
Oracle ILOM Web Service REST API

E87200-07
December 2022

Oracle ILOM Web Service REST API,

E87200-07

Copyright © 2019, 2022, Oracle and/or its affiliates.

Primary Author: Cheryl Smith, Heidi Hall

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Copyright © 2019, 2022, Oracle et/ou ses affiliés.

Ce logiciel et la documentation connexe sont fournis en vertu d'un contrat de licence assorti de restrictions relatives à
leur utilisation et divulgation. Ils sont protégés en vertu des lois sur la propriété intellectuelle. Sauf dispositions
contraires prévues de manière expresse dans votre contrat de licence ou permises par la loi, vous ne pouvez pas
utiliser, copier, reproduire, traduire, diffuser, modifier, mettre sous licence, transmettre, distribuer, présenter, effectuer,
publier ou afficher à toutes fins une partie de ces derniers sous quelque forme que ce soit, par quelque moyen que ce
soit. Sont interdits l'ingénierie inverse, le désassemblage ou la décompilation de ce logiciel, sauf à des fins
d'interopérabilité selon les dispositions prévues par la loi.

L'information contenue dans les présentes est sujette à changement sans préavis. Nous ne garantissons pas qu'elle
est exempte d'erreur. Si vous y relevez des erreurs, veuillez nous les signaler par écrit.

Si ce logiciel, la documentation du logiciel ou les données (comme défini dans la réglementation Federal Acquisition
Regulation) ou la documentation afférente sont livrés sous licence au gouvernement des États-Unis d'Amérique ou à
quiconque qui aurait souscrit la licence de ce logiciel pour le compte du gouvernement des États-Unis d'Amérique, la
notice suivante s'applique :

UTILISATEURS DE FIN DU GOUVERNEMENT É.-U. : programmes Oracle (y compris tout système d'exploitation,
logiciel intégré, tout programme intégré, installé ou activé sur le matériel livré et les modifications de tels programmes)
et documentation sur l'ordinateur d'Oracle ou autres logiciels OracleLes données fournies aux utilisateurs finaux du
gouvernement des États-Unis ou auxquelles ils ont accès sont des "logiciels informatiques commerciaux", des
"documents sur les logiciels informatiques commerciaux" ou des "données relatives aux droits limités" conformément
au règlement fédéral sur l'acquisition applicable et aux règlements supplémentaires propres à l'organisme. À ce titre,
l'utilisation, la reproduction, la duplication, la publication, l'affichage, la divulgation, la modification, la préparation des
œuvres dérivées et/ou l'adaptation des i) programmes Oracle (y compris tout système d'exploitation, logiciel intégré,
tout programme intégré, installé, ou activé sur le matériel livré et les modifications de ces programmes), ii) la
documentation informatique d'Oracle et/ou iii) d'autres données d'Oracle, sont assujetties aux droits et aux limitations
spécifiés dans la licence contenue dans le contrat applicable. Les conditions régissant l'utilisation par le
gouvernement des États-Unis des services en nuage d'Oracle sont définies par le contrat applicable à ces services.
Aucun autre droit n'est accordé au gouvernement américain.

Ce logiciel ou matériel informatique est destiné à un usage général, dans diverses applications de gestion de
l'information. Il n'a pas été conçu pour être utilisé dans le cadre d'applications dangereuses, y compris des
applications susceptibles de causer des blessures corporelles. Si vous utilisez ce logiciel ou matériel informatique
dans des applications dangereuses, il vous revient d'adopter les mesures relatives à la protection contre les
interruptions, aux copies de sauvegarde et à la redondance ainsi que toute autre mesure visant à garantir son
utilisation en toute sécurité. Oracle Corporation et ses sociétés affiliées déclinent toute responsabilité relativement
aux dommages pouvant résulter de l'utilisation du logiciel ou du matériel informatique dans des applications
dangereuses.

Oracle®, Java, MySQL et NetSuite sont des marques de commerce enregistrées d'Oracle Corporation et/ou de ses
sociétés affiliées. Les autres noms ou raisons sociales peuvent être des marques de commerce de leurs propriétaires
respectifs.

Intel et Intel Inside sont des marques de commerce ou des marques de commerce enregistrées de Intel Corporation.
Toutes les marques de commerce SPARC sont utilisées sous licence et sont des marques de commerce ou des
marques de commerce enregistrées de SPARC International, Inc. AMD, Epyc et le logo AMD sont des marques de
commerce ou des marques de commerce enregistrées de Advanced Micro Devices. UNIX est une marque de
commerce enregistrée de The Open Group.

Ce logiciel ou matériel informatique et sa documentation peuvent fournir de l'information sur du contenu, des produits
et des services tiers, ou y donner accès. Oracle Corporation et ses sociétés affiliées déclinent toute responsabilité
quant aux garanties de quelque nature que ce soit relatives au contenu, aux produits et aux services offerts par des
tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. Oracle Corporation et ses sociétés affiliées
ne pourront être tenus responsable des pertes, frais et dommages de quelque nature que ce soit découlant de l'accès
à du contenu, des produits ou des services tiers, ou de leur utilisation, sauf mention contraire stipulée dans un contrat
entre vous et Oracle.

Contents

1 Using This Documentation

Product Documentation Library 1-1

Feedback 1-1

2 Getting Started With the Oracle ILOM REST API

Prerequisites 2-1

Access and Authentication 2-2

Discovering Management Resources 2-2

Client Access to REST API Management Resources 2-3

Specifying Required Authentication Credentials in HTTP Requests 2-4

Basic Access Authentication 2-4

Token-Based Authentication 2-4

Supported Operations 2-6

Common Request Header Fields 2-6

Server Responses to REST API Requests 2-7

REST API Error Response 2-8

Unsupported Oracle ILOM Server Capabilities 2-8

3 Using HTTP Methods to Perform Operations on Oracle ILOM
Resources

Retrieve Resources Using GET Requests 3-1

Retrieve Log-Style Resources Using GET Requests 3-4

Modify Resources Using PATCH Requests 3-6

Create Resources Using POST Requests 3-8

Remove Resources Using DELETE Requests 3-9

Perform Actions on Resources Using POST Requests 3-10

4 Sending REST API Requests to Perform Oracle ILOM Server
Management Tasks

Managing Oracle ILOM Firmware Updates 4-1

iv

Updating Oracle ILOM Firmware 4-1

Step 1: Upload the Local Firmware Package File 4-2

Step 2: View and Answer the Firmware Configuration Questions 4-4

Step 3: Start the Firmware Installation and Poll the Status 4-5

Removing a Local Firmware Package Instance 4-7

Storing and Managing Firmware Images 4-8

Upload Backup Image for Deferred Installation - Using REST API 4-8

View Backup Image Properties - Using REST API 4-11

Retrieving System FRU Information 4-11

GET FRU Information 4-12

Managing System Hardware Faults 4-13

Retrieve a List of System Fault Records 4-14

Retrieve Additional Information About a Specific Fault Record 4-15

Retrieve a List of Fault Record Suspects 4-16

Retrieve Additional Information About a Fault Record Suspect 4-17

Retrieve Fault Records Associated With a Specific FRU 4-18

Manually Clear Fault for Undetected Replaced or Repaired Components 4-19

Clear or Acquit an Active Fault Record 4-19

Clear an Active Fault Associated With a FRU 4-20

Clear an Active Fault Suspect Record 4-20

Uploading and Downloading REST API Data 4-21

Upload REST API Data to Oracle ILOM From Local Client 4-21

Download REST API Data From Oracle ILOM to Local Client 4-22

Downloading Host Console History 4-23

Using a PATCH Request to Download Host Console History (Prior to firmware
version 5.0) 4-23

Using a GET Request to Download Host Console History (As of firmware
version 5.0 and later) 4-24

Downloading Snapshot Data 4-25

5 Appendix: Using Swagger UI to Access Oracle ILOM Web Service
REST API

How To Access Oracle ILOM Web Service API Using Swagger 5-1

6 Appendix: Python Code Authentication Samples for Oracle ILOM
REST API Client

ilom-rest-token.py 6-1

ilom-rest-basic-auth.py 6-2

v

7 Appendix: Java Code Usage Sample for Oracle ILOM REST API
Client

Java Code Sample 7-1

vi

1
Using This Documentation

• Overview – Provides getting started information for accessing and using the Oracle
Integrated Lights Out Manager (ILOM) Web Service Representational State Transfer
(REST) application programming interface (API).

• Audience – Web application architects, developers, or administrators who need to
perform the tasks or learn about the concepts in this guide.

• Required knowledge – Experience with web development, specifically HTTP and JSON,
and REST API programming skills.

Product Documentation Library
Documentation and resources for this product and related products are available at http://
docs.oracle.com/cd/E81115_01/index.html .

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback .

1-1

http://docs.oracle.com/cd/E81115_01/index.html
http://docs.oracle.com/cd/E81115_01/index.html
http://www.oracle.com/goto/docfeedback

2
Getting Started With the Oracle ILOM REST
API

The Oracle ILOM REST API is a secure RESTful web service that enables you to
programmatically access and manage resources through the use of HTTPS. The Oracle
ILOM resources are acted upon through a set of simple, well-defined operations. These are
GET, DELETE, POST, and PATCH. The JSON data format is the primary media-type used for
transfering the data representation to and from Oracle ILOM.

The topics in this section provide fundamental information about how to use the Oracle ILOM
REST API.

• Prerequisites

• Access and Authentication

• Supported Operations

• Common Request Header Fields

• Server Responses to REST API Requests

• REST API Error Response

• Unsupported Oracle ILOM Server Capabilities

Prerequisites
Before using the Oracle ILOM REST API, consider the following information:

• Required Oracle ILOM Firmware

The Oracle ILOM REST API is available on servers running Oracle ILOM firmware
version 4.0 or later.

• Required SSL Certificate

Oracle ILOM managed devices should be properly configured with a valid Web Server
SSL Certificate (default provided self-signed or user installed CA signed). For further
information about configuring and validating an SSL Certificate, see Improve Security by
Using a Trusted SSL Certificate and Private Key in Oracle ILOM Security Guide For
Firmware Releases 3.x and 4.x

• Use of REST API Development Tools With Client Examples

To access the Oracle ILOM REST API, you can use any tool or programming library that
can generate HTTP requests. For instance, the following tools can access the REST API
in various capacities:

– cURL – cURL is a command-line tool and library for transferring data using URL
syntax. cURL is an open source software product that is available for download from
http://curl.haxx.se/

2-1

http://curl.haxx.se/

Note:

This guide includes a mix of HTTP request examples and cURL
based examples. The purpose of these examples is to demonstate
the syntax for creating client requests and then showing the
applicable server responses.

– Web Browser With the Postman REST Client Plug-in Extension – A web
browser with REST client plug-in extension enables you to retrieve the REST
API data. However, it does not support modifying the REST API data.

– Java and Python HTTP Libraries – Languages such as Java and Python
include HTTP libraries that you can use to interact with the REST application.
To help users get started with using the Oracle ILOM REST API, client code
samples for Java and Python are provided. See Appendix: Java Code Usage
Sample for Oracle ILOM REST API Client and Appendix: Python Code
Authentication Samples for Oracle ILOM REST API Client.

– Swagger UI tool – The Swagger UI is a user interface tool that enables you to
view the REST API descriptions, as well as to modify the REST API data. You
can download the Swagger UI tool from the swagger home page (http://
swagger.io). For further details, see Appendix: Using Swagger UI to Access
Oracle ILOM Web Service REST API.

Access and Authentication
The following topics in this section provide information about how to securely access
resources within the Oracle ILOM REST API.

• Discovering Management Resources

• Client Access to REST API Management Resources

• Specifying Required Authentication Credentials in HTTP Requests

Discovering Management Resources
The Oracle ILOM REST API tree is a dynamic data structure of resources. Starting at
the root resource (/rest/v1) the entire REST API is discoverable through uniform
resource identifier (URI) links leading to other resources. As you can see in the
following GET request example, the root resource does not represent a specific
management resource. It does, however, represents a collection of URI links to the
top-level management resources in Oracle ILOM.

GET /rest/v1
{
 "Target": "/rest/v1",
 "Targets": [
 {"name": "about", "uri": "/rest/v1/about"},
 {"name": "faults", "uri": "/rest/v1/faults"},
 {"name": "SYS", "uri": "/rest/v1/SYS"},
 {"name": "HOST", "uri": "/rest/v1/HOST"},
 {"name": "System", "uri": "/rest/v1/System"},
 {"name": "SP", "uri": "/rest/v1/SP"}
]
}

Chapter 2
Access and Authentication

2-2

http://swagger.io
http://swagger.io

A machine-readable description of all the Oracle ILOM REST API resources, in a Swagger
data model 2.0 format, is downloadable from the Oracle ILOM SP using the URL: https://
<ILOM SP IP address>:443/swagger.json.

Note:

The Swagger model describes every available resource in the Oracle ILOM REST
API, including the applicable HTTP methods, the media type, the request and
response body formats, as well as the response status values. While this document
(Oracle ILOM Web Service REST API User's Guide) provides some examples of
requests and responses, the Swagger model is the definitive resource to obtain all
details of requests and responses for all Oracle ILOM REST API resources. Tools
such as the Swagger UI, provide a user-friendly browser-based presentation of the
swagger.json file (also known as swagger model), which enables developers to
execute and monitor API requests sent, as well as the results received. For more
details about using the Swagger UI tool, see Appendix: Using Swagger UI to
Access Oracle ILOM Web Service REST API.

Client Access to REST API Management Resources
Client access to management REST API resources are made through an HTTP request.
Each client request sent to the server must include the following: HTTP verb, resource path,
HTTP 1.1 version, and all required headers including the Host header. For example:

<HTTP verb> <resource_path> HTTP/1.1
<Header Name>: <Header Value>

Where:

• The HTTP verb indicates the type of operation to perform, for instance, GET, POST,
PATCH, and DELETE.

• The resource_path portion of the URL always begins with /rest/v<version> followed by
the target resource to be acted upon. For example: /rest/v1/System
When constructing the resource path portion of the URL, follow these guidelines:

– All resource path names are case-insensitive, with the exception of the entities under
the /SYS resource. In this case, the /SYS resource and all its entities are case-
sensitive.

Note:

For a descriptive list of /SYS NAC names, refer to the Oracle Service
Manual provided for your server.

– Forward slash (/) characters can be included in the resource path portion of the URL
to indicate a hierarchical relationship between resources (for example: /top-
level_resource_name/sub-level_resource_name/property_name).

– Resource paths are not considered valid if they end with a trailing forward slash '/'
character. For instance, the following resource path would be considered invalid: /
rest/v1/System/

Chapter 2
Access and Authentication

2-3

• The Header Name and Header Value passes additional information about the
request to the server. For further details, see Common Request Header Fields.

Specifying Required Authentication Credentials in HTTP Requests
The Oracle ILOM REST API requires you to specify authentication credentials in each
client HTTP request. These credentials enable the server to validate the identity of the
user logging in or accessing resources. In cases where the server is unable to validate
the identity of the user, the server will deny the user access and respond with an HTTP
401 Unauthorized error message.

To validate the identity of an Oracle ILOM user, the REST API supports the following
methods:

• Basic Access Authentication

• Token-Based Authentication

Basic Access Authentication
Basic Access Authentication is the primary Oracle ILOM REST API client
authentication method. When using this method, the HTTP request includes an
Authorization header field to validate the user's identity. For example:

 Authorization: BASIC encoded_credentials

Where encoded_credentials is the Base64 encoding of the user name and password
joined by a colon.

Basic Access Authentication Example:

GET /System HTTP/1.1
Authorization: BASIC cm9vdDpjaGFuX2VtZQ==
Accept: application/json

Token-Based Authentication
Oracle ILOM supports Token-Based Authentication as an alternative REST API client
authentication method. This method might offer some performance improvement when
a rapid succession of multiple requests are targeting a single Oracle ILOM instance.
When using this method, the HTTP request includes a unique token in the X-REST-
Token header to validate the user's identity for each request. For example:

 X-Rest-Token:<unique_token>

Where "unique_token" represents a signed token generated by the API, which is then
used by the server to validate the user's identity. After a user's identity is successfully
validated, the user remains logged in until the token is no longer needed or it expires.

Chapter 2
Access and Authentication

2-4

Note:

Tokens are signed with a secret algorithm to protect against manipulation. To further
protect the token from manipulation, an SSL certificate must be properly configured
in Oracle ILOM. For configuration details, see Improve Security by Using a Trusted
SSL Certificate and Private Key in Oracle ILOM Security Guide For Firmware
Releases 3.x and 4.x

To better understand the process for generating a token and including the token in
subsequent requests, see the following:

1. A user requests a token from the REST API by issuing a POST request to the /rest/
v<version>/login resource

Syntax:

POST /rest/v1/login HTTP/1.1
Authorization: BASIC <Base64 encoding of username:password>
Accept: application/json

2. The server validates the user's credentials and returns the X-Rest-Token in the response
to the POST request.

Example response:

{
 X-Rest-Token: LBiDHbTnrGeDJrLSDGaisLXIQMfVjo
}

3. The user passes the token in all subsequent requests within the Oracle ILOM REST API
specific "X-Rest-Token" header.

Syntax:

 <GET|POST|PATCH|DELETE> <Resource_Path> HTTP/1.1
X-Rest-Token: <token string>

Subsequent request example:

GET /System HTTP/1.1
X-Rest-Token: LBiDHbTnrGeDJrLSDGaisLXIQMfVjo
Accept: application/json

4. The server validates and matches the token in each subsequent request, authenticating
the user for the given request.

Note:

The requested operation only proceeds if the server is able to validate and
match the algorithm of the token. If the server is unable to verify the token, the
server would respond with a 401 unauthorized message indicating that the
request could not be processed as authorization could not be verified.

5. The token is destroyed when one of the following occurs:

• Token expires after 15 minutes of inactivity.

Chapter 2
Access and Authentication

2-5

-or-

• The user logs out.

Syntax:

POST /rest/v1/logout HTTP/1.1
X-Rest-Token: <token string>

Supported Operations
When working with the Oracle ILOM REST API, you specify HTTP verbs to perform
operations on resources. The following table describes the type of operations
supported by the Oracle ILOM REST API.

Table 2-1 Supported REST API HTTP Verb Operations

Operation Description

DELETE Resource

DELETE <resource>

Removes the resource specified in the DELETE request.

For further details, see Remove Resources Using
DELETE Requests.

GET Resource

GET <resource>

Returns resource data corresponding to the requested
resource.

For further details, see these topics:

• Retrieve Resources Using GET Requests
• Retrieve Log-Style Resources Using GET Requests

PATCH Resource

PATCH <resource>

Modifies the resource specified in the PATCH request.

For further details, see Modify Resources Using PATCH
Requests,

POST Resource

POST <resource>

Creates a resource that is added to the collection
represented by the resource specified in the POST
request.

For further details, see Create Resources Using POST
Requests.

POST Action

POST <resource>

Performs actions on the resource that are outside the
scope of the CRUD (Create/Read/Update/Delete)
actions supported by HTTP verbs.

For further details, see Perform Actions on Resources
Using POST Requests.

Common Request Header Fields
The following table describes the common Oracle ILOM REST API request headers.

Chapter 2
Supported Operations

2-6

Table 2-2 Common Request Header Field Names

Request Header Field Names Description Required

Authorization

- or -

X-Rest-Token

Authentication header containing
authentication data.

Examples:

Authorization: BASIC
<credentials>
X-Rest-Token": <value>
For further details, see Specifying
Required Authentication Credentials
in HTTP Requests

Yes

(All requests)

Accept Use the Accept header to specify the
acceptable response media type.

Example:

If the acceptable media type is
JSON, the Accept header would look
like this:

Accept: application/json

Yes

(GET requests)

Content-Type Use the Content-Type header to
specify the request body media type.

Example:

If the request body media type is
JSON, the Content-Type header
would look like this:

Content-Type: application/json

Yes

(POST and PATCH request body)

Host Use the Host header to specify the
IP address or hostname of the SP
server.

Example:

The host header would look like this:

Host: <host name/
address>[:<port number>]

If a port number is not specified, the
default port (443) number is used.

Yes

(All requests)

Server Responses to REST API Requests
The Oracle ILOM server sends a response for every REST API request. Each response, at a
minimum, includes an HTTP status code to indicate the success or failure of the requested
operation. For most operations, the server returns a response body in JSON format, with the
exception of the DELETE operation. In this case, a response to a DELETE operation is not
returned because there is nothing to return.

For an example of a server response sent in JSON format, see the response body section of
Retrieve Resources Using GET Requests.

Chapter 2
Server Responses to REST API Requests

2-7

REST API Error Response
When a request results in an error, the server returns an HTTP status code (3xx, 4xx;
5xx) that indicates the error type. For instance, if an incorrect verb for an operation is
used, the server will respond with a 405 (Method Not Allowed) status code. The details
describing the error are returned in the response body. These details can include the
failure reason, the operation failure code, and a message describing the failure, for
example:

{ "error": {
 "reason":"<reason for error>",
 "code":<ILOM failure code (integer)>,
 "message":"<message describing the failure code>"
 }
 }

Unsupported Oracle ILOM Server Capabilities
The following table identifies Oracle ILOM server capabilities that are not supported by
the Oracle ILOM REST API.

Table 2-3 Unsupported Server Capabilities

Unsupported Server Capability Notes

Oracle ILOM Restricted Shell Hardware Diagnostic
Commands

Oracle ILOM restricted shell for hardware diagnostics is
not supported by the Oracle ILOM REST API.
Information on how to run hardware diagnostics from the
Oracle ILOM CLI is provided in the Oracle x86 Server's
Diagnostic Guide.

Oracle ILOM Fault Management Shell (fmdump, fmstat,
fmoverride commands)

Oracle ILOM Fault Management Shell is not supported
by the Oracle ILOM REST API. However, the Oracle
ILOM Fault Management Shell features are configurable
from the Oracle ILOM CLI For details, see Oracle ILOM
User's Guide for System Monitoring and Diagnostics
Firmware Release 5.0.x.

Oracle ILOM Service Shell The Oracle ILOM Service Shell is not supported by the
Oracle ILOM REST API. This shell is restricted to Oracle
service personnel use.

Chapter 2
REST API Error Response

2-8

3
Using HTTP Methods to Perform Operations
on Oracle ILOM Resources

The topics in this section provide examples of RESTful HTTP requests and responses for the
following operations:

• Retrieve Resources Using GET Requests

• Retrieve Log-Style Resources Using GET Requests

• Modify Resources Using PATCH Requests

• Create Resources Using POST Requests

• Remove Resources Using DELETE Requests

• Perform Actions on Resources Using POST Requests

Retrieve Resources Using GET Requests
Use a GET request to retrieve information about an Oracle ILOM resource.

Note:

HTTP GET requests will only retrieve data and not have any other effect on the
data.

Request Format

GET <Resource_Path> HTTP/1.1
<Header Name> : <Header Value>

Request Header Fields Required

The required request header fields are as follows: Authorization, Accept, and Host.

For a description of these required header fields, see Common Request Header Fields.

Response Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body (Success Status)

When an entity corresponding to the requested resource is found, Oracle ILOM returns the
details associated with the requested resource in the response body. In which case, the
details in the response body can include: name|value pair properties, a collection of target
resources, and a collection of non-CRUD actions supported for the target resource.

3-1

Note:

To identify the exact response body media type, refer to the Oracle ILOM
Swagger Model (swagger.json) description. For more details, see
Discovering Management Resources.

{
 "Target": "<target URI path>",
 "property1 name": "property1 value",
 ...
 "propertyn name": "propertyn value",
 "Targets": [
 {
 "name": "<name of target1>",
 "uri": "<URI path of target1>"
 },
 ...
 {
 "name": "<name of targetx>",
 "uri": "<URI path of targetx>"
 }
],
 "Actions": [
 {
 "name": "action1"
 },
 ...
 {
 "name": "actionx"
 }
]
}

Where:

• The "Target" property would define the resource path.

• The "Property name:value" pairs would define the property name and value.

• The "Targets", if any, would define a collection of other accessible resources.

• The "Actions", if any, would define non-CRUD actions that are applicable to the
resource.

Response Body (Failed Status)

When an entity corresponding to the requested resource is not found, the response
body returned includes an HTTP failure status code, as well as details describing the
failure. For more details, see REST API Error Response.

Example: HTTP Request

In the following HTTP example, a request is sent to the server SP to retrieve
information about the /System resource.

GET /rest/v1/System HTTP/1.1
Accept: application/json

Chapter 3
Retrieve Resources Using GET Requests

3-2

Upon successfully locating the /System resource, the Oracle ILOM REST API returns the /
System resource details in a JSON response body format, for example:

{
 "Actions": [
 {
 "name": "power-on"
 },
 {
 "name": "power-off"
 },
 {
 "name": "soft-power-off"
 },
 {
 "name": "reset"
 }
],
 "Target": "/rest/v1/System",
 "Targets": [
 {
 "name": "Open_Problems",
 "uri": "/rest/v1/System/Open_Problems"
 },
 {
 "name": "Processors",
 "uri": "/rest/v1/System/Processors"
 },
 {
 "name": "Memory",
 "uri": "/rest/v1/System/Memory"
 },
 {
 "name": "Power",
 "uri": "/rest/v1/System/Power"
 },
 {
 "name": "Cooling",
 "uri": "/rest/v1/System/Cooling"
 },
 {
 "name": "Storage",
 "uri": "/rest/v1/System/Storage"
 },
 {
 "name": "Networking",
 "uri": "/rest/v1/System/Networking"
 },
 {
 "name": "PCI_Devices",
 "uri": "/rest/v1/System/PCI_Devices"
 },
 {
 "name": "Firmware",
 "uri": "/rest/v1/System/Firmware"
 },
 {
 "name": "BIOS",
 "uri": "/rest/v1/System/BIOS"
 },
 {

Chapter 3
Retrieve Resources Using GET Requests

3-3

 "name": "Log",
 "uri": "/rest/v1/System/Log"
 }
],
 "actual_power_consumption": 20,
 "health": "Service Required",
 "health_details": "PS1 (Power Supply 1) is faulty.",
 "host_primary_mac_address": "<MAC address>",
 "ilom_address": "<IP address>",
 "ilom_mac_address": "<MAC address>",
 "locator_indicator": false,
 "model": "ORACLE SERVER X5-2L",
 "open_problems_count": 1,
 "part_number": "X5-2L-P1.LAST-20",
 "power_state": "Off",
 "primary_operating_system": "Not Available",
 "primary_operating_system_detail": "<details>",
 "qpart_id": "<QPART id>",
 "serial_number": "<serial number>",
 "system_fw_version": "<ILOM fw version>",
 "system_identifier": "",
 "type": "Rack Mount"
}

Retrieve Log-Style Resources Using GET Requests
Use a GET request to retrieve log style resources. Log style resource can include a
collection of entries relating to open problems or events recorded in an Oracle ILOM
log file.

Note:

Oracle ILOM logs include: Audit Log, Event Log, or System Log. Open
problem entries relate to problems currently open on the system. The
collection and properties available for each log style resource are described
in the Swagger model. For more details about the Swagger model, see
Discovering Management Resources.

Request Format

GET <Resource_Path>[?start=x&count=y] HTTP/1.1
<Header Name> : <Header Value>

• Where:

– options for <Resource_Path> would be:

* /SP/logs/event/list

* /SP/logs/audit/list

* /System/log/list

* /System/open_problems

Chapter 3
Retrieve Log-Style Resources Using GET Requests

3-4

Note:

The resource path for /System/Open_Problems does not have a /
list at the end.

– start= x &count=y reflect the optional HTTP query parameters to indicate the
number of log entries to be returned. For example, if there are 96 entries in the
collection, to retrieve the 10 most recent entries (entry 87 to entry 96), the 'start' value
would be 97 (even though such an entry does not exist) and the 'count' value would
be 10).

Note:

The Open Problems log does not support the use of the start and count (?
start= x &count= y) query parameters.

Request Header Fields Required

The required request header fields are as follows: Authorization, Accept, and Host.

For a description of these required header fields, see Common Request Header Fields.

Response Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body (Success Status)

Note:

To identify the exact response body media type, refer to the Oracle ILOM Swagger
Model (swagger.json) description. For more details, see Discovering
Management Resources.

The general JSON response body for a GET request of log-style resources would look like:

{
 "collection name":
 [
 {
 "property1 name": "property1 value",
 ...
 "propertyn name": "propertyn value"
 },
 ...
 {
 "property1 name": "property1 value",
 ...
 "propertyn name": "propertyn value"
 }
]
}

Chapter 3
Retrieve Log-Style Resources Using GET Requests

3-5

Example: HTTP Request

In the following HTTP example, a request is sent to the server SP to retrieve a list of
audit log entries.

GET /rest/v1/SP/logs/audit/list/?start=267&count=3 HTTP/1.1
Accept: application/json

The Oracle ILOM REST API returns a list of audit log entries in a JSON response body
format, for example:

{
 "Target": "/rest/v1/SP/logs/audit/list",
 "Log": [
 {
 "id": "266",
 "datetime": "Wed Jan 9 20:43:47 2019",
 "class": "Audit",
 "type": "UI",
 "severity": "minor",
 "description": "root : Set : object = \"/SP/config/dump_uri\" : value =
\"Browser download\" : success"
 },
 {
 "id": "265",
 "datetime": "Wed Jan 9 20:40:12 2019",
 "class": "Audit",
 "type": "UI",
 "severity": "minor",
 "description": "root : Set : object = \"/System/BIOS/Config/dump_uri\" :
value = \"Browser download\" : success"
 },
 {
 "id": "264",
 "datetime": "Wed Jan 9 20:37:08 2019",
 "class": "Audit",
 "type": "UI",
 "severity": "minor",
 "description": "root : Open Session : object = \"/SP/sessions/27/type\" :
value = \"rest\" : success"
 }
]
}

Modify Resources Using PATCH Requests
Use a PATCH request to modify an Oracle ILOM resource.

Note:

A list of modifiable properties for each Oracle ILOM resource is available
from the Swagger model under the patch->responses->schema-
>properties description section. For more details about the Swagger
model, see Discovering Management Resources.

Request Format

Chapter 3
Modify Resources Using PATCH Requests

3-6

PATCH <Resource_Path> HTTP/1.1
<Header Name> : <Header Value>

<Request Body>

• Where:

– Request Body – Each HTTP PATCH request must specify a <request body> to
indicate which property and value needs to be modified under the target resource.

Request Header Fields Required

The required request header fields are as follows: Authorization, Content-Type, and
Host.

For a description of these required header fields, see Common Request Header Fields.

Response Status Codes

• Success: HTTP Status = 200 OK, JSON formatted response body

• Failure: HTTP Status = 4xx, 5xx, JSON formatted error response body.

Response Body

Upon modifying the data sent by the client, the Oracle ILOM REST API returns the following
response body for all PATCH requests:

{
 "code": <integer code>,
 "description": "description string"
}

The value assigned to <integer code> can be any of the following:

• 0: PATCH operation completed with no significant consequence

• 1: PATCH operation completed might cause the web server to reset.

• 2: PATCH operation completed will cause the Oracle ILOM network connection to be
disabled.

Example: HTTP Request

In the following HTTP example, a PATCH request is sent to the server SP to modify the
system_contact and system_location properties under the /SP resource.

PATCH /SP HTTP/1.1
Content-Type: application/json

{"system_contact":"Mr. Smith",
 "system_location":"Newtown, MA"}

Upon successfully modifying the system properties under the /SP resource, the Oracle
ILOM REST API returns the following details in a JSON response body format.

{
 "code": 0,
 "description": "PATH Action Complete"
}

Chapter 3
Modify Resources Using PATCH Requests

3-7

Create Resources Using POST Requests
Use a POST request to create an Oracle ILOM resource.

Note:

Resources supporting Post operations are listed in the Swagger model under
the section post->parameters->name. Properties that can be specified
for a resource during the creation operation are listed in the Swagger model
under the section post->parameters->schema->properties.
Required properties that must be specified for a resource during the creation
operation are listed in Swagger model under the section post-
>parameters->schema->required. For more details about the Swagger
model, see Discovering Management Resources.

Request Format

POST <Resource_Path> HTTP/1.1
<Header Name> : <Header Value>

<Request Body>

• Where:

– Request Body – Each HTTP POST request must specify a <request body>
that contains non-default name-value pairs for the resource properties to be
created.

Request Header Fields Required

The required request header fields are as follows: Authorization, Content-Type,
and Host.

For a description of these required header fields, see Common Request Header
Fields.

Response Status Codes

• Success: HTTP Status = 201 Created, JSON formatted response body

• Failure: HTTP Status = 4xx, 5xx, JSON formatted error response body.

Example: HTTP Request

In the following HTTP example, a request is sent to the server SP to create a new user
resource with the specified name and password.

POST /SP/users HTTP/1.1
Content-Type: application/json

{"user_name":"jane",
 "password":"somepassword"}

Upon successful creation of the new resource, a JSON representation of the newly
created user is returned in the response body.

Chapter 3
Create Resources Using POST Requests

3-8

{
 "Target":"/rest/v1/SP/users/jane",
 "user_name":"jane",
 "role":"o",
 "password":"*****",
 "locked":"false",
 "password_expiration":"no expiry",
 "Targets":[{
 "name":"ssh",
 "uri":"/rest/v1/SP/users/jane/ssh"
 }]
}

Remove Resources Using DELETE Requests
Use a DELETE request to remove an Oracle ILOM resource.

Request Format

DELETE <Resource_Path> HTTP/1.1
<Header Name> : <Header Value>

Request Header Fields Required

The required request header fields are as follows: Authorization and Host.

For a description of these required header fields, see Common Request Header Fields.

Response Status Codes

• Success: HTTP Status = 204 No Content, no response body.

• Failure: HTTP Status = 4xx, 5xx, JSON formatted error response body.

Response Body (Failed Status)

When an entity corresponding to the requested resource is not found, the following error
information is returned in a JSON response body format.

{
 "error": {
 "reason":"<failure reason>",
 "code":<ILOM failure code (integer)>,
 "message":"< message describing the failure code>"
 }
}

Example: HTTP Request

In the following HTTP example, a request is sent to the server SP to delete the resource
'jane'.

DELETE /SP/users/jane HTTP/1.1

Chapter 3
Remove Resources Using DELETE Requests

3-9

Perform Actions on Resources Using POST Requests

Note:

Some operations on Oracle ILOM management entities cannot be matched
to methods in an HTTP request as they do not fall into the CRUD (Create/
Read/Update/Delete) scope. These operations are implemented by 'actions'
in the Oracle ILOM REST API.

Use a POST request to perform non-CRUD actions on supported Oracle ILOM
resources. Resources supporting non-CRUD actions will include an Action [] array
in the response body of a given GET request. The following types of non-CRUD
actions are supported by the Oracle ILOM REST API:

• System reset actions – "reset" SP, "reset" host, "reset" certificates, "reset" keys,
"reset" /HOST/diag/data

• System power actions – "soft-reset" (gracefully reset host), "power-on" (power-
on the host), "power-off" (power-off the host), "soft-power-off" (soft power-off the
host)

• System service actions – "prepare-to-remove" (prepare system for removal),
"return-to-service" (return system to service), "start" or "stop" /HOST/diag tests,
"version" (get firmware version information).

• SYS fault management actions – "acquit" (manually acquit problems on a FRU),
"replace" (manually mark a fru fixed as a result of replacement) "repair" (mark a fru
fixed), "clear" (manually clear fault associated with FRU or UUID)

Request Format

POST <Resource_Path> HTTP/1.1
<Header Name> : <Header Value>

{
 "op": "<action>"
}

The request body identifies the supported non-CRUD action of the resource.

Where:

• <action> identifies the supported resource action (such as "reset", "repair-
to-remove", "acquit", and so on).

Note:

The set of actions supported by any given resource is available in the
'Actions[]' array in the response to the GET request for that resource.

Request Header Fields Required

Chapter 3
Perform Actions on Resources Using POST Requests

3-10

The required request header fields are as follows: Authorization, Content-Type, and
Host.

Note:

For system service actions such as op=version, an Accept header must be
specified in the request with a value of 'application/json'.

For a description of these required header fields, see Common Request Header Fields.

Response Status Codes

• Success: HTTP Status = 200-OK or 204-No content

Note:

A 200 status code is shown when a response body is included for the "action"
specified.

Note:

A 204 status code is shown when a response body is not included for the
"action" specified.

• Failure: HTTP Status = 4xx, 5xx, JSON formatted error response body.

Response Body

A response body is not provided for non-CRUD actions, unless the specified action is for
"op"="version." In this case, a response body similar to the following is returned from the
server.

{
 "Firmware Version":"5.0.0.0",
 "Firmware Build Number":"127654",
 "Firmware Build Date":"Mon Oct 15 11:07:17 PDT 2018",
 "Firmware File System Version":"0.3.180406"
}

Example: HTTP Request

In the following HTTP example, a request is made to the server to reset the Oracle ILOM SP.

POST /SP HTTP/1.1
Content-Type: application/json

{"op":"reset"}

Chapter 3
Perform Actions on Resources Using POST Requests

3-11

4
Sending REST API Requests to Perform
Oracle ILOM Server Management Tasks

The following topics in this section describe the server management tasks supported by the
Oracle ILOM REST API.

• Managing Oracle ILOM Firmware Updates

• Retrieving System FRU Information

• Managing System Hardware Faults

• Uploading and Downloading REST API Data

• Downloading Host Console History

• Downloading Snapshot Data

Note:

In some instances cURL examples, in addition to the HTTP request and response
examples, are included in this chapter to demonstrate the use of the REST API
management task.

Managing Oracle ILOM Firmware Updates
The Oracle ILOM REST API supports the following Oracle ILOM Firmware management
tasks:

• Updating Oracle ILOM Firmware

• Storing and Managing Firmware Images

• Removing a Local Firmware Package Instance

Updating Oracle ILOM Firmware
To ensure that users have access to the latest Oracle ILOM features and product
enhancements,all upgradable system devices should be updated with the latest Oracle ILOM
firmware release.

Note:

In addition to using the Oracle ILOM REST API to update firmware on system
devices, you can use the Oracle ILOM web interface or CLI. For further details, see
Update Oracle ILOM Firmware .

4-1

The process to update Oracle ILOM firmware image on a system device involves
these three steps:

• Step 1: Upload the Local Firmware Package File

Note:

For firmware download instructions, refer to Oracle ILOM Firmware
Versions and Download Methods.

• Step 2: View and Answer the Firmware Configuration Questions.

• Step 3: Start the Firmware Installation and Poll the Status

Step 1: Upload the Local Firmware Package File
Use a POST request to upload a local firmware package file.

Note:

Firmware packages can take several minutes to upload depending on
network speed.

HTTP Request Format:

POST /rest/v<version>/SP/firmware/update HTTP/1.1
<Header Name>: <value>

<Request body>

Where:

• The <Request body> contains the package file contents in a multi-part data form
format.

Request Headers Required:

The following request headers are required to upload a local firmware package file.

• Accept header – The Accept: header must specify the value of application/
json or a superset of application/json.

• Content-Type header – The Content-Type: header must specify the value of
multipart/form-data.

Note:

Some tools such as cURL provide the Content-Type and file contents
when the user supplies the file path.

• Other headers– Authenication and Host headers are required. For a description of
these headers, see Common Request Header Fields.

Response: Status Codes

Chapter 4
Managing Oracle ILOM Firmware Updates

4-2

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body:

Note:

To identify the exact response body media type, refer to the Oracle ILOM Swagger
Model (swagger.json) description. For more details, see Discovering
Management Resources.

{
 "Target":"/rest/v<version>/SP/firmware/update/1",
 "Targets":[
 {
 "name":"questions",
 "uri":"/rest/v1/SP/firmware/update/1/questions"
 },
 {
 "name":"status",
 "uri":"/rest/v1/SP/firmware/update/1/status"
 },
 {
 "name":"versions",
 "uri":"/rest/v1/SP/firmware/update/1/versions"
 }
]
}

Where:

• The context number /1 represents the first local firmware package uploaded to the
server SP. For every new firmware package created on the server SP, the content
number that the REST API assigns is incremented by one. For example, 1 is assigned to
the first package created. If the first package is later removed and another package is
created, the second package instance is then assigned 2.

Note:

As of Oracle ILOM firmware version 5.0, only one firmware update image can
be up uploaded to the server SP at a given time. Earlier versions of Oracle
ILOM firmware versions (4.0.1 and later 4.x.releases), supported up to three
active firmware update instances at a given time.

• The "questions" are the same firmware update questions that are asked when using
the Oracle ILOM CLI to perform the update. All answers to these questions must be
answered either true or false. For information on how to view and provide answers to
these questions, see Step 2: View and Answer the Firmware Configuration Questions.

Chapter 4
Managing Oracle ILOM Firmware Updates

4-3

Step 2: View and Answer the Firmware Configuration Questions
Use a GET and PATCH request to retrieve and modify the firmware configuration
questions that were returned by the POST operation in Step 1: Upload the Local
Firmware Package File .

HTTP Request Format: View Questions

The HTTP request to view the firmware configuration questions, would look like this:

GET /rest/v<version>/SP/firmware/update/1/questions HTTP/1.1
<Header Name>: <Value>

Request Headers Required

The request header fields required to retrieve resources are as follows: Accept,
Authorization, and Host.

For a description of these required header fields, see Common Request Header
Fields.

cURL Request Example: View Questions

Using cURL, the request to view the firmware configuration questions would look like
this:

curl -k -u "root:changeme" -H "Accept:application/json" https://<IP addr>:443/
rest/v1/SP/firmware/update/1/questions

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body

Note:

To identify the exact response body media type, refer to the Oracle ILOM
Swagger Model (swagger.json) description. For more details, see
Discovering Management Resources.

{
 "Target": "/rest/v<version>/SP/firmware/update1/questions",
 "questions":
 [
 {
 "text": "Preserve existing SP configuration",
 "value": true
 },
 {
 "text": "Preserve existing BIOS configuration",
 "value": true
 },
 {
 "text": "Delay BIOS upgrade until next server poweroff or reset",
 "value": true

Chapter 4
Managing Oracle ILOM Firmware Updates

4-4

 }
]
}

HTTP Request Format: Answer Questions

The HTTP request to modify a firmware configuration question, would look like this:

PATCH /rest/v<version>/SP/firmware/update/1/questions HTTP/1.1
<Header Name>: <Value>

<Request Body>

The <Request Body> specifies the firmware configuration question and its value in the format
described in the Swagger model.

Request Headers Required

The request header fields required to modify resources are as follows: Content-Type,
Authorization , and Host.

For a description of these required header fields, see Common Request Header Fields.

cURL Request Example: Answer Questions

Using cURL, the request to modify a firmware question would look like this:

curl --request PATCH --data '{"questions":[{"text":"Preserve existing SP
configuration","value":false}]}' -v -k -v -u "root:changeme" -H "Accept:application/
json" https://IP addr:443/rest/v1/SP/firmware/update/1/questions

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body:

Note:

To identify the exact response body media type, refer to the Oracle ILOM Swagger
Model (swagger.json) description. For more details, see Discovering
Management Resources.

{
 "code": 0,
 "description": "PATH Action Complete"
}

Step 3: Start the Firmware Installation and Poll the Status
Use a PATCH request to start the firmware update. To poll the status of the firmware update
while the installation is in process, use a GET request.

Chapter 4
Managing Oracle ILOM Firmware Updates

4-5

Note:

Upon the completion of the firmware update process, the SP will
automatically reset and become temporarily non-responsive.

HTTP Request Format: Start Firmware Installation

PATCH /rest/v<version>/SP/firmware/update/1 HTTP/1.1
<Header Name>: <Value>

<Request body>
{
 "start": true
}

Where:

• The <Request body> specifies the JSON content.

• The "start":true initiates the configuration and installation of the firmware
update package.

Request Headers Required

The request header fields required to modify resources are as follows: Content-
Type, Authorization, and Host.

For a description of these required header fields, see Common Request Header
Fields.

HTTP Request Format: Poll Installation Status

GET /rest/v<version>/SP/firmware/update/1/status HTTP/1.1
<Header Name>: <Value>

Request Headers Required

The request header fields required to retrieve resources are as follows: Accept,
Authorization, and Host.

For a description of these required header fields, see Common Request Header
Fields.

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body:

Note:

To identify the exact response body media type, refer to the Oracle ILOM
Swagger Model (swagger.json) description. For more details, see
Discovering Management Resources.

Chapter 4
Managing Oracle ILOM Firmware Updates

4-6

{
 "Target":"/rest/v<version>/SP/firmware/update/1/status",
 "state":"In Progress",
 "result":"",
 "component":"uboot",
 "component_progress":"7 of 8"
}

Related Information

• Perform Actions on Resources Using POST Requests

Removing a Local Firmware Package Instance
Use a DELETE request to remove a firmware package instance from the server SP.

Note:

As of Oracle ILOM firmware version 5.0, the Oracle ILOM REST API only allows
one firmware package image to be uploaded on the server at a time.

HTTP Request Format:

DELETE /rest/v<version>/SP/firmware/update/<instance> HTTP/1.1
<Header Name>: <Value>

Where:

• <instance> represents the context number that is assigned to the firmware update
package file that is currently loaded on the server SP.

Note:

As of Oracle ILOM firmware version 5.0, only one firmware update image can
be up uploaded to the server SP at a given time. Earlier versions of Oracle
ILOM firmware (such as 4.0.1 and later 4.x.releases) support up to three active
update firmware instances at one time.

Request Headers Required

The request header fields required to delete resources are as follows: Accept,
Authorization, and Host.

For a description of these required header fields, see Common Request Header Fields.

Chapter 4
Managing Oracle ILOM Firmware Updates

4-7

Storing and Managing Firmware Images

Note:

The ability to manage multiple SP firmware images in Oracle ILOM is
supported on newer Oracle server platforms such as SPARC T7 and later
platforms; as well as X86 X7 and later platforms. This functionality is not
supported on SPARC M-Series platforms.

The Oracle ILOM REST API, as of firmware version 5.0, supports the ability to load a
backup image for deferred installation and view the backup image properties. Note
that after uploading a backup image to the SP, it can be activated at a later time for
installation through the Oracle ILOM web interface or CLI. For more details about
performing these management tasks, see the following:

• Upload Backup Image for Deferred Installation - Using REST API

• View Backup Image Properties - Using REST API

• Activate Firmware Backup Image for Immediate Installation

Upload Backup Image for Deferred Installation - Using REST API
The process to upload a backup image for deferred installation involves the following
three steps:

• Step 1: Upload a Backup Firmware Package to SP

• Step 2: Store Posted Backup Image As a Secondary Image

• Step 3: Verify Backup Operations Succeeded for Steps 1 and 2

Step 1: Upload a Backup Firmware Package to SP
Use a POST request to upload a firmware package to the SP as a backup image.

HTTP Request Format

POST /rest/v<version>/SP/firmware/backupimage/update HTTP/1.1
<Header Name>: <Value>

<request body>

Where:

• The <Request body> contains the package file contents in a multi-part data form
format.

Chapter 4
Managing Oracle ILOM Firmware Updates

4-8

Note:

The backup image remains in a pending state until it is activated for installation. To
active the backup image for immediate installation using the Oracle ILOM web
interface or CLI, see Activate Firmware Backup Image for Immediate Installation in
Oracle ILOM Administrator’s Guide for Configuration and Maintenance Firmware
Release 5.0.x.

Request Headers Required

The following request headers are required to post the backup firmware package on the SP.

• Accept header – The Accept: header must specify the value of application/json or
a superset of application/json.

• Content-Type header – The Content-Type: header must specify the value of
multipart/form-data.

Note:

Some tools such as cURL provide the Content-Type and file contents when the
user supplies the file path.

• Other headers– Authentication and Host headers are required. For a description of these
headers, see Common Request Header Fields.

Step 2: Store Posted Backup Image As a Secondary Image
Use a PATCH request to place the posted backup firmware image on the SP in the secondary
storage bank.

HTTP Request Format

PATCH /rest/v<version>/SP/firmware/backupimage/update/1 HTTP/1.1
<Header Name>: <Value>

{
"start": true
}

Where:

• "start": true updates the secondary storage bank on the SP with the posted backup
image.

Note:

The backup image remains in a pending state until it is activated for installation. To
active the backup image for immediate installation using the Oracle ILOM web
interface or CLI, see Activate Firmware Backup Image for Immediate Installation in
Oracle ILOM Administrator’s Guide for Configuration and Maintenance Firmware
Release 5.0.x.

Chapter 4
Managing Oracle ILOM Firmware Updates

4-9

Request Headers Required

The request header fields required to update a resource are as follows: Content-
Type, Accept, Authorization, and Host.

For a description of these required header fields, see Common Request Header
Fields.

Step 3: Verify Backup Operations Succeeded for Steps 1 and 2
Use a GET request to verify the backup operations for Steps 1 and 2 succeeded.

HTTP Request Format

GET /rest/v<version>/SP/firmware/backupimage/update/1/status HTTP/1.1
<Header Name>: <Value>

Note:

The backup image remains in a pending state until it is activated for
installation. To active the backup image for immediate installation using the
Oracle ILOM web interface or CLI, see Activate Firmware Backup Image for
Immediate Installation in Oracle ILOM Administrator’s Guide for
Configuration and Maintenance Firmware Release 5.0.x.

Request Headers Required

The request header fields required to retrieve the status of the backup operations
performed in Steps 1 and 2 are as follows: Accept, Authorization, and Host.

For a description of these required header fields, see Common Request Header
Fields.

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body:

Note:

To identify the exact response body media type, refer to the Oracle ILOM
Swagger Model (swagger.json) description. For more details, see
Discovering Management Resources.

{
 "Target":"/rest/v<version>/SP/firmware/backupimage/update/1/status",
 "state":"<value>",
 "result":"<value>",
 "component":"<value>",
 "component_progress":"value>"
}

Chapter 4
Managing Oracle ILOM Firmware Updates

4-10

View Backup Image Properties - Using REST API
Use a GET request to view the properties associated with the backup image.

HTTP Request Format

GET /rest/v<version>/SP/firmware/backupimage HTTP/1.1
<Header Name>: <Value>

Request Headers Required

The request header fields required to retrieve resources are as follows: Accept,
Authorization, and Host.

For a description of these required header fields, see Common Request Header Fields.

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body:

Note:

To identify the exact response body media type, refer to the Oracle ILOM Swagger
Model (swagger.json) description. For more details, see Discovering
Management Resources.

< HTTP/1.1 200 OK
{
 "Target":"/rest/v<version>/SP/firmware/backupimage",
 "build":"r129156",
 "date":"Tue Feb 19 13:05:36 PST 2019",
 "upload_date":"Wed Feb 20 16:44:21 2019",
 "version":"5.0.0.0"
}

Note:

The backup image remains in a pending state until it is activated for installation. To
active the backup image for immediate installation using the Oracle ILOM web
interface or CLI, see Activate Firmware Backup Image for Immediate Installation.

Retrieving System FRU Information
As of firmware release 4.0, the Oracle ILOM REST API supports the ability to retrieve
information about Field Replacement Units (FRUs) currently installed on your system. All
FRU information is accessible under the /rest/v<version>/SYS top level resource.

Chapter 4
Retrieving System FRU Information

4-11

GET FRU Information
Use a GET request to retrieve FRU information.

Note:

Since FRUs can vary between platforms, the Swagger model does not
support the ability to describe every FRU instance. It is assumed that the
REST API client is aware of the FRU path names. In cases where the REST
API client is not aware of the path name, but it is aware of the FRU name,
the path name for that FRU instance is discoverable through the Target
links appearing in the response.

HTTP Request Format:

GET /rest/v<version>/SYS/<FRU name> HTTP/1.1
<Header Name> : <Header Value>

Where:

• SYS, the top level resource target, is always entered as upper-case. All resource
path names under /SYS are always case-sensitive.

Request Header Fields Required

The required request header fields are as follows: Authorization, Accept, and
Host.

For a description of these required header fields, see Common Request Header
Fields.

Response: FRU Resource Properties

The following list identifies the typical FRU response properties:

• fru_type – Identifies the type of field replacement unit.

• fru_part_number – Identifies the part_number assigned to the field
replacement unit.

• fru_serial_number – When available, identifies the serial number assigned to
the field replacement unit.

• fru_rev_level – When available, identifies the revision level assigned to the
field replacement unit.

• fru_manufacturer – When available, identifies the manufacturer name for the
field replacement unit:

• fru_description – When available, provides additional information about the
field replacement unit.

Chapter 4
Retrieving System FRU Information

4-12

Note:

Some FRU resources, including /SYS, are containers of FRU resources or other
FRU containers. These type of resources might not include a list of all the FRU
properties.

HTTP Example: Retrieve Disk Backplane Information

GET /rest/v1/SYS/DBP HTTP /1.1
<Header Name> : <Header Value>

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

HTTP Example: Response Body

Note:

To identify the exact response body media type, refer to the Oracle ILOM Swagger
Model (swagger.json) description. For more details, see Discovering
Management Resources.

{
 "fru_type":"Disk Backplane",
 "fru_part_number":"7077819",
 "fru_serial_number":"489089M+14336U0060",
 "fru_rev_level":"01",
 "fru_manufacturer":"MiTAC International Corporation",
 "fru_description":"ASM, BB, DISK CAGE,1",
 "Faults":[],
 "Actions":[
 {"name":"acquit"},
 {"name":"repair"},
 {"name":"replace"}],
 "Targets":[
 {"name":"HDD0", "uri":"/rest/v1/SYS/DBP/HDD0"},
 {"name":"SASEXP", "uri":"/rest/v1/SYS/DBP/SASEXP"}],
 "Target":"/rest/v1/SYS/DBP"
}

Managing System Hardware Faults
As of firmware release 5.0, the Oracle ILOM REST API supports the ability to manage
system related hardware component faults.

Chapter 4
Managing System Hardware Faults

4-13

Note:

A fault indicates that a hardware component is present but is unusable or
degraded due one or more problems diagnosed by the Oracle ILOM. A
faulted component is automatically disabled to prevent further damage to the
system.

Note:

Alternatively, you can manage hardware component faults using the Oracle
ILOM Fault Management Shell. For more information about the Fault
Management Shell, see Managing Oracle Hardware Faults Through the
Oracle ILOM Fault Management Shell.

• Retrieve a List of System Fault Records

• Retrieve Additional Information About a Specific Fault Record

• Retrieve a List of Fault Record Suspects

• Retrieve Additional Information About a Fault Record Suspect

• Retrieve Fault Records Associated With a Specific FRU

• Manually Clear Fault for Undetected Replaced or Repaired Components

Retrieve a List of System Fault Records
Use a GET request to retrieve a list of records under the /rest/v<version>/
faults resource target. Note that each fault record is assigned a universally unique
identifier (UUID), which you can choose to query for additional fault information.

HTTP Request Format

GET /rest/v<version>/faults HTTP/1.1
<Header Name> : <Header Value>

Request Header Fields Required

The required request header fields are as follows: Authorization, Accept, and
Host.

For a description of these required header fields, see Common Request Header
Fields.

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body

Chapter 4
Managing System Hardware Faults

4-14

Note:

To identify the exact response body media type, refer to the Oracle ILOM Swagger
Model (swagger.json) description. For more details, see Discovering
Management Resources.

{
 "Target": "/rest/v<version>/faults",
 "Targets": [
 {
 "name": "<UUID>",
 "uri": "/rest/v1/faults/<UUID>"
 }
]
}

Where:

• Targets[…]' contains references to the individual fault events.

• UUID identifies the universally unique identifier that is assigned to a fault event.

Retrieve Additional Information About a Specific Fault Record
Use a GET request to retrieve additional information about a fault record.

HTTP Request Format:

GET /rest/v<version>/faults/<UUID> HTTP/1.1
<Header Name> : <Header Value>

Request Header Fields Required

The required request header fields are as follows: Authorization, Accept, and Host.

For a description of these required header fields, see Common Request Header Fields.

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body

Note:

To identify the exact response body media type, refer to the Oracle ILOM Swagger
Model (swagger.json) description. For more details, see Discovering
Management Resources.

{
 "Target": "/rest/v<version>/faults/<UUID>",
 "id": "<UUID>",
 "time": "<timestamp>",
 "msgid": "<id>",

Chapter 4
Managing System Hardware Faults

4-15

 "severity": "<level assigned>",
 "status": "<level assigned>",
 "diag_engine": "fdd",
 "system_manufacturer": "Oracle Corporation",
 "system_name": "ORACLE SERVER <model number>",
 "system_part_number": "<p/n>",
 "system_serial_number": "<serial number>",
 "system_firmware_manufacturer": "Oracle Corporation",
 "system_firmware_version": "(ILOM)5.0.0.0",
 "system_firmware_release": "(ILOM)2018.08.14",
 "Actions": [
 {
 "name": "acquit"
 },
 {
 "name": "clear"
 }
],
 "Targets": [
 {
 "name": "<suspects>",
 "uri": "/rest/v1/faults/<UUID>/suspects"
 }
]
}

Where:

• UUID identifies a numeric string (universally unique identifier (UUID)) that is
assigned to fault record.

• "time": "<timestamp>" identifies the date and time when the problem was
detected.

• Actions[…] contains references to names of supported operations.

• "severity": "<level assigned> identifies the severity of the fault record.
Examples include: Debug, Down, Critical, Major, and Minor.

• "status": "<level assigned>" identifies the status of the fault record, for
example, Open.

• "name": "<suspects>" identifies the suspect faulty hardware component(s)
causing the problem.

Retrieve a List of Fault Record Suspects
Use a GET request to retrieve a list of fault suspects associated with a specific fault
record.

HTTP Request Format:

GET /rest/v<version>/faults/<fault_record_UUID>/suspects HTTP/1.1
<Header Name> : <Header Value>

Request Header Fields Required

The required request header fields are as follows: Authorization, Accept, and
Host.

Chapter 4
Managing System Hardware Faults

4-16

For a description of these required header fields, see Common Request Header Fields.

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body:

{
 "Target": "/rest/v<version>/faults/<fault_record_UUID>/suspects",
 "Targets": [
 {
 "name": "<suspect_UUID>",
 "uri": "/rest/v<version>/faults/<fault_record_UUID>/suspects/<suspect_UUID>"
 }
]
}

Where:

• fault_record_UUID identifies a numeric string (universally unique identifier (UUID)) that is
assigned to a specific fault record.

• suspect_UUID identifies a numeric string (universally unique identifier (UUID)) that is
assigned to a suspect faulty hardware component.

Retrieve Additional Information About a Fault Record Suspect
Use a GET request to retrieve additional information about a fault record suspect.

HTTP Request Format:

GET /rest/v<version>/faults/<fault_record_UUID>/suspects/<suspect_UUID> HTTP/1.1
<Header Name> : <Header Value>

Request Header Fields Required

The required request header fields are as follows: Authorization, Accept, and Host.

For a description of these required header fields, see Common Request Header Fields.

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body:

{
 "Target": "/rest/v<version>/faults/<fault_record_UUID>/suspects/<suspect_UUID>",
 "id": "<fault_record_UUID>",
 "class": "<name_of_suspected component failure>",
 "certainty_percentage": <percentage_value>,
 "affects": "/SYS/<resource_path>",
 "status": "<level_assigned>",
 "description": "<Message_describing_the_problem>.",
 "response": "<Message-describing _future operation of system>.",
 "impact": "<Message describing impact to system component>.",
 "action": "<Message_describing_action_to_resolve _the_problem.>",

Chapter 4
Managing System Hardware Faults

4-17

 "Actions": [
 {
 "name":"clear"
 }
]
}

Retrieve Fault Records Associated With a Specific FRU
Use a GET request to retrieve a list of fault suspects associated with a specific fault
record.

HTTP Request Format:

GET /rest/v<version>/SYS/<FRU_resource_name> HTTP/1.1
<Header Name> : <Header Value>

Where:

• FRU_resource_name identifies the name of the resource target. For example: /
rest/v1/SYS/PS1

Request Header Fields Required

The required request header fields are as follows: Authorization, Accept, and
Host.

For a description of these required header fields, see Common Request Header
Fields.

Response: Status Codes

• Success: HTTP Status = 200 OK

• Failure: HTTP Status = 4xx, 5xx

Response Body

{
 "fru_type": "FRU_name",
 "fru_part_number": "<value>",
 "fru_serial_number": "<value>",
 "fru_rev_level": "<value>",
 "fru_manufacturer": "<value>",
 "fru_description": "<value>",
 "Faults": [
 {
 "name": "<Fault_record_UUID>",
 "uri": "/rest/v<version>/faults/<Fault_record_UUID>"
 }
],
 "Actions": [
 {
 "name": "acquit"
 },
 {
 "name": "repair"
 },
 {
 "name": "replace"
 }
],

Chapter 4
Managing System Hardware Faults

4-18

 "Targets":[],
 "Target":"/rest/v<version>/SYS/PS1"
}

Where:

• fault_record_UUID identifies a numeric string (universally unique identifier (UUID)) that is
assigned to a specific fault record.

• suspect_UUID identifies a numeric string (universally unique identifier (UUID)) that is
assigned to a suspect faulty hardware component.

Manually Clear Fault for Undetected Replaced or Repaired Components
Use a POST request to clear a fault record associated with an undetected hardware repair or
replacement. For more details, see:

• Clear or Acquit an Active Fault Record

• Clear an Active Fault Associated With a FRU

• Clear an Active Fault Suspect Record

Clear or Acquit an Active Fault Record
Use a POST request to clear or acquit an active fault record appearing under the /rest/
v<version>/faults resource target.

HTTP Request Format:

POST /rest/v<version>/faults/<fault_record_UUID> HTTP/1.1
<Header Name> : <Header Value>

Request Data:
{"op": "clear"}
or
{"op": "acquit"}

Where:

• {"op": "clear "} is the action used when a fault event or uuid should no longer exist.

Note:

In Oracle ILOM, "clear" is equivalent to "repaired."

• {"op"acquit"} is the action used when a suspect component is not the cause of the
problem.

Request Header Fields Required

The required request header fields are as follows: Authorization, Content-Type, and
Host.

For a description of these required header fields, see Common Request Header Fields.

Related Information

Chapter 4
Managing System Hardware Faults

4-19

• Perform Actions on Resources Using POST Requests

Clear an Active Fault Associated With a FRU
Use a POST request to clear an active fault associated with FRU.

HTTP Request Format:

 POST /rest/v<version>/SYS/<FRU_resource_name> HTTP/1.1
<Header Name> : <Header Value>

Request data:
{"op": "repair"}
 {"op": "replace"}
 {"op": "acquit"}

Where:

• {"op": "replace"} is the action used when a suspect component has been replaced
or removed.

• {"op":"repair"} is the action used when a suspect component has been physically
repaired to resolve the reported problem. For example, a component has been
reseated or a bent pin has been fixed.

• {"op"acquit"} is the action used when a suspect component is not the cause of the
problem.

Request Header Fields Required

The required request header fields are as follows: Authorization, Content-Type,
and Host.

For a description of these required header fields, see Common Request Header
Fields.

Related Information

• Perform Actions on Resources Using POST Requests

Clear an Active Fault Suspect Record
Use a POST request to clear an active suspect faulty component.

HTTP Request Format:

POST /rest/v<version>/faults/<fault_record_UUID>/<suspects/suspect_UUID> HTTP/1.1
<Header Name> : <Header Value>

Request Data:
{"op": "clear"}

Where:

• {"op"clear"} is the action used when a fault event or uuid should no longer exist.

Chapter 4
Managing System Hardware Faults

4-20

Note:

In Oracle ILOM, "clear" is equivalent to "repaired."

Related Information

• Perform Actions on Resources Using POST Requests

Uploading and Downloading REST API Data
As of Oracle ILOM firmware version 5.0, the Oracle ILOM REST API supports the ability to
upload data to Oracle ILOM from a client-local location, as well as download data from Oracle
ILOM to a client-local location. For more details, see:

• Upload REST API Data to Oracle ILOM From Local Client

• Download REST API Data From Oracle ILOM to Local Client

Upload REST API Data to Oracle ILOM From Local Client
Use a POST request to upload REST API data to Oracle ILOM from a local client.

HTTP Request Format

POST /rest/v<version>/<content_resource_path> HTTP/1.1
Content-Type: multipart/form-data

Where:

• <content_resource_path> specifies the resource path of the content to be uploaded that
ends in /content. For example, to upload a banner message that appears when
connecting to Oracle ILOM, the content resource path would look like this: /
rest/v1/SP/preferences/banner/connect/content

Request Header Fields Required

The required request header fields are as follows: Authorization, Content-Type, and
Host.

Note:

The Content-Type request header must specify a multipart/form-data for the
target media type.

For a description of these required header fields, see Common Request Header Fields.

cURL Request Example: Upload Content for Connect Banner

Using cURL, a POST request to upload content to the connect banner resource would look
like this:

curl -v -k -u "root:changeme" --request POST -F
"datafile=@/home/xyz/banner.txt" https://<IP
address>:443/rest/v1/SP/preferences/banner/connect/content

Chapter 4
Uploading and Downloading REST API Data

4-21

Note:

cURL adds the Content-Type header value of multipart/form-data when a
datafile value is specified.

Download REST API Data From Oracle ILOM to Local Client
Use a GET request to download REST API data from Oracle ILOM to a local client.

HTTP Request Format

GET /rest/v<version>/SP/<content_resource_path> HTTP/1.1
Accept: <media type>

Where:

• <content_resource_path> specifies the resource path of the content to be
downloaded. For example, to download the banner message that appears when
connecting to Oracle ILOM, the content resource path would look like this: /
rest/v1/SP/preferences/banner/connect/content

• <media type> represents the media type that is associated with the resource
content to be downloaded. For a list of download 'content' resources and their
associated media types, see the following table.

Download Resource Media Type

/SP/preferences/banner/connect/content text/plain

/SP/preferences/banner/login/content text/plain

/SP/config/content text/xml

/SP/services/snmp/mibs/content application/zip

/System/bios/config/content text/xml

/HOST/console/history/content application/octet-stream

Request Header Fields Required:

The required request header fields are as follows: Authorization, Accept, and
Host.

Note:

The request Accept header must specify the media type expected from the
target resource.

For a description of these required header fields, see Common Request Header
Fields.

Response: Status Codes

• Success: HTTP Status = 200 OK, <media type> response body

• Failure: HTTP Status = 4xx, 5xx, JSON formatted error response body

Chapter 4
Uploading and Downloading REST API Data

4-22

• Note:

The response media types are specified in the Swagger model.

cURL Request Example

Using cURL, a request to download the connect banner to a binary file (sp_config.xml)
would look like this:

curl -k -v -u "root:changeme" -H
"Accept:text/xml"
https://<IPaddress>:443/rest/v1/SP/config/content -o sp_config.xml

Downloading Host Console History
To extract the entire console history to a binary (non-text) file using the Oracle ILOM REST
API, see one of the following topics

• Using a PATCH Request to Download Host Console History (Prior to firmware version
5.0)

- or -

• Using a GET Request to Download Host Console History (As of firmware version 5.0 and
later)

Note:

The ability to download the console history is not supported on multi-domain
platforms such as SPARC M-Series servers.

Using a PATCH Request to Download Host Console History (Prior to
firmware version 5.0)

The Oracle ILOM REST API, prior to firmware version 5.0, support the ability to use a PATCH
request to extract the entire console history to a binary (non-text) file.

HTTP Request Format: PATCH

PATCH /rest/v<version>/HOST/console/history
<Header Name>: <value>

{
"dump": true
}

Where:

• "dump":true initiates the extraction process of the host console history data.

Request Headers Required

The request header fields required to modify resources are as follows: Content-Type,
Accept, Authorization, and Host.

Chapter 4
Downloading Host Console History

4-23

Note:

The request Accept header must specify application/octet-steam as
the target media type. The Content-Type request header must specify
application/json as the target media type.

For a description of these required header fields, see Common Request Header
Fields.

cURL Example

Using cURL, a request to extract the host console history to a binary (non-text) file
(console_History.log) would look like this:

curl -k --request PATCH -u "root:changeme" -H "Content-Type:application/json"
--data '{"dump":true}' https://<IPaddress>:443/rest/v1/HOST/console/history >
console_history.log

Using a GET Request to Download Host Console History (As of
firmware version 5.0 and later)

The Oracle ILOM REST API, as of firmware version 5.0, supports the ability to use a
GET request to extract the entire console history to a binary (non-text) file.

HTTP Request Format:

GET /rest/v<version>/HOST/console/history HTTP/1.1
<Header Name>: <value>

Request Headers Required

The request header fields required to retrieve resources are as follows: Accept,
Authorization, and Host.

Note:

The request Accept header must specify application/octet-steam as
the target media type.

For a description of these required header fields, see Common Request Header
Fields.

cURL Request Example

Using cURL, a request to extract the host console history to a binary (non-text) file
(console_history.log) would look like this:

curl -k --request GET -u "root:changeme" https://<IPaddress>:443/rest/v1/HOST/
console/history/content >
console_history.log

Chapter 4
Downloading Host Console History

4-24

Downloading Snapshot Data
The Oracle REST API, as of firmware version 5.0, supports the ability to use a POST request
to download snapshot data from the /SP/diag/snapshot/content resource.

Note:

A POST request is necessary rather than a GET request as certain request data is
required to complete the download operation of the snapshot data.

HTTP Request Format:

POST /rest/v<version>/SP/diag/snapshot/content HTTP/1.1
<Header Name>: <value>

Request body:
{
"dataset": "<dataset_value>",
"encryption_passphrase": "<passphrase>"
}

Where:

• "dataset": is mandatory and "<dataset_value>" can be one of "normal","normal-
logonly", "fruid", "fruid-logonly", "full", "full-logonly".

• "encryption_passphrase":"passphrase" is optional and is only required when
the snapshot contents must be encrypted.

Request Headers Required:

The request header fields required to modify resources are as follows: Content-Type,
Accept, Authorization, and Host.

Note:

The request Accept header must specify application/octet-stream as the
target media type. The Content-Type request header must specify
application/json as the target media type.

For a description of these required header fields, see Common Request Header Fields.

Response: Status Codes

• Success: HTTP Status = 200 OK, application/ POST

• Failure: HTTP Status = 4xx, 5xx, JSON formatted error response body

• Note:

The response media types are specified in the Swagger model.

Chapter 4
Downloading Snapshot Data

4-25

cURL Example

Using cURL, a request to extract the snapshot data to a data (non-text) file
(snapshot.dat) would look like this:

curl --request POST -H "Content-Type:application/json" --data
'{"encryption_passphrase":"foobar","dataset":"full"}' -u
"root:changeme" -k -v https://<IP
address>:443/rest/v1/SP/diag/snapshot/content -o snapshot.dat

Related Information

• Perform Actions on Resources Using POST Requests

Chapter 4
Downloading Snapshot Data

4-26

5
Appendix: Using Swagger UI to Access
Oracle ILOM Web Service REST API

How To Access Oracle ILOM Web Service API Using Swagger
A machine readable description of the Oracle ILOM REST API is available in Swagger
format. This description of the Web Service REST API includes information on every resource
available under the five top-level resources: /About, /System, /SP, /SYS, and /Host. The
applicable HTTP verbs, resource property types, configurable properties, and a description
string for each available property are available in the Swagger description

You can obtain a Swagger description of the Oracle ILOM Web Service REST API by issuing
a URL to the swagger.json file on the managed SP device, for instance:

https://<target_SP_IP_address>/swagger.json

The following instructions explain how to install the Swagger UI tool and use it to access the
swagger.json file on the SP:

1. Extract the Swagger UI zip file (downloaded from http://swagger.io) to a directory on the
local file system. For example:

/C:/Users/your_username/Downloads/
2. Open a web browser and enter the file path to the Swagger UI tool. For example:

file:///C:/Users/your_username/Downloads/swagger-ui-master/dist/index.html

The Swagger UI appears in the web browser.

3. In the Swagger UI search box, enter the URI to the swagger.json file. For example:

https://SP _IP_address:443/swagger.json

Where: SP_IP_address represents the IP address of the target SP device.

If the swagger.json appears in the web browser, proceed to Step 5. Otherwise, if the
swagger.json file fails to load and the following message appears, proceed to Step 4
for troubleshooting instructions.

Can't read from Service. It may not have the appropriate access-control-origin
settings.

4. (Optional Troubleshooting Step) If the swagger.json file failed to display in Step 3,
follow these steps:

Note:

The web browser might have not accepted the web server certificate on the SP.

5-1

http://swagger.io

a. Open another web browser window and enter the following URL:

https://SP_IP_address/swagger.json
b. Follow the instruction on the browser dialogs to add an exception for the SP.

The swagger.json file appears in the browser window.

c. Return to Swagger UI browser window (described in Step 3) and click the
Explore button.
The swagger.json file appears.

5. To view the full swagger description of the Oracle ILOM Web Service REST API,
click the Expand Operations link.

6. To use the Swagger UI tool to access and modify Oracle ILOM resources, do the
following:

a. Click the Authorize button.
A prompt appears prompting you to enter a generated X-REST-Token data
value.

b. Enter the X-Rest-Token data value that was generated from your user
credentials, as described in the Token-Based Authentication.
At the time of login, the web service uses the token data value to authenticate
your Oracle ILOM user credentials on the target SP device.

Chapter 5
How To Access Oracle ILOM Web Service API Using Swagger

5-2

6
Appendix: Python Code Authentication
Samples for Oracle ILOM REST API Client

To help users get started with using the Oracle ILOM Web Service REST API, refer to the
following Python client code samples for token-based authentication and HTTP basic
authentication:

• ilom-rest-token.py

• ilom-rest-basic-auth.py

ilom-rest-token.py
Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
example ILOM REST Client using authentication token over several requests
tested with Python 2.7, 3.6

import requests
from requests.packages import urllib3

urllib3.disable_warnings(urllib3.exceptions.SubjectAltNameWarning)

AUTH_TOKEN_NAME = 'X-Rest-Token'
REST_URI = 'https://<SP host or IP>/rest/v1'

session = requests.Session()
session.verify = '<path to ILOM Certificate' # set to True if you have a CA signed
cert
session.hooks = {
 'response': lambda r, *args, **kwargs: r.raise_for_status()
}

login, retrieve auth token, store in session so it's included in all requests
response = session.post(REST_URI + '/login', auth=('root', 'changeme'))
login = response.json()
session.headers.update({AUTH_TOKEN_NAME: login.get(AUTH_TOKEN_NAME)})

try:
 # ilom command to retrieve version
 response = session.post(REST_URI + '/SP',json={'op': 'version'})
 print ('Version {}'.format(response.json().get('Firmware Version')))

 # add a new user Elwood
 session.post(REST_URI + '/SP/users', json={'user_name': 'Elwood', 'password':
'changeme'})

 # delete user elwood
 session.delete(REST_URI + '/SP/users/Elwood')

 # set the /SP system_location property to Santa Clara
 session.patch(REST_URI + '/SP', json={ 'system_location': 'Santa Clara'})

6-1

finally:
 session.post(REST_URI + '/logout')

ilom-rest-basic-auth.py
Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
simple ILOM rest Client basic auth example for a single request to print the
system model / serial number
tested with Python 2.7, 3.6

import requests
from requests.packages import urllib3

urllib3.disable_warnings(urllib3.exceptions.SubjectAltNameWarning)

response = requests.get('https://<ILOM host or IP>/rest/v1/System',
 verify='<path to ILOM Certificate', # set to True if
you have a CA signed cert
 auth=('root', 'changeme'))
response.raise_for_status()
system = response.json()
print (system.get('model'), system.get('serial_number'))

Chapter 6
ilom-rest-basic-auth.py

6-2

7
Appendix: Java Code Usage Sample for
Oracle ILOM REST API Client

The following sample Java code is primarily intended to illustrate the use of the Oracle ILOM
REST API. Therefore, the server IP address and resources are defined as constants and
exception handling is omitted. The sample code requires the use of the Apache HTTP Client
v4.5.6 library and the GSON v2.8.2 library.

Java Code Sample
Prerequisites:

• Install Apache HTTP Client (v4.5.6) and GSON (v2.8.2) libraries and their dependencies
in your class path before attempting to build and run the provided sample code .

• Set the SERVER_IP_ADDRESS constant to the value of your Oracle ILOM SP IP address
before compiling the sample code.

Note:

This Java sample code was tested on Java v1.8.

Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.

/
package com.oracle.ssm.ilomrestapi.client;

import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.google.gson.JsonParser;

import java.util.ArrayList;
import java.util.List;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSession;

import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.entity.ContentType;
import org.apache.http.entity.StringEntity;
import org.apache.http.HeaderIterator;
import org.apache.http.HttpEntity;
import org.apache.http.NameValuePair;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.client.entity.UrlEncodedFormEntity;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.client.methods.HttpPatch;

7-1

import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.methods.HttpDelete;
import org.apache.http.conn.ssl.SSLConnectionSocketFactory;
import org.apache.http.conn.ssl.TrustSelfSignedStrategy;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.message.BasicNameValuePair;
import org.apache.http.ssl.SSLContexts;
import org.apache.http.util.EntityUtils;

public class IlomRestApiClient {

 public static final String SERVER_IP_ADDRESS = <IP_address>;
 public static final String SERVER_PORT = "443";
 public static final String ILOM_ROOT_PATH = "/rest/v1";
 public static final String ILOM_ROOT_URI = "https://" + SERVER_IP_ADDRESS +
":" + SERVER_PORT + ILOM_ROOT_PATH;
 public static final String URI_PATH_LOGIN = "/login";
 public static final String ILOM_URI_LOGIN = ILOM_ROOT_URI + URI_PATH_LOGIN;
 public static final String URI_PATH_LOGOUT = "/logout";
 public static final String ILOM_URI_LOGOUT = ILOM_ROOT_URI + URI_PATH_LOGOUT;
 public static final String URI_PATH_SYSTEM = "/System";
 public static final String ILOM_URI_SYSTEM = ILOM_ROOT_URI + URI_PATH_SYSTEM;
 public static final String URI_PATH_SP_USERS = "/SP/users";
 public static final String ILOM_URI_SP_USERS = ILOM_ROOT_URI +
URI_PATH_SP_USERS;
 public static final String URI_PATH_ELWOOD_USER = "/Elwood";
 public static final String ILOM_URI_ELWOOD_USER = ILOM_URI_SP_USERS +
URI_PATH_ELWOOD_USER;
 public static final String ACCEPT_HEADER = "Accept";
 public static final String CONTENT_TYPE_HEADER = "Content-Type";
 public static final String JSON_MEDIA_TYPE = "application/json";
 public static final String TOKEN_HEADER = "X-Rest-Token";

 private String token;

 private CloseableHttpClient getHttpClient(boolean useCreds) throws Exception
{
 SSLContext sslContext = SSLContexts.custom()
 .loadTrustMaterial(new TrustSelfSignedStrategy())
 .build();
 HostnameVerifier hostNameVerifier = new HostnameVerifier() {
 public boolean verify(String hostname, SSLSession session) {
 return true;
 }
 };
 SSLConnectionSocketFactory socketFactory =
 new SSLConnectionSocketFactory(sslContext,
 new String[] { "TLSv1.2" }, null,
 hostNameVerifier);
 if (useCreds) {
 CredentialsProvider credsProvider = new BasicCredentialsProvider();
 credsProvider.setCredentials(
 new AuthScope(SERVER_IP_ADDRESS,
Integer.parseInt(SERVER_PORT)),
 new UsernamePasswordCredentials("root", "changeme"));
 return HttpClients.custom()
 .setDefaultCredentialsProvider(credsProvider)
 .setSSLSocketFactory(socketFactory)

Chapter 7
Java Code Sample

7-2

 .build();
 } else {
 return HttpClients.custom()
 .setSSLSocketFactory(socketFactory)
 .build();
 }
 }

Chapter 7
Java Code Sample

7-3

	Contents
	1 Using This Documentation
	Product Documentation Library
	Feedback

	2 Getting Started With the Oracle ILOM REST API
	Prerequisites
	Access and Authentication
	Discovering Management Resources
	Client Access to REST API Management Resources
	Specifying Required Authentication Credentials in HTTP Requests
	Basic Access Authentication
	Token-Based Authentication

	Supported Operations
	Common Request Header Fields
	Server Responses to REST API Requests
	REST API Error Response
	Unsupported Oracle ILOM Server Capabilities

	3 Using HTTP Methods to Perform Operations on Oracle ILOM Resources
	Retrieve Resources Using GET Requests
	Retrieve Log-Style Resources Using GET Requests
	Modify Resources Using PATCH Requests
	Create Resources Using POST Requests
	Remove Resources Using DELETE Requests
	Perform Actions on Resources Using POST Requests

	4 Sending REST API Requests to Perform Oracle ILOM Server Management Tasks
	Managing Oracle ILOM Firmware Updates
	Updating Oracle ILOM Firmware
	Step 1: Upload the Local Firmware Package File
	Step 2: View and Answer the Firmware Configuration Questions
	Step 3: Start the Firmware Installation and Poll the Status

	Removing a Local Firmware Package Instance
	Storing and Managing Firmware Images
	Upload Backup Image for Deferred Installation - Using REST API
	Step 1: Upload a Backup Firmware Package to SP
	Step 2: Store Posted Backup Image As a Secondary Image
	Step 3: Verify Backup Operations Succeeded for Steps 1 and 2

	View Backup Image Properties - Using REST API

	Retrieving System FRU Information
	GET FRU Information

	Managing System Hardware Faults
	Retrieve a List of System Fault Records
	Retrieve Additional Information About a Specific Fault Record
	Retrieve a List of Fault Record Suspects
	Retrieve Additional Information About a Fault Record Suspect
	Retrieve Fault Records Associated With a Specific FRU
	Manually Clear Fault for Undetected Replaced or Repaired Components
	Clear or Acquit an Active Fault Record
	Clear an Active Fault Associated With a FRU
	Clear an Active Fault Suspect Record

	Uploading and Downloading REST API Data
	Upload REST API Data to Oracle ILOM From Local Client
	Download REST API Data From Oracle ILOM to Local Client

	Downloading Host Console History
	Using a PATCH Request to Download Host Console History (Prior to firmware version 5.0)
	Using a GET Request to Download Host Console History (As of firmware version 5.0 and later)

	Downloading Snapshot Data

	5 Appendix: Using Swagger UI to Access Oracle ILOM Web Service REST API
	How To Access Oracle ILOM Web Service API Using Swagger

	6 Appendix: Python Code Authentication Samples for Oracle ILOM REST API Client
	ilom-rest-token.py
	ilom-rest-basic-auth.py

	7 Appendix: Java Code Usage Sample for Oracle ILOM REST API Client
	Java Code Sample

