/>
 <argument type="string" name="username"/>
 </method>

 <method name="submit" stability="private">
 <summary>
 continues a PAM conversation with information collected from the
 previous step
 </summary>
 <result type="Block"/>
 <error/>
 <argument name="responses">
 <list type="secret"/>
 </argument>
 </method>

 <method name="complete" stability="private">
 <summary>
 completes the PAM conversation with the RAD server
 </summary>
 </method>
 </interface>
</api>

Chapter 2
ADR Interface Description Language for RAD

2-11

radadrgen Processing Tool
radadrgen is the ADR IDL processing tool that generates API-specific language
bindings for the RAD server and various client environments. See the radadrgen(1)
man page for details about its options.

Chapter 2
radadrgen Processing Tool

2-12

https://docs.oracle.com/cd/E88353_01/html/E37839/radadrgen-1.html

3
libadr Library

Data Management in libadr
Consumers of the ADR data management routines should include the rad/adr.h header
file:

#include <rad/adr.h>

This file contains definitions for the two fundamental data management types, adr_type_t
and adr_data_t, as well as prototypes for data allocation, access, and validation routines.

adr_type_t Type
Each data type is represented by an adr_type_t type, whether it is just a base type or a
complex type of nested structures and arrays. The adr_type_t contains all the information
necessary to understand the structure of the type. libadr provides statically-allocated
singletons of adr_type_t type for the base types. These singleton types are more than a
convenience. They must be used when referencing the base types.

The base types and their corresponding array types are listed in the following table.

Table 3-1 ADR Base and Array Types

ADR type C adr_type_t C array adr_type_t
string adr_t_string adr_t_array_string
integer adr_t_integer adr_t_array_integer
uinteger adr_t_uinteger adr_t_array_uinteger
long adr_t_long adr_t_array_long
ulong adr_t_ulong adr_t_array_ulong
time adr_t_time adr_t_array_time
name adr_t_name adr_t_array_name
boolean adr_t_boolean adr_t_array_boolean
opaque adr_t_opaque adr_t_array_opaque
secret adr_t_secret adr_t_array_secret
float adr_t_float adr_t_array_float
double adr_t_double adr_t_array_double
reference adr_t_reference adr_t_array_reference

The adr_type_t for a derived type should also be unique, but obviously they cannot be
defined by libadr. Although technically adr_type_t could be dynamically allocated, at the

3-1

moment, the only supported way of defining an adr_type_t is to generate a definition
using the ADR IDL and radadrgen.

adr_data_t Type
The most frequently used type defined by rad/adr.h is adr_data_t. An adr_data_t
object represents a unit of typed data. It could be of a base type, such as an integer
("1") or string ("banana"), or of a derived type like a structure or an array. Each
adr_data_t maintains a pointer to its adr_type_t.

A few common traits simplify access to adr_data_t objects. The first is that, except for
the structure and array derived types (not enumerations), all adr_data_t values are
immutable. They are assigned a value when they are created, and may not be
changed thereafter.

Another is that all adr_data_t values are reference counted. Sometimes data
structures need to be used by multiple consumers simultaneously, or simply retained
for subsequent use. Reference counting is a cheap way to cut down on the cost of
copying large data structures and the complexity of handling allocation failures.
Though the reference counting is thread-safe, there is no other locking, which is not a
problem for an immutable adr_data_t. Though the value of a non-immutable
adr_data_t may be modified post-creation, the convention used throughout rad and
its associated libraries is that once visibility of an adr_data_t has spread past its
creator, it may no longer be modified. This eliminates the need for additional
synchronization.

adr_data_t *adr_data_ref(adr_data_t *data);
void adr_data_free(adr_data_t *data);

The reference count on the adr_data_t data is incremented with adr_data_ref. For
convenience, adr_data_ref returns data. Symmetrically, the reference count on the
adr_data_t data is decremented with adr_data_free. As the name implies, this
may result in data being freed; after calling adr_data_free the caller must not
access data in any way. Neither adr_data_ref nor adr_data_free can fail.

A third trait is that interfaces that accept adr_data_t values take ownership of the
caller's reference on the adr_data_t. If the caller needs to refer to the adr_data_t
after passing a pointer to it to a libadr interface, it must first secure an additional
reference with adr_data_ref. Interfaces that return adr_data_t that are referenced by
other adr_data_t do not increase the reference count on the returned adr_data_t.
The returned value is guaranteed to persist only as long as the caller retains a
reference on the referring adr_data_t, or if the caller uses adr_data_ref to acquire its
own reference on the returned adr_data_t. The net result is that in the common case
where an adr_data_t does not have multiple simultaneous consumers, libadr
consumers need not perform any explicit reference counting at all. They can naively
allocate and free adr_data_t values as if they were any other data structure.
Therefore the adr_data_t implementation can optimize for the case where the
reference count is 1.

Lastly, many adr_data_t management routines rely on dynamic memory allocation,
which means that proper error handling is essential. To increase the clarity and
maintainability of adr_data_t consumers, and reduce the likelihood of mishandling
errors, libadr interfaces explicitly accept NULL adr_data_t inputs and fail in
sympathy. This means that a libadr consumer can perform a large number of
operations on the instances of adr_data_t, checking only the final result for failure.

Chapter 3
Data Management in libadr

3-2

Additionally, if a libadr routine is going to fail for any reason, references to a non-NULL
adr_data_t passed to the routine is released. In other words, no special clean-up is needed
when a libadr routine fails.

Allocating adr_data_t Values
The first phase in the lifecycle of an adr_data_t is allocation. For each ADR type, there is at
least one allocation routine. The arguments to an allocation routine depend on the type. In
the case of mandatory immutable types, allocation implies initialization, and their allocation
routines take the value of adr_data_t as arguments. Structures and arrays each have a
single generic allocation routine that takes an adr_type_t* specifying the type of the structure
or array. An adr_data_t is assigned values using a separate set of routines.

All allocation routines return a non-NULL adr_data_t * on success, or NULL on failure.

Note:

The allocation and initialization routines for immutable types may elect to return a
reference to a shared adr_data_t for a commonly used value, for example, boolean
true or false. This substitution should be undetectable by adr_data_t consumers
who correctly manage adr_data_t reference counts and respect the immutability of
these types.

Allocating Strings in libadr
adr_data_t *adr_data_new_string(const char *s, lifetype_t lifetime);

adr_data_new_string allocates a new string adr_data_t, initializing it to the NULL-
terminated string pointed to by s. If s is NULL, adr_data_new_string will fail.

The value of the lifetime determines how the string s is to be used:

LT_COPY
adr_data_new_string must allocate and make a copy of the string pointed to by s. This
copy will be freed when the adr_data_t is freed.

LT_CONST
The string pointed to by s is a constant that will never be changed or deallocated. Therefore,
adr_data_new_string need not copy the string; it can instead refer directly to s
indefinitely. This is the recommended lifetime value when passing a string literal to
adr_data_new_string.

LT_FREE
The string pointed to by s was dynamically allocated using malloc and is no longer needed
by the caller. adr_data_new_string will ensure that the string is eventually freed. It may
choose to use the string directly instead of making a copy of it. Obviously, this lifetime value
should never be used with string literals.
If lifetime is LT_FREE and adr_data_new_string fails for any reason, s will automatically
be freed.

adr_data_t *adr_data_new_fstring (const char *format, ...);

Chapter 3
Data Management in libadr

3-3

adr_data_new_fstring allocates a new string adr_data_t, initializing it to the
string generated by calling sprintf on format and any additional arguments
provided.

adr_data_t *adr_data_new_nstring (const char *s, size_t count);

adr_data_new_nstring allocates a new string adr_data_t, initializing it to the first
count bytes of s.

Allocating boolean in libadr
adr_data_t *adr_data_new_boolean (boolean_t b);

Allocates a new boolean adr_data_t, initializing it to the boolean value specified by b.

Allocating Numeric Types in libadr
adr_data_t *adr_data_new_integer (int i);

adr_data_t *adr_data_new_long (long long l);

adr_data_t *adr_data_new_uinteger (unsigned int ui);

adr_data_t *adr_data_new_ulong (unsigned long long ul);

adr_data_t *adr_data_new_float (float f);

adr_data_t *adr_data_new_double (double d);

Allocates a new integer, long, uinteger, ulong, float, or double adr_data_t,
respectively, initializing it to the value of the single argument provided.

Allocating Times in libadr
adr_data_t *adr_data_new_time (long long sec, int nano);

adr_data_t *adr_data_new_time_ts (timespec &t);

adr_data_t *adr_data_new_time_now (void);

Allocates a new time adr_data_t, initializing it to the argument, if any, provided.

Allocating Opaques in libadr
adr_data_t *adr_data_new_opaque (void *buffer, size_t length, adr_lifetime_t
lifetime);

Allocates a new opaque adr_data_t, initializing it to the length bytes found at buffer.
How adr_data_new_opaque uses buffer depends on lifetime, which takes on the
same meanings as it does when used with adr_data_new_string.

Allocating Secrets in libadr
adr_data_t *data_new_secret (const char *p);

Chapter 3
Data Management in libadr

3-4

Allocates a new secret adr_data_t, initializing it to the contents of the NULL-terminated 8-bit
character array pointed to by p. The secret type is used to hold sensitive data such as
passwords. The client or server implementations might take additional steps to protect the
content of the character array data, for example, zeroing buffers after use.

Allocating Names in libadr
adr_data_t *adr_data_new_name (adr_name_t *name);

Allocates a new name adr_data_t, initializing it to the value of name. adr_name_t types are
reference counted; the reference on the name held by the caller is transferred to the resulting
adr_data_t by the call to adr_data_new_name. A caller that needs to continue using name
should secure an additional reference to it before calling adr_data_new_name. If
adr_data_new_name fails for any reason, the caller's reference to name will be released.

Allocating Enumerations in libadr
adr_data_t *adr_data_new_enum (adr_type_t *type, int value);

adr_data_t *adr_data_new_enum_byname (adr_type_t *type, const char * name);

The two ways to allocate an enumeration adr_data_t both require that the adr_type_t of the
enumeration be specified. The first form, adr_data_new_enum, takes a scalar value as an
argument and initializes the enumeration adr_data_t to the enumerated value that was
assigned (implicitly or explicitly) that scalar value. The second form,
adr_data_new_enum_byname, takes a pointer to a string as an argument and initializes the
enumeration adr_data_t to the enumerated value that has that name. If value does not
correspond to an assigned scalar value or name does not correspond to an enumerated
value name, the respective allocation routine fails.

The nature of an enumeration is that all possible values are known. Enumerated types
generated by radadrgen have singleton adr_data_t values that will be returned by
adr_data_new_enum and adr_data_new_enum_byname. For efficiency and to reduce the
error handling that needs to be performed at runtime, these values have defined symbols that
may be referenced directly.

The value of type must be an enumeration data-type.

Allocating Structures in libadr
adr_data_t *adr_data_new_struct (adr_type_t *type);

Allocates an uninitialized structure adr_data_t of type type. Any post-allocation initialization
that occurs must be consistent with type.

The value of type must be a structured type.

Allocating Arrays in libadr
adr_data_t *adr_data_new_array (adr_type_t *type, int size);

Allocates an empty array adr_data_t of type type. Arrays will automatically adjust their size
to fit the amount of data placed in them. The size argument can be used to initialize the size
of the array if it is known beforehand.

Chapter 3
Data Management in libadr

3-5

The value of type must be an array type.

Accessing Simple adr_data_t Values
rad/adr.h defines macros that behave like the following prototypes:

const char *adr_data_to_string(adr_data_t *data);

int adr_data_to_integer(adr_data_t *data);

unsigned int adr_data_to_uinteger(adr_data_t *data);

long long adr_data_to_longint(adr_data_t *data);

unsigned long long adr_data_to_ulongint(adr_data_t *data);

boolean_t adr_data_to_boolean(adr_data_t *data);

adr_name_t *adr_data_to_name(adr_data_t *data);

const char *adr_data_to_secret(adr_data_t *data);

float adr_data_to_float(adr_data_t *data);

double adr_data_to_double(adr_data_t *data);

const char * adr_data_to_opaque(adr_data_t *data);

long long adr_data_to_time_secs(adr_data_t *data);

int adr_data_to_time_nsecs(adr_data_t *data);

In all cases, pointer return values will point to data that is guaranteed to exist only as
long as the caller retains their reference to the data parameter.

Additionally, the following functions are provided for interpreting enumeration values:

const char *adr_enum_tostring(adr_data_t *data);
int adr_enum_tovalue(adr_data_t *data);

adr_enum_tostring maps data to the value's string name. adr_enum_tovalue
maps data to its scalar value.

The behavior is undefined if a macro or function is called on an adr_data_t of the
wrong type.

Manipulating Derived Type adr_data_t
Structure and array derived types are assigned no value when they are allocated. As a
best practice, you should assign some value to them before use. This is required in the
case of structured types with non-nullable fields. In either case, once a reference to a
derived type is shared, it may no longer be modified.

Manipulating Array adr_data_t Values
rad/adr.h defines array-access macros that behave like the following prototypes:

Chapter 3
Data Management in libadr

3-6

int adr_array_size(adr_data_t *array);
adr_data_t *adr_array_get(adr_data_t *array, int index);

adr_array_size returns the number of elements in array. adr_array_get returns the
index element of array. The adr_data_t returned by adr_array_get is valid as long as the
caller retains its reference to array. If the reference is needed longer duration, the caller
should take a hold on the adr_data_t (see adr_data_t Type). If the index element of array
has not been set, the behavior of adr_array_get is undefined.

The following functions modify arrays:

• int adr_array_add(adr_data_t *array, adr_data_t * value);

adr_array_add adds value to the end of array. As described in adr_data_t Type, the
caller's reference to value is transferred to the array. adr_array_add might need to
allocate memory and can therefore fail. When adr_array_add succeeds, it returns 0.
When adr_array_add fails, it will return 1 and array will be marked invalid. For more
information, see Validating adr_data_t Values.

• void adr_array_remove(adr_data_t *array, int index);

adr_array_remove removes the index element from array. The array's reference count
on the element at index is released, possibly resulting in its deallocation. All elements
following index in array are shifted to the next lower position in the array, for example,
element index+1 is moved to index. The behavior of adr_array_remove is undefined if
index is greater than or equal to the size of array as returned by adr_array_size.

• int adr_array_vset(adr_data_t *array, int index, adr_data_t * value);

adr_array_vset sets the index element of array to value. If an element was previously
at index, the reference on that element held by the array is released. adr_array_vset
may need to allocate memory and can therefore fail. When adr_array_vset succeeds,
it returns 0. When adr_array_vset fails, it will return 1 and array will be marked
invalid. For more information, see Validating adr_data_t Values.

Manipulating the Structure of an adr_data_t Type
The primary interface for accessing the adr_data_t structure is adr_struct_get:

adr_data_t *adr_struct_get(adr_data_t *struct, const char *field);

adr_struct_get returns the value of the field named field. If the field is nullable and has no
value or if the field hasn't been given a value (that is the structure was incompletely
initialized), adr_struct_get returns NULL. The adr_data_t returned by adr_struct_get
is valid as long as the caller retains its reference to struct. If it is needed longer the caller
should take a hold on the adr_data_t. If struct does not have a field named field, the
behavior of adr_struct_get is undefined.

The primary interface for writing to an adr_data_t structure is adr_struct_set:

void adr_struct_set(adr_data_t *struct, const char *field, adr_data_t *value);

adr_struct_set writes value to the field named field. If field previously had a value, the
reference on that value held by the structure is released. If struct does not have a field
named field, or if the type of value does not match that of the specified field the behavior of
adr_struct_set is undefined.

Chapter 3
Data Management in libadr

3-7

Validating adr_data_t Values
libadr provides a rich environment for examining and manipulating typed data.
However, unlike C's native typing system, the compiler is unaware of libadr type
relationships and is therefore unable to perform static type-checking at compile time.
All type checking must be performed at runtime.

The most useful of the type-checking tools provided by libadr is adr_data_verify:

boolean_t adr_data_verify(adr_data_t *data, adr_type_t *type, boolean_t
recursive);

adr_data_verify takes an adr_data_t to type-check and an adr_type_t to type-
check against. It can be instructed to check only the adr_data_t data or data and the
transitive closure of every adr_data_t it references. adr_data_verify returns B_TRUE if
data matches type, and B_FALSE if not. If type is NULL, data is tested against the type it
claims to be. Although this method is not a good idea for input validation, it can be
useful for error handling.

For data to be verified as type type, the following must be true:

• data must not be NULL.

• data must claim to be of type type.

• If type is an enumeration, data must be a value in that enumeration.

• If data is an array, it must be not have been marked invalid by a failed
adr_array_add or adr_array_vset operation.

• If data is an array, it must have no NULL elements.

• If data is an array and recursive is true, each element of the array must satisfy
these criteria given the array's element type.

• If data is a structure, every non-nullable field must have a value, that is, be non-
NULL.

• If data is a structure and recursive is true, every non-NULL field value must satisfy
these criteria considering the field's type.

The adr_data_verify is useful when validating input from an untrusted source.
Another, less frequently used application of adr_data_verify, is as a powerful
error-handling tool. Suppose you are writing a function that needs to return a complex
data value. A traditional way of implementing it would be to check each call for failure
individually, as shown in the following example.

Example 3-1 Error Handling Without adr_data_verify
adr_data_t *tmp, *name, *result;
if ((name = adr_data_new_struct(name_type)) == NULL) {
/* handle failure */
}
if ((tmp = adr_data_new_string("Jack")) == NULL) {
/* handle failure */
}
adr_struct_set(name, "first", tmp);
if ((tmp = adr_data_new_string("O'Neill")) == NULL) {
/* handle failure */
}

Chapter 3
Data Management in libadr

3-8

adr_struct_set(name, "last", tmp);
if ((record = adr_data_new_struct(record_type)) == NULL) {
/* handle failure */
}
adr_struct_set(record, "name", name);
/* ...and so on */

This approach is difficult to implement and difficult to maintain. It is more likely to have a flaw
in it than the allocations it is testing are to fail. Instead, using adr_data_verify and the
error handling behaviors described in adr_data_t Type, the entire non-truncated function can
be reduced to the method shown in the following example.

Example 3-2 Error Handling With adr_data_verify
adr_data_t *name = adr_data_new_struct(name_type);
adr_struct_set(name, "first", adr_data_new_string("Jack"));
adr_struct_set(name, "last", adr_data_new_string("O'Neill"));
adr_data_t *record = adr_data_new_struct(record_type);
adr_struct_set(record, "name", name);
adr_struct_set(record, "rank", adr_data_new_enum_byname("COLONEL"));
adr_struct_set(record, "l_count", adr_data_new_integer(2));

if (!adr_data_verify(record, NULL, B_TRUE)) { /* Recursive type check */
 adr_data_free(record);
 return (NULL); /* NULL means something failed */
}

return (record); /* Non-NULL means success */

An important limitation to this technique is that structure fields can be nullable, and the NULL
indicating that the field has no value is indistinguishable from the NULL that indicates that the
allocation of that field's value failed. In such cases, explicitly testing each nullable value's
allocation is necessary. Even with such explicit checks, however, the net savings in
complexity can be substantial.

ADR Object Name Operations
libadr supports ADR object names by providing an adr_name_t type and a suite of routines
for creating and inspecting them. Consumers needing to operate on object names should
include the rad/adr_name.h header file:

#include <rad/adr_name.h>

This file contains definitions for all the ADR-name related functionality provided by libadr.

adr_name_t Type
The adr_name_t type represents an object name. The internal structure of an adr_name_t is
private. All operations on an adr_name_t are performed using accessor functions provided by
libadr. Like adr_data_t values, adr_name_t values are immutable and reference counted.
The following functions are provided for handling adr_name_t reference counts:

adr_name_t *adr_name_hold(adr_data_t *name);
void adr_name_rele(adr_name_t *name);

The reference count on the adr_name_t name is incremented with adr_name_hold. For
convenience, adr_name_hold returns name. Symmetrically, the reference count on the

Chapter 3
ADR Object Name Operations

3-9

adr_name_t name is decremented with adr_name_rele. When then last reference on
an adr_name_t is released, the name is freed. After calling adr_name_rele the caller
must not access name in any way. Neither adr_name_hold nor adr_name_rele can fail.

Creating adr_name_t Type
ADR names are composed of a domain and a set of key/value pairs. Two functions are
provided that take exactly those arguments and return an adr_name_t:

adr_name_t *adr_name_create(const char *domain, int count,
 const char * const *keys, const char * const *values);

adr_name_t *adr_name_vcreate(const char *domain, int count, ...);

Both forms take a domain argument, which should be a reverse-dotted domain name,
and the number of key/value pairs as count. The two differ in how the key/value values
are communicated. In the first form, adr_name_create, two char * arrays are
provided, one for keys and the other for values, as shown in the following example.

Example 3-3 Creating Names With adr_name_create
const char *keys[] = { "key1", "key2" };
const char *values[] = { "value1", "value2" };
name = adr_name_create("com.example", 2, keys, values);

In the second form, adr_name_vcreate, keys and values are provided as alternating
varargs. The previous example written using adr_name_vcreate would look like the
following example.

Example 3-4 Creating Names With adr_name_vcreate
name = adr_name_vcreate("com.example", 2, "key1", "value1", "key2", "value2");

If either routine fails to create the adr_name_t, it will return NULL. All data provided to
adr_name_create is copied and can subsequently be modified or freed without
affecting existing adr_name_t types.

Inspecting adr_name_t Type
adr_name_t types are immutable, so all operations on them are read-only. The two
most common operations one needs to perform on an adr_name_t are obtaining the
name's domain and obtaining the value associated with a particular key.

const char *adr_name_domain(const adr_name_t *name);
const char *adr_name_key(const adr_name_t *name, const char *key);

adr_name_domain returns name's reverse-dotted domain as a string. The string
returned is part of name and therefore must not be modified or freed, and must not be
accessed after the caller's reference on name has been released. Likewise,
adr_name_key returns the value associated with key. The string returned by
adr_name_key is subject to the same restrictions as the return value of
adr_name_domain.

The two functions for comparing adr_name_t types are:

Chapter 3
ADR Object Name Operations

3-10

int adr_name_cmp(const adr_name_t *name1, const adr_name_t *name2);

boolean_t adr_name_match(const adr_pattern_t *pattern, const adr_name_t *name);

adr_name_cmp compares two adr_name_t types, returning 0 if the name1 and name2 are
equal (that is, if the two names have the same domain, same names and the same keys, and
each key has the same value on both names). It returns an integer less than 0 if name1 is less
than name2, or an integer greater than 0 if name1 is greater than name2.

adr_name_match is a pattern-matching operation. The adr_name_t pattern is treated as a
collection of attributes against which name is compared. adr_name_match returns B_TRUE if
and only if the domains of name and pattern are equal, and every key present in pattern is
present in name and has the same value. While an adr_name_t must have a domain and at
least one key/value pair, pattern is permitted to have only a domain and no key/value pairs.

String Representation in libadr
It is sometimes necessary to represent, either in human-readable output or in persistent
storage, an ADR object name as a string. libadr provides routines for converting to a
canonical string form.

char *adr_name_tostr(const adr_name_t *name);

adr_name_tostr takes an adr_name_t and formats it in string form. The return value is
allocated using malloc and should be freed when the caller is done with it.
adr_name_tostr will return NULL if it is unable to allocate memory for its return value.

Dictionary Support in libadr
The libadr functions that are supported for dictionary are as follows:

• adr_data_t *adr_data_new_dictionary(adr_type_t *type)
• boolean_t adr_dictionary_contains(adr_data_t *dict, adr_data_t *key)
• adr_data_t *adr_dictionary_get(adr_data_t *dict, adr_data_t *key)
• adr_data_t *adr_dictionary_keys(adr_data_t *dict)
• int adr_dictionary_map(adr_data_t *dict,int (*func)(adr_data_t *, adr_data_t *,

void *), void *data)
• adr_data_t *adr_dictionary_put(adr_data_t *dict, adr_data_t *key, adr_data_t

*value)
• adr_data_t *adr_dictionary_remove(adr_data_t *dict, adr_data_t *key)
• unsigned int adr_dictionary_size(adr_data_t *dict)
• adr_data_t *adr_dictionary_values(adr_data_t *dict)
For more information, see Dictionary Definitions in RAD Modules.

Example 3-5 Using libadr for Dictionary Operations

This example shows the dictionary operations by using the libadr functions. For information
about defining dictionaries, see Defining a Dictionary for RAD.

/*Create a new dictionary with a key type of integer and a value type of string*/
adr_data_t *ex_dict = adr_data_new_dictionary(&t__dict_integer_string);

Chapter 3
Dictionary Support in libadr

3-11

/*Put a key value pair [1 : "value1"] in the empty dictionary*/
(void) adr_dictionary_put(ex_dict, adr_data_new_integer(1),
adr_data_new_string("value1"));

/*Get the value for the key (1)*/
adr_data_t *value = adr_dictionary_get(ex_dict, adr_data_new_integer(1));

/*Replace the value for the key (1)*/
adr_data_t *old_value = adr_dictionary_put(ex_dict, adr_data_new_integer(1),
adr_data_new_string("value2"));

/*Remove the value for the key (1)*/
adr_data_t *value = adr_dictionary_remove(ex_dict, adr_data_new_integer(1));

API Management in libadr
libadr provides support for defining APIs in rad/adr_object.h. Defining an API is
a complex task. The only supported way to define an API is to do so in the ADR IDL
and to generate the definition using radadrgen.

The important type defined in rad/adr_object.h is type adr_object_t. While the
constituent pieces of an API definition should be considered implementation details,
the end product, the API itself, is of prime interest to the developer. You will never
need to create or define an adr_object_t, but when you encounter routines that
operate on them, understanding what the type represents is important.

radadrgen-Generated Definitions
radadrgen supports multiple languages for both client and server. Whether you are
using libadr in a C-based client or as part of writing a RAD server module, you need
to understand the data definitions generated by radadrgen. Fortunately, the
definitions are the same in both environments.

Running radadrgen
You can use radadrgen to generate server bindings for both C and Python
languages. See the radadrgen(1) man page for details about its options.

Generating Server Bindings for C in libadr
This section provides examples for generating server bindings for C.

Example 3-6 Generating Server Bindings for C

$ radadrgen -l c -s server -d output_dir example.adr

The C library argument to radadrgen produces two files, api_APINAME.h and
api_APINAME_impl.c in the output_dir, where APINAME is derived from the name
attribute of the API document's api element. api_APINAME_impl.c contains the

Chapter 3
API Management in libadr

3-12

https://docs.oracle.com/cd/E88353_01/html/E37839/radadrgen-1.html

implementation of the interfaces and data types defined by the API. It should be compiled
and linked with the software needing those definitions.

api_APINAME.h externs the specific symbols defined by api_APINAME_impl.c that
consumers will need to reference, and should be included by those consumers.
api_APINAME.h contains no data definitions itself and may be included in as many places
as necessary. Neither file should be modified.

For each derived type TYPE, whether enumeration or structure, defined in the API, an
adr_type_t named t__TYPE (two underscores) representing that type is generated and
externed by the header file. If an array of that type is used anywhere in the API, an
adr_type_t named t_array__TYPE (one underscore, two underscores) representing that
array type is generated and externed. For each interface INTERFACE defined in the file, an
adr_object_t named interface_INTERFACE is defined and externed.

For each value VALUE of an enumeration named TYPE, an adr_data_t named e__TYPE_VALUE
is defined and externed. These adr_data_t values are marked as constants and are not
affected by adr_data_ref or adr_data_free.

When radadrgen is used in the Using Various RAD Module Elements, the result is two files.
One, api_example_impl.c, holds the implementation of the GrabBag interface and data
types it depends on, and should be compiled and linked with the GrabBag consumer. The
other, api_example.h, exposes only the relevant symbols defined by
api_example_impl.c and should be included by consumers of the GrabBag interface and
its related types as shown in the following example.

Example 3-7 Showing a radadrgen-Generated C Header File

#include <rad/adr.h>
#include <rad/adr_object.h>
#include <rad/rad_modapi.h>

extern adr_type_t t__Mood;
extern adr_data_t e__Mood_IRREVERENT;
extern adr_data_t e__Mood_MAUDLIN;
extern adr_type_t t__SqrtError;
extern adr_type_t t__StringInfo;
extern adr_type_t t__MoodStatus;
extern adr_object_t interface_GrabBag;

A consumer who needs to create a MoodStatus structure indicating the mood is IRREVERENT
and has changed, would issue the instructions shown in the following example.

Example 3-8 Consuming radadrgen-Generated Definitions

status = adr_data_new_struct(&t__MoodStatus);
adr_struct_set(status, "mood", e__Mood_IRREVERENT);
/* adr_struct_set(status, "mood", adr_data_new_enum_byname(&t__Mood, "IRREVERENT")); */
adr_struct_set(status, "changed", adr_data_new_boolean(B_TRUE));

if (!adr_data_verify(status, NULL, B_TRUE)) {
...

In addition to showing how to use the type definitions, this example also illustrates the
multiple ways of referencing an enumerated value. Using the defined symbols is faster and
can be checked by the compiler. The commented-out line uses
adr_data_new_enum_byname which offers flexibility that could be useful in some situations
but necessarily defers error checking until runtime. For example, if you mistype the value

Chapter 3
radadrgen-Generated Definitions

3-13

IRREVERENT, it would not be detected until the code is run. It is preferable to use the
enumerated value symbols when possible.

Generating Server Bindings for Python in libadr
The Oracle Solaris 11.4 code that is generated is currently compatible with Python 2.7
and Python 3.5. However, Python updates might affect that compatibility, so you
should specify the exact version of Python. Furthermore, do not add new Python 2.7
code. This version of Python is near the end of support by the community.

This section provides examples for generating server bindings for Python 3.5.

Example 3-9 Generating Server Bindings for Python 3.5

This example shows how to generate Python server bindings for the API Snake, which
has the interface, Cobra, with one method, multiply.

<api xmlns="https://xmlns.oracle.com/radadr"
 name="com.oracle.solaris.rad.snake">

 <summary>
 Snake API
 </summary>

 <doc>
 <para>
 This is a testing module for Python Server Modules.
 </para>
</doc>

<version major="1" minor="0"/>

<interface name="Cobra" stability="private">

 <method name="multiply" stability="private">
 <doc>
 Multiply two numbers.
 </doc>
 <result type="integer"/>
 <argument name="first" type="integer"/>
 <argument name="second" type="integer"/>
</method>

</interface>

</api>

The following example shows how to generate Python server bindings for snake.adr in
the build sub-directory.

$ radadrgen -l python35 -s server -d build snake.adr

When you run radadrgen in this example, the following files are generated:

• api.snake.h and api.snake_impl.c C files – These files are generated so that
the Python module can reuse the existing RAD marshalling and dispatching
framework.

Chapter 3
radadrgen-Generated Definitions

3-14

• com/oracle/solaris/rad/snake_iface.py Python file – This file contains an abstract
definition of an interface, which should be extended to provide a concrete
implementation.

Example 3-10 Showing a radadrgen-Generated Interface From the Python File

"""
Snake API

This is a testing module for Python Server Modules.

"""
try:
 import modapi
except ImportError:
 import rad.server.modapidoc as modapi
from rad.server import RADInstance
from rad.client import *
import abc
import six

dom = "com.oracle.solaris.rad.snake"
vers = (1, 0)

@ClassStability("private")
class Cobra(six.with_metaclass(abc.ABCMeta, RADInstance)):
 """"""

 _rad_type = "Cobra"
 _rad_domain = dom
 _rad_version = vers
 _rad_singleton = None

 __metaclass__ = abc.ABCMeta

 def __init__(self, name = None, user = None, freef = None, dynamic = False):
 super(Cobra, self).__init__(_rad_moddata, name, user, freef, dynamic)

 @MethodStability("private")
 @abc.abstractmethod
 def multiply(self, first, second):
 """Multiply two numbers."""
 pass

The methods in the example are decorated to indicate that they are abstract and to indicate
their RAD stability level. You can write the Python code to implement the abstract interface.

Example 3-11 Implementing Interfaces Generated by radadrgen
from . import snake_iface
import rad.client as radcli
import rad.server as radser

class Cobra(snake_iface.Cobra):

 def __init__(self, name = None, user = None, freef = None):
 super(Cobra, self).__init__(name, user, freef)

 def multiply(self, first, second):
 return (first * second)

Chapter 3
radadrgen-Generated Definitions

3-15

def rad_init():
 radser.rad_log(radser.rad_log_lvl.RL_DEBUG,
 "Initializing: %s" % "com.oracle.solaris.rad.snake")
 Cobra._rad_insert_singleton(radser.rad_container)
 return 0

def rad_fini(handle):
 radser.rad_log(radser.rad_log_lvl.RL_DEBUG,
 "Finalizing: %s" % "com.oracle.solaris.rad.snake")
 return 0

In this example, the Snake module is implemented and is exporting the rad_init and
rad_fini functions, which provides the capability for the module to setup or remove
an execution environment. In this example, you are logging and creating a singleton
instance to represent the Snake module.

The RAD daemon converts the ADR (RAD's native data representation format) types
to or from the Python types. For basic types, the conversion is straightforward
mapping. For derived types, the conversion is more complex, but essentially follows
the same process as illustrated above for interfaces. radadrgen generates the
required types in the binding. The various generated components are identical to any
such components in the Python client binding.

Chapter 3
radadrgen-Generated Definitions

3-16

4
RAD Module Development

C APIs for RAD
This section describes the APIs that are available for C language.

Entry Points in C for RAD
All entry points take a pointer to the object instance and a pointer to the internal structure for
the method or attribute. The object instance pointer is essential for distinguishing different
objects that implement the same interface. The internal structure pointer is theoretically
useful for sharing the same implementation across multiple methods or attributes, but isn't
used and may be removed.

Additionally, all entry points return a conerr_t. If the access is successful, they should
return CE_OK.

If the access fails due to a system error or a module defined error, they should return the
respective error codes. For more information about the error codes, see Error Codes in C for
RAD.

If an expected error occurs and an error payload is defined, it may be set in *error. The caller
will unref the error object when it is done with it.

• A method entry point has the type meth_invoke_f:

typedef conerr_t (meth_invoke_f)(rad_instance_t *inst, adr_method_t *meth,
 adr_data_t **result, adr_data_t **args, int count, adr_data_t **error);

args is an array of count arguments.

Upon successful return, *result should contain the return value of the method, if any.

The entry point for a method named METHOD in interface INTERFACE is named
interface_INTERFACE_invoke_METHOD.

• An attribute read entry point has the type attr_read_f:

typedef conerr_t (attr_read_f)(rad_instance_t *inst, adr_attribute_t *attr,
 adr_data_t **value, adr_data_t **error);

Upon successful return, *value should contain the value of the attribute, if any.

The read entry point for an attribute named ATTR in interface INTERFACE is named
interface_INTERFACE_read_ATTR.

• An attribute write entry point has the type attr_write_f:

typedef conerr_t (attr_write_f)(rad_instance_t *inst, adr_attribute_t *attr,
 adr_data_t *newvalue, adr_data_t **error);

newvalue points to the new value. If the attribute is nullable, newvalue can be NULL.

4-1

The write entry point for an attribute named ATTR in interface INTERFACE is
named interface_INTERFACE_write_ATTR.

rad explicitly checks the types of all arguments passed to methods and all values
written to attributes. Stub implementations can assume that all data provided is of the
correct type. Stub implementations are responsible for returning valid data. Returning
invalid data results in an undefined behavior.

Error Codes in C for RAD
RAD distinguishes errors as system errors and module defined errors.

System Errors in C for RAD
If the access fails due to a system error, the entry points should return one of the
following error codes:

• CE_SYSTEM – An operation fails due to a system error. This error code should not
have payload.

• CE_NOTFOUND – The retrieve operation fails because the object does not exist.
This error code should not have payload.

• CE_EXISTS – The create operation fails because the object already exists. This
error code should not have payload.

• CE_PRIV – An operation fails due to insufficient privileges. This error code should
not have payload.

• CE_NOMEM – An operation fails due to insufficient memory. This error code should
not have payload.

RAD Module Defined Errors in C for RAD
If the access fails due to an expected error as described in the API definition, the entry
points should return CE_OBJECT. If an expected error occurs and an error payload is
defined, it may be set in *error.

Note:

Do not use the CE_MISMATCH and the CE_ILLEGAL error codes. If there is
any data type mismatch error or an illegal access error, return the
CE_OBJECT error code with a payload describing the illegal arguments.

Global Variables in C for RAD
The following are the RAD global variables in the C language:

boolean_t rad_isproxy
A flag to determine if code is executing in the main or proxy rad daemon. Only
special system modules, which are integral to the operation of RAD, may use this
variable.

Chapter 4
C APIs for RAD

4-2

rad_container_t *rad_container
The rad container that contains the object instance.

Module Registration in C for RAD
The following are the RAD module registration functions in the C language:

int _rad_init(void *handle);
A module must provide a _rad_init. This is called by the RAD daemon when the module
is loaded and is a convenient point for module initialization including registration. Return 0 to
indicate that the module successfully initialized.

int rad_module_register(void *handle, int version, rad_modinfo_t *modinfo);
rad_module_register provides a handle, which is the handle provided to the module in
the call to _rad_init. This handle is used by the RAD daemon to maintain the private list
of loaded modules. The version indicates which version of the rad module interface the
module is using. modinfo contains information used to identify the module.

Instance Management in C for RAD
The following are the RAD instance management functions in the C language:

rad_instance_t *rad_instance_create(rad_object_type *type, void *data, void (*)
(void *)freef);
rad_instance_create uses the supplied parameters to create a new instance of an
object of type. data is the user data to store with the instance and the freef function is a
callback which will be called with the user data when the instance is removed. If the function
fails, it returns NULL. Otherwise, a valid instance reference is returned.

void * rad_instance_getdata(rad_instance_t *instance);
rad_instance_getdata returns the user data (supplied in rad_instance_create) of
the instance.

void rad_instance_notify (rad_instance_t *instance, const char *event, long
sequence, adr_data_t *data);
rad_instance_notify generates an event on the supplied instance. The sequence is
supplied in the event as the sequence number and the payload of the event is provided in
data.

Container Interactions in C for RAD
The following are the RAD container actions in the C language:

conerr_t rad_cont_insert(rad_container_t *container, adr_name_t *name,
rad_instance_t *instance);
conerr_t rad_cont_insert_singleton(rad_container_t *container, adr_name_t
*name, rad_object_t *object);
Creates an instance, rad_instance_t, using the supplied name and object and then inserts
it into container. If the operation succeeds, CE_OK is returned.

void rad_cont_remove(rad_container_t *container, adr_name_t *name);
Removes the instance from the container.

Chapter 4
C APIs for RAD

4-3

conerr_t rad_cont_register_dynamic(rad_container_t *container, adr_name_t
*name, rad_modinfo_t *modinfo, rad_dyn_list_t listf, rad_dyn_lookup_t
lookupf, void *arg);
conerr_t (*rad_dyn_list_t)(adr_pattern_t *pattern, adr_data_t **data,
void *arg);
conerr_t (*rad_dyn_lookup_t)(adr_name_t **name, rad_instance_t **inst,
void *arg);
Registers a dynamic container instance manager. This is the container in which the
instances will be managed. The name defines the name filter for which this instance
manager is responsible. A typical name would define the type of the instance which
are managed. For example, zname = adr_name_vcreate (MOD_DOMAIN, 1, "type",
"Zone") would be responsible for managing all instances with a type of "Zone".
listf is a user-supplied function which is invoked when objects with the matching
pattern are listed. lookupf is a user-supplied function which is invoked when objects
with the matching name are looked up. arg is stored and provided in the callback to
the user functions.

Logging in C for RAD
The following are the RAD logging functions in the C language:

void rad_log(rad_logtype_t type, const char * format, ...);
Logs a message with type and format to the rad log. If the type is a lower level than
the rad logging level, then the message is discarded.

void rad_log_alloc
Logs a memory allocation failure with log level RL_FATAL.

rad_logtype_t rad_get_loglevel
Returns the logging level.

Using Threads in C for RAD
The following are thread functions in the C language for RAD:

void *rad_thread_arg(rad_thread_t *tp);
Returns the arg referenced by the thread tp.

void rad_thread_ack(rad_thread_t *tp, rad_moderr_t error);
Acknowledges the thread referenced by tp. This process enables the controlling
thread, from which a new thread was created using rad_thread_create, to make
progress. The error is used to update the return value from rad_thread_create
and is set to RM_OK for success.
This function is intended to be used from a user function previously supplied as an
argument to rad_thread_create. It should not be used in any other context.

rad_moderr_t rad_thread_create(rad_threadfp_t fp, void *arg);
Creates a thread to run fp. This function will not return until the user function (fp)
calls rad_thread_ack. arg is stored and passed into fp as a member of the
rad_thread_t data. It can be accessed using rad_thread_arg.

rad_moderr_t rad_thread_create_async(rad_thread_asyncfp_t fp, void *arg);
Creates a thread to run fp. arg is stored and passed into fp.

Chapter 4
C APIs for RAD

4-4

Synchronization in C for RAD
The following are synchronization functions in the C language for RAD:

void rad_mutex_init(pthread_mutex_t *mutex);
Initializes a mutex.abort on failure.

void rad_mutex_enter(pthread_mutex_t *mutex);
Locks a mutex.abort on failure.

void rad_mutex_exit(pthread_mutex_t *mutex);
Unlocks a mutex.abort on failure.

void rad_cond_init(pthread_cond_t *cond);
Initializes a condition variable, cond.abort, on failure.

Subprocesses in C for RAD
The following are subprocesses in the C language for RAD:

exec_params_t *rad_exec_params_alloc
Allocates a control structure for executing a subprocess.

void rad_exec_params_free(exec_params_t *params);
Frees a subprocess control structure, params.

void rad_exec_params_set_cwd(exec_params_t *params, const char *cwd);
Sets the current working directory, cwd, in a subprocess control structure, params.

void rad_exec_params_set_env(exec_params_t *params, const char **envp);
Sets the environment, envp, in a subprocess control structure, params.

void rad_exec_params_set_loglevel(exec_params_t *params, rad_logtype_t
loglevel);
Sets the RAD log level, loglevel, in a subprocess control structure, params.

int rad_exec_params_set_stdin(exec_params_t *params, int fd);
Sets the stdin file descriptor, fd, in a subprocess control structure, params.

int rad_exec_params_set_stdout(exec_params_t *params,int fd);
Sets the stdout file descriptor, fd, in a subprocess control structure, params.

int rad_exec_params_set_stderr(exec_params_t *params, int fd);
Sets the stderr file descriptor, fd, in a subprocess control structure, params.

int rad_forkexec(exec_params_t *params, const char **argv, exec_result_t
*result);
Uses the supplied subprocess control structure, params, to fork and execute (execv) the
supplied args, argv. If result is not NULL, it is updated with the subprocess pid and file
descriptor details.

Chapter 4
C APIs for RAD

4-5

int rad_forkexec_wait(exec_params_t *params, const char **argv, int
*status);
Uses the supplied subprocess control structure, params, to fork and execute (execv)
the supplied args, argv. If status is not NULL, it is updated with the exit status of the
subprocess. This function will wait for the subprocess to terminate before returning.

int rad_wait(exec_params_t *params, exec_result_t *result, int *status);
Uses the supplied subprocess control structure, params, to wait for a previous
invocation of rad_forkexe to complete. If result is not NULL, it is updated with the
subprocess pid and file descriptor details. If status is not NULL, it is updated with the
exit status of the subprocess. This function will wait for the subprocess to terminate
before returning.

Utilities in C for RAD
The following are the RAD utilities in the C language:

void *rad_zalloc(size_t size);
Returns a pointer to a zero-allocated block of size bytes.

char *rad_strndup(char *string, size_t length);
Creates and returns a duplicate of string that is of size length bytes.

int rad_strccmp(const char * zstring, const char * cstring, size_t
length);
Compares two strings, up to a maximum size of length bytes.

int rad_openf(const char *format, int oflag, mode_tmode, ...);
Opens a file with access mode oflag, and mode mode, whose path is specified by
calling sprintf on format.

FILE *rad_fopenf(const char *format, const char *mode, ...);
Opens a file with mode, whose path is specified by calling sprintf on format.

Locales in C for RAD
The following are the RAD locale functions in the C language:

int rad_locale_parse(const char *locale, rad_locale_t **rad_locale);
Updates rad_locale with locale details based on locale. If locale is NULL, then attempt
to retrieve a locale based on the locale of the RAD connection. Returns 0 on success.

void rad_locale_free(rad_locale_t *rad_locale);
Frees a locale, rad_locale, previously obtained with rad_locale_parse.

Transactional Processing in C for RAD
There is no direct support for transactional processing within a module. If a
transactional model is desirable, then the module creator must provide the required
building blocks, start_transaction, commit, rollback, and other related processes.

Chapter 4
C APIs for RAD

4-6

Asynchronous Methods and Progress Reporting in C for RAD
Asynchronous methods and progress reporting is achieved using threads and events. The
pattern is to return a token from a synchronous method invocation which spawns a thread to
do work asynchronously. This worker thread is then responsible for providing notifications to
interested parties' events.

For example, an interface has a method which returns a task object. The method is called
installpkg and takes one argument, the name of the package to install.

Task installpkg(string pkgname);

The Task instance returned by the method, contains enough information to identify a task.
Prior to invoking installpkg, the client subscribes to a task-update event. The worker thread
is responsible for issuing events about the progress of the work. These events contain
information about the progress of the task.

In a minimal implementation, the worker thread would issue one event to notify the client that
the task was complete and what the outcome of the task was. A more complex
implementation would provide multiple events documenting progress and possibly also
provide an additional method that a client could invoke to ask the server for a progress report.

Python APIs for RAD
This section describes the APIs that are available for the Python language.

rad.server
RAD Server module.

RADContainer
RADContainer Container base class. Represents a container into which instances are
inserted.

RADInstance
Instance base class. All the generated interfaces inherit from the RADInstance class. Thus,
the interfaces inherit a set of useful behaviours. All the inherited attributes are prepended
with _rad to both prevent name collisions and clearly indicate that these attributes are
protected.

RADException
RAD exception base class. Represents an exception, which will be propagated back to the
client as a CE_OBJECT exception. If an invocation fails, the error is declared in the ADR. See
Using the RADException Python Class.

RADExistsException
Exception when an object already exists.

RADIllegalException
Exception when an illegal object is provided to the client.

RADNotFoundException
Exception when an object is not found.

The following functions must be provided by an implementation module:

Chapter 4
Python APIs for RAD

4-7

• rad_reg
• rad_init
• rad_fini

rad.server Python Module
The rad.server Python module includes functions and attributes. The following are
rad.server functions.

rad_log
Provides log information.

_rad_create
Creates rad session

_rad_delete
Deletes a rad session.

rad_locale_get
Provides the locale information.

rad_locale_free
Frees the locale.

rad_locale_parse
Parses the locale.

rad_instance_rele
Frees the instance.

rad_instance_hold
Holds the instance.

The following are rad.server attributes.

rad_container
Variable pointing to the RAD container that the module must be using.

rad_log_lvl
One of RL_DEBUG, RL_NOTE, RL_WARN, RL_ERROR, RL_CONFIG, RL_FATAL, RL_PANIC.

RADInstance Python Class
RADInstance is an encapsulation of a RAD instance in the server module.
RADInstance includes one method and one property:

• _rad_notify(self, event, payload) – This RADInstance method sends an
event event with payload payload to subscribed clients

• _rad_name – This RADInstance property is the RAD name of the given instance

Chapter 4
Python APIs for RAD

4-8

RADContainer Python Class
RADContainer contains live RAD instances. RADContainer includes the following methods:

insert(self, inst)
Adds instance into the container. This API is rarely used directly and typically called by
Subclass-of-RADInstance .__init__(self, name, user, freef, dynamic) when name is
not None and dynamic == False.

insert_singleton(self, radinstsubcls, name)
Creates a new RADInstance subclass instance and insert it to container under name name.

remove(self, inst)
Removes instance inst from the container.

register(self, klass, listf, lookupf, user)
Registers RADInstance subclass klass for dynamic listing and looking up.

find_instance(self, name)
Finds instance by name name.

list(self, pat)
Gets a list of instance RAD names matching pattern pat.

RADException Python Class
This following example shows how to use RADException.

Example 4-1 Using the RADException Python Class

The ADR type definition is as follows:

<struct name="pair" stability="private">
 <field name="first" type="integer"/>
 <field name="second" type="integer"/>
</struct>

The ADR method definition is as follows:

<method name="raiseError" stability="private">
 <doc>
 Raise an exception to test exception handling.
 </doc>
 <error type="pair"/>
</method>

In the method definition, you are specifying that an exception must be raised when the
initialization of the struct pair fails.

The implementation is as follows:

def raiseError(self):
 raise radser.RADException(snake_iface.pair(3, 6))

In this example, you are raising a RADException and providing a payload that matches the
definition in the ADR document.

Chapter 4
Python APIs for RAD

4-9

The exceptions that occur as a consequence of "other" errors such as divide by zero
are propagated back to the client as a CE_SYSTEM error representing the general
RAD failure code for systemic failure.

RAD Namespace Objects
Objects in the RAD namespace can be managed either as a set of statically installed
objects or as a dynamic set of objects that are listed or created on demand.

RAD Static Objects
The rad_modapi.h header file declares two interfaces for statically adding objects to
a namespace.

rad_cont_insert
Adds an object to the namespace. In turn, objects are created by calling
rad_instance_create with a pointer to the interface the object implements, a
pointer to object-specific callback data and a pointer to a function to free the callback
data. For example:

adr_name _t *uname = adr_name_vcreate("com.oracle.solaris.rad.user", 1, "type",
"User");
 rad_instance_t *inst = rad_instance_create(&interface_User_svr, kyle_data,
NULL);
 (void) rad_cont_insert(&rad_container, uname, inst);
 adr_name_rele(uname);

rad_cont_insert_singleton
Is a convenience routine that creates an object instance for the specified interface
with the specified name and adds it to the namespace. The callback data is set to
NULL. For example:

adr_name _t *uname = adr_name_vcreate("com.oracle.solaris.rad.user", 1, "type",
"User");
 (void) rad_cont_insert_singleton(&rad_container, uname,
&interface_User_svr);
 adr_name_rele(uname);

RAD Dynamic Handlers
A module can register a dynamic handler for each interface that is implemented by the
module. This registration allows efficient searching within a module by limiting a listing
to a matching subset of the instances that the module is managing. Note that you can
register a single dynamic handler for a module's entire namespace. Additionally, when
you register a dynamic handler, you need to specify a lookup function pointer.

The following example shows the use of dynamic handlers in the zones module.

Example 4-2 Using Dynamic Handlers in the Zones Module

cerr = rad_cont_register_dynamic(rad_container, aname,
&modinfo, zone_listf, zone_lookupf, NULL);

Chapter 4
RAD Namespace Objects

4-10

RAD Module Linkage
Modules are registered with the RAD daemon in the _rad_reg function. Registration is
automatically generated from the information contained within the IDL that defines the
module.

Each module is required to provide a function, _rad_init, for initializing the module. This
function is called before any other function in the module. Similarly, the _rad_fini function
in the module is called by the RAD daemon just prior to unloading the module.

Example 4-3 Initializing and Registering a RAD Module

#include <rad/rad_modapi.h>

int
_rad_init(void)
{
 adr_name _t *uname = adr_name_vcreate("com.example.rad.user", 1, "type", "User");
 conerr_t cerr = rad_cont_insert_singleton(&rad_container, uname,
&interface_User_svr);
 adr_name_rele(uname);

 if (cerr != CE_OK)
 {
 rad_log(RL_ERROR, "failed to insert module in container");
 return(-1);
 }
 return (0);
}

Chapter 4
RAD Module Linkage

4-11

A
zonemgr ADR Interface Description Language
Example

The example in this appendix shows some APIs used in the zonemgr ADR Interface
Description Language. It does not reflect the actual full implementation of the zonemgr APIs in
Oracle Solaris.

<?xml version="1.0" encoding="UTF-8"?>

<api xmlns="https://xmlns.oracle.com/radadr"
 name="com.oracle.solaris.rad.zonemgr"
 description="API for Zones administration">

 <summary>
 API for Zones administration
 </summary>

 <doc>
 <para>
 This API provides functionality for the configuration and
 administration of Zones subsystem.
 </para>
 </doc>

 <version major="1" minor="0"/>

 <enum name="ErrorCode">
 <summary>Errors</summary>
 <value name="NONE" value="0">
 <summary>No error</summary>
 </value>
 <value name="FRAMEWORK_ERROR"/>
 <value name="SNAPSHOT_ERROR"/>
 <value name="COMMAND_ERROR"/>
 <value name="RESOURCE_ALREADY_EXISTS"/>
 <value name="RESOURCE_NOT_FOUND"/>
 <value name="RESOURCE_TOO_MANY"/>
 <value name="RESOURCE_UNKNOWN"/>
 <value name="ALREADY_EDITING"/>
 <value name="PROPERTY_UNKNOWN"/>
 <value name="NOT_EDITING"/>
 <value name="SYSTEM_ERROR"/>
 <value name="INVALID_ARGUMENT"/>
 <value name="INVALID_ZONE_STATE"/>
 </enum>

 <struct name="Result" stability="private">
 <summary>An error occurred for the given operation</summary>
 <doc>
 <example language="python" caption="Retrieve an error information from the
structure.">
 ...
 try:

A-1

 test0.cancelConfig()
 except rad.client.ObjectError as e:
 result = e.get_payload()
 print("Result.code = %s" % result.code)
 </example>
 </doc>
 <field type="ErrorCode" name="code" nullable="true"/>
 <field type="string" name="str" nullable="true"/>
 <field type="string" name="stdout" nullable="true"/>
 <field type="string" name="stderr" nullable="true"/>
 </struct>

 <struct name="ConfigChange">
 <summary>The payload of a configChange event</summary>
 <field type="string" name="zone"/>
 </struct>

 <struct name="StateChange">
 <summary>The payload of a stateChange event</summary>
 <field type="string" name="zone"/>
 <field type="string" name="oldstate"/>
 <field type="string" name="newstate"/>
 </struct>

 <enum name="PropertyValueType">
 <value name="PROP_SIMPLE"/>
 <value name="PROP_LIST"/>
 <value name="PROP_COMPLEX"/>
 </enum>

 <struct name="Property">
 <field name="name" type="string"/>
 <field name="value" type="string" nullable="true"/>
 <field name="type" type="PropertyValueType" nullable="true"/>
 <field name="listvalue" nullable="true">
 <list type="string"/>
 </field>
 <field name="complexvalue" nullable="true">
 <list type="string"/>
 </field>
 </struct>

 <struct name="Resource">
 <summary>A zone resource</summary>
 <doc>
 <para> This structure is used for storing information about an individual
 zone configuration resource.
 </para>
 </doc>
 <field type="string" name="type"/>
 <field name="properties" nullable="true">
 <list type="Property"/>
 </field>
 <field name="parent" type="string" nullable="true"/>
 </struct>

 <interface name="ZoneManager">
 <summary>Manage zones on this system</summary>
 <doc>
 Create and delete zones. Changes in the state of zones
 can be monitored through the StateChange event.

Appendix A

A-2

 </doc>

 <method name="create">
 <summary>Create a zone</summary>
 <result type="Result"/>
 <error type="Result"/>
 <argument name="name" type="string"/>
 <argument name="path" type="string" nullable="true"/>
 <argument name="template" type="string" nullable="true"/>
 </method>

 <method name="delete">
 <summary>Delete a zone</summary>
 <result type="Result"/>
 <error type="Result"/>
 <argument name="name" type="string"/>
 </method>

 <method name="importConfig">
 <summary>Import a zone</summary>
 <result type="Result"/>
 <error type="Result"/>
 <argument name="noexecute" type="boolean"/>
 <argument name="name" type="string"/>
 <argument name="configuration">
 <list type="string"/>
 </argument>
 </method>

 <event type="StateChange" name="stateChange"/>
 </interface>

 <interface name="ZoneInfo">
 <summary>Report on the zone in which this instance is executing</summary>
 <doc>
 Information about the current zone can be accessed.
 </doc>
 <property name="brand" access="ro" type="string"/>
 <property name="id" access="ro" type="integer"/>
 <property name="uuid" access="ro" type="string" nullable="true">
 <error type="Result"/>
 </property>
 <property name="name" access="ro" type="string"/>
 <property name="isGlobal" access="ro" type="boolean"/>
 </interface>

 <interface name="Zone">
 <name key="name" primary="true"/>
 <name key="id"/>
 <summary>Operations that affect a single zone</summary>
 <doc>
 Represents an individual zone. All zone configuration and
 administrative actions are represented in this interface.
 Changes of the zone configuration can be monitored through the
 configChange event.
 </doc>

 <property name="auxstate" access="ro" nullable="true">
 <list type="string"/>
 <error type="Result"/>
 </property>

Appendix A

A-3

 <property name="brand" access="ro" type="string"/>
 <property name="id" access="ro" type="integer"/>
 <property name="uuid" access="ro" type="string" nullable="true">
 <error type="Result"/>
 </property>
 <property name="name" access="ro" type="string"/>
 <property name="state" access="ro" type="string"/>
 <method name="cancelConfig">
 <error type="Result"/>
 </method>
 <method name="exportConfig">
 <result type="string"/>
 <error type="Result"/>
 <argument name="includeEdits" type="boolean" nullable="true"/>
 <argument type="boolean" name="liveMode" nullable="true"/>
 </method>
 <method name="update">
 <error type="Result"/>
 <argument name="noexecute" type="boolean"/>
 <argument name="commands">
 <list type="string"/>
 </argument>
 </method>
 <method name="editConfig">
 <error type="Result"/>
 <argument type="boolean" name="liveMode" nullable="true"/>
 </method>
 <method name="commitConfig">
 <error type="Result"/>
 </method>
 <method name="configIsLive">
 <result type="boolean"/>
 </method>
 <method name="configIsStale">
 <result type="boolean"/>
 <error type="Result"/>
 </method>
 <method name="addResource">
 <error type="Result"/>
 <argument name="resource" type="Resource"/>
 <argument name="scope" type="Resource" nullable="true"/>
 </method>
 <method name="reloadConfig">
 <error type="Result"/>
 <argument type="boolean" name="liveMode" nullable="true"/>
 </method>
 <method name="removeResources">
 <error type="Result"/>
 <argument name="filter" type="Resource" nullable="false"/>
 <argument name="scope" type="Resource" nullable="true"/>
 </method>
 <method name="getResources">
 <result>
 <list type="Resource"/>
 </result>
 <error type="Result"/>
 <argument name="filter" type="Resource" nullable="true"/>
 <argument name="scope" type="Resource" nullable="true"/>
 </method>
 <method name="getResourceProperties">
 <result>

Appendix A

A-4

 <list type="Property"/>
 </result>
 <error type="Result"/>
 <argument name="filter" type="Resource" nullable="false"/>
 <argument name="properties" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="setResourceProperties">
 <error type="Result"/>
 <argument name="filter" type="Resource" nullable="false"/>
 <argument name="properties" nullable="false">
 <list type="Property"/>
 </argument>
 </method>
 <method name="clearResourceProperties">
 <error type="Result"/>
 <argument name="filter" type="Resource" nullable="false"/>
 <argument name="properties" nullable="false">
 <list type="string"/>
 </argument>
 </method>
 <method name="apply">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="attach">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="boot">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="clone">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="detach">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="halt">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">

Appendix A

A-5

 <list type="string"/>
 </argument>
 </method>
 <method name="install">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="mark">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="move">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="rename">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="ready">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="reboot">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="savecore">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="shutdown">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="suspend">
 <result type="Result"/>

Appendix A

A-6

 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="uninstall">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="verify">
 <result type="Result"/>
 <error type="Result"/>
 <argument name="options" nullable="true">
 <list type="string"/>
 </argument>
 </method>
 <method name="getManager">
 <result type="ZoneManager"/>
 </method>
 <event type="ConfigChange" name="configChange"/>
 </interface>
</api>

Appendix A

A-7

Index

A
accessing

adr_data_t values, 3-6
ADR

<doc /> element, 2-3
<summary /> element, 2-2
definition document, 2-1
dictionary definitions, 2-5
document definitions, 2-2
enumeration element, 2-3
example, A-1
interface attributes, 2-6
interface definitions, 2-6
interface description language, 2-1
interface events, 2-7
interface methods, 2-6
object name operations, 3-9
structure definitions, 2-4
version element, 2-3
zonemgr example, A-1

adr_data_t type, 3-2, 3-3
adr_name_t type, 3-9
adr_type_t type, 3-1, 3-6
allocating

adr_data_t values, 3-3
arrays in libadr, 3-5
boolean in libadr, 3-4
enumerations in libadr, 3-5
names in libadr, 3-5
numerics in libadr, 3-4
opaques in libadr, 3-4
secrets in libadr, 3-4
simple values, 3-6
strings in libadr, 3-3
structures in libadr, 3-5
time in libadr, 3-4

APIs
C APIs for RAD, 4-1
in RAD, 1-4
Python APIs for RAD, 4-7
versioning, 1-4

architecture of RAD, 1-1

array
derived data type, 1-15

array adr_data_t values, 3-6
arrays in libadr, 3-5
asynchronous methods, 4-7
attributes

overview, 1-10
authorizations, 1-2

B
base types

list of, 1-14
boolean in libadr, 3-4

C
C APIs

asynchronous methods, 4-7
container interactions, 4-3
entry points, 4-1
error codes, 4-2
global variables, 4-2
instance management, 4-3
locales, 4-6
logging, 4-4
module registration, 4-3
progress reporting, 4-7
subprocesses, 4-5
synchronization functions, 4-5
threads, 4-4
transactional processing, 4-6
utilities, 4-6

clients
language support from RAD, 1-5

commitment levels, 1-12
components

naming conventions, 1-8
consistency

RAD naming, 1-7
container interactions in C, 4-3
creating

adr_name_t, 3-10

Index-1

D
data

optional, 1-15
data types

adr_data_t, 3-2
adr_name_t, 3-9
adr_type_t, 3-1
arrays, 3-5, 3-6
base types, 1-14
boolean, 3-4
derived, 3-6
derived types, 1-15
enumerations, 3-5
names, 3-5
numeric, 3-4
opaques, 3-4
secrets, 3-4
simple values, 3-6
strong typing, 1-14
structures, 3-5
times, 3-4

derived adr_data_t values, 3-6
derived types

list of, 1-15
designing

RAD components, 1-4
sample module, 1-5

dictionary support
libadr in, 3-11

dynamic handlers in RAD, 4-10
dynamic objects, 4-10

E
entry points in C, 4-1
enumeration

derived data type, 1-15
enumerations in libadr, 3-5
error codes in C, 4-2
events

overview, 1-11
examples

ADR IDL, A-1
asynchronous method, 4-7
using threads, 4-7

F
features

RAD naming, 1-9

G
global variables in C, 4-2

I
IDL

including IDL files, 2-7
XML-based, 2-1

inspecting
adr_name_t, 3-10

instance management in C, 4-3
interface

in RAD, 1-7
versioning, 1-12

interfaces
naming conventions, 1-7

J
Java

naming and RAD, 1-9

L
languages

interacting with RAD, 1-9
letter case

RAD naming conventions, 1-8
libadr library, 3-3, 3-11, 3-12
locales in C, 4-6
logging in C, 4-4

M
manipulating

arrays, 3-6
derived types, 3-6
structures, 3-7

methods
asynchronous, 4-7
overview, 1-10

module registration in C, 4-3
modules

example, 2-8
linkage in RAD, 4-11

N
names in libadr, 3-5
namespaces

objects in, 4-10
namespaces in RAD, 1-13

Index

Index-2

naming
components, 1-8
conventions, 1-7
interaction with other language

environments, 1-9
letter case conventions, 1-8
objects, 1-7
RAD features, 1-9

numerics in libadr, 3-4

O
object name operations, 3-9
object names

naming conventions, 1-7
objects

dynamic, 4-10
static, 4-10

optional data
nullable, 1-15

overview
RAD features, 1-1

P
privileges

RAD and, 1-15
progress reporting in C, 4-7
Python APIs

RAD, 4-7
rad.server, 4-8
RADContainer, 4-9
RADException, 4-9
RADInstance, 4-8

R
RAD

API version element, 1-4
APIs, 1-4
architecture, 1-1
attributes, 1-10
authorizations, 1-2
base types, 1-14
C APIs, 4-1
client language support, 1-5
commitment levels, 1-12
data types, 1-14
data types, fundamental, 3-1
derived types, 1-15
design examples, 1-5
designing components, 1-4
dynamic handlers, 4-10
events, 1-11

RAD (continued)
feature types, 1-9
including rad/adr.h header file, 3-1
interacting with Java, 1-9
interface, 1-7
interface version, 1-12
legacy constraints, 1-5
main functionality, 1-2
methods, 1-10
module example, 2-8
module linkage, 4-11
namespace, 1-13
namespace objects, 4-10
naming conventions, 1-7, 1-9
optional data, 1-15
overview, 1-1
privileges and, 1-15
Python APIs, 4-7
rad.server Python module, 4-8
radadrgen command, 2-12
RADContainer Python class, 4-9
RADException Python class, 4-9
RADInstance Python class, 4-8
RBAC and, 1-15
rights profiles, 1-2
root authentication requirement, 1-15
static objects, 4-10
version numbering, 1-12

rad_modapi.h header file, 4-10
rad.server module, 4-7
rad.server Python module, 4-8
rad/adr_name.h header file, 3-9
rad/adr_object.h header file, 3-12
rad/adr.h header file, 3-1
radadrgen command, 2-12, 3-12
RADContainer base class, 4-7
RADContainer Python class, 4-9
RADException base class, 4-7
RADException Python class, 4-9
RADExistsException exception, 4-7
RADIllegalException exception, 4-7
RADInstance base class, 4-7
RADInstance Python class, 4-8
RADNotFoundException exception, 4-7
RBAC

support for RAD, 1-15
rights, 1-15
rights profiles, 1-2
root authentication

RAD requirement, 1-15

Index

Index-3

S
secrets in libadr, 3-4
simple adr_data_t values, 3-6
solaris.smf.manage.rad service, 1-2
solaris.smf.value.rad service, 1-2
string representation

libadr in, 3-11
strings in libadr, 3-3
structure

derived data type, 1-15
structure of adr_data_t type, 3-7
structures in libadr, 3-5
subprocesses in C, 4-5
synchronization functions in C, 4-5

T
times in libadr, 3-4

transactional processing in C, 4-6

U
using threads in C, 4-4
utilities in C, 4-6

V
validating adr_data_t values, 3-8
version numbering

conditions, 1-12
versioning

RAD APIs, 1-4

Index

Index-4

	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	1 Introduction to Developing a Remote Administration Daemon Module
	Remote Administration Daemon
	How RAD Works
	RAD Functionality
	Designing RAD Components
	RAD APIs
	RAD API Versions
	RAD API Namespace and Restricted Names
	Synchronous and Asynchronous Invocation in RAD
	Legacy Constraints for RAD APIs
	RAD Client Library Support
	RAD API Design Examples
	RAD User Management Example

	RAD Interface
	RAD Interface Names
	RAD Object Naming Conventions
	RAD Component Naming Conventions

	RAD Feature Types
	RAD Methods
	RAD Property Attributes
	RAD Events

	RAD Commitment Levels
	RAD Interface Versioning
	RAD Version Numbering

	RAD Namespace
	Data Types Supported in RAD
	RAD Base Types
	RAD Derived Types
	Optional Data in RAD

	RBAC Support for RAD

	2 Abstract Data Representation for RAD
	ADR Interface Description Language for RAD
	ADR Definition Document for a RAD Module
	Documentation Definitions for RAD Modules
	<summary /> Element in RAD Modules
	<doc /> Element in RAD Modules

	Version Element in RAD Modules
	Enumeration Definitions in RAD Modules
	Structure Definitions in RAD Modules
	Dictionary Definitions in RAD Modules
	Interface Definitions for a RAD Module
	Interface Methods for a RAD Module
	Interface Attributes for a RAD Module
	Interface Events for a RAD Module
	Including IDL Files in a Parent IDL File

	RAD Module Example

	radadrgen Processing Tool

	3 libadr Library
	Data Management in libadr
	adr_type_t Type
	adr_data_t Type
	Allocating adr_data_t Values
	Allocating Strings in libadr
	Allocating boolean in libadr
	Allocating Numeric Types in libadr
	Allocating Times in libadr
	Allocating Opaques in libadr
	Allocating Secrets in libadr
	Allocating Names in libadr
	Allocating Enumerations in libadr
	Allocating Structures in libadr
	Allocating Arrays in libadr

	Accessing Simple adr_data_t Values
	Manipulating Derived Type adr_data_t
	Manipulating Array adr_data_t Values
	Manipulating the Structure of an adr_data_t Type

	Validating adr_data_t Values

	ADR Object Name Operations
	adr_name_t Type
	Creating adr_name_t Type
	Inspecting adr_name_t Type
	String Representation in libadr

	Dictionary Support in libadr
	API Management in libadr
	radadrgen-Generated Definitions
	Running radadrgen
	Generating Server Bindings for C in libadr
	Generating Server Bindings for Python in libadr

	4 RAD Module Development
	C APIs for RAD
	Entry Points in C for RAD
	Error Codes in C for RAD
	System Errors in C for RAD
	RAD Module Defined Errors in C for RAD

	Global Variables in C for RAD
	Module Registration in C for RAD
	Instance Management in C for RAD
	Container Interactions in C for RAD
	Logging in C for RAD
	Using Threads in C for RAD
	Synchronization in C for RAD
	Subprocesses in C for RAD
	Utilities in C for RAD
	Locales in C for RAD
	Transactional Processing in C for RAD
	Asynchronous Methods and Progress Reporting in C for RAD

	Python APIs for RAD
	rad.server Python Module
	RADInstance Python Class
	RADContainer Python Class
	RADException Python Class

	RAD Namespace Objects
	RAD Static Objects
	RAD Dynamic Handlers

	RAD Module Linkage

	A zonemgr ADR Interface Description Language Example
	Index

