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TECHNICAL SUMMARY OF MGPS 
For an arbitrary itemset, it is desired to estimate the expectation 
λ = E[N/E], where N is the observed frequency of the itemset, and 
E is a baseline (null hypothesis) count; e.g., a count predicted 
from the assumption that items are independent. An itemset is 
defined by its members i, j, k, ..., which occur as subscripts to N, 
E, and other variables, so that, for example, Nij is the number of 
reports involving both items i and j, Eijk is the baseline prediction 
for the number of reports including the itemset triple (i, j, k), etc.  

A common model for computing baseline counts is the 
assumption of within-stratum independence; when E is computed 
under this assumption we shall often denote it by E0. Assume that 
all reports are assigned to strata denoted by s = 1, 2, ..., S. Let: 

Pis = proportion of reports in stratum s that contain item i 
ns = total number of reports in stratum s 

Baseline frequencies for pairs and triples are defined under 
independence as: 

E0ij = Σs ns Pis Pjs E0ijk = Σs ns Pis Pjs Pks 

For itemsets of size 3 or more, an “all-2-factor” loglinear model 
can be defined as the frequencies E2 for the itemsets that match 
all the estimated pairwise two-way marginal frequencies but 
contain no higher-order dependencies. For triples, E2ijk agree 
with the estimates for the three pairs: 

λijE0ij λikE0ik  λjkE0jk 

For “four-tuples,” E2ijkl agrees with 6 such pairs, etc. 

Analysis of higher-dimensional associations 

WebVDME version 5 introduced new definitions of baseline 
frequencies for more than two dimensions and new definitions of 
some other output columns. This change allowed the analysis to 
focus more naturally on combinations in which, for example, 
there is a strong association between the occurrence of a pair of 
drugs in a report and some event, irrespective of whether the two 
drugs are taken together more frequently than chance or not. The 
change also simplified the analysis and, in particular, no longer 
required the use of the all-two-factor log-linear model, which did 
not seem to contribute much, if at all, to substantive 
understanding in analyses of spontaneous adverse event 
databases.  

For reference, a separate section at the end of this document 
describes the analysis of higher-dimensional associations made in 
WebVDME version 4 and earlier. 

Introduction 

WebVDME allows all items to be partitioned into item types. The 
prototypical division is into two types, drugs and events, but in 
general there can be one or more types for a particular data mining 
run. We conceptually divide the counting and estimation that 
MGPS does into separate itemset types. That is, if there are two 
types of items, labeled D and E, we similarly define itemset types 
such as DD, DE, DDE, DDEE and so forth. This last four 
dimensional example (DDEE) will be used here to make it plain 
how the calculations go in general and the corresponding 
definitions for the other itemset types should be obvious. The 

individual items will be named D1, D2, E1, E2. The calculation of 
counts, baseline frequencies, and hyperparameter estimates is 
separate for every different itemset type. The calculations for a 
given dimension will sometimes depend on the results from 
previous calculations for a lower dimension. 

Review of Two-Dimensional Calculations 

For every pair of items, say j and k, Pjs and Pks are the respective 
proportions of the ns reports in stratum s that contain items j and 
k. There are n reports total and Njk of the reports contain both 
items j and k. The 2-dimensional baseline frequencies are: 

Ejk = Σs ns Pjs Pks  

The values of RRjk = Njk/Ejk are smoothed using the MGPS model 
(separate estimates for each type of pair) to get corresponding 
values of EBGMjk, EB05jk and EB95jk. 

Handling Homogeneous Itemset Types in Three or More 
Dimensions 

In the descriptions that follow, it will be assumed that the itemset 
has at least two different item types. Homogeneous itemset types 
such as DDD or EEEE require the following special convention: 
Use the methods described below as if every item being 
considered were of a different type. That is, treat homogeneous 
itemsets like (D1, D2, D3) as if they were (D1, E1, F1), one item 
from each of three item types, rather than three items of the same 
type. This is just for the purpose of following the formulas below. 
We do not actually pool the data of type DDD with other 
combinations.  

Handling Heterogeneous Itemset Types in Three or More 
Dimensions 

Notation for the four dimensional example 

As mentioned above, we will assume for presentation purposes 
that we are calculating the MGPS model for the itemset type of 
form DDEE. As a shorthand, we use the abbreviations D1 = 1, D2 
= 2, E1 = 3, E2 = 4, especially when using subscripts. Thus, for 
example, the number of reports overall that contain both E1 and 
E2 will be denoted N34, and the number of reports that contain the 
triple (D1, D2, E1) is denoted N123. The proportion of reports in 
stratum s that contain item E2 is P4s, and so forth. 

Defining baseline frequencies 

Let E0 be the expected frequency when all four items are 
independent, namely: 

E0 = Σs ns P1s P2s P3s P4s  

However, E0 is modified by multiplying by terms corresponding 
to each item type with more than one item, in this case both the D 
and E items. 

E = E0 × [N12/M12] × [N34/M34] (1) 

Where M12 = Σs ns P1s P2s and M34 = Σs ns P3s P4s 

E represents the baseline frequency under the assumption that 
each of the item types is independent from other item types, but 
within an item type complete dependence is assumed. It is as if the 
pair (D1, D2) was thought of as a compound drug whose count in 
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the database is N12, and that is why E1 is multiplied by the 
correction factor N12/M12. An analogous argument applies to the 
pair (E1, E2), which could be thought of as a syndrome treated as 
a single event. 

If the itemset being considered has no duplicate item types, then 
E = E0, as would happen if the original itemset was completely 
homogeneous and we were following the prescription in the 
previous section to treat such itemsets as if every item were a 
different type.  

Technically, N = N1234 and E = E1234, but we will just define N, E 
RR = N/E, EBGM, etc. for the 4-tuple without subscripts.  

Defining the interaction signal score 

Let EB95max be the highest two-factor EB95 for pairs that are 
NOT of the same type. In this four-dimensional example, there are 
six possible pairs, but only four of the pairs are of heterogeneous 
type, and EBmax is the largest of those. That is,  

EB95max = max{EB9513, EB9523, EB9514, EB9524} 

The EB95 values above would come from the previously 
performed pair-wise analyses of DE itemset types. The value 
EB95max represents the largest estimated upper 95% confidence 
limit association found among the heterogeneous PAIRS of items 
being considered. Remember that if the itemset was originally all 
of one type, then we pretend they are all different and so 
EB95max would be the largest of all the included 2 dimensional 
EB95s. 

We declare an “interaction alert” if the smoothed value of RR = 
N/E for the sextuple, is significantly greater than EB95max. 
Namely, 

INTSS (interaction signal score) = EB05/EB95max 

INTSS > 1 is the threshold for an alert for a 3D or higher-way 
association that cannot be explained by any single pairwise 
association.  When INTSS > 1, the confidence interval around 
EBGM for the 4-tuple does not overlap any of the confidence 
intervals for the heterogeneous pairwise EBGMs that are part of 
the 4-tuple.  

How the EB model is set up 

Based on the two-factor analyses, we do not expect the baseline 
expected counts E to fit the observed counts N well for 3D or 
higher dimensions if many pairwise EBGMs are large, since the 
baseline E is the prediction one might make if it were known that 
all pairwise EBGMs = 1. Therefore, we prefer to shrink N towards 
the product E × EBmax rather than just toward E, where EBmax 
is the largest of the pairwise EBGMs for included heterogeneous 
pairs of items.  Analogous to the definition of EB95max, we 
define EBmax (for our D1-D2-E1-E2 example) as 

EBmax = max{EBGM13, EBGM23, EBGM14, EBGM24} 

Note that the pair of items that define EBmax might not be the 
same pair that define EB95max as defined above.  The shrinkage 
model is set up as follows: 

Let E* = E × EBmax 

Note that E* is the product of terms for absolute independence 
(E0) times terms for within item type dependence, as in (1), times 
a measure of heterogeneous item type dependence, EBmax. 

Now use the pairs (N, E*) to estimate hyperparameters and get 
smoothed values of N/E*, which would be summarized by the 
estimates and confidence limits EBGM*, EB05* and EB95*. 
These computations are performed just as in the previous section 
with the substitution of E* for E. Finally, we convert back to 
smoothed estimates of N/E by defining: 

EBGM = EBGM* × EBmax;  
EB05 = EB05* × EBmax;  
EB95 = EB95* × EBmax 

Thus EBGM as a measure of deviation from independence of item 
types, which is more directly comparable to EBGMs of lower 
dimensional heterogeneous item types.  

The value of INTSS = EB05/EB95max is a multiplicative relative 
measure of how much excess association is present in the four-
tuple that cannot be explained by any single DE association. 
INTSS > 1 will identify those 3D and higher-way combinations in 
which there are large cross-item associations that cannot be 
explained by any single 2D cross-item association.  Because 
INTSS is defined as the ratio of a lower confidence limit divided 
by an upper confidence limit it will tend to be conservative 
alerting threshold when the relevant counts are small and the 
corresponding confidence intervals are wide. 

The value INTSS is a relative measure and does not provide 
information as to the absolute number of reports in the database 
that are in excess of the number that might be explained by a 
single cross-item association. The quantity Excess2 focuses on the 
absolute number of such reports, defined as  

Excess2  = E × EB95max × (INTSS – 1) 
 = E × (EB05 – EB95max) 

It is a conservative estimate of the number of reports of that 
itemset in the database that cannot be explained by any single 
cross-type association. 

Correspondence between notation here and variable labels in 
WebVDME 

Mathematical Notation WebVDME and Help 
E0 E_IND 
λ True Relative Ratio 
E E 
E2 E2_IND 
Excess02 EXCESS2_IND 
Excess2 EXCESS2 
EB95max EB05/INTSS 
EBmax EBMAX 
Pair where EBGM = EBmax MAXITEM1, MAXITEM2 
E* E * EBMAX 
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Analysis of higher-dimensional associations in earlier 
WebVDME versions 

WebVDME version 4 and earlier analyzed associations among 
itemsets of size 3 or more by comparing the estimated frequency 
to the all-2-factor prediction by simple subtraction. For example, 
in case of triples: 

Excess02ijk =λijkE0ijk - E2 ijk 

The parameters λ above are estimated by their geometric means, 
denoted EBGM, of their empirical Bayes posterior distributions, 
using E = E0 in the formulas below.  

For simplicity, the formulas below use just two subscripts, for 
itemsets of size 2, such as the occurrence of drug i and symptom j 
in a medical report. Estimates for other itemset sizes are computed 
analogously. Let: 

Νij = the observed counts 
Eij = the expected (baseline) counts  
RRij = Nij /Eij = ratio of observed to baseline 

We wish to estimate λij = µij /Eij, where Νij ~ Poisson(µij). Assume 
a superpopulation model for λij (prior distribution) based on a 
mixture of two gamma distributions (a convenient 5-parameter 
family of distributions that can fit almost any empirical 
distribution): 

π(λ; α1, β1, α2, β2, P) = P g(λ; α1, β1) + (1 − P) g(λ; α2, β2) 

g(λ; α, β) = βα λα−1 e−βλ / Γ(α) 

Estimate the prior distribution from all the (Nij, Eij) pairs.  

Estimate the 5 hyperparameters:  

θ = (α1, β1, α2, β2, P) 

by maximizing the likelihood function L(θ) in 5 dimensions: 

L(θ) = Πi,j{P f(Nij ; α1, β1, Eij)  +  (1 – P) f(Nij ; α2, β2, Eij)} 
f(n; α, β, E)  =  (1 + β/E)−n(1 + E/β)−α Γ(α + n) / Γ(α) n! 

In WebVDME, MGPS requires the specification of a threshold 
(n* = minimum count > 1) for the observed counts of all 
combinations that are analyzed. In accord with this specification, 
the formula for f(n; α, β, E) is modified to incorporate the 
condition Νij > n*: 

If n* = 1, f(n; α, β, E, n*=1) = f(n; α, β, E) / [1 – (1 + E/β)−α] 

For other n*, the denominator above is [1 –  Σf(n’; α, β, E)], 
where the sum extends over n’ = 0, 1, …, n*-1.  For simplicity, 
the formulas below omit the reference to n*. 

Given θ, the posterior distributions of each λij are also a mixture 
of gamma distributions used to create “shrinkage” estimates. 
Assuming that θ and E are known, then the distribution of N is: 

Prob(N = n) = P f(n; α1, β1, E) + (1 – P) f(n; α2, β2, E) 

Let Qn be the posterior probability that λ came from the first 
component of the mixture, given N = n. From Bayes rule, the 
formula for Qn is: 

Qn = P f(n; α1, β1, E)/[P f(n; α1. β1,E)+(1 – P) f(n; α2, β2, E)] 

Then, the posterior distribution of λ  after observing N = n can be 
represented as: 

λ|Ν = n  ∼  π(λ; α1 + n, β1 + E, α2 + n, β2 + E, Qn) 

where (as above): 

π(λ; α1, β1, α2, β2, P) = P g(λ; α1, β1) + (1 − P) g(λ; α2, β2) 

Because the posterior distribution of λ is often very skewed, we 
focus on the logarithmic expected value, 

E[log(λij) | Nij, θ]  

while defining our preferred point estimate of λij. 

To obtain a quantity on the same scale as RR, we define the 
Empirical Bayes Geometric Mean (EBGM): 

EBGMij = e
E[log(λij)| Nij, θ] 

, where: 
E[λ | N = n,θ] = Qn (α1+ n)/(β1+E) + (1–Qn) (α2+ n)/(β2+E) 
E[log(λ) | N = n,θ] =  Qn [ψ(α1+ n) – log(β1+E)] +  
 (1–Qn) [ψ(α2+ n) – log(β2+E)] 

where ψ(x) = d(log Γ(x))/dx. In the same way, the cumulative 
gamma distribution function can be used to obtain percentiles of 
the posterior distribution of λ. The 5th percentile of λ is denoted: 

EB05ij = Solution to: Prob(λ < ΕΒ05 | Nij, θ) = 0.05 

and is interpreted as a lower 1-sided 95% confidence limit. The 
upper limit EB95ij is defined analogously. 
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