
StorageTek
Library Control Interface (SCI) Reference
Guide

E76473-03
September 2021

StorageTek Library Control Interface (SCI) Reference Guide,

E76473-03

Copyright © 2017, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

WSDL URLs xii

Documentation Accessibility xii

Related Documentation xii

Diversity and Inclusion xiii

1 Library Inbound Methods

Request Methods 1-1

cancelRequest() 1-1

getRequest() 1-2

getRequests() 1-2

waitForRequest() 1-2

Library Complex Methods 1-2

getLibraries() 1-3

getLibraryComplex() 1-3

getLibraryComplexCartridges() 1-3

getLibraryComplexCells() 1-3

getLibraryComplexDevices() 1-4

getLibraryComplexDrives() 1-4

getLibraryComplexDriveTrays() 1-4

getLibraryComplexModules() 1-4

getLibraryComplexSlots() 1-4

Library Methods 1-5

getCell() 1-5

getLibrary() 1-5

getLibraryDevices() 1-5

getLibraryDrives() 1-6

Device Methods 1-6

getDevice() 1-6

getDeviceCells() 1-6

getDeviceSlots() 1-7

Robot Methods 1-7

iii

getCellDepth() 1-7

getRobot() 1-7

getRobotCalibration() 1-8

getRobotRange() 1-8

getRobots() 1-8

getRobotStatistics() 1-8

CAP Methods 1-9

What is a capHandle? 1-9

closeCap() 1-9

freeCap() 1-9

getCap() 1-10

getCapPool() 1-10

getCaps() 1-10

getCapStatistics() 1-10

lockCap() 1-10

openCap() 1-11

setCapOwner() 1-11

unlockCap() 1-11

Drive Methods 1-12

getDrive() 1-12

getDriveTypes() 1-12

Cartridge Methods 1-12

dismountCartridgeByCellId() 1-13

dismountCartridgeByVolser() 1-13

getAllCartridgesByVolser() 1-14

getAllCartridgesByVolsers() 1-14

getLostCartridges() 1-14

mountCartridgeByCellId() 1-14

mountCartridgeByVolser() 1-15

moveCartridgeByCellId() 1-15

Partitioning Methods 1-16

getPartition() 1-16

getPartitionCells() 1-16

SCSI Host Methods 1-16

getScsiHosts() 1-16

Media Validation Methods 1-17

validateCartridgeByCellId() 1-17

validateCartridgeByVolser() 1-17

Diagnostic Testing Methods 1-17

runDiagnosticTest() 1-18

Network Configuration Methods 1-18

iv

getCustomerNetworkSettings() 1-18

getOkmNetworkSettings() 1-18

getServiceNetworkSettings() 1-19

Fault and Library Log Methods 1-19

createTestEvent() 1-19

getFaults() 1-19

getLogEntries() 1-20

getSystemReports() 1-20

Notification Configuration Methods 1-20

createSciDestination() 1-20

deleteDestination() 1-21

getSciDestinations() 1-21

2 Outbound Methods

auditComplete() 2-2

capacityChanged() 2-2

capClosed() 2-2

capOpened() 2-2

capOwnershipOverridden() 2-3

capReadyToOpen() 2-3

deviceControlStateChange() 2-3

deviceFailed() 2-3

deviceInstalled() 2-3

deviceRemoved() 2-4

doorClosed() 2-4

doorOpened() 2-4

driveCleaningNeeded() 2-4

faultDetected() 2-5

intermediateData() 2-5

libraryComplexStateChange() 2-5

libraryStateChange() 2-5

lostCartridges() 2-6

mediaValidationDrivePoolModified() 2-6

moveData() 2-6

partitionChanged() 2-6

ping() 2-7

railStateChange() 2-7

test() 2-7

v

3 SCI Objects

Primitive Types 3-1

Lists and Sets 3-2

DataHandler 3-2

Subclass of an Object 3-3

Data Transfer Objects (DTOs) 3-3

Requests, Jobs, and Resources Objects 3-3

RequestDto 3-3

RequestErrorDto 3-3

RequestOutputMessageDto 3-4

JobDto 3-4

JobParameter 3-5

ResourceDto 3-5

CellResourceDto 3-5

DeviceResourceDto 3-5

RailSegmentResourceDto 3-5

ResourceUsageDto 3-6

RailSegmentResourceUsageDto 3-6

Library Objects 3-6

LibraryComplexDto 3-7

LibraryComplexCountsDto 3-8

LibraryDto 3-8

LibraryIdentityDto 3-9

CardCageIdentityDto 3-10

LibraryCountsDto 3-10

RedStackInfoDto 3-10

ModuleDto 3-11

ModuleCountsDto 3-11

RailDto 3-11

RailCountsDto 3-12

CellDto 3-12

CellAddressDto 3-13

SlotDto 3-13

DoorStateDto 3-13

PartitionDto 3-14

PartitionCountsDto 3-15

ScsiHostDto 3-15

ScsiLunDto 3-15

TimeSettingsDto 3-15

Tape Cartridge Objects 3-16

vi

CartridgeDto 3-16

CartridgeTypeDto 3-16

CleaningCartridgeDto 3-17

Network Objects 3-17

FcPortDto 3-17

IpAddressDto 3-17

NetworkAddressDto 3-17

NetworkInterfaceSettingsDto 3-18

NetworkPerformanceMeasurementDto 3-18

NetworkSettingsDto 3-18

TraceRouteResultsDto 3-19

Device Objects 3-19

DeviceDto 3-19

DeviceIdentityDto 3-20

LedDto 3-20

PingDeviceResultsDto 3-21

FruIdDto 3-21

SDSegmentDto 3-21

FLSegmentDto 3-22

BasePartIdentityDto 3-22

wwnRangeDto 3-22

FrudIdentityDto 3-22

ConfiguredIdentityDto 3-22

SystemIdentityDto 3-23

ProductIdentityDto 3-23

SensorDto 3-23

TelemetryDto 3-23

MeasurementDto 3-24

EnergyMeasurementDto 3-24

HotSwapMeasurementDto 3-24

TemperatureMeasurementDto 3-24

FanMeasurementDto 3-24

CAP Objects 3-24

CapDto 3-25

CapPoolDto 3-25

CapMeasurementDto 3-25

CapStatisticsDto 3-25

Drive Objects 3-26

DriveDto 3-26

DriveTypeDto 3-26

DriveTrayDto 3-27

vii

DriveOperationDto 3-27

Robot Objects 3-27

RobotDto 3-28

RobotCalibrationDto 3-28

RobotCellDepthDto 3-28

RobotGetStatisticsDto 3-28

RobotMetricsDto 3-29

RobotMetricDataDto 3-30

RobotParametersDto 3-30

RobotPositionHistoryDto 3-30

RobotStatisticsDto 3-31

MotionRangeDto 3-31

User Objects 3-31

UserDto 3-31

GroupDto 3-32

RoleDto 3-32

Hardware Activation Objects 3-33

ActivatedFeatureDto 3-33

HwafDto 3-33

HwafActionDto 3-33

Diagnostic Test Objects 3-33

DiagnosticTestDto 3-34

DiagnosticTestParameterDto 3-34

Notification Objects 3-34

DestinationDto 3-34

EmailDestinationDto 3-34

SciDestinationDto 3-34

AsrDestinationDto 3-35

SnmpDestinationDto 3-35

AsrDto 3-36

ServiceContactDto 3-36

Logging and Fault Objects 3-36

LoggingLevelDto 3-37

SupportBundleDto 3-37

SystemReportDto 3-37

FaultDto 3-38

SuspectFruDto 3-38

Firmware Related Objects 3-38

LibraryFirmwareDto 3-39

ComponentFirmwareDto 3-39

DriveFirmwareDto 3-39

viii

FirmwareUpgradeEventDto 3-39

Outbound SCI Objects 3-40

EventDataDto 3-40

CapMoveDto 3-41

CapMoveEventDataDto 3-41

CapOwnerOverriddenEventDataDto 3-41

CapReadyToOpenEventDataDto 3-41

CartridgeMoveEventDataDto 3-41

DeviceEventDataDto 3-42

DoorEventDataDto 3-42

DriveActivityDataDto 3-42

DriveCleanNeededEventdataDto 3-42

FaultEventDataDto 3-43

IntermediateMountDriveEventDataDto 3-43

LibraryComplexEventDataDto 3-43

LicensedCapacityChangeEventDataDto 3-43

LibraryEventDataDto 3-43

AuditEventDataDto 3-43

AuditActivityDataDto 3-44

LibraryStatisticsDto 3-44

LostCartridgesEventDataDto 3-44

MediaValidationDrivePoolModifiedEventDataDto 3-44

RailEventDataDto 3-44

PartitionEventDataDto 3-44

RobotMoveDto 3-44

TestEventDataDto 3-45

4 Enumeration Types

CellContentsState 4-2

CellState 4-3

CellType 4-3

CellTypeSelector 4-3

CommandTiming 4-4

ComponentLocationState 4-4

ControlState 4-4

CorrectiveActionsType 4-4

DestinationType 4-5

DeviceStateType 4-5

DeviceType 4-7

DeviceTypeSelector 4-9

ix

DoorState 4-11

DriveActivityStatusCode 4-11

DriveInterfaceType 4-11

DriveOperationStatus 4-11

DriveProtocol 4-11

ErrorCode 4-12

EventCategory 4-18

EventSeverity 4-18

EventType 4-18

FanHealth 4-19

FastLoadType 4-20

FaultSymptomCodeType 4-20

FcPortState 4-21

Feature 4-21

FirmwareType 4-21

FruType 4-22

HardwareStatusCode 4-22

IpAddressType 4-29

JobType 4-29

JobStateType 4-33

LabelWindowing 4-34

LibraryComplexStateType 4-34

LibraryControllerError 4-34

LibraryProductionState 4-39

LibraryRole 4-39

LibraryStateType 4-40

LogLevel 4-40

MediumType 4-40

ModuleType 4-40

NetworkSettingsType 4-41

PartitionStateType 4-41

RequestErrorType 4-41

RequestSource 4-41

RequestStatus 4-41

ResourceName 4-42

ResourceState 4-42

ResourceType 4-43

RobotHardwareStatusCode 4-43

RobotHomeEnd 4-48

RobotSelector 4-48

RobotStatusCode 4-48

x

ScanType 4-49

ScsiHostState 4-49

SensorType 4-49

ServiceIndicatorName 4-50

SeviceIndicatorState 4-50

SupportBundleOriginator 4-50

SupportBundleState 4-50

SystemReportType 4-51

TopLevelDeviceStateType 4-51

A Implementation Examples

Python A-1

C/C++ A-1

B Secure Development Guide

Generating Code From WSDL Specifications B-1

Transport Layer Security B-1

Inbound and Outbound Authentication B-2

Authorization by Role B-3

xi

Preface

The StorageTek Library Control Interface (SCI) is a programmatic Web Services
(SOAP) interface provided by the StorageTek SL4000 Modular Library System.
Applications can use SCI to control the library. This document is intended for SCI
developers.

WSDL URLs
Inbound SCI: http://<hostname>/WebService/1.0.0?wsdl

Outbound SCI: http://<hostname>/OutboundWebService/

Protocol Negotiation
You can connect to a base webservice (http://<hostname>/WebService/base?wsdl)
that supports a single method: discover(). This method returns a list of supported web
service protocols that the library understands. Use this method to ensure that the client
code is compatible with the library. Currently there is only a 1.0.0 version WebService,
which uses the SOAP 1.2 protocol.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documentation
Go to the Tape Storage section of the Oracle Help Center (https://docs.oracle.com/en/
storage/tape-storage/index.html) for SL4000 documentation:

• SL4000 Library Guide

• SL4000 SCSI Reference Guide

• SL4000 SCI Reference Guide

• SL4000 Security Guide

• SL4000 Safety and Compliance Guide

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/storage/tape-storage/index.html
https://docs.oracle.com/en/storage/tape-storage/index.html

• SL4000 Licensing Information User Guide

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers and partners
we are working to remove insensitive terms from our products and documentation. We are
also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

xiii

1
Library Inbound Methods

Library inbound methods allow you to send requests to the library to get information, perform
library actions, and change the library configuration.

• Request Methods

• Library Complex Methods

• Library Methods

• Device Methods

• Robot Methods

• CAP Methods

• Drive Methods

• Cartridge Methods

• Partitioning Methods

• SCSI Host Methods

• Media Validation Methods

• Diagnostic Testing Methods

• Network Configuration Methods

• Fault and Library Log Methods

• Notification Configuration Methods

Request Methods
Request methods get information about requests or cancel requests made to the library.

• cancelRequest()

• getRequest()

• getRequests()

• waitForRequest()

cancelRequest()
Cancels a submitted request.

Used by STA.

Inputs Outputs Roles Errors

long requestId RequestDto C2,S1,I WebServiceException

1-1

getRequest()
Returns the status of a submitted request. This method allows the client to query for
the completion status of an asynchronous operational request.

Used by STA.

Inputs Outputs Roles Errors

long requestId RequestDto All WebServiceException

getRequests()
Returns a list of requests ordered chronologically based on the request's
createDateTime from newest to oldest.

If you specify null for firstTimeStamp, the library returns the newest "count" requests,
otherwise the returned requests will be before firstTimeStamp.

Used by STA.

Inputs Outputs Roles Errors

int count

XMLGregorianCalendar
firstTimeStamp

List of RequestDto All WebServiceException

waitForRequest()
Waits for a submitted request to complete. Returns when the request completes or
when the timeout expires.

Used by STA, ACSLS, and WWOPs.

Inputs Outputs Roles Errors

long requestId,

int timeout (in seconds)

RequestDto All WebServiceException

Library Complex Methods
Library complex methods get information about the library complex as a whole.

• getLibraries()

• getLibraryComplex()

• getLibraryComplexCartridges()

• getLibraryComplexCells()

• getLibraryComplexDevices()

• getLibraryComplexDrives()

• getLibraryComplexDriveTrays()

Chapter 1
Library Complex Methods

1-2

• getLibraryComplexModules()

• getLibraryComplexSlots()

getLibraries()
Returns a list of information for each library in the complex.

Used by STA.

Inputs Outputs Roles Errors

None List of LibraryDto All WebServiceException

getLibraryComplex()
Returns information about the library complex.

Used by STA, ACSLS, and WWOPs.

Inputs Outputs Roles Errors

None LibraryComplexDto All WebServiceException

getLibraryComplexCartridges()
Returns a list of cartridges for the entire library complex.

Used by STA, ACSLS, and WWOPs.

Inputs Outputs Roles Errors

CellTypeSelector
cellType,

int first,

int count

List of CartridgeDto All WebServiceException

getLibraryComplexCells()
Returns a list of cells and their contents for the entire library complex.

Used by STA, ACSLS, and WWOPs.

Inputs Outputs Roles Errors

CellTypeSelector
cellType,

int first,

int count

List of CellDto All WebServiceException

Chapter 1
Library Complex Methods

1-3

getLibraryComplexDevices()
Returns a list of all devices in the library complex.

Used by STA.

Inputs Outputs Roles Errors

DeviceTypeSelector
deviceType,

int first,

int count

List of DeviceDto All WebServiceException

getLibraryComplexDrives()
Returns a list of all drives in the library complex.

Used by STA.

Inputs Outputs Roles Errors

int first,

int count

List of DriveDto All WebServiceException

getLibraryComplexDriveTrays()
Returns a list of all drives in the library complex.

Used by STA and WWOPs.

Inputs Outputs Roles Errors

int first,

int count

List of DriveTrayDto All WebServiceException

getLibraryComplexModules()
Returns a list of modules for the entire library complex.

Used by STA.

Inputs Outputs Roles Errors

None List of ModuleDto All WebServiceException

getLibraryComplexSlots()
Returns a list of device slots in the library complex. If a slot contains a device, the
device is also returned.

Used by STA.

Chapter 1
Library Complex Methods

1-4

Inputs Outputs Roles Errors

DeviceTypeSelector
deviceType,

int first,

int count

List of SlotDto All WebServiceException

Library Methods
Library methods get information for the cells, devices, and drives within the library.

• getCell()

• getLibrary()

• getLibraryDevices()

• getLibraryDrives()

getCell()
Returns a single cell and its contents.

Used by STA and ACSLS.

Inputs Outputs Roles Errors

long cellId CellDto All WebServiceException

getLibrary()
Returns information for the specified library.

Used by STA, ACSLS, and WWOPs.

Inputs Outputs Roles Errors

long libraryId LibraryDto All WebServiceException

getLibraryDevices()
Returns a list of devices in the specified library.

The list starts at 0. The first parameter allows you to page through the list by providing a
different starting element in the list.

Used by WWOPs.

Chapter 1
Library Methods

1-5

Inputs Outputs Roles Errors

long libraryId

DeviceTypeSelector
deviceType,

int first,

int count

List of DeviceDto for the
library

All WebServiceException

getLibraryDrives()
Returns a list of drives in the library.

The list starts at 0. The first parameter allows you to page through the list by
providing a different starting element in the list.

Used by STA.

Inputs Outputs Roles Errors

long libraryId

int first,

int count

List of DriveDto for the
library

All WebServiceException

Device Methods
Device methods get information about the devices in the library.

Most device methods require a deviceId. You can use getLibraryComplexDevices() or
getLibraryDevices() to obtain a deviceId.

• getDevice()

• getDeviceCells()

• getDeviceSlots()

getDevice()
Returns information for a specific deviceId.

Used by STA, ACSLS, and WWOPs.

Inputs Outputs Roles Errors

long deviceId DeviceDto All WebServiceException

getDeviceCells()
Returns a list of cells and their contents for the device. The type parameter determines
the type of cells returned.

Used by ACSLS.

Chapter 1
Device Methods

1-6

Inputs Outputs Roles Errors

long deviceId,

CellTypeSelector
cellType,

int first,

int count

List of CellDto for the
device

All WebServiceException

getDeviceSlots()
Returns a list of slots in the device. If a slot contains a device, the method also returns the
device.

Used by WWOPs.

Inputs Outputs Roles Errors

long deviceId,

int first,

int count

List of SlotDto for the slots
in the device

All WebServiceException

Robot Methods
Robot methods get robot information.

• getCellDepth()

• getRobot()

• getRobotCalibration()

• getRobotRange()

• getRobots()

• getRobotStatistics()

getCellDepth()
Returns the cell depth from the last reach operation. Depth of cells is in mils (thousandths of
an inch).

Used by WWOPs.

Inputs Outputs Roles Errors

long deviceId RobotCellDepthDto S2,I WebServiceException

getRobot()
Returns information about a robot.

This method is similar to getDevice() for a robot device, but RobotDto has more details than
DeviceDto.

Chapter 1
Robot Methods

1-7

Used by STA.

Inputs Outputs Roles Errors

long robotId RobotDto All WebServiceException

getRobotCalibration()
Returns robot calibration data for a given cell.

Even though the method takes a cellId, calibration actually refers to the cell array
that contains the specified cell.

Used by WWOPs.

Inputs Outputs Roles Errors

long deviceId,

long cellId

RobotCalibrationDto S2,I WebServiceException

getRobotRange()
Returns range data for the robot. Returns a list with one element for each mechanism.

Used by WWOPs.

Inputs Outputs Roles Errors

long deviceId List of MotionRangeDto S1,I WebServiceException

getRobots()
Returns information for all robots in a library.

Used by STA.

Inputs Outputs Roles Errors

long libraryId List of RobotDto All WebServiceException

getRobotStatistics()
Returns robot telemetry data.

Used by STA and WWOPs.

Inputs Outputs Roles Errors

long deviceId RobotStatisticsDto S1,I WebServiceException

Chapter 1
Robot Methods

1-8

CAP Methods
CAP methods get information about rotational or AEM CAPs in the library. The methods can
open, close, lock, unlock, or set the owner of a CAP.

• closeCap()

• freeCap()

• getCap()

• getCapPool()

• getCaps()

• getCapStatistics()

• lockCap()

• openCap()

• setCapOwner()

• unlockCap()

What is a capHandle?
The capHandle identifes a sepcific CAP within the library. Use the handle to reserve the CAP
before sending any of the CAP operational methods (open, close, and so on).

Use setCapOwner() to acquire a capHandle and reserve the CAP. Even if the CAP is
dedicated to a partition, you must use setCapOwner() to acquire a capHandle.

closeCap()
Closes an open CAP. Equivalent to pressing the button on an open CAP.

Once a CAP is closed, the library audits the CAP cells and adds the cartridges to the partition
that owns the CAP. The library moves any cleaning cartridges to system cells.

Used by WWOPs.

Inputs Outputs Roles Errors

long capHandle RequestDto C1,S1,I WebServiceException

freeCap()
Removes partition ownership of the CAP.

The CAP must be locked and empty. An application should free a shared CAP after
completing CAP operations so that the CAP is available for other partitions. This method has
no effect on CAPs in a dedicated CAP pool.

Used by ACSLS.

Chapter 1
CAP Methods

1-9

Inputs Outputs Roles Errors

long capHandle CapDto C1,S1,I WebServiceException

getCap()
Returns information about a specific CAP.

Used by ACSLS.

Inputs Outputs Roles Errors

long capId CapDto All WebServiceException

getCapPool()
Returns the CAPs in the CAP pool.

Used by STA and ACSLS.

Inputs Outputs Roles Errors

long CapPoolId CapPoolDto All WebServiceException

getCaps()
Returns information about all CAPs in the library complex.

Used by STA and ACSLS.

Inputs Outputs Roles Errors

None List of CapDto All WebServiceException

getCapStatistics()
Returns CAP telemetry data.

Used by WWOPs.

Inputs Outputs Roles Errors

long capId CapStatisticsDto S1,I WebServiceException

lockCap()
Logically locks a CAP.

While in the locked state, the library disables all means of opening the CAP, allowing
the robot to safely access the CAP. To lock a CAP, it must be closed, online, and
owned by a non-SCSI partition.

Used by ACSLS and WWOPs.

Chapter 1
CAP Methods

1-10

Inputs Outputs Roles Errors

long capHandle CapDto C1,S1,I WebServiceException

openCap()
Opens an unlocked CAP. Equivalent to pressing the button on a closed CAP.

Used by WWOPs.

Inputs Outputs Roles Errors

long capHandle RequestDto C1,S1,I WebServiceException

setCapOwner()
Assigns ownership of a CAP to a specific partition and provides a capHandle. A partition
must own a CAP to export or import cartridges with the CAP.

Note:

Even if the CAP is dedicated to a partition, you must use setCapOwner() to acquire
a capHandle.

Any moves to or from a CAP not owned by the partition will fail. A partition can only own
CAPs in the CAP pool assigned to the partition. If a CAP pool is assigned to only one
partition, the partition automatically owns the CAPs in that pool. setCapOwner() returns
capHandle, which you can use as input on operations that require an owned CAP.

Used by ACSLS.

Inputs Outputs Roles Errors

long capId,

long partitionId

long capHandle C1,S1,I WebServiceException

unlockCap()
Unlocks a CAP so that an operator can open it.

When unlocked, the robot cannot access the CAP cells. To unlock a CAP, it must be closed,
online, owned by a partition (or controlled by the UI), and not currently in use by the robot.

Used by ACSLS and WWOPs.

Inputs Outputs Roles Errors

long capHandle CapDto C1,S1,I WebServiceException

Chapter 1
CAP Methods

1-11

Drive Methods
Drive methods get information about the drives in the library.

Drive trays contain a tape drive, an LOD card, an LOID card, a power supply for the
drive, and (in some cases) an encryption card. Drive trays slide into drive slots at the
back of the library. Drive tray and drive are sometimes used interchangeably.

• getDrive()

• getDriveTypes()

getDrive()
Returns information about a drive.

This is similar to getDevice() for a drive tray device, but returns a DriveDto which has
additional, drive specific information.

Used by ACSLS.

Inputs Outputs Roles Errors

long driveId DriveDto All WebServiceException

getDriveTypes()
Returns a list of drive types.

The inLibrary parameter determines if the method returns all supported drive types
or only those drive types currently found in the library.

Used by STA.

Inputs Outputs Roles Errors

boolean inLibrary List of DriveTypeDto All WebServiceException

Cartridge Methods
Cartridge methods move, mount, dismount, and get information for cartridges in the
library.

The async parameter determines when the method returns. If async=false, the
method does not return until the cartridge mounts. If async=true, the method returns
once the request is submitted. If you submit the request asynchronously, you can use
getRequest()to determine when the move completes.

• dismountCartridgeByCellId()

• dismountCartridgeByVolser()

• getAllCartridgesByVolser()

• getAllCartridgesByVolsers()

Chapter 1
Drive Methods

1-12

• getLostCartridges()

• mountCartridgeByCellId()

• mountCartridgeByVolser()

• moveCartridgeByCellId()

dismountCartridgeByCellId()
Dismounts a tape cartridge from the drive specified by cellId and moves the tape to the cell
specified by destinationCellId.

The cellId is the cell id for the drive, not the drive id. If force is true, the library issues a
rewind/unload command to the drive before removing the tape.

Caution:

Moving tapes between partitions may confuse some applications requiring you to
re-sync the application with the library.

Used by WWOPs.

Inputs Outputs Roles Errors

long sourceCellId,

long destinationCellId,

boolean force,

boolean async

RequestDto C21,S1,I OfflineException

WebServiceException

1 C2 users can only dismount cartridges to cells within the same partition, while C3, service, and installation roles
can dismount cartridges to any cell.

dismountCartridgeByVolser()
Dismounts a tape cartridge from a tape drive.

The volser specifies the tape to be dismounted and destinationCellId specifies the
destination. When drive dismounts a tape, the library returns it to the specified cell. If force is
true, the library issues a rewind/unload command to the drive before removing the tape.

Used by ACSLS.

Inputs Outputs Roles Errors

string volser,

long destinationCellId,

boolean force,

boolean async

RequestDto C21,S1,I OfflineException

WebServiceException

1 C2 users can only dismount the cartridges to cells within the same partition, while C3, service, and installation
roles can dismount cartridges to any cell.

Chapter 1
Cartridge Methods

1-13

getAllCartridgesByVolser()
Returns information about all cartridges for the given volser (use if there are duplicate
volsers).

Used by STA.

Inputs Outputs Roles Errors

string volser List of CartridgeDto All WebServiceException

getAllCartridgesByVolsers()
Returns information about all cartridges for the given set of volsers.

Used by STA.

Inputs Outputs Roles Errors

List of string volsers List of CartridgeDto All WebServiceException

getLostCartridges()
Returns a list of cartridge information for the lost cartridges.

Lost cartridges can occur when the library finds a cartridges in a robot hand during
library startup and the library cannot determine the proper location for the cartridge.
The library will examine jobs that were in progress when the library went down to
attempt to find the source cell for the cartridge. It it cannot find the source cell, the
library will leave the cartridge in system a cell and notify all connected applications
using the lostCartridges() outbound SCI method.

Used by STA.

Inputs Outputs Roles Errors

None List of CartridgeDto C1,S1,I WebServiceException

mountCartridgeByCellId()
Mounts a cartridge on a tape drive.

Specify the cell id of the cartridge source (cellId) and the cell id of the destination
drive (destinationCellId). The destinationCellId is the cell id for the drive, not the
drive id. If readOnly is true, the drive makes the cartridge read-only.

Used by WWOPs.

Chapter 1
Cartridge Methods

1-14

Inputs Outputs Roles Errors

long sourceCellId,

long destinationCellId,

boolean readOnly,

boolean async

RequestDto C21,S1,I OfflineException

WebServiceException

1 C2 users can only mount cartridges to drives within the same partition, while C3, service, and installation roles
can mount cartridges to any drive.

mountCartridgeByVolser()
Mounts a cartridge on a tape drive.

Specify the volume serial number (volser) of the cartridge and the cell id of the destination
drive (destinationCellid). The destinationCellId is the cell id for the drive, not the drive
id. If readOnly is true, the drive makes the cartridge read-only.

Used by ACSLS.

Inputs Outputs Roles Errors

string volser,

long destinationCellId,

boolean readOnly,

boolean async

RequestDto C21,S1,I OfflineException

WebServiceException

1 C2 users can only mount cartridges to drives within the same partition, while C3, service, and installation roles
can mount cartridges to any drive.

moveCartridgeByCellId()
Moves a cartridge from one storage slot to another.

Specify the source cell (cellId) to the destination cell (destinationCellId). Neither source
nor destination can be a tape drive.

Caution:

Moving cartridges between partitions may confuse some applications requiring you
to re-sync the application with the library.

Used by ACSLS and WWOPs.

Inputs Outputs Roles Errors

long sourceCellId,

long destinationCellId,

boolean async

RequestDto C11,S1,I OfflineException

WebServiceException

1 C1 users can only move cleaning cartridges to and from a CAP. C2 users can only move cartridges to cells within
the same partition, while C3, service, and installation roles can move cartridges to any cell.

Chapter 1
Cartridge Methods

1-15

Partitioning Methods
Partitioning methods get information about the library partitions.

The initial configuration of a library complex has a single default physical partition that
contains all drive bays, all drives, all active storage cells, and all cartridges. The output
of getLibraryComplex() contains a list of partitionIds. Most partition methods take a
partitionId as an input.

• getPartition()

• getPartitionCells()

getPartition()
Returns information for a specific partition.

Used by ACSLS.

Inputs Outputs Roles Errors

long partitionId PartitionDto All WebServiceException

getPartitionCells()
Returns a list of cells and their contents for a partition.

getPartition() returns PartitionDto, which includes a count of the number of cells in the
partition. The optional CellTypeSelector parameter determines the type of cells
returned. If cellType is omitted, the method returns all cells.

Used by ACSLS.

Inputs Outputs Roles Errors

long partitionId,

CellTypeSelector
cellType,

int first,

int count

List of CellDto All WebServiceException

SCSI Host Methods
SCSI host methods retrieve information about SCSI hosts.

• getScsiHosts()

getScsiHosts()
Returns a list of known SCSI hosts, which include hosts automatically detected by the
library or hosts added explicitly by a user.

Used by STA.

Chapter 1
Partitioning Methods

1-16

Inputs Outputs Roles Errors

None List of ScsiHostDto All WebServiceException

Media Validation Methods
Media validation methods validate a cartridge by using a drive in the media validation pool.

• validateCartridgeByCellId()

• validateCartridgeByVolser()

validateCartridgeByCellId()
Initiates media validation on the specified tape cartridge.

Used by STA.

Inputs Outputs Roles Errors

long driveId,

long cellId,

ScanType scanType

RequestDto C1,S1,I WebServiceException

validateCartridgeByVolser()
Initiates media validation on the specified tape cartridge.

Used by STA.

Inputs Outputs Roles Errors

long driveId,

string volser,

ScanType scanType

RequestDto C1,S1,I WebServiceException

The volser parameter can be one of the following:

• Standard 6 character length volume serial number (volser) without the media and domain
type (for example, if the full media label was ABC123L8, the volser would be ABC123).

• Raw label (volser + media type + domain type) as shown on the media label (such as
ABC123L8).

Diagnostic Testing Methods
Diagnostic testing methods start a diagnostic test.

• runDiagnosticTest()

Chapter 1
Media Validation Methods

1-17

runDiagnosticTest()
Starts a diagnostic test.

Specify the test parameters using two string lists. One list is the names of the
parameters and the second list contains the values.

The async parameter determines when the method returns. If async=false, the
method does not return until the test completes. If async=true, the method returns
once the request is submitted. You can then use getRequest() to determine when the
test completes.

Used by WWOPs.

Inputs Outputs Roles Errors

string testName,

List of string paramNames,

List of string
paramValues,

boolean async

RequestDto C2,S1,I1 WebServiceException

1 Only S2 and I users can run robot related diagnostic tests.

Network Configuration Methods
Network configuration methods retrieve information about the network.

• getCustomerNetworkSettings()

• getOkmNetworkSettings()

• getServiceNetworkSettings()

getCustomerNetworkSettings()
Returns all configuration settings of the customer network interfaces for the library
complex.

Used by STA.

Inputs Outputs Roles Errors

long libraryId NetworkSettingsDto All WebServiceException

getOkmNetworkSettings()
Returns all configuration settings of the OKM network interfaces for the library
complex.

Used by STA.

Chapter 1
Network Configuration Methods

1-18

Inputs Outputs Roles Errors

long libraryId NetworkSettingsDto All WebServiceException

getServiceNetworkSettings()
Returns all configuration settings of the Service network interfaces for the library complex.

Used by STA.

Inputs Outputs Roles Errors

long libraryId NetworkSettingsDto All WebServiceException

Fault and Library Log Methods
Fault and library log methods retrieve information about faults, logs, and system reports.

• createTestEvent()

• getFaults()

• getLogEntries()

• getSystemReports()

createTestEvent()
Generates a test event to verify the event sends properly to notification destinations.

See also test().

Used by STA and ACSLS.

Inputs Outputs Roles Errors

None RequestDto C2,S1,I WebServiceException

getFaults()
Returns a list of device event objects where event type is FAULT, limited by count.

The library sorts faults chronologically, from newest to oldest. You can optional use
firstTimestamp to specify the starting timestamp of the faults retrieved. If you specify
firstTimestamp, this method returns faults before this time. To retrieve a long list of faults,
use multiple calls with the time from the last fault for the newest parameter on the next call.

Used by WWOPs.

Inputs Outputs Roles Errors

int count,

XMLGregorianCalendar
firstTimeStamp

List of FaultDto C2,S1,I WebServiceException

Chapter 1
Fault and Library Log Methods

1-19

getLogEntries()
Returns a list of log entries, limited by count.

You can optional use firstLine to specify the starting line number the log entries
retrieved. To retrieve a long list of entries, use multiple calls with the next line number
from the last log entry for the firstLine parameter on the next call.

Use the filter string to select only matching entries from the log. Initially, filtering is
limited to specifying a single value for a specific parameter. The method only returns
entries containing that value.

Used by STA.

Inputs Outputs Roles Errors

sting filter (optional),

int firstLine,

int count

List of logs as string All WebServiceException

getSystemReports()
Returns a list of system report objects, limited by count.

The library sorts system reports chronologically, from newest to oldest. You can
optional use firstTimestamp to specify the starting timestamp of the reports retrieved.
To retrieve a long list of reports, use multiple calls with the time from the last system
report for the newest parameter on the next call.

Used by STA and WWOPs.

Inputs Outputs Roles Errors

int count,

XMLGregorianCalendar
firstTimeStamp

List of SystemReportDto C2,S1,I WebServiceException

Notification Configuration Methods
Notification configuration methods manage outbound SCI destinations.

• createSciDestination()

• deleteDestination()

• getSciDestinations()

createSciDestination()
Creates a new outbound SCI destination.

See also Outbound Methods . The destinationPath should start with a slash "/". An
empty string for destinationPath is not permitted. Protocol is "http" or "https".
Username and password are allowed, but optional, with https protocol. If the library

Chapter 1
Notification Configuration Methods

1-20

cannot connect to a SCI destination it retains un-sent events up to retentionTimeLimit.
Later, if the library can communication with the destination, it will send all unsent events in the
order they occurred. If the library cannot communicate with the detestation within
retentionTimeLimit, the library discards all unsent and new events until communication is
restored.

Used by ACSLS and WWOPs.

Inputs Outputs Roles Errors

List of EventCategory
eventCategories,

string
destinationProtocol,

string
destinationIpAddress,

string destinationPort,

string destinationPath,

string username,

string password,

int retentionTimeLimit

SciDestinationDto C2,S2,I WebServiceException

deleteDestination()
Deletes the notification destination.

Used by ACSLS and STA.

Inputs Outputs Roles Errors

long destinationId None C2,S2,I WebServiceException

getSciDestinations()
Returns a list of SCI destinations. SCI destinations must implement the outbound SCI
specification. The library will invoke the outbound SCI methods when the specified list of
events occur.

Used by STA and ACSLS.

Inputs Outputs Roles Errors

None List of SciDestinationDto All WebServiceException

Chapter 1
Notification Configuration Methods

1-21

2
Outbound Methods

The library calls outbound SCI methods when specific events occur.

To receive the outbound calls, you must configure a connection using createSciDestination().
Outbound SCI configuration has a protocol option that allows http or https. If the protocol is
https, the library includes a WS-Security username and password token in the SOAP header
to the outbound SCI destination. If the protocol is http, the library does not send a username
and password token as it would be visible in clear text.

The library will make calls to the destination until you delete or disable the connection.
Outbound methods are grouped by EventCategory. You can configure a destination to
receive SCI calls for one, several, or all categories.

If communication with the destination is disrupted, the library will queue the calls for the
retentionTimeLimit specified for the destination. The time period is limited because of
available space. This is intended to deal with temporary network outages, not as a means to
have the library retain history for later delivery. If the library cannot connect to a SCI
destination it retains un-sent events up to retentionTimeLimit. Later, if the library can
communication with the destination, it will send all unsent events in the order they occurred. If
the library cannot communicate with the detestation within retentionTimeLimit, the library
discards all unsent and new events until communication is restored.

Outbound methods only specify input parameters, which are the data objects sent from the
library to the called SCI service. The library does not expect a response from any of the
methods except for ping(), which must return a string indicating success.

• auditComplete()

• capacityChanged()

• capClosed()

• capOpened()

• capOwnershipOverridden()

• capReadyToOpen()

• deviceControlStateChange()

• deviceFailed()

• deviceInstalled()

• deviceRemoved()

• doorClosed()

• doorOpened()

• driveCleaningNeeded()

• faultDetected()

• intermediateData()

• libraryComplexStateChange()

2-1

• libraryStateChange()

• lostCartridges()

• mediaValidationDrivePoolModified()

• moveData()

• partitionChanged()

• ping()

• railStateChange()

• test()

auditComplete()
Sends a notification when a physical audit (scan of barcodes) completes.

Category Inputs Outputs

LIBRARY AuditEventDataDto None

capacityChanged()
Sends a notification when the licensed capacity of the library complex changes.

Used by STA.

Category Inputs Outputs

CAP LicensedCapacityChangeEventData
Dto

None

capClosed()
Sends a notification when a CAP closes and the audit completes.

Used by STA

Category Inputs Outputs

CAP CapMoveEventDataDto None

capOpened()
Sends a notification when a CAP opens.

Used by STA.

Category Inputs Outputs

CAP CapMoveEventDataDto None

Chapter 2
auditComplete()

2-2

capOwnershipOverridden()
Sends a notification when the ownership of the CAP has been forcibly removed from a
partition.

Used by STA.

Category Inputs Outputs

CAP CapOwnerOverriddenEventDataDto None

capReadyToOpen()
Sends a notification when you need to open a CAP. The library sends this call when
ejectExpiredCleaningCartridges, ejectCartridges, or continueEject processes require the
operator to open the CAP.

Used by STA.

Category Inputs Outputs

CAP CapReadyToOpenEventDataDto None

deviceControlStateChange()
Sends data about a device when its control state changes. This is usually for a device coming
online or going offline, though some device types may have other states.

Used by STA.

Category Inputs Outputs

DEVICE DeviceEventDataDto None

deviceFailed()
Sends data when a device fails. Typically, the library also sends an ASR for the failure.

Used by STA.

Category Inputs Outputs

DEVICE DeviceEventDataDto None

deviceInstalled()
Sends data when a devices is installed into the library. Only sent when a device is installed
while the library is operating.

Used by STA.

Chapter 2
capOwnershipOverridden()

2-3

Category Inputs Outputs

DEVICE DeviceEventDataDto None

deviceRemoved()
Sends data when you remove a device from the library. Typically, the library only
makes this call for a FRU because you must power off the library to remove most other
devices.

Used by STA.

Category Inputs Outputs

DEVICE DeviceEventDataDto None

doorClosed()
Sends a notification when a door closes and the audit completes.

Used by STA.

Category Inputs Outputs

DOOR DoorEventDataDto None

doorOpened()
Sends a notification when a door opens.

Used by STA.

Category Inputs Outputs

DOOR DoorEventDataDto None

driveCleaningNeeded()
Sends a notification when a drive reports that it needs cleaning by an application. The
library does not send this call if library auto-cleaning is enabled.

Used by STA.

Category Inputs Outputs

CLEANING_REQUIRED DriveCleanNeededEventdataDto None

Chapter 2
deviceRemoved()

2-4

faultDetected()
Sends data about an alert condition. Alerts are conditions in the library that require
intervention.

Generally, the library also sends ASRs or SNMP traps. Over temp events might trigger an
alert. Not all alerts are device failures, but all device failures are alerts.

Used by STA.

Category Inputs Outputs

DEVICE FaultEventDataDto None

intermediateData()
Sends a notification one minute after media validation starts and then every 10 minutes. This
call can also be made available for normal (non media validation) mounts.

Used by STA.

Category Inputs Outputs

MEDIA_VALIDATION IntermediateMountDriveEventDataDto None

libraryComplexStateChange()
Sends data about the library complex when the library complex's functional state (such as
normal or fault) or control state (online, offline) changes.

Used by STA.

Category Inputs Outputs

LIBRARY LibraryComplexEventDataDto None

libraryStateChange()
Sends data about a library when the library's functional state (such as normal or fault) or
control state (online, offline) changes.

Used by STA.

Category Inputs Outputs

LIBRARY LibraryEventDataDto None

Chapter 2
faultDetected()

2-5

lostCartridges()
Sends a notification whenever the library identifies a "lost" cartridge. Lost cartridges
can occur when the library finds a cartridges, but the library cannot determine the
proper location for the cartridge.

Used by STA.

Category Inputs Outputs

LIBRARY LostCartridgesEventDataDto None

mediaValidationDrivePoolModified()
Sends a notification when the media validation drive pool changes. The call returns
one element for each drive in the media validation pool.

Used by STA.

Category Inputs Outputs

MEDIA_VALIDATION MediaValidationDrivePoolModifiedEv
entDataDto

None

moveData()
Sends a notification for any cartridge move.

Used by STA.

Category Inputs Outputs

CARTRIDGE_MOVEMENT CartridgeMoveEventDataDto None

partitionChanged()
Sends a notification when a partition changes. Generally, any partitioning changes
involve at least two partitions, because the commands that change partitions move
cells and drives from one partition to another.

Used by STA.

Category Inputs Outputs

PARTITION PartitionEventDataDto for affected
partitions

None

Chapter 2
lostCartridges()

2-6

ping()
The library calls ping() when an outbound SCI destination is created to verify connectivity.

The library passes in a string containing the library's hostname. The ping() method should
return a string indicating success that will be appended into the library logs.

Category Inputs Outputs

None String String

railStateChange()
Sends data about a rail when the rail's functional state changes (such as normal or fault).

Used by STA.

Category Inputs Outputs

LIBRARY RailEventDataDto None

test()
Sends a test event to verify connectivity after a call to createTestEvent().

Category Inputs Outputs

TEST TestEventDataDto None

Chapter 2
ping()

2-7

3
SCI Objects

• Primitive Types

• Lists and Sets

• DataHandler

• Subclass of an Object

• Data Transfer Objects (DTOs)

• Requests, Jobs, and Resources Objects

• Library Objects

• Tape Cartridge Objects

• Network Objects

• Device Objects

• CAP Objects

• Drive Objects

• Robot Objects

• User Objects

• Hardware Activation Objects

• Diagnostic Test Objects

• Notification Objects

• Logging and Fault Objects

• Firmware Related Objects

• Outbound SCI Objects

Primitive Types
Some methods use primitive types for inputs.

• int - a 32-bit signed, two's complement integer value.

• long - a 64-bit signed, two's complement integer value.

• float - a 32-bit floating point number.

• double - a 64-bit floating point number.

• string - a text string of unicode characters.

• boolean - true or false.

• date - a representation of a date and time. The SOAP implementation is an
xsd:dateTime. The dateTime is specified in the following form "YYYY-MM-DDThh:mm:ssZ"
where:

3-1

– YYYY indicates the year

– MM indicates the month

– DD indicates the day

– T indicates the start of the required time section

– hh indicates the hour

– mm indicates the minute

– ss indicates the second

– (optional) adding a Z behind the time indicates UTC timezone. All times on the
library are in UTC by default.

A sample dateTime would be "2016-10-31T15:30:10Z". Details are language-
specific once the Web Services Description Language (WSDL) has been
transformed into a specific language.

Lists and Sets
Some data transfer object (DTO) attributes are lists. Some input values allow a set of
values. Sets are similar to lists, but are unordered.

Attributes that are lists are documented as "list of <something>" where <something> is
a primitive type or DTO type. For example, if the WSDL is translated into Java, these
attributes become java List objects. Other languages will result in a similar, but
language specific, translation.

DataHandler
SCI uses MTOM (Message Transmission Optimization Mechanism) when uploading or
downloading files. For methods that upload or download content, the client must
provide a "DataHandler" that performs the client side actions.

Downloading means transferring a file, such as a log file, from the library to the
machine where the SCI client is running. The DataHandler receives the data from the
library and must store it locally. Methods that download data will return a DataHandler
object. The caller must then get an input stream from the returned data handler. The
caller then loops, reading data from the input stream constructed from the Data
Handler and writing the read data to the desired location.

Uploading means transferring a file to the library, such as for a firmware upgrade. The
DataHandler reads the file from a location that is accessible on the machine where the
SCI client is running and sends the contents. Methods that upload data require that the
caller construct a DataHandler and pass this into the upload call. Typically this data
handler would be associated with the file that is to be read. The library will then use
the DataHandler to read the contents of the file.

The details of the DataHandler are language specific. Java provides an
implementation for a DataHandler. The Java DataHandler can be constructed with a
DataSource. A DataSource can be used to read and write files, which is the
appropriate usage of MTOM for these SCI methods. A DataSource requires an
InputStream or OutputStream. A client must open the input or output file as a
FileInputStream or FileOutputStream. The InputStream or OutputStream is then used
to create a DataSource which is in turn used to create the DataHandler that is an input
to the methods that transfer files.

Chapter 3
Lists and Sets

3-2

Subclass of an Object
Some object classes are subclasses of other object classes.

A subclass means all elements in the base object are included. For instance, if TigerDto is a
subclass of the base WildAnimalDto, then TigerDto will contain all the attributes from
WildAnimalDto, plus new attributes unique to TigerDto.

Data Transfer Objects (DTOs)
Data Transfer Objects (DTOs) are objects returned by SCI methods and sent by OSCI
methods.

DTOs translate into language-specific classes when the WSDL files are processed. Data
Transfer Objects, unlike true object oriented objects, contain only data elements. They do not
provide any behavior methods.

Requests, Jobs, and Resources Objects
• RequestDto

• JobDto

• JobParameter

• ResourceDto

• ResourceUsageDto

RequestDto
Provides information about the library request. Requests may come from the GUI, SCI, and
SCSI interfaces, or may be created internally by the library.

• long requestId - unique identifier for the request.

• date createDateTime - date/time stamp when the request was created.

• string parameters - a string representation of the request inputs.

• RequestSource source - the interface that created the request.

• RequestStatus status - current status of the request.

• JobDto jobs - a list of zero or more JobDtos that were created to perform the request.
Not all requests result in jobs.

• RequestErrorDto error - an object that contains more detailed information about the
outcome of the request for failed requests.

• RequestOutputMessageDto outputMessages - a list of raw messages produced by the
request.

RequestErrorDto
Provides details about errors encountered while executing the request.

Chapter 3
Subclass of an Object

3-3

Only consider the request error object final if the state of the request is "Failed". During
execution, a request may encounter recoverable errors that will be reflected in the
request error if the state of the request is "Active". The request error will not apply if
the state of the request is "Submitted", "Complete", or "Cancelled".

This DTO is included in a RequestDto.

• long requestErrorId - unique id for the error.

• RequestErrorType errorType - type of the most recent error encountered.

• LibraryControllerError errorCode - a more detailed error code.

RequestOutputMessageDto
Contains raw data for each message produced as the library processes the request. A
program may find the raw messages useful.

This DTO is included in a RequestDto.

• long requestOutputMessageId - a unique internal identifier for each request output
message.

• date createDateTime - date/time stamp when the message was created.

• string messageKey - identifies the message. Used to look up the localized message
format strings.

• string outputParameters list - an array of zero or more parameters associated with
the message. To create the localized version, parameter values are substituted
into the message format string.

JobDto
Provides information about jobs which have be created as a result of a request. Jobs
are individual tasks inside the library which either interact with devices or create child
jobs.

• long jobId - unique id for the job.

• date createDateTime - date/time stamp when the job was created.

• date startDateTime - date/time stamp when the job was started executing.

• date completedDateTime - date/time stamp when the job was completed.

• JobStateType jobState - an enumeration showing the current state of the job.

• JobType jobType - an enumeration showing the type of the job.

• JobParameter jobParameter - a list of key/value pairs that are the parameters
used by the job.

• long parentJobId - job id of the parent job, if any.

• JobDto childJobs - a list of child jobs of this job, if any.

• long requestId - unique id of the request that created (directly or indirectly) this
job.

• boolean markedForCancellation - true if a request has been made to cancel the
job and the cancellation is in progress.

Chapter 3
Requests, Jobs, and Resources Objects

3-4

• ResourceDto resources - a list of resources needed or used by the job. Once a job
completes this shows the specific devices, cells, or rail segments used by the job.

JobParameter
Name/value pairs that control what the job does.

• string key - name of the parameter.

• string value - value of the parameter.

ResourceDto
Provides information about the resources used by a job.

Resources can include devices and segments of a rail or cells. In the JobDto, the resources
attribute is a list of ResourceDtos. The actual objects will be one of three specific object
types:

• CellResourceDto

• DeviceResourceDto

• RailSegmentResourceUsageDto

In object-oriented terms, these are subclasses of ResourceDto. The list of resources will
never contain a ResourceDto object. It will only contain objects of the three subtypes.

• ResourceType type - the type of resource.

• long jobId - job ID for the job using this resource.

• ResourceState state - current state of this resource.

• ResourceName name - name for the resource in the context of its job.

• date allocatedDateTime - date/time stamp when the resource was allocated.

• date freedDateTime - date/time stamp when the resource was freed.

CellResourceDto
Provides information about the cell used by a job.

• long cellID - unique ID of the cell used by the job.

DeviceResourceDto
Provides information about the device used by a job.

• long deviceId - unique ID of the device used by the job.

• DeviceType deviceType - enumeration for the type of device.

RailSegmentResourceDto
Provides information about the portion of a rail used for an active job.

• long railNumber - unique ID for the rail.

Chapter 3
Requests, Jobs, and Resources Objects

3-5

• int startMil - mil (one thousandth of an inch) position of the start of the rail
segment, as measured from the left-most position a robot can occupy on the rail.

• int endMil - mil (on thousandth of an inch) position of the end of the rail segment,
as measured from the left-most position a robot can occupy on the rail.

ResourceUsageDto
Record of the resources used after a job completes. The library stores this data for
seven days. Use this data to analyze the usage of resources over time.

• long jobId - id of the job that used this resource

• JobType jobType - type of the job that used this resource

• long parentJobId - job id of the parent job of the job that used this resource

• long requestId - request id of the request that resulted in the job that used this
resource.

• ResourceName name - An internal name for this resource, as defined by the job.

• ResourceType type - Type of this resource (CELL, DEVICE, or RAIL_SEGMENT).

• ResourceState state - Current state of this resource. Can be NEEDED (the job
needs this resource and has not yet been able to allocate it), ALLOCATED (the job
has allocated this resource), or COMPLETE (the job is finished with this resource).

• date allocatedDateTime - Date and time when the resource was allocated.

• date freedDateTime - Date and time when the job was finished with the resource
and it was freed.

RailSegmentResourceUsageDto
Provides information about the portion of the rail that was used by a completed job.

• long railNumber - unique ID for the rail.

• int startMil - mil (one thousandth of an inch) position of the start of the rail
segment, as measured from the left-most position a robot can occupy on the rail.

• int endMil - mil (on thousandth of an inch) position of the end of the rail segment,
as measured from the left-most position a robot can occupy on the rail.

• int sourceMilPosition - mil (one thousandth of an inch) position of the starting
point of the robot when performing the move.

• int targetMilPosition - mil (one thousandth of an inch) position of the ending
point of the robot when performing the move.

• int safeColumn - column number where the robot can safely swing the wrist.

Library Objects
• LibraryComplexDto

• LibraryDto

• ModuleDto

• RailDto

Chapter 3
Library Objects

3-6

• CellDto

• SlotDto

• DoorStateDto

• PartitionDto

• ScsiHostDto

• ScsiLunDto

• TimeSettingsDto

LibraryComplexDto
Provides information about the entire library.

• boolean ready - TRUE means the library has completed the initial audit that may occur
during startup.

• string name - string name for the library complex.

• string currentLibraryTime - current library time as a string.

• TimeSettingsDto timeSettings - library complex time settings.

• ControlState controlState - current user-controlled control state for the library complex.

• LibraryComplexStateType operationalState - Current operational (functional) state of
the library complex.

• LibraryComplexCountsDto counts - Counts of various objects within the library.

• boolean suppressHasBeenOpened - TRUE indicates the library will not audit after a restart
if the door has been opened. This value affects only the next power cycle for the library.
After powering up, it will be set back to FALSE. When selecting TRUE, you must
guarantee the contents of the cells and drives will not be modified while the library is
powered off, even if doors are opened. This setting applies only to the next library
startup.

• boolean checkLibraryConfiguration - TRUE indicates the library should scan the
module id blocks on the next power up. This value affects only the next power cycle for
the library. After powering up, it will be set back to FALSE.

• boolean redundantFcPortsEnabled - TRUE indicates that the second FC port on each
controller card is enabled. This feature requires the Redundant FC HWAF or the
Redundant Ethernet HWAF.

• boolean redundantEthernetPortsEnabled - TRUE indicates the second customer
network Ethernet port on each controller card is enabled. This feature requires the
Redundant Ethernet HWAF Redundant FC HWAF.

• boolean redundantControllersEnabled - TRUE indicates the second LOC controller
card is enabled.

• boolean redundantRoboticsEnabled - TRUE indicates the library has dual robots.

• boolean partitioningEnabled - TRUE indicates the library can have more than one
partition and multiple CAP pools.

• int licensedCapacity - the total number of cells allowed by all installed Capacity HWAFs.
This is adjusted by adding or removing capacity HWAFs.

Chapter 3
Library Objects

3-7

• long auditRequestId - If an audit is in progress, this is the request id for that audit.
Use getRequest() for details about the audit.

• LabelWindowing labelWindowing - the presentation of cartridge label volsers to
the client. This setting is obsolete and replaced by the partition setting of the same
name.

LibraryComplexCountsDto
Provides a count of the components in the library (such as slots, partitions, drive bays,
robots, and so on).

• int libraryCount - number of libraries in the complex. For SL4000, this is always
1.

• int partitionCount - number of partitions defined in the library complex.

• int deviceCount - number of devices in the library complex. This is a total count
that includes all nested devices that are inside modules and other devices.

• int driveCount - number of drives in the library complex. Same as the number of
drive trays in the library complex.

• int cellCount - number of cells of all types (storage, drives, CAPs, and so on).

• int storageCellCount - number of storage cells (application-accessible cells that
can hold cartridges).

• int systemCellCount - number of system cells. These are cells reserved for
internal use by the library and are not usable by external applications.

• int capCellCount - number of CAP cells.

• int driveBayCount - number of drive bays in the library complex, whether they
contain a drive tray or not.

• int cartridgeCount - number of cartridges in the library complex.

• int failedDeviceCount - number of devices that are in a failed state.

• int failedRailCount - number of rails that are in a failed state.

• int degradedRailCount - number of rails that are in a degraded state.

• int robotCount - number of robots in the library.

• int slotCount - number of slots in the library complex. This is a total count that
includes all nested slots that are inside modules and other devices.

• int moduleCount - number of modules in the library complex.

• int diagnosticsCartridgeCount - number of diagnostic cartridges in the library
complex that are in system cells.

• int cleaningCartridgeCount - number of cleaning cartridges in the library complex
that are in system cells. Cleaning cartridges in storage cells are managed by
applications and are not included in this count.

LibraryDto
Provides identifying information about the library.

• long libraryId - the unique database identifier for the library.

Chapter 3
Library Objects

3-8

• string name - string name for the library.

• int number - always 1 for SL4000 libraries.

• LibraryIdentityDto identity - identity information for the library.

• CardCageIdentityDto cardCageIdentity - identity information for the card cage.

• LibraryFirmwareDto activeFirmware - information about the version of firmware that is
currently running on the library.

• LibraryFirmwareDto oldFirmware - information about the version of firmware that was
previously running on the library. The version is still present on the library and the library
can be rolled back to this version.

• LibraryFirmwareDto newFirmware - information about the version of firmware that has
been installed but is not currently running on the library. This version can be activated
and the library will begin running this new version.

• ControlState controlState - current user-controlled control state for the library.

• LibraryStateType operationalState - current operational (functional) state of the library.

• long wwnSeed - WWN seed value for the library. Used to assign WWNs to FC ports on the
library and tape drives.

• long originalWwnSeed - WWN seed value for libraries that have been upgraded from
SL3000 to SL4000 libraries. For upgraded libraries, this is used for the base and first
drive module to the left of the base. For upgraded libraries, any other drive module will
have WWNs assigned using the wwnSeed value.

• long fcNodeName - WWNN for the library.

• DoorStateDto doorState - Current state of the library doors.

• RailDto rails - list of information about the rails.

• LibraryCountsDto counts - count information for objects in the library.

• long AuditRequestId - if an audit is in progress for the library, this is the request ID for
that audit.

• LibraryProductionState libraryProductionState - production state for the library.
Normally, "Production" is when the library has been installed at a customer site.

• RedStackInfoDto redStackInfo - the version information for the Oracle Red Stack
components used in the software.

LibraryIdentityDto
Provides manufacturing information about the library.

• string marketingPartNumber - marketing part number for the library

• string systemRevision - revision level for the library.

• string systemSerialNumber - serial number of the library.

• string systemModelName - description of the library on the bill of materials.

• string manufacturingPartNumber - manufacturing part number for the library.

• string qPartNumber - part number used for some service functions.

• string vendorId - vendor name for this part.

Chapter 3
Library Objects

3-9

CardCageIdentityDto
Provides manufacturing information about the card cage.

• string cardCagePartNumber - manufacturing part number for the base card cage.

• string cardCageRevision - revision level for the base card cage.

• string cardCageSerialNumber - serial number of the base card cage.

• string cardCageModelName - description of the base card cage on the bill of
materials.

LibraryCountsDto
Provides a count of the components in the library (such as slots, partitions, drive bays,
robots, and so on).

• int deviceCount - number of devices in the library complex. This is a total count
that includes all nested devices that are inside modules and other devices.

• int driveCount - number of drives in the library complex. Same as the number of
drive trays in the library complex.

• int cellCount - number of cells of all types.

• int storageCellCount - number of storage cells (application-accessible cells that
can hold cartridges).

• int systemCellCount - number of system cells. These are cells reserved for
internal use by the library and are not usable by external applications.

• int capCellCount - number of CAP cells.

• int driveBayCount - number of drive bays in the library complex, whether they
contain a drive tray or not.

• int cartridgeCount - number of cartridges in the library complex.

• int failedDeviceCount - number of devices that are in a failed state.

• int failedRailCount - number of rails that are in a failed state.

• int degradedRailCount - number of rails that are in a degraded state.

• int robotCount - number of robots in the library.

• int slotCount - number of slots in the library complex. This is a total count that
includes all nested slots that are inside modules and other devices.

RedStackInfoDto
Provides version information about the Oracle software components used internally by
the library.

• string webLogicAppServerVersion

• string oracleClusterwareVersion

• string oracleAdfVersion

• string databaseServerVersion

Chapter 3
Library Objects

3-10

• string databaseDriverVersion

• string libraryOsVersion

• string javaRuntimeVersion

ModuleDto
Provides identifying information about a library module.

• long moduleId - unique ID for the module.

• int moduleNumber - the module number used to identify the module that contains this slot.
The base module has a module number of 0. Modules to the left of the base (when
viewed from the front of the library) have negative values, starting at -1 for the module
immediately to the left of the base. Modules to the right of the base have positive
numbers, starting with 1 for the module immediately to the right of the base.

• ModuleCountsDto moduleCounts - counts of various objects in the module.

• ModuleType type - module type for this module.

ModuleCountsDto
Provides a count of the components within a module.

• long ModuleId - unique ID for the module

• int deviceCount - total number of devices in the module.

• int driveCount - number of drives in the module.

• int cellCount - total number of cells in the module.

• int storageCellCount - number of storage cells.

• int capCellCount - number of CAP cells.

• int driveBayCount - number of drive bays.

• int cartridgeCount - number of cartridges.

• int failedDeviceCount - number of devices in a failed operational state.

RailDto
Provides information about the library rail.

• long railId - unique ID for the rail.

• int railNumber - number of the rail within the library.

• RailCountsDto railCounts - counts of various objects associated with the rail.

• long AuditRequestId - if an audit is in progress for the library, this is the request ID for
that audit.

• int sweptLengthMils - The actual value measured by the robots for the
usableLengthMils. This value will vary slightly from usableLengthMils due to
manufacturing tolerances.

Chapter 3
Library Objects

3-11

• int usableLengthMils - Nominal length of the rail in mils (thousandths of an inch).
This is the distance from the left-most position a robot can occupy on the rail to the
right-most position a robot can occupy.

RailCountsDto
Provides a count of components associated with the library rail.

• int deviceCount - number of devices associated with the rail. This is a total count
that includes all nested devices.

• int driveCount - number of drives in the library complex. Same as the number of
drive trays in the library complex.

• int cellCount - number of cells of all types.

• int storageCellCount - number of storage cells (client-accessible cells that can
hold cartridges).

• int capCellCount - number of CAP cells.

• int driveBayCount - number of drive bays accessible on this rail, whether they
contain a drive tray or not.

• int cartridgeCount - number of cartridges accessible on this rail.

• int failedDeviceCount - number of devices that are in a failed state.

CellDto
Provides information about a location inside the library that can hold a cartridge.

• long cellId - unique ID for each cell.

• CellType type - the type of cell.

• boolean allocated - true if the cell is currently allocated to a job.

• CellState state - physical state of the cell. PRESENT means the cell is physically
present and a robot can put or get a cartridge. NOT_PRESENT means it is not
physically present, such as a CAP cell when the CAP is open. UNKNOWN means
the state cannot be determined at this time.

• CellContentsState contentsState - contents state of the cartridge in this cell, if
any.

• CartridgeDto cartridge - information about the cartridge in this cell, if any.

• CellAddressDto address - address for this cell.

• long deviceId - the unique ID of the device that contains this cell.

• long partitionId - the unique ID of the partition that owns this cell.

• long libraryId - the unique ID of the library that contains this cell.

• int scsiElementId - for cells that belong to partitions with SCSI enabled, this is the
SCSI element ID assigned to the cell. These are unique within a partition, but
duplicates will appear across multiple partitions.

• string addressAsString - text string of the form L,R,C,S,R (library, rail, column,
side, row).

Chapter 3
Library Objects

3-12

CellAddressDto
Provides the physical address of a cell in the library.

• int libraryNumber - library number for this cell. This is always 1 for SL4000 libraries.

• int columnNumber - column number for this cell.

• int railNumber - rail number for this cell. This is always 1 for SL4000 libraries.

• int sideNumber - side number for this cell. For SL4000 libraries, 1 = back wall and 2 =
front wall.

• int rowNumber - row number for this cell.

SlotDto
Provides information about a slot inside a module or device that can hold a device. A slot
might or might not actually contain a device.

• long slotId - ID for the slot. Unique for all slots in a library complex.

• int slotNumber - number for this slot. Unique for all slots within a module that can hold the
same type of device.

• long moduleId - unique database identifier for the module that contains this slot.

• int moduleNumber - the number used to identify the module that contains this slot. The
base module has a module number of 0. Modules to the left of the base (when viewed
from the front of the library) have negative values, starting at -1 for the module
immediately to the left of the base. Modules to the right of the base have positive
numbers, starting with 1 for the module immediately to the right of the base.

• long libraryId - this is null for SL4000 libraries.

• int libraryNumber - this is null for SL4000 libraries.

• long parentDeviceId - for slots inside devices, this is the unique Device ID for the
containing device. For slots located directly within a module, this is null.

• ComponentLocationState controlState - a state that controls whether or not a device
inserted into this slot is automatically brought online.

• DeviceType slotDeviceType - type of device this slot can contain.

• DeviceDto containedDevice - DeviceDto for the device in the slot, if any.

• string locationName - name of the slot location.

DoorStateDto
Provides the state of the module doors.

• boolean demDoorOpen - TRUE indicates the DEM door is open. Only one value is
available, even if there are multiple DEMs in the library.

• boolean leftAemDoorOpen - TRUE indicates the left AEM door is open.

• boolean rightAemDoorOpen - TRUE indicates the right AEM door is open.

• boolean baseDoorOpen - TRUE indicates the Base door is open.

Chapter 3
Library Objects

3-13

• boolean leftAemSafetyDoorOpen - TRUE indicates left AEM safety door is open.

• boolean rightAemSafetyDoorOpen - TRUE indicates right AEM safety door is open

• DoorState leftAemSafetyDoor - indicates the left AEM safety door status.

• DoorState rightAemSafetyDoor - indicates the right AEM safety door status.

PartitionDto
Provides information about a partition in the library.

• long partitionId - unique ID for this partition.

• string name - user-assigned name for the partition.

• string group - name of the user group to which the partition belongs.

• PartitionStateType operationalState - provides the current operational state of
the partition. INOPERATIVE indicates a failure has left this partition unusable.

• ControlState controlState - current user-defined control state of the partition.
When OFFLINE, a partition will reject all host commands that cause robotic
actions.

• long capPoolId - unique ID of the CAP pool assigned to this partition. Use with
getCapPool() to get details of the CAP pool.

• FastLoadType fastload - controls when SCSI Move Medium commands return:

– IMMEDIATE: the command returns as soon as it has been validated. Not
currently supported.

– FAST: the command returns as soon as the cartridge has been loaded into the
drive. The drive may not be ready at that time.

– NORMAL: the command waits for the drive to thread the tape and become
ready before returning.

• boolean driveSerialNumberSpoofing - controls whether tape drive serial numbers
are "spoofed". TRUE returns the first 10 digits of the drive tray serial number.
FALSE returns the drive manufacturer's serial number. This only applies to LTO
drives. T10000 drives do not support spoofing.

• LabelWindowing labelWindowing - controls which characters of the barcode are
presented to clients.

• boolean autoCleaning - TRUE means the library will sense when drives in the
partition need cleaning, and will automatically mount, run, and then dismount a
cleaning cartridge (from the system cells) before the next mount. FALSE means
the host software must manage drive cleaning.

• boolean scsiAllowed - TRUE indicates the partition can be accessed as a SCSI
Medium changer device. If TRUE, SCI commands that move cartridges will be
rejected. If FALSE the partition is not exposed as a SCSI medium changer LUN
and only SCI commands can be used to move cartridges.

• PartitionCountsDto partitionCounts - counts of the various objects in the
partition.

• string scsiPartitionCode - A two character code assigned to each partition. This
is combined with the library serial number so that each partition has a unique
serial number in the response to INQUIRY commands.

Chapter 3
Library Objects

3-14

• boolean PartitionMediaValidationDrivePool - TRUE indicates that the partition is the
media validation partition.

PartitionCountsDto
Provides a count of cells, CAPs, drives, and drive bays in the library.

• int cellCount - total number of cells of all types.

• int storageCellCount - total number of storage cells (client-accessible cells that can hold
cartridges).

• int capCellCount - total number of CAP cells.

• int cartridgeCount - total number of cartridges in the partition.

• int driveCount - total number of drives in the partition.

• int driveBayCount - total number of drive bays.

ScsiHostDto
Provides information about a SCSI host.

• long wwnn - wwnn for the SCSI host.

• long wwpn - wwpn for the SCSI host.

• long abortFlag - the value of the abortFlag for the SCSI host.

• string name - a text name for the host, supplied by the user.

• ScsiHostState scsiHostState - the state of the SCSI host.

• long lunIds - list of IDs for the corresponding logical units.

ScsiLunDto
Provides information about a SCSI LUN.

• long scsiHostID - ID of the SCSI host that participates in this nexus.

• long partitionId - ID of the partition that participates in this nexus.

• int lunNumber - Logical Unit Number for this nexus.

• string source - AUTOMATIC means this SCSI Logical Unit was added automatically by
the library. USER means it was explicitly added by a user through the GUI.

• boolean enabled - if TRUE, commands are allowed using this SCSI logical unit. If FALSE,
commands are blocked. It is set to FALSE by configuring access using the GUI.

TimeSettingsDto
Provides information about how the clocks are set on the library.

• string ntpServers - NTP servers, in string format.

• boolean ntpEnabled - true if NTP has been configured.

• boolean forceEnabled - reserved for future use. This parameter is not currently used.

• date currentTime - current time on the library when this DTO was created.

Chapter 3
Library Objects

3-15

Tape Cartridge Objects
• CartridgeDto

• CleaningCartridgeDto

CartridgeDto
Provides information about a cartridge with a specified volser.

Because the library cannot definitively identify cartridges, a cartridge object does not
have unique IDs common in other objects.

• string volser - if the contents state is readable, this is the volser derived from the
rawLabel.

• string rawLabel - full data read from the barcode label.

• CartridgeTypeDto detailedType - contains information about the type of cartridge
(make, model, size, and so on).

• boolean diagnostic - TRUE indicates this is a diagnostic cartridge. Volsers for
diagnostic cartridges start with "DG".

• long cellId - unique ID of the cell that contains this cartridge.

• long partitionId - unique ID of the partition that contains this cartridge.

• long lostCartridgeId - a unique ID valid only for lost cartridges. This attribute will
be populated only in the output from the getLostCartridges() method.

CartridgeTypeDto
Provides information about the cartridge.

• long cartridgeTypeId - unique ID for this cartridge type.

• string family - family for the cartridge: T10000 or LTO.

• string generation - generation for the cartridge. For LTO, this starts with 1 for the
first generation. For T10000, this starts with A. The value of 0 is used for some
cleaning cartridges.

• int capacity - native (uncompressed) capacity of the cartridge in GB.

• string domainCode - the domain code.

• string typeCode - the type code.

• boolean cleaning - TRUE indicates the cartridge is a cleaning cartridge.

• boolean worm - TRUE indicates the cartridge is a WORM (write once, read many)
cartridge.

• string descriptiveName - name for the media type.

• MediumType mediumType - the type of cartridge: DATA or CLEANING.

• int recommendedMaximumUsage - manufacturer's recommendation for maximum
number of uses.

Chapter 3
Tape Cartridge Objects

3-16

• int warningThreshold - user-specified warning threshold. The cartridge is considered
expired after this number of uses.

CleaningCartridgeDto
Provides a count of the number of times the cartridge has been used for cleaning.

• int cleanCount - number of times the cartridge has been used for cleaning

Network Objects
• FcPortDto

• IpAddressDto

• NetworkAddressDto

• NetworkInterfaceSettingsDto

• NetworkPerformanceMeasurementDto

• NetworkSettingsDto

• TraceRouteResultsDto

FcPortDto
Provides information about settings associated with FC ports on drives. These settings are
only meaningful on an arbitrated loop configuration.

• boolean hardAssignedPhysicalAddress - TRUE if the port is set to use a specific
physical address (an ArbitratedLoopAddress must be specified). If FALSE, you should set
the SoftAssignedPhysicalAddress attribute.

• int arbitratedLoopAddress - a specific loop ID value from 0 to 125.

• string softAssignedPhysicalAddress - Used when hardAssignedPhysicalAddress is
FALSE, the drive will seek a physical address. HI means addresses are searched in
descending order. LO means the addresses are searched in ascending order.

• FcPortState fcPortState - state of the FC port.

IpAddressDto
Provides IP address information.

• string defaultGateway - IP address of the first router connected to this interface.

• string ipAddress - IP Address value.

• IpAddressType ipAddressType - IPv4 or IPv6.

• string netmask - netmask for IPv4 IP addresses.

• int prefixLength - prefix length for IP v6 addresses.

NetworkAddressDto
Provides internal network information for devices inside the library. These addresses are
internal to the library and are not visible through any of the external interfaces.

Chapter 3
Network Objects

3-17

• string name - This field is not used.

• string host - IP address of the device.

• string port - port number used to communicate to the device.

• List of string webServiceUri - URI for the device's web service interface.

NetworkInterfaceSettingsDto
Provides information on the type of IP address used.

• IpAddressDto ipv4Address - assigned IPv4 addresses.

• List of IpAddressDto ipv6Addresses - list of IPv6 addresses.

NetworkPerformanceMeasurementDto
Provides information about network performance of switches.

Network switch ports represent a port on a switch chip on a card connecting to another
device. The names used for these measurement points identify the device on the other
end of the connection. This is a subclass of MeasurementDto and adds the following
attributes:

• int portSpeed - network speed in Mbps

• int txOctets - total number of good bytes of data transmitted by a port

• int txDroppedPackets - number of packet dropped by a port (incremented only if
not counted by either the TxLateCollision or the TxExcessiveCollision counters)

• int txCollisions - number of collisions experienced by a port during packet
transmissions

• int txPausePackets - number of pause events on a port

• int rxOctets - number of bytes of data received by a port (including bad packets).

• int rxDroppedPackets - number of good packets received by a port that were
dropped due to lack of resources (incremented only if the receive error was not
counted by the RxAlignmentErrors or the RxFCSErrors counters).

• int rxPausePackets - number of pause frames received by a port.

• int rxAlignmentErrors - number of packets received by a port that have a length
between 64 and standard max frame size and a bad FCS with a non-integral
number of bytes.

• int rxFcsErrors - The number of packets received by a port that have a length
between 64 and standard max frame size and a bad FCS with an integral number
of bytes.

• int rxSymbolErrors - The total number of times a valid length packet was received
at a port and at least one invalid data symbol was detected. Counter increments
only once per carrier event and does not increment on detection of collision during
the carrier event.

NetworkSettingsDto
Provides information about the network settings used for an interface.

Chapter 3
Network Objects

3-18

• boolean ipv6Enabled - true if IPv6 is enabled.

• NetworkSettingsType type - the interface to which these settings apply.

• NetworkInterfaceSettingsDto networkInterfaceSettings - the settings for this interface.

TraceRouteResultsDto
Provides a information about the traceroute.

• list of string traceHops - output of the traceroute command for each router along the
route to the target of the traceroute command.

Device Objects
Device objects relate to the hardware components of the library.

• DeviceDto

• LedDto

• PingDeviceResultsDto

• FruIdDto

DeviceDto
Provides information about a device within the library.

Devices are hardware components within the library. These are represented by a hierarchy of
classes of objects. "Device" itself is the most generic, and contains information that applies to
all devices. Various subclasses are used for device types that have additional data. The more
specific classes extend the Device object and add additional attributes for the specific device
type. Methods such as "getDevices(Library ID)" return a list of DeviceDto while methods such
as "getRobots(Library ID)" will return a list of more specific RobotDtos. The
getDevice(deviceId) method returns a DeviceDto while getRobot(deviceId) will return a
RobotDto.

• long deviceId - unique integer ID for each device. Used on many methods to uniquely
identify a device.

• long parentDeviceId - unique id for the parent device. The parent device is the device
that physically contains this device.

• DeviceType parentType - enumeration specifying the type of the parent device.

• string name - text name for this device.

• DeviceIdentityDto manufacturingCardIdentity - DeviceIdentityDto data for the bare
card. This data is assigned when the card is manufactured.

• DeviceIdentityDto manufacturingFRUIdentity - FRU level DeviceIdentityDto data for this
device. This data is assigned when the card is manufactured into a FRU or other type of
higher level assembly. In some cases, FRUs are only a single board and this data will be
the same as the manufacturingCardIdentity.

• DeviceIdentityDto marketingIdentity - Marketing level DeviceIdentityDto data for this
device. Used by service to identify the correct replacement part. Assigned when the FRU
is manufactured. All parts with the same marketing part number are compatible even if
the manufacturing part number is different. .

Chapter 3
Device Objects

3-19

• DeviceType type - enumeration specifying the type of the device.

• FruType fieldReplaceableUnitType - the service category for this device.

• long moduleId - unique identifier for the module the device is in.

• long moduleNumber - module number of the module containing the device.

• long libraryId - unique identifier for the library in a library complex that contains
the device.

• long slotId - Identifier for the slot in the module containing the device.

• long slotNumber - slot number of the slot containing the device.

• TopLevelDeviceStateType topLevelDeviceOperationalState - summary device
state. This field summarizes the operationalState field into few higher level
states.

• DeviceStateType operationalState - detailed device state. This field provides
detailed, device type-specific operational state information for the device.

• ControlState controlState - current user-defined control state of the device.

• boolean hotSwap - TRUE indicates the device can be hot-swapped.

• IpAddressDto ipAddress - internal IP address for the device.

• LedDto leds - list of LedDto for the LEDs on this device. If this device has no
LEDs, the list will be empty.

DeviceIdentityDto
Provides information that identifies a device, such as a serial number (defined when
the device is manufactured) and additional information (part number, revision, and
description) that is defined when the part is designed.

Many parts contain a FRUID Storage Container chip that holds this information. Some
FRUID Storage Containers contain information about multiple devices. The LOD card
and the LOID card in a drive tray, for example, contain the identity information for both
the individual card and for the drive tray. Some third party components, such as tape
drives, encryption cards, and web cameras, also have this identification information.
Where possible, the library controller will retrieve this information and include it in this
object. Some components do not have this information, including rails, power buses,
PDUs, and power supplies.

• string partSerialNumber - serial number of the individual component.

• string partNumber - manufacturing part number for individual component.

• string partRevision - revision level for the individual component.

• string partDescription - description of the individual component on the bill of
materials.

• long deviceId - unique integer ID for each device. Used on many methods to
uniquely identify a device.

• DeviceType deviceType - the type of device.

LedDto
Provides information about an LED in the library.

Chapter 3
Device Objects

3-20

• ServiceIndicatorName name - the type of LED.

• SeviceIndicatorState state - current state of the LED.

PingDeviceResultsDto
Provides information about a ping made to a device.

• long deviceId - device ID of the device being pinged (from input to the pingDevice
method).

• DeviceType deviceType - type of device that was pinged.

• ControlState deviceControlState - current control state of the device that was pinged.

• DeviceStateType deviceOperationalState - current operational state of the device that
as pinged.

• boolean devicePinged - TRUE if the device was successfully pinged.

• string errorMessage - error message if the ping was unsuccessful.

FruIdDto
Provides data from the FRUID storage containers present on active cards.

These are EEPROMs (Electrically Erasable Programmable Read Only Memory) which are
programmed during manufacturing with serial numbers, part numbers and other data that
uniquely identifies active boards and assemblies that contain active boards. An active board
is a board that has active electronic components as opposed to a passive board which
contains only non-active components, usually just connectors. The EEPROM is divided into
"segments" which then contain one or more "records". Records contain individual fields. The
segments used in the SL4000 are named "SD" and "FL", but these names have no particular
meaning.

Each device which has a FRUID chip has five unique identity records. These five records can
record unique data:

• Base Part Identity - identity data about an individual board. Located in the SD segment.

• FRU Identity - identity data about the assembly that contains the board. In some cases,
the same as the base part identity data.

• Configured Item Identity - Contains "marketing" identity data about a FRU. Parts will the
same marketing identity are fully compatible, even if the FRU or Base Part data differs.

• System Identity Data - data for the last library the part was inserted into.

• Product Identity Data - currently always identical to System Identity Data.

The attributes of FruIdDto are:

• string rawFruIdData - raw data from the FRUID EEPROM chip on the device, in base64
encoding.

• SDSegmentDto SDSegment - described below.

• FLSegmentDto FLSegment - described below.

SDSegmentDto
• BasePartIdentityDto basePartIdentityRecord - Base Part identity data for the device.

Chapter 3
Device Objects

3-21

• wwnRangeDto wwnRange - WWN seed information.

• string crc32 - CRC 32 bit error checking code for the SD segment.

FLSegmentDto
• FrudIdentityDto fruIdentityRecord - FRU identity data for the device. Contains

manufacturing based identity information.

• ConfiguredIdentityDto configuredIdentityRecord - Marketing identity data for the
assembly.

• SystemIdentityDto systemIdentityRecord - Library identity data for the last library
where the part was installed.

• ProductIdentityDto productIdentityRecord - Library identity data for the last
library where the part was installed.

• string checksum - checksum for the FL segment.

BasePartIdentityDto
• date basePartTimeStamp - Date and time of last update of this record.

• string basePartDescription - Card part description.

• string basePartSerialNumber - Card serial number.

• string initialBasePartNumber - Card part number.

• string initialBasePartRevision - Card part revision.

• string specPartNumber - Vendor part number

• string supplierId - Vendor ID.

wwnRangeDto
• string wwn - starting WWN for the library.

• long range - not used.

FrudIdentityDto
• date fruTimeStamp - Date and time of last update of this record.

• string fruDescription - FRU description

• string fruSerialNumber - FRU serial number.

• string fruPartNumber - FRU part number.

• string fruRevision - FRU revision level.

ConfiguredIdentityDto
• date configuredPartTimeStamp - Date and time of last update of this record.

• string configuredPartDescription - FRU part description, same as in
FrudIdentityDto.

Chapter 3
Device Objects

3-22

• string configuredPartSerialNumber - FRU serial number, same as in FrudIdentityDto.

• string configuredPartNumber - FRU marketing part number

• string configuredPartRevisionLevel - FRU revision level, same as data in
FrudIdentityDto

SystemIdentityDto
• date systemIdentityTimeStamp - Date and time of last update of this record.

• string systemIdentityModelName - Library model name string.

• string systemIdentitySerialNumber - Library serial number.

• string systemIdentityPartNumber - Library part number.

• string systemIdentityRevisionLevel - Library revision level.

• string hostId - not used.

• string macAddress - not used.

ProductIdentityDto
• date productIdentityTimeStamp - Date and time of last update of this record.

• string productIdentityModelName - Library model name string.

• string productIdentitySerialNumber - Library serial number.

• string productIdentityPartNumber - Library part number.

• string productIdentityRevisionLevel - Library revision level.

• string hostId - not used.

• string macAddress - not used.

SensorDto
Provides identifying information about a sensor on a device.

• long sensorId - unique ID for the sensor.

• string name - name for the sensor.

• SensorType type - the sensor type.

TelemetryDto
Provides information collected by a sensor on a device.

• long deviceId - identifier of device associated with measurements

• SensorDto sensor - sensor that generated the measurements.

• List of MeasurementDto measurements - telemetry data for energy, hotswap, network,
temperature or fan (see subclasses below).

Chapter 3
Device Objects

3-23

MeasurementDto
Provides the date and time a measurement was captured.

• date timeStamp - date and time value for when the readings were captured.

EnergyMeasurementDto
Provides the power usage information for a device.

This is a subclass of MeasurementDto and adds the following attributes:.

• float powerKw - Instantaneous power consumption at the time the reading was
taken in kilowatts.

• float energyKwh - Energy consumption in kilowatt hours.

HotSwapMeasurementDto
Provides the power consumption for hot swappable devices.

Most cards have hot-swappable controllers with measurable power consumption. For
example, the LOS card has a hot-swappable controller for the card and another for the
rail. This is a subclass of MeasurementDto and adds the following attributes:

• float inputVoltage - Input voltage to the hot swap controller

• float inputCurrent - Input current to the hot swap controller.

• float powerWatts - An instantaneous reading of power being passed through the
hot swap controller.

TemperatureMeasurementDto
Provides the temperature reading collected by a sensor.

This is a subclass of MeasurementDto and adds the following attributes:

• float value - Current temperature reading in degrees C.

FanMeasurementDto
Provides the fan health and speed.

This is a subclass of MeasurementDto and adds the following attributes:

• float speed - Current fan speed rpm.

• FanHealth health - The current health of the fan determined by the fan controller.

CAP Objects
• CapDto

• CapPoolDto

• CapMeasurementDto

Chapter 3
CAP Objects

3-24

• CapStatisticsDto

CapDto
Provides information about a CAP within the library. CAP objects represent both rotational
CAPs and AEMs.

CapDto extends DeviceDto.

• long capId - unique identifier for the CAP.

• long capPoolId - unique identifier for the CAP pool which contains the CAP.

• long owningPartitionId - partition ID for partition that owns the CAP, if any.

• boolean locked - TRUE indicates the CAP is locked.

• boolean open - TRUE indicates the CAP is open.

• string capPoolUsageState - indicates the CAP is UNUSED, DEDICATED, or SHARED.

• string modulePosition - not used.

CapPoolDto
Provides information about a CAP pool.

• long capPoolId - unique ID for this CAP pool.

• string name - string name for this CAP pool.

• CapDto caps - list of CAPs in this CAP pool.

• PartitionDto partitions - list of partitions that can use the CAPs in this CAP pool.

CapMeasurementDto
Provides metrics collected for a CAP.

• long totalOperations - running total of open and close operations performed by CAP.

• long retries - running total of retries.

• long unrecoverableErrors - running total of unrecoverable errors for the CAP (typically
zero or one because an unrecoverable error requires replacement).

• long ipls - running total of CAP restarts (typically just one at library startup, but this can
be higher if you replace the CAP controller card while the library is running)

CapStatisticsDto
Provides metrics collected for a CAP.

• int totalOps - running total of open and close operations performed by CAP

• int retries - running total of retries

• int unrecoverableErrors - running total of unrecoverable errors for the CAP (typically
zero or one because an unrecoverable error requires replacement)

• int ipls - running total of CAP restarts (typically just one at library startup, but this can be
higher if you replace the CAP controller card while the library is running)

Chapter 3
CAP Objects

3-25

Drive Objects
• DriveDto

• DriveTrayDto

• DriveOperationDto

DriveDto
Provides information about a drive within the library.

Drives have several attributes that can be retrieved with the getDrive() method.
DriveDto extends DeviceDto.

• string serialNumberFactoryAssigned - the serial number assigned to the drive by
the manufacturer.

• string serialNumberSpoofed - if serial number spoofing is enabled for the partition
containing this drive, this is the serial number assigned to the drive by the library.
An empty string if the drive is in a partition where spoofing is disabled.

• DriveTypeDto detailedType - drive type information.

• DriveTrayDto driveTray - drive tray information.

• boolean ready - TRUE indicates a loaded cartridge is ready.

• CellDto cell - information about the drive cell.

• string firmwareLevel - drive firmware level.

• string portAWwn - string representation of the full WWN for port A.

• string portBWwn - string representation of the full WWN for port B.

• FcPortDto portAFcSettings - arbitrated loop settings for port A. Not applicable to
fabric configurations.

• FcPortDto portBFcSettings - arbitrated loop settings for port B. Not applicable to
fabric configurations.

• boolean fastload - TRUE indicates fastload is enabled.

• int tcpPortNumber - TCP/IP port number used to connect to drive.

• string driveIpAddress - IP address for the drive.

• string IodIpAddress - IP address for the drive controller card.

• string driveAlias - user defined name for the drive.

DriveTypeDto
Provides information about the type of drive.

• string brand - brand name of the drive: STORAGETEK, HP, or IBM.

• string family - the drive series: T10000 or LTO.

• string generation - drive generation. LTO drives use numeric generations starting
with 1. StorageTek drives use alphabetic generations starting with A.

Chapter 3
Drive Objects

3-26

• DriveInterfaceType physicalInterfaceType - the drive interface.

• boolean encryptionCapable - TRUE indicates the drive can encrypt.

• int typeCode - an integer value provided by Oracle StorageTek drives. This value encodes
the family, generation, encryption capability, and emulation mode of the drive.

• string descriptiveName - a string value that combines the drive family and generation
into a human-readable value.

• string emulation - Oracle StorageTek drives are capable of emulating IBM drives. A
value of "3590" indicates the drive is set to emulate IBM drives. A null value means the
drive is not emulating IBM drives.

DriveTrayDto
Provides information about the drive tray.

DriveTrayDto extends DeviceDto.

• DriveDto drive - DriveDto for the drive in the drive tray.

• DeviceDto drivePowerSupply - DeviceDto for the tape drive power supply in the drive
tray.

• DeviceDto lodCard - DeviceDto for the LOD card in the drive tray.

• DeviceDto encryptionCard - DeviceDto for the encryption card, if installed in the drive
tray.

DriveOperationDto
Provides information about drive activity.

• List of DriveActivityDataDto activityList - A list of DriveActivityDataDto object
containing information queried from the drive during a mount, dismount, or media
verification operation. There will be one DriveActivityDataDto object for each individual
command used to query data from the drive.

• DriveOperationStatus operationStatus - status of the mount or dismount operation.

• CommandTiming commandTiming - Timing of when the commands were issued to the
drive, MOUNT, DISMOUNT or INTERMEDIATE.

Robot Objects
• RobotDto

• RobotCalibrationDto

• RobotCellDepthDto

• RobotGetStatisticsDto

• RobotMetricsDto

• RobotMetricDataDto

• RobotParametersDto

• RobotPositionHistoryDto

Chapter 3
Robot Objects

3-27

• RobotStatisticsDto

• MotionRangeDto

RobotDto
Provides information about a robot in the library.

RobotDto extends DeviceDto.

• int trackPosition - track position of the robot.

• long railNumber - rail number associated with the robot.

• RobotHomeEnd robotHomeEnd - home end for the robot.

• string ipAddresses - Internal IP address of the robot.

RobotCalibrationDto
Provides information about a robot calibration for a specific cell array. This data is used
by Oracle service and engineering to evaluate the robot's condition

• boolean calEmptyFlag

• boolean calFullFlag

• string arrayAddress

• RobotMetricDataDto emptyBottomMaxMetrics

• RobotMetricDataDto emptyBottomMinMetrics

• RobotMetricDataDto emptyBottomMetrics

• RobotMetricDataDto emptyTopMaxMetrics

• RobotMetricDataDto emptyTopMinMetrics

• RobotMetricDataDto emptyTopMetrics

• RobotMetricDataDto fullBottomMaxMetrics

• RobotMetricDataDto fullBottomMinMetrics

• RobotMetricDataDto fullBottomMetrics

• RobotMetricDataDto fullTopMaxMetrics

• RobotMetricDataDto fullTopMinMetrics

• RobotMetricDataDto fullTopMetrics

RobotCellDepthDto
Provides the depth of a cell recorded by the robot.

• double cellDepth - Depth of cells is in mils (thousandths of an inch).

RobotGetStatisticsDto
Provides statistical information about a robot.

Chapter 3
Robot Objects

3-28

• int auditTotal - total number of audits performed.

• int auditFailures - total number of audit failures.

• int auditRetries - total number of audit retries.

• int fetchTotal - total number of fetches performed.

• int fetchFailures - total number of fetch failures.

• int fetchRetries - total number of fetch retries.

• int targetTotal - total number of targets scanned.

• int targetFailures - total number of target scan failures.

• int targetRetries - total number of target scan retries.

• int putTotal - total number of puts performed.

• int putFailures - total number of put failures.

• int putRetries - total number of put retries.

RobotMetricsDto
Provides information about the robot mechanisms.

• string mechName - Name of the robot mechanism that this data applies to. Can be TRACK
(upper track motor), STRACK (lower track motor), ZMECH (Z or vertical motor), WRIST,
REACH, or GRIP.

• double distance

• double moveTime

• double maxPositionError

• double minPositionError

• double avgPositionError

• double maxCurrentCommand

• double minCurrentCommand

• double avgCurrentCommand

• boolean endMode

• double settlingTime

• double settlingAvgCurrent

• double settlingAvgPositionError

• double stallDistance

• double stallTime

• double stallCurrentMax

• double stallCurrentMin

• double stallCurrentAvg

• double stallStartPosErr

Chapter 3
Robot Objects

3-29

RobotMetricDataDto
Provides information about the robot hand.

• double t - track position, in mils (thousandths of an inch)

• double z - Z (vertical) position, in mils (thousandths of an inch)

• double w - wrist position, in mils (thousandths of an inch)

RobotParametersDto
Provides information about the robot retries and speed.

• boolean retriesEnabled - TRUE (default) indicates robot retries are enabled.
FALSE indicates retries are disabled and the robot will return a fault if any action
fails on the first attempt.

• int trackMaxSpeedPercent - maximum speed for track, as a percentage of
maximum possible speed.

• int zMaxSpeedPercent - maximum speed for Z.

• int wristMaxSpeedPercent - maximum speed for the wrist mechanism.

• int reachMaxSpeedPercent - maximum speed for the reach mechanism.

• int gripMaxSpeedPercent - maximum speed for the grip mechanism.

RobotPositionHistoryDto
Provides information about a single robot move. A series of these DTOs will show the
motion of the robot over the time period covered by the series.

• long id - unique id for this robot position history record.

• long robotId - device id of the robot performing this move.

• RobotHomeEnd robotHomeEnd - home end of the robot.

• int trackPosition - position of the robot after the move.

• DeviceStateType currentState - state of the robot during the move. This will be
an active state such as PUTTING, FETCHING or MOVING.

• DeviceStateType nextState - state of the robot after the move. This will usually be
INACTIVE, but could be FAILED_IMMOVEABLE or FAILED_MOVEABLE if a
problem occurred during the move.

• RobotStatusCode robotStatusCode - status code from the robot for the move.

• RobotHardwareStatusCode robotHardwareStatusCode - a more detailed status
code from the robot after the move.

• boolean operationSuccessful - TRUE if the move was successful.

• string command - the command being performed.

• date timestamp - time the move completed.

• long jobId - job ID for the job performing the move.

Chapter 3
Robot Objects

3-30

RobotStatisticsDto
Provides statistical information about a robot.

• int auditRetries - total number of audit retries.

• int auditFailures - total number of audit failures.

• int fetchTotal - total number of fetches performed.

• int fetchRetries - total number of fetch retries.

• int fetchFailures - total number of fetch failures.

• int putTotal - total number of puts performed.

• int putRetries - total number of put retries.

• int putFailures - total number of put failures.

• int targetTotal - total number of targets scanned.

• int targetRetries - total number of target scan retries.

• int targetFailures - total number of target scan failures.

MotionRangeDto
Provides information on the range of travel for a physical mechanism.

Methods that return this object typically return a list, one item for each mechanism for the
device being queried. The operating min and max values are the limits of normal robot
motion. The operating range is slightly smaller than the physical range as shown by the
physical min and max values. The physical min and max values are the physical limit of
motion.

• string name - name for the specific mechanism. Options are TRACK, ZMECH, WRIST,
REACH, GRIP, STRACK, and CAP.

• double operatingMax - integer value in mils.

• double operatingMin - integer value in mils.

• double physicalMax - integer value in mils.

• double physicalMin - integer value in mils.

User Objects
• UserDto

• GroupDto

• RoleDto

UserDto
Provides information about a user.

A user object represents a user ID that can connect to the library through the GUI or SCI
interface. User authentication is performed by either the local LDAP server on the library or a

Chapter 3
User Objects

3-31

customer-defined LDAP server. However, use of an external LDAP server is not
allowed. The first time a user logs in to the library, a User will be created in the library
controller software for that user. The User entry in the library controller software is
used to track the group the user belongs to and user-specific preferences.

• string name - text userid for the user. This must match the userid in the LDAP
server.

• string source - Text, either "local" or "enterprise". Local means the user is defined
in the local (on library) LDAP server. "enterprise" means the user is defined in the
enterprise LDAP server. Currently only local user are supported.

• string group - text name of the group to which the user belongs.

• string libraryRole - the library role for the user.

• string enterpriseRole - the enterprise role that maps to the library role (if these
roles have been defined). Not currently used.

GroupDto
Provides information about a group of users.

A group defines a set of users. Groups are intended for use in controlling access to
partitions. However, this functionality is not currently implemented. Each partition is
owned by only one group. Certain roles have access to all partitions. Other roles,
however, have access only to partitions that belong to the same group as the user.
When a new user logs into the library, that user will not belong to any group. An
administrator must specify the user's group. This can be done before the user logs in
or after. However, if the user's role limits access to partitions, that user will not be able
to view or modify any partition-specific information.

• string name - text name for the group.

• string description - text description for the group.

• List of UserDto users - a list of user names for users that belong to the group.

RoleDto
Provides information about a user role.

The library uses role-based authentication. A role defines the functions a user may
perform. The library software defines a list of library roles. This list and the permissions
associated with each role cannot be changed. The role names can be used in a user-
defined LDAP server. Alternately, you can set up a mapping between enterprise roles
and library roles. Enterprise roles are the roles used in an LDAP server. When a new
user first logs into the library, the user's list of roles will be retrieved from the LDAP
server and compared to the library and enterprise role names. If a match is found, the
user in the library will be assigned the matching library role.

• string libraryRole - text name of the library role.

• string description - text description for the role.

• string enterpriseRole - text name of a role defined in the customer's LDAP
server. If not supplied, the LibraryRoles should be used in the LDAP server to
control the role assigned to a user in the library software. Not currently used.

Chapter 3
User Objects

3-32

Hardware Activation Objects
• ActivatedFeatureDto

• HwafDto

• HwafActionDto

ActivatedFeatureDto
Provides information about a capacity hardware activation file.

• Feature activatedFeature - the HWAF feature which is active.

• int capacity - for capacity HWAFs, the number of slots enabled by this HWAF

HwafDto
Provides information about a hardware activation file.

• long hwafId - unique ID for this HWAF.

• Feature feature - the feature controlled by the HWAF.

• date expirationDate - date that the HWAF expires

• int capacity - for capacity HWAFs, the number of slots enabled by this HWAF.

HwafActionDto
Provides information about a hardware activation file.

• Feature feature - the feature controlled by the HWAF.

• int capacity - for capacity HWAFs, the number of slots enabled by this HWAF

• string action - The action taken relating to the HWAF. For example, "ADD" and
"DELETE".

• date actionDate - the time stamp when the action takes place.

• string userId - the user who performed the action.

Diagnostic Test Objects
A diagnostic test performs a series of library actions to evaluate the status of the library or to
demonstrate a feature.

The library provides a set of known diagnostics tests. A diagnostic test is a test the library can
perform on itself. A user can initiate a diagnostic test, which will create a request. This
request can be queried to see the status and results of the test.

The runDiagnosticTest() method can then be used to initiate the tests.

Tests are typically executed in the background. The async parameter on the
runDiagnosticTest() method controls when the runDiagnosticTest() call will return. Starting a
test returns a RequestDto for the test run. You can retrieve the status of the test run and its
final results using the Request ID from the RequestDto returned when you started the test.

Chapter 3
Hardware Activation Objects

3-33

DiagnosticTestDto
Provides information about a diagnostic test.

• string name - string name for the test.

• string description - string description of the test.

• DiagnosticTestParameterDto testParameters - the parameters used to define the
test.

DiagnosticTestParameterDto
Describes the test specific parameter.

• string name - name for the parameter.

• string description - description for the test parameter.

• string type - the type of parameter: BOOLEAN, NUMBER, STRING

• anyType value - not used.

Notification Objects
• DestinationDto

• AsrDto

• ServiceContactDto

DestinationDto
Provides information about a destination used for notifications.

This is a superclass of ASR Destination, SNMP Destination, Email Destination, and
Outbound SCI Destination.

• long destinationId - unique ID of the destination.

• EventCategory eventCategories - list of categories to which this destination is
subscribed.

• DestinationType type - type of destination.

EmailDestinationDto
Provides information about an email recipient.

A subclass of DestinationDto.

• string emailAddress - alerts will be mailed to this address.

• string locale - the email will be localized for this locale.

SciDestinationDto
Provides information about SCI outbound destinations.

Chapter 3
Notification Objects

3-34

A subclass of DestinationDto.

• string host - IP address for the destination for outbound SCI calls, reachable through the
customer network.

• string port - port for the destination for outbound SCI calls.

• string path - URL for outbound SCI calls.

• string userName - user ID used to log into the outbound SCI interface.

• string password - password used to log into the outbound SCI interface.

• int retentionTimeLimit - a time limit for retaining notifications if the destination is
unreachable. The library will attempt to retain events up to this time limit, and will
periodically retry. It will send the queued events once the destination returns.

AsrDestinationDto
Provides information about an ASR destination (used for SDP).

A subclass of DestinationDto.

• NetworkSettingsType asrNetworkAdapter - The network interface that is used for the
connection to SDP2.

• string address - IP address of the SDP2 server.

• int port - Port number for the connection to SDP2.

• string clientId - Identity of the library, used by SDP2.

• boolean enabled - TRUE when the connection to SDP2 is enabled

SnmpDestinationDto
Provides information about a SNMP destination.

A subclass of DestinationDto. This object contains the parameters for an SNMP destination.

• string host - hostname or IP address of the destination host.

• string protocolVersion - SNMP protocol version (VTWOC, VTHREE). For V2, you must
provide a community string. For V3, you must specify all other parameters.

• string community - for V2 only. A password or phrase. Cannot be "community".

Caution:

Configuring “public" or “private" as valid community strings is a major security
risk. These are commonly used and easily guessed.

• string userName - for V3 only. Text name for the SNMP user. Limited to upper and lower
case letters and !@#$%^*()-+\=\~.

• string authenticationType - for V3 only. Enumeration for the type of authentication for
this user: MD5, SHA, or NONE.

• string authenticationPassphrase - for V3 only. String passphrase for this user.

Chapter 3
Notification Objects

3-35

• string privacyType - for V3 only. Enumeration for the type of privacy to be used on
notifications (traps) that are sent to the user. This determines how traps sent to
this destination are encrypted. DES, AES or NONE.

• string privacyPassphrase - for V3 only. String passphrase used for privacy.

• string engineId - for V3 only. String engine ID for this destination. If not specified,
the library will use its own engine ID.

AsrDto
Provides information about an ASR for a service request.

• string assignedCaseNumber - ASR identifier assigned by Oracle support.

• long serviceBundleId - ID of the service bundle generated when the fault was
detected.

• date submitTime - date/time stamp when the ASR was submitted.

• FaultDto fault - fault object for the fault that triggered the ASR.

ServiceContactDto
Provides information about the library for a service request.

• string contactName - string name of the contact person.

• string phoneNumber - string phone number for the contact person.

• string streetAddr - string street address where the library is installed.

• string city - string city where the library is installed.

• string state - string state or other region where the library is installed.

• string country - country where the library is installed.

• string zipCode - string postal code for the library.

• string description - string description for the contact person.

Logging and Fault Objects
The library tracks system reports and faults that occur in the library.

Faults represent events requiring service intervention to correct. A fault can be a
hardware failure requiring replacement of a part. It can also be a software problem that
requires intervention to correct.

System reports are the input to faults, and record significant events that occur in the
library. They can be created as the result of an error, but can also occur as the result of
successful library operations. These provide a history of actions in the library that allow
the library to perform analysis to determine when a fault occurred.

• LoggingLevelDto

• SupportBundleDto

• SystemReportDto

• FaultDto

Chapter 3
Logging and Fault Objects

3-36

• SuspectFruDto

LoggingLevelDto
Provides information about the log.

• string loggerName - Each log message has an associated logger name. The logger
names are for different categories of messages and different devices. Examine the
logging level settings in the GUI to see these names.

• string loggerLevel - The logging level represents the severity of the message. Only log
messages at or above the specified logging level are captured in the library logs.
Possible values (most severe to least) are SEVERE, WARNING, CONFIG, FINE, and
FINER. A value of INHERITED means this logger uses its parent logger's level.

SupportBundleDto
Provides information about a support bundle created by the library.

A support bundle is a large file containing a data dump about the library. Support bundles can
be created on demand and are also automatically captured when the library detects a fault.
They can be downloaded and transferred to Oracle support for problem diagnosis.

• long supportBundleId - unique ID for the support bundle.

• SupportBundleOriginator originator - how the support bundle was generated.

• SupportBundleState state - the state of the support bundle.

• date timeStamp - Date and time this support bundle was generated.

SystemReportDto
Provides information about the system report created by the library.

• long systemReportId - unique ID for the system report.

• date timestamp - date/time stamp when the system report was created.

• SystemReportType reportType - type of system report.

• ErrorCode statusCode - code for the specific fault.

• HardwareStatusCode hardwareStatusCode - code for the hardware fault.

• long createdRequestId - unique ID of the request that was being processed when the
system report was generated.

• long createdJobId - ID of the job created to process this system report, if any.

• long sourceRequestId - ID of the request being processed when this system report was
created.

• long sourceJobId - unit ID of the job that was being processed when the system report
was generated, if any.

• long originatingDeviceId - device ID for the device that created the system report.

• long reportedDeviceId - device ID for the device that was reported by this system report.

• SensorDto reportedComponentIdentifier - SensorDto for the reported component.

Chapter 3
Logging and Fault Objects

3-37

FaultDto
Provides information about the fault created by the library.

A FaultDto is created when the library detects a fault. This object includes a list of
devices. If the library can identify a specific device that is the source of the fault, that
fault will be the only device in the list. If not, multiple devices will appear in the list,
ordered with the most likely cause first. "Device added" and "device removed" event
types will have only a single device snapshot object.

• long faultId - unique integer ID for the event.

• FaultSymptomCodeType faultSymptomCode - a code for the specific fault.

• date timestamp - date/time stamp when the event was detected.

• List of SuspectFruDto suspectFrus - list of possible fault causing devices.

• List of SystemReportDto systemReports - list of SystemReportDto system reports.

• long serviceBundleId - ID of the service bundle generated when the fault was
detected.

• boolean reviewed - whether someone has reviewed the fault. This is set to false
when the fault is created.

• EventSeverity severity - severity of this fault. Usually ERROR because most
faults require intervention. A value of WARNING is used for faults that do not
require immediate intervention.

• CorrectiveActionsType correctiveAction -indicates actions that need to be taken
to eliminate the fault.

SuspectFruDto
Provides information about the suspected component that caused the fault.

• long faultId - unique ID of the fault for this suspect FRU.

• DeviceType deviceType - device type for this suspect FRU. The combination of
device type, frame number and slot number identify the location of the slot where
this suspect FURU is installed.

• int frameNumber - identifier for the module where this suspect FRU is located.

• int slotNumber - identifier for the slot where this suspect FRU is located.

• int priority - priority in the list of suspect FRUs. A value of 1 is for the most likely
device. Higher values are for less likely devices.

• DeviceDto device - The device DTO for the suspect FRU

Firmware Related Objects
Firmware related objects represent versions of library and drive firmware on the library.

The library will hold multiple versions of drive firmware. Drive firmware versions are
first uploaded to the library and then applied to specific drives. Drive firmware versions
that are uploaded to the library remain on the library until removed.

Chapter 3
Firmware Related Objects

3-38

• LibraryFirmwareDto

• ComponentFirmwareDto

• DriveFirmwareDto

• FirmwareUpgradeEventDto

LibraryFirmwareDto
Provides information about a library firmware version.

Library firmware is the complete package of all firmware for the entire library. This object does
not include the firmware itself, only data about the firmware.

• string version - firmware version.

• date buildDate - date and time this firmware version was created.

• ComponentFirmwareDto componentFirmwareList - code version information for devices
in the library.

ComponentFirmwareDto
Provides version information for the code running on devices inside the library.

• DeviceType deviceType - the type of device.

• FirmwareType firmwareType - the type of firmware.

• string codeVersion - the code version for the device.

• string basePartNumber - base part number for this device. See the BasePartIdentityDto
for more information.

• string basePartRevision - base part revision of the device.

• boolean activeVersion - firmware version currently running on this device.

DriveFirmwareDto
Provides information about the firmware running on a drive.

• string version - drive firmware version.

• string driveType - the type of drive to which this firmware applies.

• date buildDate - date this firmware version was created.

• date uploadDate - date this firmware version was uploaded.

FirmwareUpgradeEventDto
Provides a history of firmware upgrade activity.

Each time library or drive firmware is uploaded or activated, a firmware upgrade event is
captured.

• FirmwareType firmwareType - type of firmware.

• string version - version string

Chapter 3
Firmware Related Objects

3-39

• long driveId - ID of drive, for drive firmware actions that are specific to a drive

• date actionDate - date/time stamp for the action.

• string userName - name of user who performed the action.

• string result - final status of the action

Outbound SCI Objects
These objects are specific to the outbound SCI interface.

• EventDataDto

• TestEventDataDto

• IntermediateMountDriveEventDataDto

• DriveActivityDataDto

• FaultEventDataDto

• LibraryComplexEventDataDto

• LibraryEventDataDto

• RailEventDataDto

• LostCartridgesEventDataDto

• DeviceEventDataDto

• CartridgeMoveEventDataDto

• RobotMoveDto

• CapMoveDto

• AuditEventDataDto

• AuditActivityDataDto

EventDataDto
Provides information about a library event.

• long eventId - The unique id for this event.

• string comment - A text comment, used for debugging.

• date timeStamp - The date and time when the event occurred.

• EventCategory category - The category for this event. Categories control which
events are sent to which destination.

• EventSeverity severity - Severity of the event. ERROR indicates human
intervention is required to correct the fault. WARNING indicates faults that do not
require immediate attention.

• RequestDto request - The request for this event.

• EventType type - type of the event, tells the subclass for the specific event.

• string libSerialNumber - serial number of library that generated the event.

Chapter 3
Outbound SCI Objects

3-40

CapMoveDto
Sent when a cartridge moves to or from a CAP.

• long capId - device ID of the CAP that has moved.

• long partitionId - partition ID of the partition that owned the CAP when it was moved.

• string moveDirection - whether the CAP opened or closed.

• CellDto cells - list of cells in the CAP and their contents.

CapMoveEventDataDto
Sent when a CAP is opened or closed.

• CapMoveDto capMove - information about the cap and the operation performed

CapOwnerOverriddenEventDataDto
Sent when the ownership of a CAP is overridden.

Extends EventDataDto.

• CapDto cap - the CAP who has its ownership overridden.

CapReadyToOpenEventDataDto
Sent when the CAP is ready to open.

Extends EventDataDto.

• long capId - ID of the CAP that is ready to be opened.

CartridgeMoveEventDataDto
Sent when a cartridge is moved within the library.

Extends EventDataDto.

• LibraryDto library - The Library which created and sent the event.

• CellDto sourceCell - The source cell.

• CellDto destinationCell - The destination cell.

• DriveDto sourceDrive - The source drive.

• DriveDto destinationDrive - The destination drive.

• CartridgeDto cartridge - The contents of the source cell before the move.

• List of RobotMoveDto robotMoves - A list of the individual robotic moves performed to
complete the cartridge movement.

• List of DriveOperationDto srcDriveOperations - A list of the source drive operations.

• List of DriveOperationDto dstDriveOperations - A list of the destination drive operations.

• date mountStartTime - time the mount operation was started.

Chapter 3
Outbound SCI Objects

3-41

• date mountEndTime - time the mount operation completed.

• date dismountStartTime - time the dismount operation started.

• date dismountEndTime - time the dismount operation completed.

DeviceEventDataDto
Provides information about a device in relation to a library event.

Extends EventDataDto.

• long supportBundleId - The unique id of the support bundle that was created for
this event.

• ErrorCode errorCode - Error identifier provided by the device.

• string wrappedServiceUserId - The encrypted userid for the service role user
created to deal with this event.

• string wrappedServicePassword - The encrypted password for the service role
user created to deal with this event.

• List of SystemReportDto systemReports - The system reports that contributed to
this event.

• DeviceDto device - The device that generated the event.

DoorEventDataDto
Sent when the library door opens or closes.

Extends EventDataDto.

• DoorStateDto doorState - state information for the door that was opened or
closed.

DriveActivityDataDto
Provides information retrieved from the drive during mounts and dismounts.

• DriveProtocol protocol - type of protocol used to communicate with the drive.

• string protocolVersion - drive protocol version string.

• base64Binary command - command issued to the drive to retrieve data.

• base64Binary results - results returned by the drive from the command.

• boolean success - TRUE indicates the command was successful in retrieving data
from the drive. If FALSE, the "results" field will be null.

• DriveActivityStatusCode statusCode - status of the drive operation that was being
performed when this data was retrieved.

• CommandTiming commandTiming - drive operation that was being performed when
this data was retrieved.

DriveCleanNeededEventdataDto
Sent when the drive indicates it needs cleaning.

Chapter 3
Outbound SCI Objects

3-42

Extends EventDataDto.

• DriveDto drive - the drive that needs cleaning

FaultEventDataDto
Provides information about a fault event.

Extends EventDataDto.

• FaultDto faultReport - fault information

IntermediateMountDriveEventDataDto
Provides information about a media validation event.

Extends EventDataDto.

• DriveDto drive - the drive performing the media verification.

• List DriveActivityDataDto driveActivities - List of DriveActivityDataDtos retrieved from
the drive at the completion of the mount, but before acknowledging the move to the client
that initiated the mount.

• int validationPercent - percentage complete of the media validation operation.

LibraryComplexEventDataDto
Provides information about the library that experienced an event.

Extends EventDataDto.

• LibraryComplexDto libraryComplex - The library complex that experienced the event.

LicensedCapacityChangeEventDataDto
Provides information about a change in capacity.

Extends LibraryComplexEventDataDto. Contains no additional attributes.

LibraryEventDataDto
Provides information about the library that experienced an event.

Extends EventDataDto.

• LibraryDto library - The library that experienced the event.

AuditEventDataDto
Sent when the initial library audit after startup completes.

Extends LibraryEventDataDto.

• List AuditActivityDataDto auditActivities - contains the results of the audit, cell by cell.

• List RobotMoveDto robotMoves - contains a list of moves performed by the robots during
the audit.

Chapter 3
Outbound SCI Objects

3-43

AuditActivityDataDto
Provides information about the audit.

• CellDto cell - cell and its contents after the audit.

• date startTime - start date and time of the audit.

• date endTime - end date and time of the audit.

LibraryStatisticsDto
Provides library statistics.

LostCartridgesEventDataDto
Provides information about a list cartridge.

Extends EventDataDto.

MediaValidationDrivePoolModifiedEventDataDto
Provides information about a change to the media validation pool.

Extends EventDataDto.

• List DriveDto - list of drives in the media validation pool.

RailEventDataDto
Provides information about the rail that experienced an event.

Extends EventDataDto.

• RailDto rail - The rail that experienced the event.

PartitionEventDataDto
Provides information about the partition that was involved with the event.

Extends EventDataDto.

• PartitionDto partition - partition that has been modified.

RobotMoveDto
Provides data about an individual robotic action involving a tape.

• CellDto sourceCell - cell ID for the cartridge at the start of the move.

• CellDto destinationCell - cell ID for the cartridge at the end of the move.

• string moveType - type of the move. Options are:

Chapter 3
Outbound SCI Objects

3-44

– HAND — For motion performed by the robot. This involves a specific robot moving to
a location, fetching a cartridge, moving to another location, and putting the cartridge
into the destination cell.

– ELEVATOR — For motion performed by an elevator. This is the movement of the
elevator from one rail to another. The four physical cells have a set of Cells on each
rail. A robot will put a cartridge in an elevator cell when the elevator is positioned on
one rail. The elevator will then move to another rail. A different robot will then fetch
the cartridge from the same physical cell. Because the physical cell is on a different
rail, the fetch operation is from a different cell than the source.

– PTP — For motion performed by a pass-thru port (PTP). This is the same as for
elevators, but the source and destination cells are in different libraries in a library
complex.

• date startTime - date/time stamp when the move was started.

• date endTime - date/time stamp when the move ended.

• RobotStatusCode moveStatus - status of robot after attempting this move. SUCCESS
indicates the operation was successful. Other values indicate an error.

TestEventDataDto
Provides information about a test event.

Extends EventDataDto.

Chapter 3
Outbound SCI Objects

3-45

4
Enumeration Types

• CellContentsState

• CellState

• CellType

• CellTypeSelector

• CommandTiming

• ComponentLocationState

• ControlState

• CorrectiveActionsType

• DestinationType

• DeviceStateType

• DeviceType

• DeviceTypeSelector

• DoorState

• DriveActivityStatusCode

• DriveInterfaceType

• DriveOperationStatus

• DriveProtocol

• ErrorCode

• EventCategory

• EventSeverity

• EventType

• FanHealth

• FastLoadType

• FaultSymptomCodeType

• FcPortState

• Feature

• FirmwareType

• FruType

• HardwareStatusCode

• IpAddressType

• JobType

• JobStateType

4-1

• LabelWindowing

• LibraryComplexStateType

• LibraryControllerError

• LibraryProductionState

• LibraryRole

• LibraryStateType

• LogLevel

• MediumType

• ModuleType

• NetworkSettingsType

• PartitionStateType

• RequestErrorType

• RequestSource

• RequestStatus

• ResourceName

• ResourceState

• ResourceType

• RobotHardwareStatusCode

• RobotHomeEnd

• RobotSelector

• RobotStatusCode

• ScanType

• ScsiHostState

• SensorType

• ServiceIndicatorName

• SeviceIndicatorState

• SupportBundleOriginator

• SupportBundleState

• SystemReportType

• TopLevelDeviceStateType

CellContentsState
• INVALID

• MAGAZINE-ABSENT

• EMPTY

• READABLE

• UPSIDE-DOWN

Chapter 4
CellContentsState

4-2

• UNREADABLE

• UNKNOWN

• MOVING-IN

• MOVING-OUT

• MEDIA-VALIDATE

• NOT-AUDITABLE

CellState
• PRESENT

• NOT_PRESENT

• UNKNOWN

CellType
• CAP

• STORAGE

• DRIVE

• DROPCELL

• ELEVATOR

• PTP

• ROBOT

• SWAPCELL

• SYSCELL

• TURNTABLE

• UNKNOWN

• EMPTY

• ENDRAIL_CELL

• INVALID

• MODULE_LABEL

CellTypeSelector
• ALL

• CAP

• STORAGE

• DRIVE

• DROPCELL

• ELEVATOR

Chapter 4
CellState

4-3

• PTP

• ROBOT

• SWAPCELL

• SYSCELL

• TURNTABLE

• UNKNOWN

• EMPTY

• ENDRAIL_CELL

• INVALID

• MODULE_LABEL

CommandTiming
• MOUNT

• DISMOUNT

• INTERMEDIATE

ComponentLocationState
• ONLINE

• OFFLINE

• UNKNOWN

ControlState
• INITIALIZING

• ONLINE

• OFFLINE

• GOING_ONLINE

• GOING_OFFLINE

• UNCONTROLLED

• GOING_TO_POWER_OFF

• REBOOTING

• UNKNOWN

CorrectiveActionsType
• REPLACE_DEVICE

• REMOVE_CARTRIDGE_FROM_CELL_OR_DRIVE

• INSTALL_MISSING_MAGAZINE_OR_BEZEL

Chapter 4
CommandTiming

4-4

• INSTALL_DEVICE

• CHECK_FANS_REPLACE_DEVICE_IF_FANS_OK

• CLOSE_DOORS_CHECK_BREAKERS

• CORRECT_CONFIGURATION

• CORRECT_CONFIGURATION_NEGOTIATION

• VERIFY_MODULE_POWER_ON_CHECK_WIRING

• VERIFY_DRIVE_MODULE_POWERED_ON

• RESTORE_POWER_TO_PDU

• CORRECT_SERIAL_NUMBER_VIA_GUI

• REPLACE_INSTALL_REQUIRED_DEVICES

• REPLACE_ROBOT

• REPLACE_ROBOT_FAILED_MOVEABLE

• REPLACE_ROBOT_FAILED_IMMOVEABLE

• TEST_FAULT_NO_ACTION_REQUIRED

• CONTACT_SUPPORT

• INSPECT_CAP_FOR_OBSTRUCTION

• REPAIR_SAFETY_DOOR

• CHECK_BREAKER

• IMPORT_COMPATIBLE_CLEANING_CART

• CHECK_CONNECTIONS

• CHECK_DRIVE_ARRAY_CABLE_CONNECTIONS

• CHECK_BREAKER_REPLACE_DEVICE

• WRITE_BUG

DestinationType
• ASR

• EMAIL

• SNMP

• SCI

• GUI

• UNKNOWN

DeviceStateType
• PRESENCE_UNKNOWN

• PRESENCE_DETECTED

• UPDATING_FIRMWARE

• INITIALIZING

Chapter 4
DestinationType

4-5

• USABLE

• NOT_COMMUNICATING

• FAILED

• SUSPECT

• UPDATING_FW_COMPLETE

• SELF_INIT_NEEDED

• SELF_INITIALIZING

• SENSOR_INIT_NEEDED

• SENSOR_INITIALIZING

• HAND_INIT_NEEDED

• AUDIT_INIT

• HAND_INITIALIZING

• READING_FRAME_LABELS

• INACTIVE

• MOVING

• ACTIVE_MOVING_TO_STALL

• INIT_MOVING_TO_STALL

• FETCHING

• PUSHING

• PUTTING

• AUDITING

• NEEDS_RESET

• FAILED_MOVABLE

• FAILED_IMMOVABLE

• CALIBRATING

• EMPTY

• CART_PRESENT

• MOUNTED

• BUSY_UNLOADING

• BUSY_LOADING

• BUSY_CLEANING

• BUSY_VALIDATING

• FAIL_UNSUP_DRIVE_TYPE

• FAIL_NOT_UNLOADABLE

• FAIL_NOT_LOADABLE

• OPERATIVE

• INOPERATIVE

Chapter 4
DeviceStateType

4-6

• DEGRADED

• NOT_LICENSED

• UNKNOWN

• OPEN

• OPENING

• CLOSING

• FREE

• UNLOCKED

• LOCKED

• AUTOLOCKED

• REBUILDING

• NORMAL

• ABSENT

DeviceType
• AEM

• AEM_DOOR

• AEM_SERVICE_PANEL

• AEM_STATUS_CABLE

• BASE

• BASE_SERVICE_PANEL

• BASE_CARD_CAGE

• BASE_MAIN_HARNESS

• CAP

• ROTARY_CAP

• AEM_CAP

• CAP_CABLE

• CEM

• PEM

• DEM

• LIBRARY

• LIBRARY_COMPLEX

• DOOR_SWITCH

• DRIVE

• DRIVE_ARRAY_ASSEM

• DRIVE_BACKPLANE

• DRIVE_AC_POWER

Chapter 4
DeviceType

4-7

• DRIVE_DC_POWER

• DRIVE_NETWORK_CABLE

• DRIVE_POWER_SUPPLY

• DRIVE_TRAY

• ENCRYPTION_CARD

• ENCRYPTION_CARD_CONFIGURATOR

• ETHER_SWITCH_ASSEM

• ETHERNET_CABLE

• HBQ

• LOCATION_ID_CABLE

• LOCATION_ID_TERMINATOR

• FCPORTDEV

• FEATURE

• LOB

• LOC

• LOD

• LOEB

• LOER

• LOES

• LOF

• LOH

• LOID

• LON

• LOS

• LOV

• LOX

• LOY

• MAGAZINE

• OPERATOR_PANEL

• PDU

• POWER_SUPPLY

• PUW

• PUZ

• RAIL

• RAIL_CONTROLLER_CABLE

• RAIL_AC_POWER

• RAIL_DC_POWER

Chapter 4
DeviceType

4-8

• ROBOT

• SAFETY_DOOR

• STORAGE_ACCESS

• WEB_CAMERA

• RDA_WRITER

• MODULE_MAGAZINE

• UNKNOWN

• NO_DEVICE

• BASEMOD_DOOR

• DRIVEMOD_DOOR

• STORAGE_SERIALIZER

• LEG_LOD_SERIALIZER

DeviceTypeSelector
• ALL

• AEM

• AEM_DOOR

• AEM_SERVICE_PANEL

• AEM_STATUS_CABLE

• BASE

• BASE_SERVICE_PANEL

• BASE_CARD_CAGE

• BASE_MAIN_HARNESS

• CAP

• ROTARY_CAP

• AEM_CAP

• CAP_CABLE

• CEM

• DEM

• DOOR_SWITCH

• DRIVE

• DRIVE_ARRAY_ASSEM

• DRIVE_BACKPLANE

• DRIVE_AC_POWER

• DRIVE_DC_POWER

• DRIVE_NETWORK_CABLE

• DRIVE_POWER_SUPPLY

Chapter 4
DeviceTypeSelector

4-9

• DRIVE_TRAY

• ENCRYPTION_CARD

• ENCRYPTION_CARD_CONFIGURATOR

• ETHER_SWITCH_ASSEM

• ETHERNET_CABLE

• HBQ

• LOCATION_ID_CABLE

• LOCATION_ID_TERMINATOR

• FCPORTDEV

• FEATURE

• LOB

• LOC

• LOD

• LOEB

• LOER

• LOES

• LOF

• LOH

• LOID

• LON

• LOS

• LOV

• LOX

• LOY

• MAGAZINE

• MODULE_MAGAZINE

• OPERATOR_PANEL

• PDU

• POWER_SUPPLY

• PUW

• PUZ

• RAIL

• RAIL_CONTROLLER_CABLE

• RAIL_AC_POWER

• RAIL_DC_POWER

• ROBOT

• SAFETY_DOOR

Chapter 4
DeviceTypeSelector

4-10

• WEB_CAMERA

• RDA_WRITER

• UNKNOWN

• NO_DEVICE

• STORAGE_SERIALIZER

DoorState
• OPENED

• CLOSED

• SEPERATED

• UNKNOWN

DriveActivityStatusCode
• SUCCESS

• FAILED

• SKIPPED

DriveInterfaceType
• UNKNOWN

• SCSI

• ESCON

• FICON

• FICON_NATIVE

• FC

• SAS

• FCOE

DriveOperationStatus
• SUCCESS

• MOUNT_FAILED

• DISMOUNT_FAILED

DriveProtocol
• UNKNOWN

• ADI

• TTI

Chapter 4
DoorState

4-11

ErrorCode
• UNKNOWN

• UNRESPONSIVE

• UNRESPONSIVE_UNRECOVERABLE

• CODE_DOWNLOAD_FAILS

• DEVICE_ERROR

• SUCCESS

• COMM_FAILURE

• LOD_COMM_FAILURE

• INVALID_REQUEST

• NEEDS_RESET

• FAILED_MOVABLE

• FAILED_IMMOVABLE

• NOT_COMMUNICATING

• CANT_MOVE_ON_RAIL

• CANT_MOVE_WRIST

• VISION_INOP

• CANT_FIND_TARGET

• LOC_UNUSABLE

• NO_CART_IN_HAND

• CART_IN_HAND

• CART_STUCK

• CART_DROPPED

• CELL_EMPTY

• CELL_FULL

• LABEL_MISCOMPARE

• MISBUCKLE

• DRIVE_STATE_CHANGE

• LINK_UP

• LINK_DOWN

• FAN_FAILURE

• FAN_RECOVERED

• OVER_TEMPERATURE

• FPGA_FAULT

• BUS_CONTROL_LOST

Chapter 4
ErrorCode

4-12

• POWER_ON

• POWER_OFF

• OVER_VOLTAGE_SHUTDOWN

• DOOR_OPEN

• DOOR_CLOSED

• SAFETY_CARD_BATTERY_LOW

• ROBOTICS_DISABLED

• DOOR_SWITCH_FAULT

• LOCATE_BUTTON_PRESS

• TAPE_DRIVE_POWER_SWITCH_STATE_CHANGE

• TAPE_DRIVE_POWER_FAILED

• POWER_SUPPLY_AC_OK_STATE_CHANGE

• POWER_SUPPLY_DC_OK_STATE_CHANGE

• AC_POWER_SUPPLY_FAILED

• DC_POWER_SUPPLY_FAILED

• RAIL_DC_OK_STATE_CHANGE

• PDU_BREAKER_OPEN

• PDU_BREAKER_CLOSED

• PDU_AC_OK_STATE_CHANGE

• PDU_DC_OK_STATE_CHANGE

• UNEXPECTED_ANNOUNCE

• FET_SHORT

• POWER_BAD

• OVER_CURRENT

• OVER_VOLTAGE

• UNDER_VOLTAGE

• DRIVE_FAN_FULL_ON

• DEVICE_ADDED

• DEVICE_REMOVED

• MISSING_DEVICE

• MISSING_DEVICE_ANNOUNCE_LEFT

• MISSING_DEVICE_DETECTED_LEFT

• MISSING_DEVICE_ANNOUNCE_RIGHT

• MISSING_DEVICE_DETECTED_RIGHT

• INVALID_CONFIGURATION

• EXCEPTION

• TEST_EVENT

Chapter 4
ErrorCode

4-13

• INVALID_FRU_BASE_PART

• DRIVE_TRAY_SERIAL_NUMBER_MISMTACH

• DRIVE_EMPTY_BUT_HAS_TAPE

• DEGRADED_TRANSITION

• INITIALIZING_TRANSITION

• INOPERATIVE_TRANSITION

• OPERATIVE_TRANSITION

• UNKNOWN_TRANSITION

• STARTUP_TRANSITION

• POWER_OFF_TRANSITION

• LIBRARY_INIT_TIMEOUT

• SOAP_ERROR

• HARDWARE_MALFUNCTION

• SOFTWARE_EXCEPTION

• MISSING_PARAM

• INVALID_PARAM

• INVALID_HEX_VALUE

• NEW_THREAD_ERROR

• UNSPECIFIED_THREAD_ERROR

• PRIVATE_THREAD_DATA_NOT_ALLOCATED

• ADD_LEAF_ERROR

• MEM_ALLOC_ERROR

• BUFFER_FULL

• RING_BUFFER_FULL

• INVALID_RUN_MODE

• PIC_CODELOAD_FAILURE

• FPGA_CODELOAD_FAILURE

• TARGET_IMAGE_CRC_MISMATCH

• FPGA_CHKSUM_MISMATCH

• FPGA_INVALID_BIN_RECORD

• FPGA_REPEAT_FIRST_FLAG

• FPGA_REPEAT_LAST_FLAG

• FPGA_MISSING_FIRST_FLAG

• FPGA_FLASH_ERASE_FAILED

• FPGA_FLASH_WRITE_FAILED

• CHKSUM_MISMATCH

• INVALID_HEX_RECORD

Chapter 4
ErrorCode

4-14

• REPEAT_FIRST_FLAG

• REPEAT_LAST_FLAG

• MISSING_FIRST_FLAG

• MISSING_LAST_FLAG

• FLASH_ERASE_FAILED

• FLASH_WRITE_FAILED

• HEX_RECORD_SET_CRC_MISMATCH

• UART_NOT_CONFIGURED

• IIC_TRANSACTION_FAILED

• SPI_TRANSACTION_FAILED

• DRIVE_POWER_UNABLE_TO_TURN_ON

• DRIVE_POWER_UNABLE_TO_TURN_OFF

• TIMEOUT

• BAD_ARGUMENT

• UNEXPECTED_VALUE

• NETWORK_DOWN

• MOTOR_BUSY

• MOTOR_OPERATION_TIMEOUT

• CAP_HARDWARE_FAULT

• CAP_BUTTON_PRESS

• INTERNAL_SOFTWARE_ERROR

• NO_COMMUNICATION

• NO_ERROR_DATA

• PDU_PHASE_C_BREAKER_OPEN

• PDU_PHASE_B_BREAKER_OPEN

• PDU_PHASE_A_BREAKER_OPEN

• PDU_TWENTY_FOUR_VOLT_OK

• PDU_PHASE_C_PRESENT

• PDU_PHASE_B_PRESENT

• PDU_PHASE_A_PRESENT

• PDU_PHASE_C_BREAKER_CLOSED

• PDU_PHASE_B_BREAKER_CLOSED

• PDU_PHASE_A_BREAKER_CLOSED

• PDU_TWENTY_FOUR_VOLT_NOT_OK

• PDU_PHASE_C_NOT_PRESENT

• PDU_PHASE_B_NOT_PRESENT

• PDU_PHASE_A_NOT_PRESENT

Chapter 4
ErrorCode

4-15

• RAIL_POWER_SUPPLY_FAILED

• RAIL_POWER_SUPPLY_AC_INPUT_OK

• RAIL_POWER_SUPPLY_DC_OUTPUT_OK

• RAIL_POWER_SUPPLY_OK

• RAIL_POWER_SUPPLY_AC_INPUT_NOT_OK

• RAIL_POWER_SUPPLY_DC_OUTPUT_NOT_OK

• LOS_X_FORTY_EIGHT_VOLT_OK

• LOS_X_FORTY_EIGHT_VOLT_NOT_OK

• BREAKER_OPEN

• BREAKER_CLOSED

• CANT_JUMP_TO_APP

• FAILED

• READ_FAILURE

• WRITE_FAILURE

• MEDIA_WEAROUT

• RAID_FAILURE

• DEVICE_OVERHEATING

• TEST_ERROR_1_SUPPORT_BUNDLE

• TEST_ERROR_2_NO_SUPPORT_BUNDLE

• TWELVE_VOLTORING_OK

• TWELVE_VOLTORING_FAILURE

• POWER_OK

• POWER_FAILURE

• DRIVE_POWER_SUPPLY_FAILED

• DRIVE_POWER_SUPPLY_AC_INPUT_OK

• DRIVE_POWER_SUPPLY_DC_OUTPUT_OK

• DRIVE_POWER_SUPPLY_OK

• DRIVE_POWER_SUPPLY_AC_INPUT_NOT_OK

• DRIVE_POWER_SUPPLY_DC_OUTPUT_NOT_OK

• DRIVE_UNLOAD_FAILED

• DRIVE_TYPE_NOT_SUPPORTED

• DRIVE_FAILURE_NOT_UNLOADABLE

• DRIVE_FAILED

• MOVE_OUT_OF_WAY_FAILURE

• AEM_SVCK_ON

• AEM_SVCK_OFF

• FRU_UPDATE_FAILED

Chapter 4
ErrorCode

4-16

• OFFLINE

• CONFIGURATION_NEGOTATION_FAILED

• RAIL_OBSTRUCTED

• NO_ANNOUNCEMENT

• MISSED_HEARTBEAT

• ASR_SUPPORT_BUNDLE_REQUEST

• MISSING_ROBOT

• MISSING_ACCESS_CONTROLLER_MODULE_LEFT

• MISSING_ACCESS_CONTROLLER_MODULE_RIGHT

• MISSING_ROBOT_CONTROLLER

• MISSING_RAIL_CONTROLLER

• TEST_FAULT

• NON_ANNOUNCING_DEVICE_RIGHT

• NON_ANNOUNCING_DEVICE_LEFT

• FAILED_TO_CONFIGURE_ENCRYPTION_CARD

• FAILED_DRIVE_DISCOVERY

• CELL_CONTENTS_MISMATCH

• DEADBOLT_HW_FAULT

• MECH_NOT_BUSY_TIMEOUT

• MECH_ERROR

• MECH_MOVE_TIMEOUT

• SAFETY_DOOR_SEPARATION

• CLEAN_CART_DOES_NOT_EXIST

• NO_RULE_FOUND

• DROPPED_OFF_CART_AT_INIT

• DEVICE_WAS_RESET

• MISSING_REQUEST_MESSAGE

• UNABLE_TO_INIT_ROTARY_CAPS

• STORAGE_IDENTIFICATION_MISSING

• SYSTEM_CELLS_FULL

• STORAGE_FAILURE

• DRIVE_ARRAY_CONNECTION_FAULT

• CODELOAD_IN_PROGRESS

• FPGA_REG_READ_FAILED

• FPGA_REG_WRITE_FAILED

• FRU_READ_FAILED

• LINK_DOWN_FAILED

Chapter 4
ErrorCode

4-17

• LINK_UP_FAILED

• RUN_MODE_CHANGE_IN_PROGRESS

• UNDER_VOLTAGE_SHUTDOWN

• NO_LONGER_USED

• FC_PORT_FAILURE

EventCategory
• ASR

• FAULT

• CARTRIDGE_MOVEMENT

• MEDIA_VALIDATION

• DEVICE

• DOOR

• CAP

• PARTITION

• CLEANING_REQUIRED

• LIBRARY

• HEARTBEAT

• TEST

• UNKNOWN

EventSeverity
• SEVERE

• ERROR

• WARNING

• INFO

• NONE

• UNKNOWN

EventType
• MOVE

• TEST

• DEV_INSTALLED

• DEV_FAILED

• DEV_REMOVED

• DEV_CNTRL_STATE_CHNG

Chapter 4
EventCategory

4-18

• LIBRARY_STATE_CHANGE

• RAIL_STATE_CHANGE

• LIBRARY_COMPLEX_STATE_CHANGE

• LICENSED_CAPACITY_CHANGE

• BOOT_COMPLETE

• AUDIT_COMPLETE

• LIBRARY_STATISTICS

• LOST_CARTRIDGES

• PARTITION

• DOOR_OPEN

• DOOR_CLOSE

• INTERMEDIATE_MOUNT_DRIVE

• MEDIA_VAL_DRV_POOL_MODIFIED

• CAP_MOVE

• CAP_READY_OPEN

• CAP_OWN_OVER_RIDDEN

• DRV_CLEAN_NEEDED

• HEARTBEAT

• FAULT_EVENT

• ASR_CONFIG_REQUEST

• ASR_TIME_REPORT_REQUEST

• ASR_LIBRARY_VERSION_REQUEST

• ASR_SUPPORT_BUNDLE_REQUEST

• UNKNOWN

FanHealth
• GOOD

• MARGINAL

• POOR

• UNSTABLE

• NO_READING

• GREEN

• YELLOW

• ORANGE

• RED

• UNKNOWN

Chapter 4
FanHealth

4-19

FastLoadType
• IMMEDIATE

• FAST

• NORMAL

• UNKNOWN

FaultSymptomCodeType
• UNRESPONSIVE

• CODE_DOWNLOAD_FAILED

• COMMUNICATION_FAILURE

• INOP

• FPGA_FAULT

• SAFETY_CARD_BATTERY_LOW

• FAN_FAILURE

• AN_RECOVERED

• POWER_SUPPLY_FAILED

• FAILED_MOVEABLE

• FAILED_IMMOVEABLE

• ROBOT_UNRECOVERABLE

• CANT_FIND_TARGET

• CARTRIDGE_STUCK

• MISBUCKLE

• ROBOTICS_DISABLED

• PDU_FAILED

• AC_POWER_LOST

• DEVICE_MISSING

• UNEXPECTED_MODULE

• CONFIGURATION_NEGOTIATION_FAILED

• DRIVE_TRAY_SERIAL_NUMBER_FAULT

• COMPATIBLE_CLEAN_CART_DOES_NOT_EXIST

• LIBRARY_INIT_TIMEOUT

• SOFWARE_FAULT

• INVALID_CONFIGURATION

• OVER_TEMPERATURE

• DEVICE_FAULT

Chapter 4
FastLoadType

4-20

• TEST_FAULT

• UNEXPECTED_ANNOUNCE

• INTERNAL_SOFTWARE_ERROR

• SAFETY_DOOR_SEPARATION

• OPERATION_TIMEOUT

• ROTARY_CAPS_INIT_FAILURE

• DRIVE_ARRAY_CABLE_FAULT

• UNEXPECTED_DEVICE_REMOVED

FcPortState
• FC_UP

• FC_DOWN

• FC_UNKNOWN

Feature
• CAPACITY

• DUAL_PORT

• PARTITIONING

• SHELL_ACCESS

• UNKNOWN

FirmwareType
• PIC_APP

• PIC_BOOT

• PIC_BOOTS

• PIC_APPH

• PIC_APPL

• FPGA

• SUB_FPGA

• OMAP_APPS

• OMAP_DSP

• OMAP_LINUX

• OMAP_FILESYS

• OMAP_UBOOT

• OMAP_UBL_LOADER

• OMAP_MANIFEST_FORMAT

Chapter 4
FcPortState

4-21

• DRIVE

• ENDR_CARD

FruType
• FRU — Field Replaceable Unit. Meets the rules to be a field replaceable device.

Can be easily replaced in the field.

• FRP — Field Replaceable Part. A device that does not fully meet the rules for
FRUs, but that can be replaced, with some difficulty and tools, in the field.

• NONE — Not field replaceable.

• UNKNOWN

HardwareStatusCode
• NONE

• DRIVE_CONNECTION_BUSY

• DRIVE_NOT_RESPONDING

• LOD_CONNECT_FAILURE

• LOD_WRITE_FAILURE

• LOD_READ_FAILURE

• LOGIN_FAILURE

• LOAD_FAILURE

• LOAD_FAILURE_DRIVE_EMPTY

• UNLOAD_FAILURE_NO_FORCE

• UNLOAD_FAILURE_STILL_SEATED

• TAPE_MOUNTED_DURING_ENCR_CARD_CONFIG

• CHECK_CONDITION

• INVALID_PACKET_RECEIVED

• COMMAND_NOT_SUPPORTED

• DRIVE_RESET

• INVALID_STX_BYTE

• INVALID_ETX_BYTE

• INVALID_SEQ_NUM

• CRC_ERROR

• NAK_RECEIVED

• INCOMPLETE_SCSI_RESPONSE

• BAD_SCSI_STATUS

• UNEXPECTED_SCSI_RESPONSE

• INVALID_FIELD

Chapter 4
FruType

4-22

• BAD_CHECKSUM

• UNEXPECTED_PORT_LOGIN

• UNEXPECTED_PORT_LOGOUT

• MEDIUM_ERROR

• INTERNAL_SOFTWARE_ERROR

• DRIVE_VERIFY_STATE_FAILED

• ENCR_CARD_CONFIG_FAILED

• ENCR_CARD_CONFIG_FAILED_STILL_ON_DEFAULT_IP

• ENCR_CARD_CONFIG_FAILED_CANNOT_CONNECT

• ENCR_CARD_FAILED_TO_RESET

• TELNET_CONNECT_FAILURE

• TELNET_UNEXPECTED_RESPONSE

• TELNET_READ_TIMEOUT

• TELNET_SOCKET_FAILURE

• TELNET_CONNECTION_CLOSED

• TELNET_SOCKET_READ_FAILURE

• TELNET_SOCKET_WRITE_FAILURE

• NOTDEFINED

• PHCNOERROR

• PHCNOTINITIALIZED

• PHCSPIFAILURE

• PHCUSBFAILURE

• PHCIICFAILURE

• PHCPHYFAILURE

• PHCFPGAFAILURE

• PHCEEPROMFAILURE

• PHCHOTSWAPFAILURE

• PHCNETSWITCHFAILURE

• PHCCOMMINITFAILURE

• PHCCOMMNACKRECVD

• PHCMECHNOTPRESENT

• PHCLOWVOLTAGE

• PHCOVERVOLTAGE

• PHCOVERCURRENT

• PHCPROTOCOLFAILURE

• LEFTOFBASE

• RIGHTOFBASE

Chapter 4
HardwareStatusCode

4-23

• PHCFANONEFAILURE

• PHCFANTWOFAILURE

• PHCFANTHREEFAILURE

• PHCFANFOURFAILURE

• PHCFANONERECOVERED

• PHCFANTWORECOVERED

• PHCFANTHREERECOVERED

• PHCFANFOURRECOVERED

• SUCCESS

• BAD-USAGE

• APPL-NOT-READY

• APPL-TASK-NOT-READY

• APPL-TASK-FAILURE

• TARGET-EXCEEDED-MAX-ALLOWABLE-BARS

• TARGET-NOT-RECOGNIZED

• TARGET-OFFSET-INVALID"

• TARGET-LAST-RESULT-CODE

• TARGET-FAILED-TO-CALIBRATE-SCANNER

• SCAN-FAULT-OPEN-FAILURE

• SCAN-FAULT-POWER-UP-FAILURE

• SCAN-FAULT-INITIALIZATION-FAILURE

• SCAN-APP-RECEIVED-NO-MESSAGES

• SCAN-APP-TO-DRIVER-READ-TIMEOUT

• SCAN-APP-TO-DRIVER-WRITE-TIMEOUT

• SCAN-APP-RECEIVED-LLF-NAK-FN

• SCAN-APP-RECEIVED-LLF-NAK-CHKSUM

• SCAN-APP-RECEIVED-LLF-BUSY

• SCAN-APP-RECEIVED-PACKET-WITH-BAD-CHKSUM

• SCAN-APP-RECEIVED-NR

• SCAN-APP-BAD-STATUS

• SCAN-APP-PACKET-SIZE-TOO-LARGE

• SCAN-APP-ASCII-TO-INT-PARSE-FAILURE

• SCAN-APP-LOOKING-FOR-TARGET-GOT-BARCODE

• SCAN-APP-RECEIVED-LINE-STATUS-ERROR-INDICATION

• SCAN-APP-TARGETING-DATA-TOO-SHORT

• SCAN-FIRMWARE-DOWNLOAD-FAILURE

• SCAN-LABEL-CHARACTER-TRANSLATED

Chapter 4
HardwareStatusCode

4-24

• SCAN-LAST-RESULT-CODE

• SRV-MECH-STALLED

• SRV-MECH-STALLED-ON-INIT

• SRV-MECH-OUTSIDE-STOPLOCK

• SRV-ISR-LOGICAL-FAILURE

• ERR-SRV-UNKNOWN-REQUEST-TYPE

• dont-use-ERR-SRV-UNEXPECTED-SYS-ERROR-RET

• ERR-SRV-BAD-CHK-MOVE-CALC

• ERR-SRV-DEST-OUTSIDE-OPER-RANGE

• ERR-SRV-ILLEGAL-PROFILE-TYPE

• ERR-SRV-OVERCURRENT

• ERR-SRV-EXCESSIVE-POSITION-ERROR

• ERR-SRV-TACH-PHASE-ERROR

• ERR-SRV-CANT-START-NOT-IN-STOPLOCK

• ERR-SRV-ISR-REENTERED

• ERR-SRV-SATURATION-CURRENT-REQUESTED-TOO-LONG

• ERR-SRV-MECH-DROPPED-OUT-OF-STOPLOCK

• ERR-SRV-MECH-FAILED-TO-SETTLE-INTO-STOPLOCK

• ERR-SRV-OPERATING-RANGE-OUT-OF-SPEC

• ERR-SRV-INVALID-THETA-Z-RANGE-COMBO

• ERR-SRV-REDEFINED-LIB-CONFIG

• ERR-SRV-BAD-MECH-ID-IN-ISR

• ERR-SRV-ILLEGAL-REQUEST-OPTION

• ERR-SRV-FAILED-TO-ENCOUNTER-CARTRIDGE

• ERR-SRV-FAILED-TO-DISENGAGE-CARTRIDGE

• ERR-SRV-FAILED-TO-SEAT-CARTRIDGE

• ERR-SRV-FAILED-TO-UNSEAT-CARTRIDGE

• ERR-SRV-REQUEST-ALREADY-ACTIVE-AGAINST-MECHANISM

• ERR-SRV-CANT-MOVE-ARM-HAND-IS-ACTIVE

• ERR-SRV-CANT-MOVE-HAND-ARM-IS-ACTIVE

• ERR-SRV-UNEXPECTED-RESPONSE

• ERR-SRV-CANT-GET-WITH-HAND-FULL

• ERR-SRV-CANT-PUT-WITH-HAND-EMPTY

• ERR-SRV-MOVE-ABORTED

• ERR-SRV-HAND-NOT-SAFE-HAND-IS-INOPERATIVE

• ERR-SRV-HAND-NOT-SAFE-REACH-NOT-RETRACTED

• ERR-SRV-HAND-NOT-SAFE-CARTRIDGE-IS-UNSEATED-IN-GRIP

Chapter 4
HardwareStatusCode

4-25

• ERR-SRV-MECHANISM-NOT-INITIALIZED

• ERR-SRV-MECHANISM-SHUTDOWN

• ERR-SRV-MECHANISM-NOT-OPERATIONAL

• ERR-SRV-USER-REQ-THETA-MOVE-FOR-SCAN

• ERR-SRV-CANT-CLEAR-AMP-ENABLE

• ERR-SRV-SATURATION-CURRENT-READ-TOO-LONG

• ERR-SRV-MINIMUM-INIT-MOVE-NOT-DETECTED

• ERR-SRV-REACH-SAFE-SENSOR-FAIL

• ERR-SRV-REACH-GRIP-OVERCURRENT

• ERR-SRV-AMP-ENABLE-FAIL

• ERR-SRV-FAILED-STALL

• ERR-SRV-FAILED-STALL-OBSTRUCTED

• ERR-SRV-DEST-OUTSIDE-OPER-RANGE-ADJUSTED

• ERR-SRV-NOT-RESPONSE-DISCARDED

• ERR-SRV-CANT-FIND-REACH-DEPTH

• ERR-SRV-POWER-LOW-ERROR

• ERR-SRV-REQUEST-QUEUED-TIMEOUT

• ERR-SRV-REQUEST-ACTIVE-TIMEOUT

• ERR-SRV-BAD-MECH-ID-IN-COORD

• ERR-SRV-SYS-MSG-ALLOC-FAIL

• ERR-SRV-SYS-MSG-SEND-FAIL

• ERR-SRV-SYS-MSG-RECV-FAIL

• ERR-SRV-SYS-MSG-BAD-SIZE

• ERR-SRV-SYS-MSG-GET-CONTENT-FAIL

• ERR-SRV-SYS-MSG-SET-CONTENT-FAIL

• ERR-SRV-SYS-MSG-RELEASE-FAIL

• ERR-SRV-HAND-NOT-SAFE

• ERR-SRV-HAND-INIT-FAIL-NOT-EMPTY

• ERR-SRV-COORD-SEND-MECH-REQUEST-FAILED

• ERR-SRV-HALL-ERROR

• ERR-SRV-HDW-OVER-CURRENT-ERROR

• ERR-SRV-HDW-UNKNOWN-ERROR

• ERR-SRV-EXCESSIVE-MOTOR-HEATING

• ERR-SRV-SAT-CURRENT-REQ-TOO-LONG-STALL-MIN-NOT-REACHED

• ERR-SRV-EXCESSIVE-TRACK-STRACK-RELATIVE-ERROR

• ERR-SRV-DOOR-OPEN-ERROR

• ERR-SRV-ISR-STARTUP-FAILED

Chapter 4
HardwareStatusCode

4-26

• ERR-SRV-BAD-MECH-ID-AT-MECH-LAYER

• ERR-SRV-COACTIVE-QUEUED-FAILURE

• ERR-SRV-COACTIVE-QUEUED-TIMEOUT

• ERR-SRV-FAILED-TO-REACH-STALL-POSITION

• ERR-SRV-BAD-MECH-ID-AT-USER

• ERR-SRV-UNDETECTED-AMP-DISABLE

• ERR-SRV-COORD-SEQUENCING-FAILED

• ERR-SRV-FAILED-ZERO-TACH-ON-STALL

• ERR-SRV-FAILED-MECH-LIMIT

• CMO-FAILED-CARTESIAN-LOOKUP-AUDIT

• CMO-FAILED-CARTESIAN-LOOKUP-FETCH

• CMO-FAILED-CARTESIAN-LOOKUP-PUT

• CMO-FAILED-CARTESIAN-LOOKUP-TARGET

• CMO-FAILED-CARTESIAN-LOOKUP-MOVE

• CMO-COULD-NOT-STORE-TARGET-CALIBRATION

• CMO-REACH-NOT-SAFE-DETECTED

• CMO-HAND-EMPTY-DETECTED

• CMO-HAND-FULL-DETECTED

• CMO-FAILED-TARGET-CALIBRATION

• CMO-FETCH-RETRY-PERFORMED

• CMO-PUT-RETRY-PERFORMED

• CMO-CART-LABEL-MISCOMPARE

• CMO-CELL-FULL-DETECTED

• CMO-CELL-EMPTY-DETECTED

• CMO-END-OF-RAIL-ID-FAILURE

• CMO-INIT-FAILURE

• CMO-FAILED-CARTESIAN-LOOKUP-PROX

• CMO-FAILED-PROX-READ

• CMO-MOVE-RETRY-PERFORMED

• CMO-INCONSISTENT-SUCCESS-ON-FETCH

• CMO-INCONSISTENT-SUCCESS-ON-PUT

• CMO-CELL-SCAN-USED-FOR-AUDIT

• CMO-DEPRECATED-POSITION-USED-TO-TARGET

• CMO-USED-INITIAL-TARGETED-LOCATION

• CMO-AUDIT-LABEL-MIN-LENGTH-NOT-MET

• CMO-FAILED-UNSET-TARGET-CALIBRATION

• CMO-RECOVER-FOR-FETCH-PUTBACK-NOT-ATTEMPTED

Chapter 4
HardwareStatusCode

4-27

• CMO-RECOVER-FOR-FETCH-SRV-RECOVERED-CART

• CMO-FAILED-HANDBOT-RANGE-GET

• CMO-CALIBRATION-RETRY-PERFORMED

• CMO-ROBOT-Z-RANGE-IS-SHORT

• CMO-ROBOT-TRACK-RANGE-IS-SHORT

• CMO-ROBOT-WRIST-RANGE-IS-SHORT

• CMO-INVALID-ADDRESS

• CMO-SCANNER-HW-NOT-SUPPORTED

• CMO-SCANNER-UNRECOGNIZED-HW-VERSION

• CMO-CART-NO-LABEL-FOUND

• CMO-CRIMSON-FRAMELABEL-UNRECOGNIZED-LABEL

• CMO-CRIMSON-EMPTY-FRAMELABEL-CELL

• CMO-CRIMSON-FRAMELABEL-NO-LABEL

• CMO-CRIMSON-FRAMELABEL-PROBLEM

• CMO-END-OF-RAIL-ID-FAILURE-CRIMSON

• CMO-CRIMSON-FRAMELABEL-WARNING

• CMO-HAND-NOT-AT-LOCATION

• CMO-CAP-MAGAZINE-NO-INSTALLED

• CMO-ARM-NOT-OPERATIONAL-DETECTED

• CMO-END-OF-RAIL-SET-REV-FAILURE-CRIMSON

• CMO-CARTRIDGE-DROPPED-OFF-AT-INIT

• ERROR-OPENING-CALIBDATA-FILE

• ERROR-OPENING-CFGLOCATIONS-FILE

• ERROR-OPENING-MULTI-ROW-SCAN-DISABLE-FILE

• ERROR-FAILED-MECH-LIMIT-OPERATION

• DIRCT-FAULT-BAD-REQU

• DIRCT-FAULT-ZERO-REFERENCE-FAILURE

• DIRCT-FAULT-BAD-END-OF-RAIL-INIT

• DIRCT-FAULT-ROBOT-SET-DIRECTION-FAILURE

• DIRCT-FAULT-SET-CONFIG-MAP-FAILURE

• DIRCT-FAULT-SEND-MOVE-MAP-FAILURE

• DIRCT-FAULT-INVALID-Z-HEIGHT

• DIRCT-FAULT-REBUILD-CONFIG-MAP-FAILURE

• DIRCT-FAULT-GET-CONFIG-FAILURE

• DIRCT-FAULT-READ-ALL-CRIMSON-LABELS

• DIRCT-FAULT-SET-CRIMSON-CONFIG-MAP-FAILURE

• DIRCT-FAULT-BAD-END-OF-RAIL-INIT-CRIMSON

Chapter 4
HardwareStatusCode

4-28

• DIRCT-FAULT-MODULE-DEFINITION-MAP-FAILURE

• DIRCT-FAULT-GET-LOCATIONS-FAILURE

• DIRCT-FAULT-INIT-HAND-CRIMSON

• DIRCT-WARNING-TRACK-STRACK-RANGE-MISMATCH-CRIMSON

• DIRCT-FAULT-TRACK-STRACK-RANGE-MISMATCH-CRIMSON

• DIRCT-FAULT-INVALID-ADDRESS

IpAddressType
• VFOUR

• VSIX

• UNKNOWN

JobType
• POSITION_ROBOT

• MOVE_TO_SERVICE_BAY

• MOVE_UNTIL_STALL

• FETCH

• PUT

• REQUEST_TO_PUT

• LOAD

• UNLOAD

• DISMOUNT_METRICS

• FETCH_FROM_DRIVE

• CHANGE_DEVICE_STATE

• TOP_LEVEL_AUDIT

• ROBOT_AUDIT_COLUMN

• TOP_LEVEL_MOVE

• DIAGNOSTIC_TOP_LEVEL_MOVE

• DIAGNOSTIC_EXCHANGE

• TOP_LEVEL_DRIVE_CLEAN

• DRIVE_CLEAN

• DRIVE_MEDIA_VALIDATION

• CONTIGUOUS_MOVE

• AEM_CAP_BUTTON_HANDLER

• CAP_BUTTON_HANDLER

• SAFETY_DOOR_HANDLER

• MOVE_ELEVATOR

Chapter 4
IpAddressType

4-29

• MOVE_PTP

• LOAD_CAP

• UNLOAD_CAP

• ENABLE_LOC

• PIC_CODE_LOAD

• LOB_CODE_LOAD

• LOS_CODE_LOAD

• FRU_UPDATE

• DRIVE_TRAY_FRU_UPDATE

• DRIVE_DISCOVERY

• DRIVE_CHECK_ENCRYPTION_CARD

• DRIVE_CONFIGURE_ENCRYPTION_CARD

• DRIVE_STATE_CHANGED

• DRIVE_POWER_STATE_CHANGED

• ROBOT_SENSOR_INIT

• ROBOT_SELF_INIT

• ROBOT_HAND_INIT

• SCAN_LIBRARY

• INIT_FRAME_LABELS

• INIT_RAIL

• REINIT_RAIL

• DETERMINE_ROBOT_LOC

• RAIL_SWEEP

• UPDATE_LOB_PRESENCE

• RAIL_POWER_CYLCLE

• RAIL_POWER_DOWN

• HNDL_DRPOFF_CELL

• LOG_DIAG_ACTION

• DEFAULT_DEV_ONLINE

• FAULTED_TOP_LEVEL_PAPERWORK

• ASR_REQUEST_SUPPORT_BUNDLE

• REQUEST_SUPPORT_BUNDLE

• AEM_OVER_TEMP

• DOOR_SWITCH_FAULT

• DRIVE_TRAY_FAN_FAILURE

• DRIVE_TRAY_OVER_TEMP

• ETHERNET_SWITCH_ASSEMBLY_OVER_TEMP

Chapter 4
JobType

4-30

• FAN_ASSEMBLY_FAILURE

• FAULT_DEVICE

• FAULT_EVENT

• FAULT_ROBOT

• HANDLE_DOOR_STATE_CHANGE

• HANDLE_LOW_SAFETY_BATTERY

• LOCATE_LIBRARY

• MAIN_CARD_CAGE_OVER_TEMP

• MODULE_POWER_DIAGNOSTIC

• NETWORK_DIAGNOSTIC

• REBOOT_DEVICE

• TOGGLE_TAPE_DRIVE_POWER

• LOES_DEVICE_ADD_DETECTED

• LOER_DEVICE_ADD_DETECTED

• LOC_DEVICE_ADD_DETECTED

• DRIVE_AUDIT

• ONLINE_FC_PORT_DEV

• OMAP_CODE_LOAD

• FC_PORT_DEV_LICENSING

• OMAP_CODE_LOAD

• RECOVER_DEVICE

• PING_DEVICE

• RESET_DEVICE

• MISSING_DEVICE

• UNKNOWN

• DOWNLOAD_ROBOT_LOG

• ROBOT_CALIBRATION

• TOP_LEVEL_CALIBRATE

• ROBOT_SWEEP

• ROBOT_MOVE_TACH_COUNT

• ROBOT_MOVE_LOCATION

• ROBOT_MOVE_TO_CELL

• RECOVER_ROBOT

• ROBOT_FRU_DIAGNOSIS

• RE_INITIALIZE_ROBOT

• GET_ROBOT_TO_HOME_END

• PUSH_ROBOT_TO_HOME_END

Chapter 4
JobType

4-31

• HANDLE_ROBOT_ADDITION

• LOER_DEVICE_REMOVAL_DETECTED

• LOES_DEVICE_REMOVAL_DETECTED

• LOC_DEVICE_REMOVAL_DETECTED

• ROBOT_CELL_TO_CELL

• OFFLINE_DRIVE_TRAY

• OFFLINE_DRIVE

• OFFLINE_STORAGE

• OFFLINE_ROBOT

• OFFLINE_ROOT_SWITCH

• OFFLINE_RAIL_CONTROLLER

• OFFLINE_CONTROLLER

• OFFLINE_CAP

• ONLINE_ROOT_SWITCH

• ONLINE_ROBOT

• ONLINE_RAIL_CONTROLLER

• ONLINE_CONTROLLER

• ONLINE_STORAGE

• ONLINE_ROTARY_CAP

• ONLINE_AEM

• DEFAULT_DEV_OFFLINE

• INIT_CAPS

• CAP_MOVE

• TOP_LEVEL_CAP_MOVE

• RESET_ROBOT

• HANDLE_STORAGE_FAILURE

• ENTER

• EJECT

• DEFAULT_CNTL_DEV_ONLINE

• INIT_AEMS

• INIT_AEM

• EVAC_AEM

• AEM_CAP_MOVE

• HNDL_INTERPT_MOVE

• LOX_ONLINE

• FC_PORT_DEVICE_RECOVERY

• AEM_SVCKEY_HANDLER

Chapter 4
JobType

4-32

• SWEEP_AEM

• ALL_CAP_DIAGNOSTIC

• SINGLE_CAP_DIAGNOSTIC

• DRIVE_DIAGNOSTIC

• DEVICE_DIAGNOSTIC

• FEATURE_DIAGNOSTIC

• MOVE_TO_CORNERS

• MOVE_TO_MAGAZINES

• MOVE_IN_RANGE

• SINGLE_LED_DIAGNOSTIC

• ALL_LED_DIAGNOSTIC

• VERSION_DIAGNOSTIC

• MOVE_ALL_CELLS

• MNT_DISMNT_DRIVES_DIAG

• ALL_CAP_MAGAZINE_DIAG

• CUSTOMER_ACCEPTANCE

• CONFIG_BACKUP

• ADD_NODE

• REMOVE_NODE

• AUDIT_MAG

• FAULT_CAP

• FAULT_CAP_CONTROLLER

• FAULT_DRIVE

• FAULT_DRIVE_POWER_SUPPLY

• FAULT_ENCRYPTION_CARD

• FAULT_LOD

• FAULT_LOID

• FAULT_DRIVE_FAN

• LEG_LOD_CODE_LOAD

• FC_PORT_DEVICE_FAULT

• LOER_PRESENCE_CHANGE

JobStateType
• CANCELLED

• COMPLETED_SUCCESS

• COMPLETED_ERROR

• NEEDS_RESOURCES

Chapter 4
JobStateType

4-33

• RUNNABLE

• DEV_FAILED

• WAITING_FOR_DEVICE_RESPONSE

• WAITING_FOR_SUBJOB

• UNKNOWN

LabelWindowing
• PREPEND_LAST_2_CHARS

• FULL_LABEL

• TRIM_LAST_CHAR

• TRIM_LAST_2_CHARS

• TRIM_FIRST_CHAR

• TRIM_FIRST_2_CHARS

• UNKNOWN

LibraryComplexStateType
• INITIALIZING

• OPERATIVE

• INOPERATIVE

• DEGRADED

• STARTUP

• UNKNOWN

LibraryControllerError
• SOURCE_EMPTY

• DESTINATION_FULL

• NONEXISTANT_SOURCE

• NONEXISTENT_DESTINATION

• NONEXISTENT_CLEANING_CARTRIDGE

• CAP_NOT_FOUND

• CAP_OPEN

• CAP_CLOSED

• CAP_UNLOCKED

• CAP_RESERVED

• CAP_IN_USE

• CAP_IN_USE_BY_OTHER_REQ

Chapter 4
LabelWindowing

4-34

• CAP_NOT_ONLINE

• CAP_NOT_OWNED

• CAP_OWNED_BY_ANOTHER

• ELEMENT_IN_USE

• CAP_UNAVAILABLE

• CAP_FAILURE

• CAP_HANDLE_NOT_FOUND

• CAP_POOL_ALREADY_EXISTS

• CAP_POOL_NOT_FOUND

• CAP_POOL_HAS_CAP

• CAP_POOL_HAS_PARTITION

• NO_CAP_MAGAZINE

• DRIVE_NOT_ONLINE

• REQ_NOT_CANCELABLE

• NO_READONLY

• DRIVE_MAINTENANCE

• DRIVE_CONTROLLER_NOT_RESPONDING

• DRIVE_NOT_PRESENT

• MEDIA_MAINTENANCE

• DRIVE_CANT_LOAD_CART

• DRIVE_EMPTY

• MISBUCKLE_ERROR

• EXPIRED_CLEAN_CARTRIDGE

• MOUNT_FAILURE_MEDIA_ERROR

• MEDIA_ERROR

• RESERVE_REQ_TIMED_OUT

• DRIVE_LOADED

• CARTRIDGE_TYPE_INVALID

• ROBOT_FAILURE

• NO_OPERATIONAL_HARDWARE_PATH

• DRIVE_FAILURE

• LIBRARY_NOT_ONLINE

• LIBRARY_ID_INVALID

• MODULE_ID_INVALID

• DEVICE_ID_INVALID

• RAIL_ID_INVALID

• DRIVE_ID_INVALID

Chapter 4
LibraryControllerError

4-35

• CAP_ID_INVALID

• SUPPORT_BUNDLE_ID_INVALID

• INVALID_PARAMETER

• MV_DRIVE_POOL_PARTITION

• PARTITION_NOT_ONLINE

• LABEL_MISCOMPARE

• INTERFACE_ERROR

• INTERNAL_SOFTWARE_ERROR

• MOUNT_DESTINATION_NOT_A_DRIVE

• MOUNT_SOURCE_IS_NOT_A_CELL

• MOVE_DESTINATION_IS_A_DRIVE

• MOVE_SOURCE_IS_A_DRIVE

• DISMOUNT_SOURCE_IS_NOT_A_DRIVE

• DISMOUNT_DESTINATION_IS_NOT_A_CELL

• LIBRARY_NUMBER_OUT_OF_RANGE

• RAIL_NUMBER_OUT_OF_RANGE

• COLUMN_NUMBER_OUT_OF_RANGE

• SIDE_NUMBER_OUT_OF_RANGE

• ROW_NUMBER_OUT_OF_RANGE

• CELL_TYPE_INVALID

• DEVICE_TYPE_INVALID

• COUNT_IS_NEGATIVE

• STARTING_VALUE_IS_NEGATIVE

• IDENTITY_INVALID

• COMPLEX_INVALID

• LIBRARY_INVALID

• OLD_SEED_INVALID

• WWN_SEED_INVALID

• DELETE_PARTITION_FAILED_CELLS_PRESENT

• LIST_EMPTY

• SET_EMPTY

• MEDIA_TYPE_EMPTY

• DOMAIN_CODE_EMPTY

• BASE_PART_NUMBER_EMPTY

• BASE_PART_REV_EMPTY

• CODE_VERSION_EMPTY

• FIRMWARE_TYPE_INVALID

Chapter 4
LibraryControllerError

4-36

• DEVICE_STATE_INVALID

• CONTROL_STATE_INVALID

• ANNOUNCE_MESSAGE_INVALID

• STATE_INVALID

• NAME_INVALID

• LED_LOCATE_NOT_VALID

• DEVICE_NOT_RESETTABLE

• DEVICE_NULL

• DESTINATION_ID_INVALID

• NEGATIVE_VALUE

• ZERO_VALUE

• REQUEST_NOT_FOUND

• REQUEST_COMMAND_INVALID

• PARTITIONS_DO_NOT_MATCH

• PARTITION_DOES_NOT_EXIST

• SOURCE_PARTITION_DOES_NOT_EXIST

• DESTINATION_PARTITION_DOES_NOT_EXIST

• FILENAME_MISSING

• INVALID_ROBOT_ID

• VOLSER_MISSING

• PARTITION_CELLS_PRESENT

• PROTOCOL_INVALID

• IPADDRESS_EMPTY

• EMAIL_ADDRESS_EMPTY

• LOCALE_EMPTY

• PORT_EMPTY

• USER_ID_EMPTY

• PASSWORD_EMPTY

• PATH_EMPTY

• DESTINATION_NULL

• COMMUNITY_STRING_EMPTY

• USER_NAME_EMPTY

• TRAP_LEVELS_EMPTY

• AUTHENTICATION_PHRASE_EMPTY

• PRIVACY_PHRASE_EMPTY

• ENGINE_ID_EMPTY

• PROTOCOL_VERSION_INVALID

Chapter 4
LibraryControllerError

4-37

• AUTHENTICATION_TYPE_INVALID

• PRIVACY_TYPE_INVALID

• USER_EXPIRED_OR_NOT_KNOWN

• NOT_AUTHORIZED

• LIST_NULL

• INCOMPATIBLE_MEDIA

• DRIVE_TYPE_MISSING

• MEDIA_TYPE_MISSING

• NON_MEDIA_VALIDATION_DRIVE

• NO_CARTRIDGE_FOUND_FOR_VOLSER

• INCORRECT_NUMBER_OF_PARAMETERS

• PARAMETER_NOT_FOUND

• INVALID_DIAGNOSTIC_TEST

• ISCRUPTIVE_DIAGNOSTIC_ON_ONLINE_LIBRARY

• INVALID_DIAGNOSTIC_PARAMETER

• FAN_ASSEMBLY_OFFLINE_BLOCKED

• CONTROLLER_OFFLINE_BLOCKED

• ROBOT_CONTROLLER_OFFLINE_BLOCKED

• DRIVE_TRAY_CONTROLLER_OFFLINE_BLOCKED

• ROOT_SWITCH_OFFLINE_BLOCKED

• DRIVE_SWITCH_OFFLINE_BLOCKED

• STORAGE_OFFLINE_BLOCKED

• RAIL_CONTROLLER_OFFLINE_BLOCKED

• VIDEO_OFFLINE_BLOCKED

• ACCESS_CONTROLLER_MODULE_OFFLINE_BLOCKED

• DC_CONVERTER_OFFLINE_BLOCKED

• PUZ_OFFLINE_BLOCKED

• ROBOT_OFFLINE_BLOCKED

• PDU_OFFLINE_BLOCKED

• POWER_SUPPLY_OFFLINE_BLOCKED

• DEVICE_OUT_OF_SERVICE

• LIBRARY_RANGE_INCORRECT

• RAIL_RANGE_INCORRECT

• COLUMN_RANGE_INCORRECT

• SIDE_RANGE_INCORRECT

• ROW_RANGE_INCORRECT

• UPSIDE_DOWN_CARTRIDGE

Chapter 4
LibraryControllerError

4-38

• DRIVE_OFFLINE_BLOCKED

• PARTITION_ALREADY_EXISTS

• INPUT_STRING_TOO_LONG

• INPUT_SCI_DEST_INVALID

• MOUNT_CARTRIDGE_IS_UNREADABLE

• NO_AEMS_PRESENT

• PARTITION_ACTIVE

• NOT_A_PDU

• DRIVE_NOT_MOUNTED

• MAX_PARTITIONS_EXCEEDED

• LIBRARY_INOPERATIVE

• LIBRARY_OFFLINE

• UNKNOWN

• PARTITIONING_NOT_ENABLED

• MAXIMUM_ALLOWED_REQUESTS_EXCEEDED

• LIBRARY_BUSY

• REQ_TIME_OUT

• TIME_OUT_NEGATIVE

• LIBRARY_ROLE_INVALID

• SCSI_ALLOWED_PARTITION_NOT_SCI_ACCESSIBLE

• NO_OPERATIONAL_ROBOTS

• JOB_TIMEOUT_ERROR

• MULTIPLE_CARTS_FOUND_FOR_VOLSER

LibraryProductionState
• MANUFACTURE

• PW_CHANGE_NEEDED

• INSTALLING

• HANDOFF

• PRODUCTION

LibraryRole
• ACSOperator

• ACSUser

• ACSAdmin

• ACSService

• ACSAdvSvc

Chapter 4
LibraryProductionState

4-39

• ACSExcalation

• ACSViewer

• ACSInstall

LibraryStateType
• INITIALIZING

• OPERATIVE

• INOPERATIVE

• DEGRADED

• POWERED_OFF

• UNKNOWN

LogLevel
• OFF

• SEVERE

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST

• INHERITED

MediumType
• UNKNOWN

• DATA

• UNSUPPORTED

• CLEANING

ModuleType
• BASE

• DRIVE

• CARTRIDGE

• ACCESS

• PARKING

• UNKNOWN

Chapter 4
LibraryStateType

4-40

NetworkSettingsType
• CUSTOMER

• OKM

• SERVICE

• UNKNOWN

PartitionStateType
• INITIALIZING

• OPERATIVE

• INOPERATIVE

• DEGRADED

• POWERED_OFF

• UNKNOWN

RequestErrorType
• GENERAL

• UNKNOWN

RequestSource
• INTERNAL

• GUI

• SCI

• SCSI

• ASR

• UNKNOWN

RequestStatus
• SUBMITTED

• ACTIVE

• COMPLETE

• CANCELLED

• FAILED

• TIMEDOUT

• UNKNOWN

Chapter 4
NetworkSettingsType

4-41

ResourceName
• UNKNOWN

• SOURCE_CELL

• DESTINATION_CELL

• SWAP_CELL

• FETCH_PUT_CELL

• ROBOT

• ROBOT_1

• ROBOT_2

• ROBOT_CELL

• DRIVE

• SOURCE_DRIVE

• DEST_DRIVE

• RAILSEGMENT

• LOER_ONE

• LOER_TWO

• LOS_ONE

• LOS_TWO

• LOB_RB_ONE

• LOB_RB_TWO

• CONTROL_LOC

• REDUN_LOC

• CARD_CAGE

• LOD_CARD

• LOID_CARD

• LOB_CARD

• DEVICE

• SECONDARY_ROBOT

• MEDIA_VAL_CELL

• MEDIA_VAL_DRIVE

• LOES_CARD

ResourceState
• UNKNOWN

• NEEDED

Chapter 4
ResourceName

4-42

• ALLOCATED

• COMPLETE

ResourceType
• UNKNOWN

• DEVICE

• CELL

• RAIL_SEGMENT

RobotHardwareStatusCode
• SUCCESS

• BAD-USAGE

• APPL-NOT-READY

• APPL-TASK-NOT-READY

• APPL-TASK-FAILURE

• TARGET-EXCEEDED-MAX-ALLOWABLE-BARS

• TARGET-NOT-RECOGNIZED

• TARGET-OFFSET-INVALID

• TARGET-LAST-RESULT-CODE

• TARGET-FAILED-TO-CALIBRATE-SCANNER

• SCAN-FAULT-OPEN-FAILURE

• SCAN-FAULT-POWER-UP-FAILURE

• SCAN-FAULT-INITIALIZATION-FAILURE

• SCAN-APP-RECEIVED-NO-MESSAGES

• SCAN-APP-TO-DRIVER-READ-TIMEOUT

• SCAN-APP-TO-DRIVER-WRITE-TIMEOUT

• SCAN-APP-RECEIVED-LLF-NAK-FN

• SCAN-APP-RECEIVED-LLF-NAK-CHKSUM

• SCAN-APP-RECEIVED-LLF-BUSY

• SCAN-APP-RECEIVED-PACKET-WITH-BAD-CHKSUM

• SCAN-APP-RECEIVED-NR

• SCAN-APP-BAD-STATUS

• SCAN-APP-PACKET-SIZE-TOO-LARGE

• SCAN-APP-ASCII-TO-INT-PARSE-FAILURE

• SCAN-APP-LOOKING-FOR-TARGET-GOT-BARCODE

• SCAN-APP-RECEIVED-LINE-STATUS-ERROR-INDICATION

• SCAN-APP-TARGETING-DATA-TOO-SHORT

Chapter 4
ResourceType

4-43

• SCAN-FIRMWARE-DOWNLOAD-FAILURE

• SCAN-LABEL-CHARACTER-TRANSLATED

• SCAN-LAST-RESULT-CODE

• SRV-MECH-STALLED

• SRV-MECH-STALLED-ON-INIT

• SRV-MECH-OUTSIDE-STOPLOCK

• SRV-ISR-LOGICAL-FAILURE

• ERR-SRV-UNKNOWN-REQUEST-TYPE

• dont-use-ERR-SRV-UNEXPECTED-SYS-ERROR-RET

• ERR-SRV-BAD-CHK-MOVE-CALC

• ERR-SRV-DEST-OUTSIDE-OPER-RANGE

• ERR-SRV-ILLEGAL-PROFILE-TYPE

• ERR-SRV-OVERCURRENT

• ERR-SRV-EXCESSIVE-POSITION-ERROR

• ERR-SRV-TACH-PHASE-ERROR

• ERR-SRV-CANT-START-NOT-IN-STOPLOCK

• ERR-SRV-ISR-REENTERED

• ERR-SRV-SATURATION-CURRENT-REQUESTED-TOO-LONG

• ERR-SRV-MECH-DROPPED-OUT-OF-STOPLOCK

• ERR-SRV-MECH-FAILED-TO-SETTLE-INTO-STOPLOCK

• ERR-SRV-OPERATING-RANGE-OUT-OF-SPEC

• ERR-SRV-INVALID-THETA-Z-RANGE-COMBO

• ERR-SRV-REDEFINED-LIB-CONFIG

• ERR-SRV-BAD-MECH-ID-IN-ISR

• ERR-SRV-ILLEGAL-REQUEST-OPTION

• ERR-SRV-FAILED-TO-ENCOUNTER-CARTRIDGE

• ERR-SRV-FAILED-TO-DISENGAGE-CARTRIDGE

• ERR-SRV-FAILED-TO-SEAT-CARTRIDGE

• ERR-SRV-FAILED-TO-UNSEAT-CARTRIDGE

• ERR-SRV-REQUEST-ALREADY-ACTIVE-AGAINST-MECHANISM

• ERR-SRV-CANT-MOVE-ARM-HAND-IS-ACTIVE

• ERR-SRV-CANT-MOVE-HAND-ARM-IS-ACTIVE

• ERR-SRV-UNEXPECTED-RESPONSE

• ERR-SRV-CANT-GET-WITH-HAND-FULL

• ERR-SRV-CANT-PUT-WITH-HAND-EMPTY

• ERR-SRV-MOVE-ABORTED

• ERR-SRV-HAND-NOT-SAFE-HAND-IS-INOPERATIVE

Chapter 4
RobotHardwareStatusCode

4-44

• ERR-SRV-HAND-NOT-SAFE-REACH-NOT-RETRACTED

• ERR-SRV-HAND-NOT-SAFE-CARTRIDGE-IS-UNSEATED-IN-GRIP

• ERR-SRV-MECHANISM-NOT-INITIALIZED

• ERR-SRV-MECHANISM-SHUTDOWN

• ERR-SRV-MECHANISM-NOT-OPERATIONAL

• ERR-SRV-USER-REQ-THETA-MOVE-FOR-SCAN

• ERR-SRV-CANT-CLEAR-AMP-ENABLE

• ERR-SRV-SATURATION-CURRENT-READ-TOO-LONG

• ERR-SRV-MINIMUM-INIT-MOVE-NOT-DETECTED

• ERR-SRV-REACH-SAFE-SENSOR-FAIL

• ERR-SRV-REACH-GRIP-OVERCURRENT

• ERR-SRV-AMP-ENABLE-FAIL

• ERR-SRV-FAILED-STALL

• ERR-SRV-FAILED-STALL-OBSTRUCTED

• ERR-SRV-DEST-OUTSIDE-OPER-RANGE-ADJUSTED

• ERR-SRV-NOT-RESPONSE-DISCARDED

• ERR-SRV-CANT-FIND-REACH-DEPTH

• ERR-SRV-POWER-LOW-ERROR

• ERR-SRV-REQUEST-QUEUED-TIMEOUT

• ERR-SRV-REQUEST-ACTIVE-TIMEOUT

• ERR-SRV-BAD-MECH-ID-IN-COORD

• ERR-SRV-SYS-MSG-ALLOC-FAIL

• ERR-SRV-SYS-MSG-SEND-FAIL

• ERR-SRV-SYS-MSG-RECV-FAIL

• ERR-SRV-SYS-MSG-BAD-SIZE

• ERR-SRV-SYS-MSG-GET-CONTENT-FAIL

• ERR-SRV-SYS-MSG-SET-CONTENT-FAIL

• ERR-SRV-SYS-MSG-RELEASE-FAIL

• ERR-SRV-HAND-NOT-SAFE

• ERR-SRV-HAND-INIT-FAIL-NOT-EMPTY

• ERR-SRV-COORD-SEND-MECH-REQUEST-FAILED

• ERR-SRV-HALL-ERROR

• ERR-SRV-HDW-OVER-CURRENT-ERROR

• ERR-SRV-HDW-UNKNOWN-ERROR

• ERR-SRV-EXCESSIVE-MOTOR-HEATING

• ERR-SRV-SAT-CURRENT-REQ-TOO-LONG-STALL-MIN-NOT-REACHED

• ERR-SRV-EXCESSIVE-TRACK-STRACK-RELATIVE-ERROR

Chapter 4
RobotHardwareStatusCode

4-45

• ERR-SRV-DOOR-OPEN-ERROR

• ERR-SRV-ISR-STARTUP-FAILED

• ERR-SRV-BAD-MECH-ID-AT-MECH-LAYER

• ERR-SRV-COACTIVE-QUEUED-FAILURE

• ERR-SRV-COACTIVE-QUEUED-TIMEOUT

• ERR-SRV-FAILED-TO-REACH-STALL-POSITION

• ERR-SRV-BAD-MECH-ID-AT-USER

• ERR-SRV-UNDETECTED-AMP-DISABLE

• ERR-SRV-COORD-SEQUENCING-FAILED

• ERR-SRV-FAILED-ZERO-TACH-ON-STALL

• ERR-SRV-FAILED-MECH-LIMIT

• CMO-FAILED-CARTESIAN-LOOKUP-AUDIT

• CMO-FAILED-CARTESIAN-LOOKUP-FETCH

• CMO-FAILED-CARTESIAN-LOOKUP-PUT

• CMO-FAILED-CARTESIAN-LOOKUP-TARGET

• CMO-FAILED-CARTESIAN-LOOKUP-MOVE

• CMO-COULD-NOT-STORE-TARGET-CALIBRATION

• CMO-REACH-NOT-SAFE-DETECTED

• CMO-HAND-EMPTY-DETECTED

• CMO-HAND-FULL-DETECTED

• CMO-FAILED-TARGET-CALIBRATION

• CMO-FETCH-RETRY-PERFORMED

• CMO-PUT-RETRY-PERFORMED

• CMO-CART-LABEL-MISCOMPARE

• CMO-CELL-FULL-DETECTED

• CMO-CELL-EMPTY-DETECTED

• CMO-END-OF-RAIL-ID-FAILURE

• CMO-INIT-FAILURE

• CMO-FAILED-CARTESIAN-LOOKUP-PROX

• CMO-FAILED-PROX-READ

• CMO-MOVE-RETRY-PERFORMED

• CMO-INCONSISTENT-SUCCESS-ON-FETCH

• CMO-INCONSISTENT-SUCCESS-ON-PUT

• CMO-CELL-SCAN-USED-FOR-AUDIT

• CMO-DEPRECATED-POSITION-USED-TO-TARGET

• CMO-USED-INITIAL-TARGETED-LOCATION

• CMO-AUDIT-LABEL-MIN-LENGTH-NOT-MET

Chapter 4
RobotHardwareStatusCode

4-46

• CMO-FAILED-UNSET-TARGET-CALIBRATION

• CMO-RECOVER-FOR-FETCH-PUTBACK-NOT-ATTEMPTED

• CMO-RECOVER-FOR-FETCH-SRV-RECOVERED-CART

• CMO-FAILED-HANDBOT-RANGE-GET

• CMO-CALIBRATION-RETRY-PERFORMED

• CMO-ROBOT-Z-RANGE-IS-SHORT

• CMO-ROBOT-TRACK-RANGE-IS-SHORT

• CMO-ROBOT-WRIST-RANGE-IS-SHORT

• CMO-INVALID-ADDRESS

• CMO-SCANNER-HW-NOT-SUPPORTED

• CMO-SCANNER-UNRECOGNIZED-HW-VERSION

• CMO-CART-NO-LABEL-FOUND

• CMO-CRIMSON-FRAMELABEL-UNRECOGNIZED-LABEL

• CMO-CRIMSON-EMPTY-FRAMELABEL-CELL

• CMO-CRIMSON-FRAMELABEL-NO-LABEL

• CMO-CRIMSON-FRAMELABEL-PROBLEM

• CMO-END-OF-RAIL-ID-FAILURE-CRIMSON

• CMO-CRIMSON-FRAMELABEL-WARNING

• CMO-HAND-NOT-AT-LOCATION

• CMO-CAP-MAGAZINE-NO-INSTALLED

• CMO-ARM-NOT-OPERATIONAL-DETECTED

• CMO-END-OF-RAIL-SET-REV-FAILURE-CRIMSON

• CMO-CARTRIDGE-DROPPED-OFF-AT-INIT

• ERROR-OPENING-CALIBDATA-FILE

• ERROR-OPENING-CFGLOCATIONS-FILE

• ERROR-OPENING-MULTI-ROW-SCAN-DISABLE-FILE

• ERROR-FAILED-MECH-LIMIT-OPERATION

• DIRCT-FAULT-BAD-REQU

• DIRCT-FAULT-ZERO-REFERENCE-FAILURE

• DIRCT-FAULT-BAD-END-OF-RAIL-INIT

• DIRCT-FAULT-ROBOT-SET-DIRECTION-FAILURE

• DIRCT-FAULT-SET-CONFIG-MAP-FAILURE

• DIRCT-FAULT-SEND-MOVE-MAP-FAILURE

• DIRCT-FAULT-INVALID-Z-HEIGHT

• DIRCT-FAULT-REBUILD-CONFIG-MAP-FAILURE

• DIRCT-FAULT-GET-CONFIG-FAILURE

• DIRCT-FAULT-READ-ALL-CRIMSON-LABELS

Chapter 4
RobotHardwareStatusCode

4-47

• DIRCT-FAULT-SET-CRIMSON-CONFIG-MAP-FAILURE

• DIRCT-FAULT-BAD-END-OF-RAIL-INIT-CRIMSON

• DIRCT-FAULT-MODULE-DEFINITION-MAP-FAILURE

• DIRCT-FAULT-GET-LOCATIONS-FAILURE

• DIRCT-FAULT-INIT-HAND-CRIMSON

• DIRCT-WARNING-TRACK-STRACK-RANGE-MISMATCH-CRIMSON

• DIRCT-FAULT-TRACK-STRACK-RANGE-MISMATCH-CRIMSON

• DIRCT-FAULT-INVALID-ADDRESS

RobotHomeEnd
• LEFT-ROBOT

• RIGHT-ROBOT

RobotSelector
• ALL

• LEFT_ROBOT

• RIGHT_ROBOT

RobotStatusCode
• SUCCESS

• SOAP-ERROR

• COMM-FAILURE

• INVALID-REQUEST

• TEST-EVENT

• CANT-MOVE-ON-RAIL

• CANT-FIND-TARGET

• NEED-TO-BE-INOP

• CART-STUCK

• SOURCE-LOCATION-EMPTY

• CELL-EMPTY

• REACH-NOT-SAFE

• LABEL-MISCOMPARE

• LOC-UNUSABLE

• CANT-MOVE-WRIST

• DESTINATION-FULL-OBSTRUCTED

• VISION-INOP

Chapter 4
RobotHomeEnd

4-48

• CANT-BE-OPERATIVE

• HIT-OBSTRUCTION

• NEEDS-RESET

• NO-CART-IN-HAND

• CART-IN-HAND

• CELL-FULL

• INVALID-CONFIGURATION-LABELS

• DROPPED-OFF-CART-AT-INIT

• UNRESPONSIVE

• DEVICE-WAS-RESET

• MOVE_OUT_OF_WAY_FAILURE

ScanType
• NO_VALIDATION

• BASIC_VERIFY

• COMPLETE_VERIFY_BOT

• COMPLETE_VERIFY_RESUME

• COMPLETE_VERIFY_PLUS_DIV_BOT

• COMPLETE_VERIFY_PLUS_DIV_RESUME

• STANDARD_VERIFY

• REBUILD_MIR

• STOP_VALIDATION

ScsiHostState
• LOGGED_IN

• LOGGED_OUT

• UNKNOWN

SensorType
• FAN

• HOT_SWAP_CONTROLLER

• NETWORK_SWITCH_PORT

• PDU_ENERGY_MONITOR

• TEMPERATURE

• CAP

• ROBOT

Chapter 4
ScanType

4-49

• NO_SENSOR

• UNKNOWN

ServiceIndicatorName
• OKTOREMOVE

• SERVICEACTIONREQUIRE

• OK

• CANACTIVE

• LANAACTIVE

• LANBACTIVE

• WAIT

• LIBRARYACTIVE

• SERVICEREQUIRED

• LOCATE

• ENTER

• UNLOCKED

SeviceIndicatorState
• UNLIT

• LIT

• SLOWBLINK

• FASTBLINK

SupportBundleOriginator
• FAULT_SUBSYSTEM — Support bundle automatically generated when fault was

detected.

• SCI — An explicit user action generated the support bundle.

• GUI — An explicit user action generated the support bundle.

• ASR — A service initiated support bundle from the Service Delivery Platform
(SDP2)

• UNKNOWN

SupportBundleState
• IN_PROGRESS

• COMPLETE

• FAIL

• CANCELLED

Chapter 4
ServiceIndicatorName

4-50

• DELETED

• UNKNOWN

SystemReportType
• ASR

• GENERAL

• ROBOT

• DRIVE

• PIC

• STORAGE

• FEATURE

• UNKNOWN

• FC_PORT

TopLevelDeviceStateType
• PRESENCE_UNKNOWN

• DETECTED

• OPERATIVE

• INOPERATIVE

• DEGRADED

• REMOVED

• UNKNOWN

• NOT_LICENSED

• INITIALIZING

Chapter 4
SystemReportType

4-51

A
Implementation Examples

This chapter provides examples of how the SCI interface can be implemented in various
coding languages.

• Python

• C/C++

Python
This requires a "pip install suds" to get the python suds 0.4 package.

#!/bin/env python

from suds.client import Client
from suds.bindings import binding
from suds.wsse import Security, UsernameToken

library = "https://library.company.com/WebService/1.0.0"

This could be cached to a local file for efficiency
wsdl = "http://library.company.com/WebService/1.0.0?WSDL"

Use SOAP 1.2
binding.envns = ('SOAP-ENV', 'http://www.w3.org/2003/05/soap-envelope')
proxy = Client(url=wsdl, location=library,
 headers={'Content-Type': 'application/soap+xml'})
security = Security()
token = UsernameToken('admin', 'password1')
security.tokens.append(token)
proxy.set_options(wsse=security)

response = proxy.service.ping()
print "Ping responded with: "
print response, "\n"

response = proxy.service.getRobots(libraryId = 1)
print "Robots: "
print response, "\n"

response = proxy.service.getDevice(deviceId = response[0].parentDeviceId)
print "Rail: "
print response, "\n"

C/C++
This is compiled with Genivia gSOAP. The recommended version is 2.8.17r. gSOAP is
copyrighted by Robert A. van Engelen, Genivia, Inc.

#include <iostream>
#include "soapWebServicePortBindingProxy.h"
#include "WebServicePortBinding.nsmap"

A-1

#include "plugin/wsseapi.h"

using namespace std;
static const char *library = "https://library.company.com/WebService/1.0.0";

int main(int argc, char **argv)
{
 WebServicePortBindingProxy proxy;

 ns1__getLibraryComplex getLibraryComplex;
 ns1__getLibraryComplexResponse getLibraryComplexResp;

 if (soap_ssl_client_context(proxy.soap, SOAP_SSL_NO_AUTHENTICATION, NULL,
NULL, NULL, NULL, NULL)) {
 soap_print_fault(proxy.soap, stderr);
 }

 soap_wsse_add_Security(proxy.soap);
 soap_wsse_add_UsernameTokenText(proxy.soap, "Id", "admin", "password1");

 if(proxy.getLibraryComplex(library, NULL, &getLibraryComplex,
&getLibraryComplexResp)) {
 proxy.soap_stream_fault(cerr);
 exit(-1);
 }
 cout << "Name: " << *(getLibraryComplexResp.libraryComplex->name) << endl;
 cout << "Ready: " << (getLibraryComplexResp.libraryComplex->ready ? "TRUE" :
"FALSE") << endl;
 cout << "Libraries: " << getLibraryComplexResp.libraryComplex->counts-
>libraryCount << endl;
 cout << "Partitions: " << getLibraryComplexResp.libraryComplex->counts-
>partitionCount << endl;
 cout << "Devices: " << getLibraryComplexResp.libraryComplex->counts-
>deviceCount << endl;
 cout << "Drives: " << getLibraryComplexResp.libraryComplex->counts-
>driveCount << endl;
 cout << "Drive Bays: " << getLibraryComplexResp.libraryComplex->counts-
>driveBayCount << endl;
 cout << "Cells: " << getLibraryComplexResp.libraryComplex->counts->cellCount
<< endl;
 cout << "Robots: " << getLibraryComplexResp.libraryComplex->counts-
>robotCount << endl;
 soap_end(proxy.soap);
}

Appendix A
C/C++

A-2

B
Secure Development Guide

This appendix provides an overview of common security risks for developers using the
SL4000 web services API called StorageTek Library Control Interface (SCI), and information
on how to address those risks.
SCI is a Web Services Definition Language (WSDL) based API that uses XML for data
transmission and HTTPS for transport. SCI is bidirectional. For inbound SCI, the library is a
server that responds to requests from a client program. Inbound SCI defines about 300
methods used to operate, configure, or monitor the library. Outbound SCI defines a set of
about 25 methods that the library uses to send notifications. For outbound SCI, the library is
the client for an external server.

Both the inbound and outbound interfaces provide similar security functionality:

• Transport layer security with HTTPS using TLSv1.1 or TLSv1.2 protocols

• Authentication with a username password token

• Authorization for role based access control on inbound methods

Generating Code From WSDL Specifications
Processing tools such as wsgen (Java code), gsoap (C and C++) or WSDL.exe (.net) can
generate both client-side and server-side code from the WSDL file and its associated type
files (XSD files). While you can manually construct the XML documents sent by a client of the
inbound SCI interface or manually parse the XML documents sent by outbound SCI, Oracle
recommends using a processing tool.

For the client-side code, the processing tool outputs a set of language-specific classes and
callable methods that can directly be invoked by code that uses the interface. The terms
“class" and “method" are used generically here. For server-side code, the processing tool
outputs code that can be called by a client, in this case the library. Unlike the client-side code,
the server-side code is incomplete and will typically have a line saying “add your code here"
in each generated method. The developer must add bodies to the generated methods.

Transport Layer Security
Transport layer security provides privacy during data transmission by encrypting the message
when the server sends it and then decrypting it when the client receives it. Both the client and
the server have the contents of the message in clear text. The library uses the HTTPS
protocol to provide transport layer security.

During initial installation, the library uses a default certificate (a pre-defined, self-signed x509
certificate) for HTTPS. During the library "hand off" process, you can choose to replace the
default certificate with a library-specific, self-signed certificate or provide a third-party signed
certificate. See the following for more information:

• Manage the Library's SSL/TLS Certificate for HTTPS in the SL4000 Library Guide for
instructions on how to update the library certificate.

B-1

• Certificates for HTTPS Interfaces and Handing-Off the Library to the Customer in
the SL4000 Security Guide for more information about the certificates.

For the inbound SCI interface, HTTPS is required. The library implements
authentication using username password tokens. The user id and password appear in
clear text, therefore HTTPS is required to avoid an eavesdropper on the network from
reading the id and password from the messages in flight.

For the outbound SCI interface, HTTPS is optional. Oracle recommends using
authentication and HTTPS on the outbound interface, however not all environments
may require authentication. Creating an outbound SCI server (remember, the library is
the client) without authentication does open the server up to numerous attacks.

Supported cipher suites are:

• tls1_1: ECDHE-RSA-AES128-SHA

• tls1_1: DHE-RSA-AES128-SHA

• tls1_1: ECDHE-RSA-DES-CBC3-SHA

• tls1_1: EDH-RSA-DES-CBC3-SHA

• tls1_1: AES128-SHA

• tls1_1: DES-CBC3-SHA

• tls1_2: ECDHE-RSA-AES128-GCM-SHA256

• tls1_2: ECDHE-RSA-AES128-SHA256

• tls1_2: ECDHE-RSA-AES128-SHA

• tls1_2: DHE-RSA-AES128-GCM-SHA256

• tls1_2: DHE-RSA-AES128-SHA256

• tls1_2: DHE-RSA-AES128-SHA

• tls1_2: ECDHE-RSA-DES-CBC3-SHA

• tls1_2: EDH-RSA-DES-CBC3-SHA

• tls1_2: AES128-GCM-SHA256

• tls1_2: AES128-SHA256

• tls1_2: AES128-SHA

• tls1_2: DES-CBC3-SHA

Inbound and Outbound Authentication
Both the inbound and outbound SCI interfaces use a username password token for
authentication. Authentication is required for inbound and optional for outbound.

For inbound commands, the client must add a SOAP header to every message sent to
the library to provide the username password token in clear text. Therefore, the client
program must have access to and securely manage these credentials. The most
secure method is to not store the credentials, but to have the client program prompt
the user when necessary. A client program should avoid taking these values as
command line arguments because system monitoring tools may display command line
arguments. If the client program must store the credentials, do so in a secure manner,
such as using a java wallet.

Appendix B
Inbound and Outbound Authentication

B-2

If you choose to implement authentication for the outbound interface, the server must extract
the username and password from the SOAP header and use them to perform authentication.

The details of how to insert these values into the message or extract them from the message
are specific to the programming language used on the client-side and the WSDL processor
used to generate the stubs. The following is a sample inbound request:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:v1="http://
v1_0_0.webservice.librarycontroller.summit.acs.tape.oracle/">
 <soap:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-98F0D229E2F29CEF1514779315276651">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-
token-profile-1.0
 PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soap:Header>
 <soap:Body>
 <v1:ping/>
 </soap:Body>
</soap:Envelope>

Authorization by Role
All inbound SCI methods require authorization. Only certain roles can execute some
methods.

The roles are abbreviated as:

• S1 (service), S2 (advanced service), S3 (escalation)

• C1 (operator), C2 (user), C3 (admin)

• I (installer)

• All (viewer, all service roles, all customer roles, and installer)

The services (S) and customer (C) roles have increasing privileges. The method descriptions
in Library Inbound Methods list the lowest role that can execute the method. Higher privileged
roles can also execute the command. For example, a method labeled "C2,S2" can be
executed by C2 (user), C3 (admin), S2 (advanced service), or S3 (escalation).

A customer-created SCI program can only use the customer roles of Viewer, Operator, User,
or Administrator. Developers should examine the method they intend to use and choose the
lowest of the four available roles. Then library Administrator can create a library user with that
role for the client program and then provide the id and password to the client program. For
information on creating a library user through the GUI, see Add, Modify, or Delete a User in
the SL4000 Library Guide.

Outbound SCI is one of several forms of “notification" provided by the library. Use the GUI to
configure the outbound SCI clients (see Configure Outbound SCI Notifications in the SL4000
Library Guide). If the outbound SCI server will perform authentication, you must select
HTTPS and provide an id and password. You cannot use authentication credentials if you
select HTTP.

Appendix B
Authorization by Role

B-3

	Contents
	Preface
	WSDL URLs
	Protocol Negotiation

	Documentation Accessibility
	Related Documentation
	Diversity and Inclusion

	1 Library Inbound Methods
	Request Methods
	cancelRequest()
	getRequest()
	getRequests()
	waitForRequest()

	Library Complex Methods
	getLibraries()
	getLibraryComplex()
	getLibraryComplexCartridges()
	getLibraryComplexCells()
	getLibraryComplexDevices()
	getLibraryComplexDrives()
	getLibraryComplexDriveTrays()
	getLibraryComplexModules()
	getLibraryComplexSlots()

	Library Methods
	getCell()
	getLibrary()
	getLibraryDevices()
	getLibraryDrives()

	Device Methods
	getDevice()
	getDeviceCells()
	getDeviceSlots()

	Robot Methods
	getCellDepth()
	getRobot()
	getRobotCalibration()
	getRobotRange()
	getRobots()
	getRobotStatistics()

	CAP Methods
	What is a capHandle?
	closeCap()
	freeCap()
	getCap()
	getCapPool()
	getCaps()
	getCapStatistics()
	lockCap()
	openCap()
	setCapOwner()
	unlockCap()

	Drive Methods
	getDrive()
	getDriveTypes()

	Cartridge Methods
	dismountCartridgeByCellId()
	dismountCartridgeByVolser()
	getAllCartridgesByVolser()
	getAllCartridgesByVolsers()
	getLostCartridges()
	mountCartridgeByCellId()
	mountCartridgeByVolser()
	moveCartridgeByCellId()

	Partitioning Methods
	getPartition()
	getPartitionCells()

	SCSI Host Methods
	getScsiHosts()

	Media Validation Methods
	validateCartridgeByCellId()
	validateCartridgeByVolser()

	Diagnostic Testing Methods
	runDiagnosticTest()

	Network Configuration Methods
	getCustomerNetworkSettings()
	getOkmNetworkSettings()
	getServiceNetworkSettings()

	Fault and Library Log Methods
	createTestEvent()
	getFaults()
	getLogEntries()
	getSystemReports()

	Notification Configuration Methods
	createSciDestination()
	deleteDestination()
	getSciDestinations()

	2 Outbound Methods
	auditComplete()
	capacityChanged()
	capClosed()
	capOpened()
	capOwnershipOverridden()
	capReadyToOpen()
	deviceControlStateChange()
	deviceFailed()
	deviceInstalled()
	deviceRemoved()
	doorClosed()
	doorOpened()
	driveCleaningNeeded()
	faultDetected()
	intermediateData()
	libraryComplexStateChange()
	libraryStateChange()
	lostCartridges()
	mediaValidationDrivePoolModified()
	moveData()
	partitionChanged()
	ping()
	railStateChange()
	test()

	3 SCI Objects
	Primitive Types
	Lists and Sets
	DataHandler
	Subclass of an Object
	Data Transfer Objects (DTOs)
	Requests, Jobs, and Resources Objects
	RequestDto
	RequestErrorDto
	RequestOutputMessageDto

	JobDto
	JobParameter
	ResourceDto
	CellResourceDto
	DeviceResourceDto
	RailSegmentResourceDto

	ResourceUsageDto
	RailSegmentResourceUsageDto

	Library Objects
	LibraryComplexDto
	LibraryComplexCountsDto

	LibraryDto
	LibraryIdentityDto
	CardCageIdentityDto
	LibraryCountsDto
	RedStackInfoDto

	ModuleDto
	ModuleCountsDto

	RailDto
	RailCountsDto

	CellDto
	CellAddressDto

	SlotDto
	DoorStateDto
	PartitionDto
	PartitionCountsDto

	ScsiHostDto
	ScsiLunDto
	TimeSettingsDto

	Tape Cartridge Objects
	CartridgeDto
	CartridgeTypeDto

	CleaningCartridgeDto

	Network Objects
	FcPortDto
	IpAddressDto
	NetworkAddressDto
	NetworkInterfaceSettingsDto
	NetworkPerformanceMeasurementDto
	NetworkSettingsDto
	TraceRouteResultsDto

	Device Objects
	DeviceDto
	DeviceIdentityDto

	LedDto
	PingDeviceResultsDto
	FruIdDto
	SDSegmentDto
	FLSegmentDto
	BasePartIdentityDto
	wwnRangeDto
	FrudIdentityDto
	ConfiguredIdentityDto
	SystemIdentityDto
	ProductIdentityDto

	SensorDto
	TelemetryDto
	MeasurementDto
	EnergyMeasurementDto
	HotSwapMeasurementDto
	TemperatureMeasurementDto
	FanMeasurementDto

	CAP Objects
	CapDto
	CapPoolDto
	CapMeasurementDto
	CapStatisticsDto

	Drive Objects
	DriveDto
	DriveTypeDto

	DriveTrayDto
	DriveOperationDto

	Robot Objects
	RobotDto
	RobotCalibrationDto
	RobotCellDepthDto
	RobotGetStatisticsDto
	RobotMetricsDto
	RobotMetricDataDto
	RobotParametersDto
	RobotPositionHistoryDto
	RobotStatisticsDto
	MotionRangeDto

	User Objects
	UserDto
	GroupDto
	RoleDto

	Hardware Activation Objects
	ActivatedFeatureDto
	HwafDto
	HwafActionDto

	Diagnostic Test Objects
	DiagnosticTestDto
	DiagnosticTestParameterDto

	Notification Objects
	DestinationDto
	EmailDestinationDto
	SciDestinationDto
	AsrDestinationDto
	SnmpDestinationDto

	AsrDto
	ServiceContactDto

	Logging and Fault Objects
	LoggingLevelDto
	SupportBundleDto
	SystemReportDto
	FaultDto
	SuspectFruDto

	Firmware Related Objects
	LibraryFirmwareDto
	ComponentFirmwareDto
	DriveFirmwareDto
	FirmwareUpgradeEventDto

	Outbound SCI Objects
	EventDataDto
	CapMoveDto
	CapMoveEventDataDto
	CapOwnerOverriddenEventDataDto
	CapReadyToOpenEventDataDto
	CartridgeMoveEventDataDto
	DeviceEventDataDto
	DoorEventDataDto
	DriveActivityDataDto
	DriveCleanNeededEventdataDto
	FaultEventDataDto
	IntermediateMountDriveEventDataDto
	LibraryComplexEventDataDto
	LicensedCapacityChangeEventDataDto

	LibraryEventDataDto
	AuditEventDataDto
	AuditActivityDataDto

	LibraryStatisticsDto
	LostCartridgesEventDataDto
	MediaValidationDrivePoolModifiedEventDataDto
	RailEventDataDto
	PartitionEventDataDto
	RobotMoveDto
	TestEventDataDto

	4 Enumeration Types
	CellContentsState
	CellState
	CellType
	CellTypeSelector
	CommandTiming
	ComponentLocationState
	ControlState
	CorrectiveActionsType
	DestinationType
	DeviceStateType
	DeviceType
	DeviceTypeSelector
	DoorState
	DriveActivityStatusCode
	DriveInterfaceType
	DriveOperationStatus
	DriveProtocol
	ErrorCode
	EventCategory
	EventSeverity
	EventType
	FanHealth
	FastLoadType
	FaultSymptomCodeType
	FcPortState
	Feature
	FirmwareType
	FruType
	HardwareStatusCode
	IpAddressType
	JobType
	JobStateType
	LabelWindowing
	LibraryComplexStateType
	LibraryControllerError
	LibraryProductionState
	LibraryRole
	LibraryStateType
	LogLevel
	MediumType
	ModuleType
	NetworkSettingsType
	PartitionStateType
	RequestErrorType
	RequestSource
	RequestStatus
	ResourceName
	ResourceState
	ResourceType
	RobotHardwareStatusCode
	RobotHomeEnd
	RobotSelector
	RobotStatusCode
	ScanType
	ScsiHostState
	SensorType
	ServiceIndicatorName
	SeviceIndicatorState
	SupportBundleOriginator
	SupportBundleState
	SystemReportType
	TopLevelDeviceStateType

	A Implementation Examples
	Python
	C/C++

	B Secure Development Guide
	Generating Code From WSDL Specifications
	Transport Layer Security
	Inbound and Outbound Authentication
	Authorization by Role

