Oracle® Fusion Middleware
Securing the Oracle GoldenGate Environment

12¢ (12.3.0.1)
E91326-01
March 2018

ORACLE"

Oracle Fusion Middleware Securing the Oracle GoldenGate Environment, 12¢ (12.3.0.1)
E91326-01

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Lorna Vallad

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introducing Oracle GoldenGate Security

Part | Securing the Microservices Architecture

2 Network

2.1 Network Access Control 2-1
2.2 Network Connection Adapter 2-2
2.3 Proxy Support 2-4
2.4 Reverse Proxy Support 2-6
3 Authentication and Authorization
3.1 Authentication 3-1
3.2 Authorization 3-3
3.3 Authorization for WebSockets 3-4
3.4 Error Codes 3-5
3.5 Cross Site Request Forgery 3-5
4 Communication Security
4.1 Certificate Access Control List 4-1
4.2 Transport Layer Security Protocols and Ciphers 4-2
4.3 TLS Certificate Revocation List Handling 4-4
4.4 HTTP Security and Cache Headers 4-7
5 Server and Deployment Identities
5.1 Using a Universally Unique IDs Scheme 5-1
5.2 Using a Deterministically Calculated Unique ID Scheme 5-1
5.3 Using an Explicit Naming Scheme 5-2

ORACLE"

5.4 Creating Server and Deployment IDs 5-2

6 Securing Deployments

Part I| Securing Oracle GoldenGate

7 Overview of Security Options

8 Encrypting Data with the Master Key and Wallet Method

8.1 Creating the Wallet and Adding a Master Key 8-1
8.2 Specifying Encryption Parameters in the Parameter File 8-2
8.3 Renewing the Master Key 8-3
8.4 Deleting Stale Master Keys 8-4

O Encrypting Data with the ENCKEYS Method

9.1 Encrypting the Data with the ENCKEYS Method 9-1
9.2 Decrypting the Data with the ENCKEYS Method 9-2
9.3 Examples of Data Encryption using the ENCKEYS Method 9-3

10 Managing Identities in a Credential Store

10.1 Creating and Populating the Credential Store 10-1
10.2 Specifying the Alias in a Parameter File or Command 10-2

11 Encrypting a Password in a Command or Parameter File

11.1 Encrypting the Password 11-1
11.2 Specifying the Encrypted Password in a Parameter File or Command 11-2

12 Populating an ENCKEYS File with Encryption Keys

12.1 Defining Your Own Key 12-1
12.2 Using KEYGEN to Generate a Key 12-1
12.3 Creating and Populating the ENCKEYS Lookup File 12-2

ORACLE" iv

13 Configuring GGSCI Command Security

13.1 Setting Up Command Security 13-1
13.2 Securing the CMDSEC File 13-3
14 Using Target System Connection Initiation
14.1 Configuring the Passive Extract Group 14-2
14.2 Configuring the Alias Extract Group 14-3
14.3 Starting and Stopping the Passive and Alias Processes 14-3
14.4 Managing Extraction Activities 14-4
14.5 Other Considerations when using Passive-Alias Extract 14-4

15 Securing Manager

ORACLE"

Audience

This guide is intended for the person or persons who are responsible for operating
Oracle GoldenGate and maintaining its performance. This audience typically includes,
but is not limited to, systems administrators and database administrators.

ORACLE 6

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/t opi ¢/ | ookup?
ct x=accé& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: // ww. or acl e. conl pl s/ t opi ¢/
| ookup?ct x=acc& d=i nf o or visit ht t p: / / ww. or acl e. con pl s/t opi ¢/ | ookup?

ctx=acc&i d=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE

Related Information

The Oracle GoldenGate Product Documentation Libraries are found at
Oracle GoldenGate

Oracle GoldenGate Application Adapters

Oracle GoldenGate for Big Data

Oracle GoldenGate Plug-in for EMCC

Oracle GoldenGate Monitor

Oracle GoldenGate for HP NonStop (Guardian)

Oracle GoldenGate Veridata

Oracle GoldenGate Studio

Additional Oracle GoldenGate information, including best practices, articles, and
solutions, is found at:

Oracle GoldenGate A-Team Chronicles

ORACLE

http://docs.oracle.com/goldengate/c1221/gg-winux/index.html
https://docs.oracle.com/goldengate/gg121211/gg-adapter/index.html
https://docs.oracle.com/goldengate/bd1221/gg-bd/index.html
http://docs.oracle.com/goldengate/em1321/gg-emplugin/index.html
https://docs.oracle.com/goldengate/m12212/gg-monitor/index.html
http://docs.oracle.com/goldengate/ns1221/gg-nsk/index.html
http://docs.oracle.com/goldengate/v12212/gg-veridata/index.html
https://docs.oracle.com/goldengate/s1221/gg-studio/index.html
http://www.ateam-oracle.com/category/data-integration/di-ogg/

Introducing Oracle GoldenGate Security

ORACLE

Oracle GoldenGate includes many security features that provide varying levels of
security. Understanding the security features and the uses cases they cover are
important first steps when learning how to secure your environment.

There are two different architectures offered with Oracle GoldenGate:

Microservices Architecture (MA)

This is a REST API Microservices-based architecture that allows you to configure,
monitor, and manage Oracle GoldenGate services using a web-based UI.

You can use MA to deploy, monitor, manage, and perform Extract and Replicat
operations on trail data within your MA implementation. To know more about MA see
Components of Oracle GoldenGate Microservices Architecture.

Classic Architecture (CA)

This is the original Oracle GoldenGate architecture to effectively move data across
numerous topologies. To know more about Classic Architecture, see Components of
Classic Architecture and the Oracle GoldenGate user guide for your database.

Securing both architectures is detailed in these parts:

* Securing the Microservices Architecture (page 1)

» Securing Oracle GoldenGate (page 1)

1-1

Securing the Microservices Architecture

ORACLE

Use this part to secure your Microservices Architecture (MA) environment.

The MA service interfaces use the REST architectural style, within an HTTP
environment. As REST is a style that uses HTTP and not a distinct transfer
implementation, all the security related concerns and solutions applied to HTTP apply
equally to REST interfaces. This includes ensuring general security related to HTTP-
based requests, responses, sessions, cookies, headers and content as well as
addressing issues such as Cross Site Request Forgery, Ul Redressing and delegated
authentication. TLS/SSL when enabled, ensures confidentiality and optionally integrity,
although typical configurations do not ensure bi-lateral integrity. Negotiating security
configurations can further specify identity validation, renegotiation, and revocation
requirements as allowed by Oracle security standards.

Communications Transport

All REST Service Interfaces and Data Conveyances may be conducted over the
following network transport:

e TCP is used for network communication.

- UDT is an additional protocol used for data conveyance. It is a high-performance,
UDP-based data transfer protocol, which transfers large datasets over high-speed
WAN.

* WebSockets 2.0 is a not a transport protocol but a pseudo-transport that enables a
server to send content to client without client solicitation, thereby enabling bi-
directional messaging over a persistent connection. It operates over HTTPS ports
simplifying network security management.

Communications Security

An MA server is the originator of all the response messages sent to the client when a
request is sent to the server. An MA server neither serves as a proxy nor supports
tunneling of response messages generated by other applications. Secured network
communications use Oracle approved TLS (Transport Layer Security) or DTLS
(Datagram Transport Layer Security) libraries. MA Oracle platforms uses the Oracle
SSL toolkit (NZ), which includes Oracle Wallet integration.

For non-Oracle platforms, the Oracle SSL toolkit is used where available. Where the
Oracle SSL Toolkit is not available, an alternate SSL toolkit is used.

All MA servers implement client and server authentication. However, client and server
authentication is only available when network security is configured and enabled. MA
servers can be configured with network security enabled but without using server or
client authentication.

Inbound and Outbound Security Configuration

Security configuration can be inbound or outbound. Inbound configuration implies
configuring specific behavior associated with a server. A server receives requests and

responds with information or messages. Outbound security configuration assumes that
the specific behavior is associated with a client.

A client issues requests and receives the response information from the server. Only
the Distribution Server acts as a client with outbound security requirements. All other
servers are server-only. For example, in MA, the Distribution Server accepts service
requests from clients through inbound configured secured connections, while it
connects and sends trail data to Receiver Server through secure connections with
Outbound configuration.

Topics:

* MA Security Features (page 2)
Learn about these MA security features:

* Network (page 2-1)
Learn how to secure your network for Oracle GoldenGate.

» Authentication and Authorization (page 3-1)
The MA security and authorization model declares and defines how
communication security (confidentiality and Integrity) and Authorization
(authentication and permissions) are configured and implemented.

» Communication Security (page 4-1)
Communication security is the confidentiality and integrity of the information sent
over communications channels, such as TCP/IP-based networks.

» Server and Deployment Identities (page 5-1)
You must uniquely identify MA servers and deployments using schemes.

* Securing Deployments (page 6-1)
You can choose to set up a secure or non-secure deployment. A secure
deployment involves making RESTful API calls and conveying trail data between
the Distribution Server and Receiver Server, over SSL/TLS. You can use your
existing wallets and certificates, or you can create new ones.

MA Security Features

ORACLE

Learn about these MA security features:

* Connection Filtering: This is responsible for qualifying and filtering a candidate
connection based on connection policy specifications.

* Certificate Filtering: Similar to connection filtering, this feature enables qualifying
certificates as part of accepting or denying a connection request.

* Fall-back Constraints: Network security configuration within MA servers enables
you to configure and constrain the protocol version negotiation fall-back behavior
allowing them to control if and how the protocol versions are negotiated.

* IPv6 Support: Oracle GoldenGate network implementations support native IPv6
addressing standards.

* Session Management: MA Service Interfaces requests are REST and stateless,
which implies that no client application context it stored on the server between
requests. The application session state is entirely held by the client.

* User Credential Storage: MA implementations address this by using Oracle
Wallets and related identity management services to store security information.

ORACLE

Approved encryption technologies are configured to secure both stored and in-
flight user data. Stored data typically refers to file system files like capture data
trail files while in-flight data typically refers to data transmitted between peers over
a non-persistent communications channel.

Single Page Applications (SPAs) and WebApp Security: If the initial connection
to the Service Manager uses the HTTPS protocol, then the browser connects using
SSL/TLS. If the server is configured to require the client to present a certificate,
the browser needs to be configured to present the appropriate client certificate.

Cipher-suites: The cipher-suites for MA are configured during deployment. You
can change the value of the cipher-suite using the Server Manager REST
interfaces for each server. Alternatively, you can update then using either the MA
boostrap configuration override option or the command-line configuration override
options. The list of cipher-suites available to a user differs based on the
environment. This ensures that there is sufficient overlap to allow secure
communication at the required security level.

Both client and server platforms generally support more than one cipher-suite.
This increases the probability that the client and server can negotiate and agree
on a cipher-suite to use. The set of available cipher-suites on the server is dictated
by the NZ Toolkit (or alternate TLS/SSL toolkit). There are several cipher-suites
set as the default set and is dependent on the Java Runtime Environment
distributed with Oracle GoldenGate. The default set attempts to specify the most
common cipher-suites with the highest security protection and highest
performance. However, in practice you need to choose between high security and
high performance as these are competing attributes and there is a trade-off
between security and performance.

Network

Learn how to secure your network for Oracle GoldenGate.
Topics:

* Network Access Control (page 2-1)
The MA configuration of the network connection takes the form of an array or
network access control list (ACL).

* Network Connection Adapter (page 2-2)
Learn about how to specify your network connection configuration.

* Proxy Support (page 2-4)
Learn how to configure your proxy servers.

* Reverse Proxy Support (page 2-6)
Learn how to configure your reverse proxy servers.

2.1 Network Access Control

ORACLE

The MA configuration of the network connection takes the form of an array or network
access control list (ACL).

Each ACL specification minimally consists of a permission statement indicating
whether the APC specification allows or denies client connections from the specified
address. ACL specifications are processed in order and terminate when the specified
address is qualified. If the specified address does not qualify, processes continue with
the next ACL specification. Once the address of the client requesting connection is
qualified, the ACLs permissions dictate whether the connection is 'allowed' or 'denied'.
If the no ACL specifications qualify address of the client requesting connection, a
default resolution of 'allow is assumed and the client is allowed to connect. The ACL in
the configuration take the following syntactic form:

i pACL := "[' acl Spec [, acl Spec] ']’

acl Spec := "permission" : ["deny" | "allow'] [, "address": [ipv4Address |

i pv4MappedAddress | ipv6Address |]

i pv4Address :="'"" decimal '.' decimal '.' decimal '.' deciml '"'

i pv4MappedAddress := """ "ff::" decimal '.' decimal '.' decimal '.' decimal '"'

i pv6Address :="'""' hexadecimal ':' hexadecimal ':' hexadecimal ':' hexadecinal ':'
hexadecimal ':' hexadecimal ':' hexadecimal ':' hexadeciml '"'

Inbound connection request are processed uniformly after they are received over a
network interface. The network interface configuration dictates the form of addressing.
For example, addresses appearing on an IPv6 interface appears as IPv6 addresses. If
the IPv6 configuration specifies IPv4 mapping, then the IPv4 client's address is
mapped into the IPv6 addressing space. An address appearing on an IPv4 interface
appears as an unmapped IPv4 address. Since the ACL qualification focuses on
qualifying addresses and all adapters within the host environment have unique
addresses, no additional interface information is required.

2-1

Chapter 2
Network Connection Adapter

For hosts that support hot-fail over network interfaces, the fail-over and reassignment
of network IP address to adapter MAC addresses is transparent to the application.

Example 2-1 Examples
Deny client connections originating from 192.0.2.254.

"ipACL" : [{ "pernmission" : "deny", "address" : "192.0.2.254" }]

Explicitly allow all client connections. The first ACP by default qualifies all addresses.
The second ACL is never processed.

"ipACL" : [{ "pernmission" : "allow' },
{ "permission" : "deny", "address" : "192.0.2.254" }]

Allow client connections originating from 127.0.0.1, but deny connection originating
from 192.0.2.254 appearing on an interface configured for IPv6 addressing.

"IpACL" : [{ "pernission" : "allow', "address" : "127.0.0.1" },
{ "permission" : "deny", "address" : "ff::192.0.2.254" }]

Allow client connections originating from and IPv6 loopback address (127.0.0.1
represented as ::1 in IPV6 addressing), allow client connections originating from the
unmapped IPv4 address 192.0.2.253, allow client connections originating from IPv6
address 2001:db8:85a3:0:0:8a2e:370:7334 and deny client connections originating
from mapped IPv4 address ff::192.0.2.254.

"ipACL" : [{ "permission" : "allow', "address" : "::1" },

{ "pernmission" : "allow', "address" : "192.0.2.254" },

{ "permission" : "allow', "address" : "2001:db8: 85a3: 0: 0: 8a2e:
370: 7334" },

{ "pernission" : "deny", "address" : "ff::192.0.2.254" }]

2.2 Network Connection Adapter

ORACLE

Learn about how to specify your network connection configuration.

An adapter class is used to encapsulate the logic and implementation of acquiring
network listening address configuration and establishing listening port based on the
network configuration. The actual network connection information is captured in
Network Connection Specification of the Software Communications Architecture
(SCA). In the description of the ScaNet wor kSpec class, instances of the ScsNet wor kSpec
represent the network configuration information acquired from the ScaShar edCont ext .
The ScaNet wor kSpec handles the discrete network specification. However, a complete
SCA network specification takes any of three forms and can define more than one
network configuration. Multiple networks is when more than one network interface is
configured in an environment where the host be multi-homed, For example, handling
connections requests on different addresses through different network interface
adapters.

The Net wor kConnect i onSpecs themselves are members of an array associated with the
servi ceLi st eni ngPort configuration element. For example, using the

servi ceLi st eni ngPort configuration entry, an SCA network specification may take any
of the following syntactic forms:

1. portValue | portValueString
2. networ kSpec
3. "[" networkSpec [, networkSpec ...] ']’

2-2

ORACLE

Chapter 2
Network Connection Adapter

You can use the following syntax in your network specification:

port Val ue [1234567890] +
portVal ueString portValue ""'
net wor kSpec "{' portSpec [, ipaddressSpec | nameSpec] [, interfaceSpec]

[, networkOptionSpec] '}

port Spec ;= "port" : portValue | portValueString

i paddr essSpec = "address" : ipv4Address | ipv6Address | "ANY"
nameSpec = :al phanum "™’

i nterfaceSpec = "interface" : '"" :al phanum '"'

net wor kOptionSpec : = "options" : [PVA_ONLY | IPV6_ONLY
Regardless of the form your specification takes, the internal representation is
normalize into the 3rd form:

1. portValue | portValueString == networkSpec
2. portVal ue == "{" "port" : portValue '}
3. portVal ueString = "[" "{" "port" : portValueString '}" ']

The first form retains compatibility with existing network port specifications where only
the port Val ue or portVal ueString is provided.

The second form assigns the net wor kSpec as a single value. This form still only defines
a single network specification and allows greater control and flexibility in identifying
network values and options.

The third form defines an array of net wor kSpec instances. It allows you to specify
different network configurations based upon either address or network interface.

Example 2-2 Example
With the following simplified host network interface configuration:

$/sbin/ip addr show
| 0: LOOPBACK, UP, LOWER UP ntu 16436 qdi sc noqueue state UNKNOMN
l'i nk/1 oopback 00: 00: 00: 00: 00: 00 brd 00: 00: 00: 00: 00: 00
inet 127.0.0.1/8 scope host 1o
et h0: BROADCAST, MULTI CAST, UP, LOAER_UP nmtu 1500 qdisc pfifo_fast state UP glen 1000
l'ink/ether 00:16:3e:52:6e:27 brd ff:ff:ff:ff:ff:ff
inet 192.0.2.39/21 brd 10.240.111. 255 scope gl obal ethO
inet6 2001: db8: 85a3: 0: 0: 8a2e: 370: 6666 brd ff02::1 scope link eth0
ethl: BROADCAST, MULTI CAST nmtu 1500 qdisc pfifo_fast state UP glen 1000
l'ink/ether 00:16:3e:1f:99:bc brd ff:ff:ff:ff:ff:ff
inet 192.0.2.98/21 brd 10.100.99.98 scope link ethl
inet6 2001: db8: 85a3: 0: 0: 8a2e: 370: 7334 brd ff02::1 scope link ethl

The following specification is derived:

1. "serviceListeningPort: "9000"

2. "servicelListeningPort: 9000

3. "serviceListeningPort: { "port" : 9000 }

4. "serviceListeningPort: { "port" : "9000" }

5. "serviceListeningPort: { "port" : "9000", "address" : "192.0.2.254" }

6. "serviceListeningPort: { "port" : "9000", "name" : "serverl" }

7. "servicelisteningPort: { "port" : "9000", "interface" : "ethl" }

8. "servicelListeningPort: [
{ "port" : "9000", "interface" : "lo" }
{ "port" : "9000", “"address" : "192.0.2.39", "option" : "IPVA_ONLY" }
{ "port" : "9000", "interface" : "ethl", "option" : "IPV6_ONLY" }

These forms are describes as:

2-3

2.3 Proxy

ORACLE

Chapter 2
Proxy Support

Form1-4
Listens on port 9000 on all ANY address over ALL interfaces.

Form 5
Listens on port 9000 on address 192.0.2.254 only.

Form 6
Listens on port 9000 on the address associates with server 1.

Form 7
Listens on port 9000 on the address associates with interface et h1 and accepts IPV4
address connections using the mapped IPV4.

Form 8

Listens on port 9000 on the address associates with interface | o, on port 9000
address 192.0.2.39 accepting only IPV4 addresses, and on port 9000 with addresses
associated with interface et h1 accepting onlylPV6 addresses.

Most of the logic encapsulated within this class handles selecting network interface
adapter based on the network interface adapter’s identifying name or the address. The
interface can be searched for based on the requested address.

Specifying multiple adapters means that each ScaNet wor kSpec resolves to only a subset
of adapters. Precedence processing allows the specification of ANY address and ALL
interfaces for the last ScaNet wor kSpec as a pool specification when the platform
networking interfaces support mapping sub-set interface matches

Support

Learn how to configure your proxy servers.

Proxy configuration mediates access with different MA servers within a network for a
deployment.

MA requires you to exhibit proper and compliant behavior in a network environment
where one or more proxy servers may mediate access to MA servers.

Configuration

The initial configuration is simply declaring whether proxy detection should be enabled
or disabled. Typically, it is enabled by default though you can disable it in / conf i g/
net wor k/ pr oxyDet ai | s. The enable clause is similar to:

{

"net wor k" :
"proxyEnabl ed": true,
"proxyDetails": {
"proxyACLEnabl ed": true,
"proxyACL": [
{ "permssion": "deny", "address":
"192. 0. 2. 254" },
{ "permssion": "allow', "address": "192.0.2.254", "trusted":
fal se },
{ "permission": "allow', "address": "ANY", "trusted":
true }

]

r| Mappi ngEnabl ed": true,
"url Mappi ng": [

2-4

ORACLE

Chapter 2
Proxy Support

}
}

Proxy ACL Specifications

The configuration of Proxy ACL specifications is similar to Network IP ACL
specifications. The differences are that each entry defines the access control for a
proxy server in your environment and includes a trust designator. Each ACL
specification minimally consists of a permission statement indicating whether the ACL
specification allows or denies client connections proxied through the proxy server's
specified address. ACL specifications are processed in order and terminate when the
specified address is qualified. If the specified address does not qualify, processes
continue with the next ACL specification. Once the address of the client requesting
connection is qualified, the ACLs permissions dictate whether the connection is
allowed or denied. If the no ACL specifications qualify address of the client requesting
connection, a default resolution of allow is used and the client is allowed to connect.
The ACL in the configuration may take the following form:

i pACL := "[' acl Spec> [, acl Spec] ']'

acl Spec := "permission" : ["deny" | "allow'] [, "address": [ipv4Address |

i pv4MappedAddress | ipv6Address |]

i pv4Address :="'"" decimal '.' decimal '.' decimal '.' decimal '"'

i pv4MappedAddress := """ "ff::" decimal '.' decimal '.' decimal '.' decimal '"'

i pv6Address :="'""' hexadecimal ':' hexadecimal ':' hexadecimal ':' hexadecinmal ':'
hexadecimal ':' hexadecimal ':' hexadecimal ':' hexadeciml '"'

Example 2-3 Proxy Examples
Deny client connections originating from 192.0.2.254.

"ipACL" : [{ "pernmission" : "deny", "address" : "192.0.2.254" }]

Explicitly allow all client connections. The first ACP by default qualifies all addresses.
The second ACL is never processed.

"ipACL" : [{ "pernmission" : "allow' },
{ "permission" : "deny", "address" : "192.0.2.254" }]

Allow client connections originating from 127.0.0.1, but deny connection originating
from 192.0.2.254 appearing on an interface configured for IPv6 addressing.

"IpACL" : [{ "pernmission" : "allow', "address" : "127.0.0.1" },
{ "permission" : "deny", "address" : "ff::192.0.2.254" }]

Allow client connections originating from and IPv6 loopback address (127.0.0.1
represented as ::1 in IPV6 addressing), allow client connections originating from the
unmapped IPv4 address 192.0.2.253, allow client connections originating from IPv6
address 2001:db8:85a3:0:0:8a2e:370:7334 and deny client connections originating
from mapped IPv4 address ff::192.0.2.254.

"ipACL" : [{ "permission" : "allow', "address" : "::1" },

{ "pernmission" : "allow', "address" : "192.0.2.254" },

{ "permission" : "allow', "address" : "2001:db8: 85a3: 0: 0: 8a2e:
370: 7334" },

{ "pernmission" : "deny", "address" : "ff::192.0.2.254" }]

2-5

Chapter 2
Reverse Proxy Support

2.4 Reverse Proxy Support

ORACLE

Learn how to configure your reverse proxy servers.

Reverse Proxy allows a single point of contact for various microservices associated
with an Oracle GoldenGate MA deployment.

You can configure a proxy server depending on your environment setup and network
requirements. Reverse proxy is optional, however, it is recommended to ensure easy
access to microservices and provide enhanced security.

Reverse Proxy Support

Oracle GoldenGateMA can be configured to use a reverse proxy. Oracle GoldenGate
MA includes an application called Rever seProxySet ti ngs that generates configuration
file for a reverse proxy server. For example, the Administration Server is available on
htt ps:// gol dengat e. exanpl e. com 9001 and the Distribution Server is on

htt ps: // gol dengat e. exanpl e. com 9002. With reverse proxy, all the
microservices can be accessed from a single address, for example, htt ps: //

gol dengat e. exanpl e. com

The ReverseProxySettings application has two additional parameters in Oracle
GoldenGateversion 12.3.0.1 or later:

e -P: Password for a Service Manager account.

* -u: Name of the Service Manager account to use.

These values are used when connecting to the Service Manager and are required
when authentication is enabled.

Prerequisites

If you need to use a reverse proxy service with MA, use Nginx. Its a free, open-source,
high-performance HTTP server and reverse proxy, as well as an IMAP/POP3 proxy
server.Oracle GoldenGate MA is shipped with a utility to configure Nginx reverse

proxy.
Here are the prerequisites for configuring Nginx-based reverse proxy:
* Install Nginx: For Oracle Linux, the command to install Nginx is:

yum —y install nginx

For more information about installing Nginx, see Installing Nginx Reverse Proxy
* Check the JRE version to be JRE 8.
* Install Oracle GoldenGate MA.

e Create one or more active MA deployments.

Configuring Nginx-based Reverse Proxy Example

An Oracle GoldenGate MA installation includes the Rever seProxySettings application in
the $OGG_HOVE/ | i b/ ut | / rever sepr oxy/ directory. You can see the list of options available
with the application, using the —hel p command.

$OGG_HOVE/ 1i b/ utl/reverseproxy/ ReverseProxySettings --help

2-6

https://www.nginx.com/resources/admin-guide/

Chapter 2
Reverse Proxy Support

Usage: proxysettings [options] service-manager-url

Options:
-0, --output CQutput file name (default is ogg.conf)
-1, --log Log file name (default is no |ogging)
-t, --type Proxy server type (default is nginx)
-s, --no-ssl Configure without SSL
-h, --host Virtual host name for reverse proxy
-p, --port Reverse proxy port nunber (defaults to 80 or 443)
-?, --help Di splay usage information
-v, --version Display version

Follow these steps to configure a reverse proxy:

1.

ORACLE

To create the settings file for Nginx:

$OGG_HOVE/ |i b/ utl/reverseproxy/ ReverseProxySettings -u admin id -P admin
password -0 ogg.conf http://local host: 9100

Replace the existing Nginx configuration with the configuration required for MA
deployment:

sudo nv ogg. conf /etc/nginx/conf.d/

Create your self-signed certificate for Nginx, using the following command:
sudo sh /etc/ssl/certs/ mke-dumy-cert /etc/nginx/ogg. pem

Test the new Nginx configuration using the following command:

sudo nginx -t

ngi nx: the configuration file /etc/nginx/nginx.conf syntax is ok

ngi nx: configuration file /etc/nginx/nginx.conf test is successful

As root, reload Nginx and the new configuration:

sudo nginx -s rel oad

Use Curl to verify that reverse proxy is working:

curl -sv http://local host/services/v2
{"$schema": "api:version", "catal og": {"links":[
{"href":"http://1ocal host/service s/v2/netadata-

catal og","rel ":"canonical"}]}, "isLatest":true,"lifecycle":"active","links":[
{"href":"http://1ocal host/services/v2","medi aType": "application/js
on","rel":"canonical "},

{"href":"http://1ocal host/services/v2","medi aType": "app |ication/

json","rel":"self"}],"version":"v2"}

Note:

If the deployments associated with the target Service Manager change,
the Nginx configuration file must be re-generated and reloaded.

2-7

Authentication and Authorization

The MA security and authorization model declares and defines how communication
security (confidentiality and Integrity) and Authorization (authentication and
permissions) are configured and implemented.

All the security and authorization configurations and services are common to MA-
based servers. These servers authenticate, authorize, and secure access to command
and control, monitoring, data conveyance, and information service interfaces for the
MA.

The MA defines a model and infrastructure for building service-aware applications.
This model is not a generalized model, but one targeted at the current and future
Oracle GoldenGate products that need to operate and integrate into global, cloud-
based deployment environments. Oracle GoldenGate server programs are
implemented using the MA infrastructure. All security and configuration
implementations provided by the MA are common services.

* Authentication (page 3-1)
Learn how you can use identity authentication.

* Authorization (page 3-3)
Learn how you can use authorization modes.

* Authorization for WebSockets (page 3-4)
Learn how you can use WebSocket authorization.

» Error Codes (page 3-5)
Review the MA HTTP error codes.

» Cross Site Request Forgery (page 3-5)
Learn how to avoid client-side attacks.

3.1 Authentication

Learn how you can use identity authentication.

The goal of the authenticated identity design is to establish identity authentication
between users, an MA server or application, and an MA server. The authentication
design relies on either the validity of a certificate or of a user credential (username and
passphrase pair).

The MA servers publish REST service interfaces that enable users and applications to
request services including operational control over one or more MA deployments,
service administration, status and performance monitoring. The following illustration
depicts the relationship between the user, application, server, and database.

ORACLE 3-1

Chapter 3

Authentication
User Application Microservices Architecture Server Database
P
o
S u. < - - » I
/] — i
. KN O
I | ! T
v Y
User Application Server username/ DB Login Application
Certificate Certificate Cerfificate passphase to Credentials Cerificate
validate non-
certified users T
B | - — | - —
- - -
User Application Server Secure Ceart Application
Wallet Wallet Wallat Stora Store Wallet

The following types of certificates are used for authentication:

ORACLE"

Application Certificate: An Application Certificate is a certificate issued to a
specific application. The Application Certificate is stored by the application. Oracle
GoldenGate client applications store the Application Certificate in an application
Oracle Wallet designated by the Application configuration. The default location of
the application Oracle Wallet is in the $0GG_SSL_HOVE directory.

User Certificate: A User Certificate is a certificate issued to a specific user.
Oracle GoldenGate client applications store the User Certificate in a user Oracle
Wallet. The default location of the user Oracle Wallet is under the user's home
directory. Service requests issued with User Certificates include the user name
and group information acquired from the host environment. This information
identifies the real user executing the application.

Server Certificate: A Server Certificate is a certificate issued to a specific MA
server. The Server Certificate is stored by the MA server in the server's Oracle
Wallet. The default location of the server Oracle Wallet is under the server's
installation directory. An MA server is authenticated to applications as the identity
described in the Server Certificate.

User’s or Application’s Database Authentication: MA servers support Service
Interface request whose fulfillment requires logging into a source or target
database. MA Server database actions are limited to specific operations required
to fulfill service request requirements. The following table describes the type of
authentication that are supported by MA servers:

Type of Description
Authentication

MA server database This configuration sets the MA server to establish
authentication connections to the database using its own credentials as

3-2

Chapter 3
Authorization

the only authenticated user. All service requests
requiring database access use the MA server database
session. Database operations are logged as originating
from the MA

MA server database This type sets the MA server to establish connections to
authentication with the database using its own credentials but support proxy
database proxy support [user sessions, through an MA server authenticated
connection. Proxy support is configured using: User
Name or Distinguished Name.

Pass-thru database This configuration sets the MA server to establish a
authentication session or connection to the database using the client
provided user name and password.

User-alias database This configuration sets the MA server to establish a
authentication session or connection to the database using a client
provided Alias ID that is mapped to a credential, held by
the MA server, to establish a session or connection to
the database.

Oracle UTL_HTTP Authentication

The user and application authentication model also applies to database packages that
support issuing REST Server Interface requests to MA servers. Depending on the
security configuration of the MA server, packages or procedures that use the UTL_HTTP
Oracle Database package may need to configure the client database security
environment to enable the use of Client-side certificates for authentication in
UTL_HTTP.

To enable UTL_HTTP to use client-side certificates:

1. Configure the database client Oracle Wallet, see Creating the Wallet and Adding a
Master Key (page 8-1).

2. Configure UTL_HTTP with TLS (SSL) for client-side authentication, see Using
UTL_HTTP.

Certificate Revocation List Authentication Support

MA servers supports Certificate Revocation List (CRL) checks as part of the
authentication process. Although MA servers do not automatically query for updated
CRLs, the MA infrastructure supports updating server CRL information at runtime
without requiring the MA servers to restart. See TLS Certificate Revocation List
Handling (page 4-4).

3.2 Authorization

ORACLE

Learn how you can use authorization modes.

Security Authentication Modes

The following is the list of supported security authentication modes that establish the
authenticity of the entity presenting the authorization information. These are the
available values that may be used when setting the / confi g/ securi t yDet ai | s/ net wor k/
conmon/ aut hivbde security setting. This mode is set when configuring an Oracle
GoldenGate MA deployment.

3-3

Chapter 3
Authorization for WebSockets

Authorization Mode ID

Notes

server_only

Only validate Server certificates. The Server certificates are
required. The Client certificates are ignored.

client_server

Validate both Client and Server certificates. Both certificates
are required.

clientOptional _server

This is the default. Validate the client certificate if it is
present, as it is optional. Validate the server certificate (it's
mandatory).

User Privileges

You can configure these security roles for users from the Administration Server, see
Setting Up Secure or Non-Secure Deployments.

Role ID

Privilege Level

User

Allows information-only service
requests, which do not alter or effect the
operation of either the MA. Examples of
Query/Read-Only information include
performance metric information and
resource status and monitoring
information.

Operator

Allows users to perform only operational
actions, like starting and stopping
resources. Operators cannot alter the
operational parameters or profiles of the
MA server.

Administrator

Grants full access to the user, including
the ability to alter general, non-security
related operational parameters and
profiles of the server.

Security Grants administration of security related
objects and invoke security related
service requests. This role has full
privileges.

" Note:

These are authorization privileges and are not directly related to

authentication.

3.3 Authorization for WebSockets

Learn how you can use WebSocket authorization.

REST API calls are made using standard HTTP request and take advantage of the
authorization mechanism described in RFC2616. The WebSocket protocol (RFC6455)

ORACLE

3-4

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6455

Chapter 3
Error Codes

is different because it is a streaming-like interface so does not need authorization or
require special handling. WebSockets can be governed with the standard HTTP
authorization mechanism.

Native HTTP Authorization

The native HTTP authorization includes a header in the initial WebSocket
establishment request. The MA server checks the authorization header to approve or
deny the request based on whether the role associated with the requesting user is
equal to or greater than the role assigned for WebSockets establishment requests.

Example 3-1 Example

GET /chat HTTP/1.1

Host: myserver.com

Upgrade: websocket

Connection: Upgrade

Sec- WebSocket - Key: dGhl | HNhbXBsZSBub25j ZQ==
Oigin: http://myserver.com

Sec- WebSocket - Prot ocol : ogg

Sec- VebSocket - Versi on: 13

Aut henti cation: Basic xgf DE24sDw asdbl i op875ty=

3.4 Error Codes

Review the MA HTTP error codes.

A few of the MA HTTP authentication and authorization error codes are:

401 Unauthorized

Returned in all cases when the presented credential is poorly formed or missing when
required. This includes incorrectly spelled or unregistered user names when
presented as part of an authorization credential. It does not apply to authorization
resources (404 errors).

403 Forbidden
Returned in all cases when the presented credential is well-formed, but is invalid or
does not have sufficient privileges to grant access to the underlying resource.

404 Not Found

Returned in cases where the presented credential is well-formed, but the server-side
resource cannot be located.

For example, when attempting to retrieve user information using / ser vi ces/ v2/
aut hori zati ons/ al | / j anes and the user james is not a registered user. Without
a proper registration, no j anes resource exists so this error code is returned.

The full list is found in the Internet Engineering Task Force RFC 7231 standard at:

https://tools.ietf.org/html/rfc7231

3.5 Cross Site Request Forgery

ORACLE

Learn how to avoid client-side attacks.

Cross Site Request Forgery (CSRF) is a client-side attack where a malicious or
unauthorized website attempts to cause the client browser to perform or issue a
compromising action or request against a protected server-side resource using a valid

3-5

https://tools.ietf.org/html/rfc7231

ORACLE

Chapter 3
Cross Site Request Forgery

user or client authorization object. The attack is limited to the actions and resources
published by the attacked website.

Mode of Attack

A general mode of attack is for a malicious agent to cause a user’s browser to be
redirected to a malicious website. The malicious resource at this malicious site causes
the user’s browser to download a client-side script (JavaScript). This downloas causes
the user’s browser to issue a compromised request against a protected website that
the user has obtained prior authorization. The browser issues the compromised
request delivering both the malicious script's request payload along with any
authorization cookies that are automatically conveyed with the request.

For example, the malicious website’s script instructs the user’s browser to request the
addition of a new user with a high security clearance. The request is issued to the
protected website along with current browser user’s current authorization cookie. This
cookie is delivered automatically and transparently with the malicious request. The
request with the valid user authorization is forged by a script that is retrieved from
different redirected malicious site and issues a malicious request under the
authorization context of the current browser user.

Taking Defensive Measures

In response to the CSRF threats, the compliant browsers implement a mechanism so
that cross-site information is limited and additional information regarding the
requesting browsers environment is included.

When scripts are executed that have been retrieved from a site other than the script's
request is targeting, then the browser only allows the following allowed methods to be
explicitly defined:

GET
HEAD
POST

Other than the HTTP headers that are automatically set by the browser, the only HTTP
headers allowed to be explicitly set are the CORS-safelisted request-header (simple
header):

Accept

Accept - Language
Cont ent - Language
Cont ent - Type
Last-Event-1D
DPR

Save- Dat a

Vi ewport-Wdth
Wdth

The Cont ent - Type header is only allowed to declare the following:

appl i cati on/ x- ww« f or m ur | encoded
mul tipart/formdata
text/plain

No event listeners can be registered with a XM_Ht t pRequest Upl oad object nor are any
Readabl eSt reaminstances allowed or used in the request.

3-6

ORACLE

Chapter 3
Cross Site Request Forgery

CSRF Mitigation Strategy

Requests issued from scripts are not retried from the same site as the current target
request includes one or more of the following:

Oigin HTTP header — Always included in cross-site script requests.

Ref erer HTTP header — Included if the request is from a referred parent page. (Note
that Ref erer is misspelled in the Remote Function Call).

If a proxy or reverse proxy is between the requesting client and the target website,
then the proxy or reverse proxy must be configured to include the following extended
HTTP headers:

X- For war ded- Host — The original hostname the request to which the request was
targeted (the proxy or reverse proxy host). The X- For war ded- Host should replace the
Ori gi n header on propagated requests, but contain the same information.

X- For war ded- Server — The hostname of the proxy or reverse proxy server.
This is the strategy in order of evaluation:

1. Ifthe Origin HTTP header exists, then verify that the i gi n hostname matches
the origin server's hostname.

2. Ifthe Referer HTTP header exists, then verify that the Oi gi n HTTP header also
exists and that the hostname value for both the Ori gi n and Ref erer HTTP headers
match.

3. If the X- Forwar ded- Host HTTP header exists, then verify that the X- For war ded- Ser ver
HTTP header also exists and that the hostname value for both the X- For war ded-
Host and X- For war ded- Server HTTP headers match.

4. |If neither the Ori gi n header nor the X- For war ded- Host HTTP headers exist, the
request is presumed not to be originating as a Cross Site Request. This places a
reliance on the compliance of the browser to support Cross Site Scripting (XSS)
policies.

¢ Note:

Because of the reliance on the XSS policy support in the client, malicious
CSRF requests from general purpose non-browser clients (like cURL,
Waget, Python, Perl, and eNetcat) can not be protected against.

3-7

Communication Security

Communication security is the confidentiality and integrity of the information sent over
communications channels, such as TCP/IP-based networks.

Topics:

» Certificate Access Control List (page 4-1)
Learn how you can refine communication security.

* Transport Layer Security Protocols and Ciphers (page 4-2)
Review the supported security protocols.

e TLS Certificate Revocation List Handling (page 4-4)
Learn how to configure a revocation list.

e HTTP Security and Cache Headers (page 4-7)
Review the supported security and cache headers.

4.1 Certificate Access Control List

ORACLE

Learn how you can refine communication security.

The communication security accepts any valid certificate during the connection
handshake process. However, you may need to filter and reject otherwise valid
certificates based on internal policies. For example, Finance may want to reject
certificates issued to Human Resources even though the Human Resources
certificates are cryptographically valid. To support this additional validation, the MA
extends the standard certificate validation by adding a post-verification certificate
Access Control List (ACL) management. This certificate ACL follows the general
model used for network ACLs where the ACL is a map with the key identifying the
governed element and a value indicating whether the element is allowed or denied.
The cert ACL entry has a scopespecification that allows the ACL entry to be applied to
specific identification elements within a certificate.

The configuration of a certificate ACL takes the form of an array of cert ACL entry
configuration specification. Each specification minimally contains a permission
statement indicating whether it allows or denies client connections from the specified
address. The cert ACL entry specifications are processed in order and terminate as
soon as the specified address is qualified. If the specified address does not qualify,
processing continues with the next specification. Once a certificate is qualified, the
cert ACL permissions dictate whether the certificate is allowed or denied. If a no cert ACL
entry specification qualify the certificate of the client requesting connection, a default
resolution of 'allow is assumed and the certificate is accepted.

Cert ACL Entry Syntax

certACL :='[' acl Spec [, aclSpec] ']'
acl Spec ='{" perm["'," nanme [',' scope '}’
perm = "permission" ':" ["deny" | "allow']
name = "name" "' oregex

4-1

Chapter 4
Transport Layer Security Protocols and Ciphers

scope
r egex

"scope" ":' ["subject-name" | "issuer-name"]
** Uses the dynam c regul ar expression syntax.

The regex syntax follows the ECMAScript definition. Defining a regular expression as a
JSON node value requires that the any meta symbols used (like \s) have the

\ character escaped. You should take care when specifying name regular expression
patterns to ensure that only the full match with the intended target pattern is matched.
In the syntax, the patterns only full match with the intended target pattern CN=Adni ndl nt
not CN=Adm nC nt 1, CN=Admi nC nt & her , CN=Qt her Admi nCl nt, or CCN=Qt her Adni ndl nt
because the match pattern includes delimiter specifications that bound the pattern.
These patterns assume a standard distinguished name format that allows no
whitespace between the keyname and the value. The CN = Adni nd nt non-standard
pattern would not match.

Example 4-1 Allow All Certificates Example

"CertACL" : [{ "name" : "A(?:(?2:\\s*,?)|.*[\\s,]+)(CN=AdminCint) (2: (2:\\s*(, +\
\s*.*))$[\\s$)", "permission" : "deny" }]

Or

"Cert ACL" : [{ "name" : "A(?:(2:\\s*, ?2)| . *[\\s,]+) (CN=ADminCint) (2: (2:\\s*(, +
\s*.*))$[\\s$)", "scope" : "subject-name", "permission" : "deny" }]

Example 4-2 Deny certificates issued from Depl oy2

"Cert ACL" : [{ "name" : "A(2:(?:\\s*, ?)|.*[\\s,]+) (CN=Depl oy2) (?: (2:\\s*(, H
\s*. *))$[\\s$)", "scope" : "issuer-nane", "pernission" : "deny" }]

Example 4-3 Certificates Issued to Suspect or Any Certificate Issued ByDepl oy?2

"CertACL" : [{ "name" : "A(?:(?2:\\s*,?)|.*[\\s,]+)(CN=Suspect) (?: (?:\\s*(,

\s*. *))$|\\s$)", "scope" : "subject-name", "permission” : "deny" }, { "name" : ""(?:
(2:\\s*, 2) | . *[\\'s,]+) (CN=Depl oy2) (?: (2:\\s*(, H\\s*. %)) $|\\s$)", "scope" : "issuer-
nane", ‘"permission" : "deny" }]

4.2 Transport Layer Security Protocols and Ciphers

ORACLE

Review the supported security protocols.

Transport Layer Security (TLS) Protocols

The following are the supported security protocol versions and these are the available
values that you can use when setting the / confi g/ securi t yDet ai | s/ net wor k/
conmon/ pr ot ocol Ver si on security setting.

Protocol Version ID Notes
3 0 Wth 2 0 Hello
3.0 Only

2.0 Considered deprecated.
30

1.0

100 30

4-2

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

ORACLE

Chapter 4
Transport Layer Security Protocols and Ciphers

Protocol Version ID Notes
100 30020

300 20

11

12

110 30

12030

11010

12010

12011

11010030

120 100 30

12011010 Oracle Recommends
12011030

120 11010030

Your testing must ensure that all clients used for a particular TLS protocol version
support the TLS version being tested because verification of client support for TLS
version support is required. Diagnostically, the server log should be reviewed for the
handshake protocol processing. The log should contain the protocol version being
negotiated. If the client does not support the protocol version that the server is
configured for, the server terminates the connection. You may not see an error
message or indication overtly sent to the client that a protocol version failed. The
failure may appear to the client as a network connection rejection or a certificate failure
depending on how the client is set to handle the exception.

Note:

TLS protocols below the 1.0 version should not be used because of
documented security defects.

TLS Security Cipher Suites

The following are the supported security cipher suites and these are the available
values that you can use when setting the / confi g/ securi t yDet ai | s/ net wor k/
common/ ci pher Sui t es security setting.

Cipher Suite ID Notes
TLS_NO_SUCH_Cl PHERSUI TE

TLS RSA W TH RCA 128 MD5

TLS_RSA W TH RC4_128_SHA

TLS_RSA W TH 3DES EDE _CBC SHA Federal Information Processing Standards
(FIPS) Compliant

4-3

Chapter 4
TLS Certificate Revocation List Handling

Cipher Suite ID Notes
TLS_RSA W TH_DES_CBC_SHA

TLS DH anon_EXPORT W TH DES40_CBC_SHA

TLS _DH_anon_EXPORT_W TH_RC4_40_MD5

TLS DH anon_WTH RC4_128 MDXb

TLS DH anon_ W TH DES CBC_SHA

TLS_DH anon_W TH_3DES_EDE_CBC_SHA FIPS Compliant
TLS_RSA W TH AES 128 CBC_SHA FIPS Compliant
TLS_RSA W TH AES_256_CBC_SHA FIPS Compliant
TLS_RSA W TH AES_128_CBC_SHA256 FIPS Compliant
TLS_RSA W TH AES_128_GOM SHA256 FIPS Compliant
TLS_RSA W TH AES_256_GCOM SHA384 FIPS Compliant

TLS_ECDHE_ECDSA_ W TH_AES 128_CBC_SHA FIPS Compliant Elliptic Curve Cryptography
(ECC) ciphers

TLS_ECDHE_ECDSA W TH_AES 256 _CBC_SHA FIPS Compliant ECC ciphers
TLS_ECDHE ECDSA W TH_AES 128 CBC SHA256 FIPS Compliant ECC ciphers
TLS_ECDHE_ECDSA W TH_AES 256_CBC SHA384 FIPS Compliant ECC ciphers
TLS_ECDHE_ECDSA W TH_AES 128 GCM SHA256 FIPS Compliant ECC ciphers
TLS ECDHE_ECDSA W TH_AES 256_GCM SHA384 FIPS Compliant(?) ECC ciphers

ECC ciphers are based on the algebraic structure of elliptic curves over finite fields.
The elliptic curve discrete logarithm problem (ECDLP) assumes that finding the
discrete logarithm of a random elliptic curve element with respect to a publicly known
base point is infeasible. The benefit of ECC ciphers is that generally the key sizes are
smaller compared to hon-ECC cipher equivalents.

4.3 TLS Certificate Revocation List Handling

ORACLE

Learn how to configure a revocation list.

A Certificate Revocation List (CRLS) is a Privacy Enhance Mail (PEM) formatted file
that contains information identifying the issuer of the revocation list followed by zero or
more entries identifying certificate that have been revoked. A secured server is part of
establishing a secure channel with a peer and will initiate a handshake with the peer.
During this handshake security information and capabilities are negotiated and
exchanged, which includes the one or both certificates of the participants. Depending
on security configurations, one, both, or neither of the participants may present or
require the presentation of the peer's certificate.

After receiving and verifying the validity of a peer's X.509 certificate, the receiving
participant consults the currently configured CRL. The presence of an entry identifying
the just-validated peer certificate causes the receiving participant to consider the
remote participant's certificate as having been revoked. A revoked certificate is
considered invalid for the purposes of authenticating the identity of the remote
participant. A revoked certificate fails the integrity-check portion of the secure channel
handshake and terminates the channel. Depending on the implementation that remote

4-4

ORACLE

peer detects that an error occurred during certificate validation, but may not be
informed of the specific cause.

Chapter 4

TLS Certificate Revocation List Handling

The actual CRL consists of prolog and identifies the issuer of the CRL followed by zero
or more entries. Each entry identifies a specific certificate by serial number along with
security information relating to the date of revocation, the signature algorithm, and
finger-print information.

For exampl

e:

Certificate Revocation List (CRL):
Version 2 (0x1)

Signature A gorithm sha256W thRSAEncryption

I ssuer: [C=US/ ST=CA/ L=Redwood Shores/ O=0racl e Corp/ OU=Cor porate Security/

OU=Depl oynent Security/ CN=Depl oyl

Last Update: Feb 22 19:20:34 2017 GMI
Next Update: Mar 24 19:20:34 2017 GMI
CRL extensions:
X509v3 Authority Key Identifier:
keyi d: 7C. A0: BB: FB: 6F: 75: 70: 4B: B4: 95: 18: 54: 9C: 1F: 88: 2E: Al: 1B: EF: E4

Revoked Certificates:
Number :

Revocation Date:
Signature A gorithm sha256WthRSAEncryption
f1:
8f :
15:
de:
35:
8c:
1f:
b7:
28:
c5:
33:
fa:
53:
8c:
6¢:
8a:
d4:
31:
67:
0of :
ba:
70:
bh6:
ao:
c2:
85:
4e:
26:

Seri al

ao:
99:
fa:
el:
56:
c3:
69:
e2:
a3:
af:
8b:
49:
42:
d9:
f6:
5f :
ee:
48:
c8:
Ob:
36:
99:
18:
bd:
85:
al:
f1:
56:
8d:

X509v3 CRL Number:

eb:
63:
38:
58:
23:
f6:
c5:
8b:
do:
3e:
10:
65:
2c:
aa:
af :
3c:
9d:
ab:
64:
Oc:
b7:
2c:
49:
2c:
ba:
bh8:
3d:
b6:
f2:
----- BEG N X509 CRL
M | DKj CCARI CAQEWDQYJKoZI hvc NAQELBQAWGZYx Cz AJBgNVBAYTAI VTMBWCQYD
VQQ DAJDQTEXIVBUGAL UEBWWOUNVK d29v ZCBTa @y ZXIVk FDASBgNVBAO M09y YWNs
ZSBDb3JWiVRswGQYDVQQLDBJI Db3Jwh3Jhd GUgU2Vj dXJ pdHkx HDAaBgNVBAs MEORI

c&xveWl bnQyU2Vj dXJpdHkx EDACBgNVBAMVBORI ¢ Gxve TEXDTE3MDI yM E5M Az

4097

75:
82:
78:
e0:
00:
8a:
bf :
de:
20:
of :
06:
54:
65:
60:
78:
47:
f1:
39:
49:
ab:
di:
33:
56:
77
1d:
16:
Te:
33:
24

1000

62:
dé:
c0:
30:
60:
b0:
bb:
15:
41:
c0:
40:
f5:
6¢:
1c:
91:
8c:
4a:
87:
fe:
92:
c0:
Ta:
65:
d4:
8f :
ad:
65:
65:
36:

93:
f1:
c9:
6d:
19:
bb:
ec:
04:
ao:
d2:
cO:
35:
ce:
06:
49:
78:
30:
92:
1d:
6d:
ea:
2f
8d:
69:
8b:
f2:
14:
fo:
eb:

Feb 22 19:20:34 2017 GMI

49:
56:
bc:
df :
dd:
b4:
le:
2c:
e0:
32:
08:
c8:
97:
24.
ab:
33:
21:
0Ob:
78:
f5:
30:
63:
23:
f6:
1b:
32:
3c:
ef :
2a.

26:
72:
be:
03:
e2:
66:
7f:
67:
6a:
ab:
32:
27:
52:
aa:
b7:
65:
63:
f7:
6d:
60:
71:
17
64:
fa:
0d:
5a:
as:
h9:
c8:

6e:
98:
87:
8f :
68:
Oe:
40:
14:
5b:
d2:
39:
08:
50:
f3:
ch:
09:
24:
25:
9a:
06:
3b:
ec:
ba:
eb:
c2:
65:
ad:
40:

b3

79:
cc:
61:
6f :
2d:
85:
e2:
2e:
90:
7a:
50:
f6:
00:
ac:
96:
65:
5a:
8e:
09:
34:
2b:
0d:
e9:
df :
a3:
2d:
b7:
2d:

dd:
6f :
35:
Oa:
2b:
79:
11:
71:
35:
16:
c0:
91:
df :
d6:
03:
08:
6b:
65:
6b:
ef :
16:
89:
74:
31:
ea:
14:
ch:
ee:

90:
61:
e7:
54:
cc:
b2:
fa:
29:
5a:
29:
b9:
3c:
6d:
85:
3a:
92:
bd:
ee:
76:
65:
dc:
52:
56:
14:
ab:
be:
41:
ba:

94:
b8:
20:
1c:
62:
32:
2a:
d5:
90:
f6:
86:
ae:
1d:
ed:
ed:
19:
e0:
10:
f4:
be:
72:
0f :
40:
89:
6e:
73:
53:
57:

bb:
a4
bh8:
fo:
85:
5c¢:
7c:
e2:
86:
ec:
bh9:
2¢:
e6:
83:
3d:
58:
ec:
28:
3f:
c8:
86:
8f :
9b:
fc:
az:
6b:
f4:
d5:

99:
dd:
5e:
44
h6:
65:
d3:
el:
51:
04:
17
b5:
38:
20:
dd:
al:
Oc:
45:
6a:
af :
90:
29:
1c:
1d:
ar:
de:
24:
f5:

1c:
21:
8f :
eb:
34:
ac:
94:
ee:
69:
dd:
19:
cl:
of :
2f
ao:
93:
79:
bb:
b8:
1d:
32:
13:
65:
24:
be:
40:
5a:
75:

3a:
0Of :
6a:
28:
32:
47.
de:
ac:
df :
e7:
6f :
52:
61:
50:
d5:
Tf:
09:
55:
eb:
67:
e3:
fd:
17:
81:
34:
13:
4f
1b:

24:
ae:
Oa:
48:
ce:
99:
62:
c3:
27:
6d:
ab:
de:
97:
5c¢:
0of :
99:
1f:
9c:
cO:
bc:
59:
17:
ef :
7d:
16:
bd:
al:
60:

4-5

ORACLE

Chapter 4
TLS Certificate Revocation List Handling

NFoXDTE3NVDMyNDESM Az NFowFTATAg! QABcNMTcwM |y MTky MDIVD W AWVCAWHWYD
VROj BBgwFoAUf KC7+291cEu0l RhUnB+| LgEb7+QwOwYDVROUBAQCAhABMAOGCSqG
S| b3DQEBOWMUAA4T CAQCTBXVI kOkmbnnx3ZCUubkc O SZYALWBVZy mvly Pb2GApNoh
D6760H Ayby8h2EVNecguF6Pagr hWoAwhd8Dj 2/ el Qc8ETI KEhW wBgGd3i aC01
K8xi hbYOMs 7D9oqwu7 RmDoWVEb] y XGA$ R51 pxb+77B5/ QO f Ef ogf NOU3nlLi i 94V
BCxnFC63cSnVAuHur MO 0CBBgeBg\WWBbAoNVghl Fp3yevPg/ A0j Kr Onr FFi n27ATd
522LEAZAWAgYy OVAZWLMRUXc Zb6ZJ ZVT1INcgnCPh6k Ty uLLXBUt 5CLGVszpd SUABT
320d5j i f YZf ZqmAcBi Sq86yMLoXt gyAvUFz2r 3i RSaWBy5ZsAzr j Pd2p1@@f PEeM
eDNl CWAKCI | ZVKGTT 5nunf FKMCFj JFr Ua73g7Ax5CRI1 pj mHkgv3J Y4AxZe4QKEW
VZz| ZEn+HXht ngl na3b0P2q468ALDKuShf VgBj QP72WyK8dZ7w2t 9HAGj BxOyub
Ft xyhpAy41nZLDNGL2N37ALw VI P ykT/ RoYSVZI j SNkuumR2dFZAmkx| F++9LHF U
af b069+pMRSJ/ BOkgX2Fuh2Pi xsNwgPC6qVuoge+NBahuBak8j JaZS2FFL5za95A
E73xPX5| FDyor bdOyOFTICRaT6FW | NI +e+5QC0n7r pX1f VIG2CNBi QR5Sr | sw==

----- END X509 CRL-----
Typically, the CRL in compact form only includes the contents between the - ---- BEG N
X509 CRL----- and ----- END X509 CRL----- delimiters. All other data outside these

delimiters is ignored. You can embed a textual representation of the CRL in the CRL
file without affecting the function of the CRL.

The use of CRLs is configured for each MA server individually The CRL configuration
is composed of two properties:

[confi g/ security/common/crl Enabl ed

Enables or disables CRL processing.

If, however, /config/security/common/crlEnabled is enabled (true), then the /config/
security/common/crlStore property must refer to a valid and well formed CRL.

[config/security/comon/crl Store

When CRL processing is disabled (f al se), the remote participant's certificate is not
checked against a CRL. When this is the case, you don't need to set the / confi g/
security/ conmon/ crl Store property.

A valid and well formed CRL file is either a PEM encoded CRL file that conforms to the
RFC2380 - Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile or an empty file.

The following is a sample excerpt declaring and defining CRL processing for a secured
server.

{
"config" : {
"security: {
"comon" : {
"crl Enabl ed" : true,
"crlStore" . "file:/scratch/ Tests. SCA/ unittests/etc/ssl/Root CAl CAs/
Depl oy1/ CRLs/ enpty_CRL. pent
}
}
}
}

The CRL file may be updated or replace by other, presumably more current, versions
while the server is running. Replacing the CRL file causes the next request CRL
lookup to use the newly updated file.

Regardless of how the / confi g/ security/ common/ cr | Enabl ed property is set, CRL
processing is disabled if the general security configuration of the server is disabled.
For example, the value of the / confi g/ security property is f al se).

4-6

Chapter 4
HTTP Security and Cache Headers

One other configure setting that indirectly effects CRL processing is the / confi g/
securityDet ai | s/ net wor k/ conmon/ aut hMbde property. This property controls whether the
server requires the client to authenticate using a certificate or whether the server
accepts optionally presented certificate or whether the server will ignore any presented
client certificates. If a certificate is not required, not presented, or ignored by the
server, then CRL processing is not used.

4.4 HTTP Security and Cache Headers

ORACLE

Review the supported security and cache headers.

The MA server accepts and returns HTTP envelopes that contain a set of headers that
govern how the server, the client, and proxies handle the HTTP contents. For HTTP
information, see:

RFC 7034 - HTTP Header Field X-Frame-Options https://tools.ietf.org/html/rfc7034

RFC 7762 - Initial Assignment for the Content Security Policy https://tools.ietf.org/
html/rfc7762

RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1 https://tools.ietf.org/html/
rfc2616

Security Headers

The security headers that can be issue are:

Content-Security-Policy (CSP)

The CSP is included as a header in server responses and defines how the client
should handle the content sent by the server.

The default CSP header statement is:

Content-Security-Policy: script-src 'self' 'unsafe-eval' 'unsafe-inline'

The options are:
e script-src:
* unsafe-eval:

e unsafe-inline:

X-Frame-Options

The X-Frame-Options is included as headers in server responses and signals the
client whether or not a user-agent should be allowed to render the content in an
<franme>, <i f rame>, or <obj ect >. Websites use<frame> and <i f rane> to create mash-ups
or to embed part of one site. However, exposes the embedded site to Clickjack
attacks. This directive disallows the client from rendering the content as embedded
unless the content is from the same site (origin).

The default X-Frame-Options statement is:

X-Frame- Options: SAMECRIG N
The option is SAMEORI G N.

X-XSS-Protection

The X-XSS-Protection is included as a header in server responses and configure the
user-agent's built in XSS (Cross-Site-Security)protection. The options are to enable,
disable and can be combined with block and report.

4-7

https://tools.ietf.org/html/rfc7034
https://tools.ietf.org/html/rfc7762
https://tools.ietf.org/html/rfc7762
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616

ORACLE

Chapter 4
HTTP Security and Cache Headers

The default X-XSS-Protection statement is:

X-XSS-Protection: 1; mode=bl ock

The options are:
* 1: Enable the user-agent's protection mode.
e 2: Disable the user-agent's protection mode.

* node=hl ock: Block the server's response if the content script was injected as user
input.

e node-report=url: Report the potential XSS attack to the designated URL. Only
supported by Chrome and WebKit.

X-Content-Type-Options
The default X-Content-Type-Options statement is:

X- Cont ent - Type- Opti ons: nosni ff
The option is nosni ff.

Cache Headers

The supported cache headers are:

Cache-Control
The default Cache-Control statement is:

Cache-Control: no-cache, no-store, nust-revalidate

Pragma
The default Pragma statement is:

Pragma: no-cache

Expires
The default Expires statement is:

Expires: 0

4-8

Server

5.1 Using

5.2 Using

ORACLE

and Deployment Identities

You must uniquely identify MA servers and deployments using schemes.

In a Common-Named Multiple Server and Deployment configuration that has more
than one MA deployment within an environment access by a common name, each
server and deployment must be uniquely identifiable. This identity allows coordination
services, peers servers, and orchestration ecosystems to differentiate one deployment
and server from another when necessary.

Topics:

* Using a Universally Unique IDs Scheme (page 5-1)
Universally Unique IDs are synonymous with Globally Unique IDs (UUID/GUID).

* Using a Deterministically Calculated Unique ID Scheme (page 5-1)
A deployment’s identity can be deterministically calculated and be unique within a
local scope.

* Using an Explicit Naming Scheme (page 5-2)
You can use explicit naming to avoid the problem of guaranteed uniqueness to
administrators.

* Creating Server and Deployment IDs (page 5-2)
A server| Dand depl oyment | Dis required for each of your servers and deployments.
Deployment and server UUIDs are generated by default if you don't define them.

a Universally Unigue IDs Scheme

Universally Unique IDs are synonymous with Globally Unique IDs (UUID/GUID).

These IDs provide a standardized format for creating and interpreting identifiers that is
a 128-bits long, RFC4122. It can guarantee uniqueness across space and time.
Several operating systems provide mechanisms to generate UUIDs including:

$ cat /proc/sys/kernel /randonf uui d
$ uui dgen

UUID can be used to identify distinct deployments and even specific servers within a
deployment. The primary issue with UUIDs is that once generated, they can not be
regenerated. If the UUID value is lost, there is no way of deterministically recreating it.
This is an issue if the UUID is used in a distributed fashion and it is held as reference
to a specific deployment. If that deployment loses the value of it originally generated
UUID, there is no way of regenerating the UUID. You must take care when
safeguarding the UUID.

a Deterministically Calculated Unique ID Scheme

A deployment’s identity can be deterministically calculated and be unique within a local
scope.

5-1

https://tools.ietf.org/html/rfc4122

5.3 Using

Chapter 5
Using an Explicit Naming Scheme

This would create a unique ID based on a combination of hardware and file system
signatures. For example, the calculated ID could be generated based on the MAC
Address of the network interface and the real absolute file system paths that make-up
the deployment. Any relocation of the deployment within the file system invalidates the
deterministic regeneration of the ID, as would any change in the network interface.

an Explicit Naming Scheme

You can use explicit naming to avoid the problem of guaranteed uniqueness to
administrators.

While this addresses any potential shortcoming of other schemes with recreation of an
ID, this scheme is not recommended in large organizations with a large deployment
count.

5.4 Creating Server and Deployment IDs

ORACLE

A serverl Dand depl oyment | Dis required for each of your servers and deployments.
Deployment and server UUIDs are generated by default if you don’t define them.

In general, these values are not changed once assigned. These values are also of
limited use directly because their application is dependent on the context and
requirements of the request or operation.

serverlD

Each servers generates a unique ID during first start if it finds an absent or null server
ID. The server ID is then used to generate a short unique label that can be used as
name or tag in cases where the 3- character UUID is to long. Both the server| Dand
short name are expected to be globally unique. It can be used to identify a server
without prefixing it with a deployment. The server1Dis held in each server’s local
configuration context and only accessible by the owning server.

You can use the server | Dto limit certain request or action targets to only the server.
For example, by including the server | Din server generated payloads, the server can
validated that it was the originator of the payload by comparing the presented server | D
with the held server | D.

"config" : {
"server|D': "96bc6cab- abb8- 4a05- aef f - 6d0d385262af "
"server| DShortLabel ": "l rxsq6udSg\Wi/ 20NOFJi rw'

}

depl oyment | D

The first server starting within a deployment generates a unique ID if it finds an absent
or null deployment ID. The depl oyment I Dis a a containment ID and serves to identify a
group of related servers. The depl oynent I Dis held in the deployment global
configuration context and is accessible by all servers within that deployment.

The depl oynment | D can be used to limit server requests or actions to only the servers
within the deployment. For example, by including the short label version of the
server|I Din UDP/UDT data, a server can filter and qualify only the information that
originated from a server within its own deployment.

5-2

ORACLE

Chapter 5
Creating Server and Deployment IDs

"global ": {
"depl oyment | D': "f1df4al8- d0a8- 4bal- 9ad0- 18da9458baef"
}

af filiateDepl oynent | Ds

Affiliated deployments are deployments that coordinate or cooperate share specific
information or contexts. The affil i at eDepl oynent | Ds value is a JSON Array type that is
initially null (empty). As deployments define actions or operations that should apply to
or be valid in other deployments, the depl oynent | Ds of the affiliated deployments are
added to the JSON Array of the af fi|i at eDepl oyment | Ds. Specific behaviors or actions
can qualify a presented depl oynent | Ds against the list of af fi | i at eDepl oynent | Ds and
grant access or operation to the foreign deployment.

For example, an authorization cookie includes a depl oynent | Ds as part of its
specification. If the authorization cookie is presented to an foreign deployment that has
the originating deployment's depl oyment | Ds listed in its af fi | i at eDepl oyment | Ds list, then
the authorization cookie is qualified rather then being filtered out as not originating
from the receiving servers.

"global ": {
"affiliateDepl oyment|Ds": ["deafa2f6-6ee7-48bl-862a-97a9b6d5b9df " |
}

You can update the global configuration using either a bootstrap configuration file or
the command-line overrides, for example:

$ bin/adm nsrvr '{"global": { "affiliateDepl oynent|Ds":
[" deaf a2f 6- 6ee7- 48h1- 862a- 97a9bh6d5b9df "]} }"

5-3

Securing Deployments

ORACLE

You can choose to set up a secure or non-secure deployment. A secure deployment
involves making RESTful API calls and conveying trail data between the Distribution
Server and Receiver Server, over SSL/TLS. You can use your existing wallets and
certificates, or you can create new ones.

The instructions for securing deployments is in Setting Up Secure and Non-Secure
Deployments in Using the Oracle GoldenGate Microservices Architecture.

6-1

Securing Oracle GoldenGate

ORACLE

Use this part to secure your CA and MA environments.

Topics:

Overview of Security Options (page 7-1)
You can use these security features to protect your Oracle GoldenGate
environment and the data that is being processed.

Encrypting Data with the Master Key and Wallet Method (page 8-1)

To use this method of data encryption, you create a master key wallet and add a
master key to the wallet. This method works as follows, depending on whether the
data is encrypted in the trails or across TCP/IP:

Encrypting Data with the ENCKEYS Method (page 9-1)
To use this method of data encryption, you configure Oracle GoldenGate to
generate an encryption key and store the key in a local ENCKEYS file.

Managing Identities in a Credential Store (page 10-1)
Learn how to use an Oracle GoldenGate credential store to maintain encrypted
database passwords and user IDs and associate them with an alias.

Encrypting a Password in a Command or Parameter File (page 11-1)
Learn how to encrypt a database password that is to be specified in a command or
parameter file.

Populating an ENCKEY'S File with Encryption Keys (page 12-1)
Learn how to use an ENCKEYS file.

Configuring GGSCI Command Security (page 13-1)
You can establish command security for Oracle GoldenGate to control which users
have access to which Oracle GoldenGate functions.

Using Target System Connection Initiation (page 14-1)
Learn how to initiate passive and alias connections between your source and
target systems.

Securing Manager (page 15-1)

You can use the Manager parameter, ACCESSRULE, to set security access rules for
Manager. It allows GGSCI access from a remote host if you are using passive
Extract or Director.

Overview of Security Options

You can use these security features to protect your Oracle GoldenGate environment
and the data that is being processed.

Security Feature

What it Secures

Supported Databases

Description

Data Encryption
Two methods are available:

e Encrypting Data with
the Master Key and
Wallet Method
(page 8-1)

* Encrypting Data with
the ENCKEYS Method
(page 9-1)

Credential Store Identity
Management

Managing ldentities in a
Credential Store

(page 10-1)

Password Encryption

See Encrypting a
Password in a Command
or Parameter File

(page 11-1).

Command Authentication

See Configuring GGSCI
Command Security
(page 13-1).

Trusted Connection

See Using Target System
Connection Initiation
(page 14-1).

ORACLE

. Data in the trails or an
extract file
Data sent across
TCP/IP networks

User IDs and passwords
(credentials) assigned to
Oracle GoldenGate
processes to log into a
database.

Passwords specified in
commands and parameter
files that are used by
Oracle GoldenGate
processes to log into a
database.

Oracle GoldenGate
commands issued through
GGSCI.

TCP/IP connection to
untrusted Oracle
GoldenGate host machines
that are outside a firewall.

Master key and wallet
method is the preferred
method on platforms that
support it. Not valid for the
DB2 for i, DB2 z/OS, and
NonStop platforms.

ENCKEYS method is valid for
all Oracle GoldenGate-
supported databases and
platforms. Blowfish must be
used on the DB2 for i, DB2
z/0S, and NonStop
platforms.

Credential store is the
preferred password
management method on
platforms that support it.
Not valid on the DB2 for i,
DB2 z/OS, , and NonStop
platforms.

Valid for all Oracle
GoldenGate-supported
databases and platforms.
Blowfish must be used on
the DB2 for i, DB2 z/OS, ,
and NonStop platforms. On
other platforms, the
credential store is the
preferred password-
management method.

Valid for all Oracle
GoldenGate-supported
databases and platforms.

Valid for all Oracle
GoldenGate-supported
databases and platforms.

Encrypts the data in files,
across data links, and
across TCP/IP. Use any of
the following:

e Any Advanced
Encryption Security
(AES)l cipher:
AES-128
AES-192
AES-256

. Blowfish?

User credentials are
maintained in secure wallet
storage. Aliases for the
credentials are specified in
commands and
parameters.

Encrypts a password and
then provides for specifying
the encrypted password in
the command or parameter
input. Use any of the

following:

e AES-128

e AES-192
AES-256

. Blowfish

Stores authentication
permissions in an
operating-system-secured
file. Configure a CMDSEC
(Command Security) file.

Use any of the following:

* AES-128
AES-192
* AES-256

. Blowfish

7-1

Chapter 7

Security Feature

What it Secures

Supported Databases

Description

Manager Security

Securing Manager
(page 15-1)

CryptoEngine

Access rules for Manager.

Allows you to select the
cryptographic library that
better suits your needs:
Portability (Classic),

Portability and compliance

with FIPS-140 standard
(FIPS140), or enhanced
throughput (Native).

Valid for all Oracle
GoldenGate-supported
databases and platforms.

Valid for all Oracle
GoldenGate-supported
databases and platforms
(Classic and FIPS140).

Valid for all Oracle
GoldenGate-supported
databases on Linux.x64

and Windows.x64 (Native).

You can secure the
following:

GGSCl : Secures access
to the GGSCI
command-line
interface.

MGR | MANAGER:
Secures access to all
inter-process
commands controlled
by Manager, such as
START, STOP, and KI LL
REPLI CAT: Secures
connection to the
Replicat process.
COLLECTOR | SERVER:
Secures the ability to
dynamically create a
Collector process.

Selects which
cryptographic library the
Oracle GoldenGate
processes will use.

1 Advanced Encryption Standard (AES) is a symmetric-key encryption standard that is used by governments and other
organizations that require a high degree of data security. It offers three 128-bit block-ciphers: a 128-bit key cipher, a 192-bit key
cipher, and a 256-bit key cipher. To use AES for any database other than Oracle on a 32-bit platform, the path to the lib sub-
directory of the Oracle GoldenGate installation directory must be set with the library path variable. For different platforms the
library path variable is different. For Linux it is LD_LIBRARY_PATH. For IBM i and AlX it is LIBPATH, SHLIB_PATH variable for
Solaris and the PATH variable on Windows. Not required for 64-bit platforms.

2 Blowfish encryption: A keyed symmetric-block cipher. The Oracle GoldenGate implementation of Blowfish has a 64-bit block
size with a variable-length key size from 32 bits to 256 bits.

ORACLE

7-2

Encrypting Data with the Master Key and
Walllet Method

To use this method of data encryption, you create a master key wallet and add a
master key to the wallet. This method works as follows, depending on whether the
data is encrypted in the trails or across TCP/IP:

» Each time Oracle GoldenGate creates a trail file, it generates a new encryption
key automatically. This encryption key encrypts the trail contents. The master key
encrypts the encryption key. This process of encrypting encryption keys is known
as key wrap and is described in standard ANS X9.102 from American Standards
Committee.

* To encrypt data across the network, Oracle GoldenGate generates a session key
using a cryptographic function based on the master key.

Oracle GoldenGate uses an auto-login wallet (file extension . sso), meaning that it is an
obfuscated container that does not require human intervention to supply the necessary
passwords.

Encrypting data with a master key and wallet is not supported on the DB2 for i, DB2
z/OS, or NonStop platforms.

Topics:

» Creating the Wallet and Adding a Master Key (page 8-1)

* Specifying Encryption Parameters in the Parameter File (page 8-2)
* Renewing the Master Key (page 8-3)

* Deleting Stale Master Keys (page 8-4)

8.1 Creating the Wallet and Adding a Master Key

ORACLE

The wallet is created in a platform-independent format. The wallet can be stored on a
shared file system that is accessible by all systems in the Oracle GoldenGate
environment. Alternatively, you can use an identical wallet on each system in the
Oracle GoldenGate environment. If you use a wallet on each system, you must create
the wallet on one system, typically the source system, and then copy it to all of the
other systems in the Oracle GoldenGate environment. This must also be done every
time you add, change, or delete a master key.

This procedure creates the wallet on the source system and then guides you through
copying it to the other systems in the Oracle GoldenGate environment.

1. (Optional) To store the wallet in a location other than the dirw t subdirectory of the
Oracle GoldenGate installation directory, specify the desired location with the
WALLETLOCATI ON parameter in the GLOBALS file.

WALLETLOCATI ON directory_path
2. Create a master-key wallet with the CREATE WALLET command in GGSCI.

8-1

Chapter 8
Specifying Encryption Parameters in the Parameter File

Open the wallet after it has been created with the OPEN WALLET command i.
Add a master key to the wallet with the ADD MASTERKEY command.

Issue the | NFO MASTERKEY command to confirm that the key you added is the
current version. In a new installation, the version should be 1.

Issue the | NFO MASTERKEY command with the VERSI ON option, where the version is
the current version number. Record the version number and the AES hash value
of that version.

I NFO MASTERKEY VERSI ON ver si on
Copy the wallet to all of the other Oracle GoldenGate systems.

Issue the | NFO MASTERKEY command with the VERSI ON option on each system to
which you copied the wallet, where the version is the version number that you
recorded. For each wallet, make certain the St at us is Current and compare the
AES hash value with the one that you originally recorded. All wallets must show
identical key versions and hash values.

| NFO MASTERKEY VERSI ON versi on

8.2 Specifying Encryption Parameters in the Parameter File

ORACLE

This procedure adds the parameters that are required to support data encryption in the
trails and across the network with the master key and wallet method.

In the following parameter files, add the following:

e To encrypt trail data: In the parameter file of the primary Extract group and the
data pump, add an ENCRYPTTRAI L parameter statement before any parameter
that specifies a trail or file that you want to be encrypted. Parameters that
specify trails or files are EXTTRAI L, RMITRAI L, EXTFI LE, and RMIFI LE. The syntax
is:

ENCRYPTTRAI L {AES128 | AES192 | AES256 | BLOWFI SH

e To encrypt data across TCP/IP: In the parameter file of the data pump (or the
primary Extract, if no pump is being used), use the ENCRYPT option of the
RMTHOSTOPTI ONS parameter. The syntax is:

RMTHOSTOPTI ONS host, MGRPORT port, ENCRYPT {AES128 | AES192 | AES256 |
BLOWEI SH}

RMITHOSTOPTI ONS ENCRYPT { AES128 | AES192 | AES256 | BLOWFI SH
Where:

* RMIHOSTOPTI ONS is used for Extract including passive extracts. See Using Target
System Connection Initiation (page 14-1) for more information about passive
Extract.

e ENCRYPTTRAI L without options specifies 256-key byte substitution. This format is
not secure and should not be used in a production environment. Use only for
backward compatibility with earlier Oracle GoldenGate versions.

* AES128 encrypts with the AES-128 encryption algorithm.
e AES192 encrypts with AES-192 encryption algorithm.
e AES256 encrypts with AES-256 encryption algorithm.

8-2

Chapter 8
Renewing the Master Key

* BLOWFI SH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 hits to 128 bits. Use AES if supported for the platform.
Use BLOWFI SHfor backward compatibility with earlier Oracle GoldenGate
versions, and for DB2 z/OS and DB2 for i. AES is not supported on those
platforms.

2. Use the DECRYPTTRAI L parameter for a data pump if you want trail data to be
decrypted before it is written to the output trail. Otherwise, the data pump
automatically decrypts it, if processing is required, and then reencrypts it before
writing to the output trail. (Replicat decrypts the data automatically without any
parameter input.)

DECRYPTTRAI L

Note:

You can explicitly decrypt incoming trail data and then re-encrypt it again for
any output trails or files. First, enter DECRYPTTRAI L to decrypt the data, and
then enter ENCRYPTTRAI L and its output trail specifications. DECRYPTTRAI L must
precede ENCRYPTTRAI L. Explicit decryption and re-encryption enables you to
vary the AES algorithm from trail to trail, if desired. For example, you can use
AES 128 to encrypt a local trail and AES 256 to encrypt a remote trail.
Alternatively, you can use the master key and wallet method to encrypt from
one process to a second process, and then use the ENCKEYS method to
encrypt from the second process to the third process.

8.3 Renewing the Master Key

ORACLE

This procedure renews the master encryption key in the encryption-key wallet.
Renewing the master key creates a new version of the key. Its name remains the
same, but the bit ordering changes. As part of your security policy, you should renew
the current master key regularly so that it does not get stale.

All renewed versions of a master key remain in the wallet until they are marked for
deletion with the DELETE MASTERKEY command and then the wallet is purged with the
PURGE WALLET command, see Deleting Stale Master Keys (page 8-4).

Unless the wallet is maintained centrally on shared storage (as a shared wallet), the
updated wallet must be copied to all of the other systems in the Oracle GoldenGate
configuration that use that wallet. To do so, the Oracle GoldenGate must be stopped.
This procedure includes steps for performing those tasks in the correct order.

1. Stop Extract.
STOP EXTRACT group

2. On the target systems, issue the following command for each Replicat until it
returns At ECF.

SEND REPLI CAT group STATUS

3. On the source system, stop the data pumps.
STOP EXTRACT group

4. On the target systems, stop the Replicat groups.

8-3

10.

11.

12.

13.

14.

Chapter 8
Deleting Stale Master Keys

STOP REPLI CAT group
On the source system, issue the following command to open the wallet.
OPEN WALLET

On the source system, issue the following command to confirm the version of the
current key. Make a record of the version.

| NFO MASTERKEY
On the source system, issue the following command to renew the master key.
RENEW MASTERKEY

On the source system, issue the following command to confirm that a new version
is current.

| NFO MASTERKEY

Note:

If you are using a shared wallet, go to step 12 (page 8-4). If you are
using a wallet on each system, continue to the next step.

On the source system, issue the following command, where versi on is the new
version of the master key. Make a record of the hash value.

| NFO MASTERKEY VERSI ON versi on

Copy the updated wallet from the source system to the same location as the old
wallet on all of the target systems.

On each target, issue the following command, where ver si on is the new version
number of the master key. For each wallet, make certain the Stat us is Current and
compare the new hash value with the one that you originally recorded. All wallets
must show identical key versions and hash values.

| NFO MASTERKEY VERSI ON ver si on
Restart Extract.

START EXTRACT group

Restart the data pumps.

START EXTRACT group

Restart Replicat.

START REPLI CAT group

8.4 Deleting Stale Master Keys

This procedure deletes stale versions of the master key. Deleting stale keys should be
part of the overall policy for maintaining a secure Oracle GoldenGate wallet. It is
recommended that you develop a policy for how many versions of a key you want to
keep in the wallet and how long you want to keep them.

ORACLE

8-4

Chapter 8
Deleting Stale Master Keys

Note:

For Oracle GoldenGate deployments using a shared wallet, the older
versions of the master key should be retained after the master key is
renewed until all processes are using the newest version. The time to wait
depends on the topology, latency, and data load of the deployment. A
minimum wait of 24 hours is a conservative estimate, but you may need to
perform testing to determine how long it takes for all processes to start using
a new key. To determine whether all of the processes are using the newest
version, view the report file of each Extract immediately after renewing the
master key to confirm the last SCN that was mined with the old key. Then,
monitor the Replicat report files to verify that this SCN was applied by alll
Replicat groups. At this point, you can delete the older versions of the master
key.

If the wallet is on central storage that is accessible by all Oracle GoldenGate
installations that use that wallet, you need only perform these steps once to the shared
wallet. You do not need to stop the Oracle GoldenGate processes.

If the wallet is not on central storage (meaning there is a copy on each Oracle
GoldenGate system) you can do one of the following:

ORACLE

If you can stop the Oracle GoldenGate processes, you only need to perform the
steps to change the wallet once and then copy the updated wallet to the other
systems before restarting the Oracle GoldenGate processes.

If you cannot stop the Oracle GoldenGate processes, you must perform the steps
to change the wallet on each system, making certain to perform them exactly the
same way on each one.

These steps include prompts for both scenarios.

On the source system, issue the following command to determine the versions of
the master key that you want to delete. Typically, the oldest versions should be the
ones deleted. Make a record of these versions.

| NFO MASTERKEY
On the source system, issue the following command to open the wallet.
OPEN WALLET

Issue the following command to delete the stale master keys. Options are
available to delete a specific version, a range of versions, or all versions including
the current one. To delete all of the versions, transaction activity and the Oracle
GoldenGate processes must be stopped.

DELETE MASTERKEY {VERSI ON version | RANGE FROM begi n_val ue TO end_val ue}

Note:

DELETE MASTERKEY marks the key versions for deletion but does not
actually delete them.

8-5

ORACLE

10.

11.

12.

13.

14.

Chapter 8
Deleting Stale Master Keys

Review the messages returned by the DELETE MASTERKEY command to ensure that
the correct versions were marked for deletion. To unmark any version that was
marked erroneously, use the UNDELETE MASTERKEY VERSI ON ver si on command before
proceeding with these steps. If desired, you can confirm the marked deletions with
the | NFO MASTERKEY command.

When you are satisfied that the correct versions are marked for deletion, issue the
following command to purge them from the wallet. This is a permanent deletion
and cannot be undone.

PURGE WALLET

Next steps:
e If the wallet resides on shared storage, you are done with these steps.

e Ifthere is a wallet on each system and you cannot stop the Oracle
GoldenGate processes, repeat the preceding steps on each Oracle
GoldenGate system.

e Ifthere is a wallet on each system and you can stop the Oracle GoldenGate
processes, continue with these steps to stop the processes and copy the
wallet to the other systems in the correct order.

Stop Extract.
STOP EXTRACT group

In GGSCI, issue the following command for each data pump Extract until each
returns At ECF, indicating that all of the data in the local trail has been processed.

SEND EXTRACT group STATUS
Stop the data pumps.
STOP EXTRACT group

On the target systems, issue the following command for each Replicat until it
returns At ECF.

SEND REPLI CAT group STATUS
Stop the Replicat groups.
STOP REPLI CAT group

Copy the updated wallet from the source system to the same location as the old
wallet on all of the target systems.

Restart Extract.

START EXTRACT group
Restart the data pumps.
START EXTRACT group
Restart Replicat.

START REPLI CAT gr oup

8-6

Encrypting Data with the ENCKEYS
Method

ORACLE

To use this method of data encryption, you configure Oracle GoldenGate to generate
an encryption key and store the key in a local ENCKEYS file.

This method makes use of a permanent key that can only be changed by regenerating
the algorithm, see Populating an ENCKEYS File with Encryption Keys (page 12-1).

The ENCKEYS file must be secured through the normal method of assigning file
permissions in the operating system.

This procedure generates an AES encryption key and provides instructions for storing
it in the ENCKEYS file.

Topics:

1.

Encrypting the Data with the ENCKEYS Method (page 9-1)
Decrypting the Data with the ENCKEYS Method (page 9-2)

Examples of Data Encryption using the ENCKEYS Method (page 9-3)

9.1 Encrypting the Data with the ENCKEYS Method

Generate an encryption key and store it in the ENCKEYS file, see Populating an
ENCKEYS File with Encryption Keys (page 12-1). Make certain to copy the
finished ENCKEYS file to the Oracle GoldenGate installation directory on any
intermediary systems and all target systems.

In the following parameter files, add the following:

To encrypt trail data: In the parameter file of the primary Extract group and the
data pump, add an ENCRYPTTRAI L parameter before any parameter that
specifies a trail or file that you want to be encrypted. Parameters that specify
trails or files are EXTTRAI L, RMITRAI L, EXTFI LE, and RMTFI LE. The syntax is one of
the following:

ENCRYPTTRAI L { AES128 | AES192 | AES256 | BLOWFI SH}

ENCRYPTTRAI L AES192, KEYNAME keynane

To encrypt data across TCP/IP: In the RMTHOSTOPTI ONS parameter in the
parameter file of the data pump (or the primary Extract, if no pump is being
used), add the ENCRYPT option with the KEYWORD clause. The syntax is one of the
following:

RMIHOSTOPTI ONS host, MGRPORT port, ENCRYPT {AES128 | AES192 | AES256 |
BLOWFI SHE KEYNAME keynarme

RMIHOSTOPTI ONS ENCRYPT { AES128 | AES192 | AES256 | BLOWFI SHf KEYNAME keynarme

Where:

9-1

Chapter 9
Decrypting the Data with the ENCKEYS Method

e RMIHOSTOPTI ONS is used for passive Extract, see Populating an ENCKEYS File
with Encryption Keys (page 12-1).

e ENCRYPTTRAI L without options uses AES128 as the default for all database
types except the iSeries, z/OS, and NonStop platforms, where BLOAFI SH is the
default.

e AES128 encrypts with the AES-128 encryption algorithm. Not supported for
iSeries, z/OS, and NonStop platforms.

* AES192 encrypts with AES-192 encryption algorithm. Not supported for iSeries,
z/0S, and NonStop platforms.

e AES256 encrypts with AES-256 encryption algorithm. Not supported for iSeries,
z/0S, and NonStop platforms.

* BLOWFI SH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use AES if supported for the platform.
Use BLOWFI SHfor backward compatibility with earlier Oracle GoldenGate
versions, and for DB2 z/OS and DB2 for i. AES is not supported on those
platforms.

* KEYNAME keyname specifies the logical look-up name of an encryption key in the
ENCKEYS file. Not an option of ENCRYPTTRAI L.

Note:

RMIHOST is used unless the Extract is in a passive configuration.

3. If using a static Collector with data encrypted over TCP/IP, append the following
parameters in the Collector startup string:

- KEYNAME keynane
- ENCRYPT al gorithm

The specified key name and algorithm must match those specified with the KEYNAVE
and ENCRYPT options of RMTHOST.

9.2 Decrypting the Data with the ENCKEYS Method

ORACLE

Data that is encrypted over TCP/IP connections is decrypted automatically at the
destination before it is written to a trail, unless trail encryption also is specified.

Data that is encrypted in the trail remains encrypted unless the DECRYPTTRAI L parameter
is used. DECRYPTTRAI L is required by Replicat before it can apply encrypted data to the
target. A data pump passes encrypted data untouched to the output trail, unless the
DECRYPTTRAI L and ENCRYPTTRAI L parameters are used. If the data pump must perform
work on the data, decrypt and encrypt the data as follows.

To Decrypt Data for Processing by a Data Pump

Add the DECRYPTTRAI L parameter to the parameter file of the data pump. The decryption
algorithm and key must match the ones that were used to encrypt the trail, see
Encrypting the Data with the ENCKEYS Method (page 9-1).

DECRYPTTRAI L { AES128 | AES192 | AES256 | BLOWFI SH}

9-2

Chapter 9
Examples of Data Encryption using the ENCKEYS Method

To Encrypt Data After Processing by a Data Pump

To encrypt data before the data pump writes it to an output trail or file, use the
ENCRYPTTRAI L parameter before the parameters that specify those trails or files.
Parameters that specify trails or files are EXTTRAI L, RMITRAI L, EXTFI LE, and RMTFI LE. The
ENCRYPTTRAI L parameter and the trail or file specifications must occur after the
DECRYPTTRAI L parameter.

" Note:

The algorithm specified with ENCRYPTTRAI L can vary from trail to trail. For
example, you can use AES 128 to encrypt a local trail and AES 256 to
encrypt a remote trail.

To Decrypt Data for Processing by Replicat

If a trail that Replicat reads is encrypted, add a DECRYPTTRAI L parameter statement to
the Replicat parameter file. The decryption algorithm and key must match the ones
that were used to encrypt the trail.

9.3 Examples of Data Encryption using the ENCKEYS

Method

ORACLE

The following example shows how to turn encryption on and off for different trails or
files. In this example, Extract writes to two local trails, only one of which must be
encrypted.

In the Extract configuration, trail bb is the non-encrypted trail, so its EXTTRAI L parameter
is placed before the ENCRYPTTRAI L parameter that encrypts trail aa. Alternatively, you
can use the NCENCRYPTTRAI L parameter before the EXTTRAI L parameter that specifies trail
bb and then use the ENCRYPTTRAI L parameter before the EXTTRAI L parameter that
specifies trail aa.

EXTTRAIL...bb

TABLE sales.”;
ENCRYPTTHA _
EXTTRHAIL...aa

TABLE fin.8;

=

[ea oo

BMTHOST myhost2.., MAF sales.”, TARGET sales.”;
BMTTRAIL...dd
TABLE sales.”;

oo |

DECRYPTTRAIL... DECRYPTTRAIL...
RMTHOST myhost... MAF fin.", TARGET fin.”;
ENCRYPTTRAIL...

RMTTRAIL...cc

TABLE fin.";

9-3

ORACLE

Chapter 9
Examples of Data Encryption using the ENCKEYS Method

In this example, the encrypted data must be decrypted so that data pump 1punp can
perform work on it. Therefore, the DECRYPTTRAI L parameter is used in the parameter file
of the data pump. To re-encrypt the data for output, the ENCRYPTTRAI L parameter must
be used after DECRYPTTRAI L but before the output trail specification(s). If the data pump
did not have to perform work on the data, the DECRYPTTRAI L and ENCRYPTTRAI L
parameters could have been omitted to retain encryption all the way to Replicat.

Example 9-1 Extract Parameter File

EXTRACT capt
USER! DALI AS 0gg
DI SCARDFI LE / ogg/ capt . dsc, PURGE
- Do not encrypt this trail.
EXTTRAI L /ogg/ dirdat/bb
TABLE SALES. *;
- Encrypt this trail with AES-192.
ENCRYPTTRAI L AES192
EXTTRAI L /ogg/ dirdat/aa
TABLE FIN. *;

Example 9-2 Data Pump 1 Parameter File

EXTRACT 1punp
USER!I DALI AS ogg
DI SCARDFI LE / ogg/ 1pnp. dsc, PURGE
- Decrypt the trail this punp reads. Use encryption key nykeyl.
DECRYPTTRAI L AES192
- Encrypt the trail this punp wites to, using AES-192.
RMIHOSTOPTI ONS nyhost 1, MCRPORT 7809
ENCRYPTTRAI L AES192
RMITRAIL /ogg/dirdat/cc
TABLE FIN. *;

Example 9-3 Data pump 2 Parameter File

EXTRACT 2punp

USERI DALI AS ogg

DI SCARDFI LE / ogg/ 2pnp. dsc, PURGE
RMIHOST nyhost 2, MGERPORT 7809
RMITRAI L /ogg/ dirdat/dd

TABLE SALES. *;

Example 9-4 Replicatl (on myhostl) Parameter File

REPLI CAT 1deliv
USER!I DALI AS ogg
ASSUVETARGETDEFS
DI SCARDFI LE /ogg/ 1deliv.dsc, PURGE
- Decrypt the trail this Replicat reads. Use encryption key nykey2.
DECRYPTTRAI L AES192
MAP FIN. *, TARGET FIN. *;

Example 9-5 Replicat 2 (on myhost2) parameter file

REPLI CAT 2deliv

USERI DALI AS ogg

ASSUMETARGETDEFS

DI SCARDFI LE / ogg/ 2del i v.dsc, PURGE
MAP SALES. *, TARGET SALES. *;

9-4

Managing Identities in a Credential Store

Learn how to use an Oracle GoldenGate credential store to maintain encrypted
database passwords and user IDs and associate them with an alias.

It is the alias, not the actual user ID or password, that is specified in a command or
parameter file, and no user input of an encryption key is required. The credential store
is implemented as an autologin wallet within the Oracle Credential Store Framework
(CSF).

Another benefit of using a credential store is that multiple installations of Oracle
GoldenGate can use the same one, while retaining control over their local credentials.
You can partition the credential store into logical containers known as domains, for
example, one domain per installation of Oracle GoldenGate. Domains enable you to
develop one set of aliases (for example ext for Extract, rep for Replicat) and then
assign different local credentials to those aliases in each domain. For example,
credentials for user oggl can be stored as ALl AS ext under DOVAI N syst entl, while
credentials for user ogg2 can be stored as ALI AS ext under DOVAI N syst en®.

The credential store security feature is not supported on the DB2 for i, DB2 z/OS, and
NonStop platforms. For those platforms and any other supported platforms, see
Encrypting a Password in a Command or Parameter File (page 11-1).

Topics:
* Creating and Populating the Credential Store (page 10-1)
» Specifying the Alias in a Parameter File or Command (page 10-2)

10.1 Creating and Populating the Credential Store

ORACLE

1. (Optional) To store the credential store in a location other than the dircrd
subdirectory of the Oracle GoldenGate installation directory, specify the desired
location with the CREDENTI ALSTORELOCATI ON parameter in the GLOBALS file. (See
Administering Oracle GoldenGate for more information about the GLOBALS file.)

2. From the Oracle GoldenGate installation directory, run GGSCI.
3. Issue the following command to create the credential store.
ADD CREDENTI ALSTORE
4. Issue the following command to add each set of credentials to the credential store.

ALTER CREDENTI ALSTORE ADD USER useri d,
[PASSWORD passwor d]

[ALI AS al i as]
[DOVAIN domai n]
Where:

* userid is the user name. Only one instance of a user name can exist in the
credential store unless the ALI AS or DOVAI N option is used.

10-1

Chapter 10
Specifying the Alias in a Parameter File or Command

» password is the password. The password is echoed (not obfuscated) when this
option is used. For security reasons, it is recommended that you omit this
option and allow the command to prompt for the password, so that it is
obfuscated as it is entered.

* alias is an alias for the user name. The alias substitutes for the credential in
parameters and commands where a login credential is required. If the ALI AS
option is omitted, the alias defaults to the user name. If you do not want user
names in parameters or command input, use ALI AS and specify a different
name from that of the user.

* domui n is the domain that is to contain the specified alias. The default domain
is Oracl e Gol denGate.

For more information about the commands used in this procedure and additional
credential store commands, see Reference for Oracle GoldenGate.

10.2 Specifying the Alias in a Parameter File or Command

The following commands and parameters accept an alias as substitution for a login
credential.

Table 10-1 Specifying Credential Aliases in Parameters and Commands

Purpose of the Credential Parameter or Command to Use

inl
Oracle GoldenGate database login USERI DALI AS al i as

Oracle GoldenGate database login for Oracle

ASM instance TRANLOGOPTI ONS ASMUSERALI AS al i as

Oracle GoldenGate database login for a

I TRANLOGOPTI ONS M NI NGUSERALI AS al i as
downstream Oracle mining database

Password substitution for { CREATE | ALTER}

DDLOPTI ONS DEFAULTUSERPASSVIORDALI AS al |
USER nare | DENTI FI ED BY passwor d aras

Oracle GoldenGate database login from

GGSCI DBLOG N USERI DALI AS al i as

Oracle GoldenGate database login to a
downstream Oracle mining database from
GGSCI

M NI NGDBLOG N USERI DALI AS al i as

1 Syntax elements required for USERI DALI AS vary by database type. See Reference for Oracle
GoldenGate for more information.

ORACLE 10-2

Encrypting a Password in a Command or
Parameter File

Learn how to encrypt a database password that is to be specified in a command or
parameter file.

This method takes a clear-text password as input and produces an obfuscated
password string and a lookup key, both of which can then be used in the command or
parameter file. This encryption method supports all of the databases that require a
login for an Oracle GoldenGate process to access the database.

Depending on the database, you may be able to use a credential store as an
alternative to this method. See Managing Identities in a Credential Store (page 10-1).

Topics:
» Encrypting the Password (page 11-1)

» Specifying the Encrypted Password in a Parameter File or Command
(page 11-2)

11.1 Encrypting the Password

1. Run GGSCI.
2. Issue the ENCRYPT PASSWORD command.
ENCRYPT PASSWORD passwor d al gorit hm ENCRYPTKEY {key_name | DEFAULT}

Where:

» password is the clear-text login password. Do not enclose the password within
guotes. If the password is case-sensitive, type it that way.

e al gorit hmspecifies the encryption algorithm to use:
— AES128 uses the AES-128 cipher, which has a key size of 128 bits.
— AES192 uses the AES-192 cipher, which has a key size of 192 hits.
— AES256 uses the AES-256 cipher, which has a key size of 256 bits.

— BLOWFI SHuses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use AES if supported for the
platform. Use BLOAFI SHfor backward compatibility with earlier Oracle
GoldenGate versions, and for DB2 z/OS and DB2 for i. AES is not
supported on those platforms.

* ENCRYPTKEY key_nane specifies the logical name of a user-created encryption
key in the ENCKEYS lookup file. The key name is used to look up the actual key
in the ENCKEYS file. Using a user-defined key and an ENCKEYS file is required for
AES encryption. To create a key and ENCKEYS file, see Populating an
ENCKEYS File with Encryption Keys (page 12-1).

ORACLE 11-1

Chapter 11

Specifying the Encrypted Password in a Parameter File or Command

e ENCRYPTKEY DEFAULT directs Oracle GoldenGate to generate a predefined
Blowfish key. This type of key is insecure and should not be used in a
production environment if the platform supports AES. Use this option only for
DB2 on /OS and DB2 for | when BLOWFI SH is specified. ENCRYPT PASSWORD returns
an error if AES is used with DEFAULT.

If no algorithm is specified, AES128 is the default for all database types except
DB2 z/OS, where BLOWFI SH is the default.

The following are examples of ENCRYPT PASSWORD with its various options.

ENCRYPT PASSWORD nypasswor d AES256 ENCRYPTKEY nykeyl
ENCRYPT PASSWORD mypasswor d BLOAFI SH ENCRYPTKEY mykeyl
ENCRYPT PASSWORD mypasswor d BLOWFI SH ENCRYPTKEY DEFAULT

3. The encrypted password is output to the screen when you run the ENCRYPT
PASSWORD command. Copy the encrypted password and then see Specifying the
Encrypted Password in a Parameter File or Command (page 11-2) for
instructions on pasting it to a command or parameter.

11.2 Specifying the Encrypted Password in a Parameter File
or Command

Copy the encrypted password that you generated with the ENCRYPT PASSWORD command
(see Encrypting a Password in a Command or Parameter File (page 11-1)), and then

paste it into the appropriate Oracle GoldenGate parameter statement or command as
shown in Table 11-1 (page 11-2). Option descriptions follow the table.

ORACLE

Table 11-1 Specifying Encrypted Passwords in Parameters and Commands

Purpose of the Password

Parameter or Command to Use

Oracle GoldenGate database
logint

USERI D user, PASSWORD password, &
al gori t hm ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
for Oracle ASM instance

TRANLOGOPTI ONS ASMUSER SYS@ASM i nst ance_nane, &
ASMPASSWORD password, &
al gori t hm ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
for a downstream Oracle mining
database

[M NI NGUSER {/ | user}[, M N NGPASSWORD password] &
[al gorithm ENCRYPTKEY {key_nanme | DEFAULT}] &
[SYSDRA] |

Password substitution for { CREATE
| ALTER} USER name | DENTI FI ED
BY passwor d

DDLOPTI ONS DEFAULTUSERPASSWORD password &
al gorithm ENCRYPTKEY {keynane | DEFAULT}

Oracle TDE shared-secret
password

DBOPTI ONS DECRYPTPASSWORD passwor d? al gorithm &
ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
from GGSCI

DBLOG@ N USERI D user, PASSWORD password, &
al gorithm ENCRYPTKEY {keynane | DEFAULT}

11-2

ORACLE

Chapter 11
Specifying the Encrypted Password in a Parameter File or Command

Table 11-1 (Cont.) Specifying Encrypted Passwords in Parameters and
Commands

__|
Purpose of the Password Parameter or Command to Use

Oracle GoldenGate database login
to a downstream Oracle mining
database from GGSCI

M NI NGDBLOG N USERI D user, PASSWORD password, &
al gori t hm ENCRYPTKEY {keyname | DEFAULT}

1 Syntax elements required for USERI D vary by database type. See Reference for Oracle GoldenGate for
more information.
2 This is the shared secret.

Where:

* user is the database user name for the Oracle GoldenGate process or (Oracle
only) a host string. For Oracle ASM, the user must be SYS.

e password is the encrypted password that is copied from the ENCRYPT PASSWORD
command results.

e al gorithmspecifies the encryption algorithm that was used to encrypt the
password: AES128, AES192, AES256, or BLOWFI SH. AES128 is the default if the default
key is used and no algorithm is specified.

* ENCRYPTKEY keynane specifies the logical name of a user-created encryption key in
the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME keyname
option.

* ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if ENCRYPT
PASSWORD was used with the KEYNAME DEFAULT option.

The following are examples of using an encrypted password in parameters and
command:

SOURCEDB dbl USERI D ogg, &
PASSWORD AACAAAAAAAAAAAJAUEUGCDSCVGIEEI UGKIDITFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekeyl

USERI D ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGIEEI UGKIDITFNDKEJFFFTC, &
BLOWFI SH, ENCRYPTKEY secur ekeyl

USERI D ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGIEEI UGKIDITFNDKEJFFFTC, &
BLOWFI SH, ENCRYPTKEY DEFAULT

TRANLOGOPTI ONS ASMUSER SYS@sntl, &
ASMPASSWORD AACAAAAAAAAAAAJAUEUGODSCVGI EEI UGKIDITFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekeyl

DBLOG N USERI D 0gg, PASSWORD &
AACAAAAAAAAAAAJ AUEUGODSCVGI EEl UGKIDITFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekeyl

DDLOPTI ONS DEFAULTUSERPASSWORD &
AACAAAAAAAAAAA] AUEUGODSCVG] EEI UGKIDITFNDKEJFFFTC, &
AES 256 ENCRYPTKEY nykey

DBOPTI ONS DECRYPTPASSWORD AACAAAAAAAAAAATAUEUGODSCVGIEEI UGKIDITENDKEIFFFTC, &
AES 256 ENCRYPTKEY nykey

11-3

Chapter 11
Specifying the Encrypted Password in a Parameter File or Command

DDLOPTI ONS PASSWORD AACAAAAAAAAAAA] AUEUGODSCVG) EEI UGKIDI TENDKEJFFFTC, &
AES 256 ENCRYPTKEY nykey

ORACLE 11-4

Populating an ENCKEYS File with
Encryption Keys

Learn how to use an ENCKEYS file.
You must generate and store encryption keys when using the security features:

° ENCRYPTTRAI L (see Encrypting the Data with the ENCKEYS Method (page 9-1))

e ENCRYPT PASSWORD with ENCRYPTKEY keynane (see Encrypting a Password in a
Command or Parameter File (page 11-1))

e RMIHOST or RMIHOSTCPTI ONS with ENCRYPT (see Encrypting the Data with the
ENCKEYS Method (page 9-1))

You can define your own key or run the Oracle GoldenGate KEYGEN utility to create a
random key.

Topics:

* Defining Your Own Key (page 12-1)

* Using KEYGEN to Generate a Key (page 12-1)

* Creating and Populating the ENCKEYS Lookup File (page 12-2)

12.1 Defining Your Own Key

Use a tool of your choice. The key value can be up to 256 bits (32 bytes) as either of
the following:

e aquoted alphanumeric string (for example " Dai | ykey")

* a hex string with the prefix Ox (for example 0x420E61BE7002D63560929CCAL7A4ELFB)

12.2 Using KEYGEN to Generate a Key

ORACLE

Change directories to the Oracle GoldenGate home directory on the source system,
and issue the following shell command. You can create multiple keys, if needed. The
key values are returned to your screen. You can copy and paste them into the ENCKEYS
file.

KEYGEN key_l ength n

Where:

* key_l ength is the encryption key length, up to 256 bits (32 bytes).
* nrepresents the number of keys to generate.
Example:

KEYGEN 128 4

12-1

Chapter 12

Creating and Populating the ENCKEYS Lookup File

12.3 Creating and Populating the ENCKEYS Lookup File

ORACLE

1.
2.

On the source system, open a new ASCII text file.

For each key value that you generated, enter a logical name of your choosing,

followed by the key value itself.

* The key name can be a string of 1 to 24 alphanumeric characters without

spaces or quotes.

* Place multiple key definitions on separate lines.

* Do not enclose a key name or value within quotes; otherwise it will be

interpreted as text.

Use the following sample ENCKEYS file as a guide.

Encryption key name

Encryption key value

Key nane
super key
secret key
superkeyl
super key?2
super key3

Key val ue

0x420E61BE7002D63560929CCA17A4ELFB
0x027742185BBF232D7C664A5E1A76B040
0x42DACD1B0E94539763C6699D3AEBE200
0x0343AD757A50A08E7F9A17313DBAB045
0x43AC8DCE660CED861B6DCAC6408CTESA

Save the file as the name ENCKEYS in all upper case letters, without an extension, in
the Oracle GoldenGate installation directory.

Copy the ENCKEYS file to the Oracle GoldenGate installation directory on every
system. The key names and values in all of the ENCKEYS files must be identical, or
else the data exchange will fail and Extract and Collector will abort with the

following message:

GGS error 118 — TCP/IP Server with invalid data.

12-2

Configuring GGSCI Command Security

You can establish command security for Oracle GoldenGate to control which users
have access to which Oracle GoldenGate functions.

" Note:

The GGSCl program is only available in the Oracle GoldenGate CA.

For example, you can allow certain users to issue | NFO and STATUS commands, while
preventing their use of START and STOP commands. Security levels are defined by the
operating system's user groups.

To implement security for Oracle GoldenGate commands, you create a CMDSEC file in
the Oracle GoldenGate directory. Without this file, access to all Oracle GoldenGate
commands is granted to all users.

< Note:

The security of the GGSCI program is controlled by the security controls of the
operating system.

Topics:
e Setting Up Command Security (page 13-1)
e Securing the CMDSEC File (page 13-3)

13.1 Setting Up Command Security

ORACLE

1. Open a new ASCII text file.

Referring to the following syntax and the example on , create one or more security
rules for each command that you want to restrict, one rule per line. List the rules in
order from the most specific (those with no wildcards) to the least specific. Security
rules are processed from the top of the CVDSEC file downward. The first rule
satisfied is the one that determines whether or not access is allowed.

Separate each of the following components with spaces or tabs.

command_name conmmand_obj ect OS group OS_user {YES | NGO

Where:
e command_nane is a GGSCI command name or a wildcard, for example START or
STOP or *.

13-1

Chapter 13
Setting Up Command Security

* conmmand_obj ect is any GGSCI command object or a wildcard, for example
EXTRACT or REPLI CAT or MANAGER.

* OS_group is the name of a Windows or UNIX user group. On a UNIX system,
you can specify a numeric group ID instead of the group name. You can use a
wildcard to specify all groups.

e (0S_user is the name of a Windows or UNIX user. On a UNIX system, you can
specify a numeric user ID instead of the user name. You can use a wildcard to
specify all users.

* YES | NOspecifies whether access to the command is granted or prohibited.

3. Save the file as CVMDSEC (using upper case letters on a UNIX system) in the Oracle
GoldenGate home directory.

The following example illustrates the correct implementation of a CMDSEC file on a UNIX
system.

Table 13-1 Sample CMDSEC File with Explanations

|
File Contents Explanation

#GG command security Comment line

STATUS REPLI CAT * Smith NO STATUS REPLI CAT is denied to user Smi t h.

Except for the preceding rule, all users in dpt 1 are granted

STATUS * dptl * YES
P all STATUS commands.

START REPLI CAT is granted to all members of the r oot
group.

Except for the preceding rule, START REPLI CAT is denied
to all users.

START REPLI CAT root * YES

START REPLI CAT * * NO

All EXTRACT commands are denied to all groups with ID of

* EXTRACT 200 * NO 200

* % root root YES Grants the r oot user any command.

Denies all commands to all users. This line covers security
for any other users that were not explicitly granted or
denied access by preceding rules. Without it, all
commands would be granted to all users except for
preceding explicit grants or denials.

****’\D

The following incorrect example illustrates what to avoid when creating a CVDSEC file.

Table 13-2 Incorrect CMDSEC Entries

|
File Contents Description

STCP * dpt2 * NO All STOP commands are denied to everyone in group dpt 2.

STCP * * Chen YES All STOP commands are granted to Chen.

ORACLE 13-2

Chapter 13
Securing the CMDSEC File

The order of the entries in Table 13-2 (page 13-2) causes a logical error. The first rule
(line 1) denies all STOP commands to all members of group dpt 2. The second rule (line

2) grants all STOP commands to user Chen. However, because Chen is a member of the
dpt 2 group, he has been denied access to all STOP commands by the second rule, even
though he is supposed to have permission to issue them.

The proper way to configure this security rule is to set the user-specific rule before the

more general rule(s). Thus, to correct the error, you would reverse the order of the two
STCP rules.

13.2 Securing the CMDSEC File

The security of the GGSCI program and that of the CMDSEC file is controlled by the
security controls of the operating system. Because the CMDSEC file is a source of
security, it must be secured. You can grant read access as needed, but Oracle

GoldenGate recommends denying write and delete access to everyone but Oracle
GoldenGate Administrators.

ORACLE 13-3

Using Target System Connection Initiation

Learn how to initiate passive and alias connections between your source and target
systems.

When a target system resides inside a trusted intranet zone, initiating connections
from the source system (the standard Oracle GoldenGate method) may violate
security policies if the source system is in a less trusted zone. It also may violate
security policies if a system in a less trusted zone contains information about the ports
or IP address of a system in the trusted zone, such as that normally found in an Oracle
GoldenGate Extract parameter file.

In this kind of intranet configuration, you can use a passive-alias Extract
configuration. Connections are initiated from the target system inside the trusted zone
by an alias Extract group, which acts as an alias for a regular Extract group on the
source system, known in this case as the passive Extract. Once a connection
between the two systems is established, data is processed and transferred across the
network by the passive Extract group in the usual way.

Untrusted Source System ' Trusted Target Systam
[Manager ({2111 Gescl |«{(1)— Alas |graqs
' ! A T | Extract JS”‘H
T ® T
3__3__5[Manager | Manager | » (AUTOSTART/AUTORESTART)
FPublic Metwork (é)
— [F'ESSWE .*:__/ ?-\ + . - . o,
—_— ™ Extract SART Collector [_ b-l Replicat —» =——
Source TRAIL Target
5 1 1 I
T . T I T I T
-~ 1T T - T T
Firewall Firgwall
1. An Oracle GoldenGate user starts the alias Extract on the trusted system, or an
AUTOSTART or AUTORESTART parameter causes it to start.
2. GGSCI on the trusted system sends a message to Manager on the less trusted
system to start the associated passive Extract. The host name or IP address and
port number of the Manager on the trusted system are sent to the less trusted
system.
3. Onthe less trusted system, Manager starts the passive Extract, and the passive
Extract finds an open port (according to rules in the DYNAM CPORTLI ST Manager
parameter) and listens on that port.
ORACLE 14-1

Chapter 14
Configuring the Passive Extract Group

4. The Manager on the less trusted system returns that port to GGSCI on the trusted
system.

5. GGSCI on the trusted system sends a request to the Manager on that system to
start a Collector process on that system.

6. The target Manager starts the Collector process and passes it the port number
where Extract is listening on the less trusted system.

7. Collector on the trusted system opens a connection to the passive Extract on the
less trusted system.

8. Data is sent across the network from the passive Extract to the Collector on the
target and is written to the trail in the usual manner for processing by Replicat.

Topics:

e Configuring the Passive Extract Group (page 14-2)

e Configuring the Alias Extract Group (page 14-3)

e Starting and Stopping the Passive and Alias Processes (page 14-3)

e Managing Extraction Activities (page 14-4)

e Other Considerations when using Passive-Alias Extract (page 14-4)

14.1 Configuring the Passive Extract Group

ORACLE

The passive Extract group on the less trusted source system will be one of the
following, depending on which one is responsible for sending data across the network:

* A solo Extract group that reads the transaction logs and also sends the data to the
target, or:

* A data pump Extract group that reads a local trail supplied by a primary Extract
and then sends the data to the target. In this case, there are no special
configuration requirements for the primary Extract, just the data pump.

Note:

The passive Extract group is only available in the Oracle GoldenGate CA.

To create an Extract group in passive mode, use the standard ADD EXTRACT command
and options, but add the PASS| VE keyword in any location relative to other command
options. Examples:

ADD EXTRACT fin, TRANLOG, BEG N NOW PASSI VE, DESC ' passive Extract'
ADD EXTRACT fin, PASSIVE, TRANLOG, BEG N NOW DESC ' passive Extract'

To configure parameters for the passive Extract group, create a parameter file in the
normal manner, except:

e Exclude the RMTHOST parameter, which normally would specify the host and port
information for the target Manager.

14-2

Chapter 14
Configuring the Alias Extract Group

* Use the optional RMTHOSTCPTI ONS parameter to specify any compression and
encryption rules. For information about the RMTHOSTOPTI ONS options, see Reference
for Oracle GoldenGate.

For more information about configuring an Extract group, see Administering Oracle
GoldenGate.

14.2 Configuring the Alias Extract Group

The alias Extract group on the trusted target does not perform any data processing
activities. Its sole purpose is to initiate and terminate connections to the less trusted
source. In this capacity, the alias Extract group does not use a parameter file nor does
it write processing checkpoints. A checkpoint file is used only to determine whether the
passive Extract group is running or not and to record information required for the
remote connection.

" Note:

The alias Extract group is only available in the Oracle GoldenGate CA.

To create an Extract group in alias mode, use the ADD EXTRACT command without any
other options except the following:

ADD EXTRACT group

, RMIHOST {host _nane | |P_address}
, MGRPORT port

[, RMINAME nang]

[, DESC 'description']

The RMTHOST specification identifies this group as an alias Extract, and the information
is written to the checkpoint file. The host _name and | P_addr ess options specify the name
or IP address of the source system. MGRPORT specifies the port on the source system
where Manager is running.

The alias Extract name can be the same as that of the passive Extract, or it can be
different. If the names are different, use the optional RUTNAME specification to specify the
name of the passive Extract. If RMTNAME is not used, Oracle GoldenGate expects the
names to be identical and writes the name to the checkpoint file of the alias Extract for
use when establishing the connection.

Error handling for TCP/IP connections is guided by the TCPERRS file on the target
system. It is recommended that you set the response values for the errors in this file to
RETRY. The default is ABEND. This file also provides options for setting the number of
retries and the delay between attempts. For more information about error handling for
TCP/IP and the TCPERRS file, see Administering Oracle GoldenGate.

14.3 Starting and Stopping the Passive and Alias Processes

To start or stop Oracle GoldenGate extraction in the passive-alias Extract
configuration, you must start or stop the alias Extract group from GGSCI on the target.

START EXTRACT al i as_group_namne

ORACLE 14-3

Chapter 14
Managing Extraction Activities

or,

STOP EXTRACT al i as_group_nane

The command is sent to the source system to start or stop the passive Extract group.
Do not issue these commands directly against the passive Extract group. You can
issue a KI LL EXTRACT command directly for the passive Extract group.

When using the Manager parameters AUTOSTART and AUTORESTART to automatically start
or restart processes, use them on the target system, not the source system. The alias
Extract is started first and then the start command is sent to the passive Extract.

14.4 Managing Extraction Activities

Once extraction processing has been started, you can manage and monitor it in the
usual manner by issuing commands against the passive Extract group from GGSCI on
the source system. The standard GGSCI monitoring commands, such as | NFOand VI EW
REPCRT, can be issued from either the source or target systems. If a monitoring
command is issued for the alias Extract group, it is forwarded to the passive Extract
group. The alias Extract group name is replaced in the command with the passive
Extract group name. For example, | NFO EXTRACT al i as becomes | NFO EXTRACT passi ve.
The results of the command are displayed on the system where the command was
issued.

14.5 Other Considerations when using Passive-Alias Extract

When using a passive-alias Extract configuration, these rules apply:

e In this configuration, Extract can only write to one target system.

e This configuration can be used in an Oracle RAC installation by creating the
Extract group in the normal manner (using the THREADS option to specify the
number of redo threads).

* The ALTER EXTRACT command cannot be used for the alias Extract, because that
group does not do data processing.

* To use the DELETE EXTRACT command for a passive or alias Extract group, issue the
command from the local GGSCI.

* Remote tasks, specified with RMTTASK in the Extract parameter file and used for
some initial load methods, are not supported in this configuration. A remote task
requires the connection to be initiated from the source system and uses a direct
connection between Extract and Replicat.

ORACLE 14-4

Securing Manager

ORACLE

You can use the Manager parameter, ACCESSRULE, to set security access rules for
Manager. It allows GGSCI access from a remote host if you are using passive Extract
or Director.

The ACCESSRULE parameter controls connection access to the Manager process and the
processes under its control. You can establish multiple rules by specifying multiple
ACCESSRULE statements in the parameter file and control their priority. To establish
priority, you can either list the rules in order from most important to least important, or
you can explicitly set the priority of each rule with the PRI option.

You must specify one of the following options:
| PADDR, | ogi n_I D, or PROGRAM

For example, the following access rules have been assigned explicit priority levels

through the PRI option. These rules allow any user to access the Collector process
(the SERVER program), and in addition, allow the IP address 122.11.12.13 to access
GGSCI commands. Access to all other Oracle GoldenGate programs is denied.

ACCESSRULE, PROG *, DENY, PRI 99
ACCESSRULE, PROG SERVER, ALLOW PRI 1
ACCESSRULE, PROG GGSCI, |PADDR 122.11.12.13, PR 1

Another example, the following access rule grants access to all programs to the user
JOHN and designates an encryption key to decrypt the password. If the password
provided with PASSWORD matches the one in the ENCKEYS lookup file, connection is
granted.

ACCESSRULE, PROG *, USER JOHN, PASSWORD OCEANL, ENCRYPTKEY | ookupl

For information about the ACCESSRULE options, see Reference for Oracle GoldenGate

15-1

	Contents
	Audience
	Documentation Accessibility
	Conventions
	Related Information
	1 Introducing Oracle GoldenGate Security
	Part I Securing the Microservices Architecture
	MA Security Features
	2 Network
	2.1 Network Access Control
	2.2 Network Connection Adapter
	2.3 Proxy Support
	2.4 Reverse Proxy Support

	3 Authentication and Authorization
	3.1 Authentication
	3.2 Authorization
	3.3 Authorization for WebSockets
	3.4 Error Codes
	3.5 Cross Site Request Forgery

	4 Communication Security
	4.1 Certificate Access Control List
	4.2 Transport Layer Security Protocols and Ciphers
	4.3 TLS Certificate Revocation List Handling
	4.4 HTTP Security and Cache Headers

	5 Server and Deployment Identities
	5.1 Using a Universally Unique IDs Scheme
	5.2 Using a Deterministically Calculated Unique ID Scheme
	5.3 Using an Explicit Naming Scheme
	5.4 Creating Server and Deployment IDs

	6 Securing Deployments

	Part II Securing Oracle GoldenGate
	7 Overview of Security Options
	8 Encrypting Data with the Master Key and Wallet Method
	8.1 Creating the Wallet and Adding a Master Key
	8.2 Specifying Encryption Parameters in the Parameter File
	8.3 Renewing the Master Key
	8.4 Deleting Stale Master Keys

	9 Encrypting Data with the ENCKEYS Method
	9.1 Encrypting the Data with the ENCKEYS Method
	9.2 Decrypting the Data with the ENCKEYS Method
	9.3 Examples of Data Encryption using the ENCKEYS Method

	10 Managing Identities in a Credential Store
	10.1 Creating and Populating the Credential Store
	10.2 Specifying the Alias in a Parameter File or Command

	11 Encrypting a Password in a Command or Parameter File
	11.1 Encrypting the Password
	11.2 Specifying the Encrypted Password in a Parameter File or Command

	12 Populating an ENCKEYS File with Encryption Keys
	12.1 Defining Your Own Key
	12.2 Using KEYGEN to Generate a Key
	12.3 Creating and Populating the ENCKEYS Lookup File

	13 Configuring GGSCI Command Security
	13.1 Setting Up Command Security
	13.2 Securing the CMDSEC File

	14 Using Target System Connection Initiation
	14.1 Configuring the Passive Extract Group
	14.2 Configuring the Alias Extract Group
	14.3 Starting and Stopping the Passive and Alias Processes
	14.4 Managing Extraction Activities
	14.5 Other Considerations when using Passive-Alias Extract

	15 Securing Manager

