

[1] Oracle® GoldenGate Application Adapters
Administering Oracle GoldenGate Adapters

12c (12.1.2.1.1)

E61853-01

May 2015

This document explains how to configure, customize, and
run the Oracle GoldenGate Adapters to produce flat files,
capture JMS messages and deliver them as an Oracle
GoldenGate trail, or read a trail and deliver transactions to a
messaging system.

Oracle GoldenGate Application Adapters Administering Oracle GoldenGate Adapters, 12c (12.1.2.1.1)

E61853-01

Copyright © 2015,

 Oracle and/or its affiliates. All rights reserved.

Primary Author:

Contributing Author:

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... ix

Part I Understanding Oracle GoldenGate Adapters

1 Understanding Oracle GoldenGate Adapters

1.1 Adapters Overview .. 1-1
1.1.1 Oracle GoldenGate ... 1-1
1.1.2 Adapter Integration Options.. 1-1
1.2 Using Oracle GoldenGate Adapters Properties ... 1-2
1.2.1 Values in Property Files .. 1-2
1.2.2 Location of Property Files... 1-3
1.2.3 Using Comments in the Property File .. 1-3
1.2.4 Variables in Property Names ... 1-3
1.3 Oracle GoldenGate Documentation ... 1-4

2 Introducing the File Writer

2.1 Overview of the Adapter for Flat Files .. 2-1
2.2 Typical Configuration .. 2-1

3 Introducing the Java Adapter

3.1 Oracle GoldenGate VAM Message Capture ... 3-1
3.1.1 Message Capture Configuration Options .. 3-1
3.1.2 Typical Configuration ... 3-1
3.2 Oracle GoldenGate Java User Exit.. 3-2
3.2.1 Delivery Configuration Options.. 3-3

4 Configuring Logging

4.1 Oracle GoldenGate Adapters Default Logging .. 4-1
4.1.1 Default Implementation Type.. 4-1
4.1.2 Default Message Logging ... 4-1
4.2 Changing the Default Logging ... 4-1
4.2.1 Changing the Logging Type .. 4-1
4.2.2 Changing the Logging Configuration .. 4-2
4.2.3 Enabling Debug.. 4-2

iv

Part II Creating Flat Files

5 Configuring the Flat File Adapter

5.1 Configuring the Adapter for Writing Flat Files.. 5-1
5.1.1 User Exit Extract Parameters.. 5-2
5.1.2 User Exit Properties... 5-3
5.2 Recommended Data Integration Approach.. 5-3
5.3 Producing Data Files .. 5-3

6 Using the Flat File Adapter

6.1 Working with Control Files ... 6-1
6.2 Working with Statistical Summaries.. 6-1
6.3 Managing Oracle GoldenGate processes... 6-2
6.4 Trail Recovery Mode .. 6-2
6.5 Locating Error Messages.. 6-2

7 Using Predefined Defaults and Formats

7.1 Overview of Predefined Defaults and Formats.. 7-1
7.1.1 Default Properties ... 7-1
7.1.2 Specifying Consumer Formats... 7-2
7.2 Siebel Remote Format... 7-2
7.3 Ab Initio Format.. 7-3
7.4 Netezza Format ... 7-3
7.5 Greenplum Format ... 7-3
7.6 Comma Delimited Format... 7-4

8 Flat File Properties

8.1 User Exit Properties ... 8-1
8.1.1 Logging Properties ... 8-1
8.1.2 General Properties .. 8-2
8.2 File Writer Properties .. 8-4
8.2.1 Output Format Properties ... 8-4
8.2.2 Output File Properties .. 8-5
8.2.3 File Rollover Properties .. 8-7
8.2.4 Data Content Properties ... 8-9
8.2.5 DSV Specific Properties .. 8-15
8.2.6 LDV Specific Properties .. 8-18
8.2.7 Statistics and Reporting .. 8-19

Part III Capturing JMS Messages

9 Configuring Message Capture

9.1 Configuring the VAM Extract .. 9-1
9.1.1 Adding the Extract... 9-1
9.1.2 Configuring the Extract Parameters.. 9-1

v

9.1.3 Configuring Message Capture... 9-2
9.2 Connecting and Retrieving the Messages ... 9-2
9.2.1 Connecting to JMS ... 9-2
9.2.2 Retrieving Messages.. 9-3
9.2.3 Completing the Transaction... 9-3

10 Parsing the Message

10.1 Parsing Overview .. 10-1
10.1.1 Parser Types .. 10-1
10.1.2 Source and Target Data Definitions ... 10-2
10.1.3 Required Data.. 10-2
10.1.4 Optional Data .. 10-4
10.2 Fixed Width Parsing .. 10-4
10.2.1 Header .. 10-4
10.2.2 Header and Record Data Type Translation .. 10-6
10.2.3 Key identification.. 10-6
10.3 Delimited parsing .. 10-7
10.3.1 Metadata Columns ... 10-7
10.3.2 Parsing Properties... 10-7
10.3.3 Parsing Steps ... 10-8
10.4 XML Parsing .. 10-8
10.4.1 Styles of XML ... 10-9
10.4.2 XML Parsing Rules ... 10-9
10.4.3 XPath Expressions .. 10-10
10.4.4 Other Value Expressions ... 10-12
10.4.5 Transaction Rules.. 10-12
10.4.6 Operation Rules .. 10-13
10.4.7 Column Rules .. 10-13
10.4.8 Overall Rules Example... 10-14
10.5 Source definitions Generation Utility ... 10-15

11 Message Capture Properties

11.1 Logging and Connection Properties ... 11-1
11.1.1 Logging Properties ... 11-1
11.1.2 JMS Connection Properties.. 11-2
11.1.3 JNDI Properties ... 11-4
11.2 Parser Properties .. 11-5
11.2.1 Setting the Type of Parser.. 11-5
11.2.2 Fixed Parser Properties .. 11-5
11.2.3 Delimited Parser Properties .. 11-9
11.2.4 XML Parser Properties ... 11-17

Part IV Delivering Java Messages

12 Configuring Message Delivery

12.1 Configure the JRE in the User Exit Properties File.. 12-1

vi

12.2 Configure a Data Pump to Run the User Exit.. 12-2
12.3 Configure the Java Handlers ... 12-3

13 Using the Java User Exit

13.1 Starting the Application.. 13-1
13.2 Restarting the Application at the Beginning of a Trail ... 13-2

14 Configuring Event Handlers

14.1 Specifying Event Handlers ... 14-1
14.2 JMS Handler ... 14-2
14.3 File Handler .. 14-3
14.4 Custom Handlers ... 14-3
14.5 Formatting the Output .. 14-3
14.6 Reporting... 14-4

15 Message Delivery Properties

15.1 User Exit Properties ... 15-1
15.1.1 Logging Properties ... 15-1
15.1.2 General Properties .. 15-2
15.1.3 JVM boot Options ... 15-3
15.1.4 Statistics and Reporting ... 15-3
15.2 Java Application Properties.. 15-4
15.2.1 Properties for All Handlers ... 15-4
15.2.2 Properties for Formatted Output.. 15-5
15.2.3 Properties for CSV and Fixed Format Output.. 15-7
15.2.4 File Writer Properties ... 15-9
15.2.5 JMS Handler Properties ... 15-10
15.2.6 JNDI Properties ... 15-13
15.2.7 General Properties .. 15-13

16 Developing Custom Filters, Formatters, and Handlers

16.1 Filtering Events ... 16-1
16.2 Custom Formatting ... 16-1
16.2.1 Coding a Custom Formatter in Java ... 16-2
16.2.2 Using a Velocity Template ... 16-3
16.3 Coding a Custom Handler in Java ... 16-4
16.4 Additional Resources ... 16-6

Part V Troubleshooting the Oracle GoldenGate Adapters

17 Troubleshooting the Flat File Adapter

17.1 Checking Oracle GoldenGate... 17-1
17.2 Checking the Configuration ... 17-1
17.3 Checking the Log File.. 17-1
17.4 Contacting Oracle Support ... 17-2

vii

18 Troubleshooting the Java Adapters

18.1 Checking for Errors.. 18-1
18.2 Recovering after an Abend... 18-2
18.3 Reporting Issues .. 18-2

Part VI Appendix

A Adapter Examples

A.1 List of Included Examples ... A-1
A.2 Configuring Logging... A-1
A.2.1 Example Oracle GoldenGate Java User Exit Defaults ... A-2
A.2.2 Customizing Logging... A-2

viii

ix

Preface

This guide contains information about configuring, and running Oracle GoldenGate
Adapters to extend the capabilities of Oracle GoldenGate instances.

Audience
This guide is intended for system administrators who are configuring and running
Oracle GoldenGate Adapters.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
The complete Oracle GoldenGate documentation set includes the following
components:

HP NonStop Platform
■ Reference for Oracle GoldenGate for HP NonStop Guardian

■ Administering Oracle GoldenGate for HP NonStop (Guardian)

■ Oracle GoldenGate Application Adapters BASE24 Administrator's Guide for HP
NonStop (Guardian)

■ Oracle GoldenGate Application Adapters for BASE24 D24 Dual Site Supplemental Guide
for HP NonStop (Guardian)

■ Oracle GoldenGate Application Adapters for BASE24 N24 Notification Supplemental
Guide for HP NonStop (Guardian)

■ Oracle GoldenGate Application Adapters for BASE24 T24 Tokenized Data Supplemental
Guide for HP NonStop (Guardian)

x

Windows, UNIX and Linux Platforms
■ Installing and Configuring Oracle GoldenGate for DB2 for i

■ Installing and Configuring Oracle GoldenGate for DB2 LUW

■ Installing and Configuring Oracle GoldenGate for DB2 z/OS

■ Installing and Configuring Oracle GoldenGate for Informix

■ Installing and Configuring Oracle GoldenGate for MySQL

■ Installing and Configuring Oracle GoldenGate for NonStop SQL/MX

■ Installing and Configuring Oracle GoldenGate for Oracle Database

■ Installing and Configuring Oracle GoldenGate for Oracle TimesTen

■ Installing and Configuring Oracle GoldenGate for SQL Server

■ Installing and Configuring Oracle GoldenGate for Sybase

■ Installing and Configuring Oracle GoldenGate for Teradata

■ Administering Oracle GoldenGate for Windows and UNIX

■ Oracle GoldenGate for Windows and UNIX Reference Guide

■ Logdump Reference for Oracle GoldenGate

■ Upgrading Oracle GoldenGate for Windows and UNIX

■ Error Messages Reference for Oracle GoldenGate for Windows and UNIX

Oracle GoldenGate Other Products
■ Administering Oracle GoldenGate Adapters

■ Installing Oracle GoldenGate Adapters

■ Upgrading Oracle GoldenGate Adapters

■ Administering Oracle GoldenGate Director

■ Administering Oracle GoldenGate Monitor

■ Administering Oracle GoldenGate Veridata

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, such as "From the File menu, select Save." Boldface also is used for
terms defined in text or in the glossary.

italic

italic

Italic type indicates placeholder variables for which you supply particular
values, such as in the parameter statement: TABLE table_name. Italic type also
is used for book titles and emphasis.

monospace

MONOSPACE

Monospace type indicates code components such as user exits and scripts;
the names of files and database objects; URL paths; and input and output text
that appears on the screen. Uppercase monospace type is generally used to
represent the names of Oracle GoldenGate parameters, commands, and
user-configurable functions, as well as SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless the
name is intended to be a specific case.

xi

{ } Braces within syntax enclose a set of options that are separated by pipe
symbols, one of which must be selected, for example: {option1 | option2 |
option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name [, SAVE
count]. Multiple options within an optional element are separated by a pipe
symbol, for example: [option1 | option2].

Convention Meaning

xii

Part I
Part I Understanding Oracle GoldenGate Adapters

This part of the book describes the concepts and basic structure of the Oracle
GoldenGate Adapters.

Part I contains the following chapters:

■ Chapter 1, "Understanding Oracle GoldenGate Adapters"

■ Chapter 2, "Introducing the File Writer"

■ Chapter 3, "Introducing the Java Adapter"

1

Understanding Oracle GoldenGate Adapters 1-1

1Understanding Oracle GoldenGate Adapters

[2] This chapter provides an overview of the Oracle GoldenGate Adapters that integrate
with Oracle GoldenGate instances to bring in Java Message Service (JMS) information
or to deliver information as JMS messages or files.

This chapter includes the following sections:

■ Adapters Overview

■ Using Oracle GoldenGate Adapters Properties

■ Oracle GoldenGate Documentation

1.1 Adapters Overview
This section provides an overview of the Oracle GoldenGate Adapters.

1.1.1 Oracle GoldenGate
Oracle GoldenGate Adapters integrate with core Oracle GoldenGate instances.

The core Oracle GoldenGate product:

■ Captures transactional changes from a source database

■ Sends and queues these changes as a set of database-independent files called the
Oracle GoldenGate trail

■ Optionally alters the source data using mapping parameters and functions

■ Applies the transactions in the trail to a target system database

Oracle GoldenGate performs this capture and apply in near real-time across
heterogeneous databases, platforms, and operating systems.

1.1.2 Adapter Integration Options
The Oracle GoldenGate adapters integrate with installations of the Oracle GoldenGate
core product to do one of the following:

■ Read JMS messages and deliver them as an Oracle GoldenGate trail

■ Read an Oracle GoldenGate trail and deliver transactions to a JMS provider or
other messaging system or custom application

■ Read an Oracle GoldenGate trail and write transactions to a file that can be used
by other applications

Using Oracle GoldenGate Adapters Properties

1-2 Administering Oracle GoldenGate Adapters

1.1.2.1 Capturing Transactions to a Trail
Oracle GoldenGate message capture can be used to read messages from a queue and
communicate with an Oracle GoldenGate Extract process to generate a trail containing
the processed data.

The message capture processing is implemented as a Vendor Access Module (VAM)
plug-in to a generic Extract process. A set of properties, rules and external files provide
messaging connectivity information and define how messages are parsed and mapped
to records in the target GoldenGate trail.

Currently this adapter supports capture from JMS text messages.

1.1.2.2 Applying Transactions from a Trail
Oracle GoldenGate delivery can be used to apply transactional changes to targets
other than a relational database: for example, ETL tools (DataStage, Ab Initio,
Informatica), JMS messaging, or custom APIs. There are a variety of options for
integration with Oracle GoldenGate:

■ Flat file integration: predominantly for ETL, proprietary or legacy applications,
Oracle GoldenGate file writer can write micro batches to disk to be consumed by
tools that expect batch file input. The data is formatted to the specifications of the
target application such as delimiter separated values, length delimited values, or
binary. Near real-time feeds to these systems are accomplished by decreasing the
time window for batch file rollover to minutes or even seconds.

■ Messaging: transactions or operations can be published as messages (e.g. in XML)
to JMS. The JMS provider is configurable; examples include ActiveMQ, JBoss
Messaging, TIBCO, WebLogic JMS, WebSphere MQ and others.

■ Java API: custom event handlers can be written in Java to process the transaction,
operation and metadata changes captured by Oracle GoldenGate on the source
system. These custom Java handlers can apply these changes to a third-party Java
API exposed by the target system.

All three options have been implemented as extensions to the core Oracle GoldenGate
product using Oracle GoldenGate's user exit interface, a C API.

■ For the flat file integration, Oracle GoldenGate File Writer provides a user exit
library that is dynamically linked into the Oracle GoldenGate Extract process.
Configuration is done using a properties file, and no programming is required.

■ For Java integration using either JMS or the Java API, use Oracle GoldenGate for
Java.

1.2 Using Oracle GoldenGate Adapters Properties
The Oracle GoldenGate Adapters are configured and controlled through predefined
properties.

1.2.1 Values in Property Files
All properties in Oracle GoldenGate Adapter property files are of the form:

property.name=value

The value may be single or comma-delimited strings, an integer, or a boolean value.

Using Oracle GoldenGate Adapters Properties

Understanding Oracle GoldenGate Adapters 1-3

1.2.2 Location of Property Files
Sample Oracle GoldenGate Adapter property files are installed to the
AdapterExamples subdirectory of the installation directory. These files should be
changed as needed and then moved to the dirprm subdirectory.

You must specify each of these property files through parameters or environmental
variables as explained below. These settings allow you to change the name or location,
but it is recommended that you do not change them unless there is an unavoidable
requirement.

The following sample files are included:

■ ffwriter.properties

This stores the properties for the file writer. It is set with the CUSEREXIT Extract
parameter.

■ jmsvam.properties

This stores properties for the JMS message capture VAM. This is set with the
Extract VAM parameter.

■ javaue.properties

This stores properties for the combined user exit and Java application used for
message delivery. It is set through the environmental variable:

SETENV (GGS_USEREXIT_CONF = "dirprm/javaue.properties")

Optionally, the java application properties and native user exit library properties
can be in separate files. To do this set GGS_USEREXIT_CONF to the user exit property
file and GGS_JAVAUSEREXIT_CONF to the Java application properties fie.

1.2.3 Using Comments in the Property File
Comments can be entered in the properties file with the # prefix at the beginning of
the line. For example:

This is a property comment
some.property=value

Properties themselves can also be commented. This allows testing configurations
without losing previous property settings.

1.2.4 Variables in Property Names
Some properties have a variable in the property name. This allows identification of
properties that are to be applied only in certain instances.

For example, you can declare more than one file writer using
goldengate.flatfilewriter.writers property and then use the name of the file
writer to set the properties differently:

1. Declare two file writers named writer and writer2:

goldengate.flatfilewriter.writers=writer,writer2

2. Specify the properties for each of the file writers:

writer.mode=dsv
writer.files.onepertable=true
writer2.mode=ldv
writer2.files.onpertable=false

Oracle GoldenGate Documentation

1-4 Administering Oracle GoldenGate Adapters

1.3 Oracle GoldenGate Documentation
For information on installing and configuring the core Oracle GoldenGate software for
use with the Oracle GoldenGate File Writer or Java adapters, see the Oracle
GoldenGate documentation:

■ Installation and Setup guides: There is one such guide for each database that is
supported by Oracle GoldenGate for Mainframe. It contains system requirements,
pre-installation and post-installation procedures, installation instructions, and
other system-specific information for installing the Oracle GoldenGate for
Mainframe replication solution.

■ Administering Oracle GoldenGate for Windows and UNIX: Explains how to plan for,
configure, and implement the Oracle GoldenGate for Mainframe replication
solution on the Windows and UNIX platforms.

■ Oracle GoldenGate for Windows and UNIX Reference Guide: Contains detailed
information about Oracle GoldenGate for Mainframe parameters, commands, and
functions for the Windows and UNIX platforms.

2

Introducing the File Writer 2-1

2Introducing the File Writer

[3] This chapter provides an overview of the Oracle GoldenGate Adapter for Flat Files.
This adapter provides a user exit library that is dynamically linked into an Oracle
GoldenGate Extract process. The library may be a.ddl or an.so format. It is
configured using a properties file so no programming is required.

This chapter includes the following sections:

■ Overview of the Adapter for Flat Files

■ Typical Configuration

2.1 Overview of the Adapter for Flat Files
Oracle GoldenGate Adapter for Flat Files outputs transactional data captured by
Oracle GoldenGate to rolling flat files to be used by a third party product.

The user exit supports two modes of output:

■ DSV – Delimiter Separated Values (commas are an example)

■ LDV – Length Delimited Values

It can output data:

■ All to one file

■ One file per table

■ One file per operation code

The user exit can roll over based on time and/or size criteria. It flushes files and
maintains checkpoints whenever Oracle GoldenGate checkpoints to ensure recovery. It
writes a control file containing a list of rolled over files for synchronization with the
supported data integration product and can also produce a summary file for use in
auditing.

Additional properties control formatting (delimiters, other values), directories, file
extensions, metadata columns (such as table name, file position, etc.) and data options.

2.2 Typical Configuration
The following diagram shows a typical configuration for the Oracle GoldenGate
Adapter for Flat Files.

In this configuration, transactions from the source database are captured by a Primary
Extract process and written to an Oracle GoldenGate trail. A data pump Extract send

Typical Configuration

2-2 Administering Oracle GoldenGate Adapters

this trail to the Oracle GoldenGate Adapter Extract, whose associated user exit process
writes the data to flat files formatted to suit a third party application.

Figure 2–1 Oracle GoldenGate for Flat File

3

Introducing the Java Adapter 3-1

3Introducing the Java Adapter

[4] This chapter describes the Oracle GoldenGate Adapter for Java. The Oracle
GoldenGate Adapter for Java implements 1) the capture of Java Message Service (JMS)
messages to send for processing into Oracle GoldenGate trail data, and 2) the
processing of transactional data captured by Oracle GoldenGate to be delivered as JMS
messages.

This chapter includes the following sections:

■ Oracle GoldenGate VAM Message Capture

■ Oracle GoldenGate Java User Exit

3.1 Oracle GoldenGate VAM Message Capture
Oracle GoldenGate message capture connects to JMS messaging to parse messages and
send them through a VAM interface to an Oracle GoldenGate Extract that builds an
Oracle GoldenGate trail of message data. This allows JMS messages to be delivered to
an Oracle GoldenGate system running for a target database.

Using Oracle GoldenGate JMS message capture requires two components:

■ The dynamically linked shared VAM library that is attached to the Oracle
GoldenGate Extract process.

■ A separate utility, Gendef, that uses the message capture properties file and
parser-specific data definitions to create an Oracle GoldenGate source definitions
file.

3.1.1 Message Capture Configuration Options
The options for configuring the three parts of message capture are:

■ Message connectivity: Values in the property file set connection properties such as
the Java class path for the JMS client, the JMS source destination name, JNDI
connection properties, and security information.

■ Parsing: Values in the property file set parsing rules for fixed width, comma
delimited, or XML messages. This includes settings such as the delimiter to be
used, values for the beginning and end of transactions and the date format.

■ VAM interface: Parameters that identify the VAM, dll, or so library and a
property file are set for the Oracle GoldenGate core Extract process.

3.1.2 Typical Configuration
The following diagram shows a typical configuration for capturing JMS messages.

Oracle GoldenGate Java User Exit

3-2 Administering Oracle GoldenGate Adapters

In this configuration, JMS messages are picked up by the Oracle GoldenGate Adapter
JMS Handler and transferred using the adapter's message capture VAM to an Extract
process. The Extract writes the data to a trail which is sent over the network by a Data
Pump Extract to an Oracle GoldenGate target instance. The target Replicat then uses
the trail to update the target database.

Figure 3–1 Configuration for JMS Message Capture

3.2 Oracle GoldenGate Java User Exit
Through the Oracle GoldenGate Java API, transactional data captured by Oracle
GoldenGate can be delivered to targets other than a relational database, such as a JMS
(Java Message Service), files written to disk, or an integration with a custom
application Java API.

Oracle GoldenGate for Java provides the ability to execute Java code from the Oracle
GoldenGate Extract process. Using Oracle GoldenGate for Java requires two
components:

■ A dynamically linked or shared library, implemented in C/C++, integrating as a
User Exit (UE) with the Oracle GoldenGate Extract process through a C API.

■ A set of Java libraries (jars), which comprise the Oracle GoldenGate Java API. This
Java framework communicates with the user exit through the Java Native
Interface (JNI).

Oracle GoldenGate Java User Exit

Introducing the Java Adapter 3-3

Figure 3–2 Configuration for Delivering JMS Messages

3.2.1 Delivery Configuration Options
The dynamically linked library is configurable using a simple properties file. The Java
framework is loaded by the user exit and is also initialized by a properties file.
Application behavior can be customized by:

■ Editing the property files; for example to:

– Set host names, port numbers, output file names, JMS connection settings;

– Add/remove targets (such as JMS or files) by listing any number of active
handlers to which the transactions should be sent;

– Turn on/off debug-level logging, etc.

– Identify which message format should be used.

■ Customizing the format of messages sent to JMS or files. Message formats can be
custom tailored by:

– Setting properties for the pre-existing format process (for fixed-length or
field-delimited message formats);

– Customizing message templates, using the Velocity template macro language;

Oracle GoldenGate Java User Exit

3-4 Administering Oracle GoldenGate Adapters

– (Optional) Writing custom Java code.

■ (Optional) Writing custom Java code to provide custom handling of transactions
and operations, do filtering, or implementing custom message formats.

There are existing implementations (handlers) for sending messages via JMS and for
writing out files to disk. There are several predefined message formats for sending the
messages (e.g. XML or field-delimited); or custom formats can be implemented using
templates. Each handler has documentation that describes its configuration properties;
for example, a file name can be specified for a file writer, and a JMS queue name can be
specified for the JMS handler. Some properties apply to more than one handler; for
example, the same message format can be used for JMS and files.

4

Configuring Logging 4-1

4Configuring Logging

[5] This chapter describes the default logging for the Oracle GoldenGate Adapters and
explains how to configure a different logging option.

This chapter includes the following sections:

■ Oracle GoldenGate Adapters Default Logging

■ Changing the Default Logging

4.1 Oracle GoldenGate Adapters Default Logging
Logging is set up by default for the Oracle GoldenGate Adapters.

4.1.1 Default Implementation Type
The default type of implementation for the Oracle GoldenGate Adapters is the JDK
option. This is the built-in Java logging called java.util.logging (JUL).

4.1.2 Default Message Logging
The default log file is created in the standard report directory. It is named for the
associated Extract process. Problems are logged to the report file and the log file.

4.1.2.1 Logging Problems
An overview of a problem is written to the Extract Report file and the details of the
problem are written to the log file.

4.1.2.2 Log File Name
By default log files are written to the installation_directory/dirrpt directory. The
name of the log file includes the Extract group_name and it has an extension of log.

4.2 Changing the Default Logging
The logging for Oracle GoldenGate Adapters can be changed from JUL to another type,
debug can be turned on, and the configuration file can be specified.

4.2.1 Changing the Logging Type
To change the logging implementation type, set the gg.log property to log4j or
logback. For example set:

gg.log=log4j

Changing the Default Logging

4-2 Administering Oracle GoldenGate Adapters

4.2.2 Changing the Logging Configuration
To designate a specific configuration file, set jvm.bootoptions to the system property
that defines it. This will implicitly set the implementation type and append the
appropriate binding to the class path. Contact Oracle Support for help using this
option.

4.2.3 Enabling Debug
To enable debug logging, set the gg.log.level property to debug as shown below.

gg.log.level=debug

Part II
Part II Creating Flat Files

This part explains how to configure and administer Oracle GoldenGate adapters that
write to flat files.

Part III contains the following chapters:

■ Chapter 5, "Configuring the Flat File Adapter"

■ Chapter 6, "Using the Flat File Adapter"

■ Chapter 7, "Using Predefined Defaults and Formats"

■ Chapter 8, "Flat File Properties"

5

Configuring the Flat File Adapter 5-1

5Configuring the Flat File Adapter

[6] This chapter explains how to configure the Oracle GoldenGate Adapter for writing flat
files by setting user exit parameters and file writer properties.

This chapter includes the following sections:

■ Configuring the Adapter for Writing Flat Files

■ Recommended Data Integration Approach

■ Producing Data Files

5.1 Configuring the Adapter for Writing Flat Files
Figure Section 5–1, "Typical Configuration For Writing Flat Files," shows a typical
configuration for an Oracle GoldenGate Application Adapters that is writing flat files.
Transactions are captured from the source database by a Primary Extract process that
writes the data to an Oracle GoldenGate trail. A Data Pump Extract is then used to
send the transactions to a trail that will be read by the Adapter Extract. The user exit
library that is associated with the Adapter Extract writes the data to flat files that have
been formatted for a third party application.

To configure the source database system:

GGSCI > ADD EXTRACT pump, EXTTRAILSOURCE dirdat/aa
GGSCI > ADD RMTTRAIL dirdat/bb, EXTRACT pump, MEGABYTES 20

To configure the data integration:

GGSCI > ADD EXTRACT ffwriter, EXTTRAILSOURCE dirdat/bb

The sample process names and trail names used above can be replaced with any valid
name. Process names must be 8 characters or less, trail names must be two characters.

Configuring the Adapter for Writing Flat Files

5-2 Administering Oracle GoldenGate Adapters

Figure 5–1 Typical Configuration For Writing Flat Files

5.1.1 User Exit Extract Parameters
The user exit Extract parameters (ffwriter.prm) are as follows:

Parameter Description

EXTRACT FFWRITER All Extract parameter files start with the Extract name. In
this case it is the user exit's file writer name.

SOURCEDEFS dirdef/hr_ora.def A source definitions file to determine trail contents.

Producing Data Files

Configuring the Flat File Adapter 5-3

5.1.2 User Exit Properties
The user exit reads properties from the file identified in CUSEREXIT PARAMS. The default
is to read from ffwriter.properties.

The properties file contains details of how the user exit should operate. For more
information on individual properties see Chapter 8, "Flat File Properties."

5.2 Recommended Data Integration Approach
To take best advantage of the micro-batch capabilities, customers should do the
following in their data integration tool:

1. Wait on the control file

2. Read list of files to process from the control file

3. Rename the control file

4. Iterate over the comma-delimited list of files read from the control file

5. Process each data file, deleting the data file when complete

6. Delete the renamed control file

On startup, the data integration tool should check for the renamed control file to see if
it needs to recover from previously failed processing

When the control file is renamed, the user exit will write a new one on the first file
rollover, which will contain the list of files for the next batch.

If the user exit has been configured to also output a summary file, the data integration
tool can optionally also read that summary file and cross-check the number of
operations it has processed with the data in the summary file for each processed data
file.

5.3 Producing Data Files
Data files are produced by configuring a writer in the user exit properties. A single
user exit properties file can have multiple writers, which allows for the generation of
multiple differently formatted output data files for the same input data.

CUSEREXIT flatfilewriter.dll
CUSEREXIT
PASSTHRU,
INCLUDEUPDATEBEFORES,
PARAMS ffwriter.properties

The CUSEREXIT parameter options:

■ flatfilewriter.dll is the name of the user exit .dll
or .so library.

■ CUSEREXIT is the name of the user exit routine that
will be invoked (case sensitive).

■ PASSTHRU specifies that the Extract process does not
need to write a trail.

■ INCLUDEUPDATEBEFORES allows both the before and
after image to be included in the output. It is also
required for consistency purposes and transaction
tracking.

■ PARAMS allows you to specify the name of the user exit
properties file.

TABLE HR.*; Specifies a list of tables to process.

Parameter Description

Producing Data Files

5-4 Administering Oracle GoldenGate Adapters

Writers are added by name to the goldengate.flatfilewriter.writers property. For
example:

goldengate.flatfilewriter.writers=dsvwriter,diffswriter,binarywriter

The remainder of the properties file contains detailed properties for each of the named
writers where the properties are prefixed by the writers name. For example:

dsvwriter.files.onepertable=true
binarywriter.files.onepertable=false
binarywriter.files.oneperopcode=true

Each writer can output all the data to a single (rolling) data file, or produce one
(rolling) data file per input table or operation type. This is controlled by the
files.onepertable and files.oneperopcode properties as shown in the example
above.

The data written by each writer can be in one of two output formats controlled by the
mode property. This can either be:

■ DSV – Delimiter Separated Values

■ LDV – Length Delimited Values

For example:

dsvwriter.mode=dsv
binarywriter.mode=ldv

When data files are first written to disk, they have a temporary extension. Once the file
meets rollover criteria, the extension is switched to the rolled extension. If control files
are used, the final file name is added to the list in the control file, creating the control
file if necessary. Also, if a file level statistics summary is being generated, it will be
created upon rollover of the file.

The output directory (for data files and control files separately), temporary extension,
rolled extension, control extension and statistical summary extension can all be
configured through properties. For output configuration details see Section 8.2.2,
"Output File Properties."

Each data file that is written follows a naming convention which depends on the
output style. For files written one per table, the name includes the table name, for
example:

MY.TABLE_2013-08-03_11:30:00_data.dsv

For files written with all data in one file, the name does not include the table name, for
example:

output_2013-08-03_11:30:00_data.dsv

In addition to the basic data contents, additional metadata columns can be added to the
output data to aid in data consumption. This includes the schema (owner) and table
information, source commit timestamp, Oracle GoldenGate read position and more.
For a detailed description of metadata columns see Section 8.2.4.8, "Metadata
Columns."

The contents of the data file depend on the mode, the input data, and the various
properties determining which (if any) metadata columns are added, whether column
names are included, whether before images are included etc. For full details of all
properties governing the output data see section Section 8.2.4, "Data Content
Properties."

6

Using the Flat File Adapter 6-1

6Using the Flat File Adapter

[7] This chapter discusses how to manage on-going operation of your system by
managing file rollover, gathering statistics on your Oracle GoldenGate adapter
instance to help you tune your system, managing the processes, and handling errors.

This chapter includes the following sections:

■ Working with Control Files

■ Working with Statistical Summaries

■ Managing Oracle GoldenGate processes

■ Trail Recovery Mode

■ Locating Error Messages

6.1 Working with Control Files
Control files store information on which data files have rolled over. If the control file
exists, it will be appended to; if it does not exist it will be created. For writers that
output all data to one file, a single control file will be created. If the writer is
outputting to one file per table or operation type, a control file will also be created per
table or operation type.

The generation of a control file, its output directory, prefix, and extension are
controlled by the properties defined in Section 8.2.2, "Output File Properties."

Each control file contains a comma-delimited list of data files that have been rolled
over since the control file was created. The files are listed in the order they were rolled
over. This allows data integration tools to ensure that data files are read in the correct
order and that they have all been consumed.

6.2 Working with Statistical Summaries
Summary statistics about the data production process can be collected. This statistical
summary information can be written to the Oracle GoldenGate report file or
individual summary files.

When writing to the report file, the user can decide if this information should be
written when files are rolled over, or periodically based on a time period. Information
written to the report file is output in a standard fashion, and contains total records,
totals for each database operation type, deltas since the last report, rate information,
and detail information for each table.

When writing to individual summary files, a file is created for each rolled-over file.
The statistical information for the rolled-over file is listed separated by a delimiter. The

Managing Oracle GoldenGate processes

6-2 Administering Oracle GoldenGate Adapters

extension of the summary file, the data to be output, data delimiter, and line delimiter
can all be controlled.

Section 8.2.7, "Statistics and Reporting," contains detailed property information about
statistics and summary files.

6.3 Managing Oracle GoldenGate processes
The processes involved in a typical data integration solution include:

■ A primary Extract process, capturing transactional data from the source database

■ A PASSTHRU data pump Extract moving the captured transactional data across the
network from the source database machine to the data integration machine

■ A delivery data pump Extract configured to run the user exit

Typically, the original capture and PASSTHRU data pump are part of one Oracle
GoldenGate installation and the delivery data pump is part of a second installation.
Both of these installations will also need to have an Oracle GoldenGate Manager
process running.

Processes within these installations are managed through the Oracle GoldenGate
GGSCI command line with simple commands like start and stop. Full details of
managing these processes and their configuration can be found in the Oracle
GoldenGate Administrator's Guide.

6.4 Trail Recovery Mode
The RECOVERYOPTIONS Extract parameter determines the restart behavior of an Extract
that abends while writing to a trail. APPENDMODE is the default for release 10 trails and
later. When an abended Extract restarts in append mode, it writes a recovery marker to
the trail followed by the entire transaction that was interrupted.

When the Oracle GoldenGate Flat File Adapter file writer reads this trail, it receives
the partial transaction followed by the recovery marker indicating the partial
transaction should be discarded. The file writer then repositions itself in the output file
to the beginning of the partial transaction and overwrites it with the next transaction
from the trail file.

6.5 Locating Error Messages
There are three types of errors that may occur in the operation of the Oracle
GoldenGate for Flat File:

1. The Extract process running the user exit does not start

2. The process starts, but abends at some point later

3. The process runs successfully, but the data is incorrect or non-existent

In the first two cases, there are a number of places to look for error messages:

■ The standard ggserr.log file, which contains basic information about Oracle
GoldenGate processes, their run history and a brief error message if any error
occurred.

■ The Oracle GoldenGate report file for the Extract process running the user exit,
found in the dirrpt subdirectory. For example, if the process name is ffwriter,
the report file would be ffwriter.rpt. This may contain more detailed information

Locating Error Messages

Using the Flat File Adapter 6-3

about the error, especially if it is a problem in the Oracle GoldenGate core product
rather than the user exit.

■ In the user exits log file, the name of which depends on the log.logname property.
If this file does not exist, the user exit most likely did not start up and the report
file should help isolate that problem.

Chapter 17, "Troubleshooting the Flat File Adapter" contains more information on
error handling.

Locating Error Messages

6-4 Administering Oracle GoldenGate Adapters

7

Using Predefined Defaults and Formats 7-1

7Using Predefined Defaults and Formats

[8] This chapter explains the standard and application specific property defaults that are
included with the Oracle GoldenGate Adapters.

This chapter includes the following sections:

■ Overview of Predefined Defaults and Formats

■ Siebel Remote Format

■ Ab Initio Format

■ Netezza Format

■ Greenplum Format

■ Comma Delimited Format

7.1 Overview of Predefined Defaults and Formats
To make the task of setting the file writer properties easier, the Oracle GoldenGate
Adapter:

■ Sets defaults for some standard properties

■ Includes predefined sets of properties that create a typical format for particular
applications receiving the output.

Using these predefined formats changes the standard defaults based on what
certain applications typically expect. You can override a format property by
manually setting it in the properties file. When processing a property from the
format, the system first checks to see if that property is set in the properties file
itself. If it is, the property file setting is used, otherwise the format setting is used.

7.1.1 Default Properties
All writers use the following properties. The values shown for each property are the
defaults.

writer.files.data.rootdir=./out
writer.files.data.rollover.time=10
writer.files.data.rollover.size=100000
writer.files.data.norecords.timeout=10
writer.files.control.use=true
writer.files.control.ext=.ctrl
writer.files.control.rootdir=./out

Siebel Remote Format

7-2 Administering Oracle GoldenGate Adapters

7.1.2 Specifying Consumer Formats
Use the template property to specify the name of the format file that is to be used.

Syntax
writer.template=format_name

writer - Specifies the name of the flat file writer.

format_name - Specifies the name of an existing file of default property settings for a
particular application. Valid sets include:

SIEBEL - Properties to create one DSV format output file with transaction information
for Siebel Remote.
ABINITIO - Properties to create LDV format output for consumption by Ab Initio.
NETEZZA - Properties to create one DSV format output file per table for Netezza.
GREENPLUM - Properties to create one DSV format output file for Greenplum.
COMMADELIM - Properties to create one comma delimited output file per table.

7.2 Siebel Remote Format
goldengate.userexit.outputmode=txs
goldengate.userexit.buffertxs=true
goldengate.userexit.datetime.removecolon=true
goldengate.userexit.timestamp=utc
writer.mode=DSV
writer.rawchars=false
writer.includebefores=true
writer.includecolnames=true
writer.omitvalues=false
writer.diffsonly=false
writer.omitplaceholders=true
writer.files.onepertable=false
writer.files.data.ext=_data.csv
writer.files.data.tmpext=_data.csv.temp
writer.files.data.bom.code=efbbbf
writer.dsv.nullindicator.chars=NULL
writer.dsv.nullindicator.escaped.chars=
writer.dsv.fielddelim.chars=,
writer.dsv.fielddelim.escaped.chars=
writer.dsv.linedelim.chars=\n
writer.dsv.linedelim.escaped.chars=
writer.dsv.quotes.chars="
writer.dsv.quotes.escaped.chars=""
writer.dsv.quotealways=true
writer.groupcols=true
writer.afterfirst=true
writer.begintx.metacols="B","S",position,"GGMC",%LAST_UPD_BY,"1",
numops
writer.metacols="R",opcode,%ROW_ID,%LAST_UPD_BY,%LAST_UPD,
%MODIFICATION_NUM,%CONFLICT_ID,position,txoppos,table,"","","","","",
"",%DB_LAST_UPD,%DB_LAST_UPD_SRC,numcols
writer.metacols.DB_LAST_UPD.omit=true
writer.metacols.DB_LAST_UPD_SRC.omit=true
writer.metacols.opcode.updatepk.chars=U
writer.metacols.position.format=dec
writer.endtx.metacols="E"

Greenplum Format

Using Predefined Defaults and Formats 7-3

7.3 Ab Initio Format
writer.mode=LDV
writer.files.onepertable=false
writer.files.data.ext=.data
writer.files.data.tmpext=.temp
writer.metacols=position,timestamp,opcode,txind,catalog,schema,table
writer.metacols.timestamp.fixedlen=26
writer.metacols.schema.fixedjustify=right
writer.metacols.schema.fixedpadchar.chars=Y
writer.metacols.opcode.fixedlen=1
writer.metacols.opcode.insert.chars=I
writer.metacols.opcode.update.chars=U
writer.metacols.opcode.delete.chars=D
writer.metacols.txind.fixedlen=1
writer.metacols.txind.begin.chars=B
writer.metacols.txind.middle.chars=M
writer.metacols.txind.end.chars=E
writer.metacols.txind.whole.chars=W
writer.metacols.position.format=dec
writer.ldv.vals.missing.chars=M
writer.ldv.vals.present.chars=P
writer.ldv.vals.null.chars=N
writer.ldv.lengths.record.mode=binary
writer.ldv.lengths.record.length=4
writer.ldv.lengths.field.mode=binary
writer.ldv.lengths.field.length=2
writer.statistics.period=onrollover
writer.statistics.tosummaryfile=true
writer.statistics.overall=true
writer.statistics.summary.fileformat=catalog,schema,table,schemaandtable,total,
gctimestamp,ctimestamp
writer.statistics.summary.delimiter.chars=|
writer.statistics.summary.eol.chars=\n

7.4 Netezza Format
writer.mode=DSV
writer.rawchars=false
writer.includebefores=false
writer.includecolnames=false
writer.omitvalues=false
writer.diffsonly=false
writer.omitplaceholders=false
writer.files.onepertable=true
writer.files.data.ext=_data.dsv
writer.files.data.tmpext=_data.dsv.temp
writer.dsv.nullindicator.chars=
writer.dsv.fielddelim.chars=;
writer.dsv.fielddelim.escaped.chars=

7.5 Greenplum Format
writer.mode=DSV
writer.rawchars=false
writer.includebefores=false
writer.includecolnames=false

Comma Delimited Format

7-4 Administering Oracle GoldenGate Adapters

writer.omitvalues=false
writer.diffsonly=false
writer.omitplaceholders=false
writer.files.onepertable=true
writer.files.data.ext=_data.dsv
writer.files.data.tmpext=_data.dsv.temp
writer.dsv.nullindicator.chars=
writer.dsv.fielddelim.chars=|
writer.dsv.fielddelim.escaped.chars=
writer.metacols=opcode,timestamp
writer.metacols.opcode.insert.chars=I
writer.metacols.opcode.update.chars=U
writer.metacols.opcode.delete.chars=D

7.6 Comma Delimited Format
writer.mode=DSV
writer.rawchars=false
writer.includebefores=false
writer.includecolnames=false
writer.omitvalues=false
writer.diffsonly=false
writer.omitplaceholders=false
writer.files.onepertable=true
writer.files.data.ext=_data.dsv
writer.files.data.tmpext=_data.dsv.temp
writer.dsv.nullindicator.chars=NULL
writer.dsv.fielddelim.chars=,
writer.dsv.linedelim.chars=\n
writer.dsv.quotes.chars="
writer.dsv.quotes.escaped.chars=""
writer.metacols=position,txind,opcode,timestamp,catalog,schema,table
writer.statistics.period=onrollover
writer.statistics.overall=true

8

Flat File Properties 8-1

8Flat File Properties

[9] This chapter describes properties that you can configure in the Oracle GoldenGate Flat
File Adapter property file.

The chapter includes the following sections:

■ User Exit Properties

■ File Writer Properties

8.1 User Exit Properties
User exit properties include properties to control logging and general properties that
control naming and handling of transactions.

8.1.1 Logging Properties
Logging is controlled by the following properties.

8.1.1.1 goldengate.log.logname
Specifies the prefix to the log file name. This must be a valid ASCII string. The log file
name has the current date appended to it, in yyyymmdd format, together with the .log
extension.

The following example will create a log file of name writer_20140803.log on August
3, 2014.

goldengate.log.logname=writer

8.1.1.2 goldengate.log.level
Specifies the overall log level for all modules. The syntax is:

goldengate.log.level=ERROR | WARN | INFO| DEBUG

The log levels are defined as follows:

■ ERROR – Only write messages if errors occur

■ WARN – Write error and warning messages

■ INFO – Write error, warning and informational messages

■ DEBUG – Write all messages, including debug ones.

The default logging level is INFO. The messages in this case will be produced on
startup, shutdown, and periodically during operation. For example, the following sets
the global logging level to INFO:

User Exit Properties

8-2 Administering Oracle GoldenGate Adapters

goldengate.log.level=INFO

Note: If the level is switched to DEBUG, large volumes of messages
may occur, which could impact performance.

8.1.1.3 goldengate.log.tostdout
Controls whether or not log information is written to standard out. This setting is
useful if the Extract process is running with a VAM started from the command line or on
an operating system where stdout is piped into the report file. However, Oracle
GoldenGate processes generally run as background processes. The syntax is:

goldengate.log.tostdout={true | false}

The default is false.

8.1.1.4 goldengate.log.tofile
Controls whether or not log information is written to the specified log file. The syntax
is:

goldengate.log.tofile={true | false}

The default is false. Log output is written to the specified log file when set to true.

8.1.2 General Properties
General properties control file writer names, check pointing, handling of transactions,
representation of timestamps, and the format used for column and object names.

8.1.2.1 goldengate.flatfilewriter.writers
Specifies the name of the writer that will run within the user exit. Enter multiple string
values to enable multiple named writers to run within the same user exit. For example:

goldengate.flatfilewriter.writers=dsvwriter,diffswriter,binwriter

Ensure there are no spaces before or after the equal sign or the commas. All other
properties in the file should be prefixed by one of the writer names.

8.1.2.2 goldengate.userexit.buffertxs
Controls whether entire transactions are read before being output.When set to true, an
entire transaction is read from the trail before being output. For example:

goldengate.userexit.buffertxs=true

The default is false. Setting this to true is useful only if the numops metadata column
is used. Currently the only way to calculate the numops value is to buffer transactions
and output one transaction at a time.

8.1.2.3 goldengate.userexit.chkptprefix
Specifies a string value as the prefix to be added to the checkpoint file name. When
running multiple data pumps, the checkpoint prefix should be set to the name of the
process. For example:

goldengate.userexit.chkptprefix=pump1_

User Exit Properties

Flat File Properties 8-3

8.1.2.4 goldengate.userexit.chkpt.ontxend
Controls whether the need to roll files over is checked after every transaction or only
when the Extract process checkpoints. If set to true, the adapter checks if a file is due
to be rolled over after it has processed a transaction. If due, the rollover is performed
and the checkpoint file updated. This is useful if tight control over the contents of
output files is required. For example, if all data up to midnight should be written to
files before rolling over at midnight, it is important that the check occurs on every
transaction. For example:

goldengate.userexit.chkpt.ontxend=true

The default is false. If set to false, the adapter will only check for rollover when
Extract checkpoints (every 10 seconds by default).

8.1.2.5 goldengate.userexit.datetime.removecolon
Controls whether or not a colon is written between the date and time. When set to
false, the date and time column values are written to the output files in the default
format of the Oracle GoldenGate trail, YYYY-MM-DD:HH:MI:SS.FFFF. When set to true,
the format is changed to YYYY-MM-DD HH:MI:SS.FFF with no colon between date and
time. The default is false.

goldengate.userexit.datetime.removecolon=true

8.1.2.6 goldengate.userexit.timestamp
Controls whether the record timestamp is output as local time or Coordinated
Universal Time (UTC). When this is not set to utc the record timestamp is output as
local time using the local time zone. The default is local time.

goldengate.userexit.timestamp=utc

8.1.2.7 goldengate.userexit.datetime.maxlen
Controls the maximum output length of a date time column. Setting this to an integer
value truncates the column value to that length. Since the date and time format is
YYYY-MM-DD:HH:MI:SS.F(9) the maximum length of a date and time column is 29
characters.

For example:

goldengate.userexit.datetime.maxlen=19

Setting goldengate.userexit.maxlen=19 truncates to date and time with no
fractional seconds. Setting goldengate.userexit.maxlen=10 truncates to date only.
The default is to output the full date and time column value.

8.1.2.8 goldengate.userexit.utf8mode
Controls whether column data and table, file, and column names are returned in the
UTF8 character set. When this is set to false, all data will be in the character set of the
operating system. The default is true.

The syntax is:

goldengate.userexit.utf8mode=true|false

File Writer Properties

8-4 Administering Oracle GoldenGate Adapters

8.2 File Writer Properties
File writer properties control the format of the output file and how the files are
written.

8.2.1 Output Format Properties
The following properties set the delimiter types of the values and the grouping of
columns.

8.2.1.1 writer.mode
Controls whether the output format is DSV or LDV.

■ DSV – Delimiter Separated Values, for example:

POSITION|OPCODE|TIMESTAMP|COLVALA|COLVALB|. . .

Note: DSV is not limited to comma separated values (as is CSV).

■ LDV – Length Delimited Values, for example:

0109TIMESTAMPI302MY05TABLEP042000P03ETC

Note: Lengths can be ASCII or binary, some metadata columns can
be fixed length (see Section 8.2.4.8, "Metadata Columns") and this
format will support unicode multi-byte data.

For example:

writer.mode=dsv
writer2.mode=ldv

Note: For backward compatibility, csv is accepted instead of dsv,
binary instead of ldv. There is no difference in the output formats
when using the alternate options.

8.2.1.2 writer.groupcols
Controls whether or not the column names, before values and after values are grouped
together.

The syntax is:

writer.groupcols=true|false

The default is false. This results in a set of name, before value and after value listed
together, as shown in this example for COL1 and COL2:

"COL1", COL1_B4, COL1, "COL2", COL2_B4, COL2

With the property set to true, the columns are grouped into sets of all names, all
before values, and all after values:

"COL1", "COL2", COL1_B4, COL2_B4, COL1, COL2

File Writer Properties

Flat File Properties 8-5

8.2.2 Output File Properties
The following properties control how files are written, where to, and what their
extensions will be. This is independent of the writer mode and data contents.

8.2.2.1 writer.files.onepertable
Controls whether data is split over multiple rolling files (one per table in the input
data) or all data is written to one rolling file. The default is true.

The syntax is:

writer.files.onepertable=true|false

In the following example the writer file writer will create one file per table, and
writer2 will write all data to one file.

writer.files.onepertable=true
writer2.files.onepertable=false

8.2.2.2 writer.files.oneperopcode
Controls whether or not data is split based on the insert, update, delete, or primary
key operation codes.

For example, the following setting will create separate output files for inserts, updates,
deletes, and primary key updates:

writer.files.oneperopcode=true

The default is false; output all records to the same files independent of the type of
operation.

In addition to this property, you must also modify the files.formatstring property
to accept the %O placeholder. This indicates the position to write the operation code
when the file name is created if the files.oneperopcode property is set. The default
filename should also include the operation code if that property is set.

8.2.2.3 writer.files.prefix
Specifies a value to be used as the prefix for data files and control files. This property
only applies if the writer is not in one per table mode (files.onepertable=true). For
data files, the prefix is ignored if the property files.formatstring is being used.

By default, the prefix is set to the string output. A file named data1 will become
outputdata1by default. The file name will be test_data1 using the following
example.

writer.files.prefix=test_

8.2.2.4 writer.files.data.rootdir, writer.files.data.ext, writer.files.data.tmpext
Specifies the location and extension of all data files. Before rolling over the files will
have the tmpext extension, after rolling over they will have the ext extension. The
extension does not have to be just an .ext format, additional characters can be
appended to the file name before the extension to differentiate the data output. You
should ensure the named output directory exists, and that the user running the Oracle

File Writer Properties

8-6 Administering Oracle GoldenGate Adapters

GoldenGate processes has the correct permissions to write to that directory. For
example:

specify the root directory for outputting data files
writer.files.data.rootdir=./out

determine the extension for data files when rolled over
writer.files.data.ext=_data.dsv

determine the extension for data files before rolling over
writer.files.data.tmpext=_data.dsv.temp

8.2.2.5 writer.files.control.use, writer.files.control.rootdir, writer.files.control.ext
writer.files.control.use is a boolean true or false value that defaults to true. The
others are ASCII values. These properties determine the user, location and extension of
control files. Control files will share the same name prefix as the data files they are
related to, but will have the defined extension. By default files.control.ext is
.control. For example:

specify whether or not to output a control file
writer.files.control.use=true

specify the extension to use for control files
writer.files.control.ext=_data.control

directory in which to place control files, defaults to data directory
writer.files.control.rootdir=./out

8.2.2.6 writer.files.control.delim.chars/code, writer.files.control.eof.chars/code
Specifies the value in characters or hexadecimal code to be used as the data delimiter
or the end-of-line indicator. The default for the delimiter is a comma (,) The default
new line trigger is the newline character that is valid for the platform.

For example, to override the comma as the data delimiter:

writer.files.control.delim.chars=#

For example, to set the new line indicator:

writer.files.control.eol.chars=\n

8.2.2.7 writer.files.formatstring
Specifies the filename format string to be used in creating the filenames for data files.
The format string overrides the files.prefix property. This filename format string is
similar in syntax to standard C formatting except the following placeholders can be
added to the filename:

■ %c = catalog

■ %s = schema

■ %t = table

■ %n = seqno

■ %d = timestamp

■ %o = opcode

File Writer Properties

Flat File Properties 8-7

The format of the seqno can be specified. For example %05n means 5 digits will be
displayed and padded with 0s. The seqno starts at zero and is incremented by one
each time a file rolls over. It is stored as a long int and therefore the maximum value
is platform dependent. For example on a 64 bit machine the largest value is 2^64-1.

These placeholders can be intermingled with user specified text in any order desired.
For example:

writer.files.formatstring=myext_%d_%010n_%s_%

8.2.2.8 writer.files.data.bom.code
Specifies a hexadecimal value as the byte order marker (BOM) to be written to the
beginning of the file. The user is responsible for ensuring the BOM matches the data in
the files. If no hexadecimal value is specified the marker is not written.

The following example results in the UTF8 BOM efbbf written as the first bytes of all
output files.

writer.files.data.bom.code=efbbbf

8.2.2.9 writer.files.includeprocessname
Controls whether or not the name of the Extract process is included as part of the file
name. The default is false.

The syntax is:

writer.files.includeprocessname=true|false

8.2.2.10 writer.files.useownerfiles
Controls whether or not hidden files are created to identify the Extract process that
owns the file. This can be used to avoid overwriting files from different Oracle
GoldenGate installations. The default is false.

The syntax is:

writer.files.useownerfiles=true|false

8.2.3 File Rollover Properties
The following properties determine the policies for rolling over files.

8.2.3.1 writer.files.data.rollover.time
Specifies the maximum number of seconds of elapsed time that must pass from the
first record written to the file before the file is rolled over. For example:

number of seconds before rolling over
writer.files.data.rollover.time=10

8.2.3.2 writer.files.data.rollover.size
Specifies the minimum number of kilobytes that must be written to the file before the
file is rolled over.

This example sets the minimum to 10,000 KB:

min file size in KB before rolling over

File Writer Properties

8-8 Administering Oracle GoldenGate Adapters

writer.files.data.rollover.size=10000

8.2.3.3 writer.files.data.norecords.timeout
Specifies the maximum number of elapsed seconds since data was written to a file to
wait before rolling over the file. The default is 120 seconds.

This example sets the timeout interval to 10 seconds:

roll over in case no records for a period of time
writer.files.data.norecords.timeout=10

8.2.3.4 writer.files.rolloveronshutdown
Controls the policy for roll over when the Extract process stops. If this value is false, all
empty temporary files will be deleted, but any that have data will be left as temporary
files. If this property is true, all non-empty temporary files will be rolled over to their
rolled file name, a checkpoint written and empty temporary files deleted. For example:

roll over non-empty and delete all empty files when Extract stops
writer.files.rolloveronshutdown=true

Note: You can use time and/or size. If you use both, the first reached
will cause a roll over. The time out interval ensures files are rolled
over if they contain data, even if there are no records to be processed.
If neither time or size are specified, files will roll over after a default
maximum size of 1MB.

8.2.3.5 writer.files.data.rollover.timetype
Controls whether to use the Julian commit timestamp rather than the system time to
trigger file roll over. The syntax is:

writer.files.data.rollover.timetype=commit|system

The following example will use the commit timestamp of the source trail records to
determine roll over:

writer.files.data.rollover.timetype=commit

The default is to use the system time to determine when to roll over files.

8.2.3.6 writer.files.data.rollover.multiple
Controls whether or not all files will be rolled over simultaneously independent of
when they first received records. Normally files are rolled over individually based on
the time or size properties. The time is based on the roll over period, so it depends on
the time records were first written to a particular file. In some cases, especially when
outputting data with one file per table, you may want to roll over all currently open
files at the same time, independent of when data was first written to that file.

The following example instructs the adapter to roll over all files simultaneously.

writer.files.data.rollover.multiple=true

The default value is false.

File Writer Properties

Flat File Properties 8-9

8.2.3.7 writer.files.data.rollover.attime
Specifies a time for the adapter to roll over files. Enter the specified time in 24 hour
format (HH:MM). Only one value entry is supported. The wildcard (*) is supported for
hours. The syntax is:

writer.files.data.rollover.attime=time_specifier

The following example will roll over to a new file every hour on the hour:

writer.files.data.rollover.attime=*:00

The following example will roll over every hour at fifteen minutes after the hour:

writer.files.data.rollover.attime=*:15

Note that the writer.rollover.timetype property determines whether the time to use
is system or commit time.

8.2.3.8 writer.writebuffer.size
Specifies the write buffer chunk size. Use to reduce the number of system write calls.
For example:

writer.writebuffer.size=36863

8.2.4 Data Content Properties
The following properties determine the data that is written to the data files. These
properties are independent of the format of the output data.

8.2.4.1 writer.rawchars
Controls whether character data retains its original binary form or is output as ASCII.
The default is false. This property should be set if the input data contains Unicode
multibyte data that should not be converted to ASCII. For example:

whether to output characters as ASCII or binary (for Unicode data)
writer.rawchars=false
writer2.rawchars=true

8.2.4.2 writer.includebefores
Controls whether or not both the before and after image of data is included in the
output for update operations. The default is false. This is only relevant if the before
images are available in the original data, and getupdatebefores is present in all Oracle
GoldenGate parameter files in the processing chain. For example:

whether to output update before images
writer.includebefores=true

This produces . . ."VAL_BEFORE_1","VAL_1","VAL_BEFORE_2","VAL_2". . .

8.2.4.3 writer.afterfirst
Controls whether or not the after image is written before the before image when
includebefores is set to true.

For example:

writer.afterfirst=true

File Writer Properties

8-10 Administering Oracle GoldenGate Adapters

This true setting results in the after image listed before the before image.

"VAL_1", "VAL_BEFORE_1", "VAL_2", "VAL_BEFORE_2"

The default is false. In this case the after image is written after the before image.

8.2.4.4 writer.includecolnames
Controls whether or not column names are output before the column values. The
default is false. For example:

whether to output column names
writer.includecolnames=true

This produces …"COL_1","VAL_1","COL_2","VAL_2"…

8.2.4.5 writer.omitvalues
Controls whether or not column values are omitted in the output files. The default is
false. For example:

whether to output column values
writer.omitvalues=false

This produces …"COL_1","COL_2"…, if includecolnames is also set to true.

8.2.4.6 writer.diffsonly
Controls whether all columns are output, or only those where the before image is
different from the after image. The default is false. This only applies to updates and
requires GETUPDATEBEFORES in all Oracle GoldenGate parameter files in the processing
chain. This property is independent of the includebefores property. For example:

whether to output only columns with differences between before and
after images (deletes and inserts have all available columns)
writer.diffsonly=true

This produces . . ."VAL_1",,,"VAL_4",,,"VAL_7". . .

8.2.4.7 writer.omitplaceholders
Controls whether delimiters/lengths are included in the output for missing columns.
The default is false. This applies to updates and deletes where the COMPRESSUPDATES
or COMPRESSDELETES flag was present in a Oracle GoldenGate parameter file in the
processing chain. In this case, values may be missing. Also, if writer.diffsonly is
true, values that are not different are said to be missing. For example:

whether to skip record delimiters if columns are missing
writer.omitplaceholders=true

This changes . . ."VAL_1",,,"VAL_4",,,"VAL_7". . .

to . . ."VAL_1","VAL_4","VAL_7". . .

8.2.4.8 Metadata Columns
Metadata columns are optional Extract columns that contain data about a record, not
actual record data. These columns are written at the beginning of the output record,
before any column values.

File Writer Properties

Flat File Properties 8-11

8.2.4.9 Valid Metadata Columns
Valid metadata columns are:

■ position - A unique position indicator of records in a trail.

■ opcode - I, U, D or K for Insert, Update, Delete, or Primary Key update records.

■ txind - The general record position in a transaction (0 - begin, 1 - middle, 2 - end, 3
- only).

■ txoppos - Position of record in a transaction, starting from 0.

■ catalog - The catalog name of the change record.

■ schema - The schema (owner) name of the changed record.

■ table - The table name of the changed record.

■ schemaandtable - Both the schema and table name concatenated as schema.table

■ timestamp - The commit timestamp of the record.

■ @<token name> - A token value defined in the Extract parameter file.

■ $getenv - A GETENV value as documented in the Oracle GoldenGate Reference Guide;
for example $GGHEADER.OPCODE.

■ %COLNAME - The value of a data column.

■ numops -The number of operations in the current transaction. This value will
always be 1 if goldengate.userexit.buffertxs is not true.

■ numcols - The number of columns to be output. This value is equal to the number
of columns in the original record, minus the number of columns output as
metadata columns up until the point this metadata column is used.

■ "<value>" - Any literal value.

8.2.4.10 Using Metadata Columns
Some things to consider when using metadata columns:

■ The ASCII values for opcode and txind can be overridden.

■ For LDV, metadata columns can be variable or fixed length.

■ The position can be written in hexadecimal or decimal.

■ Any metadata column can be the internal value or it can be read from a column of
the original data.

■ A literal value is indicated by enclosing it in quotes. When a literal value is
specified, that value will be output as a character string in the specified metadata
column position using the appropriate quote policy.

■ A column value is indicated by %COLNAME. When a column value is specified, that
column value is output in the metadata section of the output record, rather than in
the column values section. This may be used to ensure that the column is always
output in the same position in the record, independent of the table being output.

The following properties apply to metadata columns.

8.2.4.11 writer.metacols
Specifies the metadata columns to output in the order of output. Enter multiple names
as ASCII values separated by commas. For example:

File Writer Properties

8-12 Administering Oracle GoldenGate Adapters

which metacols to output and in which order
writer.metacols=timestamp,opcode,txind,position,catalog,schema,table

8.2.4.12 writer.metacols.metacol_name.fixedlen
Specifies an integer value to determine the length of data to write for the metadata
column specified by metacol_name. If the actual data is longer than the fixed length it
will be truncated, if it is shorter the output will be padded. For example:

timestamp is fixed length
writer.metacols.timestamp.fixedlen=23

This truncates 2011-08-03 10:30:51.123456 to 2011-08-03 10:30:51.123.

8.2.4.13 writer.metacols.metacol_name.column
Specifies an ASCII value to use as the column name of data values instead of using the
metacol_name value for a metadata column. If set, this column name must exist in all
tables processed by the user exit. There is currently no way to override this column
name on a per table basis. For example, to override the internal timestamp from a
column:

timestamp is read from a column
writer.metacols.timestamp.column=MY_TIMESTAMP_COL

8.2.4.14 writer.metacols.token_name.novalue.chars | writer.metacols.token_
name.novalue.code
Specifies values to represent characters or hexadecimal code to be used when the value
of token_name is not available. Use ASCII values for chars and hexadecimal values
for code. The default value is NO VALUE. For example:

writer.metacols.TKN-SCN.novalue.chars=0

8.2.4.15 writer.metacols.metacol_name.fixedjustify
Controls whether the justification for the metacol_name column value is to the left or
right. By default all metadata columns will be justified to the left. For example, to
justify a token to the right:

writer.metacols.TKN-SCN.fixedjustify=right

8.2.4.16 writer.metacols.metacol_name.fixedpadchar.chars |
writer.metacols.metacol_name.fixedpadchar.code
Specifies either a character or code value to be used for padding a metadata column.
Use ASCII values for chars and hexadecimal values for code. The default character
used for padding is a space (" "). For example:

writer.metacols.TKN-SCN.fixedpadchar.chars=0

8.2.4.17 writer.metacols.opcode.insert.chars | writer.metacols.opcode.insert.code
Specifies an override value for the default character I that identifies insert operations.
Use ASCII values for chars and hexadecimal values for code.

The following example instructs the adapter to use INS for inserts:

File Writer Properties

Flat File Properties 8-13

writer.metacols.opcode.insert.chars=INS

8.2.4.18 writer.metacols.opcode.update.chars |
writer.metacols.opcode.update.code
Specifies an override value for the default character U that identifies update
operations. Use ASCII values for chars and hexadecimal values for code.

The following example instructs the adapter to use UPD for updates:

writer.metacols.opcode.update.chars=UPD

8.2.4.19 writer.metacols.opcode.delete.chars | writer.metacols.opcode.delete.code
Specifies an override value for the default character D that identifies delete operations.
Use ASCII values for chars and hexadecimal values for code.

The following example instructs the adapter to use DEL for deletes:

writer.metacols.opcode.delete.chars=DEL

8.2.4.20 writer.metacols.opcode.updatepk.chars |
writer.metacols.opcode.updatepk.code
Specifies an override value for the default character K that identifies primary key
update operations. Use ASCII values for chars and hexadecimal values for code.

The following example instructs the adapter to use PKU for primary key updates:

writer.metacols.opcode.updatepk.chars=PKU

8.2.4.21 writer.metacols.txind.begin.chars | writer.metacols.txind.begin.code
Specifies the override values to use to identify the beginning, middle, end of
transactions, or if an operation that is the whole transaction. Use ASCII values for
chars and hexadecimal values for code. The default value is 0 for Begin.

The following example overrides the 0 with the letter B.

tx indicator values is overridden
writer.metacols.txind.begin.chars=B

8.2.4.22 writer.metacols.txind.middle.chars | writer.metacols.txind.middle.code
Specifies the override value to use to identify the middle transactions. Use ASCII
values for chars and hexadecimal values for code. The default value is 1 for Middle.

The following example overrides the1 with the letter M.

tx indicator value is overridden
writer.metacols.txind.middle.chars=M

8.2.4.23 writer.metacols.txind.end.chars | writer.metacols.txind.end.code
Specifies the override value to use to identify the end transactions. Use ASCII values
for chars and hexadecimal values for code. The default value is 2 for End.

The following example overrides the 2 with the letter E.

tx indicator value is overridden
writer.metacols.txind.end.chars=E

File Writer Properties

8-14 Administering Oracle GoldenGate Adapters

8.2.4.24 writer.metacols.txind.whole.chars | writer.metacols.txind.whole.code
Specifies the override value to use to identify. if an operation that is the whole
transaction. Use ASCII values for chars and hexadecimal values for code. The default
value is 3 for Whole.

The following example overrides the 3 with the letter W.

tx indicator value is overridden
writer.metacols.txind.whole.chars=W

8.2.4.25 writer.metacols.position.format
Controls whether the output of the of the position metadata column is in decimal or
hexadecimal format. If hexadecimal, this will typically be a 16 character value; if
decimal, the length will vary. Currently this contains the sequence number and RBA of
the Oracle GoldenGate trail that the Extract process is reading from. For example:

position is in decimal format (seqno0000000rba)
writer.metacols.position.format=dec

This produces 120000012345 for seqno 12, rba 12345

writer2.metacols.position.format=hex

This produces 0000000c00003039 for seqno 12, rba 12345.

8.2.4.26 writer.metacols.colname.omit
Controls whether the COLNAME column can be used as metadata but not output.

The following example specifies that numcols can be used as metadata, but not output.

writer.metacols.numcols.omit=true

8.2.4.27 writer.begintx.metacols, writer.endtx.metacols
Specifies the metadata columns to use to mark the beginning and end of a transaction.
These marker records are written (with end of line delimiters) to the output files before
and after the operation records that make up the transaction.

The syntax is:

writer.begintx.metacols=metacols_list

The following example specifies marking the beginning of a transaction with the letter
B and the number of operations in the transaction.

writer.begintx.metacols="B",numops

In the following example, the end of the transaction marker will be the letter E.

writer.endtx.metacols="E"

Any of the existing metadata columns can be used in the transaction begin and end
markers. If you specify a column value or specific property of a record (such as table
name) for begintx.metacols, the value for the first record in the transaction is used.
For endtx.metacols, the value for the last record is used.

For example, if the transaction has the following records:

rec=0,table=tabA,operation=insert,col1=val1,col2=val2
rec=1,table=tabA,operation=update,col1=val3,col2=val4

File Writer Properties

Flat File Properties 8-15

rec=2,table=tabA,operation=delete,col1=val5,col2=val6
rec=3,table=tabB,operation=update,col1=val7,col2=val8

And the properties are set as follows:

writer.begintx.metacols="B",table,%col2
writer.endtx.metacols="E",table,%col2

Then the begin transaction marker will be "B","tabA","val2" and the end marker will
be "E","tabB","val8".

If numops is used to output the number of operations in a transaction for either the
begin or end markers, the user must also set:

goldengate.userexit.buffertxs=true

Note: When this property is set, the adapter buffers transactions in
memory, so care should be taken to limit the number of operations in
the transactions being handled by the system.

8.2.5 DSV Specific Properties
DSV files have the following record format:

{[METACOL][FD]}n{[COL][FD]}m[LD]

Where:

■ METACOL is any defined metadata column

■ COL is any data column

■ FD is the field delimiter

■ LD is the line delimiter

Column values may be quoted, e.g. "2013-01-10 10:20:31","U","MY.TABLE",
2000,"DAVE"

8.2.5.1 writer.dsv.nullindicator.chars | writer.dsv.nullindicator.code
Specifies the characters to use for NULL values in delimiter separated files. These values
override the default NULL value of an empty string. Use ASCII values for chars and
hexadecimal values for code. For example:

writer.dsv.nullindicator.chars=NULL
writer.dsv.nullindicator.code=0a0a0a0a

8.2.5.2 writer.dsv.fielddelim.chars | writer.dsv.fielddelim.code
Specifies an override value for the field delimiter. The default is a comma (,). Use
ASCII values for chars and hexadecimal values for code. For example:

define the characters to use for field delimiters in DSV files
writer.dsv.fielddelim.chars=|

File Writer Properties

8-16 Administering Oracle GoldenGate Adapters

8.2.5.3 writer.dsv.linedelim.chars | writer.dsv.linedelim.code
Specifies an override value for the line delimiter. The default is a new line character
appropriate to the operating system. Use ASCII values for chars and hexadecimal
values for code. For example:

define the characters to use for line delimiters in DSV files
writer.dsv.linedelim.chars=\n

8.2.5.4 writer.dsv.quote.chars | writer.dsv.quote.code
Specifies an override value for the quote character. The default is a double quote (").
Use ASCII values for chars and hexadecimal values for code.For example:

define the characters to use for quotes in DSV files
writer.dsv.quotes.chars='

8.2.5.5 writer.dsv.quotes.policy
Controls the policy for applying quotes.

The syntax is:

writer.dsv.quotes.policy={default|none|always|datatypes}

Where:

■ default – Only dates and chars are quoted

■ none – No metadata column or column values are quoted

■ always – All metadata columns and column values are quoted

■ datatypes – Only specific data types are quoted

If this property is set it will override the dsv.quotealways property. Use the
dsv.quotes.datatypes property to specify which data types should be quoted.

8.2.5.6 writer.dsv.quotes.datatypes
Controls whether integer, character, float, or datetime data types are to be quoted
when dsv.quotes.policy is set to datatype.

The syntax is:

writer.dsv.quotes.datatypes=[char][,integer][,float][,date]

For example the following instructs the adapter to quote characters and date time
values only.

writer.dsv.quotes.datatypes=char,date

If no data types are specified, the data types option defaults to all data types, which is
equivalent to always.

8.2.5.7 writer.dsv.nullindicator.escaped.chars |
writer.dsv.nullindicator.escaped.code
Specifies the escaped value for a null indicator. If set, all values will be checked for the
null indicator value and replaced with the escaped value when output. Use ASCII
values for chars and hexadecimal values for code. For example:

(optionally) you can define the characters (or code) to use
to escape these values if found in data values

File Writer Properties

Flat File Properties 8-17

writer.dsv.nullindicator.escaped.chars=NULL

This changes the null indicator to NULL.

8.2.5.8 writer.dsv.fielddelim.escaped.chars | writer.dsv.fielddelim.escaped.code
Specifies the escaped value for a field delimiter. If set, all values will be checked for the
field delimiter value and replaced with the escaped value when output. Use ASCII
values for chars and hexadecimal values for code. For example:

writer.dsv.fielddelim.escaped.chars=|

This changes the field delimiter to |.

8.2.5.9 writer.dsv.linedelim.escaped.chars | writer.dsv.linedelim.escaped.code
Specifies the escaped value for a line delimiter. If set, all values will be checked for the
line delimiter value and replaced with the escaped value when output. Use ASCII
values for chars and hexadecimal values for code. For example:

writer.dsv.linedelim.escaped.chars=\n
writer.dsv.linedelim.escaped.code=D

Both change the line delimiter to \n.

8.2.5.10 writer.dsv.quotes.escaped.chars | writer.dsv.quotes.escaped.code
Specifies the escaped value for a field delimiter. If set, all values will be checked for the
field delimiter value and replaced with the escaped value when output. Use ASCII
values for chars and hexadecimal values for code. For example:

writer.dsv.quotes.escaped.chars=""

This changes the "some text" to ""some text"".

8.2.5.11 writer.dsv.onecolperline
Controls whether or not each column value is forced onto a new line. Each line will
also contain the metadata columns defined for this writer. The default is false. For
example:

Force each column onto a new line with its own meta cols
writer.dsv.onecolperline=true

This changes:{metacols},val_1,val_2 to

{metacols},val1
{metacols},val2

8.2.5.12 writer.dsv.quotealways
Controls whether or not each column is surrounded by quotes, even if it is a numeric
value. The default is false.

Note: This property has been superseded by dsv.quotes.policy and
is supported only for backward compatibility. The value set for
dsv.quotealways is ignored if dsv.quotes.policy is set.

For example:

File Writer Properties

8-18 Administering Oracle GoldenGate Adapters

writer.dsv.quotealways=true

Changes: . . .,1234,"Hello",10 to . . .,"1234","Hello","10"

8.2.6 LDV Specific Properties
LDV files have the following record format:

[RECLEN][METACOLS]{[FLAG][LEN][VALUE]}n

Where:

■ RECLEN is the full record length in bytes

■ METACOLS are all selected metadata columns

■ FLAG can be (M)issing, (P)resent, or (N)ull

■ LEN is the column values length (0 for missing and null)

■ VALUE is the column value

For example:

01072007-01-10 10:20:31U302MY05TABLEP042000M00N00P04DAVE

8.2.6.1 writer.ldv.vals.missing.chars | writer.ldv.vals.missing.code
Specifies override values for missing indicators. Use ASCII values for chars and
hexadecimal values for code. For example:

writer.ldv.vals.missing.chars=MI

8.2.6.2 writer.ldv.vals.present.chars | writer.ldv.vals.present.code
Specifies override values for present indicators. Use ASCII values for chars and
hexadecimal values for code. For example:

writer.ldv.vals.present.chars=PR

8.2.6.3 writer.ldv.vals.null.chars | writer.ldv.vals.null.code
Specifies override values for null indicators. Use ASCII values for chars and
hexadecimal values for code. For example:

writer.ldv.vals.null.chars=NL

8.2.6.4 writer.ldv.lengths.record.mode,writer. ldv.lengths.field.mode
Controls the output mode of record and field lengths. The value can be either binary
or ASCII. The default is binary.

If binary, the number written to the file will be encoded in binary bytes. If ASCII,
characters representing the decimal value of the length will be used. For example:

writer.ldv.lengths.record.mode=binary
writer.ldv.lengths.field.mode=binary

File Writer Properties

Flat File Properties 8-19

8.2.6.5 writer.ldv.lengths.record.length, writer.ldv.lengths.field.length
Specifies the record and field lengths as integer values. If the mode is ASCII, this
represents the fixed number of decimal digits to use. If binary, it represents the
number of bytes.

In ASCII mode the lengths can be any value, but the exit will stop if a length exceeds
the maximum. In binary mode, the lengths can be 2,4, or 8 bytes, but record length
must be greater than field length. For example:

Lengths can be binary (2,4, or 8 bytes) or ASCII (any length)
writer.ldv.lengths.record.length=4
writer.ldv.lengths.field.length=2

8.2.7 Statistics and Reporting
There are two ways that statistics regarding the data written to data files can be
obtained:

■ As a report written to the Oracle GoldenGate report file

■ As a separate summary file associated with a data file on rollover

These two mechanisms can be used together or separately.

The data that can be obtained includes, 1) the total records processed, broken down to
inserts, updates, deletes; 2) records processed per table, also broken down; 3) total rate
and rate per table; 4) delta for these since last report. Reporting can be time based, or
synced to file rollover

This data can be written to the report file or as a summary file linked to a data file on
rollover. The reporting format is fixed. The summary file contains the data in a
delimited format, but related to the contents of a particular data file. This can be used
by a data integration product to cross-check processing. It will have the same name as
the data file, but a different extension.

8.2.7.1 writer.statistics.toreportfile
Controls whether or not statistics are output to the Oracle GoldenGate report file. For
example:

writer.statistics.toreportfile=true

8.2.7.2 writer.statistics.period
Specifies the time period for statistics. The value can be either timebased or
onrollover.

For example:

writer.statistics.period=onrollover
writer.statistics.period=timebased

If timebased, the time period should be set in statistics.time.

Note: These values are valid only for outputting statistics to the
report file. Statistics will be output to the summary file only on
rollover.

File Writer Properties

8-20 Administering Oracle GoldenGate Adapters

8.2.7.3 writer.statistics.time
Specifies a time interval in seconds after which statistics will be reported.

For example:

writer.statistics.time=5

8.2.7.4 writer.statistics.tosummaryfile
Controls whether or not a summary file containing statistics for each data file will be
created on rollover.

The following example creates the summary file.

writer.statistics.tosummaryfile=true

8.2.7.5 writer.statistics.summary.fileformat
Controls the content of the summary files and the order in which the content is
written. Multiple comma separated ASCII values can be specified.

Valid values are:

■ catalog – catalog of the schema to which the statistics relate

■ schema – schema or owner of the table that the statistics relate to

■ table – table that the statistics relate to

■ schemaandtable – schema and table in one column separated by a period '.'

■ gtotal – total number of records output for the specified table since the user exit
was started

■ gtotaldetail – total number of inserts, updates and deletes separated by the
delimiter since the user exit was started

■ gctimestamp – minimum and maximum commit timestamp for the specified table
since user exit was started

■ ctimestamp – minimum and maximum commit timestamps for the specified table
in the related data file.

■ total – total number of records output for the specified table in the related data file

■ totaldetail – total number of inserts, updates and deletes output for the specified
table in the related data file

■ rate – average rate of output of data for the specified table in the related data file
in records per second

■ ratedetail – average rate of inserts, updates and deletes for the specified table in
the related data file in records per second

For example:

writer.statistics.summary.fileformat=
 catalog,schema,table,total,totaldetail,gctimestamp,ctimestamp

File Writer Properties

Flat File Properties 8-21

8.2.7.6 writer.statistics.overall
Controls whether or not an additional statistics row is written to the summary files.
This row contains the overall (across all tables) statistics defined by the user using the
statistics.summary.fileformat property.

The following example will write this row.

writer.statistics.overall=true

8.2.7.7 writer.statistics.summary.delimiter.chars/code,
writer.statistics.summary.eol.chars/code
Specifies override values for the field delimiter and end of line delimiter for the
summary files. Use ASCII values for chars and hexadecimal values for code. The
default is a comma ',' delimiter and new line character. For example:

writer.statistics.summary.delimiter.chars=|
writer.statistics.summary.eol.code=0a0c

8.2.7.8 writer.statistics.summary.extension
Specifies the override extension to use for the statistics summary file output per data
file. The default is stats.

The following example changes the extension from .stats to .statistics.

writer.statistics.summary.extension=.statistics

File Writer Properties

8-22 Administering Oracle GoldenGate Adapters

Part III
Part III Capturing JMS Messages

This part of the book explains using the Oracle GoldenGate Adapter to capture Java
Message Service (JMS) messages to be written to an Oracle GoldenGate trail.

Part IV contains the following chapters:

■ Chapter 9, "Configuring Message Capture"

■ Chapter 10, "Parsing the Message"

■ Chapter 11, "Message Capture Properties"

9

Configuring Message Capture 9-1

9Configuring Message Capture

[10] This chapter explains how to configure the VAM Extract to capture JMS messages.

This chapter includes the following sections:

■ Configuring the VAM Extract

■ Connecting and Retrieving the Messages

9.1 Configuring the VAM Extract
To run the Java message capture application you need the following:

■ Oracle GoldenGate for Java adapter

■ Extract process

■ Extract parameter file configured for message capture

■ Description of the incoming data format, such as a source definitions file.

9.1.1 Adding the Extract
To add the message capture VAM to the Oracle GoldenGate installation, add an
Extract and the trail that it will create using GGSCI commands:

ADD EXTRACT jmsvam, VAM
ADD EXTTRAIL dirdat/id, EXTRACT jmsvam, MEGABYTES 100

The process name (jmsvam) can be replaced with any process name that is no more
than 8 characters. The trail identifier (id) can be any two characters.

Note: Commands to position the Extract, such as BEGIN or EXTRBA,
are not supported for message capture. The Extract will always
resume by reading messages from the end of the message queue.

9.1.2 Configuring the Extract Parameters
The Extract parameter file contains the parameters needed to define and invoke the
VAM. Sample Extract parameters for communicating with the VAM are shown in the
table.

Parameter Description

EXTRACT jmsvam The name of the Extract process.

Connecting and Retrieving the Messages

9-2 Administering Oracle GoldenGate Adapters

9.1.3 Configuring Message Capture
Message capture is configured by the properties in the VAM properties file. This file is
identified by the PARAMS option of the Extract VAM parameter and used to determine
logging characteristics, parser mappings and JMS connection settings.

9.2 Connecting and Retrieving the Messages
To process JMS messages you must configure the connection to the JMS interface,
retrieve and parse the messages in a transaction, write each messages to a trail, commit
the transaction, and remove its messages from the queue.

9.2.1 Connecting to JMS
Connectivity to JMS is through a generic JMS interface. Properties can be set to
configure the following characteristics of the connection:

■ Java class path for the JMS client

■ Name of the JMS queue or topic source destination

■ Java Naming and Directory Interface (JNDI) connection properties

– Connection properties for Initial Context

– Connection factory name

– Destination name

■ Security information

– JNDI authentication credentials

– JMS user name and password

The Extract process that is configured to work with the VAM (such as the jmsvam in the
example) will connect to the message system. when it starts up.

Note: The Extract may be included in the Manger's AUTORESTART list
so it will automatically be restarted if there are connection problems
during processing.

Currently the Oracle GoldenGate for Java message capture adapter supports only JMS
text messages.

VAM ggjava_vam.dll,
PARAMS dirprm/jmsvam.properties

Specifies the name of the VAM library and the
location of the properties file. The VAM properties
should be in the dirprm directory of the Oracle
GoldenGate installation location.

TRANLOGOPTIONS VAMCOMPATIBILITY 1 Specifies the original (1) implementation of the VAM
is to be used.

TRANLOGOPTIONS GETMETADATAFROMVAM Specifies that metadata will be sent by the VAM.

EXTTRAIL dirdat/id Specifies the identifier of the target trail Extract
creates.

TABLE OGG.* A list of tables to process. Wildcards may be used in
the table name.

Parameter Description

Connecting and Retrieving the Messages

Configuring Message Capture 9-3

9.2.2 Retrieving Messages
The connection processing performs the following steps when asked for the next
message:

■ Start a local JMS transaction if one is not already started.

■ Read a message from the message queue.

■ If the read fails because no message exists, return an end-of-file message.

■ Otherwise return the contents of the message.

9.2.3 Completing the Transaction
Once all of the messages that make up a transaction have been successfully retrieved,
parsed, and written to the Oracle GoldenGate trail, the local JMS transaction is
committed and the messages removed from the queue or topic. If there is an error the
local transaction is rolled back leaving the messages in the JMS queue.

Connecting and Retrieving the Messages

9-4 Administering Oracle GoldenGate Adapters

10

Parsing the Message 10-1

10 Parsing the Message

[11] This chapter explains the types of parsers included with the Oracle GoldenGate Java
Adapter and how each parser translates JMS text messages.

This chapter includes the following sections:

■ Parsing Overview

■ Fixed Width Parsing

■ Delimited parsing

■ XML Parsing

■ Source definitions Generation Utility

10.1 Parsing Overview
The role of the parser is to translate JMS text message data and header properties into
an appropriate set of transactions and operations to pass into the VAM interface. To do
this, the parser always must find certain data:

■ Transaction identifier

■ Sequence identifier

■ Timestamp

■ Table name

■ Operation type

■ Column data specific to a particular table name and operation type

Other data will be used if the configuration requires it:

■ Transaction indicator

■ Transaction name

■ Transaction owner

The parser can obtain this data from JMS header properties, system generated values,
static values, or in some parser-specific way. This depends on the nature of the piece of
information.

10.1.1 Parser Types
The Oracle GoldenGate message capture adapter supports three types of parsers:

■ Fixed – Messages contain data presented as fixed width fields in contiguous text.

Parsing Overview

10-2 Administering Oracle GoldenGate Adapters

■ Delimited – Messages contain data delimited by field and end of record characters.

■ XML – Messages contain XML data accessed through XPath expressions.

10.1.2 Source and Target Data Definitions
There are several ways source data definitions can be defined using a combination of
properties and external files. The Oracle GoldenGate Gendef utility generates a
standard source definitions file based on these data definitions and parser properties.
The options vary based on parser type:

■ Fixed – COBOL copybook, source definitions or user defined

■ Delimited – source definitions or user defined

■ XML – source definitions or user defined

There are several properties that configure how the selected parser gets data and how
the source definitions are converted to target definitions.

10.1.3 Required Data
The following information is required for the parsers to translate the messages:

10.1.3.1 Transaction Identifier
The transaction identifier (txid) groups operations into transactions as they are
written to the Oracle GoldenGate trail file. The Oracle GoldenGate message capture
adapter supports only contiguous, non-interleaved transactions. The transaction
identifier can be any unique value that increases for each transaction. A system
generated value can generally be used.

10.1.3.2 Sequence Identifier
The sequence identifier (seqid) identifies each operation internally. This can be used
during recovery processing to identify operations that have already been written to the
Oracle GoldenGate trail. The sequence identifier can be any unique value that
increases for each operation. The length should be fixed.

The JMS Message ID can be used as a sequence identifier if the message identifier for
that provider increases and is unique. However, there are cases (e.g. using clustering,
failed transactions) where JMS does not guarantee message order or when the ID may
be unique but not be increasing. The system generated Sequence ID can be used, but it
can cause duplicate messages under some recovery situations. The recommended
approach is to have the JMS client that adds messages to the queue set the Message ID,
a header property, or some data element to an application-generated unique value that
is increasing.

10.1.3.3 Timestamp
The timestamp (timestamp) is used as the commit timestamp of operations within the
Oracle GoldenGate trail. It should be increasing but this is not required, and it does
not have to be unique between transactions or operations. It can be any date format
that can be parsed.

10.1.3.4 Table Name
The table name is used to identify the logical table to which the column data belongs.
The adapter requires a two part table name in the form SCHEMA_NAME.TABLE_NAME. This

Parsing Overview

Parsing the Message 10-3

can either be defined separately (schema and table) or as a combination of schema
and table (schemaandtable).

A single field may contain both schema and table name, they may be in separate fields,
or the schema may be included in the software code so only the table name is required.
How the schema and table names can be specified depends on the parser. In any case
the two part logical table name is used to write records in the Oracle GoldenGate trail
and to generate the source definitions file that describes the trail.

10.1.3.5 Operation Type
The operation type (optype) is used to determine whether an operation is an insert,
update or delete when written to the Oracle GoldenGate trail. The operation type
value for any specific operation is matched against the values defined for each
operation type.

The data written to the Oracle GoldenGate trail for each operation type depends on
the Extract configuration:

■ Inserts

– The after values of all columns are written to the trail.

■ Updates

– Default – The after values of keys are written. The after values of columns that
have changed are written if the before values are present and can be
compared. If before values are not present then all columns are written.

– NOCOMPRESSUPDATES – The after values of all columns are written to the trail.

– GETUPDATEBEFORES – The before and after values of columns that have changed
are written to the trail if the before values are present and can be compared. If
before values are not present only after values are written.

– If both NOCOMPRESSUPDATES and GETUPDATEBEFORES are included, the before
and after values of all columns are written to the trail if before values are
present

■ Deletes

– Default – The before values of all keys are written to the trail.

– NOCOMPRESSDELETES – The before values of all columns are written to the trail.

Primary key update operations may also be generated if the before values of keys are
present and do not match the after values.

10.1.3.6 Column Data
All parsers retrieve column data from the message text and write it to the Oracle
GoldenGate trail. In some cases the columns are read in index order as defined by the
source definitions, in other cases they are accessed by name.

Depending on the configuration and original message text, both before and after or
only after images of the column data may be available. For updates, the data for
non-updated columns may or may not be available.

All column data is retrieved as text. It is converted internally into the correct data type
for that column based on the source definitions. Any conversion problem will result in
an error and the process will abend.

Fixed Width Parsing

10-4 Administering Oracle GoldenGate Adapters

10.1.4 Optional Data
The following data may be included, but is not required.

10.1.4.1 Transaction Indicator
The relationship of transactions to messages can be:

■ One transaction per message

This is determined automatically by the scope of the message.

■ Multiple transactions per message

This is determined by the transaction indicator (txind). If there is no transaction
indicator, the XML parser can create transactions based on a matching transaction
rule.

■ Multiple messages per transaction

The transaction indicator (txind) is required to specify whether the operation is
the beginning, middle, end or the whole transaction. The transaction indicator
value for any specific operation is matched against the values defined for each
transaction indicator type. A transaction is started if the indicator value is
beginning or whole, continued if it is middle, and ended if it is end or whole.

10.1.4.2 Transaction Name
The transaction name (txname) is optional data that can be used to associate an
arbitrary name to a transaction. This can be added to the trail as a token using a
GETENV function.

10.1.4.3 Transaction Owner
The transaction owner (txowner) is optional data that can be used to associate an
arbitrary user name to a transaction. This can be added to the trail as a token using a
GETENV function, or used to exclude certain transactions from processing using the
EXCLUDEUSER Extract parameter.

10.2 Fixed Width Parsing
Fixed width parsing is based on a data definition that defines the position and the
length of each field. This is in the format of a Cobol copybook. A set of properties
define rules for mapping the copybook to logical records in the Oracle GoldenGate
trail and in the source definitions file.

The incoming data should consist of a standard format header followed by a data
segment. Both should contain fixed width fields. The data is parsed based on the PIC
definition in the copybook. It is written to the trail translated as explained in
Section 10.2.2, "Header and Record Data Type Translation."

10.2.1 Header
The header must be defined by a copybook 01 level record that includes the following:

■ A commit timestamp or a change time for the record

■ A code to indicate the type of operation: insert, update, or delete

■ The copybook record name to use when parsing the data segment

Fixed Width Parsing

Parsing the Message 10-5

Any fields in the header record that are not mapped to Oracle GoldenGate header
fields are output as columns.

The following example shows a copybook definition containing the required header
values

Example 10–1 Specifying a Header

01 HEADER.
20 Hdr-Timestamp PIC X(23)
20 Hdr-Source-DB-Function PIC X
20 Hdr-Source-DB-Rec-ID PIC X(8)

For the above example, you must set the following properties:

fixed.header=HEADER
fixed.timestamp=Hdr-Timestamp
fixed.optype=Hdr-Source-DB-Function
fixed.table=Hdr-Source-DB-Rec-Id

The logical name table output in this case will be the value of Hdr-Source-DB-Rec-Id.

10.2.1.1 Specifying Compound Table Names
More than one field can be used for a table name. For example, you can define the
logical schema name through a static property such as:

fixed.schema=MYSCHEMA

Then you can add a property that defines the data record as multiple fields from the
copybook header definition.

Example 10–2 Specifying Compound Table Names

01 HEADER.
 20 Hdr-Source-DB PIC X(8).
 20 Hdr-Source-DB-Rec-Id PIC X(8).
 20 Hdr-Source-DB-Rec-Version PIC 9(4).
 20 Hdr-Source-DB-Function PIC X.
 20 Hdr-Timestamp PIC X(22).

For the above example, you must set the following properties:

fixed.header=HEADER
fixed.table=Hdr-Source-DB-Rec-Id,Hdr-Source-DB-Rec-Version
fixed.schema=MYSCHEMA

The fields will be concatenated to result in logical schema and table names of the form:

MYSCHEMA.Hdr-Source-DB-Rec-Id+Hdr-Source-DB-Rec-Version

10.2.1.2 Specifying timestamp Formats
A timestamp is parsed using the default format YYYY-MM-DD HH:MM:SS.FFF, with FFF
depending on the size of the field.

Specify different incoming formats by entering a comment before the datetime field as
shown in the next example.

Example 10–3 Specifying timestamp formats

01 HEADER.
* DATEFORMAT YYYY-MM-DD-HH.MM.SS.FF

Fixed Width Parsing

10-6 Administering Oracle GoldenGate Adapters

 20 Hdr-Timestamp PIC X(23)

10.2.1.3 Specifying the Function
Use properties to map the standard Oracle GoldenGate operation types to the optype
values. The following example specifies that the operation type is in the
Hdr-Source-DB-Function field and that the value for insert is A, update is U and delete
is D.

Example 10–4 Specifying the Function

fixed.optype=Hdr-Source-DB-Function
fixed.optype.insert=A
fixed.optype.update=U
fixed.optype.delete=D

10.2.2 Header and Record Data Type Translation
The data in the header and the record data are written to the trail based on the
translated data type.

■ A field definition preceded by a date format comment is translated to an Oracle
GoldenGate datetime field of the specified size. If there is no date format
comment, the field will be defined by its underlying data type.

■ A PIC X field is translated to the CHAR data type of the indicated size.

■ A PIC 9 field is translated to a NUMBER data type with the defined precision and
scale. Numbers that are signed or unsigned and those with or without decimals
are supported.

The following examples show the translation for various PIC definitions.

Input Output

PIC XX CHAR(2)

PIC X(16) CHAR(16)

PIC 9(4) NUMBER(4)

* YYMMDD
PIC 9(6)

DATE(10)
YYYY-MM-DD

PIC 99.99 NUMBER(4,2)

PIC 9(5)V99 NUMBER(7,2)

In the example an input YYMMDD date of 100522 is translated to 2010-05-22. The number
1234567 with the specified format PIC 9(5)V99 is translated to a seven digit number
with two decimal places, or 12345.67.

10.2.3 Key identification
A comment is used to identify key columns within the data record. The Gendef utility
that generates the source definitions uses the comment to locate a key column.

In the following example Account has been marked as a key column for TABLE1.

01 TABLE1
* KEY

Delimited parsing

Parsing the Message 10-7

20 Account PIC X(19)
20 PAN_Seq_Num PIC 9(3)

10.3 Delimited parsing
Delimited parsing is based a preexisting source definitions files and a set of properties.
The properties specify the delimiters to use and other rules, such as whether there are
column names and before values. The source definitions file determines the valid
tables to be processed and the order and data type of the columns in the tables.

The format of the delimited message is:

{METACOLS}n[,{COLNAMES}]m[,{COLBEFOREVALS}]m,{COLVALUES}m\n

Where:

■ There can be n metadata columns each followed by a field delimiter such as the
comma shown in the format statement.

■ There can be m column values. Each of these are preceded by a field delimiter such
as a comma.

■ The column name and before value are optional.

■ Each record is terminated by an end of line delimiter, such as \n.

10.3.1 Metadata Columns
The metadata columns correspond to the header and contain fields that have special
meaning. Metadata columns should include the following information.

■ optype contains values indicating if the record is an insert, update, or delete. The
default values are I, U, and D.

■ timestamp indicates type of value to use for the commit timestamp of the record.
The format of the timestamp defaults to YYYY-DD-MM HH:MM:SS.FFF.

■ schemaandtable is the full table name for the record in the format SCHEMA.TABLE.

■ schema is the record's schema name.

■ table is the record's table name.

■ txind is a value that indicates whether the record is the beginning, middle, end or
the only record in the transaction. The default values are 0, 1, 2, 3.

■ id is the value used as the sequence number (RSN or CSN) of the record. The id of
the first record (operation) in the transaction is used for the sequence number of
the transaction.

10.3.2 Parsing Properties
Properties can be set to describe delimiters, values, and date and time formats.

10.3.2.1 Properties to Describe Delimiters
The following properties determine the parsing rules for delimiting the record.

■ fielddelim specifies one or more ASCII or hexadecimal characters as the value for
the field delimiter

XML Parsing

10-8 Administering Oracle GoldenGate Adapters

■ recorddelim specifies one or more ASCII or hexadecimal characters as the value
for the record delimiter

■ quote specifies one or more ASCII or hexadecimal characters to use for quoted
values

■ nullindicator specifies one or more ASCII or hexadecimal characters to use for
NULL values

You can define escape characters for the delimiters so they will be replaced if the
characters are found in the text. For example if a backslash and apostrophe (\') are
specified, then the input "They used Mike\'s truck" is translated to "They used Mike's
truck". Or if two quotes ("") are specified, "They call him ""Big Al""" is translated to
"They call him "Big Al"".

Data values may be present in the record without quotes, but the system only removes
escape characters within quoted values. A non-quoted string that matches a null
indicator is treated as null.

10.3.2.2 Properties to Describe Values
The following properties provide more information:

■ hasbefores indicates before values are present for each record

■ hasnames indicates column names are present for each record

■ afterfirst indicates column after values come before column before values

■ isgrouped indicates all column names, before values and after values are grouped
together in three blocks, rather than alternately per column

10.3.2.3 Properties to Describe Date and Time
The default format YYYY-DD-MM HH:MM:SS.FFF is used to parse dates. The user can use
properties to override this on a global, table or column level. Examples of changing the
format are shown below.

delim.dateformat.default=MM/DD/YYYY-HH:MM:SS
delim.dateformat.MY.TABLE=DD/MMM/YYYY
delim.dateformat.MY.TABLE.COL1=MMYYYY

10.3.3 Parsing Steps
The steps in delimited parsing are:

1. The parser first reads and validates the metadata columns for each record.

2. This provides the table name, which can then be used to look up column
definitions for that table in the source definitions file.

3. If a definition cannot be found for a table, the processing will stop.

4. Otherwise the columns are parsed and output to the trail in the order and format
defined by the source definitions.

10.4 XML Parsing
XML parsing is based on a preexisting source definitions file and a set of properties.
The properties specify rules to determine XML elements and attributes that
correspond to transactions, operations and columns. The source definitions file

XML Parsing

Parsing the Message 10-9

determines the valid tables to be processed and the ordering and data types of
columns in those tables.

10.4.1 Styles of XML
The XML message is formatted in either dynamic or static XML. At runtime the
contents of dynamic XML are data values that cannot be predetermined using a
sample XML or XSD document. The contents of static XML that determine tables and
column element or attribute names can be predetermined using those sample
documents.

The following two examples contain the same data.

Example 10–5 An Example of Static XML

<NewMyTableEntries>
 <NewMyTableEntry>
 <CreateTime>2010-02-05:10:11:21</CreateTime>
 <KeyCol>keyval</KeyCol>
 <Col1>col1val</Col1>
 </NewMyTableEntry>
</NewMyTableEntries>

The NewMyTableEntries element marks the transaction boundaries. The
NewMyTableEntry indicates an insert to MY.TABLE. The timestamp is present in an
element text value, and the column names are indicated by element names.

You can define rules in the properties file to parse either of these two styles of XML
through a set of XPath-like properties. The goal of the properties is to map the XML to
a predefined source definitions file through XPath matches.

Example 10–6 An Example of Dynamic XML

<transaction id="1234" ts="2010-02-05:10:11:21">
 <operation table="MY.TABLE" optype="I">
 <column name="keycol" index="0">
 <aftervalue><![CDATA[keyval]]></aftervalue>
 </column>
 <column name="col1" index="1">
 <aftervalue><![CDATA[col1val]]></aftervalue>
 </column>
 </operation>
</transaction>

Every operation to every table has the same basic message structure consisting of
transaction, operation and column elements. The table name, operation type,
timestamp, column names, column values, etc. are obtained from attribute or element
text values.

10.4.2 XML Parsing Rules
Independent of the style of XML, the parsing process needs to determine:

■ Transaction boundaries

■ Operation entries and metadata including:

– Table name

– Operation type

XML Parsing

10-10 Administering Oracle GoldenGate Adapters

– Timestamp

■ Column entries and metadata including:

– Either the column name or index; if both are specified the system will check to
see if the column with the specified data has the specified name.

– Column before or after values, sometimes both.

This is done through a set of interrelated rules. For each type of XML message that is
to be processed you name a rule that will be used to obtain the required data. For each
of these named rules you add properties to:

■ Specify the rule as a transaction, operation, or column rule type. Rules of any type
are required to have a specified name and type.

■ Specify the XPath expression to match to see if the rule is active for the document
being processed. This is optional; if not defined the parser will match the node of
the parent rule or the whole document if this is the first rule.

■ List detailed rules (subrules) that are to be processed in the order listed. Which
subrules are valid is determined by the rule type. Subrules are optional.

In the following example the top-level rule is defined as genericrule. It is a
transaction type rule. Its subrules are defined in oprule and they are of the type
operation.

xmlparser.rules=genericrule
xmlparser.rules.genericrule.type=tx
xmlparser.rules.genericrule.subrules=oprule
xmlparser.rules.oprule.type=op

10.4.3 XPath Expressions
The XML parser supports a subset of XPath expressions necessary to match elements
and extract data. An expression can be used to match a particular element or to extract
data.

When doing data extraction most of the path is used to match. The tail of the
expression is used for extraction.

10.4.3.1 Supported Constructs:

Supported
Constructs Description

/e Use the absolute path from the root of the document to match e.

./e or e Use the relative path from current node being processed to match e.

../e Use a path based on the parent of the current node (can be repeated) to match e.

//e Match e wherever it occurs in a document.

* Match any element. Note: Partially wild-carded names are not supported.

[n] Match the nth occurrence of an expression.

XML Parsing

Parsing the Message 10-11

10.4.3.2 Supported Expressions

Supported Expressions Descriptions

Match root element /My/Element

Match sub element to current node ./Sub/Element

Match nth element /My/*[n]

Match nth Some element /My/Some[n]

Match any text value /My/*[text() ='value']

Match the text in Some element /My/Some[text() = 'value']

Match any attribute /My/*[@att = 'value']

Match the attribute in Some element /My/Some[@att = 'value']

10.4.3.3 Obtaining Data Values
In addition to matching paths, the XPath expressions can also be used to obtain data
values, either absolutely or relative to the current node being processed. Data value
expressions can contain any of the path elements above, but must end with one of the
value accessors listed below.

Value Accessors Description

@att Some attribute value.

text() The text content (value) of an element.

content() The full content of an element, including any child XML nodes.

name() The name of an element.

position() The position of an element in its parent.

Example 10–7 Examples of Extracting Data Values

To extract the relative element text value:

/My/Element/text()

To extract the absolute attribute value:

/My/Element/@att

To extract element text value with a match:

/My/Some[@att = 'value']/Sub/text()

[x=v] Match when x is equal to some value v where x can be:

■ @att – some attribute value

■ text() – some text value

■ name() – the element name

■ position() – the element position

Supported
Constructs Description

Note: Path accessors, such as ancestor/descendent/self, are not
supported.

XML Parsing

10-12 Administering Oracle GoldenGate Adapters

10.4.4 Other Value Expressions
The values extracted by the XML parser are either column values or properties of the
transaction or operation, such as table or timestamp. These values are either obtained
from XML using XPath or through properties of the JMS message, system values, or
hard coded values. The XML parser properties specify which of these options are valid
for obtaining the values for that property.

The following example specifies that timestamp can be an XPath expression, a JMS
property, or the system generated timestamp.

{txrule}.timestamp={xpath-expression}|${jms-property}|*ts

The next example specifies that table can be an XPath expression, a JMS property, or
hard coded value.

{oprule}.table={xpath-expression}|${jms-property}|"value"

The last example specifies that name can be a XPath expression or hard coded value.

{colrule}.timestamp={xpath-expression}|"value"

10.4.5 Transaction Rules
The rule that specifies the boundary for a transaction is at the highest level. Messages
may contain a single transaction, multiple transactions, or a part of a transaction that
spans messages. These are specified as follows:

■ single - The transaction rule match is not defined.

■ multiple - Each transaction rule match defines new transaction.

■ span – No transaction rule is defined; instead a transaction indicator is specified in
an operation rule.

For a transaction rule, the following properties of the rule may also be defined through
XPath or other expressions:

■ timestamp – The time at which the transaction occurred.

■ txid – The identifier for the transaction.

Transaction rules can have multiple subrules, but each must be of type operation.

The following example specifies a transaction that is the whole message and includes a
timestamp that comes from the JMS property.

Example 10–8 JMS Timestamp

singletxrule.timestamp=$JMSTimeStamp

The following example matches the root element transaction and obtains the
timestamp from the ts attribute.

Example 10–9 ts Timestamp

dyntxrule.match=/Transaction
dyntxrule.timestamp=@ts

XML Parsing

Parsing the Message 10-13

10.4.6 Operation Rules
An operation rule can either be a subrule of a transaction rule, or a highest level rule (if
the transaction is a property of the operation).

In addition to the standard rule properties, an operation rule should also define the
following through XPath or other expressions:

■ timestamp – The timestamp of the operation. This is optional if the transaction
rule is defined.

■ table – The name of the table on which this is an operation. Use this with schema.

■ schema – The name of schema for the table.

■ schemaandtable – Both schema and table name together in the form
SCHEMA.TABLE. This can be used in place of the individual table and schema
properties.

■ optype – Specifies whether this is an insert, update or delete operation based on
optype values:

– optype.insertval – The value indicating an insert. The default is I.

– optype.updateval – The value indicating an update. The default is U.

– optype.deleteval – The value indicating a delete. The default is D.

■ seqid – The identifier for the operation. This will be the transaction identifier if
txid has not already been defined at the transaction level.

■ txind – Specifies whether this operation is the beginning of a transaction, in the
middle or at the end; or if it is the whole operation. This property is optional and
not valid if the operation rule is a subrule of a transaction rule.

Operation rules can have multiple subrules of type operation or column.

The following example dynamically obtains operation information from the
/Operation element of a /Transaction.

Example 10–10 Operation

dynoprule.match=./Operation
dynoprule.schemaandtable=@table
dynoprule.optype=@type

The following example statically matches /NewMyTableEntry element to an insert
operation on the MY.TABLE table.

Example 10–11 Operation example

statoprule.match=./NewMyTableEntry
statoprule.schemaandtable="MY.TABLE"
statoprule.optype="I"
statoprule.timestamp=./CreateTime/text()

10.4.7 Column Rules
A column rule must be a subrule of an operation rule. In addition to the standard rule
properties, a column rule should also define the following through XPath or other
expressions.

■ name – The name of the column within the table definition.

XML Parsing

10-14 Administering Oracle GoldenGate Adapters

■ index – The index of the column within the table definition.

Note: If only one of name and index is defined, the other will be
determined.

■ before.value – The before value of the column. This is required for deletes, but is
optional for updates.

■ before.isnull – Indicates whether the before value of the column is null.

■ before.ismissing – Indicates whether the before value of the column is missing.

■ after.value – The before value of the column. This is required for deletes, but is
optional for updates.

■ after.isnull – Indicates whether the before value of the column is null.

■ after.ismissing – Indicates whether the before value of the column is missing.

■ value – An expression to use for both before.value and after.value unless
overridden by specific before or after values. Note that this does not support
different before values for updates.

■ isnull – An expression to use for both before.isnull and after.isnull unless
overridden.

■ ismissing – An expression to use for both before.ismissing and after.ismissing
unless overridden.

The following example dynamically obtains column information from the /Column
element of an /Operation

Example 10–12 Dynamic Extraction of Column Information

dyncolrule.match=./Column
dyncolrule.name=@name
dyncolrule.before.value=./beforevalue/text()
dyncolrule.after.value=./aftervalue/text()

The following example statically matches the /KeyCol and /Col1 elements to columns
in MY.TABLE.

Example 10–13 Static Matching of Elements to Columns

statkeycolrule.match=/KeyCol
statkeycolrule.name="keycol"
statkeycolrule.value=./text()
statcol1rule.match=/Col1
statcol1rule.name="col1"
statcol1rule.value=./text()

10.4.8 Overall Rules Example
The following example uses the XML samples shown earlier with appropriate rules to
generate the same resulting operation on the MY.TABLE table.

Dynamic XML Static XML

<transaction id="1234"
 ts="2010-02-05:10:11:21">
 <operation table="MY.TABLE" optype="I">
 <column name="keycol" index="0">
 <aftervalue>
<![CDATA[keyval]]>
 </aftervalue>
 </column>
 <column name="col1" index="1">
 <aftervalue>
 <![CDATA[col1val]]>
 </aftervalue>
 </column>
 </operation>
</transaction>

NewMyTableEntries>
 <NewMyTableEntry>
 <CreateTime>
 2010-02-05:10:11:21
 </CreateTime>
 <KeyCol>keyval</KeyCol>
 <Col1>col1val</Col1>
 </NewMyTableEntry>
</NewMyTableEntries>

Dynamic Static

dyntxrule.match=/Transaction
dyntxrule.timestamp=@ts
dyntxrule.subrules=dynoprule
dynoprule.match=./Operation
dynoprule.schemaandtable=@table
dynoprule.optype=@type
dynoprule.subrules=dyncolrule
dyncolrule.match=./Column
dyncolrule.name=@name

stattxrule.match=/NewMyTableEntries
stattxrule.subrules= statoprule
statoprule.match=./NewMyTableEntry
statoprule.schemaandtable="MY.TABLE"
statoprule.optype="I"
statoprule.timestamp=./CreateTime/text()
statoprule.subrules= statkeycolrule,
statcol1rule
statkeycolrule.match=/KeyCol

dyncolrule.before.value=./beforevalue/text()
dyncolrule.after.value=./aftervalue/text()

statkeycolrule.name="keycol"
statkeycolrule.value=./text()
statcol1rule.match=/Col1
statcol1rule.name="col1"
statcol1rule.value=./text()

Source definitions Generation Utility

Parsing the Message 10-15

INSERT INTO MY.TABLE (KEYCOL, COL1)
VALUES ('keyval', 'col1val')

10.5 Source definitions Generation Utility
Oracle GoldenGate for Java includes a Gendef utility that generates an Oracle
GoldenGate source definitions file from the properties defined in a properties file. It
creates a normalized definition of tables based on the property settings and other
parser-specific data definition values.

The syntax to run this utility is:

gendef –prop {property_file} [-out {output_file}

This defaults to sending the source definitions to standard out, but it can be directed to
a file using the –out parameter. For example:

gendef –prop dirprm/jmsvam.properties -out dirdef/msgdefs.def

The output source definitions file can then be used in a pump or delivery process to
interpret the trail data created through the VAM.

Source definitions Generation Utility

10-16 Administering Oracle GoldenGate Adapters

11

Message Capture Properties 11-1

11 Message Capture Properties

[12] This chapter explains the options available for configuration of the property file for the
Oracle GoldenGate for Java VAM.

This chapter includes the following sections:

■ Logging and Connection Properties

■ Parser Properties

11.1 Logging and Connection Properties
The following properties control the connection to JMS and the log file names, error
handling, and message output.

11.1.1 Logging Properties
Logging is controlled by the following properties.

11.1.1.1 gg.log
Specifies the type of logging that is to be used. The default implementation is the JDK
option. This is the built-in Java logging called java.util.logging (JUL). The other
logging options are log4j or logback. The syntax is:

gg.log={JDK|log4j|logback}

For example, to set the type of logging to log4j:

gg.log=log4j

The log file is created in the report subdirectory of the installation. The default log file
name includes the group name of the associated Extract and the file extension is log.

11.1.1.2 gg.log.level
Specifies the overall log level for all modules. The syntax is:

gg.log.level={ERROR|WARN|INFO|DEBUG}

The log levels are defined as follows:

■ ERROR – Only write messages if errors occur

■ WARN – Write error and warning messages

■ INFO – Write error, warning and informational messages

■ DEBUG – Write all messages, including debug ones.

Logging and Connection Properties

11-2 Administering Oracle GoldenGate Adapters

The default logging level is INFO. The messages in this case will be produced on
startup, shutdown and periodically during operation. If the level is switched to DEBUG,
large volumes of messages may occur which could impact performance. For example,
the following sets the global logging level to INFO:

global logging level
gg.log.level=INFO

11.1.1.3 gg.log.file
Specifies the path to the log file. The syntax is:

gg.log.file=path_to_file

Where the path_to_file is the fully defined location of the log file. This allows a
change to the name of the log, but you must include the Extract name if you have more
than one Extract to avoid one overwriting the log of the other.

11.1.1.4 gg.log.classpath
Specifies the class path to the jars used to implement logging.

gg.log.classpath=path_to_jars

11.1.2 JMS Connection Properties
The JMS connection properties set up the connection, such as how to start up the JVM
for JMS integration.

11.1.2.1 jvm.boot options
Specifies the class path and boot options that will be applied when the JVM starts up.
The path needs colon (:) separators for UNIX/Linux and semicolons (;) for Windows.

The syntax is:

jvm.bootoptions=option[, option][. . .]

The options are the same as those passed to Java executed from the command line.
They may include class path, system properties, and JVM memory options (such as
maximum memory or initial memory) that are valid for the version of Java being used.
Valid options may vary based on the JVM version and provider.

For example (all on a single line):

jvm.bootoptions= -Djava.class.path=ggjava/ggjava.jar
-Dlog4j.configuration=my-log4j.properties

The log4j.configuration property could be a fully qualified URL to a log4j
properties file; by default this file is searched for in the class path. You may use your
own log4j configuration, or one of the pre-configured log4j settings: log4j.properties
(default level of logging), debug-log4j.properties (debug logging) or
trace-log4j.properties (very verbose logging).

11.1.2.2 jms.report.output
Specifies where the JMS report is written. The syntax is:

jms.report.output={report|log|both}

Where:

Logging and Connection Properties

Message Capture Properties 11-3

■ report sends the JMS report to the Oracle GoldenGate report file. This is the
default.

■ log will write to the Java log file (if one is configured)

■ both will send to both locations.

11.1.2.3 jms.report.time
Specifies the frequency of report generation based on time.

jms.report.time=time_specification

The following examples write a report every 30 seconds, 45 minutes and eight hours.

jms.report.time=30sec
jms.report.time=45min
jms.report.time=8hr

11.1.2.4 jms.report.records
Specifies the frequency of report generation based on number of records. The syntax is:

jms.report.records=number

The following example writes a report every 1000 records.

jms.report.records=1000

11.1.2.5 jms.id
Specifies that a unique identifier with the indicated format is passed back from the
JMS integration to the message capture VAM. This may be used by the VAM as a
unique sequence ID for records.

jms.id={ogg|time|wmq|activemq|message_header|custom_java_class}

Where:

■ ogg - returns the message header property GG_ID which is set by Oracle
GoldenGate JMS delivery.

■ time - uses a system timestamp as a starting point for the message ID

■ wmq - reformats a WebSphere MQ Message ID for use with the VAM

■ activemq - reformats an ActiveMQ Message ID for use with the VAM

■ message_header - specifies the user customized JMS message header to be
included, such as JMSMessageID, JMSCorrelationID, or JMSTimestamp.

■ custom_java_class - specifies a custom Java class that creates a string to be used
as an ID.

For example:

jms.id=time
jms.id=JMSMessageID

The ID returned must be unique, incrementing, and fixed-width. If there are duplicate
numbers, the duplicates are skipped. If the message ID changes length, the Extract
process will abend.

Logging and Connection Properties

11-4 Administering Oracle GoldenGate Adapters

11.1.2.6 jms.destination
Specifies the queue or topic name to be looked up via JNDI.

jms.destination=jndi_name

For example:

jms.destination=sampleQ

11.1.2.7 jms.connectionFactory
Specifies the connection factory name to be looked up via JNDI.

jms.connectionFactory=jndi_name

For example

jms.connectionFactory=ConnectionFactory

11.1.2.8 jms.user, jms.password
Sets the user name and password of the JMS connection, as specified by the JMS
provider.

jms.user=user_name
jms.password=password

This is not used for JNDI security. To set JNDI authentication, see the JNDI
java.naming.security properties.

For example:

jms.user=myuser
jms.password=mypasswd

11.1.3 JNDI Properties
In addition to specific properties for the message capture VAM, the JMS integration
also supports setting JNDI properties required for connection to an Initial Context to
look up the connection factory and destination. The following properties must be set:

java.naming.provider.url=url
java.naming.factory.initial=java_class_name

If JNDI security is enabled, the following properties may be set:

java.naming.security.principal=user_name
java.naming.security.credentials=password_or_other_authenticator

For example:

java.naming.provider.url= t3://localhost:7001
java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.security.principal=jndiuser
java.naming.security.credentials=jndipw

Parser Properties

Message Capture Properties 11-5

11.2 Parser Properties
Properties specify the formats of the message and the translation rules for each type of
parser: fixed, delimited, or XML. Set the parser.type property to specify which parser
to use. The remaining properties are parser specific.

11.2.1 Setting the Type of Parser
The following property sets the parser type.

11.2.1.1 parser.type
Specifies the parser to use.

parser.type={fixed|delim|xml}

Where:

■ fixed invokes the fixed width parser

■ delim invokes the delimited parser

■ xml invokes the XML parser

For example:

parser.type=delim

11.2.2 Fixed Parser Properties
The following properties are required for the fixed parser.

11.2.2.1 fixed.schematype
Specifies the type of file used as metadata for message capture. The two valid options
are sourcedefs and copybook.

fixed.schematype={sourcedefs|copybook}

For example:

fixed.schematype=copybook

The value of this property determines the other properties that must be set in order to
successfully parse the incoming data.

11.2.2.2 fixed.sourcedefs
If the fixed.schematype=sourcedefs, this property specifies the location of the source
definitions file that is to be used.

fixed.sourcedefs=file_location

For example:

fixed.sourcedefs=dirdef/hrdemo.def

11.2.2.3 fixed.copybook
If the fixed.schematype=copybook, this property specifies the location of the
copybook file to be used by the message capture process.

fixed.copybook=file_location

Parser Properties

11-6 Administering Oracle GoldenGate Adapters

For example:

fixed.copybook=test_copy_book.cpy

11.2.2.4 fixed.header
Specifies the name of the sourcedefs entry or copybook record that contains header
information used to determine the data block structure:

fixed.header=record_name

For example:

fixed.header=HEADER

11.2.2.5 fixed.seqid
Specifies the name of the header field, JMS property, or system value that contains the
seqid used to uniquely identify individual records. This value must be continually
incrementing and the last character must be the least significant.

fixed.seqid={field_name|$jms_property|*seqid}

Where:

■ field_name indicates the name of a header field containing the seqid

■ jms_property uses the value of the specified JMS header property. A special value
of this is $jmsid which uses the value returned by the mechanism chosen by the
jms.id property

■ seqid indicates a simple incrementing 64-bit integer generated by the system

For example:

fixed.seqid=$jmsid

11.2.2.6 fixed.timestamp
Specifies the name of the field, JMS property, or system value that contains the
timestamp.

fixed.timestamp={field_name|$jms_property|*ts}

For example:

fixed.timestamp=TIMESTAMP
fixed.timestamp=$JMSTimeStamp
fixed.timestamp=*ts

11.2.2.7 fixed.timestamp.format
Specifies the format of the timestamp field.

fixed.timestamp.format=format

Where the format can include punctuation characters plus:

■ YYYY – four digit year

■ YY – two digit year

■ M[M] – one or two digit month

■ D[D] – one or two digit day

Parser Properties

Message Capture Properties 11-7

■ HH – hours in twenty four hour notation

■ MI – minutes

■ SS – seconds

■ Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

fixed.timestamp.format=YYYY-MM-DD-HH.MI.SS

11.2.2.8 fixed.txid
Specifies the name of the field, JMS property, or system value that contains the txid
used to uniquely identify transactions. This value must increment for each transaction.

fixed.txid={field_name|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

fixed.txid=$JMSTxId
fixed.txid=*txid

11.2.2.9 fixed.txowner
Specifies the name of the field, JMS property, or static value that contains a user name
associated with a transaction. This value may be used to exclude certain transactions
from processing. This is an optional property.

fixed.txowner={field_name|$jms_property|"value"}

For example:

fixed.txowner=$MessageOwner
fixed.txowner="jsmith"

11.2.2.10 fixed.txname
Specifies the name of the field, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

fixed.txname={field_name|$jms_property|"value"}

For example:

fixed.txname="fixedtx"

11.2.2.11 fixed.optype
Specifies the name of the field, or JMS property that contains the operation type, which
is validated against the fixed.optype values specified in the next sections.

fixed.header.optype={field_name|$jms_property}

For example:

fixed.header.optype=FUNCTION

Parser Properties

11-8 Administering Oracle GoldenGate Adapters

11.2.2.12 fixed.optype.insertval
This value identifies an insert operation. The default is I.

fixed.optype.insertval={value|\xhex_value}

For example:

fixed.optype.insertval=A

11.2.2.13 fixed.optype.updateval
This value identifies an update operation. The default is U.

fixed.optype.updateval={value|\xhex_value}

For example:

fixed.optype.updateval=M

11.2.2.14 fixed.optype.deleteval
This value identifies a delete operation.The default is D.

fixed.optype.deleteval={value|\xhex_value}

For example:

fixed.optype.deleteval=R

11.2.2.15 fixed.table
Specifies the name of the table. This enables the parser to find the data record
definition needed to translate the non-header data portion.

fixed.table=field_name|$jms_property[, . . .]

More than one comma delimited field name may be used to determine the name of the
table Each field name corresponds to a field in the header record defined by the
fixed.header property or JMS property. The values of these fields are concatenated to
identify the data record.

For example:

fixed.table=$JMSTableName
fixed.table=SOURCE_Db,SOURCE_Db_Rec_Version

11.2.2.16 fixed.schema
Specifies the static name of the schema when generating SCHEMA.TABLE table names.

fixed.schema="value"

For example:

fixed.schema="OGG"

11.2.2.17 fixed.txind
Specifies the name of the field or JMS property that contains a transaction indicator
that is validated against the transaction indicator values. If this is not defined, all
operations within a single message will be seen to have occurred within a whole
transaction. If defined, then it determines the beginning, middle and end of

Parser Properties

Message Capture Properties 11-9

transactions. Transactions defined in this way can span messages. This is an optional
property.

fixed.txind={field_name|$jms_property}

For example:

fixed.txind=$TX_IND

11.2.2.18 fixed.txind.beginval
This value identifies an operation as the beginning of a transaction. The defaults is B.

fixed.txind.beginval={value|\xhex_value}

For example:

fixed.txind.beginval=0

11.2.2.19 fixed.txind.middleval
This value identifies an operation as the middle of a transaction. The default is M.

fixed.txind.middleval={value|\xhex_value}

For example:

fixed.txind.middleval=1

11.2.2.20 fixed.txind.endval
This value identifies an operation as the end of a transaction. The default is E.

fixed.txind.endval={value|\xhex_value}

For example:

fixed.txind.endval=2

11.2.2.21 fixed.txind.wholeval
This value identifies an operation as a whole transaction. The default is W.

fixed.txind.wholeval={value|\xhex_value}

For example:

fixed.txind.wholeval=3

11.2.3 Delimited Parser Properties
The following properties are required for the delimited parser except where otherwise
noted.

11.2.3.1 delim.sourcedefs
Specifies the location of the source definitions file to use.

delim.sourcedefs=file_location

For example:

delim.sourcedefs=dirdef/hrdemo.def

Parser Properties

11-10 Administering Oracle GoldenGate Adapters

11.2.3.2 delim.header
Specifies the list of values that come before the data and assigns names to each.

delim.header=name[,name2][. . .]

The names must be unique. They can be referenced in other delim properties or
wherever header fields can be used.

For example:

delim.header=optype, tablename, ts
delim.timestamp=ts

11.2.3.3 delim.seqid
Specifies the name of the header field, JMS property, or system value that contains the
seqid used to uniquely identify individual records. This value must increment and the
last character must be the least significant.

delim.seqid={field_name|$jms_property|*seqid}

Where:

■ field_name indicates the name of a header field containing the seqid

■ jms_property uses the value of the specified JMS header property, a special value
of this is $jmsid which uses the value returned by the mechanism chosen by the
jms.id property

■ seqid indicates a simple continually incrementing 64-bit integer generated by the
system

For example:

delim.seqid=$jmsid

11.2.3.4 delim.timestamp
Specifies the name of the JMS property, header field, or system value that contains the
timestamp.

delim.timestamp={field_name|$jms_property|*ts}

For example:

delim.timestamp=TIMESTAMP
delim.timestamp=$JMSTimeStamp
delim.timestamp=*ts

11.2.3.5 delim.timestamp.format
Specifies the format of the timestamp field.

delim.timestamp.format=format

Where the format can include punctuation characters plus:

■ YYYY – four digit year

■ YY – two digit year

■ M[M] – one or two digit month

Parser Properties

Message Capture Properties 11-11

■ D[D] – one or two digit day

■ HH – hours in twenty four hour notation

■ MI – minutes

■ SS – seconds

■ Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

delim.timestamp.format=YYYY-MM-DD-HH.MI.SS

11.2.3.6 delim.txid
Specifies the name of the JMS property, header field, or system value that contains the
txid used to uniquely identify transactions. This value must increment for each
transaction.

delim.txid={field_name|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

delim.txid=$JMSTxId
delim.txid=*txid

11.2.3.7 delim.txowner
Specifies the name of the JMS property, header field, or static value that contains an
arbitrary user name associated with a transaction. This value may be used to exclude
certain transactions from processing. This is an optional property.

delim.txowner={field_name|$jms_property|"value"}
For example:

delim.txowner=$MessageOwner
delim.txowner="jsmith"

11.2.3.8 delim.txname
Specifies the name of the JMS property, header field, or static value that contains an
arbitrary name to be associated with a transaction. This is an optional property.

delim.txname={field_name|$jms_property|"value"}

For example:

delim.txname="fixedtx"

11.2.3.9 delim.optype
Specifies the name of the JMS property or header field that contains the operation
type. This is compared to the values for delim.optype.insertval,
delim.optype.updateval and delim.optype.deleteval to determine the operation.

delim.optype={field_name|$jms_property}

For example:

Parser Properties

11-12 Administering Oracle GoldenGate Adapters

delim.optype=optype

11.2.3.10 delim.optype.insertval
This value identifies an insert operation. The default is I.

delim.optype.insertval={value|\xhex_value}

For example:

delim.optype.insertval=A

11.2.3.11 delim.optype.updateval
This value identifies an update operation. The default is U.

delim.optype.updateval={value|\xhex_value}

For example:

delim.optype.updateval=M

11.2.3.12 delim.optype.deleteval
This value identifies a delete operation. The default is D.

delim.optype.deleteval={value|\xhex_value}

For example:

delim.optype.deleteval=R

11.2.3.13 delim.schemaandtable
Specifies the name of the JMS property or header field that contains the schema and
table name in the form SCHEMA.TABLE.

delim.schemaandtable={field_name|$jms_property}

For example:

delim.schemaandtable=$FullTableName

11.2.3.14 delim.schema
Specifies the name of the JMS property, header field, or hard-coded value that contains
the schema name.

delim.schema={field_name|$jms_property|"value"}

For example:

delim.schema="OGG"

11.2.3.15 delim.table
Specifies the name of the JMS property or header field that contains the table name.

delim.table={field_name|$jms_property}

For example:

delim.table=TABLE_NAME

Parser Properties

Message Capture Properties 11-13

11.2.3.16 delim.txind
Specifies the name of the JMS property or header field that contains the transaction
indicator to be validated against beginval, middleval, endval or wholeval. All
operations within a single message will be seen as within one transaction if this
property is not set. If it is set it determines the beginning, middle and end of
transactions. Transactions defined in this way can span messages. This is an optional
property.

delim.txind={field_name|$jms_property}

For example:

delim.txind=txind

11.2.3.17 delim.txind.beginval
The value that identifies an operation as the beginning of a transaction. The default is
B.

delim.txind.beginval={value|\xhex_value}

For example:

delim.txind.beginval=0

11.2.3.18 delim.txind.middleval
The value that identifies an operation as the middle of a transaction. The default is M.

delim.txind.middleval={value|\xhex_value}

For example:

delim.txind.middleval=1

11.2.3.19 delim.txind.endval
The value that identifies an operation as the end of a transaction. The default is E.

delim.txind.endval={value|\xhex_value}

For example:

delim.txind.endval=2

11.2.3.20 delim.txind.wholeval
The value that identifies an operation as a whole transaction. The default is W.

delim.txind.wholeval={value|\xhex_value}

For example:

delim.txind.wholeval=3

11.2.3.21 delim.fielddelim
Specifies the delimiter value used to separate fields (columns) in the data. This value is
defined through characters or hexadecimal values:

delim.fielddelim={value|\xhex_value}

For example:

delim.fielddelim=,

Parser Properties

11-14 Administering Oracle GoldenGate Adapters

delim.fielddelim=\xc7

11.2.3.22 delim.linedelim
Specifies the delimiter value used to separate lines (records) in the data. This value is
defined using characters or hexadecimal values.

delim.linedelim={value|\xhex_value}

For example:

delim.linedelim=||
delim.linedelim=\x0a

11.2.3.23 delim.quote
Specifies the value used to identify quoted data. This value is defined using characters
or hexadecimal values.

delim.quote={value|\xhex_value}

For example:

delim.quote="

11.2.3.24 delim.nullindicator
Specifies the value used to identify NULL data. This value is defined using characters or
hexadecimal values.

delim.nullindicator={value|\xhex_value}

For example:

delim.nullindicator=NULL

11.2.3.25 delim.fielddelim.escaped
Specifies the value that will replace the field delimiter when the field delimiter occurs
in the input field. The syntax is:

delim.fielddelim.escaped={value|\xhex_value}

For example, given the following property settings:

delim.fielddelim=-
delim.fielddelim.escaped=$#$

If the data does not contain the hyphen delimiter within any of the field values:

one two three four

The resulting delimited data is:

one-two-three-four

If there are hyphen (-) delimiters within the field values:

one two three four-fifths two-fifths

The resulting delimited data is:

one-two-three-four$#$fifths-two$#$fifths

Parser Properties

Message Capture Properties 11-15

11.2.3.26 delim.linedelim.escaped
Specifies the value that will replace the line delimiter when the line delimiter occurs in
the input data. The syntax is:

delim.linedelim.escaped={value|\xhex_value}

For example, given the following property settings:

delim.linedelim=\
delim.linedelim.escaped=%/%

If the input lines are:

These are the lines and they
do not contain the delimiter.

Because the lines do not contain the backslash (\) , the result is:

These are the lines and they\
do not contain the delimiter.\

However, if the input lines do contain the delimiter:

These are the lines\data values
and they do contain the delimiter.

So the results are:

These are the lines%/%data values\
and they do contain the delimiter.\

11.2.3.27 delim.quote.escaped
Specifies the value that will replace a quote delimiter when the quote delimiter occurs
in the input data. The syntax is:

delim.quote.escaped={value|\xhex_value}

For example, given the following property settings:

delim.quote="
delim.quote.escaped="'"

If the input data does not contain the quote (") delimiter:

It was a very original play.

The result is:

"It was a very original play."

However, if the input data does contain the quote delimiter:

It was an "uber-original" play.

The result is:

"It was an "'"uber-original"'" play."

Parser Properties

11-16 Administering Oracle GoldenGate Adapters

11.2.3.28 delim.nullindicator.escaped
Specifies the value that will replace a null indicator when a null indicator occurs in the
input data. The syntax is:

delim.nullindicator.escaped={value|\xhex_value}

For example, given the following property settings:

delim.fielddelim=,
delim.nullindicator=NULL
delim.nullindicator.escaped=$NULL$

When the input data does not contain a NULL value or a NULL indicator:

1 2 3 4 5

The result is

1,2,3,4,5

When the input data contains a NULL value:

1 2 4 5

The result is

1,2,NULL,4,5

When the input data contains a NULL indicator:

1 2 NULL 4 5

The result is:

1,2,$NULL$,4,5

11.2.3.29 delim.hasbefores
Specifies whether before values are present in the data.

delim.hasbefores={true|false}

The default is false. The parser expects to find before and after values of columns for
all records if delim.hasbefores is set to true. The before values are used for updates
and deletes, the after values for updates and inserts. The afterfirst property
specifies whether the before images are before the after images or after them. If
delim.hasbefores is false, then no before values are expected.

For example:

delim.hasbefores=true

11.2.3.30 delim.hasnames
Specifies whether column names are present in the data.

delim.hasnames={true|false}

The default is false. If true, the parser expects to find column names for all records. The
parser validates the column names against the expected column names. If false, no
column names are expected.

For example:

delim.hasnames=true

Parser Properties

Message Capture Properties 11-17

11.2.3.31 delim.afterfirst
Specifies whether after values are positioned before or after the before values.

delim.afterfirst={true|false}

The default is false. If true, the parser expects to find the after values before the before
values. If false, the after values are before the before values.

For example:

delim.afterfirst=true

11.2.3.32 delim.isgrouped
Specifies whether the column names and before and after images should be expected
grouped together for all columns or interleaved for each column.

delim.isgrouped={true|false}

The default is false. If true, the parser expects find a group of column names (if
hasnames is true), followed by a group of before values (if hasbefores), followed by a
group of after values (the afterfirst setting will reverse the before and after value
order). If false, the parser will expect to find a column name (if hasnames), before value
(if hasbefores) and after value for each column.

For example:

delim.isgrouped=true

11.2.3.33 delim.dateformat | delim.dateformat.table | delim.dateform.table.column
Specifies the date format for column data. This is specified at a global level, table level
or column level.The format used to parse the date is a subset of the formats used for
parser.timestamp.format.

delim.dateformat=format
delim.dateformat.TABLE=format
delim.dateformat.TABLE.COLUMN=format

Where:

■ format is the format defined for parser.timestamp.format.

■ table is the fully qualified name of the table that is currently being processed.

■ column is a column of the specified table.

For example:

delim.dateformat=YYYY-MM-DD HH:MI:SS
delim.dateformat.MY.TABLE=DD/MM/YY-HH.MI.SS
delim.dateformat.MY.TABLE.EXP_DATE=YYMM

11.2.4 XML Parser Properties
The following properties are used by the XML parser.

11.2.4.1 xml.sourcedefs
Specifies the location of the source definitions file.

xml.sourcedefs=file_location

Parser Properties

11-18 Administering Oracle GoldenGate Adapters

For example:

xml.sourcedefs=dirdef/hrdemo.def

11.2.4.2 xml.rules
Specifies the list of XML rules for parsing a message and converting to transactions,
operations and columns:

xml.rules=xml_rule_name[, . . .]

The specified XML rules are processed in the order listed. All rules matching a
particular XML document may result in the creation of transactions, operations and
columns. The specified XML rules should be transaction or operation type rules.

For example:

xml.rules=dyntxrule, statoprule

11.2.4.3 rulename.type
Specifies the type of XML rule.

rulename.type={tx|op|col}

Where:

■ tx indicates a transaction rule

■ op indicates an operation rule

■ col indicates a column rule

For example:

dyntxrule.type=tx
statoprule.type=op

11.2.4.4 rulename.match
Specifies an XPath expression used to determine whether the rule is activated for a
particular document or not.

rulename.match=xpath_expression

If the XPath expression returns any nodes from the document, the rule matches and
further processing occurs. If it does not return any nodes, the rule is ignored for that
document.

The following example activates the dyntxrule if the document has a root element of
Transaction

dyntxrule.match=/Transaction

Where statoprule is a subrule of stattxtule, the following example activates the
statoprule if the parent rule's matching nodes have child elements of
NewMyTableEntry.

statoprule.match=./NewMyTableEntry

Parser Properties

Message Capture Properties 11-19

11.2.4.5 rulename.subrules
Specifies a list of rule names to check for matches if the parent rule is activated by its
match.

rulename.subrules=xml_rule_name[, . . .]

The specified XML rules are processed in the order listed. All matching rules may
result in the creation of transactions, operations and columns.

Valid sub-rules are determined by the parent type. Transaction rules can only have
operation sub-rules. Operation rules can have operation or column sub-rules. Column
rules cannot have sub-rules.

For example:

dyntxrule.subrules=dynoprule
statoprule.subrules=statkeycolrule, statcol1rule

11.2.4.6 txrule.timestamp
Controls the transaction timestamp by instructing the adapter to 1) use the transaction
commit timestamp contained in a specified XPath expression or JMS property or 2) use
the current system time. This is an optional property.

txrule.timestamp={xpath_expression|$jms_property|*ts}

The timestamp for the transaction may be overridden at the operation level, or may
only be present at the operation level. Any XPath expression must end with a value
accessor such as @att or text().

For example:

dyntxrule.timestamp=@ts

11.2.4.7 txrule.timestamp.format
Specifies the format of the timestamp field.

txrule.timestamp.format=format

Where the format can include punctuation characters plus:

■ YYYY – four digit year

■ YY – two digit year

■ M[M] – one or two digit month

■ D[D] – one or two digit day

■ HH – hours in twenty four hour notation

■ MI – minutes

■ SS – seconds

■ Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

dyntxrule.timestamp.format=YYYY-MM-DD-HH.MI.SS

Parser Properties

11-20 Administering Oracle GoldenGate Adapters

11.2.4.8 txrule.seqid
Specifies the seqid for a particular transaction. This can be used when there are
multiple transactions per message. Determines the XPath expression, JMS property, or
system value that contains the transactions seqid. Any XPath expression must end
with a value accessor such as @att or text().

txrule.seqid={xpath_expression|$jms_property|*seqid}

For example:

dyntxrule.seqid=@seqid

11.2.4.9 txrule.txid
Specifies the XPath expression, JMS property, or system value that contains the txid
used to unique identify transactions. This value must increment for each transaction.

txrule.txid={xpath_expression|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

dyntxrule.txid=$JMSTxId
dyntxrule.txid=*txid

11.2.4.10 txrule.txowner
Specifies the XPath expression, JMS property, or static value that contains an arbitrary
user name associated with a transaction. This value may be used to exclude certain
transactions from processing.

txrule.txowner={xpath_expression|$jms_property|"value"}

For example:

dyntxrule.txowner=$MessageOwner
dyntxrule.txowner="jsmith"

11.2.4.11 txrule.txname
Specifies the XPath expression, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

txrule.txname={xpath_expression|$jms_property|"value"}

For example:

dyntxrule.txname="fixedtx"

11.2.4.12 oprule.timestamp
Controls the operation timestamp by instructing the adapter to 1) use the transaction
commit timestamp contained in a specified XPath expression or JMS property or 2) use
the current system time. This is an optional property.

oprule.timestamp={xpath_expression|$jms_property|*ts}

The timestamp for the operation will override a timestamp at the transaction level.

Any XPath expression must end with a value accessor such as @att or text().

Parser Properties

Message Capture Properties 11-21

For example:

statoprule.timestamp=./CreateTime/text()

11.2.4.13 oprule.timestamp.format
Specifies the format of the timestamp field.

oprule.timestamp.format=format

Where the format can include punctuation characters plus:

■ YYYY – four digit year

■ YY – two digit year

■ M[M] – one or two digit month

■ D[D] – one or two digit day

■ HH – hours in twenty four hour notation

■ MI – minutes

■ SS – seconds

■ Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

statoprule.timestamp.format=YYYY-MM-DD-HH.MI.SS

11.2.4.14 oprule.seqid
Specifies the seqid for a particular operation. Use the XPath expression, JMS property,
or system value that contains the operation seqid. This overrides any seqid defined in
parent transaction rules. Must be present if there is no parent transaction rule.

Any XPath expression must end with a value accessor such as @att or text().

oprule.seqid={xpath_expression|$jms_property|*seqid}

For example:

dynoprule.seqid=@seqid

11.2.4.15 oprule.txid
Specifies the XPath expression, JMS property, or system value that contains the txid
used to uniquely identify transactions. This overrides any txid defined in parent
transaction rules and is required if there is no parent transaction rule. The value must
be incremented for each transaction.

oprule.txid={xpath_expression|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

dynoprule.txid=$JMSTxId
dynoprule.txid=*txid

Parser Properties

11-22 Administering Oracle GoldenGate Adapters

11.2.4.16 oprule.txowner
Specifies the XPath expression, JMS property, or static value that contains an arbitrary
user name associated with a transaction. This value may be used to exclude certain
transactions from processing. This is an optional property.

oprule.txowner={xpath_expression|$jms_property|"value"}

For example:

dynoprule.txowner=$MessageOwner
dynoprule.txowner="jsmith"

11.2.4.17 oprule.txname
Specifies the XPath expression, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

oprule.txname={xpath_expression|$jms_property|"value"}

For example:

dynoprule.txname="fixedtx"

11.2.4.18 oprule.schemandtable
Specifies the XPath expression JMS property or hard-coded value that contains the
schema and table name in the form SCHEMA.TABLE. Any XPath expression must end
with a value accessor such as @att or text(). The value is verified to ensure the table
exists in the source definitions.

oprule.schemaandtable={xpath_expression|$jms_property|"value"}

For example:

statoprule.schemaandtable="MY.TABLE"

11.2.4.19 oprule.schema
Specifies the XPath expression, JMS property or hard-coded value that contains the
schema name. Any XPath expression must end with a value accessor such as @att or
text().

oprule.schema={xpath_expression|$jms_property|"value"}

For example:

statoprule.schema=@schema

11.2.4.20 oprule.table
Specifies the XPath expression, JMS property or hard-coded value that contains the
table name. Any XPath expression must end with a value accessor such as @att or
text().

oprule.table={xpath_expression|$jms_property|"value"}

For example:

statoprule.table=$TableName

Parser Properties

Message Capture Properties 11-23

11.2.4.21 oprule.optype
Specifies the XPath expression, JMS property or literal value that contains the optype
to be validated against an optype insertval, etc. Any XPath expression must end with
a value accessor such as @att or text().

oprule.optype={xpath_expression|$jms_property|"value"}

For example:

dynoprule.optype=@type
statoprule.optype="I"

11.2.4.22 oprule.optype.insertval
Specifies the value that identifies an insert operation. The default is I.

oprule.optype.insertval={value|\xhex_value}

For example:

dynoprule.optype.insertval=A

11.2.4.23 oprule.optype.updateval
Specifies the value that identifies an update operation. The default is U.

oprule.optype.updateval={value|\xhex_value}

For example:

dynoprule.optype.updateval=M

11.2.4.24 oprule.optype.deleteval
Specifies the value that identifies a delete operation. The default is D.

oprule.optype.deleteval={value|\xhex_value}

For example:

dynoprule.optype.deleteval=R

11.2.4.25 oprule.txind
Specifies the XPath expression or JMS property that contains the transaction indicator
to be validated against beginval or other value that identifies the position within the
transaction. All operations within a single message are regarded as occurring within a
whole transaction if this property is not defined. Specifies the begin, middle and end
of transactions. Any XPath expression must end with a value accessor such as @att or
text(). Transactions defined in this way can span messages. This is an optional
property.

oprule.txind={xpath_expression|$jms_property}

For example:

dynoprule.txind=@txind

11.2.4.26 oprule.txind.beginval
Specifies the value that identifies an operation as the beginning of a transaction. The
default is B.

oprule.txind.beginval={value|\xhex_value}

Parser Properties

11-24 Administering Oracle GoldenGate Adapters

For example:

dynoprule.txind.beginval=0

11.2.4.27 oprule.txind.middleval
Specifies the value that identifies an operation as the middle of a transaction. The
default is M.

oprule.txind.middleval={value|\xhex_value}

For example:

dynoprule.txind.middleval=1

11.2.4.28 oprule.txind.endval
Specifies the value that identifies an operation as the end of a transaction. The default
is E.

oprule.txind.endval={value|\xhex_value}

For example:

dynoprule.txind.endval=2

11.2.4.29 oprule.txind.wholeval
Specifies the value that identifies an operation as a whole transaction. The default is W.

oprule.txind.wholeval={value|\xhex_value}

For example:

dynoprule.txind.wholeval=3

11.2.4.30 colrule.name
Specifies the XPath expression or hard-coded value that contains a column name. The
column index must be specified if this is not and the column name will be resolved
from that. If specified the column name will be verified against the source definitions
file. Any XPath expression must end with a value accessor such as @att or text().

colrule.name={xpath_expression|"value"}

For example:

dyncolrule.name=@name
statkeycolrule.name="keycol"

11.2.4.31 colrule.index
Specifies the XPath expression or hard-coded value that contains a column index. If
not specified then the column name must be specified and the column index will be
resolved from that. If specified the column index will be verified against the source
definitions file. Any XPath expression must end with a value accessor such as @att or
text().

colrule.index={xpath_expression|"value"}

For example:

dyncolrule.index=@index

Parser Properties

Message Capture Properties 11-25

statkeycolrule.index=1

11.2.4.32 colrule.value
Specifies the XPath expression or hard-coded value that contains a column value. Any
XPath expression must end with a value accessor such as @att or text(). If the
XPath expression fails to return any data because a node or attribute does not exist, the
column value will be deemed as null. To differentiate between null and missing values
(for updates) the isnull and ismissing properties should be set. The value returned is
used for delete before values, and update/insert after values.

colrule.value={xpath_expression|"value"}

For example:

statkeycolrule.value=./text()

11.2.4.33 colrule.isnull
Specifies the XPath expression used to discover if a column value is null. The XPath
expression must end with a value accessor such as @att or text(). If the XPath
expression returns any value, the column value is null. This is an optional property.

colrule.isnull=xpath_expression

For example:

dyncolrule.isnull=@isnull

11.2.4.34 colrule.ismissing
Specifies the XPath expression used to discover if a column value is missing. The
XPath expression must end with a value accessor such as @att or text(). If the XPath
expression returns any value, then the column value is missing. This is an optional
property.

colrule.ismissing=xpath_expression

For example:

dyncolrule.ismissing=./missing

11.2.4.35 colrule.before.value
Overrides colrule.value to specifically say how to obtain before values used for
updates or deletes. This has the same format as colrule.value. This is an optional
property.

For example:

dyncolrule.before.value=./beforevalue/text()

11.2.4.36 colrule.before.isnull
Overrides colrule.isnull to specifically say how to determine if a before value is
null for updates or deletes. This has the same format as colrule.isnull. This is an
optional property.

For example:

dyncolrule.before.isnull=./beforevalue/@isnull

Parser Properties

11-26 Administering Oracle GoldenGate Adapters

11.2.4.37 colrule.before.ismissing
Overrides colrule.ismissing to specifically say how to determine if a before value is
missing for updates or deletes. This has the same format as colrule.ismissing. This
is an optional property.

For example:

dyncolrule.before.ismissing=./beforevalue/missing

11.2.4.38 colrule.after.value
Overrides colrule.value to specifically say how to obtain after values used for
updates or deletes. This has the same format as colrule.value. This is an optional
property.

For example:

dyncolrule.after.value=./aftervalue/text()

11.2.4.39 colrule.after.isnull
Overrides colrule.isnull to specifically say how to determine if an after value is
null for updates or deletes. This has the same format as colrule.isnull. This is an
optional property.

For example:

dyncolrule.after.isnull=./aftervalue/@isnull

11.2.4.40 colrule.after.ismissing
Overrides colrule.ismissing to specifically say how to determine if an after value is
missing for updates or deletes. This has the same format as colrule.ismissing. This
is an optional property.

For example:

dyncolrule.after.ismissing=./aftervalue/missing

Part IV
Part IV Delivering Java Messages

This part of the book contains information on using Oracle GoldenGate Adapters to
process transaction information to create JMS messages for delivery to third party
applications.

Part V contains the following chapters:

■ Chapter 12, "Configuring Message Delivery"

■ Chapter 13, "Using the Java User Exit"

■ Chapter 14, "Configuring Event Handlers"

■ Chapter 15, "Message Delivery Properties"

■ Chapter 16, "Developing Custom Filters, Formatters, and Handlers"

12

Configuring Message Delivery 12-1

12Configuring Message Delivery

[13] This chapter explains how to configure the adapter for delivering messages. To do this,
you must set up the properties in the user exit properties file, configure an Extract as a
data pump to run the user exit, and identify the built-in or custom event handlers you
will use.

This chapter includes the following sections:

■ Configure the JRE in the User Exit Properties File

■ Configure a Data Pump to Run the User Exit

■ Configure the Java Handlers

12.1 Configure the JRE in the User Exit Properties File
Modify the user exit properties file to point to the location of the Oracle GoldenGate
for Java main jar (ggjava.jar) and set any additional JVM runtime boot options as
required (these are passed directly to the JVM at startup):

jvm.bootoptions=-Djava.class.path=ggjava/ggjava.jar
-Dlog4j.configuration=log4j.properties -Xmx512m

Note the following options in particular:

■ java.class.path can include any custom jars in addition to the core application
(ggjava.jar). The current directory (.) is included by default in the class path. You
can reference files relative to the Oracle GoldenGate install directory, to allow
storing Java property files, Velocity templates and other class path resources in the
dirprm subdirectory. It is also possible to append to the class path in the Java
application properties file.

■ The log4j.configuration option specifies a log4j properties file, found in the class
path. There are pre-configured default log4j settings for basic logging
(log4j.properties), debug logging (debug-log4j.properties), and detailed
trace-level logging (trace-log4j.properties), found in the resources/classes
directory.

Once the user exit properties file is correctly configured for your system, it usually
remains unchanged. See Section 15.1, "User Exit Properties," for additional
configuration options.

Configure a Data Pump to Run the User Exit

12-2 Administering Oracle GoldenGate Adapters

12.2 Configure a Data Pump to Run the User Exit
The user exit Extract is configured as a data pump. The data pump consumes a local
trail (for example dirdat/aa) and sends the data to the user exit. The user exit is
responsible for processing all the data.

Following is an example of adding a data pump Extract:

ADD EXTRACT javaue, EXTTRAILSOURCE ./dirdat/aa

The process names and trail names used above can be replaced with any valid name.
Process names must be 8 characters or less, trail names must to be two characters. In
the user exit Extract parameter file (javaue.prm) specify the location of the user exit
library.

Table 12–1 User Exit Extract Parameters

Parameter Explanation

EXTRACT javaue All Extract parameter files start with the Extract
name

SOURCEDEFS ./dirdef/tcust.def The Extract process requires metadata describing the
trail data. This can come from a database or a source
definitions file. This metadata defines the column
names and data types in the trail being read
(./dirdat/aa).

SETENV (GGS_USEREXIT_CONF =
"dirprm/javaue.properties")

(Optional) An absolute or relative path (relative to
the Extract executable) to the properties file for the C
user exit library. The default value is extract_
name.properties in the dirprm directory.

SETENV (GGS_JAVAUSEREXIT_CONF =
"dirprm/javaue.properties")

(Optional) The Java properties.This example places
the properties file in the dirpm directory.

CUSEREXIT ggjava_ue.dll CUSEREXIT
PASSTHRU
INCLUDEUPDATEBEFORES

The CUSEREXIT parameter includes the following:

■ The location of the user exit library. For UNIX,
the library would be suffixed .so

■ CUSEREXIT - the callback function name that
must be uppercase.

■ PASSTHRU - avoids the need for a dummy target
trail.

■ INCLUDEUPDATEBEFORES - needed for transaction
integrity.

TABLE schema.*; The tables to pass to the User Exit; tables not
included will be skipped. No filtering may be done in
the user exit Extract; otherwise transaction markers
will be missed. You can filter in the primary Extract,
or use another, upstream data pump, or filter data
directly in the Java application.

Note: Using PASSTHRU disables the statistical reporting that allows
report counts to be included in the processing report. To collect report
count statistics and send them to the Extract from the user exit, use the
property gg.report.time.

The two environment properties shown above are optional.

■ SETENV (GGS_USEREXIT_CONF = "dirprm/javaue.properties")

Configure the Java Handlers

Configuring Message Delivery 12-3

This changes the default configuration file used for the User Exit shared library.
The value given is either an absolute path, or a path relative to Extract (or
Replicat). The example above uses a relative path to put this property file in the
dirprm directory.

The default file used is extract_name.properties, located in the dirprm directory.
So, if the Extract name is pumpA, then the prm file is dirprm/pumpA.prm and the
properties file is dirprm/pumpA.properties.

■ SETENV (GGS_JAVAUSEREXIT_CONF = "dirprm/javaue.properties")

This changes the default properties file used for the Oracle GoldenGate for Java
framework. The value found is a path to a file found in the class path or in a
normal file system path.

Both GGS_USEREXIT_CONF and GGS_JAVAUSEREXIT_CONF default to the same file;
dirprm/extract_name.properties.

12.3 Configure the Java Handlers
The Oracle GoldenGate Java API has a property file used to configure active event
handlers. To test the configuration, you may use the built-in file handler. Here are
some example properties, followed by explanations of the properties (comment lines
start with #):

the list of active handlers
gg.handlerlist=myhandler
set properties on 'myhandler'
gg.handler.myhandler.type=file
gg.handler.myhandler.format=tx2xml.vm
gg.handler.myhandler.file=output.xml

This property file declares the following:

■ Active event handlers. In the example a single event handler is active, called
myhandler. Multiple handlers may be specified, separated by commas. For
example: gg.handlerlist=myhandler, yourhandler

■ Configuration of the handlers. In the example myhandler is declared to be a file
type of handler: gg.handler.myhandler.type=file

Note: See the documentation for each type of handler (e.g. the JMS
handler or the file writer handler) for the list of valid properties that
can be set.

■ The format of the output is defined by the Velocity template tx2xml.vm. You may
specify your own custom template to define the message format; just specify the
path to your template relative to the Java class path (this is discussed later).

This property file is actually a complete example that will write captured transactions
to the output file output.xml. Other handler types can be specified using the key
words: jms_text (or jms), jms_map, singlefile (a file that does not roll), and others.
Custom handlers can be implemented, in which case the type would be the fully
qualified name of the Java class for the handler.

Configure the Java Handlers

12-4 Administering Oracle GoldenGate Adapters

13

Using the Java User Exit 13-1

13Using the Java User Exit

[14] This chapter describes how to start and restart the Oracle GoldenGate Adapter user
exit that delivers messages. It assumes that the primary Extract has already generated
a trail to be consumed by the user exit Extract.

This chapter includes the following sections:

■ Starting the Application

■ Restarting the Application at the Beginning of a Trail

13.1 Starting the Application
To run the user exit and execute the Java application, you only need an existing trail
file and its corresponding source definitions file. For the examples that follow, a simple
TCUSTMER and TCUSTORD trail is used (matching the demo SQL provided with the
Oracle GoldenGate software download), along with a source definitions file defining
the data types used in the trail.

Note: The user exit does not require access to a database in order to
run. But the Extract process does require metadata describing the trail
data. Either the Extract must login to a database for metadata, or a
source definitions file can be provided. In either case, the Extract
cannot be in PASSTHRU mode when using a user exit.

To run the user exit, simply start the Extract process from GGSCI:

GGSCI> START EXTRACT javaue
GGSCI> INFO EXTRACT javaue

The INFO command will return information similar to the following:

EXTRACT JAVAUE Last Started 2011-08-25 18:41 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:00 ago)
Log Read Checkpoint File ./dirdat/bb000000
2011-09-24 12:52:58.000000 RBA 2702

If the Extract process is running and the file handler is being used (as in the example
above), then you should see the output file output.xml in the Oracle GoldenGate
installation directory (the same directory as the Extract executable).

If the process does not start or abends, see Section 18.1, "Checking for Errors."

Restarting the Application at the Beginning of a Trail

13-2 Administering Oracle GoldenGate Adapters

13.2 Restarting the Application at the Beginning of a Trail
There are two checkpoints for an Extract running the user exit: the user exit checkpoint
and the Extract checkpoint. Before rerunning the Extract, you must reset both
checkpoints:

1. Delete the user exit checkpoint file.

In this example the name of the Extract group is javaue, so this will default to the
checkpoint prefix. The prefix can also be set in the properties file using
goldengate.userexit.chkptprefix.

Windows: cmd> del javaue_jvm.chkpt

UNIX: $ rm javaue_jvm.chkpt

Note: Do not modify checkpoints or delete the user exit checkpoint
file on a production system.

2. Reset the Extract to the beginning of the trail data:

GGSCI> ALTER EXTRACT JAVAUE, EXTSEQNO 0, EXTRBA 0

3. Restart the Extract:

GGSCI> START JAVAUE
GGSCI> INFO JAVAUE
EXTRACT JAVAUE Last Started 2011-08-25 18:41 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:00 ago)
Log Read Checkpoint File ./dirdat/ps000000
 2011-09-24 12:52:58.000000 RBA 2702

It may take a few seconds for the Extract process status to report itself as running.
Check the report file to see if it abended or is still in the process of starting:

GGSCI> VIEW REPORT JAVAUE

14

Configuring Event Handlers 14-1

14Configuring Event Handlers

[15] This chapter discusses types of event handlers explaining how to specify the event
handler to use and what your options are. It explains how to format the output and
what you can expect from the Oracle GoldenGate Report file.

This chapter includes the following sections:

■ Specifying Event Handlers

■ JMS Handler

■ File Handler

■ Custom Handlers

■ Formatting the Output

■ Reporting

14.1 Specifying Event Handlers
Processing transaction, operation and metadata events in Java works as follows:

■ The Oracle GoldenGate Extract reads local trail data and passes the transactions,
operations and database metadata to the user exit. Metadata can come from either
a source definitions file or by querying the database.

■ Events are fired by the Java framework, optionally filtered by custom Event
Filters.

■ Handlers (event listeners) process these events, and process the transactions,
operations and metadata. Custom formatters may be applied for certain types of
targets.

There are several existing handlers:

■ A message handler to send to a JMS provider using either a MapMessage, or using
a TextMessage with customized formatters.

■ A specialized message handler to send JMS messages to Oracle Advanced
Queuing (AQ).

■ A file writer handler, for writing to a single file, or a rolling file.

Note: The file writer handler is particularly useful as development
utility, since the file writer can take the exact same formatter as the
JMS TextMessage handler. Using the file writer provides a simple way
to test and tune the formatters for JMS without actually sending the
messages to JMS.

JMS Handler

14-2 Administering Oracle GoldenGate Adapters

Event handlers can be configured using the main Java property file or they may
optionally read in their own properties directly from yet another property file
(depending on the handler implementation). Handler properties are set using the
following syntax:

gg.handler.{name}.someproperty=somevalue

This will cause the property someproperty to be set to the value somevalue for the
handler instance identified in the property file by name. This name is used in the
property file to define active handlers and set their properties; it is user-defined.

Implementation note (for Java developers): Following the above example: when the
handler is instantiated, the method void setSomeProperty(String value) will be called
on the handler instance, passing in the String value somevalue. A JavaBean
PropertyEditor may also be defined for the handler, in which case the string can be
automatically converted to the appropriate type for the setter method. For example, in
the Java application properties file, we may have the following:

the list of active handlers: only two are active
gg.handlerlist=one, two
set properties on 'one'
gg.handler.one.type=file
gg.handler.one.format=com.mycompany.MyFormatter
gg.handler.one.file=output.xml
properties for handler 'two'
gg.handler.two.type=jms_text
gg.handler.two.format=com.mycompany.MyFormatter
gg.handler.two.properties=jboss.properties
set properties for handler 'foo'; this handler is ignored
gg.handler.foo.type=com.mycompany.MyHandler
gg.handler.foo.someproperty=somevalue

The type identifies the handler class; the other properties depend on the type of
handler created. If a separate properties file is used to initialize the handler (such as
the JMS handlers), the properties file is found in the class path. For example, if
properties file is at: {gg_install_dir}/dirprm/foo.properties, then specify in the
properties file as follows: gg.handler.name.properties=foo.properties.

14.2 JMS Handler
The main Java property file identifies active handlers. The JMS handler may optionally
use a separate property file for JMS-specific configuration. This allows more than one
JMS handler to be configured to run at the same time.

There are examples included for several JMS providers (JBoss, TIBCO, Solace,
ActiveMQ, WebLogic). For a specific JMS provider, you can choose the appropriate
properties files as a starting point for your environment. Each JMS provider has
slightly different settings, and your environment will have unique settings as well.

Formatting the Output

Configuring Event Handlers 14-3

The installation directory for the Java jars (ggjava) contains the core application jars
(ggjava.jar) and its dependencies in resources/lib/*.jar. The resources directory
contains all dependencies and configuration, and is in the class path.

If the JMS client jars already exist somewhere on the system, they can be referenced
directly and added to the class path without copying them.

The following types of JMS handlers can be specified:

■ jms – sends text messages to a topic or queue. The messages may be formatted
using Velocity templates or by writing a formatter in Java. The same formatters
can be used for a jms_text message as for writing to files. (jms_text is a synonym
for jms.)

■ aq – sends text messages to Oracle Advanced Queuing (AQ). The aq handler is a
jms handler configured for delivery to AQ. The messages can be formatted using
Velocity temlates or a custom formatter.

■ jms_map – sends a JMS MapMessage to a topic or queue. The JMSType of the
message is set to the name of the table. The body of the message consists of the
following metadata, followed by column name and column value pairs:

– GG_ID – position of the record, uniquely identifies this operation

– GG_OPTYPE – type of SQL (insert/update/delete),

– GG_TABLE – table name on which the operation occurred

– GG_TIMESTAMP – timestamp of the operation

14.3 File Handler
The file handler is often used to verify the message format when the actual target is
JMS, and the message format is being developed using custom Java or Velocity
templates. Here is a property file using a file handler:

one file handler active, using Velocity template formatting
gg.handlerlist=myfile
gg.handler.myfile.type=file
gg.handler.myfile.rollover.size=5M
gg.handler.myfile.format=sample2xml.vm
gg.handler.myfile.file=output.xml

This example uses a single handler (though, a JMS handler and the file handler could
be used at the same time), writing to a file called output.xml, using a Velocity template
called sample2xml.vm. The template is found via the classpath.

14.4 Custom Handlers
For information on coding a custom handler, see Section 16.3, "Coding a Custom
Handler in Java."

14.5 Formatting the Output
As previously described, the existing JMS and file output handlers can be configured
through the properties file. Each handler has its own specific properties that can be set:
for example, the output file can be set for the file handler, and the JMS destination can
be set for the JMS handler. Both of these handlers may also specify a custom formatter.
The same formatter may be used for both handlers. As an alternative to writing Java

Reporting

14-4 Administering Oracle GoldenGate Adapters

code for custom formatting, a Velocity template may be specified. For further
information, see Section 16.1, "Filtering Events."

14.6 Reporting
Summary statistics about the throughput and amount of data processed are generated
when the Extract process stops. Additionally, statistics can be written periodically
either after a specified amount of time or after a specified number of records have been
processed. If both time and number of records are specified, then the report is
generated for whichever event happens first. These statistical summaries are written to
the Oracle GoldenGate report file and the user exit log files.

15

Message Delivery Properties 15-1

15Message Delivery Properties

[16] This chapter explains the options available for configuration of the property files for
user exit properties and Java application properties.

 This chapter includes the following sections:

■ User Exit Properties

■ Java Application Properties

15.1 User Exit Properties
The following properties set the log files and the type of logging.

15.1.1 Logging Properties
Logging is controlled by the following properties.

15.1.1.1 gg.log
Specifies the type of logging that is to be used. The default implementation for the
Oracle GoldenGate Adapters is the JDK option. This is the built-in Java logging called
java.util.logging (JUL). The other logging options are log4j or logback.

For example, to set the type of logging to log4j:

gg.log=log4j

The log file is created in the report subdirectory of the installation. The default log file
name includes the group name of the associated Extract and the file extension is .log.

15.1.1.2 gg.log.level
Specifies the overall log level for all modules. The syntax is:

gg.log.level={ERROR|WARN|INFO|DEBUG}

The log levels are defined as follows:

■ ERROR – Only write messages if errors occur

■ WARN – Write error and warning messages

■ INFO – Write error, warning and informational messages

■ DEBUG – Write all messages, including debug ones.

The default logging level is INFO. The messages in this case will be produced on
startup, shutdown and periodically during operation. If the level is switched to DEBUG,

User Exit Properties

15-2 Administering Oracle GoldenGate Adapters

large volumes of messages may occur which could impact performance. For example,
the following sets the global logging level to INFO:

global logging level
gg.log.level=INFO

15.1.1.3 gg.log.file
Specifies the path to the log file. The syntax is:

gg.log.file=path_to_file

Where the path_to_file is the fully defined location of the log file. This allows a
change to the name of the log, but you must include the Extract name if you have more
than one Extract to avoid one overwriting the log of the other.

15.1.1.4 gg.log.classpath
Specifies the class path to the jars used to implement logging.

gg.log.classpath=path_to_jars

15.1.2 General Properties
The following properties apply to all writer type user exits and are not specific to the
user exit.

15.1.2.1 goldengate.userexit.writers
Specifies the name of the writer. This is always jvm and should not be modified.

For example:

goldengate.userexit.writers=jvm

All other properties in the file should be prefixed by the writer name, jvm.

15.1.2.2 goldengate.userexit.chkptprefix
Specifies a string value for the prefix added to the checkpoint file name. For example:

goldengate.userexit.chkptprefix=javaue_

15.1.2.3 goldengate.userexit.nochkpt
Disables or enables the user exit checkpoint file. The default is false, the checkpoint
file is enabled. Set this property to true if transactions are supported and enabled on
the target.

For exampe,Java Application Properties if JMS is the target and JMS local transactions
are enabled (the default), set goldengate.userexit.nochkpt=true to disable the user
exit checkpoint file. If JMS transactions are disabled by setting localTx=false on the
handler, the user exit checkpoint file should be enabled by setting
goldengate.userexit.nochkpt=false.

goldengate.userexit.nochkpt={true|false}

15.1.2.4 goldengate.userexit.usetargetcols
Specifies whether or not mapping to target columns is allowed. The default is false,
no target mapping.

goldengate.userexit.usetargetcols={true|false}

User Exit Properties

Message Delivery Properties 15-3

15.1.3 JVM boot Options
The following options configure the Java Runtime Environment. In particular, this is
where the maximum memory the JVM can use is specified; if you see Java
out-of-memory errors, edit these settings.

15.1.3.1 jvm.bootoptions
Specifies the class path and boot options that will be applied when the user exit starts
up the JVM. The path needs colon (:) separators for UNIX/Linux and semicolons (;) for
Windows. This is where to specify various options for the JVM, such as heap size and
class path; for example:

■ -Xms: initial java heap size

■ -Xmx: maximum java heap size

■ -Djava.class.path: class path specifying location of at least the main application
jar, ggjava.jar. Other jars, such as JMS provider jars, may also be specified here as
well; alternatively, these may be specified in the Java application properties file.

■ -verbose:jni: run in verbose mode (for JNI)

For example (all on a single line):

jvm.bootoptions= -Djava.class.path=ggjava/ggjava.jar
-Dlog4j.configuration=my-log4j.properties -Xmx512m

The log4j.configuration property can be a fully qualified URL to a log4j properties
file; by default this file is searched for in the class path. You may use your own log4j
configuration, or one of the preconfigured log4j settings: log4j.properties (default
level of logging), debug-log4j.properties (debug logging) or
trace-log4j.properties (very verbose logging).

15.1.4 Statistics and Reporting
The use of the user exit causes Extract to assume that the records handled by the exit
are ignored. This causes the standard Oracle GoldenGate reporting to be incomplete.
Oracle GoldenGate for Java adds its own reporting to handle this issue.

Statistics can be reported every t seconds or every n records - or if both are specified,
whichever criteria is met first.

There are two sets of statistics recorded: those maintained by the User Exit shared
library (on the C side) and those obtained from the Java libraries. The reports received
from the Java side are formatted and returned by the individual handlers.

The User Exit statistics include the total number of operations, transactions and
corresponding rates.

15.1.4.1 jvm.stats.display
Controls the output of statistics to the Oracle GoldenGate report file and to the user
exit log files.

The following example outputs these statistics.

jvm.stats.display=true

15.1.4.2 jvm.stats.full
Controls the output of statistics from the Java side, in addition to the statistics from the
C side.

Java Application Properties

15-4 Administering Oracle GoldenGate Adapters

Java side statistics are more detailed but also involve some additional overhead, so if
statistics are reported often and a less detailed summary is adequate, it is
recommended that stats.full property is set to false.

The following example will output Java statistics in addition to C.

jvm.stats.full=true

15.1.4.3 jvm.stats.time | jvm.stats.numrecs
Specifies a time interval, in seconds or a number of records, after which statistics will
be reported. The default is to report statistics every hour or every 10000 records (which
ever occurs first).

For example, to report ever 10 minutes or every 1000 records, specify:

jvm.stats.time=600
jvm.stats.numrecs=1000

The Java application statistics are handler-dependent:

■ For the all handlers, there is at least the total elapsed time, processing time,
number of operations, transactions;

■ For the JMS handler, there is additionally the total number of bytes received and
sent.

■ The report can be customized using a template.

15.2 Java Application Properties
The following defines the properties which may be set in the Java application property
file.

15.2.1 Properties for All Handlers
The following properties apply to all handlers.

15.2.1.1 gg.handlerlist
The handler list is a list of active handlers separated by commas. These values are used
in the rest of the property file to configure the individual handlers. For example:

gg.handlerlist=name1, name2
gg.handler.name1.propertyA=value1
gg.handler.name1.propertyB=value2
gg.handler.name1.propertyC=value3
gg.handler.name2.propertyA=value1
gg.handler.name2.propertyB=value2
gg.handler.name2.propertyC=value3

Using the handlerlist property, you may include completely configured handlers in
the property file and just disable them by removing them from the handlerlist.

15.2.1.2 gg.handler.name.type
This type of handler. This is either a predefined value for built-in handlers, or a fully
qualified Java class name. The syntax is:

gg.handler.name.type={jms|jms_map|aq|singlefile|rollingfile|custom_java_class}

Where:

Java Application Properties

Message Delivery Properties 15-5

All but the last are pre-defined handlers:

■ jms – Sends transactions, operations, and metadata as formatted messages to a
JMS provider

■ aq – Sends transactions, operations, and metadata as formatted messages to Oracle
Advanced Queuing (AQ)

■ jms_map – Sends JMS map messages

■ singlefile – Writes to a single file on disk, but does not roll the file

■ rollingfile – Writes transactions, operations, and metadata to a file on disk, rolling
the file over after a certain size, amount of time, or both. For example:

gg.handler.name1.rolloverSize=5000000
gg.handler.name1.rolloverTime=1m

■ custom_java_class – Any class that extends the Oracle GoldenGate for Java
AbstractHandler class and can handle transaction, operation, or metadata events

15.2.2 Properties for Formatted Output
The following properties apply to all handlers capable of producing formatted output;
this includes:

■ The jms_text handler (but not the jms_map handler)

■ The aq handler

■ The singlefile and rolling handlers, for writing formatted output to files

15.2.2.1 gg.handler.name.format
Specifies the format used to transform operations and transactions into messages sent
to JMS or to a file. The format is specified uniquely for each handler. The value may be:

■ Velocity template

■ Java class name (fully qualified - the class specified must be a type of formatter)

■ csv for delimited values (such as comma-separated values; the delimiter can be
customized)

■ fixed for fixed-length fields

■ Built-in formatter, such as:

– xml – demo XML format (this format may change in future releases)

– xml2 – internal XML format (this format may change in future releases)

For example, to specify a custom Java class:

gg.handlerlist=abc
gg.handler.abc.format=com.mycompany.MyFormat

Or, for a Velocity template:

gg.handlerlist=xyz
gg.handler.xyz.format=path/to/sample.vm

If using templates, the file is found relative to some directory or jar that is in the class
path. By default, the Oracle GoldenGate install directory is in the class path, so the

Java Application Properties

15-6 Administering Oracle GoldenGate Adapters

above template could be placed in the dirprm directory of the Oracle GoldenGate
installation location.

The default format is to use the built-in XML formatter.

15.2.2.2 gg.handler.name.includeTables
Specifies a list of tables this handler will include.

If the schema (or owner) of the table is specified, then only that schema matches the
table name; otherwise, the table name matches any schema. A comma separated list of
tables can be specified. For example, to have the handler only process tables
foo.customer and bar.orders:

gg.handler.myhandler.includeTables=foo.customer, bar.orders

If the catalog and schema (or owner) of the table are specified, then only that catalog
and schema matches the table name; otherwise, the table name matches any catalog
and schema. A comma separated list of tables can be specified. For example, to have
the handler only process tables dbo.foo.customer and dbo.bar.orders:

gg.handler.myhandler.includeTables=dbo.foo.customer, dbo.bar.orders

Note: In order to selectively process operations on a table by table
basis, the handler must be processing in operation mode. If the
handler is processing in transaction mode, then when a single
transaction contains several operations spanning several tables, if any
table matches the include list of tables, the transaction will be
included.

15.2.2.3 gg.handler.name.excludeTables
Specifies a list of tables this handler will exclude.

If the schema (or owner) of the table is specified, then only that schema matches the
table name; otherwise, the table name matches any schema. A list of tables may be
specified, comma-separated. For example, to have the handler process all operations
on all tables except table date_modified in all schemas:

gg.handler.myhandler.excludeTables=date_modified

If the catalog and schema (or owner) of the table are specified, then only that catalog
and schema matches the table name; otherwise, the table name matches any catalog
and schema. A list of tables may be specified, comma-separated. For example, to have
the handler process all operations on all tables except table date_modified in catalog
dbo and schema bar:

gg.handler.myhandler.excludeTables=dbo.bar.date_modified

15.2.2.4 gg.handler.name.mode, gg.handler.name.format.mode
Specifies whether to output one operation per message (op) or one transaction per
message (tx). The default is op. Use gg.handler.name.format.mode when you have a
custom formatter.

Note: This property must be set to one transaction per message (tx)
if you are using group transaction properties. If it is set to one
operation per message (op), gg.handler.name.minGroupSize and
gg.handler.name.maxGroupSize will be ignored

Java Application Properties

Message Delivery Properties 15-7

15.2.3 Properties for CSV and Fixed Format Output
If the handler is set to use either CSV or fixed format output, the following properties
may also be set.

15.2.3.1 gg.handler.name.format.delim
Specifies the delimiter to use between fields. Set this to no value to have no delimiter
used. For example:

gg.handler.handler1.format.delim=,

15.2.3.2 gg.handler.name.format.quote
Specifies the quote character to be used if column values are quoted. For example:

gg.handler.handler1.format.quote='

15.2.3.3 gg.handler.name.format.metacols
Specifies the metadata column values to appear at the beginning of the record, before
any column data. Specify any of the following, in the order they should appear:

■ position – unique position indicator of records in a trail

■ opcode – I, U, or D for insert, update, or delete records (see: insertChar,
updateChar, deleteChar)

■ txind – transaction indicator – such as 0=begin, 1=middle, 2=end, 3=whole tx (see
beginTxChar, middleTxChar, endTxChar, wholeTxChar)

■ opcount – position of a record in a transaction, starting from 0

■ catalog – catalog of the schema for the record

■ schema – schema/owner of the table for the record

■ tableonly – just table (no schema/owner)

■ table – full name of table, catalog.schema.table

■ timestamp – commit timestamp of record

For example:

gg.handler.handler1.format.metacols=opcode, table, txind, position

15.2.3.4 gg.handler.name.format.missingColumnChar
Specifies a special column prefix for a column value that was not captured from the
source database transaction log. The column value is not in trail and it is unknown if it
has a value or is NULL

The character used to represent the missing state of the column value can be
customized. For example:

gg.handler.handler1.format.missingColumnChar=M

Java Application Properties

15-8 Administering Oracle GoldenGate Adapters

By default, the missing column value is set to an empty string and does not show.

15.2.3.5 gg.handler.name.format.presentColumnChar
Specifies a special column prefix for a column value that exists in the trail and is not
NULL.

The character used to represent the state of the column can be customized. For
example:

gg.handler.handler1.format.presentColumnChar=P

By default, the present column value is set to an empty string and does not show.

15.2.3.6 gg.handler.name.format.nullColumnChar
Specifies a special column prefix for a column value that exists in the trail and is set to
NULL.

The character used to represent the state of the column can be customized. For
example:

gg.handler.handler1.format.nullColumnChar=N

By default, the null column value is set to an empty string and does not show.

15.2.3.7 gg.handler.name.format.beginTxChar
Specifies the header metadata character (see metacols) used to identify a record as the
begin of a transaction. For example:

gg.handler.handler1.format.beginTxChar=B

15.2.3.8 gg.handler.name.format.middleTxChar
Specifies the header metadata characters (see metacols) used to identify a record as
the middle of a transaction. For example:

gg.handler.handler1.format.middleTxChar=M

15.2.3.9 gg.handler.name.format.endTxChar
Specifies the header metadata characters (see metacols) used to identify a record as
the end of a transaction. For example:

gg.handler.handler1.format.endTxChar=E

15.2.3.10 gg.handler.name.format.wholeTxChar
Specifies the header metadata characters (see metacols) used to identify a record as a
complete transaction; referred to as a whole transaction. For example:

gg.handler.handler1.format.wholeTxChar=W

15.2.3.11 gg.handler.name.format.insertChar
Specifies the character to identify an insert operation. The default I.

For example, to use INS instead of I for insert operations:

gg.handler.handler1.format.insertChar=INS

15.2.3.12 gg.handler.name.format.updateChar
Specifies the character to identify an update operation. The default is U.

Java Application Properties

Message Delivery Properties 15-9

For example, to use UPD instead of U for update operations:

gg.handler.handler1.format.updateChar=UPD

15.2.3.13 gg.handler.name.format.deleteChar
Specifies the character to identify a delete operation. The default is D.

For example, to use DEL instead of D for delete operations:

gg.handler.handler1.format.deleteChar=DEL

15.2.3.14 gg.handler.name.format.endOfLine
Specifies the end-of-line character as:

■ EOL - Native platform

■ CR - Neutral (UNIX-style \n)

■ CRLF - Windows (\r\n)

For example:

gg.handler.handler1.format.endOfLine=CR

15.2.3.15 gg.handler.name.format.justify
Specifies the left or right justification of fixed fields. For example:

gg.handler.handler1.format.justify=left

15.2.3.16 gg.handler.name.format.includeBefores
Controls whether before images should be included in the output. There must be
before images in the trail. For example:

gg.handler.handler1.format.includeBefores=false

15.2.4 File Writer Properties
The following properties only apply to handlers that write their output to files: the
file handler and the singlefile handler.

15.2.4.1 gg.handler.name.file
Specifies the name of the output file for the given handler. If the handler is a rolling
file, this name is used to derive the rolled file names. The default file name is
output.xml.

15.2.4.2 gg.handler.name.append
Controls whether the file should be appended to (true) or overwritten upon restart
(false).

15.2.4.3 gg.handler.name.rolloverSize
If using the file handler, this specifies the size of the file before a rollover should be
attempted. The file size will be at least this size, but will most likely be larger.
Operations and transactions are not broken across files. The size is specified in bytes,
but a suffix may be given to identify MB or KB. For example:

gg.handler.myfile.rolloverSize=5MB

The default rollover size is 10 MB.

Java Application Properties

15-10 Administering Oracle GoldenGate Adapters

15.2.5 JMS Handler Properties
The following properties apply to the JMS handlers. Some of these values may be
defined in the Java application properties file using the name of the handler. Other
properties may be placed into a separate JMS properties file, which is useful if using
more than one JMS handler at a time. For example:

gg.handler.myjms.type=jms_text
gg.handler.myjms.format=xml
gg.handler.myjms.properties=weblogic.properties

Just as with Velocity templates and formatting property files, this additional JMS
properties file is found in the classpath. The above properties file
weblogic.properties would be found in {gg_install_
dir}/dirprm/weblogic.properties, since the dirprm directory is included by default
in the class path.

Settings that can be made in the Java application properties file will override the
corresponding value set in the supplemental JMS properties file
(weblogic.properties in the example above). In the following example, the
destination property is specified in the Java application properties file. This allows the
same default connection information for the two handlers myjms1 and myjms2, but
customizes the target destination queue.

gg.handlerlist=myjms1,myjms2
gg.handler.myjms1.type=jms_text
gg.handler.myjms1.destination=queue.sampleA
gg.handler.myjms1.format=sample.vm
gg.handler.myjms1.properties=tibco-default.properties
gg.handler.myjms2.type=jms_map
gg.handler.myjms2.destination=queue.sampleB
gg.handler.myjms2.properties=tibco-default.properties

To set a property, specify the handler name as a prefix; for example:

gg.handlerlist=sample
gg.handler.sample.type=jms_text
gg.handler.sample.format=my_template.vm
gg.handler.sample.destination=gg.myqueue
gg.handler.sample.queueortopic=queue
gg.handler.sample.connectionUrl=tcp://host:61616?jms.useAsyncSend=true
gg.handler.sample.useJndi=false
gg.handler.sample.connectionFactory=ConnectionFactory
gg.handler.sample.connectionFactoryClass=\
 org.apache.activemq.ActiveMQConnectionFactory
gg.handler.sample.timeToLive=50000

15.2.5.1 Standard JMS Settings
The following outlines the JMS properties which may be set, and the accepted values.
These apply for both JMS handler types: jms_text (TextMessage) and jms_map
(MapMessage).

15.2.5.1.1 gg.handler.name.destination The queue or topic to which the message is sent.
This must be correctly configured on the JMS server. Typical values may be: queue/A,
queue.Test, example.MyTopic, etc.

gg.handler.name.destination=queue_or_topic

15.2.5.1.2 gg.handler.name.user (Optional) User name required to send messages to the
JMS server.

Java Application Properties

Message Delivery Properties 15-11

gg.handler.name.user=user_name

15.2.5.1.3 gg.handler.name.password (Optional) Password required to send messages to
the JMS server

gg.handler.name.password=password

15.2.5.1.4 gg.handler.name.queueOrTopic Whether the handler is sending to a queue (a
single receiver) or a topic (publish / subscribe). This must be correctly configured in
the JMS provider. This property is an alias of gg.handler.name.destination. The
syntax is:

gg.handler.name.queueOrTopic={queue|topic}

Where:

■ queue – a message is removed from the queue once it has been read. This is the
default.

■ topic – messages are published and may be delivered to multiple subscribers.

15.2.5.1.5 gg.handler.name.persistent If the delivery mode is set to persistent or not. If
the messages are to be persistent, the JMS provider must be configured to log the
message to stable storage as part of the client's send operation. The syntax is:

gg.handler.name.persistent={true|false}

15.2.5.1.6 gg.handler.name.priority JMS defines a 10 level priority value, with 0 as the
lowest and 9 as the highest. Priority is set to 4 by default. The syntax is:

gg.handler.name.priority=integer

For example:

gg.handler.name.priority=5

15.2.5.1.7 gg.handler.name.timeToLive The length of time in milliseconds from its
dispatch time that a produced message should be retained by the message system. A
value of zero specifies the time is unlimited. The default is zero. The syntax is:

gg.handler.name.timeToLive=milliseconds

For example:

gg.handler.name.timeToLive= 36000

15.2.5.1.8 gg.handler.name.connectionFactory Name of the connection factory to lookup
via JNDI. ConnectionFactoryJNDIName is an alias. The syntax is:

gg.handler.name.connectionFactory=JNDI_name

15.2.5.1.9 gg.handler.name.useJndi If gg.handler.name.usejndi is false, then JNDI is
not used to configure the JMS client. Instead, factories and connections are explicitly
constructed. The syntax is:

gg.handler.name.useJndi={true|false}

15.2.5.1.10 gg.handler.name.connectionUrl Connection URL is used only when not using
JNDI to explicitly create the connection. The syntax is:

gg.handler.name.connectionUrl=url

Java Application Properties

15-12 Administering Oracle GoldenGate Adapters

15.2.5.1.11 gg.handler.name.connectionFactoryClass The Connection Factory Class is
used to access a factory only when not using JNDI. The value of this property is the
Java class name to instantiate; constructing a factory object explicitly.

gg.handler.name.connectionFactoryClass=java_class_name

15.2.5.1.12 gg.handler.name.localTX Specifies whether or not local transactions are used.
The default is true, local transactions are used. The syntax is:

gg.handler.name.localTX={true|false}

15.2.5.1.13 gg.handlerlist.nop Disables the sending of JMS messages to allow testing of
message generation. This is a global property used only for testing. The events are still
generated and handled and the message is constructed. The default is false; do not
disable message send. The syntax is:

gg.handlerlist.nop={true|false}

15.2.5.1.14 gg.handler.name.physicalDestination Name of the queue or topic object,
obtained through the ConnectionFactory API instead of the JNDI provider.

gg.handler.name.physicalDestination=queue_name

15.2.5.2 Group Transaction Properties
These properties set limits for grouping transactions.

Note: When you use group transaction properties, you must:

■ Ensure that gg.handler.name.mode is set to one transaction per
message (tx). Otherwise the group transaction properties will be
ignored.

■ Ensure that the goldengate.userexit.nochkpt property is set to
false.

■ Ignore the transaction indicator on the operations and not use it to
determine transaction boundaries.

■ Use only one named handler per installation.

15.2.5.2.1 gg.handler.name.minGroupSize Specifies the minimum number of operations
that must accumulate before the transaction will be sent.

The syntax is:

gg.handler.name.minGroupSize=number_ops

Where:

■ number_ops specifies the minimum number of operations that must be
accumulated before the transaction is sent.

The maximum value allowed is integer.MAX.VALUE or 2147483647. The minimum
value is one.

If you use both properties, the value set for gg.handler.name.minGroupSize should be
less than or equal to the value set for gg.handler.name.maxGroupSize.

The following example will test for a minimum of 50 operations before a send.

Java Application Properties

Message Delivery Properties 15-13

gg.handler.name.minGroupSize=50

15.2.5.2.2 gg.handler.name.maxGroupSize Specifies the maximum number of operations
that will rigger the transaction send.

The syntax is:

gg.handler.name.maxGroupSize=number_ops

Where:

■ number_ops specifies the maximum number of operations that will be accumulated
before the transaction is sent.

The maximum value allowed is integer.MAX.VALUE or 2147483647. The minimum
value is one.

If you use both properties, the value set for gg.handler.name.minGroupSize should be
less than or equal to the value set for gg.handler.name.maxGroupSize.

The following example will send when the maximum of 50 operations is reached.

gg.handler.name.maxGroupSize=50

15.2.6 JNDI Properties
These JNDI properties are required for connection to an Initial Context to look up the
connection factory and initial destination.

java.naming.provider.url=url
java.naming.factory.initial=java-class-name

If JNDI security is enabled, the following properties may be set:

java.naming.security.principal=user-name
java.naming.security.credentials=password-or-other-authenticator

For example:

java.naming.provider.url= t3://localhost:7001
java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.security.principal=jndiuser
java.naming.security.credentials=jndipw

15.2.7 General Properties
The following are general properties that are used for the user exit Java framework.

15.2.7.1 gg.classpath
Specifies a comma delimited list of additional paths to directories or jars to add to the
class path. Optionally, the list can be delimited by semicolons for Windows systems or
by colons for UNIX. For example:

gg.classpath=C:\Program Files\MyProgram\bin;C:\Program Files\ProgramB\app\bin;

Java Application Properties

15-14 Administering Oracle GoldenGate Adapters

15.2.7.2 gg.report.time
Specifies how often statistics are calculated and sent to Extract for the processing
report. If Extract is configured to print a report, these statistics are included. The
syntax is:

gg.report.time=report_interval{s|m|h}

Where:

■ report_interval is an integer

■ The valid time units are:

– s - seconds

– m - minutes

– h - hours

If no value is entered, the default is to calculate and send every 24 hours.

16

Developing Custom Filters, Formatters, and Handlers 16-1

16Developing Custom Filters, Formatters, and
Handlers

[17] This chapter discusses writing Java code to implement an event filter, a custom
formatter for a built-in handler, or a custom event handler. Specifying custom
formatting through a Velocity template is also covered.

This chapter includes the following sections:

■ Filtering Events

■ Custom Formatting

■ Coding a Custom Handler in Java

■ Additional Resources

16.1 Filtering Events
By default, all transactions, operations and metadata events are passed to the
DataSourceListener event handlers. An event filter can be implemented to filter the
events sent to the handlers. The filter could select certain operations on certain tables
containing certain column values, for example

Filters are additive: if more than one filter is set for a handler, then all filters must
return true in order for the event to be passed to the handler.

You can configure filters using the Java application properties file:

handler "foo" only receives certain events
gg.handler.one.type=jms
gg.handler.one.format=mytemplate.vm
gg.handler.one.filter=com.mycompany.MyFilter

To activate the filter, you write the filter and set it on the handler; no additional logic
needs to be added to specific handlers.

16.2 Custom Formatting
You can customize the output format of a built-in handler by:

■ Writing a custom formatter in Java or

■ Using a Velocity template

Custom Formatting

16-2 Administering Oracle GoldenGate Adapters

16.2.1 Coding a Custom Formatter in Java
The earlier examples show a JMS handler and a file output handler using the same
formatter (com.mycompany.MyFormatter). The following is an example of how this
formatter may be implemented.

Example 16–1 Custom Formatting Implementation

package com.mycompany.MyFormatter;
import com.goldengate.atg.datasource.DsOperation;
import com.goldengate.atg.datasource.DsTransaction;
import com.goldengate.atg.datasource.format.DsFormatterAdapter;
import com.goldengate.atg.datasource.meta.ColumnMetaData;
import com.goldengate.atg.datasource.meta.DsMetaData;
import com.goldengate.atg.datasource.meta.TableMetaData;
import java.io.PrintWriter;
public class MyFormatter extends DsFormatterAdapter {
 public MyFormatter() { }
 @Override
 public void formatTx(DsTransaction tx,
DsMetaData meta,
PrintWriter out)
 {
 out.print("Transaction: ");
 out.print("numOps=\'" + tx.getSize() + "\' ");
 out.println("ts=\'" + tx.getStartTxTimeAsString() + "\'");
 for(DsOperation op: tx.getOperations()) {
TableName currTable = op.getTableName();
TableMetaData tMeta = dbMeta.getTableMetaData(currTable);
String opType = op.getOperationType().toString();
String table = tMeta.getTableName().getFullName();
out.println(opType + " on table \"" + table + "\":");
int colNum = 0;
for(DsColumn col: op.getColumns())
{
ColumnMetaData cMeta = tMeta.getColumnMetaData(colNum++);
out.println(
cMeta.getColumnName() + " = " + col.getAfterValue());
}
 }
 @Override
 public void formatOp(DsTransaction tx,
DsOperation op,
TableMetaData tMeta,
PrintWriter out)
 {
 // not used...
 }
}

The formatter defines methods for either formatting complete transactions (after they
are committed) or individual operations (as they are received, before the commit). If
the formatter is in operation mode, then formatOp(...) is called; otherwise, formatTx(...)
is called at transaction commit.

To compile and use this custom formatter, include the Oracle GoldenGate for Java jars
in the classpath and place the compiled .class files in gg_install_dir/dirprm:

javac -d gg_install_dir/dirprm
-classpath ggjava/ggjava.jar MyFormatter.java

Custom Formatting

Developing Custom Filters, Formatters, and Handlers 16-3

The resulting class files are located in resources/classes (in correct package
structure):

gg_install_dir/dirprm/com/mycompany/MyFormatter.class

Alternatively, the custom classes can be put into a jar; in this case, either include the jar
file in the JVM class path via the user exit properties (using java.class.path in the
jvm.bootoptions property), or by setting the Java application properties file to include
your custom jar:

set properties on 'one'
gg.handler.one.type=file
gg.handler.one.format=com.mycompany.MyFormatter
gg.handler.one.file=output.xml
gg.classpath=/path/to/my.jar,/path/to/directory/of/jars/*

16.2.2 Using a Velocity Template
As an alternative to writing Java code for custom formatting, Velocity templates can be
a good alternative to quickly prototype formatters. For example, the following
template could be specified as the format of a JMS or file handler:

Transaction: numOps='$tx.size' ts='$tx.timestamp'
#for each($op in $tx)
operation: $op.sqlType, on table "$op.tableName":
#for each($col in $op)
$op.tableName, $col.meta.columnName = $col.value
#end
#end

If the template were named sample.vm, it could be placed in the classpath, for
example:

gg_install_dir/dirprm/sample.vm

Note: If using Velocity templates, the file name must end with the
suffix .vm; otherwise the formatter is presumed to be a Java class.

Update the Java application properties file to use the template:

set properties on 'one'
gg.handler.one.type=file
gg.handler.one.format=sample.vm
gg.handler.one.file=output.xml

When modifying templates, there is no need to recompile any Java source; simply save
the template and re-run the Java application. When the application is run, the
following output would be generated (assuming a table named SCHEMA.SOMETABLE,
with columns TESTCOLA and TESTCOLB):

Transaction: numOps='3' ts='2008-12-31 12:34:56.000'
operation: UPDATE, on table "SCHEMA.SOMETABLE":
SCHEMA.SOMETABLE, TESTCOLA = value 123
SCHEMA.SOMETABLE, TESTCOLB = value abc
operation: UPDATE, on table "SCHEMA.SOMETABLE":
SCHEMA.SOMETABLE, TESTCOLA = value 456
SCHEMA.SOMETABLE, TESTCOLB = value def
operation: UPDATE, on table "SCHEMA.SOMETABLE":
SCHEMA.SOMETABLE, TESTCOLA = value 789

Coding a Custom Handler in Java

16-4 Administering Oracle GoldenGate Adapters

SCHEMA.SOMETABLE, TESTCOLB = value ghi

16.3 Coding a Custom Handler in Java
A custom handler can be implemented by extending AbstractHandler:

import com.goldengate.atg.datasource.*;
import static com.goldengate.atg.datasource.GGDataSource.Status;
public class SampleHandler extends AbstractHandler {
 @Override
 public void init(DsConfiguration conf, DsMetaData metaData) {
 super.init(conf, metaData);
 // ... do additional config...
 }
 @Override
 public Status operationAdded(DsEvent e, DsTransaction tx, DsOperation op)
{ ... }
 @Override
 public Status transactionCommit(DsEvent e, DsTransaction tx) { ... }
 @Override
 public Status metaDataChanged(DsEvent e, DsMetaData meta) { }
 @Override
 public void destroy() { /* ... do cleanup ... */ }
 @Override
 public String reportStatus() { return "status report..."; }
}

When a transaction is processed from the Extract, the order of calls into the handler is
as follows:

1. Initialization:

■ First, the handler is constructed.

■ Next, all the "setters" are called on the instance with values from the property
file.

■ Finally, the handler is initialized; the init(...) method is called before any
transactions are received. It is important that the init(...) method call
super.init(...) to properly initialize the base class.

2. Metadata is received. If the user exit is processing an operation on a table not yet
seen during this run, a metadata event is fired, and the metadataChanged(...)
method is called. Typically, there is no need to implement this method. The
DsMetaData is automatically updated with new data source metadata as it is
received.

3. A transaction is started. A transaction event is fired, causing the
transactionBegin(...) method on the handler to be invoked (not shown). This is
typically not used, since the transaction has zero operations at this point.

4. Operations are added to the transaction, one after another. This causes the
operationAdded(...) method to be called on the handler for each operation
added. The containing transaction is also passed into the method, along with the
data source metadata (containing all table metadata seen thus far). Note that the
transaction has not yet been committed, and could be aborted before the commit is
received.

Coding a Custom Handler in Java

Developing Custom Filters, Formatters, and Handlers 16-5

Each operation contains the column values from the transaction (possibly just the
changed values, if Extract is processing with compressed updates.) The column
values may contain both before and after values.

5. The transaction is committed. This causes the transactionCommit(...) method
to be called.

6. Periodically, reportStatus may be called; it is also called at process shutdown.
Typically, this displays the statistics from processing (number of
operations/transactions processed, etc).

Below is a complete example of a simple printer handler, which just prints out very
basic event information for transactions, operations and metadata. Note that the
handler also has a property myoutput for setting the output file name; this can be set in
the Java application properties file as follows:

gg.handlerlist=sample
set properties on 'sample'
gg.handler.sample.type=sample.SampleHandler
gg.handler.sample.myoutput=out.txt

To use the custom handler,

1. Compile the class

2. Include the class in the application classpath,

3. Add the handler to the list of active handlers in the Java application properties file.

To compile the handler, include the Oracle GoldenGate for Java jars in the classpath
and place the compiled .class files in gg_install_dir/javaue/resources/classes:

javac -d gg_install_dir/dirprm
-classpath ggjava/ggjava.jar SampleHandler.java

The resulting class files would be located in resources/classes, in correct package
structure, such as:

gg_install_dir/dirprm/sample/SampleHandler.class

Note: For any Java application development beyond "hello world"
examples, either Ant or Maven would be used to compile, test and
package the application. The examples showing javac are for
illustration purposes only.

Alternatively, custom classes can be put into a jar and included in the class path. Either
include the custom jar file(s) in the JVM class path via the user exit properties (using
java.class.path in the jvm.bootoptions property), or by setting the Java application
properties file to include your custom jar:

set properties on 'one'
gg.handler.one.type=sample.SampleHandler
gg.handler.one.myoutput=out.txt
gg.classpath=/path/to/my.jar,/path/to/directory/of/jars/*

The classpath property can be set on any handler to include additional individual jars,
a directory (which would contain resources or unjarred class files) or a whole directory
of jars. To include a whole directory of jars, use the Java 6 style syntax:

c:/path/to/directory/* (or on Unix: /path/to/directory/*)

Additional Resources

16-6 Administering Oracle GoldenGate Adapters

Only the wildcard * can be specified; a file pattern cannot be used. This automatically
matches all files in the directory ending with the .jar suffix. To include multiple jars
or multiple directories, you can use the system-specific path separator (on Unix, the
colon and on Windows the semicolon) or you can use platform-independent commas,
as shown above.

If the handler requires many properties to be set, just include the property in the
parameter file, and your handler's corresponding "setter" will be called. For example:

gg.handler.one.type=com.mycompany.MyHandler
gg.handler.one.myOutput=out.txt
gg.handler.one.myCustomProperty=12345

The above example would invoke the following methods in the custom handler:

public void setMyOutput(String s) {
 // use the string...
} public void setMyCustomProperty(int j) {
 // use the int...
}

Any standard Java type may be used, such as int, long, String, boolean, etc. For custom
types, you may create a custom property editor to convert the String to your custom
type.

16.4 Additional Resources
There is Javadoc available for the Java API. The Javadoc has been intentionally
reduced to a set of core packages, classes and interfaces in order to only distribute the
relevant interfaces and classes useful for customizing and extension.

In each package, some classes have been intentionally omitted for clarity. The
important classes are:

■ com.goldengate.atg.datasource.DsTransaction: represents a database
transaction. A transaction contains zero or more operations.

■ com.goldengate.atg.datasource.DsOperation: represents a database operation
(insert, update, delete). An operation contains zero or more column values
representing the data-change event. Columns indexes are offset by zero in the Java
API.

■ com.goldengate.atg.datasource.DsColumn: represents a column value. A column
value is a composite of a before and an after value. A column value may be
'present' (having a value or be null) or 'missing' (is not included in the source trail).

– com.goldengate.atg.datasource.DsColumnComposite is the composite

– com.goldengate.atg.datasource.DsColumnBeforeValue is the column value
before the operation (this is optional, and may not be included in the
operation)

– com.goldengate.atg.datasource.DsColumnAfterValue is the value after the
operation

■ com.goldengate.atg.datasource.meta.DsMetaData: represents all database
metadata seen; initially, the object is empty. DsMetaData contains a hash map of
zero or more instances of TableMetaData, using the TableName as a key.

■ com.goldengate.atg.datasource.meta.TableMetaData: represents all metadata
for a single table; contains zero or more ColumnMetaData.

Additional Resources

Developing Custom Filters, Formatters, and Handlers 16-7

■ com.goldengate.atg.datasource.meta.ColumnMetaData: contains column names
and data types, as defined in the database and/or in the Oracle GoldenGate source
definitions file.

See the Javadoc for additional details.

Additional Resources

16-8 Administering Oracle GoldenGate Adapters

Part V
Part V Troubleshooting the Oracle GoldenGate

Adapters

This part of the book provides information on troubleshooting problems with the
Oracle GoldenGate Adapters.

Part I contains the following chapters:

■ Section 17, "Troubleshooting the Flat File Adapter."

■ Section 18, "Troubleshooting the Java Adapters."

17

Troubleshooting the Flat File Adapter 17-1

17Troubleshooting the Flat File Adapter

[18] This chapter outlines steps you can take to solve problems with Oracle GoldenGate
Adaptors for Flat Files. It lists the error checks to perform. If you do not succeed in
identifying the problem, submit a support ticket or contact Oracle Support.

This chapter includes the following sections:

■ Checking Oracle GoldenGate

■ Checking the Configuration

■ Checking the Log File

■ Contacting Oracle Support

17.1 Checking Oracle GoldenGate
Before checking for specific issues related to the Oracle GoldenGate for Flat File,
ensure that Oracle GoldenGate is configured correctly and any standard Oracle
GoldenGate errors have been resolved. For further information, see the Oracle
GoldenGate Troubleshooting and Performance Tuning Guide.

17.2 Checking the Configuration
Check the following:

■ Is the shared library (.so or .dll) in the Extract parameter file correct? Is it specified
in the path and accessible?

■ Is the correct SOURCEDEFS file specified in the Extract parameter file? Is it in the
specified path and accessible?

■ Does the SOURCEDEFS file contain all the necessary tables?

■ Is the ffwriter.properties user exit properties file in the Oracle GoldenGate
install directory, or does it have the correct name and path specified in the GG_
USEREXIT_PROPFILE environment variable?

■ Do the output directories specified in the user exit properties file exist?

■ Are file permissions correct to write to that directory?

17.3 Checking the Log File
Check the log file (logname_yyyymmdd.log). By default this file will be in the dirrpt
subdirectory.

Contacting Oracle Support

17-2 Administering Oracle GoldenGate Adapters

■ Does the user exit properties file parse successfully? Are any invalid properties
mentioned in the log file?

■ Are any other errors or warnings in the log?

17.4 Contacting Oracle Support
If the problem is still not resolved:

■ Set log.level=DEBUG

■ Restart and save the log file

Before contacting Oracle Support, be prepared to send the log file, source trail file,
source definitions file, user exit properties file, and Extract parameter file, together
with any data files that have been written.

18

Troubleshooting the Java Adapters 18-1

18Troubleshooting the Java Adapters

[19] This chapter outlines steps you can take to solve problems with Oracle GoldenGate
Adaptors for Java. It lists the error checks you should perform. If you do not succeed
in identifying the problem, submit a support ticket or contact Oracle Support.

This chapter includes the following sections:

■ Checking for Errors

■ Recovering after an Abend

■ Reporting Issues

18.1 Checking for Errors
There are two types of errors that can occur in the operation of Oracle GoldenGate for
Java:

■ The Extract process running the user exit or VAM does not start or abends

■ The process runs successfully, but the data is incorrect or nonexistent

If the Extract process does not start or abends, check the error messages in order from
the beginning of processing through to the end:

1. Check the Oracle GoldenGate event log for errors, and view the Extract report file:

GGSCI> VIEW GGSEVT
GGSCI> VIEW REPORT {extract name}

2. Check the applicable log file.

For the user exit:

■ Look at the last messages reported in the log file for the user exit library. The
file name is the log file prefix (log.logname) set in the property file and the
current date.

shell> more {log.logname}_{yyyymmdd}.log

Note: This is only the log file for the shared library, not the Java
application.

3. If the user exit or VAM was able to launch the Java runtime, then a log4j log file
will exist.

Recovering after an Abend

18-2 Administering Oracle GoldenGate Adapters

The name of the log file is defined in your log4j.properties file. By default, the log
file name is ggjava-version-log4j.log, where version is the version number of
the jar file being used. For example:

shell> more ggjava-*log4j.log

To set a more detailed level of logging for the Java application, either:

■ Edit the current log4j properties file to log at a more verbose level or

■ Re-use one of the existing log4j configurations by editing properties file:

jvm.bootoptions=-Djava.class.path=ggjava/ggjava.jar
-Dlog4j.configuration=debug-log4j.properties –Xmx512m

These pre-configured log4j property files are found in the class path, and are
installed in:

./ggjava/resources/classes/*log4j.properties

4. If one of these log files does not reveal the source of the problem, run the Extract
process directly from the shell (outside of GGSCI) so that stderr and stdout can
more easily be monitored and environmental variables can be verified. For
example:

shell> EXTRACT PARAMFILE dirprm/javaue.prm

If the process runs successfully, but the data is incorrect or nonexistent, check for
errors in any custom filter, formatter or handler you have written for the user exit.

To restart the user exit Extract from the beginning of a trail, see Section 13.2,
"Restarting the Application at the Beginning of a Trail."

18.2 Recovering after an Abend
The Extract parameter RECOVERYOPTIONS defaults to APPENDMODE for release 10 and later
trails. In append mode, Extract writes a recovery marker to the trail when it abends.
When the Extract restarts and encounters the recovery marker, it requests a rollback of
the incomplete transaction if local transactions are enabled. If local transactions are not
enabled, a warning message is issued. Local transactions are enabled unless the
property gg.handler.{name}.localTX is explicitly set to false.

18.3 Reporting Issues
If you have a support account for Oracle GoldenGate, submit a support ticket. Please
include:

■ Operating system and Java versions

The version of the Java Runtime Environment can be displayed by:

$ java -version

■ Configuration files:

– Parameter file for the Extract running the user exit

– All properties files used, including any JMS or JNDI properties files

– Velocity templates for the user exit

■ Log files:

Reporting Issues

Troubleshooting the Java Adapters 18-3

In the Oracle GoldenGate install directory, all .log files: the Java log4j log files
and the user exit or VAM log file.

Reporting Issues

18-4 Administering Oracle GoldenGate Adapters

Part VI
Part VI Appendix

The appendix provides information on targeted uses of the Oracle GoldenGate
Adapters and lists samples that are available with the installation.

Part VI contains the following appendices:

■ Adapter Examples

A

Adapter Examples A-1

AAdapter Examples

[20] This appendix lists the examples that are included with the Oracle GoldenGate
Adapter installation and explains examples for some use cases.

This appendix includes the following sections:

■ List of Included Examples

■ Configuring Logging

A.1 List of Included Examples
The following examples are located in the AdaptersExamples subdirectory of the
installation location.

Flat File Writer
■ Using the Oracle GoldenGate Flat File Adapter to convert Oracle GoldenGate trail

data to text files.

Message Delivery
■ Using the Oracle GoldenGate Java Adapter to send JMS messages with a custom

message format.

■ Using the Oracle GoldenGate Java Adapter to send JMS messages with custom
message header properties.

Message Capture
■ Using the Oracle GoldenGate Java Adapter to process JMS messages, creating an

Oracle GoldenGate trail.

Java User Exit API
■ Using the Oracle GoldenGate Java Adapter API to write a custom event handler.

A.2 Configuring Logging
This example explains how to configure logging for release 11.2.1 or later Oracle
GoldenGate Adapters user exits. The first section configures a typical Extract pump,
which triggers the logging defaults. The second section explains how to customize the
logging implementation.

Configuring Logging

A-2 Administering Oracle GoldenGate Adapters

A.2.1 Example Oracle GoldenGate Java User Exit Defaults
The following Oracle GoldenGate Java user exit Extract example configuration triggers
the logging defaults.

Extract Parameter File
EXTRACT jms1
SOURCEDEFS dirdef/aa.def
CUSEREXIT libggjava_ue.so CUSEREXIT PASSTHRU INCLUDEUPDATEBEFORES
GETUPDATEBEFORES
TABLE GG.*;

Properties file
The associated property file is named for the Extract group, jms1.properties. All JNI
properties have default values and thus do not need to be specified, so this is a
complete properties file.

gg.handlerlist=my_jms

gg.handler.my_jms.type=jms
gg.handler.my_jms.destination=dynamicQueues/testQ1
gg.handler.my_jms.format=xml2
gg.handler.my_jms.mode=op
gg.handler.my_jms.connectionFactory=ConnectionFactory

gg.java.naming.provider.url=tcp://localhost:61616

gg.java.naming.factory.initial=org.apache.activemq.jndi.ActiveMQInitialContextFact
ory

gg.classpath=/opt/activemq/activemq-all.jar

The Resulting Log File
The log file will be created when you add and start the Extract in GGSCI, For example:

ggsci> ADD EXTRACT jms1, EXTRAILSOURCE dirdat/aa
ggsci> START MGR
ggsci> START EXTRACT jms1

The log file is written to the same directory as the report file. It is named for the Extract
group. For Example:

$ ls -l dirrpt/
total 48
-rw-rw-rw- 1 1685 Apr 16 20:38 MGR.rpt
-rw-rw-rw- 1 1685 Apr 16 20:38 jms1.rpt
-rw-rw-rw- 1 21705 Apr 19 13:59 jms1_info_0.log.0
-rw-rw-rw- 1 0 Apr 19 13:58 jms1_info_0.log.0.lck

A.2.2 Customizing Logging
This example describes how to customize the logging for 11.2.1 and later Oracle
GoldenGate user exit adapters by using one of two methods:

■ Use Java adapter user exit properties

gg.log={ jdk | logback | log4j }
gg.log.level={ info | debug | trace }
gg.log.classpath={ classpath for logging }

Configuring Logging

Adapter Examples A-3

If the log implementation property gg.log is not set, the jdk option defaults. This
specifies that java.util.logging (JUL) is used. The log level defaults to info. To
customize this, you can set the gg.log to either:

■ log4j - This automatically configures the class path to include the Log4j and
appropriate slf4j-log4j binding.

■ logback - To use the logback option, the logback jars must be manually
downloaded and copied into the install directory. The class path is still
automatically configured as long as the jars are copied into the predefined
location. See ggjava/resources/lib/optional/logback/ReadMe-logback.txt
for more information.

■ Use JVM options

Instead of using default logging or setting logging properties, jvm.bootoptions
can be used to define the logging. To do this, set jvm.bootoptions to include the
system property that defines the configuration file by doing one of the following:

■ Specify a log4j configuration file:

jvm.bootoptions=-Dlog4j.configuration=my-log4j.properties

This implicitly sets gg.log to log4j as the type of logging implementation and
appends slf4j-log4j12 binding to the class path.

■ Specify a java.util.logging properties file or class:

jvm.bootoptions=-Djava.util.logging.config.file=my-logging.properties

This implicitly sets gg.log=jdk, which specifics java.util.logging (JUL). It
appends slf4j-jdk14 binding to the class path.

■ First, download and copy logback-core-jar and logback-classic-jar into
ggjava/resources/lib/optional/logback. Then specify a logback
configuration file:

jvm.bootoptions=-Dlogback.configuationFile=my-logback.xml

This implicitly sets gg.log=logback and appends logback-classic and
logback-core to the class path.

These are implicit settings of gg.log and gg.log.classpath that will be
overridden by an explicit setting of either of these properties in the property file.
The logging class path will also be overridden by setting the JVM class path to
include specific jars, such as:

jvm.bootoptions=...-Djava.class.path=mypath/my1.jar:mypath2/my2.jar...

Note: Setting the JVM class path to include specific jars may cause
duplicate, possibly conflicting, implementations in the class path.

Configuring Logging

A-4 Administering Oracle GoldenGate Adapters

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Understanding Oracle GoldenGate Adapters
	1 Understanding Oracle GoldenGate Adapters
	1.1 Adapters Overview
	1.1.1 Oracle GoldenGate
	1.1.2 Adapter Integration Options
	1.1.2.1 Capturing Transactions to a Trail
	1.1.2.2 Applying Transactions from a Trail

	1.2 Using Oracle GoldenGate Adapters Properties
	1.2.1 Values in Property Files
	1.2.2 Location of Property Files
	1.2.3 Using Comments in the Property File
	1.2.4 Variables in Property Names

	1.3 Oracle GoldenGate Documentation

	2 Introducing the File Writer
	2.1 Overview of the Adapter for Flat Files
	2.2 Typical Configuration

	3 Introducing the Java Adapter
	3.1 Oracle GoldenGate VAM Message Capture
	3.1.1 Message Capture Configuration Options
	3.1.2 Typical Configuration

	3.2 Oracle GoldenGate Java User Exit
	3.2.1 Delivery Configuration Options

	4 Configuring Logging
	4.1 Oracle GoldenGate Adapters Default Logging
	4.1.1 Default Implementation Type
	4.1.2 Default Message Logging
	4.1.2.1 Logging Problems
	4.1.2.2 Log File Name

	4.2 Changing the Default Logging
	4.2.1 Changing the Logging Type
	4.2.2 Changing the Logging Configuration
	4.2.3 Enabling Debug

	Part II Creating Flat Files
	5 Configuring the Flat File Adapter
	5.1 Configuring the Adapter for Writing Flat Files
	5.1.1 User Exit Extract Parameters
	5.1.2 User Exit Properties

	5.2 Recommended Data Integration Approach
	5.3 Producing Data Files

	6 Using the Flat File Adapter
	6.1 Working with Control Files
	6.2 Working with Statistical Summaries
	6.3 Managing Oracle GoldenGate processes
	6.4 Trail Recovery Mode
	6.5 Locating Error Messages

	7 Using Predefined Defaults and Formats
	7.1 Overview of Predefined Defaults and Formats
	7.1.1 Default Properties
	7.1.2 Specifying Consumer Formats

	7.2 Siebel Remote Format
	7.3 Ab Initio Format
	7.4 Netezza Format
	7.5 Greenplum Format
	7.6 Comma Delimited Format

	8 Flat File Properties
	8.1 User Exit Properties
	8.1.1 Logging Properties
	8.1.1.1 goldengate.log.logname
	8.1.1.2 goldengate.log.level
	8.1.1.3 goldengate.log.tostdout
	8.1.1.4 goldengate.log.tofile

	8.1.2 General Properties
	8.1.2.1 goldengate.flatfilewriter.writers
	8.1.2.2 goldengate.userexit.buffertxs
	8.1.2.3 goldengate.userexit.chkptprefix
	8.1.2.4 goldengate.userexit.chkpt.ontxend
	8.1.2.5 goldengate.userexit.datetime.removecolon
	8.1.2.6 goldengate.userexit.timestamp
	8.1.2.7 goldengate.userexit.datetime.maxlen
	8.1.2.8 goldengate.userexit.utf8mode

	8.2 File Writer Properties
	8.2.1 Output Format Properties
	8.2.1.1 writer.mode
	8.2.1.2 writer.groupcols

	8.2.2 Output File Properties
	8.2.2.1 writer.files.onepertable
	8.2.2.2 writer.files.oneperopcode
	8.2.2.3 writer.files.prefix
	8.2.2.4 writer.files.data.rootdir, writer.files.data.ext, writer.files.data.tmpext
	8.2.2.5 writer.files.control.use, writer.files.control.rootdir, writer.files.control.ext
	8.2.2.6 writer.files.control.delim.chars/code, writer.files.control.eof.chars/code
	8.2.2.7 writer.files.formatstring
	8.2.2.8 writer.files.data.bom.code
	8.2.2.9 writer.files.includeprocessname
	8.2.2.10 writer.files.useownerfiles

	8.2.3 File Rollover Properties
	8.2.3.1 writer.files.data.rollover.time
	8.2.3.2 writer.files.data.rollover.size
	8.2.3.3 writer.files.data.norecords.timeout
	8.2.3.4 writer.files.rolloveronshutdown
	8.2.3.5 writer.files.data.rollover.timetype
	8.2.3.6 writer.files.data.rollover.multiple
	8.2.3.7 writer.files.data.rollover.attime
	8.2.3.8 writer.writebuffer.size

	8.2.4 Data Content Properties
	8.2.4.1 writer.rawchars
	8.2.4.2 writer.includebefores
	8.2.4.3 writer.afterfirst
	8.2.4.4 writer.includecolnames
	8.2.4.5 writer.omitvalues
	8.2.4.6 writer.diffsonly
	8.2.4.7 writer.omitplaceholders
	8.2.4.8 Metadata Columns
	8.2.4.9 Valid Metadata Columns
	8.2.4.10 Using Metadata Columns
	8.2.4.11 writer.metacols
	8.2.4.12 writer.metacols.metacol_name.fixedlen
	8.2.4.13 writer.metacols.metacol_name.column
	8.2.4.14 writer.metacols.token_name.novalue.chars | writer.metacols.token_ name.novalue.code
	8.2.4.15 writer.metacols.metacol_name.fixedjustify
	8.2.4.16 writer.metacols.metacol_name.fixedpadchar.chars | writer.metacols.metacol_name.fixedpadchar.code
	8.2.4.17 writer.metacols.opcode.insert.chars | writer.metacols.opcode.insert.code
	8.2.4.18 writer.metacols.opcode.update.chars | writer.metacols.opcode.update.code
	8.2.4.19 writer.metacols.opcode.delete.chars | writer.metacols.opcode.delete.code
	8.2.4.20 writer.metacols.opcode.updatepk.chars | writer.metacols.opcode.updatepk.code
	8.2.4.21 writer.metacols.txind.begin.chars | writer.metacols.txind.begin.code
	8.2.4.22 writer.metacols.txind.middle.chars | writer.metacols.txind.middle.code
	8.2.4.23 writer.metacols.txind.end.chars | writer.metacols.txind.end.code
	8.2.4.24 writer.metacols.txind.whole.chars | writer.metacols.txind.whole.code
	8.2.4.25 writer.metacols.position.format
	8.2.4.26 writer.metacols.colname.omit
	8.2.4.27 writer.begintx.metacols, writer.endtx.metacols

	8.2.5 DSV Specific Properties
	8.2.5.1 writer.dsv.nullindicator.chars | writer.dsv.nullindicator.code
	8.2.5.2 writer.dsv.fielddelim.chars | writer.dsv.fielddelim.code
	8.2.5.3 writer.dsv.linedelim.chars | writer.dsv.linedelim.code
	8.2.5.4 writer.dsv.quote.chars | writer.dsv.quote.code
	8.2.5.5 writer.dsv.quotes.policy
	8.2.5.6 writer.dsv.quotes.datatypes
	8.2.5.7 writer.dsv.nullindicator.escaped.chars | writer.dsv.nullindicator.escaped.code
	8.2.5.8 writer.dsv.fielddelim.escaped.chars | writer.dsv.fielddelim.escaped.code
	8.2.5.9 writer.dsv.linedelim.escaped.chars | writer.dsv.linedelim.escaped.code
	8.2.5.10 writer.dsv.quotes.escaped.chars | writer.dsv.quotes.escaped.code
	8.2.5.11 writer.dsv.onecolperline
	8.2.5.12 writer.dsv.quotealways

	8.2.6 LDV Specific Properties
	8.2.6.1 writer.ldv.vals.missing.chars | writer.ldv.vals.missing.code
	8.2.6.2 writer.ldv.vals.present.chars | writer.ldv.vals.present.code
	8.2.6.3 writer.ldv.vals.null.chars | writer.ldv.vals.null.code
	8.2.6.4 writer.ldv.lengths.record.mode,writer. ldv.lengths.field.mode
	8.2.6.5 writer.ldv.lengths.record.length, writer.ldv.lengths.field.length

	8.2.7 Statistics and Reporting
	8.2.7.1 writer.statistics.toreportfile
	8.2.7.2 writer.statistics.period
	8.2.7.3 writer.statistics.time
	8.2.7.4 writer.statistics.tosummaryfile
	8.2.7.5 writer.statistics.summary.fileformat
	8.2.7.6 writer.statistics.overall
	8.2.7.7 writer.statistics.summary.delimiter.chars/code, writer.statistics.summary.eol.chars/code
	8.2.7.8 writer.statistics.summary.extension

	Part III Capturing JMS Messages
	9 Configuring Message Capture
	9.1 Configuring the VAM Extract
	9.1.1 Adding the Extract
	9.1.2 Configuring the Extract Parameters
	9.1.3 Configuring Message Capture

	9.2 Connecting and Retrieving the Messages
	9.2.1 Connecting to JMS
	9.2.2 Retrieving Messages
	9.2.3 Completing the Transaction

	10 Parsing the Message
	10.1 Parsing Overview
	10.1.1 Parser Types
	10.1.2 Source and Target Data Definitions
	10.1.3 Required Data
	10.1.3.1 Transaction Identifier
	10.1.3.2 Sequence Identifier
	10.1.3.3 Timestamp
	10.1.3.4 Table Name
	10.1.3.5 Operation Type
	10.1.3.6 Column Data

	10.1.4 Optional Data
	10.1.4.1 Transaction Indicator
	10.1.4.2 Transaction Name
	10.1.4.3 Transaction Owner

	10.2 Fixed Width Parsing
	10.2.1 Header
	10.2.1.1 Specifying Compound Table Names
	10.2.1.2 Specifying timestamp Formats
	10.2.1.3 Specifying the Function

	10.2.2 Header and Record Data Type Translation
	10.2.3 Key identification

	10.3 Delimited parsing
	10.3.1 Metadata Columns
	10.3.2 Parsing Properties
	10.3.2.1 Properties to Describe Delimiters
	10.3.2.2 Properties to Describe Values
	10.3.2.3 Properties to Describe Date and Time

	10.3.3 Parsing Steps

	10.4 XML Parsing
	10.4.1 Styles of XML
	10.4.2 XML Parsing Rules
	10.4.3 XPath Expressions
	10.4.3.1 Supported Constructs:
	10.4.3.2 Supported Expressions
	10.4.3.3 Obtaining Data Values

	10.4.4 Other Value Expressions
	10.4.5 Transaction Rules
	10.4.6 Operation Rules
	10.4.7 Column Rules
	10.4.8 Overall Rules Example

	10.5 Source definitions Generation Utility

	11 Message Capture Properties
	11.1 Logging and Connection Properties
	11.1.1 Logging Properties
	11.1.1.1 gg.log
	11.1.1.2 gg.log.level
	11.1.1.3 gg.log.file
	11.1.1.4 gg.log.classpath

	11.1.2 JMS Connection Properties
	11.1.2.1 jvm.boot options
	11.1.2.2 jms.report.output
	11.1.2.3 jms.report.time
	11.1.2.4 jms.report.records
	11.1.2.5 jms.id
	11.1.2.6 jms.destination
	11.1.2.7 jms.connectionFactory
	11.1.2.8 jms.user, jms.password

	11.1.3 JNDI Properties

	11.2 Parser Properties
	11.2.1 Setting the Type of Parser
	11.2.1.1 parser.type

	11.2.2 Fixed Parser Properties
	11.2.2.1 fixed.schematype
	11.2.2.2 fixed.sourcedefs
	11.2.2.3 fixed.copybook
	11.2.2.4 fixed.header
	11.2.2.5 fixed.seqid
	11.2.2.6 fixed.timestamp
	11.2.2.7 fixed.timestamp.format
	11.2.2.8 fixed.txid
	11.2.2.9 fixed.txowner
	11.2.2.10 fixed.txname
	11.2.2.11 fixed.optype
	11.2.2.12 fixed.optype.insertval
	11.2.2.13 fixed.optype.updateval
	11.2.2.14 fixed.optype.deleteval
	11.2.2.15 fixed.table
	11.2.2.16 fixed.schema
	11.2.2.17 fixed.txind
	11.2.2.18 fixed.txind.beginval
	11.2.2.19 fixed.txind.middleval
	11.2.2.20 fixed.txind.endval
	11.2.2.21 fixed.txind.wholeval

	11.2.3 Delimited Parser Properties
	11.2.3.1 delim.sourcedefs
	11.2.3.2 delim.header
	11.2.3.3 delim.seqid
	11.2.3.4 delim.timestamp
	11.2.3.5 delim.timestamp.format
	11.2.3.6 delim.txid
	11.2.3.7 delim.txowner
	11.2.3.8 delim.txname
	11.2.3.9 delim.optype
	11.2.3.10 delim.optype.insertval
	11.2.3.11 delim.optype.updateval
	11.2.3.12 delim.optype.deleteval
	11.2.3.13 delim.schemaandtable
	11.2.3.14 delim.schema
	11.2.3.15 delim.table
	11.2.3.16 delim.txind
	11.2.3.17 delim.txind.beginval
	11.2.3.18 delim.txind.middleval
	11.2.3.19 delim.txind.endval
	11.2.3.20 delim.txind.wholeval
	11.2.3.21 delim.fielddelim
	11.2.3.22 delim.linedelim
	11.2.3.23 delim.quote
	11.2.3.24 delim.nullindicator
	11.2.3.25 delim.fielddelim.escaped
	11.2.3.26 delim.linedelim.escaped
	11.2.3.27 delim.quote.escaped
	11.2.3.28 delim.nullindicator.escaped
	11.2.3.29 delim.hasbefores
	11.2.3.30 delim.hasnames
	11.2.3.31 delim.afterfirst
	11.2.3.32 delim.isgrouped
	11.2.3.33 delim.dateformat | delim.dateformat.table | delim.dateform.table.column

	11.2.4 XML Parser Properties
	11.2.4.1 xml.sourcedefs
	11.2.4.2 xml.rules
	11.2.4.3 rulename.type
	11.2.4.4 rulename.match
	11.2.4.5 rulename.subrules
	11.2.4.6 txrule.timestamp
	11.2.4.7 txrule.timestamp.format
	11.2.4.8 txrule.seqid
	11.2.4.9 txrule.txid
	11.2.4.10 txrule.txowner
	11.2.4.11 txrule.txname
	11.2.4.12 oprule.timestamp
	11.2.4.13 oprule.timestamp.format
	11.2.4.14 oprule.seqid
	11.2.4.15 oprule.txid
	11.2.4.16 oprule.txowner
	11.2.4.17 oprule.txname
	11.2.4.18 oprule.schemandtable
	11.2.4.19 oprule.schema
	11.2.4.20 oprule.table
	11.2.4.21 oprule.optype
	11.2.4.22 oprule.optype.insertval
	11.2.4.23 oprule.optype.updateval
	11.2.4.24 oprule.optype.deleteval
	11.2.4.25 oprule.txind
	11.2.4.26 oprule.txind.beginval
	11.2.4.27 oprule.txind.middleval
	11.2.4.28 oprule.txind.endval
	11.2.4.29 oprule.txind.wholeval
	11.2.4.30 colrule.name
	11.2.4.31 colrule.index
	11.2.4.32 colrule.value
	11.2.4.33 colrule.isnull
	11.2.4.34 colrule.ismissing
	11.2.4.35 colrule.before.value
	11.2.4.36 colrule.before.isnull
	11.2.4.37 colrule.before.ismissing
	11.2.4.38 colrule.after.value
	11.2.4.39 colrule.after.isnull
	11.2.4.40 colrule.after.ismissing

	Part IV Delivering Java Messages
	12 Configuring Message Delivery
	12.1 Configure the JRE in the User Exit Properties File
	12.2 Configure a Data Pump to Run the User Exit
	12.3 Configure the Java Handlers

	13 Using the Java User Exit
	13.1 Starting the Application
	13.2 Restarting the Application at the Beginning of a Trail

	14 Configuring Event Handlers
	14.1 Specifying Event Handlers
	14.2 JMS Handler
	14.3 File Handler
	14.4 Custom Handlers
	14.5 Formatting the Output
	14.6 Reporting

	15 Message Delivery Properties
	15.1 User Exit Properties
	15.1.1 Logging Properties
	15.1.1.1 gg.log
	15.1.1.2 gg.log.level
	15.1.1.3 gg.log.file
	15.1.1.4 gg.log.classpath

	15.1.2 General Properties
	15.1.2.1 goldengate.userexit.writers
	15.1.2.2 goldengate.userexit.chkptprefix
	15.1.2.3 goldengate.userexit.nochkpt
	15.1.2.4 goldengate.userexit.usetargetcols

	15.1.3 JVM boot Options
	15.1.3.1 jvm.bootoptions

	15.1.4 Statistics and Reporting
	15.1.4.1 jvm.stats.display
	15.1.4.2 jvm.stats.full
	15.1.4.3 jvm.stats.time | jvm.stats.numrecs

	15.2 Java Application Properties
	15.2.1 Properties for All Handlers
	15.2.1.1 gg.handlerlist
	15.2.1.2 gg.handler.name.type

	15.2.2 Properties for Formatted Output
	15.2.2.1 gg.handler.name.format
	15.2.2.2 gg.handler.name.includeTables
	15.2.2.3 gg.handler.name.excludeTables
	15.2.2.4 gg.handler.name.mode, gg.handler.name.format.mode

	15.2.3 Properties for CSV and Fixed Format Output
	15.2.3.1 gg.handler.name.format.delim
	15.2.3.2 gg.handler.name.format.quote
	15.2.3.3 gg.handler.name.format.metacols
	15.2.3.4 gg.handler.name.format.missingColumnChar
	15.2.3.5 gg.handler.name.format.presentColumnChar
	15.2.3.6 gg.handler.name.format.nullColumnChar
	15.2.3.7 gg.handler.name.format.beginTxChar
	15.2.3.8 gg.handler.name.format.middleTxChar
	15.2.3.9 gg.handler.name.format.endTxChar
	15.2.3.10 gg.handler.name.format.wholeTxChar
	15.2.3.11 gg.handler.name.format.insertChar
	15.2.3.12 gg.handler.name.format.updateChar
	15.2.3.13 gg.handler.name.format.deleteChar
	15.2.3.14 gg.handler.name.format.endOfLine
	15.2.3.15 gg.handler.name.format.justify
	15.2.3.16 gg.handler.name.format.includeBefores

	15.2.4 File Writer Properties
	15.2.4.1 gg.handler.name.file
	15.2.4.2 gg.handler.name.append
	15.2.4.3 gg.handler.name.rolloverSize

	15.2.5 JMS Handler Properties
	15.2.5.1 Standard JMS Settings
	15.2.5.1.1 gg.handler.name.destination
	15.2.5.1.2 gg.handler.name.user
	15.2.5.1.3 gg.handler.name.password
	15.2.5.1.4 gg.handler.name.queueOrTopic
	15.2.5.1.5 gg.handler.name.persistent
	15.2.5.1.6 gg.handler.name.priority
	15.2.5.1.7 gg.handler.name.timeToLive
	15.2.5.1.8 gg.handler.name.connectionFactory
	15.2.5.1.9 gg.handler.name.useJndi
	15.2.5.1.10 gg.handler.name.connectionUrl
	15.2.5.1.11 gg.handler.name.connectionFactoryClass
	15.2.5.1.12 gg.handler.name.localTX
	15.2.5.1.13 gg.handlerlist.nop
	15.2.5.1.14 gg.handler.name.physicalDestination

	15.2.5.2 Group Transaction Properties
	15.2.5.2.1 gg.handler.name.minGroupSize
	15.2.5.2.2 gg.handler.name.maxGroupSize

	15.2.6 JNDI Properties
	15.2.7 General Properties
	15.2.7.1 gg.classpath
	15.2.7.2 gg.report.time

	16 Developing Custom Filters, Formatters, and Handlers
	16.1 Filtering Events
	16.2 Custom Formatting
	16.2.1 Coding a Custom Formatter in Java
	16.2.2 Using a Velocity Template

	16.3 Coding a Custom Handler in Java
	16.4 Additional Resources

	Part V Troubleshooting the Oracle GoldenGate Adapters
	17 Troubleshooting the Flat File Adapter
	17.1 Checking Oracle GoldenGate
	17.2 Checking the Configuration
	17.3 Checking the Log File
	17.4 Contacting Oracle Support

	18 Troubleshooting the Java Adapters
	18.1 Checking for Errors
	18.2 Recovering after an Abend
	18.3 Reporting Issues

	Part VI Appendix
	A Adapter Examples
	A.1 List of Included Examples
	A.2 Configuring Logging
	A.2.1 Example Oracle GoldenGate Java User Exit Defaults
	A.2.2 Customizing Logging

