
Securing Files and Verifying File Integrity in
Oracle Solaris 11.4

E61022-02
August 2023

Securing Files and Verifying File Integrity in Oracle Solaris 11.4,

E61022-02

Copyright © 2002, 2023, Oracle and/or its affiliates.

Primary Author: Cathleen Reiher, Sharon Veach

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Copyright © 2002, 2023, Oracle et/ou ses affiliés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont
concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf stipulation expresse de votre
contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et
par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le
désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par
la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle
Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par
écrit.

Si ce logiciel, la documentation du logiciel, les données (telles que définies dans la réglementation "Federal
Acquisition Regulation") ou la documentation qui l'accompagne sont livrés sous licence au Gouvernement des Etats-
Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le compte du Gouvernement des Etats-Unis, la
notice suivante s'applique :

UTILISATEURS DE FIN DU GOUVERNEMENT É.-U. : programmes Oracle (y compris tout système d'exploitation,
logiciel intégré, tout programme intégré, installé ou activé sur le matériel livré et les modifications de tels programmes)
et documentation sur l'ordinateur d'Oracle ou autres logiciels OracleLes données fournies aux utilisateurs finaux du
gouvernement des États-Unis ou auxquelles ils ont accès sont des "logiciels informatiques commerciaux", des
"documents sur les logiciels informatiques commerciaux" ou des "données relatives aux droits limités" conformément
au règlement fédéral sur l'acquisition applicable et aux règlements supplémentaires propres à l'organisme. À ce titre,
l'utilisation, la reproduction, la duplication, la publication, l'affichage, la divulgation, la modification, la préparation des
œuvres dérivées et/ou l'adaptation des i) programmes Oracle (y compris tout système d'exploitation, logiciel intégré,
tout programme intégré, installé, ou activé sur le matériel livré et les modifications de ces programmes), ii) la
documentation informatique d'Oracle et/ou iii) d'autres données d'Oracle, sont assujetties aux droits et aux limitations
spécifiés dans la licence contenue dans le contrat applicable. Les conditions régissant l'utilisation par le
gouvernement des États-Unis des services en nuage d'Oracle sont définies par le contrat applicable à ces services.
Aucun autre droit n'est accordé au gouvernement américain.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des
informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque,
notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou
matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de
secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions
optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l'utilisation de ce logiciel ou matériel pour des applications dangereuses.

Oracle®, Java, et MySQL sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom
mentionné peut être une marque appartenant à un autre propriétaire qu'Oracle.

Intel et Intel Inside sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont
utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Epyc, et le
logo AMD sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée
de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant
accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute
responsabilité et excluent toute garantie expresse ou implicite quant aux contenus, produits ou services émanant de
tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses
affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages
causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée
dans un contrat entre vous et Oracle.

Contents

 Using This Documentation

Product Documentation Library viii

Feedback viii

1 Controlling Access to Files

What's New in Files and File Systems in Oracle Solaris 11.4 1-1

Using UNIX Permissions to Protect Files 1-1

Commands for Viewing and Securing Files 1-1

File and Directory Ownership 1-2

UNIX File Permissions 1-3

Special File Permissions Using setuid, setgid and Sticky Bit 1-3

setuid Permission 1-4

setgid Permission 1-4

Sticky Bit 1-4

Default umask Value 1-5

File Permission Modes 1-5

Using File Attributes to Add Security to ZFS Files 1-7

Using Access Control Lists to Protect UFS Files 1-8

Protecting Executable Files From Compromising Security 1-8

Protecting Files 1-9

Protecting Files With UNIX Permissions 1-9

How to Display File Information 1-9

How to Change the Owner of a File 1-10

How to Change Group Ownership of a File 1-11

How to Change File Permissions in Symbolic Mode 1-11

How to Change File Permissions in Absolute Mode 1-12

How to Change Special File Permissions in Absolute Mode 1-13

How to Change File Permissions Across Symbolic Links 1-14

Protecting Against Programs With Security Risk 1-15

How to Find Files With Special File Permissions 1-15

Preventing tmpfs File Systems From Filling Up the System 1-16

iv

How to Limit the Size of the tmpfs File System 1-16

2 Using ACLs and Attributes to Protect Oracle Solaris ZFS Files

Oracle Solaris ACL Model 2-1

ACL Formats 2-1

ACL Entry Descriptions 2-2

ZFS ACL Sets 2-4

ACL Inheritance 2-4

ACL Properties 2-5

Setting ACLs on ZFS Files 2-6

Command Syntax for Setting ACLs 2-7

Displaying ACL Information 2-8

Modifying ACLs on ZFS Files 2-8

ACL Interaction With Permission Bits 2-9

Setting ACL Inheritance on ZFS Files 2-12

Granting ACLs That Are Inherited by Files 2-12

Granting ACLs That Are Inherited by Both Files and Directories 2-13

Modifying ACL Inheritance With the ACL Inherit Mode 2-14

ACL passthrough Inherit Mode 2-15

ACL Inherit passthrough-x Mode 2-17

ACL Inherit passthrough-mode-preserve Mode 2-18

Applying Special Attributes to ZFS Files 2-20

Applying Immutability to a ZFS File 2-20

Preventing Accidental Deletions With the nounlink Attribute 2-20

Applying Read-Only Access to a ZFS File 2-21

Displaying and Changing ZFS File Attributes 2-21

3 Labeling Files for Data Loss Protection

About Labeling in Oracle Solaris 3-1

Label Policy 3-1

Labels and Clearances 3-1

Label Components 3-2

Label Relationships 3-3

Privileges for Translating Labels 3-3

Labeled Files and Multilevel File Systems 3-4

Sharing and Mounting Labeled File Systems 3-4

Protect Data With a Label Policy 3-4

Default Label Policy 3-5

Displaying Label and Policy Information 3-5

v

Customizing a Label Policy 3-6

About Hardening Labeled File Systems 3-7

About Installing a Customized Labels Package 3-8

Ideas for Using Labeled File Systems for Data Loss Protection 3-8

Configuring Labels on an Oracle Solaris System 3-9

Overall Process for Configuring Labeling 3-9

Initially Configuring Labels in Oracle Solaris 3-10

How to Install Labels in Oracle Solaris 3-11

How to Configure Your Label Policy 3-11

How to Assign a Label to a File System 3-13

Further Hardening Labeled File Systems 3-16

How to Enforce a Fixed Configuration for a Labeled File System 3-16

How to Isolate a Labeled File System in a Zone 3-17

How to Create a Labeled Audit Trail 3-19

Maintaining Labeled File Systems 3-20

Viewing and Testing Sample Label Encodings Files 3-21

Testing Labeling by Using the Default Encodings File 3-21

Testing Labeling by Using the Compliance Encodings File 3-22

Example - Label Encodings File With Reused Compartment Bits 3-23

Label Man Pages 3-28

4 Verifying File Integrity by Using BART

About BART 4-1

BART Features 4-1

BART Components 4-1

BART Manifest 4-1

BART Report 4-2

BART Rules File 4-2

Using BART 4-3

BART Security Considerations 4-3

How to Create a Control Manifest 4-3

How to Customize a Manifest 4-5

How to Compare Manifests for the Same System Over Time 4-6

How to Compare Manifests From Different Systems 4-7

How to Customize a BART Report by Specifying File Attributes 4-9

How to Customize a BART Report by Using a Rules File 4-10

BART Manifests, Rules Files, and Reports 4-11

BART Manifest File Format 4-11

BART Rules File Format 4-12

BART Rules File Attributes 4-12

vi

BART Quoting Syntax 4-13

BART Reporting 4-13

BART Output 4-13

Glossary

Index

vii

Using This Documentation

Product Documentation Library
Documentation and resources for this product and related products are available at
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01.

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/
docfeedback.

Using This Documentation

viii

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/goto/docfeedback
http://www.oracle.com/goto/docfeedback

1
Controlling Access to Files

What's New in Files and File Systems in Oracle Solaris 11.4
This section highlights information for existing customers about important new features in
files and file systems.

• Oracle Solaris labels data and user processes for privacy. This feature provides data loss
protection for directories and information that site security requires to have special
protections. While labeling is always on, it does not change the behavior of the system
until the administrator configures a labeling hierarchy, applies labels to particular files and
directories, and enables trusted users to run labeled processes.

For more information, see Labeling Files for Data Loss Protection and Chapter 6,
Labeling Processes for Data Loss Protection in Securing Users and Processes in Oracle
Solaris 11.4.

• The -P and -H options to the recursive chmod -R command limit file permission changes
across symbolic links. See How to Change File Permissions Across Symbolic Links and
the chmod(1) man page.

• If your site uses the account-policy stencil, files in the /etc directory that contain
security attributes, such as /etc/default/login, might not reflect the security policy
of the system. Rather, the values of properties in the account-policy:default service
indicate the security policy of the system. When the account-policy service is enabled,
changes in the files in the /etc directory likely has no effect on security policy. For more
information, see Modifying Rights System-Wide As SMF Properties in Securing Users
and Processes in Oracle Solaris 11.4 and the account-policy(8S) man page.

• Includes storage for per-user content in private file-system directories in the /var/
share/user and /tmp/volatile-user directories. For more information, see the
filesystem(7) man page.

Using UNIX Permissions to Protect Files
You can secure files through UNIX file permissions and through ACLs. Files with sticky bits,
and files that are executable, require special security measures.

Commands for Viewing and Securing Files
This table describes the commands for monitoring and securing files and directories.

Table 1-1 Commands for Securing Files and Directories

Command Description Man Page

ls Lists the files in a directory and information about the files. ls(1)

1-1

https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/chmod-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/smfap-systemwide.html
https://docs.oracle.com/cd/E37838_01/html/E61023/smfap-systemwide.html
https://docs.oracle.com/cd/E88353_01/html/E72487/account-policy-8s.html
https://docs.oracle.com/cd/E88353_01/html/E37853/filesystem-7.html
https://docs.oracle.com/cd/E88353_01/html/E37839/ls-1.html

Table 1-1 (Cont.) Commands for Securing Files and Directories

Command Description Man Page

chown Changes the ownership of a file. chown(1)

chgrp Changes the group ownership of a file. chgrp(1)

chmod Changes permissions on a file. You can use either symbolic mode,
which uses letters and symbols, or absolute mode, which uses octal
numbers, to change permissions on a file.

chmod(1)

File and Directory Ownership
Traditional UNIX file permissions can assign ownership to three classes of users:

• user – The file or directory owner, who is usually the user who created the file.
The owner of a file can decide who has the right to read the file, to write to the file
(make changes to it), or, if the file is a command, to execute the file.

• group – Members of a group of users.

• others – All other users who are not the file owner and are not members of the
group.

The owner of the file can usually assign or modify file permissions. Additionally, the
root account can change a file's ownership. To override system policy, see Enabling
Users to Change the Ownership of Their Own Files.

A file can be one of seven types. Each type is displayed by a symbol:

- (Minus symbol)
Text or program

b
Block special file

c
Character special file

d
Directory

l
Symbolic link

s
Socket

D
Door

P
Named pipe (FIFO)

Chapter 1
Using UNIX Permissions to Protect Files

1-2

https://docs.oracle.com/cd/E88353_01/html/E37839/chown-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/chgrp-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/chmod-1.html

UNIX File Permissions
The following table lists and describes the permissions that you can give to each class of
user for a file or directory.

Table 1-2 File and Directory Permissions

Symb
ol

Permissi
on

Object Description

r Read File Designated users can open and read the contents of a file.

r Read Directory Designated users can list files in the directory.

w Write File Designated users can modify the contents of the file or delete the file.

w Write Directory Designated users can add files or add links in the directory. They can
also remove files or remove links in the directory.

x Execute File Designated users can execute the file, if it is a program or shell script.
They also can execute the program with one of the exec(2) system
calls.

x Execute Directory Designated users can open files or run files in the directory. They also
can make the directory and the directories beneath it current.

- Denied File and
Directory

Designated users cannot read, write, or execute the file.

These file permissions apply to regular files, and to special files such as devices, sockets,
and named pipes (FIFOs).

For a symbolic link, the permissions that apply are the permissions of the file that the link
points to.

You can protect the files in a directory and its subdirectories by setting restrictive file
permissions on that directory. Note, however, that the root role has access to all files and
directories on the system.

Special File Permissions Using setuid, setgid and Sticky Bit
Three special types of permissions are available for executable files and public directories:
setuid, setgid, and sticky bit. When these permissions are set, any user who runs that
executable file assumes the ID of the owner (or group) of the executable file.

You must be extremely careful when you set special permissions, because special
permissions constitute a security risk. For example, a user can gain root capabilities by
executing a program that sets the user ID (UID) to 0, which is the UID of root. Also, all users
can set special permissions for files that they own, which constitutes another security
concern.

You should monitor your system for any unauthorized use of the setuid permission and the
setgid permission to gain root capabilities. A suspicious permission grants ownership of an
administrative program to a user rather than to root or bin. To search for and list all files that
use this special permission, see How to Find Files With Special File Permissions.

Chapter 1
Using UNIX Permissions to Protect Files

1-3

setuid Permission
When setuid permission is set on an executable file, a process that runs this file is
granted access on the basis of the owner of the file. The access is not based on the
user who is running the executable file. This special permission allows a user to
access files and directories that are normally available only to the owner.

For example, the setuid permission on the passwd command makes it possible for
users to change passwords. A passwd command with setuid permission would
resemble the following:

-r-sr-sr-x 1 root sys 62K Jun 14 14:14 /usr/bin/passwd

This special permission presents a security risk. Some determined users can find a
way to maintain the permissions that are granted to them by the setuid process even
after the process has finished executing.

Note:

The use of setuid permissions with the reserved UIDs (0-100) from a
program might not set the effective UID correctly. Use a shell script, or avoid
using the reserved UIDs with setuid permissions.

setgid Permission
The setgid permission is similar to the setuid permission. The process's effective
group ID (GID) is changed to the group that owns the file, and a user is granted
access based on the permissions that are granted to that group. The /usr/bin/mail
command has setgid permissions:

-r-x--s--x 1 root mail 149K Jun 14 14:04 /usr/bin/mail

When the setgid permission is applied to a directory, files that are created in this
directory belong to the group that owns the directory. The files do not belong to the
group to which the creating process belongs. Any user who has write and execute
permissions in the directory can create a file there. However, the file belongs to the
group that owns the directory, not to the group that the user belongs to.

You should monitor your system for any unauthorized use of the setgid permission to
gain root capabilities. A suspicious permission grants group access to such a program
to an unusual group rather than to root or bin. To search for and list all files that use
this permission, see How to Find Files With Special File Permissions.

Sticky Bit
The sticky bit is a permission bit that protects the files within a directory. If the directory
has the sticky bit set, a file can be deleted only by the file owner, the directory owner,
or by a privileged user. The root user is an example of a privileged user. The sticky bit
prevents a user from deleting other users' files from public directories such as /tmp:

drwxrwxrwt 74 root sys 18K Sep 7 17:07 tmp

Chapter 1
Using UNIX Permissions to Protect Files

1-4

Be sure to set the sticky bit manually when you create a swap file or set up a public directory
on a TMPFS file system. For instructions, see Setting Special File Permissions in Absolute
Mode.

Default umask Value
When you create a file or directory, you create it with a default set of permissions. The system
defaults are open. A text file has 666 permissions, which grants read and write permission to
everyone. A directory and an executable file have 777 permissions, which grants read, write,
and execute permission to everyone. Typically, users override the system defaults in their
shell initialization files, such as .bashrc and .kshrc.user. An administrator can also set
defaults in the /etc/profile file.

Note:

If you are using the account-policy service, you must modify the login/
environment/umask SMF property. For more information and the procedure, see
New Feature – Enabling the account-policy Service in Securing Users and
Processes in Oracle Solaris 11.4 and Modifying Login Environment Variables in
Securing Users and Processes in Oracle Solaris 11.4. See also the account-
policy(8S) man page.

The value that the umask command assigns is subtracted from the default. This process has
the effect of denying permissions in the same way that the chmod command grants them. For
example, the chmod 022 command grants write permission to group and others. The umask
022 command denies write permission to group and others.

The following table shows some typical umask values and their effect on an executable file.

Table 1-3 umask Settings for Different Security Levels

Level of Security umask Setting Permissions Disallowed

Permissive (744) 022 w for group and others

Moderate (751) 026 w for group, rw for others

Strict (740) 027 w for group, rwx for others

Severe (700) 077 rwx for group and others

For more information about setting the umask value, see the umask(1) man page.

File Permission Modes
The chmod command enables you to change the permissions on a file. You must be root or
the owner of a file or directory to change its permissions.

You can use the chmod command to set permissions in either of two modes:

• Absolute Mode – Use numbers to represent file permissions. When you change
permissions by using the absolute mode, you represent permissions for each triplet by an

Chapter 1
Using UNIX Permissions to Protect Files

1-5

https://docs.oracle.com/cd/E37838_01/html/E61023/rbac-apenable.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbac-apenable.html
https://docs.oracle.com/cd/E37838_01/html/E61023/smfap-syslogenvar.html
https://docs.oracle.com/cd/E37838_01/html/E61023/smfap-syslogenvar.html
https://docs.oracle.com/cd/E88353_01/html/E72487/account-policy-8s.html
https://docs.oracle.com/cd/E88353_01/html/E72487/account-policy-8s.html
https://docs.oracle.com/cd/E88353_01/html/E37839/umask-1.html

octal mode number. Absolute mode is the method most commonly used to set
permissions.

• Symbolic Mode – Use combinations of letters and symbols to add permissions or
remove permissions.

The following table lists the octal values for setting file permissions in absolute mode.
You use these numbers in sets of three to set permissions for owner, group, and other,
in that order. For example, the value 644 sets read and write permissions for owner,
and read-only permissions for group and other.

Table 1-4 Setting File Permissions in Absolute Mode

Octal Value File Permissions Set Permissions Description

0 --- No permissions

1 --x Execute permission only

2 -w- Write permission only

3 -wx Write and execute permissions

4 r-- Read permission only

5 r-x Read and execute permissions

6 rw- Read and write permissions

7 rwx Read, write, and execute permissions

The following table lists the symbols for setting file permissions in symbolic mode.
Symbols can specify whose permissions are to be set or changed, the operation to be
performed, and the permissions that are being assigned or changed.

Table 1-5 Setting File Permissions in Symbolic Mode

Symbol Function Description

u who User (owner)

g who Group

o who Others

a who All

= operator Assign

+ operator Add

- operator Remove

r permissions Read

w permissions Write

x permissions Execute

l permissions Mandatory locking, setgid bit is on, group execution bit is
off

s permissions setuid or setgid bit is on

t permissions Sticky bit is on, execution bit for others is on

Chapter 1
Using UNIX Permissions to Protect Files

1-6

The who operator permissions designations in the function column specify the symbols that
change the permissions on the file or directory.

who
Specifies whose permissions are to be changed.

operator
Specifies the operation to be performed.

permissions
Specifies what permissions are to be changed.

You can set special permissions on a file in absolute mode or symbolic mode. However, you
must use symbolic mode to set or remove setuid permissions on a directory. In absolute
mode, you set special permissions by adding a new octal value to the left of the permission
triplet. See Setting Special File Permissions in Absolute Mode. The following table lists the
octal values for setting special permissions on a file.

Table 1-6 Setting Special File Permissions in Absolute Mode

Octal Value Special File Permissions

1 Sticky bit

2 setgid
4 setuid

Using File Attributes to Add Security to ZFS Files
In a ZFS file system, you can mark security-relevant files for special treatment. The file
attributes can affect local files, NFS-mounted files, or CIFS-mounted files. The chmod(1) and
ls(1) man pages describe how to set and list file attributes.

File attributes that have security implications include the following:

• appendonly attribute – Permits adding to the end of a file but prevents modifying existing
contents. This attribute on a log file can prevent changes to log file entries. Requires the
PRIV_FILE_FLAG_SET privilege on the process to set the attribute and all privileges to
remove it.

• immutable attribute – Prevents modifying or deleting the contents of a file. Also prevents
changing file metadata except for access time updates. On a directory, this attribute
prevents the deletion of the directory and its files. Requires the PRIV_FILE_FLAG_SET
privilege on the process to set the attribute and all privileges to remove it.

For an example, see Applying Immutability to a ZFS File.

• nounlink attribute – Prevents deletion of critical files or directories. On a directory, this
attribute prevents the deletion or renaming of files. This attribute can prevent the
accidental deletion of files that are critical for an application. Requires the
PRIV_FILE_FLAG_SET privilege on the process to set the attribute and all privileges to
remove it.

• sensitive attribute – Indicates that the file contains keying information, such as PINs or
passwords. Sensitive files are not written to the audit record.

Chapter 1
Using File Attributes to Add Security to ZFS Files

1-7

https://docs.oracle.com/cd/E88353_01/html/E37839/chmod-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/ls-1.html

• readonly attribute – Permits no content change to a CIFS-mounted file. The owner
of the file can set or clear this attribute, or a user or group with the
write_attributes permission can set or clear this attribute.

For more information, see Applying Special Attributes to ZFS Files.

Using Access Control Lists to Protect UFS Files
Traditional UNIX file protection provides read, write, and execute permissions for the
three user classes: file owner, file group, and other. In a UFS file system, an access
control list (ACL) provides better file security by enabling you to do the following:

• Define file permissions for the file owner, the group, other, specific users and
groups

• Define default permissions for each of the preceding categories

Note:

For ACLs in the ZFS file system and ACLs on NFSv4 files, see Setting ACLs
on ZFS Files.

For example, if you want everyone in a group to be able to read a file, you can simply
grant group read permissions on that file. However, if you want only one person in the
group to be able to write to that file, you can use an ACL.

For more information about ACLs on UFS file systems, see System Administration
Guide: Security Services for the Oracle Solaris 10 release.

Protecting Executable Files From Compromising Security
Programs read and write data on the stack. Typically, they execute from read-only
portions of memory that are specifically designated for code. Some attacks that cause
buffers on the stack to overflow try to insert new code on the stack and cause the
program to execute it. Removing execute permission from the stack memory prevents
these attacks from succeeding. Most programs can function correctly without using
executable stacks.

Programs can explicitly mark or prevent stack execution. The mprotect() function in
programs explicitly marks the stack as executable. For more information, see the
mprotect(2) man page.

For how to prevent stacks from being used by malicious programs, see Protecting the
Process Heap and Executable Stacks From Compromise in Securing Systems and
Attached Devices in Oracle Solaris 11.4.

To prevent system compromise by executables in a mounted file system, you can use
the nosetuid and noexec arguments to the mount command. For more information,
see the mount(8) man page.

Chapter 1
Using Access Control Lists to Protect UFS Files

1-8

https://docs.oracle.com/cd/E88353_01/html/E37841/mprotect-2.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/secure-sys-dev/protecting-process-heap-and-executable-stacks-compromise.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/secure-sys-dev/protecting-process-heap-and-executable-stacks-compromise.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/secure-sys-dev/protecting-process-heap-and-executable-stacks-compromise.html
https://docs.oracle.com/cd/E88353_01/html/E72487/mount-8.html

Protecting Files
The following procedures protect files with UNIX permissions, locate files with security risks,
and protect the system from compromise by these files.

Protecting Files With UNIX Permissions
The following procedures show how to display and change file permissions.

• How to Display File Information

• How to Change the Owner of a File

• How to Change Group Ownership of a File

• How to Change File Permissions in Symbolic Mode

• How to Change File Permissions in Absolute Mode

• How to Change Special File Permissions in Absolute Mode

• How to Change File Permissions Across Symbolic Links

How to Display File Information
Display information about all the files in a directory by using the ls command.

• Type the following command to display a long listing of all files in the current
directory.

% ls -la

-l
Displays the long format that includes user ownership, group ownership, and file
permissions.

-a
Displays all files, including hidden files that begin with a dot (.).

For all options to the ls command, see the ls(1) man page.

Example 1-1 Displaying File Information

In this example, a partial list of the files in the /sbin directory is displayed.

% cd /sbin
% ls -l
total 4960
-r-xr-xr-x 1 root bin 21K May 31 2016 6to4relay*
lrwxrwxrwx 1 root root 10 May 31 2016 accept -> cupsaccept*
-r-xr-xr-x 1 root bin 57K May 31 2016 acctadm*
-r-xr-xr-x 2 root sys 94K May 31 2016 add_drv*
-r-xr-xr-x 1 root bin 26K May 31 2016 admhist*
drwxr-xr-x 2 root bin 9 May 31 2016 amd64
-r-xr-xr-x 1 root bin 156 May 31 2016 archiveadm*
-r-xr-xr-x 1 root bin 21K May 31 2016 arp*
.

Chapter 1
Protecting Files

1-9

https://docs.oracle.com/cd/E88353_01/html/E37839/ls-1.html

.

.

Each line displays information about a file in the following order:

• Type of file – For example, d. For list of file types, see File and Directory
Ownership.

• Permissions – For example, r-xr-xr-x. For description, see File and Directory
Ownership.

• Number of hard links – For example, 2.

• Owner of the file – For example, root.

• Group of the file – For example, bin.

• Size of the file, in bytes or kilobytes – For example, 156 and 21K.

• Date the file was created or the last date that the file was changed – For example,
May 31 2016.

• Name of the file – For example, arp.

How to Change the Owner of a File
If you are not the owner of the file or directory, you must be assigned the Object
Access Management rights profile. To change a file that is a public object, you must
assume the root role.

For more information, see Using Your Assigned Administrative Rights in Securing
Users and Processes in Oracle Solaris 11.4.

1. Display the permissions on a local file.

% ls -l example-file
-rw-r--r-- 1 janedoe staff 12K May 24 10:49 example-file

2. Change the owner of the file.

chown stacey example-file
3. Verify that the owner of the file has changed.

ls -l example-file
-rw-r--r-- 1 stacey staff 12K May 31 08:58 example-file

To change permissions on NFS-mounted files, see Chapter 5, Commands for
Managing Network File Systems in Managing Network File Systems in Oracle
Solaris 11.4.

Example 1-2 Enabling Users to Change the Ownership of Their Own Files

Security Consideration – You need a good reason to change the setting of the
rstchown variable to zero. The default setting prevents users from listing their files as
belonging to others so as to bypass space quotas.

In this example, the value of the rstchown variable is set to zero in the /etc/system
file. This setting enables the owner of a file to use the chown command to change the
file's ownership to another user. This setting also enables the owner to use the chgrp
command to set the group ownership of a file to a group that the owner does not
belong to. The change goes into effect when the system is rebooted.

Chapter 1
Protecting Files

1-10

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/manage-nfs/commands-managing-network-file-systems.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/manage-nfs/commands-managing-network-file-systems.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/manage-nfs/commands-managing-network-file-systems.html

set rstchown = 0

For more information, see the chown(1) and chgrp(1) man pages.

How to Change Group Ownership of a File
If you are not the owner of the file or directory, you must be assigned the Object Access
Management rights. To change a file that is a public object, you must assume the root role.

For more information, see Using Your Assigned Administrative Rights in Securing Users and
Processes in Oracle Solaris 11.4.

1. Change the group ownership of a file.

% chgrp scifi example-file

For information about setting up groups, see Chapter 1, About User Accounts and User
Environments in Managing User Accounts and User Environments in Oracle Solaris 11.4.

2. Verify that the group ownership of the file has changed.

% ls -l example-file
-rw-r--r-- 1 stacey scifi 112640 June 20 08:55 example-file

Also see Enabling Users to Change the Ownership of Their Own Files.

How to Change File Permissions in Symbolic Mode
In this procedure, a user changes permissions on a file that the user owns.

1. Change permissions in symbolic mode.

% chmod who operator permissions filename

who
Specifies whose permissions are to be changed.

operator
Specifies the operation to be performed.

permissions
Specifies what permissions are to be changed. For the list of valid symbols, see Setting
File Permissions in Symbolic Mode.

filename
Specifies the file or directory.

2. Verify that the permissions of the file have changed.

% ls -l filename

Note:

If you are not the owner of the file or directory, you must be assigned the Object
Access Management rights profile. To change a file that is a public object, you
must assume the root role.

Chapter 1
Protecting Files

1-11

https://docs.oracle.com/cd/E88353_01/html/E37839/chmod-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/chgrp-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/manage-user-accts/user-accounts-and-user-environments.html#GUID-B50C7579-1B00-4C9E-A7A5-9CC2C05E001D
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/manage-user-accts/user-accounts-and-user-environments.html#GUID-B50C7579-1B00-4C9E-A7A5-9CC2C05E001D

Example 1-3 Changing Permissions in Symbolic Mode

In this example, the owner removes read permission others.

% chmod o-r example-file1

The following example, the owner adds read and execute permissions for user, group,
and others.

% chmod a+rx example-file2

In this example, the owner adds read, write, and execute permissions for group
members.

% chmod g=rwx example-file3

How to Change File Permissions in Absolute Mode
In this procedure, a user changes permissions on a file that the user owns.

1. Change permissions in absolute mode.

% chmod nnn
filename

nnn
Specifies the octal values that represent the permissions for the file owner, file
group, and others, in that order. For the list of valid octal values, see Setting File
Permissions in Absolute Mode.

filename
Specifies the file or directory.

Note:

If you use the chmod command to change file or directory permissions
on objects that have existing ACL entries, the ACL entries might change
as well. The exact changes are dependent upon the chmod permission
operation changes and the file system's aclmode and aclinherit
property values. For more information, see the "ACL Operation" section
of the chmod(1) man page and Setting ACLs on ZFS Files.

2. Verify that the permissions of the file have changed.

% ls -l filename

Note:

If you are not the owner of the file or directory, you must be assigned the
Object Access Management rights profile. To change a file that is a
public object, you must assume the root role.

Chapter 1
Protecting Files

1-12

https://docs.oracle.com/cd/E88353_01/html/E37839/chmod-1.html

Example 1-4 Changing Permissions in Absolute Mode

In this example, the administrator changes the permissions of a directory that is open to the
public from 744 (read, write, execute; read-only; and read-only) to 755 (read, write, execute;
read and execute; and read and execute).

ls -ld public_dir
drwxr--r-- 1 jdoe staff 6K Aug 7 12:06 public_dir
chmod 755 public_dir
ls -ld public_dir
drwxr-xr-x 1 jdoe staff 6K Aug 7 12:06 public_dir

In this example, the file owner changes the permissions of an executable shell script from
read and write to read, write, and execute.

% ls -l my_script
-rw------- 1 jdoe staff 6K Aug 7 12:06 my_script
% chmod 700 my_script
% ls -l my_script
-rwx------ 1 jdoe staff 6K Aug 7 12:06 my_script

How to Change Special File Permissions in Absolute Mode
If you are not the owner of the file or directory, you must be assigned the Object Access
Management rights profile. To change a file that is a public object, you must assume the root
role.

For more information, see Using Your Assigned Administrative Rights in Securing Users and
Processes in Oracle Solaris 11.4.

1. Change special permissions in absolute mode.

$ chmod nnnn
filename

nnnn
Specifies the octal values that change the permissions on the file or directory. The
leftmost octal value sets the special permissions on the file. For the list of valid octal
values for special permissions, see Setting Special File Permissions in Absolute Mode.

filename
Specifies the file or directory.

Note:

When you use the chmod command to change the file group permissions on a
file with ACL entries, both the file group permissions and the ACL mask are
changed to the new permissions. Be aware that the new ACL mask
permissions can change the permissions for additional users and groups who
have ACL entries on the file. Review the "ACL Operation" section of the
chmod(1) man page. Use the ls -v command to make sure that the
appropriate permissions are set for all ACL entries. For more information, see
the ls(1) man page.

2. Verify that the permissions of the file have changed.

Chapter 1
Protecting Files

1-13

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E88353_01/html/E37839/chmod-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/ls-1.html

% ls -l
filename

Example 1-5 Setting Special File Permissions in Absolute Mode

In this example, the administrator sets the setuid permission on the dbprog file.

chmod 4555 dbprog
ls -l dbprog
-r-sr-xr-x 1 db staff 12K May 6 09:29 dbprog

In this example, the administrator sets the setgid permission on the dbprog2 file.

chmod 2551 dbprog2
ls -l dbprog2
-r-xr-s--x 1 db staff 24K May 6 09:30 dbprog2

In this example, the administrator sets the sticky bit on the public_dir directory.

chmod 1777 public_dir
ls -ld public_dir
drwxrwxrwt 2 jdoe staff 512 May 15 15:27 public_dir

How to Change File Permissions Across Symbolic Links
If you are not the owner of the directory, you must be assigned the Object Access
Management rights profile. To change a directory that is a public object, you must
assume the root role.

For more information, see Using Your Assigned Administrative Rights in Securing
Users and Processes in Oracle Solaris 11.4.

1. Change directory permissions in directories and files that are objects of
symbolic links.

Choose one of the following options used with the recursive -R option of the
chmod command.

• -P – Changes the mode of a directory or file unless it is the object of a
symbolic link, which prevents the traversal of any symbolic links.

$ chmod -R -P mode
directory | file

This option is the most secure setting. To see what has changed or not
changed and why, add the verbose -v option.

• -H – Changes the mode of a directory or file that is the object of a symbolic
link and the files in the file hierarchy below the directory.

$ chmod -R -H mode
directory | file

If a symbolic link is found when traversing a file hierarchy, the mode of the
target directory is changed but no recursion takes place. To see what has
changed or not changed and why, add the verbose -v option.

• -L – Changes the mode of objects of symbolic links and files by traversing all
symbolic links recursively. This option is the default option and is the most
permissive.

Chapter 1
Protecting Files

1-14

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html

$ chmod -R -L mode
directory | file

For more information, see the chmod(1) man page.

2. Verify that the permissions of all files and subdirectories are correct.

% ls -lR
directory

Protecting Against Programs With Security Risk
The following procedures find risky executables on the system and prevent programs from
exploiting process heaps and executable stacks.

• How to Find Files With Special File Permissions locates files with the setuid bit set, but
that are not owned by the root user.

• Protecting the Process Heap and Executable Stacks From Compromise in Securing
Systems and Attached Devices in Oracle Solaris 11.4 prevents programs from malicious
software attacks.

How to Find Files With Special File Permissions
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

This procedure locates potentially unauthorized use of the setuid and setgid permissions
on programs. A suspicious executable file grants ownership to a user rather than to root or
bin.

1. Find files with setuid permissions by using the find command.

find directory -user root -perm -4000 -exec ls -ldb {} \; >/tmp/filename

find directory
Checks all mounted paths starting at the specified directory, which can be root (/), /
usr, /opt, and so on.

-user root
Displays files owned only by root.

-perm -4000
Displays files only with permissions set to 4000.

-exec ls -ldb
Displays the output of the find command in ls -ldb format. See the ls(1) man page.

/tmp/ filename
Is the file that contains the results of the find command.

For more information, see the find(1) man page.

2. Display the results in /tmp/filename.

more /tmp/
filename

Chapter 1
Protecting Files

1-15

https://docs.oracle.com/cd/E88353_01/html/E37839/chmod-1.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/secure-sys-dev/protecting-process-heap-and-executable-stacks-compromise.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/secure-sys-dev/protecting-process-heap-and-executable-stacks-compromise.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E88353_01/html/E37839/ls-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/find-1.html

For background information, see setuid Permission.

Example 1-6 Finding Files With setuid Permissions

The output from the following example shows that a user in a group called rar has
made a personal copy of /usr/bin/pfedit, and has set the permissions as
setuid to root. As a result, the /usr/rar/pfedit program runs with root
permissions.

After investigating the /usr/rar directory and removing the /usr/rar/bin/
pfedit command, the administrator archives the output from the find command.

find /usr -user root -perm -4000 -exec ls -ldb {} \; > /var/tmp/ckprm
cat /var/tmp/ckprm
-rwsr-xr-x 1 root sys 47K Jul 14 14:14 /usr/bin/atq
-rwsr-xr-x 1 root sys 54K Jul 14 14:14 /usr/bin/atrm
-rwsr-xr-x 1 root bin 145K Jul 14 14:14 /usr/bin/cdrw
-r-x--s--x 1 root bin 149K Jul 14 14:14 /usr/bin/mail
-r-sr-sr-x 1 root sys 62K Jul 14 14:14 /usr/bin/passwd
-rwsr-xr-x 1 root rar 58K Jul 24 14:14 /usr/rar/pfedit
-r-s--x--x 1 root bin 208K Jul 14 14:14 /usr/bin/sudo
-r-sr-xr-x 2 root bin 26K Jul 14 14:14 /usr/bin/uptime
mv /var/tmp/ckprm /var/share/sysreports/ckprm

Preventing tmpfs File Systems From Filling Up the System
The size of the tmpfs file system is not limited by default. Therefore, tmpfs can grow to
fill the available system memory and swap. Because the /tmp directory is used by all
applications and users, an application can fill all available system memory. Similarly,
an unprivileged user with malicious intent could cause a system slowdown by creating
large files in the /tmp directory. To avoid a performance impact, you should limit the
size of each tmpfs mount.

How to Limit the Size of the tmpfs File System
To edit the vfstab file, you must become an administrator who is assigned the
solaris.admin.edit/etc/vfstab authorization. To read the changes into the OS, you
must be assigned the Service Configuration rights profile. The root role has all of
these rights. For more information, see Using Your Assigned Administrative Rights in
Securing Users and Processes in Oracle Solaris 11.4.

In this procedure, you base the size of the tmpfs file system on a percentage of
system memory. You might try several values to achieve best system performance.

1. Determine the amount of memory on your system.hardwareSPARC T series
serversSPARC T series serversTMPFS configuration example

Note:

The SPARC T7 series system that is used for the following example has
32 disks. The system has around 500 GB of memory.

% prtconf | head
System Configuration: Oracle Corporation sun4v
Memory size: 523776 Megabytes

Chapter 1
Preventing tmpfs File Systems From Filling Up the System

1-16

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html

System Peripherals (Software Nodes):

ORCL,SPARC-T7-1
 scsi_vhci, instance #0
 disk, instance #28
 disk, instance #29
 disk, instance #6
 disk, instance #5
 disk, instance #32
 ...

2. Compute a memory limit for tmpfs.

Depending on the size of the system memory, you might want to compute a memory limit
of around 20 percent for large systems and around 30 percent for smaller systems.

• For a larger system, use .20 as the multiplier.

523776M x .20 ≈ 104755M
• For a smaller system, use .30 as the multiplier.

260352M x .30 ≈ 78105M
3. Modify the swap entry in the /etc/vfstab file with the size limit.

pfedit /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
...
#swap - /tmp tmpfs - yes -
swap - /tmp tmpfs - yes size=104700m
/dev/zvol/dsk/rpool/swap - - swap - no -

4. Restart the svc:/system/filesystem/local:default service.

svcadm restart filesystem/local
5. Verify that the size limit is in effect.

% mount -v
swap on /system/volatile type tmpfs
read/write/setuid/devices/rstchown/xattr/dev=89c0006 on Thurs Feb 4 14:07:27 2016
swap on /tmp type tmpfs
read/write/setuid/devices/rstchown/xattr/size=104700m/dev=89c0006 on Thurs ...

6. Monitor the memory usage and adjust it to the requirements of your site.

The df command is somewhat useful. The swap command provides the most useful
statistics.

% df -h /tmp
Filesystem Size Used Available Capacity Mounted on
swap 7. 4G 44M 7.4G 1% /tmp

% swap -s
total: 190248k bytes allocated + 30348k reserved = 220596k used,
7743780k available

For more information, see the tmpfs(4FS), mount_tmpfs(8), df(8), and swap(8) man
pages.

Chapter 1
Preventing tmpfs File Systems From Filling Up the System

1-17

https://docs.oracle.com/cd/E88353_01/html/E37851/tmpfs-4fs.html
https://docs.oracle.com/cd/E88353_01/html/E72487/mount-tmpfs-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/df-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/swap-8.html

2
Using ACLs and Attributes to Protect Oracle
Solaris ZFS Files

Oracle Solaris ACL Model
The Oracle Solaris ACL model fully supports the interoperability that NFSv4 offers between
UNIX and non-UNIX clients. ZFS ACLs are similar to Windows NT-style ACLs, and provide
more fine-grained access control than standard file permissions provide. ACLs are set and
displayed with the chmod and ls commands.

The ACL model has two types of Access Control Entries (ACEs) that affect access checking:
ALLOW and DENY. Therefore, you cannot infer from any single ACE that defines a set of
permissions whether the permissions that are not defined in that ACE are allowed or denied.

For information about ACLs and backup products, see Saving ZFS Data With Other Backup
Products in Managing ZFS File Systems in Oracle Solaris 11.4.

ACL Formats
ACLs have two basic formats:

• Trivial ACL – Contains only entries for traditional UNIX user categories that are
represented as owner@, group@, and everyone@.

For a newly created file, the default ACL has the following entries:

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow
2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
:allow

For a newly created directory, the default ACL has the following entries:

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
1:group@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow
2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow

• Non-Trivial ACL – Contains entries for added user categories. The entries might also
include inheritance flags, or are ordered in a non-traditional way.

A non-trivial entry might look like the following example, where permissions are
specifically granted to user Jan.

0:user:jan:read_data/write_data:file_inherit:allow

2-1

https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/manage-zfs/saving-zfs-data-other-backup-products.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/manage-zfs/saving-zfs-data-other-backup-products.html

ACL Entry Descriptions
Use the following sample entry as a reference to understand the elements that
comprise an ACL entry. These elements apply to both trivial and non-trivial ACLs.

0:user:jan:read_data/write_data:file_inherit:allow

Index
A number at the beginning of the entry, such as the number zero (0) in the example.
The index identifies a specific entry and distinguishes the entry from others in the
ACL.

ACL entry type
The user category. In trivial ACLs, only entries for owner@, group@, and everyone@ are
set. In non-trivial ACLs, user:username and group:groupname are added. In the
example, the entry type is user:jan.

Access privileges
Permissions that are granted or denied to the entry type. In the example, user Jan's
permissions are read_data and write_data.

Inheritance flags
An optional list of ACL flags that control how permissions are propagated in a
directory structure, including flags that audit access to files and directories. In the
sample entry, file_inherit is also granted to user Jan.

Audit flag
An optional flag that enables you to audit access and changes that are being made to
a file.

Permission control
Determines whether the permissions in an entry are allowed or denied. In the
example, the permissions for Jan are allowed.

The following table describes each ACL entry type.

Table 2-1 ACL Entry Types

ACL Entry Type Format Description

owner@ Trivial Specifies the access granted to the owner of the object.

group@ Trivial Specifies the access granted to the owning group of the object.

everyone@ Trivial Specifies the access granted to any user or group that does
not match any other ACL entry.

user Non-
trivial

With a user name, specifies the access granted to an
additional user of the object. Must include the ACL-entry-ID,
which contains a user name or user ID. If the value is not a
valid numeric UID or user name, the ACL entry type is invalid.

group Non-
trivial

With a group name, specifies the access granted to an
additional group of the object. Must include the ACL entry ID,
which contains a group name or group ID. If the value is not a
valid numeric GID or group name, the ACL entry type is invalid.

The following table describes ACL access privileges.

Chapter 2
Oracle Solaris ACL Model

2-2

Table 2-2 ACL Access Privileges

Access
Privilege

Compact
Access
Privilege

Description

add_file w Permission to add a new file to a directory.

add_subdirecto
ry

p On a directory, permission to create a subdirectory.

append_data p On a file, permission to modify from the end of the file (EOF).

delete d Permission to delete a file. For more information about specific
delete permission behavior, see ACL delete and delete_child
Permission Behavior.

delete_child D Permission to delete a file or directory within a directory. For
more information about specific delete_child permission
behavior, see ACL delete and delete_child Permission
Behavior.

execute x Permission to execute a file or search the contents of a
directory.

list_directory r Permission to list the contents of a directory.

read_acl c Permission to read the ACL (ls).

read_attribute
s

a Permission to read basic attributes (non-ACLs) of a file, which
are equivalent to stat level attributes. Allowing this access mask
bit means the entity can execute ls(1) and stat(2).

read_data r Permission to read the contents of the file.

read_xattr R Permission to read the extended attributes of a file or perform a
lookup in the file's extended attributes directory.

synchronize s Permission to access a file locally at the ZFS server with
synchronized read and write operations.

write_xattr W Permission to create extended attributes or write to the
extended attributes directory.

Granting this permission to a user means that the user can
create an extended attribute directory for a file. The attribute
file's permissions control the user's access to the attribute.

write_data w Permission to modify or replace the contents of a file.

write_attribut
es

A Permission to change the times associated with a file or
directory to an arbitrary value.

write_acl C Permission to write the ACL or the ability to modify the ACL by
using the chmod command.

write_owner o Permission to change the file's owner or group. Or, the ability to
execute the chown or chgrp commands on the file.

Permission to take ownership of a file or permission to change
the group ownership of the file to a group of which the user is a
member. If you want to change the file or group ownership to
an arbitrary user or group, then the PRIV_FILE_CHOWN
privilege is required.

The following table provides additional details about ACL delete and delete_child behavior.

Chapter 2
Oracle Solaris ACL Model

2-3

Table 2-3 ACL delete and delete_child Permission Behavior

Parent Directory
Permissions

Target Object Permissions

" " (empty) ACL allows delete ACL denies delete Delete permission
unspecified

ACL allows
delete_child

Permit Permit Permit

ACL denies
delete_child

Permit Deny Deny

ACL allows only write
and execute

Permit Permit Permit

ACL denies write and
execute

Permit Deny Deny

ZFS ACL Sets
An ACL set consists of a combination of ACL permissions. These ACL sets of
permissions are predefined and cannot be modified.

• full_set – All permissions

• modify_set – All permissions except write_acl and write_owner
• read_set – read_data, read_attributes, read_xattr, and read_acl
• write_set – write_data, append_data, write_attributes, and write_xattr
You can apply an ACL set rather than having to set individual permissions separately.

Example 2-1 Using an ACL Set to Assign a Combination of ACL Permissions

With the read_set ACL set, the user jan can read ACLs as well as file contents and
their basic and extended attributes.

$ chmod A+user:jan:read_set:allow file.1
$ ls -v file.1
-r--r--r--+ 1 root root 206695 Jul 20 13:43 file.1
0:user:jan:read_data/read_xattr/read_attributes/read_acl:allow
...

ACL Inheritance
ACL inheritance means that a newly created file or directory can inherit the ACLs that
they are intended to inherit without disregarding the existing permission bits on the
parent directory.

By default, ACLs are not propagated. If you set a non-trivial ACL on a directory, it is
not inherited to any subsequent directory. You must specify the inheritance of an ACL
on a file or directory.

The following table describes the optional inheritance flags.

Chapter 2
Oracle Solaris ACL Model

2-4

Table 2-4 ACL Inheritance Flags

Inheritance Flag Compact
Inheritance Flag

Description

file_inherit f Only inherit the ACL from the parent directory to the
directory's files.

dir_inherit d Only inherit the ACL from the parent directory to the
directory's subdirectories.

inherit_only i Inherit the ACL from the parent directory. Applies only to
newly created files or subdirectories and not the directory
itself. This flag requires the file_inherit flag, the
dir_inherit flag, or both, to indicate what to inherit.

no_propagate n Only inherit the ACL from the parent directory to the first-
level contents of the directory, not the second-level or
subsequent contents. This flag requires the
file_inherit flag, the dir_inherit flag, or both, to
indicate what to inherit.

- N/A No permission granted.

successful_access S Indicates whether an alarm or audit record should be
initiated upon a successful access. This flag is used with
audit or alarm ACE types.

failed_access F Indicates whether an alarm or audit record should be
initiated when an access fails. This flag is used with audit
or alarm ACE types.

inherited I Indicates that an ACE was inherited.

In addition, you can set a default ACL inheritance policy on the file system that is more strict
or less strict by using the aclinherit file system property. For more information about this
property, see ACL Properties.

For more information about setting ACL inheritance on ZFS files, see Setting ACL Inheritance
on ZFS Files.

ACL Properties
The ZFS file system includes the ACL properties to determine the specific behavior of ACL
inheritance and ACL interaction with chmod operations. These properties are:

• aclinherit – Determine the behavior of ACL inheritance. Values include the following:

– restricted – For new objects, the write_owner and write_acl permissions are
removed when an ACL entry is inherited. This is the default mode.

– discard – For new objects, no ACL entries are inherited when a file or directory is
created. The ACL on the file or directory is equal to the permission mode of the file or
directory.

– noallow – For new objects, only inheritable ACL entries that have an access type of
deny are inherited.

– passthrough – When a property value is set to passthrough, files are created with a
mode determined by the inheritable ACEs. If no inheritable ACEs exist that affect the

Chapter 2
Oracle Solaris ACL Model

2-5

mode, then the mode is set in accordance to the requested mode from the
application.

– passthrough-x – Has the same semantics as passthrough except that files
are created with the execute (x) permission only if the execute permission is
set in file creation mode and in an inheritable ACE that affects the mode.

– passthrough-mode-preserve – A file system has the same semantics as
passthrough except that the owner@, group@, and everyone@ ACEs are
overridden by values from the mode that is requested by the application when
creating files and directories.

For more information about the aclinherit modes, see Modifying ACL
Inheritance With the ACL Inherit Mode.

• aclmode – Modifies ACL behavior when a file is initially created or controls how an
ACL is modified during a chmod operation. Values include the following:

– discard – Deletes all ACL entries that do not represent the mode of the file.
This is the default mode.

– mask – Reduces user or group permissions. The permissions are reduced
such that they are no greater than the group permission bits unless it is a user
entry that has the same UID as the owner of the file or directory. In this case,
the ACL permissions are reduced so that they are no greater than owner
permission bits. The mask value also preserves the ACL across mode
changes, provided that an explicit ACL set operation has not been performed.

– passthrough – Indicates that no changes are made to the ACL other than
generating the necessary ACL entries to represent the new mode of the file or
directory.

For more information about using the aclmode property, see ACL Properties and
Modified ACL Permissions.

Setting ACLs on ZFS Files
The primary rules of ACL access on a ZFS file are as follows:

• ZFS processes ACL entries in the order they are listed in the ACL, from the top
down.

• Only ACL entries where the specified user matches the requester of the access
are processed.

• Once an allow permission has been granted, it cannot be denied by a subsequent
ACL deny entry in the same ACL permission set.

• The owner of the file is granted the write_acl permission unconditionally even if
the permission is explicitly denied. Otherwise, any permission left unspecified is
denied.

In the cases of deny permissions or when an access permission is missing, the
privilege subsystem determines the access request that is granted for the owner of
the file or for superuser. This mechanism prevents owners of files from getting
locked out of their files and enables superuser to modify files for recovery
purposes.

Chapter 2
Setting ACLs on ZFS Files

2-6

Command Syntax for Setting ACLs
To set or modify ACLs, use the chmod command. The command syntax resembles the
syntax for setting permission bits on files, except that you specify A before typing the operator
(+, =, or -).

• Command syntax for trivial ACLs

chmod [options] A[index]{+|=}owner@ |group@ |everyone@: \
access-permissions/...[:inheritance-flags]:deny | allow \
[:successful_access | failed_access:audit] file

chmod [options] A-owner@, group@, everyone@: \
access-permissions/...[:inheritance-flags]:deny | allow \
[:successful_access | failed_access:audit] file

chmod [options] A[index]- file
• Command syntax for non-trivial ACLs

chmod [options] A-user|group:name: \
access-permissions/...[:inheritance-flags]:deny | allow \
[:successful_access | failed_access:audit] file ...

chmod [options] A[index]- file
The chmod command uses the following operators:

• A+ adds an ACL entry.

• A= replaces an ACL entry.

To replace an entire ACL for a file, use this operator without specifying an index ID. In the
following example, ACL entries for file.1 are removed and replaced with the single
entry for everyone@.

$ chmod A=everyone@:read_data:allow file.1
• A- removes an ACL entry.

To universally remove all non-trivial ACL entries for a file, use this operator and specify
the file name without listing each entry to be removed.

$ chmod A- filename

Use this command syntax to restore a trivial ACL to the file. After you issue the
command, only the entries for owner@, group@, and everyone@ that comprise a trivial ACL
remain.

Caution:

Be careful with modifying existing ACLs. Using the operators without an index has a
different effect from using them with an index. For example, chmod A= replaces an
entire ACL, while chmod A3= replaces only the existing entry that has index
number 3.

Permissions and inheritance flags are represented by unique letters listed in ACL Access
Privileges and ACL Inheritance Flags. When you set ZFS ACLs, you can either use the

Chapter 2
Setting ACLs on ZFS Files

2-7

letters that correspond to those permissions (compact mode) or type the permissions
in full (verbose mode).

In this example, both commands grant read and execute permissions to user Alice on
file.1:

• chmod A+user:alice:rx:allow file.1
• chmod A+user:alice:read_data/execute:allow file.1
Likewise, to grant user Tamiko inheritable read, write, and execute permissions for the
newly created dir.2 and its files, you can use either one of the following commands:

• chmod A+user:tamiko:rwx:fd:allow dir.2
• chmod A+user:tamiko:read_data/write_data/

execute:file_inherit/dir_inherit:allow dir.2

Displaying ACL Information
With the ls command, you can display ACL information in one of two formats. The -v
option displays the permissions in full or verbose form. The -V option generates
compact output by using letters that represent the permissions and flags.

The following example shows how the same ACL information is displayed in both
verbose and compact format:

$ ls -v file.1
-rw-r--r-- 1 root root 206695 Jul 20 14:27 file.1
0:owner@:read_data/write_data/append_data/read_attributes
/write_xattr/read_xattr/write_attributes/read_acl/write_acl
/write_owner/synchronize:allow
1:group@:read_data/read_attributes/read_xattr/read_acl
/synchronize:allow
2:everyone@:read_data/append_data/read_xattr/read_acl
/synchronize:allow

$ ls -V file.1
-rw-r--r-- 1 root root 206695 Jul 20 14:27 file.1
owner@:rw-p--aARWcCos:-------:allow
group@:r-----a-R-c--s:-------:allow
everyone@:r-----a-R-c--s:-------:allow

For an explanation of the permissions for each user category, see ACL Access
Privileges.

Modifying ACLs on ZFS Files
This section provides sample commands for setting and displaying ACLs.

In the following example, write_data permissions are granted for group@. The index of
group@ is 1.

chmod A1=group@:read_data/write_data:allow file.1
$ ls -v file.1
-rw-rw-r-- 1 root root 206695 Jul 20 13:43 file.1
0:owner@:read_data/write_data/append_data/read_xattr/write_xattr
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
1:group@:read_data/write_data:allow

Chapter 2
Setting ACLs on ZFS Files

2-8

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
:allow

In the following example, read_data/execute permissions are added for the user Alice on the
test.dir directory.

$ chmod A0+user:alice:read_data/execute:allow test.dir
$ ls -dv test.dir
drwxr-xr-x+ 2 root root 2 Jul 20 14:23 test.dir
0:user:alice:list_directory/read_data/execute:allow
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow
3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow

In the following example, access permissions are removed for user Alice.

$ chmod A0- test.dir
$ ls -dv test.dir
drwxr-xr-x 2 root root 2 Jul 20 14:23 test.dir
0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
1:group@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow
2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow

In the following example, auditing is set for everyone@ in dir.1. If any user attempts to
access dir.1 and fails, that access failure is recorded in the audit log.

$ chmod A3=everyone@:list_directory/read_data/read_xattr/execute/read_attributes \
/read_acl/synchronize:allow:failed_access:audit dir1

$ ls -v
total 1
drwxr-xr-x 2 foo staff 2 Feb 1 19:28 dir1
 0:everyone@:list_directory/read_data/read_attributes/read_acl
 :failed_access:audit
 1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
 /append_data/read_xattr/write_xattr/execute/delete_child
 /read_attributes/write_attributes/read_acl/write_acl/write_owner
 /synchronize:allow
 2:group@:list_directory/read_data/read_xattr/execute/read_attributes
 /read_acl/synchronize:allow
 3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
 /read_acl/synchronize:allow

ACL Interaction With Permission Bits
In ZFS files, the UNIX permission bits correspond to the ACL entries, but are cached. When
you change a file's permission bits, the file's ACL is updated accordingly. Likewise, modifying
a file's ACL causes changes in the permission bits.

For more information about permission bits, see chmod(1).

Chapter 2
Setting ACLs on ZFS Files

2-9

https://docs.oracle.com/cd/E88353_01/html/E37839/chmod-1.html

The following examples show the relationship between a file or directory's ACLs and
the permission bits and how permission changes in one affect the other.

Example 2-2 ACLs and Permission Bits

The first example begins with the following ACL for file.2, whose permission bits
are set to 644.

$ ls -v file.2
-rw-r--r-- 1 root root 2693 Jul 20 14:26 file.2
Permission bits are 644.
0:owner@:read_data/write_data/append_data/read_xattr/write_xattr
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow
2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
:allow

The chmod command removes the ACL entry for everyone@. Accordingly, the read
permission bits for everyone are also removed and are changed to 640.

$ chmod A2- file.2
Access is removed for everyone@
$ ls -v file.2
-rw-r----- 1 root root 2693 Jul 20 14:26 file.2Permission bits
become 640.
0:owner@:read_data/write_data/append_data/read_xattr/write_xattr
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

Next, the ACL is replaced with just read_data/write_data permissions for everyone@.
No owner@ or group@ ACL entry exists to override the permissions for owner and
group. Consequently, the permission bits become 666.

$ chmod A=everyone@:rw:allow file.2
$ ls -v file.2
-rw-rw-rw- 1 root root 2440 Jul 20 14:28 file.3Permission bits
become 666.
0:everyone@:read_data/write_data:allow

Next, the ACL is replaced with read permissions just for user Alice. The command,
however, leaves no trivial ACL entries. Consequently, the permission bits are set to
000, which denies Alice access to file.2. The file effectively becomes inaccessible.

$ chmod A=user:alice:r:allow file.2
$ ls -v file.2
----------+ 1 root root 2440 Jul 20 14:28 file.3Permission bits
become 000.
0:user:alice:read_data:allow

The example ends with showing how setting permission bits also update the ACL. The
bits for file.2 are set to 655. Automatically, default trivial ACL permissions are set.

$ chmod 655 file.2
$ ls -v file.3
-rw-r-xr-x 1 root root 2440 Jul 20 14:28 file.3Permission bits set
to 655.
0:user:alice:read_data:allow
1:owner@:execute:denyBased on 655 bits, ACL execute permission is denied.
2:owner@:read_data/write_data/append_data/read_xattr/write_xattrDefault ACL

Chapter 2
Setting ACLs on ZFS Files

2-10

entries restored.
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
3:group@:read_data/read_xattr/execute/read_attributes/read_acl
/synchronize:allow
4:everyone@:read_data/read_xattr/execute/read_attributes/read_acl
/synchronize:allow

Example 2-3 ACL Properties and Modified ACL Permissions

The following examples illustrate how specific aclmode and aclinherit property values affect
ACL behavior. If these properties are set, ACL permissions for a file or directory are either
reduced or expanded to be consistent with the owning group.

In this example, the administrator who runs the zfs set commands must be assigned the
ZFS File System Management rights profile. To run the chown command, the administrator is
assigned the Object Access Management rights profile.

Suppose that the aclmode property is set to mask and the aclinherit property is set to
restricted in the pool, and that the original file and group ownership and ACL permissions
are as follows:

$ pfbash ; zfs set aclmode=mask system1/data
$ zfs set aclinherit=restricted system1/data
$ ls -lV file.1
-rwxrwx---+ 1 root root 206695 Aug 30 16:03 file.1
user:amy:r-----a-R-c---:-------:allow
user:rory:r-----a-R-c---:-------:allow
group:sysadmin:rw-p--aARWc---:-------:allow
group:staff:rw-p--aARWc---:-------:allow
owner@:rwxp--aARWcCos:-------:allow
group@:rwxp--aARWc--s:-------:allow
everyone@:------a-R-c--s:-------:allow

To understand the meaning of the values set for the two properties, see ACL Properties.

A chown operation changes file.1's ownership to Amy and the group Staff.

$ chown amy:staff file.1

Amy then changes file.1's permission bits to 640. Because of the ACL properties that
were previously set, the permissions for the groups in the ACL are reduced in order to not
exceed the permissions of the owning Staff.

$ su - amy
$ chmod 640 file.1
$ ls -lV file.1
-rw-r-----+ 1 amy staff 206695 Aug 30 16:03 file.1
user:amy:r-----a-R-c---:-------:allow
user:rory:r-----a-R-c---:-------:allow
group:sysadmin:r-----a-R-c---:-------:allow
group:staff:r-----a-R-c---:-------:allow
owner@:rw-p--aARWcCos:-------:allow
group@:r-----a-R-c--s:-------:allow
everyone@:------a-R-c--s:-------:allow

Amy then changes the permission bits to 770. Consequently, the permissions of the groups in
the ACL are also changed to match the permission of the owning group Staff.

$ chmod 770 file.1
$ ls -lV file.1

Chapter 2
Setting ACLs on ZFS Files

2-11

-rwxrwx---+ 1 amy staff 206695 Aug 30 16:03 file.1
user:amy:r-----a-R-c---:-------:allow
user:rory:r-----a-R-c---:-------:allow
group:sysadmin:rw-p--aARWc---:-------:allow
group:staff:rw-p--aARWc---:-------:allow
owner@:rwxp--aARWcCos:-------:allow
group@:rwxp--aARWc--s:-------:allow
everyone@:------a-R-c--s:-------:allow

Setting ACL Inheritance on ZFS Files
You can determine how ACLs are inherited on files and directories.

The aclinherit property can be set globally on a file system. By default, aclinherit
is set to restricted.

For more information, see ACL Inheritance.

Granting ACLs That Are Inherited by Files
This section identifies the file ACEs that are applied when the file_inherit flag is set.

In the following example, an administrator who is assigned the Object Management
rights profile adds read_data/write_data permissions for user alice so that she has
read access on any newly created files in the test2.dir directory.

$ pfbash ; chmod A+user:alice:read_data/write_data:file_inherit:allow test2.dir
$ ls -dv test2.dir
drwxr-xr-x+ 2 root root 2 Jul 20 14:55 test2.dir
0:user:alice:read_data/write_data:file_inherit:allow
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow
3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow

In the following example, user alice's permissions are applied on the newly created
test2.dir/file.2 file. Because she is granted
read_data:file_inherit:allow, she can read the contents of any newly created
file.

$ touch test2.dir/file.2
$ ls -v test2.dir/file.2
-rw-r--r--+ 1 root root 0 Jul 20 14:56 test2.dir/file.2
0:user:alice:read_data:inherited:allow
1:owner@:read_data/write_data/append_data/read_xattr/write_xattr
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow
3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
:allow

Because the aclinherit property for this file system is set to the default mode,
restricted, user alice does not have write_data permission on file.2 because
the group permission of the file does not allow it.

Chapter 2
Setting ACL Inheritance on ZFS Files

2-12

The inherit_only permission, which is applied when the file_inherit or dir_inherit flags
are set, is used to propagate the ACL through the directory structure. As such, user alice is
granted or denied permission from everyone@ permissions only if he is the file owner or is a
member of the file's group owner. For example:

$ mkdir test2.dir/subdir.2
$ ls -dv test2.dir/subdir.2
drwxr-xr-x+ 2 root root 2 Jul 20 14:57 test2.dir/subdir.2
0:user:alice:list_directory/read_data/add_file/write_data:file_inherit
/inherit_only/inherited:allow
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow
3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow

Granting ACLs That Are Inherited by Both Files and Directories

This section provides examples that identify the file and directory ACLs that are applied when
both the file_inherit and dir_inherit flags are set.

In the following example, user alice is granted read, write, and execute permissions that are
inherited for newly created files and directories.

$ pfexec chmod A+user:alice:read_data/write_data/execute:file_inherit/dir_inherit:allow
test3.dir
$ ls -dv test3.dir
drwxr-xr-x+ 2 root root 2 Jul 20 15:00 test3.dir
0:user:alice:list_directory/read_data/add_file/write_data/execute
:file_inherit/dir_inherit:allow
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow
3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow

The inherited text in the following output is an informational message that indicates that the
ACE is inherited.

$ touch test3.dir/file.3
$ ls -v test3.dir/file.3
-rw-r--r--+ 1 root root 0 Jul 20 15:01 test3.dir/file.3
0:user:alice:read_data:inherited:allow
1:owner@:read_data/write_data/append_data/read_xattr/write_xattr
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow
3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
:allow

In these examples, because the permission bits of the parent directory for group@ and
everyone@ deny write and execute permissions, user alice is denied write and execute

Chapter 2
Setting ACL Inheritance on ZFS Files

2-13

permissions. The default aclinherit property is restricted, which means that
write_data and execute permissions are not inherited.

In the following example, user alice is granted read, write, and execute permissions
that are inherited for newly created files, but are not propagated to subsequent
contents of the directory.

$ pfexec chmod A+user:alice:read_data/write_data/execute:file_inherit/
no_propagate:allow
test4.dir
$ ls -dv test4.dir
drwxr--r--+ 2 root root 2 Mar 1 12:11 test4.dir
0:user:alice:list_directory/read_data/add_file/write_data/execute
:file_inherit/no_propagate:allow
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:list_directory/read_data/read_xattr/read_attributes/read_acl
/synchronize:allow
3:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl
/synchronize:allow

As the following example illustrates, alice's read_data/write_data/execute
permissions are reduced based on the owning group's permissions.

$ touch test4.dir/file.4
$ ls -v test4.dir/file.4
-rw-r--r--+ 1 root root 0 Jul 20 15:09 test4.dir/file.4
0:user:alice:read_data:inherited:allow
1:owner@:read_data/write_data/append_data/read_xattr/write_xattr
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow
3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
:allow

Modifying ACL Inheritance With the ACL Inherit Mode
This section describes the aclinherit property values.

Example 2-4 ACL Inheritance With the ACL Inherit Mode Set to discard
If the aclinherit property on a file system is set to discard, then ACLs can potentially
be discarded when the permission bits on a directory change. For example:

$ pfbash ; zfs set aclinherit=discard system1/cindy
$ chmod A+user:alice:read_data/write_data/execute:dir_inherit:allow test5.dir
$ ls -dv test5.dir
drwxr-xr-x+ 2 root root 2 Jul 20 14:18 test5.dir
0:user:alice:list_directory/read_data/add_file/write_data/execute
:dir_inherit:allow
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow
3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow

Chapter 2
Setting ACL Inheritance on ZFS Files

2-14

If, at a later time, you decide to tighten the permission bits on a directory, the non-trivial ACL
is discarded. For example:

$ pfexec chmod 744 test5.dir
$ ls -dv test5.dir
drwxr--r-- 2 root root 2 Jul 20 14:18 test5.dir
0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
1:group@:list_directory/read_data/read_xattr/read_attributes/read_acl
/synchronize:allow
2:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl
/synchronize:allow

Example 2-5 ACL Inheritance With the ACL Inherit Mode Set to noallow
In the following example, two non-trivial ACLs with file inheritance are set. One ACL allows
read_data permission, and one ACL denies read_data permission. This example also
illustrates how you can specify two ACEs in the same chmod command.

$ pfbash ; zfs set aclinherit=noallow system1/cindy
$ chmod A+user:alice:read_data:file_inherit:deny,user:lp:read_data:file_inherit:allow
test6.dir
$ ls -dv test6.dir
drwxr-xr-x+ 2 root root 2 Jul 20 14:22 test6.dir
0:user:alice:read_data:file_inherit:deny
1:user:lp:read_data:file_inherit:allow
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
3:group@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow
4:everyone@:list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow

As the following example shows, when a new file is created, the ACL that allows read_data
permission is discarded.

$ touch test6.dir/file.6
$ ls -v test6.dir/file.6
-rw-r--r--+ 1 root root 0 Jul 20 14:23 test6.dir/file.6
0:user:alice:read_data:inherited:deny
1:owner@:read_data/write_data/append_data/read_xattr/write_xattr
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow
3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
:allow

ACL passthrough Inherit Mode
A file system that has the aclinherit property set to passthrough inherits all inheritable ACL
entries without any modifications made to the ACL entries when they are inherited. Files are
created with a permission mode that is determined by the inheritable ACEs. If no inheritable
ACEs exist that affect the permission mode, then the permission mode is set in accordance to
the requested mode from the application.

Chapter 2
Setting ACL Inheritance on ZFS Files

2-15

Example 2-6 ACL Inheritance With ACL Inherit Mode Set to passthrough in
Verbose Mode

If the aclinherit property on the system1/cindy file system is set to passthrough,
then user alice would inherit the ACL applied on test4.dir for the newly created
file.5 as follows:

$ pfexec zfs set aclinherit=passthrough system1/cindy
$ touch test4.dir/file.5
$ ls -v test4.dir/file.5
-rw-r--r--+ 1 root root 0 Jul 20 14:16 test4.dir/file.5
0:user:alice:read_data/write_data/execute:inherited:allow
1:owner@:read_data/write_data/append_data/read_xattr/write_xattr
/read_attributes/write_attributes/read_acl/write_acl/write_owner
/synchronize:allow
2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow
3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize
:allow

Example 2-7 ACL Inheritance With ACL Inherit Mode Set to passthrough in
Compact Mode

The following examples use compact ACL syntax to show how to inherit permission
bits by setting aclinherit mode to passthrough.

In this example, an ACL is set on test1.dir to force inheritance. The syntax creates
an owner@, group@, and everyone@ ACL entry for newly created files. Newly
created directories inherit an @owner, group@, and everyone@ ACL entry.

$ pfbash ; zfs set aclinherit=passthrough system1/cindy
$ pwd
/system1/cindy
$ mkdir test1.dir

$ chmod A=owner@:rwxpcCosRrWaAdD:fd:allow,group@:rwxp:fd:allow,
everyone@::fd:allow test1.dir
$ ls -Vd test1.dir
drwxrwx---+ 2 root root 2 Jul 20 14:42 test1.dir
owner@:rwxpdDaARWcCos:fd-----:allow
group@:rwxp----------:fd-----:allow
everyone@:--------------:fd-----:allow

In this example, a newly created file inherits the ACL that was specified to be inherited
to newly created files.

$ cd test1.dir
$ touch file.1
$ ls -V file.1
-rwxrwx---+ 1 root root 0 Jul 20 14:44 file.1
owner@:rwxpdDaARWcCos:------I:allow
group@:rwxp----------:------I:allow
everyone@:--------------:------I:allow

In this example, a newly created directory inherits both ACEs that control access to
this directory as well as ACEs for future propagation to children of the newly created
directory.

$ mkdir subdir.1
$ ls -dV subdir.1
drwxrwx---+ 2 root root 2 Jul 20 14:45 subdir.1

Chapter 2
Setting ACL Inheritance on ZFS Files

2-16

owner@:rwxpdDaARWcCos:fd----I:allow
group@:rwxp----------:fd----I:allow
everyone@:--------------:fd----I:allow

The fd----I entries are for propagating inheritance and are not considered during access
control.

In the following example, a file is created with a trivial ACL in another directory where
inherited ACEs are not present.

$ cd /system1/cindy
$ mkdir test2.dir
$ cd test2.dir
$ touch file.2
$ ls -V file.2
-rw-r--r-- 1 root root 0 Jul 20 14:48 file.2
owner@:rw-p--aARWcCos:-------:allow
group@:r-----a-R-c--s:-------:allow
everyone@:r-----a-R-c--s:-------:allow

ACL Inherit passthrough-x Mode
When aclinherit=passthrough-x is enabled, files are created with the execute (x)
permission for owner@, group@, or everyone@, but only if execute permission is set in the file
creation mode and in an inheritable ACE that affects the mode.

The following example shows how to inherit the execute permission by setting the
aclinherit mode to passthrough-x.

$ pfexec zfs set aclinherit=passthrough-x system1/cindy

The following ACL is set on /system1/cindy/test1.dir to provide executable ACL
inheritance for files for owner@.

$ pfexec chmod A=owner@:rwxpcCosRrWaAdD:fd:allow,group@:rwxp:fd:allow,
everyone@::fd:allow test1.dir
$ ls -Vd test1.dir
drwxrwx---+ 2 root root 2 Jul 20 14:50 test1.dir
owner@:rwxpdDaARWcCos:fd-----:allow
group@:rwxp----------:fd-----:allow
everyone@:--------------:fd-----:allow

A file (file1) is created with requested permissions 0666. The resulting permissions are
0660. The execution permission was not inherited because the creation mode did not request
it.

$ touch test1.dir/file1
$ ls -V test1.dir/file1
-rw-rw----+ 1 root root 0 Jul 20 14:52 test1.dir/file1
owner@:rw-pdDaARWcCos:------I:allow
group@:rw-p----------:------I:allow
everyone@:--------------:------I:allow

Next, an executable called t is generated by using the cc compiler in the testdir directory.

$ cc -o t t.c
$ ls -V t
-rwxrwx---+ 1 root root 7396 Dec 3 15:19 t
owner@:rwxpdDaARWcCos:------I:allow

Chapter 2
Setting ACL Inheritance on ZFS Files

2-17

group@:rwxp----------:------I:allow
everyone@:--------------:------I:allow

The resulting permissions are 0770 because cc requested permissions 0777, which
caused the execute permission to be inherited from the owner@, group@, and
everyone@ entries.

ACL Inherit passthrough-mode-preserve Mode
The following section includes examples of using the aclinherit=passthrough-mode-
preserve property setting.

The following parent directory has the following ACL and the
aclinherit=passthrough-mode-preserve property setting. Note that this setting
configures an inheritance that prevents an SMB server from creating a two-member
ACL, which affects NFS clients negatively.

drwxrwxrwx+ 4 nobody other 4 Oct 15 13:49 .
user:marks:rwxp--aAR-----:fd-----:allow
owner@:rwxp-DaARWcCos:fd-----:allow
group@:rwxp-DaARWc--s:fd-----:allow
everyone@:rwxp-DaARWc--s:fd-----:allow

Directly creating an SMB directory results in the directory having the following ACL:

ls -dV smb.dir
drwxrwxrwx+ 2 marks staff 2 Oct 15 14:03 smb.dir
user:marks:rwxp--aAR-----:fd----I:allow
owner@:rwxp-DaARWcCos:fd----I:allow
group@:rwxp-DaARWc--s:fd----I:allow
everyone@:rwxp-DaARWc--s:fd----I:allow

In the SMB case, the passthrough-mode-preserve property setting configures a pure
inheritance of the ACEs and no longer creates the two-member ACL shown previously.

Using NFS to create the dir2 directory results in the directory having the following
ACL:

umask
0022
mkdir dir2
ls -dV dir2
drwxr-xr-x+ 2 root root 2 Oct 15 13:49 dir2
user:marks:r-x---a-R-----:fd----I:allow
owner@:rwxp-DaARWcCos:fd----I:allow
group@:r-x---a-R-c--s:fd----I:allow
everyone@:r-x---a-R-c--s:fd----I:allow

Note that a umask of 0022 results in the mkdir command creating the directory with a
mode of 0755.

The owner@, group@, and everyone@ entry values are overridden by the mode values
specified by the mkdir request.

If you set the aclmode property to mask, running the chmod 700 dir2 command
creates the following ACL:

chmod 700 dir2
ls -dV dir2
drwx------+ 2 root root 2 Dec 1 13:51 dir2

Chapter 2
Setting ACL Inheritance on ZFS Files

2-18

user:marks:------a-R-----:fd----I:allow
owner@:rwxp-DaARWcCos:fd----I:allow
group@:------a-R-c--s:fd----I:allow
everyone@:------a-R-c--s:fd----I:allow

In this case, the permissions for owner@, group@, and everyone@ are replaced to adjust the
ACL to mode 0700. The marks entry is updated in accordance with the existing mask
semantics. All of the inheritance bits are preserved.

Setting the aclmode property to discard results in the following ACL:

chmod 755 dir2
ls -dV dir2
drwxr-xr-x 2 root root 2 Dec 1 13:51 dir2
owner@:rwxp-DaARWcCos:fd-----:allow
group@:r-x---a-R-c--s:fd-----:allow
everyone@:r-x---a-R-c--s:fd-----:allow

This case preserves the inheritance bits again. This behavior occurs only when you set the
aclinherit property to passthrough-mode-preserve.

The following examples set the aclinherit property value to passthrough, which results in
different behavior from inheriting ACLs and results in a different effect from the chmod
command.

mkdir dir3
ls -dV dir3
drwxrwxrwx+ 2 root root 2 Dec 1 15:46 dir3
user:marks:rwxp--aAR-----:fd----I:allow
owner@:rwxp-DaARWcCos:fd----I:allow
group@:rwxp-DaARWc--s:fd----I:allow
everyone@:rwxp-DaARWc--s:fd----I:allow

The previous mkdir dir3 command inherits all of the ACEs directly from the parent
directory and overrides the creation-mode passed to the mkdir command. Also, this
command ignores the user's umask. Use this setting when you want to force the creation
mode of every file and directory to be the same value. Note that the umask and creation
mode are ignored only if one or more inheritable owner@, group@, or everyone@ ACEs exist.

Now, using the chmod 0700 dir3 command results in the following ACL when the aclmode
property is set to mask:

drwxr-xr-x+ 2 root root 2 Dec 1 15:46 dir3
user:marks:r-x---a-R-----:fd----I:allow
owner@:rwxp-DaARWcCos:fdi---I:allow
group@:rwxp-DaARWc--s:fdi---I:allow
everyone@:rwxp-DaARWc--s:fdi---I:allow
owner@:rwxp-DaARWcCos:-------:allow
group@:r-x---a-R-c--s:-------:allow
everyone@:r-x---a-R-c--s:-------:allow

This chmod commands splits the owner@, group@, and everyone@ ACEs into two sets of
entries. Note that the fdi-marked entries apply to inheritance only and are not considered for
access-control decisions. These entries exist for future propagation. The second set of
owner@, group@, and everyone@ ACEs reflects the mode that you requested with the chmod
command.

Setting the aclmode property value to discard results in the following ACL:

Chapter 2
Setting ACL Inheritance on ZFS Files

2-19

ls -dV dir3
drwxr-xr-x 2 root root 2 Dec 1 15:46 dir3
owner@:rwxp-DaARWcCos:-------:allow
group@:r-x---a-R-c--s:-------:allow
everyone@:r-x---a-R-c--s:-------:allow

This setting replaces the original ACL with a new one that corresponds to the new file
mode.

Applying Special Attributes to ZFS Files
This section shows how to apply special attributes to ZFS files and how to display
them. For more information about displaying and applying special attributes, see the
ls(1) and chmod(1) man pages.

Note:

If you are working in a non-global zone, you cannot set the immutable,
nounlink, or appendonly attributes by default. You must add the privilege
file_flag_set to the zone to enable setting these attributes.

Applying Immutability to a ZFS File
Use the following syntax to make a file immutable:

$ chmod S+ci file.1
$ echo this >>file.1
-bash: file.1: Insufficient privileges
$ rm file.1
rm: cannot remove `file.1': Insufficient privileges

You can display special attributes on ZFS files by using the following syntax:

$ ls -l/c file.1
-rw-r--r--+ 1 root root 206695 Jul 20 14:27 file.1
{A-----im----}

Use the following syntax to remove file immutability:

$ chmod S-ci file.1
$ ls -l/c file.1
-rw-r--r--+ 1 root root 206695 Jul 20 14:27 file.1
{A------m----}
$ rm file.1

Preventing Accidental Deletions With the nounlink Attribute

The nounlink attribute complements the immutability of files or directories in ZFS by
securing them from being accidentally removed. However, unlike the immutable
attribute, nounlink only prevents a file from being deleted or renamed. The file can still
be changed by applications or by users.

For some examples, see the following blog entry.

Chapter 2
Applying Special Attributes to ZFS Files

2-20

https://docs.oracle.com/cd/E88353_01/html/E37839/ls-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/chmod-1.html
http://www.c0t0d0s0.org/archives/7739-Less-known-Solaris-Features-Protecting-files-from-accidental-deletion-with-ZFS.html

Applying Read-Only Access to a ZFS File
The following example shows how to apply read-only access to a ZFS file.

$ chmod S+cR file.2
$ echo this >>file.2
-bash: file.2: Insufficient privileges

Displaying and Changing ZFS File Attributes
You can display and set special attributes with the following syntax:

$ ls -l/v file.3
-r--r--r-- 1 root root 206695 Jul 20 14:59 file.3
{archive,nohidden,noreadonly,nosystem,noappendonly,nonodump,
noimmutable,av modified,noav_quarantined,nonounlink,nooffline,nosparse}
$ chmod S+cR file.3
$ ls -l/v file.3
-r--r--r-- 1 root root 206695 Jul 20 14:59 file.3
{archive,nohidden,readonly,nosystem,noappendonly,nonodump,noimmutable,
av_modified,noav_quarantined,nonounlink,nooffline,nosparse}

Some of these attributes apply only in an Oracle Solaris SMB environment.

You can clear all attributes on a file. For example:

$ chmod S-a file.3
$ ls -l/v file.3
-r--r--r-- 1 root root 206695 Jul 20 14:59 file.3
{noarchive,nohidden,noreadonly,nosystem,noappendonly,nonodump,
noimmutable,noav_modified,noav_quarantined,nonounlink,nooffline,nosparse}

Chapter 2
Applying Special Attributes to ZFS Files

2-21

3
Labeling Files for Data Loss Protection

About Labeling in Oracle Solaris
Oracle Solaris enables you to configure systems that enforce company security policy in
software by using labels. You can use provided labels or customize the labels to display your
organization's security phrases, such as Confidential - Internal Only. An Oracle Solaris label
policy enables you to assign these labels to existing or new file systems that contain sensitive
data, and assign a set of trusted users the ability to access the files based on the users'
clearances. This selective access is useful for file systems that contain data such as credit
card numbers, financial records, and marketing plans. Regular users will work within your
default label policy, such as Confidential - Internal Only. They cannot access files at a higher
security level, such as Confidential - Restricted.

You can use labeling with other features of Oracle Solaris, including package update,
immutable zones, automated install, and SMF to provide robust and easily maintained
systems that protect data at every stage of the lifecycle, from file creation to file archival and
retrieval. This section provides an overview of labeling terminology and use in Oracle Solaris.

Label Policy
Labels in Oracle Solaris implement a set of access rules for sensitive data that is in addition
to discretionary access control (DAC). You configure labels to reflect your site's security
policy around sensitive data.

All Oracle Solaris systems have a label policy. By default, the policy is unrestricted so that
only DAC controls access to files. A default encodings file enforces this unrestricted label
policy. The labeling service that runs on all Oracle Solaris 11.4 systems is labeld:clearance.

Label policy is configured in an encodings file. Oracle Solaris provides two sample
encodings files: the default file and a compliance encodings file. To view these files, see
Viewing and Testing Sample Label Encodings Files.

Every system that contains sensitive data must contain a copy of your customized encodings
file. One strategy is to put sensitive data in zones on designated systems, label the ZFS
datasets in those zones, and restrict access to the data by labeled user processes and SMF
service processes.

Most of your file systems will not be labeled. Therefore, their files inherit the system's lowest
label, ADMIN_LOW. All clearances that you assign to users and processes dominate this label,
so all files on unlabeled systems are available to all logins.

To administer labels you must be in the root role or be assigned the Object Label
Management rights profile.

Labels and Clearances
Oracle Solaris labels files and processes. Labels are assigned to files to indicate the
sensitivity of the information. When assigned to processes, labels are called clearances.

3-1

Processes such as user processes can access files equal to or lower than the process
label. Typical labels are Public and Confidential - Restricted.

Oracle Solaris provides the highest and lowest labels, ADMIN_HIGH and ADMIN_LOW.
These labels cannot be changed or internationalized. The ADMIN_HIGH label is
number 255 and dominates all classifications and includes all compartments. The
ADMIN_LOW label, number 0, is the lowest classification and contains no
compartments. All labels dominate ADMIN_LOW. On an unlabeled system, the
ADMIN_LOW label cannot be changed. Processes with a clearance can access files
that the clearance dominates. For example, a process that runs at Confidential -
Restricted can access files at that label and at the Public label.

Label Components
Labels and clearances consist of a single classification and zero or more
compartments. The classification portion of a label indicates a relative level of trust.
Classifications are hierarchical – a higher classification number indicates a higher
level of trust. When a label is assigned to a file, the label's classification is one
indication of the sensitivity of the information that the file contains.

Compartments provide a more fine-grained mechanism for specifying the user's level
of trust. Compartments are typically used to indicate the scope of the trust. For
example, a Human Resources compartment would indicate that the level of trust
applies to Human Resource materials. When a clearance is assigned to a user, the
classification portion of the clearance label indicates the user's level of trust and the
compartment bits typically indicate the department where that level of trust applies.

In contrast to label numbers, the compartment bit numbers do not indicate dominance.
However, compartments with subcompartments form a hierarchy that can be used to
indicate levels of trust, such as the bits for Highly Restricted including the bit defined
for Restricted.

Each classification corresponds to a unique positive integer from 0 to 255. Higher
numbers dominate lower numbers. A label dominates another label if its classification
is at least equal to the other label's classification and its compartments include all the
bits in the other label's compartments.

Each compartment corresponds to one or more bits. In Oracle Solaris, the number of
available compartment bits is 256, but many thousands of compartments can be
created from these bits. You can use compartment bits to define hierarchical, disjoint,
and overlapping relationships, as described in Label Relationships. Oracle Solaris
assigns bit numbers to the compartments that you name. You can change the bit
assignments.

As the administrator, you name your classifications from the lowest classification to the
highest and Oracle Solaris assigns the numbers. You can modify the number
assignments to redefine the hierarchy. The classification numbers you can use range
from 1 to 254.

In the following figure, the label has been assigned a classification of 2. The
classification name is "Confidential - ". The compartment names are Internal and
Restricted. The Confidential - Internal label uses the classification value and one
compartment bit. The Confidential - Restricted label uses the classification value and
two bits, compartments 1 and 2.

Sample Label Definitions

Chapter 3
About Labeling in Oracle Solaris

3-2

Label Relationships
Labels can have hierarchical relationships, disjoint relationships, and overlapping
relationships. For a label encodings file that illustrates these relationships, see Example -
Label Encodings File With Reused Compartment Bits.

• Hierarchical relationships are formed when a label dominates another label. A label
dominates another label when its classification is at least equal to the other's
classification and its compartments include all the bits in the other's compartments. For
example, a classification that you created named Confidential that Oracle Solaris might
represent internally as number 3 dominates a classification that you created named
Public that is internally represented as 1.

Compartments are represented as arbitrary numbers. Compartments can be hierarchical
when the bits of a subcompartment are a subset of one or more other compartments.
Subcompartments can also include their own subcompartments. These
subcompartments can contain unique bits in addition to the subsets of the compartment
bits. A simple example of a compartment and a subcompartment is Highly Restricted with
the Restricted subcompartment. Internally, Oracle Solaris adds the Restricted bit to the
Highly Restricted bit, so if the Restricted subcompartment is bit 2, Highly Restricted might
be bits 2 and 3.

• Disjoint relationships are formed when labels with the same classification have different
compartment bits. You can also specify that labels conflict. Disjoint labels are useful to
isolate sensitive department information from personnel outside the department. For
example, you might create the labels Confidential - Finance: Payroll and Confidential -
Finance: Accounts to be disjoint.

• Overlapping relationships are formed when compartments share one or more bits but
each compartment has at least one unique bit. Overlapping labels are useful to define an
alias, such as an Information Technology alias for writers, course developers, web
content providers, and editors.

Privileges for Translating Labels
Label translation occurs whenever programs manipulate labels. Labels are translated to and
from the textual strings to the internal representation. For example, when a program such as
getlabel obtains the label of a file, before the label can be displayed to the user, the
internal representation of the label is translated into readable output, that is, into a textual
string. When the setlabel program sets a label specified on the command line, the textual
string (that is, the label's name) is translated into the label's internal representation. Oracle
Solaris permits label translations only if the calling process's label dominates the label that is
to be translated. If a process attempts to translate a label that the process's label does not

Chapter 3
About Labeling in Oracle Solaris

3-3

dominate, the translation is disallowed. The sys_trans_label privilege is required
to override this restriction.

Labeled Files and Multilevel File Systems
Labeled files are files that your organization labels due to the sensitivity of their
contents. Labeled files are in labeled file systems. Another name for a labeled file
system is a multilevel file system.

Labeled file systems can have stricter requirements for encryption, auditing, and other
security processes. The auditing of access to sensitive files is part of due diligence.
The audit record includes both the label of the file and clearance of the active process.
The audit service enables you to specify that file-read events are audited for labeled
files only.

Labeled file systems complement encryption. Labeling protects data in mounted file
systems, while encryption protects data in unmounted file systems, so archived
labeled file systems should be encrypted.

By default, all file systems are unlabeled. In a multilevel file system, files can inherit
their label from their directory or be assigned a label explicitly by a user whose
process dominates the file label. No privilege can override the access policy specified
by a label. You must be an administrator to create a labeled file system.

A user's clearance controls whether they can access a labeled file, upgrade or
downgrade a file label, archive a multilevel file system, or restore it. The files that the
user is operating on must be within the user's clearance. DAC permissions control
whether the user can read, write, or execute the file. Note that discretionary access
control (DAC) applies to all labeled files.

Sharing and Mounting Labeled File Systems
Labeled file systems can be shared and mounted. Without an explicit labeled=on
option, only the ADMIN_LOW file systems are shared. With the explicit labeled=on
keyword, users who are cleared at particular labels can access files at those labels.

Access to files on a remotely mounted labeled file system is enforced by the file
server's policy. Access is based on the user's clearance as interpreted by the server.
Access policy can either be stored locally on the file server or retrieved from a central
LDAP repository. Users must have a clearance on the server that is equal to or higher
than the files that they want to access. If the file system is not shared as a labeled file
system, remote access is limited to ADMIN_LOW files, even by privileged users.

Only Oracle Solaris systems that support labeling can mount multilevel file systems. To
prevent mount failures, set canmount=off for labeled file systems before booting into a
non Oracle Solaris 11.4 system.

Protect Data With a Label Policy
The label policy on your computer system is an information protection policy that is
enforced in software. For example, an information protection policy classifies its data
according to sensitivity, value to the organization, and legal requirements related to
confidentiality. Once identified, files that hold sensitive, valuable, or legally required
information can be appropriately labeled. Labels such as Confidential - Restricted, and
Confidential - Highly Restricted can isolate and protect information in every

Chapter 3
Protect Data With a Label Policy

3-4

department. You can create file systems or modify existing file systems to contain labeled
data, and assign individual users the ability to access the sensitive files that they are
responsible for.

Users, user processes, and other processes can access data whose label they dominate.
How you label processes is part of your label policy. To create labeled processes, see
Chapter 6, Labeling Processes for Data Loss Protection in Securing Users and Processes in
Oracle Solaris 11.4.

Default Label Policy
This section describes the default label policy and considerations when developing a your
label policy.

After you install the pkg:/system/file_labeling package, you can customize your label
policy, add labels to file systems, and assign clearances to users and SMF services. Before
customizing your label policy, the default clearance is the highest label, ADMIN_HIGH, so
access is not restricted by label.

$ svcs labeld:clearance
STATE STIME FMRI
online Sep_25 svc:/system/labeld:clearance

Displaying Label and Policy Information
To view the policy details, use the labelcfg info command. For the steps that created this
sample, see the labelcfg(8) man page.

labelcfg info
title=Sample Information Protection Policy
classification=Public
 level=1
classification=Confidential -
 level=2
compartment=Highly Restricted
 bit=0
 subcompartments="Restricted"
 minclass=Confidential -
compartment=Restricted
 bit=1
 subcompartments="Internal"
 minclass=Confidential -
compartment=Internal
 bit=2
 minclass=Confidential -
min_label=Public
clearance=ADMIN_HIGH

Note that each classification has a numeric equivalent indicated by a level number. A higher
classification has a higher level number. The compartments are differentiated by bits, so bit
numbers do not indicate higher or lower. Classifications plus their compartments comprise
the list of valid labels. When you list the labels, they display from highest label to lowest
without displaying the ADMIN_HIGH or ADMIN_LOW label.

labelcfg list
"Confidential - Highly Restricted"
"Confidential - Restricted"

Chapter 3
Protect Data With a Label Policy

3-5

https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-1.html
https://docs.oracle.com/cd/E88353_01/html/E72487/labelcfg-8.html

"Confidential - Internal"
Public

The value of clearance in the encodings file applies to users or roles who do not have
an explicit key-value setting for the clearance security attribute. The root role and the
initial account that was created during the installation of Oracle Solaris have an explicit
clearance, ADMIN_HIGH.

Caution:

Never change the explicit ADMIN_HIGH clearance of the root account.

User processes inherit the clearance of the user's primary login process. To view the
clearance of your current process, type plabel in a terminal window. You have
access to all labels from your clearance to ADMIN_LOW.

$ plabel
ADMIN_HIGH

Customizing a Label Policy
Your label policy protects data during use, just as encryption protects data at rest. The
overall process is:

1. Separate sensitive data.

2. Limit access to the data to specific individuals or groups.

3. Monitor the data during use.

4. Archive the data such that machine operators, IT personnel, and users who can
assume the root role cannot view the information in the files through normal
operations.

To configure labeling, you install the labeling package, then configure the labels to
satisfy the security requirements of your organization. When configuring a label policy,
you supply a minimum label, a maximum label (or clearance) for users, and a
hierarchy of labels. You can also define disjoint label relationships. At login, the
processes of users to whom you assigned a higher clearance start at that clearance.
Then, sensitive data that is labeled at a high label can be accessed only by those
users whose processes are running at the higher clearance.

You can either use one of the supplied policies, which are sufficient for testing and
demonstrations or create your own label policy specific to your organization's
requirements regarding its sensitive information.

When creating a label policy, cover the following issues:

• Identify the sensitivity of the data

For example, credit cards and health records might be considered highly sensitive
information, vendor discounts might be sensitive information, vendor visits might
be internal information, and marketing announcements would be public
information.

• Identify the departments of your organization that handle sensitive data

Chapter 3
Protect Data With a Label Policy

3-6

For example, regulatory bodies require companies that handle credit cards to protect the
credit card details and transaction details. Departments of the company that handle credit
cards would need labeled file systems, and individual users and roles who are permitted
to view the credit card details or handle disputes about credit card use would need
sufficient clearance.

• Identify users or roles in each department of your organization whom you trust to handle
sensitive material

For example, you might allow some people in receivables to view credit card information
but not others. Those individuals or groups who can modify information would need
clearance to do so, as would those who need to view the information.

• Identify departments that should not see information from other departments

For example, perhaps the executive board should not be able to see credit card
information. For highly sensitive information, each department of the company would
need its own compartment, for example, Confidential - Highly Restricted(Exec) and
Confidential - Highly Restricted(Payments), where Payments handlers do not have
access to Executive discussions and Executive users do not have access to payment
details. In each group, the information being protected is of high value.

• Identify services that should be protected by a label

For example, you might protect applications that contain information of high value, such
as internal browser interface applications or FTP services.

See Example - Protecting the FTP Service With a Label in Securing Users and
Processes in Oracle Solaris 11.4.

Oracle Solaris simplifies the creation of a label policy. As you enter your labels, the software
provides the numbers that create the hierarchy of labels as well as the numbers for the
compartments that separate departments of your organization. You provide the names that
you want, starting at the lowest label. Public or Internal are possible lowest labels. See
Configuring Labels on an Oracle Solaris System for a detailed description of the tasks
involved in creating and maintaining a custom label policy.

About Hardening Labeled File Systems
Although you can restrict access to sensitive data to users and roles based on their
clearances, a label policy does not prevent modifying the underlying configuration, loading
untrusted software, or modifying the kernel. It also does not prevent cleared users or roles
from copying labeled data to unlabeled directories. Hardening can limit these dangers.

You can put the following protections in place:

• Create non-global zones where selected users are granted a higher clearance than their
clearance outside the zone.

• Restrict access to a labeled zone to users who have been delegated the login
authorization for that zone.

• Make the configuration of the zone immutable.

• Import one or more labeled file systems read-write into the zone from the global zone.
The label of each top-level directory is also the minimum label at which data can be
written to each file system.

• Remove any network interfaces to prevent leakage outside the zone.

Chapter 3
About Hardening Labeled File Systems

3-7

https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-exftp.html
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-exftp.html

With these protections, when users log in to the zone, their clearance is raised to the
value specified in the zone's user_attr file. Although users might not be authorized
to set individual file labels, all files in the imported file systems are automatically
labeled based on their containing directories. Also, although users cannot be
prevented from copying files into unlabeled file systems, unlabeled data does not leak
outside the zone. The labeled data is available outside of the zone only to users and
roles with sufficient clearance.

About Installing a Customized Labels Package
After you create and test the label policy for your site, you can install it as an Image
Packaging System (IPS) package on your systems. The package you create must
contain the encodings file. Also, the encodings file name must be the value of the
labeld/encodings_file property of the labeld:clearance service in the service
manifest.

Use the labelcfg -e command to place the active encodings file as the value of the
labeld/encodings_file property in the service manifest.

labelcfg -e /etc/security/tsol/site-enc
svccfg -s labeld:clearance listprop labeld/encodings_file
labeld/encodings_file astring /etc/security/tsol/site-enc

File labels and user clearances are stored as hexadecimal strings that encode the
classifications and compartments. After installing the package, assigning new names
to existing classifications does not affect the internal label representations, although
renaming might be confusing for users. Adding additional classifications and
compartments does not invalidate existing settings, either. However, do not remove
classifications or compartments that are assigned to users or files because existing
labels that used those classifications and compartments would then display as
hexadecimal strings.

For information about package creation and testing, see Chapter 2, Packaging
Software With IPS in Packaging and Delivering Software With the Image Packaging
System in Oracle Solaris 11.4. For more information about package delivery and
installation, see Updating Systems and Adding Software in Oracle Solaris 11.4 and
Creating a Custom Oracle Solaris 11.4 Image.

Ideas for Using Labeled File Systems for Data Loss
Protection

Labeled file systems protect sensitive files from inadvertent or malicious tampering.
You can use labeled file systems in the following ways:

• Restrict access to core files – Store core files in labeled file systems so that
access to these core files requires label dominance. You can use the %l format
specification to specify the directory pathname corresponding to the label of the
process generating the core file. For more information, see the labeling examples
on the coreadm(8) man page.

• Restrict access to audit files – Store audit files in labeled file systems. A labeled
audit trail reduces access to the audit trail, including access to the contents of
higher-labeled processes. Access to the audit trail will require label dominance.
See How to Create a Labeled Audit Trail.

Chapter 3
About Installing a Customized Labels Package

3-8

https://docs.oracle.com/cd/E37838_01/html/E61051/pkgdev.html
https://docs.oracle.com/cd/E37838_01/html/E61051/pkgdev.html
https://docs.oracle.com/cd/E37838_01/html/E61051/pkgdev.html
https://docs.oracle.com/cd/E37838_01/html/E60979/index.html
https://docs.oracle.com/cd/E37838_01/html/E60981/index.html
https://docs.oracle.com/cd/E88353_01/html/E72487/coreadm-8.html

• Restrict access to selected directories – Users can set TMPDIR to a labeled directory
under their home directory. Similarly, you can configure the vim editor so that the backup
and swap directories are labeled.

• Restrict access to DTrace probes – Running DTrace on a labeled process requires
process dominance. For information about DTrace probes, see the dtrace(8) man page.

• Restrict access to database data and configuration – Make Oracle database instances
more robust by assigning a label to the $ORACLE_HOME directory to protect the data and
configuration files from rogue administrators. An administrator, including root, whose
process does not dominate the database label would be unable to access the directory.
Such labeling provides an extra level of security beyond encryption. For example,
another user assuming the root role would be unable to change or remove files
in $ORACLE_HOME.

• Restrict modification of system configuration – Make the system configuration immutable
by configuring the labeled system with the fixed-configuration immutable policy. An
immutable policy prevents root from altering the labeled configuration. For more
information, see the zonecfg(8) man page. When an immutable policy is in effect,
changes to any method or sysconfig properties of any SMF service, including the
clearance of the service, requires a clearance of the ADMIN_HIGH label from the
requesting client. See How to Enforce a Fixed Configuration for a Labeled File System.

Configuring Labels on an Oracle Solaris System
In Oracle Solaris, labels facilitate data loss protection, which is a requirement of certain
standards, such as PCI-DSS. For an overview of the steps to use labels for data loss
protection, see Overall Process for Configuring Labeling.

Configuring labels involves the following tasks:

• Creating labels – Initially Configuring Labels in Oracle Solaris

• Hardening labeled file systems – Further Hardening Labeled File Systems

• Backing up and archiving labeled file systems – Maintaining Labeled File Systems

• Testing labels – Viewing and Testing Sample Label Encodings Files

For more examples, see Example - Label Encodings File With Reused Compartment Bits and
Chapter 6, Labeling Processes for Data Loss Protection in Securing Users and Processes in
Oracle Solaris 11.4.

Overall Process for Configuring Labeling
Because Oracle Solaris does not ship sensitive data, all files after installation are at the same
label. You should apply labels to your files that contain sensitive information, such as financial
data and personnel data.

Perform the following tasks to configure labeled file systems for sensitive data:

1. Install the file_labeling package

This package is not part of a group installation. For the procedure, see How to Install
Labels in Oracle Solaris.

2. Determine the coverage of your label policy

For considerations, see Customizing a Label Policy.

Chapter 3
Configuring Labels on an Oracle Solaris System

3-9

https://docs.oracle.com/cd/E88353_01/html/E72487/dtrace-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/zonecfg-8.html
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-1.html

3. Create the label policy

You set the default clearance for SMF services and customize a label encodings
file. Oracle Solaris provides two sample encodings files. You can copy and modify
one of these files, or create an encodings file from scratch.

4. Create labeled file systems

An upper bound label is dynamically computed for each labeled file system.
Whenever a file is upgraded, the new label is combined with the current upper
bound. A labeled file system retains its upper bound even if all labeled files are
reset or removed.

5. Assign labels, called clearances, to users whose clearances should differ from the
default

Administrators assign higher clearances to the few users who have the authority to
access labeled files. On a system with labeled files, only a user whose clearance
dominates files in the labeled file system can view or modify those dominated files.
The administrator might also assign a lower clearance to guest users.

6. Authorize selected users to upgrade or downgrade files.

By default, only the root role can change the label of a file. The Object Label
Management profile grants both upgrade and downgrade rights. You can also
authorize users or roles to only upgrade or only downgrade information.

7. Configure the auditing of labeled files

Actions on sensitive files need to be monitored. For most file systems, file-read
audit events are not preselected because they add many unimportant events to
the audit trail. However, for labeled files, file-read events can be important. Options
to the audit service enable you to preselect file-read audit events for labeled files
only, thus auditing actions that are important with respect to labeled files but are
not important for unlabeled files. Additionally, the file_labeling package includes
the /usr/demo/tsol script that you can use to display daily audit records for
local files. To protect the audit trail from snooping, you can create a labeled file
system for the audit trail.

8. Reboot to start user processes and SMF services at the new clearances.

9. Test the configuration.

After configuring labeled file systems, you can harden the configuration, as described
in About Hardening Labeled File Systems.

1. Create labeled file systems for audit records and for core files.

2. Create a zone for labeled file systems.

3. Create zone login accounts for users who can access the labeled files in the zone.

4. Make the zone immutable.

Initially Configuring Labels in Oracle Solaris
The procedures in this section install and configure a customized label policy. They
include assigning labels to users and file systems. To harden this initial setup, see
About Hardening Labeled File Systems.

Chapter 3
Configuring Labels on an Oracle Solaris System

3-10

How to Install Labels in Oracle Solaris
You must be the initial user or an administrator with the Software Installation rights profile.
The root role has all of these rights. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

1. Install the pkg:/system/file_labeling package.

pkg install file_labeling
2. Verify that the labeld:clearance service is enabled.

$ svcs labeld:clearance
STATE STIME FMRI
online Nov_18 svc:/system/labeld:clearance

3. View the current label policy by using the labelcfg list command.

To view the policy details, use the labelcfg info command. For more information, see
the labelcfg(8) man page. For sample output, see Viewing and Testing Sample Label
Encodings Files.

How to Configure Your Label Policy
Complete a label policy assessment. To determine which labels to create, see Configuring
Labels on an Oracle Solaris System.

You must be assigned the Object Label Management rights profile or be in the root role. For
more information, see Using Your Assigned Administrative Rights in Securing Users and
Processes in Oracle Solaris 11.4.

Defining a label policy is the first step in data loss protection. Later you will assign labels to
file systems, and assign selected users a clearance that is higher than the default to view
sensitive files.

This procedure uses the following configuration parameters:

• Encodings file = site-enc
• Minimum label (Lower bound of user labels) = Public

• Next higher classification = Confidential

• Confidential label hierarchy = Confidential Internal Use Only, Confidential Restricted,
Confidential Highly Restricted

• Clearance (Upper bound of user labels) = Confidential Internal Use Only

1. As root, assign the ADMIN_LOW clearance as the default clearance for all SMF
services.

If you are using the account-policy service, use the first option. For more information,
see account-policy(8S) man page.

• Modify the login_policy/clearance security attribute in SMF.

Follow the How to Set Account Locking for All Logins in Securing Users and
Processes in Oracle Solaris 11.4 procedure, and substitute login_policy/clearance
for the property in the procedure.

Chapter 3
Configuring Labels on an Oracle Solaris System

3-11

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E88353_01/html/E72487/labelcfg-8.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E88353_01/html/E72487/account-policy-8s.html
https://docs.oracle.com/cd/E37838_01/html/E61023/smfap-sysloginpolicy.html#OSSUPsmfap-acctlock
https://docs.oracle.com/cd/E37838_01/html/E61023/smfap-sysloginpolicy.html#OSSUPsmfap-acctlock

• DEPRECATED: Comment out the original line in the policy.conf file and
add the ADMIN_LOW clearance.

pfedit /etc/security/policy.conf
...
Highest label at which SMF services run by default.
For services that must run at a higher label, set a higher clearance
on their start and restart methods.
#CLEARANCE=ADMIN_HIGH
CLEARANCE=ADMIN_LOW
...

2. Create an encodings file.

You can modify the label_encodings.compliance or
label_encodings.default files in the /etc/security/tsol directory or
create a new encodings file. The following command creates an encodings file
from scratch.

labelcfg -e /etc/security/tsol/site-enc
labelcfg:site-enc>

3. Title the label policy.

labelcfg:site-enc> set title="Name Label Policy"
4. Define the labels you will use at your site to protect data.

Start with the lowest classification, which is typically the Public classification.

labelcfg:site-enc> add classification="Public"
labelcfg:Public> set shortname="P"
labelcfg:Public> end

Because public information is public throughout the organization, this label does
not require compartments.

5. Define the next higher classification.

labelcfg:site-enc> add classification="Confidential"
labelcfg:Confidential> set shortname="Conf"
labelcfg:Confidential> end

Add compartments to this classification to indicate levels of confidentiality from
company-internal to very restricted.

6. Create the lowest Confidential label by defining the classification's first
compartment.

labelcfg:site-enc> add compartment="Internal Use Only"
labelcfg:Internal Use Only> set minclass="Confidential"
labelcfg:Internal Use Only> end

minclass indicates that this compartment cannot be used by the Public
classification.

7. Define the next higher label.

This label is higher because its compartment bits include the Internal Use Only
compartment bits.

labelcfg:site-enc> add compartment="Restricted"
labelcfg:Restricted> set minclass="Confidential"
labelcfg:Restricted> set subcompartments="Internal Use Only"
labelcfg:Restricted> end

Chapter 3
Configuring Labels on an Oracle Solaris System

3-12

8. Define the next higher label and set Restricted as its subcompartment.

labelcfg:site-enc> add compartment="Highly Restricted"
labelcfg:Highly Restricted> set minclass="Confidential"
labelcfg:Highly Restricted> set subcompartments=Restricted
labelcfg:Highly Restricted> end

9. Define the min_label value.

labelcfg:site-enc> set min_label=Public

Choose a label that is suitable for the organization, such as Public. This label is the
lower bound for all processes.

10. Define the clearance and commit the label policy.

labelcfg:site-enc> set clearance="Confidential Internal Use Only"
labelcfg:site-enc> commit

This label is the default clearance for all user processes. Only users to whom you
explicitly assign a higher label can access sensitive files.

11. Display the details of your label hierarchy.

labelcfg:site-enc> info
title=Organization's Label Policy
classification=Public
 level=1
classification=Confidential
 level=2
compartment=Highly Restricted
 bit=2
 subcompartments="Restricted"
 minclass=Confidential
compartment=Restricted
 bit=1
 minclass=Confidential
compartment=Internal Use Only
 bit=0
 minclass=Confidential
min_label=Public
clearance=Confidential Internal Use Only
labelcfg:site-enc> exit

12. Save your work into a flat file.

The export subcommand produces output that can be used as input to the labelcfg
command to create the exported label policy. In this example, the administrator saves the
file to a secure directory.

labelcfg export -f /opt/adminfiles/site-enc-export1
Next Steps

If you have disjoint labels to define, you can do so now. For an example, see Example - Label
Encodings File With Reused Compartment Bits and the labelcfg(8) man page.

How to Assign a Label to a File System
Create an encodings file. You must have logged out and logged back in. You also must be a
user who can assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

Chapter 3
Configuring Labels on an Oracle Solaris System

3-13

https://docs.oracle.com/cd/E88353_01/html/E72487/labelcfg-8.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html

To create a labeled file system, you enable the multilevel ZFS property. This action
can be performed at any time during the lifetime of a ZFS dataset.

1. Verify that your label policy is in effect.

$ labelcfg list
list-of-labels
$ labelcfg info clearance
clearance
$ plabel
clearance

The clearance value returned by these two commands should be identical. If the
values differ, you did not commit the value of clearance when you edited the
encodings file or you have not logged out and logged back in.

2. Assume the root role.

$ su - root
Password:
#

3. Modify or create the ZFS datasets that will contain sensitive, labeled files.

• To modify an existing file system and set a label on the mount point:

zfs set -o multilevel=on -o rpool/existing-fs
setlabel "label" /existing-fs-mountpoint

For example, to label the /export/home directory:

zfs set -o multilevel=on -o rpool/export/home
setlabel "Conf - Internal Use Only" /export/home

• To create a labeled file system, mount it, and set a label on the mount point:

Tip:

For additional protection, encrypt every new multilevel file system.

zfs create -o multilevel=on -o encryption=on rpool/labeled-fs
zfs set =/mountpoint rpool/labeled-fs
setlabel "label" /mountpoint

For example, you could label a directory that contains files for company-wide
distribution.

zfs create -o multilevel=on -o encryption=on rpool/ftp-files
zfs set =/ftpsource rpool/ftp-files
setlabel "Conf - Internal Use Only" /ftpsource

4. Verify that the file system is labeled.

getlabel /mountpoint
label

5. Share the file system over NFS as a labeled file system.

If you do not share a labeled file system with the share.nfs.labeled=on option,
the files whose labels are higher than ADMIN_LOW cannot be accessed.

Chapter 3
Configuring Labels on an Oracle Solaris System

3-14

Tip:

To minimize the risk of identity spoofing, specify an NFS security option with the
labeled option. See the nfssec(7) man page.

zfs share -o nfs=on -o share.nfs.labeled=on -o share.nfs.sec=krb5 rpool/labeled-
fs

6. View the upper bound of the file system.

The value of the mlslabel property is the upper bound of the file system and cannot be
lowered.

zfs get mlslabel
NAME PROPERTY VALUE SOURCE
...
rpool/VARSHARE/zones mlslabel none -
rpool/dump mlslabel - -
rpool/export mlslabel none -
rpool/export/home mlslabel Conf - Internal Use Only -

If higher-labeled files are added, the upper bound is raised to the label of the higher files.
A labeled file system retains its label even if all labeled files are reset or removed.

7. Assign clearances that are higher than the default clearance to trusted users and
trusted roles.

usermod -K clearance="higher-than-default-clearance" trusted-user1
rolemod -K clearance="higher-than-default-clearance" trusted-role1

Tip:

To enable a user to run a command at a clearance higher than the user's
assigned clearance, see Enabling Access to Labeled Files in Securing Users
and Processes in Oracle Solaris 11.4 and How to Assign Clearances to Users
in Securing Users and Processes in Oracle Solaris 11.4.

8. Assign clearances that are lower than the default clearance to guest users.

usermod -K clearance=Public guest
9. Configure the auditing of sensitive files by enabling the labeled-only audit policy,

then set the appropriate audit flags.

This policy enables you to audit file-read events and set the audit flags for labeled files.

auditconfig -setpolicy +labeled-only
auditconfig -setflags fr,fw,fm,dc,fd,ex,lo

When you enable the fr audit class when the labeled-only policy is in effect, only
labeled files are audited for file read. Regular files are not.

Example 3-1 Finding Files of a Specified Label

The following script finds all files of a specified label.

#!/bin/sh
Find all files whose label matches $1

Chapter 3
Configuring Labels on an Oracle Solaris System

3-15

https://docs.oracle.com/cd/E88353_01/html/E37853/nfssec-7.html
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-useraccess.html
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-useraccess.html
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-useraccess.html#OSSUPdlp-assignclr
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-useraccess.html#OSSUPdlp-assignclr

zfs list -Ho multilevel,mounted,mountpoint -t filesystem -r rpool|\
while read multilevel mounted mountpt;do
 if [$multilevel == on -a $mounted == yes];then
 for file in $(find $mountpt -print); do
 label=$(getlabel $file 2>/dev/null|cut -d: -f2|\
 grep -i "$1" 2>/dev/null)
 if [[-n $label]]; then
 echo $file
 echo '\t'$label
 fi
 done
 fi
done

Further Hardening Labeled File Systems
Although applying labels can prevent inadvertent access by privileged users, the label
configuration can be compromised by modifying the underlying configuration, loading
untrusted software, or modifying the kernel. To improve the robustness of the label
policy, you can isolate labeled file systems in zones, use immutable zones, and store
your audit records and core dumps in a labeled file system.

How to Enforce a Fixed Configuration for a Labeled File System
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

This procedure helps prevent malicious or inadvertent modification of the system
configuration.

1. Add the labeled file system to the global zone, then make the global zone
immutable.

zonecfg -z global
zonecfg:global> add dataset
zonecfg:global:dataset> set name=rpool/labeled-fs
zonecfg:global:dataset> end
zonecfg:global> set file-mac-profile=fixed-configuration
zonecfg:global> exit

The fixed configuration also prevents modifications to the SMF method and
sysconfig group properties. The client process must be running at the
ADMIN_HIGH clearance or using the Trusted Path to modify the configuration.
Also, access to the kernel by using the mdb -k command requires an
ADMIN_HIGH process. The mdb -K command can succeed only by using the
Trusted Path. For more information, see the mdb(1) man page. For information
about Trusted Path and zone configuration, see Administering an Immutable Zone
by Using the Trusted Path Domain in Creating and Using Oracle Solaris Zones,
and the zlogin(1) and zonecfg(8) man pages.

2. To further protect the kernel, enable verified boot by using the Oracle
Integrated Lights Out Manager (ILOM).

For kernel zones, use the zonecfg command. For more information about verified
boot, see Using Verified Boot in Securing Systems and Attached Devices in Oracle
Solaris 11.4.

Chapter 3
Further Hardening Labeled File Systems

3-16

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E88353_01/html/E37839/mdb-1.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/use-zones/administering-immutable-zone-using-trusted-path-domain.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/use-zones/administering-immutable-zone-using-trusted-path-domain.html
https://docs.oracle.com/cd/E88353_01/html/E37839/zlogin-1.html
https://docs.oracle.com/cd/E88353_01/html/E72487/zonecfg-8.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/secure-sys-dev/using-verified-boot.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/secure-sys-dev/using-verified-boot.html

Example 3-2 Making an Immutable Global Zone That Contains a Labeled File System
Immutable

In this example, the administrator specifies that three labeled file systems on a system cannot
be reconfigured except through the Trusted Path.

zonecfg -z global
zonecfg:global> add dataset
zonecfg:global:dataset> set name=rpool/Internal
zonecfg:global:dataset> set name=rpool/Restricted
zonecfg:global:dataset> set name=rpool/HighlyRestricted
zonecfg:global:dataset> end
zonecfg:global> set file-mac-profile=fixed-configuration
zonecfg:global> exit

How to Isolate a Labeled File System in a Zone
You have enabled a label encodings file that includes the Confidential - Restricted label.

Although access to sensitive data can be restricted to users and roles based on their
clearances, a label policy does not prevent cleared users or roles from copying labeled data
to unlabeled directories. One way to prevent such data loss is to enable Trusted Extensions.
However, you can also use standard Oracle Solaris Zones to provide an additional layer of
protection.

1. Create a labeled file system.

zfs create -o multilevel=on -o encryption=on \
-o mountpoint=/mountpoint rpool/mountpoint
chmod 777 /mountpoint
setlabel "Confidential - Restricted" /mountpoint

2. Configure and install a zone to import /mountpoint.

a. Make the zone a solaris zone and remove the network connection.

zonecfg -z zonename
zonecfg> create -b
zonecfg> set brand=solaris
zonecfg> remove anet

b. Authorize a user to log in to the zone.

zonecfg> add admin
zonecfg> set user=username
zonecfg> set auths=login
zonecfg> end

When authorized users log in to the zone, their clearance is raised to the value
specified in the zone's user_attr file.

c. Mount the labeled file as a loopback file system with read-write permissions.

zonecfg> add fs
zonecfg> set dir=/mountpoint
zonecfg> set special=/mountpoint
zonecfg> set type=lofs
zonecfg> add options rw
zonecfg> end
zonecfg> exit

d. Install the zone.

Chapter 3
Further Hardening Labeled File Systems

3-17

zoneadm -z zonename install
Although users might not be authorized to set individual file labels, all files in the
imported file systems would be automatically labeled based on their containing
directories. Also, although users cannot be prevented from copying files into
unlabeled file systems, unlabeled data cannot leak outside the zone. The labeled
data is available outside of the zone to users and roles with sufficient clearance.

3. In the zone context, assign a higher clearance to the authorized user.

zlogin zonename
usermod -K clearance="specific-higher-clearance" username

The user can now log in to the zone and run at the higher clearance. In the global
zone, the user's clearance is the default.

username@global$ pfbash ; plabel
default-user-clearance

4. Log in as the user to the zone where the user has a higher clearance, open a
profile shell. and confirm the higher clearance.

username@global$ zlogin -l username
zonename
username@zonename$ pfbash ; plabel
specific-higher-clearance

Example 3-3 Isolating Labeled File Systems in a Zone

This example describes how to create a labeled zone where authorized users can
work on Confidential - Restricted files.

1. The administrator creates a labeled file system that can contain files at different
labels and a zone to mount it. In the mounting zone, the administrator authorizes
users to log in, adds the labeled file system, and then installs the zone.

zfs create -o multilevel=on -o encryption=on -o mountpoint=/multi-r rpool/
multi-r
chmod 777 /multi-r
setlabel "Confidential - Restricted" /multi-r

zonecfg -z restricted
zonecfg> create -b
zonecfg> set brand=solaris
zonecfg> remove anet
zonecfg> add admin
zonecfg> set user=user1
zonecfg> set auths=login
zonecfg> end
zonecfg> add fs
zonecfg> set dir=/multi-r
zonecfg> set special=/multi-r
zonecfg> set type=lofs
zonecfg> add options rw
zonecfg> end
zonecfg> exit
zoneadm -z restricted install

2. The administrator assigns the user a higher clearance in the zone context.

zlogin restricted
usermod -K clearance="Confidential - Restricted" user1

3. The administrator tests the user's clearance in the zone context.

Chapter 3
Further Hardening Labeled File Systems

3-18

user1@global$ pfbash ; plabel
Confidential - Internal
user1@global$ zlogin -l user1 restricted
user1@restricted$ pfbash ; plabel
Confidential - Restricted

User user1 has a higher clearance in the restricted zone.

4. After halting the zone, the administrator gives other trusted users access to the
restricted zone, then boots the zone.

zoneadm -z restricted shutdown
zonecfg -z restricted
zonecfg> set admin
zonecfg> set user=user2
zonecfg> set auths=login
zonecfg> set user=user3
zonecfg> set auths=login
zonecfg> commit
zonecfg> end
zonecfg> exit
zoneadm -z restricted boot

How to Create a Labeled Audit Trail
You must be in the root role.

You create a file system at the highest label, ADMIN_HIGH, for the audit trail. All audit events,
labeled and not labeled, are then recorded and stored at that label.

1. Create a file system at ADMIN_HIGH for the audit files.

zfs create -o multilevel=on -o encryption=on rpool/VARSHARE/audit_high
setlabel ADMIN_HIGH /var/audit_high

2. Add the audit_high directory to the list of audit_binfile plugins.

auditconfig -setplugin audit_binfile active "p_dir=/var/audit_high"
3. Run the auditing process at that label.

svccfg -s auditd
> setprop start/clearance = astring: ADMIN_HIGH
> exit

4. Read the audit service changes into the kernel and restart the service.

audit -t
audit -s

5. Create a Labeled Audit Review rights profile and assign it to the users who review
audit records.

a. Use the Audit Review profile as the template.

profiles -p "Audit Review"
profiles:Audit Review> set name="Labeled Audit Review"
profiles:Labeled Audit Review> set desc="Review Labeled Audit Trail"
profiles:Labeled Audit Review> select cmd=/usr/sbin/auditreduce
profiles:Labeled Audit Review:auditreduce> set clearance="ADMIN_HIGH"
profiles:Labeled Audit Review:auditreduce> end
profiles:Labeled Audit Review> select cmd=/usr/sbin/praudit
profiles:Labeled Audit Review:praudit> set clearance="ADMIN_HIGH"
profiles:Labeled Audit Review:praudit> end

Chapter 3
Further Hardening Labeled File Systems

3-19

profiles:Labeled Audit Review> commit
profiles:Labeled Audit Review> exit

The Labeled Audit Review profile inherits the existing security attributes of the
selected commands. The commands retain their assigned privileges and
EUIDs.

b. Verify that the commands are running at the ADMIN_HIGH clearance and
retain any security attributes from the original rights profile.

profiles -p "Labeled Audit Review" "select cmd=/usr/sbin/auditreduce ;
info; end;"
 id=/usr/sbin/praudit
 euid=0
 clearance=ADMIN_HIGH

c. Assign the rights profile to users who can review the audit trail by typing
one of the following commands:

usermod -K profiles+="Labeled Audit Review" user-who-reviews-audit-
trail

usermod -K auth_profiles+="Labeled Audit Review" user-who-reviews-
audit-trail

The commands in the Labeled Audit Review rights profile will run at the
ADMIN_HIGH label when the user runs the commands in a profile shell, as in
pfexec praudit. The clearance of the assigned user does not change but
the command processes run at the label specified in the profile.

Maintaining Labeled File Systems
After configuring labeled file systems and their users, you maintain the systems by
monitoring audit logs and archiving the file systems. Periodically, you need to update
the users who can access sensitive files. You can also store an export of the label
policy.

Note:

To transfer or archive a labeled file system, your clearance must dominate
the value of the mlslabel property of the file system.

• Transfer files to a new labeled file system by running the tar command with the -
T option.

In the following example, fromdir is the root of the existing file system and todir is
the root of the new file system.

$ pfbash
$ cd fromdir; tar -cTf - . | (cd todir; tar xTp -)

For more information, see the tar(l) man page.

• Archive the file systems by using the zfs send and archiveadm commands.

These commands preserve the labels of the files. For more information, see the
zfs(8) and archiveadm(8) man pages.

Chapter 3
Maintaining Labeled File Systems

3-20

https://docs.oracle.com/cd/E88353_01/html/E37839/tar-1.html
https://docs.oracle.com/cd/E88353_01/html/E72487/zfs-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/archiveadm-8.html

$ pfexec zfs send -r labeled-filesystem

$ pfexec archiveadm labeled-filesystem
• Export and store the commands that re-create your encodings file.

This file can be imported to create your encodings file on a test system, for example.

labelcfg -f enc-file-commands

For example, to save the committed encodings file to an administrative directory:

labelcfg -f /opt/adminfiles/site-enc-commands

Viewing and Testing Sample Label Encodings Files
The examples in this section illustrate how to view and use the label policies that Oracle
Solaris provides. The encodings files are simple. The default encodings file illustrates a three-
level label hierarchy. The compliance encodings file illustrates disjoint labels. The simplest
way to test a label policy is to commit the policy, then create a multilevel ZFS dataset and a
few users with clearances that enable them to create and view files in the dataset.

Testing Labeling by Using the Default Encodings File
1. To test labels, you must set the clearance value to a user label in the default encodings

file.

The following commands list the available labels, set a new clearance value, and display
the new clearance.

cp label_encodings.default label_encodings.default.orig
labelcfg list
"Confidential - Highly Restricted"
"Confidential - Restricted"
"Confidential - Internal"
Public
labelcfg 'set clearance="Confidential - Internal"'
labelcfg info clearance
clearance=Confidential - Internal

Note:

The clearance value is typed within double quotes because it contains spaces.
However, the shell interprets the double quotes and then removes them. When
you surround the subcommand with single quotes, the shell removes the single
quotes and leaves the double quotes.

2. Create a labeled file system, mount it, and enable DAC access to any user.

zfs create -o multilevel=on -o encryption=on rpool/defaultenc
zfs set mountpoint=/defaultenc rpool/defaultenc
cd / ; cd rpool
chmod 777 defaultenc

3. Create test users at different clearances. Users who are created without a clearance
inherit the default, Confidential - Internal.

Chapter 3
Viewing and Testing Sample Label Encodings Files

3-21

useradd -m /export/home -K clearance="Confidential - Highly Restricted"
high1
useradd -m /export/home -K clearance="Confidential - Restricted" rest1
useradd -m /export/home test1

4. Reboot, then test.

For various items to test, see How to Verify User Access to Labeled Files in
Securing Users and Processes in Oracle Solaris 11.4.

5. After the testing is complete, you can delete the labeled dataset, delete the users
with high clearances, and enable the default label encodings file.

zfs destroy rpoot/defaultenc
userdel -r high1 ; usermod -r rest1 ; usermod -r test1
labelcfg -e /etc/security/tsol/label_encodings.default.orig commit

Example 3-4 Customizing a Test Label Policy

In this example, you modify the existing template with the name of your organization.
This example calls the organization ExampleCo.

cd /etc/security/tsol
cp label_encodings.default label_encodings.exampleco
labelcfg -e label_encodings.exampleco
labelcfg:label_encodings.exampleco> set title="Data Protection Policy for
ExampleCo"
labelcfg:label_encodings.exampleco> select classification="Confidential -"
labelcfg:Confidential -> set shortname="Conf ExampleCo -"
labelcfg:Confidential -> end
labelcfg:label_encodings.exampleco> set clearance="Conf ExampleCo - Internal"
labelcfg:label_encodings.exampleco> commit
labelcfg:label_encodings.exampleco> list
"Conf ExampleCo - Highly Restricted"
"Conf ExampleCo - Restricted"
"Conf ExampleCo - Internal"
Public
labelcfg:label_encodings.exampleco> info clearance
clearance=Conf ExampleCo - Internal
labelcfg:label_encodings.exampleco> exit

After you commit this label policy, regular users at login would be operating at the Conf
ExampleCo - Internal label. Only users whom you configure with an explicit higher
clearance can access sensitive files labeled as Conf ExampleCo - Restricted or Conf
ExampleCo - Highly Restricted.

Testing Labeling by Using the Compliance Encodings File
The sample compliance encodings file contains disjoint labels. Disjoint labels can
prevent users from seeing department-private information. In the sample
label_encodings.compliance file, the Health Records and Payment Data
departments are disjoint. This policy isolates payment data from health records, both
of which are highly restricted information. The policy is enabled by the commit
command.

1. Commit then view the label encodings file.

cd /etc/security/tsol
cp label_encodings.compliance label_encodings.compliance.orig
labelcfg -e label_encodings.compliance commit
labelcfg info

Chapter 3
Viewing and Testing Sample Label Encodings Files

3-22

https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-useraccess.html#OSSUPdlp-verifyuseraccess
https://docs.oracle.com/cd/E37838_01/html/E61023/dlp-useraccess.html#OSSUPdlp-verifyuseraccess

title=Sample Data Protection Policy
classification=Public
 level=1
classification=Confidential
 level=2
compartment=Highly Restricted
 subcompartments="Payment Data,Health Records"
 minclass=Confidential
compartment=Payment Data
 bit=0
 subcompartments="Internal Use Only"
 conflicts="Health Records"
 minclass=Confidential
compartment=Health Records
 bit=1
 subcompartments="Internal Use Only"
 conflicts="Payment Data"
 minclass=Confidential
compartment=Internal Use Only
 bit=2
 minclass=Confidential
min_label=Public
clearance=Confidential Internal Use Only

2. List the available labels.

labelcfg list
"Confidential Highly Restricted"
"Confidential Payment Data"
"Confidential Health Records"
"Confidential Internal Use Only"
Public

3. Create a labeled file system for payment data and health records.

Add a few payment files and health files, correctly labeled.

4. Create users with different clearances.

For example, assign the Confidential Highly Restricted clearance to a user who can
access everything, the Confidential Payment Data clearance to a user who can handle
only payment data, and the Confidential Health Records to a user who can handle only
health records. A user with the Confidential Internal Use Only clearance should not be
able to see any payment or health information.

5. Reboot, then test.

Example - Label Encodings File With Reused Compartment Bits
The number of compartments that can be defined in a label encodings file is much greater
than the number of compartment bits. In Oracle Solaris, the number of available compartment
bits is 256, but many thousands of compartments can be created from these bits. Two
compartment properties make this possible: subcompartments and conflicts.

The subcompartments property acts like an include statement in C. It specifies that the bits
of an existing compartment are included in the current compartment. You can define
hierarchies of subcompartments to create arbitrary levels of nesting. For example, the
following labelcfg subcommands create three compartments. The Internal compartment
gets bit 0, the Restricted compartment gets bits 0 and 1, and Engineering gets bits 0, 1, and
2.

Chapter 3
Example - Label Encodings File With Reused Compartment Bits

3-23

 add compartment=Internal
 set bit=0
 end
 add compartment=Restricted
 set bit=1
 set subcompartments=Internal
 end
 add compartment=Engineering
 set bit=2
 set subcompartments=Restricted
 end

If you do not specify a bit value, the next available bit is used. You can use the clear
bit subcommand to prevent the assignment of a unique bit value. The clear bit
subcommand is useful when creating an alias for a combination of subcompartments.
In this example, the All BUs compartment is an alias for all the subcompartments and
its bit is cleared.

The conflicts property specifies the compartments that are mutually exclusive with
the current compartment. Labels that contain conflicting compartments cannot be
applied to files or clearances. The list subcommand only shows valid compartment
combinations.

Tip:

Although compartments typically have unique bit values, you can assign the
same bit values to conflicting compartments because conflicting
compartments cannot be combined into a valid label.

In this example, multiple business units in a corporation are each assigned one unique
bit, and then share the remaining bits for their own projects or departments. The six
business units are each assigned unique bits, 2 through 7, and share bits 8 and 9
because the business units are exclusive. The use of 7 bits creates over twenty-five
distinct labels.

The bit assignments are as follows:

• 2 - Engineering (8 - Software, 9 - Hardware)

• 3 - Operations (8 - Information Technology, 9 - Maintenance)

• 4 - Human Resources (8 - Benefits, 9 - Personal Information)

• 5 - Legal (8 - Patents, 9 - Compliance)

• 6 - Finance (8 - Payroll, 9 - Accounts)

• 7 - Mergers and Acquisitions (8 - Robots, 9 - Widgets)

This example shows the export file of this encodings file.

$ labelcfg -e corporate_encodings info
set title="Corporate Example's Information Protection Policy"
 add classification=Public
 set level=1
 end
 add classification="Confidential -"
 set level=2
 end

Chapter 3
Example - Label Encodings File With Reused Compartment Bits

3-24

 add compartment=Internal
 set bit=0
 set minclass="Confidential -"
 end
 add compartment=Restricted
 set bit=1
 set subcompartments="Internal"
 end
 add compartment=Engineering
 set bit=2
 set subcompartments="Restricted"
 set prefix="Business Units:"
 end
 add compartment=Operations
 set bit=3
 set subcompartments="Restricted"
 set prefix="Business Units:"
 end
add compartment="Human Resources"
 set shortname=HR
 set bit=4
 set subcompartments="Restricted"
 set prefix="Business Units:"
 end
 add compartment=Legal
 set bit=5
 set subcompartments="Restricted"
 set prefix="Business Units:"
 end
 add compartment=Finance
 set bit=6
 set subcompartments="Restricted"
 set prefix="Business Units:"
 end
 add compartment="Mergers and Acquisitions"
 set shortname=M&A
 set bit=7
 set subcompartments="Restricted"
 set prefix="Business Units:"
 end
 add compartment="All BUs"
 clear bit
 set subcompartments="Mergers and
Acquisitions,Legal,Operations,Finance,Engineering,Human Resources"
 set prefix="Business Units:"
 end
 add compartment=Software
 set bit=8
 set conflicts="All BUs"
 set subcompartments="Engineering"
 set prefix="Example Engineering:"
 end
 add compartment=Hardware
 set bit=9
 set subcompartments="Engineering"
 set conflicts="All BUs"
 set prefix="Example Engineering:"
 end
 add compartment="Information Technology"
 set shortname=IT
 set bit=8

Chapter 3
Example - Label Encodings File With Reused Compartment Bits

3-25

 set subcompartments="Operations"
 set conflicts="All BUs"
 set prefix="Example Operations:"
 end
 add compartment=Maintenance
 set bit=9
 set subcompartments="Operations"
 set conflicts="All BUs"
 set prefix="Example Operations:"
 end
 add compartment=Patents
 set bit=8
 set subcompartments="Legal"
 set conflicts="All BUs"
 set prefix="Example Legal:"
 end
 add compartment=Compliance
 set bit=9
 set subcompartments="Legal"
 set conflicts="All BUs"
 set prefix="Example Legal:"
 end
 add compartment=Robots
 set bit=8
 set subcompartments="Mergers and Acquisitions"
 set conflicts="All BUs"
 set prefix="Example M&A:"
 end
 add compartment=Widgets
 set bit=9
 set subcompartments="Mergers and Acquisitions"
 set conflicts="All BUs"
 set prefix="Example M&A:"
 end
 add compartment=Benefits
 set bit=8
 set subcompartments="Human Resources"
 set conflicts="All BUs"
 set prefix="Example HR:"
 end
 add compartment="Personal Information"
 set bit=9
 set subcompartments="Human Resources"
 set conflicts="All BUs"
 set prefix="Example HR:"
 end
 add compartment=Payroll
 set bit=8
 set subcompartments="Finance"
 set conflicts="All BUs"
 set prefix="Example Finance:"
 end
 add compartment=Accounts
 set bit=9
 set subcompartments="Finance"
 set conflicts="All BUs"
 set prefix="Example Finance:"
 end
 add compartment="Highly Restricted"
 clear bit
 set subcompartments="All Bus,Hardware,Software"

Chapter 3
Example - Label Encodings File With Reused Compartment Bits

3-26

 end
 select compartment="Mergers and Acquisitions"
 set conflicts="All BUs"
 end
 select compartment=Legal
 set conflicts="All BUs"
 end
 select compartment=Operations
 set conflicts="All BUs"
 end
 select compartment=Finance
 set conflicts="All BUs"
 end
 select compartment="Human Resources"
 set conflicts="All BUs"
 end
 select classification=Public
 set valid=""
 end
 select classification="Confidential -"
 set invalid=""
 end
 set min_label=Public
 set clearance="Confidential - Internal"

The resulting encodings file creates 22 compartments by using only 10 bits (0-9). The
remaining 246 bits could be shared to create unique hierarchies within each business unit.
This example shows the corresponding list of valid labels.

$ labelcfg -e corporate_encodings list
 "Confidential - Highly Restricted"
 "Confidential - Business Units: All BUs"
 "Confidential - Example Engineering: Software/Hardware"
 "Confidential - Example Engineering: Software"
 "Confidential - Example Engineering: Hardware"
 "Confidential - Business Units: Engineering"
 "Confidential - Example Operations: IT/Maintenance"
 "Confidential - Example Operations: IT"
 "Confidential - Example Operations: Maintenance"
 "Confidential - Business Units: Operations"
 "Confidential - Example HR: Benefits/Personal Information"
 "Confidential - Example HR: Benefits"
 "Confidential - Example HR: Personal Information"
 "Confidential - Business Units: HR"
 "Confidential - Example Legal: Patents/Compliance"
 "Confidential - Example Legal: Patents"
 "Confidential - Example Legal: Compliance"
 "Confidential - Business Units: Legal"
 "Confidential - Example Finance: Payroll/Accounts"
 "Confidential - Example Finance: Payroll"
 "Confidential - Example Finance: Accounts"
 "Confidential - Business Units: Finance"
 "Confidential - Example M&A: Robots/Widgets"
 "Confidential - Example M&A: Robots"
 "Confidential - Example M&A: Widgets"
 "Confidential - Business Units: M&A"
 "Confidential - Restricted"
 "Confidential - Internal"
 Public

Chapter 3
Example - Label Encodings File With Reused Compartment Bits

3-27

Label Man Pages
The following man pages support labeling in Oracle Solaris. The description includes
links to examples or explanations of these features.

Label Man Page
Purpose and Links to Additional Information

atohexlabel(8)
Converts a human-readable label to its internal text equivalent.
For an example, see How to Obtain the Hexadecimal Equivalent for a Label in Trusted
Extensions Configuration and Administration.

blcompare(3TSOL)
Compares binary labels.

blminmax(3TSOL)
Determines the bound of two labels.

chk_encodings(8)
Checks the label encodings file syntax.
For examples, see How to Debug a label_encodings File in Trusted Extensions Label
Administration and How to Check and Install Your Label Encodings File in Trusted
Extensions Configuration and Administration.

fgetlabel(2)
Gets the file's label

getlabel(1)
Displays the label of the selected files or directories.
For an example, see How to Display the Labels of Mounted Files in Trusted
Extensions Configuration and Administration.

getlabel(2)
Gets the label of a file

getplabel(3TSOL)
Gets the label of a process

getuserrange(3TSOL)
Gets the label range of a user

hextoalabel(8)
Converts an internal text label to its human-readable equivalent
For an example, see How to Obtain a Readable Label From Its Hexadecimal Form in
Trusted Extensions Configuration and Administration.

labelcfg(8)
Configures labels can modify the label_encodings file

label_encodings(5)
Describes the label encodings file

Chapter 3
Label Man Pages

3-28

https://docs.oracle.com/cd/E88353_01/html/E72487/atohexlabel-8.html
https://docs.oracle.com/cd/E37838_01/html/E61029/commontasks-23.html
https://docs.oracle.com/cd/E37838_01/html/E61029/commontasks-23.html
https://docs.oracle.com/cd/E88353_01/html/E37848/blcompare-3tsol.html
https://docs.oracle.com/cd/E88353_01/html/E37848/blminmax-3tsol.html
https://docs.oracle.com/cd/E88353_01/html/E72487/chk-encodings-8.html
https://docs.oracle.com/cd/E37838_01/html/E61031/modifyenc-12.html
https://docs.oracle.com/cd/E37838_01/html/E61031/modifyenc-12.html
https://docs.oracle.com/cd/E37838_01/html/E61029/confsys-17.html
https://docs.oracle.com/cd/E37838_01/html/E61029/confsys-17.html
https://docs.oracle.com/cd/E88353_01/html/E37841/fetlabel-2.html
https://docs.oracle.com/cd/E88353_01/html/E37839/getlabel-1.html
https://docs.oracle.com/cd/E37838_01/html/E61029/managetnet-11.html
https://docs.oracle.com/cd/E37838_01/html/E61029/managetnet-11.html
https://docs.oracle.com/cd/E88353_01/html/E37841/getlabel-2.html
https://docs.oracle.com/cd/E88353_01/html/E37848/getplabel-3tsol.html
https://docs.oracle.com/cd/E88353_01/html/E37848/getuserrange-3tsol.html
https://docs.oracle.com/cd/E88353_01/html/E72487/hextoalabel-8.html
https://docs.oracle.com/cd/E37838_01/html/E61029/commontasks-46.html
https://docs.oracle.com/cd/E37838_01/html/E61029/commontasks-46.html
https://docs.oracle.com/cd/E88353_01/html/E72487/labelcfg-8.html
https://docs.oracle.com/cd/E88353_01/html/E37852/label-encodings-5.html

label_to_str(3TSOL)
Converts labels to human-readable strings

labels(7)
Describes label attributes

m_label(3TSOL)
Allocates and frees resources for a new label

plabel(1)
Gets the label of a process

setlabel(1)
Relabels the selected item. Requires the solaris.label.file.downgrade or
solaris.label.file.upgrade authorization. These authorizations are in the Object
Label Management rights profile.

str_to_label(3TSOL)
Parses human-readable strings to a label

updatehome(1)
Updates the home directory copy and link files for the current label
See How to Configure Startup Files for Users in Trusted Extensions in Trusted Extensions
Configuration and Administration.

Chapter 3
Label Man Pages

3-29

https://docs.oracle.com/cd/E88353_01/html/E37848/label-to-str-3tsol.html
https://docs.oracle.com/cd/E88353_01/html/E37853/labels-7.html
https://docs.oracle.com/cd/E88353_01/html/E37848/m-label-3tsol.html
https://docs.oracle.com/cd/E88353_01/html/E37839/plabel-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/setlabel-1.html
https://docs.oracle.com/cd/E88353_01/html/E37848/str-to-label-3tsol.html
https://docs.oracle.com/cd/E88353_01/html/E37839/updatehome-1.html
https://docs.oracle.com/cd/E37838_01/html/E61029/manageusers-11.html
https://docs.oracle.com/cd/E37838_01/html/E61029/manageusers-11.html

4
Verifying File Integrity by Using BART

About BART
BART is a file integrity scanning and reporting tool that uses cryptographic-strength
checksums and file system metadata to determine changes. BART can help you detect
security breaches or troubleshoot performance issues on a system by identifying corrupted or
unusual files. Using BART can reduce the costs of administering a network of systems by
easily and reliably reporting discrepancies in the files that are installed on deployed systems.

BART enables you to determine what file-level changes have occurred on a system, relative
to a known baseline. You use BART to create a baseline or control manifest from a fully
installed and configured system. You can then compare this baseline with a snapshot of the
system at a later time, generating a report that lists file-level changes that have occurred on
the system after it was installed.

Compliance assessments can also help you track differences in critical files over time. For
more information, see Oracle Solaris 11.4 Compliance Guide.

BART Features
BART uses simple syntax that is both powerful and flexible. The tool enables you to track file
changes on a given system over time. You can also track file differences between similar
systems. Such comparisons can help you locate corrupted or unusual files, or systems
whose software is out of date.

Additional benefits and uses of BART include the following:

• You can specify which files to monitor. For example, you can monitor local
customizations, which can assist you in reconfiguring software easily and efficiently.

• You can troubleshoot system performance issues.

BART Components
BART creates two main files, a manifest and a comparison file, or report. An optional rules
file enables you to customize the manifest and report.

BART Manifest
A manifest is a file-level snapshot of a system at a particular time. The manifest contains
information about attributes of files, which can include some uniquely identifying information,
such as a checksum. Options to the bart create command can target specific files and
directories. A rules file can provide more fine-grained filtering, as described in BART Rules
File.

4-1

https://docs.oracle.com/cd/E37838_01/html/E61020/index.html

Note:

By default, BART catalogs all ZFS file systems under the root (/) directory.
Other file system types, such as NFS or TMPFS file systems, and mounted
CD-ROMs are cataloged.

You can create a manifest of a system immediately after an initial Oracle Solaris
installation. You can also create a manifest after configuring a system to meet your
site's security policy. This type of control manifest provides you with a baseline for later
comparisons.

A baseline manifest can be used to track file integrity on the same system over time. It
can also be used as a basis for comparison with other systems. For example, you
could take a snapshot of other systems on your network and then compare those
manifests with the baseline manifest. Reported file discrepancies indicate what you
need to do to synchronize the other systems with the baseline system.

For the format of a manifest, see BART Manifest File Format. To create a manifest,
use the bart create command, as described in How to Create a Control Manifest.

BART Report
A BART report lists per-file discrepancies between two manifests. A discrepancy is a
change to any attribute for a given file that is cataloged for both manifests. Additions or
deletions of file entries are also considered discrepancies.

For a useful comparison, the two manifests must target the same file systems. You
must also create and compare the manifests with the same options and rules file.

For the format of a report, see BART Reporting. To create a report, use the bart
compare command, as described in How to Compare Manifests for the Same System
Over Time.

BART Rules File
A BART rules file is a file that you create to filter or target particular files and file
attributes for inclusion or exclusion. You then use this file when creating BART
manifests and reports. When you compare manifests, the rules file aids in flagging
discrepancies between the manifests.

Note:

When you create a manifest by using a rules file, you must use the same
rules file to create the comparison manifest. You must also use the rules file
when comparing the manifests. Otherwise, the report would list many invalid
discrepancies.

Using a rules file to monitor specific files and file attributes on a system requires
planning. Before you create a rules file, decide which files and file attributes to monitor
on the system.

Chapter 4
About BART

4-2

As a result of user error, a rules file can also contain syntax errors and other ambiguous
information. If a rules file has errors, these errors are also reported.

For the format of a rules file, see BART Rules File Format and the bart_rules(5) man page.
To create a rules file, see How to Customize a BART Report by Using a Rules File.

Using BART

Task Description For Instructions

Create a BART manifest. Generates a list of information about every file
that is installed on a system.

How to Create a Control
Manifest

Create a custom BART
manifest.

Generates a list of information about specific
files that are installed on a system.

How to Customize a Manifest

Compare BART manifests. Generates a report that compares changes to
a system over time.

Or, generates a report that compares one or
several systems to a control system.

How to Compare Manifests for
the Same System Over Time

How to Compare Manifests From
Different Systems

(Optional) Customize a BART
report.

Generates a custom BART report in one of the
following ways:

• By specifying attributes
• By using a rules file

How to Customize a BART
Report by Specifying File
Attributes

How to Customize a BART
Report by Using a Rules File

BART Security Considerations
The bart command is used to create and compare manifests. Any user can run this
command. However, users can only catalog and monitor files that they have permission to
access. So, users and most roles can usefully catalog the files in their home directory, but the
root account can catalog all files, including system files.

BART manifests and reports are readable by anyone. If BART output might contain sensitive
information, take appropriate measures to protect the output. For example, use options that
generate output files with restrictive permissions or place output files in a protected directory.

How to Create a Control Manifest
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

This procedure explains how to create a baseline, or control, manifest for comparison. Use
this type of manifest when you are installing many systems from a central image. Or, use this
type of manifest to run comparisons when you want to verify that the installations are
identical. For more information about control manifests, see BART Manifest. To understand
the format conventions, see Explanation of the BART Manifest Format.

Note:

Do not attempt to catalog networked file systems. Using BART to monitor
networked file systems consumes large resources to generate manifests of little
value.

Chapter 4
Using BART

4-3

https://docs.oracle.com/cd/E88353_01/html/E37852/bart-rules-5.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html

1. After customizing your Oracle Solaris system to your site's security
requirements, create a control manifest and redirect the output to a file.

bart create options > control-manifest

-R
Specifies the root directory for the manifest. All paths specified by the rules are
interpreted relative to this directory. All paths reported in the manifest are relative
to this directory.

-I
Accepts a list of individual files to be cataloged, either on the command line or
read from standard input.

-r
Is the name of the rules file for this manifest. A - (minus sign) argument reads the
rules file from standard input.

-n
Turns off content signatures for all regular files in the file list. This option can be
used to improve performance. Or, you can use this option if the contents of the file
list are expected to change, as in the case of system log files.

2. Examine the contents of the manifest.

For an explanation of the format, see Explanation of the BART Manifest Format.

3. Protect the manifest.

One way to protect system manifests is to place them in a directory that only the
root account can access.

mkdir /var/adm/log/bartlogs
chmod 700 /var/adm/log/bartlogs
mv control-manifest
/var/adm/log/bartlogs

Choose a meaningful name for the manifest. For example, use the system name
and date that the manifest was created, as in mach1-120313.

Example 4-1 Explanation of the BART Manifest Format

In this example, an explanation of the manifest format follows the sample output.

bart create
! Version 1.1
! HASH SHA256
! Saturday, September 07, 2013 (22:22:27)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/ D 1024 40755 user::rwx,group::r-x,mask:r-x,other:r-x
3ebc418eb5be3729ffe7e54053be2d33ee884205502c81ae9689cd8cca5b0090 0 0
.
.
.

Chapter 4
Using BART

4-4

/zone D 512 40755 user::rwx group::r-x,mask:r-x,other:r-x 3f81e892
154de3e7bdfd0d57a074c9fae0896a9e2e04bebfe5e872d273b063319e57f334 0 0
.
.
.

Each manifest consists of a header and file entries. Each file entry is a single line, depending
on the file type. For example, for each file entry in the preceding output, type F specifies a file
and type D specifies a directory. Also listed is information about size, content, user ID, group
ID, and permissions. File entries in the output are sorted by the encoded versions of the file
names to correctly handle special characters. All entries are sorted in ascending order by file
name. All nonstandard file names, such as those that contain embedded newline or tab
characters, quote the nonstandard characters before sorting.

Lines that begin with ! supply metadata about the manifest. The manifest version line
indicates the manifest specification version. The hash line indicates the hash mechanism that
was used. For more information about the SHA256 hash that is used as a checksum, see the
sha2(3EXT) man page.

The date line shows the date on which the manifest was created, in date form. See the
date(1) man page. Some lines are ignored by the manifest comparison tool. Ignored lines
include metadata, blank lines, lines that consist only of white space, and comments that
begin with #.

How to Customize a Manifest
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

You can customize a manifest in one of the following ways:

• By specifying a subtree

Specifying an individual subtree is an efficient way to monitor changes to selected,
important files, such as all files in the /etc directory.

• By specifying a file name

Specifying a file name is an efficient way of monitoring particularly sensitive files, such as
the files that configure and run a database application.

• By using a rules file

By using a rules file to create and compare manifests gives you the flexibility to specify
multiple attributes for more than one file or subtree. From the command line, you can
specify a global attribute definition that applies to all files in a manifest or report. From a
rules file, you can specify attributes that do not apply globally.

1. Determine which files to catalog and monitor.

2. Create a custom manifest by using one of the following options:

• By specifying a subtree:

bart create -R subtree
• By specifying a file name or file names:

bart create -I filename...

For example:

Chapter 4
Using BART

4-5

https://docs.oracle.com/cd/E88353_01/html/E37845/sha2-3ext.html
https://docs.oracle.com/cd/E88353_01/html/E37839/date-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html

bart create -I /etc/system /etc/passwd /etc/shadow
• By using a rules file:

bart create -r rules-file
3. Examine the contents of the manifest.

4. Save the manifest in a protected directory for future use.

For an example, see Step 3 in How to Create a Control Manifest.

Tip:

If you used a rules file, save the rules file with the manifest. For a useful
comparison, you must run the comparison with the rules file.

How to Compare Manifests for the Same System Over Time
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

By comparing manifests over time, you can locate corrupted or unusual files, detect
security breaches, and troubleshoot performance issues on a system.

1. Create a control manifest of the files to monitor on the system.

bart create -R /etc > control-manifest
2. Save the manifest in a protected directory for future use.

For an example, see Step 3 in How to Create a Control Manifest.

3. At a later time, prepare an identical manifest to the control manifest.

bart create -R /etc > test-manifest
4. Protect the second manifest.

mv test-manifest /var/adm/log/bartlogs
5. Compare the two manifests.

Use the same command-line options and rules file to compare the manifests that
you used to create them.

bart compare options
control-manifest test-manifest > bart-report

6. Examine the BART report for oddities.

Example 4-2 Tracking File Changes for the Same System Over Time

This example shows how to track the changes in the /etc directory over time. This
type of comparison enables you to locate important files on the system that have been
compromised.

• Create a control manifest.

cd /var/adm/logs/manifests
bart create -R /etc > system1.control.090713
! Version 1.1
! HASH SHA256
! Saturday, September 07, 2013 (11:11:17)

Chapter 4
Using BART

4-6

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html

Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/.cpr_config F 2236 100644 owner@:read_data/write_data/append_data/read_xattr/wr
ite_xattr/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchr
onize:allow,group@:read_data/read_xattr/read_attributes/read_acl/synchronize:all
ow,everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow
4e271c59 0 0 3ebc418eb5be3729ffe7e54053be2d33ee884205502c81ae9689cd8cca5b0090
/.login F 1429 100644 owner@:read_data/write_data/append_data/read_xattr/write_x
attr/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchronize
:allow,group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow,ev
eryone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow
4bf9d6d7 0 3 ff6251a473a53de68ce8b4036d0f569838cff107caf1dd9fd04701c48f09242e
.
.
.

• Later, create a test manifest by using the same command-line options.

bart create -R /etc > system1.test.101013
Version 1.1
! HASH SHA256
! Monday, October 10, 2013 (10:10:17)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/.cpr_config F 2236 100644 owner@:read_data/write_data/append_data/read_xattr/wr
ite_xattr/read_attributes/write_attributes/read_acl/write_acl/write_owner/synchr
onize:allow,group@:read_data/read_xattr/read_attributes/read_acl/synchronize:all
ow,everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow
4e271c59 0 0 3ebc418eb5be3729ffe7e54053be2d33ee884205502c81ae9689cd8cca5b0090
.
.
.

• Compare the manifests.

bart compare system1.control.090713 system1.test.101013
/security/audit_class
mtime 4f272f59

The output indicates that the modification time on the audit_class file has changed since
the control manifest was created. If this change is unexpected, you can investigate further.

How to Compare Manifests From Different Systems
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

By comparing manifests from different systems, you can determine if the systems are
installed identically or have been upgraded in synch. For example, if you customized your

Chapter 4
Using BART

4-7

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html

systems to a particular security target, this comparison finds any discrepancies
between the manifest that represents your security target, and the manifests from the
other systems.

1. Create a control manifest.

bart create options > control-manifest

For the options, see the bart(8) man page.

2. Save the manifest in a protected directory for future use.

For an example, see Step 3 in How to Create a Control Manifest.

3. On the test system, use the same bart options to create a manifest.

bart create options > test1-manifest
4. Save the manifest in a protected directory for future use.

5. To perform the comparison, copy the manifests to a central location.

For example:

cp control-manifest /net/test-server/var/adm/logs/bartlogs

If the test system is not an NFS-mounted system, use sftp or another reliable
means to copy the manifests to a central location.

6. Compare the manifests and redirect the output to a file.

bart compare control-manifest test1-manifest > test1.report
7. Examine the BART report for oddities.

Example 4-3 Identifying a Suspect File in the /usr/bin Directory

This example compares the contents of the /usr/bin directory on two systems.

• Create a control manifest.

bart create -R /usr/bin > control-manifest.090713
! Version 1.1
! HASH SHA256
! Saturday, September 07, 2013 (11:11:17)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/2to3 F 105 100555 owner@:read_data/read_xattr/write_xattr/execute/
read_attribut
es/write_attributes/read_acl/write_acl/write_owner/
synchronize:allow,group@:read
_data/read_xattr/execute/read_attributes/read_acl/
synchronize:allow,everyone@:re
ad_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow
4bf9d261 0
2 154de3e7bdfd0d57a074c9fae0896a9e2e04bebfe5e872d273b063319e57f334
/7z F 509220 100555 owner@:read_data/read_xattr/write_xattr/execute/
read_attribu
tes/write_attributes/read_acl/write_acl/write_owner/

Chapter 4
Using BART

4-8

https://docs.oracle.com/cd/E88353_01/html/E72487/bart-8.html

synchronize:allow,group@:rea
d_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow,everyone@:r
ead_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow 4dadc48a 0
2 3ecd418eb5be3729ffe7e54053be2d33ee884205502c81ae9689cd8cca5b0090
...

• Create an identical manifest for each system that you want to compare with the control
system.

bart create -R /usr/bin > system2-manifest.101013
! Version 1.1
! HASH SHA256
! Monday, October 10, 2013 (10:10:22)
Format:
#fname D size mode acl dirmtime uid gid
#fname P size mode acl mtime uid gid
#fname S size mode acl mtime uid gid
#fname F size mode acl mtime uid gid contents
#fname L size mode acl lnmtime uid gid dest
#fname B size mode acl mtime uid gid devnode
#fname C size mode acl mtime uid gid devnode
/2to3 F 105 100555 owner@:read_data/read_xattr/write_xattr/execute/read_attribut
es/write_attributes/read_acl/write_acl/write_owner/synchronize:allow,group@:read
_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow,everyone@:re
ad_data/read_xattr/execute/read_attributes/read_acl/synchronize:allow 4bf9d261 0
2 154de3e7bdfd0d57a074c9fae0896a9e2e04bebfe5e872d273b063319e57f334
...

• Copy the manifests to the same location.

cp control-manifest.090713 /net/system2.central/bart/manifests
• Compare the manifests.

bart compare control-manifest.090713 system2.test.101013 > system2.report
/su:
gid control:3 test:1
/ypcat:
mtime control:3fd72511 test:3fd9eb23

The output indicates that the group ID of the su file in the /usr/bin directory is not the
same as that of the control system. This information might indicate that a different version of
the software was installed on the test system. Because the GID is changed, the more likely
reason is that someone has tampered with the file.

How to Customize a BART Report by Specifying File Attributes
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

This procedure is useful to filter the output from existing manifests for specific file attributes.

1. Determine which file attributes to check.

2. Compare two manifests that contain the file attributes to be checked.

For example:

bart compare -i lnmtime,mtime control-manifest.121513 \
test-manifest.010514 > bart.report.010514

Use a comma in the command-line syntax to separate each file attribute.

Chapter 4
Using BART

4-9

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html

3. Examine the BART report for oddities.

How to Customize a BART Report by Using a Rules File
You must assume the root role. For more information, see Using Your Assigned
Administrative Rights in Securing Users and Processes in Oracle Solaris 11.4.

By using a rules file, you can customize a BART manifest for particular files and file
attributes of interest. By using different rules files on default BART manifests, you can
run different comparisons for the same manifests.

1. Determine which files and file attributes to monitor.

2. Create a rules file with the appropriate directives.

3. Create a control manifest with the rules file that you created.

bart create -r myrules1-file > control-manifest
4. Save the manifest in a protected directory for future use.

For an example, see Step 3 in How to Create a Control Manifest.

5. Create an identical manifest on a different system, at a later time, or both.

bart create -r myrules1-file > test-manifest
6. Compare the manifests by using the same rules file.

bart compare -r myrules1-file control-manifest test-manifest > bart.report
7. Examine the BART report for oddities.

Example 4-4 Using a Rules File to Customize BART Manifests and the
Comparison Report

The following rules file directs the bart create command to list all attributes of the
files in the /usr/bin directory. In addition, the rules file directs the bart compare
command to report only size and content changes in the same directory.

Check size and content changes in the /usr/bin directory.
This rules file only checks size and content changes.
See rules file example.

IGNORE all
CHECK size contents
/usr/bin

• Create a control manifest with the rules file that you created.

bart create -r usrbinrules.txt > usr_bin.control-manifest.121013
• Prepare an identical manifest whenever you want to monitor changes to

the /usr/bin directory.

bart create -r usrbinrules.txt > usr_bin.test-manifest.121113
• Compare the manifests by using the same rules file.

bart compare -r usrbinrules.txt usr_bin.control-manifest.121013 \
usr_bin.test-manifest.121113

• Examine the output of the bart compare command.

Chapter 4
Using BART

4-10

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html

/usr/bin/gunzip: add
/usr/bin/ypcat:
delete

The preceding output indicates that the /usr/bin/ypcat file was deleted, and
the /usr/bin/gunzip file was added.

BART Manifests, Rules Files, and Reports
This section describes the format of files that BART uses and creates.

BART Manifest File Format
Each manifest file entry is a single line, depending on the file type. Each entry begins with
fname, which is the name of the file. To prevent parsing problems from special characters
embedded in file names, the file names are encoded. For more information, see BART Rules
File Format.

Subsequent fields represent the following file attributes:

type
Type of file with the following possible values:

• B for a block device node

• C for a character device node

• D for a directory

• F for a file

• L for a symbolic link

• P for a pipe

• S for a socket

size
File size in bytes.

mode
Octal number that represents the permissions of the file.

acl
ACL attributes for the file. For a file with ACL attributes, this contains the output from
acltotext().

uid
Numerical user ID of the owner of this entry.

gid
Numerical group ID of the owner of this entry.

dirmtime
Last modification time, in seconds, since 00:00:00 UTC, January 1, 1970, for directories.

lnmtime
Last modification time, in seconds, since 00:00:00 UTC, January 1, 1970, for links.

Chapter 4
BART Manifests, Rules Files, and Reports

4-11

mtime
Last modification time, in seconds, since 00:00:00 UTC January 1, 1970, for files.

contents
Checksum value of the file. This attribute is only specified for regular files. If you turn
off context checking, or if checksums cannot be computed, the value of this field is -.

dest
Destination of a symbolic link.

devnode
Value of the device node. This attribute is for character device files and block device
files only.

For more information, see the bart_manifest(5) man page.

BART Rules File Format
Rules files are text files that consist of lines that specify which files are to be included
in the manifest and which file attributes are to be included in the manifest or the report.
Lines that begin with #, blank lines, and lines that contain white space are ignored by
the tool.

The input files have three types of directives:

• Subtree directive, with optional pattern matching modifiers

• CHECK directive

• IGNORE directive

Example 4-5 Rules File Format

<Global CHECK/IGNORE Directives>
<subtree1> [pattern1..]
<IGNORE/CHECK Directives for subtree1>

<subtree2> [pattern2..]
<subtree3> [pattern3..]
<subtree4> [pattern4..]
<IGNORE/CHECK Directives for subtree2, subtree3, subtree4>

Note:

All directives are read in order. Later directives can override earlier
directives.

A subtree directive must begin with an absolute pathname, followed by zero or more
pattern matching statements.

BART Rules File Attributes
The CHECK and IGNORE statements define which file attributes to track or ignore. The
metadata that begins each manifest lists the attribute keywords per file type. See
Explanation of the BART Manifest Format.

Chapter 4
BART Manifests, Rules Files, and Reports

4-12

https://docs.oracle.com/cd/E88353_01/html/E37852/bart-manifest-5.html

The all keyword indicates all file attributes.

BART Quoting Syntax
The rules file specification language that BART uses is the standard UNIX quoting syntax for
representing nonstandard file names. Embedded tab, space, newline, or special characters
are encoded in their octal forms to enable the tool to read file names. This nonuniform
quoting syntax prevents certain file names, such as those containing an embedded carriage
return, from being processed correctly in a command pipeline. The rules specification
language allows the expression of complex file name filtering criteria that would be difficult
and inefficient to describe by using shell syntax alone.

For more information, see the bart_rules(5) man page.

BART Reporting
In default mode, a BART report checks all the files installed on the system, with the exception
of modified directory timestamps (dirmtime):

CHECK all
IGNORE dirmtime

If you supply a rules file, then the global directives of CHECK all and IGNORE dirmtime, in that
order, are automatically prepended to the rules file.

BART Output
The following exit values are returned:

0
Success

1
Nonfatal error when processing files, such as permission problems

>1
Fatal error, such as an invalid command-line option

The reporting mechanism provides two types of output: verbose and programmatic:

• Verbose output is the default output and is localized and presented on multiple lines.
Verbose output is internationalized and is human-readable. When the bart compare
command compares two system manifests, a list of file differences is generated.

The structure of the output is as follows:

filename attribute control:control-val test:test-val

filename
Name of the file that differs between the control manifest and the test manifest.

attribute
Name of the file attribute that differs between the manifests that are compared. The
control-val precedes the test-val. When discrepancies for multiple attributes occur in the
same file, each difference is noted on a separate line.

Chapter 4
BART Manifests, Rules Files, and Reports

4-13

https://docs.oracle.com/cd/E88353_01/html/E37852/bart-rules-5.html

Following is an example of attribute differences for the /etc/passwd file. The
output indicates that the size, mtime, and contents attributes have changed.

/etc/passwd:
size control:74 test:81
mtime control:3c165879 test:3c165979
contents control:daca28ae0de97afd7a6b91fde8d57afa
test:84b2b32c4165887355317207b48a6ec7

• Programmatic output is generated with the -p option to the bart compare
command. This output is suitable for programmatic manipulation.

The structure of the output is as follows:

filename
attribute
control-val
test-val [attribute
control-val
test-val]*

filename
Same as the filename attribute in the default format

attribute control-val test-val
A description of the file attributes that differ between the control and test
manifests for each file

For a list of attributes that are supported by the bart command, see BART Rules File
Attributes.

For more information, see the bart(8) man page.

Chapter 4
BART Manifests, Rules Files, and Reports

4-14

https://docs.oracle.com/cd/E88353_01/html/E72487/bart-8.html

Glossary

Access Control List (ACL)
A list associated with a file that contains information about which users or groups have
permission to access or modify the file. An access control list (ACL) provides finer-grained file
security than traditional UNIX file protection provides. For example, an ACL enables you to
allow group read access to a file, while allowing only one member of that group to write to the
file.

classification
The hierarchical component of a clearance or a label. A classification indicates a hierarchical
level of security, for example, RESTRICTED or PUBLIC.

compartment
A nonhierarchical component of a label that is used with the classification component to form
a clearance or a label. A compartment represents a collection of information, such as would
be used by an engineering department or a multidisciplinary project team.

clearance
The upper limit of the set of labels at which a user can work. The lower limit is the minimum
label that is assigned by the security administrator.

label
A security identifier that is assigned to an object. The label is based on the level at which the
information in that object should be protected. Labels are defined in the label_encodings file.

label_encodings file
The label configuration file that defines the label hierarchy, the default user clearance, and
other aspects of labels.

minimum label
The lower bound of a user's labels and the lower bound of the system's labels. The minimum
label is the label of the user's processes at login. The sensitivity label that is specified in the

Glossary-1

minimum label field by the security administrator in the label_encodings file sets
the lower bound for the system.

policy
Generally, a plan or course of action that influences or determines decisions and
actions. For computer systems, policy typically means security policy. Your site's
security policy is the set of rules that define the sensitivity of the information that is
being processed and the measures that are used to protect the information from
unauthorized access. For example, security policy might require that home directories
be encrypted.

privilege

1. In general, a power or capability to perform an operation on a computer system
that is beyond the powers of a regular user. A privileged user or privileged
application is a user or application that has been granted additional rights.

2. A discrete right on a process in an Oracle Solaris system. Privileges offer a finer-
grained control of processes than does root. Privileges are defined and enforced
in the kernel. For a full description of privileges, see the privileges(7) man page.

privilege model
A stricter model of security on a computer system than the superuser model. In the
privilege model, processes require privilege to run. Administration of the system can
be divided into discrete parts that are based on the privileges that administrators have
in their processes. Privileges can be assigned to an administrator's login process. Or,
privileges can be assigned to be in effect for certain commands only.

privileged user
A user whom you have decided can perform administrative tasks at some level of
trust.

public object
A file that is owned by the root user and readable by the world, such as any file in
the /etc directory.

rights
An alternative to the all-or-nothing superuser model. User rights management and
process rights management enable an organization to divide up superuser's privileges
and assign them to users or roles. Rights in Oracle Solaris are implemented as kernel

Glossary

Glossary-2

https://docs.oracle.com/cd/E88353_01/html/E37853/privileges-7.html

privileges, authorizations, and the ability to run a process as a specific UID or GID. Rights
can be collected in a rights profile and a role.

rights profile
Also referred to as a profile. A collection of security overrides that enable regular users to
perform privileged actions.

role
A special identity for running privileged applications that only assigned users can assume.

security attributes
Overrides to security policy that enable an administrative command to succeed when the
command is run by a user other than superuser. In the superuser model, the setuid root
and setgid programs are security attributes. When these attributes are applied to a
command, the command succeeds no matter who runs the command. In the privilege model,
kernel privileges and other rights replace setuid root programs as security attributes. The
privilege model is compatible with the superuser model, in that the privilege model also
recognizes the setuid and setgid programs as security attributes.

security policy
See policy.

Glossary

Glossary-3

Index

Symbols
- (minus sign)

file permissions symbol, 1-5
file type symbol, 1-2

. (dot)
displaying hidden files, 1-9

/etc/vfstab file, 1-16
+ (plus sign)

file permissions symbol, 1-5
= (equal sign)

file permissions symbol, 1-5

Numerics
32-bit executables

protecting from compromising security, 1-8

A
absolute mode

changing file permissions, 1-5, 1-12
changing special file permissions, 1-13
description, 1-5
setting special permissions, 1-5

access
restricting by label, 3-1, 3-8
security

UFS ACLs, 1-8
ZFS file attributes, 1-7

user clearance to labeled files, 3-4
Access Control Lists (ACLs), 1-7
accessing

hardened zones, 3-7
labeled file systems, 3-4
labeled NFS mounts, 3-4
processes whose label you dominate, 3-4

account-policy SMF stencil, 1-5, 3-11
ACL

description, 1-7, 1-8
format of entries, 1-8

aclinherit property, 2-5
ACLs

access privileges, 2-2

ACLs (continued)
ACL inheritance, 2-4, 2-12
aclinherit property, 2-5
description, 2-1
description of entries, 2-2
entry types, 2-2
formats, 2-1
interaction with permission bits, 2-9
rights required for chmod, 2-12
rights required to change, 2-9
setting on ZFS files

compact output, 2-8
description, 2-6
verbose mode, 2-7
verbose output, 2-8

trivial ACLs on ZFS files
modifying, 2-8

ADMIN_HIGH label, 3-1
ADMIN_LOW label, 3-1
administering

file permissions, 1-9
labeled file systems, 3-20

administrators
labeling sensitive data, 3-9

appendonly ZFS file attribute, 1-7
archiving

labeled file systems, 3-4, 3-20
labeled files, 3-4, 3-20

assigning
clearances

in policy.conf file, 3-11
to SMF services, 3-11
to specific users, 3-13

labels to file systems, 3-13
minimum label, 3-11
user clearance, 3-11

attributes
keyword in BART, 4-3

audit files
labeled, 3-8, 3-19

auditing
labeled file systems, 3-4, 3-13, 3-19

authorizations
solaris.admin.edit/etc/vfstab, 1-16

Index-1

B
backing up

labeled files, 3-20
BART

components, 4-1
overview, 4-1
programmatic output, 4-13
security considerations, 4-3
task map, 4-3
verbose output, 4-13

bart create command, 4-1, 4-3
Basic Audit Reporting Tool, 4-1

C
canmount=off

labeled NFS mounts, 3-4
changing

directory permissions across symbolic links,
1-14

file label, 3-4
file ownership, 1-10
file permissions

absolute mode, 1-12
special, 1-13
symbolic mode, 1-11

file permissions across symbolic links, 1-14
group ownership of file, 1-11
permissions across symbolic links, 1-14
special file permissions, 1-13

chgrp command
description, 1-1
syntax, 1-11

chmod command
changing special permissions, 1-13
description, 1-1
preventing mode change across symbolic

links, 1-14
rights required, 2-9
setting ACL inheritance, 2-12
syntax, 1-13, 1-14

chown command
description, 1-1
rights required, 2-9

CIFS
file attributes for security, 1-7

classifications
defined, 3-2
described, 3-1
displaying, 3-5
label relationships, 3-3
naming, 3-2
numbers of, 3-2

clearance value
encodings file, 3-11

clearances
access to labeled file systems, 3-4
and labels, 3-1
assigning

to SMF services, 3-11
to specific users, 3-13

configuring default, 3-11
current process and, 3-5
displaying, 3-5
process labels, 3-1

commands
file protection commands, 1-1

compact output display of ACL information, 2-8
compartment bits, 3-2
compartments

defined, 3-2
described, 3-1
disjoint example, 3-23
label relationships, 3-3
naming, 3-2
overlapping, 3-3
properties, 3-23
re-using bits, 3-23

compliance encodings file
disjoint labels, 3-22
testing, 3-22

components
BART, 4-1
labels, of, 3-2

configuring
auditing of labeled file systems, 3-13
default clearance, 3-11
hardened labeled file systems, 3-16
immutable zone, 3-16
label policy, 3-11
labeled file systems, 3-13
labeled zones, 3-9
labels, 3-1, 3-9

conflicts compartment property, 3-23
control manifests (BART), 4-1
core files

labeled, 3-8
creating

encodings file, 3-11
label policy, 3-11, 3-23
labeled audit trail, 3-19

customized label policy, 3-6
customized labels

installing as a package, 3-8
customizing

BART manifests, 4-5
BART reports, 4-10
label policy, 3-6, 3-8

Index

Index-2

D
data

identifying for labeling, 3-6
labeling sensitive data, 3-9

databases
labeling $ORACLE_HOME directory, 3-8

default encodings file
testing, 3-21

default label policy, 3-5
defaults

umask value, 1-5
defining

labels and label policy, 3-11
directories, 1-1

changing permissions across symbolic links,
1-14

displaying files and related information, 1-1,
1-9

labeled, 3-8
permissions

defaults, 1-5
description, 1-3

public directories, 1-4
disabling

32-bit executables that compromise security,
1-8

disjoint labels
compliance encodings file and, 3-22
defined, 3-3
re-using compartment bits, 3-23

displaying
ACL information in compact format, 2-8
ACL information in verbose format, 2-8
classification levels, 3-5
clearance, 3-5
compliance label policy, 3-22
encodings files, 3-21
file information, 1-9
file permissions, 1-9
files and related information, 1-1
label list, 3-21
label policy details, 3-5, 3-23
list of labels, 3-5
upper bound of labels, 3-13

dot (.)
displaying hidden files, 1-9

downgrading
file label, 3-4

DTrace probes
labeled, 3-8

E
encodings file

clearance value, 3-5
label policy, 3-5
labels, 3-1

encodings files
compliance, 3-22
creating, 3-11
default, 3-21
installing customized, 3-8
testing, 3-21
viewing contents, 3-21

equal sign (=)
file permissions symbol, 1-5

executable stacks
protecting against 32-bit processes, 1-8

execute permissions
symbolic mode, 1-5

F
file attributes

CIFS security, 1-7
ZFS security, 1-7

file permission modes
absolute mode, 1-5
symbolic mode, 1-5

file system
setting

ACL inheritance on ZFS files (verbose
mode), 2-12

ACLs on ZFS files, 2-6–2-8
trivial ACL on ZFS files

modifying, 2-8
file systems

access to labeled NFS mounts, 3-4
assigning labels to, 3-13
configuring as labeled, 3-13
explicitly labeled, 3-4
labeled audit trail, 3-19
labeled NFS mounts, 3-4
labeled shares, 3-4
multilevel, 3-4
no override for access by label, 3-4
tmpfs, 1-16
TMPFS security, 1-4

file_labeling package, 3-5, 3-11
files

/etc/vfstab, 1-16
assigning label to, 3-13
BART manifests, 4-11
changing group ownership, 1-11
changing ownership, 1-1, 1-10

Index

Index-3

files (continued)
changing permissions across symbolic links,

1-14
changing special file permissions, 1-13
configuring as labeled, 3-13
displaying file information, 1-9
displaying hidden files, 1-9
displaying information about, 1-1
file types, 1-2
finding files with setuidpermissions, 1-15
manifests (BART), 4-11
ownership

and setgid permission, 1-4
and setuid permission, 1-4

permissions
absolute mode, 1-5, 1-12
changing, 1-1, 1-5, 1-11
defaults, 1-5
description, 1-3
setgid, 1-4
setuid, 1-4
sticky bit, 1-4
symbolic mode, 1-5, 1-11
umask value, 1-5

protecting with UNIX permissions, 1-9
recursively changing permissions, 1-14
security

changing ownership, 1-10
changing permissions, 1-5, 1-11
directory permissions, 1-3
displaying file information, 1-1, 1-9
file permissions, 1-3
special file permissions, 1-5
umask default, 1-5
UNIX permissions, 1-1
user classes, 1-2

special files, 1-3
symbols of file type, 1-2

find command
finding files with setuidpermissions, 1-15

finding
files of specified label, 3-13
files with setuid permissions, 1-15

fixed configuration
labeled file systems and, 3-16

G
groups

changing file ownership, 1-11

H
hardening

labeled file systems, 3-7
labeled zones, 3-17
removing network interfaces, 3-7
zones, 3-7

hardening labeled file systems
procedures, 3-16

hierarchical labels, 3-3
hierarchy

labels, of, 3-2

I
identifying

sensitive data, 3-6
sensitive services, 3-6

immutable global zone
labeled file systems and, 3-16

immutable ZFS file attribute, 1-7
immutable zones

hardening configuration, 3-7
labeled file systems and, 3-8

installing
customized encodings file, 3-8
customized labels, 3-8
encodings file, 3-8
file_labeling package, 3-11
label package, 3-11
labels, 3-8, 3-11

internal representation
labels, of, 3-3

K
keywords

attribute in BART, 4-3

L
label aliases, 3-3
label configuration steps

additional, 3-7
label dominance

described, 3-1
label policy

compliance version, 3-22
configuring, 3-11
creating, 3-11, 3-23
customized, 3-6
default, 3-5
described, 3-1
displaying, 3-5

Index

Index-4

label policy (continued)
encodings file, 3-5
labelcfg command, 3-5
levels, 3-5
other security measures, and, 3-6
planning, 3-4, 3-6
protecting sensitive data, 3-4
testing, 3-21

labelcfg -e command
installing encodings file, 3-8

labelcfg command, 3-11
displaying label policy, 3-5

labeld:clearance service, 3-1
labeled file systems

archiving, 3-4
auditing, 3-4, 3-19
configuring, 3-13
fixed configuration, 3-16
hardening, 3-16
immutable global zone and, 3-16
isolating in a zone, 3-17
maintaining, 3-20
sharing, 3-13
zones and, 3-17

labeled files
configuring, 3-13

labels
ADMIN_HIGH, 3-1
ADMIN_LOW, 3-1
archiving labeled files, 3-20
assigning to file systems, 3-13
audit files and, 3-8
audit trail, 3-19
backing up labeled files, 3-20
classification numbers and compartment bits,

3-2
components, 3-2
configuration steps, 3-9
configuring in Oracle Solaris, 3-9
core files and, 3-8
creating, 3-11
data loss protection and, 3-8
database data and, 3-8
defined, 3-1
detailed listing, 3-22
directories and, 3-8
displaying default policy, 3-5
dominance, 3-3
dominance and translation, 3-3
domination, 3-1
DTrace probes and, 3-8
encodings file, 3-11
file systems, 3-13
files, on, 3-4
finding files of specified label, 3-13

labels (continued)
hardening configuration, 3-7
hierarchy, 3-2
how they work, 3-1
immutable configuration and, 3-8
initial setup, 3-4, 3-11
installing, 3-11
internal representation, 3-3
level of trust, 3-2
listing, 3-21
logins and, 3-1
lower bound, 3-1
man pages quick reference, 3-28
NFS mounts, on, 3-4
NFS-mounted file systems, 3-13
overview, 3-1
pkg:/system/file_labeling, 3-5
planning, 3-4
policy, 3-1, 3-4
protecting sensitive data, 3-4
relationships, 3-3
sample definitions, 3-2
sandbox environment, 3-1
sensitive data, 3-9
shared file systems, on, 3-4
testing, 3-11
textual strings, 3-3
transferring labeled files, 3-20
translating between representations, 3-3
upper bound, 3-1
ZFS dataset and, 3-13

labels package
installing, 3-11
installing customized, 3-8

level of trust
labels, 3-2

log files
BART

programmatic output, 4-13
verbose output, 4-13

logins
labels and, 3-1

lower bound of labels, 3-1

M
maintaining

labeled file systems, 3-20
Maintenance and Repair rights profile, 1-16
man pages

quick reference for label administrators, 3-28
managing

file permissions, 1-9
manifests, 4-1

control, 4-1

Index

Index-5

manifests (continued)
customizing, 4-5
file format, 4-11
test in BART, 4-2

min_label value
displaying, 3-5
encodings file, 3-11
planning, 3-11

minus sign (-)
file permissions symbol, 1-5
symbol of file type, 1-2

monitoring
memory usage, 1-16

N
naming

classifications and compartments, 3-2
network interfaces

removing to prevent leakage, 3-7
new features

in this release, 1-1
NFS-mounted file systems

setting label, 3-13
verifying label, 3-13

NFSv4 ACLs
description, 2-2
inheritance, 2-4
model, 2-1
property, 2-5

nounlink ZFS file attribute, 1-7

O
Object Access Management rights profile

ACLs and, 2-9
Object Label Management rights profile, 3-1
overlapping compartments, 3-3
ownership of files

changing, 1-1, 1-10
changing group ownership, 1-11
UFS ACLs and, 1-8
ZFS ACLs and, 1-7

P
packages

installing customized labels, 3-8
permissions

changing file permissions
absolute mode, 1-5, 1-12
chmod command, 1-1
symbolic mode, 1-5, 1-11

defaults, 1-5

permissions (continued)
directory permissions, 1-3
file permissions

absolute mode, 1-5, 1-12
changing, 1-5, 1-11
description, 1-3
special permissions, 1-4, 1-5
symbolic mode, 1-5, 1-11

finding files with setuidpermissions, 1-15
setgid permissions

absolute mode, 1-5, 1-13
description, 1-4
symbolic mode, 1-5

setuid permissions
absolute mode, 1-5, 1-13
description, 1-4
security risks, 1-4
symbolic mode, 1-5

special file permissions, 1-3–1-5
sticky bit, 1-4
UFS ACLs and, 1-8
umask value, 1-5
user classes and, 1-2
ZFS file attributes and, 1-7

pkg:/system/file_labeling package, 3-5, 3-11
planning

data loss protection, 3-4
label policy, 3-6
labeling sensitive data, 3-4

plus sign (+)
file permissions symbol, 1-5

preventing
data leakage, 3-7
labeled mount failures, 3-4
programs from compromising system, 1-15
tmpfs filling up, 1-16

privileges
changing labels, 3-3
no override for access by label, 3-4

process clearances, 3-1
protecting

32-bit executables from compromising
security, 1-8

system from risky programs, 1-15
protecting files

user procedures, 1-9
with UFS ACLs, 1-8
with UNIX permissions, 1-1, 1-9
ZFS file attributes and, 1-7

protecting sensitive data
with labels, 3-4

public directories
sticky bit and, 1-4

Index

Index-6

Q
quoting syntax in BART, 4-13

R
read permissions

symbolic mode, 1-5
readonly CIFS file attribute, 1-7
recursive changing of permissions, 1-14
relationships between labels, 3-3
reporting tool, 4-2
reports (BART), 4-1
restricting

access to hardened zones, 3-7
access to labeled data, 3-4
size of tmpfs file system, 1-16

rights profiles
changing ACLs, 2-9
Maintenance and Repair, 1-16
Object Label Management, 3-1

rstchown system variable, 1-10
rules file (BART), 4-2
rules file attributes, 4-12
rules file format (BART), 4-12
rules file specification language, 4-13

S
sample encodings files

viewing and testing, 3-21
sandbox

labels and, 3-1
security

BART considerations, 4-3
protecting systems from risky programs, 1-15
ZFS file attributes, 1-7

sensitive ZFS file attribute, 1-7
services

identifying for labeling, 3-6
setgid permissions

absolute mode, 1-5, 1-13
description, 1-4
security risks, 1-4
symbolic mode, 1-5

setting
ACL inheritance, 2-12
ACLs on ZFS files

compact output, 2-8
description, 2-6
verbose mode, 2-7
verbose output, 2-8

setuid permissions
absolute mode, 1-5, 1-13

setuid permissions (continued)
description, 1-4
finding files with permissions set, 1-15
security risks, 1-4
symbolic mode, 1-5

shared file systems
labeled, 3-4

sharing
labeled file systems, 3-13

Solaris ACLs, 2-1, 2-4, 2-5
solaris.admin.edit/etc/vfstabauthorization,

1-16
special permissions

setgid permissions, 1-4
setuid permissions, 1-4
sticky bit, 1-4

sticky bit permissions
absolute mode, 1-5, 1-13
description, 1-4
symbolic mode, 1-5

subcompartments compartment property, 3-23
symbolic links

changing permissions on targets of, 1-14
file permissions, 1-3

symbolic mode
changing file permissions, 1-5, 1-11
description, 1-5

sys_trans_label privilege, 3-3
system configuration

enforcing fixed, 3-16
labels and immutable configuration, 3-8

system security
protecting from risky programs, 1-15
UFS ACLs, 1-8
ZFS file attributes, 1-7

system variables
rstchown, 1-10

systems
protecting from risky programs, 1-15

T
task maps

Using BART task map, 4-3
test manifests

BART, 4-2
testing

compliance encodings file, 3-22
default encodings file, 3-21
encodings files, 3-21

textual representation
labels, of, 3-3

tmpfs file system
limiting size, 1-16

Index

Index-7

tmpfs file system (continued)
on files, 1-16
security, 1-4

transferring
labeled file systems, 3-20
labeled files, 3-20

translating
between label representations, 3-3

trivial ACLs, 2-8
troubleshooting

finding files with setuid permissions, 1-15

U
umask value

and file creation, 1-5
typical values, 1-5

UNIX file permissions, 1-1
upgrading

file label, 3-4
upper bound of labels

defined, 3-1
viewing, 3-13

user classes of files, 1-2
user clearance

displaying initial, 3-5
user clearances, 3-1
user procedures

protecting files, 1-9
users

clearances, 3-1, 3-11
restricting access to labeled data, 3-4

using
BART, 4-3
file permissions, 1-9

V
variables

rstchown, 1-10
verbose output display of ACL information, 2-8
verifying

clearance on commands, 3-19
label policy, 3-13
labeld:clearance serviceenabled, 3-11
labels on file system, 3-13

W
write permissions

symbolic mode, 1-5

Z
ZFS datasets

labeled file systems and, 3-13
labeled files and, 3-4

ZFS file attributes, 1-7
ZFS File System Management rights profile

ACLs and, 2-9
zfs set command

rights required, 2-9
zones

hardening, 3-7
labeled file systems and, 3-8, 3-17

Index

Index-8

	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	1 Controlling Access to Files
	What's New in Files and File Systems in Oracle Solaris 11.4
	Using UNIX Permissions to Protect Files
	Commands for Viewing and Securing Files
	File and Directory Ownership
	UNIX File Permissions
	Special File Permissions Using setuid, setgid and Sticky Bit
	setuid Permission
	setgid Permission
	Sticky Bit

	Default umask Value
	File Permission Modes

	Using File Attributes to Add Security to ZFS Files
	Using Access Control Lists to Protect UFS Files
	Protecting Executable Files From Compromising Security
	Protecting Files
	Protecting Files With UNIX Permissions
	How to Display File Information
	How to Change the Owner of a File
	How to Change Group Ownership of a File
	How to Change File Permissions in Symbolic Mode
	How to Change File Permissions in Absolute Mode
	How to Change Special File Permissions in Absolute Mode
	How to Change File Permissions Across Symbolic Links
	Protecting Against Programs With Security Risk
	How to Find Files With Special File Permissions

	Preventing tmpfs File Systems From Filling Up the System
	How to Limit the Size of the tmpfs File System

	2 Using ACLs and Attributes to Protect Oracle Solaris ZFS Files
	Oracle Solaris ACL Model
	ACL Formats
	ACL Entry Descriptions
	ZFS ACL Sets

	ACL Inheritance
	ACL Properties

	Setting ACLs on ZFS Files
	Command Syntax for Setting ACLs
	Displaying ACL Information

	Modifying ACLs on ZFS Files
	ACL Interaction With Permission Bits

	Setting ACL Inheritance on ZFS Files
	Granting ACLs That Are Inherited by Files
	Granting ACLs That Are Inherited by Both Files and Directories
	Modifying ACL Inheritance With the ACL Inherit Mode
	ACL passthrough Inherit Mode
	ACL Inherit passthrough-x Mode
	ACL Inherit passthrough-mode-preserve Mode

	Applying Special Attributes to ZFS Files
	Applying Immutability to a ZFS File
	Preventing Accidental Deletions With the nounlink Attribute
	Applying Read-Only Access to a ZFS File
	Displaying and Changing ZFS File Attributes

	3 Labeling Files for Data Loss Protection
	About Labeling in Oracle Solaris
	Label Policy
	Labels and Clearances
	Label Components
	Label Relationships

	Privileges for Translating Labels
	Labeled Files and Multilevel File Systems
	Sharing and Mounting Labeled File Systems

	Protect Data With a Label Policy
	Default Label Policy
	Displaying Label and Policy Information
	Customizing a Label Policy

	About Hardening Labeled File Systems
	About Installing a Customized Labels Package
	Ideas for Using Labeled File Systems for Data Loss Protection
	Configuring Labels on an Oracle Solaris System
	Overall Process for Configuring Labeling
	Initially Configuring Labels in Oracle Solaris
	How to Install Labels in Oracle Solaris
	How to Configure Your Label Policy
	How to Assign a Label to a File System

	Further Hardening Labeled File Systems
	How to Enforce a Fixed Configuration for a Labeled File System
	How to Isolate a Labeled File System in a Zone
	How to Create a Labeled Audit Trail

	Maintaining Labeled File Systems
	Viewing and Testing Sample Label Encodings Files
	Testing Labeling by Using the Default Encodings File
	Testing Labeling by Using the Compliance Encodings File

	Example - Label Encodings File With Reused Compartment Bits
	Label Man Pages

	4 Verifying File Integrity by Using BART
	About BART
	BART Features
	BART Components
	BART Manifest
	BART Report
	BART Rules File

	Using BART
	BART Security Considerations
	How to Create a Control Manifest
	How to Customize a Manifest
	How to Compare Manifests for the Same System Over Time
	How to Compare Manifests From Different Systems
	How to Customize a BART Report by Specifying File Attributes
	How to Customize a BART Report by Using a Rules File

	BART Manifests, Rules Files, and Reports
	BART Manifest File Format
	BART Rules File Format
	BART Rules File Attributes
	BART Quoting Syntax

	BART Reporting
	BART Output

	Glossary
	Access Control List (ACL)
	classification
	compartment
	clearance
	label
	label_encodings file
	minimum label
	policy
	privilege
	privilege model
	privileged user
	public object
	rights
	rights profile
	role
	security attributes
	security policy

	Index

