Recherche conversationnelle avec OCI Generative AI

Suivez les étapes de cette procédure pas à pas pour configurer et utiliser un pipeline de génération augmentée d'extraction de bout en bout dans OCI Search avec OpenSearch, à l'aide d'un connecteur OCI Generative AI.

Vous pouvez tirer parti du connecteur pour avoir accès à toutes les fonctionnalités d'IA générative telles que la génération augmentée par récupération (RAG), la synthèse de texte, la génération de texte, la recherche conversationnelle et la recherche sémantique.

Pour créer un connecteur d'IA générative, procédez comme suit :

Pour plus d'informations sur ces étapes de base, cette rubrique poursuit les étapes requises pour configurer et utiliser un pipeline de génération augmentée d'extraction de bout en bout dans OCI Search avec OpenSearch, à l'aide d'un connecteur OCI Generative AI. Chaque étape inclut un modèle générique du code requis. Vous pouvez utiliser la console pour générer automatiquement ce code avec des valeurs configurées pour votre environnement. Reportez-vous à Création d'un pipeline RAG pour la recherche avec OpenSearch.

Le connecteur utilise le modèle d'intégration Cohere hébergé par Generative AI. L'IA générative prend également en charge le modèle Llma2 que vous pouvez également expérimenter.

Prérequis

  • Pour utiliser OCI Generative AI, la location doit être abonnée à la région Midwest des Etats-Unis (Chicago) ou à la région Allemagne centrale (Francfort). Vous n'avez pas besoin de créer le cluster dans l'une de ces régions. Assurez-vous que la location est abonnée à l'une des régions.
  • Pour utiliser un connecteur OCI Generative AI avec OCI Search avec OpenSearch, vous avez besoin d'un cluster configuré pour utiliser OpenSearch version 2.11. Par défaut, les nouveaux clusters sont configurés pour utiliser la version 2.11. Pour créer un cluster, reportez-vous à Création d'un cluster OpenSearch.

    Pour les clusters existants configurés pour la version 2.3, vous pouvez effectuer une mise à niveau en ligne vers la version 2.11. Pour plus d'informations, reportez-vous à OpenSearch Cluster Software Upgrades.

    Pour mettre à niveau des clusters existants configurés pour la version 1.2.3 vers la version 2.11, vous devez utiliser le processus de mise à niveau décrit dans OpenSearch Cluster Software Upgrades.

  • Créez une stratégie pour accorder l'accès aux ressources d'IA générative. L'exemple de stratégie suivant inclut les droits d'accès requis :
    ALLOW ANY-USER to manage generative-ai-family in tenancy WHERE ALL {request.principal.type='opensearchcluster', request.resource.compartment.id='<cluster_compartment_id>'}

    Si vous ne connaissez pas les stratégies, reportez-vous à Introduction aux stratégies et à Stratégies courantes.

  • Utilisez l'opération paramètres des API de cluster pour configurer les paramètres de cluster recommandés qui vous permettent de créer un connecteur. L'exemple suivant inclut les paramètres recommandés :
    PUT _cluster/settings
    {
      "persistent": {
        "plugins": {
          "ml_commons": {
            "only_run_on_ml_node": "false",
            "model_access_control_enabled": "true",
            "native_memory_threshold": "99",
            "rag_pipeline_feature_enabled": "true",
            "memory_feature_enabled": "true",
            "allow_registering_model_via_local_file": "true",
            "allow_registering_model_via_url": "true",
            "model_auto_redeploy.enable":"true",
            "model_auto_redeploy.lifetime_retry_times": 10
          }
        }
      }
      }

Enregistrer le groupe de modèles

Enregistrez un groupe de modèles à l'aide de l'opération Enregistrer dans les API de groupe de modèles, comme indiqué dans l'exemple suivant :

POST /_plugins/_ml/model_groups/_register
{
   "name": "public_model_group-emb",
   "description": "This is a public model group"
}

Notez le message model_group_id renvoyé dans la réponse :

{
  "model_group_id": "<model_group_ID>",
  "status": "CREATED"
}

Créer le connecteur

Vous pouvez créer un connecteur vers l'un des modèles de LLM distants pris en charge par le service GenAI. Il existe plusieurs modèles hébergés ON-DEMAND mais ces modèles deviennent parfois obsolètes. Si vous le souhaitez, vous pouvez éventuellement configurer et utiliser une adresse de modèle GENAI DEDICATED.

Remarque

Si vous utilisez le modèle ON-DEMAND, restez à jour avec les notifications d'abandon de modèle du service GenAI et mettez à jour votre connecteur si nécessaire pour éviter d'éventuelles interruptions de service. Reportez-vous à Modèles de base préentraînés dans l'IA générative pour sélectionner un modèle de langage volumineux dans la liste des modèles pris en charge.

Si vous utilisez le modèle DEDICATED, remplacez le paramètre servingType de l'exemple de charge utile suivant de ON-DEMAND à DEDICATED.

Les sections suivantes présentent le modèle de charge utile pour les classes de modèle Cohere et Llama.

GenAI Modèle de connecteur pour les modèles Cohere.Command

Fournissez les informations relatives aux espaces réservés suivants dans votre charge utile :

  • <connector_name> : entrez un nom unique pour identifier le connecteur. Par exemple, "cohere command-r-plus Connector v01".
  • <connector_description> : entrez une brève description du connecteur comportant jusqu'à 30 caractères. Par exemple, "Mon connecteur vers le modèle GenAI cohere.command-r-plus".
  • <compartment_OCID> : entrez l'OCID du compartiment dans lequel réside le cluster OpenSearch.
  • <genai_cohere_model> : entrez le nom du modèle Cohere à utiliser. Par exemple, "cohere.command-r-plus".
POST _plugins/_ml/connectors/_create
{
     "name": "<connector_name>",
     "description": "<connector_description>",
     "version": 2,
     "protocol": "oci_sigv1",
     "parameters": {
         "endpoint": "inference.generativeai.us-chicago-1.oci.oraclecloud.com",
         "auth_type": "resource_principal"
     },
     "credential": {
     },
     "actions": [
         {
             "action_type": "predict",
             "method": "POST",
             "url": "https://${parameters.endpoint}/20231130/actions/chat",
             "request_body": "{\"compartmentId\":\"<compartment_OCID>\",\"servingMode\":{\"modelId\":\"<genai_cohere_model>\",\"servingType\":\"ON_DEMAND\"},\"chatRequest\":{\"message\":\"${parameters.prompt}\",\"maxTokens\":600,\"temperature\":1,\"frequencyPenalty\":0,\"presencePenalty\":0,\"topP\":0.75,\"topK\":0,\"isStream\":false,\"chatHistory\":[],\"apiFormat\":\"COHERE\"}}",
             "post_process_function": "def text = params['chatResponse']['text'].replace('\n', '\\\\n').replace('\"','');\n return '{\"name\":\"response\",\"dataAsMap\":{\"inferenceResponse\":{\"generatedTexts\":[{\"text\":\"' + text + '\"}]}}}'"
  
         }
     ]
 }

GenAI Modèle de connecteur pour les modèles Meta LLAMA

Fournissez les informations relatives aux espaces réservés suivants dans votre charge utile :

  • <connector_name> : entrez un nom unique pour identifier le connecteur. Par exemple, "meta-llama Connector v1".
  • <connector_description> : entrez une brève description du connecteur comportant jusqu'à 30 caractères. Par exemple, "Mon connecteur vers GenAI meta.llama."
  • <compartment_OCID> : entrez l'OCID du compartiment dans lequel réside le cluster OpenSearch.
  • <genai_llama_model> : entrez le nom du modèle LLAMA à utiliser. Par exemple, "meta-llama Connector v1".
POST _plugins/_ml/connectors/_create
{
     "name": "<connector_name>",
     "description": "<connector_description>",
     "version": 2,
     "protocol": "oci_sigv1",
     "parameters": {
         "endpoint": "inference.generativeai.us-chicago-1.oci.oraclecloud.com",
         "auth_type": "resource_principal"
     },
     "credential": {
     },
     "actions": [
         {
             "action_type": "predict",
             "method": "POST",
             "url": "https://${parameters.endpoint}/20231130/actions/chat",
             "request_body": "{\"compartmentId\":\<compartment_OCID>\",\"servingMode\":{\"modelId\":\"<genai_llama_model>\",\"servingType\":\"ON_DEMAND\"},\"chatRequest\":{\"maxTokens\":600,\"temperature\":1,\"frequencyPenalty\":0,\"presencePenalty\":0,\"topP\":0.75,\"topK\":-1,\"isStream\":false,\"apiFormat\":\"GENERIC\",\"messages\":[{\"role\":\"USER\",\"content\":[{\"type\":\"TEXT\",\"text\":\"${parameters.prompt}\"}]}]}}",
              
              "post_process_function": "def text = params['chatResponse']['choices'][0]['message']['content'][0]['text'].replace('\n', '\\\\n').replace('\"','');\n return '{\"name\":\"response\",\"dataAsMap\":{\"inferenceResponse\":{\"generatedTexts\":[{\"text\":\"' + text + '\"}]}}}'"
 
 
 
         }
     ]
 }

GenAI Modèles de connecteur pour les modèles OpenAI

Voici des exemples de modèles de connecteur GenAI pour les modèles OpenAI :

4o/4o-mini

POST _plugins/_ml/connectors/_create
{
     "name": "rag-connector",
     "description": "OpenAI connector for RAG pipeline",
     "version": 2,
     "protocol": "oci_sigv1",
     "parameters": {
         "endpoint": "inference.generativeai.us-chicago-1.oci.oraclecloud.com",
         "auth_type": "resource_principal"
     },
     "credential": {
     },
     "actions": [
         {
             "action_type": "predict",
             "method": "POST",
             "url": "https://${parameters.endpoint}/20231130/actions/chat",
             "request_body": "{\"compartmentId\":\"<compartment_OCID>\",\"servingMode\":{\"modelId\":\"<MODEL NAME>\",\"servingType\":\"ON_DEMAND\"},\"chatRequest\":{\"maxCompletionTokens\":600,\"temperature\":0.5,\"frequencyPenalty\":0,\"presencePenalty\":0,\"topP\":1.0,\"isStream\":false,\"apiFormat\":\"GENERIC\",\"messages\":[{\"role\":\"USER\",\"content\":[{\"type\":\"TEXT\",\"text\":\"${parameters.prompt}\"}]}]}}",
              "post_process_function": "def text = params['chatResponse']['choices'][0]['message']['content'][0]['text'].replace('\n', '\\\\n').replace('\"','');\n return '{\"name\":\"response\",\"dataAsMap\":{\"inferenceResponse\":{\"generatedTexts\":[{\"text\":\"' + text + '\"}]}}}'"
         }
     ]
}

o3-mini/o1

POST _plugins/_ml/connectors/_create
{
     "name": "o3-mini-rag-connector",
     "description": "OpenAI o3-mini connector for RAG pipeline",
     "version": 2,
     "protocol": "oci_sigv1",
     "parameters": {
         "endpoint": "inference.generativeai.us-chicago-1.oci.oraclecloud.com",
         "auth_type": "resource_principal"
     },
     "credential": {
     },
     "actions": [
         {
             "action_type": "predict",
             "method": "POST",
             "url": "https://${parameters.endpoint}/20231130/actions/chat",
             "request_body": "{\"compartmentId\":\"<compartment_OCID>\",\"servingMode\":{\"modelId\":\"<MODEL_NAME>\",\"servingType\":\"ON_DEMAND\"},\"chatRequest\":{\"isStream\":false,\"apiFormat\":\"GENERIC\",\"reasoningEffort\":\"LOW\",\"messages\":[{\"role\":\"USER\",\"content\":[{\"type\":\"TEXT\",\"text\":\"${parameters.prompt}\"}]}]}}",
              "post_process_function": "def text = params['chatResponse']['choices'][0]['message']['content'][0]['text'].replace('\n', '\\\\n').replace('\"','');\n return '{\"name\":\"response\",\"dataAsMap\":{\"inferenceResponse\":{\"generatedTexts\":[{\"text\":\"' + text + '\"}]}}}'"
         }
     ]
 } 

Inscrire le modèle

Enregistrez le modèle distant à l'aide du connecteur Generative AI avec l'ID de connecteur et l'ID de groupe de modèles des étapes précédentes, comme indiqué dans l'exemple suivant :

POST /_plugins/_ml/models/_register
{
   "name": "oci-genai-embed-test",
   "function_name": "remote",
   "model_group_id": "<model_group_ID>",
   "description": "test semantic",
   "connector_id": "<connector_ID>"
}

Déploiement du modèle

Déployez le modèle à l'aide de l'ID de modèle renvoyé dans la réponse des étapes précédentes, comme indiqué dans l'exemple suivant :

POST /_plugins/_ml/models/<embedding_model_ID>/_deploy

Création d'un pipeline RAG

Créez un pipeline RAG à l'aide de la commande model_id de l'étape précédente, comme indiqué dans l'exemple suivant :

PUT /_search/pipeline/demo_rag_pipeline
{
  "response_processors": [
    {
      "retrieval_augmented_generation": {
        "tag": "genai_conversational_search_demo",
        "description": "Demo pipeline for conversational search Using Genai Connector",
        "model_id": "<llm_model_ID>",
        "conversation_id": "<conversation_ID>",
        "context_field_list": ["<text_field_name>"],
        "system_prompt":"hepfull assistant",
        "user_instructions":"generate concise answer"
      }
    }
  ]
}

Créer l'index de recherche

Une fois le pipeline RAG créé, vous pouvez effectuer une recherche RAG plus conversationnelle sur n'importe quel index. Vous pouvez également exploiter un pipeline d'ingestion de données avec un modèle préentraîné pour utiliser la recherche hybride dans le cadre de l'extraction.

Créer l'index de recherche sans le plugin k-NN

Cette section décrit les étapes à suivre pour créer un index sans utiliser de pipeline d'inclusion.

Utilisez cette option pour créer des données sans incorporation,

  1. Créez un index de recherche, comme indiqué dans l'exemple suivant :
    PUT /conversation-demo-index
    {
      "settings": {
        "index": {
          "number_of_shards": 1,
          "number_of_replicas": 0
        }
      },
      "mappings": {
        "properties": {
          "title": {
            "type": "text"
          },
          "text": {
            "type": "text"
          }
        }
      }
    }
  2. Incluez des données dans l'index, comme indiqué dans l'exemple suivant :
    PUT /conversation-demo-index/_doc/1
    {
        "text": "The emergence of resistance of bacteria to antibiotics is a common phenomenon. Emergence of resistance often reflects evolutionary processes that take place during antibiotic therapy. The antibiotic treatment may select for bacterial strains with physiologically or genetically enhanced capacity to survive high doses of antibiotics. Under certain conditions, it may result in preferential growth of resistant bacteria, while growth of susceptible bacteria is inhibited by the drug. For example, antibacterial selection for strains having previously acquired antibacterial-resistance genes was demonstrated in 1943 by the Luria–Delbrück experiment. Antibiotics such as penicillin and erythromycin, which used to have a high efficacy against many bacterial species and strains, have become less effective, due to the increased resistance of many bacterial strains."
       
    }
    GET /conversation-demo-index/_doc/1
    PUT /conversation-demo-index/_doc/2
    {
      "text": "The successful outcome of antimicrobial therapy with antibacterial compounds depends on several factors. These include host defense mechanisms, the location of infection, and the pharmacokinetic and pharmacodynamic properties of the antibacterial. A bactericidal activity of antibacterials may depend on the bacterial growth phase, and it often requires ongoing metabolic activity and division of bacterial cells. These findings are based on laboratory studies, and in clinical settings have also been shown to eliminate bacterial infection. Since the activity of antibacterials depends frequently on its concentration, in vitro characterization of antibacterial activity commonly includes the determination of the minimum inhibitory concentration and minimum bactericidal concentration of an antibacterial. To predict clinical outcome, the antimicrobial activity of an antibacterial is usually combined with its pharmacokinetic profile, and several pharmacological parameters are used as markers of drug efficacy."
    }
     
    PUT /conversation-demo-index/_doc/3
    {
      "text": "Antibacterial antibiotics are commonly classified based on their mechanism of action, chemical structure, or spectrum of activity. Most target bacterial functions or growth processes. Those that target the bacterial cell wall (penicillins and cephalosporins) or the cell membrane (polymyxins), or interfere with essential bacterial enzymes (rifamycins, lipiarmycins, quinolones, and sulfonamides) have bactericidal activities. Those that target protein synthesis (macrolides, lincosamides and tetracyclines) are usually bacteriostatic (with the exception of bactericidal aminoglycosides). Further categorization is based on their target specificity. Narrow-spectrum antibacterial antibiotics target specific types of bacteria, such as Gram-negative or Gram-positive bacteria, whereas broad-spectrum antibiotics affect a wide range of bacteria. Following a 40-year hiatus in discovering new classes of antibacterial compounds, four new classes of antibacterial antibiotics have been brought into clinical use in the late 2000s and early 2010s: cyclic lipopeptides (such as daptomycin), glycylcyclines (such as tigecycline), oxazolidinones (such as linezolid), and lipiarmycins (such as fidaxomicin)"
    }
     
     
    PUT /conversation-demo-index/_doc/4
    {
      "text": "The Desert Land Act of 1877 was passed to allow settlement of arid lands in the west and allotted 640 acres (2.6 km2) to settlers for a fee of $.25 per acre and a promise to irrigate the land. After three years, a fee of one dollar per acre would be paid and the land would be owned by the settler. This act brought mostly cattle and sheep ranchers into Montana, many of whom grazed their herds on the Montana prairie for three years, did little to irrigate the land and then abandoned it without paying the final fees. Some farmers came with the arrival of the Great Northern and Northern Pacific Railroads throughout the 1880s and 1890s, though in relatively small numbers"
    }
     
    PUT /conversation-demo-index/_doc/5
    {
      "text": "In the early 1900s, James J. Hill of the Great Northern began promoting settlement in the Montana prairie to fill his trains with settlers and goods. Other railroads followed suit. In 1902, the Reclamation Act was passed, allowing irrigation projects to be built in Montana's eastern river valleys. In 1909, Congress passed the Enlarged Homestead Act that expanded the amount of free land from 160 to 320 acres (0.6 to 1.3 km2) per family and in 1912 reduced the time to prove up on a claim to three years. In 1916, the Stock-Raising Homestead Act allowed homesteads of 640 acres in areas unsuitable for irrigation.  This combination of advertising and changes in the Homestead Act drew tens of thousands of homesteaders, lured by free land, with World War I bringing particularly high wheat prices. In addition, Montana was going through a temporary period of higher-than-average precipitation. Homesteaders arriving in this period were known as Honyockers, or scissorbills. Though the word honyocker, possibly derived from the ethnic slur hunyak, was applied in a derisive manner at homesteaders as being greenhorns, new at his business or unprepared, the reality was that a majority of these new settlers had previous farming experience, though there were also many who did not"
    }
     
    PUT /conversation-demo-index/_doc/6
    {
      "text": "In June 1917, the U.S. Congress passed the Espionage Act of 1917 which was later extended by the Sedition Act of 1918, enacted in May 1918. In February 1918, the Montana legislature had passed the Montana Sedition Act, which was a model for the federal version. In combination, these laws criminalized criticism of the U.S. government, military, or symbols through speech or other means. The Montana Act led to the arrest of over 200 individuals and the conviction of 78, mostly of German or Austrian descent. Over 40 spent time in prison. In May 2006, then-Governor Brian Schweitzer posthumously issued full pardons for all those convicted of violating the Montana Sedition Act."
    }
     
    PUT /conversation-demo-index/_doc/7
    {
      "text": "When the U.S. entered World War II on December 8, 1941, many Montanans already had enlisted in the military to escape the poor national economy of the previous decade. Another 40,000-plus Montanans entered the armed forces in the first year following the declaration of war, and over 57,000 joined up before the war ended. These numbers constituted about 10 percent of the state's total population, and Montana again contributed one of the highest numbers of soldiers per capita of any state. Many Native Americans were among those who served, including soldiers from the Crow Nation who became Code Talkers. At least 1500 Montanans died in the war. Montana also was the training ground for the First Special Service Force or Devil's Brigade a joint U.S-Canadian commando-style force that trained at Fort William Henry Harrison for experience in mountainous and winter conditions before deployment. Air bases were built in Great Falls, Lewistown, Cut Bank and Glasgow, some of which were used as staging areas to prepare planes to be sent to allied forces in the Soviet Union. During the war, about 30 Japanese balloon bombs were documented to have landed in Montana, though no casualties nor major forest fires were attributed to them"
    }

Etant donné que cette procédure n'utilise pas de pipeline d'inclusion avec cet index, les incorporations ne sont pas générées pour les documents texte au cours de l'inclusion. Cela signifie que seule la recherche BM25 est utilisée pour extraire les documents pertinents.

Après la création d'un index de recherche sans le plugin k-NN, lorsque vous exécutez la commande suivante pour vérifier un document indexé, seul le texte est renvoyé, comme suit :

Demande :

GET /conversation-demo-index/_doc/1

Réponse :

{
  "_index": "conversation-demo-index",
  "_id": "1",
  "_version": 1,
  "_seq_no": 0,
  "_primary_term": 1,
  "found": true,
  "_source": {
    "text": "The emergence of resistance of bacteria to antibiotics is a common phenomenon. Emergence of resistance often reflects evolutionary processes that take place during antibiotic therapy. The antibiotic treatment may select for bacterial strains with physiologically or genetically enhanced capacity to survive high doses of antibiotics. Under certain conditions, it may result in preferential growth of resistant bacteria, while growth of susceptible bacteria is inhibited by the drug. For example, antibacterial selection for strains having previously acquired antibacterial-resistance genes was demonstrated in 1943 by the Luria–Delbrück experiment. Antibiotics such as penicillin and erythromycin, which used to have a high efficacy against many bacterial species and strains, have become less effective, due to the increased resistance of many bacterial strains."
  }
}

Créer l'index de recherche avec le plug-in k-NN

Pour tirer parti de la recherche hybride au lieu de BM25 pour enrichir la partie d'extracteur du pipeline RAG, vous devez configurer un pipeline d'inclusion et utiliser un modèle préentraîné importé afin que les incorporations de documents soient créées au moment de l'inclusion.

Utilisez cette option pour créer l'index avec un pipeline d'inclusion afin de générer automatiquement l'intégration pour les données lors de l'inclusion.

  1. Pour les besoins de cette revue de processus, utilisez l'une des options suivantes :
    • Option 1 : inscrivez et déployez un modèle préentraîné hébergé dans OCI Search avec OpenSearch en suivant les étapes décrites dans Utilisation d'un modèle préentraîné OpenSearch. Cette option est la plus simple à utiliser, vous n'avez pas besoin de configurer de stratégies IAM supplémentaires et la charge utile n'est pas aussi complexe que la charge utile pour l'option suivante.

    • Option 2 : importez, enregistrez et déployez un modèle préentraîné OpenSearch à l'aide des étapes décrites dans Modèles personnalisés. Vous pouvez ainsi télécharger le fichier de modèle vers un bucket Object Storage, puis indiquer l'URL Object Storage du fichier de modèle lors de l'inscription du modèle.

    • Option 3 : vous pouvez également inscrire et déployer un modèle d'intégration GenAI distant tel que cohere.embed-english-v3.0 dans votre cluster à l'aide de notre connecteur GenAI. Vous devez d'abord créer un connecteur, puis enregistrer et déployer le modèle à l'aide de l'ID de connecteur, comme décrit dans les étapes suivantes.

      Remarque

      Si vous utilisez le modèle ON-DEMAND, restez à jour avec les notifications d'abandon de modèle du service GenAI et mettez à jour votre connecteur si nécessaire pour éviter d'éventuelles interruptions de service. Reportez-vous à Modèles de base préentraînés dans l'IA générative pour connaître les modèles d'intégration pris en charge afin de sélectionner un modèle d'intégration dans la liste des modèles pris en charge.

      Si vous utilisez le modèle DEDICATED, remplacez le paramètre servingType de l'exemple de charge utile suivant de ON-DEMAND à DEDICATED.

    Notez l'ID de modèle renvoyé lorsque vous enregistrez et déployez le modèle.

  2. Créez un pipeline d'inclusion à l'aide de l'élément model id de l'étape précédente, comme indiqué dans l'exemple suivant :
    PUT _ingest/pipeline/minil12-test-pipeline
    {
      "description": "pipeline for RAG demo index",
      "processors" : [
        {
          "text_embedding": {
            "model_id": "<embedding_model_ID>",
            "field_map": {
               "text": "passage_embedding"
            }
          }
        }
      ]
    }
  3. Créez un index de recherche avec un pipeline d'inclusion, comme indiqué dans l'exemple suivant :
    PUT /conversation-demo-index-knn
    {
        "settings": {
            "index.knn": true,
            "default_pipeline": "minil12-test-pipeline"
        },
        "mappings": {
            "properties": {
                "passage_embedding": {
                    "type": "knn_vector",
                    "dimension": <model_dimension>,
                    "method": {
                        "name":"hnsw",
                        "engine":"lucene",
                        "space_type": "l2",
                        "parameters":{
                            "m":512,
                            "ef_construction": 245
                        }
                    }
                },
                "text": {
                    "type": "text"
                }
            }
        }
    }
  4. Assimilez les données à l'aide du pipeline d'inclusion de l'étape précédente, comme indiqué dans l'exemple suivant

    PUT /conversation-demo-index-knn/_doc/1
    {
        "text": "The emergence of resistance of bacteria to antibiotics is a common phenomenon. Emergence of resistance often reflects evolutionary processes that take place during antibiotic therapy. The antibiotic treatment may select for bacterial strains with physiologically or genetically enhanced capacity to survive high doses of antibiotics. Under certain conditions, it may result in preferential growth of resistant bacteria, while growth of susceptible bacteria is inhibited by the drug. For example, antibacterial selection for strains having previously acquired antibacterial-resistance genes was demonstrated in 1943 by the Luria–Delbrück experiment. Antibiotics such as penicillin and erythromycin, which used to have a high efficacy against many bacterial species and strains, have become less effective, due to the increased resistance of many bacterial strains."
       
    }
    GET /conversation-demo-index-knn/_doc/1
    PUT /conversation-demo-index-knn/_doc/2
    {
      "text": "The successful outcome of antimicrobial therapy with antibacterial compounds depends on several factors. These include host defense mechanisms, the location of infection, and the pharmacokinetic and pharmacodynamic properties of the antibacterial. A bactericidal activity of antibacterials may depend on the bacterial growth phase, and it often requires ongoing metabolic activity and division of bacterial cells. These findings are based on laboratory studies, and in clinical settings have also been shown to eliminate bacterial infection. Since the activity of antibacterials depends frequently on its concentration, in vitro characterization of antibacterial activity commonly includes the determination of the minimum inhibitory concentration and minimum bactericidal concentration of an antibacterial. To predict clinical outcome, the antimicrobial activity of an antibacterial is usually combined with its pharmacokinetic profile, and several pharmacological parameters are used as markers of drug efficacy."
    }
     
    PUT /conversation-demo-index-knn/_doc/3
    {
      "text": "Antibacterial antibiotics are commonly classified based on their mechanism of action, chemical structure, or spectrum of activity. Most target bacterial functions or growth processes. Those that target the bacterial cell wall (penicillins and cephalosporins) or the cell membrane (polymyxins), or interfere with essential bacterial enzymes (rifamycins, lipiarmycins, quinolones, and sulfonamides) have bactericidal activities. Those that target protein synthesis (macrolides, lincosamides and tetracyclines) are usually bacteriostatic (with the exception of bactericidal aminoglycosides). Further categorization is based on their target specificity. Narrow-spectrum antibacterial antibiotics target specific types of bacteria, such as Gram-negative or Gram-positive bacteria, whereas broad-spectrum antibiotics affect a wide range of bacteria. Following a 40-year hiatus in discovering new classes of antibacterial compounds, four new classes of antibacterial antibiotics have been brought into clinical use in the late 2000s and early 2010s: cyclic lipopeptides (such as daptomycin), glycylcyclines (such as tigecycline), oxazolidinones (such as linezolid), and lipiarmycins (such as fidaxomicin)"
    }
     
     
    PUT /conversation-demo-index-knn/_doc/4
    {
      "text": "The Desert Land Act of 1877 was passed to allow settlement of arid lands in the west and allotted 640 acres (2.6 km2) to settlers for a fee of $.25 per acre and a promise to irrigate the land. After three years, a fee of one dollar per acre would be paid and the land would be owned by the settler. This act brought mostly cattle and sheep ranchers into Montana, many of whom grazed their herds on the Montana prairie for three years, did little to irrigate the land and then abandoned it without paying the final fees. Some farmers came with the arrival of the Great Northern and Northern Pacific Railroads throughout the 1880s and 1890s, though in relatively small numbers"
    }
     
    PUT /conversation-demo-index-knn/_doc/5
    {
      "text": "In the early 1900s, James J. Hill of the Great Northern began promoting settlement in the Montana prairie to fill his trains with settlers and goods. Other railroads followed suit. In 1902, the Reclamation Act was passed, allowing irrigation projects to be built in Montana's eastern river valleys. In 1909, Congress passed the Enlarged Homestead Act that expanded the amount of free land from 160 to 320 acres (0.6 to 1.3 km2) per family and in 1912 reduced the time to prove up on a claim to three years. In 1916, the Stock-Raising Homestead Act allowed homesteads of 640 acres in areas unsuitable for irrigation.  This combination of advertising and changes in the Homestead Act drew tens of thousands of homesteaders, lured by free land, with World War I bringing particularly high wheat prices. In addition, Montana was going through a temporary period of higher-than-average precipitation. Homesteaders arriving in this period were known as Honyockers, or scissorbills. Though the word honyocker, possibly derived from the ethnic slur hunyak, was applied in a derisive manner at homesteaders as being greenhorns, new at his business or unprepared, the reality was that a majority of these new settlers had previous farming experience, though there were also many who did not"
    }
     
    PUT /conversation-demo-index-knn/_doc/6
    {
      "text": "In June 1917, the U.S. Congress passed the Espionage Act of 1917 which was later extended by the Sedition Act of 1918, enacted in May 1918. In February 1918, the Montana legislature had passed the Montana Sedition Act, which was a model for the federal version. In combination, these laws criminalized criticism of the U.S. government, military, or symbols through speech or other means. The Montana Act led to the arrest of over 200 individuals and the conviction of 78, mostly of German or Austrian descent. Over 40 spent time in prison. In May 2006, then-Governor Brian Schweitzer posthumously issued full pardons for all those convicted of violating the Montana Sedition Act."
    }
     
    PUT /conversation-demo-index-knn/_doc/7
    {
      "text": "When the U.S. entered World War II on December 8, 1941, many Montanans already had enlisted in the military to escape the poor national economy of the previous decade. Another 40,000-plus Montanans entered the armed forces in the first year following the declaration of war, and over 57,000 joined up before the war ended. These numbers constituted about 10 percent of the state's total population, and Montana again contributed one of the highest numbers of soldiers per capita of any state. Many Native Americans were among those who served, including soldiers from the Crow Nation who became Code Talkers. At least 1500 Montanans died in the war. Montana also was the training ground for the First Special Service Force or Devil's Brigade a joint U.S-Canadian commando-style force that trained at Fort William Henry Harrison for experience in mountainous and winter conditions before deployment. Air bases were built in Great Falls, Lewistown, Cut Bank and Glasgow, some of which were used as staging areas to prepare planes to be sent to allied forces in the Soviet Union. During the war, about 30 Japanese balloon bombs were documented to have landed in Montana, though no casualties nor major forest fires were attributed to them"
    }

Après avoir créé l'index de recherche avec le plugin k-NN, lorsque vous exécutez la commande suivante pour vérifier un document indexé, la réponse inclut les incorporations, comme suit :

Demande :

GET /conversation-demo-index-knn/_doc/1

Réponse :

{
  "_index": "conversation-demo-index-knn",
  "_id": "1",
  "_version": 1,
  "_seq_no": 0,
  "_primary_term": 1,
  "found": true,
  "_source": {
    "passage_embedding": [
      -0.02929831,
      -0.04421867,
      -0.10647401,
      0.07105031,
      0.004921746,
      -0.04529944,
      -0.092778176,
      0.14189903,
      -0.0016610072,
      0.08001712,
      0.053442925,
      -0.022703059,
      0.039608333,
      0.042299673,
      ..............

Créer un ID conversation

Exécutez la commande suivante pour créer l'ID de conversation :

POST /_plugins/_ml/memory/conversation
{
  "name": "rag-conversation"
}

Réponse :

{
  "conversation_id": "<conversation_ID>"
}

Exécuter la RAG avec BM25

Une fois les documents indexés, vous pouvez exécuter la RAG en utilisant le nom du pipeline RAG indiqué dans Créer un pipeline RAG, comme indiqué dans l'exemple suivant.

Si vous utilisez un connecteur Data Science, vous devez remplacer la valeur "llm_model" par "oci_datascience/<your_llm_model_name>".

GET /conversation-demo-index/_search?search_pipeline=<pipeline_name>
{
    "query": {
        "match": {
            "text": {
                "query": "when did us pass espionage act?"
            }
        }
    },
    "ext": {
        "generative_qa_parameters": {
            "llm_model": "oci_genai/<your_llm_model_name>",
            "llm_question": "when did us pass espionage act? answer only in two sentences using provided context.",
            "conversation_id": "<conversation_ID>",
            "context_size": 2,
            "interaction_size": 1,
            "timeout": 15
        }
    }
}

La première partie est l'extraction avec la requête vers l'index pour trouver les documents les plus pertinents en fonction de la requête de l'utilisateur. La deuxième partie augmente la requête de l'utilisateur avec plus d'instructions, puis utilise la réponse de la partie d'extraction comme contexte. Ils sont ensuite tous transmis au grand modèle de langage pour générer la réponse en utilisant uniquement des connaissances dans les données de cas d'emploi.

Indiquez le nom de modèle que vous avez utilisé dans la charge utile à partir de Créer le connecteur pour <your_llm_model_name>. Vous trouverez ci-dessous des exemples de noms de modèle :

  • oci_genai/cohere.command-r-plus-08-2024
  • oci_genai/cohere.command-08-2024
  • oci_genai/meta.llama-3.1-70b-instruct
  • oci_genai/meta.llama-3.2-90b-vision-instruct

Dans la réponse suivante, la première partie est un ensemble de documents renvoyés par l'extracteur (le moteur de recherche dans OpenSearch). Ceci est suivi de la réponse du grand modèle de langage (LLM) qui est la réponse réelle du modèle de LLM utilisant la génération de texte et l'apprentissage en contexte pour augmenter la base de connaissances du LLM. Le moteur de recherche utilisé ici est BM25 car l'index conversation-demo-index n'utilise pas de modèle déployé pour générer des incorporations de document lors de l'inclusion.

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 4,
      "relation": "eq"
    },
    "max_score": 3.6364775,
    "hits": [
      {
        "_index": "conversation-demo-index",
        "_id": "6",
        "_score": 3.6364775,
        "_source": {
          "text": "In June 1917, the U.S. Congress passed the Espionage Act of 1917 which was later extended by the Sedition Act of 1918, enacted in May 1918. In February 1918, the Montana legislature had passed the Montana Sedition Act, which was a model for the federal version. In combination, these laws criminalized criticism of the U.S. government, military, or symbols through speech or other means. The Montana Act led to the arrest of over 200 individuals and the conviction of 78, mostly of German or Austrian descent. Over 40 spent time in prison. In May 2006, then-Governor Brian Schweitzer posthumously issued full pardons for all those convicted of violating the Montana Sedition Act."
        }
      },
      {
        "_index": "conversation-demo-index",
        "_id": "4",
        "_score": 2.675274,
        "_source": {
          "text": "The Desert Land Act of 1877 was passed to allow settlement of arid lands in the west and allotted 640 acres (2.6 km2) to settlers for a fee of $.25 per acre and a promise to irrigate the land. After three years, a fee of one dollar per acre would be paid and the land would be owned by the settler. This act brought mostly cattle and sheep ranchers into Montana, many of whom grazed their herds on the Montana prairie for three years, did little to irrigate the land and then abandoned it without paying the final fees. Some farmers came with the arrival of the Great Northern and Northern Pacific Railroads throughout the 1880s and 1890s, though in relatively small numbers"
        }
      },
      {
        "_index": "conversation-demo-index",
        "_id": "5",
        "_score": 2.5380564,
        "_source": {
          "text": "In the early 1900s, James J. Hill of the Great Northern began promoting settlement in the Montana prairie to fill his trains with settlers and goods. Other railroads followed suit. In 1902, the Reclamation Act was passed, allowing irrigation projects to be built in Montana's eastern river valleys. In 1909, Congress passed the Enlarged Homestead Act that expanded the amount of free land from 160 to 320 acres (0.6 to 1.3 km2) per family and in 1912 reduced the time to prove up on a claim to three years. In 1916, the Stock-Raising Homestead Act allowed homesteads of 640 acres in areas unsuitable for irrigation.  This combination of advertising and changes in the Homestead Act drew tens of thousands of homesteaders, lured by free land, with World War I bringing particularly high wheat prices. In addition, Montana was going through a temporary period of higher-than-average precipitation. Homesteaders arriving in this period were known as Honyockers, or scissorbills. Though the word honyocker, possibly derived from the ethnic slur hunyak, was applied in a derisive manner at homesteaders as being greenhorns, new at his business or unprepared, the reality was that a majority of these new settlers had previous farming experience, though there were also many who did not"
        }
      },
      {
        "_index": "conversation-demo-index",
        "_id": "7",
        "_score": 1.4905708,
        "_source": {
          "text": "When the U.S. entered World War II on December 8, 1941, many Montanans already had enlisted in the military to escape the poor national economy of the previous decade. Another 40,000-plus Montanans entered the armed forces in the first year following the declaration of war, and over 57,000 joined up before the war ended. These numbers constituted about 10 percent of the state's total population, and Montana again contributed one of the highest numbers of soldiers per capita of any state. Many Native Americans were among those who served, including soldiers from the Crow Nation who became Code Talkers. At least 1500 Montanans died in the war. Montana also was the training ground for the First Special Service Force or Devil's Brigade a joint U.S-Canadian commando-style force that trained at Fort William Henry Harrison for experience in mountainous and winter conditions before deployment. Air bases were built in Great Falls, Lewistown, Cut Bank and Glasgow, some of which were used as staging areas to prepare planes to be sent to allied forces in the Soviet Union. During the war, about 30 Japanese balloon bombs were documented to have landed in Montana, though no casualties nor major forest fires were attributed to them"
        }
      }
    ]
  },
  "ext": {
    "retrieval_augmented_generation": {
      "answer": " Through the Espionage Act of 1917 and the Sedition Act of 1918, passed in May of 1918, the U.S. Congress outlawed criticism of the military, government, or symbols through speech or other means. The Montana Sedition Act was enacted in February 1918, serving as a model for the federal version, and resulting in the arrest of over 200 people, chiefly of German or Austrian descent, with over 40 imprisoned. "
    }
  }
}