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Executive Overview 

This document describes a new algorithm that is a hybrid of Extended Logistic 
Regression (ELR) and the Multi-item Gamma Poisson Shrinker (MGPS).  It is similar to 
MGPS in that relative reporting rates (RR) are input into a Bayesian gamma-Poisson 
shrinking algorithm to get more reliable estimated rates and confidence intervals. The 
main difference is that instead of using stratification and a Mantel-Haentzel approach to 
adjust for patient covariates and compute an adjusted expected value (E), which is used as 
a denominator for RR, the values of E are computed using the results of an ELR analysis.  
This new Regression-adjusted GPS algorithm will be abbreviated as RGPS. This paper 
describes the algorithm in some (but not complete) detail, including its method of 
screening for drug-drug interactions. It also uses compares the results of RGPS to those 
of MGPS and ELR on a recent AERS database, and uses the OMOP gold standard set of 
nearly 400 drug-event combinations (DECs) to show that RGPS has greater 
discriminatory power than the earlier methods. 

Introduction 

Databases of reports of adverse drug reactions are primary sources of information about 
possible harms from prescription drugs. One of the largest of such databases is the 
Adverse Event Reporting System (AERS) maintained by the US FDA1. AERS now has 
about 5 million reports involving over 5 thousand drugs and over 10 thousand coded 
Preferred Terms (PTs) within the Medical Dictionary for Regulatory Activities 
(MedDRA)2 structured vocabulary. Analysis of AERS for discovering potential 
associations of drugs with adverse reactions is challenging because of the severe 
limitations of the data reliability within spontaneous reports3, 4. The voluntary reports 
don’t follow a research protocol, and adverse report rates seem to vary from year to year, 
as well as by drug and by adverse event type. There is no certainty that a reported reaction 
was caused by the drug(s) in the report. Since there are no accompanying data on the 
numbers exposed to each drug, incidence rates cannot be determined. Instead, it is 
common to compute disproportionalities, which compare the number of reports of each 
adverse event (AE) within reports mentioning the drug of interest to a comparison or 
expected count based on a null hypothesis of no association of the drug and the event 
within the database5-7. 
 
Several disproportionality measures are commonly computed. The proportional reporting 
ratio (PRR)8 and the reporting odds ratio (ROR)9 are based on simple ratios of counts 
from a two-by-two table of presence/absence of a drug of interest and an event of 
interest. Bayesian measures of disproportionality also attempt to use a prior distribution to 
smooth or adjust observed-to-expected ratios for their expected statistical variability in 
order to obtain more reliable estimates. The multi-item gamma Poisson shrinker 
(MGPS)10, 11 estimates an empirical Bayes prior distribution for the observed-to-expected 
ratio based on examining such ratios for all the drug-event combinations (DEC) in the 
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database. MGPS also uses a Mantel-Haentzel adjustment when computing expected 
values to correct for potential confounding caused by patient covariates such as age or 
sex, or by secular trends when reports many years apart have been pooled. MGPS has the 
advantages that it can be efficiently and automatically run to get disproportionality 
estimates for the potentially millions of DECs in a database, and that its adjustment for all 
covariate combinations and its Bayesian shrinkage algorithm enhance accuracy and 
interpretability compared to the simpler methods such as PRR or ROR. However, none 
of these methods adjust for the effects of polypharmacy—the fact that many patients are 
taking multiple drugs at the same time, and that drugs for the same indication will 
naturally often show up in the same patient reports, creating confounding issues and other 
potential statistical biases5. A masking bias occurs when the expected counts for a DEC of 
interest are inflated because other drugs in the database cause the event of interest, 
whereas, ideally, reports involving those other causal drugs should be excluded from the 
calculations of the expected or null hypothesis count. This masking bias can reduce the 
disproportionality estimate for the drug of interest, causing a missed signal. A 
confounding or “innocent bystander” bias occurs when a drug with no causal connection 
to the AE of interest is often co-prescribed with a drug that does sometimes cause the 
AE. In that case the co-prescribing causes both drugs to appear associated with the AE. 
 
The main methodology for coping with the fact that spontaneous reports mention 
multiple drugs per report is logistic regression or its variants7, 12-15. A regression model 
attempts to compute the probability that a given AE will be mentioned in a report based 
on the set of drugs mentioned in the report as well as the before-mentioned report 
covariates such as age, sex or report year. Logistic regression assumes that a linear 
combination of predictors can combine with the logistic probability function to fit the 
probability of any particular AE being present. This can have the unexpected disadvantage 
of implicitly assuming that multiple drugs affect risk multiplicatively, whereas an additive 
effects model or some other model may fit the observed event frequencies much better. 
This assumption can be relaxed by extending the logistic probability function to a wider 
family of probability distributions. We denote one such extension, implemented within 
Empirica Signal, as extended logistic regression (ELR)16.  Standard LR or ELR regression 
algorithms are challenged by the fact that with over 5,000 drugs in the database, there 
could be at least that many predictors in the regression model. If the response AE is rare, 
there may be fewer than 1,000 reports of the event, even if the database has millions of 
reports, which can cause standard logistic regression algorithms to fail. The usual 
approach would be to use medical knowledge or statistical expertise to greatly reduce the 
number of drugs used in the model, perhaps to a few or at most a few hundred drugs. But 
this then may require user interaction or statistical expertise which would have to be 
applied to every separate modeling example, one for each of the thousands of AEs in the 
database. Often the spontaneous reports analysts have medical knowledge but not 
statistical expertise, and they may not be comfortable with the whole idea of selecting 
predictors to use in a regression model, preferring a more automatic approach such as 
MGPS provides. 
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By combining ideas from ELR and MGPS, RGPS aims to achieve the best of both 
methods. Like ELR, RGPS is designed to account for confounding by concomitant drugs 
and for masking effects. Like ELR, RGPS allows for a better fit when risk accumulation is 
not multiplicative. Like MGPS, the shrinkage model protects from false alarms due to 
multiple comparisons. Like MGPS, RGPS is user friendly and does not require 
complicated model choice decisions as with ELR. In RGPS all computation is done 
automatically. Similar to MGPS, RGPS computes pairs of observed and expected counts, 
which can be used subsequently to compute more complex associations such as drug-drug 
interactions and more elaborate shrinkage models based on drug classes and event 
hierarchies. The RGPS method for computing drug-drug interaction signals is less 
computing intensive than the 3-D run required to get interaction scores in MGPS. In 
addition, unlike MGPS RGPS is able to compute shrinkage estimates for cases where 
N=0. 
 
RGPS processes one response (AE) at a time (similar to ELR). The computation of each 
response is independent of other responses so that several responses can be processed in 
parallel. Similar to MGPS a gamma-Poisson model is used to shrink N towards E, but the 
shrinkage model is estimated separately for each response and is simpler in the sense that 
it uses a single gamma prior model rather than a mixture of two gammas (although a 
different gamma prior is estimated for each response). 
 
In what follows it is assumed that the spontaneous report data is efficiently available in a 
database, and that a specific set of drugs, events and categorical report covariates have 
been specified to be in the analysis.  The analysis repeats for each selected AE, producing 
values of Nj, Ej, RRj = Nj/Ej, EBRRRj, RRR05j, RRR95j for every AE that is analyzed, 
where j varies across all the drugs, and where EBRRR, RRR05, RRR95 are the analogous 
RGPS versions of what MGPS calls EBGM, EB05, and EB95. 
 

The RGPS Methodology 

 
The RGPS methodology consists of three main steps. First, a set of predictors (drugs and 
grouped-strata covariates) are automatically selected to fit a Bayesian ELR model. For 
clarity, we distinguish between the current ELR analysis that is available in Empirica 
Signal v7, to be denoted ES-ELR, and the way in which ELR is implemented in RGPS, 
which we denote RGPS-ELR. The selection of which drugs to use in ES-ELR is semi-
automated, in that there are default rules based solely on Nj, the number of events 
reported with Drug j, but the user is encouraged both to modify those rules as well as to 
add any other drugs to the model if they are of particular interest. Disproportionality 
results are only reported for those drugs included in the model, and the 
disproportionalities are solely a function of estimated coefficients from the model fit, with 
no Bayesian shrinkage aspect to the algorithm. The lack of Bayesian shrinkage means that, 
especially for rare events, the number of drugs for which estimates can be obtained from 
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ES-ELR is limited by concerns for computational estimability, statistical collinearity and 
reliability, and concern for issues of multiple comparisons. The RGPS-ELR estimation 
involves an empirical Bayes shrinkage prior for the coefficients, which allows many more 
degrees of freedom to be included in the model than are used in ES-ELR. The handling 
of report covariates also differs in RGPS from that in both ES-ELR and MGPS. ES-ELR 
includes covariate values as ordinary predictors in the regression model, included 
additively on the logistic or extended logistic scale. This means that interactions among 
covariates like age and sex are not modeled, whereas in MGPS all combinations of 
covariate values play a separate role in the Mantel-Haenzel stratification method. The 
RGPS approach can be viewed as a hybrid of these approaches, in which a Bayesian 
clustering of the strata based on all combinations is performed in order to group strata 
that seem to have similar response frequencies, and then the resulting groups determine 
separately estimated intercepts for the regression model.  
 
In the second step, expected counts for each drug in the database are estimated based on 
the RGPS-ELR model computed in the first step. In the third step, a two parameter 
gamma Poisson shrinkage algorithm is used to compute adjusted relative reporting rates 
and their associated confidence intervals based on the observed counts (Nj) and the 
expected counts (Ej) computed in the second step. This three step process is repeated for 
each event (response) being computed. 

Step One: Selecting Predictors and Fitting the ELR 

 
The RGPS-ELR analysis does not use all the drugs that are available and for which later 
steps eventually produce values of Ej.  An automatic variable selection process selects 
drugs to be included in the RGPS-ELR analysis based on their event rates.  The RGPS-
ELR analysis also includes extra covariates such as age, sex and year. However, these 
covariates are not modeled in the usual way, e.g., as 0-1 indicator variables representing 
different covariate categories. Rather, in the RGPS-ELR analysis each covariate category 
combination is considered a stratum, and these strata are then aggregated into several 
groups which we call grouped-strata. Assuming there are C covariates each consisting of 
gc categories, c = 1, …, C, then the total number of strata (covariate category 
combinations) considered is 𝐾 = ∏ 𝑔𝑐𝑐 . These K strata are then partitioned into G 
groups each containing strata with similar event rates. The event rates are determined by a 
local gamma-Poisson shrinkage model. Let s be a stratum defined by a specific covariate 
category combination, Ns be the number of events reported for stratum s, and ns be the 
number of reports included in stratum s. Define p0=N+/n+ to be the prior probability for 
the event, and es=p0ns the expected number of events for stratum s. Then, a gamma-
Poisson shrinkage algorithm with a single parameter gamma prior Gamma(γ0, γ0) (mean 1) 
is used to estimate the posterior mean of the event rate (reporting ratio) for stratum s as 
 
 λs = (Ns + γ0) / (es + γ0) 
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where the hyperparameter γ0 is estimated empirically using all the K pairs (Ns,es). The K 
strata are then ordered according to λ1>λ2>λ3> ...>λK and partitioned into groups of 
successive strata according to this ordering such that each group has approximately the 
same number of observed events. Specifically, let  
 

Nmin =  max(10, √N+ / 2) 
 

Then, starting with the first (highest frequency) stratum, the strata are pooled until at least 
Nmin observed events are included, after which a new pooling begins for the second group 
until at least Nmin events have been included in that group, and continuing until all K strata 
have been included in G groups. With this algorithm, all but the final group will have Nmin 
or more observed events. The rationale is to have fewer groups for rarer events and to 
have groups that are about equally informative as to their average event frequency. This 
method also groups many low-frequency strata together while doing less grouping for the 
high-frequency strata, which are of greater interest for determining safety signals. Each of 
these G grouped-strata are included in the ELR model as separate indicator variables, or, 
equivalently, the regression model has a separate intercept for each of the G groups. 
 
The criterion for including a drug predictor in the ELR analysis is based on its group-
stratified event rate, similar to the stratified RR computed by MGPS.  
 
Let g(i) be the strata-group associated with report i (i ranges over all reports). We define 
the prior grouped-strata adjusted event probability for report i as 
  

            𝑝𝑖 = �� � 𝑁𝑠
𝑠∈𝑔(𝑖)

� + 𝑝0� /�� � 𝑛𝑠
𝑠∈𝑔(𝑖)

� + 1� 

 
At this stage, pi is the same for all reports within a group of strata. The estimate for each 
group is shrunk slightly toward p0 by adding p0 and 1 to the numerator and denominator 
above. This mainly serves to ensure that every pi is greater than 0 and less than 1. Let 
Xij=1 if drug j is included in report i, Xij = 0 otherwise, and let Nj be the number of events 
reported with drug j. Define fj=ΣiXij∙pi to be the grouped-strata adjusted expected number 
of events for drug j, where j ranges over all drugs. The (Nj, fj) pairs are input into a 
gamma-Poisson shrinkage algorithm with a Gamma(δ0, δ0) prior to estimate the 
hyperparamter δ0. The posterior mean of the grouped-strata adjusted event rate is thus  
 
 μj=(Nj + δ0)/(fj + δ0) 
 
and the lower and upper 99% posterior limits μj.01 and μj.99 are computed using the gamma 
distribution  
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 Gamma(Nj + δ0, fj + δ0) 
 
Define μ0 = median(μj) and µj.q to be the qth percentile of the above gamma distribution. A 
drug j is then included in the model if: 
  
 abs(Nj-fj) > 2.5 and ( μj.01 > μ0 or μj.99 < μ0 ). 
 
Prior distributions for the ELR coefficients 
For the model including J drugs, the assumed probability that report i will have an event is 
 
 pi = Pα(β0g(i) + ΣjXijβj)                                                                              0 < α < 1 
 
where Pα is the extended logistic probability function, β0g is the intercept term for reports 
in the gth grouping of strata, and βj is the coefficient for drug j. The formula for Pα is  
 
 Pα(z) = 2α /[1 + exp(-2(1 - α)z)]                                                                 [z < 0] 
 Pα(z) = 2α - 1 + 2(1- α)/[1 + exp(-2αz)]                                                     [z > 0] 
 
which reduces to the standard logistic distribution function when α = ½. The estimation 
of the ELR parameter α is achieved by first fitting the model for a few prespecified values 
of α and then optimizing the product of prior*likelihood with respect to α. The 
likelihood, L, is the standard product of binomials: 
 
 log(L) = Σi[Yi log(pi) + (1 – Yi) log(1 – pi)] 
 
where Yi is 1 if the ith report contains the response event, 0 otherwise, and pi depends on 
the parameters α, β0g, and βj. The prior distributions for β0g and βj are independent and 
centered at their null hypothesis values, assuming no effects of strata or drugs. That is, the 
estimates of β0g are shrunk toward z0, where 
 
 Pα(z0) = p0                                                      (where z0 depends on both α and p0) 
 
and the strength of the shrinkage is determined by the parameter γ0, estimated above. The 
estimates of βj are shrunk toward 0, and the strength of the shrinkage is determined by the 
parameter δ0, estimated above. Since the relationship between these parameters and the pi 
depends on the ELR parameter α, we define the prior distributions as beta distributions 
depending on transformations of the βs to probabilities depending on Pα. Let γ* = γ0(1 – 
p0)/p0 and let δ* = δ0(1 – p0)/p0. The resulting prior density L0 is a product of beta 
distributions defined as 
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 log(L0) = Σg[γ0
 log(Pα(β0g)) + γ* log(1 – Pα(β0g))]  

             + Σj[δ0 log(Pα(z0 + βj)) + δ* log(1 – Pα(z0 + βj))] 
 
Since both (γ0, γ*) and (δ0, δ*) are proportional to (p0, 1 – p0), this implies that L0 will be 
maximum when all the values of Pα( ) in the above expression are equal to p0, which 
occurs when every β0g = z0 and every βj = 0.  
 
Note that the values (γ0, δ0) used in the definition of the prior L0 above were derived from 
gamma-Poisson fits that involved modeling the by-strata counts Ns and the DEC counts 
Nj (with an abuse of notation, since these are actually two sets of counts). We are applying 
these hyperparameters from much simpler models to define the prior distributions for the 
RGPS-ELR model. The justification is that the parameters of the conjugate gamma 
distributions in the gamma-Poisson model have interpretations very similar to those of the 
parameters of the conjugate beta distributions in the beta-binomial model defined by L0. 
The value γ0 was derived above from a gamma-Poisson model involving the effect of 
stratification, with one interpretation as the number of prior pseudo-observations of the 
Poisson response event that just fit the null hypothesis of probability p0 per report within 
each stratum, and we see from the form of log(L0) above that now γ0 could be interpreted 
as that number of pseudo-observations of a binomial response event concordant to the 
same null hypothesis, thus justifying its value here. Similarly, the value of δ0 was estimated 
from a simple gamma-Poisson model involving the effect of drugs on the response 
counts, and one interpretation of the resulting gamma(δ0, δ0) prior is that δ0 is the number 
of pseudo-observations of the DEC consistent with the null hypothesis of no drug effect, 
with the same interpretation for the analogous binomial model in the definition of L0. The 
difference is that the ELR model involves modeling the concomitancy of the drugs in 
each report, unlike the two gamma-Poisson models. Thus we are assuming that the 
empirical Bayes priors for the simpler models can be useful when applied to the ELR 
model, and also that the prior L0,  which depends on the ELR parameter α, can be used as 
is for each value of α. 
 
The resulting ELR estimation provides a model for how the probability of a response 
event being in a report depends on the patient covariates and the set of drugs in that 
report. However, the coefficients from this model are not used directly to estimate drug-
event disproportionalities. Rather the model is merely used to adjust for concomitant 
drugs as described in Step Two. 
 

Step Two: Computing Expected Counts E for Every Drug 

 
The next step is to compute a set of baseline or expected counts Ej for every drug 
available, including those that were used as drug predictors in the RGPS-ELR model j = 
1, …, J0, as well as those drugs that were not included as predictors in the RGPS-ELR 
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model.  So in this case j runs over all drugs. This computation uses the results of the 
RGPS-ELR analysis, namely a set of J0 drug coefficients β, a set of G group-strata 
coefficients β0, and the ELR parameter α. We will use the subscript i to index the reports 
that are included in the analysis. As above, let Xij = 1 if potential drug predictor j is 
included in report i, Xij = 0 otherwise, and g(i) be the stratum-group associated with 
report i. Now define pi as the predicted probability that report i will include the response, 
based on the formula fit by the RGPS-ELR.  The prediction formula can be represented 
as 
  
 pi = Pα(µi = β0g(i) + Σj Xijβj) 
 
where Pα is the function that links the linear predictor µi to the probability scale and βj 

and β0g(i) are the estimated coefficients for the drugs and intercepts, where the intercept 
depends on which grouped-stratum g(i) report i belongs to.  For standard logistic 
regression (α = ½) 
 
 P1/2 (µ) = 1/(1 + exp(-µ)) 
 
while for extended logistic regression the formula is more complicated and depends on 
α as defined above.  In the formula for pi, the summation over j can be thought of as 
summing only over the predictors actually included in the RGPS-ELR model, or, 
equivalently, assume the summation runs over all potential predictors but that the βj for 
drugs not included in the model are set to 0. This latter interpretation is assumed now, so 
that j runs over all the potential drug predictors in the summation but that βj = 0 for 
drugs not included in the RGPS-ELR model.  
 
The values of Ej, j = 1, …, J are computed by summing over i (i.e. across all reports) so 
that we can represent  
 
 Ej = Σi eij ,             where     eij = Xij Pα(µi - βj)         for j = 1, …, J 

  
The factor Xij makes eij = 0 if report i does not include predictor j. Also note that eij = pi if 
Xij = 1 but predictor j is a drug not included in the RGPS-ELR model, since then βj = 0. 
 
The sum of the eij, Ej, is interpreted as the expected number of reports having the 
response when drug j is present under the null hypothesis that βj = 0, but adjusted for all 
the (other) predictors used in the regression model.  The non Bayesian relative reporting 
ratio is just RRj = Nj/Ej. 
 
In both the current MGPS and in ES-ELR, drug-event pairs where the count Nj = 0 are 
excluded.  This exclusion was done for computing and storage space efficiency (especially 
for 3D and higher runs) in MGPS, and for estimability in ES-ELR.  Our recommendation 
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is to include drugs having 0 counts in RGPS as potential predictors for which the values 
Ej are computed.  Although such estimated relative reporting ratios won’t have a large 
value, they can be useful for other purposes, for example to compare drug values across 
adverse events. 

Step Three: Computing the Bayesian Shrinkage Estimates and Confidence Intervals 

 
For each response, the (Nj, Ej) pairs from the previous step are input into a gamma-
Poisson shrinkage algorithm.  The prior distributions are assumed to be simple gamma 
distributions rather than a mixture of two gamma distributions as is done in MGPS. 
Specifically, a two-parameter gamma Poisson model is used to produce shrinkage 
estimates, where the prior distribution of the relative reporting ratios is assumed to be 
 
 Gamma(γ, δ) 
 
and where the (Nj, Ej)  pairs are used to estimate the hyperparameters γ and δ. The 
posterior mean of a drug relative reporting ratio is then EBRRRj = (Nj + γ)/(Ej + δ), and 
RRR05 and RRR95 are computed using the appropriate gamma distribution Gamma(Nj + 
γ, Ej + δ). The four hyperparameters (γ0, δ0, γ, δ) will differ for each response variable, just 
as the RGPS-ELR parameter α does.  They should be stored with the coefficients and 
made available to the user as in the current ES-ELR implementation. 
 
Note the recommendation to replace the use of the posterior geometric mean (EBGM) by 
the posterior mean (EBRRR) in RGPS.  Historically, we recommended posterior 
geometric mean rather than posterior mean in MGPS at a time when EB05 was not being 
computed and we felt that the EBGM would be preferred because it would be smaller and 
thus more conservative, less subject to false alarms.  Now EB05 fulfills this role.  In more 
general epidemiology applications, statisticians don’t estimate the geometric mean of a 
relative risk, they estimate the mean of a relative risk.  The introduction of RGPS might 
serve as an opportunity to change back to the more intuitive measure.  Maybe the 
difference would also help remind the user that they are using the new program.  [But 
possibly a switch would only serve to confuse the previous users of MGPS.] 
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Empirical Assessment of RGPS 

Signal Detection Statistics- A Comparison with MGPS 

 
We compare MGPS and RGPS to identify differences between the two methods. As part 
of this evaluation we provide a high-level summary of the differences between the two 
methods with respect to the disproportionality estimates (relative reporting ratios) they 
produce, and aim to identify cases (DECs) for which the two methods produce 
contradictory results. Contradictory results are identified by examining whether or not the 
two methods produce disproportionality confidence intervals which overlap one another. 
Interesting cases are those in which the methods produce non-overlapping confidence 
intervals. These are also cases which are potential indicators of confounding and masking 
biases that are detectable by RGPS, but not by MGPS. 
 
The comparison is based on the public release version of AERS (and SRS) covering the 
period from 1968 through 2011Q3 (4,784,337 reports). We focus only on those events 
(preferred terms) having at least 100 reports, and on DECs having at least 5 reports. This 
limits our comparison to DECs with tighter nominal confidence intervals, and thus allows 
us to focus on differences that are likely attributed to the methods. The stratification 
variables used for the computation of MGPS and RGPS include, age (0-1, 2-4, 5-12, 13-
16, 17-45, 46-75, 76-85, >85), gender, and year of report. The age and gender strata 
include an extra category "unknown".  
 
Table 1 provides high-level summary statistics of the differences between MGPS and 
RGPS with respect to the disproportionality estimates, EBGM, EB05, EB95, EBRRR, 
RRR05, and RRR95. Differences are measured on the log scale. The table suggests that on 
average RGPS produces more conservative (smaller) disproportionality estimates than 
MGPS, and that on average RGPS produces tighter confidence intervals than MGPS. The 
average amount of reduction in the disproportionality estimates and the confidence 
intervals is roughly 35% and 50% respectively (on the linear scale). 
 
 
 

Table 1. high-level summary statistics of the differences between MGPS and RGPS 

 
log (EBGM/EBRRR) log(EB05/RRR05) log [(EB95-EB05)/(RRR95-RRR05)] 

Min. -3.91 -3.92 -3.82 
1st Qu. -0.01 0.00 0.06 
Median 0.24 0.25 0.33 
Mean 0.30 0.30 0.40 
3rd Qu. 0.54 0.54 0.65 
Max. 6.74 6.74 6.79 
Sd 0.54 0.52 0.59 
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Table 2 provides summary statistics (counts) related to cases (DECs) where the two 
methods produce non-overlapping confidence intervals or suggest contradictory signaling 
conclusions based on the commonly used default thresholds values of 1 and 2. The table 
shows that for roughly 20% of the DECs examined the two methods produce non-
overlapping confidence intervals, of which the majority (18%) represent cases where 
MGPS produces larger disproportionality estimates (RRR95< EB05). That is, cases where 
the lower bound EB05 of MGPS is larger than the upper bound RRR95 of RGPS. For 
roughly 5% of the DECs the methods suggest contradictory signaling conclusions. The 
majority of these DECs (4%) represent cases were RGPS suggests that there is no signal 
(RGPS' confidence interval covers the null hypothesis, i.e., RRR05<1<RRR95), whereas 
the lower bound of MGPS suggests a potential signal (EB05>2). These are also the cases 
that potentially identify confounding biases undetectable by MGPS, but accounted for by 
RGPS. By the same token the table shows that there are cases (very few) that represent 
potential masking biases, which are accounted for by RGPS. Overall, it appears that 
RGPS reports many fewer signals than MGPS using the default threshold value of 2. 
Whether this represents better specificity or worse sensitivity merits further examination, 
but the next experiment provides some insights into this question. 
 
 

Table 2. Difference between MGPS and RGPS based on confidence intervals. 

Condition  
Number of DECs with 

condition 
Type of 

potential bias 

    Baseline 
   Events with at least 100 reports and DECs with at least 5 

reports 1,041,404 100% 
 

    CI overlap 
   RRR95 < EB05 192,486 18% 

 EB95 < RRR05 18,847 2% 
 RRR05 < 1 < RRR95 < EB05 103,991 10% confounding 

EB05 < 1 < EB95 < RRR05 894 0% masking 

    Signals based on default thresholds 
   EB05 ≥ 2 127,852 12% 

 RRR05 ≥ 2 28,311 3% 
 RRR05 < 1 < RRR95 < EB05 and EB05 ≥ 2 38,956 4% confounding 

EB05 < 1 < EB95 < RRR05 and RRR05 ≥ 2 82 0% masking 
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Performance Evaluation Based on the OMOP Gold Standard 

 
We evaluate the diagnostic performance of RGPS, and compare it with performance of 
other algorithms based on the OMOP gold standard17, 18. The OMOP gold standard 
consists of a total 398 test cases, of which 164 (41%) are positive test cases and 234 (59%) 
are negative controls. Each test case corresponds to a drug-event pair. The entire gold 
standard spans 181 unique drugs and 4 unique events, acute myocardial infarction, acute 
renal failure, acute liver injury, and gastrointestinal bleeding. The majority of drugs in the 
gold standard belong to the drug classes of NSAIDs, antibiotics, antidepressants, ACE 
inhibitors, beta blockers, antiepileptics, and glucose lowering drugs. Each test case (a 
drug-event pair) is classified as a positive test case or negative test case (control) based on 
the following criteria:  
 
Positive test cases 
• Event listed in Boxed Warning or Warnings/Precautions section of active FDA 

structured product label. 
• Drug listed as ‘causative agent’ in Tisdale et al, 2010: “Drug-Induced Diseases”19 
• Literature review identified no powered studies with refuting evidence of effect 
 
Negative control  
• Event not listed anywhere in any section of active FDA structured product label 
• Drug not listed as ‘causative agent’ in Tisdale et al, 2010: “Drug-Induced Diseases”  
• Literature review identified no powered studies with evidence of potential positive 

association 

The AERS data used in this evaluation corresponds to the public release version of AERS 
(and SRS) covering the period from 1968 through 2011Q3. The drugs making up the gold 
standard are specified at the ingredient level. Therefore, drug names in AERS were 
normalized at the single ingredient level, so as to be consistent with the drug specification 
of the gold standard. In particular, an AERS report mentioning a combination drug with 
two or more ingredients was treated as if each ingredient had been mentioned separately 
in the report. Each event in the gold standard is defined by a group of MedDRA preferred 
terms (PTs). OMOP provides alternative definitions for each event ranging from broad to 
narrow (more specific) definitions. We used the broadest definition for each event. To 
match these definitions we created user-defined (custom) event terms within Empirica 
Signal. Of the 181 drugs appearing in the gold standard, 163 matched exactly with single 
ingredients appearing in AERS, and 17 drugs were manually matched. One drug 
(endopeptidases) did not appear in the AERS drugs dictionary, resulting in 4 negative test 
cases being removed from the gold standard. The remaining 394 test cases were used in 
this analysis.  
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The methods evaluated include: RGPS, ES-ELR, ES-LR (logistic regression), MGPS, 
PRR, and ROR as implemented in Empirica Signal v7.3. The stratification variables used 
for the computation of RGPS, ES-ELR, ES-LR, and MGPS include age (0-1, 2-4, 5-12, 
13-16, 17-45, 46-75, 76-85, >85), gender, and year of report. The age and gender strata 
included an extra category- "unknown". The computation of PRR and ROR did not use 
stratification. ES-LR and ES-ELR were configured to include a set of 300 drugs as 
predictors, of which 181 are the drugs defining the gold standard and the remaining are 
automatically selected by Empirica Signal (the drugs most frequently reported with the 
response AE and having a minimum of 5 such reports). For each of these methods we 
examine two disproportionality values, the point estimate centrality measure (EBRRR, 
ELROR, LROR, EBGM, PRR, ROR), and the lower bound of its associated 90% 
confidence interval (RRR05, ELR05, LR05, EB05, PRR05, ROR05). 
 
Of the 394 tests cases used in this analysis, 9 drug-event pairs (including 3 positive test 
cases) were not reported in AERS. Each method evaluated was assigned a 
disproportionality value equal to 0 for each of these 9 test cases.  
 
To separate the intrinsic properties of the methods from their threshold implementation 
we use the threshold agnostic performance metric—the area under the receiver operating 
characteristic curve (AUC) metric, as the main performance metric with which we 
compare diagnostic performance. 
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Figure 1 displays a performance (diagnostic accuracy) comparison based on the AUC 
metric. The performance of each method is evaluated using the two disproportionality 
measures described above. The evaluation suggests that RGPS outperforms the 
competing methods in terms of diagnostic accuracy, including the main comparators 
MGPS and ES-ELR, and often by a significant margin (e.g., 10% for RGPS vs. MGPS). 
Based on the RRR05 measure RGPS results in an AUC=0.86, whereas MGPS (EB05) and 
ES-ELR (ELR05) result in AUC=0.79 and AUC=0.83 respectively. While the AUC 
confidence intervals display a pattern of overlap between methods, p-values for the 
hypothesis of no difference between AUCs, based on a test for correlated ROCs, suggest 
that the differences between  RGPS, MGPS, and ES-ELR are significant at the standard 
5% level. The figure also suggests that the lower bound measures are better signaling 
proxies.  
 
 

 
Figure 1. Performance comparison based on the AUC metric and the OMOP gold standard 
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Figure 2 displays the receiver operating characteristic curves produced by each method. 
The figure demonstrates that RGPS (RRR05) generally provides greater specificity at a 
given level of sensitivity than any of the other methods for almost the complete range of 
operating scenarios. 
 

 
Figure 2. Receiver Operating Characteristic curves for the EB05, PRR05, ROR05, LR05, ELR05, 

RRR05 measures, based on the OMOP gold standard. 
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Screening for Drug-Drug Interactions in RGPS 

 
The calculations for estimating the effect of drug-drug interactions on the response are 
based on reusing the ELR estimates from the main effects estimation, so there is no 
additional model fitting, but there are steps for computing expected counts and for 
Bayesian shrinkage of ratios of counts that represent the potential effects of drug 
interactions. Our measure of drug-drug interaction is to compare the relative reporting 
rate when both drugs are present to the higher of the two drugs’ relative reporting rates. 
Calculating, storing and presenting interaction estimates for all drug1-drug2-AE triples 
would be burdensome and potentially wasteful, and so we also suggest strategies for 
filtering the set of all triples. A primary strategy is to only look at pairs of drugs (j, k) 
among drugs where both Nj and Nk (the cross-counts of each of the two drugs with the 
response AE) are at least equal to some value N_Intmin. (For example, N_Intmin = 25.) 
Thus, assume that Jint such drugs have been identified, so that interaction calculations are 
performed for all Jint(Jint – 1)/2 drug pairs (j, k). 

Expected counts 
 
Let njk be the number of reports containing both drug j and drug k, and let Njk be the 
number of those reports that also mention the response AE of interest. Let EBRRRj and 
EBRRRk be the corresponding disproportionality estimates for the two drugs based on 
the RGPS analysis discussed in Section 2. As in that Section, define, for each report i, 
 
 pi = Pα(µi = β0g(i) + Σj Xijβj)                     [in the summation, j varies over all drugs] 
 
Now define Ejk as the expected value of Njk under the null hypothesis that both drug j and 
drug k have no relative reporting ratio effect, namely 
 
 Ejk = Σi Xij Xik Pα(µi − βj – βk)                                                          1 < j < k < Jint 
 
where, as before, we take βj or βk as 0 if the corresponding drug was not in the ELR 
model. As mentioned above, we interpret “no interaction” to mean that the 
disproportionality ratio for both drugs (that is, the ratio Njk/Ejk) is expected to be the 
higher of EBRRRj and EBRRRk. Therefore, we define the no-interaction expected count 
as 
 
 E*

jk = Ejk*max(EBRRRj, EBRRRk) 
 

Bayesian interaction estimates 
 
There will be Jint(Jint – 1)/2 raw interaction ratios of the form 
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 INTRRjk = Njk/E*

jk 
 
These ratios will have large relative sampling variances because many of the Njk and/or 
E*

jk will be small. Bayesian interaction ratios are estimated using yet another application of 
the gamma-Poisson model. We use a one-parameter prior distribution Gamma(γ1, γ1), 
having mean 1, as a model for the means of INTRRjk, and estimate γ1 by inputting the set 
of (Njk, E

*
jk) into the empirical Bayes estimation. Then we have the posterior mean of the 

interaction ratio as 
 
 INTEBjk = (Njk + γ1)/(E*

jk + γ1) 
 
The posterior 5% and 95% limits, INT05jk and INT95jk, are the corresponding quantiles 
of the distribution Gamma(Njk + γ1, E*

jk + γ1). 
 

Further filtering of interaction estimates 
 
After computing the raw and Bayesian interaction ratios for all Jint(Jint – 1)/2 pairs of drugs 
for a given response AE, we may wish to suppress the “uninteresting” ones. This is 
justified by the fact that the empirical Bayes estimation largely corrects for reversion to the 
mean caused by excess variance. Since a complete run of RGPS may involve up to 15,000 
MedDRA preferred terms (PTs) as response AEs, even the reduction to Jint(Jint – 1)/2 
pairs for each AE may involve ungainly amounts of disk storage and an awkward user 
interface. We suggest only presenting interaction estimates if 
 
 INT05 > int05min   or   INT95 < int95max    
 
with default values int05min = 1 and int95max = 1/3. (The value of searching for very low 
interaction ratios has not yet been established, but they often do occur and could merit 
further investigation.) 
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