Exemples d'utilisation de Select AI

Explorez l'intégration de Select AI d'Oracle avec divers fournisseurs d'IA pris en charge pour générer, exécuter et expliquer les énoncés SQL à partir des invites de langage naturel ou clavarder avec le LLM.

Exemple : Sélectionner des actions d'intelligence artificielle

Ces exemples illustrent les actions Select AI courantes.

L'exemple suivant illustre des actions telles que runsql (valeur par défaut), showsql, narrate, chat, explainsql, feedback et summarize que vous pouvez effectuer avec SELECT AI. Ces exemples utilisent le schéma sh avec le fournisseur d'intelligence artificielle et les attributs de profil spécifiés dans la fonction DBMS_CLOUD_AI.CREATE_PROFILE. Utilisez les actions Sélectionner l'IA après avoir défini votre profil d'IA à l'aide de la procédure DBMS_CLOUD_AI.SET_PROFILE dans la session courante.

Pour générer un sommaire de votre texte, utilisez SELECT AI SUMMARIZE <TEXT>.

SQL> select ai how many customers exist;
 
CUSTOMER_COUNT
--------------
         55500
 
SQL> select ai showsql how many customers exist;
 
RESPONSE
----------------------------------------------------
SELECT COUNT(*) AS total_customers
FROM SH.CUSTOMERS
 
 
SQL> select ai narrate how many customers exist;
 
RESPONSE
------------------------------------------------------
There are a total of 55,500 customers in the database.
 
SQL> select ai chat how many customers exist;
 
RESPONSE
--------------------------------------------------------------------------------
It is impossible to determine the exact number of customers that exist as it con
stantly changes due to various factors such as population growth, new businesses
, and customer turnover. Additionally, the term "customer" can refer to individu
als, businesses, or organizations, making it difficult to provide a specific num
ber.


SQL> select ai explainsql how many customers in San Francisco are married;
 
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS customer_count
FROM SH.CUSTOMERS AS c
WHERE c.CUST_STATE_PROVINCE = 'San Francisco' AND c.CUST_MARITAL_STATUS = 'Married';
 
Explanation:
- We use the 'SH' table alias for the 'CUSTOMERS' table for better readability.
- The query uses the 'COUNT(*)' function to count the number of rows that match the given conditions.
- The 'WHERE' clause is used to filter the results:
  - 'c.CUST_STATE_PROVINCE = 'San Francisco'' filters customers who have 'San Francisco' as their state or province.
  - 'c.CUST_MARITAL_STATUS = 'Married'' filters customers who have 'Married' as their marital status.
The result of this query will give you the count of customers in San Francisco who are married, using the column alias 'customer_count' for the result.
 
Remember to adjust the table and column names based on your actual schema if they differ from the example.
 
Feel free to ask if you have more questions related to SQL or database in general.

-- Feedback on SQL Text
-- Negative feedback example:
SQL > select ai feedback for query "select ai showsql how many watch histories in total", please use sum instead of count;
-- Positive feedback example:
SQL > select ai feedback for query "select ai showsql how many watch histories in total", the sql query generated is correct;
 
-- Feedback on SQL ID
-- Negative feedback example:
SQL > select ai feedback please use sum instead of count for sql_id  1v1z68ra6r9zf;
-- Positive feedback example:
SQL > select ai feedback sql query result is correct for sql_id  1v1z68ra6r9zf;
 
-- If not specified, use default LASTAI SQL
-- To use default LASTAI sql, make sure that set server output off;
-- Negative feedback example:
SQL > select ai feedback please use ascending sorting for ranking;
-- Positive feedback example:
SQL > select ai feedback the result is correct;

SQL> SELECT AI SUMMARIZE
Like countless other people around the globe, I stream music, and like more
than six hundred million of them I mainly use Spotify. Streaming currently
accounts for about eighty per cent of the American recording industry’s
revenue, and in recent years Spotify’s health is often consulted as a measure
for the health of the music business over all. Last spring, the International
Federation of the Phonographic Industry reported global revenues of $28.6
billion, making for the ninth straight year of growth. All of this was
unimaginable in the two-thousands, when the major record labels appeared
poorly equipped to deal with piracy and the so-called death of physical media.
On the consumer side, the story looks even rosier. Adjusted for inflation, a
 
... (skipped 1000 rows in the middle)
 
Pelly writes of some artists, in search of viral fame, who surreptitiously use
social media to effectively beta test melodies and motifs, basically putting
together songs via crowdsourcing. Artists have always fretted about the
pressure to conform, but the data-driven, music-as-content era feels
different. “You are a Spotify employee at that point,” Daniel Lopatin, who
makes abstract electronic music as Oneohtrix Point Never, told Pelly. “If your
art practice is so ingrained in the brutal reality that Spotify has outlined
for all of us, then what is the music that you’re not making? What does the
music you’re not making sound like?” Listeners might wonder something similar.
What does the music we’re not hearing sound like?;
 
 
RESPONSE
------------------------------------------------------------------------------
The music streaming industry, led by Spotify, has revolutionized the way
people consume music, with streaming accounting for 80% of the American
recording industry's revenue. However, this shift has also complicated the
lives of artists, who struggle to survive in a hyper-abundant present where
music is often valued for its convenience rather than its artistic merit.
Spotify's algorithms prioritize popularity and profitability over artistic
diversity, leading to a homogenization of music and a devaluation of the
labor that goes into creating it. Meanwhile, the company's executives reap
enormous profits, with CEO Daniel Ek's net worth rivaling that of the
wealthiest musicians. As music critic Liz Pelly argues, the streaming economy
raises important questions about autonomy, creativity, and the value of art
in a world where everything is readily available and easily accessible.

Exemple : Configurer et utiliser Select AI avec RAG

Cet exemple vous guide tout au long de la configuration des données d'identification, de la configuration de l'accès au réseau et de la création d'un index vectoriel pour l'intégration des services en nuage de magasin vectoriel d'IA générative pour OCI avec OpenAI à l'aide d'Oracle Autonomous AI Database.

La configuration se termine par la création d'un profil d'IA qui utilise l'index vectoriel pour améliorer les réponses LLM. Enfin, cet exemple utilise l'action Select AI narrate, qui retourne une réponse améliorée à l'aide des informations de la base de données vectorielle spécifiée.

L'exemple suivant illustre la création et l'interrogation d'un index vectoriel dans Oracle Database 23ai.

--Grants EXECUTE privilege to ADB_USER
GRANT EXECUTE on DBMS_CLOUD_AI to ADB_USER; 

--Grants EXECUTE privilege DBMS_CLOUD_PIPELINE to ADB_USER
GRANT EXECUTE on DBMS_CLOUD_PIPELINE to ADB_USER;

-- Create the OpenAI credential
BEGIN
      DBMS_CLOUD.CREATE_CREDENTIAL(
        credential_name => 'OPENAI_CRED',
        username => 'OPENAI_CRED',
        password => '<your_api_key>'
      );
END;
/

PL/SQL procedure successfully completed.

 -- Append the OpenAI endpoint
BEGIN
        DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
             host => 'api.openai.com',
             ace  => xs$ace_type(privilege_list => xs$name_list('http'),
                     principal_name => 'ADB_USER',
                     principal_type => xs_acl.ptype_db)
       );
END;
/

PL/SQL procedure successfully completed.

 
-- Create the object store credential
BEGIN
      DBMS_CLOUD.CREATE_CREDENTIAL(
        credential_name => 'OCI_CRED',
        username => '<your_username>',
        password => '<OCI_profile_password>'
      );
END;
/

PL/SQL procedure successfully completed.

 -- Create the profile with the vector index.

BEGIN
      DBMS_CLOUD_AI.CREATE_PROFILE(
          profile_name =>'OPENAI_ORACLE',
          attributes   =>'{"provider": "openai",
            "credential_name": "OPENAI_CRED",
            "vector_index_name": "MY_INDEX",
            "temperature": 0.2,
            "max_tokens": 4096,
            "model": "gpt-3.5-turbo-1106"
          }');
END;
/

PL/SQL procedure successfully completed.

-- Set profile
EXEC DBMS_CLOUD_AI.SET_PROFILE('OPENAI_ORACLE');

PL/SQL procedure successfully completed.                                            
 
-- create a vector index with the vector store name, object store location and
-- object store credential
BEGIN
       DBMS_CLOUD_AI.CREATE_VECTOR_INDEX(
         index_name  => 'MY_INDEX',
         attributes  => '{"vector_db_provider": "oracle",
                          "location": "https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/my_namespace/my_bucket/my_data_folder",
                          "object_storage_credential_name": "OCI_CRED",
                          "profile_name": "OPENAI_ORACLE",
                          "vector_dimension": 1536,
                          "vector_distance_metric": "cosine",
                          "chunk_overlap":128,
                          "chunk_size":1024
      }');
END;
/
PL/SQL procedure successfully completed.  
                                                                                
-- After the vector index is populated, we can now query the index.




-- Set profile
EXEC DBMS_CLOUD_AI.SET_PROFILE('OPENAI_ORACLE');

PL/SQL procedure successfully completed.

-- Select AI answers the question with the knowledge available in the vector database.

set pages 1000
set linesize 150
SELECT AI narrate how can I deploy an oracle machine learning model;
RESPONSE                                                  
To deploy an Oracle Machine Learning model, you would first build your model within the Oracle database. Once your in-database models are built, they become immediately available for use, for instance, through a SQL query using the prediction operators built into the SQL language. 

The model scoring, like model building, occurs directly in the database, eliminating the need for a separate engine or environment within which the model and corresponding algorithm code operate. You can also use models from a different schema (user account) if the appropriate permissions are in place.

Sources:
  - Manage-your-models-with-Oracle-Machine-Learning-on-Autonomous-Database.txt (https://objectstorage.../v1/my_namespace/my_bucket/my_data_folder/Manage-your-models-with-Oracle-Machine-Learning-on-Autonomous-Database.txt)
  - Develop-and-deploy-machine-learning-models-using-Oracle-Autonomous-Database-Machine-Learning-and-APEX.txt (https://objectstorage.../v1/my_namespace/my_bucket/my_data_folder/Develop-and-deploy-machine-learning-models-using-Oracle-Autonomous-Database-Machine-Learning-and-APEX.txt)

Exemple : Sélectionner l'intelligence artificielle avec les modèles de transformateur de base de données

Cet exemple montre comment importer un modèle de transformateur préentraîné stocké dans le stockage d'objets Oracle dans votre instance Oracle Database 23ai, puis utiliser le modèle importé dans la base de données dans le profil Sélectionner l'IA pour générer des intégrations vectorielles pour les fragments de document et les invites d'utilisateur.

Pour utiliser des modèles de transformateur dans la base de données dans votre profil Select AI, assurez-vous d'avoir :
  • votre modèle préentraîné importé dans votre instance Oracle Database 23ai.

  • facultativement, l'accès au stockage d'objets Oracle.

Importer un modèle de transformateur préentraîné dans Oracle Database 23ai à partir du service de stockage d'objets Oracle

Consultez les étapes sous Importer des modèles préentraînés au format ONNX pour la génération de vecteurs dans la base de données et le blogue Modèle de génération d'intégration prédéfini pour Oracle AI Database 26ai pour importer un modèle de transformateur préentraîné dans votre base de données.

L'exemple suivant montre comment importer un modèle de transformateur obtenu à partir du stockage d'objets Oracle dans votre base de données, puis afficher le modèle importé.

- Create a Directory object, or use an existing directory object
CREATE OR REPLACE DIRECTORY ONNX_DIR AS 'onnx_model';
 
-- Object storage bucket
VAR location_uri VARCHAR2(4000);
EXEC :location_uri := 'https://adwc4pm.objectstorage.us-ashburn-1.oci.customer-oci.com/p/eLddQappgBJ7jNi6Guz9m9LOtYe2u8LWY19GfgU8flFK4N9YgP4kTlrE9Px3pE12/n/adwc4pm/b/OML-Resources/o/';
 
-- Model file name
VAR file_name VARCHAR2(512);
EXEC :file_name := 'all_MiniLM_L12_v2.onnx';
 
-- Download ONNX model from object storage into the directory object
BEGIN
  DBMS_CLOUD.GET_OBJECT(                           
        credential_name => NULL,
        directory_name  => 'ONNX_DIR',
        object_uri      => :location_uri || :file_name);
END;
/
 
-- Load the ONNX model into the database
BEGIN
  DBMS_VECTOR.LOAD_ONNX_MODEL(
        directory  => 'ONNX_DIR',
        file_name  => :file_name,
        model_name => 'MY_ONNX_MODEL');
END;
/
 
-- Verify
SELECT model_name, algorithm, mining_function
FROM user_mining_models
WHERE  model_name='MY_ONNX_MODEL';
Utiliser des modèles de transformateur dans la base de données dans certains profils d'intelligence artificielle

Ces exemples illustrent comment utiliser des modèles de transformateur dans la base de données dans un profil Select AI. Un profil est configuré uniquement pour générer des plongements vectoriels, tandis que l'autre prend en charge les actions Select AI et la création d'index vectoriels.

Consultez les exigences de configuration de l'ensemble DBMS_CLOUD_AI pour terminer les préalables.

Voici un exemple pour générer uniquement des plongements vectoriels :

BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
     profile_name => 'EMBEDDING_PROFILE',
     attributes   => '{"provider" : "database",
                       "embedding_model": "MY_ONNX_MODEL"}'
  );
END;
/

Voici un exemple de sélection générale d'actions d'IA et de génération d'index vectoriels dans lequel vous pouvez spécifier un fournisseur d'IA pris en charge. Cet exemple utilise le profil et les données d'identification OCI Gen AI. Voir pour obtenir la liste des fournisseurs pris en charge. Toutefois, si vous voulez utiliser le modèle de transformateur de base de données pour générer des intégrations vectorielles, utilisez "database: <MY_ONNX_MODEL>" dans l'attribut embedding_model :

BEGIN                                                                        
  DBMS_CLOUD.CREATE_CREDENTIAL(                                              
    credential_name => 'GENAI_CRED',                                         
    user_ocid       => 'ocid1.user.oc1..aaaa...',
    tenancy_ocid    => 'ocid1.tenancy.oc1..aaaa...',
    private_key     => '<your_api_key>',
    fingerprint     => '<your_fingerprint>'     
  );                                                                         
END;                                                                        
/

BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
     profile_name => 'OCI_GENAI',
     attributes   => '{"provider": "oci",
                       "model": "meta.llama-3.3-70b-instruct",
                       "credential_name": "GENAI_CRED",
                       "vector_index_name": "MY_INDEX",
                       "embedding_model": "database: MY_ONNX_MODEL"}'
  );
END;
/
Utiliser Select AI avec un modèle de transformateur dans la base de données à partir d'un autre schéma

Cet exemple montre comment utiliser Select AI avec un modèle de transformateur dans la base de données si un autre responsable de schéma est responsable du modèle. Spécifiez schema_name.object_name comme nom complet du modèle dans l'attribut embedding_model. Si l'utilisateur courant est le propriétaire du schéma ou le propriétaire du modèle, vous pouvez omettre le nom du schéma.

Assurez-vous d'avoir les privilèges suivants si un autre propriétaire de schéma est propriétaire du modèle :
  • Privilège système CREATE ANY MINING MODEL
  • Privilège système SELECT ANY MINING MODEL
  • Privilège d'objet SELECT MINING MODEL sur le modèle spécifique

Pour accorder un privilège système, vous devez disposer du privilège système ADMIN OPTION ou du privilège système GRANT ANY PRIVILEGE.

Voir Privilèges système pour Oracle Machine Learning for SQL pour vérifier les privilèges.

Les énoncés suivants permettent à ADB_USER1 de noter les données et de voir les détails du modèle dans n'importe quel schéma tant que l'accès SELECT a été accordé aux données. Toutefois, ADB_USER1 ne peut créer des modèles que dans le schéma ADB_USER1.

GRANT CREATE MINING MODEL TO ADB_USER1;
GRANT SELECT ANY MINING MODEL TO ADB_USER1;
BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
     profile_name => 'OCI_GENAI',
     attributes   => '{"provider": "oci",
                       "credential_name": "GENAI_CRED",
                       "vector_index_name": "MY_INDEX",
                       "embedding_model": "database: ADB_USER1.MY_ONNX_MODEL"}'
  );
END;
/

L'exemple suivant montre comment spécifier un nom d'objet de modèle sensible à la casse :

BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
     profile_name => 'OCI_GENAI',
     attributes   => '{"provider": "oci",
                       "credential_name": "GENAI_CRED",
                       "model": "meta.llama-3.3-70b-instruct",
                       "vector_index_name": "MY_INDEX",
                       "embedding_model": "database: \"adb_user1\".\"my_model\""}'
  );
END;
/
Exemples de bout en bout avec différents fournisseurs d'IA

Ces exemples illustrent les étapes de bout en bout de l'utilisation du modèle de transformateur dans la base de données avec Select AI RAG. Un profil utilise database comme provider créé exclusivement pour générer des vecteurs d'intégration, tandis que l'autre profil utilise oci comme provider créé pour les actions Sélectionner l'intelligence artificielle ainsi que l'index vectoriel.

Consultez les exigences de configuration de l'ensemble DBMS_CLOUD_AI pour terminer les préalables.

--Grant create any directory privilege to the user
GRANT CREATE ANY DIRECTORY to ADB_USER;

- Create a Directory object, or use an existing directory object
CREATE OR REPLACE DIRECTORY ONNX_DIR AS 'onnx_model';
 
-- Object storage bucket
VAR location_uri VARCHAR2(4000);
EXEC :location_uri := 'https://adwc4pm.objectstorage.us-ashburn-1.oci.customer-oci.com/p/eLddQappgBJ7jNi6Guz9m9LOtYe2u8LWY19GfgU8flFK4N9YgP4kTlrE9Px3pE12/n/adwc4pm/b/OML-Resources/o/';
 
-- Model file name
VAR file_name VARCHAR2(512);
EXEC :file_name := 'all_MiniLM_L12_v2.onnx';
 
-- Download ONNX model from object storage into the directory object
BEGIN
  DBMS_CLOUD.GET_OBJECT(                           
        credential_name => NULL,
        directory_name  => 'ONNX_DIR',
        object_uri      => :location_uri || :file_name);
END;
/
 
-- Load the ONNX model into the database
BEGIN
  DBMS_VECTOR.LOAD_ONNX_MODEL(
        directory  => 'ONNX_DIR',
        file_name  => :file_name,
        model_name => 'MY_ONNX_MODEL');
END;
/
 
-- Verify
SELECT model_name, algorithm, mining_function
FROM user_mining_models
WHERE  model_name='MY_ONNX_MODEL';


--Administrator grants EXECUTE privilege to ADB_USER
GRANT EXECUTE on DBMS_CLOUD_AI to ADB_USER; 

--Administrator grants EXECUTE privilege DBMS_CLOUD_PIPELINE to ADB_USER
GRANT EXECUTE on DBMS_CLOUD_PIPELINE to ADB_USER;
 
-- Create the object store credential
BEGIN
      DBMS_CLOUD.CREATE_CREDENTIAL(
        credential_name => 'OCI_CRED',
        username => '<your_username>',
        password => '<OCI_profile_password>'
      );
END;
/

PL/SQL procedure successfully completed.

 -- Create the profile with Oracle Database.

BEGIN
      DBMS_CLOUD_AI.CREATE_PROFILE(
          profile_name =>'EMBEDDING_PROFILE',
          attributes   =>'{"provider": "database",
            "embedding_model": "MY_ONNX_MODEL"
          }');
END;
/

PL/SQL procedure successfully completed.

-- Set profile
EXEC DBMS_CLOUD_AI.SET_PROFILE('EMBEDDING_PROFILE');

PL/SQL procedure successfully completed.                                            
 

Cet exemple utilise oci comme provider.

--Grant create any directory privilege to the user
GRANT CREATE ANY DIRECTORY to ADB_USER;

- Create a Directory object, or use an existing directory object
CREATE OR REPLACE DIRECTORY ONNX_DIR AS 'onnx_model';
 
-- Object storage bucket
VAR location_uri VARCHAR2(4000);
EXEC :location_uri := 'https://adwc4pm.objectstorage.us-ashburn-1.oci.customer-oci.com/p/eLddQappgBJ7jNi6Guz9m9LOtYe2u8LWY19GfgU8flFK4N9YgP4kTlrE9Px3pE12/n/adwc4pm/b/OML-Resources/o/';
 
-- Model file name
VAR file_name VARCHAR2(512);
EXEC :file_name := 'all_MiniLM_L12_v2.onnx';
 
-- Download ONNX model from object storage into the directory object
BEGIN
  DBMS_CLOUD.GET_OBJECT(                           
        credential_name => NULL,
        directory_name  => 'ONNX_DIR',
        object_uri      => :location_uri || :file_name);
END;
/
 
-- Load the ONNX model into the database
BEGIN
  DBMS_VECTOR.LOAD_ONNX_MODEL(
        directory  => 'ONNX_DIR',
        file_name  => :file_name,
        model_name => 'MY_ONNX_MODEL');
END;
/
 
-- Verify
SELECT model_name, algorithm, mining_function
FROM user_mining_models
WHERE  model_name='MY_ONNX_MODEL';


–-Administrator Grants EXECUTE privilege to ADB_USER
GRANT EXECUTE on DBMS_CLOUD_AI to ADB_USER; 

--Administrator Grants EXECUTE privilege DBMS_CLOUD_PIPELINE to ADB_USER
GRANT EXECUTE on DBMS_CLOUD_PIPELINE to ADB_USER;

-- Create the object store credential
BEGIN
      DBMS_CLOUD.CREATE_CREDENTIAL(
        credential_name => 'OCI_CRED',
        username => '<your_username>',
        password => '<OCI_profile_password>'
      );
END;
/
--Create GenAI credentials
BEGIN                                                                        
  DBMS_CLOUD.CREATE_CREDENTIAL(                                              
    credential_name => 'GENAI_CRED',                                         
    user_ocid       => 'ocid1.user.oc1..aaaa...',
    tenancy_ocid    => 'ocid1.tenancy.oc1..aaaa...',
    private_key     => '<your_api_key>',
    fingerprint     => '<your_fingerprint>'     
  );                                                                         
END;                                                                        
/
--Create OCI AI profile
BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
     profile_name => 'OCI_GENAI',
     attributes   => '{"provider": "oci",
                       "model": "meta.llama-3.3-70b-instruct",
                       "credential_name": "GENAI_CRED",
                       "vector_index_name": "MY_INDEX",
                       "embedding_model": "database: MY_ONNX_MODEL"}'
  );
END;
/

-- Set profile
EXEC DBMS_CLOUD_AI.SET_PROFILE('OCI_GENAI');

PL/SQL procedure successfully completed.                                            
 
-- create a vector index with the vector store name, object store location and
-- object store credential
BEGIN
       DBMS_CLOUD_AI.CREATE_VECTOR_INDEX(
         index_name  => 'MY_INDEX',
         attributes  => '{"vector_db_provider": "oracle",
                          "location": "https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/my_namespace/my_bucket/my_data_folder",
                          "object_storage_credential_name": "OCI_CRED",
                          "profile_name": "OCI_GENAI",
                          "vector_dimension": 384,
                          "vector_distance_metric": "cosine",
                          "chunk_overlap":128,
                          "chunk_size":1024
      }');
END;
/
PL/SQL procedure successfully completed.  
                                                                               

-- Set profile
EXEC DBMS_CLOUD_AI.SET_PROFILE('OCI_GENAI');

PL/SQL procedure successfully completed.

-- Select AI answers the question with the knowledge available in the vector database.

set pages 1000
set linesize 150
SELECT AI narrate how can I deploy an oracle machine learning model;
RESPONSE                                                  
To deploy an Oracle Machine Learning model, you would first build your model within the Oracle database. Once your in-database models are 
built, they become immediately available for use, for instance, through a SQL query using the prediction operators built into the SQL 
language. 

The model scoring, like model building, occurs directly in the database, eliminating the need for a separate engine or environment within 
which the model and corresponding algorithm code operate. You can also use models from a different schema (user account) if the appropriate 
permissions are in place.

Sources:
  - Manage-your-models-with-Oracle-Machine-Learning-on-Autonomous-Database.txt (https://objectstorage.../v1/my_namespace/my_bucket/
my_data_folder/Manage-your-models-with-Oracle-Machine-Learning-on-Autonomous-Database.txt)
  - Develop-and-deploy-machine-learning-models-using-Oracle-Autonomous-Database-Machine-Learning-and-APEX.txt 
(https://objectstorage.../v1/my_namespace/my_bucket/my_data_folder/Develop-and-deploy-machine-learning-models-using-Oracle-Autonomous-
Database-Machine-Learning-and-APEX.txt)

Exemple : Générer des données synthétiques

Cet exemple montre comment générer des données synthétiques imitant les caractéristiques et la distribution des données réelles.

Note :

La prise en charge de la génération de données synthétiques est disponible dans Oracle Database 19c à partir de la version 19.29 et dans Oracle Database 26ai à partir de la version 23.26.

L'exemple suivant montre comment créer quelques tables dans votre schéma, utiliser l'IA générative pour OCI comme fournisseur d'IA pour créer un profil d'IA, synthétiser des données dans ces tables à l'aide de la fonction DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA et interroger ou générer des réponses aux invites de langage naturel avec Select AI.

--Create tables or use cloned tables

CREATE TABLE ADB_USER.Director (
    director_id     INT PRIMARY KEY,
    name            VARCHAR(100)
);
CREATE TABLE ADB_USER.Movie (
    movie_id        INT PRIMARY KEY,
    title           VARCHAR(100),
    release_date    DATE,
    genre           VARCHAR(50),
    director_id     INT,
    FOREIGN KEY (director_id) REFERENCES ADB_USER.Director(director_id)
);
CREATE TABLE ADB_USER.Actor (
    actor_id        INT PRIMARY KEY,
    name            VARCHAR(100)
);
CREATE TABLE ADB_USER.Movie_Actor (
    movie_id        INT,
    actor_id        INT,
    PRIMARY KEY (movie_id, actor_id),
    FOREIGN KEY (movie_id) REFERENCES ADB_USER.Movie(movie_id),
    FOREIGN KEY (actor_id) REFERENCES ADB_USER.Actor(actor_id)
);

-- Create the GenAI credential
BEGIN                                                                       
  DBMS_CLOUD.create_credential(                                             
    credential_name => 'GENAI_CRED',                                        
    user_ocid       => 'ocid1.user.oc1....',
    tenancy_ocid    => 'ocid1.tenancy.oc1....',
    private_key     => 'vZ6cO...',
    fingerprint     => '86:7d:...'    
  );                                                                        
END;                                                                       
/
 
-- Create a profile
BEGIN                                                                      
  DBMS_CLOUD_AI.CREATE_PROFILE(                                            
      profile_name =>'GENAI',                                                           
      attributes  =>'{"provider": "oci",                                                                 
        "credential_name": "GENAI_CRED",                                   
        "object_list": [{"owner": "ADB_USER", 
		"oci_compartment_id": "ocid1.compartment.oc1...."}]          
       }');                                                                
END;                                                                       
/
 
 
EXEC DBMS_CLOUD_AI.set_profile('GENAI');

-- Run the API for single table
BEGIN
    DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
        profile_name => 'GENAI',
        object_name  => 'Director',
        owner_name   => 'ADB_USER',
        record_count => 5
    );
END;
/
PL/SQL procedure successfully completed.
 
 
-- Query the table to see results
SQL> SELECT * FROM ADB_USER.Director;
 
DIRECTOR_ID NAME
----------- ----------------------------------------------------------------------------------------------------
          1 John Smith
          2 Emily Chen
          3 Michael Brown
          4 Sarah Taylor
          5 David Lee
 
 
-- Or ask select ai to show the results
SQL> select ai how many directors are there;
 
NUMBER_OF_DIRECTORS
-------------------
                  5
Exemple : Générer des données synthétiques pour plusieurs tables

Après avoir créé et défini votre profil de fournisseur d'intelligence artificielle, utilisez DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA pour générer des données pour plusieurs tables. Vous pouvez interroger ou utiliser Select AI pour répondre aux invites en langage naturel.

BEGIN
    DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
        profile_name => 'GENAI',
        object_list => '[{"owner": "ADB_USER", "name": "Director","record_count":5},
                         {"owner": "ADB_USER", "name": "Movie_Actor","record_count":5},
                         {"owner": "ADB_USER", "name": "Actor","record_count":10},
                         {"owner": "ADB_USER", "name": "Movie","record_count":5,"user_prompt":"all movies released in 2009"}]'
    );
END;
/
PL/SQL procedure successfully completed.
 
 
-- Query the table to see results
SQL> select * from ADB_USER.Movie;

 MOVIE_ID TITLE                                                     RELEASE_D                            GENRE                                 DIRECTOR_ID	
---------- -------------------------------------------------------- --------- --------------------------------------------------------------- -----------	
         1 The Dark Knight                                           15-JUL-09                              Action                              8	
         2 Inglourious Basterds                                      21-AUG-09                              War                                 3	
         3 Up in the Air                                             04-SEP-09                              Drama                               6	
         4 The Hangover                                              05-JUN-09                              Comedy                              1	
         5 District 9                                                14-AUG-09                              Science Fiction                     10	
	

 
-- Or ask select ai to show the results
SQL> select ai how many actors are there;
 
Number of Actors
----------------
              10
Exemple : Guider la génération de données synthétiques avec des exemples de rangées

Pour guider le service d'intelligence artificielle dans la génération de données synthétiques, vous pouvez sélectionner au hasard des enregistrements existants dans une table. Par exemple, en ajoutant {"sample_rows": 5} à l'argument params, vous pouvez envoyer 5 exemples de rangées d'une table au fournisseur d'intelligence artificielle. Cet exemple génère 10 rangées supplémentaires en fonction des exemples de rangées de la table Transactions.

BEGIN
  DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
    profile_name => 'GENAI',
    object_name  => 'Transactions',
    owner_name   => 'ADB_USER',
    record_count => 10,
    params       => '{"sample_rows":5}'
  );
END;
/
Exemple : Personnaliser la génération de données synthétiques à l'aide d'invites d'utilisateur

L'argument user_prompt vous permet de spécifier des règles ou des exigences supplémentaires pour la génération de données. Cela peut être appliqué à une seule table ou dans le cadre de l'argument object_list pour plusieurs tables. Par exemple, dans les appels suivants à DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA, l'invite indique à l'IA de générer des données synthétiques sur les films sortis en 2009.

-- Definition for the Movie table CREATE TABLE Movie 

CREATE TABLE Movie (
    movie_id        INT PRIMARY KEY,
    title           VARCHAR(100),
    release_date    DATE,
    genre           VARCHAR(50),
    director_id     INT,
    FOREIGN KEY (director_id) REFERENCES Director(director_id)
);
 
 
 
BEGIN
  DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
    profile_name      => 'GENAI',
    object_name       => 'Movie',
    owner_name        => 'ADB_USER',
    record_count      => 10,
    user_prompt       => 'all movies are released in 2009',
    params            => '{"sample_rows":5}'
  );
END;
/
 
BEGIN
    DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
        profile_name => 'GENAI',
        object_list => '[{"owner": "ADB_USER", "name": "Director","record_count":5},
                         {"owner": "ADB_USER", "name": "Movie_Actor","record_count":5},
                         {"owner": "ADB_USER", "name": "Actor","record_count":10},
                         {"owner": "ADB_USER", "name": "Movie","record_count":5,"user_prompt":"all movies are released in 2009"}]'
    );
END;
/
Exemple : Améliorer la qualité des données synthétiques à l'aide de statistiques sur les tables

Si une table contient des statistiques sur les colonnes ou est clonée à partir d'une base de données qui inclut des métadonnées, Select AI peut utiliser ces statistiques pour générer des données qui ressemblent ou qui sont cohérentes avec les données d'origine.

Pour les colonnes NUMBER, les valeurs supérieure et inférieure des statistiques guident l'intervalle de valeurs. Par exemple, si la colonne SALARY de la table EMPLOYEES initiale est comprise entre 1000 et 10000, les données synthétiques de cette colonne seront également comprises dans cet intervalle.

Pour les colonnes avec des valeurs distinctes, telles qu'une colonne STATE avec les valeurs CA, WA et TX, les données synthétiques utiliseront ces valeurs spécifiques. Vous pouvez gérer cette fonction à l'aide du paramètre {"table_statistics": true/false}. Par défaut, les statistiques de table sont activées.

BEGIN
  DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
    profile_name      => 'GENAI',
    object_name       => 'Movie',
    owner_name        => 'ADB_USER',
    record_count      => 10,
    user_prompt => 'all movies released in 2009',
    params            => '{"sample_rows":5,"table_statistics":true}'
  );
END;
/
Exemple : Utiliser des commentaires de colonne pour guider la génération de données

Si des commentaires de colonne existent, Select AI les inclut automatiquement pour fournir des informations supplémentaires pour le LLM lors de la génération des données. Par exemple, un commentaire sur la colonne Status dans une table de transactions peut répertorier les valeurs autorisées telles que successful, failed, pending, canceled et need manual check. Vous pouvez également ajouter des commentaires pour expliquer davantage la colonne, en donnant aux services d'IA des instructions ou des conseils plus précis pour générer des données précises. Par défaut, les commentaires sont désactivés. Pour plus de détails, voir Paramètres facultatifs.

-- Use comment on column
COMMENT ON COLUMN Transaction.status IS 'the value for state should either be ''successful'', ''failed'', ''pending'' or ''canceled''';
/
 
BEGIN
    DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
        profile_name  => 'GENAI',
        object_name   => 'employees',
        owner_name    => 'ADB_USER',
        record_count  => 10
        params        => '{"comments":true}'
 
    );
END;
/
Exemple : Définir des valeurs uniques dans la génération de données synthétiques

Lors de la génération de grandes quantités de données synthétiques avec des LLM, des valeurs en double sont susceptibles de se produire. Pour éviter cela, configurez une contrainte unique sur la colonne concernée. Cela garantit que Select AI ignore les rangées contenant des valeurs en double dans la réponse LLM. En outre, pour restreindre les valeurs de certaines colonnes, vous pouvez utiliser user_prompt ou ajouter des commentaires pour spécifier les valeurs autorisées, par exemple en limitant une colonne STATE à CA, WA et TX.

-- Use 'user_prompt'
BEGIN
    DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
        profile_name  => 'GENAI',
        object_name   => 'employees',
        owner_name    => 'ADB_USER',
        user_prompt   => 'the value for state should either be CA, WA, or TX',
        record_count  => 10
    );
END;
/
 
 
-- Use comment on column
COMMENT ON COLUMN EMPLOYEES.state IS 'the value for state should either be CA, WA, or TX'
/
Exemple : Améliorer la génération de données synthétiques par traitement parallèle

Pour réduire le temps d'exécution, Select AI fractionne les tâches de génération de données synthétiques en fragments plus petits pour les tables sans clés primaires ou avec des clés primaires numériques. Ces tâches s'exécutent en parallèle, interagissant avec le fournisseur d'IA pour générer des données plus efficacement. Le degré de parallélisme (DOP) dans votre base de données, influencé par votre niveau de service Autonomous AI Database on Dedicated Exadata et les paramètres d'ECPU ou d'OCPU, détermine le nombre d'enregistrements que chaque processus de fragmentation traite. L'exécution de tâches en parallèle améliore généralement les performances, en particulier lors de la génération de grandes quantités de données dans de nombreuses tables. Pour gérer le traitement parallèle de la génération de données synthétiques, définissez priority comme paramètre facultatif. Voir Paramètres facultatifs.

Exemple : Activer ou désactiver l'accès aux données

Cet exemple montre comment les administrateurs peuvent contrôler l'accès aux données et empêcher Select AI d'envoyer des tables de schéma réelles au LLM.

Désactivation de l'accès aux données

Pour restreindre l'accès aux tables de schéma, connectez-vous en tant qu'administrateur et exécutez la procédure suivante.

EXEC DBMS_CLOUD_AI.DISABLE_DATA_ACCESS;
 
PL/SQL procedure successfully completed.

Désactivation des limites d'accès aux données Sélectionnez l'action narrate de l'intelligence artificielle et la génération de données synthétiques. L'action narrate et la génération de données synthétiques génèrent une erreur.

Connectez-vous en tant qu'utilisateur de base de données, créez et configurez votre profil d'intelligence artificielle. Consultez pour configurer votre profil d'intelligence artificielle.

BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
          profile_name =>'DATA_ACCESS',
          attributes   =>'{"provider": "openai",
            "credential_name": "OPENAI_CRED",
            "object_list": [{"owner":"SH"}]
          }');
END;
/

EXEC DBMS_CLOUD_AI.SET_PROFILE('DATA_ACCESS');
 

select ai how many customers;

NUM_CUSTOMERS
55500

select ai narrate what are the top 3 customers in San Francisco;

ORA-20000: Data access is disabled for SELECT AI.
ORA-06512: at "C##CLOUD$SERVICE.DBMS_CLOUD", line 2228
ORA-06512: at "C##CLOUD$SERVICE.DBMS_CLOUD_AI", line 13157
ORA-06512: at line 1 https://docs.oracle.com/error-help/db/ora-20000/
The stored procedure 'raise_application_error' was called which causes this error to be generated
Error at Line: 1 Column: 6

L'exemple suivant montre les erreurs qui sont déclenchées lorsque vous tentez de générer des données synthétiques.

BEGIN
DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
profile_name => 'DATA_ACCESS_SDG',
object_name => 'CUSTOMERS_NEW',
owner_name => 'ADB_USER,
record_count => 5
);
END;
/ 

ERROR at line 1:

ORA-20000: Data access is disabled for SELECT AI.
ORA-06512: at "C##CLOUD$SERVICE.DBMS_CLOUD", line 2228
ORA-06512: at "C##CLOUD$SERVICE.DBMS_CLOUD_AI", line 13401

ORA-06512: at line 2
Activation de l'accès aux données

L'exemple suivant illustre l'activation de l'accès aux données. Connectez-vous en tant qu'administrateur et exécutez la procédure suivante :

EXEC DBMS_CLOUD_AI.ENABLE_DATA_ACCESS;
 
PL/SQL procedure successfully completed.

Connectez-vous en tant qu'utilisateur de base de données, créez et configurez votre profil d'intelligence artificielle. Consultez pour configurer votre profil d'intelligence artificielle. Exécutez l'action narrate et générez séparément des données synthétiques.

BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
          profile_name =>'DATA_ACCESS_NEW',
          attributes   =>'{"provider": "openai",
            "credential_name": "OPENAI_CRED",
            "object_list": [{"owner":"SH"}]
          }');
   END;
   /

PL/SQL procedure successfully completed.

EXEC DBMS_CLOUD_AI.SET_PROFILE('DATA_ACCESS_NEW');

PL/SQL procedure successfully completed.


select ai how many customers;

NUM_CUSTOMERS
55500

select ai narrate what are the top 3 customers in San Francisco;

"RESPONSE"
"The top 3 customers in San Francisco are Cody Seto, Lauren Yaskovich, and Ian Mc"

L'exemple suivant montre une génération de données synthétiques réussie après l'activation de l'accès aux données.

BEGIN
DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
profile_name => 'DATA_ACCESS_SDG',
object_name => 'CUSTOMERS_NEW',
owner_name => 'ADB_USER',
record_count => 5
);
END;
/ 

PL/SQL procedure successfully completed.

Exemple : Sélectionnez AI avec AWS

Cet exemple montre comment utiliser AWS pour générer, exécuter et expliquer des instructions SQL à partir d'invites de langage naturel ou de clavardage à l'aide des modèles disponibles avec AWS.

L'exemple suivant montre comment utiliser AWS comme fournisseur d'IA avec Amazon Bedrock et ses modèles de base. L'exemple montre comment créer des informations d'identification AWS, fournir un accès réseau, créer un profil d'IA et utiliser des actions Select AI pour générer des requêtes SQL à partir d'invites en langage naturel et clavarder à l'aide des modèles AWS Foundation.

Pour utiliser AWS, obtenez la clé d'accès, les clés secrètes et l'ID modèle. Voir . Utilisez l'ID modèle comme attribut model dans la procédure DBMS_CLOUD_AI.CREATE_PROFILE. Vous devez spécifier l'attribut model explicitement, car aucun modèle par défaut n'est fourni.

--Grant EXECUTE privilege to ADB_USER
GRANT EXECUTE on DBMS_CLOUD_AI to ADB_USER; 

--
-- Create Credential for AI provider
--
BEGIN
      DBMS_CLOUD.CREATE_CREDENTIAL(
        credential_name => 'AWS_CRED',
        username    => '<your_AWS_access_key>',
        password    => '<your_AWS_secret_key>'
      );
END;
/
 
PL/SQL procedure successfully completed.
 
 
--
-- Grant Network ACL for AWS
--
BEGIN
      DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
        host => 'bedrock-runtime.us-east-1.amazonaws.com',
        ace  => xs$ace_type(privilege_list => xs$name_list('http'),
                    principal_name => 'ADB_USER',
                    principal_type => xs_acl.ptype_db)
       );
END;
/
 
PL/SQL procedure successfully completed.
 


--
-- Create AI profile 
--
BEGIN
      DBMS_CLOUD_AI.CREATE_PROFILE(
        profile_name =>'AWS',
        attributes   =>'{"provider": "aws",
          "credential_name": "AWS_CRED",
          "object_list": [{"owner": "SH", "name": "customers"},                
                        {"owner": "SH", "name": "countries"},                
                        {"owner": "SH", "name": "supplementary_demographics"},
                        {"owner": "SH", "name": "profits"},                  
                        {"owner": "SH", "name": "promotions"},               
                        {"owner": "SH", "name": "products"}],
           "model" : "anthropic.claude-v2",
           "conversation" : "true"
          }');
END;
/
 
 
PL/SQL procedure successfully completed.


--
-- Enable AI profile in current session
--
EXEC DBMS_CLOUD_AI.SET_PROFILE('AWS');

PL/SQL procedure successfully completed.
 
--
-- Use AI
--

SELECT AI how many customers exist;
"RESPONSE"
"COUNT(*)"
55500


SELECT AI how many customers in San Francisco are married;
"RESPONSE"
"COUNT(*)"
46

SELECT AI showsql how many customers in San Francisco are married;
"RESPONSE"
"SELECT COUNT(*) AS "Number of Married Customers in San Francisco"
FROM "SH"."CUSTOMERS" C
WHERE UPPER(C."CUST_CITY") = UPPER('San Francisco')
AND UPPER(C."CUST_MARITAL_STATUS") = UPPER('Married')"

SELECT AI explainsql how many customers in San Francisco are married;

"RESPONSE""SELECT 
COUNT(*) AS "Number of Married Customers in San Francisco"
FROM "SH"."CUSTOMERS" C
WHERE C."CUST_CITY" = 'San Francisco'
AND C."CUST_MARITAL_STATUS" = 'Married'

Explanation:
- Used table alias C for CUSTOMERS table
- Used easy to read column names like CUST_CITY, CUST_MARITAL_STATUS
- Enclosed table name, schema name and column names in double quotes 
- Compared string values in WHERE clause without UPPER() since the values are not in double quotes
- Counted number of rows satisfying the condition and aliased the count as "Number of Married Customers in San Francisco""

SELECT AI narrate what are the top 3 customers in San Francisco;
"RESPONSE"
The top 3 customers in San Francisco ordered by credit limit in descending order are:

1. Bert Katz
2. Madallyn Ladd  
3. Henrietta Snodgrass

SELECT AI chat what is Autonomous AI Database;
"RESPONSE"
"An Autonomous AI Database is a cloud database service provided by Oracle Corporation. Some key features of Oracle Autonomous AI Database include:

- Fully automated and self-driving - The database automatically upgrades, patches, tunes, and backs itself up without any human intervention required.

- Self-securing - The database uses machine learning to detect threats and automatically apply security updates.

- Self-repairing - The database monitors itself and automatically recovers from failures and errors without downtime.

- Self-scaling - The database automatically scales compute and storage resources up and down as needed to meet workload demands. 

- Serverless - The database is accessed as a cloud service without having to manually provision any servers or infrastructure.

- High performance - The database uses Oracle's advanced automation and machine learning to continuously tune itself for high performance.

- Multiple workload support - Supports transaction processing, analytics, graph processing, etc in a single converged database.

- Fully managed - Oracle handles all the management and administration of the database. Users just load and access their data.

- Compatible - Supports common SQL and Oracle PL/SQL for easy migration from on-prem Oracle databases.

So in summary, an Oracle Autonomous AI Database is a fully automated, self-driving, self-securing, and self-repairing database provided as a simple cloud service. The automation provides high performance, elasticity, and availability with minimal human labor required."

--
--Clear the profile
--
BEGIN
   DBMS_CLOUD_AI.CLEAR_PROFILE;
END;
/
PL/SQL procedure successfully completed.

--
--Drop the profile
--
EXEC DBMS_CLOUD_AI.DROP_PROFILE('AWS');
 
PL/SQL procedure successfully completed.