
Using Puppet to Perform Configuration
Management in Oracle Solaris 11.4

E72062-02
August 2023

Using Puppet to Perform Configuration Management in Oracle Solaris 11.4,

E72062-02

Copyright © 2016, 2023, Oracle and/or its affiliates.

Primary Author: Cathleen Reiher, Alta Elstad, Sharon Veach

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Copyright © 2016, 2023, Oracle et/ou ses affiliés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont
concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf stipulation expresse de votre
contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et
par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le
désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par
la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle
Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par
écrit.

Si ce logiciel, la documentation du logiciel, les données (telles que définies dans la réglementation "Federal
Acquisition Regulation") ou la documentation qui l'accompagne sont livrés sous licence au Gouvernement des Etats-
Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le compte du Gouvernement des Etats-Unis, la
notice suivante s'applique :

UTILISATEURS DE FIN DU GOUVERNEMENT É.-U. : programmes Oracle (y compris tout système d'exploitation,
logiciel intégré, tout programme intégré, installé ou activé sur le matériel livré et les modifications de tels programmes)
et documentation sur l'ordinateur d'Oracle ou autres logiciels OracleLes données fournies aux utilisateurs finaux du
gouvernement des États-Unis ou auxquelles ils ont accès sont des "logiciels informatiques commerciaux", des
"documents sur les logiciels informatiques commerciaux" ou des "données relatives aux droits limités" conformément
au règlement fédéral sur l'acquisition applicable et aux règlements supplémentaires propres à l'organisme. À ce titre,
l'utilisation, la reproduction, la duplication, la publication, l'affichage, la divulgation, la modification, la préparation des
œuvres dérivées et/ou l'adaptation des i) programmes Oracle (y compris tout système d'exploitation, logiciel intégré,
tout programme intégré, installé, ou activé sur le matériel livré et les modifications de ces programmes), ii) la
documentation informatique d'Oracle et/ou iii) d'autres données d'Oracle, sont assujetties aux droits et aux limitations
spécifiés dans la licence contenue dans le contrat applicable. Les conditions régissant l'utilisation par le
gouvernement des États-Unis des services en nuage d'Oracle sont définies par le contrat applicable à ces services.
Aucun autre droit n'est accordé au gouvernement américain.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des
informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque,
notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou
matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de
secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions
optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l'utilisation de ce logiciel ou matériel pour des applications dangereuses.

Oracle®, Java, et MySQL sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom
mentionné peut être une marque appartenant à un autre propriétaire qu'Oracle.

Intel et Intel Inside sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont
utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Epyc, et le
logo AMD sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée
de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant
accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute
responsabilité et excluent toute garantie expresse ou implicite quant aux contenus, produits ou services émanant de
tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses
affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages
causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée
dans un contrat entre vous et Oracle.

Contents

 Using This Documentation

Product Documentation Library vi

Feedback vi

1 Using Puppet to Manage System Configuration in Oracle Solaris

What's New in Puppet in Oracle Solaris 11.4 1-1

Puppet Features in Oracle Solaris 1-2

Puppet Utilities 1-2

Puppet Modules 1-2

Puppet SMF Services 1-3

Puppet Configuration File 1-3

Puppet Resources and Resource Types 1-3

Puppet Providers 1-4

Puppet Command-Line Interface 1-4

How Puppet Works 1-5

Puppet Agent-Server Model 1-6

The Puppet Server 1-6

Puppet Agents 1-6

Puppet Encryption and Communication Methods 1-7

Puppet Manifests 1-7

Puppet Privileges and Authorizations 1-8

2 Getting Started With Puppet in Oracle Solaris

Installing Puppet 2-1

Preparing to Install Puppet 2-1

Install Puppet 2-2

Configuring the Puppet Agents 2-2

How to Configure Puppet Agents 2-3

Troubleshooting Puppet Issues in Oracle Solaris 2-5

iv

3 Working With Puppet Resources and Resource Types in Oracle
Solaris

Puppet Resources and Resource Types 3-1

Declaring Puppet Resources 3-4

Viewing and Modifying Puppet Resources by Using the Command Line 3-5

Viewing the State of a Puppet Resource 3-5

Modifying the State of a Puppet Resource 3-6

Gathering Information About a System by Using Facter 3-6

4 Writing Puppet Manifests, Classes, and Modules in Oracle Solaris

Writing a Puppet Site Manifest 4-1

How to Write a Puppet Site Manifest 4-1

Writing Puppet Manifests That Specify Node-Specific Code 4-3

Writing Puppet Classes 4-4

Writing Puppet Modules 4-6

5 Using Puppet to Manage Oracle Solaris System Configuration

Puppet Configuration Management Workflow 5-1

Using Puppet to Configure Packaging 5-1

Using Puppet to Configure ZFS File Systems 5-4

Using Puppet to Configure Networking Parameters 5-5

Using Puppet to Configure Naming Services 5-6

Using Puppet to Configure Oracle Solaris Zones 5-6

Index

v

Using This Documentation

Product Documentation Library
Documentation and resources for this product and related products are available at
http://www.oracle.com/pls/topic/lookup?ctx=E37838-01.

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/
docfeedback.

Using This Documentation

vi

http://www.oracle.com/pls/topic/lookup?ctx=E37838-01
http://www.oracle.com/goto/docfeedback
http://www.oracle.com/goto/docfeedback

1
Using Puppet to Manage System
Configuration in Oracle Solaris

What's New in Puppet in Oracle Solaris 11.4
Puppet 7.21.0. Oracle Solaris 11.4 Support Repository Update (SRU) 57 introduces the
Puppet 7.21.0 software.

When Puppet 6.26 is installed on a system, an update to Oracle Solaris 11.4 SRU 57
replaces the Puppet 6.26 Agent with the Puppet 7.21.0 Agent.

Note:

Future Oracle Solaris 11.4 SRUs might include updated versions of Puppet 7.

Earlier versions of Puppet have been included with the following Oracle Solaris 11 software:

• Oracle Solaris 11.4 SRU 45 through SRU 56 supports the Puppet 6.26.0 Agent
component.

• Oracle Solaris 11.4 through SRU 44 supports the Puppet 5.5 Master and Puppet Agent
components.

• Oracle Solaris 11.3 supports the Puppet 3.6 software.

Note:

Do not install a different version of the Puppet software on your system.

For information about alternate ways to run the Puppet Server on a system that runs at least
Oracle Solaris 11.4 SRU 57, see https://puppet.com/docs/puppet/7/puppet_index.html.

While the Puppet software is updated automatically, you must update the Puppet
configuration on your system manually. For information about maintaining and updating your
Puppet configuration, see Puppet Documentation.

The Puppet web site does not include information about updating Oracle Solaris SMF service
properties. Updating Puppet software on an Oracle Solaris 11.4 system migrates existing
SMF service property values automatically. However, you must remove obsolete property
values and update property values that require changes manually. See Configuring the
Puppet Agents.

1-1

https://puppet.com/docs/puppet/7/puppet_index.html
https://puppet.com/docs/puppet/6/puppet_index.html
https://puppet.com/docs/puppet/5.5/puppet_index.html
https://puppet.com/docs/puppet/7/puppet_index.html
https://puppet.com/docs

Puppet Features in Oracle Solaris
An Oracle Solaris installation does not include the Puppet software by default. So, you
must install the Puppet Image Packaging System (IPS) package on any node that you
want to run the Puppet Agent. See Installing Puppet.

This section introduces the Puppet features and functionality that are available with
Oracle Solaris 11.4.

Puppet Utilities
The Puppet package includes the following utilities:

Facter
Puppet uses Facter to discover facts about a particular system, such as OS type,
CPUs, or memory size. Facter gathers and sends system information to the Puppet
Server, which compiles the information into catalogs. A catalog describes the system
state for a specific set of resources and lists all of the resources and resource
dependencies to manage. See Gathering Information About a System by Using
Facter and Facter documentation on the Puppet web site.

Hiera
Hiera is a cross-platform, key-value lookup tool that you can use to manage
configuration data. Using Hiera to maintain site-specific data rather than using a
Puppet manifest avoids repetition and enables you to create a more generic type of
manifest that you can reuse for multiple systems.
Puppet classes can request required data and use Hiera to act as a site-wide
configuration file. When Hiera is loaded, Puppet uses this Hiera configuration file
instead of the /etc/puppetlabs/puppet/hiera.yaml global file. See Hiera
documentation on the Puppet web site.

Puppet Modules
When you install the Puppet IPS package, you get the core Puppet modules plus other
modules that are specific to the Oracle Solaris release. For example, you get modules
to support Oracle Solaris ZFS, networking, services, and zones.

Use the following command to list modules that are installed on this system:

$ puppet module list

Use the following command to list modules that are available, as shown in Searching
modules from the command line:

$ puppet module search search_term

Use the following methods to get detailed information about a specific Puppet module:

• For installed modules, see the README file for that module at the path given by the
puppet module list command.

$ puppet module list
/usr/puppetlabs/puppet/modules
├── oracle-solaris_providers (v2.0.1)
├── puppetlabs-concat (v4.1.1)

Chapter 1
Puppet Features in Oracle Solaris

1-2

https://docs.puppet.com/facter/
https://docs.puppet.com/hiera/
https://docs.puppet.com/hiera/
https://puppet.com/docs/puppet/7/modules_installing.html#searching-modules-from-the-command-line
https://puppet.com/docs/puppet/7/modules_installing.html#searching-modules-from-the-command-line

├── puppetlabs-inifile (v2.1.0)
├── puppetlabs-ntp (v7.0.0)
├── puppetlabs-rsync (v1.0.0)
└── puppetlabs-stdlib (v4.23.0)
$ ls /usr/puppetlabs/puppet/modules
concat/ ntp/ solaris_providers/ stdlib/
inifile/ rsync/
$ less /usr/puppetlabs/puppet/modules/solaris_providers/README.md
solaris_providers Module for Puppet
...

• Search for the module on Puppet web sites. For example, select a module name from the
Puppet Supported Modules Compatibility Matrix. Select Solaris in the Operating System
field at the top of the page and select the Search button.

Puppet SMF Services
The Puppet software package installs the following Puppet SMF services:

$ svcs puppet
STATE STIME FMRI
disabled 8:17:58 svc:/application/puppet:agent
disabled 8:17:58 svc:/application/puppet:main
disabled 8:17:58 svc:/application/puppet:user
online 8:36:42 svc:/application/puppet:upgrade

For information about enabling and using these services, see Configuring the Puppet Agents.

Puppet Configuration File
The /etc/puppetlabs/puppet/puppet.conf Puppet Agent configuration file defines
many system resources and default values.

Puppet uses svc:/application/puppet service property values to generate the
puppet.conf configuration file. Only use the SMF commands to apply property value
changes you want to the puppet.conf file. See Managing System Services in Oracle
Solaris 11.4 and the svccfg(8) man page.

Puppet Resources and Resource Types
Puppet uses resources to represent the desired state of a system configuration. For example,
a resource might specify when and how to run services, specify which software packages to
install, and specify certain components of networking and naming service configuration.

Each resource has a resource type that is defined by a name and a set of attributes (or
parameters) and values that you can specify in a Puppet manifest. The parameters and their
values depend on the configuration type being managed.

The following example puppet describe command obtains information about the zone
resource:

$ puppet describe zone

zone
====
Manages Solaris zones.
...

Chapter 1
Puppet Features in Oracle Solaris

1-3

https://forge.puppet.com/supported
https://docs.oracle.com/cd/E37838_01/html/E60998/index.html
https://docs.oracle.com/cd/E37838_01/html/E60998/index.html
https://docs.oracle.com/cd/E88353_01/html/E72487/svccfg-8.html

See Working With Puppet Resources and Resource Types in Oracle Solaris.

Puppet Providers
Puppet providers translate the general definitions for a resource into the actions that
are required to implement that resource on a specific platform. These cross-platform
capabilities are enabled by the Puppet Resource Abstraction Layer (RAL), which
translates configuration settings into the platform-specific commands that are required
to apply the specified configuration.

For example, to install a software package on an Oracle Solaris system, Puppet uses
IPS, while on an Oracle Linux system, Puppet uses RPM.

The following are some of the key providers that are supported in Oracle Solaris:

• IPS package installation, commands, publishers, facets, and mediators

• Boot environments

• Datalink properties

• Aggregations

• Etherstubs

• IP network interfaces

• Naming services

• Oracle Solaris zones, Oracle Solaris kernel zones, and Zones On Shared Storage
(ZOSS) backing stores

• SMF administrative commands

• SMF properties

• TCP/IP tunables

• Virtual Local Area Networks (VLANs)

• Virtual Network Interface Cards (VNICs)

• ZFS dataset creation and property manipulation, including ZFS pool creation and
deletion for most virtual device types

See also Puppet Resources and Resource Types.

Puppet Command-Line Interface
Use the Puppet command-line interface (CLI), puppet, to perform tasks such as the
following:

• Initial handshake between the Puppet Server and Puppet Agent nodes

• Trial run for testing purposes

• Manage certificates

• Generate and manage reports

• Access plug-ins

• Manage resources

• Display status

Chapter 1
Puppet Features in Oracle Solaris

1-4

• Troubleshoot and debug Puppet issues

The puppet command has the following syntax:

puppet subcommand [options] action [options]

The puppet help command lists and describes all its subcommands.

The puppet help subcommand command provides usage information about the specified
subcommand.

The puppet help subcommand action command provides usage information about the
specified subcommand and its specified action.

How Puppet Works
Puppet enables you to define the software and configuration that a system requires and then
maintain that specified state. The following graphic shows the Puppet agent-server
architecture where a Puppet Server (server) node controls the configuration information for a
fleet of managed nodes that run the Puppet Agent (agent).

The Puppet Server controls the configuration information. Each Puppet Agent-managed node
configures itself by requesting its own configuration from the server.

Puppet uses the Facter utility, which is included in the Puppet software package, to discover
information about a system. See Gathering Information About a System by Using Facter.

The server uses manifests to describe the resources to configure for each agent-managed
node. Also, you can create a site manifest to define a global configuration that applies to all of
the agent-managed nodes.

Typically, agent-managed nodes run the Puppet Agent application as a background service.
The agent collects configuration information about itself and sends that information to the

Chapter 1
How Puppet Works

1-5

server for compilation into a catalog. The catalog describes the configuration of each
agent-managed node. The agent-managed node uses the catalog to apply any
configuration updates.

Puppet uses a pull mode where agents poll the server at regular intervals to retrieve
site-specific and node-specific configuration information. See Overview of Puppet’s
Architecture.

Puppet Agent-Server Model
Puppet uses an agent-server model, where the Puppet Server (server) manages
important configuration information for all of the physical and virtual nodes on which
the Puppet Agent (agent) runs.

Each agent-managed node regularly polls the server to acquire and apply updated
configuration information.

The Puppet Server
The Puppet Server (server) node is the primary source of Puppet configuration data
and authority. The server is a Ruby and Clojure application that runs on the Java
Virtual Machine (JVM). The server uses Ruby to compile catalogs and to serve files by
using several JRuby interpreters. The server uses Clojure to provide a certificate
authority. Note that the configuration of some components depends on the
configuration of other components. As a result, the server must house information
about all the components on each managed node.

The server has the following responsibilities:

• Compiles the catalog for each Puppet Agent-managed node

• Transfers files from a file server

• Sends reports to a central server

The server uses the puppet user to perform the following tasks:

• Stores configuration manifests in the Puppet manifests directory

• Accepts Secure Socket Layer (SSL) certificates from Puppet Agents (agents)

• Transfers files to agents

• Creates catalogs

The puppet user runs the Puppet Server. The puppet user is a member of the puppet
group.

Puppet Agents
The Puppet Agent (agent) is a daemon that runs on a managed node. To apply the
configuration that the agent pulls from the Puppet Server (server), the agent must be
able to modify most of the configuration on the system. For this reason, the agent runs
as the root user or a user that is assigned the Puppet Management rights profile.

You can configure the time interval at which each agent polls the server. See
Configuring the Puppet Server and Agents.

Chapter 1
How Puppet Works

1-6

https://puppet.com/docs/puppet/7/architecture.html
https://puppet.com/docs/puppet/7/architecture.html

The first time an agent contacts the server, the agent requests an SSL certificate to obtain
communication privileges. Subsequently, the agent receives configuration updates from the
server only if the certificate is still valid.

To ensure that agents do not receive incorrect configuration information, the agent must
authenticate with the server.

Puppet Encryption and Communication Methods
Puppet interfaces with the OpenSSL toolkit, which is based on SSL and the Transport Layer
Security (TLS) cryptographic protocol. Puppet uses standard SSL/TLS encryption technology
and standard SSL certificates for Puppet Agent (agent) and Puppet Server (server)
authentication and verification. Puppet also uses SSL/TLS to encrypt the traffic flow between
the server and agents. The default hash is SHA-256.

The Puppet encryption method performs the following tasks:

• Authenticates any agent to the server

• Authenticates the server on any agent

• Prevents communication eavesdropping between the server and agents

Puppet uses a TLS client-side X.509 certificate to perform mutual host authentication. By
default, this information is stored in the /etc/puppetlabs/puppet/ssl directory. This
ssl directory contains separate directories for keys, certificates, and signed requests, as well
as for those requests that await a signature. These directories exist on the server and on
each agent. See Directories: SSLdir.

The server generates its own CA certificate and private key, initializes the Certificate
Revocation List (CRL), and then generates another certificate called the server certificate.
This certificate handles SSL and TLS communications and is sent to the agent. During the
server and agent exchange, the CA is stored in the /etc/puppetlabs/puppet/ssl/ca/
signed directory on the server and in the /etc/puppetlabs/puppet/ssl/certs
directory on the agent.

Agents automatically request certificates through the server's HTTP endpoint. Use the
puppetserver ca command to inspect requests and to sign new certificates.

Puppet Manifests
Puppet uses a declarative Domain Specific Language (DSL) that is similar to Ruby to define
states. Puppet records configuration specifications in files called manifests, which use a .pp
file extension and are located on the Puppet Server. Manifests declare resources that define
various aspects of a system, such as files, software packages, and services. Resources are
grouped into classes, which expose parameters that can affect resource behavior. Classes
and configuration files are organized into modules. See the Puppet Glossary and the Puppet
language Resources.

Use the Puppet site.pp manifest to define a global configuration that applies to all of the
managed nodes that run the Puppet Agent. A site manifest can include node-specific code. A
node definition, or node statement, is a block of Puppet code that is included only in the
catalogs of the nodes named after the node keyword. This feature enables you to assign
specific configurations to specific nodes. See the Puppet language Node definitions.

A manifest can group several resources together into a class that you can use to apply
resources to specific nodes. A Puppet class can include resources, variables, and additional

Chapter 1
How Puppet Works

1-7

https://docs.puppet.com/puppet/latest/dirs_ssldir.html
https://github.com/puppetlabs/docs-archive/tree/master/references
https://puppet.com/docs/puppet/7/lang_resources.html
https://puppet.com/docs/puppet/7/lang_node_definitions.html

advanced attributes. When you assign a class to a node, that node gets all of the
configurations that are part of that class. Include class declarations in a manifest as
described in Writing Puppet Classes and Writing Puppet Manifests, Classes, and
Modules in Oracle Solaris.

Puppet modules are self-contained collections of files and directories that can contain
Puppet manifests and other objects, including files and templates. Puppet uses
modules to find the classes and types that can be used for configuration management
within your IT infrastructure. Puppet loads classes and defined types that are stored in
modules. Declare these classes and types by name in a manifest as described in
Writing Puppet Modules.

Puppet Privileges and Authorizations
Use one of the following methods to gain the privilege you need to configure and
administer Puppet. See Securing Users and Processes in Oracle Solaris 11.4 for more
information about roles and profiles, including how to determine which role or profile
you need.

Roles
Use the roles command to list the roles that are assigned to you. Use the su
command with the name of the role to assume that role. As this role, you can execute
any commands that are permitted by the rights profiles that are assigned to that role.

Rights profiles
You must have the Puppet Management rights profile to administer Puppet. Use the
profiles command to list the rights profiles that are assigned to you.
Use one of the following methods to execute commands that your rights profiles
permit you to execute:

• Use a profile shell such as pfbash or pfksh.

• Use the pfexec command in front of the command that you want to execute. In
general, you must specify the pfexec command with each privileged command
that you execute.

sudo command
Depending on the security policy at your site, you might be able to use the sudo
command with your user password to execute a privileged command.

Chapter 1
Puppet Privileges and Authorizations

1-8

https://docs.oracle.com/cd/E37838_01/html/E61023/index.html

2
Getting Started With Puppet in Oracle Solaris

Installing Puppet
Puppet is not installed on your Oracle Solaris system by default. You must install the Puppet
software package, system/management/puppet, on each managed node that runs the Puppet
Agent.

The following command determines whether the Puppet package is installed on this system:

$ pkg list puppet
pkg list: no packages matching the following patterns are installed:
puppet

The pkg info -r puppet command shows information about the Puppet package. In
addition to the package summary and description, this output shows that Puppet is not
installed and that the version of Puppet that is delivered by this package is version 7.21.0.

$ pkg info -r puppet
 Name: system/management/puppet
 Summary: Puppet agent - The Puppet daemon that runs on the target system
 (node).
 Description: Puppet is a flexible, customizable framework designed to help
 system administrators automate the many repetitive tasks they
 regularly perform. As a declarative, model-based approach to IT
 automation, it lets you define the desired state - or the "what"
 - of your infrastructure using the Puppet configuration
 language. Once these configurations are deployed, Puppet
 automatically installs the necessary packages and starts the
 related services, and then regularly enforces the desired state.
 Category: System/Administration and Configuration
 State: Not installed
 Publisher: solaris
 Version: 7.21.0
 Branch: 11.4.63.0.0.153.0
Packaging Date: Fri Aug 11 06:54:55 2023
 Size: 5.53 MB
 FMRI: pkg://solaris/system/management/
puppet@7.21.0-11.4.63.0.0.153.0:20230811T065455Z
 Project URL: http://puppetlabs.com/
 Source URL: https://github.com/puppetlabs/puppet

Preparing to Install Puppet
Prior to installing the Puppet IPS package on the managed nodes that run the Puppet Agent
(agent), perform the following tasks:

• Designate a system to function as the Puppet Server (server).

Ensure that you install and configure Puppet on the server or servers before you install
Puppet on any of the agent-managed nodes.

2-1

• Designate the agent-managed nodes.

• Configure the Domain Name System (DNS) protocol on both the server and the
agents so that all of the hosts can be resolved by using a fully qualified domain
name. See Chapter 3, Managing DNS Server and Client Services in Working With
Oracle Solaris 11.4 Directory and Naming Services: DNS and NIS.

Install Puppet
Install the Puppet package on each node you want to manage using the Puppet Agent:

$ sudo pkg install puppet
 Packages to install: 2
 Services to change: 2
 Create boot environment: No
Create backup boot environment: No

DOWNLOAD PKGS FILES XFER (MB) SPEED
Completed 2/2 1269/1269 1.9/1.9 143k/s

PHASE ITEMS
Installing new actions 1326/1326
Updating package state database Done
Updating package cache 0/0
Updating image state Done
Creating fast lookup database Done
Updating package cache

Verify that Puppet is installed:

$ pkg list puppet
NAME (PUBLISHER) VERSION IFO
system/management/puppet (solaris) 7.21.0-11.4.63.0.0.153.0 i--

Configuring the Puppet Agents
After installing Puppet on the managed Puppet Agent (agent) nodes that the Puppet
Server (server) controls, configure the agents. One server can manage the
configuration of many agents.

Oracle Solaris uses Service Management Facility (SMF) services to configure Puppet.
When you install the system/management/puppet package, the following SMF service
instances run on the agents:

$ svcs puppet
STATE STIME FMRI
disabled 8:17:58 svc:/application/puppet:agent
disabled 8:17:58 svc:/application/puppet:main
disabled 8:17:58 svc:/application/puppet:user
online 8:36:42 svc:/application/puppet:upgrade

• The agent instance controls the configuration of a particular node.

• The main instance holds shared configuration values.

• The user instance is used by the puppet apply command and by other puppet
subcommands.

• The upgrade instance performs migration and cleanup steps, if needed.

Chapter 2
Configuring the Puppet Agents

2-2

https://docs.oracle.com/cd/E37838_01/html/E61011/dnsadmin-1.html
https://docs.oracle.com/cd/E37838_01/html/E61011/dnsadmin-1.html

How to Configure Puppet Agents
1. Become an administrator who is assigned the Puppet Management rights profile.

2. Set Puppet Server properties on the Puppet Agent.

While the puppet:agent service is disabled, set the ca_server and server properties as
shown in the example of Configuring the Puppet Agent.

Refresh the puppet:agent service.

Note:

Do not enable the puppet:agent service instance until after the Puppet Agent
(agent) requests the certificate and the agent successfully signs in to the
Puppet Server (server).

3. Test the connection from the agent to the server.

On the agent, run the puppet agent --test command to create a new SSL key and
request authentication between the agent and the server.

4. On the node that runs the Puppet Server, identify any outstanding certificate requests
coming from agents that are attempting to connect to the server.

Run the following command on the server:

$ puppetserver ca list

This command output should show that the agent is issuing a request.

5. On the server, sign the certificate for the agent that makes the request.

$ puppetserver ca sign agent

Note:

It is best to sign certificates manually for Puppet. However, if your environment
does not require manually signed certificates, configure the CA Puppet Server
to sign certain CSRs automatically. See SSL configuration: autosigning
certificate requests.

6. Retest the connection from the agent to the server.

puppet agent --test

This step ensures that the authentication between the server and the agent has occurred.

7. Enable the SMF service instance for the agent.

$ svcadm enable puppet:agent
$ svcs puppet:agent

The output should show that the SMF puppet:agent service instance is online.

Chapter 2
Configuring the Puppet Agents

2-3

https://puppet.com/docs/puppet/7/ssl_autosign.html
https://puppet.com/docs/puppet/7/ssl_autosign.html

Example 2-1 Configuring a Puppet Agent

Do not edit the /etc/puppetlabs/puppet/puppet.conf Puppet configuration file
manually. Such changes are not saved. SMF property values generate this Puppet
configuration file. This configuration file is updated when you update the associated
SMF property values, as shown in the following example. For descriptions of the
properties shown here and other configuration values that you can set, see Short list of
important settings and Configuration Reference.

While the puppet:agent service is disabled, set the ca_server and server properties.
The server property value is the host name of the server. Typically, the ca_server
value is also the host name of the server.

In this example, the host name of the Puppet Server is pupsvr and the fully qualified
domain name of the Puppet Agent is agent.example.com.

svccfg -s puppet:agent
svc:/application/puppet:agent> setprop config/ca_server = host: pupsvr
svc:/application/puppet:agent> setprop config/server = host: pupsvr
svc:/application/puppet:agent> setprop config/runinterval = astring: 1d
svc:/application/puppet:agent> refresh
svc:/application/puppet:agent> exit

Verify that the property values are correct:

svcprop -p config puppet:agent

When you refresh the puppet:agent service instance and that instance comes online,
any changes that you make by setting SMF property values are reflected in the
puppet.conf file.

Test the connection on the agent.example.com agent:

$ puppet agent --test
Info: csr_attributes file loading from /etc/puppetlabs/puppet/csr_attributes.yaml
Info: Creating a new SSL certificate request for agent.example.com
Info: Certificate Request fingerprint (SHA256):
E0:1D:0F:18:72:B7:CE:A7:83:E4:48:D5:F8:93:36:15:55:
0A:B9:C8:E5:B1:CE:D9:3E:0A:68:01:BE:F7:76:47
Exiting; no certificate found and waitforcert is disabled

Identify outstanding authentication requests on the server:

$ puppetserver ca list
"agent.example.com" (SHA256) E0:1D:0F:18:72:B7:CE:A7:83:E4:48:D5:F8:93:36:15:55:
0A:B9:C8:E5:B1:CE:D9:3E:0A:68:01:BE:F7:76:47

Sign the outstanding request:

$ puppetserver ca sign agent.example.com
Notice: Signed certificate request for agent.example.com
Notice: Removing file Puppet:SSL:CertificateRequest agent at '/etc/puppetlabs/
puppet/ssl/ca/requests/solaris.pem'

Retest the connection on the agent:

$ puppet agent --test
Info: Caching certificate for agent.example.com
Info: Caching certificate_revocation_list for ca
Info: Caching certificate for agent.example.com
Info: Retrieving plugin

Chapter 2
Configuring the Puppet Agents

2-4

https://docs.puppet.com/puppet/7/config_important_settings.html
https://docs.puppet.com/puppet/7/config_important_settings.html
https://docs.puppet.com/puppet/7/configuration.html

Info: Caching catalog for agent.example.com
Info: Applying configuration version '1400782295'
Notice: Finished catalog run in 0.18 seconds

Enable the puppet:agentservice:

$ svcadm enable puppet:agent
$ svcs puppet:agent
STATE STIME FMRI
online 18:20:32 svc:/application/puppet:agent

View the following abridged example configuration file:

$ cat /etc/puppetlabs/puppet/puppet.conf
WARNING: THIS FILE GENERATED FROM SMF DATA.
DO NOT EDIT THIS FILE. EDITS WILL BE LOST.
#
See puppet.conf(5) and http://docs.puppetlabs.com/guides/configuring.html
for details.

[agent]

ca_server = pupsvr
logdest = /var/log/puppetlabs/puppet/puppet-agent.log
runinterval = 1d
server = pupsvr

Next Steps

After you install Puppet and perform all of the necessary configuration and validation tasks,
you are ready to use Puppet to manage system configurations.

For more information about using Pupput in Oracle Solaris, see:

• Working With Puppet Resources and Resource Types in Oracle Solaris

• Writing Puppet Manifests, Classes, and Modules in Oracle Solaris

• Using Puppet to Manage System Configuration in Oracle Solaris

Troubleshooting Puppet Issues in Oracle Solaris
The puppet:agent service logs most activity to the syslog service. The syslog configuration
specifies where to save these messages. In Oracle Solaris, the default log location is
the /var/adm/messages directory.

The following command shows the location of the service logs:

$ svcprop -p config/logdest puppet:agent
/var/log/puppetlabs/puppet/puppet-agent.log

The following command shows the location of the Puppet SMF service instance logs:

$ svcs -L puppet:agent
/var/svc/log/application-puppet:agent.log

Use the svcs -Lv command to view the complete log file of the service:

$ svcs -Lv puppet:agent

Chapter 2
Troubleshooting Puppet Issues in Oracle Solaris

2-5

The following example shows the kind of information you might see in the Puppet
Agent service log:

2022-02-10 01:44:21 -0800 Puppet (info): Computing checksum on file /custom-
file.txt
2022-02-10 01:44:21 -0800 /Stage[main]/Main/File[/custom-file.txt] (info):
Filebucketed/
custom-file.txt to puppet with sum 103e5b132c69289dc18042a99b73fad9
2022-02-10 01:44:21 -0800 /Stage[main]/Main/File[/custom-file.txt]/content
(notice):
content changed '{md5}103e5b132c69289dc18042a99b73fad9' to
'{md5}e4b97f0c18e5bb0bb24d6dbe0db326f4'
2022-02-10 01:44:22 -0800 /Stage[main]/Main/User[testuser409]/ensure (notice):
created
2022-02-10 01:44:26 -0800 /Stage[main]/Main/Service[nfs/client]/ensure (notice):
ensure
changed 'stopped' to 'running' (corrective)
2022-02-10 01:44:26 -0800 /Stage[main]/Main/Service[nfs/client] (info):
Unscheduling
refresh on Service[nfs/client]
2022-02-10 01:44:26 -0800 Puppet (notice): Applied catalog in 5.30 seconds

Chapter 2
Troubleshooting Puppet Issues in Oracle Solaris

2-6

3
Working With Puppet Resources and
Resource Types in Oracle Solaris

Puppet Resources and Resource Types
A resource is a specific part of a system that Puppet manages. A resource type is the kind of
resource, such as a service, file, package, host, interface, or user. A resource provider
implements support for a specific implementation of a given resource type, such as a
resource type on a particular platform. Resource types can be built-in, defined, or custom.

The following list shows examples of Oracle Solaris built-in resource types and their
providers:

• The zone built-in resource type has only the solaris provider.

• The package resource type has many providers including the pkg provider.

Note that the sun provider is only for packages for systems that run up to Oracle Solaris
10.

• The service resource type has many providers including the smf provider.

• The user resource type, that implements user and role management, has the
user_role_add provider.

The oracle-solaris_providers IPS package delivers Oracle Solaris providers. This
package is installed automatically when you install Puppet.

Puppet modules include additional resource types that enable you to manage certain
configurations such as networking or naming services. Oracle Solaris also includes Puppet
resource types that manage specific Oracle Solaris features such as Oracle Solaris Zones.

Puppet uses a declarative language to describe system resources and their state in
manifests. Use a Puppet site manifest (site.pp) on the Puppet Server to define a global
configuration that is common to all of the managed nodes.

You can also include node-specific code in a Puppet site manifest to define configuration for
specified nodes. See Writing Puppet Manifests, Classes, and Modules in Oracle Solaris.

Te following command output shows all of the Puppet resource types that are available on
this system, including Oracle Solaris-specific types and core Puppet types:

puppet resource --types
address_object
address_properties
anchor
augeas
boot_environment
...
zfs
zfs_acl

3-1

zone
zpool

The following command output shows all of the available resource types with a
description of each type:

puppet describe --list
address_object - Manage the configuration of Oracle Solaris ad ...
address_properties - Manage Oracle Solaris address properties
anchor - A simple resource type intended to be used as ...
augeas - Apply a change or an array of changes to the ...
boot_environment - Manage Oracle Solaris Boot Environments (BEs)
computer - Computer object management using DirectorySer ...
cron - Installs and manages cron jobs. Every cron re ...
dns - Manage the configuration of the DNS client fo ...
etherstub - Manage the configuration of Solaris etherstub ...
evs - Manage the configuration of Oracle Solaris Elastic ...
evs_ipnet - Manage the configuration of IPnet (subnet of ...
evs_properties - Manage global properties of EVS (Elastic V ...
evs_vport - Manage the configuration of EVS VPort
exec - Executes external commands. Any command in an ...
file - Manages files, including their content, owner ...
file_line - Ensures that a given line is contained within ...
filebucket - A repository for storing and retrieving file ...
group - Manage groups. On most platforms this can ...
host - Installs and manages host entries. For most ...
ilb_healthcheck - Manage Solaris Integrated Load Balancer (ILB) ...
ilb_rule - Manage Solaris Integrated Load Balancer (ILB) ...
ilb_server - Manage Solaris Integrated Load Balancer (ILB ...
ilb_servergroup - Manage Solaris Integrated Load Balancer (ILB) ...
ini_setting -
ini_subsetting -
interface - This represents a router or switch interface. ...
interface_properties - Manage Oracle Solaris interface properties
ip_interface - Manage the configuration of Oracle Solaris IP ...
ip_tunnel - Manage the configuration of Oracle Solaris IP ...
ipmp_interface - Manage the configuration of Oracle Solaris IP ...
k5login - Manage the `.k5login` file for a user. Specify ...
ldap - Manage the configuration of the LDAP client ...
link_aggregation - Manage the configuration of Oracle Solaris ...
link_properties - Manage Oracle Solaris link properties
macauthorization - Manage the Mac OS X authorization database. ...
mailalias - Creates an email alias in the local alias dat ...
maillist - Manage email lists. This resource type can on ...
mcx - MCX object management using DirectoryService ...
mount - Manages mounted filesystems, including putting ...
nagios_command - The Nagios type command. This resource type ...
nagios_contact - The Nagios type contact. This resource type ...
nagios_contactgroup - The Nagios type contactgroup. This resource ...
nagios_host - The Nagios type host. This resource type is a ...
nagios_hostdependency - The Nagios type hostdependency. This resource ...
nagios_hostescalation - The Nagios type hostescalation. This resource ...
nagios_hostextinfo - The Nagios type hostextinfo. This resource ...
nagios_hostgroup - The Nagios type hostgroup. This resource type ...
nagios_service - The Nagios type service. This resource type ...
nagios_servicedependency - The Nagios type servicedependency. This ...
nagios_serviceescalation - The Nagios type serviceescalation. This ...
nagios_serviceextinfo - The Nagios type serviceextinfo. This resource ...
nagios_servicegroup - The Nagios type servicegroup. This resource ...
nagios_timeperiod - The Nagios type timeperiod. This resource ...
nis - Manage the configuration of the NIS client ...

Chapter 3
Puppet Resources and Resource Types

3-2

notify - Sends an arbitrary message to the agent run-time ...
nsswitch - Name service switch configuration data
package - Manage packages. There is a basic dichotomy ...
pkg_facet - Manage Oracle Solaris package facets
pkg_mediator - Manage Oracle Solaris package mediators
pkg_publisher - Manage Oracle Solaris package publishers
pkg_variant - Manage Oracle Solaris package variants
protocol_properties - Manage Oracle Solaris protocol properties
resources - This is a metatype that can manage other ...
router - Manages connected router.
schedule - Define schedules for Puppet. Resources can be ...
scheduled_task - Installs and manages Windows Scheduled Tasks. ...
selboolean - Manages SELinux booleans on systems with ...
selmodule - Manages loading and unloading of SELinux ...
service - Manage running services. Service support ...
solaris_vlan - Manage the configuration of Oracle Solaris VLANs ...
ssh_authorized_key - Manages SSH authorized keys. Currently only ...
sshkey - Installs and manages ssh host keys. By default ...
stage - A resource type for creating new run stages. ...
svccfg - Manage SMF service properties with svccfg(8).
system_attributes - Manage system attributes on ZFS files. See ...
tidy - Remove unwanted files based on specific criteria ...
user - Manage users. This type is mostly built to ...
vlan - Manages a VLAN on a router or switch.
vni_interface - Manage the configuration of Solaris VNI ...
vnic - Manage the configuration of Oracle Solaris ...
whit - Whits are internal artifacts of Puppet's current ...
yumrepo - The client-side description of a yum repo ...
zfs - Manage zfs. Create destroy and set properties ...
zfs_acl - Manage NFSv4 ACL Specifications on ZFS Files ...
zone - Manages Solaris zones.
zpool - Manage zpools. Create and delete zpools. The ...

The following command output shows information about a specific resource type, such as the
Oracle Solaris zone resource type:

puppet describe zone
zone
====
Manages Oracle Solaris zones.

Parameters

- **archive**
 The archive file containing an archived zone.

- **archived_zonename**
 The archived zone to configure and install

- **brand**

 The zone's brand type

- **clone**
 Instead of installing the zone, clone it from another zone.
 If the zone root resides on a zfs file system, a snapshot will be
 used to create the clone; if it resides on a ufs filesystem, a copy of
 the

Chapter 3
Puppet Resources and Resource Types

3-3

 zone will be used. The zone from which you clone must not be running.

- **config_profile**
 Path to the config_profile to use to configure a solaris zone.
 This is set when providing a sysconfig profile instead of running the
 sysconfig SCI tool on first boot of the zone.

- **ensure**
 The running state of the zone. The valid states directly reflect
 the states that `zoneadm` provides. The states are linear,
 in that a zone must be `configured`, then `installed`, and
 only then can be `running`. Note also that `halt` is currently
 used to stop zones.
 Valid values are `absent`, `configured`, `installed`, `running`.
.
.
.
- **zonecfg_export**
 Contains the zone configuration information. This can be passed in
 in the form of a file generated by the zonecfg command, in the form
 of a template, or a string.

- **zonepath**
 The path to zone's file system.

Providers

 solaris

For more Oracle Solaris examples, see Using Puppet to Manage System
Configuration in Oracle Solaris.

Declaring Puppet Resources
A resource definition specifies the content and behavior of a resource class or type.
You must define a resource class or type before you can declare it in a manifest.

A resource declaration describes the desired state for a resource on the managed
system. The Puppet Server compiles resource declarations into a catalog for each
managed system. Puppet applies each catalog to its corresponding managed system
to ensure that its system state matches the specified desired state.

Puppet uses the following format for resource declarations:

resource_type { 'title':
 attribute1 => 'value1',
 attribute2 => 'value2',
}

resource_type
Specifies the type of resource that is being declared. Note that the resource_type
cannot include quotation marks.

title
Specifies a unique identifying string for every resource_type. The title does not need
to match the name of the resource.

Chapter 3
Declaring Puppet Resources

3-4

attribute
Specifies the desired state of the resource. Most resources have a set of required attributes
(or parameters) and might include a set of optional attributes.
Attribute-value pairs must consist of the following:

• An attribute name that is a lowercase word with no quotes.

Each attribute name handles some aspect of the resource. Each resource type has its
own set of available attributes.

• An arrow (=>) that is also called a “fat comma” or a “hash rocket”.

• A value that can be any data type.

The data type of the value depends on what the attribute accepts.

You can use any amount of white space in a resource declaration. See Language:
Resources.

Viewing and Modifying Puppet Resources by Using the
Command Line

You can view and modify the state of a system's resource by using the puppet resource
command. This command converts the current system state into Puppet's declarative
language, which you can then use to enforce configuration on other systems.

Viewing the State of a Puppet Resource
The following example shows how to view the state of the zone resource type:

puppet resource zone
zone { 'global':
 ensure => 'running',
 brand => 'solaris',
 iptype => 'shared',
 zonepath => '/',
}
zone { 'myzone':
 ensure => 'running',
 brand => 'solaris-kz',
 iptype => 'excl',
 zonepath => '/system/volatile/zones/myzone/zonepath',
}

This example declares two zone resources: a global zone and an installed kernel zone. Each
of these resources has four attributes (or parameters): ensure, brand, iptype, and zonepath.
Each attribute has a value associated with it. This value is a central component of Puppet's
declarative language.

The following example shows how you would view the state of the service resource type:

puppet resource service svc:/network
/dns/client:default
service {'svc:/network/dns/client:default':
 ensure => 'running',
 enable =>'true',
}

Chapter 3
Viewing and Modifying Puppet Resources by Using the Command Line

3-5

https://puppet.com/docs/puppet/7/lang_resources.html
https://puppet.com/docs/puppet/7/lang_resources.html

Modifying the State of a Puppet Resource
You can also use the puppet resource command to modify the state of a resource.
You would use this method in lieu of directly modifying the configuration within a
Puppet manifest.

For example, you would modify the state of the service resource type as follows:

puppet resource service svc:/network/dns/client:default enable=false
Notice: /Service[svc:/network/dns/client:default]/enable: enable changed 'true'
to 'false'
service { 'svc:/network/dns/client:default':
 ensure => 'stopped',
 enable => 'false',
}

Gathering Information About a System by Using Facter
The Facter utility gathers information about a system and sends it to the Puppet
Server (server) for compilation into catalogs. A catalog specifies the configuration
changes to apply to a managed node.

A catalog also includes the specified state of each resource. Based on these
definitions, each system can apply its own configurations, as appropriate. After you
apply the catalog to the system, the Puppet Agent (agent) generates a report and
sends that report to the server. This report contains information about which resources
are currently being managed on the target node, as well as about any changes that
have been made to the node to achieve a desired state. See How Puppet Works.

The following facter -p command lists all of the available facts for this system:

facter -p
architecture => i86pc
facterversion => 2.4.6
hardwareisa => i386
hardwaremodel => i86pc
hostname => myhost
id => root
interfaces => lo0,net0
ipaddress => 10.0.0.15
ipaddress6 => ::
ipaddress_lo0 => 127.0.0.1
ipaddress_net0 => 10.0.0.5
ipaddress_net1 => 10.0.1.5
...
uptime => 0:22 hours
uptime_days => 0
uptime_hours => 0
uptime_seconds => 1320
virtual => virtualbox

Or, you can display an individual fact for a given node, for example hostname, as
follows:

facter hostname
myhost

Chapter 3
Gathering Information About a System by Using Facter

3-6

Gathering facts about a system can help you to determine the configuration types that you
can enforce on the system. For example, you could declare a file resource to populate a
given file with platform-specific content.

The following example shows that the osfamily fact declares the platform within the file:

$file_contents = $osfamily ? {
 'solaris' => "Hello Oracle Solaris",
 'redhat' => "Hello RHEL",
}

file { '/custom-file.txt':
 ensure => 'present',
 content => $file_contents,
}

The previous example includes the $file_contents variable and a conditional check based
on the value of the osfamily fact. Depending on the platform type, you would assign different
contents to the file.

For more information, see the Facter documentation.

Chapter 3
Gathering Information About a System by Using Facter

3-7

https://docs.puppet.com/facter/

4
Writing Puppet Manifests, Classes, and
Modules in Oracle Solaris

Writing a Puppet Site Manifest
After installing and configuring Puppet, you can write Puppet manifests to control the nodes
that run the Puppet Agent. Puppet manifests use a Puppet-specific language that is similar to
Ruby. Each manifest uses a .pp file extension.

The Puppet site manifest, site.pp, is the main file that Puppet uses to define the pre-
environment configuration. A site manifest defines a configuration that you want applied to
every node. So, using a site manifest is ideal for managing system-wide configurations, such
as DNS servers, LDAP configurations, and other site-wide settings that are common to all of
the nodes.

A site manifest can also include node-specific blocks of code that apply to certain nodes. This
capability enables you to assign specific configurations to specific nodes within a site
manifest. See Writing Puppet Manifests That Specify Node-Specific Code.

Note:

The site.pp manifest does not exist on the Puppet Server (server) by default. You
must initially create this file on the server in the default /etc/puppetlabs/code/
environments/production/manifests directory.

How to Write a Puppet Site Manifest
Prior to creating a Puppet site manifest, perform the following tasks:

• Determine which resource types to declare in the manifest. Use the puppet describe
resource-type command to obtain this information. This command shows all of the
available attributes, or parameters, for the specified resource type.

puppet describe resource-type

See Puppet Resources and Resource Types.

• Familiarize yourself with the syntax to declare resources within a Puppet manifest. See
Declaring Puppet Resources and Language: Resources.

• Familiarize yourself with the syntax to define a specific Oracle Solaris system
configuration within a Puppet manifest. For examples, see Using Puppet to Manage
System Configuration in Oracle Solaris.

The following procedure describes how to write a Puppet site manifest to enforce a
configuration globally within your infrastructure.

4-1

https://puppet.com/docs/puppet/7/lang_resources.html

1. Become an administrator who is assigned the Puppet Management rights profile.

See Using Your Assigned Administrative Rights in Securing Users and Processes
in Oracle Solaris 11.4.

2. Create a site.pp file on the Puppet Server (server).

touch /etc/puppetlabs/code/environments/production/manifests/site.pp
3. Define the specified configuration within the Puppet site manifest (site.pp) and

save your changes.

See Working With Puppet Resources and Resource Types in Oracle Solaris for
more details.

4. Test the configuration changes that you made to the site.pp file before applying
them permanently.

puppet apply -v --noop /etc/puppetlabs/code/environments/production/
manifests/site.pp

apply
Applies the configuration to the Puppet manifest on the server.

-v
Indicates to use verbose mode.

--noop
Enables you to perform a dry run test without applying your changes.

The Puppet Agent (agent) that runs on each node queries the server for
configuration changes at regular intervals and then applies any required changes
to the agent-managed node.

5. Verify that the node retrieved the latest configuration changes by checking
the /var/log/puppetlabs/puppet/puppet-agent.log log file.

6. Apply the latest configuration changes manually.

puppet agent -t

The -t (--test) option enables verbose logging, which causes the agent daemon
to remain in the foreground, exits if the server's configuration is invalid (as in the
case of a syntax error), then exits after running the configuration one time.

Use the puppet help agent command to show all of the available Puppet
subcommands. Also see the puppet(8) man page.

Example 4-1 Writing a Puppet Manifest

The following example shows how to declare resources in a Puppet site manifest. This
example begins with the site.pp file in the correct directory on the server.

First, declare resources in the site.pp file. In this example, the file resource type is
declared by specifying the ensure and content attributes. These attributes ensure that
a custom-file.txt file exists in the root directory of the node and that the file
includes the words, Hello World.

file { '/custom-file.txt':
 ensure => 'present',
 content => "Hello World",
}

Chapter 4
Writing a Puppet Site Manifest

4-2

https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbactask-28.html

After saving the site.pp file, test the configuration's validity on the server as follows:

puppet apply -v --noop /etc/puppetlabs/code/environments/production/manifests/site.pp
2022-02-10 01:44:21 -0800 Puppet (info): Computing checksum on file /custom-
file.txt
2022-02-10 01:44:21 -0800 /Stage[main]/Main/File[/custom-file.txt] (info):
Filebucketed/
custom-file.txt to puppet with sum 103e5b132c69289dc18042a99b73fad9
2022-02-10 01:44:21 -0800 /Stage[main]/Main/File[/custom-file.txt]/content
(notice): content changed '{md5}103e5b132c69289dc18042a99b73fad9' to
'{md5}e4b97f0c18e5bb0bb24d6dbe0db326f4'
2022-02-10 01:44:22 -0800 /Stage[main]/Main/User[testuser409]/ensure (notice): created
2022-02-10 01:44:26 -0800 /Stage[main]/Main/Service[nfs/client]/ensure (notice): ensure
changed 'stopped' to 'running' (corrective)
2022-02-10 01:44:26 -0800 /Stage[main]/Main/Service[nfs/client] (info): Unscheduling
refresh on Service[nfs/client]
2022-02-10 01:44:26 -0800 Puppet (notice): Applied catalog in 5.30 seconds

The -v option specifies verbose mode and the --noop option ensures that no changes are
made to the node. Using the --noop option for testing purposes enables you to perform a dry
run without applying the changes to the manifest.

The agent that runs on each node queries the server for configuration changes at regular
intervals and then applies any updates, as needed. Check the node's /var/log/
puppetlabs/puppet/puppet-agent.log log file to verify that the node applied the latest
changes:

ls -la /custom-file.txt
-rw------- 1 root root 16 Mar 22 21:50 /custom-file.txt
cat /custom-file.txt
Hello World
tail /var/log/puppetlabs/puppet/puppet-agent.log
....
2016-03-22 21:50:17 +0000 /Stage[main]/Main/File[/custom-file.txt]/ensure (notice):
created
2016-03-22 21:50:17 +0000 Puppet (notice): Finished catalog run in 0.21 seconds

The previous output indicates that the configuration is being enforced on the node. By
default, agents poll the server for configuration changes at 30-minute intervals. Also, you can
verify the configuration by checking whether the custom-file.txt file exists on the node.

Optionally, manually apply the configuration changes by running the following command on
the node:

puppet agent -t

For specific examples that show how to use Puppet to define an Oracle Solaris system
configuration, see Using Puppet to Manage System Configuration in Oracle Solaris.

Writing Puppet Manifests That Specify Node-Specific Code
If you are managing configuration for a variety of systems, you might consider specifying
conditional logic in your manifests, which ensures that each system is correctly matched to
the appropriate configuration.

To enforce this logic, use the node keyword in your site manifest (which can be a single file
with a .pp file extension or a directory containing several files with a .pp file extension).
While node declarations enable you to specify any arbitrary Puppet code, it is recommended
that they only contain variable assignments and class declarations.

Chapter 4
Writing Puppet Manifests That Specify Node-Specific Code

4-3

The following example shows how you would match identical configuration for two
nodes, agent1.company.com and agent2.company.com:

node ‘agent1.company.com’, ‘agent2.company.com’ {
 # Include resources here
}

The following example shows the syntax that you would use to match identical
configuration for two nodes, along with a different resource definition for a third node
(agent3.company.com).

node 'agent1.company.com', 'agent2.company.com' {

 # Include resources here
}
node 'agent3.company.com' {

 # Include other resources here

}

Puppet also provides a special node, called default, which enables a fallback
configuration for any of the nodes that do not match existing node definitions. You
would define a fallback configuration for these nodes as follows:

node default {
 # Include other resources here
}

For more in-depth information about writing manifests that includes node-specific
code, go to https://puppet.com/docs/puppet/7/lang_classes.html.

Writing Puppet Classes
Classes are blocks of Puppet code that enable reuse. Using classes makes reading
manifests less complicated. A class definition contains the code for a specific class.
You first define the class, then you make the class available for use within manifests.
Note that the class itself does not perform any evaluation.

The following example shows the format that is used for a class definition named
examplecloud:

class examplecloud::analytics {

 package { "system/management/webui/webui-server":
 ensure => installed,
 }

 svccfg { "webui":
 require => Package["system/management/webui/webui-server"],
 fmri => "system/webui/server:default",
 property => "conf/redirect_from_https",
 value => "false",
 ensure => present,
 }

 service { "system/webui/server":
 require => Package["system/management/webui/webui-server"],
 ensure => running,

Chapter 4
Writing Puppet Classes

4-4

https://puppet.com/docs/puppet/7/lang_classes.html

 }

}

This example class has the examplecloud and analytics name spaces. The code in this
class ensures that the following occurs on the node:

• Installs certain IPS packages.

• Applies a certain SMF configuration prior to enabling the analytics SMF service.

A class declaration in a manifest instructs Puppet to evaluate the code within that class. A
class declaration is itself a class that is defined within a manifest.

Puppet defines the normal and resource-like class declarations.

• The following normal class declaration example includes the include keyword in the
Puppet code:

include example_class
• The following resource-type class declaration example declares the class in a similar way

as a resource declaration:

class { 'example_class': }

Use resource-like class declarations to specify class parameters that override the default
values of class attributes (or parameters).

For more information about writing and assigning Puppet classes, go to https://puppet.com/
docs/puppet/7/lang_classes.html.

Including a Class Declaration in a Puppet Manifest

The following example manifest uses the examplecloud class declaration in the /etc/
puppetlabs/code/modules directory on the Puppet Server (server).

The examplecloud class contains several manifests (/etc/puppetlabs/code/
modules/examplecloud/manifests) that specify various configurations. The following
example shows that each manifest includes the examplecloud class declaration:

NTP configuration for companyfoo
class examplecloud::ntp {

 file { "ntp.conf" :
 path => "/etc/inet/ntp.conf",
 owner => "root",
 group => "root",
 mode => 644,
 source => "puppet:///modules/examplecloud/ntp.conf",
 }

 package { "ntp":
 ensure => installed,
 }

 service { "ntp":
 require => File["ntp.conf"],
 subscribe => File["ntp.conf"],
 ensure => running,
 }

}

Chapter 4
Writing Puppet Classes

4-5

https://puppet.com/docs/puppet/7/lang_classes.html
https://puppet.com/docs/puppet/7/lang_classes.html

The examplecloud class declarations in the previous example ensure the following:

• Installs the NTP package

• Installs a certain configuration file that is sourced from a location other than the
server

• Enables the NTP service and puts it in a running state on the node

Writing Puppet Modules
Puppet modules are a collection of manifests and data, which can include facts, files,
and templates. Modules help you organize and reuse Puppet code by enabling you to
split the code into several manifests. With the exception of the main site.pp manifest
that contains global configuration for all of the nodes, nearly all Puppet manifests
should be included in modules. If you have several Puppet manifests, consider using
modules as a way to organize them.

Caution:

Modules that are provided through IPS are specifically updated for Oracle
Solaris. Do not replace these modules with Puppet Forge modules.

To write your own Puppet module, you would start by running the following command
on the Puppet primary server:

puppet module generate module-name

Running the preceding command prompts you with a series of questions. Puppet uses
your responses to gather information about the module and then creates a basic
module structure. For further instructions and examples, go to https://puppet.com/
docs/puppet/7/bgtm.html.

You add Puppet modules that you create to the /etc/puppetlabs/code/modules
directory on the primary server, where the basic directory tree structure is similar to the
following:

• manifests/ – Contains all of the manifests within the module.

– init.pp – Contains a class definition. The name of the class definition must
match the name of the module.

– other_class.pp – Contains a defined type named
my_module::my_defined_type.

– my_defined_type.pp – Contains a class named my_module::other_class.

– my_module::my_defined_type – Contains a defined type named
my_module::my_defined_type.

– implementation/ – Is a directory with a name that affects the class names
that are stored under it.

* foo.pp – Contains a class named my_module::implementation::foo.

* bar.pp – Contains a class named my_module::implementation::bar.

• files/ – Contains static files that managed nodes can download.

Chapter 4
Writing Puppet Modules

4-6

https://puppet.com/docs/puppet/7/bgtm.html
https://puppet.com/docs/puppet/7/bgtm.html

service.conf – Is a file with a source URL that is similar to puppet:///modules/
my_module/service.conf. You can access the file's contents by using a file function,
for example, my_module/service.conf.

• lib/ – Contains plug-ins, for example custom facts and resource types, which are used
by both the Puppet primary server and the Puppet agent service.

• facts.d/ – Contains external facts, which you can use as an alternative to Ruby-based
custom facts.

• templates/ – Contains templates that a module's manifests can use.

– component.erb – Is a template that a manifest can render as my_module/
component.erb.

– component.epp – Is a template that a manifest can render as my_module/
component.epp.

• examples/ – Contains examples that show how to declare the module's classes and
defined types.

– init.pp
– other_example.pp – Includes major use case examples.

• spec/ – Contains tests for any plug-ins that are in the lib directory.

As shown in the following example, a module named examplecloud is located under
the /etc/puppetlabs/code/modules directory:

cd /etc/puppetlabs/code/modules
ls -al
drwxrwxr-x 3 userfoo staff 3 Mar 4 14:44 .
drwxr-xr-x 5 userfoo staff 6 Mar 25 06:33 ..
drwxr-xr-x 4 userfoo staff 4 Mar 3 13:24 examplecloud
cd examplecloud
ls -al
drwxr-xr-x 4 userfoo staff 4 Mar 3 13:24 .
drwxrwxr-x 3 userfoo staff 3 Mar 4 14:44 ..
drwxr-xr-x 3 userfoo staff 12 Mar 9 11:55 files
drwxr-xr-x 2 userfoo staff 12 Mar 24 15:43 manifests

Under the examplecloud directory is the manifests directory that contains the manifests
for the module. Each manifest contains one class or defined type, as shown in the following
output:

cd /etc/puppetlabs/code/modules/examplecloud/manifests
ls -al
total 52
drwxr-xr-x 2 userfoo staff 12 Mar 24 15:43 .
drwxr-xr-x 4 userfoo staff 4 Mar 3 13:24 ..
-rw-r--r-- 1 userfoo staff 552 Mar 3 13:24 analytics.pp
-rw-r--r-- 1 userfoo staff 1097 Mar 3 13:24 compute_node.pp
-rw-r--r-- 1 userfoo staff 1232 Mar 7 12:45 dlmp_aggr.pp
-rw-r--r-- 1 userfoo staff 491 Mar 3 13:24 mysql.pp
-rw-r--r-- 1 userfoo staff 1764 Mar 7 12:45 nameservice.pp
-rw-r--r-- 1 userfoo staff 463 Mar 3 13:24 ntp.pp
-rw-r--r-- 1 userfoo staff 690 Mar 3 13:24 rabbitmq.pp
-rw-r--r-- 1 userfoo staff 1688 Mar 14 14:34 storage_ip.pp

Manifest file names map to the names of the classes and defined types that they contain.
Each subdirectory under the examplecloud/manifests directory has a specific function.

Chapter 4
Writing Puppet Modules

4-7

For a more comprehensive description of each of these components, go to https://
puppet.com/docs/puppet/7/modules_fundamentals.html#example.

The Puppet Forge site includes a repository of publicly available modules, including
newer modules, as well as authoring tools and documentation that you can download.

Chapter 4
Writing Puppet Modules

4-8

https://puppet.com/docs/puppet/7/modules_fundamentals.html#example
https://puppet.com/docs/puppet/7/modules_fundamentals.html#example
https://forge.puppet.com/

5
Using Puppet to Manage Oracle Solaris
System Configuration

This chapter provides end-to-end examples of using Puppet to manage Oracle Solaris
system configuration.

The examples in this chapter run commands on an installed and configured Puppet Server
and on Puppet Agent nodes. In addition, you must create a Puppet site manifest on the
Puppet Server.

Puppet Configuration Management Workflow
The following steps show the workflow for using Puppet to manage Oracle Solaris system
configuration:

1. Use the puppet describe resource-type command to list the attributes (or
parameters) that you can configure for the specified resource type. See Working With
Puppet Resources and Resource Types in Oracle Solaris.

2. Declare the appropriate resources in a Puppet manifest on the Puppet Server.

Use a Puppet site manifest,site.pp, to define global system configuration that applies
to all nodes.

Also, use the node keyword to define node-specific configuration information in a Puppet
site manifest. See Writing Puppet Manifests That Specify Node-Specific Code.

3. (Optional.) Perform a dry run to verify the validity of the configuration defined by the
Puppet manifest.

While this step is not required, this verification is a recommended best practice.

4. Verify that each node has the configuration applied successfully.

For step-by-step instructions, see How to Write a Puppet Site Manifest.

Using Puppet to Configure Packaging
The following example shows how to add a new IPS software package (nmap) by declaring
the Puppet package resource type in a manifest.

Example 5-1 Configuring Packaging With Puppet

First, determine whether the package that you want to install is installed already.

• Run the following command on the local system:

$ pkg info nmap
pkg: info: no packages matching the following patterns you specified are
installed on the system. Try specifying -r to query remotely:

• Run the following command from a remote system:

5-1

pkg info -r nmap
 Name: diagnostic/nmap
 Summary: Network exploration tool and security / port scanner.
 Description: Nmap is useful for inventorying the network, managing service
 upgrade schedules, and monitoring host or service uptime.
 Category: System/Administration and Configuration
 State: Not installed
 Publisher: solaris
 ...

Next, run the puppet describe package command to check for the appropriate
attribute (or parameter) to declare for the package resource type.

The following example puppet describe package command shows excerpted
output:

puppet describe package

package
=======
Manage packages. There is a basic dichotomy in package
support right now: Some package types (e.g., yum and apt) can
retrieve their own package files, while others (e.g., rpm and sun)
cannot. For those package formats that cannot retrieve their own files,
you can use the `source` parameter to point to the correct file.
Puppet will automatically guess the packaging format that you are
using based on the platform you are on, but you can override it
using the `provider` parameter; each provider defines what it
requires in order to function, and you must meet those requirements
to use a given provider.
Autorequires: If Puppet is managing the files specified as a
package's `adminfile`, `responsefile`, or `source`, the package
resource will autorequire those files.

Parameters

- **adminfile**
 A file containing package defaults for installing packages.
 This is currently only used on Oracle Solaris. The value will be
 validated according to system rules, which in the case of
 Oracle Solaris means that it should either be a fully qualified path
 or it should be in `/var/sadm/install/admin`.

- **allow_virtual**
 Specifies if virtual package names are allowed for install and
 uninstall.
 Valid values are `true`, `false`, `yes`, `no`.
 Requires features virtual_packages.

- **allowcdrom**
 Tells apt to allow cdrom sources in the sources.list file.
 Normally apt will bail if you try this.
 Valid values are `true`, `false`.

- **category**
 A read-only parameter set by the package.

- **configfiles**
 Whether configfiles should be kept or replaced. Most packages

Chapter 5
Using Puppet to Configure Packaging

5-2

 types do not support this parameter. Defaults to `keep`.
 Valid values are `keep`, `replace`.

- **description**
 A read-only parameter set by the package.

- **ensure**
 What state the package should be in. On packaging systems that can
 retrieve new packages on their own, you can choose which package to
 retrieve by specifying a version number or `latest` as the ensure
 value. On packaging systems that manage configuration files separately
 from "normal" system files, you can uninstall config files by
 specifying `purged` as the ensure value. This defaults to `installed`.
 Valid values are `present` (also called `installed`), `absent`,
 `purged`, `held`, `latest`. Values can match `/./`.
.
.
.

The example resource type declaration in the Puppet manifest on the Puppet Server
specifies the following configuration information:

• Specifies nmap as the package to install.

• Ensures that the nmap package is available for installation by setting the ensure attribute
to present.

package { 'nmap':
 ensure => 'present',
}

Running the following pkg info nmap command verifies that the nmap package has been
installed on the node:

pkg info nmap
 Name: diagnostic/nmap
 Summary: Network exploration tool and security / port scanner.
 Description: Nmap is useful for inventorying the network, managing service
 upgrade schedules, and monitoring host or service uptime.
 Category: System/Administration and Configuration
 State: Installed
 Publisher: solaris
 Version: 7.70
 Branch: 11.5.0.0.0.56.0
Packaging Date: Fri Sep 27 17:05:48 2019
 Size: 22.61 MB
 FMRI: pkg://solaris/diagnostic/nmap@7.70-11.5.0.0.0.56.0:20190927T170548Z

Note that the specified package can be installed in one of the following ways:

• Automatically - When the Puppet Agent runs

• Manually - When you run the puppet agent -t command on the node

Note that if you later uninstall the nmap package, Puppet enforces the specified configuration
by reinstalling the package on the node.

Chapter 5
Using Puppet to Configure Packaging

5-3

Using Puppet to Configure ZFS File Systems
The following example shows how to use the zfs resource type to define a ZFS file
system configuration in a Puppet manifest.

Example 5-2 Configuring ZFS File Systems With Puppet

Display the following list of the attributes (or parameters) that you can declare for the
zfs resource type:

puppet describe zfs
zfs
===
Manage zfs. Create destroy and set properties on zfs instances.
Autorequires: If Puppet is managing the zpool at the root of this zfs
instance, the zfs resource will autorequire it. If Puppet is managing any
parent zfs instances, the zfs resource will autorequire them.

Parameters

- **aclinherit**
 The aclinherit property. Valid values are `discard`, `noallow`,
 `restricted`, `passthrough`, `passthrough-x`.

- **aclmode**
 The aclmode property. Valid values are `discard`, `groupmask`,
 `passthrough`.

- **atime**
 The atime property. Valid values are `on`, `off`.

- **canmount**
 The canmount property. Valid values are `on`, `off`, `noauto`.

- **checksum**
 The checksum property. Valid values are `on`, `off`, `fletcher2`,
 `fletcher4`, `sha256`.

- **compression**
 The compression property. Valid values are `on`, `off`, `lzjb`, `gzip`,
 `gzip-[1-9]`, `zle`.

- **copies**
 The copies property. Valid values are `1`, `2`, `3`.

- **dedup**
 The dedup property. Valid values are `on`, `off`.

- **devices**
 The devices property. Valid values are `on`, `off`.

- **ensure**
 The basic property that the resource should be in.
 Valid values are `present`, `absent`.
.
.
.

Chapter 5
Using Puppet to Configure ZFS File Systems

5-4

Next, declare the zfs resource type, with the following parameters, in the manifest. Note that
an additional attribute called readonly has been added and it is set to on.

zfs { 'rpool/test':
 ensure => 'present',
 readonly => 'on',
}

You would verify the configuration by running the following commands on the node:

zfs list rpool/test
NAME USED AVAIL REFER MOUNTPOINT
rpool/test 31K 31.8G 31K /rpool/test

zfs get readonly rpool/test
NAME PROPERTY VALUE SOURCE
rpool/test readonly on local

Using Puppet to Configure Networking Parameters
The following example shows how you might manage network configuration with Puppet. In
this example, various network-related resource types are declared in a Puppet manifest.

Example 5-3 Configuring Network Parameters With Puppet

The following example shows how you might specify multiple network configuration
parameters in a Puppet manifest.

Force link speed negotiation to be at least 1 GB
 link_properties { "net0":
 ensure => present,
 properties => { en-100fdx-cap => "0" },
 }

 link_properties { "net1":
 ensure => present,
 properties => { en-100fdx-cap => "0" },
 }

 link_aggregation { "aggr0" :
 ensure => present,
 lower_links => ['net0', 'net1'],
 mode => "dlmp",
 }

 ip_interface { "aggr0" :
 ensure => present,
 require => Link_aggregation['aggr0'],
 }

 ip_interface { "net0":
 ensure => absent,
 before => Link_aggregation['aggr0'],
 }

 address_object { "net0":
 ensure => absent,
 before => Ip_interface['net0'],
 }

Chapter 5
Using Puppet to Configure Networking Parameters

5-5

 address_object { 'aggr0/v4':
 require => Ip_interface['aggr0'],
 ensure => present,
 address => "${myip}/24",
 address_type => "static",
 enable => "true",
 }

Using Puppet to Configure Naming Services
The following example shows how you might manage naming services configuration
with Puppet by declaring the service resource type in a Puppet manifest.

Example 5-4 Configuring Naming Services With Puppet

In the following example, the DNS service is enabled and a DNS server is configured.
Then, the domainname property is set. Finally, the name service switch values are
specified.

service { "dns/client":
ensure => running,
}

svccfg { "domainname":
 ensure => present,
 fmri => "svc:/network/nis/domain",
 property => "config/domainname",
 type => "hostname",
 value => "company.com",
 notify => Service[‘dns/client'],
}

svccfg { "nameserver":
 ensure => present,
 fmri: => "svc:/network/dns/client",
 property => "config/nameserver",
 type => "net_address",
 value => "1.2.3.4"
 notify => Service[‘dns/client'],
}

nameservice switch
 nsswitch { "dns + ldap":
 default => "files",
 host => "files dns",
 password => "files ldap",
 group => "files ldap",
 automount => "files ldap",
 netgroup => "ldap",
}

Using Puppet to Configure Oracle Solaris Zones
The example in this section shows one way that you can declare the zone resource
type in a Puppet manifest to define an Oracle Solaris Zones configuration.

Chapter 5
Using Puppet to Configure Naming Services

5-6

Example 5-5 Configuring Oracle Solaris Zones With Puppet

The following example puppet describe command shows an excerpted list of the zone
resource type characteristics:

puppet describe zone
zone
====
Manages Oracle Solaris zones.

Parameters

- **archive**
 The archive file containing an archived zone.

- **archived_zonename**
 The archived zone to configure and install

- **brand**

 The zone's brand type

- **clone**
 Instead of installing the zone, clone it from another zone.
 If the zone root resides on a zfs file system, a snapshot will be
 used to create the clone; if it resides on a ufs filesystem, a copy of
 the
 zone will be used. The zone from which you clone must not be running.

- **config_profile**
 Path to the config_profile to use to configure a solaris zone.
 This is set when providing a sysconfig profile instead of running the
 sysconfig SCI tool on first boot of the zone.

- **ensure**
 The running state of the zone. The valid states directly reflect
 the states that `zoneadm` provides. The states are linear,
 in that a zone must be `configured`, then `installed`, and
 only then can be `running`. Note also that `halt` is currently
 used to stop zones.
 Valid values are `absent`, `configured`, `installed`, `running`.
.
.
.
- **zonecfg_export**
 Contains the zone configuration information. This can be passed in
 in the form of a file generated by the zonecfg command, in the form
 of a template, or a string.

- **zonepath**
 The path to zone's file system.

Providers

 solaris

Chapter 5
Using Puppet to Configure Oracle Solaris Zones

5-7

The zonecfg_export parameter shown in the previous output enables you to create a
zone configuration file resource by running the following zonecfg -z zonename
command:

zonecfg -z testzone1
Use 'create' to begin configuring a new zone.
zonecfg:testzone> create
create: Using system default template 'SYSdefault'
zonecfg:testzone> export -f /tmp/zone.cfg
zonecfg:testzone> exit
root@puppet_server:~# cat /tmp/zone.cfg
create -b
set zonepath=/system/zones/%{zonename}
set autoboot=false
set autoshutdown=shutdown
set ip-type=exclusive
add anet
set linkname=net0
set lower-link=auto
set configure-allowed-address=true
set link-protection=mac-nospoof
set mac-address=auto
end
root@puppet_server:~# cp /tmp/zone.cfg /etc/puppetlabs/code/modules/mycompany

The zone that you create becomes configurable when the zone resource type is
applied, so declare the zone resource type in the Puppet manifest as follows:

zone { 'systemazone':
 zonecfg_export => 'puppet:///modules/mycompany/zone.conf',
 ensure => 'running',
}

The ensure parameter value is installed, which is one of the valid installed or
running values. In this example, the systemazone zone is created on the node.

The following command verifies that the node applied the configuration to itself
successfully:

zoneadm list -cv
 ID NAME STATUS PATH BRAND IP
 0 global running / solaris shared
 - systemazone running /system/zones/systemazone solaris excl

This example output shows that the systemazone non-global zone is configured,
installed, and running.

Chapter 5
Using Puppet to Configure Oracle Solaris Zones

5-8

Index

Symbols
/etc/puppetlabs/puppet/puppet.conf

configuration file, 1-3, 2-2

A
agent, 1-5, 1-6
agent-server model, 1-6
attributes

resources, 3-4
authentication, 1-7
authorizations, 1-8

C
catalogs

compiling, 1-5
using the Facter utility, 1-2

certificate authority (CA), 1-7
certificates, 1-7
class declaration

example of, 4-4
types of, 4-4

class definition syntax
example of, 4-4

classes, 1-7
how to write, 4-4

command to create a module
puppet module generate module-name,

4-6
communication methods

encryption method, 1-7
conditional logic

specifying in a manifest, 4-3
configuration files, 2-2

Hiera utility, 1-2
configuring file systems

ZFS configuration, 5-4
configuring naming services

defining in a Puppet manifest, 5-6
configuring network parameters

declaring in a Puppet manifest, 5-5
configuring packaging

declaring resources, 5-1

configuring Puppet Agents
testing connection to Puppet Server, 2-3

configuring zones
declaring the zone resource type, 5-6

connection to Puppet Server
testing, 2-3

controlling Puppet Agents
through Puppet manifests, 4-1

create a module
how to, 4-6

D
declaring resources in a site manifest

example of, 4-1
default node, 4-3
describing system information

using Facter, 3-6
directory tree structure

modules, 4-6
discovering facts about a system

using Facter, 3-6
DSL

Domain Specific Language, 1-7

E
encryption, 1-7

F
Facter

displaying system information, 3-6
facter -p

listing system facts, 3-6
Facter utility, 1-2
facts

how to gather using Facter, 3-6
facts gathering

using the Facter utility, 1-2

Index-1

G
gathering facts

using Facter, 3-6

H
Hiera utility, 1-2
how to write a site manifest, 4-1

I
installation, 2-1

troubleshooting, 2-5
installing packages

by using a Puppet manifest, 5-1
IPS package

system/management/puppet, 2-1

K
keys, 1-7
keyword

node
writing manifests, 4-3

L
log files, 2-2, 2-5

M
manifest

declaring a class definition, 4-4
declaring package resources

example of, 5-1
declaring the files resource type in a

manifest
example of ZFS instances, 5-4

declaring the zone resource type, 5-6
defining naming services configuration

example of, 5-6
defining network configuration

example of, 5-5
node-specific, 4-3

manifests, 1-7, 3-1
declaring a resource, 3-4

matching configuration to specific nodes, 4-3
module directory tree structure, 4-6

example of, 4-6
modules, 1-7

how to write, 4-6
manifest location, 4-6

modules (continued)
puppet module generate module-name

command to create, 4-6

N
naming services configuration

using Puppet to define, 5-6
network configuration

declaring in a Puppet manifest, 5-5
node definitions, 1-7
node-specific manifest

description of, 4-3
normal class declaration

writing classes, 4-4

O
Oracle Solaris system configuration, 5-1

P
packaging

how to configure with Puppet, 5-1
permissions, 1-8
polling

how agents work, 1-5
preparing to install Puppet, 2-1
privileges, 1-8
providers, 3-1
Puppet agent, 1-6
Puppet Agent configuration, 2-2
Puppet agent-server model, 1-6
Puppet classes

how to write, 4-4
Puppet configuration, 2-2
puppet describe --list command, 3-1
puppet group, 1-6
Puppet infrastructure, 1-5
Puppet manifests

how to write, 4-1
puppet module generate

creating a Puppet module, 4-6
Puppet modules

how to write, 4-6
puppet resource --types command, 3-1
Puppet Server, 1-6

testing connection from Puppet Agent, 2-3
Puppet support in Oracle Solaris, 1-2
Puppet system configuration workflow, 5-1
puppet user, 1-6
puppet.conf configuration file, 1-3, 2-2

Index

Index-2

R
Resource Abstraction Layer (RAL), 3-1
resource types, 3-1

descriptions, 3-1
listing, 3-1

resource-like class declaration
writing classes, 4-4

resources
attributes, 3-4
declaring in a manifest, 3-4
defining, 1-7
viewing, 3-5

reusing Puppet code
writing classes, 4-4

rights profiles, 1-8
roles, 1-8

S
security

rights, 1-8
server-agent model, 1-6
site manifest, 4-1
site manifest example, 4-1
site.pp

writing a site manifest, 4-1
site.pp manifest file, 1-7
SMF configuration, 2-2
SMF services, 2-2
specifying conditional logic in a manifest, 4-3
ssl directory, 1-7
supported Puppet features, 1-2
svc:/application/puppet SMF services, 2-2
system configuration workflow for Oracle Solaris,

5-1
system information

how to display with Facter, 3-6
using the Facter utility, 1-2

system information (continued)
system/management/puppet

Puppet IPS package, 2-1

T
testing connection to Puppet Server

configuring Puppet Agents, 2-3
troubleshooting

installation, 2-5

U
using Facter

describe system information, 3-6
using Puppet to configure naming services, 5-6
using Puppet to configure networking, 5-5
using Puppet to configure ZFS file systems, 5-4
using Puppet to configure zones, 5-6
using Puppet to install packages, 5-1

W
writing a site manifest, 4-1

how to, 4-1
writing classes

normal class declaration, 4-4
resource-like class declaration, 4-4

writing modules, 4-6
writing node-specific manifests, 4-3
writing Puppet classes, 4-4

Z
ZFS file systems configuration

using Puppet to define, 5-4
zone resource type

declaring, 5-6
zones configuring with Puppet, 5-6

Index

Index-3

	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	1 Using Puppet to Manage System Configuration in Oracle Solaris
	What's New in Puppet in Oracle Solaris 11.4
	Puppet Features in Oracle Solaris
	Puppet Utilities
	Puppet Modules
	Puppet SMF Services
	Puppet Configuration File
	Puppet Resources and Resource Types
	Puppet Providers
	Puppet Command-Line Interface

	How Puppet Works
	Puppet Agent-Server Model
	The Puppet Server
	Puppet Agents

	Puppet Encryption and Communication Methods
	Puppet Manifests

	Puppet Privileges and Authorizations

	2 Getting Started With Puppet in Oracle Solaris
	Installing Puppet
	Preparing to Install Puppet
	Install Puppet

	Configuring the Puppet Agents
	How to Configure Puppet Agents

	Troubleshooting Puppet Issues in Oracle Solaris

	3 Working With Puppet Resources and Resource Types in Oracle Solaris
	Puppet Resources and Resource Types
	Declaring Puppet Resources
	Viewing and Modifying Puppet Resources by Using the Command Line
	Viewing the State of a Puppet Resource
	Modifying the State of a Puppet Resource

	Gathering Information About a System by Using Facter

	4 Writing Puppet Manifests, Classes, and Modules in Oracle Solaris
	Writing a Puppet Site Manifest
	How to Write a Puppet Site Manifest

	Writing Puppet Manifests That Specify Node-Specific Code
	Writing Puppet Classes
	Writing Puppet Modules

	5 Using Puppet to Manage Oracle Solaris System Configuration
	Puppet Configuration Management Workflow
	Using Puppet to Configure Packaging
	Using Puppet to Configure ZFS File Systems
	Using Puppet to Configure Networking Parameters
	Using Puppet to Configure Naming Services
	Using Puppet to Configure Oracle Solaris Zones

	Index

