
Oracle VM Server for SPARC 3.6
Administration Guide

E93617-02
January 2023

Oracle VM Server for SPARC 3.6 Administration Guide,

E93617-02

Copyright © 2007, 2023, Oracle and/or its affiliates.

Primary Author: Cathleen Reiher

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Copyright © 2007, 2023, Oracle et/ou ses affiliés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont
concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf stipulation expresse de votre
contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et
par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le
désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par
la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle
Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par
écrit.

Si ce logiciel, la documentation du logiciel, les données (telles que définies dans la réglementation "Federal
Acquisition Regulation") ou la documentation qui l'accompagne sont livrés sous licence au Gouvernement des Etats-
Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le compte du Gouvernement des Etats-Unis, la
notice suivante s'applique :

UTILISATEURS DE FIN DU GOUVERNEMENT É.-U. : programmes Oracle (y compris tout système d'exploitation,
logiciel intégré, tout programme intégré, installé ou activé sur le matériel livré et les modifications de tels programmes)
et documentation sur l'ordinateur d'Oracle ou autres logiciels OracleLes données fournies aux utilisateurs finaux du
gouvernement des États-Unis ou auxquelles ils ont accès sont des "logiciels informatiques commerciaux", des
"documents sur les logiciels informatiques commerciaux" ou des "données relatives aux droits limités" conformément
au règlement fédéral sur l'acquisition applicable et aux règlements supplémentaires propres à l'organisme. À ce titre,
l'utilisation, la reproduction, la duplication, la publication, l'affichage, la divulgation, la modification, la préparation des
œuvres dérivées et/ou l'adaptation des i) programmes Oracle (y compris tout système d'exploitation, logiciel intégré,
tout programme intégré, installé, ou activé sur le matériel livré et les modifications de ces programmes), ii) la
documentation informatique d'Oracle et/ou iii) d'autres données d'Oracle, sont assujetties aux droits et aux limitations
spécifiés dans la licence contenue dans le contrat applicable. Les conditions régissant l'utilisation par le
gouvernement des États-Unis des services en nuage d'Oracle sont définies par le contrat applicable à ces services.
Aucun autre droit n'est accordé au gouvernement américain.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des
informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque,
notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou
matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de
secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions
optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l'utilisation de ce logiciel ou matériel pour des applications dangereuses.

Oracle®, Java, et MySQL sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom
mentionné peut être une marque appartenant à un autre propriétaire qu'Oracle.

Intel et Intel Inside sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont
utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Epyc, et le
logo AMD sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée
de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant
accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute
responsabilité et excluent toute garantie expresse ou implicite quant aux contenus, produits ou services émanant de
tiers, sauf mention contraire stipulée dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses
affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages
causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée
dans un contrat entre vous et Oracle.

Contents

 Using This Documentation

Product Documentation Library xviii

Feedback xviii

1 Overview of the Oracle VM Server for SPARC Software

About Oracle VM Server for SPARC and Oracle Solaris OS Versions 1-1

Hypervisor and Logical Domains 1-2

Logical Domains Manager 1-4

Roles for Domains 1-4

Command-Line Interface 1-5

Virtual Input/Output 1-5

Virtual Network 1-5

Virtual Storage 1-5

Virtual Console 1-6

Resource Configuration 1-6

Persistent Configurations 1-6

Oracle VM Server for SPARC Management Information Base 1-6

Oracle VM Server for SPARC Troubleshooting 1-6

2 Oracle VM Server for SPARC Security

Delegating the Management of Logical Domains by Using Rights 2-1

Using Rights Profiles and Roles 2-2

Managing User Rights Profiles 2-2

Assigning Roles to Users 2-2

Logical Domains Manager Profile Contents 2-4

Using Verified Boot 2-5

3 Setting Up Services and the Control Domain

Output Messages 3-1

Creating Default Services 3-1

iv

How to Create Default Services 3-2

Initial Configuration of the Control Domain 3-3

Configuring the Control Domain 3-3

How to Configure the Control Domain 3-3

Decreasing the CPU and Memory Resources From the Control Domain's Initial
factory-default Configuration 3-4

How to Decrease the CPU and Memory Resources From the Control
Domain's Initial factory-default Configuration 3-4

Rebooting to Use Domains 3-5

How to Reboot 3-5

Enabling the Virtual Network Terminal Server Daemon 3-5

How to Enable the Virtual Network Terminal Server Daemon 3-5

Verifying That the ILOM Interconnect Is Enabled 3-5

How to Verify the ILOM Interconnect Configuration 3-6

How to Re-Enable the ILOM Interconnect Service 3-7

4 Setting Up Guest Domains

Creating and Starting a Guest Domain 4-1

How to Create and Start a Guest Domain 4-1

Installing the Oracle Solaris OS on a Guest Domain 4-4

Memory Size Requirements 4-4

How to Install the Oracle Solaris OS on a Guest Domain From a DVD 4-4

How to Install the Oracle Solaris OS on a Guest Domain From an Oracle Solaris
ISO File 4-6

How to Use the Oracle Solaris JumpStart Feature on an Oracle Solaris 10
Guest Domain 4-7

5 Using Domain Consoles

Controlling Access to a Domain Console by Using Rights 5-1

How to Control Access to All Domain Consoles by Using Roles 5-2

How to Control Access to All Domain Consoles by Using Rights Profiles 5-3

How to Control Access to a Single Console by Using Roles 5-4

How to Control Access to a Single Console by Using Rights Profiles 5-5

Using Domain Console Logging 5-5

How to Enable or Disable Console Logging 5-6

Service Domain Requirements for Domain Console Logging 5-6

Connecting to a Guest Domain Console Over the Network 5-6

Using Console Groups 5-7

How to Combine Multiple Consoles Into One Group 5-7

v

6 Configuring I/O Domains

I/O Domain Overview 6-1

General Guidelines for Creating an I/O Domain 6-1

7 Creating a Root Domain by Assigning PCIe Buses

Creating a Root Domain by Assigning PCIe Buses 7-1

Static PCIe Bus Assignment 7-2

Dynamic PCIe Bus Assignment 7-2

Dynamic PCIe Bus Assignment Requirements 7-2

How to Create a Root Domain by Assigning a PCIe Bus 7-3

8 Creating an I/O Domain by Using PCIe SR-IOV Virtual Functions

SR-IOV Overview 8-1

SR-IOV Hardware and Software Requirements 8-3

Current SR-IOV Feature Limitations 8-6

Static SR-IOV 8-7

Static SR-IOV Software Requirements 8-8

Dynamic SR-IOV 8-9

Dynamic SR-IOV Software Requirements 8-9

Dynamic SR-IOV Configuration Requirements 8-9

Destroying All Virtual Functions and Returning the Slots to the Root Domain
Does Not Restore the Root Complex Resources 8-10

Enabling I/O Virtualization 8-10

How to Enable I/O Virtualization for a PCIe Bus 8-11

Planning for the Use of PCIe SR-IOV Virtual Functions 8-11

Using Ethernet SR-IOV Virtual Functions 8-12

Ethernet SR-IOV Hardware Requirements 8-13

Ethernet SR-IOV Limitations 8-13

Planning for the Use of Ethernet SR-IOV Virtual Functions 8-13

Ethernet Device-Specific and Network-Specific Properties 8-13

Creating Ethernet Virtual Functions 8-14

How to Create an Ethernet SR-IOV Virtual Function 8-14

Destroying Ethernet Virtual Functions 8-18

How to Destroy an Ethernet SR-IOV Virtual Function 8-18

Modifying Ethernet SR-IOV Virtual Functions 8-20

How to Modify Ethernet SR-IOV Virtual Function Properties 8-21

Adding and Removing Ethernet SR-IOV Virtual Functions on I/O Domains 8-22

How to Add an Ethernet SR-IOV Virtual Function to an I/O Domain 8-22

How to Remove an Ethernet Virtual SR-IOV Function From an I/O Domain 8-23

vi

Advanced SR-IOV Topics: Ethernet SR-IOV 8-24

Advanced Network Configuration for Virtual Functions 8-24

Booting an I/O Domain by Using an SR-IOV Virtual Function 8-24

SR-IOV Device-Specific Properties 8-25

Creating Virtual NICs on SR-IOV Virtual Functions 8-26

Using an SR-IOV Virtual Function to Create an I/O Domain 8-26

How to Create an I/O Domain by Assigning an SR-IOV Virtual Function to It 8-27

Using InfiniBand SR-IOV Virtual Functions 8-30

InfiniBand SR-IOV Hardware Requirements 8-30

Creating and Destroying InfiniBand Virtual Functions 8-30

How to Create an InfiniBand Virtual Function 8-30

How to Destroy an InfiniBand Virtual Function 8-32

Adding and Removing InfiniBand Virtual Functions on I/O Domains 8-34

How to Add an InfiniBand Virtual Function to an I/O Domain 8-34

How to Remove an InfiniBand Virtual Function From an I/O Domain 8-36

Adding and Removing InfiniBand Virtual Functions to Root Domains 8-37

How to Add an InfiniBand Virtual Function to a Root Domain 8-37

How to Remove an InfiniBand Virtual Function From a Root Domain 8-38

Advanced SR-IOV Topics: InfiniBand SR-IOV 8-38

Listing InfiniBand SR-IOV Virtual Functions 8-38

Identifying InfiniBand SR-IOV Functions 8-39

Using Fibre Channel SR-IOV Virtual Functions 8-41

Fibre Channel SR-IOV Hardware Requirements 8-42

Fibre Channel SR-IOV Requirements and Limitations 8-42

Fibre Channel Device Class-Specific Properties 8-42

World-Wide Name Allocation for Fibre Channel Virtual Functions 8-43

Creating Fibre Channel SR-IOV Virtual Functions 8-44

How to Create a Fibre Channel SR-IOV Virtual Function 8-44

Destroying Fibre Channel SR-IOV Virtual Functions 8-48

How to Destroy a Fibre Channel SR-IOV Virtual Function 8-48

Modifying Fibre Channel SR-IOV Virtual Functions 8-50

How to Modify Fibre Channel SR-IOV Virtual Function Properties 8-50

Adding and Removing Fibre Channel SR-IOV Virtual Functions on I/O Domains 8-50

How to Add a Fibre Channel SR-IOV Virtual Function to an I/O Domain 8-50

How to Remove a Fibre Channel SR-IOV Virtual Function From an I/O
Domain 8-51

Advanced SR-IOV Topics: Fibre Channel SR-IOV 8-52

Accessing a Fibre Channel Virtual Function in a Guest Domain 8-52

I/O Domain Resiliency 8-53

Resilient I/O Domain Requirements 8-54

I/O Domain Resiliency Limitations 8-55

vii

Configuring Resilient I/O Domains 8-55

How to Configure a Resilient I/O Domain 8-55

Example – Using Resilient and Non-Resilient Configurations 8-58

Replacing PCIe Hardware on a System With an IOR Configuration 8-59

Rebooting the Root Domain With Non-Resilient I/O Domains Configured 8-61

9 Creating an I/O Domain by Using Direct I/O

Creating an I/O Domain by Assigning PCIe Endpoint Devices 9-1

Direct I/O Hardware and Software Requirements 9-3

Current Direct I/O Feature Limitations 9-4

Planning PCIe Endpoint Device Configuration 9-5

Rebooting the Root Domain With PCIe Endpoints Configured 9-6

Making PCIe Hardware Changes 9-7

Minimizing Guest Domain Outages When Removing a PCIe Card 9-8

How to Minimize Guest Domain Outages When Removing a PCIe Card 9-8

Creating an I/O Domain by Assigning a PCIe Endpoint Device 9-9

How to Create an I/O Domain by Assigning a PCIe Endpoint Device 9-9

10

Using Non-primary Root Domains

Non-primary Root Domains Overview 10-1

Non-primary Root Domain Requirements 10-2

Non-primary Root Domain Limitations 10-3

Non-primary Root Domain Examples 10-4

Enabling I/O Virtualization for a PCIe Bus 10-4

Managing Direct I/O Devices on Non-primary Root Domains 10-5

Managing SR-IOV Virtual Functions on Non-primary Root Domains 10-6

11

Using Virtual Disks

Introduction to Virtual Disks 11-1

Virtual Disk Identifier and Device Name 11-3

Managing Virtual Disks 11-3

How to Add a Virtual Disk 11-4

How to Export a Virtual Disk Back End Multiple Times 11-4

How to Change Virtual Disk Options 11-5

How to Change the Timeout Option 11-5

How to Remove a Virtual Disk 11-5

Virtual Disk Appearance 11-5

Full Disk 11-6

Single-Slice Disk 11-6

viii

Virtual Disk Back End Options 11-6

Read-only (ro) Option 11-6

Exclusive (excl) Option 11-7

Slice (slice) Option 11-7

Virtual Disk Back End 11-8

Physical Disk or Disk LUN 11-8

How to Export a Physical Disk as a Virtual Disk 11-8

Physical Disk Slice 11-9

How to Export a Physical Disk Slice as a Virtual Disk 11-9

How to Export Slice 2 11-10

File and Volume Exporting 11-10

File or Volume Exported as a Full Disk 11-10

How to Export a File as a Full Disk 11-10

How to Export a ZFS Volume as a Full Disk 11-11

File or Volume Exported as a Single-Slice Disk 11-12

How to Export a ZFS Volume as a Single-Slice Disk 11-12

Exporting Volumes and Backward Compatibility 11-12

Summary of How Different Types of Back Ends Are Exported 11-13

Guidelines for Exporting Files and Disk Slices as Virtual Disks 11-13

Configuring Virtual Disk Multipathing 11-14

Virtual Disk Multipathing and NFS 11-15

Virtual Disk Multipathing and Virtual Disk Timeout 11-15

How to Configure Virtual Disk Multipathing 11-16

Dynamic Path Selection 11-17

CD, DVD and ISO Images 11-18

How to Export a CD or DVD From the Service Domain to the Guest Domain 11-19

How to Export an ISO Image From the Control Domain to Install a Guest
Domain 11-20

Virtual Disk Timeout 11-21

Virtual Disk and SCSI 11-22

Virtual Disk and the format Command 11-23

Using ZFS With Virtual Disks 11-23

Configuring a ZFS Pool in a Service Domain 11-23

Storing Disk Images With ZFS 11-23

Examples of Storing Disk Images With ZFS 11-24

Creating a Snapshot of a Disk Image 11-24

Using Clone to Provision a New Domain 11-25

Cloning a Boot Disk Image 11-25

Using Volume Managers in an Oracle VM Server for SPARC Environment 11-26

Using Virtual Disks With Volume Managers 11-26

Using Virtual Disks With Solaris Volume Manager 11-27

ix

Using Virtual Disks When VxVM Is Installed 11-28

Using Volume Managers With Virtual Disks 11-28

Using ZFS With Virtual Disks 11-28

Using Solaris Volume Manager With Virtual Disks 11-28

Using VxVM With Virtual Disks 11-29

Virtual Disk Issues 11-29

In Certain Conditions, a Guest Domain's Solaris Volume Manager Configuration
or Metadevices Can Be Lost 11-29

How to Find a Guest Domain's Solaris Volume Manager Configuration or
Metadevices 11-29

Oracle Solaris Boot Disk Compatibility 11-30

12

Using Virtual SCSI Host Bus Adapters

Introduction to Virtual SCSI Host Bus Adapters 12-1

Operational Model for Virtual SCSI HBAs 12-3

Discovering SCSI Devices 12-4

Discovering SCSI Tape Devices 12-4

Protocol Version Combinations 12-6

The Hidden Device at LUN0 12-7

Virtual SCSI HBA Subsystem Limitations 12-8

Virtual SCSI HBA Subsystem Does Not Support All SCSI Enclosure Services
Devices 12-8

Cannot Execute a Virtual SCSI HBA and a Virtual SAN in the Same Domain 12-8

Virtual SCSI HBA Identifier and Device Name 12-9

Managing Virtual SCSI HBAs 12-9

Obtaining Physical SCSI HBA Information 12-10

Creating a Virtual Storage Area Network 12-11

Creating a Virtual SCSI Host Bus Adapter 12-11

Verifying the Presence of a Virtual SCSI HBA 12-11

Setting the Virtual SCSI HBA Timeout Option 12-12

Removing a Virtual SCSI Host Bus Adapter 12-12

Removing a Virtual Storage Area Network 12-13

Adding or Removing a LUN 12-13

Appearance of Virtual LUNs in a Guest Domain 12-13

Virtual SCSI HBA and Virtual SAN Configurations 12-13

Configuring Virtual SCSI HBA Multipathing 12-14

How to Configure Virtual SCSI HBA Multipathing 12-16

How to Manage Multipathing for Virtual SCSI HBAs in a Guest Domain 12-17

How to Enable Multipathing for Virtual SCSI HBAs in a Service Domain 12-18

How to Disable Multipathing for Virtual SCSI HBAs on Service Domains 12-19

Booting From a Virtual LUN 12-20

x

Installing a Virtual LUN 12-20

Virtual SCSI HBA Timeout 12-20

Virtual SCSI HBA and SCSI 12-21

Simulating a LUN0 12-21

Managing the Physical Devices in a Virtual Storage Area Network 12-23

Obtaining Worldwide Numbers 12-24

13

Using Virtual Networks

Introduction to a Virtual Network 13-1

Oracle Solaris 11 Networking Overview 13-2

Maximizing Virtual Network Performance 13-4

Hardware and Software Requirements 13-4

Configuring Your Domains to Maximize the Performance of Your Virtual Network 13-5

Virtual Switch 13-5

Virtual Network Device 13-7

Inter-Vnet LDC Channels 13-7

Determining What Networks Are Present in Logical Domains 13-9

Finding the Oracle Solaris 11 Network Interface Name 13-9

Viewing Network Device Configurations and Statistics 13-10

Controlling the Amount of Physical Network Bandwidth That Is Consumed by a
Virtual Network Device 13-13

Network Bandwidth Limitations 13-13

Setting the Network Bandwidth Limit 13-14

Virtual Device Identifier and Network Interface Name 13-15

Managing MAC Addresses With Oracle VM Server for SPARC 13-17

Assigning MAC Addresses Automatically or Manually 13-17

Range of MAC Addresses Assigned to Domains 13-18

Automatic Assignment Algorithm 13-18

Duplicate MAC Address Detection 13-18

Detecting MAC Address Collisions 13-19

Configuring a Virtual Switch and the Service Domain for NAT and Routing 13-20

How to Set Up a Virtual Switch to Enable NAT to Domains (Oracle Solaris 11) 13-21

Configuring IPMP in an Oracle VM Server for SPARC Environment 13-22

Configuring Virtual Network Devices Into an IPMP Group in an Oracle Solaris 11
Domain 13-22

Configuring and Using IPMP in the Service Domain 13-23

Using Link-Based IPMP in Oracle VM Server for SPARC Virtual Networking 13-23

How to Configure Physical Link Status Updates 13-24

Configuring Link-Based IPMP 13-25

Configuring DLMP Aggregations Over Virtual Network Devices 13-25

DLMP Aggregation Limitations 13-26

xi

How to Configure a DLMP Aggregation in a Domain 13-26

Using Link Aggregation With a Virtual Switch 13-30

Using VLAN Tagging 13-31

Port VLAN ID 13-32

VLAN ID 13-32

Assigning and Using VLANs 13-33

How to Assign and Use VLANs in an Oracle Solaris 11 Service Domain 13-33

How to Assign and Use VLANs in an Oracle Solaris 11 Guest Domain 13-33

How to Assign and Use VLANs in an Oracle Solaris 10 Guest Domain 13-34

How to Install a Guest Domain When the Install Server Is in a VLAN 13-34

Using Private VLANs 13-34

PVLAN Requirements 13-35

Configuring PVLANs 13-36

Creating a PVLAN 13-37

Viewing PVLAN Information 13-37

Tuning Packet Throughput Performance 13-39

Configuring Jumbo Frames 13-40

How to Configure Virtual Network and Virtual Switch Devices to Use Jumbo
Frames 13-41

Using Virtual NICs on Virtual Networks 13-43

Configuring Virtual NICs on Virtual Network Devices 13-44

Dynamically Updating Alternate MAC Addresses 13-45

Creating Oracle Solaris 11 Zones in a Domain 13-46

Using Trusted Virtual Networks 13-46

Trusted Virtual Network Requirements and Restrictions 13-47

Configuring Trusted Virtual Networks 13-48

Viewing Trusted Virtual Network Information 13-50

Using a Virtual Switch Relay 13-52

How to Set the Virtual Switch Mode to Remote 13-52

Virtual Switch Relay Failure Cases 13-53

Oracle Solaris 11 Networking-Specific Feature Differences 13-53

14

Migrating Domains

Introduction to Domain Migration 14-1

Overview of a Migration Operation 14-2

Software Compatibility 14-2

Security for Migration Operations 14-3

Configuring SSL Certificates for Migration 14-3

How to Configure SSL Certificates for Migration 14-3

Removing SSL Certificates 14-4

Domain Migration Restrictions 14-4

xii

Version Restrictions for Migration 14-5

Cross-CPU Restrictions for Migration 14-5

Migration Restrictions for Setting perf-counters 14-5

Forced Cross-CPU Migration Can Fail if Global Performance Counters are
Enabled 14-6

Migration Restrictions for Setting linkprop=phys-state 14-6

Migration Restrictions for Domains That Have a Large Number of Virtual
Devices 14-7

Migration Restrictions for Silicon Secured Memory Servers 14-7

Migration Restrictions for Running cputrack During a Migration 14-8

Migrating a Domain 14-8

Performing a Dry Run 14-9

Performing Non-Interactive Migrations 14-9

Migrating an Active Domain 14-9

Domain Migration Requirements for CPUs 14-10

Migration Requirements for Memory 14-12

Migration Requirements for Physical I/O Devices 14-13

Migration Requirements for Virtual I/O Devices 14-13

Migrating While a Delayed Reconfiguration Is Active 14-14

Migrating While an Active Domain Has the Power Management Elastic Policy in
Effect 14-14

Operations on Other Domains 14-14

Migrating a Domain From the OpenBoot PROM or a Domain That Is Running in
the Kernel Debugger 14-15

Migrating a Domain That Uses Named Resources 14-15

Migrating a Domain That Uses Kernel Zones 14-16

Migrating Bound or Inactive Domains 14-16

Migration Requirements for Virtual I/O Devices 14-17

Migration Requirements for PCIe Endpoint Devices 14-17

Migration Requirements for PCIe SR-IOV Virtual Functions 14-17

Migrating a Domain That Has an SR-IOV Ethernet Virtual Function Assigned 14-18

How to Prepare a Domain With an SR-IOV Ethernet Virtual Function for
Migration 14-19

How to Prepare a Target Machine to Receive a Domain With an SR-IOV
Ethernet Virtual Function 14-19

Monitoring a Migration in Progress 14-20

Canceling a Migration in Progress 14-21

Recovering From a Failed Migration 14-21

Saving Post-Migration SP Configurations Automatically 14-21

Migration Examples 14-22

xiii

15

Managing Resources

Resource Reconfiguration 15-1

Dynamic Reconfiguration 15-1

Delayed Reconfiguration 15-2

Only One CPU Configuration Operation Is Permitted to Be Performed
During a Delayed Reconfiguration 15-3

Resource Allocation 15-3

CPU Allocation 15-3

How to Apply the Whole-Core Constraint 15-4

How to Apply the Max-Cores Constraint 15-4

Interactions Between the Whole-Core Constraint and Other Domain Features 15-5

CPU Dynamic Reconfiguration 15-6

Dynamic Resource Management 15-6

Configuring the System With Hard Partitions 15-6

Checking the Configuration of a Domain 15-7

Configuring a Domain With CPU Whole Cores 15-8

How to Create a New Domain With CPU Whole Cores 15-8

How to Configure an Existing Domain With CPU Whole Cores 15-9

How to Configure the Primary Domain With CPU Whole Cores 15-9

Interaction of Hard Partitioned Systems With Other Oracle VM Server for
SPARC Features 15-10

CPU Dynamic Reconfiguration 15-10

CPU Dynamic Resource Management 15-11

CPU Weighted Mean Utilization 15-12

Power Management 15-12

Domain Reboot or Rebind 15-12

Assigning Physical Resources to Domains 15-12

How to Remove the physical-bindings Constraint 15-14

How to Remove All Non-Physically Bound Resources 15-15

Managing Physical Resources on the Control Domain 15-15

Restrictions for Managing Physical Resources on Domains 15-15

Using Memory Dynamic Reconfiguration 15-16

Adding Memory 15-16

Removing Memory 15-17

Partial Memory DR Requests 15-17

Memory Reconfiguration of the Control Domain 15-17

Decrease the Control Domain's Memory 15-17

Dynamic and Delayed Reconfiguration 15-18

Memory Alignment 15-18

Memory DR Examples 15-18

Using Resource Groups 15-21

xiv

Resource Group Requirements and Restrictions 15-22

Using Power Management 15-22

Using Dynamic Resource Management 15-22

Listing Domain Resources 15-25

Machine-Readable Output 15-25

Flag Definitions 15-26

Utilization Statistic Definition 15-26

Viewing Various Lists 15-27

Listing Constraints 15-29

Listing Resource Group Information 15-30

Using Perf-Counter Properties 15-30

Resource Management Issues 15-32

Removing a Large Number of CPUs From a Domain Might Fail 15-32

Sometimes a Block of Dynamically Added Memory Can Be Dynamically
Removed Only as a Whole 15-33

16

Managing SP Configurations

Managing SP Configurations 16-1

Available Configuration Recovery Methods 16-2

Restoring Configurations By Using Autosave 16-2

Autorecovery Policy 16-3

How to Modify the Autorecovery Policy 16-4

Saving Domain Configurations 16-5

Restoring Domain Configurations 16-5

How to Restore a Domain Configuration From an XML File (ldm add-
domain) 16-5

How to Restore a Domain Configuration From an XML File (ldm init-system) 16-6

Addressing Service Processor Connection Problems 16-7

Configuration Management Issues 16-8

init-system Does Not Restore Named Core Constraints for Guest Domains From
Saved XML Files 16-8

After Dropping Into factory-default, Recovery Mode Fails if the System Boots
From a Different Device Than the One Booted in the Previously Active
Configuration 16-8

Guest Domain eeprom Updates Are Lost if an ldm add-spconfig Operation Is
Not Complete 16-9

Trying to Connect to Guest Domain Console While It Is Being Bound Might
Cause Input to Be Blocked 16-10

xv

17

Handling Hardware Errors

Hardware Error-Handling Overview 17-1

Using FMA to Blacklist or Unconfigure Faulty Resources 17-1

Recovering Domains After Detecting Faulty or Missing Resources 17-2

Recovery Mode Hardware and Software Requirements 17-5

Degraded Configuration 17-5

Controlling Recovery Mode 17-6

Marking Domains as Degraded 17-6

Marking I/O Resources as Evacuated 17-7

18

Performing Other Administration Tasks

Entering Names in the CLI 18-1

Updating Property Values in the /etc/system File 18-2

How to Add or Modify a Tuning Property Value 18-2

Stopping a Heavily Loaded Domain Can Time Out 18-3

Operating the Oracle Solaris OS With Oracle VM Server for SPARC 18-3

OpenBoot Firmware Not Available After the Oracle Solaris OS Has Started 18-3

Performing a Power Cycle of a Server 18-4

Starting a Domain 18-4

Stopping a Domain 18-4

Result of Oracle Solaris OS Breaks 18-5

Results From Rebooting the Control Domain 18-5

Using Oracle VM Server for SPARC With the Service Processor 18-5

Configuring Domain Dependencies 18-6

Domain Dependency Examples 18-7

Dependency Cycles 18-8

Determining Where Errors Occur by Mapping CPU and Memory Addresses 18-9

CPU Mapping 18-9

Memory Mapping 18-10

Example of CPU and Memory Mapping 18-10

Using Universally Unique Identifiers 18-11

Virtual Domain Information Command and API 18-12

Using Logical Domain Channels 18-12

Booting a Large Number of Domains 18-15

Cleanly Shutting Down and Power Cycling an Oracle VM Server for SPARC System 18-16

How to Power Off a System With Multiple Active Domains 18-16

How to Power Cycle the System 18-16

Logical Domains Variable Persistence 18-17

Adjusting the Interrupt Limit 18-17

Handling an Exhausted Interrupt Supply While Attaching I/O Device Drivers 18-19

xvi

Listing Domain I/O Dependencies 18-21

Enabling the Logical Domains Manager Daemon 18-22

How to Enable the Logical Domains Manager Daemon 18-22

Saving Logical Domains Manager Configuration Data 18-22

How to Save Logical Domains Manager Configuration Data on the Control
Domain 18-23

The factory-default Configuration and Disabling Domains 18-23

How to Remove All Guest Domains 18-23

How to Remove All SP Configurations 18-24

How to Restore the factory-default Configuration 18-24

How to Disable the Logical Domains Manager 18-24

How to Restore the factory-default Configuration From the Service Processor 18-25

Logging Oracle VM Server for SPARC Events 18-25

Controlling Oracle VM Server for SPARC Logging Operations 18-25

Controlling Logging Capabilities by Using SMF 18-26

Viewing Oracle VM Server for SPARC Logging Capabilities 18-27

Viewing Oracle VM Server for SPARC Command History 18-27

A Using Power Management

Using Power Management A-1

Power Management Features A-2

Viewing Power-Consumption Data A-3

Glossary

Index

xvii

Using This Documentation

• Overview – Provides Oracle Solaris OS system administrators with detailed
information and procedures that describe the installation, configuration, and use of
the Oracle VM Server for SPARC 3.6 software.

• Audience – System administrators who manage virtualization on SPARC servers.

• Required knowledge – System administrators on these servers must have a
working knowledge of UNIX systems and the Oracle Solaris operating system
(Oracle Solaris OS).

Product Documentation Library
Documentation and resources for this product and related products are available at
http://www.oracle.com/technetwork/documentation/vm-sparc-194287.html.

Feedback
Provide feedback about this documentation at http://www.oracle.com/goto/
docfeedback.

Using This Documentation

xviii

http://www.oracle.com/technetwork/documentation/vm-sparc-194287.html
http://www.oracle.com/goto/docfeedback
http://www.oracle.com/goto/docfeedback

1
Overview of the Oracle VM Server for SPARC
Software

This chapter provides an overview of the Oracle VM Server for SPARC software.

Oracle VM Server for SPARC provides highly efficient, enterprise-class virtualization
capabilities for Oracle SPARC T-series, SPARC M-series, SPARC S-series, Fujitsu SPARC
M12 servers, and Fujitsu M10 servers. Using the Oracle VM Server for SPARC software, you
can create up to 128 virtual servers, called logical domains, on a single system. This kind of
configuration enables you to take advantage of the massive thread scale offered by SPARC
T-series, SPARC M-series, SPARC S-series servers, Fujitsu SPARC M12 servers, and Fujitsu
M10 servers and the Oracle Solaris OS.

This chapter covers the following topics:

• About Oracle VM Server for SPARC and Oracle Solaris OS Versions

• Hypervisor and Logical Domains

• Logical Domains Manager

• Oracle VM Server for SPARC Management Information Base

• Oracle VM Server for SPARC Troubleshooting

Note:

The features that are described in this book can be used with all of the supported
system software and hardware platforms that are listed in Oracle VM Server for
SPARC 3.6 Installation Guide. However, some features are only available on a
subset of the supported system software and hardware platforms. For information
about these exceptions, see What’s New in This Release in Oracle VM Server for
SPARC 3.6 Release Notes and What's New in Oracle VM Server for SPARC
Software (http://www.oracle.com/technetwork/server-storage/vm/documentation/
sparc-whatsnew-330281.html).

About Oracle VM Server for SPARC and Oracle Solaris OS
Versions

The Oracle VM Server for SPARC software depends on particular Oracle Solaris OS
versions, required software patches, and particular versions of system firmware. For more
information, see Oracle Solaris OS Versions in Oracle VM Server for SPARC 3.6 Installation
Guide.

The version of the Oracle Solaris OS that runs on a guest domain is independent of the
Oracle Solaris OS version that runs on the primary domain. So, if you run the Oracle Solaris
11 OS in the primary domain, you can still run the Oracle Solaris 10 OS in a guest domain.

1-1

https://docs.oracle.com/cd/E93612_01/html/E93616/index.html
https://docs.oracle.com/cd/E93612_01/html/E93616/index.html
https://docs.oracle.com/cd/E93612_01/html/E93615/whatsnew.html
https://docs.oracle.com/cd/E93612_01/html/E93615/whatsnew.html
http://www.oracle.com/technetwork/server-storage/vm/documentation/sparc-whatsnew-330281.html
http://www.oracle.com/technetwork/server-storage/vm/documentation/sparc-whatsnew-330281.html
http://www.oracle.com/technetwork/server-storage/vm/documentation/sparc-whatsnew-330281.html
https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsolosversions
https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsolosversions

Note:

The Oracle Solaris 10 OS is no longer supported in the primary domain. You
can continue to run the Oracle Solaris 10 OS in guest domains. The
minimum version of the Oracle Solaris 10 OS requires patch ID 150400-64.
You must purchase Oracle Solaris 10 Extended Support to obtain patch ID
150400-64.

Hypervisor and Logical Domains
This section provides an overview of the SPARC hypervisor, which supports logical
domains.

The SPARC hypervisor is a small firmware layer that provides a stable virtualized
machine architecture to which an operating system can be written. SPARC servers
that use the hypervisor provide hardware features to support the hypervisor's control
over a logical operating system's activities.

A logical domain is a virtual machine comprised of a discrete logical grouping of
resources. A logical domain has its own operating system and identity within a single
computer system. Each logical domain can be created, destroyed, reconfigured, and
rebooted independently, without requiring you to perform a power cycle of the server.
You can run a variety of applications software in different logical domains and keep
them independent for performance and security purposes.

Each logical domain is only permitted to observe and interact with those server
resources that are made available to it by the hypervisor. The Logical Domains
Manager enables you to specify what the hypervisor should do through the control
domain. Thus, the hypervisor enforces the partitioning of the server's resources and
provides limited subsets to multiple operating system environments. This partitioning
and provisioning is the fundamental mechanism for creating logical domains. The
following diagram shows the hypervisor supporting two logical domains. It also shows
the following layers that make up the Oracle VM Server for SPARC functionality:

• User/services (applications)

• Kernel (operating systems)

• Firmware (hypervisor)

• Hardware, including CPU, memory, and I/O

Hypervisor Supporting Two Domains

Chapter 1
Hypervisor and Logical Domains

1-2

The number and capabilities of each logical domain that a specific SPARC hypervisor
supports are server-dependent features. The hypervisor can allocate subsets of the overall
CPU, memory, and I/O resources of a server to a given logical domain. This capability
enables support of multiple operating systems simultaneously, each within its own logical
domain. Resources can be rearranged between separate logical domains with an arbitrary
granularity. For example, CPUs are assignable to a logical domain with the granularity of a
CPU thread.

Each logical domain can be managed as an entirely independent machine with its own
resources, such as:

• Kernel, patches, and tuning parameters

• User accounts and administrators

• Disks

• Network interfaces, MAC addresses, and IP addresses

Each logical domain can be stopped, started, and rebooted independently of each other
without requiring you to perform a power cycle of the server.

The hypervisor software is responsible for maintaining the separation between logical
domains. The hypervisor software also provides logical domain channels (LDCs) that enable
logical domains to communicate with each other. LDCs enable domains to provide services to
each other, such as networking or disk services.

The service processor (SP), also known as the system controller (SC), monitors and runs the
physical machine, but it does not manage the logical domains. The Logical Domains
Manager manages the logical domains.

In addition to using the ldm command to manage the Oracle VM Server for SPARC software,
you can now use Oracle VM Manager.

Oracle VM Manager is a web-based user interface that you can use to manage the Oracle
VM environment. Earlier versions of this user interface only managed the Oracle VM Server
x86 software, but starting with Oracle VM Manager 3.2 and Oracle VM Server for SPARC 3.0,

Chapter 1
Hypervisor and Logical Domains

1-3

you can also manage the Oracle VM Server for SPARC software. For more information
about Oracle VM Manager, see Oracle VM Documentation (http://www.oracle.com/
technetwork/documentation/vm-096300.html).

Logical Domains Manager
The Logical Domains Manager is used to create and manage logical domains, as well
as to map logical domains to physical resources. Only one Logical Domains Manager
can run on a server.

Roles for Domains
All logical domains are the same and can be distinguished from one another based on
the roles that you specify for them. Logical domains can perform the following roles:

• Control domain. The Logical Domains Manager runs in this domain, which
enables you to create and manage other logical domains, and to allocate virtual
resources to other domains. You can have only one control domain per server. The
control domain is the first domain created when you install the Oracle VM Server
for SPARC software. The control domain is named primary.

• Service domain. A service domain provides virtual device services to other
domains, such as a virtual switch, a virtual console concentrator, and a virtual disk
server. You can have more than one service domain, and any domain can be
configured as a service domain.

• I/O domain. An I/O domain has direct access to a physical I/O device, such as a
network card in a PCI EXPRESS (PCIe) controller. An I/O domain can own the
following:

– A PCIe root complex.

– A PCIe slot or on-board PCIe device by using the direct I/O (DIO) feature. See
Creating an I/O Domain by Assigning PCIe Endpoint Devices.

– A PCIe SR-IOV virtual function. See Creating an I/O Domain by Using PCIe
SR-IOV Virtual Functions.

An I/O domain can share physical I/O devices with other domains in the form of
virtual devices when the I/O domain is also used as a service domain.

• Root domain. A root domain has a PCIe root complex assigned to it. This domain
owns the PCIe fabric and provides all fabric-related services, such as fabric error
handling. A root domain is also an I/O domain, as it owns and has direct access to
physical I/O devices.

The number of root domains that you can have depends on your platform
architecture. For example, if you are using an eight-socket Oracle SPARC T5-8
server, you can have up to 16 root domains.

The default root domain is the primary domain. You can use non-primary
domains to act as root domains.

• Guest domain. A guest domain is a non-I/O domain that consumes virtual device
services that are provided by one or more service domains. A guest domain does
not have any physical I/O devices but only has virtual I/O devices, such as virtual
disks and virtual network interfaces.

You can install the Logical Domains Manager on an existing system that is not already
configured with Oracle VM Server for SPARC. In this case, the current instance of the

Chapter 1
Logical Domains Manager

1-4

http://www.oracle.com/technetwork/documentation/vm-096300.html
http://www.oracle.com/technetwork/documentation/vm-096300.html

OS becomes the control domain. Also, the system is configured with only one domain, the
control domain. After configuring the control domain, you can balance the load of applications
across other domains to make the most efficient use of the entire system by adding domains
and moving those applications from the control domain to the new domains.

Command-Line Interface
The Logical Domains Manager uses a command-line interface (CLI) to create and configure
logical domains. The CLI is a single command, ldm, that has multiple subcommands. See the
ldm(8) man page.

The Logical Domains Manager daemon, ldmd, must be running to use the Logical Domains
Manager CLI.

Virtual Input/Output
In an Oracle VM Server for SPARC environment, you can configure up to 128 domains on a
system (up to 256 on a Fujitsu SPARC M12 server and a Fujitsu M10 server). Some servers,
particularly single-processor and some dual-processor systems, have a limited number of I/O
buses and physical I/O slots. As a result, you might be unable to provide exclusive access to
a physical disk and network devices to all domains on these systems. You can assign a PCIe
bus or endpoint device to a domain to provide it with access to a physical device. Note that
this solution is insufficient to provide all domains with exclusive device access. This limitation
on the number of physical I/O devices that can be directly accessed is addressed by
implementing a virtualized I/O model. See Configuring I/O Domains.

Any logical domains that have no physical I/O access are configured with virtual I/O devices
that communicate with a service domain. The service domain runs a virtual device service to
provide access to a physical device or to its functions. In this client-server model, virtual I/O
devices either communicate with each other or with a service counterpart through
interdomain communication channels called logical domain channels (LDCs). The virtualized
I/O functionality includes support for virtual networking, storage, and consoles.

Virtual Network
Oracle VM Server for SPARC uses the virtual network device and virtual network switch
device to implement virtual networking. The virtual network (vnet) device emulates an
Ethernet device and communicates with other vnet devices in the system by using a point-to-
point channel. The virtual switch (vsw) device primarily functions as a multiplexor of all the
virtual network's incoming and outgoing packets. The vsw device interfaces directly with a
physical network adapter on a service domain, and sends and receives packets on behalf of
a virtual network. The vsw device also functions as a simple layer-2 switch and switches
packets between the vnet devices connected to it within the system.

Virtual Storage
The virtual storage infrastructure uses a client-server model to enable logical domains to
access block-level storage that is not directly assigned to them. The model uses the following
components:

• Virtual disk client (vdc), which exports a block device interface

• Virtual disk service (vds), which processes disk requests on behalf of the virtual disk
client and submits them to the back-end storage that resides on the service domain

Chapter 1
Logical Domains Manager

1-5

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Although the virtual disks appear as regular disks on the client domain, most disk
operations are forwarded to the virtual disk service and processed on the service
domain.

Virtual Console
In an Oracle VM Server for SPARC environment, console I/O from the primary domain
is directed to the service processor. The console I/O from all other domains is
redirected to the service domain that is running the virtual console concentrator (vcc).
The domain that runs the vcc is typically the primary domain. The virtual console
concentrator service functions as a concentrator for console traffic for all domains, and
interfaces with the virtual network terminal server daemon (vntsd) to provide access to
each console through a UNIX socket. You can use the ldmconsole command to
connect to consoles and to list the available consoles. See the Oracle Solaris OS
ldmconsole(8) man page.

Resource Configuration
A system that runs the Oracle VM Server for SPARC software can configure resources
such as virtual CPUs, virtual I/O devices, and memory. Some resources can be
configured dynamically on a running domain, while others must be configured on a
stopped domain. If a resource cannot be dynamically configured on the control
domain, you must first initiate a delayed reconfiguration. The delayed reconfiguration
postpones the configuration activities until after the control domain has been rebooted.
For more information, see Resource Reconfiguration.

Persistent Configurations
You can use the ldm command to store the current configuration of a logical domain
on the service processor. You can add an SP configuration, specify an SP
configuration to be used, remove an SP configuration, and list the SP configurations.
For details, see the ldm(8) man page. You can also specify an SP configuration to
boot, as described in Using Oracle VM Server for SPARC With the Service Processor.

For information about managing SP configurations, see Managing SP Configurations.

Oracle VM Server for SPARC Management Information
Base

The Oracle VM Server for SPARC Management Information Base (MIB) enables third-
party system management applications to perform remote monitoring of domains, and
to start and stop logical domains (domains) by using the Simple Network Management
Protocol (SNMP). For more information, see Oracle VM Server for SPARC 3.6
Management Information Base User’s Guide.

Oracle VM Server for SPARC Troubleshooting
You can get information about particular problems with the Oracle VM Server for
SPARC software from the following publications:

• Known Issues in Oracle VM Server for SPARC 3.6 Release Notes

Chapter 1
Oracle VM Server for SPARC Management Information Base

1-6

https://docs.oracle.com/cd/E88353_01/html/E72487/ldmconsole-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html
https://docs.oracle.com/cd/E93612_01/html/E93618/index.html
https://docs.oracle.com/cd/E93612_01/html/E93618/index.html
https://docs.oracle.com/cd/E93612_01/html/E93615/knownissues.html

• Information Center: Overview of Oracle VM Server for SPARC (LDoms) (Doc ID
1589473.2) (https://support.oracle.com/epmos/faces/DocumentDisplay?
_afrLoop=227880986952919&id=1589473.2&_afrWindowMode=0&_adf.ctrl-
state=wu098o5r6_96)

Chapter 1
Oracle VM Server for SPARC Troubleshooting

1-7

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=227880986952919&id=1589473.2&_afrWindowMode=0&_adf.ctrl-state=wu098o5r6_96
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=227880986952919&id=1589473.2&_afrWindowMode=0&_adf.ctrl-state=wu098o5r6_96
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=227880986952919&id=1589473.2&_afrWindowMode=0&_adf.ctrl-state=wu098o5r6_96
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=227880986952919&id=1589473.2&_afrWindowMode=0&_adf.ctrl-state=wu098o5r6_96

2
Oracle VM Server for SPARC Security

This chapter describes some security features that you can enable on your Oracle VM Server
for SPARC system.

This chapter covers the following topics:

• Delegating the Management of Logical Domains by Using Rights

• Using Verified Boot

Note:

The examples in this book are shown as being performed by superuser. However,
you can use profiles instead to have users acquire more fine-grained permissions to
perform management tasks.

Delegating the Management of Logical Domains by Using
Rights

The Logical Domains Manager package adds the following predefined rights profiles to the
local rights configuration. These rights profiles delegate administrative privileges to
unprivileged users:

• The LDoms Management profile permits a user to use all ldm subcommands.

• The LDoms Review profile permits a user to use all list-related ldm subcommands.

• The LDoms Consoles profile permits a user to connect to all domain consoles.

These rights profiles can be assigned directly to users or to a role that is then assigned to
users. When one of these profiles is assigned directly to a user, you must use the pfexec
command or a profile shell, such as pfbash or pfksh, to successfully use the ldm
command to manage your domains. Determine whether to use roles or rights profiles based
on your rights configuration. See System Administration Guide: Security Services or Securing
Users and Processes in Oracle Solaris 11.4.

Users, authorizations, rights profiles, and roles can be configured in the following ways:

• Locally on the system by using files

• Centrally in a naming service, such as LDAP

Installing the Logical Domains Manager adds the necessary rights profiles to the local files.
To configure profiles and roles in a naming service, see System Administration Guide:
Naming and Directory Services (DNS, NIS, and LDAP). For an overview of the authorizations
and execution attributes delivered by the Logical Domains Manager package, see Logical
Domains Manager Profile Contents. All of the examples in this chapter assume that the rights
configuration uses local files.

2-1

https://docs.oracle.com/cd/E18752_01/html/816-4557/index.html
https://docs.oracle.com/cd/E37838_01/html/E61023/index.html
https://docs.oracle.com/cd/E37838_01/html/E61023/index.html
https://docs.oracle.com/cd/E18752_01/html/816-4556/index.html
https://docs.oracle.com/cd/E18752_01/html/816-4556/index.html

Using Rights Profiles and Roles

Caution:

Be careful when using the usermod and rolemod commands to add
authorizations, rights profiles, or roles.

• For the Oracle Solaris 11 OS, add values by using the plus sign (+) for
each authorization you add.

For example, the usermod -A + auth username command grants the
auth authorization to the username user; similarly for the rolemod
command.

• For the Oracle Solaris 10 OS, the usermod or rolemod command
replaces any existing values.

To add values instead of replacing them, specify a comma-separated list
of existing values and the new values.

Managing User Rights Profiles
The following procedures show how to manage user rights profiles on the system by
using local files. To manage user profiles in a naming service, see System
Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP).

How to Assign a Rights Profile to a User
Users who have been directly assigned the LDoms Management profile must invoke a
profile shell to run the ldm command with security attributes. For more information,
see System Administration Guide: Security Services or Securing Users and Processes
in Oracle Solaris 11.4.

1. Become an administrator.

For Oracle Solaris 11.4, see Chapter 1, About Using Rights to Control Users and
Processes in Securing Users and Processes in Oracle Solaris 11.4.

2. Assign an administrative profile to a local user account.

You can assign either the LDoms Review profile or the LDoms Management profile to
a user account.

usermod -P "profile-name" username

The following command assigns the LDoms Management profile to user sam:

usermod -P "LDoms Management" sam

Assigning Roles to Users
The following procedure shows how to create a role and assign it to a user by using
local files. To manage roles in a naming service, see System Administration Guide:
Naming and Directory Services (DNS, NIS, and LDAP).

Chapter 2
Delegating the Management of Logical Domains by Using Rights

2-2

https://docs.oracle.com/cd/E18752_01/html/816-4556/index.html
https://docs.oracle.com/cd/E18752_01/html/816-4556/index.html
https://docs.oracle.com/cd/E18752_01/html/816-4557/index.html
https://docs.oracle.com/cd/E37838_01/html/E61023/index.html
https://docs.oracle.com/cd/E37838_01/html/E61023/index.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html
https://docs.oracle.com/cd/E18752_01/html/816-4556/index.html
https://docs.oracle.com/cd/E18752_01/html/816-4556/index.html

The advantage of using this procedure is that only a user who has been assigned a specific
role can assume that role. When assuming a role, a password is required if the role has been
assigned a password. These two layers of security prevent a user who has not been
assigned a role from assuming that role even though he has the password.

How to Create a Role and Assign the Role to a User
1. Become an administrator.

For Oracle Solaris 11.4, see Chapter 1, About Using Rights to Control Users and
Processes in Securing Users and Processes in Oracle Solaris 11.4.

2. Create a role.

roleadd -P "profile-name" role-name
3. Assign a password to the role.

You will be prompted to specify and then verify a new password.

passwd role-name
4. Assign the role to a user.

useradd -R role-name username
5. Assign a password to the user.

You will be prompted to specify and then verify a new password.

passwd username
6. Become the user and provide the password, if necessary.

su username
7. Verify that the user has access to the assigned role.

$ id
uid=nn(username) gid=nn(group-name)
$ roles
role-name

8. Assume the role and provide the password, if necessary.

$ su role-name
9. Verify that the user has assumed the role.

$ id
uid=nn(role-name) gid=nn(group-name)

Example 2-1 Creating a Role and Assigning the Role to a User

This example shows how to create the ldm_read role, assign the role to the user_1 user,
become the user_1 user, and assume the ldm_read role.

roleadd -P "LDoms Review" ldm_read
passwd ldm_read
New Password:
Re-enter new Password:
passwd: password successfully changed for ldm_read
useradd -R ldm_read user_1
passwd user_1
New Password:
Re-enter new Password:
passwd: password successfully changed for user_1

Chapter 2
Delegating the Management of Logical Domains by Using Rights

2-3

https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html

su user_1
Password:
$ id
uid=95555(user_1) gid=10(staff)
$ roles
ldm_read
$ su ldm_read
Password:
$ id
uid=99667(ldm_read) gid=14(sysadmin)

Logical Domains Manager Profile Contents
The Logical Domains Manager package adds the following rights profiles to the local
rights profile description database:

LDoms Consoles:::Access LDoms Consoles:auths=solaris.vntsd.consoles
LDoms Power Mgmt Observability:::View LDoms Power
Consumption:auths=solaris.ldoms.ldmpower
LDoms Review:::Review LDoms configuration:profiles=LDoms Power Mgmt
Observability;auths=solaris.ldoms.read
LDoms Management:::Manage LDoms domains:profiles=LDoms Power Mgmt
Observability;auths=solaris.ldoms.*

The Logical Domains Manager package also adds the following execution attribute
that is associated with the LDoms Management profile and the LDoms Power Mgmt
Observability profile to the local execution profiles database:

LDoms Management:suser:cmd:::/usr/sbin/ldm:privs=file_dac_read,file_dac_search
LDoms Power Mgmt Observability:suser:cmd:::/usr/sbin/
ldmpower:privs=file_dac_search

The following table lists the ldm subcommands with the corresponding user
authorization that is needed to perform the commands.

Table 2-1 ldm Subcommands and User Authorizations

ldm Subcommand1 User Authorization

add-* solaris.ldoms.write
bind-domain solaris.ldoms.write
list solaris.ldoms.read
list-* solaris.ldoms.read
panic-domain solaris.ldoms.write
remove-* solaris.ldoms.write
set-* solaris.ldoms.write
start-domain solaris.ldoms.write
stop-domain solaris.ldoms.write
unbind-domain solaris.ldoms.write

1 Refers to all the resources you can add, list, remove, or set.

Chapter 2
Delegating the Management of Logical Domains by Using Rights

2-4

Using Verified Boot
The Logical Domains Manager uses the Oracle Solaris OS verified boot technology to verify
the digital signature of kernel modules at boot time. Signature verification occurs silently
unless the verified boot policies are enabled. Depending on the boot-policy value, a guest
domain might not boot if the kernel module is not signed with Oracle Solaris release
certificate files or is corrupted.

Use the ldm add-domain or ldm set-domain command to specify the values for the
boot-policy property. See the ldm(8) man page.

To use this feature, your system must run at least the following versions of the system
firmware and operating system:

• System firmware – Version 9.5.0 for Oracle SPARC servers except as follows:

– Any released version for SPARC S7, SPARC T8, and SPARC M8 series servers

– Any released version for Fujitsu SPARC M12 servers

– XCP 2280 for Fujitsu M10 servers

• Operating system – Oracle Solaris 11.2 OS

Note:

By default, any domain created by using a version of Oracle VM Server for SPARC
earlier than 3.4 sets boot-policy=warning. This setting results in warning
messages being issued while the domain boots after an Oracle VM Server for
SPARC update if the kernel module is unsigned or corrupted.

Note:

The boot-policy property of a guest domain is not preserved when when the guest
is migrated to a system running an older version of Logical Domains Manager and
migrated back to a system running Logical Domains Manager 3.4. Logical Domains
Manager 3.4 introduced a new property named boot-policy for Verified Boot. Older
versions of Logical Domains Manager do not know this property so the boot-policy
property is dropped when a guest is migrated from a system running Logical
Domains Manager 3.4 to a system running Logical Domains Manager older than
3.4. When the guest is migrated back to a system running Logical Domains
Manager 3.4 the default boot-policy of warning will be applied to the incoming
guest. You must manually set boot-policy to the desired value after migrating the
guest back to a system running Logical Domains Manager 3.4 if the default value of
warning is not appropriate.

ldm set-domain boot-policy=none ldg1

Then reboot the guest to make the new boot policy take effect.

Chapter 2
Using Verified Boot

2-5

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

3
Setting Up Services and the Control Domain

This chapter describes the procedures necessary to set up default services and your control
domain.

This chapter covers the following topics:

• Output Messages

• Creating Default Services

• Initial Configuration of the Control Domain

• Rebooting to Use Domains

• Enabling the Virtual Network Terminal Server Daemon

• Verifying That the ILOM Interconnect Is Enabled

Note:

Running the Oracle Solaris 10 OS in a service domain is no longer supported.

Output Messages
If a resource cannot be dynamically configured on the control domain, the recommended
practice is to first initiate a delayed reconfiguration. The delayed reconfiguration postpones
the configuration activities until after the control domain has been rebooted.

You receive the following message when you initiate a delayed reconfiguration on the
primary domain:

Initiating a delayed reconfiguration operation on the primary domain.
All configuration changes for other domains are disabled until the
primary domain reboots, at which time the new configuration for the
primary domain also takes effect.

You receive the following notice after every subsequent operation on the primary domain
until reboot:

Notice: The primary domain is in the process of a delayed reconfiguration.
Any changes made to the primary domain will only take effect after it reboots.

Creating Default Services
The following virtual device services must be created to use the control domain as a service
domain and to create virtual devices for other domains:

• vcc – Virtual console concentrator service

• vds – Virtual disk server

3-1

• vsw – Virtual switch service

How to Create Default Services
Before You Begin

If a network is not configured on your machine and a Network Information Services
(NIS) client is running, the Logical Domains Manager will not start on your system. So,
disable the NIS client on your non-networked machine:

svcadm disable nis/client

Then, configure networking on the system:

1. Create a virtual console concentrator (vcc) service for use by the virtual
network terminal server daemon (vntsd) and as a concentrator for all logical
domain consoles.

For example, the following command would add a virtual console concentrator
service (primary-vcc0) with a port range from 5000 to 5100 to the control domain
(primary).

primary# ldm add-vcc port-range=5000-5100 primary-vcc0 primary
2. Create a virtual disk server (vds) to allow importing virtual disks into a

logical domain.

For example, the following command adds a virtual disk server (primary-vds0) to
the control domain (primary).

primary# ldm add-vds primary-vds0 primary
3. Create a virtual switch service (vsw) to enable networking between virtual

network (vnet) devices in logical domains.

Assign a GLDv3-compliant network adapter to the virtual switch if each logical
domain must communicate outside the box through the virtual switch.

Add a virtual switch service (primary-vsw0) on a network device that you want to
use for guest domain networking.

primary# ldm add-vsw net-dev=network-device vsw-service primary

For example, the following command adds a virtual switch service (primary-vsw0)
on network device net0 to the control domain (primary):

primary# ldm add-vsw net-dev=net0 primary-vsw0 primary

You can use the ldm list-netdev -b command to determine the backend
network devices that are available for the virtual switch. See Virtual Switch.

You can dynamically update the net-dev property value by using the ldm set-
vsw command.

4. Verify the services have been created by using the list-services
subcommand.

Your output should look similar to the following:

primary# ldm list-services primary
VCC
 NAME LDOM PORT-RANGE

Chapter 3
Creating Default Services

3-2

 primary-vcc0 primary 5000-5255

VSW
 NAME LDOM MACADDRESS NET-DEV DVID|PVID|VIDs
 ---- ---- ---------- ------- --------------
 primary-vsw0 primary 00:14:4f:fb:87:30 net0 1|1|--

VDS
 NAME LDOM VOLUME OPTIONS MPGROUP DEVICE
 primary-vds0 primary test-mig /net/10.26.169.136/tmp/
 Sol11.3/vdisk_s11sru3.img1

Initial Configuration of the Control Domain
Initially, all system resources are allocated to the control domain. To allow the creation of
other logical domains, you must release some of these resources.

Configuring the Control Domain

How to Configure the Control Domain
This procedure contains examples of resources to set for your control domain. These
numbers are examples only, and the values used might not be appropriate for your control
domain.

For domain sizing recommendations, see Oracle VM Server for SPARC Best Practices (http://
www.oracle.com/technetwork/server-storage/vm/ovmsparc-best-practices-2334546.pdf).

1. Assign virtual CPUs to the control domain.

Service domains, including the control domain, require CPU and memory resources to
perform virtual disk and virtual network I/O operations for guest domains. The amount of
CPU and memory resources to allocate depends on the workload of the guest domain.

For example, the following command assigns two CPU cores (16 virtual CPU threads) to
the control domain, primary. The remainder of the virtual CPU threads are available for
guest domains.

primary# ldm set-core 2 primary

You can dynamically change the actual CPU allocation based on application
requirements. Use the ldm list command to determine the CPU utilization of the
control domain. If the control domain has high CPU utilization, use the ldm add-core
and ldm set-core commands to add CPU resources to a service domain.

2. Assign memory to the control domain.

For example, the following command assigns 16 Gbytes of memory to the control
domain, primary. This setup leaves the remainder of the memory available to guest
domains.

primary# ldm set-memory 16G primary
3. Save the SP configuration to the service processor (SP).

For example, the following command would add an SP configuration called initial.

primary# ldm add-spconfig initial
4. Verify that the SP configuration is ready to be used at the next reboot.

Chapter 3
Initial Configuration of the Control Domain

3-3

http://www.oracle.com/technetwork/server-storage/vm/ovmsparc-best-practices-2334546.pdf
http://www.oracle.com/technetwork/server-storage/vm/ovmsparc-best-practices-2334546.pdf

primary# ldm list-spconfig
factory-default
initial [current]

This ldm list-spconfig command shows that the initial configuration set
will be used after you perform a power cycle.

5. Reboot the control domain to make the reconfiguration changes take effect.

Decreasing the CPU and Memory Resources From the Control
Domain's Initial factory-default Configuration

You can use CPU DR to decrease the number of the control domain's cores from an
initial factory-default configuration. However, you must use a delayed
reconfiguration instead of a memory DR to decrease the control domain's memory.

When in the factory-default configuration, the control domain owns all of the host
system's memory. The memory DR feature is not well suited for this purpose because
an active domain is not guaranteed to add or, more typically, give up, all of the
requested memory. Rather, the OS running in that domain makes a best effort to fulfill
the request. In addition, memory removal can be a long-running operation. These
issues are amplified when large memory operations are involved, as is the case for the
initial decrease of the control domain's memory.

Note:

When the Oracle Solaris OS is installed on a ZFS file system, it automatically
sizes and creates swap and dump areas as ZFS volumes in the ZFS root
pool based on the amount of physical memory that is present. If you change
the domain's memory allocation, it might alter the recommended size of
these volumes. The allocations might be larger than needed after reducing
control domain memory. Before you free disk space, you can optionally
change the swap and dump space. See Managing ZFS Swap and Dump
Devices in Managing ZFS File Systems in Oracle Solaris 11.4.

How to Decrease the CPU and Memory Resources From the Control Domain's
Initial factory-default Configuration

This procedure shows how to decrease the CPU and memory resources from the
control domain's initial factory-default configuration. You first use CPU DR to
decrease the number of cores and then initiate a delayed reconfiguration before you
decrease the amount of memory.

The example values are for CPU and memory sizes for a small control domain that
has enough resources to run the ldmd daemon and to perform migrations. However, if
you want to use the control domain for additional purposes, you can assign a larger
number of cores and more memory to the control domain as needed.

1. Boot the factory-default configuration.

2. Configure the control domain.

See How to Configure the Control Domain.

Chapter 3
Initial Configuration of the Control Domain

3-4

https://docs.oracle.com/cd/E37838_01/html/E61017/ggrln.html
https://docs.oracle.com/cd/E37838_01/html/E61017/ggrln.html

Rebooting to Use Domains
You must reboot the control domain for the configuration changes to take effect and for the
resources to be released for other logical domains to use.

How to Reboot
• Shut down and reboot the control domain.

primary# shutdown -y -g0 -i6

Note:

Either a reboot or power cycle instantiates the new configuration. Only a power
cycle actually boots the SP configuration saved to the service processor (SP),
which is then reflected in the ldm list-spconfig output.

Enabling the Virtual Network Terminal Server Daemon
You must enable the virtual network terminal server daemon (vntsd) to provide access to the
virtual console of each logical domain. Refer to the vntsd(8) man page for information about
how to use this daemon.

How to Enable the Virtual Network Terminal Server Daemon

Note:

Be sure that you have created the default service vconscon (vcc) on the control
domain before you enable vntsd. See Creating Default Services for more
information.

1. Enable the virtual network terminal server daemon, vntsd.

primary# svcadm enable vntsd
2. Verify that the vntsd daemon is enabled.

primary# svcs vntsd
STATE STIME FMRI
online Oct_08 svc:/ldoms/vntsd:default

Verifying That the ILOM Interconnect Is Enabled
The ILOM interconnect is required for communication between the ldmd daemon and the
service processor (SP) on servers starting with the SPARC T7, SPARC M7, and SPARC S7
series server. Do not disable the ILOM interconnect on these servers. For more information,
see the ilomconfig(8) man page.

Chapter 3
Rebooting to Use Domains

3-5

https://docs.oracle.com/cd/E88353_01/html/E72487/vntsd-8.html

Note:

Avoid disabling the ILOM interconnect on other SPARC T-series and M-
series servers. However, if you do so, the ldmd daemon can still
communicate with the SP.

On servers starting with the SPARC T7, SPARC M7, and SPARC S7 series server, an
attempt to use the ldm command to manage SP configurations might fail. If the failure
is an error communicating with the SP, check the ILOM interconnect state and re-
enable the ilomconfig-interconnect service if necessary. See How to Verify the
ILOM Interconnect Configuration and How to Re-Enable the ILOM Interconnect
Service.

Note:

If the ILOM interconnect is down, the ldm list-spconfig command fails
as follows:

primary# ldm list-spconfig
The requested operation could not be performed because the
communication
channel between the LDoms Manager and the system controller is down.
The ILOM interconnect may be disabled or down.

The ILOM interconnect might go down if you add a resource that provides a
communication channel between the Logical Domains Manager and the SP
to the system but do not manually add the resource to the primary domain.
By adding the resource to the primary domain, the communication channel
is established.

How to Verify the ILOM Interconnect Configuration
1. Verify that the ilomconfig-interconnect service is enabled.

primary# svcs ilomconfig-interconnect
STATE STIME FMRI
online 9:53:28 svc:/network/ilomconfig-interconnect:default

2. Verify that the ILOM interconnect is configured properly.

A proper ILOM interconnect configuration shows the State value as enabled and
the Host Interconnect IP Address value as an IP address and not none.

primary# ilomconfig list interconnect
Interconnect
============
State: enabled
Type: USB Ethernet
SP Interconnect IP Address: 169.254.182.76
Host Interconnect IP Address: 169.254.182.77
Interconnect Netmask: 255.255.255.0
SP Interconnect MAC Address: 02:21:28:57:47:16
Host Interconnect MAC Address: 02:21:28:57:47:17

3. Verify that the ldmd daemon can communicate with the SP.

Chapter 3
Verifying That the ILOM Interconnect Is Enabled

3-6

primary# ldm list-spconfig

How to Re-Enable the ILOM Interconnect Service
The ilomconfig-interconnect service is enabled by default. Use this procedure if you
need to re-enable this service manually.

1. Enable the ILOM interconnect service.

primary# svcadm enable ilomconfig-interconnect
2. Verify that the ilomconfig-interconnect service is enabled.

primary# svcs ilomconfig-interconnect
STATE STIME FMRI
online 9:53:28 svc:/network/ilomconfig-interconnect:default

3. Verify that the ILOM interconnect is configured properly.

A proper ILOM interconnect configuration shows the State value as enabled and the Host
Interconnect IP Address value as an IP address and not none.

primary# ilomconfig list interconnect
Interconnect
============
State: enabled
Type: USB Ethernet
SP Interconnect IP Address: 169.254.182.76
Host Interconnect IP Address: 169.254.182.77
Interconnect Netmask: 255.255.255.0
SP Interconnect MAC Address: 02:21:28:57:47:16
Host Interconnect MAC Address: 02:21:28:57:47:17

4. Verify that the ldmd daemon can communicate with the SP.

primary# ldm list-spconfig

Chapter 3
Verifying That the ILOM Interconnect Is Enabled

3-7

4
Setting Up Guest Domains

This chapter describes the procedures necessary to set up guest domains.

This chapter covers the following topics:

• Creating and Starting a Guest Domain

• Installing the Oracle Solaris OS on a Guest Domain

Creating and Starting a Guest Domain
The guest domain must run an operating system that is compatible with both the sun4v
platform and the virtual devices presented by the hypervisor. Currently, this requirement
means that you must run at least the Oracle Solaris 10 11/06 OS. Running the Oracle Solaris
10 1/13 OS provides you with all the Oracle VM Server for SPARC 3.6 features. See Oracle
VM Server for SPARC 3.6 Installation Guide for any specific patches that might be necessary.
Once you have created default services and reallocated resources from the control domain,
you can create and start a guest domain.

Note:

A guest domain that has been assigned more than 1024 CPUs or has a physical
CPU ID greater than or equal to 1024 cannot run the Oracle Solaris 10 OS. You
cannot use CPU DR to reduce the number of CPUs or CPU IDs below 1024 to run
the Oracle Solaris 10 OS.

How to Create and Start a Guest Domain
1. Create a logical domain.

The following command would create a guest domain named ldg1.

primary# ldm add-domain ldg1
2. Add CPUs to the guest domain.

Do one of the following:

• Add virtual CPUs.

The following command would add eight virtual CPUs to guest domain ldg1.

primary# ldm add-vcpu 8 ldg1
• Add whole cores.

The following command would add two whole cores to guest domain ldg1.

primary# ldm add-core 2 ldg1
3. Add memory to the guest domain.

4-1

https://docs.oracle.com/cd/E93612_01/html/E93616/index.html
https://docs.oracle.com/cd/E93612_01/html/E93616/index.html

The following command would add 2 gigabytes of memory to guest domain ldg1.

primary# ldm add-memory 2G ldg1
4. Add a virtual network device to the guest domain.

The following command would add a virtual network device with these specifics to
the guest domain ldg1.

primary# ldm add-vnet vnet1 primary-vsw0 ldg1

Where:

• vnet1 is a unique interface name to the logical domain, assigned to this virtual
network device instance for reference on subsequent set-vnet or remove-
vnet subcommands.

• primary-vsw0 is the name of an existing network service (virtual switch) to
which to connect.

Note:

Steps 5 and 6 are simplified instructions for adding a virtual disk server
device (vdsdev) to the primary domain and a virtual disk (vdisk) to the
guest domain. To learn how ZFS volumes and file systems can be used
as virtual disks, see How to Export a ZFS Volume as a Single-Slice Disk
and Using ZFS With Virtual Disks.

5. Specify the device to be exported by the virtual disk server as a virtual disk
to the guest domain.

You can export a physical disk, disk slice, volumes, or file as a block device. The
following examples show a physical disk and a file.

• Physical Disk Example. This example adds a physical disk with these
specifics:

primary# ldm add-vdsdev /dev/dsk/c2t1d0s2 vol1@primary-vds0

Where:

– /dev/dsk/c2t1d0s2 is the path name of the actual physical device.
When adding a device, the path name must be paired with the device
name.

– vol1 is a unique name you must specify for the device being added to the
virtual disk server. The volume name must be unique to this virtual disk
server instance because this name is exported by this virtual disk server to
the clients for adding. When adding a device, the volume name must be
paired with the path name of the actual device.

– primary-vds0 is the name of the virtual disk server to which to add this
device.

• File Example. This example exports a file as a block device.

primary# ldm add-vdsdev backend vol1@primary-vds0

Where:

Chapter 4
Creating and Starting a Guest Domain

4-2

– backend is the path name of the actual file exported as a block device. When
adding a device, the back end must be paired with the device name.

– vol1 is a unique name you must specify for the device being added to the virtual
disk server. The volume name must be unique to this virtual disk server instance
because this name is exported by this virtual disk server to the clients for adding.
When adding a device, the volume name must be paired with the path name of
the actual device.

– primary-vds0 is the name of the virtual disk server to which to add this device.

6. Add a virtual disk to the guest domain.

The following example adds a virtual disk to the guest domain ldg1.

primary# ldm add-vdisk vdisk1 vol1@primary-vds0 ldg1

Where:

• vdisk1 is the name of the virtual disk.

• vol1 is the name of the existing volume to which to connect.

• primary-vds0 is the name of the existing virtual disk server to which to connect.

Note:

The virtual disks are generic block devices that are associated with different
types of physical devices, volumes, or files. A virtual disk is not synonymous
with a SCSI disk and, therefore, excludes the target ID in the disk label. Virtual
disks in a logical domain have the following format: cNdNsN, where cN is the
virtual controller, dN is the virtual disk number, and sN is the slice.

7. Set the auto-boot? and boot-device variables for the guest domain.

Note:

When setting the boot-device property value, only use lowercase characters
even if the name of the virtual disk contains uppercase characters.

The following example command sets auto-boot? to true for guest domain ldg1.

primary# ldm set-var auto-boot\?=true ldg1

The following example command sets boot-device to vdisk1 for guest domain ldg1.

primary# ldm set-var boot-device=vdisk1 ldg1
8. Bind resources to the guest domain ldg1 and then list the domain to verify that it is

bound.

primary# ldm bind-domain ldg1
primary# ldm list-domain ldg1
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldg1 bound ----- 5000 8 2G

9. To find the console port of the guest domain, you can look at the output of the
preceding list-domain subcommand.

Chapter 4
Creating and Starting a Guest Domain

4-3

The value in the CONS column shows that logical domain guest 1 (ldg1) has its
console output bound to port 5000.

10. Connect to the console of a guest domain from another terminal by logging
into the control domain and connecting directly to the console port on the
local host.

$ ssh hostname.domain-name
$ telnet localhost 5000

11. Start the guest domain ldg1.

primary# ldm start-domain ldg1

Installing the Oracle Solaris OS on a Guest Domain
This section provides instructions for several different ways you can install the Oracle
Solaris OS on a guest domain.

Caution:

Do not disconnect from the virtual console during the installation of the
Oracle Solaris OS.

Memory Size Requirements
The Oracle VM Server for SPARC software allocates memory in multiples of 256
Mbytes aligned on 256-Mbyte address boundaries. Thus, the smallest domain that can
be created by the Logical Domains Manager must have 256 Mbytes of memory.
However, the actual memory size requirement is a characteristic of the guest operating
system. Some Oracle VM Server for SPARC functionality might not work if the amount
of memory present is smaller than the recommended size. For recommended and
minimum memory requirements for the Oracle Solaris 10 OS, see System
Requirements and Recommendations in Oracle Solaris 10 1/13 Installation Guide:
Planning for Installation and Upgrade. For recommended and minimum memory
requirements for the Oracle Solaris 11 OS, see Oracle Solaris 11 Release Notes,
Oracle Solaris 11.1 Release Notes, Oracle Solaris 11.2 Release Notes, Oracle Solaris
11.3 Release Notes, and Oracle Solaris 11.4 Release Notes.

How to Install the Oracle Solaris OS on a Guest Domain From a DVD
1. Insert the Oracle Solaris OS DVD into the DVD drive.

2. Stop the removable media service on the primary domain.

primary# svcadm disable rmvolmgr
3. Stop and unbind the guest domain (ldg1).

primary# ldm stop ldg1
primary# ldm unbind ldg1

4. Add the DVD with the DVD-ROM media as a secondary volume and virtual
disk.

Chapter 4
Installing the Oracle Solaris OS on a Guest Domain

4-4

https://docs.oracle.com/cd/E26505_01/html/E28035/webstart-83.html
https://docs.oracle.com/cd/E26505_01/html/E28035/webstart-83.html
https://docs.oracle.com/cd/E26505_01/html/E28035/webstart-83.html
https://docs.oracle.com/cd/E23824_01/html/E23811/index.html
https://docs.oracle.com/cd/E26502_01/html/E28978/index.html
https://docs.oracle.com/cd/E36784_01/html/E36797/index.html
https://docs.oracle.com/cd/E53394_01/html/E54816/index.html
https://docs.oracle.com/cd/E53394_01/html/E54816/index.html
https://docs.oracle.com/cd/E37838_01/html/E60973/index.html

The following example uses c0t0d0s2 as the DVD drive in which the Oracle Solaris
media resides, dvd_vol@primary-vds0 as a secondary volume, and vdisk_cd_media as a
virtual disk.

primary# ldm add-vdsdev options=ro /dev/dsk/c0t0d0s2 dvd_vol@primary-vds0
primary# ldm add-vdisk vdisk_cd_media dvd_vol@primary-vds0 ldg1

5. Verify that the DVD is added as a secondary volume and virtual disk.

primary# ldm list-bindings
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 8 8G 0.2% 22h 45m
...
VDS
 NAME VOLUME OPTIONS DEVICE
 primary-vds0 vol1 /dev/dsk/c2t1d0s2
 dvd_vol /dev/dsk/c0t0d0s2
....
--
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldg1 inactive ----- 60 6G
...
DISK
 NAME VOLUME TOUT DEVICE SERVER
 vdisk1 vol1@primary-vds0
 vdisk_cd_media dvd_vol@primary-vds0
....

6. Bind and start the guest domain (ldg1).

primary# ldm bind ldg1
primary# ldm start-domain ldg1
LDom ldg1 started
primary# telnet localhost 5000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Connecting to console "ldg1" in group "ldg1"
Press ~? for control options ..

7. Show the device aliases in the client OpenBoot PROM.

In this example, see the device aliases for vdisk_cd_media, which is the Oracle Solaris
DVD, and vdisk1, which is a virtual disk on which you can install the Oracle Solaris OS.

ok devalias
vdisk_cd_media /virtual-devices@100/channel-devices@200/disk@1
vdisk1 /virtual-devices@100/channel-devices@200/disk@0
vnet1 /virtual-devices@100/channel-devices@200/network@0
virtual-console /virtual-devices/console@1
name aliases

8. On the guest domain's console, boot from vdisk_cd_media (disk@1) on slice f.

ok boot vdisk_cd_media:f
Boot device: /virtual-devices@100/channel-devices@200/disk@1:f File and args: -s
SunOS Release 5.10 Version Generic_139555-08 64-bit
Copyright (c), 1983-2010, Oracle and/or its affiliates. All rights reserved.

9. Continue with the Oracle Solaris OS installation.

Chapter 4
Installing the Oracle Solaris OS on a Guest Domain

4-5

How to Install the Oracle Solaris OS on a Guest Domain From an
Oracle Solaris ISO File

1. Stop and unbind the guest domain (ldg1).

primary# ldm stop ldg1
primary# ldm unbind ldg1

2. Add the Oracle Solaris ISO file as a secondary volume and virtual disk.

The following example uses solarisdvd.iso as the Oracle Solaris ISO file,
iso_vol@primary-vds0 as a secondary volume, and vdisk_iso as a virtual disk:

primary# ldm add-vdsdev /export/solarisdvd.iso iso_vol@primary-vds0
primary# ldm add-vdisk vdisk_iso iso_vol@primary-vds0 ldg1

3. Verify that the Oracle Solaris ISO file is added as a secondary volume and
virtual disk.

primary# ldm list-bindings
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 8 8G 0.2% 22h 45m
...
VDS
 NAME VOLUME OPTIONS DEVICE
 primary-vds0 vol1 /dev/dsk/c2t1d0s2
 iso_vol /export/solarisdvd.iso
....

-
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldg1 inactive ----- 60 6G
...
DISK
 NAME VOLUME TOUT ID DEVICE SERVER MPGROUP
 vdisk1 vol1@primary-vds0
 vdisk_iso iso_vol@primary-vds0
....

4. Bind and start the guest domain (ldg1).

primary# ldm bind ldg1
primary# ldm start-domain ldg1
LDom ldg1 started
primary# telnet localhost 5000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Connecting to console "ldg1" in group "ldg1"
Press ~? for control options ..

5. Show the device aliases in the client OpenBoot PROM.

In this example, see the device aliases for vdisk_iso, which is the Oracle Solaris
ISO image, and vdisk_install, which is the disk space.

ok devalias
vdisk_iso /virtual-devices@100/channel-devices@200/disk@1
vdisk1 /virtual-devices@100/channel-devices@200/disk@0
vnet1 /virtual-devices@100/channel-devices@200/network@0

Chapter 4
Installing the Oracle Solaris OS on a Guest Domain

4-6

virtual-console /virtual-devices/console@1
name aliases

6. On the guest domain's console, boot from vdisk_iso (disk@1) on slice f.

ok boot vdisk_iso:f
Boot device: /virtual-devices@100/channel-devices@200/disk@1:f File and args: -s
SunOS Release 5.10 Version Generic_139555-08 64-bit
Copyright (c) 1983-2010, Oracle and/or its affiliates. All rights reserved.

7. Continue with the Oracle Solaris OS installation.

How to Use the Oracle Solaris JumpStart Feature on an Oracle Solaris 10
Guest Domain

Note:

The Oracle Solaris JumpStart feature is available only for the Oracle Solaris 10 OS.
See Oracle Solaris 10 1/13 Installation Guide: JumpStart Installations. To perform
an automated installation of the Oracle Solaris 11 OS, you can use the Automated
Installer (AI) feature. See Transitioning From Oracle Solaris 10 to Oracle Solaris
11.3.

• Modify your JumpStart profile to reflect the different disk device name format for
the guest domain.

Virtual disk device names in a logical domain differ from physical disk device names.
Virtual disk device names do not contain a target ID (t N). Instead of the usual c N t N d
N s N format, virtual disk device names use the c N d N s N format. c N is the virtual
controller, d N is the virtual disk number, and s N is the slice number.

Note:

A virtual disk can appear either as a full disk or as a single-slice disk. The
Oracle Solaris OS can be installed on a full disk by using a regular JumpStart
profile that specifies multiple partitions. A single-slice disk only has a single
partition, s0, that uses the entire disk. To install the Oracle Solaris OS on a
single disk, you must use a profile that has a single partition (/) that uses the
entire disk. You cannot define any other partitions, such as swap. For more
information about full disks and single-slice disks, see Virtual Disk Appearance.

• JumpStart profile for installing a UFS root file system.

See Oracle Solaris 10 1/13 Installation Guide: JumpStart Installations.

Normal UFS Profile

filesys c1t1d0s0 free /
filesys c1t1d0s1 2048 swap
filesys c1t1d0s5 120 /spare1
filesys c1t1d0s6 120 /spare2

Actual UFS Profile for Installing a Domain on a Full Disk

Chapter 4
Installing the Oracle Solaris OS on a Guest Domain

4-7

https://docs.oracle.com/cd/E26505_01/html/E28039/index.html
https://docs.oracle.com/cd/E53394_01/html/E54838/index.html
https://docs.oracle.com/cd/E53394_01/html/E54838/index.html
https://docs.oracle.com/cd/E26505_01/html/E28039/index.html

filesys c0d0s0 free /
filesys c0d0s1 2048 swap
filesys c0d0s5 120 /spare1
filesys c0d0s6 120 /spare2

Actual UFS Profile for Installing a Domain on a Single-Slice Disk

filesys c0d0s0 free /
• JumpStart profile for installing a ZFS root file system.

See Chapter 9, Installing a ZFS Root Pool With JumpStart in Oracle Solaris 10
1/13 Installation Guide: JumpStart Installations.

Normal ZFS Profile

pool rpool auto 2G 2G c1t1d0s0

Actual ZFS Profile for Installing a Domain

pool rpool auto 2G 2G c0d0s0

Chapter 4
Installing the Oracle Solaris OS on a Guest Domain

4-8

https://docs.oracle.com/cd/E26505_01/html/E28039/jumpstartzfs-1.html
https://docs.oracle.com/cd/E26505_01/html/E28039/jumpstartzfs-1.html

5
Using Domain Consoles

This chapter describes domain console features that you can enable on your Oracle VM
Server for SPARC system.

This chapter covers the following topics:

• Controlling Access to a Domain Console by Using Rights

• Using Domain Console Logging

• Connecting to a Guest Domain Console Over the Network

• Using Console Groups

Note:

The examples in this book are shown as being performed by superuser. However,
you can use profiles instead to have users acquire more fine-grained permissions to
perform management tasks.

Controlling Access to a Domain Console by Using Rights
By default, any user can access all domain consoles. To control access to a domain console,
configure the vntsd daemon to perform authorization checking. This authorization checking
applies to accessing a console with either the ldmconsole or telnet command. The
vntsd daemon provides a Service Management Facility (SMF) property named vntsd/
authorization. This property can be configured to enable authorization checking of users
and roles for a domain console or a console group. To enable authorization checking, use the
svccfg command to set the value of this property to true. While this option is enabled,
vntsd listens and accepts connections only on localhost. If the listen_addr property
specifies an alternative IP address when vntsd/authorization is enabled, vntsd ignores
the alternative IP address and continues to listen only on localhost.

Caution:

Do not configure the vntsd service to use a host other than localhost. If you
specify a host other than localhost, you are no longer restricted from connecting to
guest domain consoles from the control domain. If you use the telnet command
to remotely connect to a guest domain, the login credentials are passed as clear
text over the network.

By default, an authorization to access all guest consoles is present in the local authorization
description database.

solaris.vntsd.consoles:::Access All LDoms Guest Consoles::

5-1

Use the usermod command to assign the required authorizations to users or roles in
local files. This command permits only the user or role who has the required
authorizations to access a given domain console or console group. To assign
authorizations to users or roles in a naming service, see System Administration Guide:
Naming and Directory Services (DNS, NIS, and LDAP).

You can control the access to all domain consoles or to a single domain console.

• To control the access to all domain consoles, see How to Control Access to All
Domain Consoles by Using Roles and How to Control Access to All Domain
Consoles by Using Rights Profiles.

• To control access to a single domain console, see How to Control Access to a
Single Console by Using Roles and How to Control Access to a Single Console by
Using Rights Profiles.

How to Control Access to All Domain Consoles by Using Roles
1. Restrict access to a domain console by enabling console authorization

checking.

primary# svccfg -s vntsd setprop vntsd/authorization = true
primary# svcadm refresh vntsd
primary# svcadm restart vntsd

2. Create a role that has the solaris.vntsd.consoles authorization, which
permits access to all domain consoles.

primary# roleadd -A solaris.vntsd.consoles role-name
primary# passwd role-name

3. Assign the new role to a user.

primary# usermod -R role-name username
Example 5-1 Controlling Access to All Domain Consoles by Using Roles

First, enable console authorization checking to restrict access to a domain console.

primary# svccfg -s vntsd setprop vntsd/authorization = true
primary# svcadm refresh vntsd
primary# svcadm restart vntsd
primary# ldm ls
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- UART 8 16G 0.2% 47m
ldg1 active -n--v- 5000 2 1G 0.1% 17h 50m
ldg2 active -t---- 5001 4 2G 25% 11s

The following example shows how to create the all_cons role with the
solaris.vntsd.consoles authorization, which permits access to all domain consoles.

primary# roleadd -A solaris.vntsd.consoles all_cons
primary# passwd all_cons
New Password:
Re-enter new Password:
passwd: password successfully changed for all_cons

This command assigns the all_cons role to the sam user.

primary# usermod -R all_cons sam

User sam assumes the all_cons role and can access any console. For example:

Chapter 5
Controlling Access to a Domain Console by Using Rights

5-2

https://docs.oracle.com/cd/E18752_01/html/816-4556/index.html
https://docs.oracle.com/cd/E18752_01/html/816-4556/index.html

$ id
uid=700299(sam) gid=1(other)
$ su all_cons
Password:
$ telnet localhost 5000
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.

Connecting to console "ldg1" in group "ldg1"
Press ~? for control options ..

$ telnet localhost 5001
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.

Connecting to console "ldg2" in group "ldg2"
Press ~? for control options ..

This example shows what happens when an unauthorized user, dana, attempts to access a
domain console:

$ id
uid=702048(dana) gid=1(other)
$ telnet localhost 5000
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.
Connection to 0 closed by foreign host.

How to Control Access to All Domain Consoles by Using Rights Profiles
1. Restrict access to a domain console by enabling console authorization checking.

primary# svccfg -s vntsd setprop vntsd/authorization = true
primary# svcadm refresh vntsd
primary# svcadm restart vntsd

2. Assign the LDoms Consoles rights profile to a user.

primary# usermod -P +"LDoms Consoles" username
3. Connect to the domain console as the user.

$ telnet localhost 5000
Example 5-2 Controlling Access to All Domain Consoles by Using Rights Profiles

The following example shows how to use rights profiles to control access to all domain
consoles.

Assign the LDoms Consoles rights profile to a user.

primary# usermod -P +"LDoms Consoles" sam

The following commands show how to verify that the user is sam and that the All, Basic
Solaris User, and LDoms Consoles rights profiles are in effect. The telnet command
shows how to access the ldg1 domain console.

$ id
uid=702048(sam) gid=1(other)

Chapter 5
Controlling Access to a Domain Console by Using Rights

5-3

$ profiles
All
Basic Solaris User
LDoms Consoles
$ telnet localhost 5000
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.

Connecting to console "ldg1" in group "ldg1"
Press ~? for control options ..

How to Control Access to a Single Console by Using Roles
1. Restrict access to a domain console by enabling console authorization

checking.

primary# svccfg -s vntsd setprop vntsd/authorization = true
primary# svcadm refresh vntsd
primary# svcadm restart vntsd

2. Add an authorization for a single domain to the authorization description
database.

The authorization name is derived from the name of the domain and has the form
solaris.vntsd.console-domain-name. Use the auths command to add the
authorization.

auths add -t "Access domain-name Console" solaris.vntsd.console-domain-name
3. Create a role with the new authorization to permit access only to the console

of the domain.

primary# roleadd -A solaris.vntsd.console-domain-name role-name
primary# passwd role-name
New Password:
Re-enter new Password:
passwd: password successfully changed for role-name

4. Assign the role-name role to a user.

primary# usermod -R role-name username
Example 5-3 Accessing a Single Domain Console

This example shows how user terry assumes the ldg1cons role and accesses the
ldg1 domain console.

First, add an authorization for a single domain, ldg1, to the authorization description
database.

auths add -t "Access ldg1 Console" solaris.vntsd.console-ldg1

Then, create a role with the new authorization to permit access only to the console of
the domain.

primary# roleadd -A solaris.vntsd.console-ldg1 ldg1cons
primary# passwd ldg1cons
New Password:
Re-enter new Password:
passwd: password successfully changed for ldg1cons

Chapter 5
Controlling Access to a Domain Console by Using Rights

5-4

Assign the ldg1cons role to user terry, assume the ldg1cons role, and access the domain
console.

primary# usermod -R ldg1cons terry
primary# su terry
Password:
$ id
uid=700300(terry) gid=1(other)
$ su ldg1cons
Password:
$ id
uid=700303(ldg1cons) gid=1(other)
$ telnet localhost 5000
Trying 0.0.0.0...
Escape character is '^]'.

Connecting to console "ldg1" in group "ldg1"
Press ~? for control options ..

The following example shows that the user terry cannot access the ldg2 domain console:

$ telnet localhost 5001
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.
Connection to 0 closed by foreign host.

How to Control Access to a Single Console by Using Rights Profiles
1. Restrict access to a domain console by enabling console authorization checking.

primary# svccfg -s vntsd setprop vntsd/authorization = true
primary# svcadm refresh vntsd
primary# svcadm restart vntsd

2. Add an authorization for a single domain to the authorization description database.

The following command adds the solaris.vntsd.console-domain:::Access domain
Console:: authorization entry for a domain console:

auths add -t "Access domain-name Console" solaris.vntsd.console-domain-name
3. Create a rights profile with an authorization to access a specific domain console.

Use the profiles command to create a new profile.

primary# profiles -p "domain Console" \
'set desc="Access domain Console";
set auths=solaris.vntsd.console-domain'

4. Assign the rights profile.

primary# usermod -P +"domain Console" username

Using Domain Console Logging
In an Oracle VM Server for SPARC environment, console I/O from the primary domain is
directed to the service processor (SP). The console I/O from all other domains is redirected to
the service domain that runs the virtual console concentrator, vcc. If the service domain runs
the Oracle Solaris 11 OS, the guest domain console output can be logged to a file.

Chapter 5
Using Domain Console Logging

5-5

Service domains support console logging for logical domains. While the service
domain must run the Oracle Solaris 11 OS, the guest domain being logged can run
either the Oracle Solaris 10 OS or the Oracle Solaris 11 OS.

The domain console log is saved to a file on the service domain called /var/log/
vntsd/domain/console-log that provides the vcc service. You can rotate console
log files by using the logadm command. See the logadm(8) and logadm.conf(5) man
pages.

The Oracle VM Server for SPARC software enables you to selectively enable and
disable console logging for each logical domain. Console logging is enabled by
default.

How to Enable or Disable Console Logging
You must enable or disable console logging for each individual logical domain even if
the domains belong to the same console group.

1. List the current console settings for the domain.

primary# ldm list -o console domain
2. Stop and unbind the domain.

The domain must be in an inactive and unbound state before you modify the
console settings.

primary# ldm stop domain
primary# ldm unbind domain

3. Enable or disable console logging.

• To enable console logging.

primary# ldm set-vcons log=on domain
• To disable console logging.

primary# ldm set-vcons log=off domain

Service Domain Requirements for Domain Console Logging
A domain that is attached to a service domain that runs an OS version older than
Oracle Solaris 11.1 cannot be logged.

Note:

Even if you enable console logging for a domain, the domain's virtual
console is not logged if the required support is not available on the service
domain.

Connecting to a Guest Domain Console Over the Network
You can use the ldmconsole command or the telnet command to connect to a
Oracle VM Server for SPARC console on non-primary domains or to a console group.
See the man pages section 8: System Administration Commands and the vntsd(8)
man pages.

Chapter 5
Connecting to a Guest Domain Console Over the Network

5-6

https://docs.oracle.com/cd/E88353_01/html/E72487/logadm-8.html
https://docs.oracle.com/cd/E88353_01/html/E37852/logadm.conf-5.html
https://docs.oracle.com/cd/E88353_01/html/E72487/index.html
https://docs.oracle.com/cd/E88353_01/html/E72487/vntsd-8.html

• The following ldmconsole command connects to the console of the ldg1 domain:

primary# ldmconsole ldg1
Connecting to console "ldg1" in group "ldg1"
Press ~? for control options ..

• You can connect to a guest console over a network if the listen_addr property is set to
the IP address of the control domain in the vntsd(8) SMF manifest. For example:

$ telnet hostname 5001

Note:

Enabling network access to a console has security implications. Any user can
connect to a console and for this reason it is disabled by default.

A Service Management Facility manifest is an XML file that describes a service. For more
information about creating an SMF manifest, refer to the Oracle Solaris 10 System
Administrator Documentation (https://docs.oracle.com/cd/E18752_01/index.html).

Note:

To access a non-English OS in a guest domain through the console, the terminal for
the console must be in the locale required by the OS.

Also, use the ldmconsole command to list the available domain consoles and console
groups.

The following command shows how to list the available console groups and domain consoles:

primary# ldmconsole
GROUP DOMAINS
ldg1 ldg1
ldg2 ldg2

Using Console Groups
The virtual network terminal server daemon, vntsd, enables you to provide access for
multiple domain consoles using a single TCP port. At the time of domain creation, the Logical
Domains Manager assigns a unique TCP port to each console by creating a new default
group for that domain's console. The TCP port is then assigned to the console group as
opposed to the console itself. The console can be bound to an existing group using the set-
vcons subcommand.

How to Combine Multiple Consoles Into One Group
1. Bind the consoles for the domains into one group.

The following example shows binding the console for three different domains (ldg1, ldg2,
and ldg3) to the same console group (group1).

Chapter 5
Using Console Groups

5-7

https://docs.oracle.com/cd/E18752_01/index.html
https://docs.oracle.com/cd/E18752_01/index.html

primary# ldm set-vcons group=group1 service=primary-vcc0 ldg1
primary# ldm set-vcons group=group1 service=primary-vcc0 ldg2
primary# ldm set-vcons group=group1 service=primary-vcc0 ldg3

2. Connect to the associated TCP port (localhost at port 5000 in this example).

telnet localhost 5000
primary-vnts-group1: h, l, c{id}, n{name}, q:

You are prompted to select one of the domain consoles.

3. List the domains within the group by selecting l (list).

primary-vnts-group1: h, l, c{id}, n{name}, q: l
DOMAIN ID DOMAIN NAME DOMAIN STATE
0 ldg1 online
1 ldg2 online
2 ldg3 online

Note:

To reassign the console to a different group or vcc instance, the domain
must be unbound; that is, it has to be in the inactive state. Refer to the
vntsd(8) man page for more information about configuring and using
SMF to manage vntsd and using console groups.

Chapter 5
Using Console Groups

5-8

https://docs.oracle.com/cd/E88353_01/html/E72487/vntsd-8.html

6
Configuring I/O Domains

This chapter describes I/O domains and how to configure them in an Oracle VM Server for
SPARC environment.

This chapter covers the following topics:

• I/O Domain Overview

• General Guidelines for Creating an I/O Domain

I/O Domain Overview
An I/O domain has direct ownership of and direct access to physical I/O devices. It can be
created by assigning a PCI EXPRESS (PCIe) bus, a PCIe endpoint device, or a PCIe SR-
IOV virtual function to a domain. Use the ldm add-io command to assign a bus, device, or
virtual function to a domain.

You might want to configure I/O domains for the following reasons:

• An I/O domain has direct access to a physical I/O device, which avoids the performance
overhead that is associated with virtual I/O. As a result, the I/O performance on an I/O
domain more closely matches the I/O performance on a bare-metal system.

• An I/O domain can host virtual I/O services to be used by guest domains.

For information about configuring I/O domains, see the information in the following chapters:

• Creating a Root Domain by Assigning PCIe Buses

• Creating an I/O Domain by Using Direct I/O

• Creating an I/O Domain by Using PCIe SR-IOV Virtual Functions

• Using Non-primary Root Domains

Note:

You cannot migrate a domain that has PCIe buses, PCIe endpoint devices, or SR-
IOV virtual functions. For information about other migration limitations, see
Migrating Domains.

General Guidelines for Creating an I/O Domain
An I/O domain might have direct access to one or more I/O devices, such as PCIe buses,
network interface units (NIUs), PCIe endpoint devices, and PCIe single root I/O virtualization
(SR-IOV) virtual functions.

This type of direct access to I/O devices means that more I/O bandwidth is available to
provide the following:

6-1

• Services to the applications in the I/O domain

• Virtual I/O services to guest domains

The following basic guidelines enable you to effectively use the I/O bandwidth:

• Assign CPU resources at the granularity of CPU cores. Assign one or more CPU
cores based on the type of I/O device and the number of I/O devices in the I/O
domain.

For example, a 1-Gbps Ethernet device might require fewer CPU cores to use the
full bandwidth compared to a 10-Gbps Ethernet device.

• Abide by memory requirements. Memory requirements depend on the type of I/O
device that is assigned to the domain. A minimum of 4 Gbytes is recommended
per I/O device. The more I/O devices you assign, the more memory you must
allocate.

• When you use the PCIe SR-IOV feature, follow the same guidelines for each SR-
IOV virtual function that you would use for other I/O devices. So, assign one or
more CPU cores and memory (in Gbytes) to fully use the bandwidth that is
available from the virtual function.

Note that creating and assigning a large number of virtual functions to a domain that
does not have sufficient CPU and memory resources is unlikely to produce an optimal
configuration.

SPARC systems, up to and including the SPARC T5 and SPARC M6 platforms,
provide a finite number of interrupts, so Oracle Solaris limits the number of interrupts
that each device can use. The default limit should match the needs of a typical system
configuration but you might need to adjust this value for certain system configurations.
For more information, see Adjusting the Interrupt Limit.

Chapter 6
General Guidelines for Creating an I/O Domain

6-2

7
Creating a Root Domain by Assigning PCIe
Buses

This chapter describes how to create a root domain by assigning PCIe buses.

Creating a Root Domain by Assigning PCIe Buses
You can use the Oracle VM Server for SPARC software to assign an entire PCIe bus (also
known as a root complex) to a domain. An entire PCIe bus consists of the PCIe bus itself and
all of its PCI switches and devices. PCIe buses that are present on a server are identified
with names such as pci@400 (pci_0). An I/O domain that is configured with an entire PCIe
bus is also known as a root domain.

The following diagram shows a system that has three root complexes, pci_0, pci_1, and
pci_2.

Assigning a PCIe Bus to a Root Domain

The maximum number of root domains that you can create with PCIe buses depends on the
number of PCIe buses that are available on the server. Use the ldm list-io to determine
the number of PCIe buses available on your system.

When you assign a PCIe bus to a root domain, all devices on that bus are owned by that root.
You can assign any of the PCIe endpoint devices on that bus to other domains.

When a server is initially configured in an Oracle VM Server for SPARC environment or is
using the factory-default SP configuration, the primary domain has access to all the

7-1

physical device resources. Therefore, the primary domain is the only root domain
configured on the system and it owns all the PCIe buses.

Static PCIe Bus Assignment
The static PCIe bus assignment method for a root domain requires you to initiate a
delayed reconfiguration on the root domain when assigning or removing a PCIe bus.
When you intend to use this method for a domain that does not yet own a PCIe bus,
you must stop the domain before you assign the PCIe bus. After you complete the
configuration steps on the root domain, you must reboot it. You must use the static
method when the Oracle VM Server for SPARC 3.2 firmware is not installed in the
system or when the OS version that is installed in the respective domain does not
support dynamic PCIe bus assignment.

While the root domain is stopped or in delayed reconfiguration, you can run one or
more of the ldm add-io and ldm remove-io commands before you reboot the root
domain. To minimize domain downtime, plan ahead before assigning or removing
PCIe buses.

• For root domains, both primary and non-primary, use delayed reconfiguration.
After you have added or removed the PCIe buses, reboot the root domain to make
the changes take effect.

primary# ldm start-reconf root-domain
Add or remove the PCIe bus by using the ldm add-io or ldm remove-io command
primary# ldm stop -r domain-name

Note that you can use delayed reconfiguration only if the domain already owns a
PCIe bus.

• For non-root domains, stop the domain and then add or remove the PCie bus.

primary# ldm stop domain-name
Add or remove the PCIe bus by using the ldm add-io or ldm remove-io command
primary# ldm start-domain domain-name

Dynamic PCIe Bus Assignment
The dynamic PCIe bus assignment feature enables you to dynamically assign or
remove a PCIe bus from a root domain.

The dynamic PCIe bus assignment feature is enabled when your system runs the
required firmware and software. See Dynamic PCIe Bus Assignment Requirements. If
your system does not run the required firmware and software, the ldm add-io and
ldm remove-io commands fail gracefully.

When enabled, you can run the ldm add-io and ldm remove-io commands
without stopping the root domain or putting the root domain in delayed reconfiguration.

Dynamic PCIe Bus Assignment Requirements
The dynamic PCIe bus assignment feature is supported on servers starting with the
SPARC M5, SPARC T5, and SPARC S7 series server and the Fujitsu M10 server that
run the Oracle Solaris 11 OS in the root domain.

SPARC T5, SPARC M5 and SPARC M6 servers must run at least the 9.4.2 version of
the system firmware. SPARC T7 and SPARC M7 series servers must run at least

Chapter 7
Creating a Root Domain by Assigning PCIe Buses

7-2

9.4.3. SPARC S7, SPARC T8, and SPARC M8 series servers can run any released version of
the system firmware. Fujitsu SPARC M12 servers can run any released version of the system
firmware. Fujitsu M10 servers must run at least XCP2240.

How to Create a Root Domain by Assigning a PCIe Bus
This example procedure shows how to create a new root domain from an initial configuration
where several buses are owned by the primary domain. By default the primary domain owns
all buses present on the system. This example is for a SPARC T4-2 server. This procedure
can also be used on other servers. The instructions for different servers might vary slightly
from these, but you can obtain the basic principles from this example.

Note:

Do not add independent root domains to the following system types:

• Single-bus systems. Such systems, like a SPARC T4-1 server, can use only
the primary domain as a root domain.

• Some smaller multi-bus systems. Systems such as SPARC S7-2 and SPARC
S7-2L servers have built-in cards that communicate only with a single bus and
cannot be split across multiple buses. To create a second root domain, you
must install additional cards to ensure that each root domain has a network
interface and a boot disk.

Ensure that you do not remove the PCIe buses that host the boot disk and primary network
interface from the primary domain.

Caution:

All internal disks on the supported servers might be connected to a single PCIe bus.
If a domain is booted from an internal disk, do not remove that bus from the domain.
Ensure that you do not remove a bus that has devices that are used by a domain,
such as network ports or usbecm devices. If you remove the wrong bus, a domain
might not be able to access the required devices and could become unusable. To
remove a bus that has devices that are used by a domain, reconfigure that domain
to use devices from other buses. For example, you might have to reconfigure the
domain to use a different on-board network port or a PCIe card from a different
PCIe slot. On certain SPARC servers, you can remove a PCIe bus that contains
USB, graphics controllers, and other devices. However, you cannot add such a
PCIe bus to any other domain. Such PCIe buses can be added only to the primary
domain.

In this example, the primary domain uses only a ZFS pool (rpool) and network interface
(igb0). If the primary domain uses more devices, repeat Steps 2-4 for each device to ensure
that none are located on the bus that will be removed.

You can add a bus to or remove a bus from a domain by using its device path (pci@ nnn) or
its pseudonym (pci_ n). The ldm list-bindings primary or ldm list -l -o
physio primary command shows the following:

Chapter 7
Creating a Root Domain by Assigning PCIe Buses

7-3

• pci@400 corresponds to pci_0
• pci@500 corresponds to pci_1
• pci@600 corresponds to pci_2
• pci@700 corresponds to pci_3
1. Verify that the primary domain owns more than one PCIe bus.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
/SYS/PM0/CMP1/PEX BUS pci_1
/SYS/PM0/CMP2/PEX BUS pci_2 primary
/SYS/PM0/CMP3/PEX BUS pci_3 primary
/SYS/MB/PCIE1 PCIE pci_0 primary EMP
/SYS/MB/SASHBA0 PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE5 PCIE pci_1 primary EMP
/SYS/MB/PCIE6 PCIE pci_1 primary EMP
/SYS/MB/PCIE7 PCIE pci_1 primary EMP
/SYS/MB/PCIE2 PCIE pci_2 primary EMP
/SYS/MB/PCIE3 PCIE pci_2 primary EMP
/SYS/MB/PCIE4 PCIE pci_2 primary EMP
/SYS/MB/PCIE8 PCIE pci_3 primary EMP
/SYS/MB/SASHBA1 PCIE pci_3 primary OCC
/SYS/MB/NET2 PCIE pci_3 primary OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/NET2/IOVNET.PF0 PF pci_3 primary
/SYS/MB/NET2/IOVNET.PF1 PF pci_3 primary

2. Determine the device path of the boot disk that must be retained.

• For UFS file systems, run the df / command to determine the device path
of the boot disk.

primary# df /
/ (/dev/dsk/c0t5000CCA03C138904d0s0):22755742 blocks
2225374 files

• For ZFS file systems, first run the df / command to determine the pool
name. Then, run the zpool status command to determine the device path
of the boot disk.

primary# zpool status rpool
 pool: rpool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 rpool ONLINE 0 0 0
 c0t5000CCA03C138904d0s0 ONLINE 0 0 0

3. Obtain information about the system's boot disk.

• For a disk that is managed with Solaris I/O multipathing, determine the PCIe
bus to which the boot disk is connected by using the mpathadm command.

Starting with the SPARC T4 servers, the internal disks are managed by Solaris
I/O multipathing.

Chapter 7
Creating a Root Domain by Assigning PCIe Buses

7-4

a. Find the initiator port to which the disk is connected.

primary# mpathadm show lu /dev/rdsk/c0t5000CCA03C138904d0s0
Logical Unit: /dev/rdsk/c0t5000CCA03C138904d0s2
 mpath-support: libmpscsi_vhci.so
 Vendor: HITACHI
 Product: H106030SDSUN300G
 Revision: A2B0
 Name Type: unknown type
 Name: 5000cca03c138904
 Asymmetric: no
 Current Load Balance: round-robin
 Logical Unit Group ID: NA
 Auto Failback: on
 Auto Probing: NA

 Paths:
 Initiator Port Name: w50800200014100c8
 Target Port Name: w5000cca03c138905
 Override Path: NA
 Path State: OK
 Disabled: no

 Target Ports:
 Name: w5000cca03c138905
 Relative ID: 0

b. Determine the PCIe bus on which the initiator port is present.

primary# mpathadm show initiator-port w50800200014100c8
Initiator Port: w50800200014100c8
 Transport Type: unknown
 OS Device File: /devices/pci@400/pci@2/pci@0/pci@e/scsi@0/iport@1

• For a disk that is not managed with Solaris I/O multipathing, determine the physical
device to which the block device is linked by using the ls -l command.

The following example uses block device c1t0d0s0:

primary# ls -l /dev/dsk/c0t1d0s0
lrwxrwxrwx 1 root root 49 Oct 1 10:39 /dev/dsk/c0t1d0s0 ->
../../devices/pci@400/pci@0/pci@1/scsi@0/sd@1,0:a

In this example, the physical device for the primary domain's boot disk is connected
to the pci@400 bus.

4. Determine the network interface that is used by the system.

Identify the primary network interface that is “plumbed” by using the ifconfig
command. A plumbed interface has streams set up so that the IP protocol can use the
device.

primary# ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
net0: flags=1004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4> mtu 1500 index 3
 inet 10.129.241.135 netmask ffffff00 broadcast 10.129.241.255
 ether 0:10:e0:e:f1:78

primary# dladm show-phys net0
LINK MEDIA STATE SPEED DUPLEX DEVICE
net0 Ethernet up 1000 full igb0

Chapter 7
Creating a Root Domain by Assigning PCIe Buses

7-5

5. Determine the physical device to which the network interface is linked.

The following command uses the igb0 network interface:

primary# ls -l /dev/igb0
lrwxrwxrwx 1 root root 46 Oct 1 10:39 /dev/igb0 ->
../devices/pci@500/pci@0/pci@c/network@0:igb0

Perform the ls -l /dev/usbecm command, as well.

In this example, the physical device for the network interface used by the primary
domain is under bus pci@500, which corresponds to the earlier listing of pci_1. So,
the other two buses, pci_2 (pci@600) and pci_3 (pci@700), can safely be assigned
to other domains because they are not used by the primary domain.

If the network interface used by the primary domain is on a bus that you want to
assign to another domain, reconfigure the primary domain to use a different
network interface.

6. Remove a bus that does not contain the boot disk or the network interface
from the primary domain.

In this example, the pci_2 bus is being removed from the primary domain.

• Dynamic method:

Ensure that the devices in the pci_2 bus are not in use by the primary domain
OS. If they are, this command might fail to remove the bus. Use the static
method to forcibly remove the pci_2 bus.

primary# ldm remove-io pci_2 primary
• Static method:

Before you remove the bus, you must initiate a delayed reconfiguration.

primary# ldm start-reconf primary
primary# ldm remove-io pci_2 primary
primary# shutdown -y -g0 -i6

The bus that the primary domain uses for the boot disk and the network device
cannot be assigned to other domains. You can assign any of the other buses to
another domain. In this example, the pci@600 is not used by the primary domain,
so you can reassign it to another domain.

7. Add a bus to a domain.

In this example, you add the pci_2 bus to the ldg1 domain.

• Dynamic method:

primary# ldm add-io pci_2 ldg1
• Static method:

Before you add the bus, you must stop the domain.

primary# ldm stop-domain ldg1
primary# ldm add-io pci_2 ldg1
primary# ldm start-domain ldg1

8. Save this SP configuration to the service processor.

In this example, the SP configuration is io-domain.

primary# ldm add-spconfig io-domain

Chapter 7
Creating a Root Domain by Assigning PCIe Buses

7-6

This SP configuration, io-domain, is also set as the next SP configuration to be used
after the reboot.

9. Confirm that the correct bus is still assigned to the primary domain and that the
correct bus is assigned to domain ldg1.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
/SYS/PM0/CMP1/PEX BUS pci_1 primary
/SYS/PM0/CMP2/PEX BUS pci_2 ldg1
/SYS/PM0/CMP3/PEX BUS pci_3 primary
/SYS/MB/PCIE1 PCIE pci_0 primary EMP
/SYS/MB/SASHBA0 PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE5 PCIE pci_1 primary EMP
/SYS/MB/PCIE6 PCIE pci_1 primary EMP
/SYS/MB/PCIE7 PCIE pci_1 primary EMP
/SYS/MB/PCIE2 PCIE pci_2 ldg1 EMP
/SYS/MB/PCIE3 PCIE pci_2 ldg1 EMP
/SYS/MB/PCIE4 PCIE pci_2 ldg1 EMP
/SYS/MB/PCIE8 PCIE pci_3 primary EMP
/SYS/MB/SASHBA1 PCIE pci_3 primary OCC
/SYS/MB/NET2 PCIE pci_3 primary OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/NET2/IOVNET.PF0 PF pci_3 primary
/SYS/MB/NET2/IOVNET.PF1 PF pci_3 primary

This output confirms that PCIe buses pci_0, pci_1, and pci_3 and their devices are
assigned to the primary domain. It also confirms that PCIe bus pci_2 and its devices are
assigned to the ldg1 domain.

Chapter 7
Creating a Root Domain by Assigning PCIe Buses

7-7

8
Creating an I/O Domain by Using PCIe SR-
IOV Virtual Functions

This chapter covers the following PCIe SR-IOV topics:

• SR-IOV Overview

• SR-IOV Hardware and Software Requirements

• Current SR-IOV Feature Limitations

• Static SR-IOV

• Dynamic SR-IOV

• Enabling I/O Virtualization

• Planning for the Use of PCIe SR-IOV Virtual Functions

• Using Ethernet SR-IOV Virtual Functions

• Using InfiniBand SR-IOV Virtual Functions

• Using Fibre Channel SR-IOV Virtual Functions

• I/O Domain Resiliency

• Rebooting the Root Domain With Non-Resilient I/O Domains Configured

SR-IOV Overview

Note:

Because root domains cannot have dependencies on other root domains, a root
domain that owns a PCIe bus cannot have its PCIe endpoint devices or SR-IOV
virtual functions assigned to another root domain. However, you can assign a PCIe
endpoint device or virtual function from a PCIe bus to the root domain that owns
that bus.

The Peripheral Component Interconnect Express (PCIe) single root I/O virtualization (SR-
IOV) implementation is based on version 1.1 of the standard as defined by the PCI-SIG. The
SR-IOV standard enables the efficient sharing of PCIe devices among virtual machines and is
implemented in the hardware to achieve I/O performance that is comparable to native
performance. The SR-IOV specification defines a new standard wherein new devices that are
created enable the virtual machine to be directly connected to the I/O device.

A single I/O resource, which is known as a physical function, can be shared by many virtual
machines. The shared devices provide dedicated resources and also use shared common
resources. In this way, each virtual machine has access to unique resources. Therefore, a
PCIe device, such as an Ethernet port, that is SR-IOV-enabled with appropriate hardware
and OS support can appear as multiple, separate physical devices, each with its own PCIe
configuration space.

8-1

For more information about SR-IOV, see the PCI-SIG web site (http://
www.pcisig.com/).

The following figure shows the relationship between virtual functions and a physical
function in an I/O domain.

Using Virtual Functions and a Physical Function in an I/O Domain

SR-IOV has the following function types:

• Physical function – A PCI function that supports the SR-IOV capabilities as
defined by the SR-IOV specification. A physical function contains the SR-IOV
capability structure and manages the SR-IOV functionality. Physical functions are
fully featured PCIe functions that can be discovered, managed, and manipulated
like any other PCIe device. Physical functions can be used to configure and
control a PCIe device.

• Virtual function – A PCI function that is associated with a physical function. A
virtual function is a lightweight PCIe function that shares one or more physical
resources with the physical function and with virtual functions that are associated
with that physical function. Unlike a physical function, a virtual function can only
configure its own behavior.

Each SR-IOV device can have a physical function and each physical function can
have up to 256 virtual functions associated with it. This number is dependent on the
particular SR-IOV device. The virtual functions are created by the physical function.

After SR-IOV is enabled in the physical function, the PCI configuration space of each
virtual function can be accessed by the bus, device, and function number of the
physical function. Each virtual function has a PCI memory space, which is used to map
its register set. The virtual function device drivers operate on the register set to enable
its functionality and the virtual function appears as an actual PCI device. After creation,
you can directly assign a virtual function to an I/O domain. This capability enables the
virtual function to share the physical device and to perform I/O without CPU and
hypervisor software overhead.

Chapter 8
SR-IOV Overview

8-2

http://www.pcisig.com/
http://www.pcisig.com/

You might want to use the SR-IOV feature in your environment to reap the following benefits:

• Higher performance and reduced latency – Direct access to hardware from a virtual
machines environment

• Cost reduction – Capital and operational expenditure savings, which include:

– Power savings

– Reduced adapter count

– Less cabling

– Fewer switch ports

The Oracle VM Server for SPARC SR-IOV implementation includes both static and dynamic
configuration methods. For more information, see Static SR-IOV and Dynamic SR-IOV.

The Oracle VM Server for SPARC SR-IOV feature enables you to perform the following
operations:

• Creating a virtual function on a specified physical function

• Destroying a specified virtual function on a physical function

• Assigning a virtual function to a domain

• Removing a virtual function from a domain

To create and destroy virtual functions in the SR-IOV physical function devices, you must first
enable I/O virtualization on that PCIe bus. You can use the ldm set-io or ldm add-io
command to set the iov property to on. You can also use the ldm add-domain or ldm
set-domain command to set the rc-add-policy property to iov. See the ldm(8) man page.

Note:

By default, PCIe buses are enabled for I/O virtualization on systems starting with
the SPARC M7, SPARC T7, and SPARC S7 series server and the Fujitsu M10
server.

Assigning a SR-IOV virtual function to a domain creates an implicit dependency on the
domain providing the SR-IOV physical function service. You can view these dependencies or
view domains that depend on this SR-IOV physical function by using the ldm list-
dependencies command. See Listing Domain I/O Dependencies.

SR-IOV Hardware and Software Requirements
The dynamic and static PCIe SR-IOV features are supported on servers starting with the
SPARC T4, SPARC M5, and SPARC S7 series server and the Fujitsu M10 server.

• Hardware Requirements.

Refer to your platform's hardware documentation to verify which cards can be used on
your platform. For an up-to-date list of supported PCIe cards, see https://
support.oracle.com/CSP/main/article?
cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1.

– Ethernet SR-IOV. To use the SR-IOV feature, you can use on-board PCIe SR-IOV
devices as well as PCIe SR-IOV plug-in cards. All on-board SR-IOV devices in a

Chapter 8
SR-IOV Hardware and Software Requirements

8-3

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1

given platform are supported unless otherwise explicitly stated in the platform
documentation.

– InfiniBand SR-IOV. InfiniBand devices are supported on servers starting with
the SPARC T4, SPARC M5, and SPARC S7 series server and the Fujitsu M10
server.

– Fibre Channel SR-IOV. Fibre Channel devices are supported on servers
starting with the SPARC T4, SPARC M5, and SPARC S7 series server and the
Fujitsu M10 server.

For an up-to-date list of supported devices on Fujitsu SPARC M12 platforms or
Fujitsu M10 platforms. See Fujitsu SPARC M12 Systems PCI Card Installation
Guide or Fujitsu M10/SPARC M10 Systems PCI Card Installation Guide for
your model at http://www.fujitsu.com/global/services/computing/server/sparc/
downloads/manual/

• Firmware Requirements.

– Ethernet SR-IOV. To use the dynamic SR-IOV feature, SPARC T4 server
must run at least version 8.4.0.a of the system firmware. SPARC T5, SPARC
M5, and SPARC M6 servers must run at least version 9.1.0.a of the system
firmware. SPARC T7 and SPARC M7 series servers must run at least version
9.4.3 of the system firmware. SPARC S7 series servers must run at least
version 9.7.2 of the system firmware. SPARC T8 and SPARC M8 series
servers can run at least version 9.8 of the system firmware. Fujitsu SPARC
M12 servers can run any released version of the system firmware. Fujitsu M10
servers must run at least version XCP2210 of the system firmware.

To use the SR-IOV feature, PCIe SR-IOV devices must run at least device
firmware version 3.01. Perform the following steps to update the firmware for
the Sun Dual 10-Gigabit Ethernet SFP+ PCIe 2.0 network adapters:

1. Determine whether you need to upgrade the FCode version on the device.

Perform these commands from the ok prompt:

{0} ok cd path-to-device
{0} ok .properties

The version value in the output must be one of the following:

LP
Sun Dual 10GbE SFP+ PCIe 2.0 LP FCode 3.01 4/2/2012

PEM
Sun Dual 10GbE SFP+ PCIe 2.0 EM FCode 3.01 4/2/2012

FEM
Sun Dual 10GbE SFP+ PCIe 2.0 FEM FCode 3.01 4/2/2012

2. Download patch ID 13932765 from My Oracle Support (https://
support.oracle.com/CSP/ui/
flash.html#tab=PatchHomePage(page=PatchHomePage&id=h0wvdxy6()))
.

3. Install the patch.

The patch package includes a document that describes how to use the
tool to perform the upgrade.

Chapter 8
SR-IOV Hardware and Software Requirements

8-4

http://www.fujitsu.com/global/services/computing/server/sparc/downloads/manual/
http://www.fujitsu.com/global/services/computing/server/sparc/downloads/manual/
https://support.oracle.com/CSP/ui/flash.html#tab=PatchHomePage(page=PatchHomePage&id=h0wvdxy6())
https://support.oracle.com/CSP/ui/flash.html#tab=PatchHomePage(page=PatchHomePage&id=h0wvdxy6())
https://support.oracle.com/CSP/ui/flash.html#tab=PatchHomePage(page=PatchHomePage&id=h0wvdxy6())

– InfiniBand SR-IOV. To use this feature, your system must run at least the following
version of the system firmware:

* SPARC T4 Servers – 8.4

* SPARC T5 Servers – 9.1.0.x

* SPARC T7 Series Servers – 9.4.3

* SPARC T8 Series Servers – 9.8

* SPARC M5 and SPARC M6 Servers – 9.1.0.x

* SPARC M7 Series Servers – 9.4.3

* SPARC M8 Series Servers – 9.8

* Fujitsu M10 Server – XCP2210

* Fujitsu SPARC M12 Server – XCP3021

To support the Dual 40-Gigabit (4x) InfiniBand Host Channel Adapter M2 as an
InfiniBand SR-IOV device, the card or express module must run at least version
2.11.2010 of the firmware. You can obtain this version of the firmware by installing the
following patches:

* Low Profile (X4242A) – Patch ID 16340059

* Express Module (X4243A) – Patch ID 16340042

Use the Oracle Solaris 11.1 fwflash command to list and update the firmware in the
primary domain. To list the current firmware version, use the fwflash -lc IB
command. To update the firmware, use the fwflash -f firmware-file -d device
command. See the fwflash(8) man page.

To use InfiniBand SR-IOV, ensure that InfiniBand switches have at least firmware
version 2.1.2. You can obtain this version of the firmware by installing the following
patches:

* Sun Datacenter InfiniBand Switch 36 (X2821A-Z) – Patch ID 16221424

* Sun Network QDR InfiniBand GatewaySwitch (X2826A-Z) – Patch ID
16221538

For information about how to update the firmware, see your InfiniBand switch
documentation.

– Fibre Channel SR-IOV. To use this feature, your system must run at least the
following version of the system firmware:

* SPARC T4 Server – 8.4.2.c

* SPARC T5 Server – 9.1.2.d

* SPARC T7 Series Server – 9.4.3

* SPARC T8 Series Servers – 9.8

* SPARC M5 Server – 9.1.2.d

* SPARC M6 Server – 9.1.2.d

* SPARC M7 Series Server – 9.4.3

* SPARC M8 Series Servers – 9.8

* SPARC S7 Series Server – 9.7.2

* Fujitsu M10 Server – XCP2210

Chapter 8
SR-IOV Hardware and Software Requirements

8-5

https://docs.oracle.com/cd/E88353_01/html/E72487/fwflash-8.html

* Fujitsu SPARC M12 Server – XCP3021

The firmware on the Sun Storage 16 Gb Fibre Channel Universal HBA,
Emulex must be at least revision 1.1.60.1 to enable the Fibre Channel SR-IOV
feature. The installation instructions are provided with the firmware.

Note:

If you plan to use the SR-IOV feature, you must update the firmware
to meet the minimum required level.

• Software Requirements.

– Ethernet SR-IOV. To use the SR-IOV feature, all domains must be running at
least the Oracle Solaris 11.1 SRU 10 OS.

– InfiniBand SR-IOV. The following domains must run the supported Oracle
Solaris OS:

* The primary domain or a non-primary root domain must run at least the
Oracle Solaris 11.1 SRU 10 OS.

* The I/O domains must run at least the Oracle Solaris 11.1 SRU 10 OS.

* Update the /etc/system file on any root domain that has an InfiniBand
SR-IOV physical function from which you plan to configure virtual
functions.

set ldc:ldc_maptable_entries = 0x20000

For information about correctly creating or updating /etc/system
property values, see Updating Property Values in the /etc/system File.

Update the /etc/system file on the I/O domain to which you add a
virtual function.

set rdsv3:rdsv3_fmr_pool_size = 16384
– Fibre Channel SR-IOV. To use the SR-IOV feature, all domains must be

running at least the Oracle Solaris 11.1 SRU 17 OS.

See the following for more information about static and dynamic SR-IOV software
requirements:

• Static SR-IOV Software Requirements

• Dynamic SR-IOV Software Requirements

See the following for more information about the class-specific SR-IOV hardware
requirements:

• Ethernet SR-IOV Hardware Requirements

• InfiniBand SR-IOV Hardware Requirements

• Fibre Channel SR-IOV Hardware Requirements

Current SR-IOV Feature Limitations
The SR-IOV feature has the following limitations:

Chapter 8
Current SR-IOV Feature Limitations

8-6

• An I/O domain cannot start if any associated root domain is not running.

• Migration is disabled for any domain that has one or more SR-IOV physical functions or
SR-IOV virtual functions assigned to it.

• You can destroy only the last virtual function that was created for a physical function. So,
if you create three virtual functions, the first virtual function that you can destroy must be
the third one.

• If an SR-IOV card is assigned to a domain by using the Direct I/O (DIO) feature, the SR-
IOV feature is not enabled for that card.

• The PCIe endpoint devices and SR-IOV virtual functions from a particular PCIe bus can
be assigned up to a maximum of 15 domains on supported SPARC T-series, SPARC M-
series, and SPARC S-series servers. On servers starting with the SPARC T7, SPARC
M7, and SPARC S7 series server, you can assign PCIe endpoint devices and SR-IOV
virtual functions from a particular PCIe bus to a maximum of 31 domains. On a Fujitsu
SPARC M12 server or Fujitsu M10 server you can assign PCIe endpoint devices and SR-
IOV virtual functions from a particular PCIe bus to a maximum of 24 domains. The PCIe
resources, such as interrupt vectors for each PCIe bus, are divided among the root
domain and I/O domains. As a result, the number of devices that you can assign to a
particular I/O domain is also limited. Make sure that you do not assign a large number
virtual functions to the same I/O domain. There is no interrupt limitation for servers
starting with the SPARC T7, SPARC M7, and SPARC S7 series server. For a description
of the problems related to SR-IOV, see Oracle VM Server for SPARC 3.6 Release Notes.

• The root domain is the owner of the PCIe bus and is responsible for initializing and
managing the bus. The root domain must be active and running a version of the Oracle
Solaris OS that supports the SR-IOV feature. Shutting down, halting, or rebooting the root
domain interrupts access to the PCIe bus. When the PCIe bus is unavailable, the PCIe
devices on that bus are affected and might become unavailable.

If the root domain providing PCIe SR-IOV virtual functions to an I/O domain is rebooted
while that I/O domain is running then unpredictable behavior can result in that I/O
domain. For instance, I/O domains with PCIe endpoint devices assigned might panic
during or after the reboot of the root domain if that I/O domain is not configured with I/O
domain resiliency (IOR). To recover an I/O domain after such a panic, it must be manually
stopped and started once the root domain has completed booting.

However if the I/O domain is made resilient, it can continue to operate unhindered even if
the root domain that is the owner of the PCIe bus for one set of SR-IOV virtual functions
becomes unavailable. IOR allows the domain to be resilient to root domain downtime.
See the I/O Domain Resiliency section for details.

Also see I/O Domain Resiliency Limitations for best practices when using SR-IOV in an
IOR configuration.

• SPARC systems, up to and including the SPARC T5 and SPARC M6 platforms, provide a
finite number of interrupts, so Oracle Solaris limits the number of interrupts that each
device can use. The default limit should match the needs of a typical system
configuration but you might need to adjust this value for certain system configurations.
For more information, see Adjusting the Interrupt Limit.

Static SR-IOV
The static SR-IOV method requires that the root domain be in delayed reconfiguration or the
I/O domain be stopped while performing SR-IOV operations. After you complete the
configuration steps on the root domain, you must reboot it. You must use this method when

Chapter 8
Static SR-IOV

8-7

https://docs.oracle.com/cd/E93612_01/html/E93615/index.html

the Oracle VM Server for SPARC 3.1 firmware is not installed in the system or when
the OS version that is installed in the respective domain does not support dynamic SR-
IOV.

To create or destroy an SR-IOV virtual function, you first must initiate a delayed
reconfiguration on the root domain. Then you can run one or more ldm create-vf
and ldm destroy-vf commands to configure the virtual functions. Finally, reboot the
root domain. The following commands show how to create a virtual function on a non-
primary root domain:

primary# ldm start-reconf root-domain-name
primary# ldm create-vf pf-name
primary# ldm stop-domain -r root-domain-name

primary# shutdown -i6 -g0 -y

To statically add a virtual function to or remove one from a guest domain, you must
first stop the guest domain. Then perform the ldm add-io and ldm remove-io
commands to configure the virtual functions. After the changes are complete, start the
domain. The following commands show how to assign a virtual function in this way:

primary# ldm stop guest-domain
primary# ldm add-io vf-name
guest-domain
primary# ldm start-domain guest-domain

You can also add a virtual function to or remove one from a root domain instead of a
guest domain. To add an SR-IOV virtual function to or remove one from a root domain,
first initiate a delayed reconfiguration on the root domain. Then, you can run one or
more of the ldm add-io and ldm remove-io commands. Finally, reboot the root
domain.

To minimize domain downtime, plan ahead before configuring virtual functions.

Note:

InfiniBand SR-IOV devices are supported only with static SR-IOV.

Static SR-IOV Software Requirements
For information about SR-IOV hardware and software requirements, see https://
support.oracle.com/CSP/main/article?
cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1.

You can use the ldm set-io or ldm add-io command to set the iov property to on.
You can also use the ldm add-domain or ldm set-domain command to set the
rc-add-policy property to iov. See the ldm(8) man page.

Rebooting the root domain affects SR-IOV, so carefully plan your direct I/O
configuration changes to maximize the SR-IOV related changes to the root domain
and to minimize root domain reboots.

Chapter 8
Static SR-IOV

8-8

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Dynamic SR-IOV
The dynamic SR-IOV feature removes the following static SR-IOV requirements:

• Root domain. Initiate a delayed reconfiguration on the root domain, create or destroy a
virtual function, and reboot the root domain

• I/O domain. Stop the I/O domain, add or remove a virtual function, and start the I/O
domain

With dynamic SR-IOV you can dynamically create or destroy a virtual function without having
to initiate a delayed reconfiguration on the root domain. A virtual function can also be
dynamically added to or removed from an I/O domain without having to stop the domain. The
Logical Domains Manager communicates with the Logical Domains agent and the Oracle
Solaris I/O virtualization framework to effect these changes dynamically.

Dynamic SR-IOV Software Requirements
For information about the required PCIe SR-IOV software and firmware versions, see SR-IOV
Hardware and Software Requirements.

Note:

If your system does not meet the dynamic SR-IOV software and firmware
requirements, you must use the static SR-IOV method to perform SR-IOV-related
tasks. See Static SR-IOV.

Dynamic SR-IOV Configuration Requirements
To dynamically create or destroy a virtual function, ensure that the following conditions are
met:

• I/O virtualization has been enabled for a PCIe bus before you begin to configure virtual
functions.

• The OS that runs on the root domain and on I/O domains must be at least the Oracle
Solaris 11.1 SRU 10 OS.

• The physical function device is not configured in the OS or is in a multipathing
configuration. For example, you can unplumb an Ethernet SR-IOV device or have it in an
IPMP or an aggregation to successfully create or destroy a virtual function.

An operation to create or destroy a virtual function requires that the physical function
device driver toggle between the offline and online states. A multipathing configuration
permits the device driver to toggle between these states.

• The virtual function is either not in use or in a multipathing configuration before you
remove a virtual function from an I/O domain. For example, you can either unplumb an
Ethernet SR-IOV virtual function or not use it in an IPMP configuration.

Chapter 8
Dynamic SR-IOV

8-9

Note:

You cannot use aggregation for Ethernet SR-IOV virtual functions
because the current multipathing implementation does not support virtual
functions.

Destroying All Virtual Functions and Returning the Slots to the Root Domain
Does Not Restore the Root Complex Resources

Note:

This section applies to servers up to and including SPARC M6 and SPARC
T5 servers.

The resources on the root complex are not restored after you destroy all the virtual
functions and return the slots to the root domain.

Recovery: Return all the virtual I/O resources that are associated with the root
complex to their root domain.

First, put the control domain in delayed reconfiguration.

primary# ldm start-reconf primary

Return all child PCIe slots to the root domain that owns the pci_0 bus. Then, remove
all of the child virtual functions on the pci_0 bus and destroy them.

Finally, set iov=off for the pci_0 bus and reboot the root domain.

primary# ldm set-io iov=off pci_0
primary# shutdown -y -g 10

Workaround: Set the iov option to off for the specific PCIe bus.

primary# ldm start-reconf primary
primary# ldm set-io iov=off pci_0

Enabling I/O Virtualization
Before you can configure SR-IOV virtual functions, you must enable I/O virtualization
for the PCIe bus while the root domain is in a delayed reconfiguration. Reboot the
domain to make this change take effect.

Note:

By default, PCIe buses are enabled for I/O virtualization on systems starting
with the SPARC M7, SPARC T7, and SPARC S7 series server and the
Fujitsu M10 server.

Chapter 8
Enabling I/O Virtualization

8-10

How to Enable I/O Virtualization for a PCIe Bus
This procedure must be performed only one time per root complex. The root complex must
be running as part of the same SP configuration.

1. Initiate a delayed reconfiguration on the root domain.

primary# ldm start-reconf root-domain-name
2. Enable I/O virtualization operations for a PCIe bus.

Perform this step only if I/O virtualization is not enabled already for the bus that has the
physical function.

Run one of the following commands:

• Enable I/O virtualization if the specified PCIe bus already is assigned to a root
domain.

primary# ldm set-io iov=on bus
• Enable I/O virtualization while you add a PCIe bus to a root domain.

primary# ldm add-io iov=on bus
3. Reboot the root domain.

Run one of the following commands:

• Reboot the non-primary root domain.

primary# ldm stop-domain -r root-domain
• Reboot the primary root domain.

primary# shutdown -i6 -g0 -y

Planning for the Use of PCIe SR-IOV Virtual Functions
Plan ahead to determine how you want to use virtual functions in your configuration.
Determine which virtual functions from the SR-IOV devices will satisfy your current and future
configuration needs.

If you have not yet enabled I/O virtualization, which requires using the static method, combine
this step with the steps to create virtual functions. By combining these steps, you need to
reboot the root domain only once.

Even when dynamic SR-IOV is available, the recommended practice is to create all the virtual
functions at once because you might not be able to create them dynamically after they have
been assigned to I/O domains.

In the static SR-IOV case, planning helps you to avoid performing multiple root domain
reboots, each of which might negatively affect I/O domains.

For information about I/O domains, see General Guidelines for Creating an I/O Domain.

Use the following general steps to plan and perform SR-IOV virtual function configuration and
assignment:

1. Determine which PCIe SR-IOV physical functions are available on your system and
which ones are best suited to your needs.

Use the following commands to identify the required information:

Chapter 8
Planning for the Use of PCIe SR-IOV Virtual Functions

8-11

ldm list-io
Identifies the available SR-IOV physical function devices.

prtdiag -v
Identifies which PCIe SR-IOV cards and on-board devices are available.

ldm list-io -l pf-name
Identifies additional information about a specified physical function, such as the
maximum number of virtual functions that are supported by the device.

ldm list-io -d pf-name
Identifies the device-specific properties that are supported by the device. See
Advanced SR-IOV Topics: Ethernet SR-IOV.

2. Enable I/O virtualization operations for a PCIe bus.

See How to Enable I/O Virtualization for a PCIe Bus.

3. Create the required number of virtual functions on the specified SR-IOV physical
function.

Use the following command to create the virtual functions for the physical function:

primary# ldm create-vf -n max [name=user-assigned-name] pf-name

For more information, see How to Create an Ethernet SR-IOV Virtual Function,
How to Create an InfiniBand Virtual Function, and How to Create a Fibre Channel
SR-IOV Virtual Function.

4. Use the ldm add-spconfig command to save the SP configuration to the SP.

For more information, see How to Add an Ethernet SR-IOV Virtual Function to an
I/O Domain, How to Add an InfiniBand Virtual Function to an I/O Domain, and How
to Add a Fibre Channel SR-IOV Virtual Function to an I/O Domain.

Using Ethernet SR-IOV Virtual Functions
You can use both the static and dynamic SR-IOV methods to manage Ethernet SR-
IOV devices.

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-12

Caution:

When using some Intel network adapters that support SR-IOV, a virtual function
might be the target of malicious behavior. Unexpected software-generated frames
can throttle traffic between the host and the virtual switch, which might negatively
affect performance. Configure all SR-IOV-enabled ports to use VLAN tagging to
drop unexpected and potentially malicious frames.

• To configure VLAN tagging on a physical function and its associated virtual
functions, use the following command:

ldm create-vf [pvid=pvid] [vid=vid1,vid2,...>] net-pf-name
• To configure VLAN tagging on an existing virtual function, use the following

command:

ldm set-io [pvid=[pvid]] [vid=[vid1,vid2,...]] net-vf-name
For information about creating the VLAN interface in the I/O domain, see Using
VLAN Tagging.

Ethernet SR-IOV Hardware Requirements
For information about the required PCIe Ethernet SR-IOV hardware, see SR-IOV Hardware
and Software Requirements.

Ethernet SR-IOV Limitations
The Ethernet SR-IOV feature has the following limitations in this release:

• You can enable VLAN configurations of virtual functions by setting either the pvid or the
vid property. You cannot set both of these virtual function properties simultaneously.

• You cannot use an SR-IOV virtual function as a back-end device for a virtual switch.

Planning for the Use of Ethernet SR-IOV Virtual Functions
When dynamically creating virtual functions, ensure that the physical functions use
multipathing or that they are not plumbed.

If you cannot use multipathing or must plumb the physical function, use the static method to
create the virtual functions. See Static SR-IOV.

Ethernet Device-Specific and Network-Specific Properties
Use the ldm create-vf command to set device-specific and network-specific properties of
a virtual function. The unicast-slots property is device-specific. The mac-addr, alt-
mac-addrs, mtu, pvid, and vid properties are network-specific.

Note that the mac-addr, alt-mac-addrs, and mtu network-specific properties can be
changed only when the virtual function is assigned to the primary domain while in a delayed
reconfiguration.

Attempts to change these properties fail when the virtual function is assigned as follows:

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-13

• When the virtual function is assigned to an active I/O domain: A property change
request is rejected because the change must be made when the owning domain is
in the inactive or bound state.

• When the virtual function is assigned to a non-primary domain and a delayed
reconfiguration is already in effect: A property change request fails with an error
message.

The pvid and vid network-specific properties can be changed without restriction.

Creating Ethernet Virtual Functions
This section describes how to dynamically create and destroy virtual functions. If you
cannot use the dynamic methods to perform these actions, initiate a delayed
reconfiguration on the root domain before you create or destroy virtual functions.

How to Create an Ethernet SR-IOV Virtual Function
If you cannot use this dynamic method, use the static method instead. See Static SR-
IOV.

1. Identify the physical function device.

primary# ldm list-io

Note that the name of the physical function includes the location information for
the PCIe SR-IOV card or on-board device.

2. If I/O virtualization for the bus that has the physical function is not enabled
already, enable it.

Perform this step only if I/O virtualization is not enabled already for the bus that
has the physical function.

See How to Enable I/O Virtualization for a PCIe Bus.

3. Create a single virtual function or multiple virtual functions from an Ethernet
physical function either dynamically or statically.

After you create one or more virtual functions, you can assign them to a guest
domain.

• Dynamic method:

– To create multiple virtual functions from a physical function all at the same
time, use the following command:

primary# ldm create-vf -n number | max [name=user-assigned-name] pf-
name

Use the ldm create-vf -n max command to create all the virtual
functions for that physical function at one time. You can use the name
property to optionally specify a name for the virtual function.

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-14

Caution:

When your system uses an Intel 10-Gbit Ethernet card, maximize
performance by creating no more than 31 virtual functions from each
physical function.

You can use either the path name or the pseudonym name to specify virtual
functions. However, the recommended practice is to use the pseudonym name.

– To create one virtual function from a physical function, use the following
command:

ldm create-vf [mac-addr=num] [alt-mac-addrs=[auto|num1,[auto|num2,...]]]
 [pvid=pvid] [vid=vid1,vid2,...] [mtu=size] [name=value...] pf-name

Note:

If not explicitly assigned, the MAC address is automatically allocated for
network devices.

Use this command to create one virtual function for that physical function. You
can also manually specify Ethernet class-specific property values.

Note:

Sometimes a newly created virtual function is not available for immediate
use while the OS probes for IOV devices. Use the ldm list-io
command to determine whether the parent physical function and its child
virtual functions have the INV value in the Status column. If they have this
value, wait until the ldm list-io output no longer shows the INV value in
the Status column (about 45 seconds) before you use that physical function
or any of its child virtual functions. If this status persists, there is a problem
with the device. A device status might be INV immediately following a root
domain reboot (including that of the primary) or immediately after you use
the ldm create-vf or ldm destroy-vf command.

• Static method:

a. Initiate a delayed reconfiguration.

primary# ldm start-reconf root-domain-name
b. Create a single virtual function or multiple virtual functions from an Ethernet

physical function.

Use the same commands as shown previously to dynamically create the virtual
functions.

c. Reboot the root domain.

– To reboot the non-primary root domain:

primary# ldm stop-domain -r root-domain
– To reboot the primary root domain:

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-15

primary# shutdown -i6 -g0 -y
Example 8-1 Displaying Information About the Ethernet Physical Function

This example shows information about the /SYS/MB/NET0/IOVNET.PF0 physical
function:

• This physical function is from an on-board NET0 network device.

• The IOVNET string indicates that the physical function is a network SR-IOV device.

primary# ldm list-io
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP1/NIU_CORE NIU niu_1 primary
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
/SYS/PM0/CMP1/PEX BUS pci_1
/SYS/MB/PCIE0 PCIE pci_0 primary OCC
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
/SYS/MB/SASHBA PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE1 PCIE pci_1 primary OCC
/SYS/MB/PCIE3 PCIE pci_1 primary OCC
/SYS/MB/PCIE5 PCIE pci_1 primary OCC
/SYS/MB/PCIE7 PCIE pci_1 primary EMP
/SYS/MB/PCIE9 PCIE pci_1 primary EMP
/SYS/MB/NET2 PCIE pci_1 primary OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/PCIE5/IOVNET.PF0 PF pci_1 primary
/SYS/MB/PCIE5/IOVNET.PF1 PF pci_1 primary
/SYS/MB/NET2/IOVNET.PF0 PF pci_1 primary
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 primary

The following command shows more details about the specified physical function. The
maxvfs value indicates the maximum number of virtual functions that is supported by
the device.

primary# ldm list-io -l /SYS/MB/NET0/IOVNET.PF0
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
[pci@400/pci@1/pci@0/pci@4/network@0]
 maxvfs = 7

Example 8-2 Dynamically Creating an Ethernet Virtual Function Without
Setting Optional Properties

This example dynamically creates a virtual function without setting any optional
properties. In this case, the MAC address for a network class virtual function is
automatically allocated.

Ensure that I/O virtualization is enabled on the pci_0 PCIe bus. See How to Enable
I/O Virtualization for a PCIe Bus.

Now, you can use the ldm create-vf command to create the virtual function from
the /SYS/MB/NET0/IOVNET.PF0 physical function.

primary# ldm create-vf /SYS/MB/NET0/IOVNET.PF0
Created new vf: /SYS/MB/NET0/IOVNET.PF0.VF0

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-16

Example 8-3 Dynamically Creating an Ethernet Virtual Function and Setting
Properties

This example dynamically creates a virtual function while setting the mac-addr property to
00:14:2f:f9:14:c0 and the vid property to VLAN IDs 2 and 3.

primary# ldm create-vf mac-addr=00:14:2f:f9:14:c0 vid=2,3 /SYS/MB/NET0/IOVNET.PF0

Example 8-4 Dynamically Creating an Ethernet Virtual Function With Two Alternate
MAC Addresses

This example dynamically creates a virtual function that has two alternate MAC addresses.
One MAC address is automatically allocated, and the other is explicitly specified as
00:14:2f:f9:14:c2.

primary# ldm create-vf alt-mac-addrs=auto,00:14:2f:f9:14:c2 /SYS/MB/NET0/IOVNET.PF0

Example 8-5 Statically Creating a Virtual Function Without Setting Optional
Properties

This example statically creates a virtual function without setting any optional properties. In
this case, the MAC address for a network class virtual function is automatically allocated.

First you initiate a delayed reconfiguration on the primary domain and then enable I/O
virtualization on the pci_0 PCIe bus. Because the pci_0 bus has already been assigned to
the primary root domain, use the ldm set-io command to enable I/O virtualization.

primary# ldm start-reconf primary
Initiating a delayed reconfiguration operation on the primary domain.
All configuration changes for other domains are disabled until the primary
domain reboots, at which time the new configuration for the primary domain
will also take effect.

primary# ldm set-io iov=on pci_0

Now, you can use the ldm create-vf command to create the virtual function from
the /SYS/MB/NET0/IOVNET.PF0 physical function.

primary# ldm create-vf /SYS/MB/NET0/IOVNET.PF0

--
Notice: The primary domain is in the process of a delayed reconfiguration.
Any changes made to the primary domain will only take effect after it reboots.
--

Created new vf: /SYS/MB/NET0/IOVNET.PF0.VF0

Finally, reboot the primary root domain to make the changes take effect.

primary# shutdown -i6 -g0 -y

Example 8-6 Creating Multiple SR-IOV Ethernet Virtual Functions

The following examples show ways in which you can create multiple SR-IOV Ethernet virtual
functions:

• The following command shows how you can create 8 virtual functions from
the /SYS/MB/NET2/IOVNET.PF1 physical function and specify name of new_vf for the
virtual function:

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-17

primary# ldm create-vf -n 8 name=new_vf /SYS/MB/NET2/IOVNET.PF1
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF0
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF1
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF2
...
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF7

Note that the ldm create-vf -n command creates multiple virtual functions
that are set with default property values, if appropriate. You can later specify non-
default property values by using the ldm set-io command.

The name you specify as the value of the name property is used as a base name
for the generated virtual function names. The ldm list-io command shows the
virtual function name you specified:

primary# ldm list-io /SYS/MB/NET2/IOVNET.PF1
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 ldg1
/SYS/MB/NET2/IOVNET.PF1.VF0 VF pci_1
Assigned-Name: new_vf.0
/SYS/MB/NET2/IOVNET.PF1.VF1 VF pci_1
Assigned-Name: new_vf.1
/SYS/MB/NET2/IOVNET.PF1.VF2 VF pci_1
Assigned-Name: new_vf.2
...
/SYS/MB/NET2/IOVNET.PF1.VF7 VF pci_1
Assigned-Name: new_vf.7

• The following command shows how you can create 8 virtual functions from
the /SYS/MB/NET2/IOVNET.PF1 physical function:

primary# ldm create-vf -n 8 /SYS/MB/NET2/IOVNET.PF1
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF0
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF1
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF2
...
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF7

Note that the ldm create-vf -n command creates multiple virtual functions
that are set with default property values, if appropriate. You can later specify non-
default property values by using the ldm set-io command.

Destroying Ethernet Virtual Functions
A virtual function can be destroyed if it is not currently assigned to a domain. A virtual
function can be destroyed only in the reverse sequential order of creation, so only the
last virtual function that was created can be destroyed. The resulting configuration is
validated by the physical function driver.

How to Destroy an Ethernet SR-IOV Virtual Function
If you cannot use this dynamic method, use the static method instead. See Static SR-
IOV.

1. Identify the physical function device.

primary# ldm list-io

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-18

2. Destroy single a virtual function or multiple virtual functions either dynamically or
statically.

• Dynamic method:

– To destroy some or all of the virtual functions from a physical function at one
time, use the following command:

primary# ldm destroy-vf -n number | max pf-name

Use the ldm destroy-vf -n max command to destroy all the virtual functions
for that physical function at one time.

If you specify number as an argument to the -n option, the last number of virtual
functions are destroyed. Use this method as it performs this operation with only
one physical function device driver state transition.

You can use either the path name or the pseudonym name to specify virtual
functions. However, the recommended practice is to use the pseudonym name.

– To destroy a specified virtual function:

primary# ldm destroy-vf vf-name
Due to delays in the affected hardware device and in the OS, the affected physical
function and any remaining child virtual functions might not be available for
immediate use. Use the ldm list-io command to determine whether the parent
physical function and its child virtual functions have the INV value in the Status
column. If they have this value, wait until the ldm list-io output no longer shows
the INV value in the Status column (about 45 seconds). At that time, you can safely
use that physical function or any of its child virtual functions. If this status persists,
there is a problem with the device.

A device status might be INV immediately following a root domain reboot (including
that of the primary) or immediately after you use the ldm create-vf or ldm
destroy-vf command.

• Static method:

a. Initiate a delayed reconfiguration.

primary# ldm start-reconf root-domain-name
b. Destroy either a single virtual function or multiple virtual functions.

– To destroy all of the virtual functions from the specified physical function at
the same time, use the following command:

primary# ldm destroy-vf -n number | max pf-name

You can use either the path name or the pseudonym name to specify virtual
functions. However, the recommended practice is to use the pseudonym
name.

– To destroy a specified virtual function:

primary# ldm destroy-vf vf-name
c. Reboot the root domain.

– To reboot the non-primary root domain:

primary# ldm stop-domain -r root-domain
– To reboot the primary root domain:

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-19

primary# shutdown -i6 -g0 -y
Example 8-7 Destroying an Ethernet Virtual Function

This example shows how to dynamically destroy the /SYS/MB/NET0/IOVNET.PF0.VF0
virtual function.

primary# ldm destroy-vf /SYS/MB/NET0/IOVNET.PF0.VF0

The following example shows how to statically destroy the /SYS/MB/NET0/
IOVNET.PF0.VF0 virtual function.

primary# ldm start-reconf primary
Initiating a delayed reconfiguration operation on the primary domain.
All configuration changes for other domains are disabled until the primary
domain reboots, at which time the new configuration for the primary domain
will also take effect.

primary# ldm destroy-vf /SYS/MB/NET0/IOVNET.PF0.VF0
primary# shutdown -i6 -g0 -y

Example 8-8 Destroying Multiple Ethernet SR-IOV Virtual Functions

This example shows the results of destroying all the virtual functions from
the /SYS/MB/NET2/IOVNET.PF1 physical function. The ldm list-io output
shows that the physical function has seven virtual functions. The ldm destroy-vf
command destroys all virtual functions, and the final ldm list-io output shows that
none of the virtual functions remain.

primary# ldm list-io
...
/SYS/MB/NET2/IOVNET.PF1 PF pci_1
/SYS/MB/NET2/IOVNET.PF1.VF0 VF pci_1
/SYS/MB/NET2/IOVNET.PF1.VF1 VF pci_1
/SYS/MB/NET2/IOVNET.PF1.VF2 VF pci_1
/SYS/MB/NET2/IOVNET.PF1.VF3 VF pci_1
/SYS/MB/NET2/IOVNET.PF1.VF4 VF pci_1
/SYS/MB/NET2/IOVNET.PF1.VF5 VF pci_1
/SYS/MB/NET2/IOVNET.PF1.VF6 VF pci_1
primary# ldm destroy-vf -n max /SYS/MB/NET2/IOVNET.PF1
primary# ldm list-io
...
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 ldg1

Modifying Ethernet SR-IOV Virtual Functions
The ldm set-io vf-name command modifies the current configuration of a virtual
function by changing the property values or by setting new properties. This command
can modify both the network-specific properties and the device-specific properties. For
information about device-specific properties, see Advanced SR-IOV Topics: Ethernet
SR-IOV.

If you cannot use this dynamic method, use the static method instead. See Static SR-
IOV.

You can use the ldm set-io command to modify the following properties:

• mac-addr, alt-mac-addrs, and mtu

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-20

To change these virtual function properties, stop the domain that owns the virtual
function, use the ldm set-io command to change the property values, and start the
domain.

• pvid and vid
You can dynamically change these properties while the virtual functions are assigned to a
domain. Note that doing so might result in a change to the network traffic of an active
virtual function; setting the pvid property enables a transparent VLAN. Setting the vid
property to specify VLAN IDs permits VLAN traffic to those specified VLANs.

• Device-specific properties

Use the ldm list-io -d pf-name command to view the list of valid device-specific
properties. You can modify these properties for both the physical function and the virtual
function. You must use the static method to modify device-specific properties. See Static
SR-IOV. For more information about device-specific properties, see Advanced SR-IOV
Topics: Ethernet SR-IOV.

How to Modify Ethernet SR-IOV Virtual Function Properties
1. Identify the physical function device.

primary# ldm list-io

Note that the name of the physical function includes the location information for the PCIe
SR-IOV card or on-board device.

2. Modify a virtual function property.

ldm set-io name=value [name=value...] vf-name
Example 8-9 Modifying Ethernet Virtual Function Properties

These examples describe how to use the ldm set-io command to set properties on an
Ethernet virtual function.

• The following example modifies properties of the specified virtual function, /SYS/MB/
NET0/IOVNET.PF0.VF0, to be part of VLAN IDs 2, 3, and 4.

primary# ldm set-io vid=2,3,4 /SYS/MB/NET0/IOVNET.PF0.VF0

Note that this command dynamically changes the VLAN association for a virtual function.
To use these VLANs, the VLAN interfaces in the I/O domains must be configured by
using the appropriate Oracle Solaris OS networking commands.

• The following example sets the pvid property value to 2 for the /SYS/MB/NET0/
IOVNET.PF0.VF0 virtual function, which transparently makes the virtual function part of
VLAN 2. Namely, the virtual function will not view any tagged VLAN traffic.

primary# ldm set-io pvid=2 /SYS/MB/NET0/IOVNET.PF0.VF0
• The following example assigns three automatically allocated alternate MAC addresses to

a virtual function. The alternate addresses enable the creation of Oracle Solaris 11 virtual
network interface cards (VNICs) on top of a virtual function. Note that to use VNICs, you
must run the Oracle Solaris 11 OS in the domain.

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-21

Note:

Before you run this command, stop the domain that owns the virtual
function.

primary# ldm set-io alt-mac-addrs=auto,auto,auto /SYS/MB/NET0/IOVNET.PF0.VF0
• The following example sets the device-specific unicast-slots property to 12 for

the specified virtual function. To find the device-specific properties that are valid for
a physical function, use the ldm list-io -d pf-name command.

primary# ldm set-io unicast-slots=12 /SYS/MB/NET0/IOVNET.PF0.VF0

All configuration changes for other domains are disabled until the primary
domain reboots, at which time the new configuration for the primary domain
will also take effect.

Adding and Removing Ethernet SR-IOV Virtual Functions on I/O
Domains

How to Add an Ethernet SR-IOV Virtual Function to an I/O Domain
If you cannot dynamically remove the virtual function, use the static method. See
Static SR-IOV.

1. Identify the virtual function that you want to add to an I/O domain.

primary# ldm list-io
2. Add a virtual function dynamically or statically.

• To dynamically add a virtual function:

primary# ldm add-io vf-name domain-name

vf-name is the pseudonym name or the path name of the virtual function. The
recommended practice is to use the pseudonym name. domain-name
specifies the name of the domain to which you add the virtual function.

The device path name for the virtual function in the domain is the path shown
in the list-io -l output.

• To statically add a virtual function:

a. Initiate a delayed reconfiguration and then add the virtual function.

primary# ldm start-reconf root-domain-name
primary# ldm add-io vf-name domain-name

vf-name is the pseudonym name or the path name of the virtual function.
The recommended practice is to use the pseudonym name. domain-name
specifies the name of the domain to which you add the virtual function.
The specified guest domain must be in the inactive or bound state.

The device path name for the virtual function in the domain is the path
shown in the list-io -l output.

b. Reboot the root domain.

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-22

– To reboot the non-primary root domain:

primary# ldm stop-domain -r root-domain
– To reboot the primary root domain:

primary# shutdown -i6 -g0 -y
Example 8-10 Adding an Ethernet Virtual Function

This example shows how to dynamically add the /SYS/MB/NET0/IOVNET.PF0.VF0 virtual
function to the ldg1 domain.

primary# ldm add-io /SYS/MB/NET0/IOVNET.PF0.VF0 ldg1

If you cannot add the virtual function dynamically, use the static method:

primary# ldm stop-domain ldg1
primary# ldm add-io /SYS/MB/NET0/IOVNET.PF0.VF0 ldg1
primary# ldm start-domain ldg1

How to Remove an Ethernet Virtual SR-IOV Function From an I/O Domain
If you cannot dynamically remove the virtual function, use the static method. See Static SR-
IOV.

Caution:

Before removing the virtual function from the domain, ensure that it is not critical for
booting that domain.

1. Identify the virtual function that you want to remove from an I/O domain.

primary# ldm list-io
2. Remove a virtual function either dynamically or statically.

• To dynamically remove a virtual function:

primary# ldm remove-io vf-name
domain-name

vf-name is the pseudonym name or the path name of the virtual function. The
recommended practice is to use the device pseudonym. domain-name specifies the
name of the domain from which you remove the virtual function.

• To statically remove a virtual function:

a. Stop the I/O domain.

primary# ldm stop-domain domain-name
b. Remove the virtual function.

primary# ldm remove-io vf-name domain-name

vf-name is the pseudonym name or the path name of the virtual function. The
recommended practice is to use the device pseudonym. domain-name specifies
the name of the domain from which you remove the virtual function. The
specified guest domain must be in the inactive or bound state.

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-23

c. Start the I/O domain.

primary# ldm start-domain domain-name
Example 8-11 Dynamically Removing an Ethernet Virtual Function

This example shows how to dynamically remove the /SYS/MB/NET0/IOVNET.PF0.VF0
virtual function from the ldg1 domain.

primary# ldm remove-io /SYS/MB/NET0/IOVNET.PF0.VF0 ldg1

If the command succeeds, the virtual function is removed from the ldg1 domain. When
ldg1 is restarted, the specified virtual function no longer appears in that domain.

If you cannot remove the virtual function dynamically, use the static method:

primary# ldm stop-domain ldg1
primary# ldm remove-io /SYS/MB/NET0/IOVNET.PF0.VF0 ldg1
primary# ldm start-domain ldg1

Advanced SR-IOV Topics: Ethernet SR-IOV
This section describes some advanced topics related to using SR-IOV virtual
functions.

Advanced Network Configuration for Virtual Functions
When you use SR-IOV virtual functions, note the following issues:

• SR-IOV virtual functions can only use the MAC addresses that are assigned by the
Logical Domains Manager. If you use other Oracle Solaris OS networking
commands to change the MAC address on the I/O domain, the commands might
fail or might not function properly.

• At this time, link aggregation of SR-IOV network virtual functions in the I/O domain
is not supported. If you attempt to create a link aggregation, it might not function
as expected.

• You can create virtual I/O services and assign them to I/O domains. These virtual
I/O services can be created on the same physical function from which virtual
functions are also created. For example, you can use an on-board 1-Gbps network
device (net0 or igb0) as a network back-end device for a virtual switch and also
statically create virtual functions from the same physical function device.

Booting an I/O Domain by Using an SR-IOV Virtual Function
An SR-IOV virtual function provides similar capabilities to any other type of PCIe
device, such as the ability to use a virtual function as a logical domain boot device. For
example, a network virtual function can be used to boot over the network to install the
Oracle Solaris OS in an I/O domain.

Note:

When booting the Oracle Solaris OS from a virtual function device, verify that
the Oracle Solaris OS that is being loaded has virtual function device
support. If so, you can continue with the rest of the installation as planned.

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-24

SR-IOV Device-Specific Properties
SR-IOV physical function device drivers can export device-specific properties. These
properties can be used to tune the resource allocation of both the physical function and its
virtual functions. For information about the properties, see the man page for the physical
function driver, such as the igb(7D) and ixgbe(7D) man pages.

The ldm list-io -d command shows device-specific properties that are exported by the
specified physical function device driver. The information for each property includes its name,
brief description, default value, maximum values, and one or more of the following flags:

P
Applies to a physical function

V
Applies to a virtual function

R
Read-only or informative parameter only

primary# ldm list-io -d pf-name

Use the ldm create-vf or ldm set-io command to set the read-write properties for a
physical function or a virtual function. Note that to set a device-specific property, you must
use the static method. See Static SR-IOV.

The following example shows the device-specific properties that are exported by the on-
board Intel 1-Gbps SR-IOV device:

primary# ldm list-io -d /SYS/MB/NET0/IOVNET.PF0
Device-specific Parameters

max-config-vfs
 Flags = PR
 Default = 7
 Descr = Max number of configurable VFs
max-vf-mtu
 Flags = VR
 Default = 9216
 Descr = Max MTU supported for a VF
max-vlans
 Flags = VR
 Default = 32
 Descr = Max number of VLAN filters supported
pvid-exclusive
 Flags = VR
 Default = 1
 Descr = Exclusive configuration of pvid required
unicast-slots
 Flags = PV
 Default = 0 Min = 0 Max = 24
 Descr = Number of unicast mac-address slots

The following example sets the unicast-slots property to 8:

primary# ldm create-vf unicast-slots=8 /SYS/MB/NET0/IOVNET.PF0

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-25

https://docs.oracle.com/cd/E88353_01/html/E37853/igb-7d.html
https://docs.oracle.com/cd/E88353_01/html/E37853/ixgbe-7d.html

Creating Virtual NICs on SR-IOV Virtual Functions
The creation of Oracle Solaris 11 virtual NICs (VNICs) is supported on SR-IOV virtual
functions. However, the number of VNICs that is supported is limited to the number of
alternate MAC addresses (alt-mac-addrs property) assigned to the virtual function.
Make sure that you assign a sufficient number of alternate MAC addresses when you
use VNICs on the virtual function. Use the ldm create-vf or ldm set-io
command to set the alt-mac-addrs property with the alternate MAC addresses.

The following example shows the creation of four VNICs on an SR-IOV virtual function.
The first command assigns alternate MAC addresses to the virtual function device.
This command uses the automatic allocation method to allocate four alternate MAC
addresses to the /SYS/MB/NET0/IOVNET.PF0.VF0 virtual function device:

primary# ldm set-io alt-mac-addrs=auto,auto,auto,auto /SYS/MB/NET0/IOVNET.PF0.VF0

The next command starts the ldg1 I/O domain. Because the auto-boot? property is
set to true in this example, the Oracle Solaris 11 OS is also booted in the I/O domain.

primary# ldm start-domain ldg1

The following command uses the Oracle Solaris 11 dladm command in the guest
domain to show virtual function that has alternate MAC addresses. This output shows
that the net30 virtual function has four alternate MAC addresses.

guest# dladm show-phys -m
LINK SLOT ADDRESS INUSE CLIENT
net0 primary 0:14:4f:fa:b4:d1 yes net0
net25 primary 0:14:4f:fa:c9:eb no --
net30 primary 0:14:4f:fb:de:4c no --
 1 0:14:4f:f9:e8:73 no --
 2 0:14:4f:f8:21:58 no --
 3 0:14:4f:fa:9d:92 no --
 4 0:14:4f:f9:8f:1d no --

The following commands create four VNICs. Note that attempts to create more VNICs
than are specified by using alternate MAC addresses will fail.

guest# dladm create-vnic -l net30 vnic0
guest# dladm create-vnic -l net30 vnic1
guest# dladm create-vnic -l net30 vnic2
guest# dladm create-vnic -l net30 vnic3
guest# dladm show-link
LINK CLASS MTU STATE OVER
net0 phys 1500 up --
net25 phys 1500 up --
net30 phys 1500 up --
vnic0 vnic 1500 up net30
vnic1 vnic 1500 up net30
vnic2 vnic 1500 up net30
vnic3 vnic 1500 up net30

Using an SR-IOV Virtual Function to Create an I/O Domain
The following procedure explains how to create an I/O domain that includes PCIe SR-
IOV virtual functions.

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-26

How to Create an I/O Domain by Assigning an SR-IOV Virtual Function to It
Before You Begin

Before you begin, ensure that you have enabled I/O virtualization for the PCIe bus that is the
parent of the physical function from which you create virtual functions. See How to Enable I/O
Virtualization for a PCIe Bus.

Plan ahead to minimize the number of reboots of the root domain, which minimizes
downtime.

1. Identify an SR-IOV physical function to share with an I/O domain that uses the SR-
IOV feature.

primary# ldm list-io
2. Create one or more virtual functions for the physical function.

primary# ldm create-vf pf-name

You can run this command for each virtual function that you want to create. You can also
use the -n option to create more than one virtual function from the same physical function
in a single command. See Creating Multiple SR-IOV Ethernet Virtual Functions and the
ldm(8) man page.

Note:

This command fails if other virtual functions have already been created from the
associated physical function and if any of those virtual functions are bound to
another domain.

3. View the list of available virtual functions on the root domain.

primary# ldm list-io
4. Assign the virtual function that you created in Step 2 to its target I/O domain.

primary# ldm add-io vf-name domain-name

Note:

If the OS in the target I/O domain does not support dynamic SR-IOV, you must
use the static method. See Static SR-IOV.

5. Verify that the virtual function is available on the I/O domain.

The following Oracle Solaris 11 command shows the availability of the virtual function:

guest# dladm show-phys
Example 8-12 Dynamically Creating an I/O Domain by Assigning an SR-IOV Virtual
Function to It

The following dynamic example shows how to create a virtual function, /SYS/MB/NET0/
IOVNET.PF0.VF0, for a physical function, /SYS/MB/NET0/IOVNET.PF0, and assign the
virtual function to the ldg1 I/O domain.

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-27

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

This example assumes that the following circumstances are true:

• The OS on the primary domain supports dynamic SR-IOV operations

• The pci_0 bus is assigned to the primary domain and has been initialized for I/O
virtualization operations

• The /SYS/MB/NET0/IOVNET.PF0 physical function belongs to the pci_0 bus

• The /SYS/MB/NET0/IOVNET.PF0 physical function does not have any existing
virtual functions assigned to domains

• The ldg1 domain is active and booted and its OS supports dynamic SR-IOV
operations

Create the virtual function from the /SYS/MB/NET0/IOVNET.PF0 physical function.

primary# ldm create-vf /SYS/MB/NET0/IOVNET.PF0
Created new vf: /SYS/MB/NET0/IOVNET.PF0.VF0

Add the /SYS/MB/NET0/IOVNET.PF0.VF0 virtual function to the ldg1 domain.

primary# ldm add-io /SYS/MB/NET0/IOVNET.PF0.VF0 ldg1

The following command shows that the virtual function has been added to the ldg1
domain.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP1/NIU_CORE NIU niu_1 primary
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
/SYS/PM0/CMP1/PEX BUS pci_1
/SYS/MB/PCIE0 PCIE pci_0 primary OCC
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
/SYS/MB/SASHBA PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE1 PCIE pci_1 primary OCC
/SYS/MB/PCIE3 PCIE pci_1 primary OCC
/SYS/MB/PCIE5 PCIE pci_1 primary OCC
/SYS/MB/PCIE7 PCIE pci_1 primary EMP
/SYS/MB/PCIE9 PCIE pci_1 primary EMP
/SYS/MB/NET2 PCIE pci_1 primary OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/PCIE5/IOVNET.PF0 PF pci_1 primary
/SYS/MB/PCIE5/IOVNET.PF1 PF pci_1 primary
/SYS/MB/NET2/IOVNET.PF0 PF pci_1 primary
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 primary
/SYS/MB/NET0/IOVNET.PF0.VF0 VF pci_0 ldg1

Example 8-13 Statically Creating an I/O Domain by Assigning an SR-IOV Virtual
Function to It

The following static example shows how to create a virtual function, /SYS/MB/NET0/
IOVNET.PF0.VF0, for a physical function, /SYS/MB/NET0/IOVNET.PF0, and assign
the virtual function to the ldg1 I/O domain.

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-28

This example assumes that the following circumstances are true:

• The OS on the primary domain does not support dynamic SR-IOV operations

• The pci_0 bus is assigned to the primary domain and has not been initialized for I/O
virtualization operations

• The /SYS/MB/NET0/IOVNET.PF0 physical function belongs to the pci_0 bus

• The /SYS/MB/NET0/IOVNET.PF0 physical function does not have any existing virtual
functions assigned to domains

• The ldg1 domain is active and booted and its OS does not support dynamic SR-IOV
operations

• The ldg1 domain has the auto-boot? property set to true so that the domain boots
automatically when the domain is started

First, initiate a delayed reconfiguration on the primary domain, enable I/O virtualization, and
create the virtual function from the /SYS/MB/NET0/IOVNET.PF0 physical function.

primary# ldm start-reconf primary
Initiating a delayed reconfiguration operation on the primary domain.
All configuration changes for other domains are disabled until the primary
domain reboots, at which time the new configuration for the primary domain
will also take effect.

primary# ldm set-io iov=on pci_0
primary# ldm create-vf /SYS/MB/NET0/IOVNET.PF0

--
Notice: The primary domain is in the process of a delayed reconfiguration.
Any changes made to the primary domain will only take effect after it reboots.
--
Created new vf: /SYS/MB/NET0/IOVNET.PF0.VF0

Next, shut down the primary domain.

primary# shutdown -i6 -g0 -y

Stop the ldg1 domain, add the virtual function, and start the domain.

primary# ldm stop ldg1
primary# ldm add-io /SYS/MB/NET0/IOVNET.PF0.VF0 ldg1
primary# ldm start-domain ldg1

The following command shows that the virtual function has been added to the ldg1 domain.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP1/NIU_CORE NIU niu_1 primary
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
/SYS/PM0/CMP1/PEX BUS pci_1
/SYS/MB/PCIE0 PCIE pci_0 primary OCC
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
/SYS/MB/SASHBA PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE1 PCIE pci_1 primary OCC

Chapter 8
Using Ethernet SR-IOV Virtual Functions

8-29

/SYS/MB/PCIE3 PCIE pci_1 primary OCC
/SYS/MB/PCIE5 PCIE pci_1 primary OCC
/SYS/MB/PCIE7 PCIE pci_1 primary EMP
/SYS/MB/PCIE9 PCIE pci_1 primary EMP
/SYS/MB/NET2 PCIE pci_1 primary OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/PCIE5/IOVNET.PF0 PF pci_1 primary
/SYS/MB/PCIE5/IOVNET.PF1 PF pci_1 primary
/SYS/MB/NET2/IOVNET.PF0 PF pci_1 primary
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 primary
/SYS/MB/NET0/IOVNET.PF0.VF0 VF pci_0 ldg1

Using InfiniBand SR-IOV Virtual Functions

Note:

You can use only the static SR-IOV method for InfiniBand SR-IOV devices.

To minimize downtime, run all of the SR-IOV commands as a group while the root
domain is in delayed reconfiguration or a guest domain is stopped. The SR-IOV
commands that are limited in this way are the ldm create-vf, ldm destroy-vf,
ldm add-io, and ldm remove-io commands.

Typically, virtual functions are assigned to more than one guest domain. A reboot of
the root domain affects all of the guest domains that have been assigned the root
domain's virtual functions.

Because an unused InfiniBand virtual function has very little overhead, you can avoid
downtime by creating the necessary virtual functions ahead of time, even if they are
not used immediately.

InfiniBand SR-IOV Hardware Requirements
For information about the required PCIe InfiniBand SR-IOV hardware, see SR-IOV
Hardware and Software Requirements.

For InfiniBand SR-IOV support, the root domain must be running at least the Oracle
Solaris 11.1 SRU 10 OS. The I/O domains can run at least the Oracle Solaris 11.1
SRU 10 OS.

Creating and Destroying InfiniBand Virtual Functions

How to Create an InfiniBand Virtual Function
This procedure describes how to create an InfiniBand SR-IOV virtual function.

1. Initiate a delayed reconfiguration on the root domain.

primary# ldm start-reconf root-domain-name
2. Enable I/O virtualization by setting iov=on.

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-30

Perform this step only if I/O virtualization is not enabled already for the bus that has the
physical function.

primary# ldm set-io iov=on bus
3. Create one or more virtual functions that are associated with the physical

functions from that root domain.

primary# ldm create-vf pf-name

You can run this command for each virtual function that you want to create. You can also
use the -n option to create more than one virtual function from the same physical function
in a single command. See Creating Multiple SR-IOV Ethernet Virtual Functions and the
ldm(8) man page.

4. Reboot the root domain.

Run one of the following commands:

• Reboot the non-primary root domain.

primary# ldm stop-domain -r root-domain
• Reboot the primary root domain.

primary# shutdown -i6 -g0 -y
Example 8-14 Creating an InfiniBand Virtual Function

The following example shows information about the /SYS/MB/RISER1/PCIE4/IOVIB.PF0
physical function:

• This physical function is in PCIE slot 4.

• The IOVIB string indicates that the physical function is an InfiniBand SR-IOV device.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
/SYS/MB/RISER0/PCIE0 PCIE pci_0 primary EMP
/SYS/MB/RISER1/PCIE1 PCIE pci_0 primary EMP
/SYS/MB/RISER2/PCIE2 PCIE pci_0 primary EMP
/SYS/MB/RISER0/PCIE3 PCIE pci_0 primary OCC
/SYS/MB/RISER1/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/RISER2/PCIE5 PCIE pci_0 primary EMP
/SYS/MB/SASHBA0 PCIE pci_0 primary OCC
/SYS/MB/SASHBA1 PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/NET2 PCIE pci_0 primary OCC
/SYS/MB/RISER0/PCIE3/IOVIB.PF0 PF pci_0 primary
/SYS/MB/RISER1/PCIE4/IOVIB.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/NET2/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET2/IOVNET.PF1 PF pci_0 primary

The following command shows more details about the specified physical function. The maxvfs
value indicates the maximum number of virtual functions that are supported by the device.

primary# ldm list-io -l /SYS/MB/RISER1/PCIE4/IOVIB.PF0
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-31

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

/SYS/MB/RISER1/PCIE4/IOVIB.PF0 PF pci_0 primary
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0]
 maxvfs = 64

The following example shows how to create a static virtual function. First, initiate a
delayed reconfiguration on the primary domain and enable I/O virtualization on the
pci_0 PCIe bus. Because the pci_0 bus has been assigned already to the primary
root domain, use the ldm set-io command to enable I/O virtualization.

primary# ldm start-reconf primary
Initiating a delayed reconfiguration operation on the primary domain.
All configuration changes for other domains are disabled until the primary
domain reboots, at which time the new configuration for the primary domain
will also take effect.

primary# ldm set-io iov=on pci_0

Notice: The primary domain is in the process of a delayed reconfiguration.
Any changes made to the primary domain will only take effect after it reboots.

Now, use the ldm create-vf command to create a virtual function from
the /SYS/MB/RISER1/PCIE4/IOVIB.PF0 physical function.

primary# ldm create-vf /SYS/MB/RISER1/PCIE4/IOVIB.PF0

Notice: The primary domain is in the process of a delayed reconfiguration.
Any changes made to the primary domain will only take effect after it reboots.
--
Created new vf: /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF0

Note that you can create more than one virtual function during the same delayed
reconfiguration. The following command creates a second virtual function:

primary# ldm create-vf /SYS/MB/RISER1/PCIE4/IOVIB.PF0

Notice: The primary domain is in the process of a delayed reconfiguration.
Any changes made to the primary domain will only take effect after it reboots.

Created new vf: /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF1

Finally, reboot the primary root domain to make the changes take effect.

primary# shutdown -i6 -g0 -y
Shutdown started.

Changing to init state 6 - please wait
...

How to Destroy an InfiniBand Virtual Function
This procedure describes how to destroy an InfiniBand SR-IOV virtual function.

A virtual function can be destroyed if it is not currently assigned to a domain. A virtual
function can be destroyed only in the reverse sequential order of creation, so only the
last virtual function that was created can be destroyed. The resulting configuration is
validated by the physical function driver.

An attempt to use a dynamic SR-IOV remove operation on an InfiniBand device results
in confusing and inappropriate error messages.

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-32

Dynamic SR-IOV remove operations are not supported for InfiniBand devices.

Remove InfiniBand virtual functions by performing one of the following procedures:

• How to Remove an InfiniBand Virtual Function From an I/O Domain

• How to Remove an InfiniBand Virtual Function From a Root Domain

1. Initiate a delayed reconfiguration on the root domain.

primary# ldm start-reconf root-domain-name
2. Destroy one or more virtual functions that are associated with the physical

functions from that root domain.

primary# ldm destroy-vf vf-name

You can run this command for each virtual function that you want to destroy. You can also
use the -n option to destroy more than one virtual function from the same physical
function in a single command. See Destroying Multiple Ethernet SR-IOV Virtual Functions
and the ldm(8) man page.

3. Reboot the root domain.

Run one of the following commands:

• Reboot the non-primary root domain.

primary# ldm stop-domain -r root-domain
• Reboot the primary root domain.

primary# shutdown -i6 -g0 -y
Example 8-15 Destroying an InfiniBand Virtual Function

The following example shows how to destroy a static InfiniBand virtual function, /SYS/MB/
RISER1/PCIE4/IOVIB.PF0.VF1.

The ldm list-io command shows information about the buses, physical functions, and
virtual functions.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
...
/SYS/MB/RISER1/PCIE4/IOVIB.PF0 PF pci_0 primary
...
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF0 VF pci_0
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF1 VF pci_0

You can obtain more details about the physical function and related virtual functions by using
the ldm list-io -l command.

primary# ldm list-io -l /SYS/MB/RISER1/PCIE4/IOVIB.PF0
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/MB/RISER1/PCIE4/IOVIB.PF0 PF pci_0 primary
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0]
 maxvfs = 64
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF0 VF pci_0
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0,1]
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF1 VF pci_0
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0,2]

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-33

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

A virtual function can be destroyed only if it is unassigned to a domain. The DOMAIN
column of the ldm list-io -l output shows the name of any domain to which a
virtual function is assigned. Also, virtual functions must be destroyed in the reverse
order of their creation. Therefore, in this example, you must destroy the /SYS/MB/
RISER1/PCIE4/IOVIB.PF0.VF1 virtual function before you can destroy
the /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF0 virtual function.

After you identify the proper virtual function, you can destroy it. First, initiate a delayed
reconfiguration.

primary# ldm start-reconf primary
Initiating a delayed reconfiguration operation on the primary domain.
All configuration changes for other domains are disabled until the primary
domain reboots, at which time the new configuration for the primary domain
will also take effect.

primary# ldm destroy-vf /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF1

Notice: The primary domain is in the process of a delayed reconfiguration.
Any changes made to the primary domain will only take effect after it reboots.

You can issue more than one ldm destroy-vf command while in delayed
reconfiguration. Thus, you could also destroy the /SYS/MB/RISER1/PCIE4/
IOVIB.PF0.VF0.

Finally, reboot the primary root domain to make the changes take effect.

primary# shutdown -i6 -g0 -y
Shutdown started.

Changing to init state 6 - please wait
...

Adding and Removing InfiniBand Virtual Functions on I/O Domains

How to Add an InfiniBand Virtual Function to an I/O Domain
This procedure describes how to add an InfiniBand SR-IOV virtual function to an I/O
domain.

1. Stop the I/O domain.

primary# ldm stop-domain domain-name
2. Add one or more virtual functions to the I/O domain.

vf-name is the pseudonym name or the path name of the virtual function. The
recommended practice is to use the pseudonym name. domain-name specifies the
name of the domain to which you add the virtual function. The specified I/O
domain must be in the inactive or bound state.

primary# ldm add-io vf-name domain-name
3. Start the I/O domain.

primary# ldm start-domain domain-name

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-34

Example 8-16 Adding an InfiniBand Virtual Function

The following example shows how to add the /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2
virtual function to the iodom1 I/O domain.

First, identify the virtual function that you want to assign.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
...
/SYS/MB/RISER1/PCIE4/IOVIB.PF0 PF pci_0 primary
...
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF0 VF pci_0
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF1 VF pci_0
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 VF pci_0
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF3 VF pci_0

To add a virtual function to an I/O domain, it must be unassigned. The DOMAIN column
indicates the name of the domain to which the virtual function is assigned. In this case,
the /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 is not assigned to a domain.

To add a virtual function to a domain, the domain must be in the inactive or bound state.

primary# ldm list-domain
NAME STATE FLAGS CONS VCPU MEMORY UTIL NORM UPTIME
primary active -n-cv- UART 32 64G 0.2% 0.2% 56m
iodom1 active -n---- 5000 8 8G 33% 33% 25m

The ldm list-domain output shows that the iodom1 I/O domain is active, so it must be
stopped.

primary# ldm stop iodom1
LDom iodom1 stopped
primary# ldm list-domain
NAME STATE FLAGS CONS VCPU MEMORY UTIL NORM UPTIME
primary active -n-cv- UART 32 64G 0.0% 0.0% 57m
iodom1 bound ------ 5000 8 8G

Now you can add the virtual function to the I/O domain.

primary# ldm add-io /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 iodom1
primary# ldm list-io
...
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 VF pci_0 iodom1

Note that you can add more than one virtual function while an I/O domain is stopped. For
example, you might add other unassigned virtual functions such as /SYS/MB/RISER1/
PCIE4/IOVIB.PF0.VF3 to iodom1. After you add the virtual functions, you can restart the
I/O domain.

primary# ldm start-domain iodom1
LDom iodom1 started
primary# ldm list-domain
NAME STATE FLAGS CONS VCPU MEMORY UTIL NORM UPTIME
primary active -n-cv- UART 32 64G 1.0% 1.0% 1h 18m
iodom1 active -n---- 5000 8 8G 36% 36% 1m

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-35

How to Remove an InfiniBand Virtual Function From an I/O Domain
This procedure describes how to remove an InfiniBand SR-IOV virtual function from an
I/O domain.

1. Stop the I/O domain.

primary# ldm stop-domain domain-name
2. Remove one or more virtual functions from the I/O domain.

vf-name is the pseudonym name or the path name of the virtual function. The
recommended practice is to use the device pseudonym. domain-name specifies
the name of the domain from which you remove the virtual function. The specified
I/O domain must be in the inactive or bound state.

Note:

Before removing the virtual function from the I/O domain, ensure that it is
not critical for booting that domain.

primary# ldm remove-io vf-name domain-name
3. Start the I/O domain.

primary# ldm start-domain domain-name
Example 8-17 Removing an InfiniBand Virtual Function

The following example shows how to remove the /SYS/MB/RISER1/PCIE4/
IOVIB.PF0.VF2 virtual function from the iodom1 I/O domain.

First, identify the virtual function that you want to remove.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
...
/SYS/MB/RISER1/PCIE4/IOVIB.PF0 PF pci_0 primary
...
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF0 VF pci_0
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF1 VF pci_0
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 VF pci_0 iodom1
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF3 VF pci_0 iodom1

The DOMAIN column shows the name of the domain to which the virtual function is
assigned. The /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 virtual function is
assigned to iodom1.

To remove a virtual function from an I/O domain, the domain must be inactive or bound
state. Use the ldm list-domain command to determine the state of the domain.

primary# ldm list-domain
NAME STATE FLAGS CONS VCPU MEMORY UTIL NORM UPTIME
primary active -n-cv- UART 32 64G 0.3% 0.3% 29m
iodom1 active -n---- 5000 8 8G 17% 17% 11m

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-36

In this case, the iodom1 domain is active and so must be stopped.

primary# ldm stop iodom1
LDOM iodom1 stopped
primary# ldm list-domain
NAME STATE FLAGS CONS VCPU MEMORY UTIL NORM UPTIME
primary active -n-cv- UART 32 64G 0.0% 0.0% 31m
iodom1 bound ------ 5000 8 8G

Now you can remove the /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 virtual function from
iodom1.

primary# ldm remove-io /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 iodom1
primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
...
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 VF pci_0
...

Note that the DOMAIN column for the virtual function is now empty.

You can remove more than one virtual function while an I/O domain is stopped. In this
example, you could also remove the /SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF3 virtual
function. After you remove the virtual functions, you can restart the I/O domain.

primary# ldm start-domain iodom1
LDom iodom1 started
primary# ldm list-domain
NAME STATE FLAGS CONS VCPU MEMORY UTIL NORM UPTIME
primary active -n-cv- UART 32 64G 0.3% 0.3% 39m
iodom1 active -n---- 5000 8 8G 9.4% 9.4% 5s

Adding and Removing InfiniBand Virtual Functions to Root Domains

How to Add an InfiniBand Virtual Function to a Root Domain
This procedure describes how to add an InfiniBand SR-IOV virtual function to a root domain.

1. Initiate a delayed reconfiguration.

primary# ldm start-reconf root-domain
2. Add one or more virtual functions to the root domain.

vf-name is the pseudonym name or the path name of the virtual function. The
recommended practice is to use the pseudonym name. root-domain-name specifies the
name of the root domain to which you add the virtual function.

primary# ldm add-io vf-name root-domain-name
3. Reboot the root domain.

Run one of the following commands:

• Reboot the non-primary root domain.

primary# ldm stop-domain -r root-domain-name
• Reboot the primary root domain.

primary# shutdown -i6 -g0 -y

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-37

How to Remove an InfiniBand Virtual Function From a Root Domain
This procedure describes how to remove an InfiniBand SR-IOV virtual function from a
root domain.

1. Initiate a delayed reconfiguration.

primary# ldm start-reconf root-domain
2. Remove one or more virtual functions from the root domain.

vf-name is the pseudonym name or the path name of the virtual function. The
recommended practice is to use the pseudonym name. root-domain-name
specifies the name of the root domain to which you add the virtual function.

primary# ldm remove-io vf-name root-domain-name
3. Reboot the root domain.

Run one of the following commands:

• Reboot the non-primary root domain.

primary# ldm stop-domain -r root-domain-name
• Reboot the primary root domain.

primary# shutdown -i6 -g0 -y

Advanced SR-IOV Topics: InfiniBand SR-IOV
This section describes how to identify InfiniBand physical and virtual functions as well
as to correlate the Logical Domains Manager and the Oracle Solaris view of InfiniBand
physical and virtual functions.

Listing InfiniBand SR-IOV Virtual Functions
The following example shows different ways to display information about
the /SYS/MB/RISER1/PCIE4/IOVIB.PF0 physical function. A physical function
name that includes the IOVIB string indicates that it is an InfiniBand SR-IOV device.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/MB/RISER0/PCIE0 PCIE pci_0 primary EMP
/SYS/MB/RISER1/PCIE1 PCIE pci_0 primary EMP
/SYS/MB/RISER2/PCIE2 PCIE pci_0 primary EMP
/SYS/MB/RISER0/PCIE3 PCIE pci_0 primary OCC
/SYS/MB/RISER1/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/RISER2/PCIE5 PCIE pci_0 primary EMP
/SYS/MB/SASHBA0 PCIE pci_0 primary OCC
/SYS/MB/SASHBA1 PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/NET2 PCIE pci_0 primary OCC
/SYS/MB/RISER0/PCIE3/IOVIB.PF0 PF pci_0 primary
/SYS/MB/RISER1/PCIE4/IOVIB.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-38

/SYS/MB/NET2/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET2/IOVNET.PF1 PF pci_0 primary
/SYS/MB/RISER0/PCIE3/IOVIB.PF0.VF0 VF pci_0 primary
/SYS/MB/RISER0/PCIE3/IOVIB.PF0.VF1 VF pci_0 primary
/SYS/MB/RISER0/PCIE3/IOVIB.PF0.VF2 VF pci_0 iodom1
/SYS/MB/RISER0/PCIE3/IOVIB.PF0.VF3 VF pci_0 iodom1
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF0 VF pci_0 primary
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF1 VF pci_0 primary
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 VF pci_0 iodom1
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF3 VF pci_0 iodom1

The ldm list-io -l command provides more detailed information about the specified
physical function device, /SYS/MB/RISER1/PCIE4/IOVIB.PF0. The maxvfs value shows
that the maximum number of virtual functions supported by the physical device is 64. For
each virtual function that is associated with the physical function, the output shows the
following:

• Function name

• Function type

• Bus name

• Domain name

• Optional status of the function

• Device path

This ldm list-io -l output shows that VF0 and VF1 are assigned to the primary domain
and that VF2 and VF3 are assigned to the iodom1 I/O domain.

primary# ldm list-io -l /SYS/MB/RISER1/PCIE4/IOVIB.PF0
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/MB/RISER1/PCIE4/IOVIB.PF0 PF pci_0 primary
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0]
 maxvfs = 64
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF0 VF pci_0 primary
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0,1]
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF1 VF pci_0 primary
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0,2]
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 VF pci_0 iodom1
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0,3]
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF3 VF pci_0 iodom1
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0,4]

Identifying InfiniBand SR-IOV Functions
This section describes how to identify the InfiniBand SR-IOV devices.

Use the ldm list-io -l command to show the Oracle Solaris device path name that is
associated with each physical function and virtual function.

primary# ldm list-io -l /SYS/MB/RISER1/PCIE4/IOVIB.PF0
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/MB/RISER1/PCIE4/IOVIB.PF0 PF pci_0 primary
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0]
 maxvfs = 64
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF0 VF pci_0 primary
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0,1]

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-39

/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF1 VF pci_0 primary
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0,2]
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF2 VF pci_0 iodom1
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0,3]
/SYS/MB/RISER1/PCIE4/IOVIB.PF0.VF3 VF pci_0 iodom1
[pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0,4]

Use the dladm show-phys -L command to match each IP over InfiniBand (IPoIB)
instance to its physical card. For example, the following command shows which IPoIB
instances use the card in slot PCIE4, which is the same card shown in the previous
ldm list-io -l example.

primary# dladm show-phys -L | grep PCIE4
net5 ibp0 PCIE4/PORT1
net6 ibp1 PCIE4/PORT2
net19 ibp8 PCIE4/PORT1
net9 ibp9 PCIE4/PORT2
net18 ibp4 PCIE4/PORT1
net11 ibp5 PCIE4/PORT2

Each InfiniBand host channel adapter (HCA) device has a globally unique ID (GUID).
There are also GUIDs for each port (typically there are two ports to an HCA). An
InfiniBand HCA GUID uniquely identifies the adapter. The port GUID uniquely
identifies each HCA port and plays a role similar to a network device's MAC address.
These 16-hexadecimal digit GUIDs are used by InfiniBand management tools and
diagnostic tools.

Use the dladm show-ib command to obtain GUID information about the InfiniBand
SR-IOV devices. Physical functions and virtual functions for the same device have
related HCA GUID values. The 11th hexadecimal digit of the HCA GUID shows the
relationship between a physical function and its virtual functions. Note that leading
zeros are suppressed in the HCAGUID and PORTGUID columns.

For example, physical function PF0 has two virtual functions, VF0 and VF1, which are
assigned to the primary domain. The 11th hexadecimal digit of each virtual function is
incremented by one from the related physical function. So, if the GUID for the PF0 is 8,
the GUIDs for VF0 and VF1 will be 9 and A, respectively.

The following dladm show-ib command output shows that the net5 and net6 links
belong to the physical function PF0. The net19 and net9 links belong to VF0 of the
same device while the net18 and net11 links belong to VF1.

primary# dladm show-ib
LINK HCAGUID PORTGUID PORT STATE PKEYS
net6 21280001A17F56 21280001A17F58 2 up FFFF
net5 21280001A17F56 21280001A17F57 1 up FFFF
net19 21290001A17F56 14050000000001 1 up FFFF
net9 21290001A17F56 14050000000008 2 up FFFF
net18 212A0001A17F56 14050000000002 1 up FFFF
net11 212A0001A17F56 14050000000009 2 up FFFF

The device in the following dladm show-phys output shows the relationship between
the links and the underlying InfiniBand port devices (ibp X).

primary# dladm show-phys
LINK MEDIA STATE SPEED DUPLEX DEVICE
...
net6 Infiniband up 32000 unknown ibp1
net5 Infiniband up 32000 unknown ibp0

Chapter 8
Using InfiniBand SR-IOV Virtual Functions

8-40

net19 Infiniband up 32000 unknown ibp8
net9 Infiniband up 32000 unknown ibp9
net18 Infiniband up 32000 unknown ibp4
net11 Infiniband up 32000 unknown ibp5

Use the ls -l command to show the actual InfiniBand port (IB port) device paths. An IB port
device is a child of a device path that is shown in the ldm list-io -l output. A physical
function has a one-part unit address such as pciex15b3,673c@0 while virtual functions
have a two-part unit address, pciex15b3,1002@0,2. The second part of the unit address is
one higher than the virtual function number. (In this case, the second component is 2, so this
device is virtual function 1.) The following output shows that /dev/ibp0 is a physical
function and /dev/ibp5 is a virtual function.

primary# ls -l /dev/ibp0
lrwxrwxrwx 1 root root 83 Apr 18 12:02 /dev/ibp0 ->
../devices/pci@400/pci@1/pci@0/pci@0/pciex15b3,673c@0/hermon@0/ibport@1,0,ipib:ibp0
primary# ls -l /dev/ibp5
lrwxrwxrwx 1 root root 85 Apr 22 23:29 /dev/ibp5 ->
../devices/pci@400/pci@1/pci@0/pci@0/pciex15b3,1002@0,2/hermon@3/ibport@2,0,ipib:ibp5

You can use the OpenFabrics ibv_devices command to view the OpenFabrics device
name and the node (HCA) GUID. When virtual functions are present, the Type column
indicates whether the function is physical or virtual.

primary# ibv_devices
device node GUID type
------ ---------------- ----
mlx4_4 0002c90300a38910 PF
mlx4_5 0021280001a17f56 PF
mlx4_0 0002cb0300a38910 VF
mlx4_1 0002ca0300a38910 VF
mlx4_2 00212a0001a17f56 VF
mlx4_3 0021290001a17f56 VF

Using Fibre Channel SR-IOV Virtual Functions
An SR-IOV Fibre Channel host bus adapter (HBA) might have one or more ports each of
which appears as SR-IOV physical function. You can identify Fibre Channel physical
functions by the IOVFC string in its device name.

Each Fibre Channel physical function has unique port and node world-wide name (WWN)
values that are provided by the card manufacturer. When you create virtual functions from a
Fibre Channel physical function, the virtual functions behave like a Fibre Channel HBA
device. Each virtual function must have a unique identity that is specified by the port WWN
and node WWN of the SAN fabric. You can use the Logical Domains Manager to
automatically or manually assign the port and node WWNs. By assigning your own values,
you can fully control the identity of any virtual function.

The Fibre Channel HBA virtual functions use the N_Port ID Virtualization (NPIV) method to
log in to the SAN fabric. Because of this NPIV requirement, you must connect the Fibre
Channel HBA port to an NPIV-capable Fibre Channel switch. The virtual functions are
managed entirely by the hardware or the firmware of the SR-IOV card. Other than these
exceptions, Fibre Channel virtual functions work and behave the same way as a non-SR-IOV
Fibre Channel HBA device. The SR-IOV virtual functions have the same capabilities as the
non-SR-IOV devices, so all types of SAN storage devices are supported in either
configuration.

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-41

The virtual functions' unique port and node WWN values enable a SAN administrator
to assign storage to the virtual functions in the same way as he would for any non-SR-
IOV Fibre Channel HBA port. This management includes zoning, LUN masking, and
quality of service (QoS). You can configure the storage so that it is accessible
exclusively to a specific logical domain without being visible to the physical function in
the root domain.

You can use both the static and dynamic SR-IOV methods to manage Fibre Channel
SR-IOV devices.

Fibre Channel SR-IOV Hardware Requirements
For information about the required PCIe Fibre Channel SR-IOV hardware, see SR-IOV
Hardware and Software Requirements.

• Control domain.

– QLogic cards. At least the Oracle Solaris 11.2 OS

– Emulex cards. At least the Oracle Solaris 11.1 SRU 17 OS

• I/O domain.

– QLogic cards. At least the Oracle Solaris 11.2 OS

– Emulex cards. At least the Oracle Solaris 11.1 SRU 17 OS

Fibre Channel SR-IOV Requirements and Limitations
The Fibre Channel SR-IOV feature has the following recommendations and limitations:

• The SR-IOV card must run the latest version of firmware that supports the SR-IOV
feature.

• The Fibre Channel PCIe card must be connected to a Fibre Channel switch that
supports NPIV and that is compatible with the PCIe card.

• The Logical Domains Manager properly autogenerates unique port-wwn and
node-wwn property values by connecting the control domains of all systems to the
same SAN fabric and by being part of the same multicast domain.

If you cannot configure this environment, you must manually provide the node-
wwn and port-wwn values when you create the virtual function. This behavior
ensures that there are no naming conflicts. See World-Wide Name Allocation for
Fibre Channel Virtual Functions.

• To avoid a panic when switching a Fibre Channel SR-IOV configuration from Fibre
Channel 16 (FC16) to Converged Network Adapter (CNA) mode, you must first
remove all configurations from the SP.

Fibre Channel Device Class-Specific Properties
You can use the ldm create-vf or the ldm set-io commands to set the following
Fibre Channel virtual function properties:

bw-percent
Specifies the percentage of the bandwidth to be allocated to the Fibre Channel virtual
function. Valid values are from 0 to 100. The total bandwidth value assigned to a Fibre

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-42

Channel physical function's virtual functions cannot exceed 100. The default value is 0 so
that the virtual function gets a fair share of the bandwidth that is not already reserved by
other virtual functions that share the same physical function.

node-wwn
Specifies the node world-wide name (WWN) for the Fibre Channel virtual function. Valid
values are non-zero. By default, this value is allocated automatically. If you manually specify
this value, you must also specify a value for the port-wwn property. For more information,
see World-Wide Name Allocation for Fibre Channel Virtual Functions.

port-wwn
Specifies the port WWN for the Fibre Channel virtual function. Valid values are non-zero. By
default, this value is allocated automatically. If you manually specify this value, you must also
specify a value for the node-wwn property. For more information, see World-Wide Name
Allocation for Fibre Channel Virtual Functions.

You cannot modify the node-wwn or the port-wwn property values while the Fibre Channel
virtual function is in use. However, you can modify the bw-percent property value
dynamically even when the Fibre Channel virtual function is in use.

World-Wide Name Allocation for Fibre Channel Virtual Functions
The Logical Domains Manager supports both the automatic allocation and the manual
assignment of world-wide names for the Fibre Channel virtual functions.

Automatic World-Wide Name Allocation
Logical Domains Manager allocates a unique MAC address from its automatic MAC address
allocation pool and creates IEEE format node-wwn and port-wwn property values.

port-wwn = 10:00:XX:XX:XX:XX:XX:XX
node-wwn = 20:00:XX:XX:XX:XX:XX:XX

XX:XX:XX:XX:XX:XX is the automatically allocated MAC address.
This automatic allocation method produces unique WWNs when the control domains of all
systems that are connected to the same Fibre Channel fabric are also connected by
Ethernet and are part of the same multicast domain. If you cannot meet this requirement,
you must manually assign unique WWNs, which is required on the SAN.

Manual World-Wide Name Allocation
You can construct unique WWNs by using any method. This section describes how to create
WWNs from the Logical Domains Manager manual MAC address allocation pool. You must
guarantee the uniqueness of the WWNs you allocate.
Logical Domains Manager has a pool of 256,000 MAC addresses that are available for
manual allocation in the 00:14:4F:FC:00:00 - 00:14:4F:FF:FF:FF range.
The following example shows the port-wwn and node-wwn property values based on the
00:14:4F:FC:00:01 MAC address:

port-wwn = 10:00:00:14:4F:FC:00:01
node-wwn = 20:00:00:14:4F:FC:00:01

00:14:4F:FC:00:01 is the manually allocated MAC address. For information about automatic
MAC address allocation, see Assigning MAC Addresses Automatically or Manually.

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-43

Note:

It is best to manually assign the WWNs to ensure predictable configuration
of the SAN storage. You must use the manual WWN allocation method
when all systems are not connected to the same multicast domain by
Ethernet. Use this method to guarantee that the same WWNs are used
when Fibre Channel virtual functions are destroyed and re-created.
Automatically allocated WWNs are not saved for later recovery.

Creating Fibre Channel SR-IOV Virtual Functions
This section describes how to dynamically create and destroy virtual functions. If you
cannot use the dynamic methods to perform these actions, initiate a delayed
reconfiguration on the root domain before you create or destroy virtual functions.

How to Create a Fibre Channel SR-IOV Virtual Function
If you cannot use this dynamic method, use the static method instead. See Static SR-
IOV.

1. Identify the physical function device.

primary# ldm list-io

Note that the name of the physical function includes the location information for
the PCIe SR-IOV card or on-board device.

2. If I/O virtualization for the bus that has the physical function is not enabled
already, enable it.

Perform this step only if I/O virtualization is not enabled already for the bus that
has the physical function.

See How to Enable I/O Virtualization for a PCIe Bus.

3. Create a single virtual function or multiple virtual functions from a physical
function either dynamically or statically.

After you create one or more virtual functions, you can assign them to a guest
domain.

• Dynamic method:

– To create multiple virtual functions from a physical function all at the same
time, use the following command:

primary# ldm create-vf -n max [name=user-assigned-name] pf-name

Use the ldm create-vf -n max command to create all the virtual
functions for that physical function at one time. This command
automatically allocates the port and node WWNs for each virtual function
and sets the bw-percent property to the default value, which is 0. This
value specifies that fair share bandwidth is allocated to all virtual functions.
You can use the name property to optionally specify a name for the virtual
function.

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-44

Tip:

Create all virtual functions for the physical function at once. If you want
to manually assign WWNs, first create all of the virtual functions and
then use the ldm set-io command to manually assign your WWN
values for each virtual function. This technique minimizes the number of
state transitions when creating virtual functions from a physical
function.

You can use either the path name or the pseudonym name to specify virtual
functions. However, the recommended practice is to use the pseudonym name.

– To create one virtual function from a physical function, use the following
command:

ldm create-vf [bw-percent=value] [port-wwn=value node-wwn=value] pf-name

You can also manually specify Fibre Channel class-specific property values.

Note:

Sometimes a newly created virtual function is not available for immediate
use while the OS probes for IOV devices. Use the ldm list-io
command to determine whether the parent physical function and its child
virtual functions have the INV value in the Status column. If they have this
value, wait until the ldm list-io output no longer shows the INV value in
the Status column (about 45 seconds) before you use that physical function
or any of its child virtual functions. If this status persists, there is a problem
with the device. A device status might be INV immediately following a root
domain reboot (including that of the primary) or immediately after you use
the ldm create-vf or ldm destroy-vf command.

• Static method:

a. Initiate a delayed reconfiguration.

primary# ldm start-reconf root-domain-name
b. Create a single virtual function or multiple virtual functions from a physical

function.

Use the same commands as shown previously to dynamically create the virtual
functions.

c. Reboot the root domain.

– To reboot the non-primary root domain:

primary# ldm stop-domain -r root-domain
– To reboot the primary root domain:

primary# shutdown -i6 -g0 -y
Example 8-18 Displaying Information About the Fibre Channel Physical Function

This example shows information about the /SYS/MB/PCIE7/IOVFC.PF0 physical function:

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-45

• This physical function is from a board in a PCIe slot, PCIE7.

• The IOVFC string indicates that the physical function is a Fibre Channel SR-IOV
device.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
/SYS/PM0/CMP1/PEX BUS pci_1 rootdom1 IOV
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP1/NIU_CORE NIU niu_1 primary
/SYS/MB/PCIE0 PCIE pci_0 primary OCC
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
/SYS/MB/SASHBA PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE1 PCIE pci_1 rootdom1 OCC
/SYS/MB/PCIE3 PCIE pci_1 rootdom1 OCC
/SYS/MB/PCIE5 PCIE pci_1 rootdom1 OCC
/SYS/MB/PCIE7 PCIE pci_1 rootdom1 OCC
/SYS/MB/PCIE9 PCIE pci_1 rootdom1 OCC
/SYS/MB/NET2 PCIE pci_1 rootdom1 OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/PCIE5/IOVNET.PF0 PF pci_1 rootdom1
/SYS/MB/PCIE5/IOVNET.PF1 PF pci_1 rootdom1
/SYS/MB/PCIE7/IOVFC.PF0 PF pci_1 rootdom1
/SYS/MB/PCIE7/IOVFC.PF1 PF pci_1 rootdom1
/SYS/MB/NET2/IOVNET.PF0 PF pci_1 rootdom1
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 rootdom1

The following command shows more details about the specified physical function. The
maxvfs value indicates the maximum number of virtual functions that is supported by
the device.

primary# ldm list-io -l /SYS/MB/PCIE7/IOVFC.PF0
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/MB/PCIE7/IOVFC.PF0 PF pci_0 rootdom1
[pci@400/pci@1/pci@0/pci@6/SUNW,emlxs@0]
 maxvfs = 8

Example 8-19 Dynamically Creating a Fibre Channel Virtual Function Without
Setting Optional Properties

This example dynamically creates a virtual function without setting any optional
properties. In this case, the ldm create-vf command automatically allocates the
default bandwidth percentage, port world-wide name (WWN), and node WWN values.

Ensure that I/O virtualization is enabled on the pci_1 PCIe bus. See How to Enable
I/O Virtualization for a PCIe Bus.

You can use the ldm create-vf command to create all the virtual functions from
the /SYS/MB/PCIE7/IOVFC.PF0 physical function.

primary# ldm create-vf -n max /SYS/MB/PCIE7/IOVFC.PF0
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF0
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF1

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-46

Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF2
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF3
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF4
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF5
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF6
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF7

Example 8-20 Dynamically Creating a Fibre Channel Virtual Function and Setting
Properties

This example dynamically creates a virtual function while setting the bw-percent property
value to 25 and specifies the port and node WWNs.

primary# ldm create-vf port-wwn=10:00:00:14:4F:FC:00:01 \
node-wwn=20:00:00:14:4F:FC:00:01 bw-percent=25 /SYS/MB/PCIE7/IOVFC.PF0

Example 8-21 Statically Creating a Fibre Channel Virtual Function Without Setting
Optional Properties

This example statically creates a virtual function without setting any optional properties. In
this case, the ldm create-vf command automatically allocates the default bandwidth
percentage, port world-wide name (WWN), and node WWN values.

First you initiate a delayed reconfiguration on the rootdom1 domain. Then, enable I/O
virtualization on the pci_1 PCIe bus. Because the pci_1 bus has already been assigned to
the rootdom1 root domain, use the ldm set-io command to enable I/O virtualization.

primary# ldm start-reconf rootdom1
Initiating a delayed reconfiguration operation on the rootdom1 domain.
All configuration changes for other domains are disabled until the rootdom1
domain reboots, at which time the new configuration for the rootdom1 domain
will also take effect.

primary# ldm set-io iov=on pci_1

Now, you can use the ldm create-vf command to create all the virtual functions from
the /SYS/MB/PCIE7/IOVFC.PF0 physical function.

primary# ldm create-vf -n max /SYS/MB/PCIE7/IOVFC.PF0

--
Notice: The rootdom1 domain is in the process of a delayed reconfiguration.
Any changes made to the rootdom1 domain will only take effect after it reboots.
--

Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF0
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF1
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF2
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF3
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF4
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF5
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF6
Created new vf: /SYS/MB/PCIE7/IOVFC.PF0.VF7

Finally, reboot the rootdom1 root domain to make the changes take effect in one of the
following ways:

• rootdom1 is a non-primary root domain

primary# ldm stop-domain -r rootdom1

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-47

• rootdom1 is the primary domain

primary# shutdown -i6 -g0 -y

Destroying Fibre Channel SR-IOV Virtual Functions
A virtual function can be destroyed if it is not currently assigned to a domain. A virtual
function can be destroyed only in the reverse sequential order of creation, so only the
last virtual function that was created can be destroyed. The resulting configuration is
validated by the physical function driver.

How to Destroy a Fibre Channel SR-IOV Virtual Function
If you cannot use this dynamic method, use the static method instead. See Static SR-
IOV.

1. Identify the physical function device.

primary# ldm list-io
2. Destroy a single virtual function or multiple virtual functions either

dynamically or statically.

• Dynamic method:

– To destroy all of the virtual functions from a physical function at one time,
use the following command:

primary# ldm destroy-vf -n number | max pf-name

You can use either the path name or the pseudonym name to specify
virtual functions. However, the recommended practice is to use the
pseudonym name.

Use the ldm destroy-vf -n max command to destroy all the virtual
functions for that physical function at one time.

If you specify number as an argument to the -n option, the last number of
virtual functions are destroyed. Use this method as it performs this
operation with only one physical function device driver state transition.

– To destroy a specified virtual function:

primary# ldm destroy-vf vf-name
Due to delays in the affected hardware device and in the OS, the affected
physical function and any remaining child virtual functions might not be
available for immediate use. Use the ldm list-io command to determine
whether the parent physical function and its child virtual functions have the INV
value in the Status column. If they have this value, wait until the ldm list-
io output no longer shows the INV value in the Status column (about 45
seconds). At that time, you can safely use that physical function or any of its
child virtual functions. If this status persists, there is a problem with the device.

A device status might be INV immediately following a root domain reboot
(including that of the primary) or immediately after you use the ldm create-
vf or ldm destroy-vf command.

• Static method:

a. Initiate a delayed reconfiguration.

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-48

primary# ldm start-reconf root-domain-name
b. Destroy either a single virtual function or multiple virtual functions.

– To destroy all of the virtual functions from the specified physical function at
the same time, use the following command:

primary# ldm destroy-vf -n number | max pf-name

You can use either the path name or the pseudonym name to specify virtual
functions. However, the recommended practice is to use the pseudonym
name.

– To destroy a specified virtual function:

primary# ldm destroy-vf vf-name
c. Reboot the root domain.

– To reboot the non-primary root domain:

primary# ldm stop-domain -r root-domain
– To reboot the primary root domain:

primary# shutdown -i6 -g0 -y
Example 8-22 Dynamically Destroying Multiple Fibre Channel SR-IOV Virtual
Functions

This example shows the results of destroying all the virtual functions from the /SYS/MB/
PCIE5/IOVFC.PF1 physical function. The ldm list-io output shows that the physical
function has eight virtual functions. The ldm destroy-vf -n max command destroys all
the virtual functions, and the final ldm list-io output shows that none of the virtual
functions remain.

primary# ldm list-io
...
/SYS/MB/PCIE5/IOVFC.PF1 PF pci_1
/SYS/MB/PCIE5/IOVFC.PF1.VF0 VF pci_1
/SYS/MB/PCIE5/IOVFC.PF1.VF1 VF pci_1
/SYS/MB/PCIE5/IOVFC.PF1.VF2 VF pci_1
/SYS/MB/PCIE5/IOVFC.PF1.VF3 VF pci_1
/SYS/MB/PCIE5/IOVFC.PF1.VF4 VF pci_1
/SYS/MB/PCIE5/IOVFC.PF1.VF5 VF pci_1
/SYS/MB/PCIE5/IOVFC.PF1.VF6 VF pci_1
/SYS/MB/PCIE5/IOVFC.PF1.VF7 VF pci_1
primary# ldm destroy-vf -n max /SYS/MB/PCIE5/IOVFC.PF1
primary# ldm list-io
...
/SYS/MB/PCIE5/IOVFC.PF1 PF pci_1

Example 8-23 Destroying a Fibre Channel Virtual Function

This example shows how to statically destroy the virtual functions from the /SYS/MB/PCIE7/
IOVFC.PF0 physical function.

primary# ldm start-reconf rootdom1
Initiating a delayed reconfiguration operation on the rootdom1 domain.
All configuration changes for other domains are disabled until the rootdom1
domain reboots, at which time the new configuration for the rootdom1 domain
will also take effect.

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-49

primary# ldm destroy-vf -n max /SYS/MB/PCIE7/IOVFC.PF0
primary# ldm stop-domain -r rootdom1

Modifying Fibre Channel SR-IOV Virtual Functions
The ldm set-io command modifies the current configuration of a virtual function by
changing the property values or by setting new properties.

If you cannot use this dynamic method, use the static method instead. See Static SR-
IOV.

You can use the ldm set-io command to modify the bw-percent, port-wwn, and
node-wwn properties.

You can dynamically change only the bw-percent property while the virtual functions
are assigned to a domain.

How to Modify Fibre Channel SR-IOV Virtual Function Properties
1. Identify the physical function device.

primary# ldm list-io

Note that the name of the physical function includes the location information for
the PCIe SR-IOV card or on-board device.

2. Modify a virtual function property.

ldm set-io [bw-percent=value] [port-wwn=value node-wwn=value] pf-name

Unlike the bw-percent property value, which you can dynamically change at any
time, you can dynamically modify the port-wwn and node-wwn property values only
when the virtual function is not assigned to a domain.

Example 8-24 Modifying Fibre Channel SR-IOV Virtual Function Properties

This example modifies the properties of the specified virtual function, /SYS/MB/
PCIE7/IOVFC.PF0.VF0, to specify the bandwidth percentage and the port and node
WWN values.

primary# ldm set-io port-wwn=10:00:00:14:4f:fc:f4:7c \
node-wwn=20:00:00:14:4f:fc:f4:7c bw-percent=25 /SYS/MB/PCIE7/IOVFC.PF0.VF0

Adding and Removing Fibre Channel SR-IOV Virtual Functions on I/O
Domains

How to Add a Fibre Channel SR-IOV Virtual Function to an I/O Domain
If you cannot dynamically remove the virtual function, use the static method. See
Static SR-IOV.

1. Identify the virtual function that you want to add to an I/O domain.

primary# ldm list-io
2. Add a virtual function either dynamically or statically.

• To dynamically add a virtual function:

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-50

primary# ldm add-io vf-name domain-name

vf-name is the pseudonym name or the path name of the virtual function. The
recommended practice is to use the pseudonym name. domain-name specifies the
name of the domain to which you add the virtual function.

The device path name for the virtual function in the domain is the path shown in the
list-io -l output.

• To statically add a virtual function:

a. Stop the domain and then add the virtual function.

primary# ldm stop-domain domain-name
primary# ldm add-io vf-name domain-name

vf-name is the pseudonym name or the path name of the virtual function. The
recommended practice is to use the pseudonym name. domain-name specifies
the name of the domain to which you add the virtual function. The specified guest
domain must be in the inactive or bound state.

The device path name for the virtual function in the domain is the path shown in
the list-io -l output.

b. Restart the domain.

primary# ldm start-domain domain-name
Example 8-25 Adding a Fibre Channel Virtual Function

This example shows how to dynamically add the /SYS/MB/PCIE7/IOVFC.PF0.VF0 virtual
function to the ldg2 domain.

primary# ldm add-io /SYS/MB/PCIE7/IOVFC.PF0.VF0 ldg2

If you cannot add the virtual function dynamically, use the static method:

primary# ldm stop-domain ldg2
primary# ldm add-io /SYS/MB/PCIE7/IOVFC.PF0.VF0 ldg2
primary# ldm start-domain ldg2

How to Remove a Fibre Channel SR-IOV Virtual Function From an I/O Domain
If you cannot use this dynamic method, use the static method instead. See Static SR-IOV.

Caution:

Before removing the virtual function from the domain, ensure that it is not critical for
booting that domain.

1. Identify the virtual function that you want to remove from an I/O domain.

primary# ldm list-io
2. Remove a virtual function either dynamically or statically.

• To dynamically remove a virtual function:

primary# ldm remove-io vf-name domain-name

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-51

vf-name is the pseudonym name or the path name of the virtual function. The
recommended practice is to use the device pseudonym. domain-name
specifies the name of the domain from which you remove the virtual function.

• To statically remove a virtual function:

a. Stop the I/O domain.

primary# ldm stop-domain domain-name
b. Remove the virtual function.

primary# ldm remove-io vf-name domain-name

vf-name is the pseudonym name or the path name of the virtual function.
The recommended practice is to use the device pseudonym. domain-
name specifies the name of the domain from which you remove the virtual
function. The specified guest domain must be in the inactive or bound
state.

c. Start the I/O domain.

primary# ldm start-domain domain-name
Example 8-26 Dynamically Removing a Fibre Channel Virtual Function

This example shows how to dynamically remove the /SYS/MB/PCIE7/IOVFC.PF0.VF0
virtual function from the ldg2 domain.

primary# ldm remove-io /SYS/MB/PCIE7/IOVFC.PF0.VF0 ldg2

If the command succeeds, the virtual function is removed from the ldg2 domain. When
ldg2 is restarted, the specified virtual function no longer appears in that domain.

If you cannot remove the virtual function dynamically, use the static method:

primary# ldm stop-domain ldg2
primary# ldm remove-io /SYS/MB/PCIE7/IOVFC.PF0.VF0 ldg2
primary# ldm start-domain ldg2

Advanced SR-IOV Topics: Fibre Channel SR-IOV
This section describes some advanced topics related to using Fibre Channel SR-IOV
virtual functions.

Accessing a Fibre Channel Virtual Function in a Guest Domain
The ldg2 console log shows the operations of the assigned Fibre Channel virtual
function device. Use the fcadm command to view and access the Fibre Channel
virtual function device.

ldg2# fcadm hba-port
HBA Port WWN: 100000144ffb8a99
 Port Mode: Initiator
 Port ID: 13d02
 OS Device Name: /dev/cfg/c3
 Manufacturer: Emulex
 Model: 7101684
 Firmware Version: 7101684 1.1.60.1
 FCode/BIOS Version: Boot:1.1.60.1 Fcode:4.03a4
 Serial Number: 4925382+133400002R

Chapter 8
Using Fibre Channel SR-IOV Virtual Functions

8-52

 Driver Name: emlxs
 Driver Version: 2.90.15.0 (2014.01.22.14.50)
 Type: N-port
 State: online
 Supported Speeds: 4Gb 8Gb 16Gb
 Current Speed: 16Gb
 Node WWN: 200000144ffb8a99
 NPIV Not Supported

Use the format command to show the visible LUNs.

ldg2# format
Searching for disks...done
AVAILABLE DISK SELECTIONS:
 0. c2d0 <Unknown-Unknown-0001-25.00GB>
 /virtual-devices@100/channel-devices@200/disk@0
 1. c3t21000024FF4C4BF8d0 <SUN-COMSTAR-1.0-10.00GB>
 /pci@340/pci@1/pci@0/pci@6/SUNW,emlxs@0,2/fp@0,0/ssd@w21000024ff4c4bf8,0
Specify disk (enter its number): ^D
ldg2#

I/O Domain Resiliency
I/O domain resiliency improves the availability and performance of an I/O domain by enabling
it to continue to run even when one of its associated root domains is interrupted. When a root
domain is interrupted, the I/O domains that use its services continue to run by enabling its
affected devices to fail over to the alternate I/O path. When the root domain returns to
service, the affected devices in the resilient I/O domain are also returned to service and the
failover capabilities are restored.

The following diagrams show and describe what happens when one of the configured root
domains fails and what happens when the root domain returns to service.

The first diagram shows a resilient I/O domain configuration that has two virtual functions, A
and B. Root domain A and root domain B provide a virtual function to the I/O domain. The I/O
domain uses virtual device multipathing such as IPMP for network devices and Oracle Solaris
I/O multipathing for Fibre Channel devices.

The second diagram shows what occurs when the resilient I/O domain configuration loses its
connection to root domain B. Such an interruption might occur when root domain B is
interrupted by a panic or reboot. While root domain B is unavailable, virtual function B is
suspended in the I/O domain and then multipathing engages to route all I/O through root
domain A by using virtual function A.

Chapter 8
I/O Domain Resiliency

8-53

The final diagram shows the resilient I/O domain configuration after root domain B
returns to service. When root domain B is restored to service, virtual function B
resumes operation in the I/O domain. The multipath group is restored to full
redundancy.

In this configuration, the virtual function could be a virtual network device or a virtual
storage device, which means that the I/O domain can be configured with any
combination of virtual functions or virtual devices.

You can create a configuration where you have both resilient and non-resilient I/O
domains. For an example, see Example – Using Resilient and Non-Resilient
Configurations.

Resilient I/O Domain Requirements

Note:

The Oracle Solaris 10 OS does not provide I/O domain resiliency.

A resilient I/O domain must meet the following requirements:

• Runs at least the Oracle Solaris 11.2 SRU 8 OS and its primary domain runs at
least the Oracle VM Server for SPARC 3.2 software.

Chapter 8
I/O Domain Resiliency

8-54

• Uses multipathing to create failover configurations for virtual functions and virtual
devices. This configuration requires the virtual functions and the virtual devices to be of
the same class: network or storage.

• Has the master property value set to the name of a root domain whose failure-
policy property is set to ignore. Any other failure policy setting, such as stop, reset,
or panic, supersedes I/O resiliency and the I/O domain is interrupted.

• Uses only SR-IOV virtual functions, virtual network devices, and virtual storage devices
that support I/O domain resiliency. See https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1.

I/O Domain Resiliency Limitations
• If you have a resilient I/O domain and then assign a device in one of the following ways,

then the I/O domain is no longer resilient:

– Add a virtual function from a card that does not support I/O resiliency.

– Directly assign a device by using the direct I/O feature.

In the above cases, set the failure-policy from ignore to reset or stop.

• When you hotplug an SR-IOV card to the root domain and then assign virtual functions
from it to an I/O domain, the I/O domain might fail to provide resiliency when the root
domain fails. Therefore, it is best practice to add the SR-IOV card while the root domain
is down. Then assign the virtual functions after the root domain boots.

Configuring Resilient I/O Domains

How to Configure a Resilient I/O Domain
Use only the PCIe cards that support the I/O domain resiliency feature. See https://
support.oracle.com/CSP/main/article?
cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1.

Ensure that the I/O domain, root domain, service domain, and primary domain are all running
at least the Oracle Solaris 11.4 SRU 13 OS.

1. On the root domain, set the failure-policy property to ignore.

primary# ldm set-domain failure-policy=ignore root-domain-name

Note:

If you add any devices to the I/O domain that are not supported for resiliency,
that domain is no longer resilient. So, reset the failure-policy property value
to stop, reset, or panic.

For information about domain dependencies, see Configuring Domain Dependencies.

2. On the I/O domain, set the master property to the name of the root domain.

primary# ldm set-domain master=root-domain-name
I/O-domain-name

3. Configure multipathing across the paths.

Chapter 8
I/O Domain Resiliency

8-55

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1

• Ethernet. Use IPMP to configure multipathing across the paths.

For information about using IPMP to configure multipathing, see Administering
TCP/IP Networks, IPMP, and IP Tunnels in Oracle Solaris 11.4.

• Fibre Channel. Use Oracle Solaris I/O multipathing to configure multipathing
across the paths.

For information about using Oracle Solaris I/O multipathing to configure
multipathing, see Managing SAN Devices and I/O Multipathing in Oracle
Solaris 11.4.

Example 8-27 Using IPMP to Configure Multipathing With Ethernet SR-IOV
Functions

This example shows how to use IPMP to configure network virtual-function devices for
a resilient I/O domain. For more information, see Administering TCP/IP Networks,
IPMP, and IP Tunnels in Oracle Solaris 11.4.

1. Identify two Ethernet SR-IOV physical functions that are assigned to different root
domains.

In this example, the root-1 and root-2 root domains have Ethernet SR-IOV
physical functions.

primary# ldm list-io | grep root-1 | grep PF
/SYS/PCI-EM8/IOVNET.PF0 PF pci_1 root-1
primary# ldm list-io | grep root-2 | grep PF
/SYS/RIO/NET2/IOVNET.PF0 PF pci_2 root-2

2. Create two Ethernet virtual functions on each of the specified physical functions.

primary# ldm create-vf /SYS/MB/NET0/IOVNET.PF0
Created new vf: /SYS/PCI-EM8/IOVNET.PF0.VF0
primary# ldm create-vf /SYS/RIO/NET2/IOVNET.PF0
Created new vf: /SYS/RIO/NET2/IOVNET.PF0.VF0

3. Assign the Ethernet virtual functions to the io-1 I/O domain.

primary# ldm add-io /SYS/PCI-EM8/IOVNET.PF0.VF0 io-1
primary# ldm add-io /SYS/RIO/NET2/IOVNET.PF0.VF0 io-1

4. Configure the Ethernet virtual functions into an IPMP group on the I/O domain.

a. Identify the newly added network devices, net1 and net2, on the I/O domain.

i0-1# dladm show-phys
LINK MEDIA STATE SPPED DUPLEX DEVICE
net0 Ethernet up 1000 full vnet0
net1 Ethernet up 1000 full igbvf0
net2 Ethernet up 1000 full igbvf1

b. Create IP interfaces for the newly added network devices.

io-1# ipadm create-ip net1
io-1# ipadm create-ip net2

c. Create the ipmp0 IPMP group for the two network interfaces.

io-1# ipadm create-ipmp -i net1 -i net2 ipmp0
d. Assign an IP address to the IPMP group.

This example configures the DHCP option.

io-1# ipadm create-addr -T dhcp ipmp0/v4

Chapter 8
I/O Domain Resiliency

8-56

https://docs.oracle.com/cd/E37838_01/html/E60991/index.html
https://docs.oracle.com/cd/E37838_01/html/E60991/index.html
https://docs.oracle.com/cd/E37838_01/html/E61018/index.html
https://docs.oracle.com/cd/E37838_01/html/E61018/index.html
https://docs.oracle.com/cd/E37838_01/html/E60991/index.html
https://docs.oracle.com/cd/E37838_01/html/E60991/index.html

e. Check the status of the IPMP group interface.

io-1# ipmpstat -g
Example 8-28 Using Oracle Solaris I/O Multipathing to Configure Multipathing With
Fibre Channel SR-IOV Functions

This example shows how to use Oracle Solaris I/O multipathing to configure Fibre Channel
virtual-function devices for a resilient I/O domain. For more information, see Managing SAN
Devices and I/O Multipathing in Oracle Solaris 11.4.

1. Identify two Fibre Channel SR-IOV physical functions that are assigned to different root
domains.

In this example, the root-1 and root-2 root domains have Fibre Channel SR-IOV
physical functions.

primary# ldm list-io | grep root-1 | grep PF
/SYS/PCI-EM4/IOVFC.PF0 PF pci_1 root-1
primary# ldm list-io | grep root-2 | grep PF
/SYS/PCI-EM15/IOVFC.PF0 PF pci_2 root-2

2. Create two virtual functions on each of the specified physical functions.

For more information, see How to Create a Fibre Channel SR-IOV Virtual Function.

primary# ldm create-vf port-wwn=10:00:00:14:4f:fc:60:00 \
node-wwn=20:00:00:14:4f:fc:60:00 /SYS/PCI-EM4/IOVFC.PF0
Created new vf: /SYS/PCI-EM4/IOVFC.PF0.VF0
primary# ldm create-vf port-wwn=10:00:00:14:4f:fc:70:00 \
node-wwn=20:00:00:14:4f:fc:70:00 /SYS/PCI-EM15/IOVFC.PF0
Created new vf: /SYS/PCI-EM15/IOVFC.PF0.VF0

3. Add the newly created virtual functions to the io-1 I/O domain.

primary# ldm add-io /SYS/PCI-EM4/IOVFC.PF0.VF0 io-1
primary# ldm add-io /SYS/PCI-EM15/IOVFC.PF0.VF0 io-1

4. Determine whether Oracle Solaris I/O multipathing is enabled on the I/O domain by using
the prtconf -v command.

If the output for the fp device includes the following device property setting, Oracle
Solaris I/O multipathing is enabled:

mpxio-disable="no"

If the mpxio-disable property is set to yes, update the property value to no in the /etc/
driver/drv/fp.conf file and then reboot the I/O domain.

If the mpxio-disable device property does not appear in the prtconf -v output, add
the mpxio-disable="no" entry to the /etc/driver/drv/fp.conf file and then reboot
the I/O domain.

5. Check the status of Oracle Solaris I/O multipathing group.

io-1# mpathadm show LU

Logical Unit: /dev/rdsk/c0t600A0B80002A384600003D6B544EECD0d0s2
 mpath-support: libmpscsi_vhci.so
 Vendor: SUN
 Product: CSM200_R
 Revision: 0660
 Name Type: unknown type
 Name: 600a0b80002a384600003d6b544eecd0
 Asymmetric: yes

Chapter 8
I/O Domain Resiliency

8-57

https://docs.oracle.com/cd/E37838_01/html/E61018/index.html
https://docs.oracle.com/cd/E37838_01/html/E61018/index.html

 Current Load Balance: round-robin
 Logical Unit Group ID: NA
 Auto Failback: on
 Auto Probing: NA

 Paths:
 Initiator Port Name: 100000144ffc6000
 Target Port Name: 201700a0b82a3846
 Override Path: NA
 Path State: OK
 Disabled: no

 Initiator Port Name: 100000144ffc7000
 Target Port Name: 201700a0b82a3846
 Override Path: NA
 Path State: OK
 Disabled: no

 Target Port Groups:
 ID: 1
 Explicit Failover: yes
 Access State: active
 Target Ports:
 Name: 201700a0b82a3846
 Relative ID: 0

Example – Using Resilient and Non-Resilient Configurations
You can use configurations with both resilient and non-resilient domains.

The following figure shows that I/O domain A and I/O domain C are not resilient
because neither use multipathing. I/O domain A has a virtual function and I/O domain
C has a direct I/O device.

Configuration With Resilient and Non-Resilient I/O Domains

Chapter 8
I/O Domain Resiliency

8-58

I/O domain B and I/O domain D are resilient. I/O domains A, B, and D depend on root domain
A. I/O domains B and D depend on root domain B. I/O domain C depends on root domain C.

If root domain A is interrupted, I/O domain A is interrupted as well. I/O domains B and D,
however, fail over to alternate paths and continue to run applications. If root domain C is
interrupted, I/O domain C fails in the way specified by the failure-policy property value
of root domain C.

Replacing PCIe Hardware on a System With an IOR
Configuration

This section outlines a streamlined procedure for replacing a PCIe device in a running system
without rebooting any of the domains. This method will accomplish the same end result as
performing a manual replacement but is less prone to errors and allows the existing SR-IOV
and IOR configuration to be automatically recreated after the insertion of the new PCIe
device. This method is especially useful for systems with large or complex configurations
such as those often employed for IOR.

The commands used for the configuration save and device poweroff and subsequent restoral
are ldm evactuate-io and ldm restore-io respectively.

System Requirements

Ensure that the I/O domain, root domain, service domain, and primary domain run at least the
Oracle Solaris 11.4 SRU 13 OS. This also ensures that Oracle VM Server for SPARC version
3.6.1 or later is running, which is also a requirement.

The system hardware must be capable of using SR-IOV enabled PCIe cards in an IOR
configuration. See Resilient I/O Domain Requirements.

Limitations

• This feature is only relevant to Dynamic I/O using SR-IOV, see the section Dynamic PCIe
Bus Assignment Requirements.

• The system must fully support SR-IOV and IOR in both hardware and software versions
as outlined above.

• Only an equivalent PCIe card may be used as the replacement device. This means it
must be the same manufacturer and model supporting the same number of SR-IOV PFs
and VFs.

• For Fujitsu M10 servers or Fujitsu SPARC M12 servers, Oracle Solaris 11.4 SRU 24 OS
or later is required for the I/O domain, root domain, service domain, and primary domain.

Example 8-29 Example Faulty PCIe Card Replacement Procedure

In this example the PCIe device with path /SYS/IOU1/PCIE13 will be replaced in a Non
Primary Root Domain (NPRD) which is the owner of that PCIe slot. In effect the target slot
and all it's children (PFs and VFs) are removed and restored during this procedure.

The target for the commands is the SR-IOV device itself, as represented in NAC name
format. Thus, you can take the output of an ldm ls-io command and directly copy and
paste it into an ldm evacuate-io or restore-io command. NAC name format is the
standard for ldm commands and ILOM utilities.

The target device must be considered by the hotplug daemon to be a "connector". A
connector is a device that is listed in the output of a hotplug list -c command run in the

Chapter 8
Replacing PCIe Hardware on a System With an IOR Configuration

8-59

root domain which owns the target PCIe device (be it the primary or an NPRD). See
hotplug(8), and for information about Oracle Solaris OS hotplug capabilities, see
Chapter 2, Dynamically Configuring Devices in Managing Devices in Oracle Solaris
11.4.

Steps

1. Identify the card to remove by reviewing fault logs on the primary.

In this example the target is /SYS/IOU1/PCIE13.

primary# fmadm faulty
2. Review and save a copy of the current I/O configuration on the machine (not

strictly required, done to allow manual verification of the restored configuration).

primary# ldm ls-io > io_config.txt
3. Perform evacuation command to automatically save current configuration, remove

and destroy the VF children, and power down the device.

nprd# ldm evacuate-io /SYS/IOU1/PCIE13
4. Wait for the ldm command to complete and the power LED on the target SR-IOV

card/slot to be unlit.

5. Physically remove the device and replace it in the same slot with an equivalent
card.

6. Restore the previous configuration by running the following command.

nprd# ldm restore-io /SYS/IOU1/PCIE13
7. Wait for the ldm command to complete and the power LED on the target SR-IOV

card/slot to be lit.

8. Check that the configuration matches the previously saved configuration (not
strictly required).

primary# ldm ls-io

Note that if any portion of either of the above ldm commands fails, the remaining
steps are not attempted. In the case of a command failure, no attempt is made to
undo the effect of the completed actions. The error message printed to the console
should indicate the cause of the failure. If the command is run again, an attempt
will be made to complete all unfinished work.

For background details see Making PCIe Hardware Changes. For general
guidelines on hardware changes and manual instructions for PCIe device
replacement in systems configured with Oracle VM Server, see How to Replace
PCIe Direct I/O Cards Assigned to an Oracle VM Server for SPARC Guest Domain
(Doc ID 1684273.1) (https://support.oracle.com/epmos/faces/DocumentDisplay?
_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-state=bo9fbmr1n_49).

Chapter 8
Replacing PCIe Hardware on a System With an IOR Configuration

8-60

https://docs.oracle.com/cd/E88353_01/html/E72487/hotplug-8.html
https://docs.oracle.com/cd/E37838_01/html/E61015/devconfig2-1.html#STDFSdevconfig2-1
https://docs.oracle.com/cd/E37838_01/html/E61015/devconfig2-1.html#STDFSdevconfig2-1
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-state=bo9fbmr1n_49
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-state=bo9fbmr1n_49
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-state=bo9fbmr1n_49
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-state=bo9fbmr1n_49

Rebooting the Root Domain With Non-Resilient I/O Domains
Configured

Note:

If your I/O domain is resilient, it can continue to operate even when the root domain
that services it is interrupted. For information about configuring resilient I/O
domains, see I/O Domain Resiliency.

As with PCIe slots in the I/O domain, the concerns that are described in Rebooting the Root
Domain With PCIe Endpoints Configured also pertain to the virtual functions that are
assigned to an I/O domain.

Note:

An I/O domain cannot start if the associated root domain is not running.

Chapter 8
Rebooting the Root Domain With Non-Resilient I/O Domains Configured

8-61

9
Creating an I/O Domain by Using Direct I/O

This chapter covers the following direct I/O topics:

• Creating an I/O Domain by Assigning PCIe Endpoint Devices

• Direct I/O Hardware and Software Requirements

• Current Direct I/O Feature Limitations

• Planning PCIe Endpoint Device Configuration

• Rebooting the Root Domain With PCIe Endpoints Configured

• Making PCIe Hardware Changes

• Creating an I/O Domain by Assigning a PCIe Endpoint Device

Note:

The direct I/O feature is not supported on servers starting with the SPARC M7,
SPARC T7, and SPARC S7 series server. Instead, use the PCIe bus assignment
feature. See Creating a Root Domain by Assigning PCIe Buses.

Creating an I/O Domain by Assigning PCIe Endpoint Devices
You can assign an individual PCIe endpoint (or direct I/O-assignable) device to a domain.
This use of PCIe endpoint devices increases the granularity of the device assignment to I/O
domains. This capability is delivered by means of the direct I/O (DIO) feature.

The DIO feature enables you to create more I/O domains than the number of PCIe buses in a
system. The possible number of I/O domains is now limited only by the number of PCIe
endpoint devices.

A PCIe endpoint device can be one of the following:

• A PCIe card in a slot

• An on-board PCIe device that is identified by the platform

Note:

Because root domains cannot have dependencies on other root domains, a root
domain that owns a PCIe bus cannot have its PCIe endpoint devices or SR-IOV
virtual functions assigned to another root domain. However, you can assign a PCIe
endpoint device or virtual function from a PCIe bus to the root domain that owns
that bus.

9-1

The following diagram shows that the PCIe endpoint device, PCIE3, is assigned to an
I/O domain. Both bus pci_0 and the switch in the I/O domain are virtual. The PCIE3
endpoint device is no longer accessible in the primary domain.

In the I/O domain, the pci_0 block and the switch are a virtual root complex and a
virtual PCIe switch, respectively. This block and switch are similar to the pci_0 block
and the switch in the primary domain. In the primary domain, the devices in slot
PCIE3 are a “shadow” form of the original devices and are identified as SUNW,assigned.

Caution:

You cannot use Oracle Solaris hot-plug operations to hot-remove a PCIe
endpoint device after that device is removed from the primary domain by
using the ldm remove-io command. For information about replacing or
removing a PCIe endpoint device, see Making PCIe Hardware Changes.

Assigning a PCIe Endpoint Device to an I/O Domain

Use the ldm list-io command to list the PCIe endpoint devices.

Though the DIO feature permits any PCIe card in a slot to be assigned to an I/O
domain, only certain PCIe cards are supported. See Direct I/O Hardware and Software
Requirements.

Chapter 9
Creating an I/O Domain by Assigning PCIe Endpoint Devices

9-2

Caution:

PCIe cards that have a bridge are not supported. PCIe function-level assignment is
also not supported. Assigning an unsupported PCIe card to an I/O domain might
result in unpredictable behavior.

The following items describe important details about the DIO feature:

• This feature is enabled only when all the software requirements are met. See Direct I/O
Hardware and Software Requirements.

• Only PCIe endpoints that are connected to a PCIe bus assigned to a root domain can be
assigned to another domain with the DIO feature.

• I/O domains that use DIO have access to the PCIe endpoint devices only when the root
domain is running.

• Rebooting the root domain affects I/O domains that have PCIe endpoint devices. See
Rebooting the Root Domain With PCIe Endpoints Configured. The root domain also
performs the following tasks:

– Initializes and manages the PCIe bus.

– Handles all bus errors that are triggered by the PCIe endpoint devices that are
assigned to I/O domains. Note that only the primary domain receives all PCIe bus-
related errors.

Direct I/O Hardware and Software Requirements
To successfully use the direct I/O (DIO) feature to assign direct I/O devices to domains, you
must run the appropriate software and use supported PCIe cards.

• Hardware Requirements. Only certain PCIe cards can be used as a direct I/O endpoint
device on an I/O domain. You can still use other cards in your Oracle VM Server for
SPARC environment but they cannot be used with the DIO feature. Instead, they can be
used for service domains and for I/O domains that have entire root complexes assigned
to them.

Refer to your platform's hardware documentation to verify which cards can be used on
your platform. For an up-to-date list of supported PCIe cards, see https://
support.oracle.com/CSP/main/article?
cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1.

Note:

Servers starting with the SPARC T7, SPARC M7, and SPARC S7 series server
have an I/O controller that provides several PCIe buses and you can assign
PCIe buses to different domains. For information, see Creating a Root Domain
by Assigning PCIe Buses.

• Software Requirements. To use the DIO feature, the following domains must run the
supported OS:

– Root domain. At least the Oracle Solaris 11.3 OS.

Chapter 9
Direct I/O Hardware and Software Requirements

9-3

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1

The recommended practice is for all domains to run at least the Oracle Solaris
10 1/13 OS plus the required patches in Oracle Solaris OS Versions in Oracle
VM Server for SPARC 3.6 Installation Guide or the Oracle Solaris 11.3 OS.

– I/O domain. At least the Oracle Solaris 11 OS. Note that additional feature
support is included in more recent Oracle Solaris 11 releases.

Note:

All PCIe cards that are supported on a platform are supported in the root
domains. See the documentation for your platform for the list of supported
PCIe cards. However, only direct I/O-supported PCIe cards can be assigned
to I/O domains.

To add or remove PCIe endpoint devices by using the direct I/O feature, you must first
enable I/O virtualization on the PCIe bus itself.

You can use the ldm set-io or ldm add-io command to set the iov property to on.
You can also use the ldm add-domain or ldm set-domain command to set the
rc-add-policy property to iov. See the ldm(8) man page.

Rebooting the root domain affects direct I/O, so carefully plan your direct I/O
configuration changes to maximize the direct I/O-related changes to the root domain
and to minimize root domain reboots.

Current Direct I/O Feature Limitations
For information about how to work around the limitations, see Planning PCIe Endpoint
Device Configuration.

Assignment or removal of a PCIe endpoint device to any non-root domain is permitted
only when that domain is either stopped or inactive.

Note:

The Fujitsu SPARC M12 server and Fujitsu M10 server support the dynamic
reconfiguration of PCIe endpoint devices. You can assign or remove PCIe
endpoint devices without rebooting the root domain or stopping the I/O
domain. For up-to-date information about this feature, see Fujitsu SPARC
M12 Systems System Operation and Administration Guide or Fujitsu M10/
SPARC M10 Systems System Operation and Administration Guide for your
model at http://www.fujitsu.com/global/services/computing/server/sparc/
downloads/manual/.

SPARC systems, up to and including the SPARC T5 and SPARC M6 platforms,
provide a finite number of interrupts, so Oracle Solaris limits the number of interrupts
that each device can use. The default limit should match the needs of a typical system
configuration but you might need to adjust this value for certain system configurations.
For more information, see Adjusting the Interrupt Limit.

Chapter 9
Current Direct I/O Feature Limitations

9-4

https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsolosversions
https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsolosversions
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html
http://www.fujitsu.com/global/services/computing/server/sparc/downloads/manual/
http://www.fujitsu.com/global/services/computing/server/sparc/downloads/manual/

Planning PCIe Endpoint Device Configuration
Carefully plan ahead when you assign or remove PCIe endpoint devices to avoid root domain
downtime. The reboot of the root domain not only affects the services that are available on
the root domain itself but also the I/O domains that have PCIe endpoint devices assigned.
Though the changes to each I/O domain do not affect the other domains, planning ahead
helps to minimize the consequences on the services that are provided by that domain.

When in a delayed reconfiguration, you can continue to add or remove more devices and
then reboot the root domain only one time to make all the changes take effect.

For an example, see How to Create an I/O Domain by Assigning a PCIe Endpoint Device.

You must take the following general steps to plan and perform a DIO device configuration:

1. Understand and record your system hardware configuration.

Specifically, record information about the part numbers and other details of the PCIe
cards in the system.

Use the ldm list-io -l and prtdiag -v commands to obtain the information and
save it for future reference.

2. Determine which PCIe endpoint devices are required to be in the primary domain.

For example, determine the PCIe endpoint devices that provide access to the following:

• Boot disk device

• Network device

• Other devices that the primary domain offers as services

3. Remove all PCIe endpoint devices that you might use in I/O domains.

This step helps you to avoid performing subsequent reboot operations on the root
domain, because reboots affect I/O domains.

Use the ldm remove-io command to remove the PCIe endpoint devices. Use
pseudonyms rather than device paths to specify the devices to the remove-io and add-
io subcommands.

Note:

After you have removed all the devices you want during a delayed
reconfiguration, you need to reboot the root domain only one time to make all
the changes take effect.

4. Save this SP configuration to the service processor (SP).

Use the ldm add-spconfig command.

5. Reboot the root domain to release the PCIe endpoint devices that you removed in Step 3.

6. Confirm that the PCIe endpoint devices you removed are no longer assigned to the root
domain.

Use the ldm list-io -l command to verify that the devices you removed appear as
SUNW,assigned-device in the output.

Chapter 9
Planning PCIe Endpoint Device Configuration

9-5

7. Assign an available PCIe endpoint device to a guest domain to provide direct
access to the physical device.

After you make this assignment, you can no longer migrate the guest domain to
another physical system by means of the domain migration feature.

8. Add a PCIe endpoint device to or remove one from a guest domain.

Use the ldm add-io command.

Minimize the changes to I/O domains by reducing the reboot operations and by
avoiding downtime of services offered by that domain.

9. (Optional) Make changes to the PCIe hardware.

See Making PCIe Hardware Changes.

Rebooting the Root Domain With PCIe Endpoints
Configured

The root domain is the owner of the PCIe bus and is responsible for initializing and
managing the bus. The root domain must be active and running a version of the
Oracle Solaris OS that supports the DIO or SR-IOV feature. Shutting down, halting, or
rebooting the root domain interrupts access to the PCIe bus. When the PCIe bus is
unavailable, the PCIe devices on that bus are affected and might become unavailable.

The behavior of I/O domains with PCIe endpoint devices is unpredictable when the
root domain is rebooted while those I/O domains are running. For instance, I/O
domains with PCIe endpoint devices might panic during or after the reboot. Upon
reboot of the root domain, you would need to manually stop and start each domain.

Note that if the I/O domain is resilient, it can continue to operate even if the root
domain that is the owner of the PCIe bus becomes unavailable. See I/O Domain
Resiliency.

Note:

An I/O domain cannot start if the associated root domain is not running.

To work around these issues, perform one of the following steps:

• Manually shut down any domains on the system that have PCIe endpoint devices
assigned to them before you shut down the root domain.

This step ensures that these domains are cleanly shut down before you shut
down, halt, or reboot the root domain.

To find all the domains that have PCIe endpoint devices assigned to them, run the
ldm list-io command. This command enables you to list the PCIe endpoint
devices that have been assigned to domains on the system. For a detailed
description of this command output, see the ldm(8) man page.

For each domain found, stop the domain by running the ldm stop command.

• Configure a domain dependency relationship between the root domain and the
domains that have PCIe endpoint devices assigned to them.

Chapter 9
Rebooting the Root Domain With PCIe Endpoints Configured

9-6

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

This dependency relationship ensures that domains with PCIe endpoint devices are
automatically restarted when the root domain reboots for any reason.

Note that this dependency relationship forcibly resets those domains, and they cannot
cleanly shut down. However, the dependency relationship does not affect any domains
that were manually shut down.

primary# ldm set-domain failure-policy=reset primary
primary# ldm set-domain master=primary domain-name

Example 9-1 Configuring Failure Policy Dependencies for a Configuration With a
Non-primary Root Domain and I/O Domains

The following example describes how you can configure failure policy dependencies in a
configuration that has a non-primary root domain and I/O domains.

In this example, ldg1 is a non-primary root domain. ldg2 is an I/O domain that has either
PCIe SR-IOV virtual functions or PCIe endpoint devices assigned from a root complex that is
owned by the ldg1 domain.

primary# ldm set-domain failure-policy=stop ldg1
primary# ldm set-domain master=ldg1 ldg2

This dependency relationship ensures that the I/O domain is stopped when the ldg1 root
domain reboots.

• If it is the non-primary root domain rebooting, this dependency relationship ensures that
the I/O domain is stopped. Start the I/O domain after the non-primary root domain boots.

primary# ldm start-domain ldg2
• If it is the primary domain rebooting, this policy setting stops both the non-primary root

domain and the dependent I/O domains. When the primary domain boots, you must start
the non-primary root domain first. When the domain boots, start the I/O domain.

primary# ldm start-domain ldg1

Wait for the ldg1 domain to become active and then start the I/O domain.

primary# ldm start-domain ldg2

Making PCIe Hardware Changes
The following steps help you avoid misconfiguring the PCIe endpoint assignments. For
platform-specific information about installing and removing specific hardware, see the
documentation for your platform.

• No action is required if you are installing a PCIe card into an empty slot. This PCIe card is
automatically owned by the domain that owns the PCIe bus.

To assign the new PCIe card to an I/O domain, use the ldm remove-io command to
first remove the card from the root domain. Then, use the ldm add-io command to
assign the card to an I/O domain.

• No action is required if a PCIe card is removed from the system and assigned to the root
domain.

• To remove a PCIe card that is assigned to an I/O domain, first remove the device from
the I/O domain. Then, add the device to the root domain before you physically remove
the device from the system.

Chapter 9
Making PCIe Hardware Changes

9-7

• To replace a PCIe card that is assigned to an I/O domain, verify that the new card
is supported by the DIO feature.

If so, no action is required to automatically assign the new card to the current I/O
domain.

If not, first remove that PCIe card from the I/O domain by using the ldm remove-
io command. Next, use the ldm add-io command to reassign that PCIe card to
the root domain. Then, physically replace the PCIe card you assigned to the root
domain with a different PCIe card. These steps enable you to avoid a configuration
that is unsupported by the DIO feature.

Minimizing Guest Domain Outages When Removing a PCIe Card
While you remove or replace a PCIe card from a system that runs the Oracle VM
Server for SPARC software, the domains that depend on this hardware are
unavailable. To minimize such guest domain outages, you must prepare your system
to use the hotplug capabilities to physically remove the card.

How to Minimize Guest Domain Outages When Removing a PCIe Card
This procedure enables you to avoid an outage to a guest domain that does not have
direct I/O or SR-IOV device assigned to it and that has multiple paths configured. Note
that this procedure requires two reboots of the primary domain.

Note:

This procedure does not apply when the PCIe card is on a root complex
owned by a non-primary root domain. Instead, see How to Replace PCIe
Direct I/O Cards Assigned to an Oracle VM Server for SPARC Guest Domain
(Doc ID 1684273.1) (https://support.oracle.com/epmos/faces/
DocumentDisplay?_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-
state=bo9fbmr1n_49).

1. Stop the guest domain that has the PCIe slot assigned to it.

primary# ldm stop domain-name
2. Remove the PCIe slot from the guest domain.

primary# ldm remove-io PCIe-slot domain-name
3. Stop the guest domains that have PCIe slots and SR-IOV virtual functions

assigned to them.

primary# ldm stop domain-name

Note:

You do not need to stop guest domains that have PCIe buses assigned
to them because they might be providing alternate paths to network and
disk devices to the guest domains.

Chapter 9
Making PCIe Hardware Changes

9-8

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-state=bo9fbmr1n_49
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-state=bo9fbmr1n_49
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-state=bo9fbmr1n_49
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-state=bo9fbmr1n_49
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=226878266536565&id=1684273.1&_adf.ctrl-state=bo9fbmr1n_49

4. Initiate a delayed reconfiguration on the primary domain so that you can assign
this slot to it.

primary# ldm start-reconf primary
5. Add the PCIe slot to the primary domain.

primary# ldm add-io PCIe-slot domain-name
6. Reboot the primary domain.

primary# shutdown -i6 -g0 -y
7. Use the hotplug commands to replace the PCIe card.

For information about Oracle Solaris OS hotplug capabilities, see Chapter 2, Dynamically
Configuring Devices in Managing Devices in Oracle Solaris 11.4.

8. After the card is replaced, perform the following steps if you must reassign this
same PCIe slot to the guest domain:

a. Initiate a delayed reconfiguration on the primary domain.

primary# ldm start-reconf primary
b. Remove the PCIe slot from the primary domain.

primary# ldm remove-io PCIe-slot domain-name
c. Reboot the primary domain to cause the removal of the PCIe slot to take effect.

primary# shutdown -i6 -g0 -y
d. Reassign the PCIe slot to the guest domain.

primary# ldm add-io PCIe-slot domain-name
e. Start the guest domains to which you want to assign PCIe slots and SR-IOV

virtual functions.

primary# ldm start-domain domain-name

Creating an I/O Domain by Assigning a PCIe Endpoint Device

How to Create an I/O Domain by Assigning a PCIe Endpoint Device
Plan all DIO deployments ahead of time to minimize downtime.

Chapter 9
Creating an I/O Domain by Assigning a PCIe Endpoint Device

9-9

https://docs.oracle.com/cd/E37838_01/html/E61015/devconfig2-1.html
https://docs.oracle.com/cd/E37838_01/html/E61015/devconfig2-1.html

Caution:

The primary domain loses access to the on-board DVD device if you assign
the /SYS/MB/SASHBA1 slot on a SPARC T4-1 system to a DIO domain. The
SPARC T4-1 system includes two DIO slots for on-board storage, which are
represented by the /SYS/MB/SASHBA0 and /SYS/MB/SASHBA1 paths. In
addition to hosting multiheaded on-board disks, the /SYS/MB/SASHBA1 slot
hosts the on-board DVD device. So, if you assign /SYS/MB/SASHBA1 to a
DIO domain, the primary domain loses access to the on-board DVD device.
The SPARC T4-2 system has a single SASHBA slot that hosts all on-board
disks as well as the on-board DVD device. So, if you assign SASHBA to a
DIO domain, the on-board disks and the on-board DVD device are loaned to
the DIO domain and unavailable to the primary domain.

For an example of adding a PCIe endpoint device to create an I/O domain, see
Planning PCIe Endpoint Device Configuration.

Note:

For Oracle Solaris 11 releases prior to Oracle Solaris 11.4, use the
DefaultFixed NCP to configure datalinks and network interfaces on Oracle
Solaris 11 systems. The Oracle Solaris 11 OS includes the following NCPs:

• DefaultFixed – Enables you to use the dladm or ipadm command to
manage networking

• Automatic – Enables you to use the netcfg or netadm command to
manage networking

Ensure that the DefaultFixed NCP is enabled by using the netadm list
command. See Chapter 7, Using Datalink and Interface Configuration
Commands on Profiles in Oracle Solaris Administration: Network Interfaces
and Network Virtualization.

1. Identify and archive the devices that are currently installed on the system.

The output of the ldm list-io -l command shows how the I/O devices are
currently configured. You can obtain more detailed information by using the
prtdiag -v command.

Note:

After the devices are assigned to I/O domains, the identity of the devices
can be determined only in the I/O domains.

primary# ldm list-io -l
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/MB/CMP0/PEX BUS pci_0 primary
[pci@400]
/SYS/MB/CMP0/NIU_CORE NIU niu_0 primary

Chapter 9
Creating an I/O Domain by Assigning a PCIe Endpoint Device

9-10

https://docs.oracle.com/cd/E23824_01/html/821-1458/gldiy.html
https://docs.oracle.com/cd/E23824_01/html/821-1458/gldiy.html
https://docs.oracle.com/cd/E23824_01/html/821-1458/gldiy.html

[niu@480]

/SYS/MB/CMP1/PEX BUS pci_1 primary
[pci@500]
/SYS/MB/CMP1/NIU_CORE NIU niu_1 primary
[niu@580]

/SYS/MB/PCIE0 PCIE pci_0 primary OCC
[pci@400/pci@2/pci@0/pci@8]
 SUNW,emlxs@0/fp/disk
 SUNW,emlxs@0/fp/tape
 SUNW,emlxs@0/fp@0,0
 SUNW,emlxs@0,1/fp/disk
 SUNW,emlxs@0,1/fp/tape
 SUNW,emlxs@0,1/fp@0,0
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
[pci@400/pci@2/pci@0/pci@4]
 pci/scsi/disk
 pci/scsi/tape
 pci/scsi/disk
 pci/scsi/tape
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
[pci@400/pci@2/pci@0/pci@0]
 ethernet@0
 ethernet@0,1
 SUNW,qlc@0,2/fp/disk
 SUNW,qlc@0,2/fp@0,0
 SUNW,qlc@0,3/fp/disk
 SUNW,qlc@0,3/fp@0,0
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
[pci@400/pci@1/pci@0/pci@8]
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
[pci@400/pci@1/pci@0/pci@c]
/SYS/MB/SASHBA PCIE pci_0 primary OCC
[pci@400/pci@2/pci@0/pci@e]
 scsi@0/iport@1
 scsi@0/iport@2
 scsi@0/iport@4
 scsi@0/iport@8
 scsi@0/iport@80/cdrom@p7,0
 scsi@0/iport@v0
/SYS/MB/NET0 PCIE pci_0 primary OCC
[pci@400/pci@1/pci@0/pci@4]
 network@0
 network@0,1
/SYS/MB/PCIE1 PCIE pci_1 primary OCC
[pci@500/pci@2/pci@0/pci@a]
 SUNW,qlc@0/fp/disk
 SUNW,qlc@0/fp@0,0
 SUNW,qlc@0,1/fp/disk
 SUNW,qlc@0,1/fp@0,0
/SYS/MB/PCIE3 PCIE pci_1 primary OCC
[pci@500/pci@2/pci@0/pci@6]
 network@0
 network@0,1
 network@0,2
 network@0,3
/SYS/MB/PCIE5 PCIE pci_1 primary OCC
[pci@500/pci@2/pci@0/pci@0]
 network@0
 network@0,1

Chapter 9
Creating an I/O Domain by Assigning a PCIe Endpoint Device

9-11

/SYS/MB/PCIE7 PCIE pci_1 primary EMP
[pci@500/pci@1/pci@0/pci@6]
/SYS/MB/PCIE9 PCIE pci_1 primary EMP
[pci@500/pci@1/pci@0/pci@0]
/SYS/MB/NET2 PCIE pci_1 primary OCC
[pci@500/pci@1/pci@0/pci@5]
 network@0
 network@0,1
 ethernet@0,80
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
[pci@400/pci@1/pci@0/pci@4/network@0]
 maxvfs = 7
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
[pci@400/pci@1/pci@0/pci@4/network@0,1]
 maxvfs = 7
/SYS/MB/PCIE5/IOVNET.PF0 PF pci_1 primary
[pci@500/pci@2/pci@0/pci@0/network@0]
 maxvfs = 63
/SYS/MB/PCIE5/IOVNET.PF1 PF pci_1 primary
[pci@500/pci@2/pci@0/pci@0/network@0,1]
 maxvfs = 63
/SYS/MB/NET2/IOVNET.PF0 PF pci_1 primary
[pci@500/pci@1/pci@0/pci@5/network@0]
 maxvfs = 7
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 primary
[pci@500/pci@1/pci@0/pci@5/network@0,1]
 maxvfs = 7

2. Determine the device path of the boot disk that must be retained.

See Step 2 in How to Create a Root Domain by Assigning a PCIe Bus.

3. Determine the physical device to which the block device is linked.

See Step 3 in How to Create a Root Domain by Assigning a PCIe Bus.

4. Determine the network interface that is used by the system.

See Step 4 in How to Create a Root Domain by Assigning a PCIe Bus.

5. Determine the physical device to which the network interface is linked.

The following command uses the igb0 network interface:

primary# ls -l /dev/igb0
lrwxrwxrwx 1 root root 46 Jul 30 17:29 /dev/igb0 ->
../devices/pci@500/pci@0/pci@8/network@0:igb0

In this example, the physical device for the network interface used by the primary
domain is connected to the PCIe endpoint device (pci@500/pci@0/pci@8), which
corresponds to the listing of MB/NET0 in Step 1. So, you do not want to remove this
device from the primary domain. You can safely assign all other PCIe devices to
other domains because they are not used by the primary domain.

If the network interface used by the primary domain is on a bus that you want to
assign to another domain, the primary domain would need to be reconfigured to
use a different network interface.

6. Remove the PCIe endpoint devices that you might use in I/O domains.

In this example, you can remove the PCIE2, PCIE3, PCIE4, and PCIE5 endpoint
devices because they are not being used by the primary domain.

a. Remove the PCIe endpoint devices.

Chapter 9
Creating an I/O Domain by Assigning a PCIe Endpoint Device

9-12

Caution:

Do not remove the devices that are used or required by the primary
domain. Do not remove a bus that has devices that are used by a domain,
such as network ports or usbecm devices. If you mistakenly remove the
wrong devices, use the ldm cancel-reconf primary command to
cancel the delayed reconfiguration on the primary domain.

You can remove multiple devices at one time to avoid multiple reboots.

primary# ldm start-reconf primary
primary# ldm set-io iov=on pci_1
All configuration changes for other domains are disabled until the primary
domain reboots, at which time the new configuration for the primary domain
will also take effect.
primary# ldm remove-io /SYS/MB/PCIE1 primary
--
Notice: The primary domain is in the process of a delayed reconfiguration.
Any changes made to the primary domain will only take effect after it reboots.
--
primary# ldm remove-io /SYS/MB/PCIE3 primary
--
Notice: The primary domain is in the process of a delayed reconfiguration.
Any changes made to the primary domain will only take effect after it reboots.
--
primary# ldm remove-io /SYS/MB/PCIE5 primary
--
Notice: The primary domain is in the process of a delayed reconfiguration.
Any changes made to the primary domain will only take effect after it reboots.
--

b. Save the new SP configuration to the service processor (SP).

The following command saves the SP configuration in a file called dio:

primary# ldm add-spconfig dio
c. Reboot the system to reflect the removal of the PCIe endpoint devices.

primary# shutdown -i6 -g0 -y
7. Log in to the primary domain and verify that the PCIe endpoint devices are no

longer assigned to the domain.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP1/NIU_CORE NIU niu_1 primary
/SYS/PM0/CMP0/PEX BUS pci_0 primary IOV
/SYS/PM0/CMP1/PEX BUS pci_1 rootdom1 IOV
/SYS/MB/PCIE0 PCIE pci_0 primary OCC
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
/SYS/MB/SASHBA PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE1 PCIE pci_1 OCC
/SYS/MB/PCIE3 PCIE pci_1 OCC

Chapter 9
Creating an I/O Domain by Assigning a PCIe Endpoint Device

9-13

/SYS/MB/PCIE5 PCIE pci_1 OCC
/SYS/MB/PCIE7 PCIE pci_1 primary EMP
/SYS/MB/PCIE9 PCIE pci_1 primary EMP
/SYS/MB/NET2 PCIE pci_1 primary OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/NET2/IOVNET.PF0 PF pci_1 primary
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 primary

Note:

The ldm list-io -l output might show SUNW,assigned-device for
the PCIe endpoint devices that were removed. Actual information is no
longer available from the primary domain, but the domain to which the
device is assigned has this information.

8. Assign a PCIe endpoint device to a domain.

a. Add the PCIE3 device to the ldg1 domain.

primary# ldm add-io /SYS/MB/PCIE3 ldg1
b. Bind and start the ldg1 domain.

primary# ldm bind ldg1
primary# ldm start-domain ldg1
LDom ldg1 started

9. Log in to the ldg1 domain and verify that the device is available for use.

Verify that the network device is available and then configure the network device
for use in the domain.

primary# dladm show-phys
LINK MEDIA STATE SPEED DUPLEX DEVICE
net0 Ethernet unknown 0 unknown nxge0
net1 Ethernet unknown 0 unknown nxge1
net2 Ethernet unknown 0 unknown nxge2
net3 Ethernet unknown 0 unknown nxge3

Chapter 9
Creating an I/O Domain by Assigning a PCIe Endpoint Device

9-14

10
Using Non-primary Root Domains

This chapter covers the following non-primary root domain topics:

• Non-primary Root Domains Overview

• Non-primary Root Domain Requirements

• Non-primary Root Domain Limitations

• Non-primary Root Domain Examples

Non-primary Root Domains Overview
A root domain has a PCIe root complex assigned to it. This domain owns the PCIe fabric and
provides all fabric-related services, such as fabric error handling. A root domain is also an I/O
domain, as it owns and has direct access to physical I/O devices. The primary domain is the
default root domain.

You can perform direct I/O and SR-IOV operations on PCIe buses that are assigned to any
root domain. You can now perform the following operations for all root domains, including
non-primary root domains:

• Show the status of PCIe slots

• Show the SR-IOV physical functions that are present

• Assign a PCIe slot to an I/O domain or a root domain

• Remove a PCIe slot from an I/O domain or a root domain

• Create a virtual function from its physical function

• Destroy a virtual function

• Assign a virtual function to another domain

• Remove a virtual function from another domain

The Logical Domains Manager obtains the PCIe endpoint devices and SR-IOV physical
function devices from the Logical Domains agents that run in the non-primary root domains.
This information is cached while the root domain is down after it is first discovered but only
until the root domain is booted.

You can perform direct I/O and SR-IOV operations only when the root domain is active.
Logical Domains Manager operates on the actual devices that are present at that time. The
cached data might be refreshed when the following operations occur:

• The Logical Domains agent is restarted in the specified root domain

• A hardware change, such as a hot-plug operation, is performed in the specified root
domain

Use the ldm list-io command to view the PCIe endpoint device status. The output also
shows the sub-devices and physical function devices from the root complexes that are owned
by each non-primary root domain.

10-1

You can use apply the following commands to any root domain:

• ldm add-io
• ldm remove-io
• ldm set-io
• ldm create-vf
• ldm destroy-vf
• ldm start-reconf
• ldm cancel-reconf
Delayed reconfiguration support has been extended to include non-primary root
domains. However, it can be used only to run the ldm add-io, ldm remove-io,
ldm set-io, ldm create-vf and ldm destroy-vf commands. The delayed
reconfiguration can be used for any operation that cannot be completed by using
dynamic operations such as the following:

• Performing direct I/O operations

• Creating and destroying virtual functions from a physical function that does not
meet the dynamic SR-IOV configuration requirements.

Caution:

Plan ahead to minimize the number of reboots of the root domain, which
minimizes downtime.

Non-primary Root Domain Requirements
Non-primary root domains can be used in addition to the control domain to provide
direct I/O and SR-IOV capabilities to other domains. This feature is supported starting
with the SPARC T4, SPARC M5, and SPARC S7 series server and the Fujitsu M10
server.

Note:

The Oracle Solaris 10 OS and the Oracle Solaris 11.1 OS do not support the
Direct I/O functionality or the SR-IOV functionality.

• Hardware Requirements.

In addition to the PCIe cards for the direct I/O and SR-IOV described in https://
support.oracle.com/CSP/main/article?
cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1, other PCIe cards
can be used, but not for DIO and SR-IOV. To determine which cards you can use
on your platform, see your platform's hardware documentation.

• Firmware Requirements.

SPARC T4 platforms must run at least version 8.4.0.a of the system firmware.

Chapter 10
Non-primary Root Domain Requirements

10-2

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325454.1

SPARC T5, SPARC M5, and SPARC M6 servers must run at least version 9.1.0.x of the
system firmware.

SPARC T7 and SPARC M7 series servers must run at least version 9.4.3 of the system
firmware.

SPARC S7, SPARC T8, and SPARC M8 series servers can run any released version of
the system firmware.

Fujitsu M10 servers must run at least version XCP2210 of the system firmware. Fujitsu
SPARC M12 servers must run XCP3021 of the system firmware.

• Software Requirements.

Non-primary domains must run at least the Oracle Solaris 11.2 OS.

Non-primary Root Domain Limitations
Use of the non-primary root domain has the following limitations:

• An I/O domain cannot start if the associated root domain is not running.

• Support for delayed reconfiguration has been extended to the non-primary root domains.
Only the following commands can be run until that root domain has been rebooted or the
delayed reconfiguration has been canceled:

– ldm add-io
– ldm remove-io
– ldm set-io
– ldm create-vf
– ldm destroy-vf

• The root domain must be active and booted to perform the following operations:

– Creating and destroying SR-IOV virtual functions

– Adding and removing PCIe slots

– Adding and removing SR-IOV virtual functions

• You must initiate a delayed reconfiguration on the root domain when you perform the ldm
add-io and ldm remove-io direct I/O operations for PCIe slots.

• When your configuration does not meet the dynamic I/O virtualization requirements, you
must use delayed reconfiguration for the following SR-IOV virtual function operations:

– ldm create-vf
– ldm destroy-vf
– ldm add-io
– ldm remove-io
– ldm set-io

• The reboot of a root domain affects any I/O domain that has a device from the PCIe
buses that the root domain owns. See Rebooting the Root Domain With PCIe Endpoints
Configured.

• You cannot assign an SR-IOV virtual function or a PCIe slot from one root domain to
another root domain. This limitation prevents circular dependencies.

Chapter 10
Non-primary Root Domain Limitations

10-3

Non-primary Root Domain Examples
The following examples describe how to enable I/O virtualization for a PCIe bus,
manage direct I/O devices on non-primary root domains, and manage SR-IOV virtual
functions on non-primary root domains.

Enabling I/O Virtualization for a PCIe Bus
The following example shows how to enable I/O virtualization by using the ldm add-
io and ldm set-io commands.

The following SPARC T4-2 I/O configuration shows that bus pci_1 already has been
removed from the primary domain.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP1/NIU_CORE NIU niu_1 primary
/SYS/PM0/CMP0/PXE BUS pci_0 primary
/SYS/PM0/CMP1/PXE BUS pci_1 primary
/SYS/MB/PCIE0 PCIE pci_0 primary OCC
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
/SYS/MB/SASHBA PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE1 PCIE pci_1 UNK
/SYS/MB/PCIE3 PCIE pci_1 UNK
/SYS/MB/PCIE5 PCIE pci_1 UNK
/SYS/MB/PCIE7 PCIE pci_1 UNK
/SYS/MB/PCIE9 PCIE pci_1 UNK
/SYS/MB/NET2 PCIE pci_1 UNK
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary

The following listing shows that the guest domains are in the bound state:

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL NORM UPTIME
primary active -n-cv- UART 8 8G 0.6% 0.6% 8m
rootdom1 bound ------ 5000 8 4G
ldg2 bound ------ 5001 8 4G
ldg3 bound ------ 5002 8 4G

The following ldm add-io command adds the pci_1 bus to the rootdom1 domain
with I/O virtualization enabled for that bus. The ldm start-domain command starts
the rootdom1 domain.

primary# ldm add-io iov=on pci_1 rootdom1
primary# ldm start-domain rootdom1
LDom rootdom1 started

If a specified PCIe bus is assigned already to a root domain, use the ldm set-io
command to enable I/O virtualization.

Chapter 10
Non-primary Root Domain Examples

10-4

primary# ldm start-reconf rootdom1
primary# ldm set-io iov=on pci_1
primary# ldm stop-domain -r rootdom1

The root domain must be running its OS before you can configure the I/O devices. Connect to
the console of the rootdom1 guest domain and then boot the OS of the rootdom1 root domain
if your guest domains are not already set to autoboot.

primary# telnet localhost 5000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Connecting to console "rootdom1" in group "rootdom1"
Press ~? for control options ..
ok> boot
...
primary#

The following command shows that the pci_1 PCIe bus and its children are now owned by
the rootdom1 root domain.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PXE BUS pci_0 primary
/SYS/PM0/CMP1/PXE BUS pci_1 primary
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP1/NIU_CORE NIU niu_1 primary
/SYS/MB/PCIE0 PCIE pci_0 primary OCC
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
/SYS/MB/SASHBA PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE1 PCIE pci_1 rootdom1 OCC
/SYS/MB/PCIE3 PCIE pci_1 rootdom1 OCC
/SYS/MB/PCIE5 PCIE pci_1 rootdom1 OCC
/SYS/MB/PCIE7 PCIE pci_1 rootdom1 OCC
/SYS/MB/PCIE9 PCIE pci_1 rootdom1 EMP
/SYS/MB/NET2 PCIE pci_1 rootdom1 OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/PCIE5/IOVNET.PF0 PF pci_1 rootdom1
/SYS/MB/PCIE5/IOVNET.PF1 PF pci_1 rootdom1
/SYS/MB/NET2/IOVNET.PF0 PF pci_1 rootdom1
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 rootdom1

Managing Direct I/O Devices on Non-primary Root Domains
The following example shows how to manage direct I/O devices on non-primary root
domains.

The following command produces an error because it attempts to remove a slot from the root
domain while it is still active:

primary# ldm remove-io /SYS/MB/PCIE7 ldg1
Dynamic I/O operations on PCIe slots are not supported.
Use start-reconf command to trigger delayed reconfiguration and make I/O
changes statically.

Chapter 10
Non-primary Root Domain Examples

10-5

The following command shows the correct method of removing a slot by first initiating
a delayed reconfiguration on the root domain.

primary# ldm start-reconf ldg1
Initiating a delayed reconfiguration operation on the ldg1 domain.
All configuration changes for other domains are disabled until the ldg1
domain reboots, at which time the new configuration for the ldg1 domain
will also take effect.
primary# ldm remove-io /SYS/MB/PCIE7 ldg1
--
Notice: The ldg1 domain is in the process of a delayed reconfiguration.
Any changes made to the ldg1 domain will only take effect after it reboots.
--
primary# ldm stop-domain -r ldg1

The following ldm list-io command verifies that the /SYS/MB/PCIE7 slot is no
longer on the root domain.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PXE BUS pci_0 primary
/SYS/PM0/CMP1/PXE BUS pci_1 primary
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP1/NIU_CORE NIU niu_1 primary
/SYS/MB/PCIE0 PCIE pci_0 primary OCC
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
/SYS/MB/SASHBA PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE1 PCIE pci_1 ldg1 OCC
/SYS/MB/PCIE3 PCIE pci_1 ldg1 OCC
/SYS/MB/PCIE5 PCIE pci_1 ldg1 OCC
/SYS/MB/PCIE7 PCIE pci_1 OCC
/SYS/MB/PCIE9 PCIE pci_1 ldg1 EMP
/SYS/MB/NET2 PCIE pci_1 ldg1 OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/PCIE5/IOVNET.PF0 PF pci_1 ldg1
/SYS/MB/PCIE5/IOVNET.PF1 PF pci_1 ldg1
/SYS/MB/NET2/IOVNET.PF0 PF pci_1 ldg1
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 ldg1

The following commands assign the /SYS/MB/PCIE7 slot to the ldg2 domain. The
ldm start-domain command starts the ldg2 domain.

primary# ldm add-io /SYS/MB/PCIE7 ldg2
primary# ldm start-domain ldg2
LDom ldg2 started

Managing SR-IOV Virtual Functions on Non-primary Root Domains
These commands create two virtual functions from each of the two physical functions
that belong to the non-primary root domain.

primary# ldm create-vf /SYS/MB/PCIE5/IOVNET.PF0
Created new vf: /SYS/MB/PCIE5/IOVNET.PF0.VF0
primary# ldm create-vf /SYS/MB/PCIE5/IOVNET.PF0

Chapter 10
Non-primary Root Domain Examples

10-6

Created new vf: /SYS/MB/PCIE5/IOVNET.PF0.VF1
primary# ldm create-vf /SYS/MB/NET2/IOVNET.PF1
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF0
primary# ldm create-vf /SYS/MB/NET2/IOVNET.PF1
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF1

You can also use the -n option to create the two virtual functions by using the following two
commands:

primary# ldm create-vf -n 2 /SYS/MB/PCIE5/IOVNET.PF0
Created new vf: /SYS/MB/PCIE5/IOVNET.PF0.VF0
Created new vf: /SYS/MB/PCIE5/IOVNET.PF0.VF1
primary# ldm create-vf -n 2 /SYS/MB/NET2/IOVNET.PF1
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF0
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF1

If you were unable to dynamically create the virtual functions on a given physical function,
initiate a delayed reconfiguration to create them statically.

primary# ldm start-reconf ldg1
primary# ldm create-vf /SYS/MB/PCIE5/IOVNET.PF0
Created new vf: /SYS/MB/PCIE5/IOVNET.PF0.VF0
primary# ldm create-vf /SYS/MB/PCIE5/IOVNET.PF0
Created new vf: /SYS/MB/PCIE5/IOVNET.PF0.VF1
primary# ldm create-vf /SYS/MB/NET2/IOVNET.PF1
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF0
primary# ldm create-vf /SYS/MB/NET2/IOVNET.PF1
Created new vf: /SYS/MB/NET2/IOVNET.PF1.VF1

Then reboot the root domain, ldg1, to effect the changes.

primary# ldm stop-domain -r ldg1

The following command shows the new virtual functions.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PXE BUS pci_0 primary IOV
/SYS/PM0/CMP1/PXE BUS pci_1 ldg1 IOV
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP1/NIU_CORE NIU niu_1 primary
/SYS/MB/PCIE0 PCIE pci_0 primary OCC
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
/SYS/MB/SASHBA PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE1 PCIE pci_1 ldg1 OCC
/SYS/MB/PCIE3 PCIE pci_1 ldg1 OCC
/SYS/MB/PCIE5 PCIE pci_1 ldg1 OCC
/SYS/MB/PCIE7 PCIE pci_1 ldg2 OCC
/SYS/MB/PCIE9 PCIE pci_1 ldg1 EMP
/SYS/MB/NET2 PCIE pci_1 ldg1 OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/PCIE5/IOVNET.PF0 PF pci_1 ldg1
/SYS/MB/PCIE5/IOVNET.PF1 PF pci_1 ldg1
/SYS/MB/NET2/IOVNET.PF0 PF pci_1 ldg1
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 ldg1

Chapter 10
Non-primary Root Domain Examples

10-7

/SYS/MB/PCIE5/IOVNET.PF0.VF0 VF pci_1
/SYS/MB/PCIE5/IOVNET.PF0.VF1 VF pci_1
/SYS/MB/NET2/IOVNET.PF1.VF0 VF pci_1
/SYS/MB/NET2/IOVNET.PF1.VF1 VF pci_1

The following command dynamically adds the /SYS/MB/PCIE5/IOVNET.PF0.VF1
virtual function to the ldg1 non-primary root domain:

primary# ldm add-io /SYS/MB/PCIE5/IOVNET.PF0.VF1 ldg1

The following command dynamically adds the /SYS/MB/NET2/IOVNET.PF1.VF0
virtual function to the ldg2 domain:

primary# ldm add-io /SYS/MB/NET2/IOVNET.PF1.VF0 ldg2

The following command adds the /SYS/MB/NET2/IOVNET.PF1.VF1 virtual function
to the bound ldg3 domain:

primary# ldm add-io /SYS/MB/NET2/IOVNET.PF1.VF1 ldg3
primary# ldm start-domain ldg3
LDom ldg3 started

Connect to the console of the ldg3 domain and then boot its OS.

The following output shows that all the assignments appear as expected. One virtual
function is unassigned so it can be assigned dynamically to the ldg1, ldg2, or ldg3
domain.

primary# ldm list-io
NAME TYPE BUS DOMAIN STATUS
---- ---- --- ------ ------
/SYS/PM0/CMP0/PXE BUS pci_0 primary IOV
/SYS/PM0/CMP1/PXE BUS pci_1 ldg1 IOV
/SYS/PM0/CMP0/NIU_CORE NIU niu_0 primary
/SYS/PM0/CMP1/NIU_CORE NIU niu_1 primary
/SYS/MB/PCIE0 PCIE pci_0 primary OCC
/SYS/MB/PCIE2 PCIE pci_0 primary OCC
/SYS/MB/PCIE4 PCIE pci_0 primary OCC
/SYS/MB/PCIE6 PCIE pci_0 primary EMP
/SYS/MB/PCIE8 PCIE pci_0 primary EMP
/SYS/MB/SASHBA PCIE pci_0 primary OCC
/SYS/MB/NET0 PCIE pci_0 primary OCC
/SYS/MB/PCIE1 PCIE pci_1 ldg1 OCC
/SYS/MB/PCIE3 PCIE pci_1 ldg1 OCC
/SYS/MB/PCIE5 PCIE pci_1 ldg1 OCC
/SYS/MB/PCIE7 PCIE pci_1 ldg2 OCC
/SYS/MB/PCIE9 PCIE pci_1 ldg1 EMP
/SYS/MB/NET2 PCIE pci_1 ldg1 OCC
/SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary
/SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary
/SYS/MB/PCIE5/IOVNET.PF0 PF pci_1 ldg1
/SYS/MB/PCIE5/IOVNET.PF1 PF pci_1 ldg1
/SYS/MB/NET2/IOVNET.PF0 PF pci_1 ldg1
/SYS/MB/NET2/IOVNET.PF1 PF pci_1 ldg1
/SYS/MB/PCIE5/IOVNET.PF0.VF0 VF pci_1
/SYS/MB/PCIE5/IOVNET.PF0.VF1 VF pci_1 ldg1
/SYS/MB/NET2/IOVNET.PF1.VF0 VF pci_1 ldg2
/SYS/MB/NET2/IOVNET.PF1.VF1 VF pci_1 ldg3

Chapter 10
Non-primary Root Domain Examples

10-8

11
Using Virtual Disks

This chapter describes how to use virtual disks with Oracle VM Server for SPARC software.

This chapter covers the following topics:

• Introduction to Virtual Disks

• Virtual Disk Identifier and Device Name

• Managing Virtual Disks

• Virtual Disk Appearance

• Virtual Disk Back End Options

• Virtual Disk Back End

• Configuring Virtual Disk Multipathing

• CD, DVD and ISO Images

• Virtual Disk Timeout

• Virtual Disk and SCSI

• Virtual Disk and the format Command

• Using ZFS With Virtual Disks

• Using Volume Managers in an Oracle VM Server for SPARC Environment

• Virtual Disk Issues

Introduction to Virtual Disks
A virtual disk contains two components: the virtual disk itself as it appears in a guest domain,
and the virtual disk back end, which is where data is stored and where virtual I/O is sent. The
virtual disk back end is exported from a service domain by the virtual disk server (vds) driver.
The vds driver communicates with the virtual disk client (vdc) driver in the guest domain
through the hypervisor using a logical domain channel (LDC). Finally, a virtual disk appears
as /dev/[r]dsk/cXdYsZ devices in the guest domain.

Note:

You can refer to a disk either by using /dev/dsk or /dev/rdsk as part of the disk
path name. Either reference produces the same result.

11-1

Caution:

Do not use the d0 device to represent the entire disk. This device represents
the entire disk only when the disk has an EFI label and not a VTOC label.
Using the d0 device results in the virtual disk being a single-slice disk, which
might cause you to corrupt the disk label if you write the beginning of the
disk. Instead, use the s2 slice to virtualize the entire disk. The s2 slice is
independent of the label.

The virtual disk back end can be physical or logical. Physical devices can include the
following:

• Physical disk or disk logical unit number (LUN)

• Physical disk slice

Logical devices can be any of the following:

• A file on a local file system, such as ZFS or UFS, or on a remote file system that is
made available by means of NFS

• A logical volume from a volume manager, such as ZFS, VxVM, or Solaris Volume
Manager

• Any disk pseudo device accessible from the service domain

Virtual Disks With Oracle VM Server for SPARC

To use the maximum number of virtual disks on the server, ensure that the segkpsize
kernel tunable has a value of at least 524288. Note that an insufficient segkpsize
value might result in a guest domain hanging during boot or during a dynamic addition
of a virtual disk.

Chapter 11
Introduction to Virtual Disks

11-2

Virtual Disk Identifier and Device Name
When you use the ldm add-vdisk command to add a virtual disk to a domain, you can
specify its device number by setting the id property.

ldm add-vdisk [id=disk-id] disk-name
volume-name@service-name
domain-name

Each virtual disk of a domain has a unique device number that is assigned when the domain
is bound. If a virtual disk is added with an explicit device number (by setting the id property),
the specified device number is used. Otherwise, the system automatically assigns the lowest
device number available. In that case, the device number assigned depends on how virtual
disks were added to the domain. The device number eventually assigned to a virtual disk is
visible in the output of the ldm list-bindings command when a domain is bound.

When a domain with virtual disks is running the Oracle Solaris OS, each virtual disk appears
in the domain as a c0dn disk device, where n is the device number of the virtual disk.

In the following example, the ldg1 domain has two virtual disks: rootdisk and pdisk.
rootdisk has a device number of 0 (disk@0) and appears in the domain as the disk device
c0d0. pdisk has a device number of 1 (disk@1) and appears in the domain as the disk device
c0d1.

primary# ldm list-bindings ldg1
...
DISK
 NAME VOLUME TOUT DEVICE SERVER MPGROUP
 rootdisk dsk_nevada@primary-vds0 disk@0 primary
 pdisk c3t40d1@primary-vds0 disk@1 primary
...

Caution:

If a device number is not explicitly assigned to a virtual disk, its device number can
change when the domain is unbound and is later bound again. In that case, the
device name assigned by the OS running in the domain can also change and break
the existing configuration of the system. This might happen, for example, when a
virtual disk is removed from the configuration of the domain.

Managing Virtual Disks
This section describes adding a virtual disk to a guest domain, changing virtual disk and
timeout options, and removing a virtual disk from a guest domain. See Virtual Disk Back End
Options for a description of virtual disk options. See Virtual Disk Timeout for a description of
the virtual disk timeout.

A virtual disk back end can be exported multiple times either through the same or different
virtual disk servers. Each exported instance of the virtual disk back end can then be assigned
to either the same or different guest domains.

When a virtual disk back end is exported multiple times, it should not be exported with the
exclusive (excl) option. Specifying the excl option will only allow exporting the back end

Chapter 11
Virtual Disk Identifier and Device Name

11-3

once. The back end can be safely exported multiple times as a read-only device with
the ro option.

Assigning a virtual disk device to a domain creates an implicit dependency on the
domain providing the virtual disk service. You can view these dependencies or view
domains that depend on the virtual disk service by using the ldm list-
dependencies command. See Listing Domain I/O Dependencies.

How to Add a Virtual Disk
1. Export the virtual disk back end from a service domain.

ldm add-vdsdev [-fq] [options={ro,slice,excl}] [mpgroup=mpgroup] \
backend volume-name@service-name

2. Assign the back end to a guest domain.

ldm add-vdisk [timeout=seconds] [id=disk-id] disk-name volume-name@service-
name domain-name

You can specify a custom ID of a new virtual disk device by setting the id property.
By default, ID values are automatically generated, so set this property if you need
to match an existing device name in the OS. See Virtual Disk Identifier and Device
Name.

Note:

A back end is actually exported from the service domain and assigned to
the guest domain when the guest domain (domain-name) is bound.

How to Export a Virtual Disk Back End Multiple Times

Caution:

When a virtual disk back end is exported multiple times, applications running
on guest domains and using that virtual disk are responsible for coordinating
and synchronizing concurrent write access to ensure data coherency.

The following example describes how to add the same virtual disk to two different
guest domains through the same virtual disk service.

1. Export the virtual disk back end two times from a service domain.

ldm add-vdsdev [options={ro,slice}] backend volume1@service-name
ldm add-vdsdev -f [options={ro,slice}] backend volume2@service-name

Note that the second ldm add-vdsdev command uses the -f option to force the
second export of the back end. Use this option when using the same back-end
path for both commands and when the virtual disk servers are located on the
same service domain.

2. Assign the exported back end to each guest domain.

The disk-name can be different for ldom1 and ldom2.

Chapter 11
Managing Virtual Disks

11-4

ldm add-vdisk [timeout=seconds] disk-name volume1@service-name ldom1
ldm add-vdisk [timeout=seconds] disk-name volume2@service-name ldom2

How to Change Virtual Disk Options
For more information about virtual disk options, see Virtual Disk Back End Options.

• After a back end is exported from the service domain, you can change the virtual
disk options.

primary# ldm set-vdsdev options=[{ro,slice,excl}] volume-name@service-name

How to Change the Timeout Option
For more information about virtual disk options, see Virtual Disk Back End Options.

• After a virtual disk is assigned to a guest domain, you can change the timeout of
the virtual disk.

primary# ldm set-vdisk timeout=seconds disk-name domain-name

How to Remove a Virtual Disk
1. Remove a virtual disk from a guest domain.

primary# ldm remove-vdisk disk-name domain-name
2. Stop exporting the corresponding back end from the service domain.

primary# ldm remove-vdsdev volume-name@service-name

Virtual Disk Appearance
When a back end is exported as a virtual disk, it can appear in the guest domain either as a
full disk or as a single-slice disk. The way it appears depends on the type of the back end and
on the options used to export it.

Note:

Non-Volatile Memory Express (NVMe) storage is available starting with the SPARC
T7, SPARC M7, and SPARC S7 series server. This storage can be a disk drive or a
Flash Accelerator F160 PCIe card. This disk type can be used to build a virtual disk
back end. Starting with the Oracle Solaris 11.3 SRU 2.4 OS, you can use the NVMe
storage disk type as a full disk or as a single-slice disk. Prior to the Oracle Solaris
11.3 SRU 2.4 OS, you can use the NVMe storage disk type only as a single-slice
disk.

Caution:

Single-slice disks do not have device IDs. If a device ID is required, use a full
physical disk backend.

Chapter 11
Virtual Disk Appearance

11-5

Full Disk
When a back end is exported to a domain as a full disk, it appears in that domain as a
regular disk with eight slices (s0 to s7). This type of disk is visible with the format(8)
command. The disk's partition table can be changed using either the fmthard or
format command.

A full disk is also visible to the OS installation software and can be selected as a disk
onto which the OS can be installed.

Any back end can be exported as a full disk except physical disk slices that can be
exported only as single-slice disks.

Single-Slice Disk
When a back end is exported to a domain as a single-slice disk, it appears in that
domain as a regular disk with eight slices (s0 to s7). However, only the first slice (s0) is
usable. This type of disk is visible with the format(8) command, but the disk's partition
table cannot be changed.

A single-slice disk is also visible from the OS installation software and can be selected
as a disk onto which you can install the OS. In that case, if you install the OS using the
UNIX File System (UFS), then only the root partition (/) must be defined, and this
partition must use all the disk space.

Any back end can be exported as a single-slice disk except physical disks that can
only be exported as full disks.

Note:

Prior to the Oracle Solaris 10 10/08 OS release, a single-slice disk appeared
as a disk with a single partition (s0). This type of disk was not visible with the
format command. The disk also was not visible from the OS installation
software and could not be selected as a disk device onto which the OS could
be installed.

Virtual Disk Back End Options
Different options can be specified when exporting a virtual disk back end. These
options are indicated in the options= argument of the ldm add-vdsdev command
as a comma-separated list. The valid options are: ro, slice, and excl.

Read-only (ro) Option
The read-only (ro) option specifies that the back end is to be exported as a read-only
device. In that case, the virtual disk assigned to the guest domain can be accessed
only for read operations, and any write operation to the virtual disk will fail.

Chapter 11
Virtual Disk Back End Options

11-6

https://docs.oracle.com/cd/E88353_01/html/E72487/format-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/format-8.html

Exclusive (excl) Option
The exclusive (excl) option specifies that the back end in the service domain has to be
opened exclusively by the virtual disk server when it is exported as a virtual disk to another
domain. When a back end is opened exclusively, it is not accessible by other applications in
the service domain. This restriction prevents the applications running in the service domain
from inadvertently using a back end that is also being used by a guest domain.

Note:

Some drivers do not honor the excl option and will disallow some virtual disk back
ends from being opened exclusively. The excl option is known to work with physical
disks and slices, but the option does not work with files. It might work with pseudo
devices, such as disk volumes. If the driver of the back end does not honor the
exclusive open, the back end excl option is ignored, and the back end is not
opened exclusively.

Because the excl option prevents applications running in the service domain from accessing
a back end exported to a guest domain, do not set the excl option in the following situations:

• When guest domains are running, if you want to be able to use commands such as
format to manage physical disks, then do not export these disks with the excl option.

• When you export a Solaris Volume Manager volume, such as a RAID or a mirrored
volume, do not set the excl option. Otherwise, this can prevent Solaris Volume Manager
from starting some recovery operation in case a component of the RAID or mirrored
volume fails. See Using Virtual Disks With Solaris Volume Manager for more information.

• If the Veritas Volume Manager (VxVM) is installed in the service domain and Veritas
Dynamic Multipathing (VxDMP) is enabled for physical disks, then physical disks have to
be exported without the (non-default) excl option. Otherwise, the export fails, because
the virtual disk server (vds) is unable to open the physical disk device. See Using Virtual
Disks When VxVM Is Installed for more information.

• If you are exporting the same virtual disk back end multiple times from the same virtual
disk service, see How to Export a Virtual Disk Back End Multiple Times for more
information.

By default, the back end is opened non-exclusively. That way the back end still can be used
by applications running in the service domain while it is exported to another domain.

Slice (slice) Option
A back end is normally exported either as a full disk or as a single-slice disk depending on its
type. If the slice option is specified, then the back end is forcibly exported as a single-slice
disk.

This option is useful when you want to export the raw content of a back end. For example, if
you have a ZFS or Solaris Volume Manager volume where you have already stored data and
you want your guest domain to access this data, then you should export the ZFS or Solaris
Volume Manager volume using the slice option.

For more information about this option, see Virtual Disk Back End.

Chapter 11
Virtual Disk Back End Options

11-7

Virtual Disk Back End
The virtual disk back end is the location where data of a virtual disk are stored. The
back end can be a disk, a disk slice, a file, or a volume, such as ZFS, Solaris Volume
Manager, or VxVM. A back end appears in a guest domain either as a full disk or as
single-slice disk, depending on whether the slice option is set when the back end is
exported from the service domain. By default, a virtual disk back end is exported non-
exclusively as a readable-writable full disk.

Physical Disk or Disk LUN
A physical disk or disk LUN is always exported as a full disk. In that case, virtual disk
drivers (vds and vdc) forward I/O from the virtual disk and act as a pass-through to the
physical disk or disk LUN.

A physical disk or disk LUN is exported from a service domain by exporting the device
that corresponds to the slice 2 (s2) of that disk without setting the slice option. If you
export the slice 2 of a disk with the slice option, only this slice is exported and not the
entire disk.

How to Export a Physical Disk as a Virtual Disk

Caution:

When configuring virtual disks, ensure that each virtual disk references a
distinct physical (back-end) resource, such as a physical disk, a disk slice, a
file, or a volume. Some disks, such as FibreChannel and SAS, have a “dual-
ported” nature, which means that the same disk can be referenced by two
different paths. Ensure that the paths you assign to different domains do not
refer to the same physical disk.

1. Export a physical disk as a virtual disk.

For example, to export the physical disk c1t48d0 as a virtual disk, you must
export slice 2 of that disk (c1t48d0s2).

primary# ldm add-vdsdev /dev/dsk/c1t48d0s2 c1t48d0@primary-vds0
2. Assign the disk to a guest domain.

For example, assign the disk (pdisk) to guest domain ldg1.

primary# ldm add-vdisk pdisk c1t48d0@primary-vds0 ldg1
3. After the guest domain is started and running the Oracle Solaris OS, verify

that the disk is accessible and is a full disk.

A full disk is a regular disk that has eight (8) slices.

For example, the disk being checked is c0d1.

ldg1# ls -1 /dev/dsk/c0d1s*
/dev/dsk/c0d1s0
/dev/dsk/c0d1s1
/dev/dsk/c0d1s2

Chapter 11
Virtual Disk Back End

11-8

/dev/dsk/c0d1s3
/dev/dsk/c0d1s4
/dev/dsk/c0d1s5
/dev/dsk/c0d1s6
/dev/dsk/c0d1s7

Physical Disk Slice
A physical disk slice is always exported as a single-slice disk. In that case, virtual disk drivers
(vds and vdc) forward I/O from the virtual disk and act as a pass-through to the physical disk
slice.

A physical disk slice is exported from a service domain by exporting the corresponding slice
device. If the device is different from slice 2 then it is automatically exported as a single-slice
disk regardless of whether you specify the slice option. If the device is the slice 2 of the
disk, you must set the slice option to export only slice 2 as a single-slice disk. Otherwise,
the entire disk is exported as full disk.

Note:

Non-Volatile Memory Express (NVMe) storage is available starting with the SPARC
T7, SPARC M7, and SPARC S7 series server. This storage can be a disk drive or a
Flash Accelerator F160 PCIe card. Starting with the Oracle Solaris 11.3 SRU 2.4
OS, you can use the NVMe storage disk type as a full disk or as a single-slice disk.
Prior to the Oracle Solaris 11.3 SRU 2.4 OS, you can use the NVMe storage disk
type only as a single-slice disk.

How to Export a Physical Disk Slice as a Virtual Disk
1. Export a slice of a physical disk as a virtual disk.

For example, to export slice 0 of the physical disk c1t57d0 as a virtual disk, you must
export the device that corresponds to that slice (c1t57d0s0) as follows.

primary# ldm add-vdsdev /dev/dsk/c1t57d0s0 c1t57d0s0@primary-vds0

You do not need to specify the slice option because a slice is always exported as a
single-slice disk.

2. Assign the disk to a guest domain.

For example, assign the disk (pslice) to guest domain ldg1.

primary# ldm add-vdisk pslice c1t57d0s0@primary-vds0 ldg1
3. After the guest domain is started and running the Oracle Solaris OS, you can list

the disk (c0d13, for example) and see that the disk is accessible.

ldg1# ls -1 /dev/dsk/c0d13s*
/dev/dsk/c0d13s0
/dev/dsk/c0d13s1
/dev/dsk/c0d13s2
/dev/dsk/c0d13s3
/dev/dsk/c0d13s4
/dev/dsk/c0d13s5
/dev/dsk/c0d13s6
/dev/dsk/c0d13s7

Chapter 11
Virtual Disk Back End

11-9

Although there are eight devices, because the disk is a single-slice disk, only the
first slice (s0) is usable.

How to Export Slice 2
• To export slice 2 (disk c1t57d0s2, for example) you must specify the slice

option. Otherwise, the entire disk is exported.

primary# ldm add-vdsdev options=slice /dev/dsk/c1t57d0s2 c1t57d0s2@primary-
vds0

File and Volume Exporting
A file or volume (for example from ZFS or Solaris Volume Manager) is exported either
as a full disk or as single-slice disk depending on whether the slice option is set.

File or Volume Exported as a Full Disk
If you do not set the slice option, a file or volume is exported as a full disk. In that
case, virtual disk drivers (vds and vdc) forward I/O from the virtual disk and manage
the partitioning of the virtual disk. The file or volume eventually becomes a disk image
containing data from all slices of the virtual disk and the metadata used to manage the
partitioning and disk structure.

When a blank file or volume is exported as full disk, it appears in the guest domain as
an unformatted disk; that is, a disk with no partition. Then you need to run the format
command in the guest domain to define usable partitions and to write a valid disk
label. Any I/O to the virtual disk fails while the disk is unformatted.

Note:

You must run the format command in the guest domain to create partitions.

How to Export a File as a Full Disk
1. From the service domain, create a file (fdisk0 for example) to use as the

virtual disk.

service# mkfile 100m /ldoms/domain/test/fdisk0

The size of the file defines the size of the virtual disk. This example creates a 100-
Mbyte blank file to get a 100-Mbyte virtual disk.

2. From the control domain, export the file as a virtual disk.

primary# ldm add-vdsdev /ldoms/domain/test/fdisk0 fdisk0@primary-vds0

In this example, the slice option is not set, so the file is exported as a full disk.

3. From the control domain, assign the disk to a guest domain.

For example, assign the disk (fdisk) to guest domain ldg1.

primary# ldm add-vdisk fdisk fdisk0@primary-vds0 ldg1

Chapter 11
Virtual Disk Back End

11-10

4. After the guest domain is started and running the Oracle Solaris OS, verify that the
disk is accessible and is a full disk.

A full disk is a regular disk with eight slices.

The following example shows how to list the disk, c0d5, and verify that it is accessible
and is a full disk.

ldg1# ls -1 /dev/dsk/c0d5s*
/dev/dsk/c0d5s0
/dev/dsk/c0d5s1
/dev/dsk/c0d5s2
/dev/dsk/c0d5s3
/dev/dsk/c0d5s4
/dev/dsk/c0d5s5
/dev/dsk/c0d5s6
/dev/dsk/c0d5s7

How to Export a ZFS Volume as a Full Disk
1. Create a ZFS volume to use as a full disk.

The following example shows how to create a ZFS volume, zdisk0, to use as a full disk:

service# zfs create -V 100m ldoms/domain/test/zdisk0

The size of the volume defines the size of the virtual disk. This example creates a 100-
Mbyte volume to result in a 100-Mbyte virtual disk.

2. From the control domain, export the corresponding device to that ZFS volume.

primary# ldm add-vdsdev /dev/zvol/dsk/ldoms/domain/test/zdisk0 \
zdisk0@primary-vds0

In this example, the slice option is not set so the file is exported as a full disk.

3. From the control domain, assign the volume to a guest domain.

The following example shows how to assign the volume, zdisk0, to the guest domain
ldg1:

primary# ldm add-vdisk zdisk0 zdisk0@primary-vds0 ldg1
4. After the guest domain is started and running the Oracle Solaris OS, verify that the

disk is accessible and is a full disk.

A full disk is a regular disk with eight slices.

The following example shows how to list the disk, c0d9, and verify that it is accessible
and is a full disk:

ldg1# ls -1 /dev/dsk/c0d9s*
/dev/dsk/c0d9s0
/dev/dsk/c0d9s1
/dev/dsk/c0d9s2
/dev/dsk/c0d9s3
/dev/dsk/c0d9s4
/dev/dsk/c0d9s5
/dev/dsk/c0d9s6
/dev/dsk/c0d9s7

Chapter 11
Virtual Disk Back End

11-11

File or Volume Exported as a Single-Slice Disk
If the slice option is set, then the file or volume is exported as a single-slice disk. In
that case, the virtual disk has only one partition (s0), which is directly mapped to the
file or volume back end. The file or volume only contains data written to the virtual disk
with no extra data like partitioning information or disk structure.

When a file or volume is exported as a single-slice disk, the system simulates a fake
disk partitioning which makes that file or volume appear as a disk slice. Because the
disk partitioning is simulated, you do not create partitioning for that disk.

How to Export a ZFS Volume as a Single-Slice Disk
1. Create a ZFS volume to use as a single-slice disk.

The following example shows how to create a ZFS volume, zdisk0, to use as a
single-slice disk.

service# zfs create -V 100m ldoms/domain/test/zdisk0

The size of the volume defines the size of the virtual disk. This example creates a
100-Mbyte volume to get a 100-Mbyte virtual disk.

2. From the control domain, export the corresponding device to that ZFS
volume, and set the slice option so that the volume is exported as a single-
slice disk.

primary# ldm add-vdsdev options=slice /dev/zvol/dsk/ldoms/domain/test/zdisk0
\
zdisk0@primary-vds0

3. From the control domain, assign the volume to a guest domain.

The following shows how to assign the volume, zdisk0, to guest domain ldg1.

primary# ldm add-vdisk zdisk0 zdisk0@primary-vds0 ldg1
4. After the guest domain is started and running the Oracle Solaris OS, you can

list the disk (c0d9, for example) and see that the disk is accessible and is a
single-slice disk (s0).

ldg1# ls -1 /dev/dsk/c0d9s*
/dev/dsk/c0d9s0
/dev/dsk/c0d9s1
/dev/dsk/c0d9s2
/dev/dsk/c0d9s3
/dev/dsk/c0d9s4
/dev/dsk/c0d9s5
/dev/dsk/c0d9s6
/dev/dsk/c0d9s7

Exporting Volumes and Backward Compatibility
If you have a configuration exporting volumes as virtual disks, volumes are now
exported as full disks instead of single-slice disks. To preserve the old behavior and to
have your volumes exported as single-slice disks, you need to do either of the
following:

Chapter 11
Virtual Disk Back End

11-12

• Use the ldm set-vdsdev command in Oracle VM Server for SPARC 3.6 software, and
set the slice option for all volumes you want to export as single-slice disks. See the
ldm(8) man page.

• Add the following line to the /etc/system file on the service domain.

set vds:vd_volume_force_slice = 1

For information about correctly creating or updating /etc/system property values, see
Updating Property Values in the /etc/system File.

Note:

Setting this tunable forces the export of all volumes as single-slice disks, and
you cannot export any volume as a full disk.

Summary of How Different Types of Back Ends Are Exported

Table 11-1 Summary of How Different Types of Back Ends Are Exported

Back End No Slice Option Slice Option Set

Disk (disk slice 2) Full disk1 Single-slice disk2

Disk slice (not slice 2) Single-slice disk3 Single-slice disk

File Full disk Single-slice disk

Volume, including ZFS, Solaris Volume
Manager, or VxVM

Full disk Single-slice disk

1 Export the entire disk.
2 Export only slice 2
3 A slice is always exported as a single-slice disk.

Guidelines for Exporting Files and Disk Slices as Virtual Disks
This section includes guidelines for exporting a file and a disk slice as a virtual disk.

Using the Loopback File (lofi) Driver
Using the loopback file (lofi) driver to export a file as a virtual disk adds an extra driver
layer and affects performance of the virtual disk. Instead, you can directly export a file as a
full disk or as a single-slice disk. See File and Volume Exporting.

Directly or Indirectly Exporting a Disk Slice
To export a slice as a virtual disk either directly or indirectly (for example through a Solaris
Volume Manager volume), ensure that the slice does not start on the first block (block 0) of
the physical disk by using the prtvtoc command.

If you directly or indirectly export a disk slice which starts on the first block of a physical disk,
you might overwrite the partition table of the physical disk and make all partitions of that disk
inaccessible.

Chapter 11
Virtual Disk Back End

11-13

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Configuring Virtual Disk Multipathing
Virtual disk multipathing enables you to configure a virtual disk on a guest domain to
access its back-end storage by more than one path. The paths lead through different
service domains that provide access to the same back-end storage, such as a disk
LUN. This feature enables a virtual disk in a guest domain to remain accessible even if
one of the service domains goes down. For example, you might set up a virtual disk
multipathing configuration to access a file on a network file system (NFS) server. Or,
you can use this multipathing configuration to access a LUN from shared storage that
is connected to more than one service domain. So, when the guest domain accesses
the virtual disk, the virtual disk driver goes through one of the service domains to
access the back-end storage. If the virtual disk driver cannot connect to the service
domain, the virtual disk attempts to reach the back-end storage through a different
service domain.

Note:

You cannot use mpgroups and SCSI reservation together.

Note that the virtual disk multipathing feature can detect when the service domain
cannot access the back-end storage. In such an instance, the virtual disk driver
attempts to access the back-end storage by another path.

To enable virtual disk multipathing, you must export a virtual disk back end from each
service domain and add the virtual disk to the same multipathing group (mpgroup). The
mpgroup is identified by a name and is configured when you export the virtual disk
back end.

The following figure shows a virtual disk multipathing configuration that is used as an
example in the procedure How to Configure Virtual Disk Multipathing. In this example,
a multipathing group named mpgroup1 is used to create a virtual disk, whose back end
is accessible from two service domains: primary and alternate.

Configuring Virtual Disk Multipathing

Chapter 11
Configuring Virtual Disk Multipathing

11-14

Virtual Disk Multipathing and NFS
When setting up mpgroup failover with NFS file systems, ensure that you mount the NFS file
system with the soft NFS mount option.

By using the soft option, I/O errors are reported to the VDS or VDC, and the VDC sends
additional messages to determine whether this is an I/O error or if the entire back end is
unavailable. Failover time is proportional to the NFS timeout and the possible
retransmissions.

Do not change the timeo NFS mount option from the default value of 60 seconds
(timeo=600). A short timeout value such as timeo=40 means that you might encounter
spurious I/O errors. For example, when an NFS server or network is unavailable for five
seconds and then it returns to operation, I/O errors might be reported because the disruption
was not long enough to cause a failover. A longer timeout, such as 60 seconds, masks
disruptions that are several seconds long.

Virtual Disk Multipathing and Virtual Disk Timeout
With virtual disk multipathing, the path that is used to access the back end automatically
changes if the back end becomes inaccessible by means of the currently active path. This
path change occurs independently of the value of the virtual disk timeout property.

The virtual disk timeout property specifies the amount of time after which an I/O fails when
no service domain is available to process the I/O. This timeout applies to all virtual disks,
even those that use virtual disk multipathing.

As a consequence, setting a virtual disk timeout when virtual disk multipathing is configured
can prevent multipathing from working correctly, especially with a small timeout value. So,
avoid setting a virtual disk timeout for virtual disks that are part of a multipathing group.

For more information, see Virtual Disk Timeout.

Chapter 11
Configuring Virtual Disk Multipathing

11-15

How to Configure Virtual Disk Multipathing
See the figure titled Configuring Virtual Disk Multipathing.

1. Export the virtual disk back end from the primary service domain.

primary# ldm add-vdsdev mpgroup=mpgroup1 backend-path1 volume@primary-vds0

backend-path1 is the path to the virtual disk back end from the primary domain.

2. Export the same virtual disk back end from the alternate service domain.

primary# ldm add-vdsdev mpgroup=mpgroup1 backend-path2 volume@alternate-vds0

backend-path2 is the path to the virtual disk back end from the alternate domain.

Note:

backend-path1 and backend-path2 are paths to the same virtual disk
back end, but from two different domains (primary and alternate).
These paths might be the same or different, depending on the
configuration of the primary and alternate domains. The volume name
is a user choice. It might be the same or different for both commands.

3. Export the virtual disk to the guest domain.

primary# ldm add-vdisk disk-name volume@primary-vds0 domain-name

Note:

Although the virtual disk back end is exported several times through
different service domains, you assign only one virtual disk to the guest
domain and associate it with the virtual disk back end through any of the
service domains.

Example 11-1 Using an Mpgroup to Add a LUN to the Virtual Disk Service of
Both Primary and Alternate Domains

The following shows how to create a LUN and add it to the virtual disk service for both
primary and alternate domains by using the same mpgroup:

To determine which domain to use first when accessing the LUN, specify the
associated path when adding the disk to the domain.

• Create the virtual disk devices:

primary# ldm add-vdsdev mpgroup=ha lun1@primary-vds0
primary# ldm add-vdsdev mpgroup=ha lun1@alternate-vds0

• To use the LUN from primary-vds0 first, perform the following command:

primary# ldm add-vdisk disk1 lun1@primary-vds0 gd0
• To use the LUN from alternate-vds0 first, perform the following command:

primary# ldm add-vdisk disk1 lun1@alternate-vds0 gd0

Chapter 11
Configuring Virtual Disk Multipathing

11-16

Result of Virtual Disk Multipathing

After you configure the virtual disk with multipathing and start the guest domain, the virtual
disk accesses its back end through one of the service domains it has been associated with. If
this service domain becomes unavailable, the virtual disk attempts to access its back end
through another service domain that is part of the same multipathing group.

Caution:

When defining a multipathing group (mpgroup), ensure that the virtual disk back
ends that are part of the same mpgroup are effectively the same virtual disk back
end. If you add different back ends into the same mpgroup, you might see some
unexpected behavior, and you can potentially lose or corrupt data stored on the
back ends.

Dynamic Path Selection
You can dynamically select the path to be used for a virtual disk on guest domains and
alternate domains that run at least the Oracle Solaris 11.2 SRU 1 OS. The control domain
must run at least the Oracle Solaris 11.2 SRU 8 OS and at least the Oracle VM Server for
SPARC 3.2 software.

Dynamic path selection occurs when the first path in an mpgroup disk is changed by using
the ldm set-vdisk command to set the volume property to a value in the form volume-
name @ service-name. An active domain that supports dynamic path selection can switch to
only the selected path. If the updated drivers are not running, this path is selected when the
Oracle Solaris OS reloads the disk instance or at the next domain reboot.

The dynamic path selection feature enables you to dynamically perform the following steps
while the disk is in use:

• Specify the disk path to be tried first by the guest domain when attaching the disk

• Change the currently active path to the one that is indicated for already attached
multipathing disks

Using the ldm add-vdisk command with an mpgroup disk now specifies the path indicated
by volume-name @ service-name as the selected path with which to access the disk.

The selected disk path is listed first in the set of paths provided to the guest domain
irregardless of its rank when the associated mpgroup was created.

You can use the ldm set-vdisk command on bound, inactive, and active domains. When
used on active domains, this command permits you to choose only the selected path of the
mpgroup disk.

The ldm list-bindings command shows the following information:

• The STATE column for each mpgroup path indicates one of the following values:

– active – Current active path of the mpgroup

– standby – Path is not currently used

– unknown – Domain does not support dynamic path selection, the device is not
attached, or an error prevents the path state from being retrieved

Chapter 11
Configuring Virtual Disk Multipathing

11-17

• The disk paths are listed in the order that is used for choosing the active path

• The volume that is associated with the disk is the selected path for the mpgroup
and is listed first.

The following example shows that the selected path is vol-ldg2@opath-ldg2 and
that the currently used active path is going through the ldg1 domain. You might
see this situation if the selected path could not be used and the second possible
path was used instead. Even if the selected path comes online, the non-selected
path continues to be used. To make the first path active again, re-issue the ldm
set-vdisk command to set the volume property to the name of the path you
want.

DISK

NAME VOLUME TOUT ID DEVICE SERVER MPGROUP
disk disk-ldg4@primary-vds0 0 disk@0 primary
tdiskgroup vol-ldg2@opath-ldg2 1 disk@1 ldg2 testdiskgroup
 PORT MPGROUP VOLUME MPGROUP SERVER STATE
 2 vol-ldg2@opath-ldg2 ldg2 standby
 0 vol-ldg1@opath-vds ldg1 active
 1 vol-prim@primary-vds0 primary standby

If you use the ldm set-vdisk command on an mpgroup disk of a bound domain that
does not run at least the Oracle Solaris 11.2 SRU 1 OS, the operation changes the
order of the path priorities and the new path can be used first during next disk attach
or reboot or if the OBP needs to access it.

CD, DVD and ISO Images
You can export a compact disc (CD) or digital versatile disc (DVD) the same way you
export any regular disk. To export a CD or DVD to a guest domain, export slice 2 of the
CD or DVD device as a full disk; that is, without the slice option.

Note:

You cannot export the CD or DVD drive itself. You can export only the CD or
DVD that is inside the CD or DVD drive. Therefore, a CD or DVD must be
present inside the drive before you can export it. Also, to be able to export a
CD or DVD, that CD or DVD cannot be in use in the service domain. In
particular, the Volume Management file system, volfs service must not use
the CD or DVD. See How to Export a CD or DVD From the Service Domain
to the Guest Domain for instructions on how to remove the device from use
by volfs.

If you have an International Organization for Standardization (ISO) image of a CD or
DVD stored in file or on a volume and export that file or volume as a full disk, then it
appears as a CD or DVD in the guest domain.

When you export a CD, DVD, or an ISO image, it automatically appears as a read-only
device in the guest domain. However, you cannot perform any CD control operations
from the guest domain; that is, you cannot start, stop, or eject the CD from the guest
domain. If the exported CD, DVD, or ISO image is bootable, the guest domain can be
booted on the corresponding virtual disk.

Chapter 11
CD, DVD and ISO Images

11-18

For example, if you export a Oracle Solaris OS installation DVD, you can boot the guest
domain on the virtual disk that corresponds to that DVD and install the guest domain from
that DVD. To do so, when the guest domain reaches the ok prompt, use the following
command.

ok boot /virtual-devices@100/channel-devices@200/disk@n:f

Where n is the index of the virtual disk representing the exported DVD.

Note:

If you export a Oracle Solaris OS installation DVD and boot a guest domain on the
virtual disk that corresponds to that DVD to install the guest domain, then you
cannot change the DVD during the installation. So, you might need to skip any step
of the installation requesting a different CD/DVD, or you will need to provide an
alternate path to access this requested media.

How to Export a CD or DVD From the Service Domain to the Guest
Domain

1. If the removable media service is running and online, perform the following steps:

• Oracle Solaris 11 OS: Determine whether the removable media service is running
and online.

service# svcs rmvolmgr
service# svcs dbus
service# svcs hal

• Oracle Solaris 10 OS: Determine whether the volume management daemon, vold,
is running and online.

service# svcs volfs
STATE STIME FMRI
online 12:28:12 svc:/system/filesystem/volfs:default

2. If the removable media service is running and online, perform the following steps:

• Oracle Solaris 11.3 OS: Insert the CD or DVD in the CD or DVD drive.

• Oracle Solaris 10 OS, Oracle Solaris 11 OS, Oracle Solaris 11.1 OS, Oracle
Solaris 11.2 OS: If the volume management daemon is running and online, do the
following:

a. In the /etc/vold.conf file, comment out the line starting with the following
words:

use cdrom drive....

See the vold.conf(5) man page.

b. Insert the CD or DVD in the CD or DVD drive.

c. From the service domain, restart the volume management file system service.

service# svcadm refresh volfs
service# svcadm restart volfs

3. From the service domain, find the disk path for the CD-ROM device.

Chapter 11
CD, DVD and ISO Images

11-19

service# cdrw -l
Looking for CD devices...
Node Connected Device Device type
----------------------+--------------------------------+-----------------
/dev/rdsk/c1t0d0s2 | MATSHITA CD-RW CW-8124 DZ13 | CD Reader/Writer

4. Export the CD or DVD disk device as a full disk.

primary# ldm add-vdsdev /dev/dsk/c1t0d0s2 cdrom@primary-vds0
5. Assign the exported CD or DVD to the guest domain.

The following command shows how to assign the exported CD or DVD to domain
ldg1:

primary# ldm add-vdisk cdrom cdrom@primary-vds0 ldg1
Exporting a CD or DVD Multiple Times

A CD or DVD can be exported multiple times and assigned to different guest domains.
See How to Export a Virtual Disk Back End Multiple Times for more information.

How to Export an ISO Image From the Control Domain to Install a
Guest Domain

Before You Begin

This procedure assumes that both the primary domain and the guest domain are
configured.

For example, the following ldm list shows that both the primary and ldom1
domains are configured:

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 8 8G 0.3% 15m
ldom1 active -t-‐- 5000 4 1G 25% 8m

1. Add a virtual disk server device to export the ISO image.

In this example, the ISO image is /export/images/sol-10-u8-ga-sparc-
dvd.iso.

primary# ldm add-vdsdev /export/images/sol-10-u8-ga-sparc-dvd.iso dvd-
iso@primary-vds0

2. Stop the guest domain.

In this example, the logical domain is ldom1.

primary# ldm stop-domain ldom1
LDom ldom1 stopped

3. Add the virtual disk for the ISO image to the logical domain.

In this example, the logical domain is ldom1.

primary# ldm add-vdisk s10-dvd dvd-iso@primary-vds0 ldom1
4. Restart the guest domain.

In this example, the logical domain is ldom1.

Chapter 11
CD, DVD and ISO Images

11-20

primary# ldm start-domain ldom1
LDom ldom1 started
ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv SP 8 8G 0.4% 25m
ldom1 active -t-‐- 5000 4 1G 0.0% 0s

In this example, the ldm list command shows that the ldom1 domain has just been
started.

5. Connect to the guest domain.

primary# telnet localhost 5000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Connecting to console "ldom1" in group "ldom1"
Press ~? for control options ..

6. Verify the existence of the ISO image as a virtual disk.

{0} ok show-disks
a) /virtual-devices@100/channel-devices@200/disk@1
b) /virtual-devices@100/channel-devices@200/disk@0
q) NO SELECTION
Enter Selection, q to quit: q

In this example, the newly added device is /virtual-devices@100/channel-
devices@200/disk@1.

7. Boot the guest domain to install from the ISO image.

In this example, boot from the f slice of the /virtual-devices@100/channel-
devices@200/disk@1 disk.

{0} ok boot /virtual-devices@100/channel-devices@200/disk@1:f

Virtual Disk Timeout
By default, if the service domain providing access to a virtual disk back end is down, all I/O
from the guest domain to the corresponding virtual disk is blocked. The I/O automatically is
resumed when the service domain is operational and is servicing I/O requests to the virtual
disk back end.

However, in some cases, file systems or applications might not want the I/O operation to
block but rather to fail and report an error if the service domain is down for too long. You can
now set a connection timeout period for each virtual disk, which can then be used to establish
a connection between the virtual disk client on a guest domain and the virtual disk server on
the service domain. When that timeout period is reached, any pending I/O and any new I/O
will fail as long as the service domain is down and the connection between the virtual disk
client and server is not reestablished.

Set this timeout by using one of the following methods:

• Using the ldm add-vdisk command.

ldm add-vdisk timeout=seconds
disk-name
volume-name@service-name
domain-name

Chapter 11
Virtual Disk Timeout

11-21

• Using the ldm set-vdisk command.

ldm set-vdisk timeout=seconds
disk-name
domain-name

• Adding the following line to the /etc/system file on the guest domain.

set vdc:vdc_timeout=seconds

For information about correctly creating or updating /etc/system property
values, see Updating Property Values in the /etc/system File.

Note:

If this tunable is set, it overwrites any timeout setting done using the ldm
CLI. Also, the tunable sets the timeout for all virtual disks in the guest
domain.

Specify the timeout in seconds. If the timeout is set to 0, the timeout is disabled and
I/O is blocked while the service domain is down (this is the default setting and
behavior).

Virtual Disk and SCSI
If a physical SCSI disk or LUN is exported as a full disk, the corresponding virtual disk
supports the user SCSI command interface, uscsi and multihost disk control
operations mhd. Other virtual disks, such as virtual disks having a file or a volume as a
back end, do not support these interfaces.

Note:

You cannot use mpgroups and SCSI reservation together.

As a consequence, applications or product features using SCSI commands (such as
Solaris Volume Manager metaset or Oracle Solaris Cluster shared devices) can
be used in guest domains only with virtual disks having a physical SCSI disk as a back
end.

Note:

SCSI operations are effectively executed by the service domain, which
manages the physical SCSI disk or LUN used as a virtual disk back end. In
particular, SCSI reservations are implemented by SCSI commands on the
service domain. Therefore, applications running in the service domain and in
guest domains should not issue SCSI commands to the same physical SCSI
disks. Doing so can lead to an unexpected disk state.

Chapter 11
Virtual Disk and SCSI

11-22

Virtual Disk and the format Command
The format command recognizes all virtual disks that are present in a domain. However, for
virtual disks that are exported as single-slice disks, the format command cannot change the
partition table of the virtual disk. Commands such as label will fail unless you try to write a
disk label similar to the one that is already associated with the virtual disk.

Virtual disks whose back ends are SCSI disks support all format(8) subcommands. Virtual
disks whose back ends are not SCSI disks do not support some format(8) subcommands,
such as repair and defect. In that case, the behavior of format(8) is similar to the
behavior of Integrated Drive Electronics (IDE) disks.

Using ZFS With Virtual Disks
This section describes using the Zettabyte File System (ZFS) to store virtual disk back ends
exported to guest domains. ZFS provides a convenient and powerful solution to create and
manage virtual disk back ends. ZFS enables you to do the following:

• Store disk images in ZFS volumes or ZFS files

• Use snapshots to back up disk images

• Use clones to duplicate disk images and provision additional domains

Refer to Oracle Solaris ZFS Administration Guide for more information about using ZFS.

In the following descriptions and examples, the primary domain is also the service domain
where disk images are stored.

Configuring a ZFS Pool in a Service Domain
To store the disk images, first create a ZFS storage pool in the service domain. For example,
this command creates the ZFS storage pool ldmpool containing the disk c1t50d0 in the
primary domain.

primary# zpool create ldmpool c1t50d0

Storing Disk Images With ZFS
The following command creates a disk image for guest domain ldg1. A ZFS file system for
this guest domain is created, and all disk images of this guest domain will be stored on that
file system.

primary# zfs create ldmpool/ldg1

Disk images can be stored on ZFS volumes or ZFS files. Creating a ZFS volume, whatever
its size, is quick using the zfs create -V command. On the other hand, ZFS files have to
be created by using the mkfile command. This command can take some time to complete,
especially if the file to be created is quite large, which is often the case when creating a disk
image.

Both ZFS volumes and ZFS files can take advantage of ZFS features such as the snapshot
and clone features, but a ZFS volume is a pseudo device while a ZFS file is a regular file.

Chapter 11
Virtual Disk and the format Command

11-23

https://docs.oracle.com/cd/E88353_01/html/E72487/format-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/format-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/format-8.html
https://docs.oracle.com/cd/E19253-01/819-5461/index.html

If the disk image is to be used as a virtual disk onto which an OS is installed, the disk
image must be large enough to accommodate the OS installation requirements. This
size depends on the version of the OS and on the type of installation performed. If you
install the Oracle Solaris OS, you can use a disk size of 20 Gbytes to accommodate
any type of installation of any version of the Oracle Solaris OS.

Examples of Storing Disk Images With ZFS
The following examples show how to store disk images using a ZFS volume or a ZFS
file. The syntax to export a ZFS volume or file is the same but the path to the back end
is different.

When the guest domain is started, the ZFS volume or file appears as a virtual disk on
which the Oracle Solaris OS can be installed.

Example 11-2 Storing a Disk Image Using a ZFS Volume

First, create a 20-Gbyte image on a ZFS volume.

primary# zfs create -V 20gb ldmpool/ldg1/disk0

Then, export the ZFS volume as a virtual disk.

primary# ldm add-vdsdev /dev/zvol/dsk/ldmpool/ldg1/disk0 ldg1_disk0@primary-vds0

Assign the ZFS volume to the ldg1 guest domain.

primary# ldm add-vdisk disk0 ldg1_disk0@primary-vds0 ldg1

Example 11-3 Storing a Disk Image Using a ZFS File

First, create a 20-Gbyte disk image on a ZFS volume and create the ZFS file.

primary# zfs create ldmpool/ldg1/disk0
primary# mkfile 20g /ldmpool/ldg1/disk0/file

Then, export the ZFS file as a virtual disk.

primary# ldm add-vdsdev /ldmpool/ldg1/disk0/file ldg1_dis0@primary-vds0

Assign the ZFS file to the ldg1 guest domain.

primary# ldm add-vdisk disk0 ldg1_disk0@primary-vds0 ldg1

Creating a Snapshot of a Disk Image
When your disk image is stored on a ZFS volume or on a ZFS file, you can create
snapshots of this disk image by using the ZFS snapshot command.

Before you create a snapshot of the disk image, ensure that the disk is not currently in
use in the guest domain to ensure that data currently stored on the disk image are
coherent. You can ensure that a disk is not in use in a guest domain in one of the
following ways:

• Stop and unbind the guest domain. This solution is the safest, and is the only
solution available if you want to create a snapshot of a disk image used as the
boot disk of a guest domain.

• Unmount any slices of the disk you want to snapshot that are used in the guest
domain, and ensure that no slice is in use in the guest domain.

Chapter 11
Using ZFS With Virtual Disks

11-24

In this example, because of the ZFS layout, the command to create a snapshot of the disk
image is the same whether the disk image is stored on a ZFS volume or on a ZFS file.

Example 11-4 Creating a Snapshot of a Disk Image

This example creates a snapshot of the disk image that was created for the ldg1 domain.

primary# zfs snapshot ldmpool/ldg1/disk0@version_1

Using Clone to Provision a New Domain
Once you have created a snapshot of a disk image, you can duplicate this disk image by
using the ZFS clone command. The cloned image then can be assigned to another domain.
Cloning a boot disk image quickly creates a boot disk for a new guest domain without having
to perform the entire Oracle Solaris OS installation process.

For example, if the disk0 created was the boot disk of domain ldg1, do the following to clone
that disk to create a boot disk for domain ldg2.

primary# zfs create ldmpool/ldg2
primary# zfs clone ldmpool/ldg1/disk0@version_1 ldmpool/ldg2/disk0

Then ldompool/ldg2/disk0 can be exported as a virtual disk and assigned to the new
ldg2 domain. The domain ldg2 can directly boot from that virtual disk without having to go
through the OS installation process.

Cloning a Boot Disk Image
When a boot disk image is cloned, the new image is exactly the same as the original boot
disk, and it contains any information that has been stored on the boot disk before the image
was cloned, such as the host name, the IP address, the mounted file system table, or any
system configuration or tuning.

Because the mounted file system table is the same on the original boot disk image and on
the cloned disk image, the cloned disk image has to be assigned to the new domain in the
same order as it was on the original domain. For example, if the boot disk image was
assigned as the first disk of the original domain, then the cloned disk image has to be
assigned as the first disk of the new domain. Otherwise, the new domain is unable to boot.

If the original domain was configured with a static IP address, then a new domain using the
cloned image starts with the same IP address. In that case, you can change the network
configuration of the new domain by using the Oracle Solaris 11 sysconfig unconfigure
command or the Oracle Solaris 10 sys-unconfig command. To avoid this problem, you can
also create a snapshot of a disk image of an unconfigured system.

If the original domain was configured with the Dynamic Host Configuration Protocol (DHCP),
then a new domain using the cloned image also uses DHCP. In that case, you do not need to
change the network configuration of the new domain because it automatically receives an IP
address and its network configuration as it boots.

Note:

The host ID of a domain is not stored on the boot disk, but rather is assigned by the
Logical Domains Manager when you create a domain. Therefore, when you clone a
disk image, the new domain does not keep the host ID of the original domain.

Chapter 11
Using ZFS With Virtual Disks

11-25

How to Create a Snapshot of a Disk Image of an Unconfigured System
1. Bind and start the original domain.

2. Unconfigure the system.

• Oracle Solaris 11 OS: Run the sysconfig unconfigure command.

• Oracle Solaris 10 OS: Run the sys-unconfig command.

When this operation completes, the domain halts.

3. Stop and unbind the domain, do not reboot it.

4. Take a snapshot of the domain boot disk image.

For example:

primary# zfs snapshot ldmpool/ldg1/disk0@unconfigured

At this point, you have the snapshot of the boot disk image of an unconfigured
system.

5. Clone this image to create a new domain which, when first booted, asks for
the configuration of the system.

Using Volume Managers in an Oracle VM Server for SPARC
Environment

This section describes using volume managers in an Oracle VM Server for SPARC
environment.

Using Virtual Disks With Volume Managers
Any ZFS, Solaris Volume Manager, or Veritas Volume Manager (VxVM) volume can be
exported from a service domain to a guest domain as a virtual disk. A volume can be
exported either as a single-slice disk (if the slice option is specified with the ldm
add-vdsdev command) or as a full disk.

Note:

The remainder of this section uses a Solaris Volume Manager volume as an
example. However, the discussion also applies to ZFS and VxVM volumes.

The following examples show how to export a volume as a single-slice disk.

The virtual disk in the guest domain (for example, /dev/dsk/c0d2s0) is directly
mapped to the associated volume (for example, /dev/md/dsk/d0), and data stored
onto the virtual disk from the guest domain are directly stored onto the associated
volume with no extra metadata. Data stored on the virtual disk from the guest domain
can therefore also be directly accessed from the service domain through the
associated volume.

Examples

Chapter 11
Using Volume Managers in an Oracle VM Server for SPARC Environment

11-26

• If the Solaris Volume Manager volume d0 is exported from the primary domain to
domain1, then the configuration of domain1 requires some extra steps.

primary# metainit d0 3 1 c2t70d0s6 1 c2t80d0s6 1 c2t90d0s6
primary# ldm add-vdsdev options=slice /dev/md/dsk/d0 vol3@primary-vds0
primary# ldm add-vdisk vdisk3 vol3@primary-vds0 domain1

• After domain1 has been bound and started, the exported volume appears as /dev/dsk/
c0d2s0, for example, and you can use it.

domain1# newfs /dev/rdsk/c0d2s0
domain1# mount /dev/dsk/c0d2s0 /mnt
domain1# echo test-domain1 > /mnt/file

• After domain1 has been stopped and unbound, data stored on the virtual disk from
domain1 can be directly accessed from the primary domain through Solaris Volume
Manager volume d0.

primary# mount /dev/md/dsk/d0 /mnt
primary# cat /mnt/file
test-domain1

Using Virtual Disks With Solaris Volume Manager
When a RAID or mirror Solaris Volume Manager volume is used as a virtual disk by another
domain, then it has to be exported without setting the exclusive (excl) option. Otherwise, if
there is a failure on one of the components of the Solaris Volume Manager volume, then the
recovery of the Solaris Volume Manager volume using the metareplace command or using
a hot spare does not start. The metastat command sees the volume as resynchronizing,
but the resynchronization does not progress.

For example, /dev/md/dsk/d0 is a RAID Solaris Volume Manager volume exported as a
virtual disk with the excl option to another domain, and d0 is configured with some hot-spare
devices. If a component of d0 fails, Solaris Volume Manager replaces the failing component
with a hot spare and resynchronizes the Solaris Volume Manager volume. However, the
resynchronization does not start. The volume is reported as resynchronizing, but the
resynchronization does not progress.

primary# metastat d0
d0: RAID
 State: Resyncing
 Hot spare pool: hsp000
 Interlace: 32 blocks
 Size: 20097600 blocks (9.6 GB)
Original device:
 Size: 20100992 blocks (9.6 GB)
Device Start Block Dbase State Reloc
c2t2d0s1 330 No Okay Yes
c4t12d0s1 330 No Okay Yes
/dev/dsk/c10t600C0FF0000000000015153295A4B100d0s1 330 No Resyncing Yes

In such a situation, the domain using the Solaris Volume Manager volume as a virtual disk
has to be stopped and unbound to complete the resynchronization. Then the Solaris Volume
Manager volume can be resynchronized using the metasync command.

metasync d0

Chapter 11
Using Volume Managers in an Oracle VM Server for SPARC Environment

11-27

Using Virtual Disks When VxVM Is Installed
When the VxVM is installed on your system and Veritas Dynamic Multipathing (DMP)
is enabled on a physical disk or partition you want to export as virtual disk, then you
have to export that disk or partition without setting the (non-default) excl option.
Otherwise, you receive an error in /var/adm/messages while binding a domain that
uses such a disk.

vd_setup_vd(): ldi_open_by_name(/dev/dsk/c4t12d0s2) = errno 16
vds_add_vd(): Failed to add vdisk ID 0

You can check whether Veritas DMP is enabled by checking the multipathing
information in the vxdisk list output. For example:

vxdisk list Disk_3
Device: Disk_3
devicetag: Disk_3
type: auto
info: format=none
flags: online ready private autoconfig invalid
pubpaths: block=/dev/vx/dmp/Disk_3s2 char=/dev/vx/rdmp/Disk_3s2
guid: -
udid: SEAGATE%5FST336753LSUN36G%5FDISKS%5F3032333948303144304E0000
site: -
Multipathing information:
numpaths: 1
c4t12d0s2 state=enabled

Alternatively, if Veritas DMP is enabled on a disk or a slice that you want to export as a
virtual disk with the excl option set, then you can disable DMP using the vxdmpadm
command. For example:

vxdmpadm -f disable path=/dev/dsk/c4t12d0s2

Using Volume Managers With Virtual Disks
This section describes using volume managers with virtual disks.

Using ZFS With Virtual Disks
Any virtual disk can be used with ZFS. A ZFS storage pool (zpool) can be imported in
any domain that sees all the storage devices that are part of this zpool, regardless of
whether the domain sees all these devices as virtual devices or real devices.

Using Solaris Volume Manager With Virtual Disks
Any virtual disk can be used in the Solaris Volume Manager local disk set. For
example, a virtual disk can be used for storing the Solaris Volume Manager
metadevice state database, metadb, of the local disk set or for creating Solaris
Volume Manager volumes in the local disk set.

Any virtual disk whose back end is a SCSI disk can be used in a Solaris Volume
Manager shared disk set, metaset. Virtual disks whose back ends are not SCSI disks
cannot be added into a Solaris Volume Manager share disk set. Trying to add a virtual

Chapter 11
Using Volume Managers in an Oracle VM Server for SPARC Environment

11-28

disk whose back end is not a SCSI disk into a Solaris Volume Manager shared disk set fails
with an error similar to the following.

metaset -s test -a c2d2
metaset: domain1: test: failed to reserve any drives

Using VxVM With Virtual Disks
For VxVM support in guest domains, refer to the VxVM documentation from Symantec.

Virtual Disk Issues
The following section describe issues that you might encounter when using virtual disks.

In Certain Conditions, a Guest Domain's Solaris Volume Manager
Configuration or Metadevices Can Be Lost

If a service domain is running a version of Oracle Solaris 10 OS prior to Oracle Solaris 10
1/13 OS and is exporting a physical disk slice as a virtual disk to a guest domain, then this
virtual disk will appear in the guest domain with an inappropriate device ID. If that service
domain is then upgraded to Oracle Solaris 10 1/13 OS, the physical disk slice exported as a
virtual disk will appear in the guest domain with no device ID.

This removal of the device ID of the virtual disk can cause problems to applications
attempting to reference the device ID of virtual disks. In particular, Solaris Volume Manager
might be unable to find its configuration or to access its metadevices.

After upgrading a service domain to Oracle Solaris 10 1/13 OS, if a guest domain is unable to
find its Solaris Volume Manager configuration or its metadevices, perform the following
procedure.

How to Find a Guest Domain's Solaris Volume Manager Configuration or
Metadevices

1. Boot the guest domain.

2. Disable the devid feature of Solaris Volume Manager by adding the following lines
to the /kernel/drv/md.conf file:

md_devid_destroy=1;
md_keep_repl_state=1;

3. Reboot the guest domain.

After the domain has booted, the Solaris Volume Manager configuration and metadevices
should be available.

4. Check the Solaris Volume Manager configuration and ensure that it is correct.

5. Re-enable the Solaris Volume Manager devid feature by removing from the /
kernel/drv/md.conf file the two lines that you added in Step 2.

6. Reboot the guest domain.

During the reboot, you will see messages similar to this:

NOTICE: mddb: unable to get devid for 'vdc', 0x10

Chapter 11
Virtual Disk Issues

11-29

These messages are normal and do not report any problems.

Oracle Solaris Boot Disk Compatibility
Historically, the Oracle Solaris OS has been installed on a boot disk configured with an
SMI VTOC disk label. Starting with the Oracle Solaris 11.1 OS, the OS is installed on a
boot disk that is configured with an extensible firmware interface (EFI) GUID partition
table (GPT) disk label by default. The current system firmware versions of all
supported servers support EFI labels.

The following servers cannot boot from a disk that has an EFI GPT disk label:

• SPARC T4 servers that run system firmware versions prior to 8.4.0

• SPARC T5, SPARC M5, and SPARC M6 servers that run system firmware
versions prior to 9.1.0

• SPARC T7 and SPARC M7 series servers that run system firmware versions prior
to 9.4.3

So, an Oracle Solaris 11.1 boot disk that is created on an up-to-date SPARC T4,
SPARC T5, SPARC M5, SPARC M6, SPARC T7, or SPARC M7 series server cannot
be used on older servers or on servers that run older firmware.

This limitation restrains the ability to use either cold or live migration to move a domain
from a recent server to an older server. This limitation also prevents you from using an
EFI GPT boot disk image on an older server.

To determine whether an Oracle Solaris 11.1 boot disk is compatible with your server
and its firmware, ensure that the Oracle Solaris 11.1 OS is installed on a disk that is
configured with an SMI VTOC disk label.

To maintain backward compatibility with systems that run older firmware, use one of
the following procedures. Otherwise, the boot disk uses the EFI GPT disk label by
default. These procedures show how to ensure that the Oracle Solaris 11.1 OS is
installed on a boot disk with an SMI VTOC disk label on a SPARC T4 server with at
least system firmware version 8.4.0, on a SPARC T5, SPARC M5, or SPARC M6
server with at least system firmware version 9.1.0, and on a SPARC T7 or SPARC M7
series server with at least system firmware version 9.4.3.

• Solution 1: Remove the gpt property so that the firmware does not report that it
supports EFI.

1. From the OpenBoot PROM prompt, disable automatic booting and reset the
system to be installed.

ok setenv auto-boot? false
ok reset-all

After the system resets, it returns to the ok prompt.

2. Change to the /packages/disk-label directory and remove the gpt
property.

ok cd /packages/disk-label
ok " gpt" delete-property

3. Begin the Oracle Solaris 11.1 OS installation.

For example, perform a network installation:

ok boot net - install

Chapter 11
Virtual Disk Issues

11-30

• Solution 2: Use the format -e command to write an SMI VTOC label on the disk to be
installed with the Oracle Solaris 11.1 OS.

1. Write an SMI VTOC label on the disk.

For example, select the label option and specify the SMI label:

format -e c1d0
format> label
[0] SMI Label
[1] EFI Label
Specify Label type[1]: 0

2. Configure the disk with a slice 0 and slice 2 that cover the entire disk.

The disk should have no other partitions. For example:

format> partition

partition> print
Current partition table (unnamed):
Total disk cylinders available: 14087 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks
 0 root wm 0 - 14086 136.71GB (14087/0/0) 286698624
 1 unassigned wu 0 0 (0/0/0) 0
 2 backup wu 0 - 14086 136.71GB (14087/0/0) 286698624
 3 unassigned wm 0 0 (0/0/0) 0
 4 unassigned wm 0 0 (0/0/0) 0
 5 unassigned wm 0 0 (0/0/0) 0
 6 unassigned wm 0 0 (0/0/0) 0
 7 unassigned wm 0 0 (0/0/0) 0

3. Re-write the SMI VTOC disk label.

partition> label
[0] SMI Label
[1] EFI Label
Specify Label type[0]: 0
Ready to label disk, continue? y

4. Configure your Oracle Solaris Automatic Installer (AI) to install the Oracle Solaris OS
on slice 0 of the boot disk.

Change the <disk> excerpt in the AI manifest as follows:

<target>
 <disk whole_disk="true">
 <disk_keyword key="boot_disk"/>
 <slice name="0" in_zpool="rpool"/>
 </disk>
[...]
</target>

5. Perform the installation of the Oracle Solaris 11.1 OS.

Chapter 11
Virtual Disk Issues

11-31

12
Using Virtual SCSI Host Bus Adapters

This chapter describes how to use virtual SCSI Host Bus Adapters (HBAs) with Oracle VM
Server for SPARC software.

This chapter covers the following topics:

• Introduction to Virtual SCSI Host Bus Adapters

• Operational Model for Virtual SCSI HBAs

• Discovering SCSI Devices

• Protocol Version Combinations

• The Hidden Device at LUN0

• Virtual SCSI HBA Subsystem Limitations

• Virtual SCSI HBA Identifier and Device Name

• Managing Virtual SCSI HBAs

• Appearance of Virtual LUNs in a Guest Domain

• Virtual SCSI HBA and Virtual SAN Configurations

• Configuring Virtual SCSI HBA Multipathing

• Booting From SCSI Devices

• Installing a Virtual LUN

• Virtual SCSI HBA Timeout

• Virtual SCSI HBA and SCSI

• Simulating a LUN0

• Managing the Physical Devices in a Virtual Storage Area Network

Introduction to Virtual SCSI Host Bus Adapters
A virtual SCSI host bus adapter (HBA) is composed of two components: a virtual HBA in the
guest domain and a virtual storage area network (SAN) in the service domain. The virtual
HBA and virtual SAN instances cooperate to implement a SCSI HBA interface for SCSI target
drivers that execute in the guest domain. The vSAN service is implemented by the vsan
driver, which passes SCSI I/O requests to the physical SCSI HBA driver that executes in the
service domain. The vhba driver sends I/O requests to vsan by using a hypervisor-managed
logical domain channel (LDC).

This feature is available starting with the Oracle Solaris 11.3 OS. Ensure that the control
domain, service domain, and guest domains that use the virtual SCSI HBA feature run at
least the Oracle Solaris 11.3 SRU 23 OS.

A vHBA instance provides access to all SCSI devices that are reachable by a specific vSAN
instance. A vHBA can recognize any SCSI device type such as disk, CD, DVD, or tape. The
set of reachable SCSI devices changes based on the set of physical SCSI devices that is

12-1

currently known to the virtual SAN's associated physical HBA driver. The identity and
number of SCSI devices known to a specific vHBA are not known until runtime, which
also occurs with a physical HBA driver.

The vHBA has virtual LUNs (vLUNs) as its child devices and they behave the same
way as physical LUNs. For example, you can use the Oracle Solaris I/O multipathing
solution with a vHBA instance and its vLUNs. The device path for a vLUN uses the full
cXtYdZsN notation: /dev/[r]dsk/cXtYdZsN . The tY part of the device name
indicates the SCSI target device.

After you configure the virtual SAN and virtual SCSI HBA, you can perform operations
such as booting a virtual LUN from the OpenBoot prompt or viewing all the virtual
LUNs by using the format command.

Virtual SCSI HBAs With Oracle VM Server for SPARC

A virtual SAN exists in a service domain and is implemented by the vsan kernel
module, whereas a virtual SCSI HBA exists in a guest domain and is implemented by
the vhba module. A virtual SAN is associated with a specific physical SCSI HBA
initiator port, whereas a virtual SCSI HBA is associated with a specific virtual SAN.

The vhba module exports a SCSA-compliant interface to receive I/O requests from any
SCSA-compliant SCSI target driver. The vhba module translates the I/O requests into
virtual I/O protocol messages that are sent through an LDC to the service domain.

The vsan module translates the virtual I/O messages sent by vhba into I/O requests.
These requests are sent to a SCSA-compliant physical SCSI HBA driver. The vsan
module returns the I/O payload and status to vhba through the LDC. Finally, the vhba
forwards this I/O response to the originator of the I/O request.

The vsan module supports the I/O Domain Resiliency (IOR) feature. As a result, if the
root domain that provides access to a virtual SAN's physical SCSI HBA initiator port is

Chapter 12
Introduction to Virtual SCSI Host Bus Adapters

12-2

https://docs.oracle.com/en/virtualization/oracle-vm-server-sparc/ldoms-admin/i-o-domain-resiliency.html

interrupted, the vsan module ensures that all new and current I/O requests fail gracefully.

Operational Model for Virtual SCSI HBAs
The operational model for using virtual SCSI HBAs is qualitatively different than for other
types of Oracle VM Server for SPARC virtual devices because only the virtual SCSI HBA and
virtual SAN instances are known to the Logical Domains Manager. The virtual LUNs that
appear in the guest domain and the physical LUNs that appear in the service domain are not
known until they are discovered at runtime. The virtual LUNs and physical LUNs are
discovered implicitly when the associated LDC connection is reset and explicitly by using the
ldm rescan-vhba command.

Although you use the ldm command to name a virtual disk explicitly, a virtual LUN in a guest
domain derives its identity from the identity of the associated physical LUN in the service
domain. See the ldm(8) man page.

For example, the physical LUN and the virtual LUN share the text shown in bold in the
following device paths:

• Physical LUN in the service domain:

/pci@0/pci@0/pci@8/pci@0/pci@2/SUNW,qlc@0/fp@0,0/ssd@w216000c0ff8089d5,0
• Virtual LUN in the guest domain:

/virtual-devices@100/channel-devices@200/scsi@1/iport@0/disk@w216000c0ff8089d5,0

Note:

The guest domain device path is present only when Oracle Solaris I/O multipathing
is disabled in the guest domain. If Oracle Solaris I/O multipathing is enabled, the
scsi_vhci module creates the device path in the guest domain and it has a
different syntax.

Note that the scsi@1 component in the virtual LUN's device path denotes the virtual SCSI
HBA instance of which this virtual LUN is a member.

Because a virtual SCSI HBA's set of virtual LUNs is derived from the service domain at
runtime, virtual LUNs cannot be added or removed explicitly from the guest domain. Instead,
you must add or remove the underlying physical LUNs so that the guest domain's virtual LUN
membership can be altered. An event such as a domain reboot or a domain migration, might
cause the guest domains' virtual LUN membership to change. This change occurs because
the virtual LUNs are rediscovered automatically whenever the virtual SCSI HBA's LDC
connection is reset. If a virtual LUN's underlying physical LUN is not found on a future
discovery, the virtual LUN is marked as unavailable and accesses to the virtual LUN return an
error similar to the following:

WARNING: .../scsi@1/iport@0/disk@w216000c0ff8089d5,0 (sd6): ... Command failed to
complete...Device is gone

A virtual SCSI HBA instance is managed by the vhba driver, but a virtual LUN is managed by
a SCSI target driver based on the device type of the underlying physical LUN. The following
output confirms that the vhba driver manages the virtual SCSI HBA instance and that the sd
SCSI disk driver manages the virtual LUN:

Chapter 12
Operational Model for Virtual SCSI HBAs

12-3

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

prtconf -a -D /dev/dsk/c2t216000C0FF8089D5d0
SUNW,SPARC-Enterprise-T5220 (driver name: rootnex)
 virtual-devices, instance #0 (driver name: vnex)
 channel-devices, instance #0 (driver name: cnex)
 scsi, instance #0 (driver name: vhba)
 iport, instance #3 (driver name: vhba)
 disk, instance #30 (driver name: sd)

Discovering SCSI Devices
The vhba module cooperates with the vsan module to discover any SCSI devices that
are reachable from the vsan module's SCSI Initiator Port.

Each time the shared LDC channel resets, the vhba and vsan modules determine the
maximum supported vHBA Protocol version. This version determines which algorithm
to use to discover devices.

If the vhba and vsan modules use vHBA protocol Version 1.0, any attempt to replace
a device fails so as to prevent data corruption of the new device.

If the vhba and vsan modules both support at least vHBA protocol Version 1.2, the
vhba module permits the insertion of a new device at a previously used path. The
kernel and the vhba module ensure that I/O sent to the path's old device are gracefully
terminated. I/O that is sent to the path's new device successfully complete.

The following example command shows the path and metadata of LUN3 underneath
the vhba@1 instance. The worldwide number (WWN) for LUN3 is presented in boldface:

echo "::vhba -v" | mdb -k
...
vhba_t(6400b4401900) vhba@1
 vhba_iport_t(6400a6a0ce30)
 vhba_tport_t(6400b75cabb8) tport_phys(w200000110d211500) flags[COMMON]
...
 vhba_lun_t(6400b75ca738) lun(3) vlun-id(6)
wwn(naa.600110D000211500010900009DEB2585) [COMMON]
 devinfo(6400c3c631a8) scsi_device(6400c3c2b0c8)
scsi_inquiry(6400c3a96640).inq_dtype(0=disk)
 /virtual-devices@100/channel-devices@200/scsi@1/iport@0/
disk@w200000110d211500,3

If you replace the device at LUN3's path with a new device, that new device has a
different WWN as shown in the following example command output:

 vhba_lun_t(6400b75cbdb8) lun(3) vlun-id(12)
wwn(naa.600110D0002115000109000065106D8A) [NEW]
 devinfo(6400c3c631a8) scsi_device(6400cce2a8e8)
scsi_inquiry(6400d2cc3908).inq_dtype(0=disk)
 /virtual-devices@100/channel-devices@200/scsi@1/iport@0/
disk@w200000110d211500,3

Note that the scsi@1/iport@0/disk@w200000110d211500,3 device path does not
change when you replace the device. Only the WWN identity of the device changes.

Discovering SCSI Tape Devices
The SCSI target driver for tape devices, st, permits only one concurrent open. Thus,
a service domain configuration that has two or more vsan instances that reference the

Chapter 12
Discovering SCSI Devices

12-4

same SCSI HBA initiator port issues the following pair of messages for each vsan instance
other than the one that successfully called open:

vsan: WARNING: vs@7: dip(6400a921b1f8): open(/pci@3c0/pci@1/pci@0/pci@7/SUNW,qlc@0/
fp@0,2/st@w200000110d211500,2) err(16)
vsan: WARNING: vs@7: device(6400a921b1f8) is of type TAPE; ensure all the domain's
vSANs are configured correctly.

At boot time, you cannot determine which vsan successfully calls open for a set of vsans
that indirectly reference the same tape device. This happens because the initialization of
each vsan is independent and executes concurrently.

Use the ldm add-vsan and ldm add-vhba commands to specify which vsan is the first to
open the tape devices that are reachable from that vsan's initiator port. Also, set the mask
attribute of the vsan to isolate a specific tape device within its own vsan.

For more information about using the mask attribute, see Managing the Physical Devices in a
Virtual Storage Area Network.

To identify the device path of the tape device that opened successfully, perform the following
commands in the guest domain. Use the ::vhba -v command to find the entry that
corresponds to the tape device's worldwide number. Note that the device type field shows
inq_dtype(1=tape) for a tape device. The device path in the following example output is
highlighted in boldface:

mdb -k
> ::vhba -v
vhba_t(640014816600) vhba@3
...
 vhba_iport_t(6400222b1e50)
 vhba_tport_t(400040de0e0) tport_phys(w200000110d211500) flags[dirty,NEW]
...
 vhba_lun_t(400040de200) lun(2) vlun-id(18)
wwn(naa.600110D0002115000109000001ABA60C) [NEW]
 devinfo(640022b0d840) scsi_device(40000176468)
scsi_inquiry(6400228bc560).inq_dtype(1=tape)
 /scsi_vhci/tape@g600110d0002115000109000001aba60c

The /scsi_vhci/tape@g600110d0002115000109000001aba60c device path shows
that Solaris Multipathing is enabled in the vhba.conf file for the vhba instance that
successfully opened the tape device. If Solaris Multipathing is disabled, the device path
syntax would look similar to /virtual-devices@100/channel-devices@200/scsi@3/
iport@0/tape@w200000110d211500,2.

The following example shows how to identify the /dev path that matches the device path
shown by the ::vhba command. In this example, Solaris Multipathing is enabled and the tape
device is referenced by /dev/rmt/1:

find /dev/rmt -ls | grep :$
... /dev/rmt/1 -> ../../devices/scsi_vhci/tape@g600110d0002115000109000001aba60c:

If you disable Solaris Multipathing in the vhba.conf file and reboot the domain, the tape
device is referenced by /dev/rmt/0:

find /dev/rmt -ls | grep :$
... /dev/rmt/0 -> ../../devices/virtual-devices@100/channel-devices@200/scsi@3/iport@0/
tape@w200000110d211500,2:

Chapter 12
Discovering SCSI Tape Devices

12-5

Protocol Version Combinations
The following statements describe the device discovery behavior based on the
maximum vHBA protocol version that is compiled into each of the vhba and vsan
modules:

Case 1:
Both modules use Version 1.0 of the vHBA protocol. The vHBA subsystem uses
the original algorithm and does not support the replacement of a device at a
previously used path.

Note:

If you install at least Oracle Solaris 11.4 SRU 39, any discovered LUNs
disappear until you perform one of the corrective actions specified in Case
4.

Case 2:
Both modules use at least Version 1.2 of the vHBA protocol. The vHBA
subsystem supports the replacement of a device at a previously used path.

Case 3:
vhba uses Version 1.0 and vsan uses at least Version 1.2. The vsan module
adjusts to use Version 1.0.

Case 4:
vhba uses at least Version 1.2 and vsan uses Version 1.0. The vHBA subsystem
cannot discover devices and writes the following message to the syslog each time the
vhba module attempts to discover devices:

WARNING: vh@0 vhba(1.2) and vsan(1.0) VIO version mismatch; Device Discovery is
disabled.

In this situation, ensure that your system is configured in one of the following ways:

• The vsan module supports at least Version 1.2 by upgrading your service domain
to run at least Oracle Solaris 11.4 SRU 39. This configuration results in both the
vsan and vhba modules using Version 1.2.

• The vhba module supports Version 1.0 at runtime by adding the following entry to
the /etc/system file:

set scsi:scsi_force_detach_enable = 0

After updating the /etc/system file, reboot the vhba module's domain to
ensure that both the vsan and vhba modules use Version 1.0.

After updating the service domain, you can restore the vhba module's compiled-
in support of Version 1.2 by removing the line from the /etc/system file and
rebooting the vhba module's domain.

In addition to configuring the vHBA protocol between a vhba instance and its
associated vsan instance, you must configure the vHBA protocol for all vhba instances
in each guest domain.

Chapter 12
Protocol Version Combinations

12-6

• To support the new device discovery behavior provided by Version 1.2, ensure that all
vhba instances in a domain support at least Version 1.2. Also, ensure that all associated
vsan instances support at least Version 1.2.

• To support the original device discovery behavior provided by Version 1.0 in a domain
that has multiple vhba instances, ensure that you set the scsi_force_detach_enable
entry in the /etc/system file as follows:

set scsi:scsi_force_detach_enable = 0

After you update the /etc/system file, reboot the domain. Also, ensure that each of
vhba's associated vsan instances support Version 1.0.

The Hidden Device at LUN0
You might experience a hidden device at LUN0 if both of the following conditions occur:

1. The vhba binary can run at least vHBA Protocol Version 1.2, but is currently running
Version 1.0

2. You replaced the device at LUN0 with another device.

Note:

A hidden device occurs only at LUN0 because a device at LUN0 is a special
case for the vHBA subsystem, see Simulating a LUN0. If you insert another
device at a non-LUN0 path, the new device is unusable because the WWN of
the new device does not match the WWN of the original device. vhba issues
the following message:

WARNING: {vh@0,w200000110d211500,3} WWNs of (old, new) do not match:
(naa.600110d000211500010900008207288b,
naa.600110d000211500010900009deb2582)

For a LUN0 device, the most basic SCSI commands must remain operational. vhba fails
gracefully for all other SCSI commands to ensure that an unauthenticated device is not
modified.

If vhba detects these conditions, the new device is hidden by the original device. vhba
issues the following message:

WARNING: {vh@0,w200000110d211500,0} new(naa.600110d0002115000109000025d42777 is hidden
by old(naa.600110d0002115000109000025d4274a)

When you restore the original device to the LUN0 path, vhba no longer filters any I/O that is
sent to that path and device. vhba issues the following message:

WARNING: {vh@0,w200000110d211500,0}: was restored to expected
wwn(naa.600110d0002115000109000025d4274a)

Chapter 12
The Hidden Device at LUN0

12-7

Virtual SCSI HBA Subsystem Limitations

Virtual SCSI HBA Subsystem Does Not Support All SCSI Enclosure
Services Devices

An SES device that is seen by the Oracle Solaris OS as a secondary function is an
SES device type that cannot be supported by vhba. vhba can support an SES device
whose device type has a value of 0xd as specified in the inq_dtype field of the
INQUIRY payload.

When the vhba binary in the guest domain attempts to initialize some SCSI enclosure
services (SES) devices, vhba causes scsi to issue the following warning message:

... scsi: WARNING: scsi_enumeration_failed: vhba2 probe@w50080e51bfd32004,0,d
enumeration failed during tran_tgt_init

The ,d substring represents the 0xd hexadecimal digit, which is the SCSI industry
standard code for an SES device. The ,d string indicates that this warning message is
a result of an unsupported type of SES device.

vhba can support an SES device that has a device type of 0xd that is specified in the
inq_dtype field of the INQUIRY payload:

mdb -k
> ::vsan
vsan_t(6400126e08c0) cfg-hdl(0) iport-path(/pci@300/pci@1/pci@0/pci@4/
SUNW,emlxs@0,11/fp@0,0)
 vsan_iport_t(6400125b8710)
 vsan_tport_t(64001bf89718) tport_phys(w216000c0ff8089d5)
 vsan_lun_t(640011aa65d0) lun(0) vlun-id(1127b) []

> 640011aa65d0::print vsan_lun_t vl_sd |::print struct scsi_device sd_inq
|::print struct scsi_inquiry inq_dtype
inq_dtype = d

Cannot Execute a Virtual SCSI HBA and a Virtual SAN in the Same
Domain

You can use the ldm add-vhba to add a vhba instance that is associated with a vsan
instance in the same domain only if Solaris multipathing is enabled for at most one of
the following:

• Virtual SCSI HBA's initiator port

• Physical HBA initiator port that is encapsulated by the vsan instance

Caution:

Do not enable multipathing in both the virtual SCSI HBA's initiator port and in
the virtual SAN's initiator port. This configuration causes the virtual SCSI
HBA's discovery of LUNs to deadlock.

Chapter 12
Virtual SCSI HBA Subsystem Limitations

12-8

For information about how to manage the multipathing state for a physical HBA's initiator port,
see Managing SAN Devices and I/O Multipathing in Oracle Solaris 11.4.

For information about how to manage the multipathing state of the initiator port that is
represented by a vhba instance, see How to Manage Multipathing for Virtual SCSI HBAs in a
Guest Domain.

Virtual SCSI HBA Identifier and Device Name
When you use the ldm add-vhba command to add a virtual SCSI HBA to a domain, you
can specify its device number by setting the id property.

ldm add-vhba [id=vHBA-ID] vHBA-name vSAN-name domain-name

Each virtual SCSI HBA of a domain has a unique device number that is assigned when the
domain is bound. If a virtual SCSI HBA is added with an explicit device number (by setting
the id property to a decimal value), the specified device number is used. Otherwise, the
system automatically assigns the lowest device number available. In that case, the device
number assigned depends on how the virtual SCSI HBAs were added to the domain. When a
domain is bound, the device number eventually assigned to a virtual SCSI HBA is visible in
the output of the ldm list-bindings and ldm list -o hba commands.

The ldm list-bindings, ldm list -o hba, and ldm add-vhba id=id commands all
show and specify the id property value as a decimal value. The Oracle Solaris OS shows the
virtual SCSI HBA id value as hexadecimal.

The following example shows that the vhba@0 device is the device name for the vh1 virtual
SCSI HBA on the gdom domain.

primary# ldm list -o hba gdom
NAME
gdom

VHBA
 NAME VSAN DEVICE TOUT SERVER
 vh1 vs1 vhba@0 0 svcdom

Caution:

If a device number is not assigned explicitly to a virtual SCSI HBA, its device
number can change when the domain is unbound and is later re-bound. In that
case, the device name assigned by the OS running in the domain might also
change and break the existing configuration of the system. This might happen, for
example, when a virtual SCSI HBA is removed from the configuration of the
domain.

Managing Virtual SCSI HBAs
This section covers the following tasks:

• Obtaining Physical SCSI HBA Information

• Creating a Virtual Storage Area Network

• Creating a Virtual SCSI Host Bus Adapter

Chapter 12
Virtual SCSI HBA Identifier and Device Name

12-9

https://docs.oracle.com/cd/E37838_01/html/E61018/index.html

• Verifying the Presence of a Virtual SCSI HBA

• Setting the Virtual SCSI HBA Timeout Option

• Removing a Virtual SCSI Host Bus Adapter

• Removing a Virtual Storage Area Network

• Adding or Removing a LUN

For more information about the commands that are shown in this section, see the
ldm(8) man page.

Obtaining Physical SCSI HBA Information
Before you configure a virtual SCSI HBA, you must obtain information about the
physical SCSI HBAs that are attached to the service domain. For more information
about configuring HBA cards in I/O domains, see Configuring I/O Domains.

Note:

If at least the Oracle Solaris 11.3 OS is installed in the primary domain, the
service domain can be the control domain.

The ldm list-hba command lists the physical SCSI HBA initiator ports for the
specified active domain. After identifying a logical domain's SCSI HBA initiator ports,
you can specify a particular initiator port on the ldm add-vsan command line to
create a virtual SAN. See the ldm(8) man page.

The following example shows the initiator ports for the SCSI HBAs that are attached to
the svcdom service domain. The -l option shows detailed information.

primary# ldm list-hba -l svcdom
NAME VSAN
---- ----
/SYS/MB/SASHBA0/scsi@0/iport@1
[/pci@300/pci@1/pci@0/pci@2/scsi@0/iport@1]
/SYS/MB/SASHBA0/scsi@0/iport@2
[/pci@300/pci@1/pci@0/pci@2/scsi@0/iport@2]
/SYS/MB/SASHBA0/scsi@0/iport@4
[/pci@300/pci@1/pci@0/pci@2/scsi@0/iport@4]
/SYS/MB/SASHBA0/scsi@0/iport@8
[/pci@300/pci@1/pci@0/pci@2/scsi@0/iport@8]
/SYS/MB/PCIE1/SUNW,emlxs@0/fp@0,0
[/pci@300/pci@1/pci@0/pci@4/SUNW,emlxs@0/fp@0,0]
/SYS/MB/PCIE1/SUNW,emlxs@0,1/fp@0,0
[/pci@300/pci@1/pci@0/pci@4/SUNW,emlxs@0,1/fp@0,0]

If the LUNs you expect to see for an initiator port do not appear in the ldm list-hba
output, verify that multipathing is disabled in the referenced service domain for the
referenced initiator port. See Managing SAN Devices and I/O Multipathing in Oracle
Solaris 11.4.

Chapter 12
Managing Virtual SCSI HBAs

12-10

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html
https://docs.oracle.com/cd/E37838_01/html/E61018/index.html
https://docs.oracle.com/cd/E37838_01/html/E61018/index.html

Creating a Virtual Storage Area Network
After you obtain the initiator port of the physical SCSI HBA, you must create the virtual
storage area network (SAN) on the service domain. The virtual SAN manages all SCSI
devices that are reachable from the specified SCSI HBA initiator port.

ldm add-vsan [-q] iport-path vSAN-name domain-name

The vSAN name is unique to the system and not to the specified domain name. The domain
name identifies the domain in which the SCSI HBA initiator port is configured. You can create
multiple virtual SANs that reference the same initiator port path.

You can create more than one virtual SAN from the same initiator port path. This action
allows multiple guest domains to use the same initiator port.

Note:

When the Oracle Solaris 11.3 OS is running on the service domain, the ldm add-
vsan command verifies that the initiator port path is a valid device path. If the
specified service domain is not active when you run the ldm add-vsan command,
the specified initiator port path cannot be verified by the service domain. If the
initiator port path does not correspond to an installed physical SCSI HBA initiator
port that is part of the service domain, a warning message is written to the service
domain's system log after the service domain becomes active.

In this example, you associate the /SYS/MB/PCIE1/SUNW,emlxs@0,1/fp@0,0 initiator
port on the svcdom service domain with a virtual SAN. You can choose the name of the virtual
SAN. In this example, port0 is the name of the virtual SAN.

primary# ldm add-vsan /SYS/MB/PCIE1/SUNW,emlxs@0,1/fp@0,0 port0 svcdom
/SYS/MB/PCIE1/SUNW,emlxs@0,1/fp@0,0 resolved to device:
/pci@300/pci@1/pci@0/pci@4/SUNW,emlxs@0,1/fp@0,0

Creating a Virtual SCSI Host Bus Adapter
After the virtual SAN has been defined, you can use the ldm add-vhba command to create
a virtual SCSI HBA in a guest domain. The virtual SCSI HBA sends I/O requests to the
physical SCSI devices in the virtual SAN.

ldm add-vhba [id=vHBA-ID] vHBA-name vSAN-name domain-name

In this example, you create the port0_vhba virtual SCSI HBA on the gdom guest domain that
communicates with the port0 virtual SAN.

primary# ldm add-vhba port0_vhba port0 gdom

Verifying the Presence of a Virtual SCSI HBA
Use the ldm list command to verify the presence of the newly created virtual SCSI HBA
and virtual SAN devices on the service domain and the guest domain.

ldm list -o san,hba [domain-name ...]

Chapter 12
Managing Virtual SCSI HBAs

12-11

In this example, the service domain that has the virtual SAN is svcdom and the guest
domain that has the virtual SCSI HBA is gdom. Note that the virtual HBA identifier is not
allocated in this example because the gdom domain is not yet bound.

primary# ldm list -o san,hba svcdom gdom
NAME
svcdom

VSAN
 NAME TYPE DEVICE IPORT
 port0 VSAN [/pci@300/pci@1/pci@0/pci@4/SUNW,emlxs@0,1/fp@0,0]

--
NAME
gdom

VHBA
 NAME VSAN DEVICE TOUT SERVER
 port0_vhba port0 0 svcdom

Setting the Virtual SCSI HBA Timeout Option
The ldm set-vhba command enables you to specify a timeout value for the virtual
SCSI HBA on the specified logical domain. The timeout property specifies how long,
in seconds, the specified virtual SCSI HBA instance waits before declaring that an
LDC connection cannot be made with the virtual SAN. See Virtual SCSI HBA Timeout.

The default timeout value of zero causes vhba to wait indefinitely to create the LDC
connection with the virtual SAN.

ldm set-vhba [timeout=seconds] vHBA-name domain-name

In this example, you set a timeout of 90 seconds for the port0_vhba virtual SCSI HBA
on the gdom guest domain.

primary# ldm set-vhba timeout=90 port0_vhba gdom

Removing a Virtual SCSI Host Bus Adapter
You can use the ldm remove-vhba command to remove a virtual SCSI HBA from a
specified guest domain.

Ensure that neither the OS nor any applications are actively using the virtual SCSI
HBA before you attempt to remove it. If the virtual SCSI HBA is in use, the ldm
remove-vhba command fails.

ldm remove-vhba vHBA-name domain-name

In this example, you remove the port0_vhba virtual SCSI HBA from the gdom guest
domain.

primary# ldm remove-vhba port0_vhba gdom

If you attempt to remove a virtual HBA that is actively managing I/O operations, the
ldm remove-vhba command fails with the following error:

primary# ldm remove-vhba my-vhba my-domain
Dynamic reconfiguration of the virtual device on domain primary

Chapter 12
Managing Virtual SCSI HBAs

12-12

 failed with error code (-122).
 The OS on domain primary did not report a reason for the failure.
 Check the logs on that OS instance for any further information.

Removing a Virtual Storage Area Network
You can use the ldm remove-vsan command to remove a virtual SAN.

First, remove the virtual SCSI HBA that is associated with the virtual SAN. Then, use the ldm
remove-vsan command to remove the virtual SAN.

ldm remove-vsan vSAN-name

In this example, you remove the port0 virtual SAN:

primary# ldm remove-vsan port0

Adding or Removing a LUN
You cannot add or remove a virtual LUN directly from a virtual SCSI HBA. You must first add
or remove a physical LUN and then run the ldm rescan-vhba command to synchronize
the set of SCSI devices that are seen by the virtual SCSI HBA and virtual SAN. The
commands to add or remove a physical LUN are specific to the topology of the virtual SAN's
associated initiator port. For example, if the initiator port communicates with a physical SAN,
you must use SAN administration commands to add a LUN to or remove a LUN from a SAN
element.

ldm rescan-vhba vHBA-name domain-name

For example, the following command synchronizes the SCSI devices for the port0_vhba
virtual SCSI HBA on the gdom domain:

primary# ldm rescan-vhba port0_vhba gdom

Appearance of Virtual LUNs in a Guest Domain
The virtual LUN or LUNs that are associated with a virtual SCSI HBA behave as if they are
physical LUNs.

A virtual LUN that represents a SCSI disk, for example, appears in the guest domain as a
regular disk under /dev/[r]dsk. The virtual LUN is visible in the output of the format
command because the underlying associated physical LUN is of type disk. The device path
of the virtual LUN can be operated on by other commands, such as prtpicl and prtconf.

If the virtual LUN represents a CD or a DVD, its device path is defined in /dev/[r]dsk. If
the virtual LUN represents a tape device, its device path is defined in /dev/rmt. For
commands that can operate on the virtual LUN, see Managing Devices in Oracle Solaris 11.4.

Virtual SCSI HBA and Virtual SAN Configurations
Configuring virtual SCSI HBAs and virtual SANs is very flexible. The physical SCSI HBA
initiator port that is used by the ldm add-vsan command can drive any type of bus that
supports SCSI, such as Fibre Channel, SAS, or SATA. A virtual SCSI HBA and a virtual SAN
can execute in the same domain. The more common configuration has the virtual SCSI HBA

Chapter 12
Appearance of Virtual LUNs in a Guest Domain

12-13

https://docs.oracle.com/cd/E37838_01/html/E61015/index.html

and the virtual SAN execute in different domains where the virtual SAN executes in a
service domain that has direct access to a physical HBA card.

Although a virtual SAN is associated conceptually with a physical SAN, it does not
need to be. For example, you can create a virtual SAN that comprises the set of local
storage devices that are reachable from a motherboard HBA.

The virtual HBA subsystem unconditionally creates a virtual LUN for each physical
LUN that is discovered. So, as with virtual disks, you must not have conflicting
workloads access the same virtual LUN.

For example, if an initiator port reaches ten physical SCSI devices, the virtual HBA
subsystem creates ten virtual LUNs in the guest domain. If the guest operating system
boots from one of those virtual LUNs, you must ensure that no other guest domain
accesses the virtual LUN, and that the domain that owns the physical SCSI device
does not access the physical LUN.

A similar warning holds for any virtual LUNs that might be in use by a guest domain.
You must strictly control access to such virtual LUNs on other guest domains and
access to the underlying physical LUN on the service domain to prevent conflicting
access. Such conflicting access might result in data corruption.

Configuring Virtual SCSI HBA Multipathing
The virtual SCSI HBA subsystem supports multipathing in the guest domain and in the
service domain by leveraging the Oracle Solaris I/O multipathing implementation. For
more information, see Managing SAN Devices and I/O Multipathing in Oracle Solaris
11.4.

As in Oracle Solaris I/O multipathing, a specific back-end SCSI device can be
accessed by one or more paths. For the virtual SCSI HBA subsystem, each path is
associated with one virtual LUN. The scsi_vhci module implements the Oracle Solaris
I/O multipathing behavior, which sends I/O requests to the set of virtual LUNs based
on arguments passed to the associated mpathadm administrative command. For more
information, see the scsi_vhci(4D) and mpathadm(8) man pages.

When multipathing is enabled in the service domain, as shown in the figure titled
Configuring Virtual SCSI HBA Multipathing in a Service Domain, the ldm add-vsan
command enables you to create a vsan instance that represents all of the paths that
reference the SCSI devices that are reachable through a specified initiator port.
However, when multipathing is disabled in the service domain, the vsan instance only
represents those paths that originate at the specified initiator port and reference the
SCSI devices.

To configure multipathing, you must configure two or more distinct paths from the
guest domain or the service domain to the same back-end device. Note that
multipathing still operates with one configured path. However, the expected
configuration has two or more paths that send their I/O requests through distinct
physical SCSI HBA initiator ports that reside on distinct service domains.

1. Execute a pair of ldm add-vhba and ldm add-vsan commands for each
separate path to the back-end storage.

2. Enable Oracle Solaris I/O multipathing in the guest domain for the initiator ports
that are managed by the vhba virtual HBA module.

Chapter 12
Configuring Virtual SCSI HBA Multipathing

12-14

https://docs.oracle.com/cd/E37838_01/html/E61018/index.html
https://docs.oracle.com/cd/E37838_01/html/E61018/index.html
https://docs.oracle.com/cd/E88353_01/html/E37851/scsi-vhci-4d.html
https://docs.oracle.com/cd/E88353_01/html/E72487/mpathadm-8.html

The following figure is an example of a multipathing configuration in a guest domain. It shows
one physical LUN of a SAN that is accessed by two paths that are managed by Oracle
Solaris I/O multipathing. For a procedure that describes how to create the configuration
shown in this figure, see How to Configure Virtual SCSI HBA Multipathing.

Configuring Virtual SCSI HBA Multipathing in a Guest Domain

Configuring Virtual SCSI HBA Multipathing in a Service Domain

Chapter 12
Configuring Virtual SCSI HBA Multipathing

12-15

How to Configure Virtual SCSI HBA Multipathing
This procedure describes how to create the virtual SCSI HBA multipathing
configuration that is shown in the figure titled Configuring Virtual SCSI HBA
Multipathing in a Guest Domain. This example is just one of many possible
multipathing configurations.

1. Create an I/O domain with the physical SCSI HBA assigned to it.

See Configuring I/O Domains.

2. Export the virtual SAN for the first initiator port path from the first service
domain.

ldm add-vsan vSAN-path1 vSAN-name domain-name

vSAN-path1 is the first initiator port path to the SAN.

For example, the following command exports the vsan-mpxio1 virtual SAN from
the svcdom1 domain:

primary# ldm add-vsan /SYS/MB/RISER0/PCIE1/SUNW,emlxs@0/fp@0,0 vsan-mpxio1
svcdom1

3. Export the virtual SAN for the second initiator port path from the second
service domain.

ldm add-vsan vSAN-path2 vSAN-name domain-name

vSAN-path2 is the second initiator port path to the SAN.

For example, the following command exports the vsan-mpxio2 virtual SAN from
the svcdom2 domain:

primary# ldm add-vsan /SYS/MB/RISER0/PCIE3/SUNW,emlxs@0/fp@0,0 vsan-mpxio2
svcdom2

4. Export the virtual SCSI HBAs to the guest domain.

ldm add-vhba vHBA-name vSAN-name domain-name

For example, the following commands export the vhba-mpxio1 and vhba-mpxio2
virtual SCSI HBAs to the gdom domain:

primary# ldm add-vhba vhba-mpxio1 vsan-mpxio1 gdom
primary# ldm add-vhba vhba-mpxio2 vsan-mpxio2 gdom

5. Specify the timeout property value for the virtual SCSI HBAs on the guest
domain.

ldm set-vhba timeout=seconds vHBA-name domain-name

For example, the following commands set the timeout property value to 30 for the
vsan-mpxio1 and vsan-mpxio2 virtual SCSI HBAs on the gdom domain:

primary# ldm set-vhba timeout=30 vhba-mpxio1 gdom
primary# ldm set-vhba timeout=30 vhba-mpxio2 gdom

6. Reboot the guest domain.

Chapter 12
Configuring Virtual SCSI HBA Multipathing

12-16

Example 12-1 Adding a Virtual SCSI HBA and a Virtual SAN

The following example shows how to create a virtual SAN for a specific SCSI HBA initiator
port and how to associate that virtual SAN with a virtual SCSI HBA in the ldg1 domain.

Use the ldm list-hba command to identify the physical SCSI HBA initiator ports in the
ldg1 domain:

primary# ldm list-hba -l ldg1
NAME VSAN
---- ----
/SYS/MB/SASHBA0/scsi@0/iport@1
[/pci@300/pci@1/pci@0/pci@2/scsi@0/iport@1]
/SYS/MB/SASHBA0/scsi@0/iport@2
[/pci@300/pci@1/pci@0/pci@2/scsi@0/iport@2]
/SYS/MB/SASHBA0/scsi@0/iport@4
[/pci@300/pci@1/pci@0/pci@2/scsi@0/iport@4]
/SYS/MB/SASHBA0/scsi@0/iport@8
[/pci@300/pci@1/pci@0/pci@2/scsi@0/iport@8]
/SYS/MB/PCIE1/SUNW,emlxs@0/fp@0,0
[/pci@300/pci@1/pci@0/pci@4/SUNW,emlxs@0/fp@0,0]
/SYS/MB/PCIE1/SUNW,emlxs@0,1/fp@0,0
[/pci@300/pci@1/pci@0/pci@4/SUNW,emlxs@0,1/fp@0,0]

Create a virtual SAN in the ldg1 domain that you can use to manage all of the SCSI devices
that are associated with the last initiator port in the previous output.

The following command exports the vsan-mpxio1 virtual SAN from the ldg1 domain:

primary# ldm add-vsan /SYS/MB/PCIE1/SUNW,emlxs@0,1/fp@0,0 vsan-mpxio1 ldg1
/SYS/MB/PCIE1/SUNW,emlxs@0,1/fp@0,0 resolved to device:
/pci@300/pci@1/pci@0/pci@4/SUNW,emlxs@0,1/fp@0,0

How to Manage Multipathing for Virtual SCSI HBAs in a Guest Domain
1. Copy the /platform/sun4v/kernel/drv/vhba.conf file to the /etc/

driver/drv directory.

cp /platform/sun4v/kernel/drv/vhba.conf /etc/driver/drv
2. Configure multipathing by modifying the /etc/driver/drv/vhba.conf file.

You can configure virtual HBA initiator port (port) multipathing on a per-port or global
basis. Per-port settings have priority over the global setting.

• Enable multipathing for all vhba instances in a guest domain.

Add only the following line to the vhba.conf file:

mpxio-disable="no"
• Disable multipathing for all vhba instances in a guest domain.

Add only the following line to the vhba.conf file:

mpxio-disable="yes"
• Enable all vhba instances except vhba@1.

Add the following lines to the vhba.conf file:

Chapter 12
Configuring Virtual SCSI HBA Multipathing

12-17

mpxio-disable="yes"
compatible="/virtual-devices@100/channel-devices@200/scsi@1/iport@0"
mpxio-disable="no";

Note that vhba@1 is what is shown in the ldm list -o hba command output,
but scsi@1 is how vhba@1 is known to the operating system.

• Disable all vhba instances except vhba@1.

Add the following lines to the vhba.conf file:

mpxio-disable="no"
compatible="/virtual-devices@100/channel-devices@200/scsi@1/iport@0"
mpxio-disable="yes";

3. Reboot the guest domain.

How to Enable Multipathing for Virtual SCSI HBAs in a Service
Domain

1. Enable Oracle Solaris I/O multipathing for all initiator ports in the service
domain.

svcdom# stmsboot -e

For more information, see Enabling and Disabling Multipathing in Oracle Solaris
SAN Configuration and Multipathing Guide.

2. List the SCSI devices that are reachable from each initiator port for a service
domain.

For example, the ldm list-hba command might show the following information
about Service Domain 1 as shown in the figure titled Configuring Virtual SCSI HBA
Multipathing in a Service Domain.

primary# ldm list-hba -d svcdom
DOMAIN
svcdom

IPORT VSAN
----- ----
/SYS/MB/PCIE0/SUNW,emlxs@0/fp@1
 c0t600110D00021150101090001061ADBF4d0
 c0t600110D0002115010109000146489D34d0
/SYS/MB/PCIE1/SUNW,emlxs@0/fp@1
 c0t600110D00021150101090001061ADBF4d0
 c0t600110D0002115010109000146489D34d0

3. Create a virtual SAN instance that references a particular initiator port.

In the following command, the initiator port references two SCSI devices that are
also referenced by PCIE0. Either of the initiator ports that have physical paths to
the same LUNs can be used as part of the ldm add-vsan command to configure
the virtual SAN if multipathing is enabled.

primary# ldm add-vsan /SYS/MB/PCIE1/SUNW,emlxs@0/fp@1 my_mpxio_vsan svcdom
4. Add the virtual SAN to the guest domain in a virtual SCSI HBA.

primary# ldm add-vsan my_vhba my_mpxio_vsan gdom

Chapter 12
Configuring Virtual SCSI HBA Multipathing

12-18

https://docs.oracle.com/cd/E18752_01/html/820-1931/gfpvv.html
https://docs.oracle.com/cd/E18752_01/html/820-1931/gfpvv.html

5. View the physical devices by running the format command in the service domain.

The following output shows two physical SCSI devices, each of which can have one or
more paths to them.

svcdom# format
Searching for disks...done

AVAILABLE DISK SELECTIONS:
 0. c0t600110D00021150101090001061ADBF4d0 <SANBlaze-VLUN P0T1L7-V7.3-1.00GB>
 /scsi_vhci/ssd@g600110d00021150101090001061adbf4
 1. c0t600110D0002115010109000146489D34d0 <SANBlaze-VLUN P0T1L6-V7.3-1.00GB>
 /scsi_vhci/ssd@g600110d0002115010109000146489d34
 2. c1d0 <SUN-DiskImage-10GB cyl 282 alt 2 hd 96 sec 768>
 /virtual-devices@100/channel-devices@200/disk@0
Specify disk (enter its number):

This command shows that the service domain configuration has two paths to each
physical device.

svcdom# mpathadm list lu
 /dev/rdsk/c0t600110D00021150101090001061ADBF4d0s2
 Total Path Count: 2
 Operational Path Count: 2
 /dev/rdsk/c0t600110D0002115010109000146489D34d0s2
 Total Path Count: 2
 Operational Path Count: 2

Note that the format output in the guest domain is essentially identical, because the
Oracle Solaris I/O multipathing implementation executes in both the guest domain and in
the service domain. Oracle Solaris I/O multipathing also creates a device path that uses
the worldwide number (WWN) of the logical unit such as
g600110d0002115010109000146489d34 in the following output:

gdom# format
Searching for disks...done

AVAILABLE DISK SELECTIONS:
 0. c0t600110D0002115010109000146489D34d0 <SANBlaze-VLUN P0T1L6-V7.3-1.00GB>
 /scsi_vhci/disk@g600110d0002115010109000146489d34
 1. c0t600110D00021150101090001061ADBF4d0 <SANBlaze-VLUN P0T1L7-V7.3-1.00GB>
 /scsi_vhci/disk@g600110d00021150101090001061adbf4
 2. c1d0 <SUN-DiskImage-10GB cyl 282 alt 2 hd 96 sec 768>
 /virtual-devices@100/channel-devices@200/disk@0
Specify disk (enter its number):

How to Disable Multipathing for Virtual SCSI HBAs on Service Domains
• Disable Oracle Solaris I/O multipathing for all initiator ports in the service domain.

svcdom# stmsboot -d

Also, you can enable or disable Oracle Solaris I/O multipathing on a per-initiator-port
device in the service domain. For more information, see Enabling or Disabling
Multipathing on a Per-Port Basis in Oracle Solaris SAN Configuration and Multipathing
Guide.

Chapter 12
Configuring Virtual SCSI HBA Multipathing

12-19

https://docs.oracle.com/cd/E18752_01/html/820-1931/agkbd.html
https://docs.oracle.com/cd/E18752_01/html/820-1931/agkbd.html
https://docs.oracle.com/cd/E18752_01/html/820-1931/agkbd.html

Booting From a Virtual LUN
You can boot any virtual LUN whose associated physical LUN references a SCSI
device type that is bootable by OBP, such as CD, DVD, or disk.

Before you issue the boot command at the OpenBoot PROM prompt, run the probe-
scsi-all command to find the guest domain's virtual SCSI HBAs and associated
virtual LUNs.

The following annotated example highlights the relevant parts of the output:

{0} ok probe-scsi-all

/virtual-devices@100/channel-devices@200/scsi@0 Line 1

vHBA

TPORT-PHYS: w200200110d214900 Line 2
 LUN: 1 Disk VLUN 2097152 Blocks, 1073 MB
 LUN: 0 Disk VLUN 32768000 Blocks, 16 GB Line 3

This example probe-scsi-all output shows one virtual SCSI HBA instance
(scsi@0) that has two LUNs that are of type disk.

To boot from a specific virtual LUN, manually compose the device path to pass to the
boot command. The device path has this syntax:

vhba-device-path/disk@target-port,lun:slice

To boot from the LUN on Line 3, you must compose the device path as follows:

• Take the value of target-port from Line 2

• Take the value of vhba-device-path from Line 1

The following is the resulting device path:

/virtual-devices@100/channel-devices@200/scsi@0/disk@w200200110d214900,0

You can pass this device path to the OBP boot command as follows:

{0} ok boot /virtual-devices@100/channel-devices@200/scsi@0/
disk@w200200110d214900,0

Installing a Virtual LUN
You can install an OS on any virtual LUN whose associated physical LUN references a
SCSI device whose type is supported by the installation program. You can then boot
from the specified virtual LUN.

Virtual SCSI HBA Timeout
By default, if the service domain that provides access to a virtual SAN is unavailable,
all I/O from the guest domain to the corresponding virtual SCSI HBA is blocked. The
I/O is resumed automatically when the service domain becomes operational and
restores service to the virtual SAN.

Chapter 12
Booting From a Virtual LUN

12-20

Sometimes, file systems or applications might require an I/O operation to fail and report an
error if the service domain is unavailable for too long. You can set a connection timeout
period for each virtual SCSI HBA to establish a connection between the virtual SCSI HBA on
a guest domain and the virtual SAN on the service domain. When that timeout period is
reached, any pending I/O and any new I/O operations fail as long as the service domain is
unavailable and the connection between the virtual SCSI HBA and the virtual SAN is not re-
established.

Other circumstances in which you might want to specify the timeout value include the
following:

• If you want Oracle Solaris I/O multipathing to fail over to another configured path, you
must set the timeout for each virtual SCSI HBA involved.

• If you perform a live migration, set the timeout property value to 0 for each virtual SCSI
HBA in the guest domain to be migrated. After the migration completes, reset the timeout
property to the original setting for each virtual SCSI HBA.

To find out how to set the timeout value, see Setting the Virtual SCSI HBA Timeout Option.

Virtual SCSI HBA and SCSI
The vhba module proxies SCSI commands to the physical SCSI HBA driver that is
associated with the virtual SAN's SCSI initiator port.

The scsi_vhci driver, which implements Oracle Solaris I/O multipathing, handles
reservation persistency during path failover for both SCSI-2 reservations and SCSI-3
reservations. The vhba module plugs in to the Oracle Solaris I/O framework and thus
supports SCSI reservations by leveraging the scsi_vhci support.

Simulating a LUN0
The virtual SCSI HBA subsystem simulates the presence of a LUN0 for a SCSI target whose
LUN0 or LUN0s are not visible in the service domain. A device is visible to the Oracle Solaris
OS if it appears in prtconf output.

Because the vhba module uses a specific Oracle Solaris I/O framework, a LUN0 must be
simulated if it is not visible in the service domain. The framework relies on the sending of a
SCSI command (REPORT LUNS) to a SCSI target's LUN0 devices to discover the virtual
SAN's LUNs. If a LUN0 is not visible, no LUNs within the virtual SAN can be discovered.

The vsan module creates metadata for a simulated LUN0 if the Oracle Solaris metadata for a
physical LUN0 is not found during the physical LUN discovery process. The vsan module
performs minimal simulation, which generates responses to the REPORT LUNS, INQUIRY,
TEST UNIT READY, and REQUEST SENSE SCSI commands.

The requirement to simulate a LUN0 derives from an industry where it has become common
for a storage vendor to implement a product that does not have a visible LUN0.

At runtime, the vsan module cannot determine whether a LUN0 is not present physically or is
invisible, so the vsan module must simulate a LUN0 in both these instances. If a LUN0 is
present but invisible, any functionality that is exported by the underlying SCSI device is not
usable, and the vsan module returns INVALID COMMAND for any SCSI commands not
mentioned previously.

Chapter 12
Virtual SCSI HBA and SCSI

12-21

The following shows how you can identify a simulated LUN0 before your system runs
Oracle Solaris 11.4 SRU 39 and after your system runs Oracle Solaris 11.4 SRU 39:

• Oracle Solaris 11.4 SRU 39. The following commands show that the device type
of the simulated LUN0 is DISK (inq_dtype(0=disk)) and that sd is bound to the
device:

echo "::vhba" | mdb -k
vhba_t(6400c779d080) vhba@0
...
 vhba_lun_t(6400c5282558) lun(0) vlun-id(0) [NEW]
 devinfo(6400cd323ba8) scsi_device(6400cd10c548)
scsi_inquiry(40012402060).inq_dtype(0=disk)
 /virtual-devices@100/channel-devices@200/scsi@0/iport@0/
disk@w200000110d211500,0
#
prtconf -D /virtual-devices@100/channel-devices@200/scsi@0/iport@0/
disk@w200000110d211500,0
disk, instance #16 (driver name: sd)

For more information about sd, see sd(4D) man page.

Because a simulated LUN0 implements only the most basic SCSI commands, any
Oracle Solaris software that assumes the simulated LUN0 is a real disk can see
the warning messages. For example, because the simulated LUN0 is of type
DISK, you might see the drive not available message:

format
AVAILABLE DISK SELECTIONS:
...
 9. c16t200000110D211500d0 (drive not available)
 /virtual-devices@100/channel-devices@200/scsi@0/iport@0/
disk@w200000110d211500,0

When LUN0 is simulated, the vsan module only issues the most basic SCSI
commands. As a result, when applications such as the format command issue
SCSI commands to read a disk label, they fail. So, the drive not available
message appears, as expected.

• Prior to Oracle Solaris 11.4 SRU 39. You can identify a simulated LUN0 by
executing the following commands in the domain in which the vhba module
executes:

echo "::vhba" | mdb -k
vhba_t(400154422c0) vhba@1
...
 vhba_lun_t(64002d478630) lun(0) vlun-id(0) [COMMON]
 devinfo(4001a1cd7f8) scsi_device(400152d7b58)
scsi_inquiry(40016a334f8).inq_dtype(0x1F=unknown)
 /virtual-devices@100/channel-devices@200/scsi@1/iport@0/
unknown@w200000110d211500,0

Pass the scsi_inquiry value to the following command that outputs the vendor,
product, and version number of the simulated device:

echo "40016a334f8::print scsi_inquiry inq_vid inq_pid inq_revision" | mdb -
k
inq_vid = ["ORCL "]
inq_pid = ["vHBA:vsan "]
inq_revision = ["1.0 "]

Chapter 12
Simulating a LUN0

12-22

https://docs.oracle.com/cd/E88353_01/html/E37851/sd-4d.html

A simulated LUN0 has a SCSI device type of UNKNOWN, as shown by the inq_dtype value
of 0x1F in the previous mdb -k example output.

Executing the following command and specifying LUN0's device path shows that the
'nulldriver' is bound to this device:

prtconf -D /virtual-devices@100/channel-devices@200/scsi@0/iport@0/
unknown@w200000110d211500,0
unknown, instance #1 (driver name: nulldriver)

Managing the Physical Devices in a Virtual Storage Area
Network

You can create a virtual SAN instance that represents all of or a subset of the physical
devices that are reachable by an initiator port. By default, a virtual SAN instance represents
the set of all physical devices that are reachable by the specified initiator port.

You can use the ldm add-vsan or ldm set-vsan command to specify the mask property,
which controls how vSAN instances are created. You can create vSAN instances in the
following ways:

• mask=off . Create a vSAN instance that represents the set of all physical devices that are
reachable by the specified initiator port. This method is used by default to create vSAN
instances.

• mask=on . Create a vSAN instance that represents a subset of the physical devices that
are reachable by the specified initiator port.

When you use the ldm set-vsan command to specify the value of the mask property, the
virtual SAN automatically notifies the virtual SCSI HBA instance that you changed the
property value. If you change the mask property value to off, all devices that are reachable by
the virtual SAN's initiator port become members of the virtual SAN. If you change the mask
property value to on, the content of the virtual SAN's mask property value is reset to remove
all physical device identification data. To populate the mask property with identification data,
run the ldm add-vsan-dev command for each physical device you want to add to the
virtual SAN.

Note:

When you issue the ldm set-vsan command, any running I/O commands are
terminated gracefully. Subsequent I/O requests to a previously known vSAN
member return an error stating that the device is no longer reachable.

When a virtual SAN instance has its mask property set to on, use the ldm add-vsan-dev
command to add one or more physical devices with associated worldwide numbers (WWNs)
to the virtual SAN instance. Use the ldm remove-vsan-dev command to remove a
physical device with the specified WWN from the virtual SAN. Run the ldm remove-vsan-
dev command for each physical device that you want to remove from the virtual SAN
instance.

You can use the ldm list-vsan command to obtain information about a virtual SAN. The
ldm list-vsan command lists the members of the specified virtual SAN. When mask=on,

Chapter 12
Managing the Physical Devices in a Virtual Storage Area Network

12-23

the output shows the WWN of each virtual SAN member. When mask=off, the output
states that the mask property value is off.

Obtaining Worldwide Numbers
Use the ldm list-hba -u command to view a device's WWN and all the paths that
reference the device's WWN.

The following example shows information about the physical devices in the primary
domain. The example output shows both the paths that reference the
naa.600c0ff0000000000089d513107ecb00 WWN of the physical device.

primary# ldm list-hba -u primary
DOMAIN
primary

naa.600c0ff0000000000089d513107ecb00
 /SYS/MB/RISER1/PCIE4/SUNW,qlc@0/fp@0,0/w216000c0ff8089d5,0
 /SYS/MB/RISER1/PCIE4/SUNW,qlc@0,1/fp@0,0/w216000c0ff8089d5,0
...

By including the -l option, the ldm list-hba -u -l command shows per-path and
per-device metadata that you can use to identify a specific physical device within your
system's topology.

primary# ldm list-hba -u -l primary
DOMAIN
primary

naa.600c0ff0000000000089d513107ecb00
 /SYS/MB/RISER1/PCIE4/SUNW,qlc@0/fp@0,0/w216000c0ff8089d5,0
 [/pci@0/pci@0/pci@8/pci@0/pci@2/SUNW,qlc@0/fp@0,0/
ssd@w216000c0ff8089d5,0] (c0t600C0FF0000000000089D513107ECB00d0s0)
 /SYS/MB/RISER1/PCIE4/SUNW,qlc@0,1/fp@0,0/w216000c0ff8089d5,0
 [/pci@0/pci@0/pci@8/pci@0/pci@2/SUNW,qlc@0,1/fp@0,0/
ssd@w216000c0ff8089d5,0] (c0t600C0FF0000000000089D513107ECB00d0s0)
...

By using the metadata in the previous example output, you can add the device
associated with this WWN to the my_vsan virtual SAN.

In the following example, first create the my_vsan virtual SAN on the my_domain
domain. Then, add the physical device associated with the
naa.600c0ff0000000000089d513107ecb00 WWN to the my_vsan virtual SAN:

primary# ldm add-vsan mask=on $iport_path my_vsan my_domain
primary# ldm add-vsan-dev my_vsan naa.600c0ff0000000000089d513107ecb00

Chapter 12
Managing the Physical Devices in a Virtual Storage Area Network

12-24

13
Using Virtual Networks

This chapter describes how to use a virtual network with Oracle VM Server for SPARC
software, and covers the following topics:

• Introduction to a Virtual Network

• Oracle Solaris 11 Networking Overview

• Maximizing Virtual Network Performance

• Virtual Switch

• Virtual Network Device

• Viewing Network Device Configurations and Statistics

• Controlling the Amount of Physical Network Bandwidth That Is Consumed by a Virtual
Network Device

• Virtual Device Identifier and Network Interface Name

• Managing MAC Addresses With Oracle VM Server for SPARC

• Detecting MAC Address Collisions

• Configuring a Virtual Switch and the Service Domain for NAT and Routing

• Configuring IPMP in an Oracle VM Server for SPARC Environment

• Using VLAN Tagging

• Using Private VLANs

• Tuning Packet Throughput Performance

• Configuring DLMP Aggregations Over Virtual Network Devices

• Using Link Aggregation With a Virtual Switch

• Configuring Jumbo Frames

• Using Virtual NICs on Virtual Networks

• Using Trusted Virtual Networks

• Using a Virtual Switch Relay

• Oracle Solaris 11 Networking-Specific Feature Differences

Introduction to a Virtual Network
A virtual network enables domains to communicate with each other without using any
external physical networks. A virtual network also can enable domains to use the same
physical network interface to access a physical network and communicate with remote
systems. A virtual network is created by having a virtual switch to which you can connect
virtual network devices.

Oracle Solaris networking differs greatly between the Oracle Solaris 10 OS and the Oracle
Solaris 11 OS.

13-1

Note:

Oracle Solaris networking behaves the same whether the OS is running
inside a zone, a kernel zone, a logical domain, or natively on the system. For
more information about Oracle Solaris OS networking, see Oracle Solaris 10
Documentation and Oracle Solaris 11.4 Documentation.

Oracle Solaris 11 Networking Overview
The Oracle Solaris 11 OS introduced many new networking features, which are
described in the Oracle Solaris 11 networking documentation at Oracle Solaris 11.4
Documentation.

The following Oracle Solaris 11 networking features are important to understand when
you use the Oracle VM Server for SPARC software:

• All network configuration is performed by the ipadm and dladm commands.

• By default in Oracle Solaris 11, physical network device names use generic
“vanity” names. Generic names, such as net0, are used instead of device driver
names, such as nxge0, which were used in Oracle Solaris 10.

The “vanity name by default” feature generates generic link names, such as net0,
for all physical network adapters. This feature also generates generic names for
virtual switches (vsw n) and virtual network devices (vnet n), which appear like
physical network adapters to the OS. To identify the generic link name that is
associated with a physical network device, use the dladm show-phys command.

The following command creates a virtual switch for the primary domain by
specifying the generic link name, net0, instead of a driver name, such as nxge0:

primary# ldm add-vsw net-dev=net0 primary-vsw0 primary
• The Oracle Solaris 11 OS uses virtual network interface cards (VNICs) to create

internal virtual networks.

A VNIC is a virtual NIC. When configured by using the dladm create-vnic
command, a virtual NIC behaves like a physical NIC. You can configure a virtual
NIC on an SR-IOV virtual function and on a virtual network device (VNET). See
Creating Virtual NICs on SR-IOV Virtual Functions and Configuring Virtual NICs on
Virtual Network Devices.

• In the Oracle Solaris 11.4 OS, use the dladm, ipadm, and route commands to
perform network configuration of datalinks and IP interfaces. Network configuration
profiles (NCP) are no longer supported in Oracle Solaris 11.4.

However, when running versions of the Oracle Solaris 11 OS prior to Oracle
Solaris 11.4, use the DefaultFixed NCP when configuring the Oracle VM Server
for SPARC software in the control domain and in other domains. You can enable
this profile during or after installation. During an Oracle Solaris 11 installation,
select the Manual networking configuration.

• Do not replace the primary network interface with the virtual switch (vsw) interface.
The service domain can use the existing primary network interface to
communicate with the guest domains that have virtual network devices connected
to the same virtual switch.

Chapter 13
Oracle Solaris 11 Networking Overview

13-2

http://www.oracle.com/technetwork/documentation/solaris-10-192992.html
http://www.oracle.com/technetwork/documentation/solaris-10-192992.html
http://docs.oracle.com/cd/E37838_01
http://docs.oracle.com/cd/E37838_01
http://docs.oracle.com/cd/E37838_01

• Do not use the physical network adapter's MAC address for the virtual switch because
using the physical adapter's MAC address for the virtual switch conflicts with the primary
network interface.

The following diagram shows that a guest domain that runs the Oracle Solaris 10 OS is fully
compatible with an Oracle Solaris 11 service domain. The only differences are features added
or enhanced in the Oracle Solaris 11 OS.

Oracle VM Server for SPARC Network Overview for the Oracle Solaris 11 OS

The diagram shows that network device names, such as nxge0 and vnet0, can be
represented by generic link names, such as net n in Oracle Solaris 11 domains. Also note the
following:

• The virtual switch in the service domain is connected to the guest domains, which
enables guest domains to communicate with each other.

• The virtual switch is also connected to the physical network device nxge0, which enables
guest domains to communicate with the physical network.

The virtual switch also enables guest domains to communicate with the service domain
network interface net0 and with VNICs on the same physical network device as nxge0.
This includes communication between the guest domains and the Oracle Solaris 11
service domain.

Chapter 13
Oracle Solaris 11 Networking Overview

13-3

Note:

Do not configure the virtual switch itself (the vsw n device) as a network
device, as this functionality has been deprecated in Oracle Solaris 11
even though the device might be visible.

• The virtual network device vnet0 in an Oracle Solaris 10 guest domain can be
configured as a network interface by using the ifconfig command.

• The virtual network device vnet0 in an Oracle Solaris 11 guest domain might
appear with a generic link name, such as net0. It can be configured as a network
interface by using the ipadm command.

A virtual switch behaves like a regular physical network switch and switches network
packets between the different systems to which it is connected. A system can be a
guest domain, a service domain, or a physical network.

Maximizing Virtual Network Performance
You can achieve high transfer rates for guest and external networks and for guest-to-
guest communications when you configure your platform and the domains as
described in this section. The virtual network stack introduces support for large
segment offload (LSO), which produces high TCP performance without requiring the
use of jumbo frames.

Hardware and Software Requirements
Meet the following requirements to maximize the network performance for your
domains:

• Hardware requirements. These performance improvements are available starting
with the SPARC T4 server.

• System firmware requirements. These SPARC systems must run the latest
system firmware. See System Firmware Versions in Oracle VM Server for SPARC
3.6 Installation Guide.

• Oracle Solaris OS requirements. Ensure that the service domain and guest
domain run the following Oracle Solaris OS versions.

Note:

Running the fully qualified Oracle Solaris OS version provides you with
access to new features. See Oracle Solaris OS Versions in Oracle VM
Server for SPARC 3.6 Installation Guide.

– Service domain. At least the Oracle Solaris 11.1 SRU 9 OS or the Oracle
Solaris 10 OS with the 150031-03 patch.

– Guest domain. At least the Oracle Solaris 11.1 SRU 9 OS or the Oracle
Solaris 10 OS with the 150031-03 patch.

• CPU and memory requirements. Ensure that you assign sufficient CPU and
memory resources to the service domain and the guest domains.

Chapter 13
Maximizing Virtual Network Performance

13-4

https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsystemfirmwareversions
https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsystemfirmwareversions
https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsolosversions
https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsolosversions

– Service domain. Because the service domain acts as a data proxy for the guest
domains, assign at least 2 CPU cores and at least 16 Gbytes of memory to the
service domain.

– Guest domain. Configure each guest domain to be able to drive at least 10-Gbps
performance. Assign at least 2 CPU cores and at least 4 Gbytes of memory to each
guest domain.

Configuring Your Domains to Maximize the Performance of Your Virtual
Network

In previous versions of Oracle VM Server for SPARC and the Oracle Solaris OS, you could
improve your network performance by configuring jumbo frames. This configuration is no
longer required and unless required for another reason, using the standard MTU value of
1500 for your service and guest domains is best.

To achieve the improved networking performance, set the extended-mapin-space property to
on for the service domain and the guest domains. This is the default behavior.

primary# ldm set-domain extended-mapin-space=on domain-name

To check the extended-mapin-space property value, run the following command:

primary# ldm list -l domain-name |grep extended-mapin
extended-mapin-space=on

Note:

A change to the extended-mapin-space property value triggers a delayed
reconfiguration on the primary domain. This situation requires a primary domain
reboot. You also must first stop the guest domains before you change this property
value.

Virtual Switch
A virtual switch (vsw) is a component running in a service domain and managed by the virtual
switch driver. A virtual switch can be connected to some guest domains to enable network
communications between those domains. In addition, if the virtual switch is also associated
with a physical network interface, network communication is permitted between guest
domains and the physical network over the physical network interface.

Assigning a virtual network device to a domain creates an implicit dependency on the domain
providing the virtual switch. You can view these dependencies or view domains that depend
on this virtual switch by using the ldm list-dependencies command. See Listing Domain
I/O Dependencies.

In an Oracle Solaris 11 service domain, do not use the virtual switch as a regular network
interface. If the virtual switch is connected to a physical network interface, communication
with the service domain is possible by using this physical interface. If configured without a
physical interface, you can enable communication with the service domain by using an
etherstub as the network device (net-dev) that is connected with a VNIC.

Chapter 13
Virtual Switch

13-5

Although the virtual switch appears as a physical network device (vswN) in dladm
show-phys output, you cannot configure it as a network device in Oracle Solaris 11
because this capability has been deprecated in Oracle Solaris 11 and certain key
features are inoperable.

To determine which network device to use as the back-end device for the virtual
switch, search for the physical network device in the dladm show-phys output or
use the ldm list-netdev command to list the network devices for logical domains.

You can add a virtual switch to a domain, set options for a virtual switch, and remove a
virtual switch by using the ldm add-vsw, ldm set-vsw, and ldm remove-vsw
commands, respectively. See the ldm(8) man page.

When you create a virtual switch on a VLAN tagged instance of a NIC or an
aggregation, you must specify the NIC (nxge0), the aggregation (aggr3), or the vanity
name (net0) as the value of the net-dev property when you use the ldm add-vsw
or ldm set-vsw command.

Note:

Starting with the Oracle Solaris 11.2 SRU 1 OS, you can dynamically update
the net-dev property value by using the ldm set-vsw command. In
previous Oracle Solaris OS releases, using the ldm set-vsw command to
update the net-dev property value in the primary domain causes the
primary domain to enter a delayed reconfiguration.

You cannot add a virtual switch on top of an InfiniBand IP-over-InfiniBand (IPoIB)
network device. Although the ldm add-vsw and ldm add-vnet commands appear
to succeed, no data will flow because these devices transport IP packets by means of
the InfiniBand transport layer. The virtual switch only supports Ethernet as a transport
layer. Note that IPoIB and Ethernet-over-InfiniBand (EoIB) are unsupported back ends
for virtual switches.

The following command creates a virtual switch on a physical network adapter called
net0:

primary# ldm add-vsw net-dev=net0 primary-vsw0 primary

The following example uses the ldm list-netdev -b command to show only the
valid virtual switch back-end devices for the svcdom service domain.

primary# ldm list-netdev -b svcdom
DOMAIN
svcdom

NAME CLASS MEDIA STATE SPEED OVER LOC
---- ----- ----- ----- ----- ---- ---
net0 PHYS ETHER up 10000 ixgbe0 /SYS/MB/RISER1/PCIE
net1 PHYS ETHER unknown 0 ixgbe1 /SYS/MB/RISER1/PCIE4
net2 ESTUB ETHER unknown 0 -- --
net3 ESTUB ETHER unknown 0 -- --
ldoms-estub.vsw0 ESTUB ETHER unknown 0 -- --

Chapter 13
Virtual Switch

13-6

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Virtual Network Device
A virtual network device is a virtual device that is defined in a domain connected to a virtual
switch. A virtual network device is managed by the virtual network driver, and it is connected
to a virtual network through the hypervisor using logical domain channels (LDCs).

Note:

A guest domain supports up to 999 virtual network devices.

A virtual network device can be used as a network interface with the name netn, which can
be used like any regular network interface and configured with the Oracle Solaris 11 ipadm
command.

You can add a virtual network device to a domain, set options for an existing virtual network
device, and remove a virtual network device by using the ldm add-vnet, ldm set-vnet,
and ldm remove-vnet commands, respectively. See the ldm(8) man page.

See the information about Oracle VM Server for SPARC networking for Oracle Solaris 11 in
the figure titled Oracle VM Server for SPARC Network Overview for the Oracle Solaris 11 OS.

Inter-Vnet LDC Channels
By default, the Logical Domains Manager would assign LDC channels in the following
manner:

• An LDC channel would be assigned between the virtual network devices and the virtual
switch device.

• An LDC channel would be assigned between each pair of virtual network devices that are
connected to the same virtual switch device (inter-vnet).

The inter-vnet LDC channels are configured so that virtual network devices can communicate
directly to achieve high guest-to-guest communications performance. However, as the
number of virtual network devices in a virtual switch device increases, the number of required
LDC channels for inter-vnet communications increases quadratically.

You can choose to enable or disable inter-vnet LDC channel allocation for all virtual network
devices attached to a given virtual switch device. By disabling this allocation, you can reduce
the consumption of LDC channels, which are limited in number.

Disabling this allocation is useful in the following situations:

• When guest-to-guest communications performance is not of primary importance

• When a large number of virtual network devices are required in a virtual switch device

By not assigning inter-vnet channels, more LDC channels are available for use to add more
virtual I/O devices to a guest domain.

Chapter 13
Virtual Network Device

13-7

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Note:

If guest-to-guest performance is of higher importance than increasing the
number of virtual network devices in the system, do not disable inter-vnet
LDC channel allocation.

You can use the ldm add-vsw and the ldm set-vsw commands to specify a value
of on, off, or auto for the inter-vnet-link property.

By default, the inter-vnet-link property is set to auto, which means that inter-vnet
LDC channels are allocated unless the number of virtual networks in a particular virtual
switch grows beyond the default maximum limit specified by the ldmd/
auto_inter_vnet_link_limit SMF property. The default ldmd/
auto_inter_vnet_link_limit value is 8. If more than the maximum number of virtual
networks are present for a virtual switch, the inter-vnet LDCs are disabled. See
Determining What Networks Are Present in Logical Domains.

If binding a guest domain or adding virtual networks to a bound domain results in the
number of virtual networks in the virtual switch exceeding the limit, the inter-vnet LDCs
are disabled automatically. The reverse is true. If unbinding a guest domain or
removing virtual networks from a bound domain results in the number of virtual
networks in a virtual switch being less than the limit, the inter-vnet LDCs are enabled
automatically.

When inter-vnet-link=auto, the ldm list output shows the value as on/auto or
off/auto depending on the active state of inter-vnet LDC channels for the virtual
switch.

The following figures show typical virtual switch configurations when inter-vnet-
link=on and inter-vnet-link=off, respectively.

The figure titled Virtual Switch Configuration That Uses Inter-Vnet Channels shows a
typical virtual switch that has three virtual network devices. The inter-vnet-link
property is set to on, which means that inter-vnet LDC channels are allocated. The
guest-to-guest communications between vnet1 and vnet2 is performed directly without
going through the virtual switch.

This figure also represents the case where inter-vnet-link=auto and the number of
virtual networks connected to the same virtual switch is less than or equal to the
maximum value set by the ldmd/auto_inter_vnet_link_limit SMF property.

Virtual Switch Configuration That Uses Inter-Vnet Channels

Chapter 13
Virtual Network Device

13-8

The figure titled Virtual Switch Configuration That Does Not Use Inter-Vnet Channels shows
the same virtual switch configuration with the inter-vnet-link property set to off. The inter-
vnet LDC channels are not allocated. Fewer LDC channels are used than when the inter-
vnet-link property is set to on. In this configuration, guest-to-guest communications between
vnet1 and vnet2 must go through vsw1.

This figure also represents the case where inter-vnet-link=auto and the number of virtual
networks connected to the same virtual switch exceeds the maximum value set by the ldmd/
auto_inter_vnet_link_limit SMF property.

Note:

Disabling the assignment of inter-vnet LDC channels does not prevent guest-to-
guest communications. Instead, all guest-to-guest communications traffic goes
through the virtual switch rather than directly from one guest domain to another
guest domain.

Virtual Switch Configuration That Does Not Use Inter-Vnet Channels

For more information about LDC channels, see Using Logical Domain Channels.

Determining What Networks Are Present in Logical Domains
You can issue commands from the OpenBoot PROM (OBP) prompt to list network
information for logical domains.

Run the show-nets command on any domain to list the networks that are available on that
domain:

OK show-nets

Run the watch-net-all command on the control domain to list the available networks and
to show network traffic:

OK watch-net-all

Finding the Oracle Solaris 11 Network Interface Name
You can use the ldm list-netdev command to find the Oracle Solaris OS network
interface name that corresponds to a virtual switch or virtual network device. For more
information, see the ldm(8) man page. For a domain that runs an OS older than Oracle
Solaris 11.2 SRU 1, obtain this information by mapping the MAC address from the

Chapter 13
Virtual Network Device

13-9

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

combination of the output from the ldm list-domain -o network command and
from the dladm show-phys -m command.

The following example shows the ldm list-netdev command. The ldm list-
netdev output shows the corresponding Oracle Solaris OS interface name in the NAME
column.

primary# ldm list-netdev -l ldg5
DOMAIN
ldg5

NAME CLASS MEDIA STATE SPEED OVER LOC
---- ----- ----- ----- ----- ---- ---
net0 VNET ETHER up 1000 vnet0 primary-vsw0/vnet0-ldg5
 [/virtual-devices@100/channel-devices@200/network@0]
 MTU : 1500 [60-1500]
 IPADDR : 10.129.71.179/255.255.252.0
 : fe80::214:4fff:fef8:3dc/ffc0::
 : 2606:b400:418:17b2:214:4fff:fef8:3dc/ffff:ffff:ffff:ffff::
 MAC_ADDRS : 00:14:4f:f8:03:dc
net1 VNET ETHER unknown 0R vnet1 primary-vsw0/ldg5-vnet1
 [/virtual-devices@100/channel-devices@200/network@1]
 MTU : 1500 [60-1500]
 MAC_ADDRS : 00:14:4f:f8:9f:eb
net2 VNET ETHER unknown 0R vnet3 primary-vsw0/ldg5-vnet2
 [/virtual-devices@100/channel-devices@200/network@2]
 MTU : 1500 [60-1500]
 MAC_ADDRS : 00:14:4f:f8:54:97

The corresponding Oracle Solaris OS network interface to the virtual device, ldg5-
vnet0, is net0.

To verify that the ldm list-netdev output is correct, run the dladm show-phys
command from the ldg5 domain:

ldg5# dladm show-phys -m
LINK SLOT ADDRESS INUSE CLIENT
net0 primary 0:14:4f:f8:3:dc yes net0
net1 primary 0:14:4f:f8:9f:eb no --
net2 primary 0:14:4f:f8:54:97 no --

Viewing Network Device Configurations and Statistics
The ldm list-netdev and ldm list-netstat commands enable you to view
information about the network devices in the system and the network statistics,
respectively. As a result, you have a centralized view of the network devices and
statistics in a given physical domain.

To use these commands, you must run at least the Oracle Solaris 11.2 SRU 1 OS in
the guest domain.

Example 13-1 Listing Network Device Configuration Information

The following example shows a short listing of the network devices for the ldg1
domain by using the ldm list-netdev command.

primary# ldm list-netdev ldg1

DOMAIN

Chapter 13
Viewing Network Device Configurations and Statistics

13-10

ldg1

NAME CLASS MEDIA STATE SPEED OVER LOC
---- ----- ----- ----- ----- ---- ---
net0 VNET ETHER up 1000 -- primary-vsw0/vnet0_ldg1
net3 PHYS ETHER up 10000 -- /SYS/MB/RISER1/PCIE4
net4 VSW ETHER up 10000 -- ldg1-vsw1
net1 PHYS ETHER up 10000 -- /SYS/MB/RISER1/PCIE4
net5 VNET ETHER up 10000 -- ldg1-vsw1/vnet1_ldg1
net6 VNET ETHER up 10000 -- ldg1-vsw1/vnet2_ldg1
aggr2 AGGR ETHER unknown 0 net1,net3 --
ldoms-vsw0.vport3 VNIC ETHER unknown 0 -- ldg1-vsw1/vnet2_ldg1
ldoms-vsw0.vport2 VNIC ETHER unknown 0 -- ldg1-vsw1/vnet1_ldg1
ldoms-vsw0.vport1 VNIC ETHER unknown 0 -- ldg1-vsw1/vnet2_ldg3
ldoms-vsw0.vport0 VNIC ETHER unknown 0 -- ldg1-vsw1/vnet2_ldg2

Example 13-2 Listing Detailed Network Device Configuration Information

The following example shows a detailed listing of the network devices for the ldg1 domain by
using the ldm list-netdev -l command.

primary# ldm list-netdev -l ldg1

DOMAIN
ldg1

NAME CLASS MEDIA STATE SPEED OVER LOC
---- ----- ----- ----- ----- ---- ---
net0 VNET ETHER up 1000 -- primary-vsw0/vnet0_ldg1
 [/virtual-devices@100/channel-devices@200/network@0]
 MTU : 1500 [1500-1500]
 IPADDR : 10.129.241.200/255.255.255.0
 MAC_ADDRS : 00:14:4f:fb:9c:df

net3 PHYS ETHER up 10000 -- /SYS/MB/RISER1/PCIE4
 [/pci@400/pci@1/pci@0/pci@0/network@0]
 MTU : 1500 [576-15500]
 MAC_ADDRS : a0:36:9f:0a:c5:d2

net4 VSW ETHER up 10000 -- ldg1-vsw1
 [/virtual-devices@100/channel-devices@200/virtual-network-switch@0]
 MTU : 1500 [1500-1500]
 IPADDR : 192.168.1.2/255.255.255.0
 MAC_ADDRS : 00:14:4f:fb:61:6e

net1 PHYS ETHER up 10000 -- /SYS/MB/RISER1/PCIE4
 [/pci@400/pci@1/pci@0/pci@0/network@0,1]
 MTU : 1500 [576-15500]
 MAC_ADDRS : a0:36:9f:0a:c5:d2

net5 VNET ETHER up 10000 -- ldg1-vsw1/vnet1_ldg1
 [/virtual-devices@100/channel-devices@200/network@1]
 MTU : 1500 [1500-1500]
 IPADDR : 0.0.0.0 /255.0.0.0
 : fe80::214:4fff:fef8:5062/ffc0::
 MAC_ADDRS : 00:14:4f:f8:50:62

net6 VNET ETHER up 10000 -- ldg1-vsw1/vnet2_ldg1
 [/virtual-devices@100/channel-devices@200/network@2]
 MTU : 1500 [1500-1500]

Chapter 13
Viewing Network Device Configurations and Statistics

13-11

 IPADDR : 0.0.0.0 /255.0.0.0
 : fe80::214:4fff:fef8:af92/ffc0::
 MAC_ADDRS : 00:14:4f:f8:af:92

aggr2 AGGR ETHER unknown 0 net1,net3 --
 MODE : TRUNK
 POLICY : L2,L3
 LACP_MODE : ACTIVE
 MEMBER : net1 [PORTSTATE = attached]
 MEMBER : net3 [PORTSTATE = attached]
 MAC_ADDRS : a0:36:9f:0a:c5:d2

ldoms-vsw0.vport3 VNIC ETHER unknown 0 -- ldg1-vsw1/vnet2_ldg1
 MTU : 1500 [576-1500]
 MAC_ADDRS : 00:14:4f:f8:af:92

ldoms-vsw0.vport2 VNIC ETHER unknown 0 -- ldg1-vsw1/vnet1_ldg1
 MTU : 1500 [576-1500]
 MAC_ADDRS : 00:14:4f:f8:50:62

ldoms-vsw0.vport1 VNIC ETHER unknown 0 -- ldg1-vsw1/vnet2_ldg3
 MTU : 1500 [576-1500]
 MAC_ADDRS : 00:14:4f:f9:d3:88

ldoms-vsw0.vport0 VNIC ETHER unknown 0 -- ldg1-vsw1/vnet2_ldg2
 MTU : 1500 [576-1500]
 MAC_ADDRS : 00:14:4f:fa:47:f4
 : 00:14:4f:f9:65:b5
 : 00:14:4f:f9:60:3f

Example 13-3 Listing Network Device Statistics

The ldm list-netstat command shows network statistics for one or more
domains in the system.

The following example shows the default network statistics for all domains in the
system.

primary# ldm list-netstat

DOMAIN
primary

NAME IPACKETS RBYTES OPACKETS OBYTES
---- -------- ------ -------- ------
net3 0 0 0 0
net0 2.72M 778.27M 76.32K 6.01M
net4 2.72M 778.27M 76.32K 6.01M
net6 2 140 1.30K 18.17K
net7 0 0 0 0
net2 0 0 0 0
net1 0 0 0 0
aggr1 0 0 0 0
ldoms-vsw0.vport0 935.40K 74.59M 13.15K 984.43K
ldoms-vsw0.vport1 933.26K 74.37M 11.42K 745.15K
ldoms-vsw0.vport2 933.24K 74.37M 11.46K 747.66K
ldoms-vsw1.vport1 202.26K 17.99M 179.75K 15.69M
ldoms-vsw1.vport0 202.37K 18.00M 189.00K 16.24M

DOMAIN
ldg1

Chapter 13
Viewing Network Device Configurations and Statistics

13-12

NAME IPACKETS RBYTES OPACKETS OBYTES
---- -------- ------ -------- ------
net0 5.19K 421.57K 68 4.70K
net3 0 0 2.07K 256.93K
net4 0 0 4.37K 560.17K
net1 0 0 2.29K 303.24K
net5 149 31.19K 78 17.00K
net6 147 30.51K 78 17.29K
aggr2 0 0 0 0
ldoms-vsw0.vport3 162 31.69K 52 14.11K
ldoms-vsw0.vport2 163 31.74K 51 13.76K
ldoms-vsw0.vport1 176 42.99K 25 1.50K
ldoms-vsw0.vport0 158 40.19K 45 4.42K

DOMAIN
ldg2

NAME IPACKETS RBYTES OPACKETS OBYTES
---- -------- ------ -------- ------
net0 5.17K 418.90K 71 4.88K
net1 2.70K 201.67K 2.63K 187.01K
net2 132 36.40K 1.51K 95.07K

DOMAIN
ldg3

NAME IPACKETS RBYTES OPACKETS OBYTES
---- -------- ------ -------- ------
net0 5.16K 417.43K 72 4.90K
net1 2.80K 206.12K 2.67K 190.36K
net2 118 35.00K 1.46K 87.78K

Controlling the Amount of Physical Network Bandwidth That Is
Consumed by a Virtual Network Device

The bandwidth resource control feature enables you to limit the physical network bandwidth
consumed by a virtual network device. This feature ensures that one guest domain does not
take over the available physical network bandwidth and leave none for the others. This
feature is supported on a service domain that runs at least the Oracle Solaris 11 OS and is
configured with a virtual switch.

Use the ldm add-vnet and ldm set-vnet commands to specify the bandwidth limit by
providing a value for the maxbw property. Use the ldm list-bindings or the ldm list-
domain -o network command to view the maxbw property value for an existing virtual
network device. The minimum bandwidth limit is 10 Mbps.

Network Bandwidth Limitations
The bandwidth resource control applies only to the traffic that goes through the virtual switch.
Thus, inter-vnet traffic is not subjected to this limit. If you do not have a physical backend
device configured, you can ignore bandwidth resource control.

The minimum supported bandwidth limit depends on the Oracle Solaris network stack in the
service domain. The bandwidth limit can be configured with any desired high value. There is
no upper limit. The bandwidth limit ensures only that the bandwidth does not exceed the

Chapter 13
Controlling the Amount of Physical Network Bandwidth That Is Consumed by a Virtual Network Device

13-13

configured value. Thus, you can configure a bandwidth limit with a value greater than
the link speed of the physical network device that is assigned to the virtual switch.

Setting the Network Bandwidth Limit
Use the ldm add-vnet command to create a virtual network device and specify the
bandwidth limit by providing a value for the maxbw property.

primary# ldm add-vnet maxbw=limit
if-name
vswitch-name
domain-name

Use the ldm set-vnet command to specify the bandwidth limit for an existing virtual
network device.

primary# ldm set-vnet maxbw=limit
if-name
domain-name

You can also clear the bandwidth limit by specifying a blank value for the maxbw
property:

primary# ldm set-vnet maxbw= if-name
domain-name

The following examples show how to use the ldm command to specify the bandwidth
limit. The bandwidth is specified as an integer with a unit. The unit is M for megabits-
per-second or G for gigabits-per-second. The unit is megabits-per-second if you do not
specify a unit.

Example 13-4 Setting the Bandwidth Limit When Creating a Virtual Network
Device

The following command creates a virtual network device (vnet0) that has a bandwidth
limit of 100 Mbps.

primary# ldm add-vnet maxbw=100M vnet0 primary-vsw0 ldg1

The following command would issue an error message when attempting to set a
bandwidth limit below the minimum value, which is 10 Mbps.

primary# ldm add-vnet maxbw=1M vnet0 primary-vsw0 ldg1

Example 13-5 Setting the Bandwidth Limit on an Existing Virtual Network
Device

The following command sets the bandwidth limit to 200 Mbps on the existing vnet0
device.

Depending on the real-time network traffic pattern, the amount of bandwidth might not
reach the specified limit of 200 Mbps. For example, the bandwidth might be 95 Mbps,
which does not exceed the 200 Mbps limit.

primary# ldm set-vnet maxbw=200M vnet0 ldg1

The following command sets the bandwidth limit to 2 Gbps on the existing vnet0
device.

Chapter 13
Controlling the Amount of Physical Network Bandwidth That Is Consumed by a Virtual Network Device

13-14

Because there is no upper limit on bandwidth in the MAC layer, you can still set the limit to be
2 Gbps even if the underlying physical network speed is less than 2 Gbps. In such a case,
there is no bandwidth limit effect.

primary# ldm set-vnet maxbw=2G vnet0 ldg1

Example 13-6 Clearing the Bandwidth Limit on an Existing Virtual Network Device

The following command clears the bandwidth limit on the specified virtual network device
(vnet0). By clearing this value, the virtual network device uses the maximum bandwidth
available, which is provided by the underlying physical device.

primary# ldm set-vnet maxbw= vnet0 ldg1

Example 13-7 Viewing the Bandwidth Limit of an Existing Virtual Network Device

The ldm list-bindings command shows the value of the maxbw property for the
specified virtual network device, if defined.

The following command shows that the vnet3 virtual network device has a bandwidth limit of
15 Mbps. If no bandwidth limit is set, the MAXBW field is blank.

primary# ldm ls-bindings -e -o network ldg3
NAME
ldg3

MAC
 00:14:4f:f8:5b:12

NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 vnet3 primary-vsw0@primary 00:14:4f:fa:ba:b9 1|--|--
 DEVICE :network@0 ID :0
 LINKPROP :-- MTU :1500
 MAXBW :15M MODE :--
 CUSTOM :disable
 PRIORITY :-- COS :--
 PROTECTION :--

 PEER MACADDRESS PVID|PVLAN|VIDs
 ---- ---------- ---------------
 primary-vsw0@primary 00:14:4f:f9:08:28 1|--|--
 LINKPROP :-- MTU :1500
 MAXBW :-- LDC :0x0
 MODE :--

You can also use the dladm show-linkprop command to view the maxbw property value
as follows:

dladm show-linkprop -p maxbw
LINK PROPERTY PERM VALUE EFFECTIVE DEFAULT POSSIBLE
...
ldoms-vsw0.vport0 maxbw rw 15 15 -- --

Virtual Device Identifier and Network Interface Name
When you add a virtual switch or virtual network device to a domain, you can specify its
device number by setting the id property.

Chapter 13
Virtual Device Identifier and Network Interface Name

13-15

primary# ldm add-vsw [id=switch-id] vswitch-name
domain-name
primary# ldm add-vnet [id=network-id] if-name
vswitch-name
domain-name

Each virtual switch and virtual network device of a domain has a unique device
number that is assigned when the domain is bound. If a virtual switch or virtual
network device was added with an explicit device number (by setting the id property),
the specified device number is used. Otherwise, the system automatically assigns the
lowest device number available. In that case, the device number assigned depends on
how virtual switch or virtual network devices were added to the system. The device
number eventually assigned to a virtual switch or virtual network device is visible in the
output of the ldm list-bindings command and the ldm list-domain -o
network command when a domain is bound.

The following example shows that the primary domain has one virtual switch,
primary-vsw0. This virtual switch has a device number of 0 (switch@0).

primary# ldm list-bindings -e -o network primary
VSW
 NAME MACADDRESS NET-DEV DVID|PVID|VIDs
 ---- ---------- ------- --------------
 primary-vsw0 00:14:4f:fb:86:af net0 1|1|--
DEVICE :switch@0 ID :0
 LINKPROP :phys-state MTU :1500
 INTER-VNET-LINK :on/auto MODE :--
 VSW-RELAY-MODE :local

 PEER MACADDRESS PVID|PVLAN|VIDs
 ---- ---------- ---------------
 vnet1@ldg1 00:14:4f:f9:41:af 1|--|--
 LINKPROP :phys-state MTU :1500
 MAXBW :-- LDC :0xa
 MODE :--
 CUSTOM :disable
 PRIORITY :-- COS :--
 PROTECTION :--

 vnet0@ldg1 00:14:4f:f9:41:fb 1|--|--
 LINKPROP :phys-state MTU :1500
 MAXBW :-- LDC :0xc
 MODE :--
 CUSTOM :disable
 PRIORITY :-- COS :--
 PROTECTION :--

The following example shows that the ldg1 domain has two virtual network devices:
vnet0 and vnet1. The vnet1 device has a device number of 0 (network@0) and the
vnet0 device has a device number of 1 (network@1).

primary# ldm list-domain -e -o network ldg1
NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 vnet1 primary-vsw0@primary 00:14:4f:f9:41:af 1|--|--
 DEVICE :network@0 ID :0
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
 CUSTOM :disable

Chapter 13
Virtual Device Identifier and Network Interface Name

13-16

 PRIORITY :-- COS :--
 PROTECTION :--

 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 vnet0 primary-vsw0@primary 00:14:4f:f9:41:fb 1|--|--
 DEVICE :network@1 ID :1
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
 CUSTOM :disable
 PRIORITY :-- COS :--
 PROTECTION :-

When a domain with a virtual network device is running the Oracle Solaris 11 OS, the virtual
network device has a network interface, net N. However, the network interface number of the
virtual network device, N, is not necessarily the same as the device number of the virtual
network device, n.

Note:

On Oracle Solaris 11 systems, generic link names in the form of net n are assigned
to both vsw n and vnet n. Use the dladm show-phys command to identify which
net n names map to the vsw n and vnet n devices.

Caution:

The Oracle Solaris OS preserves the mapping between the name of a network
interface and a virtual switch or a virtual network device based on the device
number. If a device number is not explicitly assigned to a virtual switch or virtual
network device, its device number can change when the domain is unbound and is
later bound again. In that case, the network interface name assigned by the OS
running in the domain can also change and make the existing system configuration
unusable. This situation might happen, for example, when a virtual switch or a
virtual network interface is removed from the configuration of the domain.

Managing MAC Addresses With Oracle VM Server for SPARC

Assigning MAC Addresses Automatically or Manually
You must have enough media access control (MAC) addresses to assign to the number of
logical domains, virtual switches, and virtual networks you are going to use. You can have the
Logical Domains Manager automatically assign MAC addresses to a logical domain, a virtual
network, and a virtual switch, or you can manually assign MAC addresses from your own
pool of assigned MAC addresses. The ldm subcommands that set MAC addresses are add-
domain, set-domain, add-vsw, set-vsw, add-vnet, set-vnet, and set-io. If you do
not specify a MAC address in these subcommands, the Logical Domains Manager assigns
one automatically.

The advantage to having the Logical Domains Manager assign the MAC addresses is that it
uses the block of MAC addresses dedicated for use with logical domains. Also, the Logical
Domains Manager detects and prevents MAC address collisions with other Logical Domains

Chapter 13
Managing MAC Addresses With Oracle VM Server for SPARC

13-17

Manager instances on the same subnet. This behavior frees you from having to
manually manage your pool of MAC addresses.

MAC address assignment happens as soon as a logical domain is created or a
network device is configured into a domain. In addition, the assignment is persistent
until the device, or the logical domain itself, is removed.

Range of MAC Addresses Assigned to Domains
Domains have been assigned the following block of 512K MAC addresses:

00:14:4F:F8:00:00 ~ 00:14:4F:FF:FF:FF
The lower 256K addresses are used by the Logical Domains Manager for automatic
MAC address allocation, and you cannot manually request an address in this range:

00:14:4F:F8:00:00 - 00:14:4F:FB:FF:FF
You can use the upper half of this range for manual MAC address allocation:

00:14:4F:FC:00:00 - 00:14:4F:FF:FF:FF

Note:

In Oracle Solaris 11, the allocation of MAC addresses for VNICs uses
addresses outside these ranges.

Automatic Assignment Algorithm
When you do not specify a MAC address when creating a logical domain or a network
device, the Logical Domains Manager automatically allocates and assigns a MAC
address to that logical domain or network device.

To obtain this MAC address, the Logical Domains Manager iteratively attempts to
select an address and then checks for potential collisions. The MAC address is
randomly selected from the 256K range of addresses set aside for this purpose. The
MAC address is selected randomly to lessen the chance of a duplicate MAC address
being selected as a candidate.

The address selected is then checked against other Logical Domains Managers on
other systems to prevent duplicate MAC addresses from actually being assigned. The
algorithm employed is described in Duplicate MAC Address Detection. If the address
is already assigned, the Logical Domains Manager iterates, choosing another address
and again checking for collisions. This process continues until a MAC address is found
that is not already allocated or a time limit of 30 seconds has elapsed. If the time limit
is reached, then the creation of the device fails, and an error message similar to the
following is shown.

Automatic MAC allocation failed. Please set the vnet MAC address manually.

Duplicate MAC Address Detection
To prevent the same MAC address from being allocated to different devices, the
Logical Domains Manager checks with other Logical Domains Managers on other
systems by sending a multicast message over the control domain's default network

Chapter 13
Managing MAC Addresses With Oracle VM Server for SPARC

13-18

interface, including the address that the Logical Domains Manager wants to assign to the
device. The Logical Domains Manager attempting to assign the MAC address waits for one
second for a response. If a different device on another Oracle VM Server for SPARC-enabled
system has already been assigned that MAC address, the Logical Domains Manager on that
system sends a response containing the MAC address in question. If the requesting Logical
Domains Manager receives a response, it notes the chosen MAC address has already been
allocated, chooses another, and iterates.

By default, these multicast messages are sent only to other managers on the same subnet.
The default time-to-live (TTL) is 1. The TTL can be configured using the Service Management
Facilities (SMF) property ldmd/hops.

Each Logical Domains Manager is responsible for the following:

• Listening for multicast messages

• Keeping track of MAC addresses assigned to its domains

• Looking for duplicates

• Responding so that duplicates do not occur

If the Logical Domains Manager on a system is shut down for any reason, duplicate MAC
addresses could occur while the Logical Domains Manager is down.

Detecting MAC Address Collisions
A detection check for duplicate MAC addresses is performed when the logical domain or
network device is created, when the logical domain is started with the -m option, and when
the ldmd/mac_collision_check SMF property is set to true.

The mac_collision_check SMF property controls whether a MAC address collision check is
performed when the Logical Domains Manager starts. The check is performed when the
property value is true. The default value is false.

The following command enables the MAC address collision check during Logical Domains
Manager startup by setting the mac_collision_check SMF property:

primary# svccfg -s ldmd setprop ldmd/mac_collision_check=true
primary# svcadm refresh ldmd
primary# svcadm restart ldmd

By default, MAC address collision checks are disabled. If the mac_collision_check SMF
property is enabled, a warning message is logged when collisions are detected.

Note:

The MAC address collision check slows down the start of the Logical Domains
Manager process depending on the number of MAC addresses to check.

In addition to the Logical Domains Manager performing MAC address collision checks, you
can perform this check when a domain starts by using the ldm start-domain -m
command. If a MAC address collision is detected, the ldm start-domain command fails.

Chapter 13
Managing MAC Addresses With Oracle VM Server for SPARC

13-19

Note:

The MAC address collision check slows down the start of a domain
depending on the number of MAC addresses to check.

The following command to enable the MAC address collision check when the ldg1
domain starts up fails with an error:

primary# ldm start-domain -m ldg1
MAC address 00:14:4f:fb:9d:32 is already in use.

Configuring a Virtual Switch and the Service Domain for
NAT and Routing

The Oracle Solaris 11 network virtualization features include etherstub, which is a
pseudo network device. This device provides functionality similar to physical network
devices but only for private communications with its clients. This pseudo device can be
used as a network back-end device for a virtual switch that provides the private
communications between virtual networks. By using the etherstub device as a back-
end device, guest domains can also communicate with VNICs on the same etherstub
device. Using the etherstub device in this way enables guest domains to
communicate with network endpoints, including zones, in the service domain. By
enabling IP routing in the service domain, virtual networks can communicate outside
the machine by using the service domain as a router. Subsequently, configure NAT in
the service domain to provide external connectivity to guest domains by means of a
private IP address that is not externally routable. Use the dladm create-
etherstub command to create an etherstub device.

The following diagram shows how virtual switches, etherstub devices, and VNICs can
be used to set up Network Address Translation (NAT) in a service domain.

Virtual Network Routing

Chapter 13
Configuring a Virtual Switch and the Service Domain for NAT and Routing

13-20

How to Set Up a Virtual Switch to Enable NAT to Domains (Oracle Solaris
11)

1. Create an Oracle Solaris 11 etherstub device.

primary# dladm create-etherstub stub0
2. Create a virtual switch that uses stub0 as the physical back-end device.

primary# ldm add-vsw net-dev=stub0 primary-stub-vsw0 primary
3. Create a VNIC on the stub0 device.

primary# dladm create-vnic -l stub0 vnic0
4. Configure vnic0 as the network interface.

primary# ipadm create-ip vnic0
primary# ipadm create-addr -T static -a 192.168.100.1/24 vnic0/v4static

5. Enable IPv4 forwarding and create NAT rules to provide external connectivity to
the domains.

See Customizing IP Interface Properties and Addresses in Configuring and Managing
Network Components in Oracle Solaris 11.4 and Packet Forwarding and Routing on IPv4
Networks in Oracle Solaris Administration: IP Services.

Chapter 13
Configuring a Virtual Switch and the Service Domain for NAT and Routing

13-21

https://docs.oracle.com/cd/E37838_01/html/E60988/gjwiq.html
https://docs.oracle.com/cd/E37838_01/html/E60988/gjwiq.html
https://docs.oracle.com/cd/E26505_01/html/E27061/gcvjj.html
https://docs.oracle.com/cd/E26505_01/html/E27061/gcvjj.html

Configuring IPMP in an Oracle VM Server for SPARC
Environment

The Oracle VM Server for SPARC software supports link-based IP network
multipathing (IPMP) with virtual network devices. When configuring an IPMP group
with virtual network devices, configure the group to use link-based detection. If you are
using older versions of the Oracle VM Server for SPARC (Logical Domains) software,
you can only configure probe-based detection with virtual network devices.

Configuring Virtual Network Devices Into an IPMP Group in an Oracle
Solaris 11 Domain

The figure titled Two Virtual Networks Connected to Separate Virtual Switch Instances
(Oracle Solaris 11) shows two virtual networks (vnet0 and vnet1) connected to
separate virtual switch instances (vsw0 and vsw1) in the service domain, which in turn
use two different physical interfaces. The physical interfaces are net0 and net1 in the
Oracle Solaris 11 service domain.

If a physical link failure occurs in the service domain, the virtual switch device that is
bound to that physical device detects the link failure. Then, the virtual switch device
propagates the failure to the corresponding virtual network device that is bound to this
virtual switch. The virtual network device sends notification of this link event to the IP
layer in the guest domain A, which results in failover to the other virtual network device
in the IPMP group.

Two Virtual Networks Connected to Separate Virtual Switch Instances (Oracle Solaris
11)

The figure titled Virtual Network Devices Each Connected to Different Service
Domains (Oracle Solaris 11) shows that you can achieve further reliability in the logical
domain by connecting each virtual network device (vnet0 and vnet1) to virtual switch
instances in different service domains. In this case, in addition to physical network
failure, guest domain A can detect virtual network failure and trigger a failover
following a service domain crash or shutdown.

Chapter 13
Configuring IPMP in an Oracle VM Server for SPARC Environment

13-22

Virtual Network Devices Each Connected to Different Service Domains (Oracle Solaris 11)

For more information, see “Administering Oracle Solaris Networks” in the Oracle Solaris 11.4
Information Library.

Configuring and Using IPMP in the Service Domain
On an Oracle Solaris 11 system, you can configure IPMP in a service domain by configuring
physical interfaces into a group in the same way as on a system that has no virtual network
or domains. The figure titled Two Physical NICs Configured as Part of an IPMP Group
(Oracle Solaris 11) shows two physical interfaces, which are net0 and net1.

Two Physical NICs Configured as Part of an IPMP Group (Oracle Solaris 11)

Using Link-Based IPMP in Oracle VM Server for SPARC Virtual Networking
The virtual network and virtual switch devices support link status updates to the network
stack. By default, a virtual network device reports the status of its virtual link (its LDC to the
virtual switch) and physical link. This configuration is enabled by default and does not require
you to perform additional configuration steps.

Note:

The linkprop property is set to phys-state by default depending on backing device
support. You do not need to perform the tasks in this section unless you disabled
the linkprop property manually and are now attempting to set the property to the
phys-state value.

Chapter 13
Configuring IPMP in an Oracle VM Server for SPARC Environment

13-23

http://docs.oracle.com/cd/E37838_01/
http://docs.oracle.com/cd/E37838_01/

You can use standard Oracle Solaris network administration commands such as
dladm and ifconfig to check the link status. In addition, the link status is also
logged in the /var/adm/messages file. For Oracle Solaris 10, see the dladm(1M)
and ifconfig(1M) man pages. For Oracle Solaris 11 releases prior to Oracle Solaris
11.4, see the dladm(1M), ipadm(1M), and ipmpstat(1M) man pages. For Oracle Solaris
11.4, see the dladm(8), ipadm(8), and ipmpstat(8) man pages.

How to Configure Physical Link Status Updates
This procedure shows how to enable physical link status updates for virtual network
devices.

You can also enable physical link status updates for a virtual switch device by following
similar steps and specifying the linkprop=phys-state option to the ldm add-vsw
and ldm set-vsw commands.

Note:

If linkprop=phys-state is specified and the physical link is down, the virtual
network device reports its link status as down, even if the connection to the
virtual switch is up. This situation occurs because the Oracle Solaris OS
does not currently provide interfaces to report two distinct link states, such as
virtual-link-state and physical-link-state.

1. Become an administrator.

For Oracle Solaris 11.4, see Chapter 1, About Using Rights to Control Users and
Processes in Securing Users and Processes in Oracle Solaris 11.4.

2. Enable physical link status updates for the virtual device.

You can enable physical link status updates for a virtual network device in the
following ways:

• Create a virtual network device by specifying linkprop=phys-state when
running the ldm add-vnet command.

Specifying the linkprop=phys-state option configures the virtual network
device to obtain physical link state updates and report them to the stack.

primary# ldm add-vnet linkprop=phys-state if-name
vswitch-name
domain-name

The following example enables physical link status updates for ldom1_vnet0
connected to primary-vsw0 on the logical domain ldom1:

primary# ldm add-vnet linkprop=phys-state ldom1_vnet0 primary-vsw0 ldom1
• Modify an existing virtual network device by specifying linkprop=phys-state

when running the ldm set-vnet command.

primary# ldm set-vnet linkprop=phys-state if-name
domain-name

The following example enables physical link status updates for vnet0 on the
logical domain ldom1:

Chapter 13
Configuring IPMP in an Oracle VM Server for SPARC Environment

13-24

https://docs.oracle.com/cd/E86824_01/html/E54764/dladm-1m.html
https://docs.oracle.com/cd/E86824_01/html/E54764/ifconfig-1m.html
https://docs.oracle.com/cd/E86824_01/html/E54764/dladm-1m.html
https://docs.oracle.com/cd/E86824_01/html/E54764/ipadm-1m.html
https://docs.oracle.com/cd/E86824_01/html/E54764/ipmpstat-1m.html
https://docs.oracle.com/cd/E88353_01/html/E72487/dladm-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ipadm-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ipmpstat-8.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html

primary# ldm set-vnet linkprop=phys-state ldom1_vnet0 ldom1
To disable physical link state updates, specify linkprop= by running the ldm set-vnet
command.

The following example disables physical link status updates for ldom1_vnet0 on the
logical domain ldom1:

primary# ldm set-vnet linkprop= ldom1_vnet0 ldom1

Configuring Link-Based IPMP
The following example shows how to configure two virtual network devices on a domain to
use link-based IPMP. Each virtual network device is connected to a separate virtual switch
device on the service domain.

Note:

Test addresses are not configured on these virtual network devices. Also, you do
not need to perform additional configuration when you use the ldm add-vnet
command to create these virtual network devices.

The following commands add the virtual network devices to the domain. If the virtual switch
has a physical network device assigned, physical link state updates are enabled
automatically. Otherwise, only the link to the virtual switch is monitored for state changes.

primary# ldm add-vnet ldom1_vnet0 primary-vsw0 ldom1
primary# ldm add-vnet ldom1_vnet1 primary-vsw1 ldom1

The following commands configure the virtual network devices on the guest domain and
assign them to an IPMP group. Note that test addresses are not configured on these virtual
network devices because link-based failure detection is being used.

• Oracle Solaris 10 OS: Use the ifconfig command.

ifconfig vnet0 plumb 192.168.1.1 netmask + broadcast + group ipmp0 up
ifconfig vnet1 plumb group ipmp0

• Oracle Solaris 11 OS: Use the ipadm command.

Note that net0 and net1 are the Oracle Solaris 11 vanity names for ldom1_vnet0 and
ldom1_vnet1, respectively.

ipadm create-ip net0
ipadm create-ip net1
ipadm create-ipmp ipmp0
ipadm add-ipmp -i net0 -i net1 ipmp0
ipadm create-addr -T static -a 192.168.1.1/24 ipmp0/v4addr1

Configuring DLMP Aggregations Over Virtual Network Devices
The Oracle VM Server for SPARC software supports datalink multipathing (DLMP)
aggregation over virtual network devices on logical domains.

To configure DLMP aggregations over virtual network devices in a domain, ensure that both
the service domain and the guest domain run at least the Oracle Solaris 11.4 OS.

Chapter 13
Configuring DLMP Aggregations Over Virtual Network Devices

13-25

While the DLMP aggregation feature is similar to IPMP, IPMP manages IP addresses
on a set of network interfaces while DLMP manages the virtual NIC. Both of these
features provide high-availability capabilities that enable network connections to
remain up even when a service domain becomes unavailable due to a reboot or a
panic.

DLMP Aggregation Limitations
The DLMP aggregation feature has the following limitations:

• The DLMP aggregation over virtual network devices is not operable if one of the
connected virtual switches is configured over an Ethernet stub.

• The underlying physical device of each connected virtual switch (as specified by
the net-dev property) must have the same link speed.

How to Configure a DLMP Aggregation in a Domain
Before You Begin

Before you can configure a DLMP aggregation over virtual network devices in a
domain, you must ensure that the linkprop property for each virtual network device is
set to phys-state and that the custom property set to enable. For more information,
see How to Configure Physical Link Status Updates, Configuring Trusted Virtual
Networks, and the ldm(8) man page.

The steps you perform in this procedure are run in two domains, the domain in which
you create the DLMP aggregation and the primary domain.

The shell prompt indicates the domain in which to run the commands: gdom# for the
DLMP aggregation domain and primary# for the primary domain.

1. Determine which virtual network devices to use.

Any of the virtual network devices that you choose cannot be in use.

gdom# dladm show-phys -m
2. Ensure that the virtual network devices you choose for the DLMP

aggregation have the custom property set to enable and the linkprop
property set to phys-state.

primary# ldm list -o network domain-name
3. Configure the DLMP aggregation.

The following command assumes that two virtual network devices are used for the
DLMP aggregation.

gdom# dladm create-aggr -m dlmp -l net-name1 -l net-name2 aggr-name

Note:

Ensure that the network devices that are configured into the DLMP
aggregation do not have any IP interface configured over them.

4. Configure an IP interface for the DLMP aggregation.

Chapter 13
Configuring DLMP Aggregations Over Virtual Network Devices

13-26

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

gdom# ipadm create-ip aggr-name
5. Configure an IP address for the DLMP aggregation.

gdom# ipadm create-addr -a IP-addr/24 aggr-name
6. Verify the configuration of the DLMP aggregation and verify that the network

devices used by the aggregation are attached.

gdom# dladm show-aggr -x
7. Verify the configuration of the DLMP aggregation and the network devices.

primary# ldm list-netdev domain-name
8. Enable probe-based failure detection for the DLMP aggregation.

gdom# dladm set-linkprop -p probe-ip=+ aggr-name
9. Verify the detailed probe information about the DLMP aggregation configuration.

gdom# dladm show-aggr -nS
Example 13-8 Configuring a DLMP Aggregation in a Domain

This example follows the steps in the procedure to create a DLMP aggregation.

You can determine that net1 and net2 are the Oracle Solaris 11 vanity names for vnet1 and
vnet2 by matching the MAC addresses.

gdom# dladm show-phys -m
LINK SLOT ADDRESS INUSE CLIENT
net0 primary 0:14:4f:fb:68:f1 yes net0
net1 primary 0:14:4f:fa:20:68 no --
net2 primary 0:14:4f:fa:42:a8 no --

Verify that the custom property is set to enable and that the linkprop property is set to phys-
state on the virtual network devices that will be used for the DLMP aggregation. Also, verify
that the vnet1 and vnet2 virtual network devices are associated with different virtual
switches.

primary# ldm list -o network gdom
NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
---- ------- ---------- ---------------
vnet1 primary-vsw0@primary 00:14:4f:fa:20:68 1|--|--
 DEVICE :network@3 ID :3
LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
CUSTOM :enable
 MAX-CUSTOM-MACS:4096 MAX-CUSTOM-VLANS:4096
 PRIORITY :-- COS :--
 PROTECTION :--

NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
---- ------- ---------- ---------------
vnet2 primary-vsw1@primary 00:14:4f:fa:42:a8 1|--|--
 DEVICE :network@3 ID :3
LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
CUSTOM :enable
 MAX-CUSTOM-MACS:4096 MAX-CUSTOM-VLANS:4096
 PRIORITY :-- COS :--
 PROTECTION :--

Chapter 13
Configuring DLMP Aggregations Over Virtual Network Devices

13-27

Note that the underlying device of the primary-vsw0 and primary-vsw1 virtual
switches must have the same link speed to support DLMP aggregation over the vnet1
and vnet2 virtual network devices. The single service domain shown in this example is
not a high-availability configuration. If the primary domain fails, DLMP aggregation
fails. A high-availability configuration must use at least two service domains.

Configure the DLMP aggregation.

gdom# dladm create-aggr -m dlmp -l net1 -l net2 aggr0

Configure an IP interface for the DLMP aggregation.

gdom# ipadm create-ip aggr0

Configure an IP address for the DLMP aggregation.

gdom# ipadm create-addr -a 192.168.10.14/24 aggr0

Verify the configuration of the DLMP aggregation and verify that the network devices
used by the aggregation are attached.

gdom# dladm show-aggr -x
LINK PORT SPEED DUPLEX STATE ADDRESS PORTSTATE
aggr0 -- 1000Mb full up 2:8:20:d4:52:cc --
net1 1000Mb full up 0:14:4f:fa:20:68 attached
net2 1000Mb full up 0:14:4f:fa:42:a8 attached

Verify the configuration of the DLMP aggregation and the network devices.

primary# ldm list-netdev gdom
DOMAIN
gdom

NAME CLASS MEDIA STATE SPEED OVER LOC
---- ----- ----- ----- ----- ---- ---
aggr AGGR ETHER up 1G net1,net2 --
net0 VNET ETHER up 1G vnet0 primary-vsw0/vnet0
net1 VNET ETHER up 1G vnet1 primary-vsw0/vnet1
net2 VNET ETHER up 1G vnet2 primary-vsw1/vnet2

Enable probe-based failure detection for DLMP and verify the detailed probe
information about the DLMP aggregation configuration.

gdom# dladm set-linkprop -p probe-ip=+ aggr0
gdom# dladm show-aggr -nS
LINK PORT FLAGS STATE TARGETS XTARGETS
aggr0 net1 u--3 active 192.168.10.1 net2
-- net2 u-2- active -- net1

Example 13-9 Configuring a High-Availability DLMP Aggregation

This example follows the steps in the procedure to create a high-availability DLMP
aggregation. The difference is that the net2 (vnet2) network device is associated with
the secondary-vsw0 virtual switch instead of with the primary-vsw1 virtual switch.
Each of these virtual switches are in different service domains.

gdom# dladm show-phys -m
LINK SLOT ADDRESS INUSE CLIENT
net0 primary 0:14:4f:fb:68:f1 yes net0
net1 primary 0:14:4f:fa:20:68 no --
net2 primary 0:14:4f:fa:42:a8 no --

Chapter 13
Configuring DLMP Aggregations Over Virtual Network Devices

13-28

Verify that the custom property is set to enable and that the linkprop property is set to phys-
state on the virtual network devices that will be used for the DLMP aggregation. Also, verify
that the vnet1 and vnet2 virtual network devices are associated with different virtual
switches.

primary# ldm list -o network gdom
NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
---- ------- ---------- ---------------
vnet1 primary-vsw0@primary 00:14:4f:fa:20:68 1|--|--
 DEVICE :network@3 ID :3
LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
CUSTOM :enable
 MAX-CUSTOM-MACS:4096 MAX-CUSTOM-VLANS:4096
 PRIORITY :-- COS :--
 PROTECTION :--

NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
---- ------- ---------- ---------------
vnet2 secondary-vsw0@secondary 00:14:4f:fa:42:a8 1|--|--
 DEVICE :network@3 ID :3
LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
CUSTOM :enable
 MAX-CUSTOM-MACS:4096 MAX-CUSTOM-VLANS:4096
 PRIORITY :-- COS :--
 PROTECTION :--

Note that the underlying device of the primary-vsw0 and secondary-vsw0 virtual switches
must have the same link speed to support DLMP aggregation over the vnet1 and vnet2
virtual network devices. For more information about Oracle Solaris DLMP aggregation, see
Chapter 2, Configuring High Availability by Using Link Aggregations in Managing Network
Datalinks in Oracle Solaris 11.4.

Configure the DLMP aggregation.

gdom# dladm create-aggr -m dlmp -l net1 -l net2 aggr0

Configure an IP interface for the DLMP aggregation.

gdom# ipadm create-ip aggr0

Configure an IP address for the DLMP aggregation.

gdom# ipadm create-addr -a 192.168.10.14/24 aggr0

Verify the configuration of the DLMP aggregation and verify that the network devices used by
the aggregation are attached.

gdom# dladm show-aggr -x
LINK PORT SPEED DUPLEX STATE ADDRESS PORTSTATE
aggr0 -- 1000Mb full up 2:8:20:d4:52:cc --
net1 1000Mb full up 0:14:4f:fa:20:68 attached
net2 1000Mb full up 0:14:4f:fa:42:a8 attached

Verify the configuration of the DLMP aggregation and the network devices.

primary# ldm list-netdev gdom
DOMAIN
gdom

Chapter 13
Configuring DLMP Aggregations Over Virtual Network Devices

13-29

https://docs.oracle.com/cd/E37838_01/html/E60990/gdysx.html
https://docs.oracle.com/cd/E37838_01/html/E60990/gdysx.html

NAME CLASS MEDIA STATE SPEED OVER LOC
---- ----- ----- ----- ----- ---- ---
aggr AGGR ETHER up 1G net1,net2 --
net0 VNET ETHER up 1G vnet0 primary-vsw0/vnet0
net1 VNET ETHER up 1G vnet1 primary-vsw0/vnet1
net2 VNET ETHER up 1G vnet2 secondary-vsw0/vnet2

Enable probe-based failure detection for DLMP and verify the detailed probe
information about the DLMP aggregation configuration.

gdom# dladm set-linkprop -p probe-ip=+ aggr0
gdom# dladm show-aggr -nS
LINK PORT FLAGS STATE TARGETS XTARGETS
aggr0 net1 u--3 active 192.168.10.1 net2
-- net2 u-2- active -- net1

Example 13-10 Configuring a DLMP Aggregation For a Virtual Switch on an
Ethernet Stub Is Inoperable

The following example output shows that a DLMP aggregation you create for a virtual
switch on an Ethernet stub is inoperable. In such a situation, the net3 and net4 ports
are in standby state, which causes the Ethernet stub to report a speed value of zero.

gdom# dladm show-aggr -x
LINK PORT SPEED DUPLEX STATE ADDRESS PORTSTATE
aggr1 -- 0Mb unknown down 2:8:20:91:f3:79 --
net3 0Mb unknown up 0:14:4f:fa:cb:a4 standby
net4 0Mb unknown up 0:14:4f:f9:ab:a5 standby

Example 13-11 Configuring a DLMP Aggregation Fails When the custom
Property Is Not Set to enable
This example shows that an attempt to create a DLMP aggregation fails if the custom
property is not set to enable on the virtual network devices used for the DLMP
aggregation.

The following commands set the custom property to disable for the vnet and vnet6
virtual network devices in the gdom domain:

primary# ldm add-vnet custom=disable linkprop=phys-state vnet5 primary-vsw0 gdom
primary# ldm add-vnet custom=disable linkprop=phys-state vnet6 primary-vsw1 gdom

The following command attempts to create the aggr2 DLMP aggregation on the gdom
domain. The command fails because the custom property should be set to enable on
the virtual network devices.

gdom# dladm create-aggr -m dlmp -l net5 -l net6 aggr2
dladm: create operation failed: operation not supported

Using Link Aggregation With a Virtual Switch
A virtual switch can be configured to use a link aggregation. A link aggregation is used
as the virtual switch's network device to connect to the physical network. This
configuration enables the virtual switch to leverage the features provided by the IEEE
802.3ad Link Aggregation Standard. Such features include increased bandwidth, load
balancing, and failover. For information about how to configure link aggregation, see
Creating a Link Aggregation in Managing Network Datalinks in Oracle Solaris 11.4.

Chapter 13
Using Link Aggregation With a Virtual Switch

13-30

https://docs.oracle.com/cd/E37838_01/html/E60990/gmsaa.html

After you create a link aggregation, you can assign it to the virtual switch. Making this
assignment is similar to assigning a physical network device to a virtual switch. Use the ldm
add-vswitch or ldm set-vswitch command to set the net-dev property.

When the link aggregation is assigned to the virtual switch, traffic to and from the physical
network flows through the aggregation. Any necessary load balancing or failover is handled
transparently by the underlying aggregation framework. Link aggregation is completely
transparent to the virtual network (vnet) devices that are on the guest domains and that are
bound to a virtual switch that uses an aggregation.

Note:

You cannot group the virtual network devices (vnet and vsw) into a link aggregation.

The figure titled Configuring a Virtual Switch to Use a Link Aggregation (Oracle Solaris 11)
shows a virtual switch configured to use an aggregation, aggr1, over physical interfaces net0
and net1, and nxge0 and nxge1, respectively.

Configuring a Virtual Switch to Use a Link Aggregation (Oracle Solaris 11)

Using VLAN Tagging
The Oracle VM Server for SPARC software supports 802.1Q VLAN-Tagging in the network
infrastructure.

The virtual switch (vsw) and virtual network (vnet) devices support switching of Ethernet
packets based on the virtual local area network (VLAN) identifier (ID) and handle the
necessary tagging or untagging of Ethernet frames.

You can create multiple VLAN interfaces over a virtual network device in a guest domain. Use
the Oracle Solaris 10 ifconfig command or the Oracle Solaris 11 dladm and ipadm

Chapter 13
Using VLAN Tagging

13-31

commands to create a VLAN interface over a virtual network device. The creation
method is the same as the method used to configure a VLAN interface over any other
physical network device. The additional requirement in the Oracle VM Server for
SPARC environment is that you must use the ldm command to assign VLANs to a vsw
or vnet virtual network device. See the ldm(8) man page. You do not have to configure
VLAN IDs on a virtual switch in an Oracle Solaris 11 service domain.

When you create a virtual network device on a guest domain, you can assign it to the
required VLANs by specifying a port VLAN ID and zero or more VLAN IDs for this
virtual network using the pvid= and vid= arguments to the ldm add-vnet command.
This information configures the virtual switch to support multiple VLANs in the Oracle
VM Server for SPARC network and switch packets using both MAC address and VLAN
IDs in the network VLAN IDs 2 through 4096 are valid. VLAN ID 1 is reserved as the
default-vlan-id.

Use the ldm add-vnet, ldm set-vnet, ldm add-vsw, or ldm set-vsw
command to specify the pvid and vid property values.

Port VLAN ID
The Port VLAN ID (PVID) specifies the VLAN of which the virtual network device must
be a member in untagged mode. In this case, the vsw device provides the necessary
tagging or untagging of frames for the vnet device over the VLAN specified by its
PVID. Any outbound frames from the virtual network that are untagged are tagged with
its PVID by the virtual switch. Inbound frames tagged with this PVID are untagged by
the virtual switch, before sending it to the vnet device. Thus, assigning a PVID to a
virtual network implicitly means that the corresponding virtual network port on the
virtual switch is marked untagged for the VLAN specified by the PVID. You can have
only one PVID for a virtual network device.

The corresponding virtual network interface, when configured without a VLAN ID and
using only its device instance, results in the interface being implicitly assigned to the
VLAN specified by the virtual network's PVID.

For example, if you were to create virtual network instance 0 using one of the following
commands and if the pvid= argument for the vnet has been specified as 10, the
vnet0 interface would be implicitly assigned to belong to VLAN 10. Note that the
following commands show the vnet0 interface names, which pertain to Oracle Solaris
10. For Oracle Solaris 11, use the generic name instead, such as net0.

• Oracle Solaris 10 OS: Use the ifconfig command.

ifconfig vnet0 plumb
• Oracle Solaris 11 OS: Use the ipadm command.

ipadm create-ip net0

VLAN ID
The VID ID (VID) specifies the VLAN of which a virtual network device or virtual switch
must be a member in tagged mode. The virtual network device sends and receives
tagged frames over the VLANs specified by its VIDs. The virtual switch passes any
frames that are tagged with the specified VID between the virtual network device and
the external network.

Chapter 13
Using VLAN Tagging

13-32

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Assigning and Using VLANs
The example devices used in the following tasks use an instance number of 0 in the domains.
The VLANs are mapped to the following subnets:

• VLAN 20 Subnet 192.168.1.0 (netmask: 255.255.255.0)

• VLAN 21 Subnet 192.168.2.0 (netmask: 255.255.255.0)

• VLAN 22 Subnet 192.168.3.0 (netmask: 255.255.255.0)

How to Assign and Use VLANs in an Oracle Solaris 11 Service Domain
1. Assign the virtual switch (vsw).

primary# ldm add-vsw net-dev=net0 primary-vsw0 primary
2. Create the VLAN interface in the service domain.

Note that the -T static option of the ipadm create-addr command is required only if
running an Oracle Solaris 11 OS older than the Oracle Solaris 11.1 OS. Starting with the
Oracle Solaris 11 OS, -T static is the default behavior.

ipadm create-ip net0
ipadm create-addr -T static -a 192.169.2.100/24 net0
dladm create-vlan -l net0 -v 20 vlan20
ipadm create-ip vlan20
ipadm create-addr -T static -a 192.168.1.100/24 vlan20

For more information about how to configure VLAN interfaces in the Oracle Solaris 11
OS, refer to Chapter 4, Configuring Virtual Networks by Using Virtual Local Area
Networks in Managing Network Datalinks in Oracle Solaris 11.4.

How to Assign and Use VLANs in an Oracle Solaris 11 Guest Domain
After you complete this task, the ldom1 guest domain can communicate with the primary
service domain and with remote and external systems that use externally tagged VLAN ID 21
and IP addresses on 192.168.2.0/24. The ldom1 guest domain can also communicate with
the service domain and external systems that use tagged VLAN ID 20 and IP addresses on
192.168.1.0/24. The ldom1 guest domain can communicate only with external systems but
not with the service domain that uses VLAN 22 and IP addresses on 192.168.3.0/24.

1. Assign the virtual network (vnet) to two VLANs.

For example, configure VLAN 21 as untagged and VLAN 20 as tagged.

primary# ldm add-vnet pvid=21 vid=20,22 vnet0 primary-vsw0 ldom1
ldom1# ipadm create-ip net0
ldom1# ipadm create-addr -t 192.168.2.101/24 net0

2. Create the VLAN interface in the guest domain.

ldom1# dladm create-vlan -l net0 -v 20 vlan20
ldom1# ipadm create-ip vlan20
ldom1# ipadm create-addr -t 192.168.1.101/24 vlan20
ldom1# dladm create-vlan -l net0 -v 22 vlan22
ldom1# ipadm create-ip vlan22
ldom1# ipadm create-addr -t 192.168.3.101/24 vlan22

Chapter 13
Using VLAN Tagging

13-33

https://docs.oracle.com/cd/E37838_01/html/E60990/gdysm.html
https://docs.oracle.com/cd/E37838_01/html/E60990/gdysm.html

How to Assign and Use VLANs in an Oracle Solaris 10 Guest Domain
After you complete this task, the ldom1 guest domain can communicate with the
primary service domain and with remote and external systems that use externally
tagged VLAN ID 21 and IP addresses on 192.168.2.0/24. The ldom1 guest domain can
also communicate with the service domain and external systems that use tagged
VLAN ID 20 and IP addresses on 192.168.1.0/24. The ldom1 guest domain can
communicate only with external systems but not with the service domain that uses
VLAN 22 and IP addresses on 192.168.3.0/24.

1. Assign the virtual network (vnet) to two VLANs.

For example, configure VLAN 21 as untagged and VLAN 20 as tagged.

primary# ldm add-vnet pvid=21 vid=20,22 vnet0 primary-vsw0 ldom1
ldom1# ifconfig vnet0 plumb
ldom1# ifconfig vnet0 192.168.2.101 netmask 0xffffff00 broadcast + up

2. Create the VLAN interface in the guest domain.

ldom1# ifconfig vnet20000 plumb
ldom1# ifconfig vnet20000 192.168.1.102 netmask 0xffffff00 broadcast + up
ldom1# ifconfig vnet22000 plumb
ldom1# ifconfig vnet22000 192.168.3.102 netmask 0xffffff00 broadcast + up

How to Install a Guest Domain When the Install Server Is in a VLAN
Be careful when using the Oracle Solaris JumpStart feature to install a guest domain
over the network when the installation server is in a VLAN. This feature is supported
only on Oracle Solaris 10 systems.

For more information about using the Oracle Solaris JumpStart feature to install a
guest domain, see How to Use the Oracle Solaris JumpStart Feature on an Oracle
Solaris 10 Guest Domain.

1. Configure the network device in untagged mode.

For example, if the install server is in VLAN 21, configure the virtual network
initially as follows:

primary# ldm add-vnet pvid=21 vnet01 primary-vsw0 ldom1

Do not configure any tagged VLANs (vid) for that virtual network device. You must
do this because the OpenBoot PROM (OBP) is not aware of VLANs and cannot
handle VLAN-tagged network packets.

2. After the installation is complete and the Oracle Solaris OS boots, configure
the virtual network in tagged mode.

primary# ldm set-vnet pvid= vid=21, 22, 23 vnet01 primary-vsw0 ldom1

You can now add the virtual network device to additional VLANs in tagged mode.

Using Private VLANs
The private VLAN (PVLAN) mechanism enables you to divide a regular VLAN into
sub-VLANs to isolate network traffic. The PVLAN mechanism is defined in RFC 5517
(http://tools.ietf.org/html/rfc5517). Usually, a regular VLAN is a single broadcast

Chapter 13
Using Private VLANs

13-34

http://tools.ietf.org/html/rfc5517
http://tools.ietf.org/html/rfc5517

domain, but when configured with PVLAN properties, the single broadcast domain is
partitioned into smaller broadcast subdomains while keeping the existing Layer 3
configuration. When you configure a PVLAN, the regular VLAN is called the primary VLAN
and the sub-VLANs are called secondary VLANs.

When two virtual networks use the same VLAN ID on a physical link, all broadcast traffic is
passed between the two virtual networks. However, when you create virtual networks that
use PVLAN properties, the packet-forwarding behavior might not apply to all situations.

The following table shows the broadcast packet-forwarding rules for isolated and community
PVLANs.

Table 13-1 Broadcast Packet-Forwarding Rules

PVLAN Type Isolated Community A Community B

Isolated No No No

Community A No Yes No

Community B No No Yes

For example, when both the vnet0 and vnet1 virtual networks are isolated on the net0
network, net0 does not pass broadcast traffic between the two virtual networks. However,
when the net0 network receives traffic from an isolated VLAN, the traffic is not passed to the
isolated ports that are related to the VLAN. This situation occurs because the isolated virtual
network accepts only traffic from the primary VLAN.

The inter-vnet LDC channels feature supports the communication restrictions of isolated and
community PVLANs. Inter-vnet LDC channels are disabled for isolated PVLANs and are
enabled only for virtual networks that are in the same community for community PVLANs.
Direct traffic from other virtual networks outside of the community is not permitted.

Note:

If a target service domain does not support the PVLAN feature, the migration of a
guest domain that is configured for PVLAN might fail.

PVLAN Requirements
You can configure PVLANs by using the ldm add-vnet and ldm set-vnet commands.
Use these commands to set the pvlan property. Note that you must also specify the pvid
property to successfully configure the PVLAN.

This feature requires at least the Oracle Solaris 11.2 SRU 4 OS.

To configure a PVLAN, you must specify the following information:

• Primary VLAN ID. The primary VLAN ID is the port VLAN ID (PVID) that is used to
configure a PVLAN for a single virtual network device. This configuration ensures that a
guest domain does receive VLAN packets. Note that you cannot configure VIDs with a
PVLAN. This value is represented by the pvid property.

• Secondary VLAN ID. A secondary VLAN ID is used by a particular VLAN to provide
PVLAN functionality. You specify this information as the secondary-vid part of the pvlan

Chapter 13
Using Private VLANs

13-35

value. secondary-vid is an integer value in the range of 1-4094. A primary VLAN
can have many secondary VLANs with the following restrictions:

– Neither the primary VLAN ID nor the secondary VLAN ID can be the same as
the default VLAN ID.

– The primary VLAN ID and the secondary VLAN ID cannot have the same
values for both isolated and community PVLAN types.

– Each primary VLAN can configure only one isolated PVLAN. So, you cannot
create two isolated PVLANs that use the same primary VLAN ID.

– A primary VLAN can have multiple community VLANs with the following
restrictions:

* A primary VLAN ID cannot be used as secondary VLAN ID create another
community PVLAN.

For example, if you have a community PVLAN with a primary VLAN ID of
3 and a secondary VLAN ID of 100, you cannot create another community
PVLAN that uses 3 as the secondary VLAN ID.

* A secondary VLAN ID cannot be used as primary VLAN ID to create a
community PVLAN.

For example, if you have a community PVLAN with a primary VLAN ID of
3 and a secondary VLAN ID of 100, you cannot create another community
PVLAN that uses 100 as the primary VLAN ID.

* The secondary VLAN ID cannot already be used as a VLAN ID for regular
virtual networks or VNICs.

Caution:

The Logical Domains Manager can validate only the configuration of
the virtual networks on a particular virtual switch. If a PVLAN
configuration is set up for Oracle Solaris VNICs on the same back-
end device, ensure that the same requirements are met across all
VNICs and virtual networks.

• PVLAN type. You specify this information as the pvlan-type part of the pvlan
value. pvlan-type is one of the following values:

– isolated . The ports that are associated with an isolated PVLAN are isolated
from all of the peer virtual networks and Oracle Solaris virtual NICs on the
back-end network device. The packets reach only the external network based
on the values you specified for the PVLAN.

– community . The ports that are associated with a community PVLAN can
communicate with other ports that are in the same community PVLAN but are
isolated from all other ports. The packets reach the external network based on
the values you specified for the PVLAN.

Configuring PVLANs
This section includes tasks that describes how to create PVLANs and list information
about PVLANs.

Chapter 13
Using Private VLANs

13-36

Creating a PVLAN
You can configure a PVLAN by setting the pvlan property value by using the ldm add-
vnet or ldm set-vnet command. See the ldm(8) man page.

You can use the following commands to create or remove a PVLAN:

• Use ldm add-vnet to create a PVLAN:

ldm add-vnet pvid=port-VLAN-ID pvlan=secondary-vid,pvlan-type \
if-name vswitch-name domain-name

The following command shows how to create a virtual network with a PVLAN that has a
primary vlan-id of 4, a secondary vlan-id of 200, and a pvlan-type of isolated.

primary# ldm add-vnet pvid=4 pvlan=200,isolated vnet1 primary-vsw0 ldg1
• Use ldm set-vnet to create a PVLAN:

ldm set-vnet pvid=port-VLAN-ID pvlan=secondary-vid,pvlan-type if-name domain-name

The following command shows how to create a virtual network with a PVLAN that has a
primary vlan-id of 3, a secondary vlan-id of 300, and a pvlan-type of community.

primary# ldm set-vnet pvid=3 pvlan=300,community vnet2 ldg1
• Use ldm set-vnet to remove a PVLAN:

ldm set-vnet pvlan= if-name domain-name

The following command removes the PVLAN configuration for the vnet0 virtual network.
To revert the vnet0 virtual network to a regular VLAN ID, you must remove the PVLAN ID
first.

primary# ldm set-vnet pvlan= vnet0 ldg1

Viewing PVLAN Information
You can view information about a PVLAN by using several of the Logical Domains Manager
listing subcommands. See the ldm(8) man page.

You can use the following commands to view PVLAN information.

• Use ldm list-domain -o network to list PVLAN information:

ldm list-domain [-e] [-l] -o network [-p] [domain-name...]

The following examples show information about the PVLAN configuration on the ldg1
domain by using the ldm list-domain -o network command.

– The following ldm list-domain command shows information about the PVLAN
configuration on the ldg1 domain.

primary# ldm list-domain -o network ldg1
NAME
ldg1

MAC
 00:14:4f:fb:22:79

NETWORK

Chapter 13
Using Private VLANs

13-37

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 vnet0 primary-vsw0@primary 00:14:4f:f8:6e:d9 2|
300,community|--
 DEVICE :network@0 ID :0
 LINKPROP :-- MTU :1500
 MAXBW :-- MODE :--
 CUSTOM :disable
 PRIORITY :-- COS :--
 PROTECTION :--

– The following ldm list-domain command shows PVLAN configuration
information in a parseable form for the ldg1 domain.

primary# ldm list-domain -o network -p ldg1
VERSION 1.19
DOMAIN|name=ldg1|
MAC|mac-addr=00:14:4f:fb:22:79
VNET|name=vnet0|dev=network@0|service=primary-vsw0@primary|mac-
addr=00:14:4f:f8:6e:d9|mode=|pvid=2|vid=|mtu=1500|linkprop=|id=0|alt-mac-
addrs=|maxbw=|pvlan=300,community|protection=|priority=|cos=|
custom=disable|max-mac-addrs=|max-vlans=

• Use ldm list-bindings to list PVLAN information:

ldm list-bindings [-e] [-p] [domain-name...]

The following examples show information about PVLAN configuration on the ldg1
domain by using the ldm list-bindingsnetwork command.

– The following ldm list-bindings command shows information about the
PVLAN configuration on the ldg1 domain.

primary# ldm list-bindings -o network ldg1
NAME
ldg1

MAC
 00:14:4f:fb:22:79

NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 vnet0 primary-vsw0@primary 00:14:4f:f8:6e:d9 2|
300,community|--

 PEER MACADDRESS PVID|PVLAN|VIDs
 ---- ---------- ---------------
 primary-vsw0@primary 00:14:4f:f9:08:28 1|--|--

– The following ldm list-bindings command shows PVLAN configuration
information in a parseable form for the ldg1 domain.

primary# ldm list-bindings -o network -p ldg1
VERSION 1.19
DOMAIN|name=ldg1|
MAC|mac-addr=00:14:4f:fb:22:79
VNET|name=vnet0|dev=network@0|service=primary-vsw0@primary|mac-
addr=00:14:4f:f8:6e:d9|mode=|pvid=2|vid=|mtu=1500|linkprop=|id=0|alt-mac-
addrs=|maxbw=|pvlan=300,community|protection=|priority=|cos=|
custom=disable|max-mac-addrs=|max-vlans=
|peer=primary-vsw0@primary|mac-addr=00:14:4f:f9:08:28|mode=|pvid=1|vid=|
mtu=1500|maxbw=

Chapter 13
Using Private VLANs

13-38

• Use ldm list-constraints to list PVLAN information:

ldm list-constraints [-x] [domain-name...]

The following shows the output generated by running the ldm list-constraints
command:

primary# ldm list-constraints -x ldg1
...
<Section xsi:type="ovf:VirtualHardwareSection_Type">
 <Item>
 <rasd:OtherResourceType>network</rasd:OtherResourceType>
 <rasd:Address>auto-allocated</rasd:Address>
 <gprop:GenericProperty key="vnet_name">vnet0</gprop:GenericProperty>
 <gprop:GenericProperty key="service_name">primary-vsw0</gprop:GenericProperty>
 <gprop:GenericProperty key="pvid">1</gprop:GenericProperty>
 <gprop:GenericProperty key="vid">3</gprop:GenericProperty>
 <gprop:GenericProperty key="pvlan">200,community</gprop:GenericProperty>
 <gprop:GenericProperty key="maxbw">1700000000</gprop:GenericProperty>
 <gprop:GenericProperty key="device">network@0</gprop:GenericProperty>
 <gprop:GenericProperty key="id">0</gprop:GenericProperty>
 </Item>

Tuning Packet Throughput Performance
You can use the ldm add-vnet and ldm set-vnet commands to set the following data
link property values to tune packet throughput performance:

priority
Specifies the CPU packet-processing priority

cos
Specifies the IEEE 802.1p link service class of the link

protection
Specifies packet traffic security type

For information about valid and default property values, see the ldm(8) man page.

Example 13-12 Setting and Viewing Data Link Packet Properties

The following example shows how to use the ldm set-vnet command to set the priority,
protection, and cos property values in a single command. You can also use the ldm add-
vnet command to add a new virtual network that uses the specified data link property
values.

primary# ldm set-vnet allowed-ips=192.168.100.1,192.168.100.2 \
allowed-dhcp-cids=oracle@system1.company.com, \
00:14:4f:fb:22:79,system2,00:14:4f:fb:22:56 cos=7 priority=high \
protection=restricted,mac-nospoof,ip-nospoof,dhcp-nospoof vnet3_ldg3 ldg3

The ldm list -o network command shows the data link property values on the ldg3
domain that you set with the previous ldm set-vnet command. The protection values are
mac-nospoof, restricted, ip-nospoof for the 192.168.100.1,192.168.100.2 MAC address,
and dhcp-nospoof for
system1@company.com,00:14:4f:f9:d3:88,system2,00:14:4f:fb:61:6e. The priority is
set to high and the class of service (cos) is set to 7.

Chapter 13
Tuning Packet Throughput Performance

13-39

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

primary# ldm list-domain -o network ldg3
NAME
ldg3

MAC
 00:14:4f:f8:5b:12
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 vnet3_ldg3 primary-vsw0@primary 00:14:4f:f8:dd:96 1|--|--
 DEVICE :network@1 ID :1
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
 CUSTOM :disable
 PRIORITY :high COS :7
 PROTECTION :mac-nospoof
 restricted
 ip-nospoof
 [192.168.100.1
 192.168.100.2]
 dhcp-nospoof
 [oracle@system1.company.com
 00:14:4f:fb:22:79
 system2
 00:14:4f:fb:22:56]

Configuring Jumbo Frames
The Oracle VM Server for SPARC virtual switch (vsw) and virtual network (vnet)
devices can now support Ethernet frames with payload sizes larger than 1500 bytes.
These drivers are therefore now able to increase network throughput.

You enable jumbo frames by specifying the maximum transmission unit (MTU) for the
virtual switch device. In such cases, the virtual switch device and all virtual network
devices that are bound to the virtual switch device use the specified MTU value.

If the required MTU value for the virtual network device should be less than that
supported by the virtual switch, you can specify an MTU value directly on a virtual
network device.

Note:

Only on the Oracle Solaris 10 5/09 OS, the MTU of a physical device must
be configured to match the MTU of the virtual switch. For information about
configuring particular drivers, see the man page that corresponds to that
driver in Section 7D of the Oracle Solaris reference manual. For example, to
obtain information about the Oracle Solaris 10 nxge driver, see the nxge(7D)
man page.

In rare circumstances, you might need to use the ldm add-vnet or ldm set-vnet
command to specify an MTU value for a virtual network device that differs from the
MTU value of the virtual switch. For example, you might change the virtual network
device's MTU value if you configure VLANs over a virtual network device and the
largest VLAN MTU is less than the MTU value on the virtual switch.

Chapter 13
Configuring Jumbo Frames

13-40

https://docs.oracle.com/cd/E88353_01/html/E37853/nxge-7d.html

If you use the ldm set-vnet command to specify an mtu value on a virtual network device,
future updates to the MTU value of the virtual switch device are not propagated to that virtual
network device. To re-enable the virtual network device to obtain the MTU value from the
virtual switch device, run the following command:

primary# ldm set-vnet mtu= vnet-name domain-name

On the control domain, the Logical Domains Manager updates the MTU values that are
initiated by the ldm set-vsw and ldm set-vnet commands as delayed reconfiguration
operations. To make MTU updates to domains other than the control domain, you must stop a
domain prior to running the ldm set-vsw or ldm set-vnet command to modify the MTU
value.

How to Configure Virtual Network and Virtual Switch Devices to Use Jumbo
Frames

1. Log in to the control domain.

2. Become an administrator.

For Oracle Solaris 11.4, see Chapter 1, About Using Rights to Control Users and
Processes in Securing Users and Processes in Oracle Solaris 11.4.

3. Determine the value of MTU that you want to use for the virtual network.

You can specify an MTU value up to 16000 bytes. The specified MTU must match the
MTU of the physical network device that is assigned to the virtual switch.

Use the ldm list-netdev -l command to obtain the MTU value of the physical
network device.

primary# ldm list-netdev -l -o net0 primary

DOMAIN
primary

NAME CLASS MEDIA STATE SPEED OVER LOC
---- ----- ----- ----- ----- ---- ---
net0 PHYS ETHER up 1G igb0 /SYS/RIO/NET0
 [/pci@400/pci@1/pci@0/pci@2/network@0]
 MTU : 1500 [60-9216]
 IPADDR : 10.129.68.118/255.255.255.0
 : fe80::210:e0ff:fe0e:e0c0/ffc0::
 : 2606:b400:418:17b2:210:e0ff:fe0e:e0c0/ffff:ffff:ffff:ffff::
 MAC_ADDRS : 00:10:e0:0e:e0:c0

4. Specify the MTU value of a virtual switch device or virtual network device.

Do one of the following:

• Enable jumbo frames on a new virtual switch device in the service domain by
specifying its MTU as a value of the mtu property.

primary# ldm add-vsw net-dev=device mtu=value vswitch-name ldom

In addition to configuring the virtual switch, this command updates the MTU value of
each virtual network device that will be bound to this virtual switch.

• Enable jumbo frames on an existing virtual switch device in the service domain by
specifying its MTU as a value of the mtu property.

Chapter 13
Configuring Jumbo Frames

13-41

https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html

primary# ldm set-vsw net-dev=device mtu=value vswitch-name

In addition to configuring the virtual switch, this command updates the MTU
value of each virtual network device that will be bound to this virtual switch.

Example 13-13 Configuring Jumbo Frames on Virtual Switch and Virtual
Network Devices

The following example shows how to add a new virtual switch device that uses an
MTU value of 9000. This MTU value is propagated from the virtual switch device to all
of the client virtual network devices.

First, the ldm add-vsw command creates the virtual switch device, ldg1-vsw0, with
an MTU value of 9000. Note that the network device net0 is specified as a value of the
net-dev property.

primary# ldm add-vsw net-dev=net0 mtu=9000 ldg1-vsw0 ldg1

Next, the ldm add-vnet command adds a client virtual network device to this virtual
switch, ldg1-vsw0. Note that the MTU of the virtual network device is implicitly
assigned from the virtual switch to which it is bound. As a result, the ldm add-vnet
command does not require that you specify a value for the mtu property.

primary# ldm add-vnet vnet01 ldg1-vsw0 ldg1

Depending on the version of the Oracle Solaris OS that is running, do the following:

• Oracle Solaris 11 OS: Use the ipadm command to view the mtu property value
of the primary interface.

ipadm show-ifprop -p mtu net0
IFNAME PROPERTY PROTO PERM CURRENT PERSISTENT DEFAULT POSSIBLE
net0 mtu ipv4 rw 9000 -- 9000 68-9000

The ipadm command creates the virtual network interface in the guest domain,
ldg1. The ipadm show-ifprop command output shows that the value of the mtu
property is 9000.

ldg1# ipadm create-ip net0
ldg1# ipadm create-addr -T static -a 192.168.1.101/24 net0/ipv4
ldg1# ipadm show-ifprop -p mtu net0
IFNAME PROPERTY PROTO PERM CURRENT PERSISTENT DEFAULT POSSIBLE
net0 mtu ipv4 rw 9000 -- 9000 68-9000

• Oracle Solaris 10 OS: The ifconfig command creates the virtual network
interface in the guest domain, ldg1. The ifconfig vnet0 command output
shows that the value of the mtu property is 9000.

ldg1# ifconfig vnet0 plumb
ldg1# ifconfig vnet0 192.168.1.101/24 up
ldg1# ifconfig vnet0
vnet0: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 9000
index 4
 inet 192.168.1.101 netmask ffffff00 broadcast 192.168.1.255
 ether 0:14:4f:f9:c4:13

Example 13-14 Changing the MTU Value of a Network Interface

The following example shows how to change the MTU value of the network interface
to 4000.

Chapter 13
Configuring Jumbo Frames

13-42

Note that the MTU of an interface can only be changed to a value that is less than the MTU of
the device that is assigned by the Logical Domains Manager. This method is useful when
VLANs are configured and each VLAN interface requires a different MTU.

• Oracle Solaris 11 OS: Use the ipadm command.

primary# ipadm set-ifprop -p mtu=4000 net0
primary# ipadm show-ifprop -p mtu net0
IFNAME PROPERTY PROTO PERM CURRENT PERSISTENT DEFAULT POSSIBLE
net0 mtu ipv4 rw 4000 -- 9000 68-9000

• Oracle Solaris 10 OS: Use the ifconfig command.

primary# ifconfig vnet0 mtu 4000
primary# ifconfig vnet0
vnet0: flags=1201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS,FIXEDMTU>
mtu 4000 index 4
 inet 192.168.1.101 netmask ffffff00 broadcast 192.168.1.255
 ether 0:14:4f:f9:c4:13

Using Virtual NICs on Virtual Networks
The Oracle Solaris 11 OS enables you to define virtual networks that consist of virtual
network interface cards (VNICs), virtual switches, and etherstubs. Oracle Solaris Zones
virtualize operating system services and provide isolated and secure environments for
running applications within the same Oracle Solaris OS instance of a logical domain.

Oracle Solaris 11 improves on the Oracle Solaris 10 “shared IP” zone model in which zones
inherit network properties from the global zone and cannot set their own network address or
other properties. Now, by using zones with virtual network devices, you can configure multiple
isolated virtual NICs, associate zones with each virtual network, and establish rules for
isolation, connectivity, and quality of service (QoS).

For more information, see the networking books in the Oracle Solaris 11.4 information library
(http://docs.oracle.com/cd/E37838_01/).

A virtual network device in a logical domain can support multiple Oracle Solaris 11 virtual
NICs. The virtual network device must be configured to support multiple MAC addresses, one
for each virtual NIC it will support. Oracle Solaris zones in the logical domain connect to the
virtual NICs.

Within the domain1 domain are Oracle Solaris 11 zones: zone1 and zone2. Each zone is
connected to the network by a virtual NIC based on the vnet0 virtual network device.

Virtual NICs on Virtual Network Devices

Chapter 13
Using Virtual NICs on Virtual Networks

13-43

http://docs.oracle.com/cd/E37838_01/
http://docs.oracle.com/cd/E37838_01/

The following sections describe the configuring of virtual NICs on virtual network
devices and the creating of zones in the domain with the virtual NICs:

• Configuring Virtual NICs on Virtual Network Devices

• Creating Oracle Solaris 11 Zones in a Domain

For information about using virtual NICs on Ethernet SR-IOV virtual functions, see the
following sections:

• Creating Ethernet Virtual Functions

• Modifying Ethernet SR-IOV Virtual Functions

• Creating Virtual NICs on SR-IOV Virtual Functions

Configuring Virtual NICs on Virtual Network Devices
To configure virtual NICs on virtual network devices, the control domain must run at
least Oracle Solaris 11.1 SRU 4 OS and the guest domain must run at least the Oracle
Solaris 11.1 OS.

To configure a virtual network device to host multiple MAC addresses, use the ldm
add-vnet or ldm set-vnet command to specify one or more comma-separated
values for the alt-mac-addrs property. Valid values are an octet MAC address and
auto. The auto value indicates that the system generates the MAC address.

For example, you can specify three system-generated alternate MAC addresses for a
virtual network device in either of the following ways:

Chapter 13
Using Virtual NICs on Virtual Networks

13-44

• By using the ldm add-vnet command. The following ldm add-vnet command
creates the vnet0 virtual network device on the domain1 domain and makes three
system-generated MAC addresses available to the device.

primary# ldm add-vnet auto-alt-mac-addrs=3 vnet0 primary-vsw0 domain1
primary# ldm add-vnet alt-mac-addrs=auto,auto,auto vnet0 primary-vsw0 domain1

• By using a combination of the ldm add-vnet and ldm set-vnet commands. The
following ldm add-vnet and ldm set-vnet commands show how to create a virtual
network device and subsequently assign more MAC addresses to the existing virtual
network device.

The first command uses the ldm add-vnet command to create the vnet1 virtual
network device on the domain1 domain. The second command uses the ldm set-vnet
command to make three system-generated MAC addresses available to the vnet1 virtual
network device.

primary# ldm add-vnet vnet0 primary-vsw0 domain1
primary# ldm set-vnet alt-mac-addrs=auto,auto,auto vnet0 domain1
primary# ldm set-vnet auto-alt-mac-addrs=3 vnet0 domain1

Dynamically Updating Alternate MAC Addresses
You can use the ldm set-vnet command to perform an update on the alternate MAC
address of a virtual network device dynamically. You can make this change when the update
increases the total number of alternate MAC addresses of the virtual network device.

Both of the following commands are examples of dynamically adding an alternate MAC
address to the vnet1 virtual network device on the ldg1 domain:

primary# ldm set-vnet alt-mac-addrs=+auto vnet1 ldg1

primary# ldm set-vnet auto-alt-mac-addrs=+1 vnet1 ldg1

The following ldm list output shows the MAC addresses that are associated with the
vnet0 virtual network device on the ldg1 domain. 00:14:4f:f9:8a:c2 is the primary MAC
address for vnet0 and 00:14:4f:f8:1c:a5 and 00:14:4f:f8:2c:22 are its two alternate MAC
addresses.

primary# ldm list -o network ldg1
NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 vnet0 primary-vsw0@primary 00:14:4f:f9:8a:c2 1|--|--
 00:14:4f:f8:1c:a5
 00:14:4f:f8:2c:22

If you log in to the ldg1 domain, you can use the dladm show-phys -m command to view
the MAC addresses that are associated with the net0 network device.

ldg1# dladm show-phys -m
LINK SLOT ADDRESS INUSE CLIENT
net0 primary 0:14:4f:f9:8a:c2 yes net0
 1 0:14:4f:f8:1c:a5 no --
 2 0:14:4f:f8:2c:22 no --

The dladm show-vnic command shows the alternate MAC address (00:14:4f:f8:2c:22)
that is used to configure the virtual NIC:

Chapter 13
Using Virtual NICs on Virtual Networks

13-45

ldg1# dladm show-vnic
LINK OVER SPEED MACADDRESS MACADDRTYPE IDS
vnic1 net0 0 0:14:4f:f8:2c:22 fixed VID:0

While you can use the ldm set-vnet command to increase the number of alternate
MAC addresses dynamically, you cannot update or remove existing alternate MAC
addresses dynamically. If you modify or remove an alternate MAC address that is in
use, the VNICs are left in an unusable state.

The following examples show the error you receive when attempting to dynamically
remove or modify an existing alternate MAC addresses.

• The following example shows that attempting to dynamically remove the
00:15:4f:f9:41:c4 alternate MAC address from vnet2 on the ldg1 domain fails
with an error:

primary# ldm set-vnet alt-mac-addrs=-00:15:4f:f9:41:c4 vnet2 ldg1
Please perform the operation while the LDom is bound or inactive

• The following example shows that attempting to modify an existing alternate MAC
address with the auto value for vnet1 dynamically fails with an error:

primary# ldm set-vnet alt-mac-addrs=auto vnet1 ldg1
Please perform the operation while the LDom is bound or inactive

Creating Oracle Solaris 11 Zones in a Domain
After creating the virtual NICs in Configuring Virtual NICs on Virtual Network Devices,
create a zone that is associated with an available MAC address. For information about
Oracle Solaris Zones, see Creating and Using Oracle Solaris Zones.

Use the zonecfg command to specify a MAC address to use for a zone:

zonecfg:zone-name> set mac-address=[MAC-address,auto]

You can either specify a value of auto to choose one of the available MAC addresses
automatically or provide a specific alternate MAC address that you created with the
ldm set-vnet command.

Using Trusted Virtual Networks
The trusted virtual network feature extends privileges to trusted guest domains to
assign custom alternate MAC addresses and alternate VLAN IDs to the vnet device
dynamically. These MAC addresses and VLAN IDs are used to configure virtual
devices. Prior to the introduction of this feature, you could make such assignments
only from the Logical Domains Manager. Moreover, the alternate MAC addresses
assignment also required that the domain hosting the virtual network device be in the
bound state. This feature enables the dynamic creation of virtual devices such as
VNICs and VLANs on top of virtual network devices.

To use the trusted virtual network feature on a vnet device, you must create or
configure the device in trusted mode by using the Logical Domains Manager. By
default, a vnet device is created with trusted mode disabled.

The trusted virtual network feature seamlessly supports the live migration, service
domain reboot, and multiple service domain features.

Chapter 13
Using Trusted Virtual Networks

13-46

https://docs.oracle.com/cd/E37838_01/html/E61039/index.html

Trusted Virtual Network Requirements and Restrictions
You can configure a trusted virtual network by using the ldm add-vnet and ldm set-
vnet commands to set the custom=enable property. Note that you should provide values for
the custom/max-mac-addrs and custom/max-vlans properties to ensure that the number of
custom MAC addresses and VLAN are limited for the specified virtual network device. Both
property values are set to 4096 by default.

The trusted virtual network feature requires at least the Oracle Solaris 11.3 SRU 8 OS.

Both guest domain that has the custom virtual network device and the service domain that
has the corresponding virtual switch device require that latest level of the supported system
firmware.

To configure a trusted virtual network, you must specify the following information:

• custom – Enable or disable the trusted virtual network feature. This feature enables a
trusted entity to add custom alternate VLAN IDs and custom alternate MAC addresses
dynamically.

• custom/max-mac-addrs – Specify the maximum number of custom alternate MAC
addresses to be configured on a particular trusted virtual network device.

• custom/max-vlans – Specify the maximum number of custom alternate VLAN IDs to be
configured on a particular trusted virtual network device.

The following restrictions are for the trusted virtual network feature:

• You cannot use the Logical Domains Manager to configure alternate MAC addresses or
VLAN IDs on a given trusted virtual network.

• To modify custom or existing alternate MAC addresses, the domain must be in the bound
state.

• You can increase the custom/max-mac-addrs and custom/max-vlans property values
dynamically. However, the domain must be in the bound state to reduce these property
values.

Note:

Reducing these property values might cause undesirable side effects. So,
ensure that you delete any of the VNICs or VLANs created on the host that you
do not need because you have no control over which MAC addresses or VLAN
IDs the OS will retain. Also, set custom=disable on the virtual network device
before using the ldm set-vnet command to reduce the number of maximum
VLAN IDs and MAC addresses for the custom virtual network device.

Caution:

The effective use of this feature is to limit and control these properties.

• Ensure that any VNIC and VLAN devices that have been created are removed before you
reduce the number of custom VLAN IDs or custom alternate MAC addresses. Otherwise,

Chapter 13
Using Trusted Virtual Networks

13-47

the guest domain will have VNICs that cannot be configured and must be removed
manually.

• The dladm show-vnic -m command shows the MAC addresses and VLAN IDs
that are configured on the specified virtual network. The dladm show-vnic -m
command shows the alternate MAC addresses and VLAN IDs in use on the guest
domain. This is a departure from older releases where in all alternate MAC
addresses and VLAN IDs were preconfigured on the virtual switch.

• The trusted virtual network feature is mutually exclusive with the PVLAN feature.

• The Logical Domains Manager attempts to validate the guest domain and service
domain support for this feature before enabling the custom feature. If the guest
domain is not running, you can enable this feature if the service domain supports
it. However, if the guest domain does not support the feature you must set
custom=disabled before you re-enable non-custom alternate MAC addresses and
VLAN IDs.

• You can perform a live migration of a domain with trusted virtual networks only if
the target service domain supports the trusted virtual network feature.

Configuring Trusted Virtual Networks
This section includes tasks that show how to create trusted virtual networks and how
to obtain information about trusted virtual networks.

You can configure a trusted virtual network by setting the custom property value by
using the ldm add-vnet or ldm set-vnet command. See the ldm(8) man page.

Example 13-15 Creating a Trusted Virtual Network

You can use the following commands to create a trusted virtual network ldg1_vnet0 on
the primary-vsw0 virtual switch in the ldg1 domain. The custom/max-mac-addrs and
custom/max-vlans property values use the default values of 4096.

primary# ldm add-vnet custom=enable ldg1_vnet0 primary-vsw0 ldg1
primary# ldm list -o network ldg1
...
NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 ldg1-vnet0 primary-vsw0@primary 00:14:4f:fa:d7:5e 1|--|--
 DEVICE :network@1 ID :1
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
CUSTOM :enable
 MAX-CUSTOM-MACS:4096 MAX-CUSTOM-VLANS:4096
 PRIORITY :-- COS :--
 PROTECTION :--

Example 13-16 Enabling the Trusted Virtual Network Feature on an Existing
Virtual Network

The following example shows how to enable the trusted virtual network feature by
setting custom=enable for the ldg1_vnet0 virtual network device in the ldg1 domain.
The custom/max-mac-addrs and custom/max-vlans property values use the default
values of 4096.

primary# ldm set-vnet custom=enabled ldg1_vnet0 ldg1
primary# ldm list -o network ldg1

Chapter 13
Using Trusted Virtual Networks

13-48

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

...
NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 ldg1-vnet0 primary-vsw0@primary 00:14:4f:fa:d7:5e 1|--|--
 DEVICE :network@1 ID :1
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
CUSTOM :enable
 MAX-CUSTOM-MACS:4096 MAX-CUSTOM-VLANS:4096
 PRIORITY :-- COS :--
 PROTECTION :--

Example 13-17 Setting the custom/max-mac-addrs and custom/max-vlans Properties

The following example sets the custom/max-vlans property value to 12 and the custom/max-
mac-addrs property value to 13.

Because these new property values are lower than the previous values, you cannot change
these settings dynamically. You can make these changes only to a bound or inactive domain.

primary# ldm stop ldg1
primary# ldm set-vnet custom/max-vlans=12 custom/max-mac-addrs=13 ldg1_vnet0 ldg1
primary# ldm list -o network ldg1
...
NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 ldg1-vnet0 primary-vsw0@primary 00:14:4f:fa:d7:5e 1|--|--
 DEVICE :network@1 ID :1
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
CUSTOM :enable
 MAX-CUSTOM-MACS:13 MAX-CUSTOM-VLANS:12
 PRIORITY :-- COS :--
 PROTECTION :--

Example 13-18 Resetting the custom/max-mac-addrs and custom/max-vlans Properties

The following example shows how to reset the custom/max-mac-addrs property value to its
default of 4096 by specifying a null value.

When custom=enabled, you can reset the custom/max-vlans property value, the custom/max-
mac-addrs property value, or both.

primary# ldm set-vnet custom/max-mac-addrs= ldg1_vnet0 ldg1
primary# ldm list -o network ldg1
...
NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 ldg1-vnet0 primary-vsw0@primary 00:14:4f:fa:d7:5e 1|--|--
 DEVICE :network@1 ID :1
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
 CUSTOM :enable
MAX-CUSTOM-MACS:4096 MAX-CUSTOM-VLANS:12
 PRIORITY :-- COS :--
 PROTECTION :--

Chapter 13
Using Trusted Virtual Networks

13-49

Example 13-19 Changing the custom/max-mac-addrs and custom/max-vlans
Property Values

The following example shows how to increase the custom/max-vlans property value
and decrease the custom/max-mac-addrs property value. You can increase the
custom/max-vlans property value to 24 dynamically, because 24 is larger than the
previous value of 12. However, because you are reducing the maximum value for
custom/max-mac-addrs from 4096 to 11, you must first stop the domain.

primary# ldm set-vnet custom/max-vlans=24 ldg1_vnet0 ldg1
primary# ldm stop ldg1
primary# ldm set-vnet custom/max-mac-addrs=11 ldg1_vnet0 ldg1
primary# ldm list -o network ldg1
...
NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 ldg1-vnet0 primary-vsw0@primary 00:14:4f:fa:d7:5e 1|--|--
 DEVICE :network@1 ID :1
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
 CUSTOM :enable
MAX-CUSTOM-MACS:11 MAX-CUSTOM-VLANS:24
 PRIORITY :-- COS :--
 PROTECTION :--

Example 13-20 Disabling the Trusted Virtual Network Feature

The following example shows how to disable the custom property for the ldg1_vnet0
virtual network device in the ldg1 domain.

primary# ldm set-vnet custom=disabled ldg1_vnet0 ldg1
...
NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 ldg1-vnet0 primary-vsw0@primary 00:14:4f:fa:d7:5e 1|--|--
 DEVICE :network@1 ID :1
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
CUSTOM :disable
 PRIORITY :-- COS :--
 PROTECTION :--

Viewing Trusted Virtual Network Information
You can obtain information about trusted virtual network settings by using several of
the Logical Domains Manager list subcommands. See the ldm(8) man page.

The following examples use the ldm list-domain -o network, ldm list-
bindings, and ldm list-constraints commands to show information about a
trusted virtual network configuration.

• The following example shows how to use the ldm list-domain command to
view trusted virtual network configuration information for the ldg1 domain:

primary# ldm list-domain -o network ldg1
...
NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs

Chapter 13
Using Trusted Virtual Networks

13-50

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

 ---- ------- ---------- ---------------
 ldg1-vnet0 primary-vsw0@primary 00:14:4f:fa:d7:5e 1|--|--
 DEVICE :network@1 ID :1
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
 CUSTOM :enable
 MAX-CUSTOM-MACS:11 MAX-CUSTOM-VLANS:24
 PRIORITY :-- COS :--
 PROTECTION :--

• The following examples shows how to use the ldm list-domain command to view
trusted virtual network configuration information in a parseable form for the ldg1 domain:

primary# ldm list-domain -o network -p ldg1
VERSION 1.19
DOMAIN|name=ldg1|
MAC|mac-addr=00:14:4f:f9:4b:d0
VNET|name=ldg1-vnet0|dev=network@1|service=primary-vsw0@primary|mac-
addr=00:14:4f:fa:d7:5e|mode=|pvid=1|vid=|mtu=1500|linkprop=phys-state|id=1|alt-mac-
addrs=|maxbw=|pvlan=|protection=|priority=|cos=|custom=enable|max-mac-addrs=11|max-
vlans=24

• The following examples shows how to use the ldm list-bindings command to view
trusted virtual network configuration information for the ldg1 domain:

primary# ldm list-bindings -e -o network ldg1
...
NETWORK
 NAME SERVICE MACADDRESS PVID|PVLAN|VIDs
 ---- ------- ---------- ---------------
 ldg1-vnet0 primary-vsw0@primary 00:14:4f:fa:d7:5e 1|--|--
 DEVICE :network@1 ID :1
 LINKPROP :phys-state MTU :1500
 MAXBW :-- MODE :--
 CUSTOM :enable
 MAX-CUSTOM-MACS:11 MAX-CUSTOM-VLANS:24
 PRIORITY :-- COS :--
 PROTECTION :--

 PEER MACADDRESS PVID|PVLAN|VIDs
 ---- ---------- ---------------
 primary-vsw0@primary 00:14:4f:f9:08:28 1|--|--
 LINKPROP :-- MTU :1500
 MAXBW :-- LDC :0x5
 MODE :--

• The following examples shows how to use the ldm list-bindings command to view
trusted virtual network configuration information in a parseable form for the ldg1 domain:

primary# ldm list-bindings -p ldg1
...
VNET|name=ldg1-vnet0|dev=network@1|service=primary-vsw0@primary|mac-
addr=00:14:4f:fa:d7:5e|mode=|pvid=1|vid=|mtu=1500|linkprop=phys-state|id=1|alt-mac-
addrs=|maxbw=|pvlan=|protection=|priority=|cos=|custom=enable|max-mac-addrs=11|max-
vlans=24
|peer=primary-vsw0@primary|mac-addr=00:14:4f:f9:08:28|mode=|pvid=1|vid=|mtu=1500|
maxbw=

• The following example shows how to generate XML by running the ldm list-
constraints -x command:

primary# ldm list-constraints -x ldg1
...

Chapter 13
Using Trusted Virtual Networks

13-51

<Section xsi:type="ovf:VirtualHardwareSection_Type">
 <Item>
 <rasd:OtherResourceType>network</rasd:OtherResourceType>
 <rasd:Address>auto-allocated</rasd:Address>
 <gprop:GenericProperty key="vnet_name">ldg1-vnet0</gprop:GenericProperty>
 <gprop:GenericProperty key="service_name">primary-vsw0</
gprop:GenericProperty>
 <gprop:GenericProperty key="pvid">1</gprop:GenericProperty>
 <gprop:GenericProperty key="linkprop">phys-state</gprop:GenericProperty>
 <gprop:GenericProperty key="custom">enable</gprop:GenericProperty>
 <gprop:GenericProperty key="max-mac-addrs">11</gprop:GenericProperty>
 <gprop:GenericProperty key="max-vlans">24</gprop:GenericProperty>
 <gprop:GenericProperty key="device">network@1</gprop:GenericProperty>
 <gprop:GenericProperty key="id">1</gprop:GenericProperty>
 </Item>
</Section>

Using a Virtual Switch Relay
A virtual switch relay forces all domain traffic through an external physical network
infrastructure. This configuration enforces network policies for access control lists
(ACL) and packet monitoring, which can be configured on the external switch. The
switch must support the virtual switch relay capability. Use the ldm set-vsw
command to specify the vsw-relay-mode property value to one of the following values:

• local enables the network traffic between domains over the same physical NIC to
be exchanged internally. This is the default value.

• remote enables the network traffic between domains over the same physical NIC
to be exchanged through the external switch. This remote value requires that you
manually disable the inter-vnet-link property on all the virtual networks that are
connected to this switch.

When resetting the value to local, you can reset the inter-vnet-link property
value to on or auto depending on your needs.

Note:

You can set the value to remote on an Ethernet device only.

How to Set the Virtual Switch Mode to Remote
1. Determine whether the inter-vnet-link property is set to off.

primary# ldm list -e domain-name
VSW

 NAME MACADDRESS NET-DEV DVID|PVID|VIDs
 ---- ---------- ------- --------------
 primary-vsw0 00:14:4f:fb:86:af net0 1|1|--

 INTER-VNET-LINK :on/auto MODE :--
 VSW-RELAY-MODE :local

2. Disable inter-vnet LDC channels if the inter-vnet-link value is auto or on.

Chapter 13
Using a Virtual Switch Relay

13-52

primary# ldm set-vsw inter-vnet-link=off primary-vsw0
3. Set the vsw-relay-mode property value to remote.

primary# ldm set-vsw vsw-relay-mode=remote primary-vsw0
4. Verify that the vsw-relay-mode property is set to remote.

primary# ldm list -e domain-name
VSW

 NAME MACADDRESS NET-DEV DVID|PVID|VIDs
 ---- ---------- ------- --------------
 primary-vsw0 00:14:4f:fb:86:af net0 1|1|--

 INTER-VNET-LINK :off MODE :--
 VSW-RELAY-MODE :remote

Virtual Switch Relay Failure Cases
• The following command fails because you must disable inter-vnet-link before you set

vsw-relay-mode=remote:

primary# ldm set-vsw vsw-relay-mode=remote primary-vsw0
Vswitch primary-vsw1 vsw-relay-mode is set to remote,
inter-vnet-link should be off.

• The following command verifies that the linkprop property is set correctly at the NIC
level:

primary# dladm show-linkprop -p vswitchmode net0
LINK PROPERTY PERM VALUE EFFECTIVE DEFAULT POSSIBLE
net0 vswitchmode rw remote remote local local,remote,auto

Oracle Solaris 11 Networking-Specific Feature Differences
Some of the Oracle VM Server for SPARC networking features work differently when a
domain runs the Oracle Solaris 10 OS as compared to the Oracle Solaris 11 OS. The feature
differences for the Oracle VM Server for SPARC virtual network device and virtual switch
when the Oracle Solaris 11 OS is run in a domain are as follows:

• Using an Oracle Solaris 11 etherstub device as a back-end device to create a
private virtual switch

If not connected to a back-end device, a virtual switch provides communication only
between guest domains and not between guest domains and the service domain. Using
an etherstub as a back-end device enables a guest domain to communicate with a zone
(including the global zone) that is configured in an Oracle Solaris 11 service domain. This
configuration is accomplished by using a VNIC connected to that etherstub.

• Using generic names for the virtual switch and virtual network devices

The Oracle Solaris 11 OS assigns generic names for vsw n and vnet n devices. Ensure
that you do not create a virtual switch with the back-end device that is another vsw or
vnet device. Use the dladm show-phys command to see the actual physical devices
that are associated with generic network device names.

• Using an Oracle Solaris 11 VNIC to create a VLAN on an Ethernet stub

Chapter 13
Oracle Solaris 11 Networking-Specific Feature Differences

13-53

Do not configure VLANs on the virtual switch interface for Oracle Solaris 11
service domains because this configuration is not supported. Instead, create the
VLAN on the interface that corresponds to the virtual switch's net-dev property
value.

The following example shows how to create VNICs on an Ethernet stub. The
dladm create-etherstub command creates an Ethernet stub, estub100,
which is a backing device used by the ldm add-vsw command to create the
virtual switch. The ldm add-vsw command creates the virtual switch. The dladm
create-vnic command creates a VNIC on top of the etherstub to create the
VLAN for that virtual switch.

primary# dladm create-etherstub estub100
primary# ldm add-vsw net-dev=estub100 vid=100 inter-vnet-link=off \
primary-vsw100 primary
primary# dladm create-vnic -l estub100 -m auto -v 100 vnic100

The following ldm add-vnet commands create two VNICs that enable
communication between the ldg1 and ldg2 domains over VLAN 100.

primary# ldm add-vnet vid=100 ldg1-vnet100 primary-vsw100 ldg1
primary# ldm add-vnet vid=100 ldg2-vnet100 primary-vsw100 ldg2

In the following example, the dladm commands create VLANs on the ldg1 and
ldg2 guest domains. The ipadm commands create IP addresses for the VNICs
that you created on the ldg1 and ldg2 domains.

ldg1# dladm create-vlan -l net1 -v 100 vlan100
ldg1# ipadm create-ip vlan100
ldg1# ipadm create-ipaddr -T static -a 192.168.100.10/24 vlan100/v4
ldg2# dladm create-vlan -l net1 -v 100 vlan100
ldg2# ipadm create-ip vlan100
ldg2# ipadm create-ipaddr -T static -a 192.168.100.20/24 vlan100/v4

• Using generic names for the virtual switch and virtual network devices

The Oracle Solaris 11 OS assigns generic names for vsw n and vnet n devices.
Ensure that you do not create a virtual switch with the back-end device that is
another vsw or vnet device. Use the dladm show-phys command to see the
actual physical devices that are associated with generic network device names.

• Using VNICs on the virtual switch and virtual network devices

You cannot use VNICs on vsw n devices. An attempt to create a VNIC on vsw n
fails.

• Using the network observability commands on Oracle Solaris 11 guest
domains

You can use the ldm list-netdev and ldm list-netstat commands to
obtain information about Oracle Solaris 11 guest domains.

Chapter 13
Oracle Solaris 11 Networking-Specific Feature Differences

13-54

14
Migrating Domains

This chapter describes how to migrate domains from one host machine to another host
machine.

This chapter covers the following topics:

• Introduction to Domain Migration

• Overview of a Migration Operation

• Software Compatibility

• Security for Migration Operations

• FIPS 140-2 Mode for Domain Migration

• Domain Migration Restrictions

• Migrating a Domain

• Migrating an Active Domain

• Migrating Bound or Inactive Domains

• Migrating a Domain That Has an SR-IOV Ethernet Virtual Function Assigned

• Monitoring a Migration in Progress

• Canceling a Migration in Progress

• Recovering From a Failed Migration

• Saving Post-Migration SP Configurations Automatically

• Migration Examples

Note:

To use the migration features described in this chapter, you must be running the
most recent versions of the Logical Domains Manager, system firmware, and Oracle
Solaris OS. For information about migration using previous versions of Oracle VM
Server for SPARC, see Oracle VM Server for SPARC 3.6 Release Notes and
related versions of the administration guide.

Introduction to Domain Migration
Domain migration enables you to move a guest domain from one host machine to another
host machine. The machine on which the migration is initiated is the source machine. The
machine to which the domain is migrated is the target machine.

While a migration operation is in progress, the domain to be migrated is transferred from the
source machine to the migrated domain on the target machine.

14-1

https://docs.oracle.com/cd/E93612_01/html/E93615/index.html

The live migration feature provides performance improvements that enable an active
domain to be migrated while it continues to run. In addition to live migration, you can
migrate bound or inactive domains, which is called cold migration.

You might use domain migration to perform tasks such as the following:

• Balancing the load between machines

• Performing hardware maintenance while a guest domain continues to run

To achieve the best migration performance, ensure that both the source machine and
the target machine are running the latest version of the Logical Domains Manager.

Overview of a Migration Operation
The Logical Domains Manager on the source machine accepts the request to migrate
a domain and establishes a secure network connection with the Logical Domains
Manager that runs on the target machine. The migration occurs after this connection
has been established. The migration operation is performed in the following phases:

Phase 1: After the source machine connects with the Logical Domains Manager that
runs in the target machine, information about the source machine and the domain to
be migrated are transferred to the target machine. This information is used to perform
a series of checks to determine whether a migration is possible. The checks to perform
are based on the state of the domain to be migrated. For example, if the domain to be
migrated is active, a different set of checks are performed than if that domain is bound
or inactive.

Phase 2: When all checks in Phase 1 have passed, the source and target machines
prepare for the migration. On the target machine, a domain is created to receive the
domain to be migrated. If the domain to be migrated is inactive or bound, the migration
operation proceeds to Phase 5.

Phase 3: If the domain to be migrated is active, its runtime state information is
transferred to the target machine. The domain to be migrated continues to run, and the
Logical Domains Manager simultaneously tracks the modifications being made by the
OS to this domain. This information is retrieved from the hypervisor on the source
machine and installed in the hypervisor on the target machine.

Phase 4: The domain to be migrated is suspended. At this time, all of the remaining
modified state information is recopied to the target machine. In this way, there is little
or no perceivable interruption to the domain. The amount of interruption depends on
the workload.

Phase 5: A handoff occurs from the Logical Domains Manager on the source machine
to the Logical Domains Manager on the target machine. The handoff occurs when the
migrated domain resumes execution (if the domain to be migrated was active) and the
domain on the source machine is destroyed. From this point forward, the migrated
domain is the sole version of the domain running.

Software Compatibility
For a migration to occur, both the source and target machines must be running
compatible software, as follows:

• The Logical Domains Manager version running on both machines must be either
the current version or the most recent previously released version.

Chapter 14
Overview of a Migration Operation

14-2

• Both the source and target machines must have a compatible version of firmware
installed to support live migration. Both machines must be running at least the minimum
version of the firmware supported with this release of the Oracle VM Server for SPARC
software.

For more information, see Version Restrictions for Migration.

Security for Migration Operations
Oracle VM Server for SPARC provides the following security features for migration
operations:

• Authentication. Because the migration operation executes on two machines, a user
must be authenticated on both the source and target machines in some cases. In
particular, a user other than superuser must use the LDoms Management rights profile.
However, if you perform a migration with SSL certificates, users are not required to be
authenticated on both the target and source machines and you cannot specify another
user.

The ldm migrate-domain command permits you to optionally specify an alternate
user name for authentication on the target machine. If this alternate user name is not
specified, the user name of the user who is executing the migration command is used.
See Migrating and Renaming a Guest Domain. In either case, the user is prompted for a
password for the target machine, unless the -p option is used to initiate a non-interactive
migration. See Performing Non-Interactive Migrations.

• Encryption. Oracle VM Server for SPARC uses SSL to encrypt migration traffic to protect
sensitive data from exploitation and to eliminate the requirement for additional hardware
and dedicated networks.

• FIPS 140-2. The Logical Domains Manager respects the Oracle Solaris FIPS 140-2
system configuration when performing domain migrations. See Using a FIPS 140-2
Enabled System in Oracle Solaris 11.4.

• Host Name Matching Semantics. The Oracle Solaris 11.4 SRU 48 OS introduces the
ldmd/tls_host_match SMF property to control the strictness of host name and IP
address matching semantics when validating SSL certificates:
The default property value is false, which disables the stricter matching. To enable strict
host name and IP address matching of the specified migration target against the target's
certificate, set the property value to true. Then, refresh and restart the ldmd SMF
service.

Configuring SSL Certificates for Migration
To perform certificate-based authentication, use the -c option with the ldm migrate-
domain command. This option is mutually exclusive with the password file and alternate user
options. If the -c option is not specified, the migration operation performs password
authentication.

How to Configure SSL Certificates for Migration
To configure SSL certificates, you must perform the steps in this task on the control domain of
the source machine.

1. Create the /var/share/ldomsmanager/trust directory if it does not already
exist.

Chapter 14
Security for Migration Operations

14-3

https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/use-fips/
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/use-fips/

source:primary# mkdir /var/share/ldomsmanager/trust
2. Copy the ldmd certificate from the target server to the local trusted

certificate directory.

The remote ldmd certificate is the /var/share/ldomsmanager/server.crt
on the remote host. The local ldmd trusted certificate directory is /var/share/
ldomsmanager/trust. Rename the remote certificate file target-
hostname .pem, for example tgt-primary.pem.

3. Create a symbolic link from the certificate in the trusted certificate directory
to the /etc/certs/CA directory.

source:primary# ln -s /var/share/ldomsmanager/trust/tgt-primary.pem /etc/
certs/CA/

4. Restart the svc:/system/ca-certificates service.

source:primary# svcadm restart svc:/system/ca-certificates
5. Verify that the symbolic links to /etc/certs/CA/ that you created in Step 3

are correct.

source:primary# openssl verify /var/share/ldomsmanager/trust/tgt-primary.pem
/var/share/ldomsmanager/trust/tgt-primary.pem: ok

6. Verify that the ca-certificates service is online.

Restart or enable the service if required.

source:primary# svcs ca-certificates
/var/share/ldomsmanager/trust/tgt-primary.pem: ok
STATE STIME FMRI
online 0:22:38 svc:/system/ca-certificates:default

7. Restart the ldmd daemon.

source:primary# svcadm restart ldmd
8. Starting with Oracle Solaris 11.4 SRU 48, verify that the configuration of the

ldmd certificates is correct.

source:primary# openssl verify -CApath /var/opt/SUNWldm/CA /var/opt/SUNWldm/
trust/tgt-primary.pem
/var/share/ldomsmanager/trust/tgt-primary.pem: ok

9. Repeat these steps on the target server.

Removing SSL Certificates
If you remove a .pem file from the /var/share/ldomsmanager/trust and /etc/
certs/CA directories, you must restart the svc:/system/ca-certificates service
and then the ldmd service. Note that any migrations that use that .pem file are still
permitted until the services restart.

localhost# svcadm restart svc:/system/ca-certificates
localhost# svcadm restart ldmd

Domain Migration Restrictions
The following sections describe restrictions for domain migration. The Logical Domains
Manager software and the system firmware versions must be compatible to permit

Chapter 14
Domain Migration Restrictions

14-4

migrations. Also, you must meet certain CPU requirements to ensure a successful domain
migration.

Live migration is not qualified and supported on all combinations of the source and target
platforms and system firmware versions. For those combinations that cannot perform a live
migration, you can perform a cold migration instead.

Version Restrictions for Migration
This section describes version restrictions for performing live migrations.

• Logical Domains Manager version. You can perform a live migration in either direction
when one system runs the latest version of the Logical Domains Manager and the other
system runs at least the immediately preceding version of the Logical Domains Manager.

• Oracle Solaris OS version. You can perform a live migration of a guest domain that runs
at least the Oracle Solaris 10 9/10 OS. You cannot perform a live migration of a guest
domain that runs the Oracle Solaris 10 10/09 OS or earlier Oracle Solaris OS versions.
You can still boot these older Oracle Solaris OS versions and perform cold migrations of
such domains.

• System firmware version. In general, you can perform a live migration between two
systems when both the source and target machines support the appropriate minimum
system firmware versions. See System Firmware Versions in Oracle VM Server for
SPARC 3.6 Installation Guide.

Cross-CPU Restrictions for Migration
You cannot perform live migration operations between a server that runs system firmware
version 7.x and a server that runs system firmware version 8.x.

Therefore, the following live migration operations are not supported:

• From a server that runs version 7.x of the system firmware to a server that runs version
8.x of the system firmware

• From a server that runs version 8.x of the system firmware to a server that runs version
7.x of the system firmware

Migration Restrictions for Setting perf-counters
Take care when performing migrations of domains that have the perf-counters property
value set.

Before you perform the migration of a domain that has the perf-counters property value
set to global, ensure that no other domain on the target machine has the perf-counters
property set to global.

During a migration operation, the perf-counters property is treated differently based on
whether the performance access capability is available on the source machine, the target
machine, or both.

The perf-counters property value is treated as follows:

• Source machine only. The perf-counters property value is not propagated to the
target machine.

Chapter 14
Domain Migration Restrictions

14-5

https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsystemfirmwareversions
https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsystemfirmwareversions

• Target machine only. The perf-counters property value on the machine to be
migrated is updated to be equivalent to perf-counters=.

• Source and target machines. The perf-counters property value is
propogated from the domain to be migrated to the migrated domain on the target
machine.

For more information about the perf-counters property, see Using Perf-Counter
Properties and the ldm(8) man page.

Forced Cross-CPU Migration Can Fail if Global Performance Counters are
Enabled

In certain cross-CPU migration scenarios, a migration can fail with the following errors
when you force the migration by using the -f option:

API group 0x20b v1.0 is not supported in the version of the firmware
 running on the target machine.
API group 0x214 v1.0 is not supported in the version of the firmware
 running on the target machine.

All of the following conditions must be present to encounter this problem:

• The domain has the cpu-arch property set to generic or migration-class1
• The domain has a perf-counter property setting that includes the global value

• The domain was booted on at least a SPARC M7 series server or a SPARC T7
series server

• The target machine is a platform released prior to the SPARC M7 series server or
SPARC T7 series server

This problem occurs because a domain booted on at least a SPARC M7 series server
or a SPARC T7 series server with a perf-counter property setting that includes the
global value will register platform-specific performance counter Hypervisor interfaces
that do not exist on older platforms. As part of the migration, a check is performed to
ensure that all the interfaces used by the domain are present on the target machine.
When these SPARC M7 series server or SPARC T7 series server specific interfaces
are detected, the migration is aborted.

Do not set perf-counter=global if cpu-arch is note native and at least SPARC M7
series servers and SPARC T7 series servers are part of the migration pool.

Migration Restrictions for Setting linkprop=phys-state
You can migrate a virtual network device that has a physical NIC backing device and
has linkprop=phys-state to a target domain that does not have a physical NIC as a
backing device (net-dev=). Because the linkprop=phys-state constraint is not a hard
requirement, if such a domain is migrated to a machine that does not have an
available net-dev value, the constraint is preserved but not fulfilled. The linkprop
property is still preserved as phys-state and the network device link state shows as
link up.

Chapter 14
Domain Migration Restrictions

14-6

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Migration Restrictions for Domains That Have a Large Number of Virtual
Devices

Sometimes, migrating a domain that has a large number of virtual devices causes the control
domain on the target machine to be less responsive than usual. During this time, ldm
commands appear to hang and standard Oracle Solaris OS commands take longer to
complete than usual.

This interruption is caused by virtual servers processing the large number of incoming virtual
devices associated with the migrated domain. After this processing completes, the control
domain returns to normal and any stalled ldm commands complete.

You can minimize this sort of interruption by limiting the number of virtual devices used by a
domain to no more than 1000.

Migration Restrictions for Silicon Secured Memory Servers
SPARC servers starting with the SPARC M7, SPARC T7, and SPARC S7 series server
support a hardware capability called Silicon Secured Memory (SSM). When enabled through
the Application Data Integrity (ADI) API, this feature enables software to assign versions to
regions of memory. These versions are used to detect invalid or unauthorized memory
accesses. These version tags are part of the guest virtual machine state and are migrated
with the guest domain.

For more information about SSM and the ADI API, see Software in Silicon: Enabling Secure
Clouds for the Real-Time Enterprise (http://www.oracle.com/technetwork/server-storage/sun-
sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf) and Using
Application Data Integrity (ADI) in Oracle Solaris 11.4 Programming Interfaces Guide.

You can perform only a migration that preserves ADI tags between servers of the same CPU
family. For example, you can perform a migration that preserves ADI tags from a SPARC M7
series server to another SPARC M7 series server or to a SPARC T7 series server. Or, you
can perform a migration that preserves ADI tags from a SPARC T8 series server to another
SPARC T8 series server or to a SPARC M8 series server.

Caution:

If you intend to perform a domain migration on your servers that support SSM,
ensure that they run at least the Oracle VM Server for SPARC 3.5 software. When
running previous versions of the Oracle VM Server for SPARC software on servers
that support SSM, ADI version information is not migrated to the target machine.
This situation can result in undefined application behavior if ADI is in use in the
domain being migrated.

While it is best to run the latest version of the Oracle VM Server for SPARC software on all
SSM-capable machines used in a migration, if an upgrade is not possible on either the
source machine or the target machine, you can still perform a migration if you are certain that
the domain to be migrated does not use ADI versioning.

To perform this sort of migration, set the ldmd/migration_adi_legacy_compat SMF property
value to true on the machine that runs Oracle VM Server for SPARC 3.5. By setting this

Chapter 14
Domain Migration Restrictions

14-7

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf
https://docs.oracle.com/cd/E37838_01/html/E61059/gqajs.html
https://docs.oracle.com/cd/E37838_01/html/E61059/gqajs.html

property, the migration overrides the support checks and permits the migration to
proceed. The migrated domain does not retain the ADI version tags.

Migration Restrictions for Running cputrack During a Migration
If the cputrack command is run on a guest domain while that domain is migrated to a
SPARC T4 server, the guest domain might panic on the target machine after it has
been migrated. So, do not run the cputrack command during the migration of a
guest domain to a SPARC T4 server.

Migrating a Domain
You can use the ldm migrate-domain command to initiate the migration of a
domain from one host machine to another host machine.

Note:

If you migrate a domain, any named resources that you assigned by using
the cid and mblock properties are dropped. Instead, the domain uses
anonymous resources on the target system.

For information about migrating an active domain while it continues to run, see
Migrating an Active Domain. For information about migrating a bound or inactive
domain, see Migrating Bound or Inactive Domains.

For information about the migration options and operands, see the ldm(8) man page.

Note:

After a domain migration completes, save a new SP configuration to the SP
of both the source and target systems. As a result, the state of the migrated
domain is correct if either the source or target system undergoes a power
cycle.

Starting with Oracle VM Server for SPARC 3.5, an SP configuration can be saved
automatically following a successful migration. For more information, see Saving Post-
Migration SP Configurations Automatically.

Chapter 14
Migrating a Domain

14-8

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Note:

In rare circumstances, a successful domain migration reports the following error:

Unable to send suspend request to domain domain-name

This issue occurs when the Logical Domains Manager detects an error while
suspending the domain, and the Logical Domains Manager is able to recover and
completes the migration. The exit status of the command is 0, reflecting the
successful migration. Because the migration completes successfully, you can ignore
the error message.

Performing a Dry Run
When you provide the -n option to the ldm migrate-domain command, migration checks
are performed but the domain is not migrated. Any requirement that is not satisfied is
reported as an error. The dry run results enable you to correct any configuration errors before
you attempt an actual migration.

Note:

Because of the dynamic nature of logical domains, a dry run could succeed and an
actual migration fail, and vice versa.

Performing Non-Interactive Migrations
Use the SSL certificate method to perform non-interactive migration operations. Although the
use of the legacy ldm migrate-domain -p filename command to initiate a non-interactive
migration operation is deprecated, you can still use it.

The file name you specify as an argument to the -p option must have the following
characteristics:

• The first line of the file must contain the password.

• The password must be plain text.

• The password must not exceed 256 characters in length.

A newline character at the end of the password and all lines that follow the first line are
ignored.

The file in which you store the target machine's password must be properly secured. If you
plan to store passwords in this manner, ensure that the file permissions are set so that only
the root owner or a privileged user can read or write the file (400 or 600).

Migrating an Active Domain
Certain requirements and restrictions are imposed on the domain to be migrated, the source
machine, and the target machine when you attempt to migrate an active domain. For more
information, see Domain Migration Restrictions.

Chapter 14
Migrating an Active Domain

14-9

Tip:

You can reduce the overall migration time by adding more virtual CPUs to
the primary domain on both the source and target machines. Having at least
two whole cores in each primary domain is recommended but not required.

A domain “loses time” during the migration process. To mitigate this time-loss issue,
synchronize the domain to be migrated with an external time source, such as a
Network Time Protocol (NTP) server. When you configure a domain as an NTP client,
the domain's date and time are corrected shortly after the migration completes.

To configure a domain as an Oracle Solaris 10 NTP client, see Managing Network
Time Protocol (Tasks) in System Administration Guide: Network Services. To configure
a domain as an Oracle Solaris 11 NTP client, see Time-Related Services Key Tasks in
Introduction to Oracle Solaris 11.4 Network Services.

Note:

During the suspend phase at the end of a migration, a guest domain might
experience a slight delay. This delay should not result in any noticeable
interrupt to network communications, especially if the protocol includes a
retry mechanism such as TCP or if a retry mechanism exists at the
application level such as NFS over UDP. However, if the guest domain runs a
network-sensitive application such as Routing Information Protocol (RIP), the
domain might experience a short delay or interrupt when attempting an
operation. This delay would occur during the short period when the guest
network interface is being torn down and re-created during the suspension
phase.

Domain Migration Requirements for CPUs
Following are the requirements and restrictions on CPUs when you perform a
migration:

• The target machine must have sufficient free virtual CPUs to accommodate the
number of virtual CPUs in use by the domain to be migrated.

• Setting the cpu-arch property on the guest domain enables you to migrate the
domain between systems that have different processor types. Note that the guest
domain must be in a bound or inactive state to change the cpu-arch value.

The supported cpu-arch property values are as follows:

– native uses CPU-specific hardware features to enable a guest domain to
migrate only between platforms that share the same CPU characteristics, such
as CPUs that share the same processor core. native is the default value.

– migration-class1 is a cross-CPU migration family for SPARC platforms
starting with the SPARC T4, SPARC M5, and SPARC S7 series server. These
platforms support hardware cryptography during and after these migrations so
that there is a lower bound to the supported CPUs.

Chapter 14
Migrating an Active Domain

14-10

https://docs.oracle.com/cd/E18752_01/html/816-4555/time-20.html
https://docs.oracle.com/cd/E18752_01/html/816-4555/time-20.html
https://docs.oracle.com/cd/E37838_01/html/E61002/gnvlu.html
https://docs.oracle.com/cd/E37838_01/html/E61002/gnvlu.html

Starting with the Oracle VM Server for SPARC 3.6 software, the migration-class1
definition no longer includes support for a 2-Gbyte page size because this page size
is not available on SPARC M8 and SPARC T8 series servers.

So, any migration that uses migration-class1 on a source machine that runs
software prior to Oracle VM Server for SPARC 3.6 is blocked if the target machine is
a SPARC M8 or SPARC T8 series server that runs at least the Oracle VM Server for
SPARC 3.6 software. If the target machine is not a SPARC M8 or SPARC T8 series
server, the migration succeeds and the domain continues to have access to 2-Gbyte
pages until any subsequent reboot. As part of this post-migration reboot, the domain
inherits the new migration-class1 definition and loses access to 2-Gbyte pages.

This value is not compatible with Fujitsu SPARC M12 platforms or Fujitsu M10
platforms.

– migration-class2 is a cross-CPU migration family for SPARC T7, SPARC M7,
SPARC S7, SPARC T8 and SPARC M8 series servers. These platforms support 16-
Gbyte page sizes and the DAX co-processor, which this migration class preserves.

This value is not compatible with Fujitsu SPARC M12 servers or Fujitsu M10 servers.

– sparc64-class1 is a cross-CPU migration family for SPARC64 platforms. Because
the sparc64-class1 value is based on SPARC64 instructions, it has a greater
number of instructions than the generic value. Therefore, it does not have a
performance impact compared to the generic value.

This value is compatible only with Fujitsu SPARC M12 servers or Fujitsu M10
servers.

– generic uses the lowest common CPU hardware features that are used by all
platforms to enable a guest domain to perform a CPU-type-independent migration.

The following isainfo -v commands show the instructions that are available on a
system when cpu-arch=generic and when cpu-arch=migration-class1.

– cpu-arch=generic
isainfo -v
64-bit sparcv9 applications
 asi_blk_init vis2 vis popc
32-bit sparc applications
 asi_blk_init vis2 vis popc v8plus div32 mul32

– cpu-arch=migration-class1
isainfo -v
64-bit sparcv9 applications
 crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5
 camellia des aes ima hpc vis3 fmaf asi_blk_init vis2
 vis popc
32-bit sparc applications
 crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5
 camellia des aes ima hpc vis3 fmaf asi_blk_init vis2
 vis popc v8plus div32 mul32

Using the generic value might result in reduced performance of the guest domain
compared to using the native value. The possible performance degradation occurs
because the guest domain uses only generic CPU features that are available on all
supported CPU types instead of using the native hardware features of a particular CPU.
By not using these features, the generic value enables the flexibility of migrating the
domain between systems that use CPUs that support different features.

Chapter 14
Migrating an Active Domain

14-11

If migrating a domain between at least SPARC T4, SPARC M5, and SPARC S7
series servers, you can set cpu-arch=migration-class1 to improve the guest
domain performance. While the performance is improved from using the generic
value, the native value still provides the best performance for the guest domain.

Use the psrinfo -pv command when the cpu-arch property is set to native to
determine the processor type, as follows:

psrinfo -pv
The physical processor has 2 virtual processors (0 1)
 SPARC-T5 (chipid 0, clock 3600 MHz)

Note that when the cpu-arch property is set to a value other than native, the
psrinfo -pv output does not show the platform type. Instead, the command
shows that the sun4v-cpu CPU module is loaded.

psrinfo -pv
The physical processor has 2 cores and 13 virtual processors (0-12)
 The core has 8 virtual processors (0-7)
 The core has 5 virtual processors (8-12)
 sun4v-cpu (chipid 0, clock 3600 MHz)

Migration Requirements for Memory
The target machine memory requirements are as follows:

• Sufficient free memory to accommodate the migration of a domain

• The free memory must be available in a compatible layout

Compatibility requirements differ for each SPARC platform, but in all cases Oracle VM
Server for SPARC must take into account memory page sizes during a migration
operation. In particular, two page sizes are used when laying out the memory of a
migrating domain on the target machine:

• Hardware largest page size – The largest page size that is supported by the
hardware platform.

• Effective largest page size – The largest page size that is available for the
domain to use. This page size is always less than or equal to the hardware largest
page size.

The real address and physical address alignments are relative to the hardware largest
supported page size and must be preserved for each memory block in the migrated
domain.

For a guest domain that runs at least the Oracle Solaris 11.3 OS, the migrated
domain's memory blocks might be split automatically during the migration so that the
migrated domain can fit into smaller available free memory blocks. Memory blocks can
only be split on boundaries that are aligned with the effective largest page size.

Other memory layout requirements for operating systems, firmware, or platforms might
prevent memory blocks from being split during a given migration. This situation could
cause the migration to fail even when the total amount of free memory available is
sufficient for the domain.

Use the ldm list-domain -o domain command to determine the hardware
largest page size that is supported by the target machine and the effective largest
page size that is supported by the domain.

Chapter 14
Migrating an Active Domain

14-12

The following example shows the read-only effective-max-pagesize and hardware-max-
pagesize property values. The effective-max-pagesize property value is for the ldg1
domain. The hardware-max-pagesize is for the platform.

primary# prtdiag|head -n 1
System Configuration: Oracle Corporation sun4v SPARC T7-2
primary# ldm list-domain -o domain ldg1 | grep pagesize
effective-max-pagesize=2G
hardware-max-pagesize=16G

Migration Requirements for Physical I/O Devices
Except for SR-IOV Ethernet virtual functions, domains that have direct access to physical
devices cannot be migrated. However, virtual devices that are associated with physical
devices can be migrated.

For information, see Migrating a Domain That Has an SR-IOV Ethernet Virtual Function
Assigned.

You cannot perform a domain migration on an I/O domain that is configured with PCIe
endpoint devices.

For information about the direct I/O feature, see Creating an I/O Domain by Assigning PCIe
Endpoint Devices.

You cannot perform a domain migration on an I/O domain that is configured with PCIe SR-
IOV Fibre Channel and InfiniBand virtual functions.

For information about the SR-IOV feature, see Creating an I/O Domain by Using PCIe SR-
IOV Virtual Functions.

Migration Requirements for Virtual I/O Devices
All virtual I/O services that are used by the domain to be migrated must be available on the
target machine. In other words, the following conditions must exist:

• Each virtual disk back end that is used in the domain to be migrated must be defined on
the target machine. This shared storage can be a SAN disk, or storage that is available
by means of the NFS or iSCSI protocols. The virtual disk back end you define must have
the same volume and service names as on the source machine. Paths to the back end
might be different on the source and target machines, but they must refer to the same
back end.

Caution:

A migration will succeed even if the paths to a virtual disk back end on the
source and target machines do not refer to the same storage. However, the
behavior of the domain on the target machine will be unpredictable, and the
domain is likely to be unusable. To remedy the situation, stop the domain,
correct the configuration issue, and then restart the domain. If you do not
perform these steps, the domain might be left in an inconsistent state.

• Each virtual network device in the domain to be migrated must have a corresponding
virtual network switch on the target machine. Each virtual network switch must have the

Chapter 14
Migrating an Active Domain

14-13

same name as the virtual network switch to which the device is attached on the
source machine.

For example, if vnet0 in the domain to be migrated is attached to a virtual switch
service named switch-y, a domain on the target machine must provide a virtual
switch service named switch-y.

Note:

The physical network on the target machine must be correctly configured
so that the migrated domain can access the network resources it
requires. Otherwise, some network services might become unavailable
on the domain after the migration completes. For example, you might
want to ensure that the domain can access the correct network subnet.
Also, you might want to ensure that gateways, routers, or firewalls are
properly configured so that the domain can reach the required remote
systems from the target machine.

MAC addresses used by the domain to be migrated that are in the automatically
allocated range must be available for use on the target machine.

• A virtual console concentrator (vcc) service must exist on the target machine and
have at least one free port. Starting with Oracle VM Server for SPARC 3.5, explicit
console constraints are preserved during the migration. Otherwise, the console for
the migrated domain is created by using the migrated domain name as the
console group and by using any available port on any available vcc device in the
control domain. If no available ports are available in the control domain, the
console is created by using an available port on an available vcc device in a
service domain. The migration fails if there is a conflict with the default group
name.

• Each virtual SAN that is used by the domain to be migrated must be defined on
the target machine.

Migrating While a Delayed Reconfiguration Is Active
Any active delayed reconfiguration operations on the source or target machine prevent
a migration from starting. You are not permitted to initiate a delayed reconfiguration
operation while a migration is in progress.

Migrating While an Active Domain Has the Power Management Elastic
Policy in Effect

You can perform a live migration when the power management (PM) elastic policy is in
effect on either the source machine or the target machine.

Operations on Other Domains
While a migration is in progress on a machine, any operation that might result in the
modification of the state or configuration of the domain being migrated is blocked. All
operations on the domain itself, as well as operations such as bind and stop on other
domains on the machine, are blocked.

Chapter 14
Migrating an Active Domain

14-14

Migrating a Domain From the OpenBoot PROM or a Domain That Is
Running in the Kernel Debugger

Performing a domain migration requires coordination between the Logical Domains Manager
and the Oracle Solaris OS that is running in the domain to be migrated. When a domain to be
migrated is running in OpenBoot or in the kernel debugger (kmdb), this coordination is not
possible. As a result, the migration attempt fails.

When a domain to be migrated is running in OpenBoot, you will see the following message:

primary# ldm migrate-domain ldg1 system2
Migration is not supported while the domain ldg1 is in the 'OpenBoot Running' state
Domain Migration of LDom ldg1 failed

When a domain to be migrated is running in the kernel debugger (kmdb), you will see the
following message:

primary# ldm migrate-domain ldg1 system2
Migration is not supported while the domain ldg1 is in the 'Solaris debugging' state
Domain Migration of LDom ldg1 failed

Migrating a Domain That Uses Named Resources

Caution:

Do not assign named resources unless you are an expert administrator.

You can migrate a domain that is configured to use named resources by specifying the cores
and memory ranges on the target machine to be used by the migrating domain. To migrate
such a domain, ensure that the domain is in the native migration class and that it has the
whole-core constraint applied.

The ldm migrate-domain command uses the cidmap and mblockmap properties to specify
physical resource mappings between the source machine and the target machine.

ldm migrate-domain -c domain-name cidmap=core-ID:core-ID[,core-ID:core-ID,...] \
mblockmap=phys-addr:phys-addr[,phys-addr:phys-addr,...] target-machine

In the following example, the ldm migrate-domain command migrates the ldg1 domain
from the system1 machine to the system2 machine. The ldg1 domain has named cores 8 and
9 and a named memory block at physical address 0x400000000. The domain is migrated to
the system2 machine and will use cores 16 and 17 and a memory block at physical address
0xc00000000:

system1:primary# ldm migrate-domain -c ldg1 cidmap=8:16,9:17 \
mblockmap=0x400000000:c00000000 system2

Ensure that the cidmap property specifies free, non-duplicate cores on the target machine
and that the mblockmap property specifies free, non-overlapping physical address ranges on
the target machine. The physical address ranges must meet the migration requirements for
target machine memory. See Migration Requirements for Memory.

Chapter 14
Migrating an Active Domain

14-15

If you omit the cidmap and mblockmap properties from the ldm migrate-domain
command, each core ID on the source machine is mapped to the same core ID on the
target machine and each physical address range on the source machine is mapped to
the same physical address range on the target machine. Thus, the following command
migrates the ldg1 domain to the system2 machine and the migrated domain uses
cores 8 and 9 and a memory block at physical address 0x400000000:

system1:primary# ldm migrate-domain -c ldg1 system2

Migrating a Domain That Uses Kernel Zones
On a SPARC server, a running kernel zone within a guest domain blocks live migration
of the domain with the following error message:

Guest suspension failed because Kernel Zones are active.
Stop Kernel Zones and retry.

Stop or suspend the running kernel zone prior to migrating the kernel zone:

• Stop running the kernel zone.

zoneadm -z zonename shutdown
• Suspend the kernel zone.

zoneadm -z zonename suspend
Then, perform a live migration of the kernel zone to another system before migrating
the guest domain.

See Chapter 5, Migrating an Oracle Solaris Kernel Zone in Creating and Using Oracle
Solaris Kernel Zones.

Migrating Bound or Inactive Domains
Only a few domain migration restrictions apply to a bound or inactive domain because
such domains are not executing at the time of the migration. Therefore, you can
migrate between different platform types, such as SPARC T4 to SPARC T7 platforms,
Fujitsu SPARC M12 platforms or Fujitsu M10 platforms, because no runtime state is
being copied across.

The migration of a bound domain requires that the target machine is able to satisfy the
CPU, memory, and I/O constraints of the domain to be migrated. If these constraints
cannot be met, the migration will fail.

Caution:

When you migrate a bound domain, the virtual disk back-end options and
mpgroup values are not checked because no runtime state information is
exchanged with the target machine. This check does occur when you
migrate an active domain.

The migration of an inactive domain does not have such requirements. However, the
target machine must satisfy the migrated domain's constraints when a bind is later
attempted or the domain binding will fail.

Chapter 14
Migrating Bound or Inactive Domains

14-16

https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/kernel-zones/migrating-oracle-solaris-kernel-zone.html
https://docs.oracle.com/en/operating-systems/solaris/oracle-solaris/11.4/kernel-zones/migrating-oracle-solaris-kernel-zone.html

Note:

After a domain migration completes, save a new SP configuration to the SP of both
the source and target systems. As a result, the state of the migrated domain is
correct if either the source or target system undergoes a power cycle.

Starting with Oracle VM Server for SPARC 3.5, an SP configuration can be saved
automatically following a successful migration. For more information, see Saving Post-
Migration SP Configurations Automatically.

Caution:

When cold migrating a bound domain that has a large number of virtual devices, the
operation might fail with the following message in the SMF log:

warning: Timer expired: Failed to read feasibility response type (9) from
target LDoms Manager

This failure indicates that the Logical Domains Manager running on the source
machine timed out while waiting for the domain to be bound on the target machine.
The chances of encountering this problem increases as the number of virtual
devices in the migrating domain increases. The timing of this failure results in a
bound copy of the domain on both the source machine and the target machine. Do
not start both copies of this domain. This action can cause data corruption because
both domains reference the same virtual disk backends. After verifying that the copy
of the migrated domain is correct on the target machine, manually unbind the copy
of the domain on the source machine and destroy it.

Migration Requirements for Virtual I/O Devices
For an inactive domain, no checks are performed of the virtual I/O (VIO) constraints.
Therefore, the VIO servers do not need to exist for the migration to succeed. As with any
inactive domain, the VIO servers must exist and be available at the time the domain is bound.

Migration Requirements for PCIe Endpoint Devices
You cannot perform a domain migration on an I/O domain that is configured with PCIe
endpoint devices. This requirement applies to bound domains but not to inactive domains.

For information about the direct I/O (DIO) feature, see Creating an I/O Domain by Assigning
PCIe Endpoint Devices.

Migration Requirements for PCIe SR-IOV Virtual Functions
Except for SR-IOV Ethernet virtual functions, you cannot perform a domain migration on an
I/O domain that is configured with PCIe SR-IOV virtual functions. This requirement applies to
bound domains but not to inactive domains.

For information about the SR-IOV feature, see Creating an I/O Domain by Using PCIe SR-
IOV Virtual Functions.

Chapter 14
Migrating Bound or Inactive Domains

14-17

For information about migrating a domain that has SR-IOV Ethernet virtual functions,
see Migrating a Domain That Has an SR-IOV Ethernet Virtual Function Assigned.

Migrating a Domain That Has an SR-IOV Ethernet Virtual
Function Assigned

Note:

While you can migrate a domain that has an SR-IOV Ethernet virtual
function, you cannot migrate a domain that has SR-IOV Fibre Channel virtual
functions or SR-IOV InfiniBand virtual functions.

Before you can migrate a domain that has an SR-IOV Ethernet virtual function, you
must configure the guest domain on the source machine and make preparations on
the target machine to ensure that the migration succeeds.

• Source machine. When you create an SR-IOV Ethernet virtual function or have
one assigned to a guest domain, ensure that the virtual function has a user-
assigned virtual function name by specifying it as the name property value. Use the
ldm set-io or ldm create-vf command to specify the name property value.

In addition, the domain to be migrated must be configured with IPMP in active or
standby mode for the Ethernet virtual function and a virtual network device.

Note:

Ensure that both of these virtual devices are able to access the same
network.

See How to Prepare a Domain With an SR-IOV Ethernet Virtual Function for
Migration.

• Target machine. Create an Ethernet virtual function that uses the same user-
assigned name as the Ethernet virtual function on the domain to be migrated. In
addition, the SR-IOV Ethernet virtual function that you created on the target
machine must be connected to the same network as the SR-IOV Ethernet virtual
function on the source machine.

See How to Prepare a Target Machine to Receive a Domain With an SR-IOV
Ethernet Virtual Function.

In addition, the Ethernet virtual function that you create on the target machine
must be connected to the same network as the Ethernet virtual function on the
source machine.

During the migration operation, the Ethernet virtual function is removed from the
source domain dynamically and when the domain is created on the target machine,
the Ethernet virtual function on the target machine is added to the migrated domain.

Chapter 14
Migrating a Domain That Has an SR-IOV Ethernet Virtual Function Assigned

14-18

Note:

When the virtual function is removed, the traffic fails over to the standby virtual
network path. After the migration succeeds, the communication returns to the active
path. An application's performance might decline while using the standby path. After
the migration succeeds and the traffic moves through the active path, the
application returns to its previous level of performance.

How to Prepare a Domain With an SR-IOV Ethernet Virtual Function for
Migration

When you create an SR-IOV Ethernet virtual function or assign it to a guest domain, you
must ensure that the virtual function has a user-assigned virtual function name by specifying
it as the name property value.

In addition, the domain to be migrated must be configured with a multipath route for the SR-
IOV Ethernet virtual function and a virtual network device. Both of these virtual interfaces
must be able to access the same network.

1. Ensure the SR-IOV Ethernet virtual function is associated with a user-assigned
virtual function name.

• New SR-IOV Ethernet virtual function: Create the virtual function with the user-
assigned virtual function name.

source:primary# ldm create-vf name=user-assigned-name
pf-name

• Existing SR-IOV Ethernet virtual function: Associate the user-assigned virtual
function name with the virtual function.

source:primary# ldm set-io name=user-assigned-name
vf-name

2. Assign the SR-IOV Ethernet virtual function to the guest domain.

source:primary# ldm add-io vf-name
guest-domain

3. Create an active-standby IPMP group for the SR-IOV Ethernet virtual function and
the virtual network device.

The SR-IOV Ethernet virtual function is the active interface and the virtual network device
is the standby interface.

For more information, see How to Configure an Active-Standby IPMP Group in
Administering TCP/IP Networks, IPMP, and IP Tunnels in Oracle Solaris 11.4.

How to Prepare a Target Machine to Receive a Domain With an SR-IOV
Ethernet Virtual Function

Create an SR-IOV Ethernet virtual function on the target machine and ensure that uses the
same user-assigned name as the SR-IOV Ethernet virtual function on the domain to be
migrated. After the domain successfully migrates to the target machine, the SR-IOV Ethernet
virtual function is assigned dynamically to the migrated domain.

Chapter 14
Migrating a Domain That Has an SR-IOV Ethernet Virtual Function Assigned

14-19

https://docs.oracle.com/cd/E37838_01/html/E60991/gfyeh.html
https://docs.oracle.com/cd/E37838_01/html/E60991/gfyeh.html

• Create an SR-IOV Ethernet virtual function on the target machine that uses
the same user-assigned name as the SR-IOV Ethernet virtual function on the
domain to be migrated.

target:primary# ldm create-vf name=user-assigned-name
pf-name

Monitoring a Migration in Progress
When a migration is in progress, the domain being migrated and the migrated domain
are shown differently in the status output. The output of the ldm list command
indicates the state of the migrating domain.

When migrating a domain that has SR-IOV Ethernet virtual functions, it might take
some time after the migration has completed before the virtual functions are back in
use by the guest domain. This situation occurs because the time it takes to assign
virtual functions to the target machine depends on the number of virtual functions in
the domain. However, IPMP handles the return to the active path after the assignment
of virtual functions is complete.

The sixth column in the FLAGS field shows one of the following values:

• s – The domain that is the source of the migration.

• t – The migrated domain that is the target of the migration.

• e – An error has occurred that requires user intervention.

The following command shows that the ldg-src domain is the source of the migration:

source:primary# ldm list ldg-src
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldg-src suspended -n---s 1 1G 0.0% 2h 7m

The following command shows that the ldg-tgt domain is the target of the migration:

source:primary# ldm list ldg-tgt
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldg-tgt bound -----t 5000 1 1G

The long form of the status output shows additional information about the migration.
On the source machine, the status output shows the completion percentage of the
operation as well as the names of the target machine and the migrated domain.
Similarly, on the target machine, the status output shows the completion percentage of
the operation as well as the names of the source machine and the domain being
migrated.

The following command shows the progress of a migration operation for the ldg-src
domain:

source:primary# ldm list -o status ldg-src
NAME
ldg-src

STATUS
 OPERATION PROGRESS TARGET
 migration 17% system2

Chapter 14
Monitoring a Migration in Progress

14-20

Canceling a Migration in Progress
After a migration starts, the migration operation is terminated if the ldm command is
interrupted by a KILL signal. When the migration operation is terminated, the migrated
domain is destroyed and the domain to be migrated is resumed if it was active. If the
controlling shell of the ldm command is lost, the migration continues in the background.

If you cancel a live migration, the memory contents of the domain instance that is created on
the target machine must be “scrubbed” by the hypervisor. This scrubbing process is
performed for security reasons and must be complete before the memory can be returned to
the pool of free memory. While this scrubbing is in progress, ldm commands become
unresponsive. As a result, the Logical Domains Manager appears to be hung. So, wait for the
scrubbing request to finish before you attempt to run other ldm commands. This process
might take a long time. For example, a guest domain that has 500 Gbytes of memory might
complete this process in up to 7 minutes on a SPARC T4 server.

Recovering From a Failed Migration
The migration operation terminates if the network connection is lost after the domain being
migrated has completed sending all the runtime state information to the migrated domain but
before the migrated domain can acknowledge that the domain has been resumed.

You must determine whether the migration completed successfully by taking the following
steps:

1. Determine whether the migrated domain has successfully resumed operations. The
migrated domain will be in one of two states:

• If the migration completed successfully, the migrated domain is in the normal state.

• If the migration failed, the target machine cleans up and destroys the migrated
domain.

2. If the migrated domain successfully resumed operations, you can safely destroy the
domain on the source machine that is in the error state. However, if the migrated domain
is not present, the domain on the source machine is still the master version of the domain
and must be recovered. To recover this domain, run the ldm cancel-operation
command on the source machine. This command clears the error state and restores the
domain to its original condition.

Saving Post-Migration SP Configurations Automatically
You can configure the system to save an SP configuration automatically to the SP on the
source machine and the target machine following a successful migration. This behavior
ensures that a powercycle following a successful migration does not result in the migrated
domain being recreated on the source machine or removed from the target machine due to
its presence or absence in the previously saved SP configuration.

When configured, an SP configuration is saved with the reserved name @post-migration
following a successful migration. This SP configuration is overwritten after any successful
migration and becomes the active configuration. You can use the ldm set-spconfig
command and the ldm remove-spconfig command to manipulate this @post-
migration SP configuration.

Chapter 14
Canceling a Migration in Progress

14-21

You can modify this behavior by setting the migration_save_spconfig SMF property
or using the -s option to the ldm migrate-domain command.

The Boolean migration_save_spconfig SMF property controls whether to save an SP
configuration following a successful incoming or outgoing migration.

• migration_save_spconfig=false – Prevents the saving of an SP configuration
following a successful migration, which is the default value. Also, no SP
configuration is saved if the migration_save_spconfig property is not specified.

• migration_save_spconfig=true – Saves the post migration SP configuration.

If the migration_save_spconfig value on the source machine differs from the value
on the target machine, attempting an ldm migrate-domain command without the -
s option fails immediately and no migration is performed.

Note:

To save these SP configurations automatically, the source machine and the
target machine must both run at least the Oracle VM Server for SPARC 3.5
software. If one of the machines runs an older version of Oracle VM Server
for SPARC, migrations succeed only if migration_save_spconfig=false on
the Oracle VM Server for SPARC 3.5 machine.

Note that the automatic saving of a post-migration SP configuration interferes with the
way that Oracle VM Manager maintains the system configuration. If Oracle VM
Manager is running, the migration_save_spconfig property is ignored and no post-
migration SP configuration is saved.

Use the ldm migrate-domain -s spconfig-name command to specify that you
save a new SP configuration on the source machine and target machine following a
migration. If you specify this option, it overrides the value of the
migration_save_spconfig SMF property value. Using the -s option with no argument
uses the default reserved name to save the SP configuration on both the source
machine and the target machine. If you specify the -s option with spconfig-name, a
new user SP configuration is created on both the source machine and the target
machine with the specified name.

If the spconfig-name argument matches the name of an existing SP configuration on
either the source machine or the target machine, the ldm migrate-domain
command rejects the migration request.

If the target machine runs an older version of the Logical Domains Manager, and you
specify the -s option, the ldm migrate-domain command rejects the migration
request.

Migration Examples
Example 14-1 Using SSL Certificates to Perform a Guest Domain Migration

This example shows how to migrate the ldg1 domain to a machine called system2.
Before the migration operation starts, you must have configured the SSL certificates
on both the source and target machines. See How to Configure SSL Certificates for
Migration.

Chapter 14
Migration Examples

14-22

source:primary# ldm migrate-domain -c ldg1 system2

Example 14-2 Migrating a Guest Domain

This example shows how to migrate the ldg1 domain to a machine called system2.

source:primary# ldm migrate-domain ldg1 system2
Target Password:

To perform this migration without being prompted for the target machine password, use the
following command:

source:primary# ldm migrate-domain -p pfile ldg1 system2

The -p option takes a file name as an argument. The specified file contains the superuser
password for the target machine. In this example, pfile contains the password for the target
machine, system2.

Example 14-3 Migrating and Renaming a Guest Domain

This example shows how to rename a domain as part of the migration operation. The ldg-
src domain on the source machine is renamed to ldg-tgt on the target machine (system2)
as part of the migration. In addition, the ldm-admin user is used for authentication on the
target machine.

source:primary# ldm migrate ldg-src ldm-admin@system2:ldg-tgt
Target Password:

Example 14-4 Migration Failure Message

This example shows the error message that you might see if the target machine, tsystem,
does not support the latest migration functionality.

source:primary# ldm migrate-domain ldg1 tsystem
Target Password:
The target machine is running an older version of the domain
manager that does not support the latest migration functionality.

Upgrading to the latest software will remove restrictions on
a migrated domain that are in effect until it is rebooted.
Consult the product documentation for a full description of
these restrictions.

The target machine is running an older version of the domain manager
that is not compatible with the version running on the source machine.

Domain Migration of LDom ldg1 failed

Example 14-5 Obtaining the Migration Status for the Domain on the Target Machine

This example shows how to obtain the status on a migrated domain while a migration is in
progress. In this example, the source machine is t5-sys-1.

source:primary# ldm list -o status ldg-tgt
NAME
ldg-tgt

STATUS
 OPERATION PROGRESS SOURCE
 migration 55% t5-sys-1

Chapter 14
Migration Examples

14-23

Example 14-6 Obtaining the Parseable Migration Status for the Domain on the
Source Machine

This example shows how to obtain the parseable status on the domain being migrated
while a migration is in progress. In this example, the target machine is system2.

source:primary# ldm list -o status -p ldg-src
VERSION 1.6
DOMAIN|name=ldg-src|
STATUS
|op=migration|progress=42|error=no|target=system2

Chapter 14
Migration Examples

14-24

15
Managing Resources

This chapter contains information about performing resource management on Oracle VM
Server for SPARC systems.

This chapter covers the following topics:

• Resource Reconfiguration

• Resource Allocation

• CPU Allocation

• Configuring the System With Hard Partitions

• Assigning Physical Resources to Domains

• Using Memory Dynamic Reconfiguration

• Using Resource Groups

• Using Power Management

• Using Dynamic Resource Management

• Listing Domain Resources

• Using Perf-Counter Properties

• Resource Management Issues

Resource Reconfiguration
A system that runs the Oracle VM Server for SPARC software is able to configure resources,
such as virtual CPUs, virtual I/O devices, and memory. Some resources can be configured
dynamically on a running domain, while others must be configured on a stopped domain. If a
resource cannot be dynamically configured on the control domain, you must first initiate a
delayed reconfiguration. The delayed reconfiguration postpones the configuration activities
until after the control domain has been rebooted.

Dynamic Reconfiguration
Dynamic reconfiguration (DR) enables resources to be added or removed while the operating
system (OS) is running. The capability to perform DR of a particular resource type is
dependent on having support in the OS running in the logical domain.

Dynamic reconfiguration is supported for the following resources:

• Virtual CPUs – Supported in all versions of the Oracle Solaris 10 OS and the Oracle
Solaris 11 OS

• CPU whole cores – See Oracle Solaris OS Versions in Oracle VM Server for SPARC 3.6
Installation Guide

• Virtual I/O devices – Supported in at least the Oracle Solaris 10 10/08 OS and the
Oracle Solaris 11 OS

15-1

https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsolosversions
https://docs.oracle.com/cd/E93612_01/html/E93616/ldomsrequiredsoftwarepatches.html#LDSIGsolosversions

• Memory – See Using Memory Dynamic Reconfiguration

• Physical I/O devices – Not supported

To use the DR capability, the Logical Domains DR daemon, drd, must be running in
the domain that you want to change. See the drd(8) man page.

Delayed Reconfiguration
In contrast to DR operations that take place immediately, delayed reconfiguration
operations take effect in the following circumstances:

• After the next reboot of the OS

• After a stop and start of a logical domain if no OS is running

In general, delayed reconfiguration operations are restricted to the control domain. For
all other domains, you must stop the domain to modify the configuration unless the
resource can be dynamically reconfigured.

Delayed reconfiguration operations are restricted to the control domain. You can run a
limited number of commands while a delayed reconfiguration on the root domain is in
progress to support operations that cannot be completed dynamically. These
subcommands are add-io, set-io, remove-io, create-vf, and destroy-vf.
You can also run the ldm start-reconf command on the root domain. For all other
domains, you must stop the domain to modify the configuration unless the resource
can be dynamically reconfigured.

While a delayed reconfiguration is in progress, other reconfiguration requests for that
domain are deferred until it is rebooted or stopped and started.

The ldm cancel-reconf command cancels delayed reconfiguration operations on
the domain. For more information about how to use the delayed reconfiguration
feature, see the ldm(8) man page.

Note:

You cannot use the ldm cancel-reconf command if any other ldm
remove-* commands have already performed a delayed reconfiguration
operation on virtual I/O devices. The ldm cancel-reconf command fails
in this circumstance.

You can use delayed reconfiguration to decrease resources on the control domain. To
remove a large number of CPUs from the control domain, see Removing a Large
Number of CPUs From a Domain Might Fail. To remove large amounts of memory
from the control domain, see Decrease the Control Domain's Memory.

Chapter 15
Resource Reconfiguration

15-2

https://docs.oracle.com/cd/E88353_01/html/E72487/drd-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Note:

When the primary domain is in a delayed reconfiguration state, resources that are
managed by Oracle VM Server for SPARC are power-managed only after the
primary domain reboots. Resources that are managed directly by the OS, such as
CPUs that are managed by the Solaris Power Aware Dispatcher, are not affected by
this state.

Only One CPU Configuration Operation Is Permitted to Be Performed During a
Delayed Reconfiguration

Do not attempt to perform more than one CPU configuration operation on the primary
domain while it is in a delayed reconfiguration. If you attempt more CPU configuration
requests, they will be rejected.

Workaround: Perform one of the following actions:

• Cancel the delayed reconfiguration, start another one, and request the configuration
changes that were lost from the previous delayed reconfiguration.

• Reboot the control domain with the incorrect CPU count and then make the allocation
corrections after the domain reboots.

Resource Allocation
The resource allocation mechanism uses resource allocation constraints to assign resources
to a domain at bind time.

A resource allocation constraint is a hard requirement that the system must meet when you
assign a resource to a domain. If the constraint cannot be met, both the resource allocation
and the binding of the domain fail.

Caution:

Do not create a circular dependency between two domains in which each domain
provides services to the other. Such a configuration creates a single point of failure
condition where an outage in one domain causes the other domain to become
unavailable. Circular dependency configurations also prevent you from unbinding
the domains after they have been bound initially. The Logical Domains Manager
does not prevent the creation of circular domain dependencies. If the domains
cannot be unbound due to a circular dependency, remove the devices that cause
the dependency and then attempt to unbind the domains.

CPU Allocation
When you run threads from the same core in separate domains, you might experience
unpredictable and poor performance. The Oracle VM Server for SPARC software uses the
CPU affinity feature to optimize CPU allocation during the logical domain binding process,
which occurs before you can start the domain. This feature attempts to keep threads from the

Chapter 15
Resource Allocation

15-3

same core allocated to the same logical domain because this type of allocation
improves cache sharing between the threads within the same core.

CPU affinity attempts to avoid the sharing of cores among domains unless there is no
other recourse. When a domain has been allocated a partial core and requests more
strands, the strands from the partial core are bound first, and then another free core is
located to fulfill the request, if necessary.

The CPU allocation mechanism uses the following constraints for CPU resources:

• Whole-core constraint. This constraint specifies that CPU cores are allocated to
a domain rather than virtual CPUs. As long as the domain does not have the max-
cores constraint enabled, the whole-core constraint can be added or removed by
using the ldm set-core or ldm set-vcpu command, respectively. The domain
can be inactive, bound, or active. However, enough cores must be available to
satisfy the request to apply the constraint. As a worst-case example, if a domain
that shares cores with another domain requests the whole-core constraint, cores
from the free list would need to be available to satisfy the request. As a best-case
example, all the virtual CPUs in the core are already on core boundaries, so the
constraint is applied without changes to CPU resources.

• Maximum number of cores (max-cores) constraint. This constraint specifies
the maximum number of cores that can be assigned to a bound or active domain.

How to Apply the Whole-Core Constraint
Ensure that the domain has the whole-core constraint enabled prior to setting the max-
cores constraint.

1. Apply the whole-core constraint on the domain.

primary# ldm set-core 1 domain-name
2. Verify that the domain has the whole-core constraint enabled.

primary# ldm ls -o resmgmt domain-name

Notice that max-cores is set to unlimited. The domain cannot be used in
conjunction with hard partitioning until the max-cores constraint is enabled.

Example 15-1 Applying the Whole-Core Constraint

This example shows how to apply the whole-core constraint on the ldg1 domain. The
first command applies the constraint, while the second command verifies that it is
enabled.

primary# ldm set-core 1 ldg1
primary# ldm ls -o resmgmt ldg1
NAME
ldg1

CONSTRAINT
 cpu=whole-core
 max-cores=unlimited

How to Apply the Max-Cores Constraint
Ensure that the domain has the whole-core constraint enabled prior to setting the max-
cores constraint.

Chapter 15
CPU Allocation

15-4

You can only enable, modify, or disable the max-cores constraint on an inactive domain, not
on a domain that is bound or active. When you update the max-cores constraint on the
control domain, the ldm set-domain command initiates a delayed reconfiguration
automatically.

1. Enable the max-cores constraint on the domain.

primary# ldm set-domain max-cores=max-number-of-CPU-cores domain-name
2. Verify that the whole-core constraint is enabled.

primary# ldm ls -o resmgmt domain-name
3. Bind and restart the domain.

primary# ldm bind domain-name
primary# ldm start-domain domain-name

Now, you can use the domain with hard partitioning.

Example 15-2 Applying the Max-Cores Constraint

This example shows how to constrain max-cores to three cores by setting the max-cores
property, and verifying that the constraint is enabled:

primary# ldm set-domain max-cores=3 ldg1
primary# ldm ls -o resmgmt ldg1
NAME
ldg1

CONSTRAINT
 cpu=whole-core
 max-cores=3

Now, you can use the domain with hard partitioning.

The following example removes the max-cores constraint from the unbound and inactive ldg1
domain, but leaves the whole-core constraint as-is.

primary# ldm stop ldg1
primary# ldm unbind ldg1
primary# ldm set-domain max-cores=unlimited ldg1

Alternately, to remove both the max-cores constraint and the whole-core constraint from the
ldg1 domain, assign virtual CPUs instead of cores, as follows:

primary# ldm set-vcpu 8 ldg1

In either case, bind and restart the domain.

primary# ldm bind ldg1
primary# ldm start-domain ldg1

Interactions Between the Whole-Core Constraint and Other Domain
Features

This section describes the interactions between the whole-core constraint and the following
features:

• CPU Dynamic Reconfiguration

• Dynamic Resource Management

Chapter 15
CPU Allocation

15-5

CPU Dynamic Reconfiguration
The whole-core constraint is fully compatible with CPU dynamic reconfiguration (DR).
When a domain is defined with the whole-core constraint, you can use the ldm add-
core, ldm set-core, or ldm remove-core command to change the number of
cores on an active domain.

However, if a bound or active domain is not in delayed reconfiguration mode, its
number of cores cannot exceed the maximum number of cores. This maximum is set
with the maximum core constraint, which is automatically enabled when the whole-
core constraint is enabled. Any CPU DR operation that does not satisfy the maximum
core constraint fails.

Dynamic Resource Management
The whole-core constraint is fully compatible with dynamic resource management
(DRM).

The expected interactions between the whole-core constraint and DRM are as follows:

• While a DRM policy exists for a domain, you cannot switch the domain from being
whole-core constrained to whole-core unconstrained or from being whole-core
unconstrained to whole-core constrained. For example:

– When a domain is whole-core constrained, you cannot use the ldm set-
vcpu command to specify a number of virtual CPUs and to remove the whole-
core constraint.

– When a domain is not whole-core constrained, you cannot use the ldm set-
core command to specify a number of whole cores and to add the whole-core
constraint.

• When a domain is whole-core constrained and you specify the attack, decay,
vcpu-min, or vcpu-max value, the value must be a whole-core multiple.

Configuring the System With Hard Partitions
This section describes hard partitioning with the Oracle VM Server for SPARC
software, and how to use hard partitioning to conform to the Oracle CPU licensing
requirements.

For information about Oracle's hard partitioning requirements for software licenses,
see Partitioning: Server/Hardware Partitioning (http://www.oracle.com/us/corporate/
pricing/partitioning-070609.pdf).

• CPU cores and CPU threads. The processors that are used in these systems
have multiple CPU cores, each of which contains multiple CPU threads.

• Hard partitioning and CPU whole cores. Hard partitioning is enforced by using
CPU whole-core configurations. A CPU whole-core configuration has domains that
are allocated CPU whole cores instead of individual CPU threads. By default, a
domain is configured to use CPU threads.

When binding a domain in a whole-core configuration, the system creates and
configures the specified number of CPU cores and all its CPU threads in the

Chapter 15
Configuring the System With Hard Partitions

15-6

http://www.oracle.com/us/corporate/pricing/partitioning-070609.pdf
http://www.oracle.com/us/corporate/pricing/partitioning-070609.pdf

domain. Using a CPU whole-core configuration limits the number of CPU cores that can
be dynamically assigned to a bound or active domain.

• Oracle hard partition licensing. To conform to the Oracle hard partition licensing
requirement, see Hard Partitioning With Oracle VM Server for SPARC (http://
www.oracle.com/technetwork/server-storage/vm/ovm-sparc-hard-
partitioning-1403135.pdf).

You must also use CPU whole cores as follows:

– A domain that runs applications that use Oracle hard partition licensing must be
configured with CPU whole cores and max-cores.

– A domain that does not run applications that use Oracle hard partition licensing is not
required to be configured with CPU whole cores. For example, if you do not run any
Oracle applications in the control domain, that domain is not required to be
configured with CPU whole cores.

Checking the Configuration of a Domain
You use the ldm list-o command to determine whether a domain is configured with CPU
whole cores and how to list the CPU cores that are assigned to a domain.

• To determine whether the domain is configured with CPU whole cores:

primary# ldm list -o resmgmt domain-name

Verify that the whole-core constraint appears in the output and that the max-cores
property specifies the maximum number of CPU cores that are configured for the domain.
See the ldm(8) man page.

The following command shows that the ldg1 domain is configured with CPU whole cores
and a maximum of five cores:

primary# ldm list -o resmgmt ldg1
NAME
ldg1

CONSTRAINT
 whole-core
 max-cores=5

• When a domain is bound, CPU cores are assigned to the domain. To list the CPU cores
that are assigned to a domain:

primary# ldm list -o core domain-name

The following command shows the cores that are assigned to the ldg1 domain:

primary# ldm list -o core ldg1
NAME
ldg1

CORE
CID PCPUSET
1 (8, 9, 10, 11, 12, 13, 14, 15)
2 (16, 17, 18, 19, 20, 21, 22, 23)

Chapter 15
Configuring the System With Hard Partitions

15-7

http://www.oracle.com/technetwork/server-storage/vm/ovm-sparc-hard-partitioning-1403135.pdf
http://www.oracle.com/technetwork/server-storage/vm/ovm-sparc-hard-partitioning-1403135.pdf
http://www.oracle.com/technetwork/server-storage/vm/ovm-sparc-hard-partitioning-1403135.pdf
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Configuring a Domain With CPU Whole Cores
The tasks in this section explain how to create a new domain with CPU whole cores,
how to configure an existing domain with CPU whole cores, and how to configure the
primary domain with CPU whole cores.

Use the following command to configure a domain to use CPU whole cores:

ldm set-core number-of-CPU-cores domain

This command also specifies the maximum number of CPU cores for the domain,
which is max-cores. See the ldm(8) man page.

Max-cores and the allocation of CPU cores is handled by separate commands. By
using these commands, you can independently allocate CPU cores, set a cap, or both.
The allocation unit can be set to cores even when no max-cores is in place. However,
running the system in this mode is not acceptable for configuring hard partitioning on
your Oracle VM Server for SPARC system.

• Allocate the specified number of CPU cores to a domain by using the add-core,
set-core, or remove-core subcommand.

• Set the max-cores by using the create-domain or set-domain subcommand
to specify the max-cores property value.

You must set the cap if you want to configure hard partitioning on your Oracle VM
Server for SPARC system.

How to Create a New Domain With CPU Whole Cores

Note:

You only need to stop and unbind the domain if you optionally set the max-
cores constraint.

1. Create the domain.

primary# ldm add-domain domain-name
2. Set the number of CPU whole cores for the domain.

primary# ldm set-core number-of-CPU-cores domain
3. (Optional) Set the max-cores property for the domain.

primary# ldm set-domain max-cores=max-number-of-CPU-cores domain
4. Configure the domain.

During this configuration, ensure that you use the ldm add-core, ldm set-
core, or ldm remove-core command.

5. Bind and start the domain.

primary# ldm bind domain-name
primary# ldm start-domain domain-name

Chapter 15
Configuring the System With Hard Partitions

15-8

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Example 15-3 Creating a New Domain With Two CPU Whole Cores

This example creates a domain, ldg1, with two CPU whole cores. The first command creates
the ldg1 domain. The second command configures the ldg1 domain with two CPU whole
cores.

At this point, you can perform further configuration on the domain, subject to the restrictions
described in Step 3 in How to Create a New Domain With CPU Whole Cores.

The third and fourth commands show how to bind and start the ldg1 domain, at which time
you can use the ldg1 domain.

primary# ldm add-domain ldg1
primary# ldm set-core 2 ldg1
...
primary# ldm bind ldg1
primary# ldm start-domain ldg1

How to Configure an Existing Domain With CPU Whole Cores
If a domain already exists and is configured to use CPU threads, you can change its
configuration to use CPU whole cores.

1. (Optional) Stop and unbind the domain.

This step is required only if you also set the max-cores constraint.

primary# ldm stop domain-name
primary# ldm unbind domain-name

2. Set the number of CPU whole cores for the domain.

primary# ldm set-core number-of-CPU-cores domain
3. (Optional) Set the max-cores property for the domain.

primary# ldm set-domain max-cores=max-number-of-CPU-cores domain
4. (Optional) Rebind and restart the domain.

This step is required only if you also set the max-cores constraint.

primary# ldm bind domain-name
primary# ldm start-domain domain-name

Example 15-4 Configuring an Existing Domain With Four CPU Whole Cores

This example updates the configuration of an existing domain, ldg1 by configuring it with four
CPU whole cores.

primary# ldm set-core 4 ldg1

How to Configure the Primary Domain With CPU Whole Cores
If the primary domain is configured to use CPU threads, you can change its configuration to
use CPU whole cores.

1. (Optional) Place the primary domain in delayed reconfiguration mode.

You need to initiate a delayed reconfiguration only if you want to modify the max-cores
property.

primary# ldm start-reconf primary

Chapter 15
Configuring the System With Hard Partitions

15-9

2. Set the number of CPU whole cores for the primary domain.

primary# ldm set-core number-of-CPU-cores primary
3. (Optional) Set the max-cores property for the primary domain.

primary# ldm set-domain max-cores=max-number-of-CPU-cores primary
4. (Optional) Reboot the primary domain.

Use the appropriate procedure to reboot the primary domain depending on the
system configuration. See Rebooting the Root Domain With PCIe Endpoints
Configured.

You need to reboot the domain only if you want to modify the max-cores property.

Example 15-5 Configuring the Control Domain With Two CPU Whole Cores

This example configures CPU whole cores on the primary domain. The first command
initiates delayed reconfiguration mode on the primary domain. The second command
configures the primary domain with two CPU whole cores. The third command sets
the max-cores property to 2, and the fourth command reboots the primary domain.

primary# ldm start-reconf primary
primary# ldm set-core 2 primary
primary# ldm set-domain max-cores=2 primary
primary# shutdown -i 5

The optional Steps 1 and 4 are required only if you want to modify the max-cores
property.

Interaction of Hard Partitioned Systems With Other Oracle VM Server
for SPARC Features

This section describes how hard partitioned systems interact with other Oracle VM
Server for SPARC features.

CPU Dynamic Reconfiguration
You can use CPU dynamic reconfiguration with domains that are configured with CPU
whole cores. However, you can add or remove only entire CPU cores, not individual
CPU threads. The hard partitioning state of the system is maintained by the CPU
dynamic reconfiguration feature. In addition, if CPU cores are dynamically added to a
domain, the maximum is enforced. Therefore, the CPU DR command would fail if it
attempted to exceed the maximum number of CPUs.

Note:

The max-cores property cannot be altered unless the domain is stopped and
unbound. So, to increase the maximum number of cores from the value
specified at the time the whole-core constraint was set, you must first stop
and unbind the domain.

Use the following commands to dynamically add to or remove CPU whole cores from a
bound or active domain and to dynamically set the number of CPU whole cores for a
bound or active domain:

Chapter 15
Configuring the System With Hard Partitions

15-10

ldm add-core number-of-CPU-cores domain

ldm remove-core number-of-CPU-cores domain

ldm set-core number-of-CPU-cores domain

Note:

If the domain is not active, these commands also adjust the maximum number of
CPU cores for the domain. If the domain is bound or active, these commands do
not affect the maximum number of CPU cores for the domain.

Example 15-6 Dynamically Adding Two CPU Whole Cores to a Domain

This example shows how to dynamically add two CPU whole cores to the ldg1 domain. The
ldg1 domain is an active domain that has been configured with CPU whole cores. The first
command shows that the ldg1 domain is active. The second command shows that the ldg1
domain is configured with CPU whole cores and a maximum of four CPU cores. The third and
fifth commands show the CPU cores that are assigned to the domain before and after the
addition of two CPU whole cores. The fourth command dynamically adds two CPU whole
cores to the ldg1 domain.

primary# ldm list ldg1
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldg1 active -n---- 5000 16 2G 0.4% 5d 17h 49m
primary# ldm list -o resmgmt ldg1
NAME
ldg1

CONSTRAINT
 whole-core
 max-cores=4
primary# ldm list -o core ldg1
NAME
ldg1

CORE
CID PCPUSET
1 (8, 9, 10, 11, 12, 13, 14, 15)
2 (16, 17, 18, 19, 20, 21, 22, 23)
primary# ldm add-core 2 ldg1
primary# ldm list -o core ldg1
NAME
ldg1

CORE
CID PCPUSET
1 (8, 9, 10, 11, 12, 13, 14, 15)
2 (16, 17, 18, 19, 20, 21, 22, 23)
3 (24, 25, 26, 27, 28, 29, 30, 31)
4 (32, 33, 34, 35, 36, 37, 38, 39)

CPU Dynamic Resource Management
Dynamic resource management (DRM) can be used to automatically manage CPU resources
on some domains.

Chapter 15
Configuring the System With Hard Partitions

15-11

CPU Weighted Mean Utilization
DRM uses weighted mean utilization to determine when to perform a CPU DR
operation on a domain based on CPU utilization history. The weighted mean utilization
value is an average of CPU utilization figures where the most recent utilization figure is
assigned a greater weight than less recent utilization figures.

The weighted mean utilization is compared to the util-upper and util-lower DRM
properties for each domain policy that is running. A CPU DR operation is performed
only if the weighted mean utilization value falls outside of the upper and lower
utilization bounds.

Power Management
You can set a separate power management (PM) policy for each hard-partitioned
domain.

When PM detects that a domain is idle, it begins to skip cycles to save power.
Skipping cycles reduces utilization, which affects DRM. As domain activity increases,
PM stops skipping cycles and restores normalized utilization. This transition enables
DRM to correctly calculate weighted mean utilization.

Note:

These PM transitions, along with DRM heuristics, take several seconds
before DRM can dynamically reconfigure domain resources.

Domain Reboot or Rebind
A domain that is configured with CPU whole cores remains configured with CPU whole
cores when the domain is restarted, or if the entire system is restarted. A domain uses
the same physical CPU cores for the entire time it remains bound. For example, if a
domain is rebooted, it uses the same physical CPU cores both before and after the
reboot. Or, if the entire system is powered off while a domain is bound, that domain will
be configured with the same physical CPU cores when the system is powered on
again. If you unbind a domain and then rebind it, or if the entire system is restarted
with a new configuration, the domain might use different physical CPU cores.

Assigning Physical Resources to Domains
The Logical Domains Manager automatically selects the physical resources to be
assigned to a domain. The Oracle VM Server for SPARC 3.6 software also enables
expert administrators to explicitly choose the physical resources to assign to or
remove from a domain.

Resources that you explicitly assign are called named resources. Resources that are
automatically assigned are called anonymous resources.

Chapter 15
Assigning Physical Resources to Domains

15-12

Caution:

Do not assign named resources unless you are an expert administrator.

You can explicitly assign physical resources to the control domain and to guest domains.
Because the control domain remains active, the control domain might optionally be in a
delayed reconfiguration before you make physical resource assignments. Or, a delayed
reconfiguration is automatically triggered when you make physical assignments. See
Managing Physical Resources on the Control Domain. For information about physical
resource restrictions, see Restrictions for Managing Physical Resources on Domains.

You can explicitly assign the following physical resources to the control domain and to guest
domains:

• Physical CPUs. Assign the physical core IDs to the domain by setting the cid property.

The cid property should be used only by an administrator who is knowledgeable about
the topology of the system to be configured. This advanced configuration feature
enforces specific allocation rules and might affect the overall performance of the system.

You can set this property by running any of the following commands:

ldm add-core cid=core-ID[,core-ID[,...]] domain-name

ldm set-core cid=core-ID[,core-ID[,...]] domain-name

ldm remove-core [-f] cid=core-ID[,core-ID[,...]] domain-name

If you specify a core ID as the value of the cid property, core-ID is explicitly assigned to
or removed from the domain.

Note:

You cannot use the ldm add-core command to add named core resources to
a domain that already uses anonymous core resources.

You might encounter a situation where a guest domain OS binds a process running on a
thread to a particular virtual CPU. If you later attempt to remove the core that is
associated with that virtual CPU, the bound thread prevents the virtual CPU from being
removed and leaves behind a partial core. As a result, you might see the following error
message:

Vcpu n: cpu has bound threads

In this situation, re-add the core. Then, you can do one of the following actions:

– Release the physical binding from the thread, and retry.

– Remove a different named core.

• Physical memory. Assign a set of contiguous physical memory regions to a domain by
setting the mblock property. Each physical memory region is specified as a physical
memory start address and a size.

Chapter 15
Assigning Physical Resources to Domains

15-13

The mblock property should be used only by an administrator who is
knowledgeable about the topology of the system to be configured. This advanced
configuration feature enforces specific allocation rules and might affect the overall
performance of the system.

You can set this property by running any of the following commands:

ldm add-mem mblock=PA-start:size[,PA-start:size[,...]] domain-name

ldm set-mem mblock=PA-start:size[,PA-start:size[,...]] domain-name

ldm remove-mem mblock=PA-start:size[,PA-start:size[,...]] domain-name

To assign a memory block to or remove it from a domain, set the mblock property.
A valid value includes a physical memory starting address (PA-start) and a
memory block size (size), separated by a colon (:).

You can use the ldm list-constraints command to view the resource
constraints for domains. The physical-bindings constraint specifies which resource
types have been physically assigned to a domain. When a domain is created, the
physical-bindings constraint is unset until a physical resource is assigned to that
domain. A physically assigned resource or a physically bound resource is also referred
to as a named resource.

The physical-bindings constraint is set to particular values in the following cases:

• memory when the mblock property is specified

• core when the cid property is specified

• core,memory when both the cid and mblock properties are specified

How to Remove the physical-bindings Constraint
To remove the physical-bindings constraint for a guest domain, you must first
remove all named resources.

1. Unbind the domain.

primary# ldm unbind domain-name
2. Remove the named resources.

• To remove named cores:

primary# ldm set-core cid= domain-name
• To remove named memory:

primary# ldm set-mem mblock= domain-name
3. Add CPU or memory resources.

• To add a CPU resource:

primary# ldm add-vcpu number domain-name
• To add a memory resource:

primary# ldm add-mem size[unit] domain-name
4. Rebind the domain.

primary# ldm bind domain-name

Chapter 15
Assigning Physical Resources to Domains

15-14

How to Remove All Non-Physically Bound Resources
To constrain guest domains that do not have the physical-bindings constraint, you must
first remove all non-physically bound resources. A non-physically assigned resource or a
non-physically bound resource is also referred to as an anonymous resource.

1. Unbind the domain.

primary# ldm unbind domain-name
2. Set the number of resources to 0.

• To set the CPU resource:

primary# ldm set-core 0 domain-name
• To set the memory resource:

primary# ldm set-mem 0 domain-name
3. Add CPU or memory resources that are named.

• To add a CPU resource:

primary# ldm add-core cid=core-ID domain-name
• To add a memory resource:

primary# ldm add-mem mblock=PA-start:size domain-name
4. Rebind the domain.

primary# ldm bind domain-name

Managing Physical Resources on the Control Domain
To constrain or remove the physical-bindings constraint from the control domain, follow the
appropriate steps in the previous section. However, instead of unbinding the domain, place
the control domain in a delayed reconfiguration.

A change of constraint between anonymous resources and physically bound named
resources auto-triggers a delayed reconfiguration. You can still explicitly enter a delayed
reconfiguration by using the ldm start-reconf primary command.

As with any delayed reconfiguration change, you must perform a reboot of the domain, in this
case the control domain, to complete the process.

Note:

When the control domain is in delayed reconfiguration mode, you can perform
unlimited memory assignments by using the ldm add-mem and ldm remove-mem
commands on the control domain. However, you can perform only one core
assignment to the control domain by using the ldm set-core command.

Restrictions for Managing Physical Resources on Domains
The following restrictions apply to the assignment of physical resources:

Chapter 15
Assigning Physical Resources to Domains

15-15

• You cannot make physical and non-physical memory bindings, or physical and
non-physical core bindings, in the same domain.

• You can have non-physical memory and physical core bindings, or non-physical
core and physical memory bindings, in the same domain.

• When you add a physical resource to a domain, the corresponding resource type
becomes constrained as a physical binding.

• Attempts to add anonymous CPUs to or remove them from a domain where
physical-bindings=core will fail.

• For unbound resources, the allocation and checking of the resources can occur
only when you run the ldm bind command.

• When removing physical memory from a domain, you must remove the exact
physical memory block that was previously added.

• Physical memory ranges must not overlap.

• You can use only the ldm add-core cid= or ldm set-core cid= command
to assign a physical resource to a domain.

• If you use the ldm add-mem mblock= or ldm set-mem mblock= command to
assign multiple physical memory blocks, the addresses and sizes are checked
immediately for collisions with other bindings.

• A domain that has partial cores assigned to it can use the whole-core semantics if
the remaining CPUs of those cores are free and available.

Using Memory Dynamic Reconfiguration
Memory dynamic reconfiguration (DR) is capacity-based and enables you to add an
arbitrary amount of memory to or remove it from an active logical domain.

The requirements and restrictions for using the memory DR feature are as follows:

• You can perform memory DR operations on any domain. However, only a single
memory DR operation can be in progress on a domain at a given time.

• The memory DR feature enforces 256-Mbyte alignment on the address and size of
the memory involved in a given operation. See Memory Alignment.

If the memory of a domain cannot be reconfigured by using a memory DR operation,
the domain must be stopped before the memory can be reconfigured. If the domain is
the control domain, you must first initiate a delayed reconfiguration.

Under certain circumstances, the Logical Domains Manager rounds up the requested
memory allocation to either the next largest 8-Kbyte or 4-Mbyte multiple. The following
example shows sample output of the ldm list-domain -l command, where the
constraint value is smaller than the actual allocated size:

Memory:
 Constraints: 1965 M
 raddr paddr5 size
 0x1000000 0x291000000 1968M

Adding Memory
If a domain is active, you can use the ldm add-memory command to dynamically add
memory to the domain. The ldm set-memory command can also dynamically add

Chapter 15
Using Memory Dynamic Reconfiguration

15-16

memory if the specified memory size is greater than the current memory size of the domain.

Removing Memory
If a domain is active, you can use the ldm remove-memory command to dynamically
remove memory from the domain. The ldm set-memory command can also dynamically
remove memory if the specified memory size is smaller than the current memory size of the
domain.

Memory removal can be a long-running operation. You can track the progress of an ldm
remove-memory command by running the ldm list -l command for the specified
domain.

You can cancel a removal request that is in progress by interrupting the ldm remove-
memory command (by pressing Control-C) or by issuing the ldm cancel-operation
memdr command. If you cancel a memory removal request, only the outstanding portion of
the removal request is affected; namely, the amount of memory still to be removed from the
domain.

Partial Memory DR Requests
A request to dynamically add memory to or remove memory from a domain might only be
partially fulfilled. This result depends on the availability of suitable memory to add or remove,
respectively.

Note:

Memory is cleared after it is removed from a domain and before it is added to
another domain.

Memory Reconfiguration of the Control Domain
You can use the memory DR feature to reconfigure the memory of the control domain. If a
memory DR request cannot be performed on the control domain, you must first initiate a
delayed reconfiguration.

Using memory DR might not be appropriate for removing large amounts of memory from an
active domain because memory DR operations might be long running. In particular, during
the initial configuration of the system, you should use delayed reconfiguration to decrease the
memory in the control domain.

Decrease the Control Domain's Memory
Use a delayed reconfiguration instead of a memory DR to decrease the control domain's
memory from an initial factory-default configuration. In such a case, the control domain
owns all of the host system's memory. The memory DR feature is not well suited for this
purpose because an active domain is not guaranteed to add, or more typically give up, all of
the requested memory. Rather, the OS running in that domain makes a best effort to fulfill the
request. In addition, memory removal can be a long-running operation. These issues are
amplified when large memory operations are involved, as is the case for the initial decrease
of the control domain's memory.

Chapter 15
Using Memory Dynamic Reconfiguration

15-17

For these reasons, use a delayed reconfiguration by following these steps:

1. Use the ldm start-reconf primary command to put the control domain in
delayed reconfiguration mode.

2. Partition the host system's resources that are owned by the control domain, as
necessary.

3. Use the ldm cancel-reconf command to undo the operations in Step 2, if
necessary, and start over.

4. Reboot the control domain to make the reconfiguration changes take effect.

Dynamic and Delayed Reconfiguration
If a delayed reconfiguration is pending in the control domain, a memory reconfiguration
request is rejected for any other domain. If a delayed reconfiguration is not pending in
the control domain, a memory reconfiguration request is rejected for any domain that
does not support memory DR. For those domains, the request is converted to a
delayed reconfiguration request.

Memory Alignment
• Dynamic addition and removal. The address and size of a memory block are

256-Mbyte-aligned for dynamic addition and dynamic removal. The minimum
operation size is 256 Mbytes.

A nonaligned request or a removal request that is larger than the bound size is
rejected.

Use the following commands to adjust memory allocations:

– ldm add-memory . If you specify the --auto-adj option with this command,
the amount of memory to be added is 256-Mbyte-aligned, which might
increase the amount of memory actually added to the domain.

– ldm remove-memory . If you specify the --auto-adj option with this
command, the amount of memory to be removed is 256-Mbyte-aligned, which
might decrease the amount of memory actually removed from the domain.

– ldm set-memory . This command is treated as an addition or a removal
operation. If you specify the --auto-adj option, the amount of memory to be
added or removed is 256-Mbyte-aligned as previously described. Note that
this alignment might increase the resulting memory size of the domain.

• Delayed reconfiguration. The address and size of a memory block are 256-
Mbyte-aligned. If you make a nonaligned request, the request is rounded up to be
256-Mbyte-aligned.

Memory DR Examples
The following examples show how to perform memory DR operations. For information
about the related CLI commands, see the ldm(8) man page.

Example 15-7 Memory DR Operations on Active Domains

This example shows how to dynamically add memory to and remove it from an active
domain, ldom1.

Chapter 15
Using Memory Dynamic Reconfiguration

15-18

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

The ldm list output shows the memory for each domain in the Memory field.

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 27392M 0.4% 1d 22h 53m
ldom1 active -n---- 5000 2 2G 0.4% 1d 1h 23m
ldom2 bound ------ 5001 2 200M

The following ldm add-mem command exits with an error because you must specify memory
in multiples of 256 Mbytes. The next ldm add-mem command uses the --auto-adj option so
that even though you specify 200M as the amount of memory to add, the amount is rounded
up to 256 Mbytes.

primary# ldm add-mem 200M ldom1
The size of memory must be a multiple of 256MB.

primary# ldm add-mem --auto-adj 200M ldom1
Adjusting request size to 256M.
The ldom1 domain has been allocated 56M more memory
than requested because of memory alignment constraints.

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 27392M 5.0% 8m
ldom1 active -n---- 5000 2 2304M 0.5% 1m
ldom2 bound ------ 5001 2 200M

The ldm remove-mem command exits with an error because you must specify memory in
multiples of 256 Mbytes. When you add the --auto-adj option to the same command, the
memory removal succeeds because the amount of memory is rounded down to the next 256-
Mbyte boundary.

primary# ldm remove-mem --auto-adj 300M ldom1
Adjusting requested size to 256M.
The ldom1 domain has been allocated 44M more memory
than requested because of memory alignment constraints.

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 27392M 0.3% 8m
ldom1 active -n---- 5000 2 2G 0.2% 2m
ldom2 bound ------ 5001 2 200M

Example 15-8 Memory DR Operations on Bound Domains

This example shows how to add memory to and remove it from a bound domain, ldom2.

The ldm list output shows the memory for each domain in the Memory field. The first ldm
add-mem command adds 100 Mbytes of memory to the ldom2 domain. The next ldm add-
mem command specifies the --auto-adj option, which causes an additional 112 Mbytes of
memory to be dynamically added to ldom2.

The ldm remove-mem command dynamically removes 100 Mbytes from the ldom2 domain.
If you specify the --auto-adj option to the same command to remove 300 Mbytes of
memory, the amount of memory is rounded down to the next 256-Mbyte boundary.

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 27392M 0.4% 1d 22h 53m
ldom1 active -n---- 5000 2 2G 0.4% 1d 1h 23m

Chapter 15
Using Memory Dynamic Reconfiguration

15-19

ldom2 bound ------ 5001 2 200M

primary# ldm add-mem 100M ldom2

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 27392M 0.5% 1d 22h 54m
ldom1 active -n---- 5000 2 2G 0.2% 1d 1h 25m
ldom2 bound ------ 5001 2 300M

primary# ldm add-mem --auto-adj 100M ldom2
Adjusting request size to 256M.
The ldom2 domain has been allocated 112M more memory
than requested because of memory alignment constraints.

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 27392M 0.4% 1d 22h 55m
ldom1 active -n---- 5000 2 2G 0.5% 1d 1h 25m
ldom2 bound ------ 5001 2 512M

primary# ldm remove-mem 100M ldom2
primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 27392M 3.3% 1d 22h 55m
ldom1 active -n---- 5000 2 2G 0.2% 1d 1h 25m
ldom2 bound ------ 5001 2 412M

primary# ldm remove-mem --auto-adj 300M ldom2
Adjusting request size to 256M.
The ldom2 domain has been allocated 144M more memory
than requested because of memory alignment constraints.

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 27392M 0.5% 1d 22h 55m
ldom1 active -n---- 5000 2 2G 0.2% 1d 1h 26m
ldom2 bound ------ 5001 2 256M

Example 15-9 Setting Domain Memory Sizes

This example shows how to use the ldm set-memory command to add memory to
and remove it from a domain.

The ldm list output shows the memory for each domain in the Memory field.

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 27392M 0.5% 1d 22h 55m
ldom1 active -n---- 5000 2 2G 0.2% 1d 1h 26m
ldom2 bound ------ 5001 2 256M

The following ldm set-mem command attempts to set the primary domain's size to
3400 Mbytes. The resulting error states that the specified value is not on a 256-Mbyte
boundary. Adding the --auto-adj option to the same command enables you to
successfully remove some memory and stay on the 256-Mbyte boundary. This
command also issues a warning to state that not all of the requested memory could be
removed as the domain is using that memory.

primary# ldm set-mem 3400M primary
An ldm set-mem 3400M command would remove 23992MB, which is not a multiple

Chapter 15
Using Memory Dynamic Reconfiguration

15-20

of 256MB. Instead, run ldm rm-mem 23808MB to ensure a 256MB alignment.

primary# ldm set-mem --auto-adj 3400M primary
Adjusting request size to 3.4G.
The primary domain has been allocated 184M more memory
than requested because of memory alignment constraints.
Only 9472M of memory could be removed from the primary domain
because the rest of the memory is in use.

The next ldm set-mem command sets the memory size of the ldom2 domain, which is in the
bound state, to 690 Mbytes. If you add the --auto-adj option to the same command, an
additional 78 Mbytes of memory is dynamically added to ldom2 to stay on a 256-Mbyte
boundary.

primary# ldm set-mem 690M ldom2
primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 17920M 0.5% 1d 22h 56m
ldom1 active -n---- 5000 2 2G 0.6% 1d 1h 27m
ldom2 bound ------ 5001 2 690M

primary# ldm set-mem --auto-adj 690M ldom2
Adjusting request size to 256M.
The ldom2 domain has been allocated 78M more memory
than requested because of memory alignment constraints.

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active -n-cv- SP 4 17920M 2.1% 1d 22h 57m
ldom1 active -n---- 5000 2 2G 0.2% 1d 1h 27m
ldom2 bound ------ 5001 2 768M

Using Resource Groups
A resource group provides an alternate way to view the resources in a system. Resources
are grouped based on the underlying physical relationships between processor cores,
memory, and I/O buses. Different platforms, and even different platform configurations within
the same server family, such as SPARC T5-2 and SPARC T5-8, can have different resource
groups that reflect the differences in the hardware. Use the ldm list-rsrc-group
command to view resource group information.

The membership of resource groups is statically defined by the hardware configuration. You
can use the ldm remove-core and ldm remove-memory commands to operate on
resources from a particular resource group.

• The remove-core subcommand specifies the number of CPU cores to remove from a
domain. When you specify a resource group by using the -g option, the cores that are
selected for removal all come from that resource group.

• The remove-memory subcommand removes the specified amount of memory from a
logical domain. When you specify a resource group by using the -g option, the memory
that is selected for removal all comes from that resource group.

For information about these commands, see the ldm(8) man page.

For examples, see Listing Resource Group Information.

Chapter 15
Using Resource Groups

15-21

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Resource Group Requirements and Restrictions
The resource group feature is available only on servers starting with the SPARC T5,
SPARC M5, and SPARC S7 series server and the Fujitsu M10 server.

The resource group feature has the following restrictions:

• It is not available on SPARC T4 platforms.

• The ldm list-rsrc-group command does not show any information about
those unsupported platforms and the -g variants of the ldm remove-core and
ldm remove-memory commands are not functional.

• On supported platforms, specifying _sys_ in place of domain-name moves all
system memory to free memory in a different resource group. This command is a
no-op on unsupported platforms.

Using Power Management
To enable power management (PM), you first need to set the PM policy in at least
version 3.0 of the ILOM firmware. This section summarizes the information that you
need to be able to use PM with the Oracle VM Server for SPARC software.

For more information about PM features and ILOM features, see the following:

• Using Power Management

• “Monitoring Power Consumption” in the Oracle Integrated Lights Out Manager
(ILOM) 3.0 CLI Procedures Guide

• Oracle Integrated Lights Out Manager (ILOM) 3.0 Feature Updates and Release
Notes

Using Dynamic Resource Management
You can use policies to determine how to automatically perform DR activities. At this
time, you can create policies only to govern the dynamic resource management of
virtual CPUs.

Caution:

The following restrictions affect CPU dynamic resource management (DRM):

• Ensure that you disable CPU DRM prior to performing a domain
migration operation, or you will see an error message.

• When the PM elastic policy is set, you can use DRM only when the
firmware supports normalized utilization (8.2.0).

Chapter 15
Using Power Management

15-22

Note:

Kernel zones and dynamic pools limitations prevent a DRM policy from working
correctly with these features. Because DRM policies must not violate the limits that
are established by these features, sometimes DRM does not appear to work when
used with kernel zones or dynamic pools. For information about these limitations,
see Creating and Using Oracle Solaris Kernel Zones and Administering Resource
Management in Oracle Solaris 11.4.

A resource management policy specifies the conditions under which virtual CPUs can be
automatically added to and removed from a logical domain. A policy is managed by using the
ldm add-policy, ldm set-policy, and ldm remove-policy commands:

ldm add-policy [enable=yes|no] [priority=value] [attack=value] [decay=value]
 [elastic-margin=value] [sample-rate=value] [tod-begin=hh:mm[:ss]]
 [tod-end=hh:mm[:ss]] [util-lower=percent] [util-upper=percent] [vcpu-min=value]
 [vcpu-max=value] name=policy-name
domain-name...
ldm set-policy [enable=[yes|no]] [priority=[value]] [attack=[value]] [decay=[value]]
 [elastic-margin=[value]] [sample-rate=[value]] [tod-begin=[hh:mm:ss]]
 [tod-end=[hh:mm:ss]] [util-lower=[percent]] [util-upper=[percent]] [vcpu-min=[value]]
 [vcpu-max=[value]] name=policy-name
domain-name...
ldm remove-policy [name=]policy-name... domain-name

For information about these commands and about creating resource management policies,
see the ldm(8) man page.

A policy is in effect during the times specified by the tod-begin and tod-end properties. The
time specified by tod-begin must be earlier than the time specified by tod-end in a 24-hour
period. By default, values for the tod-begin and tod-end properties are 00:00:00 and
23:59:59, respectively. When the default values are used, the policy is always in effect.

The policy uses the value of the priority property to specify a priority for a dynamic
resource management (DRM) policy. Priority values are used to determine the relationship
between DRM policies on a single domain and between DRM-enabled domains on a single
system. Lower numerical values represent higher (better) priorities. Valid values are between
1 and 9999. The default value is 99.

The behavior of the priority property depends on the availability of a pool of free CPU
resources, as follows:

• Free CPU resources are available in the pool. In this case, the priority property
determines which DRM policy will be in effect when more than one overlapping policy is
defined for a single domain.

• No free CPU resources are available in the pool. In this case, the priority property
specifies whether a resource can be dynamically moved from a lower-priority domain to a
higher-priority domain on the same system. The priority of a domain is the priority
specified by the DRM policy that is in effect for that domain.

For example, a higher-priority domain can acquire CPU resources from another domain
that has a DRM policy with a lower priority. This resource-acquisition capability pertains
only to domains that have DRM policies enabled. Domains that have equal priority
values are unaffected by this capability. So, if the default priority is used for all policies,

Chapter 15
Using Dynamic Resource Management

15-23

https://docs.oracle.com/cd/E37838_01/html/E61041/index.html
https://docs.oracle.com/cd/E37838_01/html/E61042/index.html
https://docs.oracle.com/cd/E37838_01/html/E61042/index.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

domains cannot obtain resources from lower-priority domains. To take advantage
of this capability, adjust the priority property values so that they have unequal
values.

For example, the ldg1 and ldg2 domains both have DRM policies in effect. The
priority property for the ldg1 domain is 1, which is more favorable than the priority
property value of the ldg2 domain (2). The ldg1 domain can dynamically remove a
CPU resource from the ldg2 domain and assign it to itself in the following
circumstances:

• The ldg1 domain requires another CPU resource.

• The pool of free CPU resources has been exhausted.

The policy uses the util-high and util-low property values to specify the high and
low thresholds for CPU utilization. If the utilization exceeds the value of util-high,
virtual CPUs are added to the domain until the number is between the vcpu-min and
vcpu-max values. If the utilization drops below the util-low value, virtual CPUs are
removed from the domain until the number is between the vcpu-min and vcpu-max
values. If vcpu-min is reached, no more virtual CPUs can be dynamically removed. If
the vcpu-max is reached, no more virtual CPUs can be dynamically added.

Example 15-10 Adding Resource Management Policies

For example, after observing the typical utilization of your systems over several weeks,
you might set up policies to optimize resource usage. The highest usage is daily from
9:00 a.m. to 6:00 p.m. Pacific, and the low usage is daily from 6:00 p.m. to 9:00 a.m.
Pacific.

Based on this system utilization observation, you decide to create the following high
and low policies based on overall system utilization:

• High: Daily from 9:00 a.m. to 6:00 p.m. Pacific

• Low: Daily from 6:00 p.m. to 9:00 a.m. Pacific

The following ldm add-policy command creates the high-usage policy to be
used during the high utilization period on the ldom1 domain.

The following high-usage policy does the following:

• Specifies that the beginning and ending times are 9:00 a.m. and 6:00 p.m. by
setting the tod-begin and tod-end properties, respectively.

• Specifies that the lower and upper limits at which to perform policy analysis are 25
percent and 75 percent by setting the util-lower and util-upper properties,
respectively.

• Specifies that the minimum and maximum number of virtual CPUs is 2 and 16 by
setting the vcpu-min and vcpu-max properties, respectively.

• Specifies that the maximum number of virtual CPUs to be added during any one
resource control cycle is 1 by setting the attack property.

• Specifies that the maximum number of virtual CPUs to be removed during any one
resource control cycle is 1 by setting the decay property.

• Specifies that the priority of this policy is 1 by setting the priority property. A
priority of 1 means that this policy will be enforced even if another policy can take
effect.

Chapter 15
Using Dynamic Resource Management

15-24

• Specifies that the name of the policy file is high-usage by setting the name property.

• Uses the default values for those properties that are not specified, such as enable and
sample-rate. See the ldm(8) man page.

primary# ldm add-policy tod-begin=09:00 tod-end=18:00 util-lower=25 util-upper=75 \
vcpu-min=2 vcpu-max=16 attack=1 decay=1 priority=1 name=high-usage ldom1

The following ldm add-policy command creates the med-usage policy to be used during
the low utilization period on the ldom1 domain.

The following med-usage policy does the following:

• Specifies that the beginning and ending times are 6:00 p.m. and 9:00 a.m. by setting the
tod-begin and tod-end properties, respectively.

• Specifies that the lower and upper limits at which to perform policy analysis are 10
percent and 50 percent by setting the util-lower and util-upper properties,
respectively.

• Specifies that the minimum and maximum number of virtual CPUs is 2 and 16 by setting
the vcpu-min and vcpu-max properties, respectively.

• Specifies that the maximum number of virtual CPUs to be added during any one resource
control cycle is 1 by setting the attack property.

• Specifies that the maximum number of virtual CPUs to be removed during any one
resource control cycle is 1 by setting the decay property.

• Specifies that the priority of this policy is 1 by setting the priority property. A priority of 1
means that this policy will be enforced even if another policy can take effect.

• Specifies that the name of the policy file is high-usage by setting the name property.

• Uses the default values for those properties that are not specified, such as enable and
sample-rate. See the ldm(8) man page.

primary# ldm add-policy tod-begin=18:00 tod-end=09:00 util-lower=10 util-upper=50 \
 vcpu-min=2 vcpu-max=16 attack=1 decay=1 priority=1 name=med-usage ldom1

Listing Domain Resources
This section shows the syntax usage for the ldm subcommands, defines some output terms,
such as flags and utilization statistics, and provides examples that are similar to what
appears as output.

Machine-Readable Output
If you are creating scripts that use ldm list command output, always use the -p option to
produce the machine-readable form of the output.

To view syntax usage for all ldm subcommands, use the following command:

primary# ldm --help

For more information about the ldm subcommands, see the ldm(8) man page.

Chapter 15
Listing Domain Resources

15-25

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Flag Definitions
The following flags can be shown in the output for a domain (ldm list). If you use
the long, parseable options (-l -p) for the command, the flags are spelled out for
example, flags=normal,control,vio-service. If not, you see the letter abbreviation,
for example -n-cv-. The list flag values are position dependent. The following values
can appear in each of the six columns from left to right.

Column 1 – Starting or stopping domains

• s – Starting or stopping

Column 2 – Domain status

• n – Normal

• t – Transition

• d – Degraded domain that cannot be started due to missing resources

Column 3 – Reconfiguration status

• d – Delayed reconfiguration

• r – Memory dynamic reconfiguration

Column 4 – Control domain

• c – Control domain

Column 5 – Service domain

• v – Virtual I/O service domain

Column 6 – Migration status

• s – Source domain in a migration

• t – Target domain in a migration

• e – Error occurred during a migration

Utilization Statistic Definition
The per virtual CPU utilization statistic (UTIL) is shown by the ldm list -l
command. The statistic is the percentage of time that the virtual CPU spends
executing on behalf of the guest domain OS. A virtual CPU is considered to be
executing on behalf of the guest domain OS except when the virtual CPU yields to the
hypervisor.

Note:

The CPU utilization (UTIL) for an active domain that has a single CPU is
100% regardless of load.

The utilization statistic reported for a logical domain is the average of the virtual CPU
utilizations for the virtual CPUs in the domain. The per-virtual-CPU utilization statistic

Chapter 15
Listing Domain Resources

15-26

is averaged over a 20-second interval. The logical domain utilization statistic is computed
over a 10-second interval.

The normalized utilization statistic (NORM) is the percentage of time the virtual CPU spends
executing on behalf of the guest domain OS. This value reflects the effect of CPUs running at
lower frequency due to power management. Normalized virtualization is only available when
your system runs at least version 8.2.0 of the system firmware.

When CPU power management is enabled, the utilization of CPUs is monitored and the
effective frequency is adjusted in response to the workload. A guest domain that does not
yield to the hypervisor and uses its full CPU cycles to run at full frequency has a normalized
utilization of 100%. A guest domain that has a lower workload still uses its CPUs, but they run
at a lower effective frequency. The normalized utilization of such a guest domain reports a
lower percentage. Thus, normalized utilization is processor-dependent and can vary on
different platforms. Use the ldm list or ldm list -l command to show normalized
utilization for both virtual CPUs and the guest domain OS.

Viewing Various Lists
• To view the current software versions installed:

primary# ldm -V
• To generate a short list for all domains:

primary# ldm list
• To generate a long list for all domains:

primary# ldm list -l
• To generate an extended list of all domains:

primary# ldm list -e
• To generate a parseable, machine-readable list of all domains:

primary# ldm list -p
• You can generate output as a subset of resources by entering one or more of the

following format options. If you specify more than one format, delimit the items by a
comma with no spaces.

primary# ldm list -o resource[,resource...] domain-name

– console – Output contains virtual console (vcons) and virtual console concentrator
(vcc) service

– core – Output contains information about domains that have whole cores allocated

– cpu – Output contains information about the virtual CPU (vcpu), physical CPU (pcpu),
and core ID

– disk – Output contains virtual disk (vdisk) and virtual disk server (vds)

– domain-name – Output contains variables (var), host ID (hostid), domain state, flags,
UUID, and software state

– memory – Output contains memory
– network – Output contains media access control (mac) address , virtual network

switch (vsw), and virtual network (vnet) device

Chapter 15
Listing Domain Resources

15-27

– physio – Physical input/output contains peripheral component interconnect
(pci) and network interface unit (niu)

– resmgmt – Output contains dynamic resource management (DRM) policy
information, indicates which policy is currently running, and lists constraints
related to whole-core configuration

– serial – Output contains virtual logical domain channel (vldc) service and
virtual logical domain channel client (vldcc))

– stats – Output contains statistics that are related to resource management
policies

– status – Output contains status about a domain migration in progress

The following examples show various subsets of output that you can specify.

– To list CPU information for the control domain:

primary# ldm list -o cpu primary
– To list domain information for a guest domain:

primary# ldm list -o domain ldm2
– To list memory and network information for a guest domain:

primary# ldm list -o network,memory ldm1
– To list DRM policy information for a guest domain:

primary# ldm list -o resmgmt,stats ldm1
• To show a variable and its value for a domain:

primary# ldm list-variable variable-name domain-name

For example, the following command shows the value for the boot-device
variable on the ldg1 domain:

primary# ldm list-variable boot-device ldg1
boot-device=/virtual-devices@100/channel-devices@200/disk@0:a

• To list the resources that are bound to a domain:

primary# ldm list-bindings domain-name
• To list SP configurations that have been stored on the SP:

The ldm list-spconfig command lists the SP configurations that are stored
on the service processor. When used with the -r option, this command lists those
SP configurations for which autosave files exist on the control domain.

For more information about SP configurations, see Managing SP Configurations.
For more examples, see the ldm(8) man page.

primary# ldm list-spconfig
factory-default
3guests
foo [next poweron]
primary
reconfig-primary

The labels next to the SP configuration name mean the following:

Chapter 15
Listing Domain Resources

15-28

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

– [current] – Last booted SP configuration, only as long as it matches the currently
running SP configuration; that is, until you initiate a reconfiguration. After the
reconfiguration, the annotation changes to [next poweron].

– [next poweron] – SP configuration to be used at the next power cycle.

– [degraded] – SP configuration is a degraded version of the previously booted SP
configuration.

• To list all server resources, bound and unbound:

primary# ldm list-devices -a
• To list the amount of memory available to be allocated:

primary# ldm list-devices mem
MEMORY
 PA SIZE
 0x14e000000 2848M

• To determine which portions of memory are unavailable for logical domains:

primary# ldm list-devices -a mem
MEMORY
 PA SIZE BOUND
 0x0 57M _sys_
 0x3900000 32M _sys_
 0x5900000 94M _sys_
 0xb700000 393M _sys_
 0x24000000 192M _sys_
 0x30000000 255G primary
 0x3ff0000000 64M _sys_
 0x3ff4000000 64M _sys_
 0x3ff8000000 128M _sys_
 0x80000000000 2G ldg1
 0x80080000000 2G ldg2
 0x80100000000 2G ldg3
 0x80180000000 2G ldg4
 0x80200000000 103G
 0x81bc0000000 145G primary

• To list the services that are available:

primary# ldm list-services

Listing Constraints

Note:

While a DRM policy is actively running, the virtual CPU constraints are dynamic.
Before you save the XML list of constraints, disable the running DRM policy so that
these constraints become static.

To the Logical Domains Manager, constraints are one or more resources you want to have
assigned to a particular domain. You either receive all the resources you ask to be added to a
domain or you get none of them, depending upon the available resources. The list-
constraints subcommand lists those resources you requested assigned to the domain.

• To list constraints for one domain:

Chapter 15
Listing Domain Resources

15-29

ldm list-constraints domain-name
• To list constraints in XML format for a particular domain:

ldm list-constraints -x domain-name
• To list constraints for all domains in a parseable format:

ldm list-constraints -p

Listing Resource Group Information
You can use the ldm list-rsrc-group command to show information about
resource groups.

The following command shows information about all the resource groups:

primary# ldm list-rsrc-group
NAME CORE MEMORY IO
/SYS/CMU4 12 256G 4
/SYS/CMU5 12 256G 4
/SYS/CMU6 12 128G 4
/SYS/CMU7 12 128G 4

Like the other ldm list-* commands, you can specify options to show parseable
output, detailed output, and information about particular resource groups and domains.
For more information, see the ldm(8) man page.

The following example uses the -l option to show detailed information about
the /SYS/CMU5 resource group.

primary# ldm list-rsrc-group -l /SYS/CMU5
NAME CORE MEMORY IO
/SYS/CMU5 12 256G 4

CORE
 CID BOUND
 192, 194, 196, 198, 200, 202, 208, 210 primary
 212, 214, 216, 218 primary

MEMORY

 PA SIZE BOUND
 0xc0000000000 228M ldg1
 0xc0030000000 127G primary
 0xc1ffc000000 64M _sys_
 0xd0000000000 130816M primary
 0xd1ffc000000 64M _sys_

IO
 DEVICE PSEUDONYM BOUND
 pci@900 pci_24 primary
 pci@940 pci_25 primary
 pci@980 pci_26 primary
 pci@9c0 pci_27 primary

Using Perf-Counter Properties
The performance register access control feature enables you to get, set and unset a
domain's access rights to certain groups of performance registers.

Chapter 15
Using Perf-Counter Properties

15-30

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Use the ldm add-domain and ldm set-domain commands to specify a value for the
perf-counters property. The new perf-counters property value will be recognized by the
guest domain on the next reboot. If no perf-counters value is specified, the value is
htstrand. See the ldm(8) man page.

You can specify the following values for the perf-counters property:

global
Grants the domain access to the global performance counters that its allocated resources
can access. Only one domain at a time can have access to the global performance counters.
You can specify this value alone or with either the strand or htstrand value.

strand
Grants the domain access to the strand performance counters that exist on the CPUs that
are allocated to the domain. You cannot specify this value and the htstrand value together.

htstrand
Behaves the same as the strand value and enables instrumentation of hyperprivilege mode
events on the CPUs that are allocated to the domain. You cannot specify this value and the
strand value together.

To disable all access to any of the performance counters, specify perf-counters=.

If the hypervisor does not have the performance access capability, attempting to set the
perf-counters property fails.

The ldm list -o domain and ldm list -e commands show the value of the perf-
counters property. If the performance access capability is not supported, the perf-
counters value is not shown in the output.

Example 15-11 Creating a Domain and Specifying Its Performance Register Access

Create the new ldg0 domain with access to the global register set:

primary# ldm add-domain perf-counters=global ldg0

Example 15-12 Specifying the Performance Register Access for a Domain

Specify that the ldg0 domain has access to the global and strand register sets:

primary# ldm set-domain perf-counters=global,strand ldg0

Example 15-13 Specifying that a Domain Does Not Have Access to Any Register Sets

Specify that the ldg0 domain does not have access to any of the register sets:

primary# ldm set-domain perf-counters= ldg0

Example 15-14 Viewing Performance Access Information

The following examples show how to view performance access information by using the ldm
list -o domain command.

• The following ldm list -o domain command shows that the global and htstrand
performance values are specified on the ldg0 domain:

primary# ldm list -o domain ldg0
NAME STATE FLAGS UTIL
NORM
ldg0 active -n---- 0.0% 0.0%

Chapter 15
Using Perf-Counter Properties

15-31

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

SOFTSTATE
Solaris running

UUID
 062200af-2de2-e05f-b271-f6200fd3eee3

HOSTID
 0x84fb315d

CONTROL
 failure-policy=ignore
 extended-mapin-space=on
 cpu-arch=native
 rc-add-policy=
 shutdown-group=15
perf-counters=global,htstrand

DEPENDENCY
 master=

PPRIORITY 4000

VARIABLES
 auto-boot?=false
 boot-device=/virtual-devices@100/channel-devices@200/disk@0:a
 /virtualdevices@100/channel@200/disk@0
 network-boot-arguments=dhcp,hostname=solaris,
 file=http://10.129.241.238:5555/cgibin/wanboot-cgi
 pm_boot_policy=disabled=0;ttfc=2000;ttmr=0;

• The following ldm list -p -o domain command shows the same information
as in the previous example but in the parseable form:

primary# ldm list -p -o domain ldg0
VERSION 1.12
DOMAIN|name=ldg0|state=active|flags=normal|util=|norm_util=
UUID|uuid=4e8749b9-281b-e2b1-d0e2-ef4dc2ce5ce6
HOSTID|hostid=0x84f97452
CONTROL|failure-policy=reset|extended-mapin-space=on|cpu-arch=native|rc-add-
policy=|
shutdown-group=15|perf-counters=global,htstrand
DEPENDENCY|master=
VARIABLES
|auto-boot?=false
|boot-device=/virtual-devices@100/channel-devices@200/disk@0
|pm_boot_policy=disabled=0;ttfc=2500000;ttmr=0;

Resource Management Issues

Removing a Large Number of CPUs From a Domain Might Fail
You might see the following error message when you attempt to remove a large
number of CPUs from a guest domain:

Request to remove cpu(s) sent, but no valid response received
VCPU(s) will remain allocated to the domain, but might
not be available to the guest OS
Resource modification failed

Chapter 15
Resource Management Issues

15-32

To avoid this issue, remove fewer than 100 CPUs at a time from the domain.

Sometimes a Block of Dynamically Added Memory Can Be Dynamically
Removed Only as a Whole

Due to the way in which the Oracle Solaris OS handles the metadata for managing
dynamically added memory, you might later be able to remove only the entire block of
memory that was previously dynamically added rather than a proper subset of that memory.

This situation could occur if a domain with a small memory size is dynamically grown to a
much larger size, as shown in the following example.

primary# ldm list ldom1
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldom1 active -n-- 5000 2 2G 0.4% 23h

primary# ldm add-mem 16G ldom1

primary# ldm remove-mem 8G ldom1
Memory removal failed because all of the memory is in use.

primary# ldm remove-mem 16G ldom1

primary# ldm list ldom1
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldom1 active -n-- 5000 2 2G 0.4% 23h

To work around this issue, use the ldm add-mem command to sequentially add memory in
smaller chunks rather than in chunks larger than you might want to remove in the future.

If you have experienced this problem, perform one of the following actions:

• Stop the domain, remove the memory, and then restart the domain.

• Reboot the domain, which causes the Oracle Solaris OS to reallocate its memory
management metadata such that the previously added memory can now be removed
dynamically in smaller chunks.

Chapter 15
Resource Management Issues

15-33

16
Managing SP Configurations

This chapter contains information about managing SP configurations.

This chapter covers the following topics:

• Managing SP Configurations

• Available Configuration Recovery Methods

• Configuration Management Issues

Managing SP Configurations
An SP configuration is a complete description of all the domains and their resource
allocations within a single system. You can save and store SP configurations on the service
processor (SP) for later use.

Saving an SP configuration on the SP makes it persist across system power cycles. You can
save several SP configurations and specify which SP configuration to boot on the next
power-on attempt.

When you power up a system, the SP boots the selected SP configuration. The system runs
the same set of domains and uses the same virtualization and partitioning resource
allocations that are specified in the SP configuration. The default SP configuration is the one
that is most recently saved. You can also explicitly request a different SP configuration by
using the ldm set-spconfig command or the appropriate ILOM command.

Caution:

Always save your stable configuration to the SP and save it as XML. Saving the SP
configuration in these ways enable you to recover your system configuration after a
power failure and save it for later use. See Saving Domain Configurations.

A local copy of the SP configuration and the Logical Domains constraint database is saved
on the control domain whenever you save an SP configuration to the SP. This local copy is
called a bootset. The bootset is used to load the corresponding Logical Domains constraints
database when the system undergoes a power cycle.

On servers starting with the SPARC T5, SPARC M5, and SPARC S7 series server and the
Fujitsu M10 server, the bootsets on the control domain are the master copies of the
configurations. On startup, the Logical Domains Manager automatically synchronizes all SP
configurations with the SP, which ensures that the configurations on the SP are always
identical to the bootsets that are stored on the control domain.

16-1

Note:

Because the bootsets contain critical system data, ensure that the control
domain's file system uses technology such as disk mirroring or RAID to
reduce the impact of disk failures.

A physical domain is the scope of resources that are managed by a single Oracle VM
Server for SPARC instance. A physical domain might be a complete physical system
as is the case of supported SPARC T-series servers and SPARC S-series servers. Or,
it might be either the entire system or a subset of the system as is the case of
supported SPARC M-series servers.

Available Configuration Recovery Methods
Oracle VM Server for SPARC supports the following configuration recovery methods:

• The autosave method, used when the SP configuration is not available on the SP.

This situation might occur in one of the following circumstances:

– The hardware that holds the saved SP configurations has been replaced

– The SP configuration is not up to date because you neglected to save the
latest SP configuration changes to the SP or an unexpected power cycle
occurred

• The ldm add-domain -i method, used if a subset of the domains need to have
their configurations restored

• The ldm init-system method, which should be used only as a last resort. Use
this method only when both the configuration on the SP and the autosave
information from the control domain are lost.

Note:

When using a boot device other than the factory default boot device, perform
the steps in After Dropping Into factory-default, Recovery Mode Fails if the
System Boots From a Different Device Than the One Booted in the
Previously Active Configuration. Performing the steps ensure that recovery
mode can recover the configuration on SPARC T4, SPARC T5, and SPARC
M6 series servers that run a system firmware version prior to 9.5.3.

Restoring Configurations By Using Autosave
A copy of the current SP configuration is automatically saved on the control domain
whenever the configuration of the domain is changed. This autosave operation does
not explicitly save the configuration to the SP.

The autosave operation occurs immediately, even in the following situations:

• When the new configuration of the domain is not explicitly saved on the SP

• When the configuration change is not made until after the affected domain reboots

Chapter 16
Available Configuration Recovery Methods

16-2

When a configuration is not explicitly saved to the SP or when SP configurations saved on
the SP are lost, autosave operations enable the Logical Domains Manager to detect and
report this situation, recover a configuration, or both. In these circumstances, the Logical
Domains Manager, depending on the autorecovery policy value when it starts up, reports a
configuration, restores a configuration, or both if it is newer than the SP configuration marked
for the next boot.

Note:

Power management, FMA, and ASR events do not cause an update to the
autosave files.

You can automatically or manually restore autosave files to new or existing SP configurations.
By default, when an autosave configuration is newer than the corresponding running SP
configuration, a message is written to the Logical Domains log. Thus, you must use the ldm
add-spconfig -r command to manually update an existing SP configuration on the SP or
create a new one based on the autosave data. Note that you must perform a power cycle
after using this command to have the running SP configuration match the newly updated SP
configuration and so complete the manual recovery.

Note:

When a delayed reconfiguration is pending, the SP configuration changes are
immediately autosaved. As a result, if you run the ldm list-spconfig -r
command, the autosave configuration is shown as being newer than the current SP
configuration.

For information about how to use the ldm *-spconfig commands to manage SP
configurations and to manually recover autosave files, see the ldm(8) man page.

For information about how to select an SP configuration to boot, see Using Oracle VM Server
for SPARC With the Service Processor. You can also use the ldm set-spconfig
command, which is described on the ldm(8) man page.

Autorecovery Policy
The autorecovery policy specifies how to handle the recovery of an SP configuration when
one SP configuration that is automatically saved on the control domain is newer than the
corresponding running SP configuration.

Regardless of the policy you choose, the specified action occurs only when the ldmd service
first starts.

The autorecovery policy is specified by setting the autorecovery_policy property of the
ldmd SMF service. This property can have the following values:

• autorecovery_policy=1 – Logs warning messages when an autosave configuration is
newer than the corresponding running SP configuration. These messages are logged in
the ldmd SMF log file. You must manually perform any SP configuration recovery. This is
the default policy.

Chapter 16
Available Configuration Recovery Methods

16-3

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

• autorecovery_policy=2 – Displays a notification message if an autosave
configuration is newer than the corresponding running SP configuration. This
notification message is printed in the output of any ldm command the first time an
ldm command is issued after each restart of the Logical Domains Manager. You
must manually perform any SP configuration recovery.

• autorecovery_policy=3 – Automatically updates the SP configuration if any
autosave configuration is newer than its corresponding saved SP configuration.
This action overwrites the SP configuration that will be used during the next power
cycle, but does not make any changes to the currently running SP configuration.
To update the running SP configuration to match the newly updated SP
configuration, you must perform another power cycle. A message is also logged
that states that a newer SP configuration has been saved on the SP and that it will
be booted at the next system power cycle. These messages are logged in the
ldmd SMF log file.

How to Modify the Autorecovery Policy
1. Log in to the control domain.

2. Become an administrator.

For Oracle Solaris 11.4, see Chapter 1, About Using Rights to Control Users and
Processes in Securing Users and Processes in Oracle Solaris 11.4.

3. View the autorecovery_policy property value.

primary# svccfg -s ldmd listprop ldmd/autorecovery_policy
4. Stop the ldmd service.

primary# svcadm disable ldmd
5. Change the autorecovery_policy property value.

primary# svccfg -s ldmd setprop ldmd/autorecovery_policy=value

For example, to set the policy to perform autorecovery, set the property value to 3:

primary# svccfg -s ldmd setprop ldmd/autorecovery_policy=3
6. Refresh and restart the ldmd service.

primary# svcadm refresh ldmd
primary# svcadm enable ldmd

Example 16-1 Modifying the Autorecovery Policy From Log to Autorecovery

The following example shows how to view the current value of the
autorecovery_policy property and change it to a new value. The original value of this
property is 1, which means that autosave changes are logged. The svcadm command
is used to stop and restart the ldmd service, and the svccfg command is used to
view and set the property value.

primary# svccfg -s ldmd listprop ldmd/autorecovery_policy
ldmd/autorecovery_policy integer 1
primary# svcadm disable ldmd
primary# svccfg -s ldmd setprop ldmd/autorecovery_policy=3
primary# svcadm refresh ldmd
primary# svcadm enable ldmd

Chapter 16
Available Configuration Recovery Methods

16-4

https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html

Saving Domain Configurations
You can save domain configurations (domain constraints) for a single domain or for all the
domains on a system.

With the exception of the named physical resources, the following method does not preserve
actual bindings. However, the method does preserve the constraints used to create those
bindings. After saving and restoring the domain configurations, the domains have the same
virtual resources but are not necessarily bound to the same physical resources. Named
physical resources are bound as specified by the administrator.

• To save the domain configurations for a single domain, create an XML file containing the
domain's constraints.

primary# ldm list-constraints -x domain-name >domain-name.xml

The following example shows how to create an XML file, ldg1.xml, which contains the
ldg1 domain's constraints:

primary# ldm list-constraints -x ldg1 >ldg1.xml
• To save the domain configurations for all the domains on a system, create an XML file

containing the constraints for all domains.

primary# ldm list-constraints -x >file.xml

The following example shows how to create an XML file, config.xml, which contains
the constraints for all the domains on a system:

primary# ldm list-constraints -x >config.xml

Restoring Domain Configurations
This section describes how to restore a domain configurations from an XML file for guest
domains and for the control (primary) domain.

• To restore a domain constraints for guest domains, you use the ldm add-domain -i
command, as described in How to Restore a Domain Configuration From an XML File
(ldm add-domain). Although you can save the primary domain's constraints to an XML
file, you cannot use the file as input to this command.

• To restore a domain configuration for the primary domain, you use the ldm init-
system command and the resource constraints from the XML file to reconfigure your
primary domain. You can also use the ldm init-system command to reconfigure
other domains that are described in the XML file, but those domains might be left inactive
when the configuration is complete. See How to Restore a Domain Configuration From
an XML File (ldm init-system).

How to Restore a Domain Configuration From an XML File (ldm add-domain)
This procedure works for guest domains but not for the control (primary) domain. If you want
to restore the configuration for the primary domain, or for other domains that are described in
the XML file, see How to Restore a Domain Configuration From an XML File (ldm init-
system).

1. Create the domain by using the XML file that you created as input.

Chapter 16
Available Configuration Recovery Methods

16-5

primary# ldm add-domain -i domain-name.xml
2. Bind the domain.

primary# ldm bind-domain [-fq] domain-name

The -f option forces the binding of the domain even if invalid back-end devices
are detected. The -q option disables the validation of back-end devices so that the
command runs more quickly.

3. Start the domain.

primary# ldm start-domain domain-name
Example 16-2 Restoring a Single Domain From an XML File

The following example shows how to restore a single domain. First, you restore the
ldg1 domain from the XML file. Then, you bind and restart the ldg1 domain that you
restored.

primary# ldm add-domain -i ldg1.xml
primary# ldm bind ldg1
primary# ldm start-domain ldg1

How to Restore a Domain Configuration From an XML File (ldm init-system)
You should have created an XML configuration file by running the ldm list-
constraints -x command. The file should describe one or more domain
configurations.

This procedure explains how to use the ldm init-system command with an XML
file to re-create a previously saved configuration.

Caution:

The ldm init-system command might not correctly restore a
configuration in which physical I/O commands have been used. Such
commands are ldm add-io, ldm set-io, ldm remove-io, ldm
create-vf, and ldm destroy-vf. For more information, see ldm init-
system Command Might Not Correctly Restore a Domain Configuration on
Which Physical I/O Changes Have Been Made in Oracle VM Server for
SPARC 3.6 Release Notes.

1. Log in to the primary domain.

2. Verify that the system is in the factory-default configuration.

primary# ldm list-spconfig | grep "factory-default"
factory-default [current]

If the system is not in the factory-default configuration, see How to Restore the
factory-default Configuration.

3. Become an administrator.

For Oracle Solaris 11.4, see Chapter 1, About Using Rights to Control Users and
Processes in Securing Users and Processes in Oracle Solaris 11.4.

4. Restore the domain configuration or configurations from the XML file.

Chapter 16
Available Configuration Recovery Methods

16-6

https://docs.oracle.com/cd/E93612_01/html/E93615/knownissues.html#LDSRNbug7158496
https://docs.oracle.com/cd/E93612_01/html/E93615/knownissues.html#LDSRNbug7158496
https://docs.oracle.com/cd/E93612_01/html/E93615/knownissues.html#LDSRNbug7158496
https://docs.oracle.com/cd/E93612_01/html/E93615/knownissues.html#LDSRNbug7158496
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html
https://docs.oracle.com/cd/E37838_01/html/E61023/prbac-1.html

primary# ldm init-system [-frs] -i filename.xml

The primary domain must be rebooted for the configuration to take effect. The -r option
reboots the primary domain after the configuration. If you do not specify the -r option,
you must perform the reboot manually.

The -s option restores only the virtual services configuration (vds, vcc, and vsw) and
might be able to be performed without having to reboot.

The -f option skips the factory-default configuration check and continues regardless
of what was already configured on the system. Use the -f option with caution. The ldm
init-system command assumes that the system is in the factory-default
configuration and so directly applies the changes that are specified by the XML file. Using
-f when the system is in a configuration other than the factory-default likely result in a
system that is not configured as specified by the XML file. One or more changes might
fail to be applied to the system, depending on the combination of changes in the XML file
and the initial configuration.

The primary domain is reconfigured as specified in the file. Any non-primary domains
that have configurations in the XML file are reconfigured but left inactive.

Example 16-3 Restoring Domains From XML Configuration Files

The following examples show how to use the ldm init-system command to restore the
primary domain and all the domains on a system from the factory-default configuration.

• Restore the primary domain. The -r option is used to reboot the primary domain after
the configuration completes. The primary.xml file contains the XML domain
configuration that you saved at an earlier time.

primary# ldm init-system -r -i primary.xml
• Restore all the domains on a system. Restore the domains on the system to the

configurations in the config.xml XML file. The config.xml file contains the XML
domain configurations that you saved at an earlier time. The primary domain is restarted
automatically by the ldm init-system command. Any other domains are restored but
not bound and restarted.

primary# ldm init-system -r -i config.xml

After the system reboots, the following commands bind and restart the ldg1 and ldg2
domains:

primary# ldm bind ldg1
primary# ldm start ldg1
primary# ldm bind ldg2
primary# ldm start ldg2

Addressing Service Processor Connection Problems
On a server starting with the SPARC T7, SPARC M7, and SPARC S7 series server, the ILOM
interconnect is used to communicate between the ldmd service and the SP.

• Servers Starting With the SPARC T7, SPARC M7, and SPARC S7 Series Server:
Check the ILOM interconnect state and re-enable the ilomconfig-interconnect
service. See How to Verify the ILOM Interconnect Configuration and How to Re-Enable
the ILOM Interconnect Service.

• SPARC T4, SPARC T5, SPARC M5, and SPARC M6 Servers: Restart the ldmd service.

Chapter 16
Addressing Service Processor Connection Problems

16-7

primary# svcadm enable ldmd
If these steps fail to restore communications, restart the SP.

Configuration Management Issues

init-system Does Not Restore Named Core Constraints for Guest
Domains From Saved XML Files

If you assigned named core resources to a domain, using the ldm init-system
command might fail to re-assign those named resources to that domain. This might
occur because the ldm init-system command initiates a delayed reconfiguration
for the primary domain and you can perform only one virtual CPU operation per
delayed reconfiguration. So, this command fails to restore the named CPU core
constraints for guest domains from a saved XML file.

Workaround: Perform the following steps:

1. Create an XML file for the primary domain.

primary# ldm list-constraints -x primary > primary.xml
2. Create an XML file for the guest domain or domains.

primary# ldm list-constraints -x domain-name[,domain-name][,...] > guest.xml
3. Power cycle the system and boot a factory-default configuration.

4. Apply the XML configuration to the primary domain.

primary# ldm init-system -r -i primary.xml
5. Apply the XML configuration to the guest domain or domains.

primary# ldm init-system -f -i guest.xml

After Dropping Into factory-default, Recovery Mode Fails if the System
Boots From a Different Device Than the One Booted in the Previously
Active Configuration

While triggering a recovery after dropping into factory-default, recovery mode fails if
the system boots from a different device than the one booted in the previously active
configuration. This failure might occur if the active configuration uses a boot device
other than the factory-default boot device.

Note:

This problem applies to SPARC T4 series servers. This problem also applies
to SPARC T5, SPARC M5, and SPARC M6 series servers that run a system
firmware version prior to 9.5.3.

To work around the problem, perform the following steps any time you want to save a
new configuration to the SP:

Chapter 16
Configuration Management Issues

16-8

1. Determine the full PCI path to the boot device for the primary domain.

Use this path for the ldm set-var command in Step 4.

2. Remove any currently set boot-device property from the primary domain.

Performing this step is necessary only if the boot-device property has a value set. If the
property does not have a value set, an attempt to remove the boot-device property
results in the boot-device not found message.

primary# ldm rm-var boot-device primary
3. Save the current configuration to the SP.

primary# ldm add-spconfig config-name
4. Explicitly set the boot-device property for the primary domain.

primary# ldm set-var boot-device=value primary

If you set the boot-device property after saving the configuration to the SP as described,
the specified boot device is booted when recovery mode is triggered.

If recovery mode has already failed as described, perform the following steps:

1. Explicitly set the boot device to the one used in the last running configuration.

primary# ldm set-var boot-device=value primary
2. Reboot the primary domain.

primary# reboot

The reboot enables the recovery to proceed.

Guest Domain eeprom Updates Are Lost if an ldm add-spconfig Operation Is
Not Complete

An attempt to set an OBP variable from a guest domain might fail if you use the eeprom or
the OBP command before one of the following commands is completed:

• ldm add-spconfig
• ldm remove-spconfig
• ldm set-spconfig
• ldm bind
This problem might occur when these commands take more than 15 seconds to complete.

/usr/sbin/eeprom boot-file\=-k
promif_ldom_setprop: promif_ldom_setprop: ds response timeout
eeprom: OPROMSETOPT: Invalid argument
boot-file: invalid property

If you encounter this error, retry the eeprom or OBP command after the ldm operation has
completed.

Chapter 16
Configuration Management Issues

16-9

To avoid this error, retry the eeprom or OBP command on the affected guest domain.
You might be able to avoid the problem by using the ldm set-var command on the
primary domain.

Trying to Connect to Guest Domain Console While It Is Being Bound
Might Cause Input to Be Blocked

A domain's guest console might freeze if repeated attempts are made to connect to
the console before and during the time the console is bound. For example, this might
occur if you use an automated script to grab the console as a domain is being
migrated onto the machine.

To unfreeze console, perform the following commands on the domain that hosts the
domain's console concentrator (usually the control domain):

primary# svcadm disable vntsd
primary# svcadm enable vntsd

Chapter 16
Configuration Management Issues

16-10

17
Handling Hardware Errors

This chapter contains information about how Oracle VM Server for SPARC handles hardware
errors.

This chapter covers the following topics:

• Hardware Error-Handling Overview

• Using FMA to Blacklist or Unconfigure Faulty Resources

• Recovering Domains After Detecting Faulty or Missing Resources

• Marking Domains as Degraded

• Marking I/O Resources as Evacuated

Hardware Error-Handling Overview
The Oracle VM Server for SPARC software adds the following RAS capabilities for the
SPARC enterprise-class platforms starting with the SPARC T5, SPARC M5, and SPARC S7
series server:

• Fault Management Architecture (FMA) blacklisting. When FMA detects faulty CPU or
memory resources, Oracle VM Server for SPARC places them on a blacklist. A faulty
resource that is on the blacklist cannot be reassigned to any domains until FMA marks it
as being repaired.

• Recovery mode. Automatically recover SP configurations that cannot be booted
because of faulty or missing resources.

The Fujitsu SPARC M12 platform and Fujitsu M10 platform also support recovery mode.
While the blacklisting of faulty resources is not supported, the Fujitsu SPARC M12 platform
and Fujitsu M10 platform auto-replacement feature provides similar functionality.

Using FMA to Blacklist or Unconfigure Faulty Resources
FMA contacts the Logical Domains Manager when it detects a faulty resource. Then, the
Logical Domains Manager attempts to stop using that resource in all running domains. To
ensure that a faulty resource cannot be assigned to a domain in the future, FMA adds the
resource to a blacklist.

The Logical Domains Manager supports blacklisting only for CPU and memory resources, not
for I/O resources.

If a faulty resource is not in use, the Logical Domains Manager removes it from the available
resource list, which you can see in the ldm list-devices output. At this time, this
resource is internally marked as “blacklisted” so that it cannot be re-assigned to a domain in
the future.

If the faulty resource is in use, the Logical Domains Manager attempts to evacuate the
resource. To avoid a service interruption on the running domains, the Logical Domains
Manager first attempts to use CPU or memory dynamic reconfiguration to evacuate the faulty

17-1

resource. The Logical Domains Manager remaps a faulted core if a core is free to use
as a target. If this “live evacuation” succeeds, the faulty resource is internally marked
as blacklisted and is not shown in the ldm list-devices output so that it will not be
assigned to a domain in the future.

If the live evacuation fails, the Logical Domains Manager internally marks the faulty
resource as “evacuation pending.” The resource is shown as normal in the ldm
list-devices output because the resource is still in use on the running domains
until the affected guest domains are rebooted or stopped.

You can use the ldm list-devices -B command to view blacklisted resources or
resources pending evacuation. The following command shows the blacklisted memory
and core resources:

primary# ldm list-devices -B
CORE
ID STATUS DOMAIN
1 Blacklisted
2 Evac_pending ldg1
MEMORY
PA SIZE STATUS DOMAIN
0xa30000000 87G Blacklisted
0x80000000000 128G Evac_pending ldg1

When the affected guest domain is stopped or rebooted, the Logical Domains
Manager attempts to evacuate the faulty resources and internally mark them as
blacklisted so that the resource cannot be assigned in the future. Such a device is not
shown in the ldm output. After the pending evacuation completes, the Logical
Domains Manager attempts to start the guest domain. However, if the guest domain
cannot be started because sufficient resources are not available, the guest domain is
marked as “degraded” and the following warning message is logged for the user
intervention to perform the manual recovery.

primary# ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL NORM UPTIME
primary active -n-cv- UART 368 2079488M 0.1% 0.0% 16h 57m
gd0 bound -d---- 5000 8

Notice: the system is running in a degraded mode as domain <guest> could not
be started because required resources were blacklisted and evacuated.

When the system is power-cycled, FMA repeats the evacuation requests for resources
that are still faulty and the Logical Domains Manager handles those requests by
evacuating the faulty resources and internally marking them as blacklisted.

Prior to support for FMA blacklisting, a guest domain that panicked because of a faulty
resource might result in a never-ending panic-reboot loop. By using resource
evacuation and blacklisting when the guest domain is rebooted, you can avoid this
panic-reboot loop and prevent future attempts to use a faulty resource.

Recovering Domains After Detecting Faulty or Missing
Resources

If a server starting with the SPARC T5, SPARC M5, SPARC S7 series server, or the
Fujitsu M10 server detects a faulty or missing resource at power on, the Logical
Domains Manager attempts to recover the configured domains by using the remaining

Chapter 17
Recovering Domains After Detecting Faulty or Missing Resources

17-2

available resources. While the recovery takes place, the system (or physical domain on
SPARC M-series servers) is said to be in recovery mode. Recovery mode is enabled by
default. See Controlling Recovery Mode.

Note:

The recovery operation does not preserve auto-allocated worldwide numbers
(WWNs) for any devices when creating the degraded configuration. Instead, the
recovery operation allocates new WWNs to those devices.

At power on, the system firmware reverts to the factory-default configuration if the last
selected power-on configuration cannot be booted in any of the following circumstances:

• The I/O topology within each PCIe switch in the configuration does not match the I/O
topology of the last selected power-on configuration

• CPU resources or memory resources of the last selected power-on configuration are no
longer present in the system

When recovery mode is enabled, the Logical Domains Manager recovers all active and
bound domains from the last selected power-on configuration. The resulting running
configuration is called the degraded configuration. The degraded configuration is saved to the
SP and remains the active configuration until either a new configuration is saved or the
physical domain is power-cycled.

Note:

The physical domain does not require a power cycle to activate the degraded
configuration after recovery as it is already the running configuration.

Note:

You cannot delete the original configuration from the SP until the system
successfully boots the original configuration.

If the physical domain is power-cycled, the system firmware first attempts to boot the last
original power-on configuration. That way, if the missing or faulty hardware was replaced in
the meantime, the system can boot the original normal configuration. If the last selected
power-on configuration is not bootable, the firmware next attempts to boot the associated
degraded configuration if it exists. If the degraded configuration is not bootable or does not
exist, the factory-default configuration is booted and recovery mode is invoked.

The recovery operation works in the following order:

• Control domain. The Logical Domains Manager recovers the control domain by
restoring its CPU, memory, and I/O configuration as well as its virtual I/O services.

If the amount of CPU or memory required for all recoverable domains is larger than the
remaining available amounts, the number of CPUs or cores or memory is reduced in
proportion to the size of the other domains. For example, in a four-domain system where
each domain has 25% of the CPUs and memory assigned, the resulting degraded
configuration still assigns 25% of the CPUs and memory to each domain. If the primary

Chapter 17
Recovering Domains After Detecting Faulty or Missing Resources

17-3

domain originally had up to two cores (16 virtual CPUs) and eight Gbytes of
memory, the control domain size is not reduced.

Root complexes and PCIe devices that are assigned to other domains are
removed from the control domain. The virtual functions on root complexes that are
owned by the control domain are re-created. Any missing root complex, PCIe
device, physical function, or virtual function that is assigned to the control domain
is marked as evacuated. The Logical Domains Manager then reboots the control
domain to make the changes active.

• Root domains. After the control domain has been rebooted, the Logical Domains
Manager recovers the root domains. The amount of CPU and memory is reduced
in proportion to the other recoverable domains, if needed. If a root complex is no
longer physically present in the system, it is marked as evacuated. This root
complex is not configured into the domain during the recovery operation. A root
domain is recovered as long as at least one of the root complexes that is assigned
to the root domain is available. If none of its root complexes are available, the root
domain is not recovered. The Logical Domains Manager boots the root domain
and re-creates the virtual functions on the physical functions that are owned by the
root domain. It also removes the PCIe slots that are loaned out by the root domain.
Any missing PCIe slots, physical functions, and virtual functions are marked as
evacuated. Any virtual I/O services that are provided by the domain are re-created,
if possible.

• I/O domains. Logical Domains Manager recovers any I/O domains. Any PCIe
slots and virtual functions that are missing from the system are marked as
evacuated. If none of the required I/O devices are present, the domain is not
recovered and its CPU and memory resources are available for use by other
domains. Any virtual I/O services that are provided by the domain are re-created, if
possible.

• Guest domains. A guest domain is recovered only if at least one of the service
domains that serves the domain has been recovered. If the guest domain cannot
be recovered, its CPU and memory resources are available for use by other guest
domains.

When possible, the same number of CPUs and amount of memory are allocated to a
domain as specified by the original configuration. If that number of CPUs or amount of
memory are not available, these resources are reduced proportionally to consume the
remaining available resources. If you assigned named resources to a domain and it is
later recovered in recovery mode, there is no attempt to re-assign those named
resources to that domain.

Note:

When a system is in recovery mode, you can only perform ldm list-*
commands. All other ldm commands are disabled until the recovery
operation completes.

The Logical Domains Manager only attempts to recover bound and active domains.
The existing resource configuration of any unbound domain is copied to the new
configuration as-is.

During a recovery operation, fewer resources might be available than in the previously
booted configuration. As a result, the Logical Domains Manager might only be able to
recover some of the previously configured domains. Also, a recovered domain might

Chapter 17
Recovering Domains After Detecting Faulty or Missing Resources

17-4

not include all of the resources from its original configuration. For example, a recovered
bound domain might have fewer I/O resources than it had in its previous configuration. A
domain might not be recovered if its I/O devices are no longer present or if its parent service
domain could not be recovered.

Recovery mode records its steps to the Logical Domains Manager SMF
log, /var/svc/log/ldoms-ldmd:default.log. A message is written to the system
console when Logical Domains Manager starts a recovery, reboots the control domain, and
when the recovery completes.

Caution:

A recovered domain is not guaranteed to be completely operable. The domain
might not include a resource that is essential to run the OS instance or an
application. For example, a recovered domain might only have a network resource
and no disk resource. Or, a recovered domain might be missing a file system that is
required to run an application. Using multipathed I/O for a domain reduces the
impact of missing I/O resources.

Recovery Mode Hardware and Software Requirements
• Hardware Requirements – The recovery mode feature is supported on servers starting

with the SPARC T5, SPARC M5, and SPARC S7 series server and the Fujitsu M10
server.

• Firmware Requirements – At least version 9.1.0.a of the system firmware for the
SPARC T5, SPARC M5, and SPARC M6 server. At least version 9.4.3 of the system
firmware for the SPARC T7 and SPARC M7 series server. Any released version of the
system firmware for the SPARC S7, SPARC T8, and SPARC M8 series server. At least
version XCP2230 of the system firmware for the Fujitsu M10 server. At least version
XCP3021 of the system firmware for the Fujitsu SPARC M12 server.

• Software Requirements – Non-primary root domains that loan out PCIe slots must be
running at least the Oracle Solaris 10 1/13 OS or the Oracle Solaris 11.2 OS.

Degraded Configuration
Each physical domain can have only one degraded configuration saved to the SP. If a
degraded configuration already exists, it is replaced by the newly created degraded
configuration.

You cannot interact directly with degraded configurations. The system firmware transparently
boots the degraded version of the next power-on configuration, if necessary. This
transparency enables the system to boot the original configuration after a power cycle when
the missing resources reappear. When the active configuration is a degraded configuration, it
is marked as [degraded] in the ldm list-spconfig output.

Note:

You cannot delete the original configuration from the SP until the system
successfully boots the original configuration.

Chapter 17
Recovering Domains After Detecting Faulty or Missing Resources

17-5

The autosave functionality is disabled while the active configuration is a degraded
configuration. If you save a new configuration to the SP while a degraded configuration
is active, the new configuration is a normal non-degraded configuration.

Note:

A previously missing resource that reappears on a subsequent power cycle
has no effect on the contents of a normal configuration. However, if you
subsequently select the configuration that triggered recovery mode, the SP
boots the original, non-degraded configuration now that all its hardware is
available.

Controlling Recovery Mode
The ldmd/recovery_mode SMF property controls recovery mode behavior. Recovery
mode is enabled by default.

When the ldmd/recovery_mode property is not present or is set to auto, recovery
mode is enabled.

When the ldmd/recovery_mode property is set to never, the Logical Domains Manager
exits recovery mode without taking any action and the physical domain runs the
factory-default configuration.

Note:

If the system firmware requests recovery mode while it is not enabled, issue
the following commands to enable recovery mode after the request is made:

primary# svccfg -s ldmd setprop ldmd/recovery_mode = astring: auto
primary# svcadm refresh ldmd
primary# svcadm restart ldmd

Recovery mode is initiated immediately in this scenario only if no changes
were made to the system, that is, if it is still in the factory-default
configuration.

In addition to enabling recovery mode, you can specify a timeout value for a root
domain boot during recovery. By default, the ldmd/recovery_mode_boot_timeout
property value is 30 minutes. Valid values start at 5 minutes.

Marking Domains as Degraded
A domain is marked as degraded if the FMA blacklisting of a resource leaves a domain
with insufficient resources to start. The domain then remains in the bound state, which
prevents the remaining resources that are assigned to the domain from being
reallocated to other domains.

Chapter 17
Marking Domains as Degraded

17-6

Marking I/O Resources as Evacuated
An I/O resource that is detected as missing by recovery mode is marked as evacuated by
showing an asterisk (*) in ldm list output.

Chapter 17
Marking I/O Resources as Evacuated

17-7

18
Performing Other Administration Tasks

This chapter contains information about using the Oracle VM Server for SPARC software and
tasks that are not described in the preceding chapters.

This chapter covers the following topics:

• Entering Names in the CLI

• Updating Property Values in the /etc/system File

• Stopping a Heavily Loaded Domain Can Time Out

• Operating the Oracle Solaris OS With Oracle VM Server for SPARC

• Using Oracle VM Server for SPARC With the Service Processor

• Configuring Domain Dependencies

• Determining Where Errors Occur by Mapping CPU and Memory Addresses

• Using Universally Unique Identifiers

• Virtual Domain Information Command and API

• Using Logical Domain Channels

• Booting a Large Number of Domains

• Cleanly Shutting Down and Power Cycling an Oracle VM Server for SPARC System

• Logical Domains Variable Persistence

• Adjusting the Interrupt Limit

• Listing Domain I/O Dependencies

• Enabling the Logical Domains Manager Daemon

• Saving Logical Domains Manager Configuration Data

• The factory-default Configuration and Disabling Domains

• Logging Oracle VM Server for SPARC Events

Entering Names in the CLI
In general, Logical Domains Manager names can be up to 256 characters in length.

The following sections describe the naming restrictions in the Logical Domains Manager CLI.

• Variable names

– First character must be a letter, a number, or a forward slash (/).

– Subsequent letters must be letters, numbers, or punctuation.

• File names that are used in virtual disk back ends, virtual switch device names, and path
file names

The names must contain only letters, numbers, or punctuation.

18-1

• SP configuration names

The length of SP configuration names (or SP configuration names) is limited by
the SP. The limit is currently around 69 characters but could vary by platform.

The following error results if you specify an SP configuration name that is too long:

primary# ldm add-spconfig \
test567890123456789212345678931234567894123456789512345678961234567897
Error: Operation failed because an invalid configuration name was given

• Virtual device service and client names

Virtual device names are used to create the devalias property, which is used by
the OpenBoot PROM. However, the OpenBoot PROM does not support devalias
names longer than 31 characters.

If you specify a virtual device name that exceeds 31 characters, the command
succeeds but the corresponding devalias property is not created. The command
also issues the following warning:

primary# ldm add-vds primary-vds012345678901234567890 primary
Warning: Device name primary-vds012345678901234567890 is too long to create
devalias

• Hardware path names

These names are paths to physical resources. These names are used to specify
the iport in the ldm add-vsan command and the resource group in the ldm
list-rsrc-group command.

• All other names

– First character must be a letter or number.

– Subsequent characters must be letters, numbers, or any of the following
characters -_+#.:;~().

Updating Property Values in the /etc/system File
Starting with the Oracle Solaris 11 OS, do not make manual changes to the /etc/
system file. This file is automatically generated upon reboot when files in the /etc/
system.d directory specify tuning property values.

How to Add or Modify a Tuning Property Value
1. Search for the tuning property name in the existing /etc/system file and in

the /etc/system.d files.

For example, to specify a value for the vds:vd_volume_force_slice property,
determine whether the property is already set.

grep 'vds:vd_volume_force_slice' /etc/system /etc/system.d/*
2. Update the property value:

• If the property is found in one of the /etc/system.d files, update the
property value in the existing file.

• If the property is found in the /etc/system file or it is not found, create a file
in the /etc/system.d directory with a name such as the following example:

Chapter 18
Updating Property Values in the /etc/system File

18-2

/etc/system.d/com.company-name:ldoms-config

Stopping a Heavily Loaded Domain Can Time Out
An ldm stop-domain command can time out before the domain completes shutting down.
When this happens, an error similar to the following is returned by the Logical Domains
Manager.

LDom ldg8 stop notification failed

However, the domain could still be processing the shutdown request. Use the ldm list-
domain command to verify the status of the domain. For example:

ldm list-domain ldg8
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldg8 active s---- 5000 22 3328M 0.3% 1d 14h 31m

The preceding list shows the domain as active, but the s flag indicates that the domain is in
the process of stopping. This should be a transitory state.

The following example shows the domain has now stopped.

ldm list-domain ldg8
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
ldg8 bound ----- 5000 22 3328M

The ldm stop command uses the shutdown command to stop a domain. The execution of
the shutdown sequence usually takes much longer than a quick stop, which can be
performed by running the ldm stop -q command. See the ldm(8) man page.

A long shutdown sequence might generate the following timeout message:

domain-name stop timed out. The domain might still be in the process of shutting down.
Either let it continue, or specify -f to force it to stop.

While this shutdown sequence runs, the s flag is also shown for the domain.

Operating the Oracle Solaris OS With Oracle VM Server for
SPARC

This section describes how the Oracle Solaris OS behavior changes when you run an Oracle
VM Server for SPARC configuration.

OpenBoot Firmware Not Available After the Oracle Solaris OS Has Started
The OpenBoot firmware is not available after the Oracle Solaris OS has started because it is
removed from memory.

To reach the ok prompt from the Oracle Solaris OS, you must halt the domain by using the
Oracle Solaris OS halt command.

Chapter 18
Stopping a Heavily Loaded Domain Can Time Out

18-3

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Performing a Power Cycle of a Server
Whenever performing any maintenance on a system running Oracle VM Server for
SPARC software that requires you to perform a power cycle of the server, you must
save the configuration of your current logical domains to the SP first.

To save your SP configuration to the SP, use the following command:

ldm add-spconfig config-name

Starting a Domain
Use the ldm start-domain command to start one or more domains. You can also
specify an XML configuration file to start a logical domain.

Use the ldm start-domain -f command to enable a guest domain and its I/O
service domains to boot simultaneously. The -f option starts a guest domain even
when its SR-IOV service domain or domains are not running. The guest domain does
not boot successfully if the missing I/O services are essential to the OS boot process.
Note that applications running on the guest domain might not function properly if the
missing I/O services are essential to the application's operation.

Stopping a Domain
The ldm stop-domain command stops one or more running domains.

If the domain runs the Logical Domains Manager agent provided by at least the Oracle
Solaris 10 1/13 or Oracle Solaris 11.1 OS, the ldm stop-domain command sends a
shutdown request to the domain.

If the domain does not run the appropriate Logical Domains Manager agent, the ldm
stop-domain command sends a uadmin request to the domain.

You can also specify a number of seconds in which the shutdown command must
complete. If this timeout value is exceeded, an ldm stop-domain -q command is
issued.

You can use SMF properties to change the default behavior. See the ldmd(8) man
page.

For more information about the ldm stop-domain command, see the ldm(8) man
page.

Note:

If you run the ldm stop-domain -f command for a domain that is at the
kmdb prompt, the command fails with the following error message:

LDom domain-name stop notification failed

Chapter 18
Operating the Oracle Solaris OS With Oracle VM Server for SPARC

18-4

https://docs.oracle.com/cd/E88353_01/html/E72487/ldmd-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Result of Oracle Solaris OS Breaks
You can initiate Oracle Solaris OS breaks as follows:

1. Press the L1-A key sequence when the input device is set to keyboard.

2. Enter the send break command when the virtual console is at the telnet prompt.

When you initiate such a break, the Oracle Solaris OS issues the following prompt:

c)ontinue, s)ync, r)eset, h)alt?

Type the letter that represents what you want the system to do after these types of breaks.

Results From Rebooting the Control Domain
You can use the reboot and shutdown -i 5 commands to reboot the control (primary)
domain.

• reboot:

– No other domains configured. Reboots the control domain without graceful
shutdown, no power off.

– Other domains configured. Reboots the control domain without graceful shutdown,
no power off.

• shutdown -i 5:

– No other domains configured. Host powered off after graceful shutdown, stays off
until powered on at the SP.

– Other domains configured. Reboots with graceful shutdown, no power off.

Using Oracle VM Server for SPARC With the Service Processor
The section describes information related to using the Integrated Lights Out Manager (ILOM)
service processor (SP) with the Logical Domains Manager. For more information about using
the ILOM software, see the documents for your specific platform at http://www.oracle.com/
technetwork/documentation/sparc-tseries-servers-252697.html.

An additional config option is available to the existing ILOM command:

-> set /HOST/bootmode config=config-name

This option enables you to set the SP configuration on the next power on to an different SP
configuration, including the factory-default shipping configuration.

You can invoke the command regardless of whether the host is powered on or off. It takes
effect on the next host reset or power on.

To reset the logical domain configuration, you set the option to factory-default.

-> set /HOST/bootmode config=factory-default

You also can select other SP configurations that have been created with the Logical Domains
Manager using the ldm add-spconfig command and stored on the service processor
(SP). The name you specify in the Logical Domains Manager ldm add-spconfig

Chapter 18
Using Oracle VM Server for SPARC With the Service Processor

18-5

http://www.oracle.com/technetwork/documentation/sparc-tseries-servers-252697.html
http://www.oracle.com/technetwork/documentation/sparc-tseries-servers-252697.html

command can be used to select that SP configuration with the ILOM bootmode
command. For example, assume you stored the SP configuration with the name ldm-
config1.

-> set /HOST/bootmode config=ldm-config1

Now, you must perform a power cycle of the system to load the new SP configuration.

See the ldm(8) man page for more information about the ldm add-spconfig
command.

Configuring Domain Dependencies
You can use the Logical Domains Manager to establish dependency relationships
between domains. A domain that has one or more domains that depend on it is called
a master domain. A domain that depends on another domain is called a slave domain.

Each slave domain can specify up to four master domains by setting the master
property. For example, the pine slave domain specifies its four master domains in the
following comma-separated list:

ldm add-domain master=alpha,beta,gamma,delta pine

The alpha, beta, gamma, and delta master domains all specify a failure policy of stop.

Each master domain can specify what happens to its slave domains in the event that
the master domain fails. For instance, if a master domain fails, it might require its slave
domains to panic. If a slave domain has more than one master domain, each master
domain must have the same failure policy. So, the first master domain to fail triggers its
defined failure policy on all of its slave domains.

The master domain's failure policy is controlled by setting one of the following values
to the failure-policy property:

• ignore ignores any slave domains

• panic panics any slave domains (similar to running the ldm panic-domain
command)

• reset immediately stops and then restarts any slave domains (similar to running
the ldm stop-domain -f command and then the ldm start-domain
command)

• stop stops any slave domains (similar to running the ldm stop-domain -f
command)

In this example, the master domains specify their failure policy as follows:

primary# ldm set-domain failure-policy=ignore apple
primary# ldm set-domain failure-policy=panic lemon
primary# ldm set-domain failure-policy=reset orange
primary# ldm set-domain failure-policy=stop peach
primary# ldm set-domain failure-policy=stop alpha
primary# ldm set-domain failure-policy=stop beta
primary# ldm set-domain failure-policy=stop gamma
primary# ldm set-domain failure-policy=stop delta

You can use this mechanism to create explicit dependencies between domains. For
example, a guest domain implicitly depends on the service domain to provide its virtual

Chapter 18
Configuring Domain Dependencies

18-6

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

devices. A guest domain's I/O is blocked when the service domain on which it depends is not
up and running. By defining a guest domain as a slave of its service domain, you can specify
the behavior of the guest domain when its service domain goes down. When no such
dependency is established, a guest domain just waits for its service domain to return to
service.

Note:

The Logical Domains Manager does not permit you to create domain relationships
that create a dependency cycle. For more information, see Dependency Cycles.

For domain dependency XML examples, see Domain Information (ldom_info) Resource in
Oracle VM Server for SPARC 3.6 Developer’s Guide.

Domain Dependency Examples
The following examples show how to configure domain dependencies.

Example 18-1 Configuring a Failure Policy by Using Domain Dependencies

The first command creates a master domain called twizzle. This command uses failure-
policy=reset to specify that slave domains reset if the twizzle domain fails. The second
command modifies a master domain called primary. This command uses failure-
policy=reset to specify that slave domains reset if the primary domain fails. The third
command creates a slave domain called chocktaw that depends on two master domains,
twizzle and primary. The slave domain uses master=twizzle,primary to specify its master
domains. In the event either the twizzle or primary domain fails, the chocktaw domain will
reset.

primary# ldm add-domain failure-policy=reset twizzle
primary# ldm set-domain failure-policy=reset primary
primary# ldm add-domain master=twizzle,primary chocktaw

Example 18-2 Modifying a Domain to Assign a Master Domain

This example shows how to use the ldm set-domain command to modify the orange
domain to assign primary as the master domain. The second command uses the ldm set-
domain command to assign orange and primary as master domains for the tangerine
domain. The third command lists information about all of these domains.

primary# ldm set-domain master=primary orange
primary# ldm set-domain master=orange,primary tangerine
primary# ldm list -o domain
NAME STATE FLAGS UTIL
primary active -n-cv- 0.2%

SOFTSTATE
Solaris running

HOSTID
 0x83d8b31c

CONTROL
 failure-policy=ignore

DEPENDENCY

Chapter 18
Configuring Domain Dependencies

18-7

https://docs.oracle.com/cd/E93612_01/html/E93620/ldomsmgrresourcesandproperties.html#LDSDGldomsinforesource
https://docs.oracle.com/cd/E93612_01/html/E93620/ldomsmgrresourcesandproperties.html#LDSDGldomsinforesource

 master=

--
NAME STATE FLAGS UTIL
orange bound ------

HOSTID
 0x84fb28ef

CONTROL
 failure-policy=ignore

DEPENDENCY
 master=primary

--
NAME STATE FLAGS UTIL
tangerine bound ------

HOSTID
 0x84f948e9

CONTROL
 failure-policy=ignore

DEPENDENCY
 master=orange,primary

Example 18-3 Showing a Parseable Domain Listing

The following shows an example listing with parseable output:

primary# ldm list -o domain -p

Dependency Cycles
The Logical Domains Manager does not permit you to create domain relationships that
create a dependency cycle. A dependency cycle is a relationship between two or more
domains that lead to a situation where a slave domain depends on itself or a master
domain depends on one of its slave domains.

The Logical Domains Manager determines whether a dependency cycle exists before
adding a dependency. The Logical Domains Manager starts at the slave domain and
searches along all paths that are specified by the master array until the end of the path
is reached. Any dependency cycles found along the way are reported as errors.

The following example shows how a dependency cycle might be created. The first
command creates a slave domain called mohawk that specifies its master domain as
primary. So, mohawk depends on primary in the dependency chain shown in the
following diagram.

Single Domain Dependency

Chapter 18
Configuring Domain Dependencies

18-8

The second command creates a slave domain called primary that specifies its master
domain as counter. So, mohawk depends on primary, which depends on counter in the
dependency chain shown in the following diagram.

Multiple Domain Dependency

The third command attempts to create a dependency between the counter and mohawk
domains, which would produce the dependency cycle shown in the following diagram.

Domain Dependency Cycle

The ldm set-domain command will fail with the following error message:

ldm add-domain master=primary mohawk
ldm set-domain master=counter primary
ldm set-domain master=mohawk counter
Dependency cycle detected: LDom "counter" indicates "primary" as its master

Determining Where Errors Occur by Mapping CPU and Memory
Addresses

This section describes how you can correlate the information that is reported by the Oracle
Solaris Fault Management Architecture (FMA) with the logical domain resources that are
marked as being faulty.

FMA reports CPU errors in terms of physical CPU numbers and memory errors in terms of
physical memory addresses.

If you want to determine within which logical domain an error occurred and the corresponding
virtual CPU number or real memory address within the domain, then you must perform a
mapping.

CPU Mapping
You can find the domain and the virtual CPU number within the domain that correspond to a
given physical CPU number.

First, generate a long parseable list for all domains by using the following command:

primary# ldm list -l -p

Chapter 18
Determining Where Errors Occur by Mapping CPU and Memory Addresses

18-9

Look for the entry in the list's VCPU sections that has a pid field equal to the physical
CPU number.

• If you find such an entry, the CPU is associated with the stanza for the domain,
and the virtual CPU number within the domain is specified by the entry's vid field.

• If you do not find such an entry, the CPU is not in any domain.

Memory Mapping
You can find the domain and the real memory address within the domain that
correspond to a given physical memory address (PA).

First, generate a long parseable list for all domains.

primary# ldm list -l -p

Look for the line in the list's MEMORY sections where the PA falls within the inclusive
range pa to (pa + size - 1); that is, pa ≤ PA ≤ (pa + size - 1). pa and size refer to the
values in the corresponding fields of the line.

• If you find such an entry, the PA is associated with the stanza for the domain and
the corresponding real address within the domain is specified by ra + (PA - pa).

• If you do not find such an entry, the PA is not in any domain.

Example of CPU and Memory Mapping
Example 18-4 Determining the Configuration of Domains

The following command produces a long parseable list of logical domains
configurations.

primary# ldm list -l -p
VERSION 1.6
DOMAIN|name=primary|state=active|flags=normal,control,vio-service|
cons=SP|ncpu=4|mem=1073741824|util=0.6|uptime=64801|
softstate=Solaris running
VCPU
|vid=0|pid=0|util=0.9|strand=100
|vid=1|pid=1|util=0.5|strand=100
|vid=2|pid=2|util=0.6|strand=100
|vid=3|pid=3|util=0.6|strand=100
MEMORY
|ra=0x8000000|pa=0x8000000|size=1073741824
IO
|dev=pci@780|alias=bus_a
|dev=pci@7c0|alias=bus_b
...
DOMAIN|name=ldg1|state=active|flags=normal|cons=5000|
ncpu=2|mem=805306368|util=29|uptime=903|
softstate=Solaris running
VCPU
|vid=0|pid=4|util=29|strand=100
|vid=1|pid=5|util=29|strand=100
MEMORY
|ra=0x8000000|pa=0x48000000|size=805306368
...
DOMAIN|name=ldg2|state=active|flags=normal|cons=5001|
ncpu=3|mem=1073741824|util=35|uptime=775|

Chapter 18
Determining Where Errors Occur by Mapping CPU and Memory Addresses

18-10

softstate=Solaris running
VCPU
|vid=0|pid=6|util=35|strand=100
|vid=1|pid=7|util=34|strand=100
|vid=2|pid=8|util=35|strand=100
MEMORY
|ra=0x8000000|pa=0x78000000|size=1073741824
...

Example 18-5 Determining the Virtual CPU That Corresponds to a Physical CPU
Number

The logical domain configuration is shown in Determining the Configuration of Domains. This
example describes how to determine the domain and the virtual CPU corresponding to
physical CPU number 5, and the domain and the real address corresponding to physical
address 0x7e816000.

Looking through the VCPU entries in the list for the one with the pid field equal to 5, you can
find the following entry in the stanza for logical domain ldg1.

|vid=1|pid=5|util=29|strand=100

Hence, the physical CPU number 5 is in domain ldg1 and within the domain it has virtual
CPU number 1.

Looking through the MEMORY entries in the list, you can find the following entry in the stanza for
domain ldg2.

ra=0x8000000|pa=0x78000000|size=1073741824

Where 0x78000000 <= 0x7e816000 <= (0x78000000 + 1073741824 - 1); that is, pa <= PA <=
(pa + size - 1). Hence, the PA is in domain ldg2 and the corresponding real address is
0x8000000 + (0x7e816000 - 0x78000000) = 0xe816000.

Using Universally Unique Identifiers
Each domain is assigned a universally unique identifier (UUID). The UUID is assigned when
a domain is created. For legacy domains, the UUID is assigned when the ldmd daemon
initializes.

Note:

The UUID is lost if you use the ldm migrate-domain -f command to migrate a
domain to a target machine that runs an older version of the Logical Domains
Manager. When you migrate a domain from a source machine that runs an older
version of the Logical Domains Manager, the domain is assigned a new UUID as
part of the migration. Otherwise, the UUID is migrated.

You can obtain the UUID for a domain by running the ldm list -l, ldm list-bindings,
or ldm list -o domain command. The following examples show the UUID for the ldg1
domain:

primary# ldm add-domain ldg1
primary# ldm ls -l ldg1
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME

Chapter 18
Using Universally Unique Identifiers

18-11

ldg1 inactive ------

UUID
 6c908858-12ef-e520-9eb3-f1cd3dbc3a59

primary# ldm ls -l -p ldg1
VERSION 1.6
DOMAIN|name=ldg1|state=inactive|flags=|cons=|ncpu=|mem=|util=|uptime=
UUID|uuid=6c908858-12ef-e520-9eb3-f1cd3dbc3a59

Virtual Domain Information Command and API
The virtinfo command enables you to gather information about a running virtual
domain. You can also use the Virtual Domain Information API to create programs to
gather information related to virtual domains.

The following list shows some of the information that you can gather about a virtual
domain by using the command or API:

• Domain type (implementation, control, guest, I/O, service, root)

• Domain name determined by the Virtual Domain Manager

• Universally unique identifier (UUID) of the domain

• Network node name of the domain's control domain

• Chassis serial number on which the domain is running

For information about the virtinfo command, see the virtinfo(8) man page. For
information about the API, see the libv12n(3LIB) and v12n(3EXT) man pages.

Using Logical Domain Channels
Oracle VM Server for SPARC uses logical domain channels (LDCs) to implement all
communications such as console, virtual I/O, and control traffic. An LDC is the method
used to enable communications between two endpoints. Although typically each
endpoint is in a different domain, the endpoints can be in the same domain to enable
loopback communications.

This software and system firmware provide a large pool of LDC endpoints that you can
use for the control domain and guest domains. This LDC endpoint pool is available on
servers starting with the SPARC T4, SPARC M5, and SPARC S7 series server and the
Fujitsu M10 server. The number of LDCs in the pool is based on the platform type as
follows:

• SPARC T4 Server – 1984 LDC endpoints per logical domain

• SPARC T5 Server – 4080 LDC endpoints per logical domain

• SPARC T7 Series Server – 4080 LDC endpoints per logical domain

• SPARC T8 Series Server – 4080 LDC endpoints per logical domain

• SPARC M5 Server – 4080 LDC endpoints per logical domain

• SPARC M6 Server – 4080 LDC endpoints per logical domain

• SPARC M7 Series Server – 4080 LDC endpoints per logical domain

• SPARC M8 Series Server – 4080 LDC endpoints per logical domain

Chapter 18
Virtual Domain Information Command and API

18-12

https://docs.oracle.com/cd/E88353_01/html/E72487/virtinfo-8.html
https://docs.oracle.com/cd/E88353_01/html/E37842/libv12n-3lib.html
https://docs.oracle.com/cd/E88353_01/html/E37845/v12n-3ext.html

• Fujitsu M10 Server – 4080 LDC endpoints per logical domain

• Fujitsu SPARC M12 Server – 4080 LDC endpoints per logical domain

• SPARC S7 Series Server – 4080 LDC endpoints per logical domain

Note:

Starting with the Oracle SPARC T5, SPARC M5, and SPARC S7 series server and
the Fujitsu M10 server, the LDC pool contains 4080 LDCs when the domain runs at
least the Oracle Solaris 11.3 SRU 8 OS. Otherwise, LDC the pool contains 1984
LDCs.

The required system firmware to support the LDC endpoint pool is as follows:

• 8.5.2 for SPARC T4 servers

• 9.2.1 for SPARC T5, SPARC M5, and SPARC M6 servers

• Any released version for SPARC T7 and SPARC M7 series servers

• Any released version for SPARC S7 series servers

• Any released version for SPARC T8 and SPARC M8 series servers

• XCP2240 for Fujitsu M10 servers

• Any released version of the system firmware for Fujitsu SPARC M12 servers

The following LDC endpoint limits still apply if you run an older version of the system firmware
on a supported platform:

• SPARC T4 Server – 768 LDC endpoints per logical domain

• SPARC T5 Server – 768 LDC endpoints per logical domain

• SPARC M5 Server – 768 LDC endpoints per logical domain

• SPARC M6 Server – 768 LDC endpoints per logical domain

• Fujitsu M10 Server – 768 LDC endpoints per logical domain

If you attempt to add a service or bind a domain so that the number of LDC endpoints
exceeds the limit on any single domain, the operation fails with an error message similar to
the following:

13 additional LDCs are required on guest primary to meet this request,
but only 9 LDCs are available

The following guidelines enable you to plan properly for using LDC endpoints and explain
why you might experience an overflow of the LDC capabilities of the control domain:

• The control domain uses approximately 15 LDC endpoints for various communication
purposes with the hypervisor, Fault Management Architecture (FMA), and the system
processor (SP), independent of the number of other domains configured. The number of
LDC endpoints used by the control domain depends on the platform and on the version of
the software that is used.

• The Logical Domains Manager allocates an LDC endpoint to the control domain for every
domain, including itself, for control traffic.

Chapter 18
Using Logical Domain Channels

18-13

• Each virtual I/O service on the control domain uses one LDC endpoint for every
connected client of that service. Each domain needs at least a virtual network, a
virtual disk, and a virtual console.

The following equation incorporates these guidelines to determine the number of LDC
endpoints that are required by the control domain:

15 + number-of-domains + (number-of-domains x number-of-
virtual-services) = total-LDC-endpoints

number-of-domains is the total number of domains including the control domain and
number-of-virtual-services is the total number of virtual I/O devices that are serviced by
this domain.

The following example shows how to use the equation to determine the number of
LDC endpoints when there is a control domain and eight additional domains:

15 + 9 + (8 x 3) = 48 LDC endpoints

The following example has 45 guest domains and each domain includes five virtual
disks, two virtual networks, and a virtual console. The calculation yields the following
result:

15 + 46 + 45 x 8 = 421 LDC endpoints

Depending upon the number of supported LDC endpoints of your platform, the Logical
Domains Manager will either accept or reject the configuration.

If you run out of LDC endpoints on the control domain, consider creating service
domains or I/O domains to provide virtual I/O services to the guest domains. This
action enables the LDC endpoints to be created on the I/O domains and the service
domains instead of on the control domain.

A guest domain can also run out of LDC endpoints. This situation might be caused by
the inter-vnet-link property being set to on, which assigns additional LDC endpoints
to guest domains to connect directly to each other.

The following equation determines the number of LDC endpoints that are required by a
guest domain when inter-vnet-link=off:

2 + number-of-vnets + number-of-vdisks = total-LDC-endpoints

2 represents the virtual console and control traffic, number-of-vnets is the total number
of virtual network devices assigned to the guest domain, and number-of-vdisks is the
total number of virtual disks assigned to the guest domain.

The following example shows how to use the equation to determine the number of
LDC endpoints per guest domain when inter-vnet-link=off and you have two
virtual disks and two virtual networks:

2 + 2 + 2 = 6 LDC endpoints

The following equation determines the number of LDC endpoints that are required by a
guest domain when inter-vnet-link=on:

2 + [[(number-of-vnets-from-vswX x number-of-vnets-in-
vswX)] ...] + number-of-vdisks = total-LDC-endpoints

Chapter 18
Using Logical Domain Channels

18-14

2 represents the virtual console and control traffic, number-of-vnets-from-vswX is the total
number of virtual network devices assigned to the guest domain from the vswX virtual switch,
number-of-vnets-in-vswX is the total number of virtual network devices on the vswX virtual
switch, and number-of-virtual-disks is the total number of virtual disks assigned to the guest
domain.

The following example shows how to use the equation to determine the number of LDC
endpoints per guest domain when inter-vnet-link=on and you have two virtual disks and
two virtual switches. The first virtual switch has eight virtual networks and assigns four of
them to the domain. The second virtual switch assigns all eight of its virtual networks to the
domain:

2 + (4 x 8) + (8 x 8) + 2 = 100 LDC endpoints

Virtual network devices that you create by using at least the Oracle VM Server for SPARC 3.4
software have inter-vnet-link=auto by default. This feature automatically turns off inter-
vnet-links when the number exceeds the threshold. However, any virtual network devices that
you created with inter-vnet-link=on must be explicitly modified to change inter-vnet-
link=off to reduce the number of LDC channels. For more information, see Inter-Vnet LDC
Channels.

You can still set inter-vnet-link=off to reduce the number of LDC endpoints in the domain
or domains that have the virtual network devices. However, the off property value does not
affect the service domain that has the virtual switch because the service domain still requires
an LDC connection to each virtual network device. When this property is set to off, LDC
channels are not used for inter-vnet communications. Instead, an LDC channel is assigned
only for communication between virtual network devices and virtual switch devices. See the
ldm(8) man page.

Note:

Although disabling the assignment of inter-vnet links reduces the number of LDC
endpoints, it might negatively affect guest-to-guest network performance. This
degradation would occur because all guest-to-guest communications traffic goes
through the virtual switch rather than directly from one guest domain to another
guest domain.

Booting a Large Number of Domains
You can boot the following number of domains depending on your server:

• Up to 256 on Fujitsu SPARC M12 servers per physical partition

• Up to 256 on Fujitsu M10 servers per physical partition

• Up to 128 on SPARC M8 series servers per physical domain

• Up to 128 on SPARC M7 series servers per physical domain

• Up to 128 on SPARC M6 servers per physical domain

• Up to 128 on SPARC M5 servers per physical domain

• Up to 128 on SPARC T8 series servers

• Up to 128 on SPARC T7 series servers

Chapter 18
Booting a Large Number of Domains

18-15

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

• Up to 128 on SPARC T5 servers

• Up to 128 on SPARC T4 servers

If unallocated virtual CPUs are available, assign them to the service domain to help
process the virtual I/O requests. Allocate 4 to 8 virtual CPUs to the service domain
when creating more than 32 domains. In cases where maximum domain
configurations have only a single CPU in the service domain, do not put unnecessary
stress on the single CPU when configuring and using the domain. The virtual switch
(vsw) services should be spread across all the network adapters available in the
machine. For example, if booting 128 domains on a Sun SPARC Enterprise T5240
server, create 4 vsw services, each serving 32 virtual net (vnet) instances. Assigning
more than 32 vnet instances per vsw service could cause hard hangs in the service
domain.

To run the maximum configurations, a machine needs an adequate amount of memory
to support the guest domains. The amount of memory is dependent on your platform
and your OS. See the documentation for your platform, Oracle Solaris 10 8/11
Installation Guide: Planning for Installation and Upgrade, Manually Installing an Oracle
Solaris 11.4 System, and Automatically Installing Oracle Solaris 11.4 Systems.

Memory and swap space usage increases in a guest domain when the vsw services
used by the domain provide services to many virtual networks in multiple domains.
This increase is due to the peer-to-peer links between all the vnet instances
connected to the vsw. The service domain benefits from having extra memory. The
recommended minimum is four Gbytes when running more than 64 domains. Start
domains in groups of 10 or fewer and wait for them to boot before starting the next
batch. The same advice applies to installing operating systems on domains. You can
reduce the number of links by disabling inter-vnet links. See Inter-Vnet LDC Channels.

Cleanly Shutting Down and Power Cycling an Oracle VM
Server for SPARC System

If you have made any configuration changes since last saving an SP configuration to
the SP, before you attempt to power off or power cycle an Oracle VM Server for
SPARC system, make sure that you save the latest configuration that you want to
keep.

How to Power Off a System With Multiple Active Domains
1. Shut down, stop, and unbind all the non-I/O domains.

2. Shut down, stop, and unbind any active I/O domains.

3. Change the domain into init state 5.

primary# shutdown -i 5

Instead of using the shutdown command, you can also use the init 5
command.

How to Power Cycle the System
1. Power off the system.

See How to Power Off a System With Multiple Active Domains.

Chapter 18
Cleanly Shutting Down and Power Cycling an Oracle VM Server for SPARC System

18-16

https://docs.oracle.com/cd/E23823_01/html/E23798/index.html
https://docs.oracle.com/cd/E23823_01/html/E23798/index.html
https://docs.oracle.com/cd/E37838_01/html/E69250/index.html
https://docs.oracle.com/cd/E37838_01/html/E69250/index.html
https://docs.oracle.com/cd/E37838_01/html/E60976/index.html

2. Use the SP to power on the system.

Logical Domains Variable Persistence
Any updates that you make to variables, including the date and time, in the control domain or
in any guest domain persist across a reboot.

If you save a new logical domain configuration to the SP prior to performing a power cycle,
the variable, date, and time updates are preserved across power cycles. So, each time you
update a variable, the date or time, save a new configuration to the SP after you make the
change.

Starting with the SPARC T4, SPARC M5, and SPARC S7 series servers, any updates you
make to variables in the control domain are preserved automatically across a power cycle.
On these servers, you do not need to save a configuration to the SP prior to a power cycle.
On older-generation SPARC servers, only updates made at the OpenBoot prompt are
automatically preserved.

Note:

If you reboot the control domain while all guest domains are unbound and while no
delayed reconfiguration is in progress, the SP performs a power cycle of the
system.

Adjusting the Interrupt Limit
Hardware provides a finite number of interrupts, so Oracle Solaris limits the number of
interrupts that each device can use. The default limit should match the needs of a typical
system configuration but you might need to adjust this value for certain system
configurations.

Note:

These limitations do not apply to servers starting with the SPARC M7, SPARC T7,
and SPARC S7 series server.

When you enable I/O virtualization on a PCIe bus, interrupt hardware resources are assigned
to each I/O domain. Each domain is allotted a finite number of those resources, which might
lead to some interrupt allocation issues. This situation affects only the SPARC T4, SPARC
T5, SPARC M5, and SPARC M6 platforms.

The following warning on the Oracle Solaris console means the interrupt supply was
exhausted while attaching I/O device drivers:

WARNING: ddi_intr_alloc: cannot fit into interrupt pool

Specifically, the limit might need adjustment if the system is partitioned into multiple logical
domains and if too many I/O devices are assigned to any guest domain. Oracle VM Server
for SPARC divides the total number of interrupts into smaller sets and assigns them to guest
domains. If too many I/O devices are assigned to a guest domain, its interrupt supply might

Chapter 18
Logical Domains Variable Persistence

18-17

be too small to provide each device with the default limit of interrupts. Thus, the guest
domain exhausts its interrupt supply before it completely attaches all the drivers.

Some drivers provide an optional callback routine that permits the Oracle Solaris OS
to automatically adjust their interrupts. The default limit does not apply to these drivers.

Use the ::irmpools and ::irmreqs MDB macros to determine how interrupts are
used. The ::irmpools macro shows the overall interrupt supply divided into pools.
The ::irmreqs macro shows which devices are mapped to each pool. For each
device, ::irmreqs shows whether the default limit is enforced by an optional callback
routine, how many interrupts each driver requested, and how many interrupts each
driver has.

Although these macros do not show information about drivers that failed to attach, you
can use the information to calculate the extent to which you can adjust the default limit.
You can force any device that uses more than one interrupt without providing a
callback routine to use fewer interrupts by adjusting the default limit. For such devices,
reduce the default limit to free interrupts that can be used by other devices.

To adjust the default limit, set the ddi_msix_alloc_limit property to a value from 1 to
8 in the /etc/system file. Then, reboot the system for the change to take effect.

For information about correctly creating or updating /etc/system property values,
see Updating Property Values in the /etc/system File.

To maximize performance, start by assigning larger values and decrease the values in
small increments until the system boots successfully without any warnings. Use
the ::irmpools and ::irmreqs macros to measure the adjustment's impact on all
attached drivers.

For example, suppose the following warnings are issued while booting the Oracle
Solaris OS in a guest domain:

WARNING: emlxs3: interrupt pool too full.
WARNING: ddi_intr_alloc: cannot fit into interrupt pool

The ::irmpools and ::irmreqs macros show the following information:

echo "::irmpools" | mdb -k
ADDR OWNER TYPE SIZE REQUESTED RESERVED
00000400016be970 px#0 MSI/X 36 36 36

echo "00000400016be970::irmreqs" | mdb -k
ADDR OWNER TYPE CALLBACK NINTRS NREQ NAVAIL
00001000143acaa8 emlxs#0 MSI-X No 32 8 8
00001000170199f8 emlxs#1 MSI-X No 32 8 8
000010001400ca28 emlxs#2 MSI-X No 32 8 8
0000100016151328 igb#3 MSI-X No 10 3 3
0000100019549d30 igb#2 MSI-X No 10 3 3
0000040000e0f878 igb#1 MSI-X No 10 3 3
000010001955a5c8 igb#0 MSI-X No 10 3 3

The default limit in this example is 8 interrupts per device, which is not enough
interrupts to accommodate attaching the final emlxs3 device to the system. Assuming
that all emlxs instances behave in the same way, emlxs3 probably requested 8
interrupts.

By subtracting the 12 interrupts used by all of the igb devices from the total pool size
of 36 interrupts, 24 interrupts are available for the emlxs devices. Dividing the 24

Chapter 18
Adjusting the Interrupt Limit

18-18

interrupts by 4 suggests that 6 interrupts per device would enable all emlxs devices to attach
with equal performance. So, the following adjustment is added to the /etc/system file:

set ddi_msix_alloc_limit = 6

For information about correctly creating or updating /etc/system property values, see
Updating Property Values in the /etc/system File.

When the system successfully boots without warnings, the ::irmpools and ::irmreqs
macros show the following updated information:

primary# echo "::irmpools" | mdb -k
ADDR OWNER TYPE SIZE REQUESTED RESERVED
00000400018ca868 px#0 MSI/X 36 36 36

echo "00000400018ca868::irmreqs" | mdb -k
ADDR OWNER TYPE CALLBACK NINTRS NREQ NAVAIL
0000100016143218 emlxs#0 MSI-X No 32 8 6
0000100014269920 emlxs#1 MSI-X No 32 8 6
000010001540be30 emlxs#2 MSI-X No 32 8 6
00001000140cbe10 emlxs#3 MSI-X No 32 8 6
00001000141210c0 igb#3 MSI-X No 10 3 3
0000100017549d38 igb#2 MSI-X No 10 3 3
0000040001ceac40 igb#1 MSI-X No 10 3 3
000010001acc3480 igb#0 MSI-X No 10 3 3

Handling an Exhausted Interrupt Supply While Attaching I/O Device Drivers
This following warning on the Oracle Solaris console means that the interrupt supply was
exhausted while attaching I/O device drivers:

WARNING: ddi_intr_alloc: cannot fit into interrupt pool

This limitation applies only to the supported SPARC systems prior to the SPARC M7 series
servers and SPARC T7 series servers.

The hardware provides a finite number of interrupts, so Oracle Solaris limits how many each
device can use. A default limit is designed to match the needs of typical system
configurations, however this limit may need adjustment for certain system configurations.

Specifically, the limit may need adjustment if the system is partitioned into multiple logical
domains and if too many I/O devices are assigned to any guest domain. Oracle VM Server
for SPARC divides the total interrupts into smaller sets given to guest domains. If too many
I/O devices are assigned to a guest domain, its supply might be too small to give each device
the default limit of interrupts. Thus, it exhausts its supply before it completely attaches all the
drivers.

Some drivers provide an optional callback routine which allows Oracle Solaris to
automatically adjust their interrupts. The default limit does not apply to these drivers.

To work around this issue, use the ::irmpools and ::irmreqs MDB macros to determine
how interrupts are used. The ::irmpools macro shows the overall supply of interrupts
divided into pools. The ::irmreqs macro shows which devices are mapped to each pool. For
each device, ::irmreqs shows whether the default limit is enforced by an optional callback
routine, how many interrupts each driver requested, and how many interrupts the driver is
given.

The macros do not show information about drivers that failed to attach. However, the
information that is shown helps calculate the extent to which you can adjust the default limit.

Chapter 18
Adjusting the Interrupt Limit

18-19

Any device that uses more than one interrupt without providing a callback routine can
be forced to use fewer interrupts by adjusting the default limit. Reducing the default
limit below the amount that is used by such a device results in freeing of interrupts for
use by other devices.

To adjust the default limit, set the ddi_msix_alloc_limit property to a value from 1 to
8 in the /etc/system file. Then, reboot the system for the change to take effect.

To maximize performance, start by assigning larger values and decrease the values in
small increments until the system boots successfully without any warnings. Use
the ::irmpools and ::irmreqs macros to measure the adjustment's impact on all
attached drivers.

For example, suppose the following warnings are issued while booting the Oracle
Solaris OS in a guest domain:

WARNING: emlxs3: interrupt pool too full.
WARNING: ddi_intr_alloc: cannot fit into interrupt pool

The ::irmpools and ::irmreqs macros show the following information:

echo "::irmpools" | mdb -k
ADDR OWNER TYPE SIZE REQUESTED RESERVED
00000400016be970 px#0 MSI/X 36 36 36

echo "00000400016be970::irmreqs" | mdb -k
ADDR OWNER TYPE CALLBACK NINTRS NREQ NAVAIL
00001000143acaa8 emlxs#0 MSI-X No 32 8 8
00001000170199f8 emlxs#1 MSI-X No 32 8 8
000010001400ca28 emlxs#2 MSI-X No 32 8 8
0000100016151328 igb#3 MSI-X No 10 3 3
0000100019549d30 igb#2 MSI-X No 10 3 3
0000040000e0f878 igb#1 MSI-X No 10 3 3
000010001955a5c8 igb#0 MSI-X No 10 3 3

The default limit in this example is eight interrupts per device, which is not enough
interrupts to accommodate the attachment of the final emlxs3 device to the system.
Assuming that all emlxs instances behave in the same way, emlxs3 probably
requested 8 interrupts.

By subtracting the 12 interrupts used by all of the igb devices from the total pool size
of 36 interrupts, 24 interrupts are available for the emlxs devices. Dividing the 24
interrupts by 4 suggests that 6 interrupts per device would enable all emlxs devices to
attach with equal performance. So, the following adjustment is added to the /etc/
system file:

set ddi_msix_alloc_limit = 6

When the system successfully boots without warnings, the ::irmpools and ::irmreqs
macros show the following updated information:

echo "::irmpools" | mdb -k
ADDR OWNER TYPE SIZE REQUESTED RESERVED
00000400018ca868 px#0 MSI/X 36 36 36

echo "00000400018ca868::irmreqs" | mdb -k
ADDR OWNER TYPE CALLBACK NINTRS NREQ NAVAIL
0000100016143218 emlxs#0 MSI-X No 32 8 6
0000100014269920 emlxs#1 MSI-X No 32 8 6
000010001540be30 emlxs#2 MSI-X No 32 8 6

Chapter 18
Adjusting the Interrupt Limit

18-20

00001000140cbe10 emlxs#3 MSI-X No 32 8 6
00001000141210c0 igb#3 MSI-X No 10 3 3
0000100017549d38 igb#2 MSI-X No 10 3 3
0000040001ceac40 igb#1 MSI-X No 10 3 3
000010001acc3480 igb#0 MSI-X No 10 3 3

Listing Domain I/O Dependencies
I/O operations for a domain are often provided by another domain such as a service domain
or an I/O domain. For example, a service domain can export a virtual device or a root domain
can provide direct access to a physical device.

Be aware of these implicit I/O dependencies, as an outage in a service domain or a root
domain will result in a service interruption of the dependent domain, as well.

You can use the ldm list-dependencies command to view the I/O dependencies
between domains. In addition to listing the dependencies of a domain, you can invert the
output to show the dependents of a particular domain.

The following list shows the types of I/O dependencies that you can view by using the ldm
list-dependencies command:

VDISK
Dependency created when a virtual disk is connected to a virtual disk backend that has been
exported by a virtual disk server

VNET
Dependency created when a virtual network device is connected to a virtual switch

IOV
Dependency created when an SR-IOV virtual function is associated with an SR-IOV physical
function

The following ldm list-dependencies commands show some of the ways in which you
can view domain dependency information:

• To show detailed domain dependency information, use the -l option.

primary# ldm list-dependencies -l
DOMAIN DEPENDENCY TYPE DEVICE
primary
svcdom
ldg0 primary VDISK primary-vds0/vdisk0
 VNET primary-vsw0/vnet0
 svcdom VDISK svcdom-vds0/vdisk1
 VNET svcdom-vsw0/vnet1
ldg1 primary VDISK primary-vds0/vdisk0
 VNET primary-vsw0/vnet0
 IOV /SYS/MB/NET0/IOVNET.PF0.VF0
 svcdom VDISK svcdom-vds0/vdisk1
 VNET svcdom-vsw0/vnet1
 IOV /SYS/MB/NET2/IOVNET.PF0.VF0

• To show detailed information about dependents grouped by their dependencies, use both
the -l and -r options.

primary# ldm list-dependencies -r -l
DOMAIN DEPENDENT TYPE DEVICE
primary ldg0 VDISK primary-vds0/vdisk0

Chapter 18
Listing Domain I/O Dependencies

18-21

 VNET primary-vsw0/vnet0
 ldg1 VDISK primary-vds0/vdisk0
 VNET primary-vsw0/vnet0
 IOV /SYS/MB/NET0/IOVNET.PF0.VF0
svcdom ldg0 VDISK svcdom-vds0/vdisk1
 VNET svcdom-vsw0/vnet1
 ldg1 VDISK svcdom-vds0/vdisk1
 VNET svcdom-vsw0/vnet1
 IOV /SYS/MB/NET2/IOVNET.PF0.VF0

Enabling the Logical Domains Manager Daemon
The Logical Domains Manager daemon, ldmd, is automatically enabled when the
Oracle VM Server for SPARC software package is installed. Once the daemon is
enabled, you can create, modify, and control the logical domains.

On servers starting with the SPARC T7, SPARC M7, and SPARC S7 series server, the
ILOM interconnect service enables communication between the ldmd daemon and the
service processor (SP). The ilomconfig-interconnect service is enabled by
default. To verify that the ILOM interconnect service is enabled, see How to Verify the
ILOM Interconnect Configuration.

Caution:

Do not disable the ilomconfig-interconnect service. Disabling this
service might prevent the correct operation of logical domains and the OS.

How to Enable the Logical Domains Manager Daemon
Use this procedure to enable the ldmd daemon if it has been disabled.

1. Use the svcadm command to enable the Logical Domains Manager daemon,
ldmd.

svcadm enable ldmd

For more information about the svcadm command, see the svcadm(8) man page.

2. Verify that the Logical Domains Manager is running.

The ldm list command should list all domains that are currently defined on the
system. In particular, the primary domain should be listed and be in the active
state. The following sample output shows that only the primary domain is defined
on the system.

ldm list
NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME
primary active ---c- SP 64 3264M 0.3% 19d 9m

Saving Logical Domains Manager Configuration Data
Before you reinstall the operating system on the control domain, save the Logical
Domains Manager configuration data. This data includes the autosave configuration

Chapter 18
Enabling the Logical Domains Manager Daemon

18-22

https://docs.oracle.com/cd/E88353_01/html/E72487/svcadm-8.html

information in the /var/share/ldomsmanager/autosave-autosave-name directories.

Note:

Each autosave directory includes a timestamp for the last SP configuration update
for the related SP configuration. If you restore the autosave files, the timestamp
might be out of sync. In this case, the restored autosave configurations are shown
in their previous state, either [newer] or up to date.

For more information about autosave configurations, see Managing SP Configurations.

For information about methods you can use to recover the domains you configured, see
Available Configuration Recovery Methods.

How to Save Logical Domains Manager Configuration Data on the Control
Domain

You can use the tar or cpio command to save the entire contents of the directories.

• Save the Logical Domains Manager configuration data in the /var/share/
ldomsmanager directory.

The following example shows how to use the tar command to create the
configdata.tar archive file:

primary# cd /
primary# tar -cvpf configdata.tar var/share/ldomsmanager/

The factory-default Configuration and Disabling Domains
The initial configuration, in which the platform appears as a single system hosting only one
operating system, is called the factory-default configuration. If you want to disable logical
domains, you probably also want to restore the factory-default configuration so that the
system regains access to all resources (CPUs, memory, I/O) that might have been assigned
to other domains.

This section describes how to remove all guest domains, remove all SP configurations, and
revert the SP configuration to the factory default settings.

How to Remove All Guest Domains
1. Stop all domains.

primary# ldm stop-domain -a
2. Unbind all domains except for the primary domain.

primary# ldm unbind-domain ldom

Chapter 18
The factory-default Configuration and Disabling Domains

18-23

Note:

You might be unable to unbind an I/O domain if it is providing services
required by the control domain. In this situation, skip this step.

3. Destroy all domains except for the primary domain.

primary# ldm remove-domain -a

How to Remove All SP Configurations
1. List all the SP configurations that are stored on the service processor (SP).

primary# ldm list-spconfig
2. Remove all SP configurations (config-name) previously saved to the SP

except for the factory-default configuration.

Use the following command for each such SP configuration:

primary# ldm remove-spconfig config-name

After you remove all the SP configurations previously saved to the SP, the
factory-default domain is the next domain to use when the control domain
(primary) is rebooted.

How to Restore the factory-default Configuration
1. Select the factory-default SP configuration.

primary# ldm set-spconfig factory-default
2. Stop the control domain.

primary# shutdown -i5 -g0 -y
3. Perform a power cycle of the system to load the factory-default

configuration.

-> stop /SYS
-> start /SYS

How to Disable the Logical Domains Manager
Disabling the Logical Domains Manager does not stop any running domains, but does
disable the ability to create a new domains, change the configuration of existing
domains, or monitor the state of the domains.

Caution:

If you disable the Logical Domains Manager, this action disables some
services, such as error reporting and power management. In the case of
error reporting, if you are in the factory-default configuration, you can
reboot the control domain to restore error reporting. However, you cannot re-
enable power management. In addition, some system management or
monitoring tools rely on the Logical Domains Manager.

Chapter 18
The factory-default Configuration and Disabling Domains

18-24

• Disable the Logical Domains Manager from the control domain.

primary# svcadm disable ldmd

How to Restore the factory-default Configuration From the Service Processor
You can restore the factory-default configuration from the service processor.

1. Restore the factory-default configuration from the service processor.

-> set /HOST/bootmode config=factory-default
2. Perform a power cycle of the system to load the factory-default configuration.

-> reset /SYS

Logging Oracle VM Server for SPARC Events
The ldm set-logctl, ldm list-logctl, and ldm list-history commands enable
you to specify fine-grained logging characteristics, view the logging settings, and list ldm
command history, respectively. See the ldm(8) man page.

Oracle VM Server for SPARC logs messages to its standard log, /var/svc/log/ldoms-
ldmd:default.log.

This section covers the following topics:

• Controlling Oracle VM Server for SPARC Logging Operations

• Controlling Logging Capabilities by Using SMF

• Viewing Oracle VM Server for SPARC Logging Capabilities

• Viewing Oracle VM Server for SPARC Command History

Controlling Oracle VM Server for SPARC Logging Operations
Use the ldm set-logctl command to specify the fine-grained logging characteristics that
control the messages written to the log. Note that you cannot disable the logging of fatal or
warning messages. See the ldm(8) man page.

Example 18-6 Controlling Event Logging Operations

The following examples show ways in which to use the ldm set-logctl command:

• Enable logging for notice messages, which indicate that an event requires user
attention.

primary# ldm set-logctl notice=on
• Specify the number of messages that the ldm list-history command outputs.

The following command sets the number to 20.

primary# ldm set-logctl history=20
• Reset logging properties to the default values.

primary# ldm set-logctl defaults

Chapter 18
Logging Oracle VM Server for SPARC Events

18-25

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

Example 18-7 Logging Output

Use the ldm set-logctl command to specify the logging characteristics for Oracle
VM Server for SPARC events to be written to the log.

• The following command logs ldm commands:

primary# ldm set-logctl cmd=on

When you configure command logging, the following types of information are
logged:

– The following entry is logged for an ldm list command:

cmd: ldm list
cmd: OK

– The following entry is logged for a badly formed ldm list command:

cmd: ldm list -x
cmd: USAGE

– The following entry is logged for an ldm list command that specifies a non-
existent domain:

cmd: ldm list non-existent-domain-name
cmd: ERROR:
cmd: LDom "non-existent-domain-name" was not found

• The following command logs ldm commands and command responses:

primary# ldm set-logctl cmd=resp

For example, when you issue the ldm list command, the following command
information is logged:

cmd: ldm list
cmd: OK:
cmd: NAME STATE FLAGS CONS VCPU MEMORY UTIL NORM
UPTIME
cmd: primary active -n-cv- SP 16 9248M 0.8% 118d 3h
cmd: ldg1 active -t---- 5000 16 4G 6.2 %
2d 22h 24m

Controlling Logging Capabilities by Using SMF
The ldmd/logctl property specifies the property values that you can also set by
using the ldm set-logctl command. Separate each property with a colon
character (:).

For example, use the svccfg command to set the cmd property value to resp and to
set the debug property value to on. Then, make the changes take affect by refreshing
and restarting the ldmd service as follows:

primary# svccfg -s ldmd setprop ldmd/logctl = "cmd=resp:debug=on"
primary# svcadm refresh ldmd
primary# svcadm restart ldmd

Chapter 18
Logging Oracle VM Server for SPARC Events

18-26

Viewing Oracle VM Server for SPARC Logging Capabilities
The ldm list-logctl command shows you the current behavior of the logging types.

• View settings for all logging types.

primary# ldm list-logctl
• View the settings for the notice and cmd logging types.

primary# ldm list-logctl notice cmd
• View the default settings.

primary# ldm list-logctl -d
• View the logging capability values for all logging types and the number of commands

output by the ldm list-history command.

primary# ldm list-logctl -a

Viewing Oracle VM Server for SPARC Command History
Use the ldm list-history command to view the Oracle VM Server for SPARC command
history log. This log captures ldm commands and commands that are issued through the
XMPP interface. By default, the number of the commands shown by the ldm list-
history command is ten.

The short form of the ldm list-history command is the ldm history command.

To change the number of commands output by the ldm list-history command, use the
ldm set-logctl command to set the history property value. If you set history=0, the
saving of command history is disabled. You can re-enable this feature by setting the history
property to a non-zero value.

Note that enabling and disabling command history is logged in the command log.

Chapter 18
Logging Oracle VM Server for SPARC Events

18-27

A
Using Power Management

This appendix contains information about using power management (PM) on Oracle VM
Server for SPARC systems.

Starting with the Oracle VM Server for SPARC 3.5.0.1 software, Logical Domains Manager-
based PM is disabled by default for Oracle SPARC platforms.

To enable PM, set the ldmd/pm_enabled SMF property value to true. See the ldmd(8) man
page.

If you do not plan to override this new default, perform the following steps before you upgrade
to the Oracle VM Server for SPARC software. Performing these steps ensures that the
system runs at full power and with the highest performance.

Perform the following steps that apply to your SPARC server:

• Up to and including the SPARC M6 and SPARC T5 series servers.

1. Disable Service Processor power management, also known as the platform policy.

Run the following ILOM command as an administrative user:

--> set /SP/powermgmt/ policy=disabled
2. Set the PM administrative control to platform on the control domain as superuser:

primary# poweradm set active_control/administrative-authority=platform
• Starting with the SPARC M7, SPARC T7, and SPARC S7 series servers. Perform one

of the following steps:

– Perform a power cycle of the server.

– Update the server with at least system firmware version 9.8.6.

Using Power Management
To enable power management (PM), you first need to set the PM policy in the Oracle
Integrated Lights Out Manager (ILOM) 3.0 firmware. This section summarizes the information
that you need to be able to use PM with the Oracle VM Server for SPARC software.

For more information about ILOM, see the following:

• “Monitoring Power Consumption” in the Oracle Integrated Lights Out Manager (ILOM) 3.0
CLI Procedures Guide

• Oracle Integrated Lights Out Manager (ILOM) 3.0 Feature Updates and Release Notes

The power policy governs system power usage at any point in time. The following power
policies are supported, assuming that the underlying platform has implemented PM features:

• Disabled. Permits the system to use all the power that is available.

• Performance. Enables one or more of the following PM features that have a negligible
affect on performance:

A-1

https://docs.oracle.com/cd/E88353_01/html/E72487/ldmd-8.html

– CPU core auto-disabling

– CPU clock cycle skip

– CPU dynamic voltage and frequency scaling (DVFS)

– Coherency link scaling

– Oracle Solaris Power Aware Dispatcher (PAD)

• Elastic. Adapts the system power usage to the current utilization level by using
the PM features described in the performance section. For example, the power
state of resources is reduced as utilization decreases.

Note:

The pm_boot_policy property value is shown in some list output. This value
contains internal PM data and is not to be interpreted or modified.

For information about preventing a user to suspend or power down a system from a
system console, see How to Remove Power Management Capability From Users in
Securing Users and Processes in Oracle Solaris 11.4.

Power Management Features
The PM features are as follows:

• CPU core auto-disabling.When the elastic or performance policy is in effect, the
Logical Domains Manager automatically disables a CPU core when all the
hardware threads (strands) on that core are not bound to a domain. This feature is
available only for the SPARC T4 platforms.

• CPU clock cycle skip.When the elastic policy is in effect, the Logical Domains
Manager automatically adjusts the number of clock cycles that execute
instructions on the following CPU resources that are bound to domains:

– Processors (SPARC T4 on domains that run the Oracle Solaris 10 or Oracle
Solaris 11 OS)

– Cores (SPARC M5 only on domains that run the Oracle Solaris 10 OS)

– Core-pairs (SPARC T5 or SPARC M6 only on domains that run the Oracle
Solaris 10 OS)

– SPARC Cache Cluster (SCC) (SPARC T7, SPARC T8, SPARC M7, SPARC
M8, and SPARC S7 series servers only on domains that run the Oracle Solaris
10 OS)

The Logical Domains Manager also applies cycle skipping if the processor, core,
core-pair, or SCC has no bound strands.

• CPU dynamic voltage and frequency scaling (DVFS).When the elastic policy is
in effect, the Logical Domains Manager automatically adjusts the clock frequency
of processors or SCCs that are bound to domains running the Oracle Solaris 10
OS. The Logical Domains Manager also reduces the clock frequency on SPARC
T5, SPARC M5, and SPARC M6 processors that have no bound strands. On
SPARC T7 and SPARC T8 series servers, the clock frequency is reduced on
SCCs. This feature is available only on servers starting with the SPARC T5,
SPARC M5, and SPARC S7 series server.

Appendix A
Using Power Management

A-2

https://docs.oracle.com/cd/E37838_01/html/E61023/rbac-restrictbasic.html
https://docs.oracle.com/cd/E37838_01/html/E61023/rbac-restrictbasic.html

• Coherency link scaling.When the elastic policy is in effect, the Logical Domains
Manager causes the hypervisor to automatically adjust the number of coherency links
that are in use. This feature is only available on SPARC T5-2 systems.

• Power limit.You can set a power limit on servers starting with the SPARC T4, SPARC
M5, and SPARC S7 series server to restrict the power draw of a system. If the power
draw is greater than the power limit, PM uses techniques to reduce power. You can use
the ILOM service processor (SP) to set the power limit.

See the following documents:

– Oracle Integrated Lights Out Manager (ILOM) 3.0 CLI Procedures Guide

– Oracle Integrated Lights Out Manager (ILOM) 3.0 Feature Updates and Release
Notes

You can use the ILOM interface to set a power limit, grace period, and violation action. If
the power limit is exceeded for more than the grace period, the violation action is
performed.

If the current power draw exceeds the power limit, an attempt is made to reduce the
power state of CPUs. If the power draw drops below the power limit, the power state of
those resources is permitted to increase. If the system has the elastic policy in effect, an
increase in the power state of resources is driven by the utilization level.

• Solaris Power Aware Dispatcher (PAD). A guest domain that runs the Oracle Solaris
11.1 OS uses the power-aware dispatcher (PAD) on servers starting with the SPARC T5,
SPARC M5, and SPARC S7 series server to minimize power consumption from idle or
under-utilized resources. PAD, instead of the Logical Domains Manager, adjusts the CPU
or SCC clock cycle skip level and DVFS level.

For instructions on configuring the power policy by using the ILOM 3.0 firmware CLI, see
“Monitoring Power Consumption” in the Oracle Integrated Lights Out Manager (ILOM) 3.0 CLI
Procedures Guide.

Viewing Power-Consumption Data
The Power Management (PM) Observability Module and the ldmpower command enable
you to view CPU thread power-consumption data for your domains.

The PM Observability Module is enabled by default because the ldmd/
pm_observability_enabled Service Management Facility (SMF) property is set to true.
See the ldmd(8) man page.

The ldmpower command has the following options and operands with which you can
customize the power-consumption reporting data:

ldmpower [-ehiprstvx | -o hours | -m minutes] | -c resource [-l domain-name[,domain-
name[,...]]]
[interval [count]]

For information about the options, see the ldmpower(8) man page.

To run this command as a non-privileged user, you must be assigned the LDoms Power Mgmt
Observability rights profile. If you already have been assigned the LDoms Management or
LDoms Review rights profile, you automatically have permission to run the ldmpower
command.

For information about how Oracle VM Server for SPARC uses rights, see Logical Domains
Manager Profile Contents.

Appendix A
Using Power Management

A-3

https://docs.oracle.com/cd/E88353_01/html/E72487/ldmd-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldmpower-8.html

These rights profiles can be assigned directly to users or to a role that is then assigned
to users. When one of these profiles is assigned directly to a user, you must use the
pfexec command or a profile shell, such as pfbash or pfksh, to successfully use
the ldmpower command to view CPU thread power-consumption data. See
Delegating the Management of Logical Domains by Using Rights.

The following examples show how to enable the PM Observability Module and show
ways in which to gather power-consumption data for the CPUs that are assigned to
your domains.

Example A-1 Enabling the Power Management Observability Module

The following command enables the PM Observability Module by setting the ldmd/
pm_observability_enabled property to true if the property is currently set to
false.

svccfg -s ldmd setprop ldmd/pm_observability_enabled=true
svcadm refresh ldmd
svcadm restart ldmd

Example A-2 Using a Profile Shell to Obtain CPU Thread Power-Consumption
Data by Using Roles and Rights Profiles

• The following example shows how to create the ldmpower role with the LDoms
Power Mgmt Observability rights profile, which permits you to run the ldmpower
command.

primary# roleadd -P "LDoms Power Mgmt Observability" ldmpower
primary# passwd ldmpower
New Password:
Re-enter new Password:
passwd: password successfully changed for ldmpower

This command assigns the ldmpower role to the sam user.

primary# usermod -R ldmpower sam

User sam assumes the ldmpower role and can use the ldmpower command. For
example:

$ id
uid=700299(sam) gid=1(other)
$ su ldmpower
Password:
$ pfexec ldmpower
Processor Power Consumption in Watts
DOMAIN 15_SEC_AVG 30_SEC_AVG 60_SEC_AVG
primary 75 84 86
gdom1 47 24 19
gdom2 10 24 26

• The following example shows how to use rights profiles to run the ldmpower
command.

Assign the rights profile to a user.

primary# usermod -P +"LDoms Power Mgmt Observability" sam

The following commands show how to verify that the user is sam and that the All,
Basic Solaris User, and LDoms Power Mgmt Observability rights profiles are in
effect.

Appendix A
Using Power Management

A-4

$ id
uid=702048(sam) gid=1(other)
$ profiles
All
Basic Solaris User
LDoms Power Mgmt Observability
$ pfexec ldmpower
Processor Power Consumption in Watts
DOMAIN 15_SEC_AVG 30_SEC_AVG 60_SEC_AVG
primary 75 84 86
gdom1 47 24 19
gdom2 10 24 26

Example A-3 Viewing Processor Power-Consumption Data

The following examples show how to use the ldmpower to report processor power-
consumption data for your domains.

• The following command shows the 15-second, 30-second, and 60-second rolling average
processor power-consumption data for all domains:

primary# ldmpower
Processor Power Consumption in Watts
DOMAIN 15_SEC_AVG 30_SEC_AVG 60_SEC_AVG
primary 75 84 86
gdom1 47 24 19
gdom2 10 24 26

• The following command shows extrapolated power-consumption data for all the domains:
primary, gdom1, and gdom2.

primary# ldmpower -x
System Power Consumption in Watts
DOMAIN 15_SEC_AVG 30_SEC_AVG 60_SEC_AVG
primary 585/57.47% 701/68.96% 712/70.22%
gdom1 132/12.97% 94/9.31% 94/9.30%
gdom2 298/29.27% 218/21.47% 205/20.22%

• The following command shows the instantaneous processor power-consumption data for
the gdom2 and gdom5 domains. It reports the data every ten seconds for five times.

primary# ldmpower -itl gdom2,gdom5 10 5
Processor Power Consumption in Watts
DOMAIN TIMESTAMP INSTANT
gdom2 2013.05.17 11:14:45 13
gdom5 2013.05.17 11:14:45 24

gdom2 2013.05.17 11:14:55 18
gdom5 2013.05.17 11:14:55 26

gdom2 2013.05.17 11:15:05 9
gdom5 2013.05.17 11:15:05 16

gdom2 2013.05.17 11:15:15 15
gdom5 2013.05.17 11:15:15 19

gdom2 2013.05.17 11:15:25 12
gdom5 2013.05.17 11:15:25 18

• The following command shows the average power-consumption data for the last 12 hours
for all domains. Data is shown at one-hour intervals starting from the last requested
hourly calculation.

Appendix A
Using Power Management

A-5

primary# ldmpower -eto 12
Per domain MINIMUM and MAXIMUM power consumption ever recorded:
primary 2013.05.17 08:53:06 3 Min Processors
primary 2013.05.17 08:40:44 273 Max Processors
gdom1 2013.05.17 09:56:35 2 Min Processors
gdom1 2013.05.17 08:53:06 134 Max Processors
gdom2 2013.05.17 10:31:55 2 Min Processors
gdom2 2013.05.17 08:56:35 139 Max Processors

primary 2013.05.17 08:53:06 99 Min Memory
primary 2013.05.17 08:40:44 182 Max Memory
gdom1 2013.05.17 09:56:35 13 Min Memory
gdom1 2013.05.17 08:53:06 20 Max Memory
gdom2 2013.05.17 10:31:55 65 Min Memory
gdom2 2013.05.17 08:56:35 66 Max Memory

Processor Power Consumption in Watts
12 hour's worth of data starting from 2013.05.16 23:17:02
DOMAIN TIMESTAMP 1 HOUR AVG
primary 2013.05.17 09:37:35 112
gdom1 2013.05.17 09:37:35 15
gdom2 2013.05.17 09:37:35 26

primary 2013.05.17 10:37:35 96
gdom1 2013.05.17 10:37:35 12
gdom2 2013.05.17 10:37:35 21

primary 2013.05.17 11:37:35 85
gdom1 2013.05.17 11:37:35 11
gdom2 2013.05.17 11:37:35 23
...

Appendix A
Using Power Management

A-6

Glossary

API
Application programming interface.

API
Application programming interface.

auditreduce
Command to merge and select audit records from audit trail files (see the auditreduce(8)
man page).

auditing
Tracking changes to the system and identifying the user who made the changes.

authorization
A way in which to determine who has permission to perform tasks and access data by using
Oracle Solaris OS rights.

bge
Broadcom Gigabit Ethernet driver on Broadcom BCM57xx devices.

BSM
Basic Security Module.

bsmconv
Command to enable the BSM (see the bsmconv(8) man page).

bsmunconv
Command to disable the BSM (see the bsmunconv(8) man page).

Glossary-1

https://docs.oracle.com/cd/E88353_01/html/E72487/auditreduce-8.html

CMT
Chip multithreading.

compliance
Determining whether a system's configuration is in compliance with a predefined
security profile.

constraints
To the Logical Domains Manager, constraints are one or more resources you want to
have assigned to a particular domain. You either receive all the resources you ask to
be added to a domain or you get none of them, depending upon the available
resources.

control domain
A privileged domain that creates and manages other logical domains and services by
using the Logical Domains Manager.

DHCP
Dynamic Host Configuration Protocol.

DIO
Direct I/O.

DMA
Direct Memory Access is the ability to directly transfer data between the memory and a
device (for example, a network card) without involving the CPU.

DMP
Dynamic Multipathing (Veritas).

domain
See logical domain.

DPS
Data plane software.

Glossary

Glossary-2

DR
Dynamic reconfiguration.

drd
Oracle Solaris OS dynamic reconfiguration daemon for Logical Domains Manager (see the
drd(8) man page).

DRM
Dynamic resource management.

DS
Domain Services module.

DVD
Digital versatile disc.

EFI
Extensible firmware interface.

ETM
Encoding Table Management module.

FC_AL
Fiber Channel Arbitrated Loop.

FMA
Fault Management Architecture.

fmd
Oracle Solaris OS fault manager daemon (see the fmd(8) man page).

fmthard
Command to populate label on hard disks (see the fmthard(8) man page).

Glossary

Glossary-3

https://docs.oracle.com/cd/E88353_01/html/E72487/drd-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/fmd-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/fmthard-8.html

format
Disk partitioning and maintenance utility (see the format(8) man page).

Gb
Gigabit.

guest domain
Uses services from the I/O and service domains and is managed by the control
domain.

GLDv3
Generic LAN Driver version 3.

hardening
Modifying Oracle Solaris OS configuration to improve security.

hypervisor
Firmware layer interposed between the operating system and the hardware layer.

I/O
Input/output devices, such as internal disks and PCIe controllers and their attached
adapters and devices.

I/O domain
Domain that has direct ownership of and direct access to physical I/O devices and that
shares those devices to other logical domains in the form of virtual devices.

IB
Infiniband.

IDE
Integrated Drive Electronics.

IDR
Interim Diagnostics Release.

Glossary

Glossary-4

https://docs.oracle.com/cd/E88353_01/html/E72487/format-8.html

ILOM
Integrated Lights Out Manager, a dedicated system of hardware and supporting software that
enables you to manage your server independently of the operating system.

ioctl
Input/output control call.

IPMP
Internet Protocol Network Multipathing.

kaio
Kernel asynchronous input/output.

KB
Kilobyte.

KU
Kernel update.

LAN
Local-area network.

LDAP
Lightweight Directory Access Protocol.

LDC
Logical domain channel.

ldm
Logical Domains Manager utility (see the ldm(8) man page).

ldmd
Logical Domains Manager daemon.

Glossary

Glossary-5

https://docs.oracle.com/cd/E88353_01/html/E72487/ldm-8.html

lofi
Loopback file.

logical domain
A virtual machine comprised of a discrete logical grouping of resources, which has its
own operating system and identity within a single computer system. Also called a
domain.

Logical Domains Manager
A CLI to create and manage logical domains and allocate resources to domains.

MAC
Media access control address, which Logical Domains Manager can automatically
assign or you can assign manually.

MAU
Modular Arithmetic Unit.

MB
Megabyte.

MD
Machine description in the server database.

mem, memory
Memory unit – default size in bytes, or specify gigabytes (G), kilobytes (K), or
megabytes (M). Virtualized memory of the server that can be allocated to guest
domains.

metadb
Command to create and delete replicas of the Solaris Volume Manager metadevice
state database (see the metadb(8) man page).

metaset
Command to configure disk sets (see the metaset(8) man page).

Glossary

Glossary-6

https://docs.oracle.com/cd/E88353_01/html/E72487/metadb-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/metaset-8.html

mhd
Command to perform multihost disk control operations (see the mhd(4I) man page).

MIB
Management Information Base.

minimizing
Installing the minimum number of core Oracle Solaris OS package necessary.

MMF
Multimode fiber.

MMU
Memory management unit.

mpgroup
Multipathing group name for virtual disk failover.

mtu
Maximum transmission unit.

NIS
Network Information Services.

NIU
Network Interface Unit (Oracle's Sun SPARC Enterprise T5120 and T5220 servers).

NTS
Network terminal server.

NVRAM
Non-volatile random-access memory.

nxge
Driver for an NIU 10Gb Ethernet adapter.

Glossary

Glossary-7

OID
Object identifier, which is a sequence of numbers that uniquely identifies each object in
a MIB.

OVF
Open Virtualization Format.

P2V
Oracle VM Server for SPARC Physical-to-Virtual Conversion Tool. See Chapter 19,
Oracle VM Server for SPARC Physical-to-Virtual Conversion Tool in Oracle VM Server
for SPARC 3.3 Administration Guide.

PA
Physical address.

PCI
Peripheral component interconnect bus.

PCI-X
PCI Extended bus.

PCIe
PCI EXPRESS bus.

pcpu
Physical CPU.

physical domain
The scope of resources that are managed by a single Oracle VM Server for SPARC
instance. A physical domain might be a complete physical system as is the case of
supported SPARC T-series and SPARC S-series servers. Or, it might be either the
entire system or a subset of the system as is the case of supported SPARC M-series
servers.

physical function
A PCI function that supports the SR-IOV capabilities as defined in the SR-IOV
specification. A physical function contains the SR-IOV capability structure and is used
to manage the SR-IOV functionality. Physical functions are fully featured PCIe
functions that can be discovered, managed, and manipulated like any other PCIe

Glossary

Glossary-8

https://docs.oracle.com/cd/E62357_01/html/E62358/ldomsp2v.html
https://docs.oracle.com/cd/E62357_01/html/E62358/ldomsp2v.html
https://docs.oracle.com/cd/E62357_01/html/E62358/ldomsp2v.html

device. Physical functions have full configuration resources, and can be used to configure or
control the PCIe device.

physio
Physical input/output.

PICL
Platform Information and Control Library.

picld
PICL daemon (see the picld(8) man page).

PM
Power management of virtual CPUs and memory.

praudit
Command to print contents of an audit trail file (see the praudit(8) man page).

PRI
Priority.

RA
Real address.

RAID
Redundant Array of Inexpensive Disks, which enables you to combine independent disks into
a logical unit.

RPC
Remote Procedure Call.

SAN
Storage Area Network.

Glossary

Glossary-9

https://docs.oracle.com/cd/E88353_01/html/E72487/picld-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/praudit-8.html

SASL
Simple Authentication and Security Layer.

SAX
Simple API for XML parser, which traverses an XML document. The SAX parser is
event-based and used mostly for streaming data.

SCSA
Sun Common SCSI Architecture.

SCSI HBA
SCSI Host Bus Adapter.

service domain
Logical domain that provides devices, such as virtual switches, virtual console
connectors, and virtual disk servers, to other logical domains.

service processor (SP)
The SP, also known as the system controller (SC), monitors and runs the physical
machine.

SMA
System Management Agent.

SMF
Service Management Facility.

SMI
Structure of Management Information, which defines and groups managed objects for
use by a MIB.

SNMP
Simple Network Management Protocol.

SP configuration
Name of the logical domain SP configuration that is saved on the service processor.

Glossary

Glossary-10

SR-IOV
Single root I/O virtualization.

SSH
Secure Shell.

ssh
Secure Shell command (see the ssh(1) man page).

sshd
Secure Shell daemon (see the sshd(8) man page).

SunVTS
Sun Validation Test Suite.

svcadm
Manipulates service instances (see the svcadm(8) man page).

system controller (SC)
Also see service processor.

TLS
Transport Layer Security.

UDP
User Diagram Protocol.

unicast
Network communication that takes place between a single sender and a single receiver.

uscsi
User SCSI command interface (see the uscsi(4I) man page).

UTP
Unshielded twisted pair.

Glossary

Glossary-11

https://docs.oracle.com/cd/E88353_01/html/E37839/ssh-1.html
https://docs.oracle.com/cd/E88353_01/html/E72487/sshd-8.html
https://docs.oracle.com/cd/E88353_01/html/E72487/svcadm-8.html
https://docs.oracle.com/cd/E88353_01/html/E37851/uscsi-4i.html

var
Variable.

VBSC
Virtual blade system controller.

vcc, vconscon
Virtual console concentrator service with a specific port range to assign to guest
domains.

vcons, vconsole
Virtual console for accessing system-level messages. A connection is achieved by
connecting to the vconscon service in the control domain at a specific port.

vcpu
Virtual central processing unit. Each core in a server is represented as a virtual CPU.

vdc
Virtual disk client.

vdisk
A virtual disk is a generic block device associated with different types of physical
devices, volumes, or files.

vds, vdiskserver
Virtual disk server enables you to import virtual disks into a logical domain.

vdsdev, vdiskserverdevice
Virtual disk server device is exported by the virtual disk server. The device can be an
entire disk, a slice on a disk, a file, or a disk volume.

virtual function
A PCI function that is associated with a physical function. A virtual function is a
lightweight PCIe function that shares one or more physical resources with the physical
function and with other virtual functions that are associated with the same physical
function. Virtual functions are only permitted to have configuration resources for its
own behavior.

Glossary

Glossary-12

VNIC
A VNIC is a virtual NIC. When configured by using the dladm create-vnic command, a
virtual NIC behaves like a physical NIC. You can configure a virtual NIC on an SR-IOV virtual
function and on a virtual network device (VNET). See Creating Virtual NICs on SR-IOV Virtual
Functions and Configuring Virtual NICs on Virtual Network Devices.

vldc
Virtual logical domain channel service.

vldcc
Virtual logical domain channel client.

vnet
Virtual network device implements a virtual Ethernet device and communicates with other
vnet devices in the system by using the virtual network switch (vswitch).

vNTS
Virtual network terminal service.

vntsd
Oracle Solaris OS virtual network terminal server daemon for domain consoles (see the
vntsd(8) man page).

volfs
Volume Management file system (see the volfs(4FS) man page).

vsw, vswitch
Virtual network switch that connects the virtual network devices to the external network and
also switches packets between them.

VTOC
Volume table of contents.

VxDMP
Veritas Dynamic Multipathing.

Glossary

Glossary-13

https://docs.oracle.com/cd/E88353_01/html/E72487/vntsd-8.html

VxVM
Veritas Volume Manager.

XFP
eXtreme Fast Path.

XML
Extensible Markup Language.

XMPP
Extensible Messaging and Presence Protocol.

ZFS
Zettabyte File System.

zpool
ZFS storage pool (see the zpool(8) man page).

ZVOL
ZFS Volume Emulation Driver.

Glossary

Glossary-14

https://docs.oracle.com/cd/E88353_01/html/E72487/zpool-8.html

Index

Symbols
/etc/system file

updating, 18-2

A
accessing

Fibre Channel virtual functions from a guest
domain, 8-52

adding
Ethernet virtual functions to an I/O domain,

8-22
Fibre Channel virtual functions to an I/O

domain, 8-50
InfiniBand virtual functions to a root domain,

8-37
InfiniBand virtual functions to an I/O domain,

8-34
memory to a domain, 15-16
virtual disks, 11-4

adjusting
interrupt limit, 18-17

allocating
CPU resources, 15-3
resources, 15-3
world-wide names for Fibre Channel virtual

functions, 8-43
alternate MAC address

updating dynamically, 13-45
anonymous resources

removing, 15-15
applying

max-cores constraint, 15-4
whole-core constraint, 15-4

assigning
endpoint device to an I/O domain, 9-1
MAC addresses, 13-17

automatically, 13-17
manually, 13-17

master domain, 18-7
PCIe buses to a root domain, 7-1
PCIe endpoint device, 7-3
physical resources to domains, 15-12
rights profiles, 2-1, 2-2

assigning (continued)
roles, 2-1
roles to users, 2-2
VLANs, 13-33
VLANs in an Oracle Solaris 10 guest domain,

13-34
VLANs in an Oracle Solaris 11 guest domain,

13-33
VLANs in an Oracle Solaris 11 service

domain, 13-33
authorization

ldm subcommands, 2-4
autorecovery policy for SP configurations, 16-3,

16-4

B
back ends, 11-13
backward compatibility

exporting volumes, 11-12
blacklisting

Fault Management Architecture (FMA), 17-1
faulty hardware resources, 17-1

boot disk image
cloning, 11-25

booting an I/O domain by using an Ethernet SR-
IOV virtual functions, 8-24

breaks
Oracle Solaris OS, 18-5

bus assignment
dynamic, 7-2
static, 7-2

C
cancel-reconf subcommand, 15-2
CD images

exporting, 11-18
CD or DVD image

exporting from service domain to guest
domain, 11-19

exporting multiple times, 11-19
changing

changes to PCIe hardware, 9-7

Index-1

checking
domain configuration, 15-7

CLI, 1-5
cloning

boot disk image, 11-25
coherency link scaling, A-2
combining

consoles into a single group, 5-7
command history

viewing Oracle VM Server for SPARC, 18-27
command-line interface, 1-5
configuring

control domain, 3-3
control domain with CPU whole cores, 15-9
DLMP aggregations, 13-25, 13-26
domain dependencies, 18-6
domain with CPU whole cores, 15-8
existing domain with CPU whole cores, 15-9
IPMP in a service domain, 13-23
IPMP in an Oracle VM Server for SPARC

environment, 13-22
jumbo frames, 13-40
NAT, 13-20
performance register access, 15-30
physical link status updates, 13-24
routing, 13-20
SSL certificates for migration, 14-3

Oracle Solaris 11, 14-3
system with hard partitions, 15-6
virtual disk multipathing, 11-16
virtual network devices into an IPMP group,

13-22
virtual SCSI HBA multipathing, 12-16
virtual switch to enable NAT to an Oracle

Solaris 11 domain, 13-21
ZFS pool in a service domain, 11-23

connecting
to a guest domain console over the network,

5-6
console groups

using, 5-7
consoles

combining into a single group, 5-7
logging, 5-6

control domain, 1-4
configuring, 3-3
decreasing memory, 15-17
memory reconfiguration, 15-17
rebooting, 3-5, 18-5

control domain CPU and memory resources
decreasing, 3-4

controlling
logging capabilities with SMF, 18-26
logging of Oracle VM Server for SPARC

events, 18-25

controlling (continued)
recovery mode, 17-6

CPU allocation, 15-3
CPU clock cycle skip, A-2
CPU core disable, A-2
CPU DR, 15-6, 15-10
CPU dynamic resource management, 15-11,

15-12
CPU dynamic voltage and frequency scaling

(DVFS), A-2
CPU mapping, 18-9
CPU power management, 15-12
CPU resources

allocating, 15-3
CPU weighted mean utilization

dynamic resource management, 15-12
CPU whole cores

configuring a domain with, 15-8
configuring an existing domain with, 15-9
configuring the control domain with, 15-9
creating a domain with, 15-8
rebinding system with, 15-12
rebooting system with, 15-12

creating
default services on the control domain, 3-1
disk image snapshot, 11-24
disk image snapshot of an unconfigured

system, 11-26
domain with CPU whole cores, 15-8
Ethernet virtual functions, 8-14
Fibre Channel virtual functions, 8-44
guest domains, 4-1
I/O domain Ethernet virtual functions, 8-26
InfiniBand virtual functions, 8-30
PVLANs, 13-37
roles, 2-2
root domain from entire PCIe bus, 7-3
VNICs on Ethernet virtual functions, 8-26

D
daemons

drd, 15-1
ldmd, 1-5
vntsd, 1-6

decreasing
control domain CPU and memory resources,

3-4
memory on the control domain, 15-17

default services on the control domain
creating, 3-1

delayed reconfiguration, 15-2, 15-18
delegating administrative privileges

rights profiles, 2-1
dependency cycles, 18-8

Index

Index-2

destroying, 8-14
Ethernet virtual functions, 8-14, 8-18
Fibre Channel virtual functions, 8-48
InfiniBand virtual functions, 8-32

detecting
MAC address collisions, 13-19

determining
domain configurations, 18-10

device-specific properties
Ethernet SR-IOV, 8-25

direct I/O (DIO)
limitations, 9-4
managing devices on non-primary root

domains, 10-5
planning, 9-5
requirements, 9-3

disabling
domains, 18-23
Logical Domains Manager, 18-24

disk images
creating a snapshot, 11-24
creating snapshot of an unconfigured

system, 11-26
storing by using a ZFS file, 11-24
storing by using a ZFS volume, 11-24
storing with ZFS, 11-23

disk slice, 11-13
DLMP aggregations

configuring, 13-25, 13-26
limitations, 13-26

domain configurations
checking, 15-7
determining, 18-10
persistent, 1-6
restoring, 16-6
restoring from an XML file with ldm add-

domain, 16-6
restoring from an XML file with ldm init-

system, 16-6
saving, 16-5

domain console
controlling access to, 5-1

domain listing
parseable, 18-7

domain migration restrictions, 14-4
domain migrations, 14-8

active, 14-9
bound or inactive domain, 14-16
canceling in progress, 14-21
delayed reconfiguration for an active domain,

14-14
failure message, 14-22
from OpenBoot PROM or in kernel debugger,

14-15
monitoring progress, 14-20

domain migrations (continued)
non-interactive, 14-22
obtaining status, 14-22
operation, 14-2
operations on other domains, 14-14
performing a dry run, 14-9
performing non-interactive, 14-9
recovering from failed, 14-21
requirements for CPUs, 14-10
requirements for memory, 14-12
requirements for PCIe endpoint devices,

14-13, 14-17
requirements for physical I/O devices, 14-13
requirements for SR-IOV virtual functions,

14-13, 14-17
requirements for virtual I/O devices, 14-13,

14-17
security, 14-3
software compatibility, 14-2
when active domain has power management

elastic policy in effect, 14-14
domain resources

listing, 15-25
domains

configuring a failure policy for dependencies,
18-7

configuring dependencies, 18-6
definition, 1-2
dependencies, 18-6
dependency cycles, 18-8
disabling, 18-23
marked as degraded, 17-6
migrating, 14-1
provisioning by using a clone, 11-25
roles, 1-4
service, 1-5
stopping a heavily loaded, 18-3
types of, 1-4

DR, 15-1
DVD images

exporting, 11-18
dynamic path selection, 11-17
dynamic reconfiguration (DR), 15-1, 15-18

CPUs, 15-6, 15-10
memory, 15-16
partial memory requests, 15-17

dynamic reconfiguration daemon (drd), 15-1
dynamic resource management, 15-6

CPU weighted mean utilization, 15-12
CPUs, 15-11
using, 15-22

E
effective largest page size, 14-12

Index

Index-3

enabling
I/O virtualization, 8-10
I/O virtualization for a PCIe bus, 10-4
ILOM interconnect service, 3-7
Logical Domains Manager daemon, 18-22
power management observability module,

A-3
virtual network terminal server daemon

(vntsd), 3-5
errors

troubleshooting through CPU and memory
address mapping, 18-9

Ethernet SR-IOV
device-specific properties, 8-13, 8-25
limitations, 8-13
network configuration, 8-24
planning, 8-13
requirements, 8-13

evacuated I/O resources, 17-7
events

controlling logging of Oracle VM Server for
SPARC, 18-25

logging Oracle VM Server for SPARC, 18-25
viewing Oracle VM Server for SPARC, 18-27

exporting
back ends

comparison, 11-12
back ends, summary, 11-13
CD images, 11-18
CD or DVD image from service domain to

guest domain, 11-19
CD or DVD image multiple times, 11-19
disk slice

directly, 11-13
indirectly, 11-13

DVD images, 11-18
file as a full disk, 11-10
file or volume as a full disk, 11-10
file or volume as a single-slice disk, 11-12
files, 11-10
files and volumes as virtual disks

guidelines, 11-13
lofi, 11-13

ISO image from service domain to guest
domain, 11-20

ISO images, 11-18
physical disk as a virtual disk, 11-8
physical disk slice as a virtual disk, 11-9
slice 2, 11-10
virtual disk back end, 11-4
volumes, 11-10

backward compatibility, 11-12
ZFS volume as a full disk, 11-11
ZFS volume as a single-slice disk, 11-12

F
factory-default configuration

restoring, 18-24
restoring from the service processor, 18-25

failure policy
configuring for a domain dependency, 18-7

Fault Management Architecture (FMA)
blacklisting, 17-1

faulty hardware resources
blacklisting, 17-1
recovering domains with, 17-2
unconfiguring, 17-1

Fibre Channel world-wide names for virtual
functions

allocating, 8-43
FMA, 17-1
format

virtual disks, 11-23

G
guest domain console

connecting to over the network, 5-6
guest domains, 1-4

creating, 4-1
migrating, 14-22
migrating and renaming, 14-22
removing all, 18-23
starting, 4-1

guidelines
exporting files and volumes as virtual disks,

11-13
I/O domain creation, 6-1

H
hard partitions

configuring systems with, 15-6
hardware errors

troubleshooting, 17-1
hardware largest page size, 14-12
hypervisor

definition, 1-2
Logical Domains Manager and, 1-2

I
I/O domains, 6-1, 8-1, 9-1

booting by assigning an SR-IOV virtual
function, 8-24

creating by assigning an endpoint device, 9-1
creating by assigning an SR-IOV virtual

function, 8-1

Index

Index-4

I/O domains (continued)
creation guidelines, 6-1
migration limitations, 6-1
PCIe bus, 6-1
using PCIe SR-IOV virtual functions, 8-1

I/O resources
marking as evacuated, 17-7

I/O virtualization
enabling, 8-10
enabling for a PCIe bus, 10-4

identifying
InfiniBand functions, 8-39

ILOM interconnect configuration
verifying, 3-6

ILOM interconnect service
enabling, 3-7

InfiniBand SR-IOV
requirements, 8-30

installing
guest domain when install server in a VLAN,

13-34
Oracle Solaris OS from a DVD, 4-4
Oracle Solaris OS from an ISO file, 4-6
Oracle Solaris OS in guest domains, 4-4
using JumpStart (Oracle Solaris 10), 4-7

inter-vnet LDC channels, 13-7
PVLANs, 13-34

interrupt limit
adjusting, 18-17

IPMP
configuring in a service domain, 13-23
configuring in an Oracle VM Server for

SPARC environment, 13-22
configuring virtual network devices into a

group, 13-22
ISO images

exporting, 11-18
exporting from service domain to guest

domain, 11-20

J
jumbo frames

configuring, 13-40
JumpStart

using to install the Oracle Solaris 10 OS on a
guest domain, 4-7

L
largest page size

hardware, 14-12
LDC, 1-2

ldmconsole
connecting to guest domain console over the

network, 5-6
ldmd, 1-5
limitations

direct I/O, 9-4
DLMP aggregations, 13-26
Ethernet SR-IOV, 8-13
Fibre Channel virtual functions, 8-42
non-primary root domains, 10-3
physical network bandwidth, 13-13
SR-IOV, 8-6

link aggregation
using with a virtual switch, 13-30

link-based IPMP
using, 13-23

listing
domain resources, 15-25
InfiniBand virtual functions, 8-38
PVLAN information, 13-37
resource constraints, 15-29
resources as machine-readable output,

15-25
lofi

exporting files and volumes as virtual disks,
11-13

logging
Oracle VM Server for SPARC events, 18-25

logging capabilities
controlling with SMF, 18-26

logical domain channels (LDC), 1-2
inter-vnet, 13-7

logical domain channels (LDCs), 18-12
Logical Domains Manager, 1-2, 1-4

daemon (ldmd), 1-5
disabling, 18-24

Logical Domains Manager configuration data
saving, 18-22

Logical Domains Manager daemon
enabling, 18-22

LUN0
simulating a, 12-21

M
MAC address

detecting collisions, 13-19
MAC addresses

assigned to domains, 13-18
assigning, 13-17
assigning automatically, 13-17
assigning manually, 13-17
automatic assignment algorithm, 13-18
detecting duplicates, 13-18

Index

Index-5

MAC addresses (continued)
managing with Oracle VM Server for SPARC,

13-17
machine-readable output

listing resources, 15-25
managing

direct I/O devices on non-primary root
domains, 10-5

MAC addresses
with Oracle VM Server for SPARC, 13-17

MAC addresses with Oracle VM Server for
SPARC, 13-17

physical devices in a virtual SAN, 12-23
physical resources on the control domain,

15-15
resource groups, 15-21
SP configurations, 16-1
virtual disks, 11-3
virtual SCSI HBAs, 12-9

mapping CPU and memory addresses
troubleshooting, 18-9

master domain
assigning, 18-7

max-cores constraint
applying, 15-4

maximizing
virtual network performance, 13-4, 13-5

memory
adding to a domain, 15-16
alignment, 15-18
decreasing on the control domain, 15-17
mapping, 18-10
removing from a domain, 15-17
setting sizes for a domain, 15-18

memory DR, 15-16
memory dynamic reconfiguration

operations on active domains, 15-18
operations on bound domains, 15-18
partial requests, 15-17

memory dynamic reconfiguration (DR), 15-16
memory reconfiguration

control domain, 15-17
memory size requirements, 4-4
migrating

domains, 14-1
guest domain, 14-22
guest domain and renaming, 14-22
using SSL certificates, 14-22

migration
non-interactive, 14-22

migration limitations
I/O domain, 6-1
PVLANs, 13-34

missing hardware resources
recovering domains with, 17-2

modifying
Ethernet SR-IOV virtual function properties,

8-20
Fibre Channel virtual function properties,

8-50
SP configuration autorecovery policy, 16-4
virtual disk options, 11-5
virtual disk timeout option, 11-5

multipathing, 11-14, 12-14

N
NAT

configuring, 13-20
network booting

I/O domain by using an Ethernet SR-IOV
virtual functions, 8-24

network configuration
Ethernet SR-IOV, 8-24

network device configurations
viewing, 13-10

network device statistics
viewing, 13-10

network devices
network bandwidth limit, setting, 13-13

network interface name, 13-15
non-interactive domain migration, 14-22
non-primary root domain

restrictions, 10-2
non-primary root domains, 10-1

assigning a PCIe endpoint device, 10-1
assigning a PCIe SR-IOV virtual function,

10-1
limitations, 10-3
managing direct I/O devices, 10-5
overview, 10-1

O
obtaining

domain migration status, 14-22
Oracle Solaris 11 networking, 13-2
Oracle Solaris 11 networking-specific feature

differences, 13-53
Oracle Solaris OS

breaks, 18-5
installing on a guest domain, 4-4

from a DVD, 4-4
from an ISO file, 4-6

network interface name (Oracle Solaris 11)
finding, 13-9

operating with Oracle VM Server for SPARC,
18-3

Oracle VM Server for SPARC
troubleshooting, 1-6

Index

Index-6

Oracle VM Server for SPARC (continued)
using with the service processor, 18-5

Oracle VM Server for SPARC MIB, 1-6
for Oracle VM Server for SPARC, 1-6

P
parseable domain listing

showing, 18-7
viewing, 18-7

PCIe bus, 6-1
changing the hardware, 9-7
enabling I/O virtualization, 8-10

PCIe SR-IOV virtual functions, 8-11
planning for, 8-11

performance
maximizing for virtual networks, 13-4, 13-5
requirements for maximizing virtual networks,

13-4
performance register access

setting, 15-30
physical CPU number

determining the corresponding virtual CPU,
18-10

physical devices, 1-4, 1-5
physical devices in a virtual SAN

managing, 12-23
physical disk, 11-8
physical disk LUN, 11-8
physical disk slice, 11-9
physical disk slices

exporting as a virtual disk, 11-9
physical disks

exporting as a virtual disk, 11-8
physical link status updates

configuring, 13-24
physical machine, 1-2
physical network bandwidth

controlling used by a virtual network device,
13-13

limitations, 13-13
setting limit, 13-14

physical resources
assigning to domains, 15-12
managing on the control domain, 15-15
restrictions on managing, 15-15

physical-bindings constraint
removing, 15-14

planning
direct I/O (DIO), 9-5
Ethernet SR-IOV, 8-13
for PCIe SR-IOV virtual functions, 8-11

port VLAN ID (PID), 13-32
power cycle

performing on a server, 18-4

power limit, A-2
power management (PM), A-2

CPUs, 15-12
features, A-2
observability module

enabling, A-3
using, 15-22, A-1

power-consumption data
viewing, A-3

primary domain, 1-4
private VLANs (PVLANs)

using, 13-34
processor power-consumption data

viewing, A-3
properties

Ethernet SR-IOV device-specific, 8-13
Fibre Channel virtual function device-specific

properties, 8-42
provisioning

domain by using a clone, 11-25
PVLANs

creating, 13-37
inter-vnet LDC channels, 13-34
listing information, 13-37
migration limitations, 13-34
removing, 13-37
requirements, 13-35
restrictions, 13-34
updating, 13-37

R
rebinding

system with CPU whole cores, 15-12
rebooting

control domain, 3-5
root domains, 8-61, 9-6
system with CPU whole cores, 15-12

recovering
domains with faulty hardware resources,

17-2
domains with missing hardware resources,

17-2
from failed domain migrations, 14-21

recovery mode, 17-1
controlling, 17-6

removing, 8-23
all guest domains, 18-23
all SP configurations, 18-24
anonymous resources, 15-15
Ethernet virtual functions from an I/O domain,

8-23
Fibre Channel virtual functions from an I/O

domain, 8-51

Index

Index-7

removing (continued)
InfiniBand virtual functions to a root domain,

8-38
InfiniBand virtual functions to an I/O domain,

8-36
memory from a domain, 15-17
physical-bindings constraint, 15-14
PVLANs, 13-37
virtual disks, 11-5

requirements
direct I/O, 9-3
Ethernet SR-IOV, 8-13
Fibre Channel virtual functions, 8-42
for dynamic SR-IOV, 8-9
for maximizing virtual network performance,

13-4
for static SR-IOV, 8-8
InfiniBand SR-IOV, 8-30
PVLANs, 13-35
resource groups, 15-22
SR-IOV, 8-3

resource allocation, 15-3
resource configuration, 1-6
resource constraints

listing, 15-29
resource groups

managing, 15-21
requirements, 15-22
restrictions, 15-22

resource management
dynamic, 15-6

resources, 1-2
allocating, 15-3
definition, 1-2
flag definitions in output, 15-26

restoring
domain configurations, 16-6

from an XML file with ldm add-domain,
16-6

from an XML file with ldm init-
system, 16-6

factory-default configuration, 18-24
factory-default configuration from the

service processor, 18-25
SP configurations, 16-2

restrictions
PVLANs, 13-34
resource groups, 15-22

rights profiles
assigning, 2-1, 2-2

ro option
virtual disk back end, 11-6

roles
assigning, 2-1
assigning to users, 2-2

roles (continued)
creating, 2-2
domains, 1-4

root domains, 1-4, 7-1
creating, 7-3
creating by assigning PCIe buses, 7-1
rebooting, 8-61, 9-6

routing
configuring, 13-20

S
saving

domain configurations, 16-5
Logical Domains Manager configuration data,

18-22
SP configurations, 16-2

SCSI and virtual disk, 11-22
SCSI and virtual SCSI HBAs, 12-21
server

performing power cycle on, 18-4
service domains, 1-4, 1-5

configuring a ZFS pool, 11-23
service processor (SP)

monitoring and running physical machines,
1-2

restoring factory-default configuration,
18-25

using Oracle VM Server for SPARC with,
18-5

setting
memory sizes for a domain, 15-18
physical network bandwidth limit, 13-14
power limit, A-2

simulating
a LUN0, 12-21

slice 2
exporting, 11-10

slice option
virtual disk back end, 11-7

SMF
controlling logging capabilities with, 18-26

Solaris power aware dispatcher (PAD), A-2
Solaris Volume Manager

using, 11-28
using with virtual disks, 11-27

SP configuration
selecting to boot, 1-6

SP configurations
autorecovery policy, 16-4
autorecovery policy for, 16-3
degraded, 17-5
managing, 16-1
removing all, 18-24
restoring, 16-2

Index

Index-8

SP configurations (continued)
restoring with autosave, 16-2
saving, 16-2

SR-IOV, 8-1
dynamic, 8-9
Ethernet device-specific properties, 8-13
function types, 8-1
limitations, 8-6
requirements, 8-3
requirements for dynamic, 8-9
requirements for static, 8-8
static, 8-7

SR-IOV virtual functions, 8-11
SSL certificates

migrating, 14-22
SSL certificates for migration

configuring, 14-3
Oracle Solaris 11, 14-3

starting
guest domains, 4-1

stopping
heavily loaded domain, 18-3

storing
disk image by using a ZFS file, 11-24
disk image by using a ZFS volume, 11-24
disk images with ZFS, 11-23

SUNWldm package, 1-5
system controller, 1-2

T
telnet

connecting to guest domain console over the
network, 5-6

timeout option
virtual disks, 11-5

troubleshooting
mapping CPU and memory addresses, 18-9
Oracle VM Server for SPARC, 1-6

trusted virtual networks, 13-46

U
unconfiguring

faulty hardware resources, 17-1
universally unique identifiers (UUID), 18-11
updating

/etc/system file, 18-2
alternate MAC addresses dynamically, 13-45
PVLANs, 13-37

using
link-based IPMP, 13-23
verified boot, 2-5
VLANs, 13-33

utilization statistics, 15-26

V
verified boot

using, 2-5
verify

presence of virtual SCSI HBAs, 12-11
verifying

ILOM interconnect configuration, 3-6
viewing

network device configurations, 13-10
network device statistics, 13-10
Oracle VM Server for SPARC command

history, 18-27
Oracle VM Server for SPARC events, 18-27
parseable domain listing, 18-7
power-consumption data, A-3
processor power-consumption data, A-3

virtinfo
virtual domain information, 18-12

virtual CPU
determining the corresponding physical CPU

number, 18-10
virtual device identifier, 13-15
virtual devices

I/O, 1-5
virtual console concentrator (vcc), 1-6
virtual disk client (vdc), 1-5
virtual disk service (vds), 1-5
virtual network (vnet), 1-5
virtual switch (vsw), 1-5

virtual disks, 11-1
adding, 11-4
appearance, 11-5
back end, 11-8
back end excl option, 11-7
back end exporting, 11-4
back end exporting as a full disk, 11-6
back end exporting as a single-slice disk,

11-6
back end options, 11-6
back end ro option, 11-6
back end slice option, 11-7
configuring multipathing, 11-16
device name, 11-3
disk identifier, 11-3
exporting from a physical disk, 11-8
exporting from a physical disk slice, 11-9
format command and, 11-23
issues, 11-29
managing, 11-3
modifying options, 11-5
modifying timeout option, 11-5
multipathing, 11-14, 11-15
removing, 11-5

Index

Index-9

virtual disks (continued)
SCSI and, 11-22
timeout, 11-15, 11-21
using with Solaris Volume Manager, 11-27
using with volume managers, 11-26
using with VxVM, 11-28
using with ZFS, 11-23, 11-28

virtual domain information
API, 18-12
virtinfo, 18-12

virtual function
Ethernet network booting an I/O domain by

using an, 8-24
virtual functions, 8-11

accessing Fibre Channel from a guest
domain, 8-52

adding Ethernet to an I/O domain, 8-22
adding Fibre Channel to an I/O domain, 8-50
adding InfiniBand to a root domain, 8-37
adding InfiniBand to an I/O domain, 8-34
creating an I/O domain, 8-26
creating Ethernet, 8-14
creating Ethernet VNICs on, 8-26
creating Fibre Channel, 8-44
creating InfiniBand, 8-30
destroying Ethernet, 8-14, 8-18
destroying Fibre Channel, 8-48
destroying InfiniBand, 8-32
device-specific Fibre Channel properties,

8-42
Ethernet, 8-12, 8-14
Fibre Channel, 8-41
Fibre Channel limitations, 8-42
Fibre Channel requirements, 8-42
InfiniBand, 8-30
listing InfiniBand, 8-38
modifying Ethernet properties, 8-20
modifying Fibre Channel properties, 8-50
removing Fibre Channel from an I/O domain,

8-51
removing from an I/O domain, 8-23
removing InfiniBand to a root domain, 8-38
removing InfiniBand to an I/O domain, 8-36
using to create an I/O domain, 8-27

virtual input/output, 1-5
virtual machine, 1-2
virtual network, 13-1

maximizing performance, 13-4, 13-5
virtual network devices, 13-7

controlling amount of physical network
bandwidth, 13-13

virtual network terminal server daemon (vntsd),
1-6

enabling, 3-5

virtual SCSI HBA and virtual SAN configurations,
12-13

virtual SCSI HBAs
appearance, 12-13
configuring multipathing, 12-16
device name, 12-9
identifier, 12-9
managing, 12-9
multipathing, 12-14
SCSI and, 12-21
timeout, 12-12, 12-20
verify presence of, 12-11

virtual switch, 13-5
configuring to enable NAT to an Oracle

Solaris 11 domain, 13-21
VLAN

assigning, 13-33
assigning in an Oracle Solaris 10 guest

domain, 13-34
assigning in an Oracle Solaris 11 guest

domain, 13-33
assigning in an Oracle Solaris 11 service

domain, 13-33
using, 13-33

VLAN ID (VID), 13-32
VLAN tagging

using, 13-31
VNICs

creating SR-IOV virtual functions, 8-26
volume managers

using with virtual disks, 11-26
VxVM

using, 11-29
using with virtual disks, 11-28

W
whole-core constraint

applying, 15-4

Z
ZFS

storing disk images with, 11-23
using with virtual disks, 11-28
virtual disks and, 11-23

ZFS file
storing a disk image by using a, 11-24

ZFS pool
configuring in a service domain, 11-23

ZFS volume
exporting as a full disk, 11-11
exporting as a single-slice disk, 11-12
storing a disk image by using a, 11-24

Index

Index-10

ZFS volumes
exporting a virtual disk back end multiple

times, 11-4

ZFS volumes (continued)

Index

Index-11

	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	1 Overview of the Oracle VM Server for SPARC Software
	About Oracle VM Server for SPARC and Oracle Solaris OS Versions
	Hypervisor and Logical Domains
	Logical Domains Manager
	Roles for Domains
	Command-Line Interface
	Virtual Input/Output
	Virtual Network
	Virtual Storage
	Virtual Console

	Resource Configuration
	Persistent Configurations

	Oracle VM Server for SPARC Management Information Base
	Oracle VM Server for SPARC Troubleshooting

	2 Oracle VM Server for SPARC Security
	Delegating the Management of Logical Domains by Using Rights
	Using Rights Profiles and Roles
	Managing User Rights Profiles
	How to Assign a Rights Profile to a User

	Assigning Roles to Users
	How to Create a Role and Assign the Role to a User

	Logical Domains Manager Profile Contents

	Using Verified Boot

	3 Setting Up Services and the Control Domain
	Output Messages
	Creating Default Services
	How to Create Default Services

	Initial Configuration of the Control Domain
	Configuring the Control Domain
	How to Configure the Control Domain

	Decreasing the CPU and Memory Resources From the Control Domain's Initial factory-default Configuration
	How to Decrease the CPU and Memory Resources From the Control Domain's Initial factory-default Configuration

	Rebooting to Use Domains
	How to Reboot

	Enabling the Virtual Network Terminal Server Daemon
	How to Enable the Virtual Network Terminal Server Daemon

	Verifying That the ILOM Interconnect Is Enabled
	How to Verify the ILOM Interconnect Configuration
	How to Re-Enable the ILOM Interconnect Service

	4 Setting Up Guest Domains
	Creating and Starting a Guest Domain
	How to Create and Start a Guest Domain

	Installing the Oracle Solaris OS on a Guest Domain
	Memory Size Requirements
	How to Install the Oracle Solaris OS on a Guest Domain From a DVD
	How to Install the Oracle Solaris OS on a Guest Domain From an Oracle Solaris ISO File
	How to Use the Oracle Solaris JumpStart Feature on an Oracle Solaris 10 Guest Domain

	5 Using Domain Consoles
	Controlling Access to a Domain Console by Using Rights
	How to Control Access to All Domain Consoles by Using Roles
	How to Control Access to All Domain Consoles by Using Rights Profiles
	How to Control Access to a Single Console by Using Roles
	How to Control Access to a Single Console by Using Rights Profiles

	Using Domain Console Logging
	How to Enable or Disable Console Logging
	Service Domain Requirements for Domain Console Logging

	Connecting to a Guest Domain Console Over the Network
	Using Console Groups
	How to Combine Multiple Consoles Into One Group

	6 Configuring I/O Domains
	I/O Domain Overview
	General Guidelines for Creating an I/O Domain

	7 Creating a Root Domain by Assigning PCIe Buses
	Creating a Root Domain by Assigning PCIe Buses
	Static PCIe Bus Assignment
	Dynamic PCIe Bus Assignment
	Dynamic PCIe Bus Assignment Requirements

	How to Create a Root Domain by Assigning a PCIe Bus

	8 Creating an I/O Domain by Using PCIe SR-IOV Virtual Functions
	SR-IOV Overview
	SR-IOV Hardware and Software Requirements
	Current SR-IOV Feature Limitations
	Static SR-IOV
	Static SR-IOV Software Requirements

	Dynamic SR-IOV
	Dynamic SR-IOV Software Requirements
	Dynamic SR-IOV Configuration Requirements
	Destroying All Virtual Functions and Returning the Slots to the Root Domain Does Not Restore the Root Complex Resources

	Enabling I/O Virtualization
	How to Enable I/O Virtualization for a PCIe Bus

	Planning for the Use of PCIe SR-IOV Virtual Functions
	Using Ethernet SR-IOV Virtual Functions
	Ethernet SR-IOV Hardware Requirements
	Ethernet SR-IOV Limitations
	Planning for the Use of Ethernet SR-IOV Virtual Functions
	Ethernet Device-Specific and Network-Specific Properties
	Creating Ethernet Virtual Functions
	How to Create an Ethernet SR-IOV Virtual Function

	Destroying Ethernet Virtual Functions
	How to Destroy an Ethernet SR-IOV Virtual Function

	Modifying Ethernet SR-IOV Virtual Functions
	How to Modify Ethernet SR-IOV Virtual Function Properties

	Adding and Removing Ethernet SR-IOV Virtual Functions on I/O Domains
	How to Add an Ethernet SR-IOV Virtual Function to an I/O Domain
	How to Remove an Ethernet Virtual SR-IOV Function From an I/O Domain

	Advanced SR-IOV Topics: Ethernet SR-IOV
	Advanced Network Configuration for Virtual Functions
	Booting an I/O Domain by Using an SR-IOV Virtual Function
	SR-IOV Device-Specific Properties
	Creating Virtual NICs on SR-IOV Virtual Functions

	Using an SR-IOV Virtual Function to Create an I/O Domain
	How to Create an I/O Domain by Assigning an SR-IOV Virtual Function to It

	Using InfiniBand SR-IOV Virtual Functions
	InfiniBand SR-IOV Hardware Requirements
	Creating and Destroying InfiniBand Virtual Functions
	How to Create an InfiniBand Virtual Function
	How to Destroy an InfiniBand Virtual Function

	Adding and Removing InfiniBand Virtual Functions on I/O Domains
	How to Add an InfiniBand Virtual Function to an I/O Domain
	How to Remove an InfiniBand Virtual Function From an I/O Domain

	Adding and Removing InfiniBand Virtual Functions to Root Domains
	How to Add an InfiniBand Virtual Function to a Root Domain
	How to Remove an InfiniBand Virtual Function From a Root Domain

	Advanced SR-IOV Topics: InfiniBand SR-IOV
	Listing InfiniBand SR-IOV Virtual Functions
	Identifying InfiniBand SR-IOV Functions

	Using Fibre Channel SR-IOV Virtual Functions
	Fibre Channel SR-IOV Hardware Requirements
	Fibre Channel SR-IOV Requirements and Limitations
	Fibre Channel Device Class-Specific Properties
	World-Wide Name Allocation for Fibre Channel Virtual Functions

	Creating Fibre Channel SR-IOV Virtual Functions
	How to Create a Fibre Channel SR-IOV Virtual Function

	Destroying Fibre Channel SR-IOV Virtual Functions
	How to Destroy a Fibre Channel SR-IOV Virtual Function

	Modifying Fibre Channel SR-IOV Virtual Functions
	How to Modify Fibre Channel SR-IOV Virtual Function Properties

	Adding and Removing Fibre Channel SR-IOV Virtual Functions on I/O Domains
	How to Add a Fibre Channel SR-IOV Virtual Function to an I/O Domain
	How to Remove a Fibre Channel SR-IOV Virtual Function From an I/O Domain

	Advanced SR-IOV Topics: Fibre Channel SR-IOV
	Accessing a Fibre Channel Virtual Function in a Guest Domain

	I/O Domain Resiliency
	Resilient I/O Domain Requirements
	I/O Domain Resiliency Limitations
	Configuring Resilient I/O Domains
	How to Configure a Resilient I/O Domain

	Example – Using Resilient and Non-Resilient Configurations

	Replacing PCIe Hardware on a System With an IOR Configuration
	Rebooting the Root Domain With Non-Resilient I/O Domains Configured

	9 Creating an I/O Domain by Using Direct I/O
	Creating an I/O Domain by Assigning PCIe Endpoint Devices
	Direct I/O Hardware and Software Requirements
	Current Direct I/O Feature Limitations
	Planning PCIe Endpoint Device Configuration
	Rebooting the Root Domain With PCIe Endpoints Configured
	Making PCIe Hardware Changes
	Minimizing Guest Domain Outages When Removing a PCIe Card
	How to Minimize Guest Domain Outages When Removing a PCIe Card

	Creating an I/O Domain by Assigning a PCIe Endpoint Device
	How to Create an I/O Domain by Assigning a PCIe Endpoint Device

	10 Using Non-primary Root Domains
	Non-primary Root Domains Overview
	Non-primary Root Domain Requirements
	Non-primary Root Domain Limitations
	Non-primary Root Domain Examples
	Enabling I/O Virtualization for a PCIe Bus
	Managing Direct I/O Devices on Non-primary Root Domains
	Managing SR-IOV Virtual Functions on Non-primary Root Domains

	11 Using Virtual Disks
	Introduction to Virtual Disks
	Virtual Disk Identifier and Device Name
	Managing Virtual Disks
	How to Add a Virtual Disk
	How to Export a Virtual Disk Back End Multiple Times
	How to Change Virtual Disk Options
	How to Change the Timeout Option
	How to Remove a Virtual Disk

	Virtual Disk Appearance
	Full Disk
	Single-Slice Disk

	Virtual Disk Back End Options
	Read-only (ro) Option
	Exclusive (excl) Option
	Slice (slice) Option

	Virtual Disk Back End
	Physical Disk or Disk LUN
	How to Export a Physical Disk as a Virtual Disk
	Physical Disk Slice
	How to Export a Physical Disk Slice as a Virtual Disk
	How to Export Slice 2
	File and Volume Exporting
	File or Volume Exported as a Full Disk
	How to Export a File as a Full Disk
	How to Export a ZFS Volume as a Full Disk
	File or Volume Exported as a Single-Slice Disk
	How to Export a ZFS Volume as a Single-Slice Disk
	Exporting Volumes and Backward Compatibility
	Summary of How Different Types of Back Ends Are Exported
	Guidelines for Exporting Files and Disk Slices as Virtual Disks
	Using the Loopback File (lofi) Driver
	Directly or Indirectly Exporting a Disk Slice

	Configuring Virtual Disk Multipathing
	Virtual Disk Multipathing and NFS
	Virtual Disk Multipathing and Virtual Disk Timeout
	How to Configure Virtual Disk Multipathing
	Dynamic Path Selection

	CD, DVD and ISO Images
	How to Export a CD or DVD From the Service Domain to the Guest Domain
	How to Export an ISO Image From the Control Domain to Install a Guest Domain

	Virtual Disk Timeout
	Virtual Disk and SCSI
	Virtual Disk and the format Command
	Using ZFS With Virtual Disks
	Configuring a ZFS Pool in a Service Domain
	Storing Disk Images With ZFS
	Examples of Storing Disk Images With ZFS

	Creating a Snapshot of a Disk Image
	Using Clone to Provision a New Domain
	Cloning a Boot Disk Image
	How to Create a Snapshot of a Disk Image of an Unconfigured System

	Using Volume Managers in an Oracle VM Server for SPARC Environment
	Using Virtual Disks With Volume Managers
	Using Virtual Disks With Solaris Volume Manager
	Using Virtual Disks When VxVM Is Installed

	Using Volume Managers With Virtual Disks
	Using ZFS With Virtual Disks
	Using Solaris Volume Manager With Virtual Disks
	Using VxVM With Virtual Disks

	Virtual Disk Issues
	In Certain Conditions, a Guest Domain's Solaris Volume Manager Configuration or Metadevices Can Be Lost
	How to Find a Guest Domain's Solaris Volume Manager Configuration or Metadevices

	Oracle Solaris Boot Disk Compatibility

	12 Using Virtual SCSI Host Bus Adapters
	Introduction to Virtual SCSI Host Bus Adapters
	Operational Model for Virtual SCSI HBAs
	Discovering SCSI Devices
	Discovering SCSI Tape Devices
	Protocol Version Combinations
	The Hidden Device at LUN0
	Virtual SCSI HBA Subsystem Limitations
	Virtual SCSI HBA Subsystem Does Not Support All SCSI Enclosure Services Devices
	Cannot Execute a Virtual SCSI HBA and a Virtual SAN in the Same Domain

	Virtual SCSI HBA Identifier and Device Name
	Managing Virtual SCSI HBAs
	Obtaining Physical SCSI HBA Information
	Creating a Virtual Storage Area Network
	Creating a Virtual SCSI Host Bus Adapter
	Verifying the Presence of a Virtual SCSI HBA
	Setting the Virtual SCSI HBA Timeout Option
	Removing a Virtual SCSI Host Bus Adapter
	Removing a Virtual Storage Area Network
	Adding or Removing a LUN

	Appearance of Virtual LUNs in a Guest Domain
	Virtual SCSI HBA and Virtual SAN Configurations
	Configuring Virtual SCSI HBA Multipathing
	How to Configure Virtual SCSI HBA Multipathing
	How to Manage Multipathing for Virtual SCSI HBAs in a Guest Domain
	How to Enable Multipathing for Virtual SCSI HBAs in a Service Domain
	How to Disable Multipathing for Virtual SCSI HBAs on Service Domains

	Booting From a Virtual LUN
	Installing a Virtual LUN
	Virtual SCSI HBA Timeout
	Virtual SCSI HBA and SCSI
	Simulating a LUN0
	Managing the Physical Devices in a Virtual Storage Area Network
	Obtaining Worldwide Numbers

	13 Using Virtual Networks
	Introduction to a Virtual Network
	Oracle Solaris 11 Networking Overview
	Maximizing Virtual Network Performance
	Hardware and Software Requirements
	Configuring Your Domains to Maximize the Performance of Your Virtual Network

	Virtual Switch
	Virtual Network Device
	Inter-Vnet LDC Channels
	Determining What Networks Are Present in Logical Domains
	Finding the Oracle Solaris 11 Network Interface Name

	Viewing Network Device Configurations and Statistics
	Controlling the Amount of Physical Network Bandwidth That Is Consumed by a Virtual Network Device
	Network Bandwidth Limitations
	Setting the Network Bandwidth Limit

	Virtual Device Identifier and Network Interface Name
	Managing MAC Addresses With Oracle VM Server for SPARC
	Assigning MAC Addresses Automatically or Manually
	Range of MAC Addresses Assigned to Domains
	Automatic Assignment Algorithm
	Duplicate MAC Address Detection

	Detecting MAC Address Collisions

	Configuring a Virtual Switch and the Service Domain for NAT and Routing
	How to Set Up a Virtual Switch to Enable NAT to Domains (Oracle Solaris 11)

	Configuring IPMP in an Oracle VM Server for SPARC Environment
	Configuring Virtual Network Devices Into an IPMP Group in an Oracle Solaris 11 Domain
	Configuring and Using IPMP in the Service Domain
	Using Link-Based IPMP in Oracle VM Server for SPARC Virtual Networking
	How to Configure Physical Link Status Updates

	Configuring Link-Based IPMP

	Configuring DLMP Aggregations Over Virtual Network Devices
	DLMP Aggregation Limitations
	How to Configure a DLMP Aggregation in a Domain

	Using Link Aggregation With a Virtual Switch
	Using VLAN Tagging
	Port VLAN ID
	VLAN ID
	Assigning and Using VLANs
	How to Assign and Use VLANs in an Oracle Solaris 11 Service Domain
	How to Assign and Use VLANs in an Oracle Solaris 11 Guest Domain
	How to Assign and Use VLANs in an Oracle Solaris 10 Guest Domain

	How to Install a Guest Domain When the Install Server Is in a VLAN

	Using Private VLANs
	PVLAN Requirements
	Configuring PVLANs
	Creating a PVLAN
	Viewing PVLAN Information

	Tuning Packet Throughput Performance
	Configuring Jumbo Frames
	How to Configure Virtual Network and Virtual Switch Devices to Use Jumbo Frames

	Using Virtual NICs on Virtual Networks
	Configuring Virtual NICs on Virtual Network Devices
	Dynamically Updating Alternate MAC Addresses

	Creating Oracle Solaris 11 Zones in a Domain

	Using Trusted Virtual Networks
	Trusted Virtual Network Requirements and Restrictions
	Configuring Trusted Virtual Networks
	Viewing Trusted Virtual Network Information

	Using a Virtual Switch Relay
	How to Set the Virtual Switch Mode to Remote
	Virtual Switch Relay Failure Cases

	Oracle Solaris 11 Networking-Specific Feature Differences

	14 Migrating Domains
	Introduction to Domain Migration
	Overview of a Migration Operation
	Software Compatibility
	Security for Migration Operations
	Configuring SSL Certificates for Migration
	How to Configure SSL Certificates for Migration

	Removing SSL Certificates

	Domain Migration Restrictions
	Version Restrictions for Migration
	Cross-CPU Restrictions for Migration

	Migration Restrictions for Setting perf-counters
	Forced Cross-CPU Migration Can Fail if Global Performance Counters are Enabled

	Migration Restrictions for Setting linkprop=phys-state
	Migration Restrictions for Domains That Have a Large Number of Virtual Devices
	Migration Restrictions for Silicon Secured Memory Servers
	Migration Restrictions for Running cputrack During a Migration

	Migrating a Domain
	Performing a Dry Run
	Performing Non-Interactive Migrations

	Migrating an Active Domain
	Domain Migration Requirements for CPUs
	Migration Requirements for Memory
	Migration Requirements for Physical I/O Devices
	Migration Requirements for Virtual I/O Devices
	Migrating While a Delayed Reconfiguration Is Active
	Migrating While an Active Domain Has the Power Management Elastic Policy in Effect
	Operations on Other Domains
	Migrating a Domain From the OpenBoot PROM or a Domain That Is Running in the Kernel Debugger
	Migrating a Domain That Uses Named Resources
	Migrating a Domain That Uses Kernel Zones

	Migrating Bound or Inactive Domains
	Migration Requirements for Virtual I/O Devices
	Migration Requirements for PCIe Endpoint Devices
	Migration Requirements for PCIe SR-IOV Virtual Functions

	Migrating a Domain That Has an SR-IOV Ethernet Virtual Function Assigned
	How to Prepare a Domain With an SR-IOV Ethernet Virtual Function for Migration
	How to Prepare a Target Machine to Receive a Domain With an SR-IOV Ethernet Virtual Function

	Monitoring a Migration in Progress
	Canceling a Migration in Progress
	Recovering From a Failed Migration
	Saving Post-Migration SP Configurations Automatically
	Migration Examples

	15 Managing Resources
	Resource Reconfiguration
	Dynamic Reconfiguration
	Delayed Reconfiguration
	Only One CPU Configuration Operation Is Permitted to Be Performed During a Delayed Reconfiguration

	Resource Allocation
	CPU Allocation
	How to Apply the Whole-Core Constraint
	How to Apply the Max-Cores Constraint
	Interactions Between the Whole-Core Constraint and Other Domain Features
	CPU Dynamic Reconfiguration
	Dynamic Resource Management

	Configuring the System With Hard Partitions
	Checking the Configuration of a Domain
	Configuring a Domain With CPU Whole Cores
	How to Create a New Domain With CPU Whole Cores
	How to Configure an Existing Domain With CPU Whole Cores
	How to Configure the Primary Domain With CPU Whole Cores

	Interaction of Hard Partitioned Systems With Other Oracle VM Server for SPARC Features
	CPU Dynamic Reconfiguration
	CPU Dynamic Resource Management
	CPU Weighted Mean Utilization
	Power Management
	Domain Reboot or Rebind

	Assigning Physical Resources to Domains
	How to Remove the physical-bindings Constraint
	How to Remove All Non-Physically Bound Resources
	Managing Physical Resources on the Control Domain
	Restrictions for Managing Physical Resources on Domains

	Using Memory Dynamic Reconfiguration
	Adding Memory
	Removing Memory
	Partial Memory DR Requests
	Memory Reconfiguration of the Control Domain
	Decrease the Control Domain's Memory

	Dynamic and Delayed Reconfiguration
	Memory Alignment
	Memory DR Examples

	Using Resource Groups
	Resource Group Requirements and Restrictions

	Using Power Management
	Using Dynamic Resource Management
	Listing Domain Resources
	Machine-Readable Output
	Flag Definitions
	Utilization Statistic Definition
	Viewing Various Lists
	Listing Constraints
	Listing Resource Group Information

	Using Perf-Counter Properties
	Resource Management Issues
	Removing a Large Number of CPUs From a Domain Might Fail
	Sometimes a Block of Dynamically Added Memory Can Be Dynamically Removed Only as a Whole

	16 Managing SP Configurations
	Managing SP Configurations
	Available Configuration Recovery Methods
	Restoring Configurations By Using Autosave
	Autorecovery Policy
	How to Modify the Autorecovery Policy

	Saving Domain Configurations
	Restoring Domain Configurations
	How to Restore a Domain Configuration From an XML File (ldm add-domain)
	How to Restore a Domain Configuration From an XML File (ldm init-system)

	Addressing Service Processor Connection Problems
	Configuration Management Issues
	init-system Does Not Restore Named Core Constraints for Guest Domains From Saved XML Files
	After Dropping Into factory-default, Recovery Mode Fails if the System Boots From a Different Device Than the One Booted in the Previously Active Configuration
	Guest Domain eeprom Updates Are Lost if an ldm add-spconfig Operation Is Not Complete
	Trying to Connect to Guest Domain Console While It Is Being Bound Might Cause Input to Be Blocked

	17 Handling Hardware Errors
	Hardware Error-Handling Overview
	Using FMA to Blacklist or Unconfigure Faulty Resources
	Recovering Domains After Detecting Faulty or Missing Resources
	Recovery Mode Hardware and Software Requirements
	Degraded Configuration
	Controlling Recovery Mode

	Marking Domains as Degraded
	Marking I/O Resources as Evacuated

	18 Performing Other Administration Tasks
	Entering Names in the CLI
	Updating Property Values in the /etc/system File
	How to Add or Modify a Tuning Property Value

	Stopping a Heavily Loaded Domain Can Time Out
	Operating the Oracle Solaris OS With Oracle VM Server for SPARC
	OpenBoot Firmware Not Available After the Oracle Solaris OS Has Started
	Performing a Power Cycle of a Server
	Starting a Domain
	Stopping a Domain
	Result of Oracle Solaris OS Breaks
	Results From Rebooting the Control Domain

	Using Oracle VM Server for SPARC With the Service Processor
	Configuring Domain Dependencies
	Domain Dependency Examples
	Dependency Cycles

	Determining Where Errors Occur by Mapping CPU and Memory Addresses
	CPU Mapping
	Memory Mapping
	Example of CPU and Memory Mapping

	Using Universally Unique Identifiers
	Virtual Domain Information Command and API
	Using Logical Domain Channels
	Booting a Large Number of Domains
	Cleanly Shutting Down and Power Cycling an Oracle VM Server for SPARC System
	How to Power Off a System With Multiple Active Domains
	How to Power Cycle the System

	Logical Domains Variable Persistence
	Adjusting the Interrupt Limit
	Handling an Exhausted Interrupt Supply While Attaching I/O Device Drivers

	Listing Domain I/O Dependencies
	Enabling the Logical Domains Manager Daemon
	How to Enable the Logical Domains Manager Daemon

	Saving Logical Domains Manager Configuration Data
	How to Save Logical Domains Manager Configuration Data on the Control Domain

	The factory-default Configuration and Disabling Domains
	How to Remove All Guest Domains
	How to Remove All SP Configurations
	How to Restore the factory-default Configuration
	How to Disable the Logical Domains Manager
	How to Restore the factory-default Configuration From the Service Processor

	Logging Oracle VM Server for SPARC Events
	Controlling Oracle VM Server for SPARC Logging Operations
	Controlling Logging Capabilities by Using SMF
	Viewing Oracle VM Server for SPARC Logging Capabilities
	Viewing Oracle VM Server for SPARC Command History

	A Using Power Management
	Using Power Management
	Power Management Features
	Viewing Power-Consumption Data

	Glossary
	API
	API
	auditreduce
	auditing
	authorization
	bge
	BSM
	bsmconv
	bsmunconv
	CMT
	compliance
	constraints
	control domain
	DHCP
	DIO
	DMA
	DMP
	domain
	DPS
	DR
	drd
	DRM
	DS
	DVD
	EFI
	ETM
	FC_AL
	FMA
	fmd
	fmthard
	format
	Gb
	guest domain
	GLDv3
	hardening
	hypervisor
	I/O
	I/O domain
	IB
	IDE
	IDR
	ILOM
	ioctl
	IPMP
	kaio
	KB
	KU
	LAN
	LDAP
	LDC
	ldm
	ldmd
	lofi
	logical domain
	Logical Domains Manager
	MAC
	MAU
	MB
	MD
	mem, memory
	metadb
	metaset
	mhd
	MIB
	minimizing
	MMF
	MMU
	mpgroup
	mtu
	NIS
	NIU
	NTS
	NVRAM
	nxge
	OID
	OVF
	P2V
	PA
	PCI
	PCI-X
	PCIe
	pcpu
	physical domain
	physical function
	physio
	PICL
	picld
	PM
	praudit
	PRI
	RA
	RAID
	RPC
	SAN
	SASL
	SAX
	SCSA
	SCSI HBA
	service domain
	service processor (SP)
	SMA
	SMF
	SMI
	SNMP
	SP configuration
	SR-IOV
	SSH
	ssh
	sshd
	SunVTS
	svcadm
	system controller (SC)
	TLS
	UDP
	unicast
	uscsi
	UTP
	var
	VBSC
	vcc, vconscon
	vcons, vconsole
	vcpu
	vdc
	vdisk
	vds, vdiskserver
	vdsdev, vdiskserverdevice
	virtual function
	VNIC
	vldc
	vldcc
	vnet
	vNTS
	vntsd
	volfs
	vsw, vswitch
	VTOC
	VxDMP
	VxVM
	XFP
	XML
	XMPP
	ZFS
	zpool
	ZVOL

	Index

