ORACLE"

Oracle® Fusion Middleware

Administering Oracle GoldenGate Application Adapters
12¢(12.2.0.1)

E76796-01

June 2016

This document explains how to configure, customize, and run
the Oracle GoldenGate Adapters to produce flat files, capture
JMS messages and deliver them as an Oracle GoldenGate trail,
or read a trail and deliver transactions to a messaging system.

Oracle Fusion Middleware Administering Oracle GoldenGate Application Adapters, 12¢ (12.2.0.1)
E76796-01
Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PHOIACE ..ottt e ettt e et e et et e et ettt ettt e ettt ene et e eneens

ATUAIEIICE ...ttt ettt et ettt e s e et e steeste e st e beese e beassesbeessessaassaseassaessassesseasseessesseessasseessesssessanseans
Documentation AcCeSSIDILILYcccvvviimiiiiiiiiiiiiiic s
Related DOCUIMENES........ccocirieiieieiietieterestestestete et e st et eseeses st esessesseesessessessessessassessessessessessessaseasensessensens

(@03 0 h1= 1L 10) 1< J0RTRT TSR

Part I Understanding Oracle GoldenGate Application Adapters

1 Understanding Oracle GoldenGate Adapters

1.1 Oracle GoldenGate Application Adapters OVEIVIEWcccovviriverinniiinnneniinrrreeeeeeaes
1.1.1 Oracle GoldenGate INtegrationccccceueuiiiiiiiiiiiiiiiiiiiiiiice e
1.1.2 Oracle GoldenGate Application Adapter Integration Optionscccccevvirrieieinnne.

1.2 Using Oracle GoldenGate Application Adapters Propertiescccocovvvvivniiinninnnnnnnn,
1.2.1 Values in Property FIles..... ..o enenenenes
1.2.2 Location of Property Files ...
1.2.3 Using Comments in the Property File.........ccccoooiiiiiiiiiiiiiiiicccccens
1.24 Variables in Property Names............cccooorueiiiiiiiiiiiccc e

1.3 Oracle GoldenGate Documentation..........cccoouviviviiininininininininin s

2 Introducing the File Writer

2.1 Overview of the Adapter for Flat Files.........cccccoovviiiiiiniiicccs
2.2 Typical CONfIGUIAtIONc.cvcviviiiiiiiiiciciiciiciccrec s

3 Introducing the Java Adapter

3.1 Oracle GoldenGate VAM Message Capture..........cccooueuruveriririiiiiiininininiiiirreeceseeeseeeeeeseeeeeeas
3.1.1 Message Capture Configuration Options...........cceceueveieiieininiiciceece,
3.1.2 Typical Configuration........c.cooiiieiiiiiiiicc e

3.2 Oracle GoldenGate Java UsSer EXitccccceoieiiiiririiinirieicieseeeeteetetetetee e
3.2.1 Delivery Configuration OPtioNsS ...t seeeens

3.3 Running with EXtractccccoceviiiiiiiiiiiiicc s
3.3.1 Extract Configuration ...
3.3.2 Adding the Extract PrOCESSccceueiiiurieiiicieie

34

3.3.3 Extract GrOUPINGcccoviiuriiiiicieie et 3-5

Running with REPIICALc.cueuiuiuiiiiiiiicicieiieiceeeeeeceeee et 3-5
3.4.1 Replicat Configuration ... 3-5
3.4.2 Adding the Replicat Process ... 3-6
3.4.3 Replicat GrOUPINGccoviieiieiiic s 3-6
3.44 Replicat CheckpOinNting ... 3-6
3.4.5 Unsupported Replicat FEatures...........ccoooiiiiiiiiiiiiiiiiiccciceccce e 3-6
3.4.6 Mapping FUNCHONALLYooveviiiiiieii e 3-7

4 Configuring Logging

Application Adapters Default LOGZIng..........ccccooiiiiiiiiiiiiiiiiiccccce 4-1
41.1 Default Implementation TYPecccoeuiiiriiiiiiiiiecc 4-1
4.1.2 Default Message LOZZING........ccoviuriiiiiiiicieiccit e 4-1
4.2 Changing the Default LOG@INGccccecvvviiiiiiiiiiiiic e 4-1
42.1 Changing the LogZing TYPe ... 4-1
4.2.2 Changing the Logging Configurationccccceoiiiiiiiiiiiiiiiiccccene 4-1
4.2.3 ENabling DebUEcoooimiiiiiic e 4-2
Part Il Creating Flat Files

5 Configuring the Flat File Adapter

51

52
53

Configuring the Adapter for Writing Flat Files..........ccccccccoooiiiiiiiiiiiiccnas 5-1
5.1.1 User Exit Extract Parameterscccooviiiiiiiiiiiiiccccc s 5-2
5.1.2 User EXit PTOPETteSscoooieviiiviiiiieieicceett s 5-3
Recommended Data Integration Approach...........c.cccceeeeecuciecicieceeeeeeeeneeeeeenenenes 5-3
Producing Data FIles ..o s 5-4

Using the Flat File Adapter

6.1
6.2
6.3
6.4
6.5

Working with Control FIles..........ccoooiiiiiiiiiiiiiiiicceee e 6-1
Working with Statistical SUmMmaTries.............ccoeiioiiiiiic s 6-1
Managing Oracle GoldenGate Processesccooueurueieiiiricieisiicie et 6-2
Trail RecoOVery MOde ... s 6-2
Locating Error MESSaGES.ccovuiuiiiiiiiiiiiiiiiiiiiniciccc e 6-2

Using Predefined Defaults and Formats

7.1

7.2
7.3
74
7.5
7.6

Overview of Predefined Defaults and FOrmats........c.cocvveeierierienienienieieieieeeeeese e 7-1
7.1.1 Default PTOPEItiescccoviviiiiiiiiiiiiiiiiiiiiiic s 7-1
7.1.2 Specifying Consumer FOrmatscccoouoiiriiioiiiiiiic 7-2
Siebel RemMOte FOIMALcc.ecciiciiiiicieii ettt ettt st sae e ae s e e be s e e aeessesaesseseans 7-2
AD INIHO FOIIN@AL.....ctictiiiciieieeeeee ettt ettt sttt a e b e s b esb e st e saesaeseeseeseesasseesansessessensas 7-3
ANV 472 0 o) o 0 1 =Y TSRS 7-3
Greenplum FOImatcooiiiiiiiiiii e 7-4
Comma Delimited FOIMAL........ccuiiieiiieieiieieiectese ettt ettt sre e s e sbe e e sreeaesaeesnessnas 7-4

8

Flat File Properties

8.1 User Exit PrOPOrtiesccccceeviieiiiiiiiiieiiette s 8-1
8.1.1 Logging Properties ...t 8-1
8.1.2 General PrOPETIEs.ccovuiiiiriririiiiiciicecc s 8-2

8.2 File Writer PrOPertiesccocooiiviiuiiiiiiiiiiieceee s 8-4
8.2.1 Output Format Properties ... 8-4
8.2.2 Output File Properties ... 8-5
8.2.3 File RolloVer Properties ... 8-7
8.2.4 Data Content Properties ... 8-9
8.2.5 DSV Specific PrOPETties ..o 8-15
8.2.6 LDV Specific Propertiesccocoooiiiieiiiiicieiicccici i 8-18
8.2.7 Statistics and RePOrtingccceeiiiiiiiiiiiie 8-19

Part Il Capturing JMS Messages

9 Configuring Message Capture

10

9.1 Configuring the VAM EXTTaCtcocooviiiiiiii s 9-1
9.1.1 Adding the EXtractcoooiuriiiiiiiiic 9-1
9.1.2 Configuring the Extract Parameters ... 9-1
9.1.3 Configuring Message Capture ... 9-2

9.2 Connecting and Retrieving the Messagescccoceuriiirininiiicieicece s 9-2
9.21 Connecting to JMS........oooiimiiii 9-2
9.2.2 Retrieving MESSAZEScccviimiviiiiiiiiiiiiiii s 9-3
9.2.3 Completing the Transaction ..o 9-3

Parsing the Message

10.1 Parsing OVeIVIEWccciviiiiiiiiiiiiiiiie s 10-1
10.1.1 Parser TYPEScociiiiiiiiiiiiiccccn s 10-1
10.1.2 Source and Target Data Definitions...........ccccoeueioiirieiniiiiiiicc e 10-2
10.1.3 Required Data ..ot e 10-2
10.1.4 Optional Data.......cccoooviiiiiiiiiiiiiiiii s 10-4

10.2 Fixed Width Parsing..........ccccoiiiiiiiiiiiiiiiicccccecceeeeeese e 10-4
10.2.1 HEAAET .. 10-5
10.2.2 Header and Record Data Type Translation.........ccccooveieieiiiniiiiiceecceee 10-6
10.2.3 Key identificationcccooeuiiriiiiiniiic 10-7

10.3 Delimited ParSINg ..ottt 10-7
10.3.1 Metadata COIUMIS ..ot 10-7
10.3.2 Parsing Properties ... 10-8
10.3.3 Parsing STePS ...c.cuoiicieieieicecie et e 10-9

10.4 XML PAISING .ooiiviviiiiiiiiiiiiiiiiiits ittt sttt bbbt bbbt tnts 10-9
10.4.1 Styles Of XIML ..o 10-9
10.4.2 XML Parsing RULES...........ccoccoiiiiiiiiiiiiiiiccccicccecee e 10-10

11

10.4.3 XPath EXPIeSSIONSc.cvoiuiueiiiiiicieiicic et e 10-11

10.4.4 Other Value EXPIeSSIONnScccciuiiuiiiiiiiiicieiiiicceeiceeeceeeeee e esesenenes 10-13
10.4.5 Transaction RULEScccooiiiiiiiiiiiiiic s 10-13
10.4.6 Operation RULEScccoiuiiiiiiiiiiiiiiiiic e 10-14
10.4.7 Column RULes.........ocoiimiiiiiiiiii e 10-15
10.4.8 Overall Rules EXample ... 10-16
10.5 Source definitions Generation UILIEY ... 10-16
Message Capture Properties
11.1 Logging and Connection PrOPerties ... 11-1
11.1.1 Logging Properties.........cccoviiiiiiiiiiiniiiiiiiiicncs e 11-1
11.1.2 JMS Connection Properties ..o s 11-2
11.1.3 JINDI PrOperties.....ciiiuiiiiiiiiiiiiiiiiiiitiinisieieininis sttt anteas 11-4
11.2 Parser PrOPEItiOSottt 11-5
11.2.1 Setting the Type Of ParSerccciiiiiiiiiiiiiiiccccccccccee e 11-5
11.2.2 Fixed Parser Properties. ... 11-5
11.2.3 Delimited Parser Properties..........c.cocoooeoiiiiieiiiiciceccece e 11-9
11.2.4 XML Parser Properties........oooiiiiiiiiiiiuiiiiiiniiiniiinininisiinisisisistsssis s 11-17

Part IV Delivering Java Messages

12

13

14

15

Vi

Configuring Message Delivery
12.1 Configure the JRE in the User Exit Properties Filecccccoooiiiii 12-1
122 Configure Extract to Run the User EXitccccocoooiiiiiniiiiiic 12-1
12.3 Configure the Java Handlers ... 12-3
Using the Java User Exit
13.1 Starting the APPLCAtION.......c.ciiiiiiiiiiccccee e 13-1
13.2 Restarting the Application at the Beginning of a Trail...........cccccceeiiiiiiiiiiiiiiiicnes 13-2
Configuring Event Handlers
14.1 Specifying Event Handlers.............cooiiiiiiiiiiiiicicccccccceeennas 14-1
142 JMS HANALET ...ttt ettt ettt b e sttt a et e ettt et e e e st e st ebeeaesaeenas 14-2
143 File HANAIET ...ttt sttt ettt ettt be bbb 14-3
14.4 CuStom HaNAIETSc.ooiiuiieiiieiiiee ettt sens 14-3
14.5 Formatting the OUEPUL.......cccoiiiiiiiccece e 14-3
14.6 REPOTHING.....cvieiiiiiiiiiitci e 14-4
Message Delivery Properties
15.1 User EXit PrOPeIties........ccocouiiiiiiiiiiiiiiicciecc e 15-1
15.1.1 Logging PrOPerties......cociiiiiiiiiiiiiiiiiiiciitiicieicietettitttet ittt 15-1
15.1.2 General Properties.. ...t 15-2
15.1.3 JVM DOOt OPHIONS.....cummiiiiiiiicicieicicicieieicieeieeeieieiee e 15-3

15.1.4 Statistics and RePOrting..........cceueueviiirieioiiiicicci e
15.2 Java Application Properties..........coc e esesesesenenenes
15.2.1 Properties for All Handlers...........cccocooiiiiiiiiiiiiiiiiiccccccccccceneeeeenenenes
15.2.2 Properties for Formatted Output...........ccccociiiiiiiiiiiiiiiicccccccce,
15.2.3 Properties for CSV and Fixed Format OQutputc.ccoooeiieiiiiiiiice
15.2.4 File Writer Properties. ...ttt
15.2.5 JMS Handler Properties.........ccociiiiiiiiiiiiiceeicceeicieieeeeeeeseseseeneesesenenes
15.2.6 JNDI PrOperties.......ccooiiiiiiiiiiiiiiiiiiiiiciciiccincsc st
15.2.7 General Properties.. ...

16 Developing Custom Filters, Formatters, and Handlers

16.1 Filtering EVENtSc.coooiiiiiicici s

16.2 Custom FOrmatting ...
16.2.1 Using a Velocity Template ...
16.2.2 Coding a Custom Formatter in Java ...
16.2.3 Coding a Custom Handler in Java ...
16.24 Coding a Custom Formatter for Java Delivery ...

16.3 Additional RESOUICESocoiiiimimiiiiiiiic s

Part V Troubleshooting the Oracle GoldenGate Adapters

17 Troubleshooting the Flat File Adapter

17.1 Checking Oracle GoldenGate..........c.oooiuriiiiiciiiiiic s
172 Checking the Configuration............cccoueuiiriiiiiniciiccc e
17.3 Checking the Log File.........cccociiiiiiiiiiiiiiiccccceceeeee e
17.4 Contacting Oracle SUPPOTt.......ccoiiiiiiiiiiiiicccccece e

18 Troubleshooting the Java Adapters

18.1 Checking fOr EITOTSccoiiiiiiiiiiiiiiiicci e
18.2 Recovering after an ADend...........ccoouoiiiiiiiiici
18.3 RePOrting ISSUESccoviviviiiiiiiiiiiiiiiiiitttititttt sttt

Part VI Appendix

A Adapter Examples

A1 List of Included EXamples ..ot
A2 Configuring LOGZINGcoeviiueiiiiiiciicicict e
A.2.1 Example Oracle GoldenGate Java User Exit Defaults..........cccccoveviiivrnvnnnnncccenene
A2.2 Customizing LOGGINE......cccooviiiiiiiiiiiiiiiiicc e

Vii

viii

Preface

This guide contains information about configuring, and running Oracle GoldenGate
Adapters to extend the capabilities of Oracle GoldenGate instances.

Audience

This guide is intended for system administrators who are configuring and running
Oracle GoldenGate Adapters.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Related Documents

The Oracle GoldenGate Application Adapters documentation set includes the
following components:

® Release Notes for Oracle GoldenGate for Big Data
e Installing Oracle GoldenGate Big Data
* Administering Oracle GoldenGate for Big Data

o Integrating Oracle GoldenGate for Big Data

Conventions

The following text conventions are used in this document:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention

Meaning

boldface

italic
italic

nonospace
MONOSPACE

UPPERCASE

{

Boldface type indicates graphical user interface elements associated with an
action, such as "From the File menu, select Save." Boldface also is used for
terms defined in text or in the glossary.

Italic type indicates placeholder variables for which you supply particular
values, such as in the parameter statement: TABLE t abl e_narre. Italic type
also is used for book titles and emphasis.

Monospace type indicates code components such as user exits and scripts;
the names of files and database objects; URL paths; and input and output
text that appears on the screen. Uppercase monospace type is generally used
to represent the names of Oracle GoldenGate parameters, commands, and
user-configurable functions, as well as SQL commands and keywords.

Uppercase in the regular text font indicates the name of a utility unless the
name is intended to be a specific case.

Braces within syntax enclose a set of options that are separated by pipe
symbols, one of which must be selected, for example: { opti onl | opti on2
| option3}.

Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLI CAT gr oup_nane [,
SAVE count] . Multiple options within an optional element are separated
by a pipe symbol, for example: [opti onl | option2].

Part |

Understanding Oracle GoldenGate
Application Adapters

This part of the book describes the concepts and basic structure of the Oracle
GoldenGate Application Adapters.

Part I contains the following chapters:
¢ Understanding Oracle GoldenGate Adapters
¢ Introducing the File Writer

¢ Introducing the Java Adapter

1

Understanding Oracle GoldenGate
Adapters

This chapter provides an overview of the Oracle GoldenGate Adapters that integrate
with Oracle GoldenGate instances to bring in Java Message Service (JMS) information
or to deliver information as JMS messages or files.

This chapter includes the following sections:

* Oracle GoldenGate Application Adapters Overview

* Using Oracle GoldenGate Application Adapters Properties

Oracle GoldenGate Documentation

1.1 Oracle GoldenGate Application Adapters Overview

This section provides an overview of the Oracle GoldenGate Application Adapters.

1.1.1 Oracle GoldenGate Integration

Oracle GoldenGate Application Adapters integrate with core Oracle GoldenGate
instances.

The core Oracle GoldenGate product:

Captures transactional changes from a source database

Sends and queues these changes as a set of database-independent files called the
Oracle GoldenGate trail

Optionally alters the source data using mapping parameters and functions

Applies the transactions in the trail to a target system database

Oracle GoldenGate performs this capture and apply in near real-time across
heterogeneous databases, platforms, and operating systems.

1.1.2 Oracle GoldenGate Application Adapter Integration Options

The Oracle GoldenGate Application Adapters integrate with installations of the Oracle
GoldenGate core product to do one of the following:

Read JMS messages and deliver them as an Oracle GoldenGate trail

Read an Oracle GoldenGate trail and deliver transactions to a JMS provider or
other messaging system or custom application

Read an Oracle GoldenGate trail and write transactions to a file that can be used by
other applications

Understanding Oracle GoldenGate Adapters 1-1

Using Oracle GoldenGate Application Adapters Properties

1.1.2.1 Capturing Transactions to a Trail

Oracle GoldenGate message capture can be used to read messages from a queue and
communicate with an Oracle GoldenGate Extract process to generate a trail containing
the processed data.

The message capture processing is implemented as a Vendor Access Module (VAM)
plug-in to a generic Extract process. A set of properties, rules and external files
provide messaging connectivity information and define how messages are parsed and
mapped to records in the target GoldenGate trail.

Currently this adapter supports capture from JMS text messages.

1.1.2.2 Applying Transactions from a Trail

Oracle GoldenGate delivery can be used to apply transactional changes to targets
other than a relational database: for example, ETL tools (DataStage, Ab Initio,
Informatica), JMS messaging, or custom APIs. There are a variety of options for
integration with Oracle GoldenGate:

¢ Flat file integration: predominantly for ETL, proprietary or legacy applications,
Oracle GoldenGate file writer can write micro batches to disk to be consumed by
tools that expect batch file input. The data is formatted to the specifications of the
target application such as delimiter separated values, length delimited values, or
binary. Near real-time feeds to these systems are accomplished by decreasing the
time window for batch file rollover to minutes or even seconds.

* Messaging: transactions or operations can be published as messages (e.g. in XML)
to JMS. The JMS provider is configurable; examples include ActiveMQ, JBoss
Messaging, TIBCO, WebLogic JMS, WebSphere MQ and others.

* Java API: custom event handlers can be written in Java to process the transaction,
operation and metadata changes captured by Oracle GoldenGate on the source
system. These custom Java handlers can apply these changes to a third-party Java
API exposed by the target system.

All three options have been implemented as extensions to the core Oracle GoldenGate
product using Oracle GoldenGate's user exit interface, a C APIL.

¢ For the flat file integration, Oracle GoldenGate File Writer provides a user exit
library that is dynamically linked into the Oracle GoldenGate Extract process.
Configuration is done using a properties file, and no programming is required.

¢ For Java integration using either JMS or the Java API, use Oracle GoldenGate for
Java.

1.2 Using Oracle GoldenGate Application Adapters Properties

The Oracle GoldenGate Application Adapters are configured and controlled through
predefined properties.

1.2.1 Values in Property Files

All properties in Oracle GoldenGate Application Adapter property files are of the
form:

property. name=val ue

1-2 Administering Oracle GoldenGate Application Adapters

Using Oracle GoldenGate Application Adapters Properties

The value may be single or comma-delimited strings, an integer, or a boolean value.

1.2.2 Location of Property Files

Sample Oracle GoldenGate Application Adapter property files are installed to the
Adapt er Exanpl es subdirectory of the installation directory. These files should be
changed as needed and then moved to the di r pr msubdirectory.

You must specify each of these property files through parameters or environmental
variables as explained below. These settings allow you to change the name or location,
but it is recommended that you do not change them unless there is an unavoidable
requirement.

The following sample files are included:

o ffwiter.properties

This stores the properties for the file writer. It is set with the CUSEREXI T Extract
parameter.

e jnsvam properties

This stores properties for the JMS message capture VAM. This is set with the
Extract VAMparameter.

e javaue. properties

This stores properties for the combined user exit and Java application used for
message delivery. It is set through the environmental variable:

SETENV (GGS_USEREXI T_CONF = "di rprnij avaue. properties")

Optionally, the java application properties and native user exit library properties
can be in separate files. To do this set GGS_USEREXI T_CONF to the user exit
property file and GGS_JAVAUSEREXI T_CONF to the Java application properties fie.

1.2.3 Using Comments in the Property File

Comments can be entered in the properties file with the # prefix at the beginning of
the line. For example:

This is a property coment
Some. property=val ue

Properties themselves can also be commented. This allows testing configurations
without losing previous property settings.

1.2.4 Variables in Property Names

Some properties have a variable in the property name. This allows identification of
properties that are to be applied only in certain instances.

For example, you can declare more than one file writer using
gol dengate.flatfilewiter.witers property and then use the name of the
file writer to set the properties differently:

1. Declare two file writers named writer andwiter2:
gol dengate.flatfilewiter.witers=witer,witer2

2. Specify the properties for each of the file writers:

Understanding Oracle GoldenGate Adapters 1-3

Oracle GoldenGate Documentation

writer. mode=dsv
witer.files.onepertable=true
writer2. node=l dv

witer2. files.onpertable=false

1.3 Oracle GoldenGate Documentation

For information on installing and configuring the core Oracle GoldenGate software for
use with the Oracle GoldenGate File Writer or Java adapters, see the Oracle
GoldenGate documentation:

¢ Installation and Setup guides: There is one such guide for each database that is
supported by Oracle GoldenGate for Mainframe. It contains system requirements,
pre-installation and post-installation procedures, installation instructions, and
other system-specific information for installing the Oracle GoldenGate for
Mainframe replication solution.

¢ : Explains how to plan for, configure, and implement the Oracle GoldenGate for
Mainframe replication solution on the Windows and UNIX platforms.

e : Contains detailed information about Oracle GoldenGate for Mainframe
parameters, commands, and functions for the Windows and UNIX platforms.

1-4 Administering Oracle GoldenGate Application Adapters

2

Introducing the File Writer

This chapter provides an overview of the Oracle GoldenGate Adapter for Flat Files.
This adapter provides a user exit library that is dynamically linked into an Oracle
GoldenGate Extract process. The library may be a. ddl or an. so format. It is
configured using a properties file so no programming is required. The Oracle
GoldenGate Adapter for Flat Files currently only works with an Oracle GoldenGate
Extract process; it does not work a Replicat process.

This chapter includes the following sections:
e Overview of the Adapter for Flat Files

* Typical Configuration

2.1 Overview of the Adapter for Flat Files

Oracle GoldenGate Adapter for Flat Files outputs transactional data captured by
Oracle GoldenGate to rolling flat files to be used by a third party product.

The user exit supports two modes of output:

¢ DSV — Delimiter Separated Values (commas are an example)

¢ LDV - Length Delimited Values

It can output data:
e All to one file
* One file per table

¢ One file per operation code

The user exit can roll over based on time and/or size criteria. It flushes files and
maintains checkpoints whenever Oracle GoldenGate checkpoints to ensure recovery.
It writes a control file containing a list of rolled over files for synchronization with the
supported data integration product and can also produce a summary file for use in
auditing.

Additional properties control formatting (delimiters, other values), directories, file
extensions, metadata columns (such as table name, file position, etc.) and data options.

2.2 Typical Configuration

The following diagram shows a typical configuration for the Oracle GoldenGate
Adapter for Flat Files.

In this configuration, transactions from the source database are captured by a Primary
Extract process and written to an Oracle GoldenGate trail. A data pump Extract send

Introducing the File Writer 2-1

Typical Configuration

this trail to the Oracle GoldenGate Adapter Extract, whose associated user exit process
writes the data to flat files formatted to suit a third party application.

Figure 2-1 Oracle GoldenGate for Flat File

Source Database Server

Database

Primary Extract

| Database Integration Server

MNetwork

- .
Flat File
Liser Exit

-
Data B
Pump Extract

2-2 Administering Oracle GoldenGate Application Adapters

3

Introducing the Java Adapter

This chapter describes the Oracle GoldenGate Adapter for Java. The Oracle
GoldenGate Adapter for Java implements 1) the capture of Java Message Service (JMS)
messages to send for processing into Oracle GoldenGate trail data, and 2) the
processing of transactional data captured by Oracle GoldenGate to be delivered as
JMS messages.

This chapter includes the following sections:

® Oracle GoldenGate VAM Message Capture
¢ Oracle GoldenGate Java User Exit

* Running with Extract

¢ Running with Replicat

3.1 Oracle GoldenGate VAM Message Capture

Oracle GoldenGate message capture connects to JMS messaging to parse messages
and send them through a VAM interface to an Oracle GoldenGate Extract that builds
an Oracle GoldenGate trail of message data. This allows JMS messages to be delivered
to an Oracle GoldenGate system running for a target database.

Using Oracle GoldenGate JMS message capture requires two components:

¢ The dynamically linked shared VAM library that is attached to the Oracle
GoldenGate Extract process.

* A separate utility, Gendef, that uses the message capture properties file and parser-
specific data definitions to create an Oracle GoldenGate source definitions file.

3.1.1 Message Capture Configuration Options

The options for configuring the three parts of message capture are:

® Message connectivity: Values in the property file set connection properties such as
the Java class path for the JMS client, the JMS source destination name, JNDI
connection properties, and security information.

¢ Parsing: Values in the property file set parsing rules for fixed width, comma
delimited, or XML messages. This includes settings such as the delimiter to be
used, values for the beginning and end of transactions and the date format.

* VAM interface: Parameters that identify the VAM, dl | , or so library and a
property file are set for the Oracle GoldenGate core Extract process.

Introducing the Java Adapter 3-1

Oracle GoldenGate Java User Exit

3.1.2 Typical Configuration
The following diagram shows a typical configuration for capturing JMS messages.

In this configuration, JMS messages are picked up by the Oracle GoldenGate Adapter
JMS Handler and transferred using the adapter's message capture VAM to an Extract
process. The Extract writes the data to a trail which is sent over the network by a Data
Pump Extract to an Oracle GoldenGate target instance. The target Replicat then uses
the trail to update the target database.

Figure 3-1 Configuration for JMS Message Capture

Target Database Server

Database

Sourca e Aty
definitions eplical

.

Source Integration Server

Propartigs ——

Purmp Extract

3.2 Oracle GoldenGate Java User Exit

Through the Oracle GoldenGate Java API, transactional data captured by Oracle
GoldenGate can be delivered to targets other than a relational database, such as a J]MS
(Java Message Service), files written to disk, or an integration with a custom
application Java APL

Oracle GoldenGate for Java provides the ability to execute Java code from an Oracle
GoldenGate Extract process or Replicat process. Replicat is the recommended way to
integrate Java delivery because of the transaction grouping functionality and
improved checkpointing provided by Replicat. Using Oracle GoldenGate for Java
requires two components:

3-2 Administering Oracle GoldenGate Application Adapters

Oracle GoldenGate Java User Exit

® A dynamically linked or shared library implemented in C or C++, integrating as a
User Exit (UE). The user exit shared libraries are different for Extract and Replicat.
For Extract the library is | i bggj ava_ue. so on Linux and UNIX; it is
gj ava_ue. dl | for Windows. For Replicat, the library is | i bggj ava. so for
Linux and UNIX; it is ggj ava. dl | for Windows.

* A set of Java libraries (JARS) that comprise the Oracle GoldenGate Java API. This
Java framework communicates with the user exit through the Java Native Interface
(JNI). The interface of the Java layer is identical for running with either the Extract
process or the Replicat process.

Figure 3-2 Configuration for Delivering JMS Messages

Source Database Server

Database

JMS
Consumers

¥

Source
definitions

i
. i W, Java :..IMB
Pump Extract - Extract User + Handler
1

Exit 1

3.2.1 Delivery Configuration Options

The dynamically linked library is configurable using a simple properties file. The Java
framework is loaded by the user exit and is also initialized by a properties file.
Application behavior can be customized by:

¢ Editing the property files; for example to:

Introducing the Java Adapter 3-3

Running with Extract

— Set host names, port numbers, output file names, JMS connection settings;

— Add/remove targets (such as JMS or files) by listing any number of active
handlers to which the transactions should be sent;

— Turn on/off debug-level logging, etc.
— Identify which message format should be used.

* Customizing the format of messages sent to JMS or files. Message formats can be
custom tailored by:

— Setting properties for the pre-existing format process (for fixed-length or field-
delimited message formats);

- Customizing message templates, using the Velocity template macro language;
— (Optional) Writing custom Java code.

* (Optional) Writing custom Java code to provide custom handling of transactions
and operations, do filtering, or implementing custom message formats.

There are existing implementations (handlers) for sending messages via JMS and for
writing out files to disk. There are several predefined message formats for sending the
messages (e.g. XML or field-delimited); or custom formats can be implemented using
templates. Each handler has documentation that describes its configuration properties;
for example, a file name can be specified for a file writer, and a JMS queue name can
be specified for the JMS handler. Some properties apply to more than one handler; for
example, the same message format can be used for JMS and files.

3.3 Running with Extract

This section explains how to run Java Adapter with the Oracle GoldenGate Extract
process.

3.3.1 Extract Configuration
The following

EXTRACT hdf s

discardfile ./dirrpt/avrol.dsc, purge

- - SOURCEDEFS ./ di rdef/ dbo. def

CUSEREXI T i bj avaue. so CUSEREXI T PASSTHRU, | NCLUDEUPDATEBEFORES, PARANS "dirprml
hdf s. props"

GETUPDATEBEFORES

TABLE dbo. *;

The following is explanation of the Replicat configuration entries:
EXTRACT hdf s - The Extract process name.
di scardfile ./dirrpt/avrol. dsc, purge -Setthe discard file

- - SOURCEDEFS ./ di rdef/ dbo. def - Source definitions are not required for 12.2
trial files.

CUSEREXI T |i bj avaue. so CUSEREXI T PASSTHRU, | NCLUDEUPDATEBEFORES,
PARAMS "di r prm hdf s. props" - Set you exit shared library, and point to the Java
Adapter Properties file

GETUPDATEBEFORES - Get update before images.

3-4 Administering Oracle GoldenGate Application Adapters

Running with Replicat

TABLE dbo. *; - Select which tables to replicate or exclude to filter.

3.3.2 Adding the Extract Process

ADD EXTRACT hdfs, EXTTRAILSCURCE ./dirdat/gg
START hdfs

3.3.3 Extract Grouping

The Extract process provides no functionality for transaction grouping. However,
transaction grouping is still possible when integrating Java Delivery with the Extract
process. The Java Delivery layer enables transaction grouping with configuration in
the Java Adapter properties file.

1.

gg. handl er. nane. node

To enable grouping, the value of this property must be set to tx.

gg. handl er. nanme. maxG oupSi ze

Controls the maximum number of operations that can be held by an operation
group - irrespective of whether the operation group holds operations from a
single transaction or multiple transactions.

The operation group will send a transaction commit and end the group as soon as
this number of operations is reached. This property leads to splitting of
transactions across multiple operation groups.

gg. handl er. nanme. m nG oupSi ze

This is the minimum number of operations that must exist in a group before the
group can end.

This property helps to avoid groups that are too small by grouping multiple small
transactions into one operation group so that it can be more efficiently processed.

Note:

maxG& oupSi ze should always be greater than or equal to mi nG oupSi ze;
that is, maxG oupSi ze >= m nG oupSi ze.

Note:

It is not recommended to use the Java layer transaction grouping when
running Java Delivery with the Replicat process. If running with the Replicat
process, you should use Replicat transaction grouping controlled by the
GROUPTRANSCPS Replicat property.

3.4 Running with Replicat

This section explains how to run the Java Adapter with the Oracle GoldenGate
Replicat process.

3.4.1 Replicat Configuration

The following is an example of a Replicat process properties file for Java Adapter.

Introducing the Java Adapter 3-5

Running with Replicat

REPLI CAT hdfs

TARGETDB LI BFI LE |ibggjava. so SET property=dirprm hdfs. properties
- - SOURCEDEFS ./ di rdef/ dbo. def

DDL | NCLUDE ALL

GROUPTRANSOPS 1000

MAPEXCLUDE dbo. excl udet abl e

MAP dbo. *, TARGET dbo. *;

The following is explanation of the Replicat configuration entries:
REPLI CAT hdf s - The name of the Replicat process.

TARGETDB LI BFI LE |i bggj ava. so SET property=dirprni
hdf s. properti es - Names the target database as you exit | i bggj ava. so and sets
the Java Adapters Property file to di r pr m hdf s. properti es

- - SOURCEDEFS ./ di rdef/ dbo. def - Sets a source database definitions file.
Commented out because Oracle GoldenGate 12.2.0.1 trail files provide metadata in
trail.

GROUPTRANSOPS 1000 - To group 1000 transactions from the source trail files into a
single target transaction. This is the default and improves the performance of Big Data
integrations.

MAPEXCLUDE dbo. excl udet abl e - To identify tables to exclude.
VAP dbo. *, TARGET dbo. *; - Shows the mapping of input to output tables.

3.4.2 Adding the Replicat Process

The command to add and start the Replicat process in ggsci is the following;:

ADD REPLI CAT hdfs, EXTTRAIL ./dirdat/gg
START hdfs

3.4.3 Replicat Grouping

The Replicat process provides the Replicat configuration property GROUPTRANSOPS to
control transaction grouping. By default, the Replicat process implements transaction
grouping of 1000 source transactions into a single target transaction. If you want to
turn off transaction grouping then the GROUPTRANSOPS Replicat property should be
set to 1.

3.4.4 Replicat Checkpointing

CHECKPO NTTABLE and NCDBCHECKPO! NT are not applicable for Java Delivery with
Replicat. Beside Replicat checkpoint file (. cpr), additional checkpoint file (di r chk/
<gr oup>. cpj) will be created that contains information similar to

CHECKPO NTTABLE in Replicat for RDBMS.

3.4.5 Unsupported Replicat Features

The following Replicat features are not supported in this release:
e BATCHSQL

e SQLEXEC

¢ Stored procedure

¢ Conflict resolution and detection (CDR)

3-6 Administering Oracle GoldenGate Application Adapters

Running with Replicat

e REPERROR

3.4.6 Mapping Functionality

The Oracle GoldenGate Replicat process supports mapping functionality to custom
target schemas. This functionality is not available using the Oracle GoldenGate Extract
process. You must use the Metadata Provider functionality to define a target schema
or schemas and then use the standard Replicat mapping syntax in the Replicat
configuration file to define the mapping. Refer to the Oracle GoldenGate Replicat
documentation to understand the Replicat mapping syntax in the Replication
configuration file.

Introducing the Java Adapter 3-7

Running with Replicat

3-8 Administering Oracle GoldenGate Application Adapters

A

Configuring Logging

This chapter describes the default logging for the Oracle GoldenGate Adapters and
explains how to configure a different logging option.

Application Adapters Default Logging
Logging is set up by default for the Oracle GoldenGate Application Adapters.

4.1.1 Default Implementation Type

The default type of implementation for the Oracle GoldenGate Adapters is the JDK
option. This is the built-in Java logging called j ava. uti | .| oggi ng (JUL).

4.1.2 Default Message Logging

The default log file is created in the standard report directory. It is named for the
associated Extract process. Problems are logged to the report file and the log file.

4.1.2.1 Logging Problems

An overview of a problem is written to the Extract Report file and the details of the
problem are written to the log file.

4.1.2.2 Log File Name

By default log files are written to the i nst al | ati on_di rectory/di rrpt directory.
The name of the log file includes the Extract gr oup_nane and it has an extension of

| og.

4.2 Changing the Default Logging
The logging for Oracle GoldenGate Adapters can be changed from JUL to another
type, debug can be turned on, and the configuration file can be specified.

4.2.1 Changing the Logging Type

The Java-based logging utility, Log4,j is the preferred method of logging for Oracle
GoldenGate Application Adapters.

To change the logging implementation type, set the gg. | 0g property to | 0g4j or
| ogback. For example set:

gg. | og=l og4j

4.2.2 Changing the Logging Configuration

To designate a specific configuration file, set j vm boot opt i ons to the system
property that defines it. This will implicitly set the implementation type and append

Configuring Logging 4-1

Changing the Default Logging

the appropriate binding to the class path. Contact Oracle Support for help using this
option.

4.2.3 Enabling Debug

To enable debug logging, set the gg. | 0g. | evel property to debug as shown below.
gg. | og. | evel =debug

4-2 Administering Oracle GoldenGate Application Adapters

Part Il

Creating Flat Files

This part explains how to configure and administer Oracle GoldenGate adapters that
write to flat files.

Part III contains the following chapters:

¢ Configuring the Flat File Adapter

¢ Using the Flat File Adapter

e Using Predefined Defaults and Formats

* Flat File Properties

5

Configuring the Flat File Adapter

This chapter explains how to configure the Oracle GoldenGate Adapter for writing flat
files by setting user exit parameters and file writer properties.

This chapter includes the following sections:
¢ Configuring the Adapter for Writing Flat Files
¢ Recommended Data Integration Approach

® Producing Data Files

5.1 Configuring the Adapter for Writing Flat Files

Figure Figure 5-1, shows a typical configuration for an that is writing flat files.
Transactions are captured from the source database by a Primary Extract process that
writes the data to an Oracle GoldenGate trail. A Data Pump Extract is then used to
send the transactions to a trail that will be read by the Adapter Extract. The Oracle
GoldenGate Application Adapters Flat File writer only integrates with the Oracle
GoldenGate Extract process; it does not currently work with the Replicat process.

To configure the source database system:

GGSCl > ADD EXTRACT punp, EXTTRAILSCURCE dirdat/aa
GGSCl > ADD RMITRAI L dirdat/bb, EXTRACT punp, MEGABYTES 20

To configure the data integration:

GGSCI > ADD EXTRACT ffwriter, EXTTRAILSCURCE dirdat/bb

The sample process names and trail names used above can be replaced with any valid
name. Process names must be 8 characters or less, trail names must be two characters.

Configuring the Flat File Adapter 5-1

Configuring the Adapter for Writing Flat Files

Figure 5-1 Typical Configuration For Writing Flat Files

Source Database Server

Database

Source

Target Integration Server *
Source User Exit
Definitions Properties

Extract fiwriter.properties ga40 oty
S Parameters i
e i cal
2 = T g

Flat File
User Exit

5.1.1 User Exit Extract Parameters

The user exit Extract parameters (f f wri t er . pr n) are as follows:

Parameter Description
All Extract parameter files start with the Extract name. In
EXTRACT FFWRI TER this case it is the user exit's file writer name.
. A source definitions file to determine trail contents.
SOURCEDEFS di rdef/hr _ora. def

5-2 Administering Oracle GoldenGate Application Adapters

Recommended Data Integration Approach

Parameter

Description

CUSEREXIT flatfilewiter.dll
CUSEREXI T

PASSTHRU,

| NCLUDEUPDATEBEFORES,

PARAMS ffwriter.properties

TABLE HR *;

The CUSEREXI T parameter options:

flatfilewiter.dll isthename of the user
exit .dll or .so library.

CUSEREXI T is the name of the user exit routine that
will be invoked (case sensitive).

PASSTHRU specifies that the Extract process does not
need to write a trail.

| NCLUDEUPDATEBEFORES allows both the before
and after image to be included in the output. It is also
required for consistency purposes and transaction
tracking.

PARANS allows you to specify the name of the user
exit properties file.

Specifies a list of tables to process.

5.1.2 User Exit Properties

The user exit reads properties from the file identified in CUSEREXI T PARANS. The
default is to read from f f wri t er. properti es.

The properties file contains details of how the user exit should operate. For more
information on individual properties see Flat File Properties .

5.2 Recommended Data Integration Approach

To take best advantage of the micro-batch capabilities, customers should do the
following in their data integration tool:

1.

2.

Wait on the control file

Rename the control file

Delete the renamed control file

Read list of files to process from the control file

Iterate over the comma-delimited list of files read from the control file

Process each data file, deleting the data file when complete

On startup, the data integration tool should check for the renamed control file to see if
it needs to recover from previously failed processing

When the control file is renamed, the user exit will write a new one on the first file
rollover, which will contain the list of files for the next batch.

If the user exit has been configured to also output a summary file, the data integration
tool can optionally also read that summary file and cross-check the number of

operations it has processed with the data in the summary file for each processed data
file.

Configuring the Flat File Adapter 5-3

Producing Data Files

5.3 Producing Data Files

Data files are produced by configuring a writer in the user exit properties. A single
user exit properties file can have multiple writers, which allows for the generation of
multiple differently formatted output data files for the same input data.

Writers are added by name to the gol dengate.flatfilewiter. witers
property. For example:

gol dengate.flatfilewiter.witers=dsvwiter,diffswiter,binarywiter

The remainder of the properties file contains detailed properties for each of the named
writers where the properties are prefixed by the writers name. For example:

dsvwriter.files.onepertabl e=true
binarywiter.files.onepertabl e=fal se
binarywiter.files.oneperopcode=true

Each writer can output all the data to a single (rolling) data file, or produce one
(rolling) data file per input table or operation type. This is controlled by the
files.onepertableandfil es. oneperopcode properties as shown in the
example above.

The data written by each writer can be in one of two output formats controlled by the
mode property. This can either be:

¢ DSV — Delimiter Separated Values

* LDV - Length Delimited Values
For example:

dsvwriter. nmode=dsv
bi narywriter. node=I dv

When data files are first written to disk, they have a temporary extension. Once the file
meets rollover criteria, the extension is switched to the rolled extension. If control files
are used, the final file name is added to the list in the control file, creating the control
file if necessary. Also, if a file level statistics summary is being generated, it will be
created upon rollover of the file.

The output directory (for data files and control files separately), temporary extension,
rolled extension, control extension and statistical summary extension can all be
configured through properties. For output configuration details see Output File
Properties .

Each data file that is written follows a naming convention which depends on the
output style. For files written one per table, the name includes the table name, for
example:

MY. TABLE _2013-08-03_11: 30: 00_dat a. dsv

For files written with all data in one file, the name does not include the table name, for
example:
out put _2013- 08-03_11: 30: 00_dat a. dsv

In addition to the basic data contents, additional metadata columns can be added to the
output data to aid in data consumption. This includes the schema (owner) and table

5-4 Administering Oracle GoldenGate Application Adapters

Producing Data Files

information, source commit timestamp, Oracle GoldenGate read position and more.
For a detailed description of metadata columns see Metadata Columns .

The contents of the data file depend on the mode, the input data, and the various
properties determining which (if any) metadata columns are added, whether column
names are included, whether before images are included etc. For full details of all
properties governing the output data see section Data Content Properties .

Configuring the Flat File Adapter 5-5

Producing Data Files

5-6 Administering Oracle GoldenGate Application Adapters

6

Using the Flat File Adapter

This chapter discusses how to manage on-going operation of your system by
managing file rollover, gathering statistics on your Oracle GoldenGate adapter
instance to help you tune your system, managing the processes, and handling errors.

This chapter includes the following sections:
e Working with Control Files

¢ Working with Statistical Summaries

* Managing Oracle GoldenGate processes
® Trail Recovery Mode

* Locating Error Messages

6.1 Working with Control Files

Control files store information on which data files have rolled over. If the control file
exists, it will be appended to; if it does not exist it will be created. For writers that
output all data to one file, a single control file will be created. If the writer is
outputting to one file per table or operation type, a control file will also be created per
table or operation type.

The generation of a control file, its output directory, prefix, and extension are
controlled by the properties defined in Output File Properties .

Each control file contains a comma-delimited list of data files that have been rolled
over since the control file was created. The files are listed in the order they were rolled
over. This allows data integration tools to ensure that data files are read in the correct
order and that they have all been consumed.

6.2 Working with Statistical Summaries

Summary statistics about the data production process can be collected. This statistical
summary information can be written to the Oracle GoldenGate report file or
individual summary files.

When writing to the report file, the user can decide if this information should be
written when files are rolled over, or periodically based on a time period. Information
written to the report file is output in a standard fashion, and contains total records,
totals for each database operation type, deltas since the last report, rate information,
and detail information for each table.

When writing to individual summary files, a file is created for each rolled-over file.
The statistical information for the rolled-over file is listed separated by a delimiter. The
extension of the summary file, the data to be output, data delimiter, and line delimiter
can all be controlled.

Using the Flat File Adapter 6-1

Managing Oracle GoldenGate processes

Statistics and Reporting , contains detailed property information about statistics and
summary files.

6.3 Managing Oracle GoldenGate processes

The processes involved in a typical data integration solution include:
¢ A primary Extract process, capturing transactional data from the source database

* A PASSTHRU data pump Extract moving the captured transactional data across the
network from the source database machine to the data integration machine

¢ A delivery data pump Extract configured to run the user exit

Typically, the original capture and PASSTHRU data pump are part of one Oracle
GoldenGate installation and the delivery data pump is part of a second installation.
Both of these installations will also need to have an Oracle GoldenGate Manager
process running.

Processes within these installations are managed through the Oracle GoldenGate
GGSCI command line with simple commands like start and stop. Full details of
managing these processes and their configuration can be found in the Oracle
GoldenGate Administrator’s Guide.

6.4 Trail Recovery Mode

The RECOVERYOPTI ONS Extract parameter determines the restart behavior of an
Extract that abends while writing to a trail. APPENDMODE is the default for release 10
trails and later. When an abended Extract restarts in append mode, it writes a recovery
marker to the trail followed by the entire transaction that was interrupted.

When the Oracle GoldenGate Flat File Adapter file writer reads this trail, it receives
the partial transaction followed by the recovery marker indicating the partial
transaction should be discarded. The file writer then repositions itself in the output file
to the beginning of the partial transaction and overwrites it with the next transaction
from the trail file.

6.5 Locating Error Messages

There are three types of errors that may occur in the operation of the Oracle
GoldenGate for Flat File:

1. The Extract process running the user exit does not start
2. The process starts, but abends at some point later

3. The process runs successfully, but the data is incorrect or non-existent

In the first two cases, there are a number of places to look for error messages:

¢ The standard ggserr.log file, which contains basic information about Oracle
GoldenGate processes, their run history and a brief error message if any error
occurred.

* The Oracle GoldenGate report file for the Extract process running the user exit,
found in the di r r pt subdirectory. For example, if the process nameisffwiter,
the report file would be ffwriter.rpt. This may contain more detailed information

6-2 Administering Oracle GoldenGate Application Adapters

Locating Error Messages

about the error, especially if it is a problem in the Oracle GoldenGate core product
rather than the user exit.

¢ In the user exits log file, the name of which depends on the | 0g. | ognarme
property. If this file does not exist, the user exit most likely did not start up and the
report file should help isolate that problem.

Troubleshooting the Flat File Adapter contains more information on error handling.

Using the Flat File Adapter 6-3

Locating Error Messages

6-4 Administering Oracle GoldenGate Application Adapters

v

Using Predefined Defaults and Formats

This chapter explains the standard and application specific property defaults that are
included with the Oracle GoldenGate Adapters.

This chapter includes the following sections:

Overview of Predefined Defaults and Formats
Siebel Remote Format

Ab Initio Format

Netezza Format

Greenplum Format

Comma Delimited Format

7.1 Overview of Predefined Defaults and Formats

To make the task of setting the file writer properties easier, the Oracle GoldenGate
Adapter:

Sets defaults for some standard properties

Includes predefined sets of properties that create a typical format for particular
applications receiving the output.

Using these predefined formats changes the standard defaults based on what
certain applications typically expect. You can override a format property by
manually setting it in the properties file. When processing a property from the
format, the system first checks to see if that property is set in the properties file
itself. If it is, the property file setting is used, otherwise the format setting is used.

7.1.1 Default Properties

All writers use the following properties. The values shown for each property are the
defaults.

witer.files.data.rootdir=./out
witer.files.data. rollover.tine=10
witer.files.data.rollover.size=100000
witer.files.data.norecords.tineout=10
witer.files.control.use=true
witer.files.control.ext= ctrl
witer.files.control.rootdir=./out

Using Predefined Defaults and Formats 7-1

Siebel Remote Format

7.1.2 Specifying Consumer Formats
Use the t enpl at e property to specify the name of the format file that is to be used.

Syntax

witer.

tenpl at e=f or mat _nane

writer - Specifies the name of the flat file writer.

f or mat _namne - Specifies the name of an existing file of default property settings for a
particular application. Valid sets include:

Sl EBEL - Properties to create one DSV format output file with transaction
information for Siebel Remote.

ABI NI TI O- Properties to create LDV format output for consumption by Ab Initio.
NETEZZA - Properties to create one DSV format output file per table for Netezza.
GREENPLUM- Properties to create one DSV format output file for Greenplum.
COVMNVADELI| M- Properties to create one comma delimited output file per table.

7.2 Siebel Remote Format

gol dengat e. userexi t. out put node=t xs

gol dengat e. userexit. buf fertxs=true

gol dengat e. userexi t. dat eti me. renovecol on=true
gol dengat e. userexi t.tinmestanp=utc

witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
witer.
nunops

witer.

nmode=DSV

rawchar s=f al se

i ncl udebef ores=t rue

i ncl udecol names=true

om tval ues=fal se

diffsonly=fal se

oni t pl acehol ders=true
files.onepertabl e=fal se
files.data.ext=_data.csv
files.data.tnpext=_data.csv.tenp
files.data. bom code=ef bbbf

dsv. nul I'i ndi cator. char s=NULL
dsv. nul I i ndi cat or. escaped. char s=
dsv. fiel ddel i m chars=

dsv. fiel ddel i m escaped. chars=
dsv.linedelimchars=\n
dsv.linedel i mescaped. chars=
dsv. quot es. char s="

dsv. quot es. escaped. chars=""

dsv. quot eal ways=true

groupcol s=true

afterfirst=true

begi nt x. metacol s="B","S", posi tion, "GAW", %.AST_UPD BY, "1",

met acol s="R", opcode, %R0OW | D, Y. AST_UPD_BY, %.AST_UPD,

9%MODI FI CATI ON_NUM %CONFLI CT_I D, posi ti on, t xoppos, tabl e, "","","","","",
"", YDB_LAST_UPD, %DB_LAST_UPD_SRC, nuncol s

witer.
witer.
witer.

met acol s. DB_LAST_UPD. oni t =true
met acol s. DB_LAST_UPD_SRC. omi t =t rue
met acol s. opcode. updat epk. chars=U

7-2 Administering Oracle GoldenGate Application Adapters

Ab Initio Format

writer.netacols. position. fornat=dec
writer.endtx. netacol s="E"

7.3 Ab Initio Format

writer. node=LDV
writer.files.onepertable=false
witer.files.data ext=. data
witer.files.data. tnpext=.tenp
Writer.netacol s=position,tinestanp, opcode, txind, schems, tabl e
writer.netacols.tinestanp. fixedl en=26
writer.netacols. schema. fixedjustify=right
writer.netacols.schema. fixedpadchar. chars=Y
writer.netacols. opcode. fixedl en=1
writer.metacols.opcode.insert.chars=l
writer.netacols. opcode. updat e. chars=U
writer.netacols. opcode. del ete. chars=D
writer.netacols.txind. fixedl en=1
writer.netacols.txind. begin. chars=B
writer.metacols.txind. niddle.chars=M
writer.netacols.txind. end. chars=E
writer.netacols. txind. whol e. chars=wW
writer.netacols. position.fornat=dec
writer.ldv.vals.mssing. chars=M
writer.ldv.vals.present.chars=P
writer.ldv.vals.null.chars=N
writer.ldv.lengths.record. mode=hi nary
writer.ldv.lengths.record.|ength=4
writer.ldv.lengths.field. node=binary
writer.ldv.lengths.field.length=2
writer.statistics. period=onrollover
writer.statistics.tosummaryfile=true
Writer.statistics.overall=true
Writer.statistics.sunmary.fileformt=schens,tabl e, schemaandt abl e, total,
gcti mestanp, cti mest anp
writer.statistics.summary.deliniter.chars=|
writer.statistics.summary.eol.chars=\n

7.4 Netezza Format

wWriter. node=DSV

writer.rawchars=fal se
writer.includebefores=false
writer.includecol nanes=f al se
writer.onitval ues=fal se
writer.diffsonly=false
writer.onitplacehol ders=fal se
writer.files.onepertable=true
witer.files.data. ext=_data.dsv
writer.files.data.tnpext=_data.dsv.tenp
writer.dsv.nullindicator.chars=
writer.dsv.fielddelimchars=;
writer.dsv.fielddelimescaped. chars=

Using Predefined Defaults and Formats 7-3

Greenplum Format

7.5 Greenplum Format

writer.mde=DSV

writer.rawchars=fal se
writer.includebefores=false
writer.includecol names=fal se
writer.onitval ues=fal se
writer.diffsonly=false
wWriter.onitplacehol ders=fal se
writer.files.onepertable=true
witer.files.data.ext=_data.dsv
writer.files.data.tnpext=_data.dsv.tenp
writer.dsv.nullindicator.chars=
writer.dsv.fielddelimchars=|
writer.dsv.fielddelimescaped. chars=
writer.netacol s=opcode, ti mestanp
writer.netacols. opcode.insert.chars=I
writer.netacols. opcode. updat e. chars=U
writer.netacols. opcode. del ete. chars=D

7.6 Comma Delimited Format

writer.node=DSV

writer.rawchars=fal se
writer.includebefores=fal se
writer.includecol nanes=fal se
writer.onitval ues=fal se
writer.diffsonly=false
writer.onitplacehol ders=fal se
writer.files.onepertable=true
writer.files.data. ext=_data.dsv
writer.files.data.tnpext=_data.dsv.tenp
writer.dsv.nullindicator.chars=NULL
writer.dsv.fielddelimcharss=,
writer.dsv.linedelimchars=\n
writer.dsv.quotes. chars="
writer.dsv.quotes. escaped. chars=
writer.netacol s=position,txind, opcode, ti mestanp, schems, tabl e
Writer.statistics. period=onrollover
Writer.statistics.overall=true

7-4 Administering Oracle GoldenGate Application Adapters

8

Flat File Properties

This chapter describes properties that you can configure in the Oracle GoldenGate Flat
File Adapter property file.

The chapter includes the following sections:
* User Exit Properties

* File Writer Properties

8.1 User Exit Properties
User exit properties include properties to control logging and general properties that
control naming and handling of transactions.

8.1.1 Logging Properties

Logging is controlled by the following properties.

8.1.1.1 goldengate.log.logname

Specifies the prefix to the log file name. This must be a valid ASCII string. The log file
name has the current date appended to it, in yyyynmudd format, together with
the . | og extension.

The following example will create a log file of name wri t er _20140803. | og on
August 3, 2014.

gol dengat e. | og. | ogname=writer

8.1.1.2 goldengate.log.level
Specifies the overall log level for all modules. The syntax is:

gol dengate. | og. | evel =ERROR | WARN | INFQ DEBUG

The log levels are defined as follows:

¢ ERROR- Only write messages if errors occur

* WARN- Write error and warning messages

¢ | NFO- Write error, warning and informational messages

e DEBUG- Write all messages, including debug ones.

The default logging level is | NFO. The messages in this case will be produced on
startup, shutdown, and periodically during operation. For example, the following sets
the global logging level to | NFO.

gol dengat e. | og. | evel =I NFO

Flat File Properties 8-1

User Exit Properties

Note:

If the level is switched to DEBUG, large volumes of messages may occur, which
could impact performance.

8.1.1.3 goldengate.log.tostdout

Controls whether or not log information is written to standard out. This setting is
useful if the Extract process is running with a VAMstarted from the command line or
on an operating system where st dout is piped into the report file. However, Oracle
GoldenGate processes generally run as background processes. The syntax is:

gol dengate. | og. tostdout={true | false}
The defaultis f al se.

8.1.1.4 goldengate.log.tofile

Controls whether or not log information is written to the specified log file. The syntax
is:

gol dengate.log.tofile={true | false}

The default is f al se. Log output is written to the specified log file when set to t r ue.

8.1.2 General Properties

General properties control file writer names, check pointing, handling of transactions,
representation of timestamps, and the format used for column and object names.
8.1.2.1 goldengate.flatfilewriter.writers

Specifies the name of the writer that will run within the user exit. Enter multiple string
values to enable multiple named writers to run within the same user exit. For example:

gol dengate.flatfilewiter.witers=dsvwiter,diffswiter,binwiter

Ensure there are no spaces before or after the equal sign or the commas. All other
properties in the file should be prefixed by one of the writer names.
8.1.2.2 goldengate.userexit.buffertxs

Controls whether entire transactions are read before being output.When set tot r ue,
an entire transaction is read from the trail before being output. For example:

gol dengat e. userexit. buf fertxs=true

The default is f al se. Setting this to true is useful only if the nunops metadata
column is used. Currently the only way to calculate the nunops value is to buffer
transactions and output one transaction at a time.

8.1.2.3 goldengate.userexit.chkptprefix

Specifies a string value as the prefix to be added to the checkpoint file name. When
running multiple data pumps, the checkpoint prefix should be set to the name of the
process. For example:

gol dengat e. userexi t. chkpt prefi x=punpl_

8-2 Administering Oracle GoldenGate Application Adapters

User Exit Properties

8.1.2.4 goldengate.userexit.chkpt.ontxend

Controls whether the need to roll files over is checked after every transaction or only
when the Extract process checkpoints. If set to t r ue, the adapter checks if a file is due
to be rolled over after it has processed a transaction. If due, the rollover is performed
and the checkpoint file updated. This is useful if tight control over the contents of
output files is required. For example, if all data up to midnight should be written to
files before rolling over at midnight, it is important that the check occurs on every
transaction. For example:

gol dengat e. userexi t. chkpt. ont xend=t r ue

The defaultis f al se.If settof al se, the adapter will only check for rollover when
Extract checkpoints (every 10 seconds by default).
8.1.2.5 goldengate.userexit.datetime.removecolon

Controls whether or not a colon is written between the date and time. When set to

f al se, the date and time column values are written to the output files in the default
format of the Oracle GoldenGate trail, YYYY- MMt DD: HH: M : SS. FFFF. When set to

t r ue, the format is changed to YYYY- MM DD HH: M : SS. FFF with no colon between
date and time. The default is f al se.

gol dengat e. userexi t. dateti me. renovecol on=true

8.1.2.6 goldengate.userexit.timestamp

Controls whether the record timestamp is output as local time or Coordinated
Universal Time (UTC). When this is not set to ut ¢ the record timestamp is output as
local time using the local time zone. The default is local time.

gol dengat e. userexit.tinmestanp=utc

8.1.2.7 goldengate.userexit.datetime.maxlen

Controls the maximum output length of a date time column. Setting this to an integer
value truncates the column value to that length. Since the date and time format is
YYYY- MM DD: HH: M : SS. F(9) the maximum length of a date and time column is 29
characters.

For example:

gol dengat e. userexi t. dat eti me. maxl en=19

Setting gol dengat e. user exi t. maxl en=19 truncates to date and time with no
fractional seconds. Setting gol dengat e. user exi t. maxl en=10 truncates to date
only. The default is to output the full date and time column value.

8.1.2.8 goldengate.userexit.utfémode

Controls whether column data and table, file, and column names are returned in the
UTEFS8 character set. When this is set to f al se, all data will be in the character set of
the operating system. The defaultis t r ue.

The syntax is:

gol dengat e. userexi t. ut f 8node=true| f al se

Flat File Properties 8-3

File Writer Properties

8.2 File Writer Properties

File writer properties control the format of the output file and how the files are
written.

8.2.1 Output Format Properties

The following properties set the delimiter types of the values and the grouping of
columns.

8.2.1.1 writer.mode
Controls whether the output format is DSV or LDV.

* DSV - Delimiter Separated Values, for example:
POSI TI ON| OPCODE| TI MESTAVP| COLVALA| COLVALB)| . . .

Note:

DSV is not limited to comma separated values (as is CSV).

¢ LDV - Length Delimited Values, for example:
0109TI MESTAWPI 302MYO5TABLEP042000PO3ETC

Note:

Lengths can be ASCII or binary, some metadata columns can be fixed length
(see Metadata Columns) and this format will support unicode multi-byte
data.

For example:

writer.mode=dsv
writer2. node=| dv

Note:

For backward compatibility, csv is accepted instead of dsv, binary instead of
| dv. There is no difference in the output formats when using the alternate
options.

8.2.1.2 writer.groupcols

Controls whether or not the column names, before values and after values are grouped
together.

The syntax is:

writer.groupcol s=true|fal se

The default is false. This results in a set of name, before value and after value listed
together, as shown in this example for COL1 and COL2:

8-4 Administering Oracle GoldenGate Application Adapters

File Writer Properties

"CcoLl", CoL1_B4, COLl, "COL2", COL2_B4, COL2
With the property set to t r ue, the columns are grouped into sets of all names, all
before values, and all after values:

"CoL1", "COoL2", COL1_B4, COL2_B4, COL1, COL2

8.2.2 Output File Properties
The following properties control how files are written, where to, and what their
extensions will be. This is independent of the writer mode and data contents.
8.2.2.1 writer.files.onepertable

Controls whether data is split over multiple rolling files (one per table in the input
data) or all data is written to one rolling file. The default is true.

The syntax is:

witer.files.onepertable=true|false

In the following example the wr i t er file writer will create one file per table, and
wri t er 2 will write all data to one file.

witer.files.onepertable=true
witer2. files.onepertabl e=fal se

8.2.2.2 writer.files.oneperopcode

Controls whether or not data is split based on the insert, update, delete, or primary
key operation codes.

For example, the following setting will create separate output files for inserts, updates,
deletes, and primary key updates:

witer.files.oneperopcode=true

The default is false; output all records to the same files independent of the type of
operation.

In addition to this property, you must also modify thefi | es. f or mat stri ng
property to accept the D placeholder. This indicates the position to write the
operation code when the file name is created if the f i | es. oneper opcode property
is set. The default filename should also include the operation code if that property is
set.

8.2.2.3 writer.files.prefix

Specifies a value to be used as the prefix for data files and control files. This property
only applies if the writer is not in one per table mode (fi | es. onepert abl e=t rue).
For data files, the prefix is ignored if the property fil es.formatstring isbeing
used.

By default, the prefix is set to the string out put . A file named dat al will become
out put dat alby default. The file name will be t est _dat al using the following
example.

witer.files.prefix=test_

Flat File Properties 8-5

File Writer Properties

8.2.2.4 writer files.data.rootdir, writer.files.data.ext, writer.files.data.tmpext

Specifies the location and extension of all data files. Before rolling over the files will
have the t npext extension, after rolling over they will have the ext extension. The
extension does not have to be just an .ext format, additional characters can be
appended to the file name before the extension to differentiate the data output. You
should ensure the named output directory exists, and that the user running the Oracle
GoldenGate processes has the correct permissions to write to that directory. For
example:

specify the root directory for outputting data files
witer.files. data.rootdir=./out

determne the extension for data files when rolled over
witer.files.data.ext=_data.dsv

determine the extension for data files before rolling over
witer.files.data.tnpext=_data.dsv.tenp
8.2.2.5 writer.files.control.use, writer.files.control.rootdir, writer.files.control.ext

writer.files.control.useisaboolean true or false value that defaults to true.
The others are ASCII values. These properties determine the user, location and
extension of control files. Control files will share the same name prefix as the data files
they are related to, but will have the defined extension. By default
files.control.ext is.control.Forexample:

specify whether or not to output a control file
witer.files.control.use=true

specify the extension to use for control files
witer.files.control.ext=_data.control

directory in which to place control files, defaults to data directory
witer.files.control.rootdir=./out

8.2.2.6 writer.files.control.delim.chars/code, writer.files.control.eof.chars/code

Specifies the value in characters or hexadecimal code to be used as the data delimiter
or the end-of-line indicator. The default for the delimiter is a comma (,) The default
new line trigger is the new i ne character that is valid for the platform.

For example, to override the comma as the data delimiter:

witer.files.control.delimchars=#

For example, to set the new line indicator:

witer.files.control.eol.chars=\n

8.2.2.7 writer files.formatstring

Specifies the filename format string to be used in creating the filenames for data files.
The format string overrides the fi | es. prefi x property. This filename format string
is similar in syntax to standard C formatting except the following placeholders can be
added to the filename:

e %s =schema

o %t =table

8-6 Administering Oracle GoldenGate Application Adapters

File Writer Properties

* %n =seqno
* %d = timestamp
* %0 =opcode

The format of the seqno can be specified. For example %05n means 5 digits will be
displayed and padded with 0's. The seqno starts at zero and is incremented by one
each time a file rolls over. It is stored as a |l ong i nt and therefore the maximum
value is platform dependent. For example on a 64 bit machine the largest value is
2764-1.

These placeholders can be intermingled with user specified text in any order desired.
For example:

witer.files.formatstring=nyext % _%910n_% %

8.2.2.8 writer.files.data.bom.code

Specifies a hexadecimal value as the byte order marker (BOM) to be written to the
beginning of the file. The user is responsible for ensuring the BOM matches the data in
the files. If no hexadecimal value is specified the marker is not written.

The following example results in the UTF8 BOM ef bbf written as the first bytes of all
output files.

writer.files.data.bom code=ef bbbf

8.2.2.9 writer files.includeprocessname

Controls whether or not the name of the Extract process is included as part of the file
name. The default is false.

The syntax is:

witer.files.includeprocessnane=true|false

8.2.2.10 writer files.useownerfiles

Controls whether or not hidden files are created to identify the Extract process that
owns the file. This can be used to avoid overwriting files from different Oracle
GoldenGate installations. The default is false.

The syntax is:

witer.files.useownerfiles=true|false

8.2.3 File Rollover Properties

The following properties determine the policies for rolling over files.

8.2.3.1 writer files.data.rollover.time

Specifies the maximum number of seconds of elapsed time that must pass from the
first record written to the file before the file is rolled over. For example:

nunber of seconds before rolling over
witer.files. data.rollover.tinme=10

8.2.3.2 writer files.data.rollover.size

Specifies the minimum number of kilobytes that must be written to the file before the
file is rolled over.

Flat File Properties 8-7

File Writer Properties

This example sets the minimum to 10,000 KB:
max file size in KB before rolling over
witer.files.data.rollover.size=10000

8.2.3.3 writer files.data.norecords.timeout

Specifies the maximum number of elapsed seconds since data was written to a file to
wait before rolling over the file. The default is 120 seconds.

This example sets the timeout interval to 10 seconds:
roll over in case no records for a period of time
witer.files.data.norecords.tinmeout=10
8.2.3.4 writer files.rolloveronshutdown

Controls the policy for roll over when the Extract process stops. If this value is false, all
empty temporary files will be deleted, but any that have data will be left as temporary
files. If this property is true, all non-empty temporary files will be rolled over to their
rolled file name, a checkpoint written and empty temporary files deleted. For example:

roll over non-enpty and delete all enpty files when Extract stops
witer.files.rolloveronshutdown=true

Note:

You can use time and/or size. If you use both, the first reached will cause a
roll over. The time out interval ensures files are rolled over if they contain
data, even if there are no records to be processed. If neither time or size are
specified, files will roll over after a default maximum size of 1MB.

8.2.3.5 writer files.data.rollover.timetype

Controls whether to use the Julian commit timestamp rather than the system time to
trigger file roll over. The syntax is:

witer.files.data.rollover.tinetype=conmit]|system

The following example will use the commit timestamp of the source trail records to
determine roll over:

witer.files.data.rollover.tinetype=conmt

The default is to use the system time to determine when to roll over files.

8.2.3.6 writer files.data.rollover.multiple

Controls whether or not all files will be rolled over simultaneously independent of
when they first received records. Normally files are rolled over individually based on
the time or size properties. The time is based on the roll over period, so it depends on
the time records were first written to a particular file. In some cases, especially when
outputting data with one file per table, you may want to roll over all currently open
files at the same time, independent of when data was first written to that file.

The following example instructs the adapter to roll over all files simultaneously.

witer.files.data.rollover.nultiple=true

The default value is f al se.

8-8 Administering Oracle GoldenGate Application Adapters

File Writer Properties

8.2.3.7 writer.files.data.rollover.attime

Specifies a time for the adapter to roll over files. Enter the specified time in 24 hour
format (HH: MM. Only one value entry is supported. The wildcard (*) is supported for
hours. The syntax is:

witer.files.data.rollover.attinme=time_specifier

The following example will roll over to a new file every hour on the hour:

witer.files.data.rollover.attinme=*:00

The following example will roll over every hour at fifteen minutes after the hour:

witer.files.data.rollover.attinme=*:15

Note that thewri t er. rol | over. ti met ype property determines whether the time
to use is system or commit time.
8.2.3.8 writer.writebuffer.size

Specifies the write buffer chunk size. Use to reduce the number of system write calls.
For example:

witer.witebuffer.size=36863

8.2.4 Data Content Properties
The following properties determine the data that is written to the data files. These
properties are independent of the format of the output data.
8.2.4.1 writer.rawchars

Controls whether character data retains its original binary form or is output as ASCIL.
The default is false. This property should be set if the input data contains Unicode
multibyte data that should not be converted to ASCII. For example:

whether to output characters as ASCII or binary (for Unicode data)
writer.rawchars=fal se

writer2. rawchars=true

8.2.4.2 writer.includebefores

Controls whether or not both the before and after image of data is included in the
output for update operations. The default is false. This is only relevant if the before
images are available in the original data, and get updat ebef or es is present in all
Oracle GoldenGate parameter files in the processing chain. For example:

whether to output update before imges
writer.includebefores=true

This
produces. . ."VAL_BEFORE_1","VAL_1","VAL_BEFORE_2","VAL_2".
8.2.4.3 writer.afterfirst

Controls whether or not the after image is written before the before image when
i ncl udebef ores issettotrue.

For example:

Flat File Properties 8-9

File Writer Properties

witer.afterfirst=true

This true setting results in the after image listed before the before image.

"VAL_1", "VAL_BEFORE 1", "VAL 2", "VAL_BEFORE 2"

The defaultisfal se. In this case the after image is written after the before
image.

8.2.4.4 writer.includecolnames

Controls whether or not column names are output before the column values. The
default is f al se. For example:

whether to output col umm nanes
writer.includecol nanes=true

This produces ..” COL_1", "VAL_1","COL_2", "VAL_2" ...

8.2.4.5 writer.omitvalues

Controls whether or not column values are omitted in the output files. The default is
f al se. For example:

whet her to output colum val ues
writer.onm tval ues=fal se

This produces ..” COL_1", " COL_2" ..,if i ncl udecol nanes is also set to t r ue.

8.2.4.6 writer.diffsonly

Controls whether all columns are output, or only those where the before image is
different from the after image. The default is f al se. This only applies to updates and
requires GETUPDATEBEFCORES in all Oracle GoldenGate parameter files in the
processing chain. This property is independent of the i ncl udebef or es property. For
example:

whether to output only colums with differences between before and
after imges (deletes and inserts have all available col ums)
writer.diffsonly=true

This produces. . ."VAL_1",,,"VAL_4",,, "VAL_7".

8.2.4.7 writer.omitplaceholders

Controls whether delimiters/lengths are included in the output for missing columns.
The default is f al se. This applies to updates and deletes where the
COVPRESSUPDATES or COVPRESSDEL ETES flag was present in a Oracle GoldenGate
parameter file in the processing chain. In this case, values may be missing. Also, if
writer.di ffsonlyistrue,values that are not different are said to be missing. For
example:

whether to skip record deliniters if colums are nissing
writer.onitplacehol ders=true

This changes . . ."VAL_1",,,"VAL_4",,,"VAL_7".
to . . ."VAL_1","VAL_4","VAL_7".

8-10 Administering Oracle GoldenGate Application Adapters

File Writer Properties

8.2.4.8 Metadata Columns

Metadata columns are optional Extract columns that contain data about a record, not
actual record data. These columns are written at the beginning of the output record,
before any column values.

8.2.4.9 Valid Metadata Columns

Valid metadata columns are:

® position - A unique position indicator of records in a trail.

* opcode- |, U, Dor K for Insert, Update, Delete, or Primary Key update records.

¢ txind - The general record position in a transaction (0 - begin, 1 - middle, 2 - end, 3 -
only).

* txoppos - Position of record in a transaction, starting from 0.

* schema - The schema (owner) name of the changed record.

¢ table - The table name of the changed record.

e schemaandtable - Both the schema and table name concatenated as schema.table
* timestamp - The commit timestamp of the record.

* @<token name> - A token value defined in the Extract parameter file.

e $getenv - A GETENV value as documented in the Oracle GoldenGate Reference Guide;
for example $GGHEADER. OPCODE.

¢ %COLNAME - The value of a data column.

* numops -The number of operations in the current transaction. This value will
always be 1 if gol dengat e. user exi t .buf f ert xs isnottrue.

¢ numcols - The number of columns to be output. This value is equal to the number
of columns in the original record, minus the number of columns output as
metadata columns up until the point this metadata column is used.

¢ "<value>" - Any literal value.

8.2.4.10 Using Metadata Columns

Some things to consider when using metadata columns:

e The ASCII values for opcode and t xi nd can be overridden.
* For LDV, metadata columns can be variable or fixed length.

e The posi ti on can be written in hexadecimal or decimal.

¢ Any metadata column can be the internal value or it can be read from a column of
the original data.

¢ A literal value is indicated by enclosing it in quotes. When a literal value is
specified, that value will be output as a character string in the specified metadata
column position using the appropriate quote policy.

Flat File Properties 8-11

File Writer Properties

¢ A column value is indicated by “COLNAME. When a column value is specified, that
column value is output in the metadata section of the output record, rather than in
the column values section. This may be used to ensure that the column is always
output in the same position in the record, independent of the table being output.

The following properties apply to metadata columns.

8.2.4.11 writer.metacols

Specifies the metadata columns to output in the order of output. Enter multiple names
as ASCII values separated by commas. For example:

which netacols to output and in which order
writer.netacol s=ti mestanp, opcode, t xi nd, posi ti on, scheng, tabl e

8.2.4.12 writer.metacols.metacol_name.fixedlen

Specifies an integer value to determine the length of data to write for the metadata
column specified by met acol _nane. If the actual data is longer than the fixed length
it will be truncated, if it is shorter the output will be padded. For example:

timestanp is fixed length
writer.netacol s.tinestanp. fixedl en=23

This truncates 2011- 08- 03 10: 30: 51. 123456 to 2011- 08- 03 10: 30: 51. 123.

8.2.4.13 writer.metacols.metacol_name.column

Specifies an ASCII value to use as the column name of data values instead of using the
net acol _nane value for a metadata column. If set, this column name must exist in
all tables processed by the user exit. There is currently no way to override this column
name on a per table basis. For example, to override the internal timestamp from a
column:

timestanp is read froma col um
writer.netacol s.timestanp. col um=MY_TI MESTAMP_COL

8.2.4.14 writer.metacols.token_name.novalue.chars |
writer.metacols.token_name.novalue.code

Specifies values to represent characters or hexadecimal code to be used when the
value of t oken_nane is not available. Use ASCII values for char s and hexadecimal
values for code. The default value is NO VALUE. For example:

writer.metacols. TKN- SCN. noval ue. char s=0

8.2.4.15 writer.metacols.metacol_name.fixedjustify

Controls whether the justification for the net acol _nane column value is to the left or
right. By default all metadata columns will be justified to the left. For example, to
justify a token to the right:

writer.metacol s. TKN- SCN. fi xedj usti fy=ri ght

8.2.4.16 writer.metacols.metacol_name.fixedpadchar.chars |
writer.metacols.metacol_name.fixedpadchar.code

Specifies either a character or code value to be used for padding a metadata column.
Use ASCII values for chars and hexadecimal values for code. The default character
used for padding is a space (" "). For example:

8-12 Administering Oracle GoldenGate Application Adapters

File Writer Properties

writer.netacol s. TKN- SCN. fi xedpadchar . char s=0

8.2.4.17 writer.metacols.opcode.insert.chars | writer.metacols.opcode.insert.code

Specifies an override value for the default character | that identifies insert operations.
Use ASCII values for char s and hexadecimal values for code.

The following example instructs the adapter to use | NS for inserts:

writer.nmetacol s.opcode.insert.chars=INS

8.2.4.18 writer.metacols.opcode.update.chars | writer.metacols.opcode.update.code

Specifies an override value for the default character U that identifies update
operations. Use ASCII values for char s and hexadecimal values for code.

The following example instructs the adapter to use UPD for updates:

writer.netacol s. opcode. updat e. char s=UPD

8.2.4.19 writer.metacols.opcode.delete.chars | writer.metacols.opcode.delete.code

Specifies an override value for the default character D that identifies delete operations.
Use ASCII values for char s and hexadecimal values for code.

The following example instructs the adapter to use DEL for deletes:

writer.metacol s. opcode. del et e. char s=DEL

8.2.4.20 writer.metacols.opcode.updatepk.chars |
writer.metacols.opcode.updatepk.code

Specifies an override value for the default character K that identifies primary key
update operations. Use ASCII values for char s and hexadecimal values for code.

The following example instructs the adapter to use PKU for primary key updates:

writer.metacol s. opcode. updat epk. char s=PKU

8.2.4.21 writer.metacols.txind.begin.chars | writer.metacols.txind.begin.code

Specifies the override values to use to identify the beginning, middle, end of
transactions, or if an operation that is the whole transaction. Use ASCII values for
char s and hexadecimal values for code. The default value is 0 for Begin.

The following example overrides the 0 with the letter B.

tx indicator values is overridden

writer.metacol s.txind. begin. chars=B

8.2.4.22 writer.metacols.txind.middle.chars | writer.metacols.txind.middle.code

Specifies the override value to use to identify the middle transactions. Use ASCII
values for char s and hexadecimal values for code. The default value is 1 for Middle.

The following example overrides thel with the letter M.

tx indicator value is overridden
writer.netacols.txind. mddle.chars=M

8.2.4.23 writer.metacols.txind.end.chars | writer.metacols.txind.end.code

Specifies the override value to use to identify the end transactions. Use ASCII values
for char s and hexadecimal values for code. The default value is 2 for End.

Flat File Properties 8-13

File Writer Properties

The following example overrides the 2 with the letter E.

tx indicator value is overridden

writer.metacols.txind. end. chars=E

8.2.4.24 writer.metacols.txind.whole.chars | writer.metacols.txind.whole.code

Specifies the override value to use to identify. if an operation that is the whole
transaction. Use ASCII values for char s and hexadecimal values for code. The
default value is 3 for Whole.

The following example overrides the 3 with the letter W.

tx indicator value is overridden
writer.netacols.txind. whol e. chars=W

8.2.4.25 writer.metacols.position.format

Controls whether the output of the of the posi t i on metadata column is in decimal or
hexadecimal format. If hexadecimal, this will typically be a 16 character value; if
decimal, the length will vary. Currently this contains the sequence number and RBA of
the Oracle GoldenGate trail that the Extract process is reading from. For example:

position is in decinmal format (seqno0000000r ba)
writer.netacol s. position.format=dec

This produces 120000012345 for seqno 12, r ba 12345

writer2. netacols. position.format=hex

This produces 0000000c00003039 for seqno 12, rba 12345.

8.2.4.26 writer.metacols.colname.omit
Controls whether the COLNAME column can be used as metadata but not output.

The following example specifies that nuntol s can be used as metadata, but not
output.

writer.metacols. nuncol s.omt=true

8.2.4.27 writer.begintx.metacols, writer.endtx.metacols

Specifies the metadata columns to use to mark the beginning and end of a transaction.
These marker records are written (with end of line delimiters) to the output files
before and after the operation records that make up the transaction.

The syntax is:

writer.begintx. metacol s=netacol s_|ist

The following example specifies marking the beginning of a transaction with the letter
B and the number of operations in the transaction.

writer.begintx. metacol s="B", nunops

In the following example, the end of the transaction marker will be the letter E.

writer.endtx. metacol s="E'

Any of the existing metadata columns can be used in the transaction begin and end
markers. If you specify a column value or specific property of a record (such as table

8-14 Administering Oracle GoldenGate Application Adapters

File Writer Properties

name) for begi nt x. met acol s, the value for the first record in the transaction is
used. For endt x. met acol s, the value for the last record is used.

For example, if the transaction has the following records:

rec=0, t abl e=t abA, operati on=i nsert, col 1=val 1, col 2=val 2
rec=1, t abl e=t abA, oper ati on=updat e, col 1=val 3, col 2=val 4
rec=2, t abl e=t abA, operati on=del et e, col 1=val 5, col 2=val 6
rec=3, t abl e=t abB, oper ati on=updat e, col 1=val 7, col 2=val 8

And the properties are set as follows:

writer. begintx. metacol s="B", tabl e, %ol 2
writer.endtx. netacol s="E", tabl e, %ol 2

Then the begin transaction marker will be " B", "t abA", "val 2" and the end marker
willbe"E", "t abB", "val 8".

If nunops is used to output the number of operations in a transaction for either the
begin or end markers, the user must also set:

gol dengat e. userexi t. buf fertxs=true

Note:

When this property is set, the adapter buffers transactions in memory, so care
should be taken to limit the number of operations in the transactions being
handled by the system.

8.2.5 DSV Specific Properties
DSV files have the following record format:
{[METACOL] [FD] } n{[COL] [FD] } n{ LD]
Where:
¢ METACQL is any defined metadata column
e COL is any data column
® FDis the field delimiter
¢ LDis the line delimiter
Column values may be quoted, e. g. "2013-01-10
10:20: 31", "U", "MY. TABLE", 2000, " DAVE"
8.2.5.1 writer.dsv.nullindicator.chars | writer.dsv.nullindicator.code

Specifies the characters to use for NULL values in delimiter separated files. These
values override the default NULL value of an empty string. Use ASCII values for
chars and hexadecimal values for code. For example:

writer.dsv.nullindicator.chars=NULL
writer.dsv.nullindicator.code=0a0a0a0a

8.2.5.2 writer.dsv.fielddelim.chars | writer.dsv.fielddelim.code

Specifies an override value for the field delimiter. The default is a comma (,). Use
ASCII values for chars and hexadecimal values for code. For example:

Flat File Properties 8-15

File Writer Properties

define the characters to use for field delimters in DSV files
writer.dsv.fielddelimchars=|

8.2.5.3 writer.dsv.linedelim.chars | writer.dsv.linedelim.code

Specifies an override value for the line delimiter. The default is a new line character
appropriate to the operating system. Use ASCII values for char s and hexadecimal
values for code. For example:

define the characters to use for line delimters in DSV files
writer.dsv.linedelimchars=\n

8.2.5.4 writer.dsv.quote.chars | writer.dsv.quote.code

Specifies an override value for the quote character. The default is a double quote ().
Use ASCII values for char s and hexadecimal values for code.For example:

define the characters to use for quotes in DSV files
writer.dsv. quotes. chars='

8.2.5.5 writer.dsv.quotes.policy
Controls the policy for applying quotes.
The syntax is:

writer.dsv. quotes. policy={default|none|al ways| dat at ypes}

Where:

¢ default — Only dates and chars are quoted

¢ none — No metadata column or column values are quoted

¢ always — All metadata columns and column values are quoted

¢ datatypes — Only specific data types are quoted

If this property is set it will override the dsv. quot eal ways property. Use the
dsv. quot es. dat at ypes property to specify which data types should be quoted.
8.2.5.6 writer.dsv.quotes.datatypes

Controls whether integer, character, float, or datetime data types are to be quoted
when dsv. quot es. pol i cy issetto dat at ype.

The syntax is:

writer.dsv. quotes. datatypes=[char][,integer][,float][, date]

For example the following instructs the adapter to quote characters and date time
values only.

writer.dsv. quotes. dat atypes=char, date

If no data types are specified, the data types option defaults to all data types, which is
equivalent to al ways.

8.2.5.7 writer.dsv.nullindicator.escaped.chars | writer.dsv.nullindicator.escaped.code

Specifies the escaped value for a null indicator. If set, all values will be checked for the
null indicator value and replaced with the escaped value when output. Use ASCII
values for char s and hexadecimal values for code. For example:

8-16 Administering Oracle GoldenGate Application Adapters

File Writer Properties

(optionally) you can define the characters (or code) to use
to escape these values if found in data val ues
writer.dsv.nullindicator.escaped. char s=NULL

This changes the null indicator to NULL.

8.2.5.8 writer.dsv.fielddelim.escaped.chars | writer.dsv.fielddelim.escaped.code

Specifies the escaped value for a field delimiter. If set, all values will be checked for the
field delimiter value and replaced with the escaped value when output. Use ASCII
values for char s and hexadecimal values for code. For example:

writer.dsv.fielddelimescaped. chars=|
This changes the field delimiter to | .

8.2.5.9 writer.dsv.linedelim.escaped.chars | writer.dsv.linedelim.escaped.code

Specifies the escaped value for a line delimiter. If set, all values will be checked for the
line delimiter value and replaced with the escaped value when output. Use ASCII
values for char s and hexadecimal values for code. For example:

writer.dsv.linedelimescaped.chars=\n
writer.dsv.linedelimescaped. code=D

Both change the line delimiter to \ n.

8.2.5.10 writer.dsv.quotes.escaped.chars | writer.dsv.quotes.escaped.code

Specifies the escaped value for a field delimiter. If set, all values will be checked for the
field delimiter value and replaced with the escaped value when output. Use ASCII
values for char s and hexadecimal values for code. For example:

writer.dsv. quotes. escaped. chars=

" "

This changes the "some text" to ""some text"".

8.2.5.11 writer.dsv.onecolperline

Controls whether or not each column value is forced onto a new line. Each line will
also contain the metadata columns defined for this writer. The default is false. For
example:

Force each colum onto a new line with its own nmeta cols
writer.dsv.onecol perline=true

This changes:{ met acol s}, val _1, val _2 to

{metacol s}, val 1
{metacol s}, val 2

8.2.5.12 writer.dsv.quotealways

Controls whether or not each column is surrounded by quotes, even if it is a numeric
value. The default is false.

Flat File Properties 8-17

File Writer Properties

Note:

This property has been superseded by dsv. quot es. pol i cy and is
supported only for backward compatibility. The value set for
dsv. quot eal ways is ignored if dsv. quot es. pol i cy is set.

For example:

writer.dsv. quot eal ways=true

Changes:. . .,1234,"Hello",10to. . .,"1234","Hello","10"

8.2.6 LDV Specific Properties

LDV files have the following record format:

[RECLEN] [METACCLS] { [FLAG [LEN] [VALUE] } n

Where:

e RECLENIis the full record length in bytes

e METACCLS are all selected metadata columns

® FLAGcan be (Missing, (P)resent, or (Nyull

¢ LENis the column values length (0 for missing and null)
e VALUE is the column value

For example:

01072007- 01-10 10: 20: 31U302MYO5TABLEP042000M)ONOOPO4DAVE

8.2.6.1 writer.Idv.vals.missing.chars | writer.ldv.vals.missing.code

Specifies override values for missing indicators. Use ASCII values for char s and
hexadecimal values for code. For example:

writer.ldv.vals.nssing. chars=M

8.2.6.2 writer.Idv.vals.present.chars | writer.ldv.vals.present.code

Specifies override values for present indicators. Use ASCII values for char s and
hexadecimal values for code. For example:

writer.ldv.vals.present.chars=PR

8.2.6.3 writer.ldv.vals.null.chars | writer.ldv.vals.null.code

Specifies override values for null indicators. Use ASCII values for chars and
hexadecimal values for code. For example:

writer.ldv.vals.null.chars=NL

8.2.6.4 writer.ldv.lengths.record.mode, writer. Idv.lengths.field.mode

Controls the output mode of record and field lengths. The value can be either bi nary
or ASCI | . The default is bi nary.

8-18 Administering Oracle GoldenGate Application Adapters

File Writer Properties

If bi nary, the number written to the file will be encoded in binary bytes. If ASCI |,
characters representing the decimal value of the length will be used. For example:

writer.ldv.lengths.record. node=hinary
writer.ldv.lengths.field. mode=binary
8.2.6.5 writer.ldv.lengths.record.length, writer.ldv.lengths.field.length

Specifies the record and field lengths as integer values. If the mode is ASCI | , this
represents the fixed number of decimal digits to use. If bi nary, it represents the
number of bytes.

In ASCII mode the lengths can be any value, but the exit will stop if a length exceeds
the maximum. In binary mode, the lengths can be 2,4, or 8 bytes, but record length
must be greater than field length. For example:

Lengths can be binary (2,4, or 8 bytes) or ASCII (any |ength)
writer.ldv.lengths.record.|ength=4
witer.ldv.lengths.field.|ength=2

8.2.7 Statistics and Reporting

There are two ways that statistics regarding the data written to data files can be
obtained:

* As areport written to the Oracle GoldenGate report file

® As a separate summary file associated with a data file on rollover
These two mechanisms can be used together or separately.

The data that can be obtained includes, 1) the total records processed, broken down to
inserts, updates, deletes; 2) records processed per table, also broken down; 3) total rate
and rate per table; 4) delta for these since last report. Reporting can be time based, or
synced to file rollover

This data can be written to the report file or as a summary file linked to a data file on
rollover. The reporting format is fixed. The summary file contains the data in a
delimited format, but related to the contents of a particular data file. This can be used
by a data integration product to cross-check processing. It will have the same name as
the data file, but a different extension.

8.2.7.1 writer.statistics.toreportfile

Controls whether or not statistics are output to the Oracle GoldenGate report file. For
example:

witer.statistics.toreportfile=true

8.2.7.2 writer.statistics.period

Specifies the time period for statistics. The value can be either t i mebased or
onrol | over.

For example:

writer.statistics.period=onrollover
writer.statistics.period=tinebased

If ti mebased, the time period should be setin st ati stics. ti me.

Flat File Properties 8-19

File Writer Properties

Note:

These values are valid only for outputting statistics to the report file. Statistics
will be output to the summary file only on rollover.

8.2.7.3 writer.statistics.time
Specifies a time interval in seconds after which statistics will be reported.
For example:

witer.statistics.tim=5

8.2.7.4 writer.statistics.tosummaryfile

Controls whether or not a summary file containing statistics for each data file will be
created on rollover.

The following example creates the summary file.

writer.statistics.tosummaryfile=true

8.2.7.5 writer.statistics.summary.fileformat

Controls the content of the summary files and the order in which the content is
written. Multiple comma separated ASCII values can be specified.

Valid values are:

¢ schema - schema or owner of the table that the statistics relate to

e table — table that the statistics relate to

¢ schemaandtable — schema and table in one column separated by a period "'

e gtotal — total number of records output for the specified table since the user exit
was started

¢ gtotaldetail - total number of inserts, updates and deletes separated by the
delimiter since the user exit was started

* gctimestamp — minimum and maximum commit timestamp for the specified table
since user exit was started

e ctimestamp — minimum and maximum commit timestamps for the specified table
in the related data file.

* total - total number of records output for the specified table in the related data file

* totaldetail — total number of inserts, updates and deletes output for the specified
table in the related data file

* rate — average rate of output of data for the specified table in the related data file in
records per second

¢ ratedetail — average rate of inserts, updates and deletes for the specified table in the
related data file in records per second

For example:

8-20 Administering Oracle GoldenGate Application Adapters

File Writer Properties

writer.statistics.summary.fileformt=
schemm, tabl e, total,total detail, gctimestanp, ctimestanp

8.2.7.6 writer.statistics.overall

Controls whether or not an additional statistics row is written to the summary files.
This row contains the overall (across all tables) statistics defined by the user using the
statistics.summary. filefornmat property.

The following example will write this row.

writer.statistics.overall=true

8.2.7.7 writer.statistics.summary.delimiter.chars/code,
writer.statistics.summary.eol.chars/code

Specifies override values for the field delimiter and end of line delimiter for the
summary files. Use ASCII values for char s and hexadecimal values for code. The
default is a comma ',' delimiter and new line character. For example:

writer.statistics.sumary.delimter.chars=|
writer.statistics.sumary. eol.code=0a0c

8.2.7.8 writer.statistics.summary.extension

Specifies the override extension to use for the statistics summary file output per data
file. The default is st at s.

The following example changes the extension from .st at s to .st ati sti cs.

writer.statistics.sunmary.extension=.statistics

Flat File Properties 8-21

File Writer Properties

8-22 Administering Oracle GoldenGate Application Adapters

Part Il

Capturing JMS Messages

This part of the book explains using the Oracle GoldenGate Adapter to capture Java
Message Service (JMS) messages to be written to an Oracle GoldenGate trail.

Part IV contains the following chapters:
¢ Configuring Message Capture
* Parsing the Message

* Message Capture Properties

9

Configuring Message Capture

This chapter explains how to configure the VAM Extract to capture J]MS messages.

This chapter includes the following sections:
¢ Configuring the VAM Extract

* Connecting and Retrieving the Messages

9.1 Configuring the VAM Extract

To run the Java message capture application you need the following;:
® Oracle GoldenGate for Java adapter

e Extract process

e Extract parameter file configured for message capture

* Description of the incoming data format, such as a source definitions file.

9.1.1 Adding the Extract

To add the message capture VAM to the Oracle GoldenGate installation, add an
Extract and the trail that it will create using GGSCI commands:

ADD EXTRACT jmsvam VAM
ADD EXTTRAIL dirdat/id, EXTRACT jmsvam MEGABYTES 100

The process name (j msvan) can be replaced with any process name that is no more
than 8 characters. The trail identifier (i d) can be any two characters.

Note:

Commands to position the Extract, such as BEG Nor EXTRBA, are not
supported for message capture. The Extract will always resume by reading
messages from the end of the message queue.

9.1.2 Configuring the Extract Parameters

The Extract parameter file contains the parameters needed to define and invoke the
VAM. Sample Extract parameters for communicating with the VAM are shown in the
table.

Configuring Message Capture 9-1

Connecting and Retrieving the Messages

Parameter

Description

EXTRACT j msvam

VAM ggj ava_vam dl |,
PARAMS di rprm j msvam properties

TRANLOGOPTI ONS VAMCOVPATI BI LI TY 1

TRANLOGOPTI ONS GETMETADATAFROWAM

EXTTRAIL dirdat/id

TABLE OGG *

The name of the Extract process.

Specifies the name of the VAM library and the
location of the properties file. The VAM properties
should be in the di r pr mdirectory of the Oracle
GoldenGate installation location.

Specifies the original (1) implementation of the VAM
is to be used.

Specifies that metadata will be sent by the VAM.

Specifies the identifier of the target trail Extract
creates.

A list of tables to process. Wildcards may be used in
the table name.

9.1.3 Configuring Message Capture

Message capture is configured by the properties in the VAM properties file. This file is
identified by the PARAMS option of the Extract VAMparameter and used to determine
logging characteristics, parser mappings and JMS connection settings.

9.2 Connecting and Retrieving the Messages

To process JMS messages you must configure the connection to the JMS interface,
retrieve and parse the messages in a transaction, write each messages to a trail, commit
the transaction, and remove its messages from the queue.

9.2.1 Connecting to JMS

Connectivity to JMS is through a generic JMS interface. Properties can be set to
configure the following characteristics of the connection:

® Java class path for the JMS client

¢ Name of the JMS queue or topic source destination

® Java Naming and Directory Interface (JNDI) connection properties

— Connection properties for Initial Context

— Connection factory name
— Destination name

® Security information

— JNDI authentication credentials

— JMS user name and password

9-2 Administering Oracle GoldenGate Application Adapters

Connecting and Retrieving the Messages

The Extract process that is configured to work with the VAM (such as the j nsvamin
the example) will connect to the message system. when it starts up.

Note:

The Extract may be included in the Manger's AUTORESTART list so it will
automatically be restarted if there are connection problems during processing.

Currently the Oracle GoldenGate for Java message capture adapter supports only JMS
text messages.

9.2.2 Retrieving Messages

The connection processing performs the following steps when asked for the next
message:

e Start a local JMS transaction if one is not already started.
* Read a message from the message queue.

¢ If the read fails because no message exists, return an end-of-file message.

* Otherwise return the contents of the message.

9.2.3 Completing the Transaction

Once all of the messages that make up a transaction have been successfully retrieved,
parsed, and written to the Oracle GoldenGate trail, the local JMS transaction is
committed and the messages removed from the queue or topic. If there is an error the
local transaction is rolled back leaving the messages in the JMS queue.

Configuring Message Capture 9-3

Connecting and Retrieving the Messages

9-4 Administering Oracle GoldenGate Application Adapters

10

Parsing the Message

This chapter explains the types of parsers included with the Oracle GoldenGate Java
Adapter and how each parser translates JMS text messages.

This chapter includes the following sections:
* Parsing Overview

* Fixed Width Parsing

¢ Delimited parsing

¢ XML Parsing

e Source definitions Generation Utility

10.1 Parsing Overview

The role of the parser is to translate JMS text message data and header properties into
an appropriate set of transactions and operations to pass into the VAM interface. To
do this, the parser always must find certain data:

¢ Transaction identifier

* Sequence identifier

¢ Timestamp

¢ Table name

¢ Operation type

¢ Column data specific to a particular table name and operation type
Other data will be used if the configuration requires it:

¢ Transaction indicator

¢ Transaction name

e Transaction owner

The parser can obtain this data from JMS header properties, system generated values,
static values, or in some parser-specific way. This depends on the nature of the piece
of information.

10.1.1 Parser Types

The Oracle GoldenGate message capture adapter supports three types of parsers:

Parsing the Message 10-1

Parsing Overview

* Fixed — Messages contain data presented as fixed width fields in contiguous text.
¢ Delimited — Messages contain data delimited by field and end of record characters.

* XML - Messages contain XML data accessed through XPath expressions.

10.1.2 Source and Target Data Definitions

There are several ways source data definitions can be defined using a combination of
properties and external files. The Oracle GoldenGate Gendef utility generates a
standard source definitions file based on these data definitions and parser properties.
The options vary based on parser type:

¢ Fixed - COBOL copybook, source definitions or user defined
® Delimited — source definitions or user defined

e XML - source definitions or user defined

There are several properties that configure how the selected parser gets data and how
the source definitions are converted to target definitions.

10.1.3 Required Data

The following information is required for the parsers to translate the messages:

10.1.3.1 Transaction Identifier

The transaction identifier (t Xi d) groups operations into transactions as they are
written to the Oracle GoldenGate trail file. The Oracle GoldenGate message capture
adapter supports only contiguous, non-interleaved transactions. The transaction
identifier can be any unique value that increases for each transaction. A system
generated value can generally be used.

10.1.3.2 Sequence Identifier

The sequence identifier (Seqi d) identifies each operation internally. This can be used
during recovery processing to identify operations that have already been written to
the Oracle GoldenGate trail. The sequence identifier can be any unique value that
increases for each operation. The length should be fixed.

The JMS Message ID can be used as a sequence identifier if the message identifier for
that provider increases and is unique. However, there are cases (e.g. using clustering,
failed transactions) where JMS does not guarantee message order or when the ID may
be unique but not be increasing. The system generated Sequence ID can be used, but it
can cause duplicate messages under some recovery situations. The recommended
approach is to have the JMS client that adds messages to the queue set the Message 1D,
a header property, or some data element to an application-generated unique value that
is increasing.

10.1.3.3 Timestamp

The timestamp (t i mest anp) is used as the commit timestamp of operations within
the Oracle GoldenGate trail. It should be increasing but this is not required, and it
does not have to be unique between transactions or operations. It can be any date
format that can be parsed.

10-2 Administering Oracle GoldenGate Application Adapters

Parsing Overview

10.1.3.4 Table Name

The table name is used to identify the logical table to which the column data belongs.
The adapter requires a two part table name in the form SCHEMA_NAME. TABLE NAME.
This can either be defined separately (schema and t abl e) or as a combination of
schema and table (schenaandt abl e).

A single field may contain both schema and table name, they may be in separate fields,
or the schema may be included in the software code so only the table name is
required. How the schema and table names can be specified depends on the parser. In
any case the two part logical table name is used to write records in the Oracle
GoldenGate trail and to generate the source definitions file that describes the trail.

10.1.3.5 Operation Type

The operation type (opt ype) is used to determine whether an operation is an insert,
update or delete when written to the Oracle GoldenGate trail. The operation type
value for any specific operation is matched against the values defined for each
operation type.

The data written to the Oracle GoldenGate trail for each operation type depends on
the Extract configuration:

e Inserts
— The after values of all columns are written to the trail.
e Updates

— Default — The after values of keys are written. The after values of columns that
have changed are written if the before values are present and can be compared.
If before values are not present then all columns are written.

— NOCOVPRESSUPDATES — The after values of all columns are written to the trail.

— CETUPDATEBEFORES - The before and after values of columns that have
changed are written to the trail if the before values are present and can be
compared. If before values are not present only after values are written.

— If both NOCOVPRESSUPDATES and GETUPDATEBEFORES are included, the
before and after values of all columns are written to the trail if before values are
present

e Deletes

— Default — The before values of all keys are written to the trail.

— NOCOWPRESSDELETES — The before values of all columns are written to the
trail.

Primary key update operations may also be generated if the before values of keys are
present and do not match the after values.

10.1.3.6 Column Data

All parsers retrieve column data from the message text and write it to the Oracle
GoldenGate trail. In some cases the columns are read in index order as defined by the
source definitions, in other cases they are accessed by name.

Parsing the Message 10-3

Fixed Width Parsing

Depending on the configuration and original message text, both before and after or
only after images of the column data may be available. For updates, the data for non-
updated columns may or may not be available.

All column data is retrieved as text. It is converted internally into the correct data type
for that column based on the source definitions. Any conversion problem will result in
an error and the process will abend.

10.1.4 Optional Data

The following data may be included, but is not required.

10.1.4.1 Transaction Indicator

The relationship of transactions to messages can be:

® One transaction per message

This is determined automatically by the scope of the message.

® Multiple transactions per message

This is determined by the transaction indicator (t xi nd). If there is no transaction
indicator, the XML parser can create transactions based on a matching transaction
rule.

e Multiple messages per transaction

The transaction indicator (t Xi nd) is required to specify whether the operation is
the beginning, middle, end or the whole transaction. The transaction indicator
value for any specific operation is matched against the values defined for each
transaction indicator type. A transaction is started if the indicator value is
beginning or whole, continued if it is middle, and ended if it is end or whole.

10.1.4.2 Transaction Name

The transaction name (t xnane) is optional data that can be used to associate an
arbitrary name to a transaction. This can be added to the trail as a token using a
GETENV function.

10.1.4.3 Transaction Owner

The transaction owner (txowner) is optional data that can be used to associate an
arbitrary user name to a transaction. This can be added to the trail as a token using a
GETENV function, or used to exclude certain transactions from processing using the
EXCLUDEUSER Extract parameter.

10.2 Fixed Width Parsing

Fixed width parsing is based on a data definition that defines the position and the
length of each field. This is in the format of a Cobol copybook. A set of properties
define rules for mapping the copybook to logical records in the Oracle GoldenGate
trail and in the source definitions file.

The incoming data should consist of a standard format header followed by a data
segment. Both should contain fixed width fields. The data is parsed based on the PIC
definition in the copybook. It is written to the trail translated as explained in Header
and Record Data Type Translation.

10-4 Administering Oracle GoldenGate Application Adapters

Fixed Width Parsing

10.2.1 Header

The header must be defined by a copybook 01 level record that includes the following:
* A commit timestamp or a change time for the record
* A code to indicate the type of operation: insert, update, or delete

® The copybook record name to use when parsing the data segment

Any fields in the header record that are not mapped to Oracle GoldenGate header
fields are output as columns.

The following example shows a copybook definition containing the required header
values

Example 10-1 Specifying a Header

01 HEADER

20 Hdr - Ti mest anp PI C X(23)
20 Hdr - Sour ce- DB- Function PIC X

20 Hdr - Sour ce- DB- Rec- 1D PIC X(8)

For the above example, you must set the following properties:

fixed. header =HEADER

fixed. ti mestanp=Hdr- Ti mest anp
fixed. opt ype=Hdr - Sour ce- DB- Functi on
fixed. t abl e=Hdr - Sour ce- DB- Rec- | d

The logical name table output in this case will be the value of Hdr - Sour ce- DB- Rec-
I d.
10.2.1.1 Specifying Compound Table Names

More than one field can be used for a table name. For example, you can define the
logical schema name through a static property such as:

fi xed. schema=MYSCHEMA

Then you can add a property that defines the data record as multiple fields from the
copybook header definition.

Example 10-2 Specifying Compound Table Names

01 HEADER
20 Hdr- Source-DB PIC X(8).
20 Hdr- Sour ce- DB- Rec- 1d PIC X(8).

20 Hdr- Source-DB- Rec-Version PIC 9(4).
20 Hdr- Sour ce- DB- Functi on PIC X
20 Hdr-Ti mest anp PIC X(22).

For the above example, you must set the following properties:

fi xed. header =HEADER
fixed. tabl e=Hdr - Sour ce- DB- Rec- | d, Hdr - Sour ce- DB- Rec- Ver si on
fi xed. schema=MYSCHEMA

The fields will be concatenated to result in logical schema and table names of the form:

MYSCHEMA. Hdr - Sour ce- DB- Rec- | d+Hdr - Sour ce- DB- Rec- Ver si on

Parsing the Message 10-5

Fixed Width Parsing

10.2.1.2 Specifying timestamp Formats

A timestamp is parsed using the default format YYYY- MM DD HH: MM SS. FFF, with
FFF depending on the size of the field.

Specify different incoming formats by entering a comment before the datetime field as
shown in the next example.

Example 10-3 Specifying timestamp formats

01 HEADER
* DATEFORMAT YYYY- MM DD- HH. MM SS. FF
20 Hdr-Tinestanp PI C X(23)

10.2.1.3 Specifying the Function

Use properties to map the standard Oracle GoldenGate operation types to the opt ype
values. The following example specifies that the operation type is in the Hdr -

Sour ce- DB- Funct i on field and that the value for insert is A, update is Uand delete
is D.

Example 10-4 Specifying the Function

fixed. opt ype=Hdr - Sour ce- DB- Functi on

fixed. optype.insert=A

fixed. optype. updat e=U
fixed. optype. del et e=D

10.2.2 Header and Record Data Type Translation

The data in the header and the record data are written to the trail based on the
translated data type.

¢ A field definition preceded by a date format comment is translated to an Oracle
GoldenGate datetime field of the specified size. If there is no date format comment,
the field will be defined by its underlying data type.

e APIC X field is translated to the CHAR data type of the indicated size.

e APIC 9 fieldis translated to a NUMBER data type with the defined precision and
scale. Numbers that are signed or unsigned and those with or without decimals are
supported.

The following examples show the translation for various PI C definitions.

Input Output
PIC XX CHAR(2)
PI C X(16) CHAR(16)
PIC 9(4) NUMBER(4)

10-6 Administering Oracle GoldenGate Application Adapters

Delimited parsing

Input Output

* YYMVDD DATE(10)

PI C 9(6) YYYY- M DD
PI C 99.99 NUMBER(4, 2)
PI'C 9(5) V99 NUMBER(7, 2)

In the example an input YYMVDD date of 100522 is translated to 2010-05-22. The
number 1234567 with the specified format Pl C 9(5) V99 is translated to a seven digit
number with two decimal places, or 12345.67.

10.2.3 Key identification

A comment is used to identify key columns within the data record. The Gendef utility
that generates the source definitions uses the comment to locate a key column.

In the following example Account has been marked as a key column for TABLEL.

01 TABLE1

* KEY

20 Account PI C X(19)
20 PAN_Seq_Num PI C 9(3)

10.3 Delimited parsing

Delimited parsing is based a preexisting source definitions files and a set of properties.
The properties specify the delimiters to use and other rules, such as whether there are
column names and before values. The source definitions file determines the valid
tables to be processed and the order and data type of the columns in the tables.

The format of the delimited message is:

{ METACOLS} [, { COLNAMES}] " , { COLBEFCREVALS}] ™ { COLVALUES} ™ n
Where:

¢ There can be n metadata columns each followed by a field delimiter such as the
comma shown in the format statement.

® There can be m column values. Each of these are preceded by a field delimiter such
as a comma.

¢ The column name and before value are optional.

* Each record is terminated by an end of line delimiter, such as \ n.

10.3.1 Metadata Columns

The metadata columns correspond to the header and contain fields that have special
meaning. Metadata columns should include the following information.

Parsing the Message 10-7

Delimited parsing

* optype contains values indicating if the record is an insert, update, or delete. The
default values are | , U, and D.

¢ timestamp indicates type of value to use for the commit timestamp of the record.
The format of the timestamp defaults to YYYY- DD- MM HH: MM SS. FFF.

e schemaandtable is the full table name for the record in the format
SCHEMA. TABLE.

e schema is the record's schema name.
e table is the record's table name.

¢ txind is a value that indicates whether the record is the beginning, middle, end or
the only record in the transaction. The default values are 0, 1, 2, 3.

* id is the value used as the sequence number (RSN or CSN) of the record. The id of
the first record (operation) in the transaction is used for the sequence number of the
transaction.

10.3.2 Parsing Properties

Properties can be set to describe delimiters, values, and date and time formats.

10.3.2.1 Properties to Describe Delimiters

The following properties determine the parsing rules for delimiting the record.

¢ fielddelim specifies one or more ASCII or hexadecimal characters as the value for
the field delimiter

¢ recorddelim specifies one or more ASCII or hexadecimal characters as the value for
the record delimiter

* quote specifies one or more ASCII or hexadecimal characters to use for quoted
values

¢ nullindicator specifies one or more ASCII or hexadecimal characters to use for
NULL values

You can define escape characters for the delimiters so they will be replaced if the
characters are found in the text. For example if a backslash and apostrophe (\') are
specified, then the input "They used Mike\'s truck" is translated to "They used Mike's
truck”. Or if two quotes (") are specified, "They call him ""Big Al""" is translated to
"They call him "Big Al"".

Data values may be present in the record without quotes, but the system only removes
escape characters within quoted values. A non-quoted string that matches a null
indicator is treated as null.

10.3.2.2 Properties to Describe Values

The following properties provide more information:
¢ hasbefores indicates before values are present for each record
* hasnames indicates column names are present for each record

e afterfirst indicates column after values come before column before values

10-8 Administering Oracle GoldenGate Application Adapters

XML Parsing

¢ isgrouped indicates all column names, before values and after values are grouped
together in three blocks, rather than alternately per column

10.3.2.3 Properties to Describe Date and Time

The default format YYYY- DD- MM HH: MM SS. FFF is used to parse dates. The user
can use properties to override this on a global, table or column level. Examples of
changing the format are shown below.

del i m dat ef or mat . def aul t =MV DY YYYY- HH. MMt SS
del i m dat ef or mat . M. TABLE=DDY MW YYYY
del i m dat ef or mat . M. TABLE. COL1=MWYYY

10.3.3 Parsing Steps

The steps in delimited parsing are:

1. The parser first reads and validates the metadata columns for each record.

2. This provides the table name, which can then be used to look up column
definitions for that table in the source definitions file.

3. If a definition cannot be found for a table, the processing will stop.

4. Otherwise the columns are parsed and output to the trail in the order and format
defined by the source definitions.

10.4 XML Parsing

XML parsing is based on a preexisting source definitions file and a set of properties.
The properties specify rules to determine XML elements and attributes that
correspond to transactions, operations and columns. The source definitions file
determines the valid tables to be processed and the ordering and data types of
columns in those tables.

10.4.1 Styles of XML

The XML message is formatted in either dynamic or static XML. At runtime the
contents of dynamic XML are data values that cannot be predetermined using a
sample XML or XSD document. The contents of static XML that determine tables and
column element or attribute names can be predetermined using those sample
documents.

The following two examples contain the same data.
Example 10-5 An Example of Static XML

<NewMyTabl eEntri es>
<NewMTabl eEnt ry>
<Creat eTi me>2010- 02- 05: 10: 11: 21</ Cr eat eTi me>
<KeyCol >keyval </ KeyCol >
<Col 1>col 1val </ Col 1>
</ NewMyTabl eEnt ry>
</ NewMyTabl eEnt ri es>

The NewMyTabl eEnt ri es element marks the transaction boundaries. The
Newiy Tabl eEnt ry indicates an insert to MY. TABLE. The timestamp is present in an
element text value, and the column names are indicated by element names.

Parsing the Message 10-9

XML Parsing

You can define rules in the properties file to parse either of these two styles of XML
through a set of XPath-like properties. The goal of the properties is to map the XML to
a predefined source definitions file through XPath matches.

Example 10-6 An Example of Dynamic XML

<transaction id="1234" ts="2010-02-05:10: 11: 21" >
<operation tabl e="M. TABLE" optype="1">
<col um nanme="keycol " index="0">
<af t erval ue><! [CDATAl keyval |] ></ af t erval ue>
</ col um>
<col um nanme="col 1" index="1">
<af t erval ue><! [CDATA| col 1val]] ></ af t erval ue>
</ col um>
</ operation>
</transaction>

Every operation to every table has the same basic message structure consisting of
transaction, operation and column elements. The table name, operation type,
timestamp, column names, column values, etc. are obtained from attribute or element
text values.

10.4.2 XML Parsing Rules

Independent of the style of XML, the parsing process needs to determine:
¢ Transaction boundaries
* Operation entries and metadata including:
— Table name
— Operation type
— Timestamp
¢ Column entries and metadata including;:

— Either the column name or indeXx; if both are specified the system will check to
see if the column with the specified data has the specified name.

— Column before or after values, sometimes both.

This is done through a set of interrelated rules. For each type of XML message that is
to be processed you name a rule that will be used to obtain the required data. For each
of these named rules you add properties to:

® Specify the rule as a transaction, operation, or column rule type. Rules of any type
are required to have a specified name and type.

¢ Specify the XPath expression to match to see if the rule is active for the document
being processed. This is optional; if not defined the parser will match the node of
the parent rule or the whole document if this is the first rule.

e List detailed rules (subr ul es) that are to be processed in the order listed. Which
subr ul es are valid is determined by the rule type. Subr ul es are optional.

In the following example the top-level rule is defined as generi crul e. Itis a
transacti on type rule. Its subr ul es are defined in opr ul e and they are of the
type oper ati on.

10-10 Administering Oracle GoldenGate Application Adapters

XML Parsing

xm par ser. rul es=genericrul e

xm parser.rul es. genericrul e.type=tx

xm par ser. rul es. genericrul e. subrul es=oprul e
xn parser. rul es. oprul e.type=op

10.4.3 XPath Expressions

The XML parser supports a subset of XPath expressions necessary to match elements
and extract data. An expression can be used to match a particular element or to extract
data.

When doing data extraction most of the path is used to match. The tail of the
expression is used for extraction.

10.4.3.1 Supported Constructs:

Supported Description

Construct

S

le Use the absolute path from the root of the document to match e.

eor e Use the relative path from current node being processed to match e.

e Use a path based on the parent of the current node (can be repeated) to match e.
e Match e wherever it occurs in a document.

. Match any element. Note: Partially wild-carded names are not supported.

[n] Match the nth occurrence of an expression.

[x=v] Match when x is equal to some value v where x can be:

e (@tt —some attribute value

e text() —some text value

e nane() - the element name

* position() —the element position

10.4.3.2 Supported Expressions

Supported Expressions Descriptions

Match root element
| Wy/ El enent

Match sub element to current node
. Sub/ El enent

Parsing the Message 10-11

XML Parsing

Supported Expressions Descriptions

Match nth element
I W/ *[n]

Match nth Some element
I Myl Some[n]

Match any text value
Iy *[text() ="value']

Match the text in Some element
I MWyl Some[text() = 'value']

Match any attribute
IWI*[@tt = "value']

Match the attribute in Some element
/MWyl Some[@tt = 'value']

10.4.3.3 Obtaining Data Values

In addition to matching paths, the XPath expressions can also be used to obtain data
values, either absolutely or relative to the current node being processed. Data value
expressions can contain any of the path elements above, but must end with one of the
value accessors listed below.

Value Accessors Description

Some attribute value.
@tt

The text content (value) of an element.
text()

The full content of an element, including any child XML nodes.
content ()

The name of an element.
name()

o The position of an element in its parent.

position()

Example 10-7 Examples of Extracting Data Values
To extract the relative element text value:

[Myl El ement / t ext ()

To extract the absolute attribute value:

[Myl El ement / @t t

To extract element text value with a match:

10-12 Administering Oracle GoldenGate Application Adapters

XML Parsing

I Myl Some[@tt = 'value']/Sub/text()

Note:

Path accessors, such as ancestor/descendent/self, are not supported.

10.4.4 Other Value Expressions

The values extracted by the XML parser are either column values or properties of the
transaction or operation, such as table or timestamp. These values are either obtained
from XML using XPath or through properties of the J]MS message, system values, or
hard coded values. The XML parser properties specify which of these options are valid
for obtaining the values for that property.

The following example specifies that t i mest anp can be an XPath expression, a J]MS
property, or the system generated timestamp.

{txrul e}.timestanp={xpat h-expressi on}| ${j ms-property}|*ts

The next example specifies that t abl e can be an XPath expression, a JMS property, or
hard coded value.

{oprul e}. tabl e={xpat h-expressi on}| ${j ms- property}|"val ue"

The last example specifies that name can be a XPath expression or hard coded value.

{colrul e}.tinestanp={xpat h- expressi on}| "val ue"

10.4.5 Transaction Rules

The rule that specifies the boundary for a transaction is at the highest level. Messages
may contain a single transaction, multiple transactions, or a part of a transaction that
spans messages. These are specified as follows:

¢ single - The transaction rule match is not defined.
e multiple - Each transaction rule match defines new transaction.

* span — No transaction rule is defined; instead a transaction indicator is specified in
an operation rule.

For a transaction rule, the following properties of the rule may also be defined through
XPath or other expressions:

e timestamp — The time at which the transaction occurred.

* txid — The identifier for the transaction.
Transaction rules can have multiple subr ul es, but each must be of type operation.

The following example specifies a transaction that is the whole message and includes a
timestamp that comes from the JMS property.

Example 10-8 JMS Timestamp
singl etxrul e. ti mest anp=$JMSTi neSt anp

The following example matches the root element transaction and obtains the
timestamp from the t s attribute.

Parsing the Message 10-13

XML Parsing

Example 10-9 ts Timestamp

dynt xrul e. mat ch=/ Transacti on
dyntxrule.tinestamp=@s

10.4.6 Operation Rules

An operation rule can either be a subrule of a transaction rule, or a highest level rule
(if the transaction is a property of the operation).

In addition to the standard rule properties, an operation rule should also define the
following through XPath or other expressions:

¢ timestamp — The timestamp of the operation. This is optional if the transaction rule
is defined.

¢ table — The name of the table on which this is an operation. Use this with schema.
* schema — The name of schema for the table.

¢ schemaandtable — Both schema and table name together in the form
SCHEMA. TABLE. This can be used in place of the individual table and schema
properties.

* optype - Specifies whether this is an insert, update or delete operation based on
opt ype values:

- optype.insertval — The value indicating an insert. The defaultis | .
— optype.updateval — The value indicating an update. The default is U.
— optype.deleteval — The value indicating a delete. The default is D.

* seqid — The identifier for the operation. This will be the transaction identifier if
t xi d has not already been defined at the transaction level.

¢ txind — Specifies whether this operation is the beginning of a transaction, in the
middle or at the end; or if it is the whole operation. This property is optional and
not valid if the operation rule is a subrule of a transaction rule.

Operation rules can have multiple subrules of type operation or column.

The following example dynamically obtains operation information from the /
Oper ati on element of a/ Transacti on.

Example 10-10 Operation

dynopr ul e. mat ch=. / Cperation
dynopr ul e. schemaandt abl e=@ abl e
dynopr ul e. opt ype=@ ype

The following example statically matches / Newy Tabl eEnt r y element to an insert
operation on the MY. TABLE table.
Example 10-11 Operation example

statoprul e. mat ch=. / NewMyTabl eEntry

st at oprul e. schemaandt abl e=" M. TABLE"
statoprul e. optype="1"

statoprul e.timestanp=./CreateTine/text()

10-14 Administering Oracle GoldenGate Application Adapters

XML Parsing

10.4.7 Column Rules

A column rule must be a subrule of an operation rule. In addition to the standard rule
properties, a column rule should also define the following through XPath or other
expressions.

¢ name - The name of the column within the table definition.

e index — The index of the column within the table definition.

Note:

If only one of name and i ndex is defined, the other will be determined.

* before.value — The before value of the column. This is required for deletes, but is
optional for updates.

e Dbefore.isnull — Indicates whether the before value of the column is null.
¢ before.ismissing — Indicates whether the before value of the column is missing.

¢ after.value — The before value of the column. This is required for deletes, but is
optional for updates.

e after.isnull — Indicates whether the before value of the column is null.
e after.ismissing — Indicates whether the before value of the column is missing.

¢ value — An expression to use for both bef or e. val ue and af t er . val ue unless
overridden by specific before or after values. Note that this does not support
different before values for updates.

¢ isnull - An expression to use for both before.isnull and after.isnull unless
overridden.

* ismissing — An expression to use for both before.ismissing and after.ismissing
unless overridden.

The following example dynamically obtains column information from the / Col umm
element of an / Oper at i on

Example 10-12 Dynamic Extraction of Column Information

dyncol rul e. mat ch=./ Col um

dyncol rul e. nane=@ane

dyncol rul e. bef ore. val ue=. / bef or eval ue/ t ext ()
dyncol rul e. after.val ue=./afterval ue/text()

The following example statically matches the / KeyCol and/ Col 1 elements to
columns in MY. TABLE.

Example 10-13 Static Matching of Elements to Columns

st at keycol rul e. mat ch=/ KeyCol
st at keycol rul e. name="keycol "
stat keycol rul e. val ue=./text()
statcol 1rul e. mat ch=/ Col 1
statcol 1rul e. name="col 1"
statcol 1rul e.val ue=./text ()

Parsing the Message 10-15

Source definitions Generation Utility

10.4.8 Overall Rules Example

The following example uses the XML samples shown earlier with appropriate rules to
generate the same resulting operation on the My. TABLE table.

Dynamic XML Static XML
<transaction id="1234" NewMyTabl eEntri es>
ts="2010- 02- 05: 10: 11: 21" > <NewMyTabl eEnt ry>
<operation tabl e="M. TABLE" optype="I1"> <CreateTi ne>
<col um nane="keycol " index="0"> 2010-02-05:10: 11: 21
<afterval ue> </ CreateTi ne>
<![CDATA[keyval]]> <KeyCol >keyval </ KeyCol >
</ afterval ue> <Col 1>col 1val </ Col 1>
</ col um> </ Newy Tabl eEnt ry>
<col um nane="col 1" index="1"> </ NewMyTabl eEntri es>

<afterval ue>
<! [CDATA[col 1val 1] >
</ afterval ue>
</ col um>
</ operation>
</transaction>

Dynamic Static

dynt xrul e. mat ch=/ Transact i on stattxrul e. mat ch=/ NewMyTabl eEntri es
dyntxrule.tinestamp=@s stattxrul e. subrul es= statoprul e

dynt xrul e. subrul es=dynoprul e statoprul e. mat ch=./ NewMyTabl eEntry
dynopr ul e. mat ch=./ Qperati on st at oprul e. schemaandt abl e=" My. TABLE"
dynopr ul e. schemaandt abl e=@ abl e statoprul e. optype="1"

dynopr ul e. opt ype=@ype statoprul e. tinmestanp=./CreateTinme/text()
dynopr ul e. subrul es=dyncol rul e statoprul e. subrul es= statkeycol rul e,
dyncol rul e. mat ch=. / Col um statcol lrule

dyncol rul e. nane=@ane st at keycol rul e. mat ch=/ KeyCol

dyncol rul e. bef ore. val ue=./ bef oreval ue/ text () stat keycol rul e. nane="keycol "

dyncol rul e. after.val ue=./afterval ue/text() stat keycol rul e. val ue=./text()

statcol 1rul e. mat ch=/ Col 1
statcol 1rul e. name="col 1"
statcol 1rul e. val ue=./text ()

I NSERT | NTO MY. TABLE (KEYCOL, COL1)
VALUES (' keyval', 'collval')

10.5 Source definitions Generation Utility

Oracle GoldenGate for Java includes a Gendef utility that generates an Oracle
GoldenGate source definitions file from the properties defined in a properties file. It
creates a normalized definition of tables based on the property settings and other
parser-specific data definition values.

The syntax to run this utility is:

10-16 Administering Oracle GoldenGate Application Adapters

Source definitions Generation Utility

gendef —prop {property file} [-out {output_file}

This defaults to sending the source definitions to standard out, but it can be directed to
a file using the —out parameter. For example:

gendef —prop dirprnfjmsvam properties -out dirdef/nsgdefs. def

The output source definitions file can then be used in a pump or delivery process to
interpret the trail data created through the VAM.

Parsing the Message 10-17

Source definitions Generation Utility

10-18 Administering Oracle GoldenGate Application Adapters

11

Message Capture Properties

This chapter explains the options available for configuration of the property file for the
Oracle GoldenGate for Java VAM.

This chapter includes the following sections:
* Logging and Connection Properties

* DParser Properties

11.1 Logging and Connection Properties

The following properties control the connection to JMS and the log file names, error
handling, and message output.

11.1.1 Logging Properties
Logging is controlled by the following properties.

11.1.1.1 gg.log

Specifies the type of logging that is to be used. The default implementation is the JDK
option. This is the built-in Java logging called j ava. uti | . | oggi ng (JUL). The other
logging options are | 0g4j or | ogback. The syntax is:

gg. 1 og={JDK| | 0g4j | | ogback}

For example, you set the logging implementation to | 0g4j , which is the preferred
logging method, as follows:

gg. | og=I 0g4j

The log file is created in the report subdirectory of the installation. The default log file
name includes the group name of the associated Extract and the file extension is | 0g.

11.1.1.2 gg.log.level
Specifies the overall log level for all modules. The syntax is:

gg. | og. | evel ={ ERROR| WARN| | NFO| DEBUG}
The log levels are defined as follows:
¢ ERROR- Only write messages if errors occur

* WARN- Write error and warning messages

| NFO—- Write error, warning and informational messages

DEBUG- Write all messages, including debug ones.

Message Capture Properties 11-1

Logging and Connection Properties

The default logging level is | NFO. The messages in this case will be produced on
startup, shutdown and periodically during operation. If the level is switched to
DEBUG large volumes of messages may occur which could impact performance. For
example, the following sets the global logging level to | NFQ

global |ogging Ievel

gg. | og. | evel =I NFO

11.1.1.3 gg.log.file

Specifies the path to the log file. The syntax is:

gg.log.file=path_to file

Where the pat h_t o_f i | e is the fully defined location of the log file. This allows a
change to the name of the log, but you must include the Extract name if you have
more than one Extract to avoid one overwriting the log of the other.

11.1.1.4 gg.log.classpath

Specifies the class path to the jars used to implement logging.

gg.log. cl asspath=path_to_jars

11.1.2 JMS Connection Properties
The JMS connection properties set up the connection, such as how to start up the JVM
for JMS integration.
11.1.2.1 jvm.boot options

Specifies the class path and boot options that will be applied when the JVM starts up.
The path needs colon (:) separators for UNIX/Linux and semicolons (;) for Windows.

The syntax is:

j vm boot options=option[, option][. . .]

The opt i ons are the same as those passed to Java executed from the command line.
They may include class path, system properties, and JVM memory options (such as

maximum memory or initial memory) that are valid for the version of Java being used.
Valid options may vary based on the JVM version and provider.

For example (all on a single line):

j vm boot options= -Dj ava. cl ass. pat h=ggj ava/ ggj ava. j ar
-Dlog4j . configuration=ny-1|o0g4j.properties

The | og4j . confi gur ati on property could be a fully qualified URL to a log4j
properties file; by default this file is searched for in the class path. You may use your
own log4j configuration, or one of the pre-configured log4j settings:

| og4j . properti es (default level of logging), debug- | og4j . properti es (debug
logging) ort r ace-| og4j . properties (very verbose logging).

11.1.2.2 jms.report.output

Specifies where the JMS report is written. The syntax is:

jms.report.output={report|Iog|both}

Wher e:

11-2 Administering Oracle GoldenGate Application Adapters

Logging and Connection Properties

¢ report sends the JMS report to the Oracle GoldenGate report file. This is the
default.

* | og will write to the Java log file (if one is configured)

e bot h will send to both locations.

11.1.2.3 jms.report.time

Specifies the frequency of report generation based on time.
jms.report.time=time_specification

The following examples write a report every 30 seconds, 45 minutes and eight hours.
jms.report.time=30sec

jms.report.time=45min

j ms.report.time=8hr

11.1.2.4 jms.report.records

Specifies the frequency of report generation based on number of records. The syntax
is:

j ms. report.records=nunber

The following example writes a report every 1000 records.

j ms.report.records=1000

11.1.2.5 jms.id

Specifies that a unique identifier with the indicated format is passed back from the
JMS integration to the message capture VAM. This may be used by the VAM as a
unique sequence ID for records.

jms.id={ogg|tinme|wy|activeny| message_header | cust om j ava_cl ass}

Wher e:

® 0gg - returns the message header property GG_| Dwhich is set by Oracle
GoldenGate JMS delivery.

* time - usesasystem timestamp as a starting point for the message ID
e wrg - reformats a WebSphere MQ Message ID for use with the VAM
e activeny - reformats an ActiveMQ Message ID for use with the VAM

e message_header - specifies the user customized JMS message header to be
included, such as JMSMessagelD, J]MSCorrelationlD, or JMSTimestamp.

e custom java_cl ass - specifies a custom Java class that creates a string to be
used as an ID.

For example:

jms.id=tine
j ms. i d=JMBMessagel D

Message Capture Properties 11-3

Logging and Connection Properties

The ID returned must be unique, incrementing, and fixed-width. If there are duplicate
numbers, the duplicates are skipped. If the message ID changes length, the Extract
process will abend.

11.1.2.6 jms.destination

Specifies the queue or topic name to be looked up via JNDIL

j ms. destination=jndi _nane

For example:

j ms. dest i nati on=sanmpl eQ

11.1.2.7 jms.connectionFactory
Specifies the connection factory name to be looked up via JNDIL.

j ms. connect i onFact ory=j ndi _nane

For example

j ms. connect i onFact or y=Connect i onFact ory

11.1.2.8 jms.user, jms.password

Sets the user name and password of the JMS connection, as specified by the J]MS
provider.

j MB. USer =user _nane
j ms. passwor d=passwor d

This is not used for JNDI security. To set JNDI authentication, see the JNDI
j ava. nami ng. security properties.

For example:

j ms. user =myuser
j ms. passwor d=nypasswd

11.1.3 JNDI Properties

In addition to specific properties for the message capture VAM, the JMS integration
also supports setting JNDI properties required for connection to an Initial Context to
look up the connection factory and destination. The following properties must be set:

j ava. nani ng. provi der. url =url
java.naming.factory.initial=java_cl ass_nane

If JNDI security is enabled, the following properties may be set:

java. nanming. security. princi pal =user_nanme
j ava. naning. security.credential s=password_or_ot her _aut henti cat or

For example:

j ava. naning. provider.url=t3://1ocal host: 7001
java.naning.factory.initial =webl ogic.jndi.WInitial ContextFactory
java. naning. security. princi pal =j ndi user

j ava. naning. security.credential s=j ndi pw

11-4 Administering Oracle GoldenGate Application Adapters

Parser Properties

11.2 Parser Properties

Properties specify the formats of the message and the translation rules for each type of
parser: fixed, delimited, or XML. Set the par ser . t ype property to specify which
parser to use. The remaining properties are parser specific.

11.2.1 Setting the Type of Parser
The following property sets the parser type.

11.2.1.1 parser.type
Specifies the parser to use.

parser. type={fixed|delin xm}
Wer e:

e fixed invokes the fixed width parser
¢ del i minvokes the delimited parser
e xm invokes the XML parser

For example:

parser.type=delim

11.2.2 Fixed Parser Properties

The following properties are required for the fixed parser.

11.2.2.1 fixed.schematype

Specifies the type of file used as metadata for message capture. The two valid options
are sour cedef s and copybook.

fixed. schemat ype={ sour cedef s| copybook}

For example:

fixed. schemat ype=copybook

The value of this property determines the other properties that must be set in order to
successfully parse the incoming data.

11.2.2.2 fixed.sourcedefs

If the f i xed. schenmat ype=sour cedef s, this property specifies the location of the
source definitions file that is to be used.

fixed. sourcedefs=file_location

For example:

fixed. sour cedef s=di r def / hr deno. def

11.2.2.3 fixed.copybook

If the f i xed. schemat ype=copybook, this property specifies the location of the
copybook file to be used by the message capture process.

Message Capture Properties 11-5

Parser Properties

fixed. copybook=file_l ocation

For example:

fixed. copybook=t est _copy_book. cpy

11.2.2.4 fixed.header

Specifies the name of the sour cedef s entry or copybook record that contains header
information used to determine the data block structure:

fixed. header =record_nane

For example:

fi xed. header =HEADER

11.2.2.5 fixed.seqid

Specifies the name of the header field, JMS property, or system value that contains the
seqi d used to uniquely identify individual records. This value must be continually
incrementing and the last character must be the least significant.

fixed. seqi d={fi el d_name| $j ns_property| *seqi d}
Wer e:
¢ fiel d_nane indicates the name of a header field containing the seqi d

e jms_property uses the value of the specified JMS header property. A special
value of this is $j msi d which uses the value returned by the mechanism chosen by
the j ms. i d property

¢ seqi d indicates a simple incrementing 64-bit integer generated by the system
For example:

fixed. seqi d=$j nsi d

11.2.2.6 fixed.timestamp

Specifies the name of the field, JMS property, or system value that contains the
timestamp.

fixed.timestanp={fiel d_nane| $j ms_property|*ts}

For example:

fixed. timestanp=TI MESTAMP
fixed.ti mestanp=$JMSTi neSt anp
fixed.tinestamp=*ts

11.2.2.7 fixed.timestamp.format
Specifies the format of the timestamp field.

fixed.tinestanp. format =f or mat
Where the format can include punctuation characters plus:
* YYYY - four digit year

* YY-two digit year

11-6 Administering Oracle GoldenGate Application Adapters

Parser Properties

* MM -oneortwo digit month

e D[D] -oneortwo digit day

¢ HH-hours in twenty four hour notation
¢ M -minutes

* SS-seconds

e Fn —n number of fractions
The default format is "YYYY- MMt DD: HH: M : SS. FFF"
For example:

fixed.tinestanp.formt=YYYY- M\ DD- HH. M . SS

11.2.2.8 fixed.txid

Specifies the name of the field, JMS property, or system value that contains the t xi d
used to uniquely identify transactions. This value must increment for each transaction.

fixed. txid={field_nane|$jms_property|*txid}

For most cases using the system value of *t xi d is preferred.
For example:

fixed. txi d=$JMSTxI d

fixed. txid=*txid

11.2.2.9 fixed.txowner

Specifies the name of the field, JMS property, or static value that contains a user name
associated with a transaction. This value may be used to exclude certain transactions
from processing. This is an optional property.

fixed. t xowner={fi el d_nane| $j ms_property| "val ue"}

For example:

fixed. t xowner =$MessageOnner
fixed. txowner="jsnith"

11.2.2.10 fixed.txname

Specifies the name of the field, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

fixed. txname={fi el d_name| $j ns_property| "val ue"}

For example:

fixed. txname="fi xedt x"

11.2.2.11 fixed.optype

Specifies the name of the field, or JMS property that contains the operation type, which
is validated against the f i xed. opt ype values specified in the next sections.

fixed. header. opt ype={fi el d_nane| $j ns_property}

For example:

Message Capture Properties 11-7

Parser Properties

fixed. header. opt ype=FUNCTI ON

11.2.2.12 fixed.optype.insertval
This value identifies an insert operation. The defaultis | .

fixed. optype.insertval ={val ue|\ xhex_val ue}

For example:

fixed. optype.insertval =A

11.2.2.13 fixed.optype.updateval
This value identifies an update operation. The default is U.

fixed. optype. updat eval ={val ue| \ xhex_val ue}

For example:

fixed. opt ype. updat eval =M

11.2.2.14 fixed.optype.deleteval
This value identifies a delete operation.The default is D.

fixed. optype. del et eval ={val ue| \ xhex_val ue}

For example:

fixed. optype. del et eval =R

11.2.2.15 fixed.table

Specifies the name of the table. This enables the parser to find the data record
definition needed to translate the non-header data portion.

fixed. tabl e=fiel d_nane| $j ms_property[, . . .]
More than one comma delimited field name may be used to determine the name of the
table Each field name corresponds to a field in the header record defined by the

fixed. header property or JMS property. The values of these fields are
concatenated to identify the data record.

For example:

fixed. t abl e=$JM5Tabl eNane

fixed. t abl e=SOURCE_Db, SOURCE_Db_Rec_Ver si on

11.2.2.16 fixed.schema

Specifies the static name of the schema when generating SCHEMA. TABLE table names.

fixed. schema="val ue"

For example:

fixed. schema="0GG'

11.2.2.17 fixed.txind

Specifies the name of the field or JMS property that contains a transaction indicator
that is validated against the transaction indicator values. If this is not defined, all
operations within a single message will be seen to have occurred within a whole

11-8 Administering Oracle GoldenGate Application Adapters

Parser Properties

transaction. If defined, then it determines the beginning, middle and end of
transactions. Transactions defined in this way can span messages. This is an optional

property.
fixed. txi nd={fiel d_nane| $j ms_property}
For example:

fixed. txi nd=$TX_I ND

11.2.2.18 fixed.txind.beginval
This value identifies an operation as the beginning of a transaction. The defaults is B.

fixed. txind. begi nval ={val ue| \ xhex_val ue}

For example:

fixed. txind. begi nval =0

11.2.2.19 fixed.txind.middleval
This value identifies an operation as the middle of a transaction. The default is M

fixed. txind. n ddl eval ={val ue| \ xhex_val ue}

For example:

fixed. txind. nm ddl eval =1

11.2.2.20 fixed.txind.endval
This value identifies an operation as the end of a transaction. The default is E.

fixed. txind. endval ={val ue| \ xhex_val ue}

For example:

fixed. txind. endval =2

11.2.2.21 fixed.txind.wholeval
This value identifies an operation as a whole transaction. The default is W.

fixed. txi nd. whol eval ={val ue| \ xhex_val ue}

For example:

fixed. txi nd. whol eval =3

11.2.3 Delimited Parser Properties

The following properties are required for the delimited parser except where otherwise
noted.

11.2.3.1 delim.sourcedefs
Specifies the location of the source definitions file to use.

del i m sour cedefs=file_l ocation

For example:

del i m sour cedef s=di rdef / hr deno. def

Message Capture Properties 11-9

Parser Properties

11.2.3.2 delim.header
Specifies the list of values that come before the data and assigns names to each.

del i m header =nane[, name2][. . .]

The names must be unique. They can be referenced in other del i mproperties or
wherever header fields can be used.

For example:

del i m header =opt ype, tabl enane, ts
delimtinestanp=ts

11.2.3.3 delim.seqid

Specifies the name of the header field, JMS property, or system value that contains the
seqi d used to uniquely identify individual records. This value must increment and
the last character must be the least significant.

del i m seqi d={fiel d_name| $j ms_property| *seqi d}
Wer e:
e fiel d_name indicates the name of a header field containing the seqi d

* jms_property uses the value of the specified JMS header property, a special
value of this is $j msi d which uses the value returned by the mechanism chosen
by thejms.id property

e seqi d indicates a simple continually incrementing 64-bit integer generated by the
system

For example:

del i m seqi d=$j nsi d

11.2.3.4 delim.timestamp

Specifies the name of the JMS property, header field, or system value that contains the
timestamp.

delimtinmestanp={fiel d_name| $j ns_property|*ts}

For example:

deli mtimest anp=TI MESTAVP
del i mtimest anp=$JMSTi neSt anp
del i mtinestanp=*ts

11.2.3.5 delim.timestamp.format
Specifies the format of the timestamp field.

deli mtimestanp. f or mat =f or mat
Where the f or mat can include punctuation characters plus:
* YYYY - four digit year

* YY-two digit year

11-10 Administering Oracle GoldenGate Application Adapters

Parser Properties

* MM -oneortwo digit month

* D[D -oneortwo digit day

¢ HH-hours in twenty four hour notation
¢ M -minutes

* SS-seconds

e Fn —n number of fractions
The default format is "YYYY- MMt DD: HH: M : SS. FFF"
For example:

deli mtimestanp. f or mat =YYYY- MM DD- HH. M . SS

11.2.3.6 delim.txid

Specifies the name of the JMS property, header field, or system value that contains the
t xi d used to uniquely identify transactions. This value must increment for each
transaction.

delimtxid={fiel d_nane| $j ms_property|*txid}

For most cases using the system value of *t xi d is preferred.
For example:

del i mtxi d=$JM5TxI d

delimtxid=*txid

11.2.3.7 delim.txowner

Specifies the name of the JMS property, header field, or static value that contains an
arbitrary user name associated with a transaction. This value may be used to exclude
certain transactions from processing. This is an optional property.

del i m txowner=(fiel d_nane| $j ms_property|"val ue"}

For example:

del i m t xowner =$MessageOnner
del imtxowner="jsmth"
11.2.3.8 delim.txname

Specifies the name of the JMS property, header field, or static value that contains an
arbitrary name to be associated with a transaction. This is an optional property.

del'imtxname={fiel d_nane| $j ms_property| "val ue"}

For example:

del i mtxnane="fi xedt x"

11.2.3.9 delim.optype

Specifies the name of the JMS property or header field that contains the operation
type. This is compared to the values for del i m optype.insertval,

del i m opt ype. updat eval and del i m opt ype. del et eval to determine the
operation.

Message Capture Properties 11-11

Parser Properties

del i m opt ype={fiel d_nane| $j ns_property}

For example:

del i m opt ype=opt ype

11.2.3.10 delim.optype.insertval
This value identifies an insert operation. The default is I.

del i m optype. i nsertval ={val ue|\ xhex_val ue}

For example:

del i m optype.insertval =A

11.2.3.11 delim.optype.updateval
This value identifies an update operation. The default is U.

del i m opt ype. updat eval ={val ue|\ xhex_val ue}

For example:

del i m opt ype. updat eval =M

11.2.3.12 delim.optype.deleteval
This value identifies a delete operation. The default is D.

del i m opt ype. del et eval ={val ue| \ xhex_val ue}

For example:

del i m opt ype. del et eval =R

11.2.3.13 delim.schemaandtable

Specifies the name of the JMS property or header field that contains the schema and
table name in the form SCHEVA. TABLE.

del i m schemaandt abl e={fi el d_nane| $j ms_pr operty}

For example:

del i m schemaandt abl e=$Ful | Tabl eNane

11.2.3.14 delim.schema

Specifies the name of the JMS property, header field, or hard-coded value that contains
the schema name.

del i m schema={fi el d_nane| $j ms_property|"val ue"}

For example:

del i m schema="0GG'

11.2.3.15 delim.table
Specifies the name of the JMS property or header field that contains the table name.

del i mtabl e={fiel d_name| $j ms_property}

11-12 Administering Oracle GoldenGate Application Adapters

Parser Properties

For example:

del i mtabl e=TABLE_NAME

11.2.3.16 delim.txind

Specifies the name of the JMS property or header field that contains the transaction
indicator to be validated against begi nval , i ddl eval , endval orwhol eval . All
operations within a single message will be seen as within one transaction if this
property is not set. If it is set it determines the beginning, middle and end of
transactions. Transactions defined in this way can span messages. This is an optional

property.
del i mtxind={fiel d_name| $j ms_property}
For example:

del i mtxind=txind

11.2.3.17 delim.txind.beginval

The value that identifies an operation as the beginning of a transaction. The default is
B.

del'i mtxi nd. begi nval ={val ue|\ xhex_val ue}

For example:

del i m txi nd. begi nval =0

11.2.3.18 delim.txind.middleval
The value that identifies an operation as the middle of a transaction. The default is M

del i m txi nd. m ddl eval ={val ue| \ xhex_val ue}

For example:

delimtxind. mddleval =1

11.2.3.19 delim.txind.endval
The value that identifies an operation as the end of a transaction. The default is E.

deli mtxi nd. endval ={val ue| \ xhex_val ue}

For example:

del i mtxind. endval =2

11.2.3.20 delim.txind.wholeval
The value that identifies an operation as a whole transaction. The default is W

del i m txi nd. whol eval ={val ue| \ xhex_val ue}

For example:

del i mtxi nd. whol eval =3

11.2.3.21 delim.fielddelim

Specifies the delimiter value used to separate fields (columns) in the data. This value is
defined through characters or hexadecimal values:

Message Capture Properties 11-13

Parser Properties

delimfielddelim{val ue|\xhex_val ue}

For example:

delimfiel ddelinF,
delimfielddelinF\ xc7

11.2.3.22 delim.linedelim

Specifies the delimiter value used to separate lines (records) in the data. This value is
defined using characters or hexadecimal values.

delimlinedelim={val ue|\xhex_val ue}

For example:

delimlinedelin¥F||
delimlinedelinF\x0a

11.2.3.23 delim.quote

Specifies the value used to identify quoted data. This value is defined using characters
or hexadecimal values.

del i m quot e={val ue|\ xhex_val ue}

For example:

del i m quot e="

11.2.3.24 delim.nullindicator

Specifies the value used to identify NULL data. This value is defined using characters
or hexadecimal values.

del i m nul l'indi cat or={val ue| \ xhex_val ue}

For example:

del i mnul I'i ndi cat or =NULL

11.2.3.25 delim.fielddelim.escaped

Specifies the value that will replace the field delimiter when the field delimiter occurs
in the input field. The syntax is:

delimfiel ddeli mescaped={val ue|\ xhex_val ue}

For example, given the following property settings:

delimfielddeline-
del'imfiel ddel i m escaped=$#$

If the data does not contain the hyphen delimiter within any of the field values:

one two three four

The resulting delimited data is:

one-two-three-four

If there are hyphen (-) delimiters within the field values:

one two three four-fifths two-fifths

11-14 Administering Oracle GoldenGate Application Adapters

Parser Properties

The resulting delimited data is:

one-two-three-four $#%fi fths-two$#$fifths

11.2.3.26 delim.linedelim.escaped

Specifies the value that will replace the line delimiter when the line delimiter occurs in
the input data. The syntax is:

delimlinedel i mescaped={val ue|\xhex_val ue}

For example, given the following property settings:

delimlinedelinr
delimlinedel i mescaped=% %

If the input lines are:

These are the lines and they
do not contain the delimter.

Because the lines do not contain the backslash (\), the result is:

These are the lines and they\
do not contain the delimter.\

However, if the input lines do contain the delimiter:

These are the lines\data val ues
and they do contain the delimter.

So the results are:

These are the |ines% %lata val ues\
and they do contain the delimter.\

11.2.3.27 delim.quote.escaped

Specifies the value that will replace a quote delimiter when the quote delimiter occurs
in the input data. The syntax is:

del i m quot e. escaped={val ue| \ xhex_val ue}

For example, given the following property settings:

del i m quot e="
del i m quot e. escaped="""

If the input data does not contain the quote (") delimiter:

It was a very original play.

The result is:

"It was a very original play."

However, if the input data does contain the quote delimiter:

It was an "uber-original" play.

The result is:

"It was an "'"uber-original"'" play."

Message Capture Properties 11-15

Parser Properties

11.2.3.28 delim.nullindicator.escaped

Specifies the value that will replace a null indicator when a null indicator occurs in the
input data. The syntax is:

del i mnul I'indi cat or. escaped={val ue| \ xhex_val ue}

For example, given the following property settings:

delimfiel ddelinF,
delimnul l'i ndi cat or =NULL
del i m nul I'indi cat or. escaped=$NULL$

When the input data does not contain a NULL value or a NULL indicator:

12345

The result is

1,2,3,4,5

When the input data contains a NULL value:
1245

The result is

1,2,NULL, 4,5

When the input data contains a NULL indicator:
12 NUL 45

The result is:

1,2, $NULLS, 4, 5

11.2.3.29 delim.hasbefores
Specifies whether before values are present in the data.

del i m hasbef ores={true|fal se}

The default is f al se. The parser expects to find before and after values of columns for
all records if del i m hasbef or es is set to true. The before values are used for
updates and deletes, the after values for updates and inserts. The af t er f i r st
property specifies whether the before images are before the after images or after them.
If del i m hasbef or es is false, then no before values are expected.

For example:

del i m hasbef ores=true

11.2.3.30 delim.hasnames

Specifies whether column names are present in the data.

del i m hasnanes={true|fal se}

The default is false. If true, the parser expects to find column names for all records.

The parser validates the column names against the expected column names. If false, no
column names are expected.

11-16 Administering Oracle GoldenGate Application Adapters

Parser Properties

For example:

del i m hasnanes=true

11.2.3.31 delim.afterfirst
Specifies whether after values are positioned before or after the before values.

delimafterfirst={true|fal se}

The default is false. If true, the parser expects to find the after values before the before
values. If false, the after values are before the before values.

For example:

delimafterfirst=true

11.2.3.32 delim.isgrouped

Specifies whether the column names and before and after images should be expected
grouped together for all columns or interleaved for each column.

delimisgrouped={true|fal se}

The default is false. If true, the parser expects find a group of column names (if
hasnanes is true), followed by a group of before values (if hasbef or es), followed
by a group of after values (the af t er f i r st setting will reverse the before and after

value order). If false, the parser will expect to find a column name (if hasnamnes),
before value (if hasbef or es) and after value for each column.

For example:

deli misgrouped=true

11.2.3.33 delim.dateformat | delim.dateformat.t abl e | delim.dateform.table.column

Specifies the date format for column data. This is specified at a global level, table level
or column level. The format used to parse the date is a subset of the formats used for
parser.timestanp.format.

del i m dat ef or mat =f or mat
del i m dat ef or mat . TABLE=f or mat
del i m dat ef or mat . TABLE. COLUMN=f or mat

Wer e:
e format isthe format defined for par ser. ti nest anp. f or mat .
e tabl e is the fully qualified name of the table that is currently being processed.

e col um is a column of the specified table.
For example:

del i m dat ef or mat =YYYY- MW DD HH. M : SS
del i m dat ef or mat . MY. TABLE=DDY MM YY-HH. M . SS
del i m dat ef or mat . MY. TABLE. EXP_DATE=YYW

11.2.4 XML Parser Properties
The following properties are used by the XML parser.

Message Capture Properties 11-17

Parser Properties

11.2.4.1 xml.sourcedefs
Specifies the location of the source definitions file.

xn . sour cedef s=file_location

For example:

xm . sour cedef s=di r def / hr deno. def

11.2.4.2 xml.rules

Specifies the list of XML rules for parsing a message and converting to transactions,
operations and columns:

xm . rul es=xm _rule_name[, . . .]

The specified XML rules are processed in the order listed. All rules matching a
particular XML document may result in the creation of transactions, operations and
columns. The specified XML rules should be transaction or operation type rules.

For example:

xm . rul es=dynt xrul e, statoprule

11.2.4.3 rulename.type
Specifies the type of XML rule.

rul enane. type={tx| op| col }

Wher e:

e t X indicates a transaction rule
¢ op indicates an operation rule

e col indicates a column rule
For example:

dyntxrul e. type=tx

statoprul e. type=op

11.2.4.4 rulename.match

Specifies an XPath expression used to determine whether the rule is activated for a
particular document or not.

rul enane. mat ch=xpat h_expr essi on

If the XPath expression returns any nodes from the document, the rule matches and
further processing occurs. If it does not return any nodes, the rule is ignored for that
document.

The following example activates the dynt xr ul e if the document has a root element of
Transaction

dynt xrul e. mat ch=/ Transact i on
Where st at opr ul e is a subrule of st at t xt ul e, the following example activates the

st at opr ul e if the parent rule's matching nodes have child elements of
NewMyTabl eEntry.

11-18 Administering Oracle GoldenGate Application Adapters

Parser Properties

statoprul e. mat ch=. / NewMyTabl eEntry

11.2.4.5 rulename.subrules

Specifies a list of rule names to check for matches if the parent rule is activated by its
match.

rul enane. subrul es=xm _rul e_name[, . . .]

The specified XML rules are processed in the order listed. All matching rules may
result in the creation of transactions, operations and columns.

Valid sub-rules are determined by the parent type. Transaction rules can only have
operation sub-rules. Operation rules can have operation or column sub-rules. Column
rules cannot have sub-rules.

For example:

dynt xr ul e. subrul es=dynoprul e
statoprul e. subrul es=statkeycol rul e, statcol 1lrule

11.2.4.6 txrule.timestamp

Controls the transaction timestamp by instructing the adapter to 1) use the transaction
commit timestamp contained in a specified XPath expression or JMS property or 2) use
the current system time. This is an optional property.

txrul e.timestanp={xpat h_expression|$jms_property|*ts}

The timestamp for the transaction may be overridden at the operation level, or may
only be present at the operation level. Any XPath expression must end with a value
accessor suchas @tt ortext().

For example:

dyntxrule.tinestamp=@s

11.2.4.7 txrule.timestamp.format
Specifies the format of the timestamp field.

txrul e.timestanp. format=f or mt

Where the format can include punctuation characters plus:
* YYYY - four digit year

* YY -two digit year

e MM -oneortwo digit month

e DD -oneortwo digit day

® HH-hours in twenty four hour notation

¢ M - minutes

e SS- seconds

¢ Fn —n number of fractions
The default format is "YYYY- MMt DD: HH: M : SS. FFF"

For example:

Message Capture Properties 11-19

Parser Properties

dyntxrul e. ti mestanp. f or mat =YYYY- MM DD- HH. M . SS

11.2.4.8 txrule.seqid

Specifies the seqi d for a particular transaction. This can be used when there are
multiple transactions per message. Determines the XPath expression, JMS property, or
system value that contains the transactions seqi d. Any XPath expression must end
with a value accessor suchas @tt ortext().

txrul e. seqi d={ xpat h_expr essi on| $j nms_property| *seqi d}

For example:

dynt xrul e. seqi d=@eqi d

11.2.4.9 txrule.txid

Specifies the XPath expression, JMS property, or system value that contains the t xi d
used to unique identify transactions. This value must increment for each transaction.

txrul e. txi d={xpat h_expression| $j ns_property| *txi d}

For most cases using the system value of *t xi d is preferred.
For example:

dynt xrul e. t xi d=$JMSTxI d

dyntxrul e.txid=*txid

11.2.4.10 txrule.txowner

Specifies the XPath expression, JMS property, or static value that contains an arbitrary
user name associated with a transaction. This value may be used to exclude certain
transactions from processing.

txrul e. t xowner ={ xpat h_expr essi on| $j ns_property| "val ue"}

For example:

dynt xrul e. t xowner =$MessageOnner
dynt xrul e. t xowner ="j smi t h"

11.2.4.11 txrule.txname

Specifies the XPath expression, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

txrul e. t xname={xpat h_expressi on| $j ns_property| "val ue"}

For example:

dynt xrul e. t xname="fi xedt x"

11.2.4.12 oprule.timestamp

Controls the operation timestamp by instructing the adapter to 1) use the transaction
commit timestamp contained in a specified XPath expression or JMS property or 2) use
the current system time. This is an optional property.

oprul e. ti mestanp={xpat h_expressi on| $j ns_property| *t s}

The timestamp for the operation will override a timestamp at the transaction level.

Any XPath expression must end with a value accessor such as @t t ortext ().

11-20 Administering Oracle GoldenGate Application Adapters

Parser Properties

For example:

statoprul e.timestanp=./CreateTine/text()

11.2.4.13 oprule.timestamp.format
Specifies the format of the timestamp field.

oprul e.timestanp. f or mat =f or mat

Where the f or mat can include punctuation characters plus:
* YYYY - four digit year

* YY-two digit year

e MM -oneortwo digit month

e D[D -oneortwo digit day

® HH-hours in twenty four hour notation

¢ M —minutes

® SS-seconds

e Fn —n number of fractions
The default format is "YYYY- MVt DD: HH: M : SS. FFF"
For example:

statoprul e. timestanp. f or mat =YYYY- MM DD- HH. M . SS

11.2.4.14 oprule.seqid

Specifies the seqi d for a particular operation. Use the XPath expression, JMS
property, or system value that contains the operation seqi d. This overrides any
seqi d defined in parent transaction rules. Must be present if there is no parent
transaction rule.

Any XPath expression must end with a value accessor suchas @tt ortext().

oprul e. seqi d={xpat h_expressi on| $j ms_property| *seqi d}

For example:

dynopr ul e. seqi d=@eqi d

11.2.4.15 oprule.txid

Specifies the XPath expression, JMS property, or system value that contains the t xi d
used to uniquely identify transactions. This overrides any t Xi d defined in parent
transaction rules and is required if there is no parent transaction rule. The value must
be incremented for each transaction.

oprul e. txi d={xpat h_expressi on| $j ms_property]| *t xi d}

For most cases using the system value of *t xi d is preferred.
For example:

dynopr ul e. t xi d=$JMSTxI d
dynoprul e. txi d=*txi d

Message Capture Properties 11-21

Parser Properties

11.2.4.16 oprule.txowner

Specifies the XPath expression, JMS property, or static value that contains an arbitrary
user name associated with a transaction. This value may be used to exclude certain
transactions from processing. This is an optional property.

oprul e. t xowner ={xpat h_expressi on| $j ms_property|"val ue"}

For example:

dynopr ul e. t xowner =$MessageOnner
dynoprul e. t xowner =" smi t h"

11.2.4.17 oprule.txname

Specifies the XPath expression, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

oprul e. t xname={ xpat h_expressi on| $j ms_property| "val ue"}

For example:

dynopr ul e. t xname="fi xedt x"

11.2.4.18 oprule.schemandtable

Specifies the XPath expression JMS property or hard-coded value that contains the
schema and table name in the form SCHEMA. TABLE. Any XPath expression must end
with a value accessor such as @t t ort ext (). The value is verified to ensure the
table exists in the source definitions.

oprul e. schemaandt abl e={ xpat h_expressi on| $j ms_property]| "val ue"}

For example:

st at oprul e. schemaandt abl e=" M. TABLE"

11.2.4.19 oprule.schema

Specifies the XPath expression, JMS property or hard-coded value that contains the
schema name. Any XPath expression must end with a value accessor such as @t t or
text().

oprul e. schema={ xpat h_expressi on| $j ms_property| "val ue"}

For example:

stat oprul e. schema=@chema

11.2.4.20 oprule.table

Specifies the XPath expression, JMS property or hard-coded value that contains the
table name. Any XPath expression must end with a value accessor such as @t t or
text().

oprul e. tabl e={xpat h_expressi on| $j ms_property| "val ue"}

For example:

statoprul e. tabl e=$Tabl eName

11-22 Administering Oracle GoldenGate Application Adapters

Parser Properties

11.2.4.21 oprule.optype

Specifies the XPath expression, JMS property or literal value that contains the opt ype
to be validated against an optype i nser t val , etc. Any XPath expression must end
with a value accessor such as @tt ortext ().

oprul e. opt ype={xpat h_expressi on| $j ms_property| "val ue"}

For example:

dynopr ul e. opt ype=@ ype
statoprul e. optype="I1"

11.2.4.22 oprule.optype.insertval
Specifies the value that identifies an insert operation. The defaultis | .

oprul e. optype.insertval ={val ue|\ xhex_val ue}

For example:

dynopr ul e. opt ype. i nsertval =A

11.2.4.23 oprule.optype.updateval
Specifies the value that identifies an update operation. The default is U.

oprul e. opt ype. updat eval ={val ue| \ xhex_val ue}

For example:

dynopr ul e. opt ype. updat eval =M

11.2.4.24 oprule.optype.deleteval
Specifies the value that identifies a delete operation. The default is D.

oprul e. optype. del et eval ={val ue| \ xhex_val ue}

For example:

dynopr ul e. opt ype. del et eval =R

11.2.4.25 oprule.txind

Specifies the XPath expression or JMS property that contains the transaction indicator
to be validated against begi nval or other value that identifies the position within the
transaction. All operations within a single message are regarded as occurring within a
whole transaction if this property is not defined. Specifies the begin, middle and end
of transactions. Any XPath expression must end with a value accessor such as @t t or
t ext () . Transactions defined in this way can span messages. This is an optional
property.

oprul e. txi nd={ xpat h_expressi on| $j ms_pr operty}

For example:

dynoprul e. t xi nd=@ xi nd

Message Capture Properties 11-23

Parser Properties

11.2.4.26 oprule.txind.beginval

Specifies the value that identifies an operation as the beginning of a transaction. The
default is B.

oprul e. txi nd. begi nval ={val ue|\ xhex_val ue}

For example:

dynopr ul e. txi nd. begi nval =0

11.2.4.27 oprule.txind.middleval

Specifies the value that identifies an operation as the middle of a transaction. The
default is M

oprul e. txind. m ddl eval ={val ue| \ xhex_val ue}

For example:

dynopr ul e. txi nd. m ddl eval =1

11.2.4.28 oprule.txind.endval

Specifies the value that identifies an operation as the end of a transaction. The default
isE.

oprul e. txi nd. endval ={ val ue| \ xhex_val ue}

For example:

dynopr ul e. txi nd. endval =2

11.2.4.29 oprule.txind.wholeval
Specifies the value that identifies an operation as a whole transaction. The default is W

oprul e. txi nd. whol eval ={val ue| \ xhex_val ue}

For example:

dynopr ul e. t xi nd. whol eval =3

11.2.4.30 colrule.name

Specifies the XPath expression or hard-coded value that contains a column name. The
column index must be specified if this is not and the column name will be resolved
from that. If specified the column name will be verified against the source definitions
file. Any XPath expression must end with a value accessor such as @tt ortext ().

col rul e. name={xpat h_expr essi on| "val ue"}

For example:

dyncol rul e. nane=@ane
stat keycol rul e. nane="keycol "

11.2.4.31 colrule.index

Specifies the XPath expression or hard-coded value that contains a column index. If
not specified then the column name must be specified and the column index will be
resolved from that. If specified the column index will be verified against the source

11-24 Administering Oracle GoldenGate Application Adapters

Parser Properties

definitions file. Any XPath expression must end with a value accessor such as @t t or
text().

col rul e. i ndex={xpat h_expression|"val ue"}

For example:

dyncol rul e. i ndex=@ ndex
stat keycol rul e. i ndex=1

11.2.4.32 colrule.value

Specifies the XPath expression or hard-coded value that contains a column value. Any
XPath expression must end with a value accessor suchas @tt ortext (). If the
XPath expression fails to return any data because a node or attribute does not exist, the
column value will be deemed as null. To differentiate between null and missing values
(for updates) thei snul | and i sm ssi ng properties should be set. The value
returned is used for delete before values, and update/insert after values.

col rul e. val ue={ xpat h_expressi on| "val ue"}

For example:

stat keycol rul e. val ue=./text()

11.2.4.33 colrule.isnull

Specifies the XPath expression used to discover if a column value is null. The XPath
expression must end with a value accessor such as @t t ort ext (). If the XPath
expression returns any value, the column value is null. This is an optional property.

col rule.isnul | =xpat h_expressi on

For example:

dyncol rul e.isnull =@snul |

11.2.4.34 colrule.ismissing

Specifies the XPath expression used to discover if a column value is missing. The
XPath expression must end with a value accessor such as @t t or text().If the
XPath expression returns any value, then the column value is missing. This is an
optional property.

col rul e. i sm ssing=xpat h_expressi on

For example:

dyncol rul e. i smi ssing=./mn ssing

11.2.4.35 colrule.before.value

Overrides col r ul e. val ue to specifically say how to obtain before values used for
updates or deletes. This has the same format as col r ul e. val ue. This is an optional

property.
For example:

dyncol rul e. bef ore. val ue=./ bef oreval ue/ t ext ()

Message Capture Properties 11-25

Parser Properties

11.2.4.36 colrule.before.isnull

Overrides col rul e. i snul | to specifically say how to determine if a before value is
null for updates or deletes. This has the same format as col rul e. i snul | . This is an
optional property.

For example:

dyncol rul e. before.isnul | =./beforeval ue/ @snul |

11.2.4.37 colrule.before.ismissing

Overrides col rul e. i sm ssi ng to specifically say how to determine if a before value
is missing for updates or deletes. This has the same format as col rul e. i sm ssi ng.
This is an optional property.

For example:

dyncol rul e. bef ore. i sm ssi ng=./bef oreval ue/ m ssing

11.2.4.38 colrule.after.value

Overrides col r ul e. val ue to specifically say how to obtain after values used for
updates or deletes. This has the same format as col r ul e. val ue. This is an optional

property.
For example:

dyncolrul e. after.val ue=./afterval ue/text()

11.2.4.39 colrule.after.isnull

Overrides col rul e. i snul | to specifically say how to determine if an after value is
null for updates or deletes. This has the same format as col rul e. i snul | . This is an
optional property.

For example:

dyncolrul e.after.isnull=./afterval ue/ @snul |

11.2.4.40 colrule.after.ismissing

Overrides col rul e. i sm ssi ng to specifically say how to determine if an after value
is missing for updates or deletes. This has the same format as col rul e. i sm ssi ng.
This is an optional property.

For example:

dyncol rul e. after.ismssing=./afterval ue/ mssing

11-26 Administering Oracle GoldenGate Application Adapters

Part IV

Delivering Java Messages

This part of the book contains information on using Oracle GoldenGate Adapters to
process transaction information to create JMS messages for delivery to third party
applications.

Part V contains the following chapters:
¢ Configuring Message Delivery

* Using the Java User Exit

¢ Configuring Event Handlers

® Message Delivery Properties

* Developing Custom Filters, Formatters, and Handlers

12

Configuring Message Delivery

This chapter explains how to configure the adapter for delivering messages. To do
this, you must set up the properties in the user exit properties file, configure an Extract
or Replicate process to run the user exit, and identify the built-in or custom event
handlers you will use.

This chapter includes the following sections:
¢ Configure the JRE in the User Exit Properties File
* Configure Extract to Run the User Exit

¢ Configure the Java Handlers

12.1 Configure the JRE in the User Exit Properties File

Modify the user exit properties file to point to the location of the Oracle GoldenGate
for Java main jar (ggjava.jar) and set any additional JVM runtime boot options as
required (these are passed directly to the JVM at startup):

j vm boot opt i ons=- Dj ava. cl ass. pat h=ggj ava/ ggj ava. j ar
- Dl og4j . configuration=log4j.properties -Xm512m

Note the following options in particular:

® java.class.path can include any custom jars in addition to the core application
(ggj ava. j ar). The current directory (.) is included by default in the class path.
You can reference files relative to the Oracle GoldenGate install directory, to allow
storing Java property files, Velocity templates and other class path resources in the
di r pr msubdirectory. It is also possible to append to the class path in the Java
application properties file.

¢ The log4j.configuration option specifies a log4j properties file, found in the class
path. There are pre-configured default log4j settings for basic logging
(I og4j . properti es), debug logging (debug- | og4j . properti es), and
detailed trace-level logging (t r ace- 1 0g4j . properti es), found in the
resources/classes directory.

Once the user exit properties file is correctly configured for your system, it usually
remains unchanged. See User Exit Properties, for additional configuration options.

12.2 Configure Extract to Run the User Exit

The user exit Extract is configured as a data pump. The data pump consumes a local
trail (for example di r dat / aa) and sends the data to the user exit. The user exit is
responsible for processing all the data.

Following is an example of adding a data pump Extract:

Configuring Message Delivery 12-1

Configure Extract to Run the User Exit

ADD EXTRACT javaue, EXTTRAILSOURCE ./dirdat/aa

The process names and trail names used above can be replaced with any valid name.
Process names must be 8 characters or less, trail names must to be two characters. In
the user exit Extract parameter file (j avaue. pr m specify the location of the user exit

library.

Table 12-1 User Exit Extract Parameters
[- - - - - -

Parameter

Explanation

EXTRACT | avaue

All Extract parameter files start with the Extract
name

SOURCEDEFS ./ dirdef/tcust. def

The Extract process requires metadata describing the
trail data. This can come from a database or a source
definitions file. This metadata defines the column
names and data types in the trail being read (. /

di rdat/ aa).

SETENV (GGS_USEREXI T_CONF =
"dirprnjavaue. properties")

(Optional) An absolute or relative path (relative to
the Extract executable) to the properties file for the C
user exit library. The default value is

extract _nane.propertiesinthedirprm
directory.

SETENV (GGS_JAVAUSEREXI T_CONF =
"dirprmjavaue. properties")

(Optional) The Java properties.This example places
the properties file in the di r pmdirectory.

CUSEREXI T ggj ava_ue. dl | CUSEREXI T
PASSTHRU
| NCLUDEUPDATEBEFORES

The CUSEREXI T parameter includes the following:

¢ The location of the user exit library. For UNIX,
the library would be suffixed . so

® CUSEREXI T - the callback function name that
must be uppercase.

® PASSTHRU - avoids the need for a dummy target
trail.

¢ | NCLUDEUPDATEBEFORES - needed for
transaction integrity.

TABLE schenm. *;

The tables to pass to the User Exit; tables not
included will be skipped. No filtering may be done in
the user exit Extract; otherwise transaction markers
will be missed. You can filter in the primary Extract,
or use another, upstream data pump, or filter data
directly in the Java application.

Note:

Using PASSTHRU disables the statistical reporting that allows report counts to
be included in the processing report. To collect report count statistics and send
them to the Extract from the user exit, use the property gg. report.ti nme.

The two environment properties shown above are optional.

e SETENV (GGS_USEREXI T_CONF = "dirprmjavaue. properties")

12-2 Administering Oracle GoldenGate Application Adapters

Configure the Java Handlers

This changes the default configuration file used for the User Exit shared library.
The value given is either an absolute path, or a path relative to Extract (or Replicat).
The example above uses a relative path to put this property file in the di r prm
directory.

The default file used is ext r act _nane.pr operti es, located in the di r pr m
directory. So, if the Extract name is punpA, then the pr mfile is di r pr m/punpA.pr m
and the properties file is di r pr m/punpA.pr operti es.

e SETENV (GGS_JAVAUSEREXI T_CONF = "dirprnfjavaue. properties")

This changes the default properties file used for the Oracle GoldenGate for Java
framework. The value found is a path to a file found in the class path or in a
normal file system path.

Both GGS_USEREXI T_CONF and GGS_JAVAUSEREXI T_CONF default to the same
file; di r pr ml ext ract _name.properti es.

12.3 Configure the Java Handlers

The Oracle GoldenGate Java API has a property file used to configure active event
handlers. To test the configuration, you may use the built-in file handler. Here are
some example properties, followed by explanations of the properties (comment lines
start with #):

the list of active handlers

gg. handl erli st =myhand| er

set properties on 'nyhandl er’

gg. handl er. nyhandl er. type=file

gg. handl er. myhandl er . f or mat =t x2xm . vm
gg. handl er. myhandl er. fil e=out put . xm

This property file declares the following:

® Active event handlers. In the example a single event handler is active, called
nmyhandl er . Multiple handlers may be specified, separated by commas. For
example: gg. handl er | i st =nyhandl er, your handl er

¢ Configuration of the handlers. In the example myhandl er is declared tobeafil e
type of handler: gg. handl er. nyhandl er. type=file

Note:

See the documentation for each type of handler (e.g. the JMS handler or the
file writer handler) for the list of valid properties that can be set.

¢ The format of the output is defined by the Velocity template t x2xnl . vm You may
specify your own custom template to define the message format; just specify the
path to your template relative to the Java class path (this is discussed later).

This property file is actually a complete example that will write captured transactions
to the output file output.xml. Other handler types can be specified using the key
words: j ms_t ext (orj ns),j ns_map, si ngl ef i | e (a file that does not roll), and
others. Custom handlers can be implemented, in which case the type would be the
fully qualified name of the Java class for the handler.

Configuring Message Delivery 12-3

Configure the Java Handlers

12-4 Administering Oracle GoldenGate Application Adapters

13

Using the Java User EXxit

This chapter describes how to start and restart the Oracle GoldenGate Adapter user
exit that delivers messages. It assumes that the primary Extract has already generated
a trail to be consume the user exit Replicat.

This chapter includes the following sections:
e Starting the Application

® Restarting the Application at the Beginning of a Trail

13.1 Starting the Application

Oracle GoldenGate release 12.2 introduced metadata in trail, which can be used by
either the Extract or the Replicat process as the metadata definitions. Metadata in trail
makes the separate source definitions file unnecessary as in previous releases. For the
examples that follow, a simple TCUSTMER and TCUSTORD trail is used (matching the
demo SQL provided with the Oracle GoldenGate software download), along with a
source definitions file defining the data types used in the trail.

Note:

Replicat user exit must have access to the source definitions in order to run.
Source metadata must be provided either from a static source definitions file
or by using the metadata in trail feature where the metadata can be obtained
from the trail. However, the Extract process does require metadata describing
the trail data. Either the Extract must login to a database for metadata, or a
source definitions file can be provided. In either case, the Extract cannot be in
PASSTHRU mode when using a user exit.

To run the user exit, simply start the Replicat process from GGSCI:
GGSCl > START REPLI CAT j avaue

GGSCl > | NFO REPLI CAT j avaue

The | NFOcommand returnS information similar to the following:

REPLI CAT JAVAUE Last Started 2011-08-25 18:41 Status RUNNI NG
Checkpoi nt Lag 00:00:00 (updated 00:00:00 ago)

Log Read Checkpoint File ./dirdat/bb000000

2011-09-24 12:52:58. 000000 RBA 2702

If the Replicat process is running and the file handler is being used (as in the example
above), then you should see the output file out put . xm in the Oracle GoldenGate
installation directory (the same directory as the Replicat executable).

If the process does not start or abends, see Checking for Errors.

Using the Java User Exit 13-1

Restarting the Application at the Beginning of a Tralil

13.2 Restarting the Application at the Beginning of a Trail

There are two checkpoints for an Replicat running the user exit: the user exit
checkpoint and the Replicat checkpoint. Before rerunning the Replicat, you must reset
both checkpoints:

1. Delete the user exit checkpoint file.

In this example, the name of the Replicat group is j avaue, so this will default to
the checkpoint prefix.

Windows: cnd>d el JAVAUE. cpj
UNIX: $ rm JAVAUE. cpj

Note:

Do not modify checkpoints or delete the user exit checkpoint file on a
production system.

2. Reset the Replicat to the beginning of the trail data:
GGSCl > ALTER REPLI CAT JAVAUE, EXTSEQNO 0, EXTRBA 0
3. Restart the Replicat:

GGSCl > START JAVAUE
GGSCl > | NFO JAVAUE
REPLI CAT JAVAUE Last Started 2011-08-25 18:41 Status RUNNI NG
Checkpoi nt Lag 00: 00: 00 (updated 00:00:00 ago)
Log Read Checkpoint File ./dirdat/ps000000
2011-09-24 12:52:58.000000 RBA 2702

It may take a few seconds for the Replicat process status to report itself as running.
Check the report file to see if it abended or is still in the process of starting:

GGSCl > VI EW REPORT JAVAUE

13-2 Administering Oracle GoldenGate Application Adapters

14

Configuring Event Handlers

This chapter discusses types of event handlers explaining how to specify the event
handler to use and what your options are. It explains how to format the output and
what you can expect from the Oracle GoldenGate Report file.

This chapter includes the following sections:

Specifying Event Handlers
JMS Handler

File Handler

Custom Handlers
Formatting the Output

Reporting

14.1 Specifying Event Handlers

Processing transaction, operation and metadata events in Java works as follows:

The Oracle GoldenGate Replicat reads local trail data and passes the transactions,
operations and database metadata to the user exit. Metadata can come from a
source definitions file or a metadata definition included in the trail.

Events are fired by the Java framework, optionally filtered by custom Event Filters.

Handlers (event listeners) process these events, and process the transactions,
operations and metadata. Custom formatters may be applied for certain types of
targets.

There are several existing handlers:

A message handler to send to a JMS provider using either a MapMessage, or using
a TextMessage with customized formatters.

A specialized message handler to send JMS messages to Oracle Advanced Queuing

(AQ).

A file writer handler, for writing to a single file, or a rolling file.

Configuring Event Handlers 14-1

JMS Handler

Note:

The file writer handler is particularly useful as development utility, since the

file writer can take the exact same formatter as the JMS TextMessage handler.
Using the file writer provides a simple way to test and tune the formatters for
JMS without actually sending the messages to JMS.

Event handlers can be configured using the main Java property file or they may
optionally read in their own properties directly from yet another property file
(depending on the handler implementation). Handler properties are set using the
following syntax:

gg. handl er. { nane}. sonepr opert y=someval ue

This will cause the property somepr oper ty to be set to the value sormeval ue for the
handler instance identified in the property file by nane. This nane is used in the
property file to define active handlers and set their properties; it is user-defined.

Implementation note (for Java developers): Following the above example: when the
handler is instantiated, the method voi d setSomeProperty(String value) will be called
on the handler instance, passing in the String value soneval ue. A JavaBean

Proper t yEdi t or may also be defined for the handler, in which case the string can be
automatically converted to the appropriate type for the setter method. For example, in
the Java application properties file, we may have the following;:

the list of active handlers: only two are active
gg. handl erli st=one, two

set properties on 'one

gg. handl er. one. type=file

gg. handl er. one. f or mat =com nyconpany. MyFor mat t er

gg. handl er. one. fi | e=out put . xm

properties for handler 'two'

gg. handl er. two. t ype=j ms_t ext

gg. handl er. t wo. f or mat =com nyconpany. MyFor mat t er

gg. handl er. two. properti es=j boss. properties

set properties for handler 'foo'; this handler is ignored
gg. handl er. f 0o. t ype=com myconpany. MyHandl er

gg. handl er. f 0o. somepr opert y=soneval ue

The type identifies the handler class; the other properties depend on the type of
handler created. If a separate properties file is used to initialize the handler (such as
the JMS handlers), the properties file is found in the class path. For example, if
properties file is at: { gg_i nstal | _di r}/dirprm f oo. properti es, then specify
in the properties file as follows:

gg. handl er. nane. properti es=f 0o0. properti es.

14.2 JMS Handler

The main Java property file identifies active handlers. The JMS handler may optionally
use a separate property file for JMS-specific configuration. This allows more than one
JMS handler to be configured to run at the same time.

There are examples included for several JMS providers (JBoss, TIBCO, Solace,
ActiveMQ), WebLogic). For a specific JMS provider, you can choose the appropriate
properties files as a starting point for your environment. Each JMS provider has
slightly different settings, and your environment will have unique settings as well.

14-2 Administering Oracle GoldenGate Application Adapters

File Handler

The installation directory for the Java jars (ggj ava) contains the core application jars
(ggj ava. j ar) and its dependencies in r esour ces/ | i b/ *. j ar . The resources
directory contains all dependencies and configuration, and is in the class path.

If the JMS client jars already exist somewhere on the system, they can be referenced
directly and added to the class path without copying them.

The following types of J]MS handlers can be specified:

* jms —sends text messages to a topic or queue. The messages may be formatted
using Velocity templates or by writing a formatter in Java. The same formatters can
be used for aj ms_t ext nmessage as for writing to files. (j ms_t ext is a synonym
forj ms.)

® aq - sends text messages to Oracle Advanced Queuing (AQ). The aq handler is a
j ms handler configured for delivery to AQ. The messages can be formatted using
Velocity temlates or a custom formatter.

* jms_map - sends a J]MS MapMessage to a topic or queue. The JIMSType of the
message is set to the name of the table. The body of the message consists of the
following metadata, followed by column name and column value pairs:

— GG_I D- position of the record, uniquely identifies this operation

GG_CPTYPE - type of SQL (insert/update/delete),

GG_TABLE - table name on which the operation occurred

GG_TI MESTANP — timestamp of the operation

14.3 File Handler

The file handler is often used to verify the message format when the actual target is
JMS, and the message format is being developed using custom Java or Velocity
templates. Here is a property file using a file handler:

one file handler active, using Velocity tenplate formatting
gg. handl erlist=nyfile

gg. handl er. nyfile.type=file

gg. handl er. nyfile.rol | over. si ze=5M

gg. handl er. nyfile.format=sanpl e2xm .vm

gg. handl er. nyfile.file=output.xn

This example uses a single handler (though, a JMS handler and the file handler could
be used at the same time), writing to a file called out put . xm , using a Velocity
template called sanpl e2xm . vm The template is found via the classpath.

14.4 Custom Handlers

For information on coding a custom handler, see Coding a Custom Handler in Java .

14.5 Formatting the Output

As previously described, the existing JMS and file output handlers can be configured
through the properties file. Each handler has its own specific properties that can be set:
for example, the output file can be set for the file handler, and the JMS destination can
be set for the JMS handler. Both of these handlers may also specify a custom formatter.
The same formatter may be used for both handlers. As an alternative to writing Java

Configuring Event Handlers 14-3

Reporting

code for custom formatting, a Velocity template may be specified. For further
information, see Filtering Events .

14.6 Reporting

Summary statistics about the throughput and amount of data processed are generated
when the Replicat process stops. Additionally, statistics can be written periodically
either after a specified amount of time or after a specified number of records have been
processed. If both time and number of records are specified, then the report is
generated for whichever event happens first. These statistical summaries are written to
the Oracle GoldenGate report file and the user exit log files.

14-4 Administering Oracle GoldenGate Application Adapters

15

Message Delivery Properties

This chapter explains the options available for configuration of the property files for
user exit properties and Java application properties.

This chapter includes the following sections:
* User Exit Properties

® Java Application Properties

15.1 User Exit Properties

The following properties set the log files and the type of logging.

15.1.1 Logging Properties

Logging is controlled by the following properties.

15.1.1.1 gg.log

Specifies the type of logging that is to be used. The default implementation for the
Oracle GoldenGate Adapters is the JDK option. This is the built-in Java logging called
java.util.logging (JUL). The other logging options are | 0g4j or | ogback.

For example, to set the type of logging to | 0g4j :
9. | og=I 0g4

The log file is created in the report subdirectory of the installation. The default log file
name includes the group name of the associated Extract and the file extension is . | 0g.

15.1.1.2 gg.log.level

Specifies the overall log level for all modules. The syntax is:
gg. | og. | evel ={ ERROR| WARN| | NFO| DEBUG}

The log levels are defined as follows:

¢ ERROR- Only write messages if errors occur

* WARN- Write error and warning messages

* | NFO- Write error, warning and informational messages

* DEBUG- Write all messages, including debug ones.

The default logging level is | NFO. The messages in this case will be produced on
startup, shutdown and periodically during operation. If the level is switched to
DEBUG large volumes of messages may occur which could impact performance. For
example, the following sets the global logging level to | NFO.

Message Delivery Properties 15-1

User Exit Properties

global |ogging Ievel
gg. | og. | evel =I NFO

15.1.1.3 gg.log.file

Specifies the path to the log file. The syntax is:

gg.log.file=path_to file

Where the pat h_t o_f i | e is the fully defined location of the log file. This allows a
change to the name of the log, but you must include the Extract name if you have
more than one Extract to avoid one overwriting the log of the other.

15.1.1.4 gg.log.classpath

Specifies the class path to the jars used to implement logging.

gg.log. cl asspath=path_to_jars

15.1.2 General Properties

The following properties apply to all writer type user exits and are not specific to the
user exit.

15.1.2.1 goldengate.userexit.writers

Specifies the name of the writer. This is always j vm and should not be modified.
For example:

gol dengat e. userexit.witers=jvm
All other properties in the file should be prefixed by the writer name, j vm

15.1.2.2 goldengate.userexit.chkptprefix
Specifies a string value for the prefix added to the checkpoint file name. For example:

gol dengat e. userexi t. chkpt prefi x=j avaue_

15.1.2.3 goldengate.userexit.nochkpt

Disables or enables the user exit checkpoint file. The default is f al se, the checkpoint
file is enabled. Set this property to t r ue if transactions are supported and enabled on
the target.

For exampe, if JMS is the target and JMS local transactions are enabled (the default),
set gol dengat e. user exi t. nochkpt =t r ue to disable the user exit checkpoint file.
If JMS transactions are disabled by setting | ocal Tx=f al se on the handler, the user
exit checkpoint file should be enabled by setting

gol dengat e. user exi t. nochkpt =f al se.

gol dengat e. userexi t. nochkpt ={true| f al se}

15.1.2.4 goldengate.userexit.usetargetcols

Specifies whether or not mapping to target columns is allowed. The defaultis f al se,
no target mapping.

gol dengat e. userexi t. usetargetcol s={true|fal se}

15-2 Administering Oracle GoldenGate Application Adapters

User Exit Properties

15.1.3 JVM boot Options

The following options configure the Java Runtime Environment. In particular, this is
where the maximum memory the JVM can use is specified; if you see Java out-of-
memory errors, edit these settings.

15.1.3.1 jvm.bootoptions

Specifies the classpath and boot options that will be applied when the user exit starts
up the JVM. The path needs colon (:) separators for UNIX/Linux and semicolons (;)
for Windows. This is where to specify various options for the JVM, such as heap size
and class path; for example:

¢ -Xms: initial java heap size
¢ -Xmx: maximum java heap size

¢ - Djava.class.path: class path specifying location of at least the main application jar,
ggj ava. j ar . Other jars, such as JMS provider jars, may also be specified here as
well; alternatively, these may be specified in the Java application properties file.

e -verbose:jni: run in verbose mode (for JNI)
For example (all on a single line):
jvm boot options= -Dj ava. cl ass. pat h=ggj ava/ ggj ava. j ar

- Dl og4j . configuration=ny-|og4j.properties -Xnmk512m

The | og4j . confi gur ati on property can be a fully qualified URL to a log4;
properties file; by default this file is searched for in the class path. You may use your
own log4j configuration, or one of the preconfigured log4j settings:

| 0og4j . properti es (default level of logging), debug- | og4j . properti es (debug
logging) ort r ace-| og4j . properti es (very verbose logging).

15.1.4 Statistics and Reporting

The use of the user exit causes Extract to assume that the records handled by the exit
are ignored. This causes the standard Oracle GoldenGate reporting to be incomplete.
Oracle GoldenGate for Java adds its own reporting to handle this issue.

Statistics can be reported every t seconds or every n records - or if both are specified,
whichever criteria is met first.

There are two sets of statistics recorded: those maintained by the User Exit shared
library (on the C side) and those obtained from the Java libraries. The reports received
from the Java side are formatted and returned by the individual handlers.

The User Exit statistics include the total number of operations, transactions and
corresponding rates.
15.1.4.1 jvm.stats.display

Controls the output of statistics to the Oracle GoldenGate report file and to the user
exit log files.

The following example outputs these statistics.

jvm stats.display=true

Message Delivery Properties 15-3

Java Application Properties

15.1.4.2 jvm.stats.full

Controls the output of statistics from the Java side, in addition to the statistics from the
Cside.

Java side statistics are more detailed but also involve some additional overhead, so if
statistics are reported often and a less detailed summary is adequate, it is
recommended that st at s. ful | property is settof al se.

The following example will output Java statistics in addition to C.

jvmstats.full=true

15.1.4.3 jvm.stats.time | jym.stats.numrecs

Specifies a time interval, in seconds or a number of records, after which statistics will
be reported. The default is to report statistics every hour or every 10000 records
(which ever occurs first).

For example, to report ever 10 minutes or every 1000 records, specify:

jvmstats.time=600
jvm stats. nunt ecs=1000

The Java application statistics are handler-dependent:

e For the all handlers, there is at least the total elapsed time, processing time, number
of operations, transactions;

* For the JMS handler, there is additionally the total number of bytes received and
sent.

e The report can be customized using a template.

15.2 Java Application Properties

The following defines the properties which may be set in the Java application property
file.

15.2.1 Properties for All Handlers
The following properties apply to all handlers.

15.2.1.1 gg.handlerlist

The handler list is a list of active handlers separated by commas. These values are used
in the rest of the property file to configure the individual handlers. For example:

gg. handl erli st=namel, nane2

gg. handl er. nanel. propert yA=val uel
gg. handl er. nanel. propert yB=val ue2
gg. handl er. nanel. propertyC=val ue3
gg. handl er. nane2. propert yA=val uel
gg. handl er. nane2. propert yB=val ue2
gg. handl er. nane2. propertyC=val ue3

Using the handl er | i st property, you may include completely configured handlers
in the property file and just disable them by removing them from the handl erl i st .

15-4 Administering Oracle GoldenGate Application Adapters

Java Application Properties

15.2.1.2 gg.handler.name.type

This type of handler. This is either a predefined value for built-in handlers, or a fully
qualified Java class name. The syntax is:

gg. handl er. nane. t ype={j ns| j ms_nap| aq| singl efile|rollingfile|customjava_class}

Where:
All but the last are pre-defined handlers:

* jms — Sends transactions, operations, and metadata as formatted messages to a J]MS
provider

® aq - Sends transactions, operations, and metadata as formatted messages to Oracle
Advanced Queuing (AQ)

* jms_map — Sends JMS map messages
¢ singlefile — Writes to a single file on disk, but does not roll the file

¢ rollingfile — Writes transactions, operations, and metadata to a file on disk, rolling
the file over after a certain size or after a certain amount of time

e customjava_cl ass — Any class that extends the Oracle GoldenGate for Java
Abstract Handl er class and can handle transaction, operation, or metadata
events

15.2.2 Properties for Formatted Output

The following properties apply to all handlers capable of producing formatted output;
this includes:

e Thejnms_text handl er (butnotthejns_nap handl er)
¢ The aq handler

e Thesinglefileandrollinghandlers, for writing formatted output to files

15.2.2.1 gg.handler.name.format

Specifies the format used to transform operations and transactions into messages sent
to JMS, to the Big Data target or to a file. The format is specified uniquely for each
handler. The value may be:

* Velocity template
* Java class name (fully qualified - the class specified must be a type of formatter)

* csv for delimited values (such as comma separated values; the delimiter can be
customized)

¢ fixed for fixed-length fields
e Built-in formatter, such as:
— xm —demo XML format

— xnl 2 —internal XML format

Message Delivery Properties 15-5

Java Application Properties

For example, to specify a custom Java class:

gg. handl erli st =abc
gg. handl er. abc. f or mat =com nyconpany. MyFor nat

Or, for a Velocity template:

gg. handl erli st=xyz
gg. handl er. xyz. f or mat =pat h/ t o/ sanpl e. vm

If using templates, the file is found relative to some directory or JAR that is in the
classpath. By default, the Oracle GoldenGate installation directory is in the classpath,
so the preceding template could be placed in the di r pr mdirectory of the Oracle
GoldenGate installation location.

The default format is to use the built-in XML formatter.

15.2.2.2 gg.handler.name.includeTables

Specifies a list of tables this handler will include. If the schema (or owner) of the table
is specified, then only that schema matches the table name; otherwise, the table name
matches any schema. A comma separated list of tables can be specified.

For example, to have the handler only process tables f 00. cust orrer and
bar. orders:

gg. handl er. nyhandl er. i ncl udeTabl es=f 00. cust oner, bar. orders

Note:

In order to selectively process operations on a table by table basis, the handler
must be processing in operation mode. If the handler is processing in
transaction mode, then when a single transaction contains several operations
spanning several tables, if any table matches the include list of tables, the
transaction will be included.

15.2.2.3 gg.handler.name.excludeTables

Specifies a list of tables this handler will exclude. If the schema (or owner) of the table
is specified, then only that schema matches the table name; otherwise, the table name
matches any schema. A list of tables may be specified, comma-separated. For example,
to have the handler process all operations on all tables except table dat e_nodi f i ed
in all schemas:

gg. handl er. nyhandl er. excl udeTabl es=dat e_nodi fi ed

15.2.2.4 gg.handler.name.mode, gg.handler.name.format.mode

Specifies whether to output one operation per message (0p) or one transaction per
message (t X). The default is op. Use gg. handl er . nane. f or mat . node when you
have a custom formatter.

15-6 Administering Oracle GoldenGate Application Adapters

Java Application Properties

Note:

This property must be set to one transaction per message (t X) if you are using
group transaction properties. If it is set to one operation per message (0p),

gg. handl er .narme.n nG oupSi ze and gg. handl er .name.maxG oupSi ze
will be ignored

15.2.3 Properties for CSV and Fixed Format Output

If the handler is set to use either CSV or f i xed format output, the following properties
may also be set.

15.2.3.1 gg.handler.name.format.delim

Specifies the delimiter to use between fields. Set this to no value to have no delimiter
used. For example:

gg. handl er. handl er 1. f or mat . del i n¥,

15.2.3.2 gg.handler.name.format.quote
Specifies the quote character to be used if column values are quoted. For example:

gg. handl er. handl er 1. f or mat . quot e='

15.2.3.3 gg.handler.name.format.metacols

Specifies the metadata column values to appear at the beginning of the record, before
any column data. Specify any of the following, in the order they should appear:

® position — unique position indicator of records in a trail

* opcode -1, U, or Dfor insert, update, or delete records (see: i nsert Char,
updat eChar , del et eChar)

¢ txind - transaction indicator — such as O=begin, 1=middle, 2=end, 3=whole tx (see
begi nTxChar, m ddl eTxChar, endTxChar , whol eTxChar)

* opcount — position of a record in a transaction, starting from 0
* schema - schema/owner of the table for the record

¢ tableonly —just table (no schema/owner)

¢ table — full name of table, schema.table

e timestamp — commit timestamp of record
For example:

gg. handl er. handl er 1. f or mat . net acol s=opcode, table, txind, position

15.2.3.4 gg.handler.name.format.missingColumnChar

Specifies a special column prefix for a column value that was not captured from the
source database transaction log. The column value is not in trail and it is unknown if it
has a value or is NULL

The character used to represent the missing state of the column value can be
customized. For example:

Message Delivery Properties 15-7

Java Application Properties

gg. handl er. handl er 1. f or mat . ni ssi ngCol umChar =M

By default, the missing column value is set to an empty string and does not show.

15.2.3.5 gg.handler.name.format.presentColumnChar

Specifies a special column prefix for a column value that exists in the trail and is not
NULL.

The character used to represent the state of the column can be customized. For
example:

gg. handl er. handl er 1. f or mat . pr esent Col utmChar =P
By default, the present column value is set to an empty string and does not show.

15.2.3.6 gg.handler.name.format.nullColumnChar

Specifies a special column prefix for a column value that exists in the trail and is set to
NULL.

The character used to represent the state of the column can be customized. For
example:

gg. handl er. handl er 1. f or mat . nul | Col unnChar =N
By default, the null column value is set to an empty string and does not show.

15.2.3.7 gg.handler.name.format.beginTxChar

Specifies the header metadata character (see met acol s) used to identify a record as
the begi n of a transaction. For example:

gg. handl er. handl er 1. f or mat . begi nTxChar =B

15.2.3.8 gg.handler.name.format.middleTxChar

Specifies the header metadata characters (see met acol s) used to identify a record as
the mi ddl e of a transaction. For example:

gg. handl er. handl er 1. f or mat . i ddl eTxChar =M

15.2.3.9 gg.handler.name.format.endTxChar

Specifies the header metadata characters (see met acol s) used to identify a record as
the end of a transaction. For example:

gg. handl er. handl er 1. f or mat . endTxChar =E

15.2.3.10 gg.handler.name.format.wholeTxChar

Specifies the header metadata characters (see met acol s) used to identify a record as a
complete transaction; referred to as a whol e transaction. For example:

gg. handl er. handl er 1. f or mat . whol eTxChar =W

15.2.3.11 gg.handler.name.format.insertChar
Specifies the character to identify an insert operation. The default | .
For example, to use | NS instead of | for insert operations:

gg. handl er. handl er 1. f ormat . i nsert Char =I NS

15-8 Administering Oracle GoldenGate Application Adapters

Java Application Properties

15.2.3.12 gg.handler.name.format.updateChar
Specifies the character to identify an update operation. The default is U.
For example, to use UPDinstead of U for update operations:

gg. handl er. handl er 1. f or mat . updat eChar =UPD

15.2.3.13 gg.handler.name.format.deleteChar
Specifies the character to identify a delete operation. The default is D.
For example, to use DEL instead of D for delete operations:

gg. handl er. handl er 1. f or mat . del et eChar =DEL

15.2.3.14 gg.handler.name.format.endOfLine

Specifies the end-of-line character as:
¢ EQL - Native platform

¢ CR- Neutral (UNIX-style \ n)

e CRLF-Windows (\r\n)

For example:

gg. handl er. handl er 1. f or mat . endCf Li ne=CR

15.2.3.15 gg.handler.name.format.justify
Specifies the left or right justification of fixed fields. For example:

gg. handl er. handl er1. format.justify=left

15.2.3.16 gg.handler.name.format.includeBefores

Controls whether before images should be included in the output. There must be
before images in the trail. For example:

gg. handl er. handl er 1. for mat . i ncl udeBef or es=f al se

15.2.4 File Writer Properties

The following properties only apply to handlers that write their output to files: the
fil e handler and the si ngl ef i | e handler.

15.2.4.1 gg.handler.name.file

Specifies the name of the output file for the given handler. If the handler is a rolling
file, this name is used to derive the rolled file names. The default file name is
out put . xm .

15.2.4.2 gg.handler.name.append

Controls whether the file should be appended to (t r ue) or overwritten upon restart
(f al se).

15.2.4.3 gg.handler.name.rolloverSize

If using the file handler, this specifies the size of the file before a rollover should be
attempted. The file size will be at least this size, but will most likely be larger.

Message Delivery Properties 15-9

Java Application Properties

Operations and transactions are not broken across files. The size is specified in bytes,
but a suffix may be given to identify MB or KB. For example:

gg. handl er. nyfile.rol | over Si ze=5MB

The default rollover size is 10 MB.

15.2.5 JMS Handler Properties

The following properties apply to the JMS handlers. Some of these values may be
defined in the Java application properties file using the name of the handler. Other
properties may be placed into a separate JMS properties file, which is useful if using
more than one JMS handler at a time. For example:

gg. handl er. nyj ns. t ype=j ns_t ext
gg. handl er. nyj ns. f or mat =xn
gg. handl er. nyj ms. properties=webl ogi c. properties

Just as with Velocity templates and formatting property files, this additional J]MS
properties file is found in the classpath. The above properties file

webl ogi c. properties wouldbe foundin{gg_install _dir}/dirprm
webl ogi c. properti es, since the di r pr mdirectory is included by default in the
class path.

Settings that can be made in the Java application properties file will override the
corresponding value set in the supplemental JMS properties file

(webl ogi c. properti es in the example above). In the following example, the
destination property is specified in the Java application properties file. This allows the
same default connection information for the two handlers nyj ms1 and nyj ns2, but
customizes the target destination queue.

gg. handl erli st =nyj ns1, nyj ms2

gg. handl er. nyj ns1. t ype=j ms_t ext

gg. handl er. nyj ns1. desti nati on=queue. sanpl eA

gg. handl er. nyj ns1. f or mat =sanpl e. vm

gg. handl er. nyj ns1. properties=tibco-defaul t.properties
gg. handl er. nyj ns2. t ype=j ms_map

gg. handl er. nyj ns2. dest i nat i on=queue. sanpl eB

gg. handl er. nyj ns2. properties=tibco-defaul t.properties

To set a property, specify the handler name as a prefix; for example:

gg. handl erl i st =sanpl e, sanpl e2

gg. handl er. sanpl e. t ype=j ms_t ext

gg. handl er. sanpl e. for mat =ny_t enpl ate. vm

gg. handl er. sanpl e. desti nati on=gg. myqueue

gg. handl er. sanpl e. queueor t opi c=queue

gg. handl er. sanpl e. connecti onUr | =t cp: // host: 61616?] ms. useAsyncSend=t r ue
gg. handl er. sanpl e. useJndi =f al se

gg. handl er. sanpl e. connect i onFact or y=Connect i onFact ory

gg. handl er. sanpl e. connect i onFact or yd ass=\

org. apache. activenmy. Acti veMXonnect i onFact ory
gg. handl er. sanpl e. connect i onUr | =\

tcp://1ocal host: 61616?) ms. useAsyncSend=true
gg. handl er. sanpl e. ti meToLi ve=50000

15-10 Administering Oracle GoldenGate Application Adapters

Java Application Properties

15.2.5.1 Standard JMS Settings

The following outlines the JMS properties which may be set, and the accepted values.
These apply for both JMS handler types: j ms_t ext (Text Message) and j ms_map
(MapMessage).

15.2.5.1.1 gg.handler.name.destination

The queue or topic to which the message is sent. This must be correctly configured on
the JMS server. Typical values may be: queue/ A, queue. Test, exanpl e. MyTopi ¢,
etc.

gg. handl er. nane. desti nati on=queue_or _topic

15.2.5.1.2 gg.handler.name.user
(Optional) User name required to send messages to the JMS server.

gg. handl er. nane. user =user _nane

15.2.5.1.3 gg.handler.name.password

(Optional) Password required to send messages to the JMS server

gg. handl er. nane. passwor d=passwor d

15.2.5.1.4 gg.handler.name.queueOrTopic

Whether the handler is sending to a queue (a single receiver) or a topic (publish /
subscribe). This must be correctly configured in the JMS provider. This property is an
alias of gg. handl er .name.dest i nat i on. The syntax is:

gg. handl er. nanme. queueCr Topi c={ queue| t opi c}
Where:

* Queue —a message is removed from the queue once it has been read. This is the
default.

* topi c — messages are published and may be delivered to multiple subscribers.

15.2.5.1.5 gg.handler.name.persistent

If the delivery mode is set to persistent or not. If the messages are to be persistent, the
JMS provider must be configured to log the message to stable storage as part of the
client's send operation. The syntax is:

gg. handl er. nane. persi stent={true| f al se}

15.2.5.1.6 gg.handler.name.priority

JMS defines a 10 level priority value, with 0 as the lowest and 9 as the highest. Priority
is set to 4 by default. The syntax is:

gg. handl er. nane. priority=i nt eger

For example:

gg. handl er. name. priority=5

Message Delivery Properties 15-11

Java Application Properties

15.2.5.1.7 gg.handler.name.timeToLive

The length of time in milliseconds from its dispatch time that a produced message
should be retained by the message system. A value of zero specifies the time is
unlimited. The default is zero. The syntax is:

gg. handl er. nane. ti meToLi ve=ni | | i seconds

For example:

gg. handl er. nane. ti meToLi ve= 36000

15.2.5.1.8 gg.handler.name.connectionFactory

Name of the connection factory to lookup via JNDI Connect i onFact or yJNDI Nare
is an alias. The syntax is:

gg. handl er. nane. connect i onFact ory=JNDI _nane

15.2.5.1.9 gg.handler.name.useJndi

If gg. handl er . nane.usej ndi isf al se, then JNDI is not used to configure the J]MS
client. Instead, factories and connections are explicitly constructed. The syntax is:

gg. handl er. nane. useJndi ={true| f al se}

15.2.5.1.10 gg.handler.name.connectionUrl

Connection URL is used only when not using JNDI to explicitly create the connection.
The syntax is:

gg. handl er. nane. connecti onUr | =ur |

15.2.5.1.11 gg.handler.name.connectionFactoryClass

The Connection Factory Class is used to access a factory only when not using JNDL
The value of this property is the Java class name to instantiate; constructing a factory
object explicitly.

gg. handl er. nane. connect i onFact or yCl ass=j ava_cl ass_nane

15.2.5.1.12 gg.handler.name.localTX

Specifies whether or not local transactions are used. The defaultis t r ue, local
transactions are used. The syntax is:

gg. handl er. nane. | ocal TX={true| f al se}

15.2.5.1.13 gg.handlerlist.nop

Disables the sending of JMS messages to allow testing of message generation. This is a
global property used only for testing. The events are still generated and handled and
the message is constructed. The default is f al se; do not disable message send. The
syntax is:

gg. handl erlist.nop={true|fal se}

15.2.5.2 Group Transaction Properties

These properties set limits for grouping transactions.

15-12 Administering Oracle GoldenGate Application Adapters

Java Application Properties

Note:

When you use group transaction properties, you must:

¢ Ensure that gg. handl er .name.nobde is set to one transaction per message
(t x). Otherwise the group transaction properties will be ignored.

¢ Ensure that the gol dengat e. user exi t. nochkpt property is set to
fal se.

¢ Ignore the transaction indicator on the operations and not use it to
determine transaction boundaries.

¢ Use only one named handler per installation.

15.2.5.2.1 gg.handler.name.minGroupSize

Specifies the minimum number of operations that must accumulate before the
transaction will be sent.

The syntax is:

gg. handl er. nane. ni nG oupSi ze=nunber _ops
Where:

* nunber _ops specifies the minimum number of operations that must be
accumulated before the transaction is sent.

The maximum value allowed is i nt eger . MAX. VALUE or 2147483647. The minimum
value is one.

If you use both properties, the value set for gg. handl er . name.nm nG oupSi ze
should be less than or equal to the value set for gg. handl er .name.maxG oupSi ze.

The following example will test for a minimum of 50 operations before a send.

gg. handl er. nane. ni nG oupSi ze=50

15.2.5.2.2 gg.handler.name.maxGroupSize
Specifies the maximum number of operations that will rigger the transaction send.
The syntax is:

gg. handl er. nane. maxG oupSi ze=nunber _ops
Where:

¢ nunber _ops specifies the maximum number of operations that will be
accumulated before the transaction is sent.

The maximum value allowed is i nt eger . MAX. VALUE or 2147483647. The minimum
value is one.

If you use both properties, the value set for gg. handl er . nane.ni nG oupSi ze
should be less than or equal to the value set for gg. handl er .nanme.maxG oupSi ze.

The following example will send when the maximum of 50 operations is reached.

gg. handl er. name. maxG oupSi ze=50

Message Delivery Properties 15-13

Java Application Properties

15.2.6 JNDI Properties

These JNDI properties are required for connection to an Initial Context to look up the
connection factory and initial destination.

j ava. nami ng. provi der. url =url
java. namng.factory.initial =j ava- cl ass- name

If JNDI security is enabled, the following properties may be set:

java. nanming. security. princi pal =user - nane
j ava. nami ng. security. credential s=passwor d- or - ot her - aut hent i cat or

For example:

j ava. naning. provi der.url=t3://1ocal host: 7001

java.naning. factory.initial=webl ogic.jndi.WlInitial ContextFactory
j ava. nani ng. security. principal =j ndi user

java. nani ng. security.credential s=j ndi pw

15.2.7 General Properties

The following are general properties that are used for the user exit Java framework.

15.2.7.1 gg.classpath

Specifies a comma delimited list of additional paths to directories or jars to add to the
class path. Optionally, the list can be delimited by semicolons for Windows systems or
by colons for UNIX. For example:

gg. cl asspat h=C: \ Program Fi | es\ MyProgram bi n; C:\ Program Fi | es\ Progr anB\ app\ bi n;

15.2.7.2 gg.report.time

Specifies how often statistics are calculated and sent to Extract for the processing
report. If Extract is configured to print a report, these statistics are included. The
syntax is:

gg.report.time=report _interval {s|n h}
Where:
e report_interval isaninteger
e The valid time units are:
— s -seconds
— M- minutes

— h-hours

If no value is entered, the default is to calculate and send every 24 hours.

15-14 Administering Oracle GoldenGate Application Adapters

16

Developing Custom Filters, Formatters, and
Handlers

This chapter discusses writing Java code to implement an event filter, a custom
formatter for a built-in handler, or a custom event handler. Specifying custom
formatting through a Velocity template is also covered.

The Java package names are compliant with the Oracle standard. You must migrate
the any previous release custom formatters, handlers, or filters to the new package
names.

This chapter includes the following sections:
¢ Filtering Events

¢ Custom Formatting

¢ Coding a Custom Handler in Java

e Additional Resources

16.1 Filtering Events

By default, all transactions, operations and metadata events are passed to the

Dat aSour ceLi st ener event handlers. An event filter can be implemented to filter
the events sent to the handlers. The filter could select certain operations on certain
tables containing certain column values, for example

Filters are additive: if more than one filter is set for a handler, then all filters must
return true in order for the event to be passed to the handler.

You can configure filters using the Java application properties file:

handl er "foo" only receives certain events
gg. handl er. one. t ype=j ms

gg. handl er. one. f or mat =nyt enpl ate. vm

gg. handl er. one. filter=com nyconpany. M/Fi | t er

To activate the filter, you write the filter and set it on the handler; no additional logic
needs to be added to specific handlers.

You can write a custom filter by implementing the
oracl e. gol dengat e. dat asour ce. DsEvent Fi | t eri nt er f ace filter, which
contains filter contracts as in the following example:

package com nyconpany;

i mport oracl e. gol dengat e. dat asour ce. DsConfi gurati on;
i mport oracl e. gol dengat e. dat asour ce. DsEvent Fi | ter;

Developing Custom Filters, Formatters, and Handlers 16-1

Custom Formatting

i mport oracl e. gol dengat e. dat asour ce. DsCper ati on;

i mport oracl e. gol dengat e. dat asour ce. DsTransact i on;

i mport oracl e. gol dengat e. dat asour ce. net a. DsMet aDat a;

i mport oracl e. gol dengat e. dat asour ce. net a. Tabl eMet aDat a;

public class MyFilter inplements DsEventFilter {
@wverride public void init(DsConfiguration conf) {
}

@verride public void destroy() {
1

@verride public bool ean doProcess(DsTransaction tx, DsMetaData netaData) {return
true// transactionBegin(), transactionCommit(), transactionRollback() will be
al | oved. }

@verride public bool ean doProcess(DsOperation op, DsMetaData netaData) {return
true// operationAdded() will be allowed.}

@wverride public bool ean doProcess(Tabl eMetaData thl, DsMetaData meta) {return
true// netaDataChanged() will be allowed.}

}

16.2 Custom Formatting

You can customize the output format of a built-in handler by:
¢ Writing a custom formatter in Java or

* Using a Velocity template

16.2.1 Using a Velocity Template

As an alternative to writing Java code for custom formatting, Velocity templates can
be a good alternative to quickly prototype formatters. For example, the following
template could be specified as the format of a JMS or file handler:

Transaction: numOps='$tx.size' ts=' $tx.tinestanp'
#for each($op in $tx)

operation: $op.sql Type, on table "$op.tabl eName"
#for each($col in $op)

$op. t abl eNane, $col . neta. col umNane = $col . val ue
#end

#end

If the template were named sample.vm, it could be placed in the classpath, for
example:

gg_install _dir/dirprm sanple.vm

Note:

If using Velocity templates, the file name must end with the suffix .vm;
otherwise the formatter is presumed to be a Java class.

Update the Java application properties file to use the template:

set properties on 'one'
gg. handl er. one. type=file

16-2 Administering Oracle GoldenGate Application Adapters

Custom Formatting

gg. handl er. one. f or mat =sanpl e. vm
gg. handl er. one. fi | e=out put . xm

When modifying templates, there is no need to recompile any Java source; simply save
the template and re-run the Java application. When the application is run, the
following output would be generated (assuming a table named SCHEMA. SOVETABLE,
with columns TESTCOLA and TESTCCLB):

Transaction: nunOps='3" ts='2008-12-31 12: 34:56. 000
operation: UPDATE, on table "SCHEMA SOVETABLE":
SCHEMA. SOVETABLE, TESTCOLA = val ue 123

SCHEMA. SOMETABLE, TESTCOLB = val ue abc

operation: UPDATE, on table "SCHEMA SOVETABLE":
SCHEMA. SOVETABLE, TESTCOLA = val ue 456

SCHEMA. SOMETABLE, TESTCOLB = val ue def

operation: UPDATE, on table "SCHEMA SOVETABLE":
SCHEMA. SOVETABLE, TESTCOLA = val ue 789

SCHEMA. SOVETABLE, TESTCOLB = val ue ghi

16.2.2 Coding a Custom Formatter in Java

The preceding examples show a JMS handler and a file output handler using the same
formatter (com myconpany. MyFor nat t er). The following is an example of how this
formatter may be implemented.

Example 16-1 Custom Formatting Implementation

package com myconpany. M/For matter;

i mport oracl e. gol dengat e. dat asour ce. DsCper ati on;

i mport oracl e. gol dengat e. dat asour ce. DsTransact i on;

i mport oracl e. gol dengat e. dat asour ce. f or mat . DsFor mat t er Adapt er;
i mport oracl e. gol dengat e. dat asour ce. net a. Col umMet aDat a;

i mport oracl e. gol dengat e. dat asour ce. net a. DsMet aDat a;

i mport oracl e. gol dengat e. dat asour ce. net a. Tabl eMet aDat a;

inport java.io.PrintWiter;

public class M/Formatter extends DsFormatterAdapter {

public M/Formatter() { }
@verride

public void format Tx(DsTransaction tx,

DsMet aDat a net a,
PrintWiter out)

{

out.print("Transaction: ");
out.print("numOps=\"" + tx.getSize() +"\' ");
out.println("ts=\"" + tx.getStart TxTi meAsString() + "\'");
for(DsOperation op: tx.getQOperations()) {

Tabl eName currTabl e = op. get Tabl eNane() ;

Tabl eMet aData t Meta = dbMet a. get Tabl eMet aDat a(curr Tabl e) ;

String opType = op.get OperationType().toString();

String table = tMeta. get Tabl eNanme(). get Ful | Nane();

out.println(opType + " on table \"" + table + "\":");

int col Num= 0;

for(DsCol um col : op. get Col ums())

{

Col utmMet aData cMeta = t Met a. get Col unmiet aDat a(col Num++) ;
out. println(

Developing Custom Filters, Formatters, and Handlers 16-3

Custom Formatting

chMeta. get Col umNanme() + " =" + col.getAfterValue());
}

}

@verride

public void format Qp(DsTransaction tx,

DsQperation op,
Tabl eMet aDat a t Met a,
PrintWiter out)

{

/1 not used...

}

The formatter defines methods for either formatting complete transactions (after they
are committed) or individual operations (as they are received, before the commit). If
the formatter is in operation mode, then f or mat Qp(...) is called; otherwise,

f or mat Tx(...) is called at transaction commit.

To compile and use this custom formatter, include the Oracle GoldenGate for Java
JARs in the classpath and place the compiled . cl ass filesingg_i nstal | _dir /
dirprm

javac -d gg_install _dir/dirprm
-classpath ggjaval/ ggj ava.jar MyFormatter.java

The resulting class files are located in r esour ces/ cl asses (in correct package
structure):

gg_instal |l _dir/dirprm com nyconpany/ MyFor mat ter. cl ass

Alternatively, the custom classes can be put into a JAR; in this case, either include the
JAR file in the JVM classpath using the user exit properties (using j ava. cl ass. pat h
in the jvm boot opt i ons property), or by setting the Java application properties file
to include your custom JAR:

set properties on 'one'

gg. handl er. one. type=file

gg. handl er. one. f or mat =com nyconpany. MyFor mat t er

gg. handl er. one. fi | e=out put . xm

gg. cl asspath=/path/to/ny.jar,/path/to/directory/of/jars/*

16.2.3 Coding a Custom Handler in Java

A custom handler can be implemented by extending Abst r act Handl| er as in the
following example:

i mport oracl e. gol dengat e. dat asour ce. *;
inport static oracl e. gol dengat e. dat asour ce. GGat aSour ce. St at us;
public class Sanpl eHandl er extends AbstractHandl er {
@verride
public void init(DsConfiguration conf, DsMetaData netaData) {
super.init(conf, netaData);
[l ... do additional config...
}
@werride

16-4 Administering Oracle GoldenGate Application Adapters

Custom Formatting

public Status operationAdded(DsEvent e, DsTransaction tx, DsQperation op)

@wverride
public Status transactionCommit(DsEvent e, DsTransaction tx) { ... }

@wverride
public Status netaDataChanged(DsEvent e, DsMetaData neta) { }

@verride
public void destroy() { /* ... do cleanup ... */ }

@verride
public String reportStatus() { return "status report..."; }

@verride
public Status ddl Qperation(Type opType, Chject Type object Type, String
obj ect Name, String ddl Text) }

The method in Abst r act Handl er is not abstract rather it has a body. In the body it
performs cached metadata invalidation by marking the metadata object as dirty. It also
provides TRACE-level logging of DDL events when the ddl Oper at i on method is
specified. You can override this method in your custom handler implementations. You
should always call the super method before any custom handling to ensure the
functionality in Abst r act Handl er is executed

When a transaction is processed from the Extract, the order of calls into the handler is
as follows:

1. Initialization:
e First, the handler is constructed.

* Next, all the "setters" are called on the instance with values from the property
file.

¢ Finally, the handler is initialized; the i ni t (. . .) method is called before any
transactions are received. It is important that the i ni t (. . .) method call
super.init(...) toproperly initialize the base class.

2. Metadata is thenreceived. If the user exit is processing an operation on a table not
yet seen during this run, a metadata event is fired, and the
met adat aChanged(. . .) method is called. Typically, there is no need to
implement this method. The DsMet aDat a is automatically updated with new
data source metadata as it is received.

3. A transaction is started. A transaction event is fired, causing the
transacti onBegi n(...) method on the handler to be invoked (this is not
shown). This is typically not used, since the transaction has zero operations at this
point.

4. Operations are added to the transaction, one after another. This causes the
oper at i onAdded(. . .) method to be called on the handler for each operation
added. The containing transaction is also passed into the method, along with the
data source metadata that contains all processed table metadata. The transaction
has not yet been committed, and could be aborted before the commit is received.

Each operation contains the column values from the transaction (possibly just the
changed values when Extract is processing with compressed updates.) The
column values may contain both before and after values.

For the ddI Oper at i on method, the options are:

e opType - Is an enumeration that identifies the DDL operation type that is
occurring (CREATE, ALTER, and so on).

Developing Custom Filters, Formatters, and Handlers 16-5

Custom Formatting

* obj ect Type - Is an enumeration that identifies the type of the target of the
DDL (TABLE, VI EW and so on).

* obj ect Nane - Is the fully qualified source object name; typically a fully
qualified table name.

e ddl Text -Isthe raw DDL text executed on the source relational database.

5. The transaction is committed. This causes the transacti onCommit(...)
method to be called.

6. Periodically, r eport St at us may be called; it is also called at process shutdown.
Typically, this displays the statistics from processing (the number of operations
andtransactions processed and other details).

An example of a simple printer handler, which just prints out very basic event
information for transactions, operations and metadata follows. The handler also has a
property myout put for setting the output file name; this can be set in the Java
application properties file as follows:

gg. handl erl i st =sanpl e

set properties on 'sanple'

gg. handl er. sanpl e. t ype=sanpl e. Sanpl eHandl er
gg. handl er. sanpl e. nyout put =out . t xt

To use the custom handler,
1. Commpile the class
2. Include the class in the application classpath,

3. Add the handler to the list of active handlers in the Java application properties
file.

To compile the handler, include the Oracle GoldenGate for Java JARs in the classpath
and place the compiled . cl ass filesingg_i nstal | _di r /j avaue/ r esour ces/
cl asses:

javac -d gg_install _dir/dirprm
-classpath ggj aval/ ggj ava.jar Sanpl eHandl er.java

The resulting class files would be located in r esour ces/ cl asses, in correct package
structure, such as:

gg_instal | _dir/dirprn sanpl e/ Sanpl eHandl er. cl ass

Note:

For any Java application development beyond hello world examples, either Ant
or Maven would be used to compile, test and package the application. The
examples showing j avac are for illustration purposes only.

Alternatively, custom classes can be put into a JAR and included in the classpath.
Either include the custom JAR file(s) in the JVM classpath using the user exit
properties (using j ava. cl ass. pat h in the j vm boot opt i ons property), or by
setting the Java application properties file to include your custom JAR:

set properties on 'one'
gg. handl er. one. t ype=sanpl e. Sanpl eHandl er

16-6 Administering Oracle GoldenGate Application Adapters

Custom Formatting

gg. handl er. one. myout put =out . t xt
gg. cl asspath=/path/to/ny.jar,/path/to/directory/of/jars/*

The classpath property can be set on any handler to include additional individual
JARSs, a directory (which would contain resources or extracted class files) or a whole
directory of JARs. To include a whole directory of JARs, use the Java 6 style syntax:

c:/path/to/directory/* (or on UNIX: /path/to/directory/*)

Only the wildcard * can be specified; a file pattern cannot be used. This automatically
matches all files in the directory ending with the . j ar suffix. To include multiple
JARs or multiple directories, you can use the system-specific path separator (on UNIX,
the colon and on Windows the semicolon) or you can use platform-independent
commas, as shown in the preceding example.

If the handler requires many properties to be set, just include the property in the
parameter file, and your handler's corresponding "setter" will be called. For example:

gg. handl er. one. t ype=com myconpany. MyHandl er
gg. handl er. one. myQut put =out . t xt
gg. handl er. one. myCust onPr oper t y=12345

The preceding example would invoke the following methods in the custom handler:
public void setMQutput(String s) {

/'l use the string...
} public void set MyCustonProperty(int j) {

/] use the int...

}

Any standard Java type may be used, such as int, long, String, boolean. For custom
types, you may create a custom property editor to convert the String to your custom

type.
16.2.4 Coding a Custom Formatter for Java Delivery

You can develop a custom formatter for use with Java Delivery. The following
Exanpl eFor nat t er . j ava example demonstrates how to:

® access and output metadata,
® access and output the column data values of the operation, and

® ascertain if the operation is a insert, update, delete, or primary key update.

Example 16-2 Custom Formatter for Java Delivery

/*

*

* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
*

*|
package oracl e. gol dengat e. dat asour ce. f or mat ;

//Loggi ng inports

i mport org.slf4j.Logger;
i mport org.slf4j.LoggerFactory;

Developing Custom Filters, Formatters, and Handlers 16-7

Custom Formatting

inport java.io.PrintWiter;

i mport oracl e. gol dengat e. dat asour ce. DsCol umm;

i mport oracl e. gol dengat e. dat asour ce. DsConfi gurati on;

i mport oracl e. gol dengat e. dat asour ce. DsCper ati on;

i mport oracl e. gol dengat e. dat asour ce. DsToken;

i mport oracl e. gol dengat e. dat asour ce. DsTransact i on;

i mport oracl e. gol dengat e. dat asour ce. TxCpMode;

i mport oracl e. gol dengat e. dat asour ce. net a. Col umMet aDat a;
i mport oracl e. gol dengat e. dat asour ce. net a. DsMet aDat a;

i mport oracl e. gol dengat e. dat asour ce. net a. Tabl eMet aDat a;
i mport oracl e. gol dengat e. dat asour ce. net a. Tabl eNang;
import oracle.gol dengate.util.CDatalkil;

*

/
This class provides an exanple for Oracle Col denGate Java Adapter customers

to wite their own customformatter which can be plugged into the Java file
writer or Java JMS handl er.

This exanple does NOT work with the new Big Data integrations such as HDFS, Kafka,
or Flune as formatter interface for those has been changed.

This formatter formats data in CSV format, by default. The field and line
delimters are configurable with the default as a conma and a line feed
respectively.

The goal is to provide an exanple customformatter for custoners wishing

to develop a customformatter, to see how it works. The functionality

can be extended and/or altered as needed to fulfill the specific needs of

the custoner.

User configures the use of this formatter by setting the follow configuration
inthe Oracle Col denGate Java Adapter properties file.

gg. handl er. name. f or mat =or acl e. gol dengat e. dat asour ce. f or mat . Exanpl eFor mat t er

@ut hor Tom Canpbel |

@nmai | thomas. canpbel | @r acl e. com

I A . R

—

public class Exanpl eFormatter extends DsFormatter Adapt er{
private static final Logger
| ogger =Logger Fact ory. get Logger (Exanpl eFormatter. cl ass);

[/ The field delinmter defaults to a comm

private String fieldDelimter =",";

[/ The line delinmter defaults to the |ine separator
private String lineDeliniter = SystemlineSeparator();

/**
* Default Constructor
*/
public Exanpl eFormatter() {
super (TxCpMbde. op) ;
/11 MPLEMENTERS - Add constructor inplenentation code bel ow
}

/**
* Constructor with operation node argunent.
* @aram node Mbde of operation Transaction (tx) or QOperation (op)
*|
publi c Exanpl eFormatter (TxCpMde node) {
super (node) ;
/11 MPLEMENTERS - Add constructor inplenentation code bel ow
}

/**

* Setter nethod to set the field delinmter. User can configure

16-8 Administering Oracle GoldenGate Application Adapters

Custom Formatting

* generic setters on the formatter than are configured in the Oracle

* Gol denGate Java Adapter properties file as follows:

* gg. handl er. name. format. fiel dDel i mter=sonmeval ue

* The user is free to generate any setter nethods for the formatter. The

* configuration initialization code uses Java reflection to find and invoke

* the corresponding setter nmethod. |f the nethod is not found an exception

* will be thrown and the Oracle Gol denGate process will ABEND.

* @aramfd The field deliniter value

*/

void setFieldDelinmiter(String fd){
[/ The CDataltil.unwapCData allows the user to configure values that
/lare considered to be whitespace. Exanples are spaces, tabs, carriage
[lreturns, line feeds, etc. To configure white space use the CDATA[] wrapper
/1as follows.
/1gg. handl er. nane. format. fiel dDel i m t er =CDATA[sormeval ue]
[/ The configuration value will be "someval ue".
[/ The CDATA[] functionality is needed to preserve whitespace because the
/1 default behavior of the GG config code is to trimwhitespace.
fieldDelimter = CDataUtil.unw apCData(fd);

}
/

* %

* Setter nethod to set the line delinmter. User can configure

* generic setters on the formatter than are configured in the Oracle

* Gol denGate Java Adapter properties file as follows:

* gg. handl er. name. format. | ineDeliniter=sonmeval ue

* The user is free to generate any setter nethods for the formatter. The

* configuration initialization code uses Java reflection to find and invoke
* the corresponding setter nmethod. |f the nethod is not found an exception
* will be thrown and the Oracle Gol denGate process will ABEND.

* @aramfd The field deliniter value

*/

voi d setLineDelimter(String Id){

[/ The CDataltil.unwapCData allows the user to configure values that
[lare considered to be whitespace. Exanples are spaces, tabs, carriage
[lreturns, line feeds, etc. To configure whitespace use the CDATA[] wrapper
/1as follows.

/1gg. handl er. nane. format. fiel dDel i mi t er =CDATA[\ n]

[/ The configuration value will be a line feed.

[/ The CDATA[] functionality is needed to preserve whitespace because the
//default behavior of the GG config code is to trimwhitespace.
lineDelimter = CDataltil.unwapCData(ld);

}

/**
* Initialization nethod. This is called once after all of the setter
* methods are called to set the explicit configuration nethods of the
* formatter.
* @aram conf data source configuration info fromproperties file
* @aramneta netadata fromdata source, describing colums/tables, etc
*|
@verride
public void init(DsConfiguration conf, DsMetaData neta) {
//Call the base class first.
super.init(conf, neta);
/11 MPLEMENTERS - Add initialization code bel ow
I ogger.info("Initializing the exanple formatter.");
logger.info(" The field delimter is configured as [" + fieldDelinmter +

1.,
1.,

logger.info(" The line delinmiter is configured as [" + lineDelinmter +

Developing Custom Filters, Formatters, and Handlers 16-9

Custom Formatting

}

/**
* The format operation method. This is where the bulk of the formatting
* logic will reside.
* @aramtx The transaction object
* @aramop The operation object
* @aramtneta The tabl e netadata object
* @aramwiter The print witer object to which results should be witten
*/
@verride
public void format Op(DsTransaction tx, DsCperation op, TableMetaData tneta,
PrintWiter witer) {
| ogger.info("Mthod formatQp called...");
/11 MPLEMENTERS - Below is the call the exanple inplenentation
//coment out and insert custominplementation here.
i nternal Format Cperation(tx, op, tnmeta, witer);

}

@verride
public void format Tx(DsTransaction tx, DsMetaData dbneta, PrintWiter witer) {
| ogger.info("Mthod format Tx called...");
[/1n transaction node (i.e. gg.handl er.nanme. mode=tx) the handl er may
//be configured to call this nethod to format data at the end of the
[linto a single print witer. This is probably not the usual use case.
/1 Using replicat transaction grouping (see GROUPTRANSOPS replicat
configuration)
//the nunber of operations in a grouped transaction can be substantial.
/I Replicat GROUPTRANSOPS is set to 1000 by default neaning as many as
/11000 source transactions are getting grouped into a single target
//transaction.
for (DsQperation op : tx) {
Tabl eNarme currTabl e = op. get Tabl eNane() ;
Tabl eMet aDat a tnmeta = dbnet a. get Tabl eMet aDat a(curr Tabl e) ;
[/ Then call the internal formatting
i nternal Format Cperation(tx, op, tmeta, witer);

}

private void internal Format Qperation(DsTransaction tx, DsOperation op,
Tabl eMet aData tneta, PrintWiter witer) {
[/Use a string builder for performance.
StringBuilder sh = new StringBuilder();

/11 MPLEMENTERS - exanpl e code shown bel ow out puts commonly used dat a.
[/ Modify the code bel ow as need for the specific inplenmentation.

//Format the table name

f or mat Tabl eNane(op, sb);

/[Format the operation type.
format Operati onType(op, sh);

/I Format the operation timestanp.
format Qper ati onTi nest anp(op, sb);
[/ Format the position

format Position(op, sh);

[/ Add primary keys

format Pri maryKeys(tmeta, sb);

/| Format tokens

f or mat GGTokens(op, sh);

//Format the colum data
format Col umbat a(op, tneta, sh);

16-10 Administering Oracle GoldenGate Application Adapters

Custom Formatting

[/ Transfer the message to the print witer.
witer.print(sh.toString());
}

/**
* This method formats the table nane for output
* @aramop The operation object
* @aramsb The string builder object to append the data
*/
private voi d format Tabl eName(DsQperation op, StringBuilder sb){
sb. append(" Tabl eNane") ;
sb. append(fieldDelinmter);
[/ The original fully qualified table nane in the original case
sb. append(op. get Tabl eNane() . get Ori gi nal Name());
sb. append(fieldDeliniter);
}

/**
* Method to format the operation type data. Operation types are
* insert, update, delete, and primary key update.
* @aramop The operation object
* @aramsb The string builder object to append the data
*|
private void formatCperationType(DsOperation op, StringBuilder sb){
[/ Qutput the operation type
sb. append(" Operati onType");
sb. append(fieldDeliniter);
if (op.getQperationType().islnsert()){
sb. append("insert");
telse if (op.getQperationType().isDelete()){
sb. append("del ete");
telse if (op.getQperationType().isPkUpdate()){
[/ This is a special zied use case of update. The isUpdate() call also
[freturns true for primary key updates.
sb. append("pri marykeyupdat ") ;
telse if (op.getQperationType().isUpdate()){
sb. append("update");

sb. append(fieldDelimter);
}

/**
* Method to format the operation tinestanp. This is the transaction conmt
* time of the transaction that contains the operation. All operations
* within a transaction have the sane operation timestanp.
* @aramop The operation object
* @aramsbh The string builder object to append the data
*/
private void formatQperationTi mestanp(DsQperation op, StringBuilder sh){
sb. append(" Operati onTi nest anp”) ;
sb. append(fieldDelinmter);
sb. append(op. get Ti nest anpAsString());
sb. append(fieldDelinmter);
}

/**

* Method to format the position.

* The position is the concatentated trail file sequence nunber followed

* by the RBA nunber (offset in the trail file). The two together provide
* traceability of the operation back to source trail file.

Developing Custom Filters, Formatters, and Handlers 16-11

Custom Formatting

* @aramop The operation object
* @aram sbh The string builder object to append the data.
*|
private void formatPosition(DsCperation op, StringBuilder sb){
sb. append(" Position");
sb. append(fieldDelinter);
sb. append(op. get Position());
sb. append(fieldDeliniter);
}

/**
* Method to format the primary keys.
* @aramtneta The table netadata object.
* @aram sb The string builder object to append the data.
*/
private void formatPrimaryKeys(Tabl eMetaData tmeta, StringBuilder sb){
sb. append(" Pri maryKeys");
for(Col umMetaData cneta :tneta.getCol umMetaData()){
if (cneta.isKeyCol ()){
sb. append(fieldDeliniter);
sb. append(cnet a. get Ori gi nal Col umNane());

}

/**
* Method to format the Gol denGate token key/val ue pairs fromthe source
*trail file.
* @aramop The operation object.
* @aram sb The string builder object to append the data.
*/
private voi d formt GGTokens(DsQperation op, StringBuilder sb){
[/1f this is false there will not be any tokens
i f(op. getlncludeTokens()){
sb. append(fieldDelinmter);
sb. append(" GGTokens") ;
sb. append(fieldDelinter);
for(DsToken token : op.get Tokens().val ues()){
sb. append(t oken. get Key());
sb. append(fieldDelimter);
sb. append(t oken. get Val ue());
sb. append(fieldDelimter);

}
}
}
/**
* Method to output the colum value data. This data starts with the colum
* nane, "before", the before image value, "after, and the after imge val ue.
* This before and after colum val ues include special handling for missing
* and null values. Mssing values are output as "M SSING'. Null values are
* output as "NULL"
* @aramop The operation object.
* @aramtneta The tabl e netadata object
* @aram sh
*

—

private void format Col umbDat a(DsQperation op, TableMetaData tmeta, StringBuil der
sh){
int clndex = 0;
sb. append(fieldDeliniter);
sb. append(" Tabl eData");

16-12 Administering Oracle GoldenGate Application Adapters

Custom Formatting

for(DsCol um col : op.getColums()) {

changed.

configured

changed.

//Get the colum netadata

Col utmMet aDat a cneta = tneta. get Col unmMet aDat a(¢l ndex++) ;
[/ Qutput the colum nane

sb. append(fieldDelinter);

sb. append(cnet a. get Ori gi nal Col umNane());

sb. append(fieldDelinter);

[/ Qutput the before val ue

//1nsert operations have no before val ues

/1 Del ete operations generally only have col um val ues for primary
//keys and not the conplete row.

//Updates will have all colum values if NOCOMPRESSUPDATES is configured
/lelse updates will have only primary keys and the col um val ues that

sb. append("Before");
sb. append(fieldDeliniter);
if (col.getBefore() == null){
[/ The before image value is missing for the col um.
sb. append("M SSING') ;
telse if(col.getBefore().isValueNull()){
sh. append(" NULL");
}el se{
sh. append(col . get Before(). get Val ue());

sb. append(fieldDeliniter);

[/ Qutput the after value

/l1nsert operations have after val ues

/1 Del ete operations have no after val ues

[/ Updat e operations will have all colum values if NOCOWPRESSUPDATES is

/lelse updates will have only primary keys and the col um val ues that

sh. append("After");
sb. append(fieldDelinmter);
if (col.getAfter() == null){
/I The before imge value is missing for the col um.
sb. append("M SSING');
telse if(col.getAfter().isValueNull()){
sh. append(" NULL");
}el se{
sb. append(col . get After().getVal ue());
}

//Add the line delimter at the end
sb. append(lineDeliniter);

Note:

This example does not work with Oracle GoldenGate for Big Data handlers.

This type of custom formatter works well with the JMS and the Java File Writer
handlers. Once processed, this outputs operation data in a CSV format. Operation
metadata is output first, and then the column data including before and after change
column image data. The field and line delimiters are configurable.

Developing Custom Filters, Formatters, and Handlers 16-13

Additional Resources

Tip:

You can obtain a copy of the maven project that you import to your Java IDE
by contacting Oracle Support.

16.3 Additional Resources

There is Javadoc available for the Java API. The Javadoc has been intentionally
reduced to a set of core packages, classes and interfaces in order to only distribute the
relevant interfaces and classes useful for customizing and extension.

In each package, some classes have been intentionally omitted for clarity. The
important classes are:

or acl e. gol dengat e. dat asour ce. DsTr ansact i on: represents a database
transaction. A transaction contains zero or more operations.

or acl e. gol dengat e. dat asour ce. DsOper at i on: represents a database
operation (insert, update, delete). An operation contains zero or more column
values representing the data-change event. Columns indexes are offset by zero in
the Java APL

or acl e. gol dengat e. dat asour ce. DsCol umm: represents a column value. A
column value is a composite of a before and an after value. A column value may be
‘present’ (having a value or be null) or 'missing’ (is not included in the source trail).

- oracl e. gol dengat e. dat asour ce. DsCol utmmConposi t e is the composite

— oracl e. gol dengat e. dat asour ce. DsCol unmBef or eVal ue is the column
value before the operation (this is optional, and may not be included in the
operation)

— oracl e. gol dengat e. dat asour ce. DsCol utmAf t er Val ue is the value
after the operation

or acl e. gol dengat e. dat asour ce. net a. DsMet aDat a: represents all database
metadata seen; initially, the object is empty. DsMet aDat a contains a hash map of
zero or more instances of Tabl eMet aDat a, using the Tabl eNane as a key.

or acl e. gol dengat e. dat asour ce. net a. Tabl eMet aDat a: represents all
metadata for a single table; contains zero or more Col unmMet aDat a.

oracl e. gol dengat e. dat asour ce. net a. Col unmMet aDat a: contains column
names and data types, as defined in the database or in the Oracle GoldenGate
source definitions file.

See the Javadoc for additional details.

16-14 Administering Oracle GoldenGate Application Adapters

Part V

Troubleshooting the Oracle GoldenGate
Adapters

This part of the book provides information on troubleshooting problems with the
Oracle GoldenGate Adapters.

Part I contains the following chapters:
¢ Troubleshooting the Flat File Adapter.

¢ Troubleshooting the Java Adapters.

17

Troubleshooting the Flat File Adapter

This chapter outlines steps you can take to solve problems with Oracle GoldenGate
Adaptors for Flat Files. It lists the error checks to perform. If you do not succeed in
identifying the problem, submit a support ticket or contact Oracle Support.

This chapter includes the following sections:

¢ Checking Oracle GoldenGate

Checking the Configuration

Checking the Log File

Contacting Oracle Support

17.1 Checking Oracle GoldenGate

Before checking for specific issues related to the Oracle GoldenGate for Flat File,
ensure that Oracle GoldenGate is configured correctly and any standard Oracle
GoldenGate errors have been resolved. For further information, see the Oracle
GoldenGate Troubleshooting and Performance Tuning Guide.

17.2 Checking the Configuration

Check the following:

¢ Is the shared library (.so or .dll) in the Extract parameter file correct? Is it specified
in the path and accessible?

¢ [s the correct SOURCEDEFS file specified in the Extract parameter file? Is it in the
specified path and accessible?

* Does the SOURCEDEFS file contain all the necessary tables?

e Isthe ffwiter.properties user exit properties file in the Oracle GoldenGate
install directory, or does it have the correct name and path specified in the
GG_USEREXI T_PROPFI LE environment variable?

* Do the output directories specified in the user exit properties file exist?

¢ Are file permissions correct to write to that directory?

17.3 Checking the Log File

Check the log file (| ognane_yyyynmdd. | 0g). By default this file will be in the
di rr pt subdirectory.

Troubleshooting the Flat File Adapter 17-1

Contacting Oracle Support

* Does the user exit properties file parse successfully? Are any invalid properties
mentioned in the log file?

* Are any other errors or warnings in the log?

17.4 Contacting Oracle Support
If the problem is still not resolved:
* Setlog.level=DEBUG

* Restart and save the log file

Before contacting Oracle Support, be prepared to send the log file, source trail file,
source definitions file, user exit properties file, and Extract parameter file, together
with any data files that have been written.

17-2 Administering Oracle GoldenGate Application Adapters

18

Troubleshooting the Java Adapters

This chapter outlines steps you can take to solve problems with Oracle GoldenGate
Adaptors for Java. It lists the error checks you should perform. If you do not succeed
in identifying the problem, submit a support ticket or contact Oracle Support.

This chapter includes the following sections:
e Checking for Errors
® Recovering after an Abend

® Reporting Issues

18.1 Checking for Errors

There are two types of errors that can occur in the operation of Oracle GoldenGate for
Java:

* The Replicat or Extract process running the Java Adapter user-exit abends
¢ The Extract process running VAM abends.

* The process runs successfully, but the data is incorrect or nonexistent

If the Extract process does not start or abends, check the error messages in order from
the beginning of processing through to the end:

1. Check the Oracle GoldenGate event log for errors, and then view the Replicat or
Extract report:

GGSCl > VI EW GGSEVT
GGSCl > VI EW REPORT {extract_or_replicat_nane}

2. Check the applicable log file.

For the user exit:

* Look at the last messages reported in the log file for the user exit library. The file
name is the log file prefix (| 0g. | ognane) set in the property file and the
current date.

shel | > more {log. | ognane}_{yyyymmud}. | og

Note:

This is only the log file for the shared library and not the Java application. It is
only created for the Extract user-exit; it is not created for the Replicat user-exit.

Troubleshooting the Java Adapters 18-1

Recovering after an Abend

3. If the user exit or VAM was able to launch the Java runtime, then a log4j log file
will exist.

The name of the log file is defined in your log4j.properties file. By default, the log
file name is ggj ava- ver si on- 1 0g4j . | og, where version is the version number
of the jar file being used. For example:

shel | > more ggj ava-*l og4j .1 og
To set a more detailed level of logging for the Java application, either:

¢ Edit the current log4j properties file to log at a more verbose level or

* Re-use one of the existing log4j configurations by editing properties file:

j vm boot opt i ons=- [j ava. cl ass. pat h=ggj ava/ ggj ava. j ar
- Dl og4j . configuration=debug- | og4j . properties —-Xm512m

These pre-configured log4j property files are found in the class path, and are
installed in:

.1 ggj aval resour ces/ cl asses/ *1 og4j . properties

4. If one of these log files does not reveal the source of the problem, run the Extract
process directly from the shell (outside of GGSCI) so that st der r and st dout can
more easily be monitored and environmental variables can be verified. For
example:

shel | > EXTRACT PARAMFI LE dirprntjavaue. prm
If the process runs successfully, but the data is incorrect or nonexistent, check for
errors in any custom filter, formatter or handler you have written for the user exit.

To restart the user exit Extract from the beginning of a trail, see Restarting the
Application at the Beginning of a Trail.

18.2 Recovering after an Abend

The Extract parameter RECOVERYOPTI ONS defaults to APPENDMODE for release 10 and
later trails. In append mode, Extract writes a recovery marker to the trail when it
abends. When the Extract restarts and encounters the recovery marker, it requests a
rollback of the incomplete transaction if local transactions are enabled. If local
transactions are not enabled, a warning message is issued. Local transactions are
enabled unless the property gg. handl er. { nane} . | ocal TXis explicitly set to

fal se.

18.3 Reporting Issues

If you have a support account for Oracle GoldenGate, submit a support ticket. Please
include:

® QOperating system and Java versions
The version of the Java Runtime Environment can be displayed by:

$ java -version
¢ Configuration files:

— Parameter file for the Extract running the user exit

18-2 Administering Oracle GoldenGate Application Adapters

Reporting Issues

— All properties files used, including any JMS or JNDI properties files
— Velocity templates for the user exit
* Logfiles:

In the Oracle GoldenGate install directory, all . | og files: the Java log4j log files
and the user exit or VAM log file.

Troubleshooting the Java Adapters 18-3

Reporting Issues

18-4 Administering Oracle GoldenGate Application Adapters

Part VI

Appendix

The appendix provides information on targeted uses of the Oracle GoldenGate
Adapters and lists samples that are available with the installation.

Part VI contains the following appendices:

e Adapter Examples

A

Adapter Examples

This appendix lists the examples that are included with the Oracle GoldenGate
Adapter installation and explains examples for some use cases.

This appendix includes the following sections:
e List of Included Examples

¢ Configuring Logging

A.1 List of Included Examples

The following examples are located in the Adapt er sExanpl es subdirectory of the
installation location.

Flat File Writer

¢ Using the Oracle GoldenGate Flat File Adapter to convert Oracle GoldenGate trail
data to text files.

Message Delivery

¢ Using the Oracle GoldenGate Java Adapter to send JMS messages with a custom
message format.

* Using the Oracle GoldenGate Java Adapter to send JMS messages with custom
message header properties.

Message Capture

* Using the Oracle GoldenGate Java Adapter to process JMS messages, creating an
Oracle GoldenGate trail.

Java User Exit API

¢ Using the Oracle GoldenGate Java Adapter API to write a custom event handler.

A.2 Configuring Logging

This example explains how to configure logging for release 11.2.1 or later Oracle
GoldenGate Adapters user exits. The first section configures a typical Extract pump,
which triggers the logging defaults. The second section explains how to customize the
logging implementation.

A.2.1 Example Oracle GoldenGate Java User Exit Defaults

The following Oracle GoldenGate Java user exit Extract example configuration triggers
the logging defaults.

Adapter Examples A-1

Configuring Logging

Extract Parameter File

EXTRACT j ns1

SOURCEDEFS di r def/ aa. def

CUSEREXI T |i bggj ava_ue. so CUSEREXI T PASSTHRU | NCLUDEUPDATEBEFORES
CGETUPDATEBEFORES

TABLE GG *;

Properties file

The associated property file is named for the Extract group, j ms1. properti es. All
JNI properties have default values and thus do not need to be specified, so this is a
complete properties file.

gg. handl erlist=ny_jns

gg. handl er. ny_j ns. t ype=j ms

gg. handl er. ny_j ns. desti nati on=dynam cQueues/t est QL
gg. handl er. ny_j ns. f or mat =xm 2

gg. handl er. ny_j ns. node=op

gg. handl er. ny_j ms. connect i onFact or y=Connect i onFact ory

gg.j ava. nam ng. provider.url =tcp://1 ocal host: 61616
gg.java.nam ng.factory.initial =org. apache. activeng.jndi.ActiveMJ nitial ContextFactory
gg. cl asspat h=/ opt/activeny/activermg-all.jar

The Resulting Log File
The log file will be created when you add and start the Extract in GGSCI, For example:

ggsci > ADD EXTRACT jmsl, EXTRAI LSOURCE dirdat/aa
ggsci> START MGR
ggsci > START EXTRACT jnsl

The log file is written to the same directory as the report file. It is named for the
Extract group. For Example:

$1s -1 dirrpt/

total 48

Srwrwrw 1 1685 Apr 16 20:38 MR rpt

-rwrwrw 1 1685 Apr 16 20:38 jnsl.rpt

Srwrwrw 1 21705 Apr 19 13:59 jnsl_info_0.10g.0
Srwrwrw 10 Apr 19 13:58 jnmsl_info_0.l0g.0.1ck

A.2.2 Customizing Logging

This example describes how to customize the logging for 11.2.1 and later Oracle
GoldenGate user exit adapters by using one of two methods:

* Use Java adapter user exit properties

gg.log={ jdk | logback | log4j }
gg.log.level={ info | debug | trace }
gg.l og. classpath={ classpath for |ogging }

If the log implementation property gg. | 0g is not set, the j dk option defaults. This
specifies thatj ava. uti | .| oggi ng (JUL) is used. The log level defaults to i nf o.
To customize this, you can set the gg. | 0g to either:

A-2 Administering Oracle GoldenGate Application Adapters

Configuring Logging

| 0g4j - This automatically configures the class path to include the Log4j and
appropriate sl f 4j -1 0g4j binding.

| ogback - To use the | ogback option, the logback jars must be manually
downloaded and copied into the install directory. The class path is still
automatically configured as long as the jars are copied into the predefined
location. See ggj ava/ r esour ces/ | i b/ opti onal / | ogback/ ReadMe-
| ogback. t xt for more information.

e Use JVM options

Instead of using default logging or setting logging properties, j vm boot opt i ons
can be used to define the logging. To do this, setj vm boot opt i ons to include the
system property that defines the configuration file by doing one of the following;:

Specify a log4j configuration file:

j vm boot opt i ons=-Di 0g4j . confi guration=my-10g4j . properties

This implicitly sets gg. | og to | 0g4j as the type of logging implementation
and appends sl f 4j - | 0g4j 12 binding to the class path.

Specify aj ava. uti |l .| oggi ng properties file or class:
jvm boot opti ons=-Dj ava. util .| ogging.config.file=ny-1o0gging. properties

This implicitly sets gg. | og=j dk, which specifics j ava. uti | . | oggi ng (JUL).
It appends sl f 4j - j dk14 binding to the class path.

First, download and copy | ogback- cor e-j ar and | ogback- cl assi c-j ar
into ggj ava/ resources/ | i b/ optional /| ogback. Then specify a logback
configuration file:

j vm boot opt i ons=- DI ogback. confi guati onFi | e=ny- | ogback. xm

This implicitly sets gg. | og=I ogback and appends | ogback- cl assi ¢ and
| ogback- cor e to the class path.

These are implicit settings of gg. | 0g and gg. | 0g. cl asspat h that will be
overridden by an explicit setting of either of these properties in the property file.
The logging class path will also be overridden by setting the JVM class path to
include specific jars, such as:

jvm boot opti ons=...-Djava. cl ass. pat h=nypat h/ nyl.jar: nypat h2/ny2.jar...

Note:

Setting the JVM class path to includespecific jars may cause duplicate,
possibly conflicting, impleentations in the class path.

Adapter Examples A-3

Configuring Logging

A-4 Administering Oracle GoldenGate Application Adapters

A

ActiveMQ, 14-2
aq, 14-2

B

boot options

VM, 11-2, 15-3

C

column data
fixed width parsing, 10-3
comma-separated values, 15-7
comments
to identify key columns, 10-7
to specify date format, 10-6
configuration options, 3-3
configure
event handlers, 14-1
Java handlers, 12-3
JRE, 12-1
VAM Extract, 9-1
connection factory, 15-12
control files, 6-1
copybook
definition for fixed width parsing, 10-4
for source and target definitions, 10-2
CSV format, 15-7
CUSEREXIT, 12-2
custom formatters, 14-1
custom Java code, 3-4

D

data content properties, 8-9
data definitions
how to specify, 10-2
data files, 5-4
delimited message
basis for parsing, 10-7
format, 10-7

Index

delimited message (continued)
metadata columns, 10-7
parsing properties, 11-9
parsing rules, 10-8

Delimiter Separated Values, 5-4, §-4

Djava.class.path, 15-3

dil, 3-3

DSV, 5-4, 8-4

DSV specific properties, 8-15

dynamically linked library, 3-3

E

error handling, 6-2

errors, 18-1

ETL tools, 1-2

event filters, 14-1

event handlers
configuring, 14-1

Extract
adding the VAM Extract, 9-1
configuring for the VAM, 9-1
parameters for the VAM, 9-1

Extract parameters, 5-2

F

ffwriter.prm, 5-2

file handler, 14-3

file rollover properties, 8-7

file writer
properties, 15-9

filewriter handler, 14-1

fixed width message
basis for parsing, 10-4
defining the header, 10-5
header and record data translation, 10-6
key identification, 10-7
parsing properties, 11-5
table name, 10-5
timestamp formats, 10-6

fixed-format, 15-7

flat file integration, 1-2

Index-1

formatters
custom, 14-1
formatting, 14-3, 15-5

G

Gendef utility, 10-2, 10-16
general properties
Java framework, 15-14
user exit, 15-2

H

handler
event, 14-1
file, 14-3
filewriter, 14-1
JMS, 14-2
properties, 15-4
handlers
configuring, 14-1
header

defining for fixed width message, 10-5

installing, 8-1, 9-1
issues
reporting, 18-2

J

Java API, 1-2
Java application
properties, 15-4
Java code, 16-2
Java handlers
configure, 12-3
Java integration, 1-2
Java User Exit
installing, 9-1
running, 13-1
java.class.path, 12-1
JBoss, 14-2
jms, 14-2
JMS
connecting to, 9-2
properties, 11-2
JMS handler
properties, 15-10
JMS handler types
aq, 14-2
jms, 14-2
JMS messages
retrieving, 9-3
JMS provider, 14-2
JMS queue or topic, 15-11

Index-2

jms_map, 14-2
JNDI
properties, 11-4, 15-14
JRE
configure, 12-1
JVM boot options, 15-3

K

key identification
for fixth width messages, 10-7

L

LDV, 5-4, 8-4

LDV specific properties, 8-18
Length Delimited Values, 5-4, 8-4
log4j.configuration, 12-1

logging properties, 8-1, 11-1, 15-1

M

MapMessage, 14-1
message format, 3-4
metadata column properties, 8-11
metadata columns
delimited message, 10-7

o

operation type
for XML parsing, 10-10
mapping, 10-6

optype

specifying for fixed width parsing, 10-6

Oracle GoldenGate processes, 6-2
output, 14-3,15-5

output file properties, 8-5

output format properties, §-4

P
parameters
VAM Extract, 9-1
parser
required data, 10-2
role of, 10-1
types, 10-1
processes
Oracle GoldenGate, 6-2
properties

data content, 8-9

delimited message parsing, 11-9
DVS, 8-15

file rollover, 8-7

file writer, 15-9

fixed width message parsing, 11-5

properties (continued)
general, §-2
handlers, 15-4
Java application, 15-4
Java framework, 15-14
JMS handler, 15-10
JNDI, 11-4, 15-14
LDV, 8-18
logging, 8-1,11-1,15-1
metadata columns, §-11
output file, 8-5
output formats, §-4
User Exit, 11-1, 15-1
XML message parsing, 11-17
property file, 3-3

Q

queue, 15-11

R

reporting

issues, 18-2
running

Java User Exit, 13-1

S

sequence identifier, 10-1, 10-2
SETENV, 12-2
Solace, 14-2
source definitions file
generating, 10-2, 10-17
sourcedefs
type of fixed schema, 11-5
SOURCEDEFS parameter, 12-2
statistical summaries, 6-1

statistics, 8-19, 15-3

T

TABLE, 12-2

table name
defining for fixed width message, 10-5
for delimited parsing, 10-8
for XML parsing, 10-10

TextMessage, 14-1

TIBCO, 14-2
timestamp
formats for fixed width message, 10-6
topic, 15-11
TRANLOGOPTIONS
GETMETADATAFROMVAM option, 9-2
VAMCOMPATIBILITY option, 9-2
transaction
specifying boundary for, 10-4, 10-13
transaction identifier
for XML parsing, 10-13
transaction indicator, 10-1, 10-4, 10-7, 10-13
transaction name, 10-1, 10-4
transaction owner, 10-1, 10-4
troubleshooting, 18-1

U

User Exit
properties, 11-1, 15-1
running, 13-1

V

VAM parameter, 9-2
Velocity template, 3-4, 16-2

W

WebLogic, 14-2
writer, 5-4
writers

multiple, 8-2

X

XML, 3-4

XML message
basis for parsing, 10-9
column rules, 10-15
formatted in dynamic XML, 10-9
formatted in static XML, 10-9
operation rules, 10-14
parsing properties, 11-17
parsing rules, 10-10
supported XPath expressions, 10-11
transaction rules, 10-13

Index-3

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Understanding Oracle GoldenGate Application Adapters
	1 Understanding Oracle GoldenGate Adapters
	1.1 Oracle GoldenGate Application Adapters Overview
	1.1.1 Oracle GoldenGate Integration
	1.1.2 Oracle GoldenGate Application Adapter Integration Options
	1.1.2.1 Capturing Transactions to a Trail
	1.1.2.2 Applying Transactions from a Trail

	1.2 Using Oracle GoldenGate Application Adapters Properties
	1.2.1 Values in Property Files
	1.2.2 Location of Property Files
	1.2.3 Using Comments in the Property File
	1.2.4 Variables in Property Names

	1.3 Oracle GoldenGate Documentation

	2 Introducing the File Writer
	2.1 Overview of the Adapter for Flat Files
	2.2 Typical Configuration

	3 Introducing the Java Adapter
	3.1 Oracle GoldenGate VAM Message Capture
	3.1.1 Message Capture Configuration Options
	3.1.2 Typical Configuration

	3.2 Oracle GoldenGate Java User Exit
	3.2.1 Delivery Configuration Options

	3.3 Running with Extract
	3.3.1 Extract Configuration
	3.3.2 Adding the Extract Process
	3.3.3 Extract Grouping

	3.4 Running with Replicat
	3.4.1 Replicat Configuration
	3.4.2 Adding the Replicat Process
	3.4.3 Replicat Grouping
	3.4.4 Replicat Checkpointing
	3.4.5 Unsupported Replicat Features
	3.4.6 Mapping Functionality

	4 Configuring Logging
	Application Adapters Default Logging
	4.1.1 Default Implementation Type
	4.1.2 Default Message Logging
	4.1.2.1 Logging Problems
	4.1.2.2 Log File Name

	4.2 Changing the Default Logging
	4.2.1 Changing the Logging Type
	4.2.2 Changing the Logging Configuration
	4.2.3 Enabling Debug

	Part II Creating Flat Files
	5 Configuring the Flat File Adapter
	5.1 Configuring the Adapter for Writing Flat Files
	5.1.1 User Exit Extract Parameters
	5.1.2 User Exit Properties

	5.2 Recommended Data Integration Approach
	5.3 Producing Data Files

	6 Using the Flat File Adapter
	6.1 Working with Control Files
	6.2 Working with Statistical Summaries
	6.3 Managing Oracle GoldenGate processes
	6.4 Trail Recovery Mode
	6.5 Locating Error Messages

	7 Using Predefined Defaults and Formats
	7.1 Overview of Predefined Defaults and Formats
	7.1.1 Default Properties
	7.1.2 Specifying Consumer Formats

	7.2 Siebel Remote Format
	7.3 Ab Initio Format
	7.4 Netezza Format
	7.5 Greenplum Format
	7.6 Comma Delimited Format

	8 Flat File Properties
	8.1 User Exit Properties
	8.1.1 Logging Properties
	8.1.1.1 goldengate.log.logname
	8.1.1.2 goldengate.log.level
	8.1.1.3 goldengate.log.tostdout
	8.1.1.4 goldengate.log.tofile

	8.1.2 General Properties
	8.1.2.1 goldengate.flatfilewriter.writers
	8.1.2.2 goldengate.userexit.buffertxs
	8.1.2.3 goldengate.userexit.chkptprefix
	8.1.2.4 goldengate.userexit.chkpt.ontxend
	8.1.2.5 goldengate.userexit.datetime.removecolon
	8.1.2.6 goldengate.userexit.timestamp
	8.1.2.7 goldengate.userexit.datetime.maxlen
	8.1.2.8 goldengate.userexit.utf8mode

	8.2 File Writer Properties
	8.2.1 Output Format Properties
	8.2.1.1 writer.mode
	8.2.1.2 writer.groupcols

	8.2.2 Output File Properties
	8.2.2.1 writer.files.onepertable
	8.2.2.2 writer.files.oneperopcode
	8.2.2.3 writer.files.prefix
	8.2.2.4 writer.files.data.rootdir, writer.files.data.ext, writer.files.data.tmpext
	8.2.2.5 writer.files.control.use, writer.files.control.rootdir, writer.files.control.ext
	8.2.2.6 writer.files.control.delim.chars/code, writer.files.control.eof.chars/code
	8.2.2.7 writer.files.formatstring
	8.2.2.8 writer.files.data.bom.code
	8.2.2.9 writer.files.includeprocessname
	8.2.2.10 writer.files.useownerfiles

	8.2.3 File Rollover Properties
	8.2.3.1 writer.files.data.rollover.time
	8.2.3.2 writer.files.data.rollover.size
	8.2.3.3 writer.files.data.norecords.timeout
	8.2.3.4 writer.files.rolloveronshutdown
	8.2.3.5 writer.files.data.rollover.timetype
	8.2.3.6 writer.files.data.rollover.multiple
	8.2.3.7 writer.files.data.rollover.attime
	8.2.3.8 writer.writebuffer.size

	8.2.4 Data Content Properties
	8.2.4.1 writer.rawchars
	8.2.4.2 writer.includebefores
	8.2.4.3 writer.afterfirst
	8.2.4.4 writer.includecolnames
	8.2.4.5 writer.omitvalues
	8.2.4.6 writer.diffsonly
	8.2.4.7 writer.omitplaceholders
	8.2.4.8 Metadata Columns
	8.2.4.9 Valid Metadata Columns
	8.2.4.10 Using Metadata Columns
	8.2.4.11 writer.metacols
	8.2.4.12 writer.metacols.metacol_name.fixedlen
	8.2.4.13 writer.metacols.metacol_name.column
	8.2.4.14 writer.metacols.token_name.novalue.chars | writer.metacols.token_name.novalue.code
	8.2.4.15 writer.metacols.metacol_name.fixedjustify
	8.2.4.16 writer.metacols.metacol_name.fixedpadchar.chars | writer.metacols.metacol_name.fixedpadchar.code
	8.2.4.17 writer.metacols.opcode.insert.chars | writer.metacols.opcode.insert.code
	8.2.4.18 writer.metacols.opcode.update.chars | writer.metacols.opcode.update.code
	8.2.4.19 writer.metacols.opcode.delete.chars | writer.metacols.opcode.delete.code
	8.2.4.20 writer.metacols.opcode.updatepk.chars | writer.metacols.opcode.updatepk.code
	8.2.4.21 writer.metacols.txind.begin.chars | writer.metacols.txind.begin.code
	8.2.4.22 writer.metacols.txind.middle.chars | writer.metacols.txind.middle.code
	8.2.4.23 writer.metacols.txind.end.chars | writer.metacols.txind.end.code
	8.2.4.24 writer.metacols.txind.whole.chars | writer.metacols.txind.whole.code
	8.2.4.25 writer.metacols.position.format
	8.2.4.26 writer.metacols.colname.omit
	8.2.4.27 writer.begintx.metacols, writer.endtx.metacols

	8.2.5 DSV Specific Properties
	8.2.5.1 writer.dsv.nullindicator.chars | writer.dsv.nullindicator.code
	8.2.5.2 writer.dsv.fielddelim.chars | writer.dsv.fielddelim.code
	8.2.5.3 writer.dsv.linedelim.chars | writer.dsv.linedelim.code
	8.2.5.4 writer.dsv.quote.chars | writer.dsv.quote.code
	8.2.5.5 writer.dsv.quotes.policy
	8.2.5.6 writer.dsv.quotes.datatypes
	8.2.5.7 writer.dsv.nullindicator.escaped.chars | writer.dsv.nullindicator.escaped.code
	8.2.5.8 writer.dsv.fielddelim.escaped.chars | writer.dsv.fielddelim.escaped.code
	8.2.5.9 writer.dsv.linedelim.escaped.chars | writer.dsv.linedelim.escaped.code
	8.2.5.10 writer.dsv.quotes.escaped.chars | writer.dsv.quotes.escaped.code
	8.2.5.11 writer.dsv.onecolperline
	8.2.5.12 writer.dsv.quotealways

	8.2.6 LDV Specific Properties
	8.2.6.1 writer.ldv.vals.missing.chars | writer.ldv.vals.missing.code
	8.2.6.2 writer.ldv.vals.present.chars | writer.ldv.vals.present.code
	8.2.6.3 writer.ldv.vals.null.chars | writer.ldv.vals.null.code
	8.2.6.4 writer.ldv.lengths.record.mode,writer. ldv.lengths.field.mode
	8.2.6.5 writer.ldv.lengths.record.length, writer.ldv.lengths.field.length

	8.2.7 Statistics and Reporting
	8.2.7.1 writer.statistics.toreportfile
	8.2.7.2 writer.statistics.period
	8.2.7.3 writer.statistics.time
	8.2.7.4 writer.statistics.tosummaryfile
	8.2.7.5 writer.statistics.summary.fileformat
	8.2.7.6 writer.statistics.overall
	8.2.7.7 writer.statistics.summary.delimiter.chars/code, writer.statistics.summary.eol.chars/code
	8.2.7.8 writer.statistics.summary.extension

	Part III Capturing JMS Messages
	9 Configuring Message Capture
	9.1 Configuring the VAM Extract
	9.1.1 Adding the Extract
	9.1.2 Configuring the Extract Parameters
	9.1.3 Configuring Message Capture

	9.2 Connecting and Retrieving the Messages
	9.2.1 Connecting to JMS
	9.2.2 Retrieving Messages
	9.2.3 Completing the Transaction

	10 Parsing the Message
	10.1 Parsing Overview
	10.1.1 Parser Types
	10.1.2 Source and Target Data Definitions
	10.1.3 Required Data
	10.1.3.1 Transaction Identifier
	10.1.3.2 Sequence Identifier
	10.1.3.3 Timestamp
	10.1.3.4 Table Name
	10.1.3.5 Operation Type
	10.1.3.6 Column Data

	10.1.4 Optional Data
	10.1.4.1 Transaction Indicator
	10.1.4.2 Transaction Name
	10.1.4.3 Transaction Owner

	10.2 Fixed Width Parsing
	10.2.1 Header
	10.2.1.1 Specifying Compound Table Names
	10.2.1.2 Specifying timestamp Formats
	10.2.1.3 Specifying the Function

	10.2.2 Header and Record Data Type Translation
	10.2.3 Key identification

	10.3 Delimited parsing
	10.3.1 Metadata Columns
	10.3.2 Parsing Properties
	10.3.2.1 Properties to Describe Delimiters
	10.3.2.2 Properties to Describe Values
	10.3.2.3 Properties to Describe Date and Time

	10.3.3 Parsing Steps

	10.4 XML Parsing
	10.4.1 Styles of XML
	10.4.2 XML Parsing Rules
	10.4.3 XPath Expressions
	10.4.3.1 Supported Constructs:
	10.4.3.2 Supported Expressions
	10.4.3.3 Obtaining Data Values

	10.4.4 Other Value Expressions
	10.4.5 Transaction Rules
	10.4.6 Operation Rules
	10.4.7 Column Rules
	10.4.8 Overall Rules Example

	10.5 Source definitions Generation Utility

	11 Message Capture Properties
	11.1 Logging and Connection Properties
	11.1.1 Logging Properties
	11.1.1.1 gg.log
	11.1.1.2 gg.log.level
	11.1.1.3 gg.log.file
	11.1.1.4 gg.log.classpath

	11.1.2 JMS Connection Properties
	11.1.2.1 jvm.boot options
	11.1.2.2 jms.report.output
	11.1.2.3 jms.report.time
	11.1.2.4 jms.report.records
	11.1.2.5 jms.id
	11.1.2.6 jms.destination
	11.1.2.7 jms.connectionFactory
	11.1.2.8 jms.user, jms.password

	11.1.3 JNDI Properties

	11.2 Parser Properties
	11.2.1 Setting the Type of Parser
	11.2.1.1 parser.type

	11.2.2 Fixed Parser Properties
	11.2.2.1 fixed.schematype
	11.2.2.2 fixed.sourcedefs
	11.2.2.3 fixed.copybook
	11.2.2.4 fixed.header
	11.2.2.5 fixed.seqid
	11.2.2.6 fixed.timestamp
	11.2.2.7 fixed.timestamp.format
	11.2.2.8 fixed.txid
	11.2.2.9 fixed.txowner
	11.2.2.10 fixed.txname
	11.2.2.11 fixed.optype
	11.2.2.12 fixed.optype.insertval
	11.2.2.13 fixed.optype.updateval
	11.2.2.14 fixed.optype.deleteval
	11.2.2.15 fixed.table
	11.2.2.16 fixed.schema
	11.2.2.17 fixed.txind
	11.2.2.18 fixed.txind.beginval
	11.2.2.19 fixed.txind.middleval
	11.2.2.20 fixed.txind.endval
	11.2.2.21 fixed.txind.wholeval

	11.2.3 Delimited Parser Properties
	11.2.3.1 delim.sourcedefs
	11.2.3.2 delim.header
	11.2.3.3 delim.seqid
	11.2.3.4 delim.timestamp
	11.2.3.5 delim.timestamp.format
	11.2.3.6 delim.txid
	11.2.3.7 delim.txowner
	11.2.3.8 delim.txname
	11.2.3.9 delim.optype
	11.2.3.10 delim.optype.insertval
	11.2.3.11 delim.optype.updateval
	11.2.3.12 delim.optype.deleteval
	11.2.3.13 delim.schemaandtable
	11.2.3.14 delim.schema
	11.2.3.15 delim.table
	11.2.3.16 delim.txind
	11.2.3.17 delim.txind.beginval
	11.2.3.18 delim.txind.middleval
	11.2.3.19 delim.txind.endval
	11.2.3.20 delim.txind.wholeval
	11.2.3.21 delim.fielddelim
	11.2.3.22 delim.linedelim
	11.2.3.23 delim.quote
	11.2.3.24 delim.nullindicator
	11.2.3.25 delim.fielddelim.escaped
	11.2.3.26 delim.linedelim.escaped
	11.2.3.27 delim.quote.escaped
	11.2.3.28 delim.nullindicator.escaped
	11.2.3.29 delim.hasbefores
	11.2.3.30 delim.hasnames
	11.2.3.31 delim.afterfirst
	11.2.3.32 delim.isgrouped
	11.2.3.33 delim.dateformat | delim.dateformat.table | delim.dateform.table.column

	11.2.4 XML Parser Properties
	11.2.4.1 xml.sourcedefs
	11.2.4.2 xml.rules
	11.2.4.3 rulename.type
	11.2.4.4 rulename.match
	11.2.4.5 rulename.subrules
	11.2.4.6 txrule.timestamp
	11.2.4.7 txrule.timestamp.format
	11.2.4.8 txrule.seqid
	11.2.4.9 txrule.txid
	11.2.4.10 txrule.txowner
	11.2.4.11 txrule.txname
	11.2.4.12 oprule.timestamp
	11.2.4.13 oprule.timestamp.format
	11.2.4.14 oprule.seqid
	11.2.4.15 oprule.txid
	11.2.4.16 oprule.txowner
	11.2.4.17 oprule.txname
	11.2.4.18 oprule.schemandtable
	11.2.4.19 oprule.schema
	11.2.4.20 oprule.table
	11.2.4.21 oprule.optype
	11.2.4.22 oprule.optype.insertval
	11.2.4.23 oprule.optype.updateval
	11.2.4.24 oprule.optype.deleteval
	11.2.4.25 oprule.txind
	11.2.4.26 oprule.txind.beginval
	11.2.4.27 oprule.txind.middleval
	11.2.4.28 oprule.txind.endval
	11.2.4.29 oprule.txind.wholeval
	11.2.4.30 colrule.name
	11.2.4.31 colrule.index
	11.2.4.32 colrule.value
	11.2.4.33 colrule.isnull
	11.2.4.34 colrule.ismissing
	11.2.4.35 colrule.before.value
	11.2.4.36 colrule.before.isnull
	11.2.4.37 colrule.before.ismissing
	11.2.4.38 colrule.after.value
	11.2.4.39 colrule.after.isnull
	11.2.4.40 colrule.after.ismissing

	Part IV Delivering Java Messages
	12 Configuring Message Delivery
	12.1 Configure the JRE in the User Exit Properties File
	12.2 Configure Extract to Run the User Exit
	12.3 Configure the Java Handlers

	13 Using the Java User Exit
	13.1 Starting the Application
	13.2 Restarting the Application at the Beginning of a Trail

	14 Configuring Event Handlers
	14.1 Specifying Event Handlers
	14.2 JMS Handler
	14.3 File Handler
	14.4 Custom Handlers
	14.5 Formatting the Output
	14.6 Reporting

	15 Message Delivery Properties
	15.1 User Exit Properties
	15.1.1 Logging Properties
	15.1.1.1 gg.log
	15.1.1.2 gg.log.level
	15.1.1.3 gg.log.file
	15.1.1.4 gg.log.classpath

	15.1.2 General Properties
	15.1.2.1 goldengate.userexit.writers
	15.1.2.2 goldengate.userexit.chkptprefix
	15.1.2.3 goldengate.userexit.nochkpt
	15.1.2.4 goldengate.userexit.usetargetcols

	15.1.3 JVM boot Options
	15.1.3.1 jvm.bootoptions

	15.1.4 Statistics and Reporting
	15.1.4.1 jvm.stats.display
	15.1.4.2 jvm.stats.full
	15.1.4.3 jvm.stats.time | jvm.stats.numrecs

	15.2 Java Application Properties
	15.2.1 Properties for All Handlers
	15.2.1.1 gg.handlerlist
	15.2.1.2 gg.handler.name.type

	15.2.2 Properties for Formatted Output
	15.2.2.1 gg.handler.name.format
	15.2.2.2 gg.handler.name.includeTables
	15.2.2.3 gg.handler.name.excludeTables
	15.2.2.4 gg.handler.name.mode, gg.handler.name.format.mode

	15.2.3 Properties for CSV and Fixed Format Output
	15.2.3.1 gg.handler.name.format.delim
	15.2.3.2 gg.handler.name.format.quote
	15.2.3.3 gg.handler.name.format.metacols
	15.2.3.4 gg.handler.name.format.missingColumnChar
	15.2.3.5 gg.handler.name.format.presentColumnChar
	15.2.3.6 gg.handler.name.format.nullColumnChar
	15.2.3.7 gg.handler.name.format.beginTxChar
	15.2.3.8 gg.handler.name.format.middleTxChar
	15.2.3.9 gg.handler.name.format.endTxChar
	15.2.3.10 gg.handler.name.format.wholeTxChar
	15.2.3.11 gg.handler.name.format.insertChar
	15.2.3.12 gg.handler.name.format.updateChar
	15.2.3.13 gg.handler.name.format.deleteChar
	15.2.3.14 gg.handler.name.format.endOfLine
	15.2.3.15 gg.handler.name.format.justify
	15.2.3.16 gg.handler.name.format.includeBefores

	15.2.4 File Writer Properties
	15.2.4.1 gg.handler.name.file
	15.2.4.2 gg.handler.name.append
	15.2.4.3 gg.handler.name.rolloverSize

	15.2.5 JMS Handler Properties
	15.2.5.1 Standard JMS Settings
	15.2.5.1.1 gg.handler.name.destination
	15.2.5.1.2 gg.handler.name.user
	15.2.5.1.3 gg.handler.name.password
	15.2.5.1.4 gg.handler.name.queueOrTopic
	15.2.5.1.5 gg.handler.name.persistent
	15.2.5.1.6 gg.handler.name.priority
	15.2.5.1.7 gg.handler.name.timeToLive
	15.2.5.1.8 gg.handler.name.connectionFactory
	15.2.5.1.9 gg.handler.name.useJndi
	15.2.5.1.10 gg.handler.name.connectionUrl
	15.2.5.1.11 gg.handler.name.connectionFactoryClass
	15.2.5.1.12 gg.handler.name.localTX
	15.2.5.1.13 gg.handlerlist.nop

	15.2.5.2 Group Transaction Properties
	15.2.5.2.1 gg.handler.name.minGroupSize
	15.2.5.2.2 gg.handler.name.maxGroupSize

	15.2.6 JNDI Properties
	15.2.7 General Properties
	15.2.7.1 gg.classpath
	15.2.7.2 gg.report.time

	16 Developing Custom Filters, Formatters, and Handlers
	16.1 Filtering Events
	16.2 Custom Formatting
	16.2.1 Using a Velocity Template
	16.2.2 Coding a Custom Formatter in Java
	16.2.3 Coding a Custom Handler in Java
	16.2.4 Coding a Custom Formatter for Java Delivery

	16.3 Additional Resources

	Part V Troubleshooting the Oracle GoldenGate Adapters
	17 Troubleshooting the Flat File Adapter
	17.1 Checking Oracle GoldenGate
	17.2 Checking the Configuration
	17.3 Checking the Log File
	17.4 Contacting Oracle Support

	18 Troubleshooting the Java Adapters
	18.1 Checking for Errors
	18.2 Recovering after an Abend
	18.3 Reporting Issues

	Part VI Appendix
	A Adapter Examples
	A.1 List of Included Examples
	A.2 Configuring Logging
	A.2.1 Example Oracle GoldenGate Java User Exit Defaults
	A.2.2 Customizing Logging

	Index

