

[1] Oracle® Life Sciences Data Hub
Adapter Toolkit Guide

Release 2.4.8

E95834-01

May 2018

Oracle Life Sciences Data Hub Adapter Toolkit Guide, Release 2.4.8

E95834-01

Copyright © 2011, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Finding More Information .. vii
Documentation Accessibility .. vii

1 About Adapters

About Adapters... 1-1
Adapter Components... 1-2
Components and the User Interface ... 1-4

2 Designing an Adapter

Preparation... 2-1
Requirements for Load Set, Data Mart, Program, and Business Area Adapters 2-2

Load Set Adapter Requirements.. 2-2
Definition ... 2-2
Installation ... 2-2
Execution.. 2-2

Data Mart Adapter Requirements ... 2-3
Definition ... 2-3
Installation ... 2-3
Execution.. 2-3

Program Adapter Requirements.. 2-3
Definition ... 2-4
Installation ... 2-4
Execution.. 2-4

Business Area Adapter Requirements .. 2-5
Definition ... 2-5
Installation ... 2-5
Launching the Visualization Tool .. 2-5

Planning Adapter Areas .. 2-6
Planning Technology Types... 2-6
Planning Services ... 2-7
Planning PL/SQL Functions and Procedures .. 2-8

Object Definition Functions and Procedures ... 2-9
Column_Upload_Function .. 2-9
Auto_Add_Tab_Desc_Function... 2-10

iv

Auto_Add_Tab_Desc_LOV.. 2-11
Define_Time_Function.. 2-11
Status_Recalc_Function... 2-12

Object Installation Functions .. 2-13
Pre_Install_Function.. 2-13
Install_Function.. 2-13
Post_Install_Function .. 2-14

Object Execution Functions and Procedures... 2-14
Build_IDE_Cfg_Function.. 2-14
Build_Exe_Cfg_Function .. 2-17
Pre_Execution_Function ... 2-17
Execution_Function ... 2-17
Post_Execution_Function.. 2-19
Currency_Function .. 2-20
Security_Recalc_Function ... 2-21

Planning Parameters and Parameter Sets ... 2-21
General Define-Time Parameters.. 2-21
Table Descriptor Define-Time Parameters .. 2-22
Runtime Parameters ... 2-22

Adding Lookup Values .. 2-23
Planning Planned Outputs .. 2-23
Planning Data Structures ... 2-23
Planning for Object Execution.. 2-24

Execution Process.. 2-24
Execution Command .. 2-25

Planning Security .. 2-26
Planning Integrated Development Environment Adapters.. 2-26

IDE Launch Process from Within Oracle Life Sciences Data Hub... 2-26
Synchronizing Security with Integrated Environments .. 2-27

Enforcing Security on Corresponding External Entities .. 2-27
Establishing Context ... 2-28
Tracking and Removing Object Access .. 2-28

Adding Source Code Types... 2-30
Planning Navigation in the External System to Business Areas .. 2-31
Editing cdrconfig.xml ... 2-31
Creating Subdirectories on IDE Computers.. 2-32

3 Developing an Adapter

Adapter Development Process... 3-1
Planning Programs and Packages ... 3-3
Using the Security API Package During Development .. 3-4

4 Using APIs to Create Required Metadata Objects

Retrieving IDs ... 4-2
Getting Your Company ID.. 4-2
Getting an Object's Prref_Id and Prref_Ver.. 4-2

Creating a Technology Type .. 4-2

v

Call the Create Technology Type API... 4-2
Sample Technology Type Settings... 4-4

Modifying a Technology Type .. 4-5
Creating an Adapter Domain ... 4-5

Call the Create Adapter Domain API ... 4-5
Save the Adapter Domain ID for Future Use... 4-6

Modifying an Adapter Domain ... 4-6
Creating an Adapter Area ... 4-6

Call the Create Adapter Area API ... 4-7
Save the Adapter Area ID for Future Use ... 4-11
Sample Adapter Settings.. 4-11

Modifying an Adapter Area .. 4-13
Assigning a User Group to the Adapter Area .. 4-13

User Interface Method.. 4-14
API Method.. 4-14

Creating a Work Area ... 4-14
Call the Create Work Area API ... 4-15
Save the Work Area ID for Future Use .. 4-16

Creating a Program Definition and Instance ... 4-16
Query for the Tech Type ID... 4-17
Call the Create Program API ... 4-17
Save the Program Definition and Instance IDs for Future Use .. 4-18

Creating a Source Code Definition and Instance.. 4-18
Call the Create Source Code API .. 4-18

Creating a Variable ... 4-21
Call the Create Variable API.. 4-21
Save the Variable ID for Future Use... 4-23
Check in the Variable.. 4-23

Creating a Parameter... 4-23
Call the Create Parameter API .. 4-24
Save the Parameter ID for Future Use ... 4-27
Check in the Parameter .. 4-27

Creating a Parameter Set .. 4-28
Call the Create Parameter Set API .. 4-28
Save the Parameter Set ID for Future Use ... 4-30

Creating a Parameter Instance in a Parameter Set .. 4-30
Call the Create Parameter API .. 4-30

Creating a Table Definition .. 4-32
Call the Create Table API... 4-32
Call the Create Column API .. 4-34

Installing the Work Area ... 4-35

5 Using the Generic Visualization Adapter

Generic Visualization Adapter APIs .. 5-2
Initializing the Business Area Instance ... 5-2
Resetting a Generic Visualization Business Area .. 5-3
Getting Possible Blinding Types of a Business Area Instance... 5-4

vi

Getting Snapshot Labels Common to All Tables in a BA Instance for a Given Blinding Access
Type 5-4

Generic Visualization Adapter Views ... 5-5
Display User’s Business Area Instances ... 5-5
Retrieve Table Instance Details .. 5-6

Generic Visualization Business Area Instance Attributes ... 5-7
Schema Name ... 5-7
Default Currency.. 5-7
Default Blinding Access Type .. 5-8

Generic Visualization Adapter Security.. 5-8
Database and User Accounts.. 5-8
Object Security .. 5-9
Data Blinding and Currency... 5-9
Auditing... 5-9

Generic Visualization Adapter Definitional Components ... 5-10

6 Checking In Objects and Setting Their Validation Status

Running the Validation API .. 6-1
Explicitly Checking In an Object .. 6-2

7 Setting Up an Adapter

Defining a Service Location, Service, and Service Instance .. 7-1
Defining Remote Locations and Connections .. 7-1
Assigning User Groups to the Adapter Area .. 7-1
Installing and Starting the Distributed Processing Server .. 7-2
Edit cdrconfig.xml .. 7-2

8 Shipping an Adapter

vii

Preface

This book contains information on developing adapters to integrate Oracle Life
Sciences Data Hub (Oracle LSH) with external systems.

Finding More Information

Oracle Help Center
The latest user documentation for Oracle Life Sciences Data Hub is available at
http://docs.oracle.com/en/industries/health-sciences/lsh-248.

My Oracle Support
The latest release notes, patches and white papers are on My Oracle Support (MOS) at
https://support.oracle.com. For help with using MOS, see
https://docs.oracle.com/cd/E74665_01/MOSHP/toc.htm.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

http://docs.oracle.com/en/industries/health-sciences/lsh-248
https://support.oracle.com
https://docs.oracle.com/cd/E74665_01/MOSHP/toc.htm

viii

1

About Adapters 1-1

1 About Adapters

This section contains the following topics:

■ About Adapters on page 1-1

■ Adapter Components on page 1-2

■ Components and the User Interface on page 1-4

About Adapters
Oracle Life Sciences Data Hub (Oracle LSH) is designed for integration with other
systems to:

■ Load data into Oracle LSH from another system

■ Copy Oracle LSH data into a file for export

■ Transform and report Oracle LSH data using external technologies as integrated
development environments (IDEs)

■ Allow read-only access to specified Oracle LSH data through a visualization tool

Oracle LSH ships with adapters to other systems for each of these purposes. If you
want to integrate Oracle LSH with a different system, you can create your own
adapter.

There is a specialized object type in Oracle LSH for each of these purposes: Load Sets
for loading data, Data Marts for exporting data, Programs for manipulating and
reporting on data, and Business Areas for specifying the data available to a
visualization tool. Oracle LSH developers, or Definers, define an object of the
appropriate type in order to accomplish any of these tasks. When you create an
adapter, you make it possible for Definers to create a new type of Load Set, Data Mart,
Program, or Business Area that uses the logic required by your system.

For example, if you create a Load Set adapter, when a Definer creates a new Load Set
in Oracle LSH, your adapter appears in the Load Set/Adapter Type drop-down list in
the Create Load Set page. If the Definer selects your adapter type, the attributes you
have defined for the adapter (if any) appear on the Load Set definition page and the
Definer must provide values for them and specify the source data files or tables to
complete the Load Set definition. Using the new Load Set, Definers and other users
can load data into Oracle LSH from your external system. Your adapter type is also
available to the public API for creating Load Sets.

Oracle LSH includes the following adapters:

■ Load Set adapters. Oracle LSH ships with Load Set adapters for SAS and text files,
Oracle tables and views, and Oracle Clinical.

Adapter Components

1-2 Oracle Life Sciences Data Hub Adapter Toolkit Guide

■ Data Mart adapters. Oracle LSH includes Data Mart adapters to copy Oracle LSH
data to SAS data sets, SAS CPort and XPort files, text files, and Oracle Export files.

■ Program adapters. Oracle LSH includes Program adapters to allow users to write
data transformation and/or reporting programs in SAS, SQL Developer,
SQL*Plus, Oracle Reports, Oracle Business Intelligence Publisher, and Informatica
PowerCenter.

■ Business Area adapters. Oracle LSH includes Business Area adapters for Oracle
Business Intelligence Enterprise Edition (OBIEE), including its Administration tool
and Presentation Services.

Note: Oracle LSH also includes a Generic Visualization Adapter that
is available for use with other visualization tools. To use this adapter,
follow instructions in Chapter 5, "Using the Generic Visualization
Adapter". You do not need to follow instructions in any other chapter.

Adapter Components
An adapter includes the following components. See Chapter 2, "Designing an
Adapter" for more information.

■ Defined Objects. You must created defined objects in Oracle LSH to create an
adapter in the same way you do to create an application in Oracle LSH, in a
similar hierarchy; see the Oracle Life Sciences Data Hub Application Developer's Guide
for more information. You use public APIs to create these objects. The following
objects, which are illustrated in Figure 1–1, are required except as noted:

– Adapter Domain. Each adapter must have one Adapter Domain to hold all
the other defined objects.

– Adapter Area. Each adapter must have one Adapter Area in the Adapter
Domain to hold object definitions and the adapter's Work Area. If your
external system interacts with Oracle LSH in multiple ways, you may need to
create multiple adapters. You can create a single Adapter Domain containing
one Adapter Area for each adapter.

An Adapter Area has attributes that identify functions you write that are
required during Load Set, Data Mart, Program, or Business Area definition,
installation, and execution. Other attributes determine which buttons are
enabled in the user interface and which functions are required for your
adapter. The Adapter Areas table (CDR_ADAPTER_AREAS) also includes a
column for the Tech Type ID.

– Work Area. Each Adapter Area must have one and only one Work Area in the
Adapter Area to hold an instance of the Program. You install the Work Area
and Program instance to create a database schema for the adapter that
contains the PL/SQL packages that you write.

– Program. Each adapter must have a Program definition inside the Adapter
Area and an instance of it in the Work Area.

If more than one person is writing the functions required for the adapter, you
may want to put each person’s package in a different Program so that they can
install and test their functions at different times.

– Source Code. Each adapter must have at least one Source Code definition and
instance inside the Program to contain the PL/SQL functions and procedures
you write. You can include all functions and procedures in one or more

Adapter Components

About Adapters 1-3

defined Source Code objects (one PL/SQL package per Source Code object) in
one or more Program objects.

– Parameters and Parameter Sets. If your adapter requires user input, you must
define Parameters and their underlying Variables to receive the input. Each
Parameter you define must be contained in a Parameter Set with a predefined
name. The system looks for each Parameter Set by name at a different time
during object definition and execution.

– Remote Locations and Connections. If your adapter is for an Oracle-based
product, you need to create defined objects to register remote locations and
connections.

– Tables. If your system has a fixed data structure from which you want to load
data into Oracle LSH, you may want to define that structure in the adapter
itself.

■ Technology Type. You run an API to add a row to the internal Tech Types table
(CDR_TECH_TYPES). This table has columns to store the names of functions you
write that are required during Load Set, Data Mart, Program, or Business Area
installation or execution.

■ PL/SQL Functions and Procedures. For each action a user performs in the user
interface (UI) to define or install a Load Set, Data Mart, Program, or Business Area,
or to run a Load Set, Data Mart, or Program or launch a visualization tool, you
must write a PL/SQL function or procedure to do the work. You must also enter
the name of each function or procedure as a value in the appropriate column when
you run the Create Tech Type or Create Adapter Area API.

You write these functions and procedures in one or more PL/SQL packages and
upload each package as the source code file for a defined Source Code object in the
defined Program in your Adapter Area.

■ Service Type(s). Create a new service type for each new technology type.

■ Lookup Values. Extend the Technology Types and Service Types lookups for each
technology type and service type you add. If you need new file types, extend the
File Types lookup as well.

Components and the User Interface

1-4 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Figure 1–1 Adapter Components and Their Relationships

The diagram shows the metadata object owning relationships for the adapter. All
metadata is contained in the Adapter Domain except the technology type. The arrows
in the Adapter Domain portion of the diagram show references between object
definitions and instances; these are standard Oracle LSH object relations and you
create the definition and instance at the same time, using an API. The Work Area is
installed as a set of database schemas that store the custom functions and procedures
you write. Each custom function’s name is stored in a column of either the Adapter
Areas or Tech Types table (CDR_ADAPTER_AREAS or CDR_TECH_TYPES). Each
Adapter Area stores the ID of its primary technology type.

Components and the User Interface
Your adapter allows Oracle LSH Definers to create a new type of Load Set, Program,
Data Mart, or Business Area.

Components and the User Interface

About Adapters 1-5

Figure 1–2 Selecting the Adapter Type During Object Creation

When a Definer creates an object of any type, he or she must select an adapter type.
The system adds the name you define for the Adapter Area to the list.

Figure 1–3 Object Properties User Interface

Note: The above "screenshot" is an amalgam of buttons and options
from different object types and states.

Components and the User Interface

1-6 Oracle Life Sciences Data Hub Adapter Toolkit Guide

User interface elements for all objects interact as follows with adapter components:

1. The Apply button calls the status_recalc_function for Data Marts. For Programs
and Load Sets this function is called on checkin and checkout; see "Status_Recalc_
Function" on page 2-12 .

2. The Submit button (available for Programs, Load Sets, and Data Marts only)
opens the Execution Setup page displaying the Parameters in the runtime
Parameter Set PARAMETERSET_LOADSETLEVEL_RUN, if any, so that the user
can enter values and click Submit again to actually run the Program, Load Set, or
Data Mart. The system then automatically generates and dequeues an XML
message file and calls the execution function(s) specified for the technology type
and Adapter Area. Execution also requires a service type and an execution
command to invoke the external system; see "Planning for Object Execution" on
page 2-24 and "Object Execution Functions and Procedures" on page 2-14.

3. The Launch button (available for Programs and Business Areas only) invokes the
custom function Build_IDE_Cfg_Function. This button becomes active after the
user installs the current version of the Program or Business Area.

Note: Launch IDE functionality is not available using the Generic
Visualization adapter.

4. The Install button calls the installation function(s) specified for the technology
type; see "Object Installation Functions" on page 2-13.

5. Object Attributes are the Parameters you define in the Parameter Sets named
PARAMETERSET_LOADSETLEVEL_DEF and PARAMETERSET_
OPERATORLEVEL. They collect user input to use during object definition and
Table Descriptor definition respectively; see "Planning Parameters and Parameter
Sets" on page 2-21.

6. The Add Table Descriptor button requires the Adapter Area flag allow_manual_
tab_desc_flag to be set to Yes to be active. Users can then manually add Table
Descriptors. If this flag is set to No, the button is not available and the adapter
define-time functions must create the Table Descriptors required.

The Upload and Upload Columns buttons for Programs and Load Sets are
displayed if the AllowAutoAddTabDesc and Allow_column_upload flags,
respectively, are set to Yes or File. You can then write custom definition
procedures that call APIs to upload either the whole Table Descriptor structure or
just the Columns.

See "Object Definition Functions and Procedures" on page 2-9 for information on
the related functions.

7. The Source Code tab is available for Programs and Business Areas only. No
adapter-specific code is required to upload a source code file from the integrated
development environment (IDE).

8. The Parameters tab can contain Parameters that you define in the adapter
Parameter Set named PARAMETERSET_LOADSETLEVEL_RUN to collect user
input. For example, all SAS Data Marts have predefined Parameters for Mode
(CPORT or XPORT) and Zip Result Flag (No or Zip) that the Definer can set
during Data Mart definition or the user can set at runtime.

The Parameters tab can also contain Parameters created by a Definer. These are
contained in a different Parameter Set and are handled automatically by the

Components and the User Interface

About Adapters 1-7

system; you do not need to write code or add parameters to any adapter
Parameter Set to support this.

You may need to write your execution function to handle any additional
Parameters the definer may create and pass them to the particular program at
execution.

9. Planned Outputs You can use the define_time_function to create predefined
Planned Outputs for all objects created using your adapter; for example, as a
placeholder for Data Mart data files or log or error files for any object type.

In addition, you can use the status_recalc_function, which is invoked each time an
object is modified, to automatically create a Planned Output when a Definer adds
an object that requires it; for example:

■ Write the status_recalc_function so that it automatically creates a new data file
for the new Table Descriptor each time a Definer adds a Table Descriptor to a
Data Mart of your adapter type.

■ Write the status_recalc_function so that it automatically creates a new log
and/or error file each time a Definer adds a Source Code object to a Program.

The system automatically provides the functionality for Definers to create Planned
Outputs in Program definitions.

Components and the User Interface

1-8 Oracle Life Sciences Data Hub Adapter Toolkit Guide

2

Designing an Adapter 2-1

2 Designing an Adapter

This section contains the following topics:

■ Preparation on page 2-1

■ Requirements for Load Set, Data Mart, Program, and Business Area Adapters on
page 2-2

■ Planning Adapter Areas on page 2-6

■ Planning Technology Types on page 2-6

■ Planning Services on page 2-7

■ Planning PL/SQL Functions and Procedures on page 2-8

■ Planning Parameters and Parameter Sets on page 2-21

■ Adding Lookup Values on page 2-23

■ Planning Planned Outputs on page 2-23

■ Planning Data Structures on page 2-23

■ Planning Security on page 2-26

■ Planning for Object Execution on page 2-24

■ Planning Integrated Development Environment Adapters on page 2-26

Preparation
To prepare for designing an adapter, you may find it helpful to:

■ Read Chapter 1, "About Adapters" and Chapter 3, "Developing an Adapter".

■ Familiarize yourself with the Oracle LSH user interface for creating the relevant
object type—Load Set, Data Mart, Program, or Business Area—and read the
corresponding chapter of the Oracle Life Sciences Data Hub Application Developer's
Guide.

■ You may want to create a Load Set, Data Mart, Program, or Business Area of each
existing type in the user interface and compare each one to the Adapter Areas and
Tech Types column values for the corresponding adapter type. You can see the
actual settings for shipped Oracle LSH adapters through two views, CDR_
ADAPTER_AREAS_V and CDR_TECH_TYPES_V.

■ Read the chapter on execution in the Oracle Life Sciences Data Hub Application
Developer's Guide and the chapter on services in the Oracle Life Sciences Data Hub
System Administrator's Guide. The Oracle Life Sciences Data Hub System
Administrator's Guide also has chapters on setting up security for some shipped

Requirements for Load Set, Data Mart, Program, and Business Area Adapters

2-2 Oracle Life Sciences Data Hub Adapter Toolkit Guide

adapters that show different ways of synchronizing security between Oracle LSH
and external systems.

■ Read the Reference Information section about APIs in the Oracle Life Sciences Data
Hub Application Programming Interface Guide.

■ Understand the external system for which you are creating an adapter.

Requirements for Load Set, Data Mart, Program, and Business Area
Adapters

This section contains the following topics:

■ Load Set Adapter Requirements on page 2-2

■ Data Mart Adapter Requirements on page 2-3

■ Program Adapter Requirements on page 2-3

■ Business Area Adapter Requirements on page 2-5

The functionality required for an adapter depends in large part on whether the
adapter's purpose is to load data into Oracle LSH (Load Set adapters), export data
from Oracle LSH (Data Mart adapters), transform data (Program adapters) or to allow
an external tool to view data contained in Oracle LSH (Business Area adapters).
However, the requirements also vary depending on the external system.

Load Set Adapter Requirements
Load Set adapters ensure that Load Sets of their type have target Table Descriptors
with the same metadata structure as in the source system and must actually transfer
data to Oracle LSH. Or, if the external system is Oracle-based, you may also be able to
provide the option to create pass-through views so that users can view data live in the
source system from Oracle LSH.

Definition
During Load Set definition, a Load Set adapter may need to do the following:

1. Receive information from the user on the location from which to upload or copy
metadata structures; see "Planning Parameters and Parameter Sets" on page 2-21.

2. Connect to the source data system.

3. Upload columns or otherwise copy the metadata structure of the data to be loaded
to one or more Oracle LSH Table Descriptors and their source Table definitions.

For some adapters, such as the shipped Text Load Set adapter, this is not possible
and the user must manually define the metadata structure (Table Descriptor).

Installation
Most Load Set adapters are not required during Load Set installation. However, the
tech types table stores installation function names and you can write them if you need
them; see "Object Installation Functions" on page 2-13.

Execution
At runtime, a Load Set adapter may need to do the following:

1. Verify that the transport mechanism is available.

Requirements for Load Set, Data Mart, Program, and Business Area Adapters

Designing an Adapter 2-3

2. Verify that the structure of the incoming data is the structure expected by Oracle
LSH, and return an error if it is not.

3. Verify the source data currency.

4. Write data to targets in Oracle LSH.

5. Return results and status.

Data Mart Adapter Requirements
Data Mart adapters enable users to create data files for their technology type,
containing data from one or more Oracle LSH Table instances—either all data, with
audit information, or all data at a particular timestamp (including current data).
Depending on the technology, it may be appropriate to create one file per Table
instance or to combine all data in a single file. It may be appropriate to zip the file.

Definition
A Data Mart adapter does not require custom functions to set up source data
structures during Data Mart definition because the source data structures are within
Oracle LSH.

Most Data Marts require:

■ One Planned Output defined object in the Data Mart definition to serve as a
placeholder for each Data Mart output file, including the log file; see "Planning
Planned Outputs" on page 2-23.

■ Parameters to collect information from the Definer about what data to include or
how to generate the Data Mart; see the chapter on Data Marts in the Oracle LSH
Application Developer's Guide for examples.

■ A function to recalculate their Installable status after each Definer modification
and checkin; see "Status_Recalc_Function" on page 2-12.

Installation
Most Data Mart adapters are not required during Data Mart installation. However, the
tech types table stores installation function names and you can write them if you need
them; see "Object Installation Functions" on page 2-13.

Execution
When a user runs a Data Mart, a Data Mart adapter may need to do the following:

1. Verify that the required technology is available.

2. Write Oracle LSH data from the Table instances mapped to the Data Mart's Table
Descriptors to files in the appropriate format.

3. Store the files in Oracle LSH.

Program Adapter Requirements
Program adapters must do two things that normally require two different technology
types:

■ Enable users to launch an integrated development environment (IDE) from the
Oracle LSH Program UI to develop a program that reads data in Oracle LSH tables
and either generates a report or manipulates data and writes to target tables.

■ Run those user-defined Programs in the appropriate processing engine.

Requirements for Load Set, Data Mart, Program, and Business Area Adapters

2-4 Oracle Life Sciences Data Hub Adapter Toolkit Guide

The IDE part of the adapter may not require an Adapter Domain or Adapter Area or
any other defined objects, but only a technology type and custom functions; see
"Planning Adapter Areas" on page 2-6 and "Planning Integrated Development
Environment Adapters" on page 2-26.

When a Definer clicks the Launch button in an installed Program of the technology
type you create, the adapter must open the appropriate IDE and make the data in the
Table instances mapped to the Program's Table Descriptors available in the IDE.

Since Program IDE adapters allow users to view Oracle LSH data through an external
tool, those adapters must coordinate user privileges between Oracle LSH and the
external system.

Definition
A Program adapter does not require PL/SQL programs to set up source data
structures during Program definition because the source data structures are within
Oracle LSH.

Programs of the new technology type may require special attributes that you must set
up as define-time parameters. Your define_time_function must then collect the
user-specified values of these attributes and handle them appropriately.

You may want to call a public API trom the define_time_function to create a Planned
Output as a placeholder for the log file; see "Planning Planned Outputs" on page 2-23.

Write a function to recalculate their Installable status after each Definer modification
and checkin; see "Status_Recalc_Function" on page 2-12.

Installation
You can use installation functions to synchronize Oracle LSH object metadata with
your adapter’s external system; for example, download the Program’s source code or
the values of the Program’s define-time Parameters; see "Object Installation Functions"
on page 2-13.

Execution
When a user runs a Program, a Program adapter may need to do the following:

1. Verify that the required technology is available.

2. Read Oracle LSH data from the Table instances mapped to the Program's source
Table Descriptors and execute the user-defined source code in the appropriate
processing engine, either to write data to the Table instances mapped to the
Program's target Table Descriptors or to generate a report.

3. Check the source data currency.

4. Generate a log file.

5. Store the output(s) in Oracle LSH.

Requirements for Load Set, Data Mart, Program, and Business Area Adapters

Designing an Adapter 2-5

Business Area Adapter Requirements

Note: A Generic Visualization adapter is available to integrate any
visualization tool with Oracle LSH with much less work than creating
your own adapter; see Chapter 5, "Using the Generic Visualization
Adapter".

However, you may want to create your own adapter in order to use
the following Business Area functionality, which is not available when
you use the Generic Visualization adapter:

■ Launch IDE from the Business Area

■ Define joins and hierarchies in the Business Area

Business Area, or visualization, adapters enable users to create a Business Area
containing Table Descriptors, Joins, and Hierarchies, instantiate them in the Oracle
LSH database, and send the metadata to the visualization system in a form
comprehensible to the visualization system. A user can then launch the visualization
system from Oracle LSH or log in directly to the external system and view data in the
Table instances mapped to the Business Area's Table descriptors. The data remains in
Oracle LSH.

If further definition is required in the external system, the adapter must facilitate that.
You may need to save these externally made changes back to Oracle LSH under
version control. The OBIEE adapter uploads a source code file for this purpose.

Since Business Area adapters allow users to view Oracle LSH data through an external
tool, those adapters must coordinate user privileges between Oracle LSH and the
external system.

Definition
A Business Area adapter does not require custom functions to set up source data
structures during Business Area definition because the source data structures are
within Oracle LSH. However, you may need to use the definition functions for
define-time parameter values or source code.

Note: Joins and hierarchies are automatically available for definition
in any Business Area. The adapter does not have to handle this.

Installation
At installation, a Business Area adapter may need to push Oracle LSH metadata to the
external system and create a corresponding metadata representation appropriate to the
visualization system.

For example, the OBIEE adapter creates an OBIEE Subject Area corresponding to each
OBIEE Business Area. The first time an OBIEE Business Area is installed, the OBIEE
adapter creates a default repository (RPD) file and deploys it on the OBIEE
Presentation Server.

Launching the Visualization Tool
You need to provide the URL required to launch the visualization tool and write a
function (see "Build_IDE_Cfg_Function" on page 2-14) that is tracked in the Tech Types
table.

Planning Adapter Areas

2-6 Oracle Life Sciences Data Hub Adapter Toolkit Guide

For some external visualization systems (for example, OBIEE), you may need to access
the external system in one mode from the Business Area UI and in another mode from
the Visualizations subtab of the Reports tab. Oracle LSH calls the build_ide_cfg_
function in both cases, but detects whether the user is in the Business Area or in the
Reports tab and calls the appropriate environment.

Planning Adapter Areas
Most external systems require only a single Adapter Area. However, you may want to
create multiple Adapter Areas for the same system if, for example, you want to load
many different types of data and/or metadata from the same system. This is true of
the Oracle Clinical adapter, which has a single Adapter Domain containing multiple
Adapter Areas, one for each type of data or metadata loaded.

You need multiple Adapter Areas if the Load Sets, Programs, Data Marts, or Business
Areas created for your external system require:

■ Different define-time or runtime Parameters; see "Planning Parameters and
Parameter Sets" on page 2-21.

■ Different predefined fixed data structures matching those in the external system;
see "Planning Data Structures" on page 2-23.

Your adapter may need multiple technology types but only one adapter type; for
example, if your external system is required both as an integrated development
environment (IDE) and for execution. The IDE part of the adapter may not require an
Adapter Domain or Adapter Area or any other defined objects, but only a technology
type and custom functions (primarily the Build_IDE_Cfg_Function). This is true if the
IDE requires the user to log in (as SAS does). If the adapter does not require the user to
log in , you need to create an Adapter Domain, Adapter Area and other objects.

Planning Technology Types
You must create at least one new technology type for each Adapter Area. Oracle LSH
requires that you follow a naming convention to distinguish between technology
types:

■ If the adapter needs to open an integrated development environment (IDE) you
must create a technology type with a name that ends with the string DEV. The
system calls the Build_IDE_Config_function only for technology types whose
name ends with DEV.

This technology type can handle opening two different IDEs if required, using the
value that the system supplies to an input parameter of the Build_IDE_Cfg_
Function to determine whether the user launched the IDE from the Reports tab or
from a Program or Business Area.

■ If the adapter does not open an IDE, or if it needs to do something in addition to
opening an IDE, create a technology type (or an additional technology type) that
does not have a name that ends with DEV.

You may need more than one technology type of the non-IDE type if your adapter
needs to call two different functions at the same point in processing—that is, if a fork is
required.

For example, the Oracle LSH OBIEE adapter has three technology types,
CDR$OBIEEDEV for the IDE and two others, CDR$OBIEE and CDR$OBIEETMP.
CDR$OBIEE is the base technology type for the OBIEE adapter; the one whose name is
in the tech_types column of the adapter area table. Each of the two has both an

Planning Services

Designing an Adapter 2-7

Execution_Function and a Post_Execution_Function so they cannot coexist in the same
technology type. Instead, the Install_Function of the base OBIEE technology type,
which the system calls during Business Area installation, calls both execution
functions. The execution function of the second technology type is coded to wait until
the post-execution function of the first has completed so that the follow occur in order:

1. Generate the RPD file.

2. Upload the RPD file to the Business Area Source Code definition.

3. Deploy the RPD file to the OBIEE Presentation Server.

4. Restart the OBIEE Presentation Server.

In addition, if your external system uses multiple types of processing—for example,
Java and C++—you must create a technology type for each processing type.

Each technology type definition includes:

■ A unique ID. Contact Oracle Support to get an ID for your technology type that is
unique across all adapters developed for use with Oracle LSH.

■ The object type to be created using the adapter.

■ A service type; see "Planning Services" on page 2-7.

■ The names of functions and procedures to be used during object installation and
execution.

■ Oracle LSH uses Oracle Warehouse Builder (OWB) for job tracking. Specify one of
two possible OWB operators for adapters that run jobs:

■ CdrPLSQLImmediate_1 for external systems that use PL/SQL to execute their
Load Sets, Programs, or Data Marts.

■ CdrSERVICE_1 for external systems that are located on an operating system;
these adapters use the Oracle LSH Distributed Processing (DP) Server to
execute their defined objects.

No OWB operator is required to launch an IDE, so an IDE technology type may
not need an OWB operator. However, if the adapter needs to take an action in the
IDE during or after the launch, its technology type needs the CdrSERVICE_1
OWB operator. For example, the OBIEE 10g adapter needs to copy the RPD file to
OBIEE and restart the Presentation Server the first time an OBIEE Business Area is
installed. It uses this OWB operator for that purpose.

Note: There is one additional OWB operator, CdrDiscovererBA,
which was hardcoded for the former Oracle Discoverer adapter. Do
not use this operator.

Planning Services
Services are required to handle the interaction of Oracle LSH with the external system.
You must create at least one service type for your adapter. A different service type is
required for each technology type. To create a new service type, extend the CDR_
SERVICE_TYPEs lookup; see "Adding Lookup Values" on page 2-23.

Each Oracle LSH installation that uses your adapter must have a service, service
instances, and a service location for each service type required for your adapter
defined in the Oracle LSH user interface. Your custom functions can then make use of
the local information provided in the service, service location, and service instance
definitions, which are stored in the following internal tables:

Planning PL/SQL Functions and Procedures

2-8 Oracle Life Sciences Data Hub Adapter Toolkit Guide

■ CDR_SERVICE_LOCATIONS

■ CDR_SERVICES

■ CDR_SERVICE_INSTANCES

The system assigns a service instance to each job execution and IDE launch. For
information on the function of service instances during job execution, see "Execution
Process" on page 2-24.

If you need to collect additional information about the local installation of Oracle LSH
or your external system, you can use the Details field of the service definition to collect
it. The Details field is not required. The shipped adapters use it in different ways that
are described in the Oracle Life Sciences Data Hub System Administrator's Guide chapter
on services. The user-entered value of the Details field is stored in the DETAILS
column of the CDR_SERVICES table (varchar2(2000) BYTE).

Planning PL/SQL Functions and Procedures
This section contains the following topics:

■ Object Definition Functions and Procedures on page 2-9

■ Object Installation Functions on page 2-13

■ Object Execution Functions and Procedures on page 2-14

For each action a user performs in the user interface (UI) to define or install a Load Set,
Data Mart, Program, or Business Area, or to run a Load Set, Data Mart, or Program or
launch an IDE, you must write a PL/SQL function or procedure to do the work.

Oracle LSH designers have tried to anticipate every possible type of PL/SQL function
or procedure that might be required by any adapter, and have added columns to the
Adapter Areas table and the Tech Types table to store their names and call them at
particular times for particular purposes. Each function and procedure has a required
signature that is described in the following sections.

Note: You are not required to supply every function and procedure.
Write only those that are required for your adapter.

When you run the APIs to create an Adapter Area or Technology Type you enter the
name of each function or procedure as the value for the the appropriate attribute.

Oracle LSH calls each function at the appropriate time (object definition, installation,
or execution) if its name is in the Adapter Areas or Tech Types table, and automatically
passes the required input parameter values to the function.

You include your functions and procedures in one or more PL/SQL packages and
upload each package to a Source Code definition that you create inside the Program
definition in the Adapter Area. If multiple people are coding your adapter at the same
time, you may want to develop these functions and procedures in separate packages;
see "Planning Programs and Packages" on page 3-3.

If you need user input for any of these functions, you need to define Parameter objects
to collect the information in the user interface and refer to these Parameters in your
source code. See "Planning Parameters and Parameter Sets" on page 2-21 for further
information.

Planning PL/SQL Functions and Procedures

Designing an Adapter 2-9

Object Definition Functions and Procedures
This section contains the following topics:

■ Column_Upload_Function on page 2-9

■ Auto_Add_Tab_Desc_Function on page 2-10

■ Auto_Add_Tab_Desc_LOV on page 2-11

■ Define_Time_Function on page 2-11

■ Status_Recalc_Function on page 2-12

All object definition function and procedure names are stored in the adapter_areas
table.

Note: Write define-time functions and procedure so that they use UI
error handling to display any errors they may return in the user
interface.

Column_Upload_Function
(Applies only to Load Set and Program adapters.) Use this function to enable Definers
to upload files (such as a SAS data set or XML file) to create Table Descriptors or Table
Descriptor columns with the same metadata structure as the file.

You can also use this function to read table metadata in a database and create a Table
Descriptor from it.

If you set the Adapter Area flag ALLOW_COLUMN_UPLOAD to File (for a file
system) or Yes (for a database), the Upload Columns button is enabled in the user
interface and the system invokes the column upload function when required; see
"Creating an Adapter Area" on page 4-6.

The system creates a BLOB from the file and passes a name/value pair in the
parameter pi_cNameValuePair with name = TMP_BLOB_ID and a value equal to the
BLOB_ID of the uploaded file. You write the column upload function to read the BLOB
using the ID passed and process it to create either a Table Descriptor, including its
columns, or just columns for an existing Table Descriptor.

Oracle LSH has an Upload button for new Table Descriptors on the Table Descriptor
subtab on the Load Set and Program definition and instance pages. It also has an
Upload Columns button on the Table Descriptor page. The system invokes the
Column Upload function when the user clicks the Upload button in either location.
You can write the function so that it calls the public API CDR_PUB_DF_
TABLE.UPLOADOPERATORCOLUMNS to upload columns or an entirely new Table
Descriptor:

■ If you call the API to create an entirely new Table Descriptor, leave the Object ID
and version parameters null since they do not exist. The API creates a new Table
Descriptor and assigns an Object ID and version number to it.

■ If you call the API from the context of an existing Table Descriptor to update its
columns, pass the Table Descriptor’s Object ID and version number to the API.

In the case of uploading columns to an existing Table Descriptor, the API updates the
existing column definitions in Oracle LSH if there are differences.

If the adapter uploads database table structures, use the following two definition
functions (Auto_Add_Tab_Desc_Function and Auto_Add_Tab_Desc_LOV.

Planning PL/SQL Functions and Procedures

2-10 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Create Parameters in a Parameter Set with the name PARAMETERSET_LOADSETLEVEL_DEF
to collect the name and location of the file—or the remote location and
connection—from the Definer; see "Planning Parameters and Parameter Sets" on
page 2-21 and reference these parameters in your column upload function.

The Column_Upload_Function must have the following signature:

PROCEDURE UploadOperatorColumns (pi_nCompanyID IN CDR_DF_NAMING_V.COMPANY_ID%TYPE
 ,pi_nLSRObjID IN CDR_DF_NAMING_V.OBJ_ID%TYPE
 ,pi_nLSRObjVer IN CDR_DF_NAMING_V.OBJ_VER%TYPE
 ,pi_nOperObjID IN CDR_DF_NAMING_V.OBJ_ID%TYPE
 ,pi_nOperObjVer IN CDR_DF_NAMING_V.OBJ_VER%TYPE
 ,pi_cNameValuePair IN CDR_NAME_VALUE_PAIR_COLL DEFAULT
NULL) IS

The procedure's parameters take values as follows:

■ pi_nCompanyID see "Getting Your Company ID" on page 4-2

■ pi_nLSRObjID takes the Object ID of the Load Set or Program definition.

■ pi_nLSRObjVer takes the object version of the Load Set or Program definition.

■ pi_nOperObjID takes the Object ID of the Table Descriptor.

■ pi_nOperObjVer takes the object version of the Table Descriptor.

■ pi_cNameValuePair The system creates a BLOB from the uploaded file and passes
a name value pair with name = TMP_BLOB_ID and value = BLOB_ID_of_the_
uploaded_file.

Auto_Add_Tab_Desc_Function
(Applies only to Load Set adapters.) You can write a procedure to retrieve a list of all
the tables or other data structures in the external system in a user-specified location
and to insert them into a list values so that the user can select some or all of them to be
uploaded. The system then calls the auto_add_tab_desc_lov function and passes the
user’s selection to it.

Note: The above description is correct. The intended functions for
this column in the Adapter Areas table and the Auto_Add_Tab_Desc_
LOV column are reversed.

If you write a procedure for this purpose, set the Allow_Auto_Add_Tab_Desc flag to
YES. If not, set Allow_Auto_Add_Tab_Desc to NO. YES or NO must be in uppercase.
If YES, you must also write a procedure to create Table Descriptors from the selected
source data structures (see following procedure).

The following Oracle Clinical Load Set shipped adapters use an Auto_Add_Table_
Descriptor_Function: Data Extract Oracle Views, Data Extract SAS Views, Study Data
and Study Design. The shipped Oracle Tables and Views Load Set adapter also uses
this function.

The Auto_Add_Tab_Desc_Function must have the following signature:

PROCEDURE getDataOperList(pi_nCompanyID IN CDR_DF_NAMING_V.COMPANY_ID%TYPE
 ,pi_nLSRObjID IN CDR_DF_NAMING_V.OBJ_ID%TYPE
 ,pi_nLSRObjVer IN CDR_DF_NAMING_V.OBJ_VER%TYPE
 ,po_vOperList OUT NOCOPY CDR_VAR_LIST_COLL) IS

The function's parameters take the following values:

Planning PL/SQL Functions and Procedures

Designing an Adapter 2-11

■ pi_nCompanyID see "Getting Your Company ID" on page 4-2

■ pi_nLSRObjID takes the Object ID of the Load Set definition

■ pi_nLSRObjVer takes the object version of the Load Set definition

■ po_vOperList outputs a list of Tables from which the user can choose one or more
to upload. The return value should be a collection and the ORACLE_NAME
attribute of each CDR_VAR_OBJ_TYPE that is part of the returned collection
should be populated with the name of a table.

Auto_Add_Tab_Desc_LOV
(Applies only to Load Set adapters.) if you set the Allow_Auto_Add_Tab_Desc flag to
YES you must also write a procedure to create Table Descriptors in Oracle LSH based
on each of the data structures the Definer selects from the list of values (LOV).

Note: The above description is correct. The intended functions of this
PL/SQL function and the Auto_Add_Tab_Desc_Function PL/SQL
function are reversed.

The Auto_Add_Tab_Desc_LOV must have the following signature:

PROCEDURE CreateMultipleOperators (pi_nCompanyID IN CDR_DF_NAMING_V.COMPANY_
ID%TYPE
 ,pi_nLSRObjID IN CDR_DF_NAMING_V.OBJ_ID%TYPE
 ,pi_nLSRObjVer IN CDR_DF_NAMING_V.OBJ_VER%TYPE
 ,pi_vOperList IN VARCHAR2) IS

The function's parameters take the following values:

■ pi_nCompanyID see "Getting Your Company ID" on page 4-2

■ pi_nLSRObjID takes the Object ID of the Load Set definition

■ pi_nLSRObjVer takes the object version of the Load Set definition

■ pi_vOperList takes the list of Tables the user selected to upload. The table names
are separated by the pipe character (|) with an additional pipe at the end. For
example, if the user selects tables named demog, ae, and conmed, the input value
is demog|ae|conmed|.

Define_Time_Function
The system launches the Define-Time function from the Create page of a Load Set,
Program, Data Mart, or Business Area when the user clicks Apply.

If all objects created using your adapter need the same Planned Output, or one or
more Table Descriptors with a fixed structure, you can use the Define-Time function to
create them automatically for every object of your adapter’s type.

For example:

■ Add a Planned Output as a placeholder for the log file or Data Mart file; call the
public API CDR_PUB_DF_PLANNED_OUTPUT.CREATEPLANNEDOUTPUT.

■ Add Parameters if you need to connect to a remote connection during definition

■ If you are creating a Load Set adapter and your source data system has a fixed
data structure, you may want to add Table definitions to the Adapter Area that
match the source system's data structures and write code to use them to create
target Table Descriptors at definition time.

Planning PL/SQL Functions and Procedures

2-12 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Most shipped adapters use a Define-Time function.

The Define_Time_Function must have the following signature:

FUNCTION CreateLogFilePlannedOutput (pi_nCompanyID IN NUMBER
 ,pi_nLSID IN NUMBER
 ,pi_nLSVer IN NUMBER) return BOOLEAN IS

The function's parameters take the following values:

■ pi_nCompanyID see "Getting Your Company ID" on page 4-2

■ pi_nLSID takes the Object ID of the Load Set definition

■ pi_nLSVer takes the object version of the Load Set definition

Status_Recalc_Function
The system calls this function when a user modifies a Program, Business Area, or Data
Mart. Although it is called the Status Recalculation function, the system automatically
recalculates the installable status each time an object is modified, so you do not need to
write a function for that purpose.

However, you can use this function to do anything your adapter requires when objects
of your adapter type are modified.

Load Sets do not use the Status_Recalc_Function. The signature is different for
Programs and Business Areas than it is for Data Marts. For Programs and Business
Areas, the system invokes the function when the user checks the object in or out. For
Data Marts the system invokes the function when it computes the status—when the
user checks in the Data Mart.

Shipped Data Mart and Program adapters use a Status_Recalc_Function, including
SAS Export, Oracle Export, and Text Export Data Mart adapters and Informatica and
BIP Program adapters.

Programs and Business Areas The Status_Recalc_Function for Program and Business
Area adapters must have the following signature:

PROCEDURE RecalcInfaPgmStatus (pi_sourceCdrNaming IN cdr_naming_version_obj_type,
 pi_vEvent IN VARCHAR2,
 pv_bothRefAndDef IN cdr_df_naming_v.checked_out_flag_rc%type);

The function's parameters take the following values:

■ pi_sourceCdrNaming is a parameter of table type CDR_NAMING_VERSION_
OBJ_TYPE that contains object attributes. See the Oracle Life Sciences Data Hub
Application Programming Interface Guide Reference Information section for details
about the required attributes.

■ pi_vEvent takes either CHECKIN or CHECKOUT, depending on the UI trigger
event

■ pv_bothRefAndDef: When the event is CHECKOUT, this parameter value is
passed as $YESNO$YES if both the definition and instance are being checked out
and $YESNO$NO if only the definition is being checked out.

When event is CHECKIN this value is passed as NA.

Data Mart Adapters The Status_Recalc_Function for Data Mart adapters must have the
following signature:

PROCEDURE synchronizeDatamart (pi_nDMCompanyId cdr_df_naming_v.company_id%TYPE,

Planning PL/SQL Functions and Procedures

Designing an Adapter 2-13

 pi_nDMObjId cdr_df_naming_v.obj_id%TYPE,
 pi_nDMObjVer cdr_df_naming_v.obj_ver%TYPE,
 pi_vChildType cdr_df_naming_v.object_type_rc%type);

The function's parameters take the following values:

■ pi_nCompanyID see "Getting Your Company ID" on page 4-2

■ pi_nDMObjId takes the Object ID of the Data Mart definition

■ pi_nDMObjVer takes the object version of the Data Mart definition

■ pi_vChildType takes the type of object that was modified, triggering the status
recalc function. For example, if a user modifies a Table Descriptor in the Data
Mart, then the child type is $OBJTYPES$TABLEDESCRIPTOR. See the Reference
Information section in the Oracle Life Sciences Data Hub Application Programming
Interface Guide for information on how to look up the correct string for the object
type from the lookup.

Object Installation Functions
This section contains the following topics:

■ Pre_Install_Function on page 2-13

■ Install_Function on page 2-13

■ Post_Install_Function on page 2-14

Depending on the external system, you may need to write functions for use when a
user installs a Load Set, Data Mart, Program, or Business Area. All object installation
function names are stored in the tech_types table.

Each function should return TRUE in case of success and FALSE in case of a failure. All
three of these functions must have the following signature:

function name_of_function (company_id in cdr_program_refs.company_id%TYPE,
 prref_id in cdr_program_refs.prref_id%TYPE,
 prref_ver in cdr_program_refs.prref_ver%TYPE,)
return boolean

The functions' parameters take values as follows:

■ pi_nCompanyID see "Getting Your Company ID" on page 4-2

■ prref_id see "Getting an Object's Prref_Id and Prref_Ver" on page 4-2

■ prref_ver see "Getting an Object's Prref_Id and Prref_Ver" on page 4-2

Pre_Install_Function
Your external system may require a function to be executed before a user installs a
Load Set, Data Mart, Program, or Business Area.

Install_Function
Your external system may require a function to be executed when a user installs a
Load Set, Data Mart, Program, or Business Area. The system calls this code
immediately after the Pre-Install Function. There is no need to have both.

For example, the Informatica adapter uses the install function to create a folder in
Informatica for every Informatica program being installed.

Planning PL/SQL Functions and Procedures

2-14 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Post_Install_Function
Your external system may require a function to be executed immediately after a user
installs a Load Set, Data Mart, Program, or Business Area.

Object Execution Functions and Procedures
The following execution-related function names are stored in the tech_types table:

■ Build_IDE_Cfg_Function on page 2-14

■ Build_Exe_Cfg_Function on page 2-17

■ Pre_Execution_Function on page 2-17

■ Execution_Function on page 2-17

■ Post_Execution_Function on page 2-19

The following execution-related function names are stored in the adapter_areas table:

■ Currency_Function on page 2-20

■ Security_Recalc_Function on page 2-21

Oracle LSH uses its Distributed Processing (DP) Server for executing jobs outside the
Oracle LSH database server. For more information, see "Planning for Object Execution"
on page 2-24, "Planning Services" on page 2-7 and the chapter on services in the Oracle
LSH System Administrator's Guide.

Build_IDE_Cfg_Function
(For Visualization and Program adapters only.) This function is called when a user
launches an integrated development environment (IDE) either from inside Oracle LSH
or directly through the URL. Use it to do whatever is required for your system at that
point; for example, create the URL for the IDE to be launched, download a file, or give
the user the security access he or she needs in the external system.

You can use the input parameter pi_launchPref of the Build_IDE_Cfg_Function to
launch one tool or mode of an IDE from the Oracle LSH Applications UI tab (the
Business Area or Program properties page) and a different one from the Reports tab
(for visualizations).

See "Planning Integrated Development Environment Adapters" on page 2-26 for
related information.

The build_ide_cfg_function must have the following signature:

Procedure proc_name(pi_nCompanyId IN NUMBER,
 pi_nObjectId IN NUMBER,
 pi_nObjectVer IN NUMBER,
 pi_nWorkAreaId IN NUMBER,
 pi_nConfigId IN NUMBER,
 pi_nConfigVer IN NUMBER,
 pi_nPrrefId IN NUMBER,
 pi_nPrrefVer IN NUMBER,
 pi_launchPref IN varchar2,
 po_allocateServiceInstance OUT VARCHAR2,
 po_launchData OUT CDR_IDE_LAUNCH_DATA,
 po_isDBAccountAvailable OUT VARCHAR2);
 pi_vCdrUser IN VARCHAR2,
 pi_vScemaName IN VARCHAR2,
 pi_vPath IN VARCHAR2,

Planning PL/SQL Functions and Procedures

Designing an Adapter 2-15

The function's parameters take the following values:

■ pi_nCompanyID see "Getting Your Company ID" on page 4-2

■ pi_nObjectId takes the Object ID of the Business Area or Program instance.

■ pi_nObjectVer takes the object version of the Business Area or Program instance.

■ pi_nWorkAreaId takes the Object ID of the Work Area that contains the Business
Area or Program instance.

■ pi_nConfigId takes the Object ID of the Business Area or Program definition.

■ pi_nConfigVer takes the object version of the Business Area or Program
definition.

■ pi_nPrrefId takes the PrrefID of the Business Area or Program instance; see
"Getting an Object's Prref_Id and Prref_Ver" on page 4-2. This parameter is not
required but you can use the value to gain access to the Table Descriptors more
quickly and improve performance.

■ pi_nPrrefVer takes the PrrefID of the Business Area or Program instance; see
"Getting an Object's Prref_Id and Prref_Ver" on page 4-2. This parameter is not
required but you can use the value to gain access to the Table Descriptors more
quickly and improve performance.

■ pi_launchPref Use this parameter if you need to open two different applications,
each for a different mode—for example, if you need to launch a development
environment and a visualization environment for the same adapter. For example,
the OBIEE adapter launches the OBIEE Administrator's tool, which is on the
Definer's PC, from the Business Area UI and OBIEE Presentation Services, which is
on the OBIEE Server, from the Visualizations subtab of the Reports tab.

The system passes one of the following values:

– LAUNCHFILE The system passes this value (in uppercase) to the function if
the user launches the IDE from the Applications tab.

– LAUNCHURL The system passes this value (in uppercase) to the function if
the user launches the IDE from the Reports tab.

Your code can either handle these values differently or not.

■ po_allocateServiceInstance must output T if a service instance is required for the
adapter or F if it is not; see "Planning Services" on page 2-7.

■ po_launchData is a collection that outputs attribute values as follows:

– launch_mode can have a value of either URL or FILE, depending on whether
the adapter needs to launch a URL or open a file. The value of this attribute
determines which of the other attributes are required. You must write the code
to make the function return the value that is appropriate for your adapter.

If launch_mode is set to FILE, the system launches the IDE on the Definer’s PC
by pushing a file with extension .cdz.

Note: Oracle LSH supports only IDEs that are installed on the
Definer’s PC.

If launch_mode is set to URL, the system forwards the IDE launch request to
the URL, which is another attribute of the CDR_IDE_LAUNCH_DATA
collection.

Planning PL/SQL Functions and Procedures

2-16 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– url is required if the launch_mode value is URL. It must provide the actual URL
the adapter is to launch.

Note: If you are creating this adapter for use in other companies or
locations, you can use the Execution Command field of the service
type definition for the purpose of collecting the URL. The field is
available because IDE technology types do not require an execution
command. This value is stored in the EXECUTION_COMMAND
column of the CDR_SERVICES table (varchar2(200) BYTE).

– blob_elements is a collection of BLOBs. It is required if the launch_mode
value is FILE and the file is binary. It outputs the actual file(s) that must be
downloaded to the client.

– blob_filenames is a collection that is required if the launch_mode value is
FILE and the file is binary. It outputs the name of the file(s) that must be
downloaded to the client. There must be a blob_filename value for each blob_
element.

– clob_elements is a collection of CLOBs. It is required if the launch_mode
value is FILE and the file is character-based. It outputs the actual file(s) that
must be downloaded to the client.

– clob_filenames is a collection that is required if the launch_mode value is
FILE and the file is character-based. It outputs the name of the file(s) that must
be downloaded to the client. There must be a clob_filename value for each
clob_element.

– col_comp_list is a collection that is required if you need to download a file to
the IDE or pass any other values to the IDE when a user launches the IDE.
Specify one or more argument/value pairs; for example, "_comp002_",
"<filename>" where the filename is the file to be downloaded. The argument
name and value must match the those in the cdrconfig.xml file; see "Planning
Integrated Development Environment Adapters" on page 2-26.

– col_sub_dirs is a collection that is required for users to view outputs
generated by the Program they are defining in the IDE. This attribute must
name the directories into which the system should put these outputs; see
"Creating Subdirectories on IDE Computers" on page 2-32.

■ po_isDBAccountAvailable outputs T if a database account is required by the
adapter or F if it is not. For example, the SAS adapter requires a database account
to reconnect to the Oracle LSH database during IDE launch.

■ pi_vCdrUser takes the Oracle LSH user ID of the person launching the
visualization tool.

■ pi_vSchemaName takes the Oracle LSH database account user ID of the person
launching the visualization tool.

■ pi_vPath takes the full path of the object:

user_db_account/domain_name/app_areaname/wa_name/object_name/vversion_number

for example:

John_Smith_DB/SmokeTestDomain/SmokeTestAA/ SmokeTestWA/Study55698_BA/v3

Planning PL/SQL Functions and Procedures

Designing an Adapter 2-17

Build_Exe_Cfg_Function
This function is not called by the system. Use it only if you need an additional function
that another function can call.

For example, in the SAS adapter, the pre-execution function calls a procedure
buildSasExeContent to generate dynamic components of a SAS configuration for
execution. The binary components are returned in a list of BLOBs and the ASCII
components are returned in a list of CLOBs.

Pre_Execution_Function
Your adapter may require code to be run immediately before executing a Load Set,
Data Mart, or Program. For example, a pre-execution procedure might check
connectivity with the external system, prepare scripts for downloading to the
Distributed Processing Server, and, for Load Sets, verify that source data structures
and Oracle LSH target Table instances are compatible. The Pre_Execution_Function
requires the following signature:

procedure <procname>(pi_nJobId in cdr_jobs.job_id%type)

pi_nJobId takes the jobID of the current object execution.

Some shipped adapters use a Pre_Execution_Function, including: SAS, Text, and
Oracle Clinical Data Extract SAS View Load Sets; Oracle and SAS Data Marts.

Execution_Function
This function is responsible for coordinating the execution of a Load Set, Data Mart, or
Program. It must call several public APIs. These are documented in the Oracle Life
Sciences Data Hub Application Programming Interface Guide. See also "Planning for Object
Execution" on page 2-24.

The execution function must do the following:

1. Fetch the current job ID. Use the public API CDR_PUB_EXE_
RUNTIME.GETCURRENTLYEXECUTINGJOBID.

2. If required, build a collection of BLOBs or CLOBs and the corresponding BLOB or
CLOB file names for the files that the Oracle LSH Distributed Processing (DP)
Server must download when it runs the job, and call public API CDR_PUB_EXE_
EXTERNAL.CREATETEMPLOBS to upload the BLOBs or CLOBs to a temporary
table. This constitutes the job payload.

3. Build an XML file to send to the DP Server so that the DP Server can start
executing the job. To create the XML file, call public API CDR_PUB_EXE_
EXTERNAL.GENERATEXMLPAYLOAD. This constitutes the XML payload; see
"XML Payload" on page 2-18.

4. Start the job execution by calling public API CDR_PUB_EXE_
EXTERNAL.SENDJOB.

The DP Server then receives the XML payload, downloads the job payload, and
starts the job.

5. The function must wait for the job to complete. Call public API CDR_PUB_EXE_
EXTERNAL.WAITFORFINALSTATUS.

The Wait For Final Status API returns 1 if the job completes without warnings, 2 if
the job completes with warnings, and 3 if the job fails.

6. If the job succeeds, return 0; else return 1.

Planning PL/SQL Functions and Procedures

2-18 Oracle Life Sciences Data Hub Adapter Toolkit Guide

If the job produces one or more outputs, the DP Server loads the BLOB or CLOB
file(s) into a temporary table. Your postexecution function should retrieve these
files; see "Post_Execution_Function" on page 2-19.

The Execution_Function requires the following signature:

function <funcname>return number;

XML Payload For technologies that run outside the database and therefore use the
OWB operator CdrService_1, you can call API CDR_PUB_EXE_
EXTERNAL.GENERATEXMLPAYLOAD to produce a default XML payload file. If
your technology requires additional functionality—for example, passing additional
values to the job—your execution function can produce an XML file with the
information your adapter requires. However, your execution function must use the
same structure.

The required XML payload file structure is:

<?xml version="1.0" ?>
<EXEJOB EXEJOB_VERSION="1.0">
<JOB ID="id_of_currently_executed_job" TYPE="exe">
<SURROGATEJOBID>id_of_master_job_or_same</SURROGATEJOBID>
<PRREFID>prref_id_of_the_executing_program</PRREFID>
<CONFIGID>0</CONFIGID>
<WORKDIR>/user/oracle/work_directory</WORKDIR>
<PROGRAM>/user/oracle/execution_command_location/execution_command_
script</PROGRAM>
<RUNSCRIPT>entry_point_run_script</RUNSCRIPT>
<OUTPUTPATH>Output_path</OUTPUTPATH>
<PRIORITY>$JOBPRIORITIES$NORMAL</PRIORITY>
<SCHEMA>ZZ_account_from_service_instance</SCHEMA>
<USERID>(optional)</USERID>
<SUBDIRS><DIR NAME="first_subdirectory" /><DIR NAME="another_subdirectory" /><DIR
NAME="yet_another_subdirectory" />
</SUBDIRS>
</JOB>
</EXEJOB>

Example 2–1 XML Payload Required File Structure

<?xml version="1.0" ?>
<EXEJOB EXEJOB_VERSION="1.0">
<JOB ID="797120006" TYPE="exe">
<SURROGATEJOBID>797120006</SURROGATEJOBID>
<PRREFID>42580001</PRREFID>
<CONFIGID>0</CONFIGID>
<WORKDIR>/user/oracle/sas92/SasWork/ip1dv102</WORKDIR>
<PROGRAM>/user/oracle/sas92/sasNormal</PROGRAM>
<RUNSCRIPT>runSasJob</RUNSCRIPT>
<OUTPUTPATH>Output</OUTPUTPATH>
<PRIORITY>$JOBPRIORITIES$NORMAL</PRIORITY>
<SCHEMA>ZZ_CDR_SI_610001</SCHEMA>
<USERID>797120006</USERID>
<SUBDIRS><DIR NAME="SOURCE" /><DIR NAME="Output" /><DIR NAME="LSH_RS" />
</SUBDIRS>
</JOB>
</EXEJOB>

Additional information:

Planning PL/SQL Functions and Procedures

Designing an Adapter 2-19

■ Job ID and Surrogate Job ID. If the job is has only a single process, these two IDs
are the same. If there is a master job and a subjob, the Job ID is for the master job’s
ID and the Surrogate Job ID is for the current subjob.

■ Prrefid. The Prrefid of the object being executed. You can use API CDR_PUB_
EXE_RUNTIME.GETJOBINFO to get this ID from the CDR_SUBMISSIONS table.

■ Configid. The object ID of the object being executed.

■ Workdir. This is the location set up under the DP Server directory for jobs of this
type and named as the Root Directory in the service definition. It is stored in the
ROOT_DIRECTORY column of the CDR_SERVICES table. The DP Server creates a
subdirectory here for each job with the job ID as a name, containing the files
required for the job.

■ Program. (Optional) This value is stored in the PROGRAM column of the CDR_
SERVICES table.

■ Run Script. Your execution function must generate a script for each job that
includes the service instance assigned to the job and provides the actual starting
point for the job execution.

■ Output Path. Enter the path for the DP Server Home/log directory.

■ Priority. The priority requested by the user for the service instance. Possible
values are: $JOBPRIORITIES$NORMAL, $JOBPRIORITIES$HIGH, or
$JOBPRIORITIES$LOW.

■ Schema. The ZZ% account of the service instance. You can use the SERVICE_
INSTANCE_ID to get the ZZ account from the table CDR_SERVICE_INSTANCES.

■ User ID. This value is not required. It is used only by one shipped adapter.

■ Subdirectories.

See the Oracle Life Sciences Data Hub Application Programming Interface Guide for
information on execution-related APIs.

Post_Execution_Function
Your adapter may require a procedure to run after the execution of a Load Set, Data
Mart, or Program. For example:

■ If the execution produces outputs, the DP Server puts these files in a temporary
table. You can use the view CDR_TEMP_BLOBS_V to get a list of the outputs
uploaded by the DP Server and call the public API CDR_PUB_EXE_
EXTERNAL.UPLOADBLOBOUTPUT to upload the outputs.

■ You can create a procedure to search the log file for specific information after
execution.

The Post_Execution_ Function requires the following signature:

procedure <procname>(pi_nJobId in cdr_jobs.job_id%type)

pi_nJobId takes the jobID of the current object execution.

Note: If any of these programs returns an error the job returns an
error. If any of these programs returns a warning then the job returns a
warning unless another part of the job generated an error.

Planning PL/SQL Functions and Procedures

2-20 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Currency_Function
(Optional; applies to Load Sets only. Oracle LSH does this automatically for Programs
and Data Marts.) Use this function to determine the currency of the data in the
external system. If you define a currency funtion, the system automatically invokes it
when the job is executed and uses it to determine whether to run the job.

The currency function must return the source data currency. Oracle LSH job processing
logic then determines whether the currency of the previous successful job was the
same as the current job. If so, it marks the current job as duplicate and stops the job
(unless the Force Execution flag is set to Yes by the Force Execution system Parameter).
If the currency values are different, then the system proceeds to execute the job; see
"Planning for Object Execution" on page 2-24.

One of the system Parameters available for submitting a job is Currency_Type, whose
value indicates whether the job will take the most current data or use a data snapshot.
The default is to use the most current data. If there is no currency function available
and the parameter value is for current data, the system processes the most current
data.

The following shipped Oracle Clinical Load Set adapters use a currency function: Data
Extract Oracle Views, Data Extract SAS Views, Labs, and Global Metadata.

This procedure has the following required signature:

PROCEDURE getCurrency(pi_nCompanyID IN NUMBER
 ,pi_nPrrefId IN NUMBER
 ,pi_nPrrefVer IN NUMBER
 ,pi_cRunParamNVPair IN CDR_NAME_VALUE_PAIR_COLL
 ,pi_cSysParamNVPair IN CDR_NAME_VALUE_PAIR_COLL
 ,po_cCurrencyListColl OUT NOCOPY CDR_CURRENCY_LIST_COLL);

The procedure's parameters take values as follows:

■ company_id see "Getting Your Company ID" on page 4-2

■ prref_id see "Getting an Object's Prref_Id and Prref_Ver" on page 4-2

■ prref_ver see "Getting an Object's Prref_Id and Prref_Ver" on page 4-2

■ pi_cRunParamNVPair is a collection with a name,value pair for each runtime
Parameter for the job that is passed to the currency function. For example, Oracle
Clinical Labs Load Sets pass the remote location and lab name to the adapter’s
currency function.

■ pi_cSysParamNVPair is a collection with a name,value pair for each predefined
system Parameter for the job that is passed to the currency function. System
Parameters include currency type, job priority, force execution, and more. For a
complete list and descriptions, see the Oracle Life Sciences Data Hub User's Guide.

■ po_cCurrencyListColl this output parameter is a collection of type CDR_
CURRENCY_LIST_COLL, which is a table of CDR_CURRENCY_OBJ_TYPE that
has the following elements:

– VCCURRVALUE VARCHAR2(4000)

– DTCURRVALUE DATE

– NUMCURRVALUE NUMBER

The adapter can return how current the data in the remote system is by either
returning a character, date or number currency or any combination of the three.
For example, the Oracle Clinical Labs currency function fetches the max date value
from the tables labs, lab_range_subsets and ranges.

Planning Parameters and Parameter Sets

Designing an Adapter 2-21

Security_Recalc_Function
You may need to write a procedure to synchronize security with the external system;
see "Synchronizing Security with Integrated Environments" on page 2-27. If so, set the
Security_Recalc_Flag_RC for the Adapter Area to $YESNO$YES and write a procedure
with the following signature:

Procedure RecalcDiscovererSecurity (pi_nCompanyId IN NUMBER,
 pi_nObjId IN NUMBER,
 pi_nObjVer IN NUMBER);

The function's parameters take the following values:

■ pi_nCompanyId see "Getting Your Company ID" on page 4-2

■ pi_nObjId takes the Object ID of the object instance the user is trying to use.

■ i_nObjVer takes the object version number of the object instance the user is trying
to use.

Planning Parameters and Parameter Sets
This section contains the following topics:

■ General Define-Time Parameters on page 2-21

■ Table Descriptor Define-Time Parameters on page 2-22

■ Runtime Parameters on page 2-22

If you need information from the user during Load Set, Data Mart, Program, or
Business Area definition, installation, or execution, you must do the following:

■ Define a Parameter Set in the Adapter Area with one of three required names and
usage settings, depending on whether the Parameter value is required in order to
define or install the object in general, to define Table Descriptors for the object, or
to collect information at runtime.

■ When you run the Create Adapter Area API, set a flag to indicate that this type of
Parameter Set exists (although you must create the Adapter Area before you can
create the Parameter Set).

■ Define a Parameter for each piece of information you need to collect, and create an
instance of it in the appropriate Parameter Set.

The system then displays the Parameters you define in the proper place in the user
interface and uses their values at the correct time.

Note: If you are developing an adapter for use in other locations and
need to collect information about the Oracle LSH installation or the
external system installation, you can use the Details field of the service
defintion; see "Planning Services" on page 2-7.

General Define-Time Parameters
If you need information from the user during Load Set, Data Mart, Program, or
Business Area definition, create a Parameter Set named PARAMETERSET_LOADSETLEVEL_
DEF and set its Usage attribute to DEFINITION. Oracle LSH displays Parameters in this
Parameter Set as attributes in the Load Set, Data Mart, Program, or Business Area
Properties page in the user interface.

For example, the following shipped adapters have these attributes:

Planning Parameters and Parameter Sets

2-22 Oracle Life Sciences Data Hub Adapter Toolkit Guide

■ SAS and Text Load Sets: Save Input File (Yes or No)

■ All Data Marts: File Name (for the Data Mart's output file)

■ Text Data Marts: Mode (Delimited or Fixed) and Filename Extension (.csv or .txt)

If you need Parameters whose values are used during Load Set, Data Mart, Program,
or Business Area installation, you can define them in the parameterset_
loadsetlevel_def Parameter Set.

Table Descriptor Define-Time Parameters
(Load Set adapters only) Load Sets' Table Descriptors are based on data structures in
the external system. If user input is required to define these Table Descriptors, create
Parameters to collect this information and create an instance of each Parameter in a
Parameter Set with the required name: parameterset_operatorlevel and set its
Usage attribute to OPERATOR.

Oracle LSH creates attributes in the object definition user interface that correspond to
the Parameters you define in the parameterset_operatorlevel Parameter Set. In the
user interface, these attributes appear in the same location as the parameterset_
loadsetlevel_def attributes, but the system uses their values at different times.

For example, the following shipped adapters have the following Table Descriptor
attributes:

■ Oracle Tables and Views Load Sets: Remote Location and Database Schema

■ Some Oracle Clinical Load Sets: Remote Location and Study Name

Note: If your adapter requires a Remote Location attribute, after you
have defined the adapter you must also define at least one remote
location in the Oracle LSH user interface; seeOracle LSH System
Administrator's Guide for further information.

Runtime Parameters
If you need information from the user when he or she runs the Load Set, Data Mart, or
Program, or launches a visualization tool, create a Parameter Set named
PARAMETERSET_LOADSETLEVEL_RUN and set its Usage attribute to EXECUTION.

Oracle LSH displays Parameters in this Parameter Set as Parameters in the Parameters
tab in the Load Set, Data Mart, Program, or Business Area Properties page and in the
Load Set, Data Mart, or Program's Execution Setup.

For example, the following shipped adapters have the following runtime attributes:

■ SAS Load Sets: Dataset Filename and BLOB ID (Temporary)

■ Text Load Sets: Data File Name, Data Format, Delimiter Character, Enclosing
Character, Initial Records to Skip, Maximum Allowed Errors, Temp LOB ID, Date
Format

■ Oracle Tables and Views Load Sets: Remote Location

■ SAS Data Marts: Mode and Zip Result

■ Oracle Export Data Marts: Compress and Statistics

■ Text Data Marts: Zip Results, FirstRow Desc, Operating System, Separating
Character, Use Enclosing Character, Enclosing Character

Note: If you are creating an adapter that must upload files, define a
Parameter with its Parameter Type set to either BINARY_FILE or
TEXT_FILE, as appropriate, and create an instance of it in the runtime
Parameter Set. Create a second Parameter called TMP_BLOB_ID, for
example, and create an instance of it in the same Parameter Set. Write
code to upload the file to a temporary location and store the ID for the
file as the value of TMP_BLOB_ID. Use this value in your
pre-execution or execution function.

Planning Data Structures

Designing an Adapter 2-23

Adding Lookup Values
Extend the following lookups:

■ CDR_TECH_TYPES. At least one new technology type is required for your
adapter. Enter the same value that you enter in the pio_techTypeRow.TECH_
NAME_RC parameter of the Create Technology Type API. This value is used
internally.

■ CDR_SERVICE_TYPES. One service type per technology type is required. This
value appears in the user interface for defining services.

■ CDR_FILE_TYPES. Your adapter may need need a new file type; for example, for
source code in Program or Business Area adapters. Add the file type to this
lookup.

For instructions on extending lookups in your environment, see the chapter on
lookups in the Oracle Life Sciences Data Hub System Administrator's Guide.

Provide instructions to each company using the adapter for adding the lookup values
required for your adapter in their own environment.

Planning Planned Outputs
Data Mart adapters may require predefined Planned Outputs to support the actual
data file produced by running the Data Mart. Program adapters may required
predefined Planned Outputs to support report outputs.

Data Mart, Program, and Load Set adapters may all need predefined Planned Outputs
to serve as placeholders for other outputs created when they are executed; for
example, log and error files.

To automatically create a fixed Planned Output definition for every object of your
adapter’s object type (Data Mart, Program, or Load Set), call public API CDR_PUB_
DF_PLANNED_OUTPUT.CREATEPLANNEDOUTPUT in your define_time_function.

Planning Data Structures
If you are creating a Load Set adapter and your source data system has fixed data
structures, you can define Tables in your Adapter Area with the same structure; see
"Call the Create Table API" on page 4-32. You then write your adapter code to create
Load Set Table Descriptors based on those Tables rather than requiring connection to
the remote database or requiring manual definition by users.

The Oracle Clinical Load Set adapters that import data from fixed Oracle Clinical
tables do this, including Design and Definition, Labs, Randomization, and Study Data.

Planning for Object Execution

2-24 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Planning for Object Execution
This section includes the following topics:

■ Execution Process on page 2-24

■ Execution Command on page 2-25

Programs, Load Sets, and Data Marts are all executable objects and an adapter of these
type must handle the object execution. Business Area and Program IDE adapters may
also require execution functionality. Some execution functionality is built in to Oracle
LSH, but each adapter requiring execution must have a custom execution function, a
custom service type, and a custom execution command.

Note: Processing engines that run on the database do not use the DP
Server.

Execution Process
The execution process includes:

1. The user submits a Load Set, Program, or Data Mart for execution.

■ The system calls the OWB operator specified for the technology type and
creates an OWB audit task, which OWB tracks in order to report the job’s
status. OWB returns control to Oracle LSH Runtime (called "the system" here).

■ The system generates a job ID and assigns a service instance to the job.

2. The system calls the pre-execution function specified in the technology type, if any,
and then calls the execution function.

3. You must write an execution function to do the following; see "Execution_
Function" on page 2-17 for details.

a. Build a collection of files, if required

b. Output an XML message with information about the job (the XML payload)

c. Call the Send Job public API

4. The Oracle LSH listener detects the XML message produced by the Execution_
Function, dequeues the message, and sends the XML message to the DP Server to
run the job in the external processing engine using the assigned service instance.

The service instance is the account that the job uses to connect back to the Oracle
LSH database to read from sources and write to targets, if any.

The DP Server creates a subdirectory with he job ID as a name in the work
directory defined under the DP Server directory for jobs of this type and puts all
the files required for the job in this subdirectory.

The DP Server makes two UNIX shell variables available to the processing engine:

■ $CDRJOBSCHEMA holds the value of the service instance account, which is
extracted from the XML message; for example, <SCHEMA>ZZ_CDR_SI_
250001</SCHEMA>

■ $CDREXEPASS holds a random password assigned to the account for that job.
The password can never be reused.

5. The service instance runs the execution command. There is a single execution
command, which you must write, for all jobs of this type; see "Execution
Command" on page 2-25.

Planning for Object Execution

Designing an Adapter 2-25

6. The DP Server job processor uses the information in the XML message to connect
back to the Oracle LSH database. Once connected, it downloads all the necessary
data, including the execution function(s), into a target directory identified in the
XML message.

7. The job processor then executes the job-specific script by spawning a new
operating system-level process.

8. This spawned process runs the processing engine, which in turn carries out the
actual job execution using the downloaded job input data.

9. After the spawned external process completes, the job processor connects back to
Oracle LSH and uploads any output results into Oracle LSH. The service instance
is released.

10. Meanwhile, the execution function waits for the job to complete, using the Wait for
Final Status public API as soon as it calls the Send Job API.

If the job produces one or more outputs, the DP Server loads the BLOB or CLOB
file(s) into a temporary table. Your postexecution function should retrieve these
files; see "Post_Execution_Function" on page 2-19.

11. The system calls the postexecution function.

12. OWB reports the final job status. See the Oracle Life Sciences Data Hub User's Guide
for a description of job and execution statuses.

Execution Command
For processing engine technology types, you must write an execution command file.
The execution command invokes the external processing system. It must be contained
in a file of a type appropriate for the operating system; a shell script for UNIX or a
command file for Windows.

In most cases, the execution command must provide a mechanism to pass the service
instance to the external processing engine which can then use the service instance’s
connection credentials to connect back to the Oracle LSH database.

To help ensure the proper storage and display of non-English character data in Oracle
LSH, the processing engine should use UTF8 character encoding. If you can enforce
this in the execution command, do so.

As with the shipped adapters, at each Oracle LSH installation the user must move the
execution command file into the DP Server directory created by the user, or a
subdirectory of it, and enter the actual path of the file in the service location definition
in the Oracle LSH user interface (see the Oracle Life Sciences Data Hub System
Administrator's Guide). The system picks up the location from the service location
definition when a user submits a job.

If you are creating this adapter for use in other companies or locations, you must
include instructions for system administrators similar to those in the Oracle Life
Sciences Data Hub Installation Guide to move the file and edit it to add whatever
information your adapter may require about the location; for example:

■ the Oracle SID

■ the location of the technology server

■ the location of Oracle setup script coraenv

■ a variable holding the path to any external command invoked inside the execution
command; for example, if the execution command invokes a Java executable, the
path to the Java executable must be set correctly in the path variable.

Planning Security

2-26 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Planning Security
The security required for your adapter depends on the interaction with the external
system that it requires:

■ Data Mart adapters and processing engine adapters for Programs require no
security coordination with the external system. The user must have proper Oracle
LSH security privileges in order to define and run the Data Mart or run the
Program. The DP Server automatically provides an account and unique password
for each job through the service instance to allow the processing engine to connect
to the Oracle LSH database to process data; see "Planning for Object Execution" on
page 2-24.

■ Load Set adapters may require security coordination with the external system; for
example, it may be necessary for users to have a user account with the same name
in both systems. File-based Load Sets require access to the files to be loaded.
Database-based Load Sets may require additional security.

■ Program and Business Area IDE adapters generally require the most complex
security coordination between the two systems; see "Synchronizing Security with
Integrated Environments" on page 2-27.

Planning Integrated Development Environment Adapters
This section contains the following topics:

■ IDE Launch Process from Within Oracle Life Sciences Data Hub on page 2-26

■ Synchronizing Security with Integrated Environments on page 2-27

■ Adding Source Code Types on page 2-30

■ Planning Navigation in the External System to Business Areas on page 2-31

■ Editing cdrconfig.xml on page 2-31

■ Creating Subdirectories on IDE Computers on page 2-32

Business Area and Program adapters may require that Oracle LSH Definers be able to
do the following in a development environment that is integrated with Oracle LSH:

■ Launch the integrated development environment (IDE) from within Oracle LSH
either from the Program or Business Area Properties page (for development) or
from the Reports tab, Visualizations subtab (for viewing data visualizations), and
then see appropriate Oracle LSH data in the IDE.

■ Download and upload files between Oracle LSH and the IDE—or the adapter may
need to do this automatically.

■ Log in directly to the external system and gain access to Oracle LSH objects and
data. Oracle LSH allows this access only for adapters that view but do not modify
Oracle LSH data. In this case, you can use the generic visualization adapter; see
Chapter 5, "Using the Generic Visualization Adapter".

IDE Launch Process from Within Oracle Life Sciences Data Hub
When a user launches an IDE from within Oracle LSH, the system:

■ Calls the Build_IDE_Cfg_Function to launch the IDE, download files, if necessary,
and whatever else you have coded it to do.

Oracle LSH makes a distinction—by passing a different value to the Build_IDE_
Cfg_Function—between IDEs launched from the Reports tab, through which

Planning Integrated Development Environment Adapters

Designing an Adapter 2-27

Consumers view data visualizations, and IDEs launched from Program and
Business Area pages, through which Definers develop Programs and Business
Areas. Consumers can see blinded data in an IDE if they have the required
privileges in Oracle LSH, but Definers can never see blinded data when they
launch the IDE from a Program or Business Area.

■ Calls the Security_Recalc_Function and passes values to it for the company ID,
object ID, and object version of the object—Program or Business Area—for which
the IDE is being launched. You can use these to get the prrefid of the Program or
Business Area to set the context for data security; see "Getting an Object's Prref_Id
and Prref_Ver" on page 4-2 and "Establishing Context" on page 2-28.

■ Assigns a service instance to the IDE session. The service instance is the account
that the job uses to connect back to the Oracle LSH database. It remains allocated
to the Program or Business Area until it is explicitly released by a Checkin or
Undo Checkout user action.

The service instance assigned to the Program or Business Area during IDE launch
is associated with the user’s database account, so if the user logs in using their
database account, the system automatically sets up the sys context so that they can
read the data in Table instances mapped to the Program or Business Area’s Table
Descriptors.

Synchronizing Security with Integrated Environments
Your adapter must synchronize security with the external system:

■ Object Security: Users should be able to access only the appropriate Oracle LSH
objects (Program or Business Area) from the external system and have only the
appropriate privileges on those objects.

■ Data Security: Users should be able to see data only in Table instances that are
mapped to the object’s Table Descriptors, and should be able to view only data in
appropriate currency and blinding states.

Both types of security must be enforced both when the user launches an IDE from
within Oracle LSH and when the user logs in directly to the external system.

The Oracle LSH security system enforces object security within Oracle LSH through
user accounts. Viewing data requires an Oracle LSH database account mapped to a
user account. Your adapter can use one or more Oracle LSH user accounts to take
advantage of this functionality.

Within Oracle LSH, the system enforces that users can see data only in Table instances
mapped to the current object. You can use the Tracking API and Tracking Table to
enforce the same restriction in the external system.

See the Oracle Life Sciences Data Hub Implementation Guide and the Oracle Life Sciences
Data Hub System Administrator's Guide for information on Oracle LSH security.

Enforcing Security on Corresponding External Entities
You may need to create entities in the external system that correspond to Oracle LSH
objects; for example, the Informatica adapter creates a different Informatica Folder for
each Oracle LSH Informatica Program, and the OBIEE adapter creates a different
OBIEE Subject Area for each OBIEE Business Area. You can then use the external
system’s security to enforce access to the appropriate external system entities.

In the case of Informatica, the Build_IDE_Cfg_Function interacts with Informatica
through the DP Server to assign privileges to the user for the Folder specific to the
Program. Alternatively, you can use the Security_Recalc_Function to synchronize

Planning Integrated Development Environment Adapters

2-28 Oracle Life Sciences Data Hub Adapter Toolkit Guide

security in your adapter.

You can use the Tracking API and Tracking Table to maintain a record of the object the
same user accessed during his or her previous session in the IDE and then use the
security APIs of the external system to remove access to that object in the current
session; see "Tracking and Removing Object Access" on page 2-28.

Establishing Context
An application context is a set of name-value pairs that Oracle Database stores in
memory. The application context has a label called a namespace. Inside the context are
the name-value pairs (an associative array). An application can use the application
context to access session information about a user, such as the user ID or other
user-specific information, and then securely pass this data to the database. You can
then use this information to either permit or prevent the user from accessing data
through the application.

For Oracle LSH, you need a name-value pair for each of the following:

■ User ID

■ User password

■ PrrefID of the Program or Business Area

You can set the context as follows:

■ If no login is required when the user launches the external system, set the sys_
context by writing a function.

■ Establish the context with the database logon trigger. The adapter doesn’t need to
do anything specifically for allowing the user access to the correct data. The Oracle
LSH logon trigger uses the user’s database account to determine the user's
privileges and enables the sources and targets so that the user can view LSH data
from the IDE.

Note: For information on application context functionality, logon
triggers, and more, see the Oracle® Database Security Guide 11g Release
2 (11.2) at http://download.oracle.com/docs/cd/E11882_
01/network.112/e16543.pdf.

■ If you are using the Generic Visualization adapter, see "Initializing the Business
Area Instance" on page 5-2.

Tracking and Removing Object Access
Program and Business Area adapters allow users to launch an integrated development
environment (IDE) from Oracle LSH to modify an Oracle LSH Program or Business
Area’s source code. You must ensure that Definers can modify only Programs and
Business Areas on which they have Modify privileges in Oracle LSH by using the
external system’s APIs or another security mechanism.

One approach is to ensure that when users launch the IDE, which they can do only
through a Program or Business Area, that they have access only to that particular
Program or Business Area in that session, even if they have access to other Programs
or Business Areas of the same IDE type and have worked on them in the past.

For example, if the external system has entities that correspond to Oracle LSH
Programs or Business Areas (such as Informatica Folders or OBIEE Subject Areas) and

http://download.oracle.com/docs/cd/E11882_01/network.112/e16543.pdf
http://download.oracle.com/docs/cd/E11882_01/network.112/e16543.pdf

Planning Integrated Development Environment Adapters

Designing an Adapter 2-29

public APIs that grant and revoke access to these entities, you can design your adapter
so that when the user launches the IDE, the adapter calls the external system’s API to:

■ grant access to the entity corresponding to the Program or Business Area

■ revoke access to previously granted entities, if any

In order to revoke access to previously granted entities, you must maintain a record of
each user’s IDE launches and the Programs, Business Areas, and the corresponding
external entities to which each user was granted access. Oracle LSH has a public API,
CDR_PUB_EXE_EXTERNAL.TRACKLAUNCHIDE, and a table, CDR_IDE_
LAUNCH, for this purpose; see "Tracking API" on page 2-29 and "Tracking Table" on
page 2-30.

In your Build_IDE_Cfg_Function you can call CDR_PUB_EXE_
EXTERNAL.TRACKLAUNCHIDE and the external system’s APIs to grant and revoke
access to the appropriate entities in the external system.

In addition, in the case of Programs, your function may need to determine whether the
Program being launched uses source code shared from another Program and if so,
grant read access to the corresponding external entity for that Program too. You then
also need to be sure to revoke access from all entities included in the previous launch.
They have the same IDE_LAUNCH_ID.

Note: No Business Area types currently included with Oracle LSH
use shared source code, but it is theoretically possible.

Tracking API Use public API CDR_PUB_EXE_EXTERNAL.TRACKLAUNCHIDE to
pass information to the tracking table about the current user and IDE launch. You can
set a parameter to indicate whether to delete the record of the user’s previous IDE
launch from the table or not.

The API’s signature is:

(p_api_version IN NUMBER
,p_init_msg_list IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_commit IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_validation_level IN NUMBER default CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL
 ,x_return_status OUT NOCOPY VARCHAR2
 ,x_msg_count OUT NOCOPY NUMBER
 ,x_msg_data OUT NOCOPY VARCHAR2
 ,pi_IdeLaunchColl IN CDR_IDE_LAUNCH_OBJ_COLL
 ,pi_DelPrevEntry IN VARCHAR2
);

The nonstandard parameters for this API are:

pi_IdeLaunchColl cdr_ide_launch_obj_coll is a collection that is a table of cdr_ide_
launch_obj_type, with the following attributes:

■ COMPANY_ID. NUMBER(6)

■ IDE_LAUNCH_ID. NUMBER(22)

■ PRREF_ID. NUMBER(22)

■ PRREF_VER. NUMBER(7)

■ SHARED_FLAG_RC . VARCHAR2(30)

■ EXT_SYS_ENTITY. VARCHAR2(4000)

Planning Integrated Development Environment Adapters

2-30 Oracle Life Sciences Data Hub Adapter Toolkit Guide

■ LAUNCH_USER_ID. NUMBER(15)

pi_DelPrevEntry Set to Y to delete the record of the current user’s previous IDE
launch. Set to N to maintain the complete IDE launch history for the user.

Tracking Table If your adapter uses the TRACKLAUNCHIDE API, the internal table
CDR_IDE_LAUNCH contains a record for each Program or Business Area required for
the current IDE launch. If the Program being launched uses shared source code
included in another Program, the API creates a record for both Programs and gives
both records the same IDE Launch ID.

The table has the following columns:

COMPANY_ID NUMBER (6). To get the company ID, use CDR_PUB_DEF_
FACTORY_UTILS.GETCOMPANYID.

IDE_LAUNCH_ID NUMBER (22). This value is generated from a sequence every time
the user launches the IDE and the TRACKLAUNCHIDE API is called.

PRREF_ID NUMBER (22). Prref ID of the Program or Business Area from which the
IDE is being launched or the one containing shared source code. See "Getting an
Object's Prref_Id and Prref_Ver" on page 4-2.

PRREF_VER NUMBER (7). Prref version of the Program or Business Area from
which the IDE is being launched or the one containing the shared source code. See
"Getting an Object's Prref_Id and Prref_Ver" on page 4-2.

SHARED_FLAG_RC VARCHAR2 (30). If N, the Program is the Program being
launched. If Y, the Program contains shared source code required for the Program
being launched.

Note: Normally Business Area adapters do not use shared source
code and always have this flag set to N.

EXT_SYS_ENTITY VARCHAR2 (4000). The entity in the external system which maps
to the Oracle LSH Program or Business Area. For example, each Oracle LSH
Informatica Program corresponds to a Folder in Informatica. If this relationship is
required, your adapter must track it.

LAUNCH_USER_ID NUMBER (15). ID of the user who is launching the IDE.

Adding Source Code Types
If you are creating a Program or Business Area adapter, you may need to create one or
more new Source Code types and a new file type for each new Source Code type.

Before you can create a source code type you must:

■ Create a technology type by calling the Create Technology Type API; see "Creating
a Technology Type" on page 4-2. Enter the Tech Type ID in the TECH_TYPE_ID
column for the source code type.

■ Add the file type you need for your adapter source code by extending the CDR_
FILE_TYPES lookup; see "Adding Lookup Values" on page 2-23. Enter the file
extension in the DEFAULT_EXTN column for the source code type. Do not include
the dot (.) before the letters in the extension.

Planning Integrated Development Environment Adapters

Designing an Adapter 2-31

You then create a a new Source Code type to link your technology type with your file
type. To create a new Source Code type, call the procedure cdr_srccode_types_
m.insertRow:

PROCEDURE InsertRow(pRecord in out nocopy CDR_SRCCODE_TYPES%rowtype);

The columns in the Source Code Types table include the following. See the section on
Source Code in the "Defining Programs" chapter of the Oracle Life Sciences Data Hub
Application Developer's Guide for information about these Source Code attributes.

■ Tech Type ID. Enter the ID of your technology type. This is generated by Oracle
LSH when you create the technology type; see "Creating a Technology Type" on
page 4-2.

■ Source Code Type RC. Enter the new file type you added to the CDR_FILE_
TYPES lookup in the format $FILETYPES$NEW_FILE_TYPE.

■ Binary Flag RC

■ Use Libname RC

■ Position

■ Allowed as Primary Flag RC

■ Instantiated from Different Program

■ Default Extension. Enter the extension of the new file type, including the dot (.)
preceding it; for example, .xml.

Planning Navigation in the External System to Business Areas
You can use the view CDR_PUB_GENERIC_BA_V to make the Oracle LSH object
hierarchy—from Domains to Application Areas to Work Areas to Business Areas—to
which the current user has access, available in the external system. You can then use it
to create a display in the external system’s user interface that helps users find what
they need; see "Display User’s Business Area Instances" on page 5-5.

The user must log in using the database account.

Note: This works only if you give the objects in the hierarchy
meaningful names.

Editing cdrconfig.xml
When the user launches the IDE from Oracle LSH, the Oracle LSH client, cdrclient,
generates a run script for the IDE launch based on what is defined in cdrconfig.xml.

Download the cdrconfig.xml file shipped with Oracle LSH and add information for
your system's technology type to cdrconfig.xml as follows. See the Oracle Life Sciences
Data Hub Installation Guide chapter on installing Oracle LSH, section on installing the
client plug-in.

<TECHTYPE TYPE="$TECHTYPES$<tech_type_name>" NAME="<name>" VERSION="<version>">
<PARAM NAME="EXEHOME" VALUE="<complete_path_to_exe_file>"/>
<PARAM NAME="PREPROC" VALUE=""/>
<PARAM NAME="POSTPROC" VALUE=""/>
<CMDLINEARGS>
<ARG POSITION="_POS1_" VALUE="_COMP999_"/>
</CMDLINEARGS>
</TECHTYPE>

Planning Integrated Development Environment Adapters

2-32 Oracle Life Sciences Data Hub Adapter Toolkit Guide

For PREPROC, enter the full path to a batch file or shell script you have written, if any,
that must be run immediately before running the .exe file for the IDE. For example, the
OBIEE adapter needs to unzip the RPD file at this point and has a preprocessing .bat
file for this purpose.

Use POSTPROC similarly, for a batch file or shell script that must be run immediately
following the IDE launch.

CMDLINEARGS are for command line arguments to pass to the IDE executable.

You can specify additional argument values by adding argument/value pairs for
positions 1 to 999 at the line:

<ARG POSITION="_POS1_" VALUE="_COMP999_"/>

For example, if you need to download a file to the IDE, add another argument/value
pair such as "_comp002_", "<filename>" where <filename> is the file to be
downloaded. The OBIEE adapter creates a default RPD file and downloads it to the
IDE, where the user can edit it in the BI administrator's tool.

You must match argument values in the line above to the names you use in the Build_
IDE_Cfg_Function, and output the argument/value pairs in the col_comp_list
attribute of the po_Launch_Data parameter of the Build_IDE_Config_Function; see
"col_comp_list" on page 2-16.

For example:

<TECHTYPE TYPE="$TECHTYPES$OBIEEDEV" NAME="AdminTool" VERSION="10.1.3.4">
<PARAM NAME="EXEHOME" VALUE="D:\OracleBI\server\Bin\AdminTool.exe"/>
<PARAM NAME="PREPROC" VALUE="unzipRPD.bat"/>
<PARAM NAME="POSTPROC" VALUE=""/>
<CMDLINEARGS>
<ARG POSITION="_POS1_" VALUE="_COMP999_"/>
</CMDLINEARGS>
</TECHTYPE>

Creating Subdirectories on IDE Computers
For adapters that produce outputs you must create subdirectories on the Definer’s PC
to hold IDE job outputs (for example, any outputs that are defined as Planned Outputs
of Programs) or any other files, such as error or log files.

Oracle LSH creates a directory structure on the Definer’s PC that uses the
organizational structure defined for the Program or Business Area in Oracle LSH. By
default the location is: %USERPROFILE%\Application Data\CDR\cdrwork\user_
name\Domain(s)\Application_Area\Work_Area\launched_object_name\version.
Oracle LSH creates the subdirectory you specify inside the version directory.

In the Build_IDE_Cfg_Function specify one or more subdirectory names in the col_
sub_dirs attribute of the parameter po_LaunchData.

3

Developing an Adapter 3-1

3 Developing an Adapter

This section contains the following topics:

■ Adapter Development Process on page 3-1

■ Planning Programs and Packages on page 3-3

■ Using the Security API Package During Development on page 3-4

Adapter Development Process
The following diagram depicts the process required to create an adapter.

Adapter Development Process

3-2 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Figure 3–1 Adapter Development Process

To develop an adapter, work in SQL Developer or a similar tool, using your own
Oracle LSH user account that is linked to a database account with Execute privileges
on the API security package CDR_PUB_API_INITIALIZATION.

1. Design your adapter, following instructions in this guide.

2. Create one or more service types and extend lookups as required; see "Planning
Services" on page 2-7 and "Adding Lookup Values" on page 2-23.

3. In your own schema, create two PL/SQL packages:

■ Package A: API Calls to Create metadata Objects. This package must call the
APIs described in Chapter 4, "Using APIs to Create Required Metadata
Objects". Package A must create an Adapter Domain, Adapter Area,
technology type, and all the required Oracle LSH objects (metadata) including
a Program, upload Package B as source code for the Program, assign a user
group to the Adapter Area, and install the Adapter Work Area.

Note: When you run the APIs to create a technology type and an
Adapter Area, you must enter the names of all your custom functions
and procedures as input parameter values, and set flags to indicate
whether or not you are using any of the three possible Parameter Sets.

Therefore you must determine which custom functions and
procedures and Parameter Sets you need, and give the functions and
procedures names, before you can complete Package A. See
Chapter 2, "Designing an Adapter".

Planning Programs and Packages

Developing an Adapter 3-3

■ Package B: Custom Functions and Procedures. This package contains the
functions and procedures that you write to do the work of the adapter; see
"Planning PL/SQL Functions and Procedures" on page 2-8.

4. Run Package A. The system creates the required metadata objects, including the
technology type, and uploads Package B as the source code for the adapter.

5. Follow the steps in Chapter 6, "Checking In Objects and Setting Their Validation
Status", and Chapter 7, "Setting Up an Adapter" to set up your adapter in your
Oracle LSH instance.

6. In Oracle LSH, create an object definition and instance of the type relevant for
your adapter: a Load Set, Data Mart, Program, or Business Area.

You may need to create an Oracle LSH Domain, Application Area, and Work Area
to contain the object (Load Set, Program, Data Mart, or Business Area) definition
and instance; Table definitions and instances for the object to read from or write to;
install the Work Area, and load data.

7. Test the adapter by checking that the required UI elements appear on screen and
that it is possible to define, install and run the object.

8. You can debug and modify your functions and procedures in your own schema.
Use APIs to check out the Program in the Adapter Area, upload the revised source
code, and reinstall the Adapter Area’s Work Area, and then test again. See the
Oracle Life Sciences Data Hub Application Programming Interface Guide.

9. Modify Package B as required. Upload the modified package using the Modify
Source Code public API.

10. Set the validation status of your objects to Quality Control and then to Production
according to your standard operating procedures; see Chapter 6, "Checking In
Objects and Setting Their Validation Status".

Planning Programs and Packages
Each custom function and procedure required for your adapter must be contained in a
PL/SQL package (Package B) and the package must be uploaded to a Source Code
definition in the Program definition in your Adapter Area.

The required functions and procedures can all be in the same package or in different
packages. If multiple people are developing the adapter, it may be helpful for each of
them to work on a separate package, upload each package to a different Source Code
definition and create a different Program for each Source Code definition so that each
Program can be installed separately. However, all Program instances must be
contained in the same Work Area.

Note: It is very important to have only one Work Area in an Adapter
Area. This ensures that all the custom PL/SQL packages you write are
installed in the same schema.

Using the Security API Package During Development

3-4 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Using the Security API Package During Development
You must call a security API, CDR_PUB_API_INITIALIZATION, from every package
that calls an Oracle LSH API and that you intend to run from outside Oracle LSH.

This API contains three functions:

■ EnableApis sets the EnableAPIs flag to True.

■ DisableApis sets the EnableAPIs flag to False.

■ AreApisEnabled returns the flag setting.

The initialization of almost every API calls the AreApisEnabled function of the
security API, CDR_PUB_API_INITIALIZATION, to check if the EnableAPIs flag is set
to True in the calling program. If EnableAPIs set to False, the initialization fails.

To set the EnableApis flag to True, your user account must have Execute privileges on
the CDR_PUB_API_INITIALIZATION API.

1. Begin the body with the following code to call the function to enable APIs:

call cdr_pub_api_initialization.enableApis (arguments);

The arguments are described in cdr_pub_api_initialization itself.

2. At the end of the body, disable APIs to force the security check on the schema the
next time the program is run:

cdr_pub_api_intialization.disableApis (arguments);

Package A Package A is always run outside of Oracle LSH. Therefore you need to
call EnableApis at the beginning of your package body and call DisableAPIs at the
end.

Package B You develop Package B outside of Oracle LSH, so you must call
EnableApis at the beginning of the package body and call DisableAPIs at the end.
However, you upload Package B to a Program inside an Oracle LSH Adapter Area and
the adapter calls the functions and procedures and runs them inside Oracle LSH.
Packages that call CDR_PUB_API_INITIALIZATION from within Oracle LSH fail.

Therefore, if you call public APIs from Package B, you must call EnableApis and
DisableApis so that you can run the package outside Oracle LSH, but when you are
ready to upload the code to Oracle LSH, you must comment out the calls.

You may well want to use public APIs in your custom functions and procedures. For
example, if you allow users to upload Table Columns during Load Set definition, you
can take advantage of the public API for creating Table Descriptors as part of the
upload_table_columns function.

4

Using APIs to Create Required Metadata Objects 4-1

4 Using APIs to Create Required Metadata
Objects

This section contains the following topics:

■ Retrieving IDs on page 4-2

■ Creating a Technology Type on page 4-2

■ Modifying a Technology Type on page 4-5

■ Creating an Adapter Domain on page 4-5

■ Modifying an Adapter Domain on page 4-6

■ Creating an Adapter Area on page 4-6

■ Modifying an Adapter Area on page 13

■ Assigning a User Group to the Adapter Area on page 4-13

■ Creating a Work Area on page 4-14

■ Creating a Program Definition and Instance on page 4-16

■ Creating a Source Code Definition and Instance on page 4-18

■ Creating a Variable on page 4-21

■ Creating a Parameter on page 4-23

■ Creating a Parameter Set on page 4-28

■ Creating a Parameter Instance in a Parameter Set on page 4-30

■ Creating a Table Definition on page 4-32

■ Installing the Work Area on page 4-35

Oracle Life Sciences Data Hub (Oracle LSH) stores all the program code, parameters,
and tables required for an adapter as defined objects within an Adapter Area which
itself is contained in an Adapter Domain. Figure 1–1, "Adapter Components and Their
Relationships" on page 1-4 shows the defined objects.

Adapter Domains and the objects they contain are not accessible through the user
interface. There is a public PL/SQL API for creating each of the objects required by an
adapter. Call these APIs in the order they are given in this section. Additional
information on APIs is available in the Oracle Life Sciences Data Hub Application
Programming Interface Guide.

Retrieving IDs

4-2 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Retrieving IDs
Many APIs require IDs as input parameter values. This section explains how to
retrieve these IDs from the database.

Getting Your Company ID
The company ID is part of the primary key for every object. To get your company ID,
run the API CDR_PUB_DEF_FACTORY_UTILS.GETCOMPANYID.

Save the value for repeated use or create a local variable for it.

Getting an Object's Prref_Id and Prref_Ver
Use the following query to retrieve these values:

select prref_id, prref_ver from cdr_program_refs_v
where COMPANY_ID = <your_company_id> and
WA_OBJ_ID = <the_adapter_work_area_id> and
MASTER_PRREF_OBJ_ID = <the_obj_id_of_the_object> and
MASTER_PRREF_OBJ_VER = <the_obj_ver_of_the_object>;
The primary purpose of the Prref ID is to provide an execution context for executable
objects contained in complex objects, such as Program instances contained in Report
Set or Workflow instances. In these cases, the Master Prref Obj ID is the Object ID of
the Report Set or Workflow instance that owns the Program instance.

For consistency, all object instances must have a Prref ID. In the case of object instances
located directly in a Work Area, the object’s Master Prref Obj ID is the same as its
Object ID. For example, the Master Prref ID of a Program instance contained in a Work
Area is the same as its Object ID; so if you know its Object ID, you know its Prref ID.

Note: When you create an object using an API, save its Object ID,
which is an output parameter value. You may need the ID to get the
object’s Prref ID or to create child objects.

Creating a Technology Type
This section contains the following topics:

■ Call the Create Technology Type API on page 4-2

■ Sample Technology Type Settings on page 4-4

Call the Create Technology Type API
To create an Technology Type, call the public API CDR_PUB_ATK_
ADAPTER.POPULATETECHTYPES. Its signature is:

PROCEDURE populateTechTypes (
p_api_version IN NUMBER
,p_init_msg_list IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_commit IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_validation_level IN NUMBER default CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL
,x_return_status OUT NOCOPY VARCHAR2
,x_msg_count OUT NOCOPY NUMBER
,x_msg_data OUT NOCOPY VARCHAR2
, pio_techTypeRow IN OUT NOCOPY cdr_tech_types%rowtype
);

Creating a Technology Type

Using APIs to Create Required Metadata Objects 4-3

param pio_techTypeRow is a mandatory parameter of row type cdr_tech_types table
that contains object attributes. Enter values as follows:

■ tech_type_id. Contact Oracle Support to get a 12-digit ID for your technology type
that is unique across all adapters developed for use with Oracle LSH.

Note: Make a note of the number you enter; you will need it when
you create an Adapter Area.

■ tech_name_rc. Enter a name for the new technology type you are creating. You
must add the name to the CDR_TECH_TYPES lookup (see "Adding Lookup
Values" on page 2-23).

■ tech version. Enter the correct version of the external system.

■ service_type_rc. The service type required for this technology type. You must add
this service type value to the CDR_SERVICE_TYPES lookup (see "Adding Lookup
Values" on page 2-23).

■ build_ide_cfg_function. (Visualization and Program adapters only.) Enter the
name of your Pre-installation function, if any; see "Build_IDE_Cfg_Function" on
page 2-14.

Note: For this function name and the others below, do not include
the schema name. Enter only package_name.procedure_or_function_
name

■ owb_operator. Enter the Oracle Warehouse Builder operator that Oracle LSH
should use for this adapter:

■ If the external system is located on the database, enter: CdrPLSQLImmediate_1
These adapters use PL/SQL to execute their defined objects.

■ If the external system is located on an operating system, enter: CdrSERVICE_1.
These adapters use the Distributed Processing (DP) Server to execute their
defined objects; see the chapter on setting up services in the Oracle LSH
System Administrator's Guide for more information.

■ program_type_rc. Enter the type of defined object created using this adapter:
$PROGRAMTYPES$LOADSET, $PROGRAMTYPES$DATA_MART, $PROGRAMTYPES$PROGRAMor
$PROGRAMTYPES$BUSAREA.

■ pre_install_function. Enter the name of your Pre-installation function, if any; see
"Pre_Install_Function" on page 2-13.

■ install_function. Enter the name of your Installation function, if any; see "Install_
Function" on page 2-13.

■ post_install_function. Enter the name of your Postinstallation function, if any; see
"Post_Install_Function" on page 2-14.

■ pre_execution_function. Enter the name of your Pre-execution function, if any;
see "Pre_Execution_Function" on page 2-17.

■ execution_function. Enter the name of your Execution function, if any; see
"Execution_Function" on page 2-17.

■ post_execution_function. Enter the name of your Postexecution function, if any;
see "Post_Execution_Function" on page 2-19.

Note: If any of these functions returns an error the job returns an
error. If any of these programs returns a warning then the job returns a
warning unless another part of the job generated an error.

Creating a Technology Type

4-4 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Sample Technology Type Settings
The following table shows the values used by a sampling of the adapters shipped with
Oracle LSH. You can see all settings for the shipped adapters in CDR_TECH_TYPES_
V.

Table 4–1 Technology Types

Column

Oracle Tables
and Views Load
Set Adapter

Text Load Set
Adapter

SAS Load Set
Adapter

SAS Data Mart
Adapter

Generic
Visualization
Business Area
Adapter

TECH_NAME_
RC

$TECHTYPES$O
RACLE

$TECHTYPES$T
EXT

$TECHTYPES$S
ASLOADSET

$TECHTYPES$S
ASDATAMART

$TECHTYPES$G
VA

TECH_VERSION 9.x 1 8.x 6.12 1.0.0.1

SERVICE_TYPE_
RC

$SERVICETYPES
$PLSQL

$SERVICETYPES
$TEXT

$SERVICETYPES
$SAS8

$SERVICETYPES
$SAS8

Null

BUILD_IDE_
CFG_
FUNCTION

Null Null Null Null Null

BUILD_EXE_
CFG_
FUNCTION

Null Null Null Null Null

OWB_
OPERATOR

CdrPLSQLImme
diate_1

CdrSERVICE_1 CdrSERVICE_1 CdrSERVICE_1 CdrSERVICE_1

PROGRAM_
TYPE_RC

$PROGRAMTYP
ES$LOADSET

$PROGRAMTYP
ES$LOADSET

$PROGRAMTYP
ES$LOADSET

$PROGRAMTYP
ES$DATA_MART

$PROGRAMTYP
ES$BUSAREA

PRE_INSTALL_
FUNCTION

Null Null Null Null Null

INSTALL_
FUNCTION

Null Null Null Null CDR_GV_
ADAPTER.INSTA
LL

POST_INSTALL_
FUNCTION

Null Null Null Null Null

PRE_
EXECUTION_
FUNCTION

Null CDR_ATK_Text_
Services.ExePreP
rocessor

CDR_EXE_
SAS.buildSasCon
figTmpLS

CDR_ATK_DM_
SAS_
SERVICES.execut
eDatamart

Null

EXECUTION_
FUNCTION

CDR_ATK_
oracledb.loadsetp
rocessing

Null Null Null Null

POST_
EXECUTION_
FUNCTION

Null Null Null Null Null

Creating an Adapter Domain

Using APIs to Create Required Metadata Objects 4-5

Modifying a Technology Type
If you need to modify your Technology Type, use the public API CDR_PUB_ATK_
ADAPTER. MODIFYTECHTYPE. Its signature is:

Package cdr_pub_atk_adapter
PROCEDURE modifyTechType(
p_api_version IN NUMBER
,p_init_msg_list IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_commit IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_validation_level IN NUMBER default CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL
,x_return_status OUT NOCOPY VARCHAR2
,x_msg_count OUT NOCOPY NUMBER
,x_msg_data OUT NOCOPY VARCHAR2
, pio_techTypeRow IN OUT NOCOPY cdr_tech_types%rowtype
);
See the description of parameter pio_techTypeRow in "Creating a Technology Type" on
page 4-2.

Creating an Adapter Domain
Do the following:

■ Call the Create Adapter Domain API on page 4-5

■ Save the Adapter Domain ID for Future Use on page 4-6

An Adapter Domain is a container object that holds all the definitional objects required
for an adapter.

Call the Create Adapter Domain API
To create an Adapter Domain, call the public API CDR_PUB_ATK_
ADAPTER.CREATEADAPTERDOMAIN. Its signature is:

PROCEDURE createAdapterDomain(
p_api_version IN NUMBER
,p_init_msg_list IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_commit IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_validation_level IN NUMBER default CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL
,x_return_status OUT NOCOPY VARCHAR2
,x_msg_count OUT NOCOPY NUMBER
,x_msg_data OUT NOCOPY VARCHAR2
, pio_adapterDomainNaming IN OUT NOCOPY cdr_naming_version_obj_type
) ;

It has one mandatory parameter, PIO_ADAPTERDOMAINNAMING, of table type
CDR_NAMING_VERSION_OBJ_TYPE. Enter values as follows:

■ company_id = Enter your company ID; see "Getting Your Company ID" on
page 4-2.

■ obj_id = null

■ obj_ver = null

■ object_type_rc = '$OBJTYPES$ADAPTERDOMAIN'

■ name = Enter a name for the Adapter Domain.

■ namespace_obj_id = null

■ namespace_obj_ver = null

Modifying an Adapter Domain

4-6 Oracle Life Sciences Data Hub Adapter Toolkit Guide

■ namespace_start_obj_ver = null

■ namespace_end_obj_ver = cdr_def_constants.cdr_max_def_object_version

■ owning_location_rc = null

■ checked_out_flag_rc = null

■ checked_out_id = null

■ object_subtype_id = null

■ description = Enter a description of the Adapter Domain.

■ copied_from_company_id = null

■ copied_from_obj_id = null

■ copied_from_obj_ver = null

■ ref_company_id = null

■ ref_obj_ver = null

■ object_version_number = 1

■ status_rc = '$NAMING_STATUS$INSTALLABLE'

■ validation_status_rc = null

■ version_label = null

Save the Adapter Domain ID for Future Use
You will need the internal ID for this Adapter Domain when you create the Adapter
Area.

Modifying an Adapter Domain
If you need to modify your Adapter Domain, use the public API CDR_PUB_ATK_
ADAPTER. MODIFYADAPTERDOMAIN. Its signature is:

Package cdr_pub_atk_adapter

PROCEDURE modifyAdapterDomain(
p_api_version IN NUMBER
,p_init_msg_list IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_commit IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_validation_level IN NUMBER default CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL
,x_return_status OUT NOCOPY VARCHAR2
,x_msg_count OUT NOCOPY NUMBER
,x_msg_data OUT NOCOPY VARCHAR2
, pio_adapterDomainNaming IN OUT NOCOPY cdr_naming_version_obj_type
) ;
See the description of parameter pio_adapterDomainNaming in "Creating an Adapter
Domain" on page 4-5.

Creating an Adapter Area
Do the following:

■ Call the Create Adapter Area API on page 4-7

■ Save the Adapter Area ID for Future Use on page 4-11

Creating an Adapter Area

Using APIs to Create Required Metadata Objects 4-7

■ Sample Adapter Settings on page 4-11

An Adapter Area is a container object that can hold all the definitional objects required
for an adapter. It is similar in function to an Oracle LSH Application Area, which is
described in the Oracle LSH Implementation Guide.

Normally you need only one Adapter Area in an Adapter Domain. However, if you
are developing more than one adapter for a single external system, (like the multiple
shipped Oracle Clinical adapters) you should create one Adapter Area for each
adapter.

Call the Create Adapter Area API
You must create a new Adapter Area using the public API CDR_PUB_ATK_
ADAPTER.CREATEADAPTERAREA. Its signature is:

PROCEDURE createAdapterArea(
p_api_version IN NUMBER
,p_init_msg_list IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_commit IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_validation_level IN NUMBER default CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL
,x_return_status OUT NOCOPY VARCHAR2
,x_msg_count OUT NOCOPY NUMBER
,x_msg_data OUT NOCOPY VARCHAR2
, pio_adapterAreaNaming IN OUT NOCOPY cdr_naming_version_obj_type
, pio_adapterAreaRow IN OUT NOCOPY cdr_adapter_areas%rowtype
) ;

Enter parameter values as follows:

Note: When you supply the name of a function or procedure you
have written, do not include the schema name. Enter only package_
name.procedure_or_function_name

■ PIO_ADAPTERAREANAMING. This is a mandatory parameter of table type
CDR_NAMING_VERSION_OBJ_TYPE. Enter attribute values as follows:

– company_id = Enter_your_company_ID

– obj_id = null

Note: The system generates this ID. Save the output parameter
value. You will need it to create objects inside the Adapter Area.

– obj_ver = null

– object_type_rc = '$OBJTYPES$ADAPTERAREA'

– name = Enter a name for the Adapter Area. The name appears in the UI in the
Adapter drop-down list on the object’s Create page.

– namespace_obj_id = Your_Adapter_Domain_ID

– namespace_obj_ver = 1

– namespace_start_obj_ver = 1

– namespace_end_obj_ver= cdr_def_constants.cdr_max_def_object_
version

Creating an Adapter Area

4-8 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– owning_location_rc = null

– checked_out_flag_rc = '$YESNO$NO'

– checked_out_id = null

– object_subtype_id = null

– description = 'Enter_a_Description_for_the_Program'

– copied_from_company_id = null

– copied_from_obj_id = null

– copied_from_obj_ver = null

– ref_company_id = null

– ref_obj_ver = null

– object_version_number = 1

– status_rc = null

– validation_status_rc = null

– version_label = null

■ PIO_ADAPTERAREAROW. This is a parameter of row type CDR_ADAPTER_
AREAS table. Enter object attribute values as follows:

– company_id. Enter_your_company_ID

– obj_id. Set to Null. The system enters the value.

– obj_ver. Enter 1. Or, if you are updating the adapter, increment the version
number by 1.

– adapter_name. Enter a name for your adapter.

– adapter_version. Enter the version number of the external system. This is for
your information only; this field has no effect.

– adapter_type. Enter one of the following adapter types:

* LOADSET for Load Set adapters

* DATAMART for Data Mart adapters

* BUSAREA for Business Area adapters

* PROGRAM for Program adapters

– tech_type_id. Enter the tech type ID for your adapter.

– allow_column_upload. (Applies only to Load Set adapters.) Enter YES, NO, or
FILE. If set to NO, a user defining a Load Set using this adapter cannot
upload column data structures from an external system. If you want the user
to be able to upload these data structures, enter YES if the source system is a
database and FILE if the source system stores data in files, such as SAS data
sets or xml files.

If set to YES or FILE, the Upload Column button appears in the Table
Descriptor properties page. Set to NO if your adapter is not a Load Set-type
adapter or if it is a Load Set adapter but the table structure is predefined, as in
some of the Oracle Clinical adapters; see "Planning Data Structures" on
page 2-23.

Creating an Adapter Area

Using APIs to Create Required Metadata Objects 4-9

The following shipped Load Set adapters use a column upload function:
Oracle Clinical Data Extract Oracle Views, Oracle Clinical Data Extract SAS
Views, Oracle Tables and Views, and SAS.

– column_upload_function. Applies only to Load Set adapters. If the Allow_
Column_Upload flag is set to YES or FILE, write a function to upload data
structures and enter the schema_id.package_name of the function.

– allow_manual_tab_desc_flag. Enter YES or NO. Set to YES to enable the Add
button in the Table Descriptors subtab in user interface, so that users can
manually define Table Descriptors. Set to NO to render the button inactive.

– auto_add_tab_desc_lov. Applies only to Load Set adapters. See "Object
Definition Functions and Procedures" on page 2-9 for information.

– allow_auto_add_tab_desc. Enter YES or NO. If set to NO, the Definer will not be
able to choose from a list of Tables to create Table Descriptors. If set to YES,
you must write a program to create a list of appropriate Tables and enter its
name in Auto_Add_Tab_Desc_ Function. You must also create a program to
create the selected Table Descriptors and enter its name in Auto_Add_Tab_
Desc_LOV.

– auto_add_tab_desc_function. Applies only to Load Set adapters. See "Object
Definition Functions and Procedures" on page 2-9 for information.

– currency_function. See "Object Definition Functions and Procedures" on
page 2-9 for information.

– define_time_function. See "Object Definition Functions and Procedures" on
page 2-9 for information.

– define_time_connect_flag. Enter YES if, in order to define an object through
this adapter, it is necessary to connect to a remote database. This is the case for
Oracle-based Load Set adapters, for example, to get a list of tables on a remote
database.

If you enter YES, you must create a Parameter instance in the define-time
Parameter Set to collect the remote location information; see "Table Descriptor
Define-Time Parameters" on page 2-22. You must then use the Parameter
value(s) in your code; for example, in the Auto_Add_Tab_Desc_Function to
return the list of tables from the remote system for the user to select.

Enter NO if no remote connection is required during object definition.

– install_time_connect_flag. Enter YES if, in order to install an object created
through this adapter, it is necessary to connect to a remote database. This is the
case for Orace-based Load Set adapters, for example, if the Definer chooses to
map Table Descriptors to Table instances defined as views. If set to YES, you
must create a Parameter instance in the define-time Parameter Set to collect
the remote location information; see"Table Descriptor Define-Time
Parameters" on page 2-22.

Enter NO if no remote connection is required during object installation.

– runtime_connect_flag. Enter YES if, in order to run an object created through
this adapter, it is necessary to connect to a remote database. This is the case for
SAS and Text Load Set adapters that load a file. If set to YES, you must create a
Parameter in the runtime Parameter Set to collect a value for the remote
location; see "Object Execution Functions and Procedures" on page 2-14.

Enter NO if no remote connection is required to run the object.

Creating an Adapter Area

4-10 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– tables_as_views_flag. (Applies only to Load Set adapters.) Enter YES to allow
the Definer to create the Load Set's target Table instances as passthrough views
to tables in the external system, so that the user can view data in the external
system. Entering YES here adds the item "Create Table as a View" from the
Process Type drop-down in the properties page of Table instances mapped to
target Table Descriptors.

Enter NO if the external system cannot support this functionality or if you do
not want to use it.

The following shipped adapters have this flag set to YES: Oracle Clinical Labs,
Oracle Clinical Data Extract Oracle Views, and Oracle Tables and Views.

– tables_as_views_function. Set to Null. This function is not currently used,
even by Load Sets that support tables as views.

– active_flag_rc. Enter '$YESNO$YES'

Note: You can always set this flag to YES. The adapter will not
actually become available for use until you have assigned user groups
to the Adapter Area.

– def_param_flag_rc. Enter '$YESNO$YES' if this adapter has a Parameter Set
called PARAMETERSET_LOADSETLEVEL_DEF. See "Object Definition
Functions and Procedures" on page 2-9 for further information. The system
then displays the Parameters in this Parameter Set as define-time attributes of
Load Sets, Data Marts, Program, or Business Areas created with this adapter.

Enter '$YESNO$NO' if this adapter does not have a Parameter Set called
PARAMETERSET_LOADSETLEVEL_DEF.

– run_param_flag_rc. Enter '$YESNO$YES' if this adapter has a Parameter Set
called PARAMETERSET_LOADSETLEVEL_RUN. See "Object Execution
Functions and Procedures" on page 2-14 for further information. The system
then displays the Parameters in this Parameter Set as runtime Parameters in
the Parameters subtab of Load Sets, Data Marts, Program, or Business Areas
and in the Execution Setup of Load Sets or Data Marts created with this
adapter.

Enter '$YESNO$NO' if this adapter does not have a Parameter Set called
PARAMETERSET_LOADSETLEVEL_RUN.

– td_param_flag_rc. (Applies only to Load Set adapters.) Enter '$YESNO$YES' if
this adapter has a Parameter Set called PARAMETERSET_OPERATORLEVEL.
See "Table Descriptor Define-Time Parameters" on page 2-22 for further
information. The system then displays the Parameters in this Parameter Set as
define-time attributes of Load Sets created with this adapter.

Enter '$YESNO$NO' if this adapter does not have a Parameter Set called
PARAMETERSET_OPERATORLEVEL

– status_recalc_function. See"Object Definition Functions and Procedures" on
page 2-9 for information.

– security_recalc_flag_rc. Enter '$YESNO$YES' if you write a Security
Recalulation function to synchronize Oracle LSH security with the security of
the external system; for example, for a Business Area adapter.

Enter '$YESNO$NO' if there is no security synchronization between Oracle LSH
and the external system. See "Synchronizing Security with Integrated

Creating an Adapter Area

Using APIs to Create Required Metadata Objects 4-11

Environments" on page 2-27.

– security_recalc_function. See "Object Execution Functions and Procedures" on
page 2-14 for information.

– install_schema_flag_rc. If your adapter requires a dedicated Oracle database
schema, enter '$YESNO$YES'. If not, enter '$YESNO$NO'.

If you set this flag to '$YESNO$YES', Oracle LSH creates an additional schema
dedicated to this adapter when you install the Work Area containing the
Business Area or other adapter-related object, and gives the additional schema
the same name as the Work Area schema plus the suffix you specify for
install_schema_suffix. You can use the install_functions to populate this
schema with whatever objects your adapter requires. Oracle LSH reinstalls the
schema each time the Work Area is installed, using the same installation type
specified for the Work Area. No more than one additional schema per adapter
type is created per Work Area.

– install_schema_suffix. If you set the install_schema_flag_rc to '$YESNO$YES',
enter text. The system appends this text to the Work Area schema name to
create the name for the additional schema.

Save the Adapter Area ID for Future Use
The input/output Parameter PIO_SOURCECDRNAMING returns the Object ID (obj_
id) of the Adapter Area. You will need this ID each time you create an object in the
Adapter Area.

Sample Adapter Settings
The following table shows the Adapter Area settings used by some of the adapters
shipped with Oracle LSH. You can see all settings for the shipped adapters in CDR_
ADAPTER_AREAS_V.

Note: The system treats No and Null the same way.

Table 4–2 Sample Adapter Settings

Column Name

Oracle Tables
and Views Load
Set Adapter

Text Load Set
Adapter

SAS Load Set
Adapter

SAS Data Mart
Adapter

Generic
Visualization
Business Area
Adapter

OBJ_VER 1 1 1 1 1

ADAPTER_
NAME

ORACLE_
DATABASE

Text SAS SAS EXPORT GENERIC_
VISUALIZATIO
N

ADAPTER_
VERSION

1 1 8.2 1 1.0.1.2

ADAPTER_TYPE LOADSET LOADSET LOADSET DATAMART BUSAREA

TECHNOLOGY_
TYPE_ID

(Generated) (Generated) (Generated) (Generated) (Generated)

ALLOW_
COLUMN_
UPLOAD

YES NO File NO NO

Creating an Adapter Area

4-12 Oracle Life Sciences Data Hub Adapter Toolkit Guide

COLUMN_
UPLOAD_
FUNCTION

CDR_ATK_
OracleDB_
Services.UploadC
olumns

Null CDR_ATK_SAS_
Services.Upload
OperatorColumn
s

NO Null

ALLOW_
MANUAL_TAB_
DESC_FLAG

YES YES YES YES NO

AUTO_ADD_
TAB_DESC_LOV

CDR_ATK_
OracleDB_
Services.CreateM
ultipleOperators

NO NO NO NO

ALLOW_AUTO_
ADD_TAB_DESC

YES NO NO YES NO

AUTO_ADD_
TAB_DESC_
FUNCTION

CDR_ATK_
OracleDB_
Services.GetData
OperList

Null Null NO Null

CURRENCY_
FUNCTION

Null Null Null NO Null

DEFINE_TIME_
FUNCTION

CDR_ATK_
OracleDB_
Services.CreateLo
gFilePlannedOut
put

CDR_ATK_Text_
Services.CreateLo
gFilePlannedOut
put

CDR_ATK_SAS_
Services.CreateLo
gFilePlannedOut
put

CDR_ATK_DM_
SAS_
SERVICES.create
PlannedOutput

Null

DEFINE_TIME_
CONNECT_
FLAG

YES NO NO NO NO

INSTALL_TIME_
CONNECT_
FLAG

YES NO NO NO NO

RUNTIME_
CONNECT_
FLAG

YES NO NO NO NO

TABLES_AS_
VIEWS_FLAG

YES NO NO NO NO

TABLES_AS_
VIEWS_
FUNCTION

Null Null Null NO Null

ACTIVE_FLAG_
RC

$YESNO$YES $YESNO$YES $YESNO$YES $YESNO$YES $YESNO$YES

DEF_PARAM_
FLAG_RC

$YESNO$YES $YESNO$YES $YESNO$YES $YESNO$YES $YESNO$YES

RUN_PARAM_
FLAG_RC

$YESNO$YES $YESNO$YES $YESNO$YES $YESNO$YES $YESNO$NO

TD_PARAM_
FLAG_RC

$YESNO$YES $YESNO$NO $YESNO$NO $YESNO$NO $YESNO$NO

Table 4–2 Sample Adapter Settings

Column Name

Oracle Tables
and Views Load
Set Adapter

Text Load Set
Adapter

SAS Load Set
Adapter

SAS Data Mart
Adapter

Generic
Visualization
Business Area
Adapter

Assigning a User Group to the Adapter Area

Using APIs to Create Required Metadata Objects 4-13

Modifying an Adapter Area
If you need to modify your Adapter Area, use public API CDR_PUB_ATK_
ADAPTER.MODIFYADAPTERAREA. Its signature is:

Package cdr_pub_atk_adapter
PROCEDURE modifyAdapterArea(
p_api_version IN NUMBER
,p_init_msg_list IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_commit IN VARCHAR2 default CDR_PUB_DEF_CONSTANTS.G_FALSE
,p_validation_level IN NUMBER default CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL
,x_return_status OUT NOCOPY VARCHAR2
,x_msg_count OUT NOCOPY NUMBER
,x_msg_data OUT NOCOPY VARCHAR2
, pio_adapterAreaNaming IN OUT NOCOPY cdr_naming_version_obj_type
, pio_adapterAreaRow IN OUT NOCOPY cdr_adapter_areas%rowtype
) ;
See the description of the parameters in "Creating an Adapter Area" on page 4-6.

Assigning a User Group to the Adapter Area
In order to create the rest of the required objects, you must belong to a user group that
is assigned to the Adapter Area, and you must have a role within the user group that
allows you to create and modify each of the required objects.

Note: Only the people who will build the adapter should have these
privileges within a user group assigned to the Adapter Area. If the
same people will later define Load Sets, Data Marts, Program, or
Business Areas that use this adapter, you may want to remove them
from this user group or ask them to always log in as a different user in
a different user group so that they do not inadvertently modify a
Parameter definition and invalidate the adapter.

See "Assigning User Groups to the Adapter Area" on page 7-1.

STATUS_
RECALC_
FUNCTION

Null Null Null CDR_ATK_DM_
SAS_
SERVICES.synchr
onizeDatamart

Null

SECURITY_
RECALC_FLAG_
RC

$YESNO$NO $YESNO$NO $YESNO$NO $YESNO$NO $YESNO$NO

SECURITY_
RECALC_FUNC

Null Null Null Null Null

INSTALL_
SCHEMA_
FLAG_RC

$YESNO$YES $YESNO$NO $YESNO$NO $YESNO$NO $YESNO$NO

INSTALL_
SCHEMA_
SUFFIX

Null Null Null Null Null

Table 4–2 Sample Adapter Settings

Column Name

Oracle Tables
and Views Load
Set Adapter

Text Load Set
Adapter

SAS Load Set
Adapter

SAS Data Mart
Adapter

Generic
Visualization
Business Area
Adapter

Creating a Work Area

4-14 Oracle Life Sciences Data Hub Adapter Toolkit Guide

You can assign user groups to Adapters in the user interface or by calling an API.

Note: If you are creating an adapter to be used by other companies,
use the API method to assign a user group. In the installation script
for your adapter, create an input parameter to accept one or more user
group IDs in the customer company.

User Interface Method
User interface instructions are included in the chapter on setting up adapters in the
Oracle LSH System Administrator's Guide.

API Method
Call the API CDR_PUB_SECURITY_PKG.ASSIGNUSRGRPTOOBJ. Its signature is:

PROCEDURE ASSIGNUSRGRPTOOBJ(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PI_BASEOBJECTTYPE IN OUT CDR_BASE_OBJ_TYPE,
 PI_CDROBJUGCOLL IN CDR_OBJ_UG_COLL
);

Enter values for the parameter PI_BASEOBJECTTYPE as follows:

■ company_id. Set to null.

■ obj_id. Enter the obj_id of the Adapter Area.

■ obj_ver. Enter 1

■ object_version_number. Set to null.

■ namespace_obj_id. Enter the obj_id of the Adapter Domain

■ namespace_object_ver. Enter 1

Enter values for the parameter PI_CDROBJUGCOLL as follows:

■ ug_company_id. Set to null.

■ obj_company_id. Set to null

■ user_group_id. Enter the user_group_id of the user group.

■ obj_id. Enter the obj_id of the Adapter Area.

■ exclusion_flag. Set to 'N'.

■ object_version_number. Set to null.

Creating a Work Area
This section contains the following topics:

■ Call the Create Work Area API on page 4-15

■ Save the Work Area ID for Future Use on page 4-16

Creating a Work Area

Using APIs to Create Required Metadata Objects 4-15

A Work Area contains instances of all the object definitions required for the adapter.
Work Areas are described in the Oracle LSH Implementation Guide.

Note: Save the Obj_ID of the Work Area for use when you create
objects inside it.

Call the Create Work Area API
To create a Work Area, call the API CDR_PUB_DF_
WORKAREA.CREATEWORKAREA. Its signature is:

PROCEDURE CREATEWORKAREA(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_
LEVEL_FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PIO_SOURCECDRNAMING IN OUT CDR_NAMING_VERSION_OBJ_TYPE,
 PIO_WORKAREAOBJTYPE IN OUT CDR_WORKAREA_OBJ_TYPE,
 PI_DEFCLASSIFICATIONCOLL IN CDR_CLASSIFICATIONS_COLL
);

Enter Parameter values as follows:

■ PIO_SOURCECDRNAMING. Enter CDR_NAMING_VERSION_OBJ_TYPE
values for the Work Area, as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = null

– object_type_rc = '$OBJTYPES$WORKAREA'

– name = 'Enter_a_name_for_the_Work_Area'

– namespace_obj_id = Your_Adapter_Area's_obj_id

– namespace_obj_ver = 1

– namespace_start_obj_ver = 1

– namespace_end_obj_ver= cdr_def_constants.cdr_max_def_object_
version

– owning_location_rc = null

– checked_out_flag_rc = '$YESNO$NO'

– checked_out_id = null

– object_subtype_id = null

– description = 'Enter_a_Description_for_the_Work_Area'

– copied_from_company_id = null

– copied_from_obj_id = null

– copied_from_obj_ver = null

– ref_company_id = null

Creating a Program Definition and Instance

4-16 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– ref_obj_ver = null

– object_version_number = 1

– status_rc = '$NAMING_STATUS$INSTALLABLE'

– validation_status_rc = null

– version_label = null

■ PI_WORKAREAOBJTYPE. Enter CDR_WORKAREA_OBJ_TYPE values as
follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– label = 'Standard'

– workarea_status_rc =null

– last_status_change_ts = sysdate

– usage_intent_rc = '$SYSVALDNSTEPS$PRODUCTION'

Note: If you set the Usage Intent to Production, you can still modify
your source code and defined objects as necessary and reinstall the
Work Area. Then when you have finished developing the adapter, if
you want to upgrade all objects' validation status to Production, you
can do so. If you prefer, set Usage Intent to Development now and use
the API CDR_PUB_DF_WORKAREA.UPDATEUSAGEINTENT to
change it to Production later.

An Adapter Area can contain only one Work Area.

– cloned_from_company_id = null

– cloned_from_obj_id = null

– cloned_from_obj_ver = null

– wa_runtime_status_rc = null

Save the Work Area ID for Future Use
The input/output Parameter PIO_SOURCECDRNAMING returns the Object ID (obj_
id) of the Work Area.

Creating a Program Definition and Instance
This section contains the following topics:

■ Query for the Tech Type ID on page 4-17

■ Call the Create Program API on page 4-17

■ Save the Program Definition and Instance IDs for Future Use on page 4-18

You must create a Program definition in the Adapter Area to store the source code
required for the adapter. You must create an instance of the Program definition in the
Work Area.

Creating a Program Definition and Instance

Using APIs to Create Required Metadata Objects 4-17

Query for the Tech Type ID
Before you call the API, run the following query to retrieve the local tech type ID for
the PL/SQL technology type:

select tech_type_id from cdr_tech_types where tech_name_rc='$TECHTYPES$PLSQL';

Note: Save the tech type ID for use in creating Source Code
definitions as well as the Program definition.

Call the Create Program API
To create a Program definition and an instance of it, call the API CDR_PUB_DF_
PROGRAM.CREATEPROGRAM. Its signature is:

PROCEDURE CREATEPROGRAM(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_
LEVEL_FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PIO_SOURCECDRNAMING IN OUT CDR_NAMING_VERSION_OBJ_TYPE,
 PI_CDRPRGOBJTYPE IN CDR_PROGRAM_OBJ_TYPE,
 PI_CREATEOBJECT IN VARCHAR2,
 PI_INSTANCE_SUBTYPE_ID IN CDR_NAMINGS.OBJECT_SUBTYPE_ID%TYPE,
 PI_DEFCLASSIFICATIONCOLL IN CDR_CLASSIFICATIONS_COLL,
 PI_INSTCLASSIFICATIONCOLL IN CDR_CLASSIFICATIONS_COLL
);

Enter Parameter values as follows:

■ PIO_SOURCECDRNAMING. Enter CDR_NAMING_VERSION_OBJ_TYPE
values that apply to the Program definition, as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = null

– object_type_rc = null

– name = 'Enter_a_name_for_the_Program'

– namespace_obj_id = Your_WorkArea's_obj_ID

– namespace_obj_ver = 1

– namespace_start_obj_ver = 1

– namespace_end_obj_ver= cdr_def_constants.cdr_max_def_object_
version

– owning_location_rc = null

– checked_out_flag_rc = '$YESNO$NO'

– checked_out_id = null

– object_subtype_id = null

– description = 'Enter_a_Description_for_the_Program'

Creating a Source Code Definition and Instance

4-18 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– copied_from_company_id = null

– copied_from_obj_id = null

– copied_from_obj_ver = null

– ref_company_id = null

– ref_obj_ver = null

– object_version_number = 1

– status_rc = '$NAMING_STATUS$INSTALLABLE'

– validation_status_rc = null

– version_label = null

■ PI_CDRPRGOBJTYPE. Enter CDR_PROGRAM_OBJ_TYPE values that apply to
the Program definition, as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– tech_type_id = Enter_your_Tech_Type_ID

– manual_validation_flag_rc = '$YESNO$NO'

■ PI_CREATEOBJECT = BOTH

■ PI_DEFCLASSIFICATIONCOLL = null

■ PI_INSTCLASSIFICATIONCOLL = nulll

Save the Program Definition and Instance IDs for Future Use
The input/output Parameter PIO_SOURCECDRNAMING returns the Object ID (obj_
id) of the Program instance.

To get the Object ID of the Program definition, use the following query:

select ref_obj_id,ref_obj_ver from cdr_naming_versions where company_id = your_
company_idand obj_id = your_program_instance_obj_id and obj_ver=1;

Creating a Source Code Definition and Instance
You must create at least one Source Code object definition inside the Program
definition to contain the PL/SQL packages you write. Each Source Code definition
must contain one and only one package. Each package can contain any number of
functions and procedures, in any combination you choose.

It is not necessary to mark any Source Code as Primary because the Program is never
executed as a whole.

Call the Create Source Code API
To create a Source Code definition and an instance of it, call the API CDR_PUB_DF_
SOURCEC)DE.CREATESOURCECODE. Its signature is:

PROCEDURE CREATESOURCECODE(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,

Creating a Source Code Definition and Instance

Using APIs to Create Required Metadata Objects 4-19

 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_
FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PIO_SCREF_SOURCECDRNAMING IN OUT CDR_NAMING_VERSION_OBJ_TYPE,
 PI_CDRSCOBJTYPE IN OUT CDR_SRCCODE_OBJ_TYPE,
 PIO_CDRSCREFOBJTYPE IN OUT CDR_SRCCODE_REF_OBJ_TYPE,
 PI_CREATEOBJECT IN VARCHAR2,
 PI_DEFINITON_SUBTYPE_ID IN CDR_NAMINGS.OBJECT_SUBTYPE_ID%TYPE,
 PI_VLOBMODE IN VARCHAR2 := NULL,
 PIO_CDRSCBLOB IN OUT CDR_SRCCODE_BLOB_OBJ_TYPE,
 PIO_CDRSCCLOB IN OUT CDR_SRCCODE_CLOB_OBJ_TYPE
);

Enter Parameter values as follows:

■ PIO_SCREF_SOURCECDRNAMING. Enter CDR_NAMING_VERSION_OBJ_
TYPE values that apply to the Source Code definition, as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = null

– object_type_rc = '$OBJTYPES$SRCCDEREF'

– name = 'Enter_a_name_for_the_Source_Code'

– namespace_obj_id = Enter_your_Program_Definition's_obj_id

– namespace_obj_ver = 1

– namespace_start_obj_ver = 1

– namespace_end_obj_ver= cdr_def_constants.cdr_max_def_object_
version

– owning_location_rc = null

– checked_out_flag_rc = '$YESNO$NO'

– checked_out_id = null

– object_subtype_id = null

– description = 'Enter_a_Description_for_the_Source_Code'

– copied_from_company_id = null

– copied_from_obj_id = null

– copied_from_obj_ver = null

– ref_company_id = null

– ref_obj_ver = null

– object_version_number = 1

– status_rc = '$NAMING_STATUS$INSTALLABLE'

– validation_status_rc = null

– version_label = null

■ PI_CDRSCOBJTYPE. Enter CDR_SRCCODE_OBJ_TYPE values that apply to the
Source Code definition, as follows:

Creating a Source Code Definition and Instance

4-20 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– tech_type_id = Enter_your_Tech_Type_ID

– srccode_type_rc = '$FILETYPES$SQL'

– shareable_flag_rc = '$YESNO$NO'

– oracle_package_name = 'Enter_the_package_name'

– oracle_procedure_name = 'Enter_the_name_of_the_procedure_inside_the_
package'

■ PIO_CDRSCREFOBJTYPE. Enter CDR_SRCCODE_REF_OBJ_TYPE values that
apply to the Source Code instance, as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– position = 1

– primary_flag_rc = '$YESNO$NO'

Note: Only one Source Code in any Program can have its Primary
flag set to Yes. In the case of an adapter Program, there is no true
primary Source Code because the Program as a whole is never
executed. The adapter calls the functions one at a time as needed. So
you can set this flag to No for all Source Code definitions in the
adapter.

– static_flag_rc = '$YESNO$NO'

– static_program_company_id = null

– static_program_obj_id = null

static_program_obj_ver_id = null

– fileref = null

■ PI_CREATEOBJECT. Enter "BOTH".

■ PI_DEFINITON_SUBTYPE_ID. Null

■ PI_VLOBMODE. Enter 'DIRECT'.

■ PIO_CDRSCBLOB. Null. You are uploading a PL/SQL package, which is a
CLOB.

■ PIO_CDRSCCLOB. This is a compound object of type CDR_SRCCODE_CLOB_
OBJ_TYPE. Enter values as follows for one PL/SQL package containing the
custom functions and procedures you have written for the adapter.

– file_name = name_of_the_source_code_file

– file_clob = source_code_text

– sc_obj_id = null

– sc_obj_ver = null

Creating a Variable

Using APIs to Create Required Metadata Objects 4-21

Creating a Variable
This section contains the following topics:

■ Call the Create Variable API on page 4-21

■ Check in the Variable on page 4-23

If you need user input to create a Load Set, Data Mart, Program, or Business Area—for
example, an Oracle Remote Location name and connection—you must define a
Parameter to collect the information. For each Parameter, you must define a Variable
for the Parameter to reference.

Call the Create Variable API
To create a Variable, call the API CDR_PUB_DF_VARIABLE.CREATEVARIABLE. Its
signature is:

PROCEDURE CREATEVARIABLE(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_
FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PIO_NAMING IN OUT CDR_NAMING_VERSION_OBJ_TYPE,
 PIO_VARIABLE IN OUT CDR_VAR_OBJ_TYPE,
 PI_DEFCLASSIFICATIONCOLL IN CDR_CLASSIFICATIONS_COLL
);

Enter Parameter values as follows:

■ PIO_NAMING. Enter CDR_NAMING_VERSION_OBJ_TYPE values as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = null

– object_type_rc = '$OBJTYPES$CDRVAR'

– name = 'Enter_a_name_for_the_Variable'

Note: For the Name and Description attributes, enter a meaningful
value appropriate for each Variable. This is important because you
will probably create many Variables and you will need to reference
them from Parameter definitions and, if you define Tables in your
adapter, Table Columns.

– namespace_obj_id = Your_Adapter_Area's_obj_id

– namespace_obj_ver = 1

– namespace_start_obj_ver = 1

– namespace_end_obj_ver= cdr_def_constants.cdr_max_def_object_
version

– owning_location_rc = null

Creating a Variable

4-22 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– checked_out_flag_rc = '$YESNO$NO'

– checked_out_id = null

– object_subtype_id = null

– description = 'Enter_a_Description_for_the_Source_Code'

– copied_from_company_id = null

– copied_from_obj_id = null

– copied_from_obj_ver = null

– ref_company_id = null

– ref_obj_ver = null

– object_version_number = 1

– status_rc = '$NAMING_STATUS$INSTALLABLE'

– validation_status_rc = null

– version_label = null

■ PIO_VARIABLE. Enter CDR_VAR_OBJ_TYPE values that apply to the Source
Code definition, as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– oracle_name = 'Enter_an_Oracle_Name'

– oracle_datatype_rc = 'Enter_one_of_the_valid_values'

Note: The valid Oracle_Datatype_RC values are:

■ $ORADATATYPES$VARCHAR2

■ $ORADATATYPES$NUMBER

■ $ORADATATYPES$DATE

– length = Enter_the_Variable_length

– precision = null (unless the variable is of data type number and requires a
value for precision)

– sas_format = If the data type is varchar2, enter '$Char.length'

If the data type is number, enter '$Num.length'

If you are creating an adapter to a SAS system, use the following default SAS
formatting rules:Varchar2(10) becomes $10; Number(10,5) becomes 10.5;Date
becomes datetime.

– sas_v6_name = 'Enter_SAS_v6_name'

Note: The SAS_V6_Name cannot be longer than 8 characters.

– sas_v8_name = 'Enter_SAS_v8_name'

Creating a Parameter

Using APIs to Create Required Metadata Objects 4-23

– sas_label = 'Enter_Sas_Label'

– nullable_flag = Enter '$YESNO$YES' or '$YESNO$NO' depending on whether or
not you want the variable to be nullable or mandatory.

– default_value = null

Save the Variable ID for Future Use
The input/output Parameter PIO_NAMING returns the Object ID (obj_id) and
version number (obj_ver) of the Variable.

You will need this ID when you define a Parameter based on this Variable. Be careful
to save a meaningful name with the ID, as you may have many Variables.

Note: If you are creating Tables in your adapter, you can create
Variables and Table Columns at the same time. You do not need to
create Variables first.

Check in the Variable
You must check in the Variable so that other objects can reference it. call API CDR_
PUB_DF_VARIABLE.CHECKIN. Enter values as follows:

■ PIO_BASEOBJECT. Enter CDR_BASE_OBJ_TYPE values to identify the variable.

– company_id = Enter_your_company_ID

– obj_id = Enter_the_variable's_obj_id

– obj_ver = 1

– object_version_number = 1

– namespace_obj_id = Enter_your_Adapter_Area's_obj_id

– namespace_obj_ver = 1

■ PI_COMMENT = null

Creating a Parameter
This section contains the following topics:

■ Call the Create Parameter API on page 4-24

■ Save the Parameter ID for Future Use on page 4-27

■ Check in the Parameter on page 4-27

Use Parameters to allow users to enter values during the definition or execution of a
Load Set, Data Mart, Program, or Business Area. You must create a defined Parameter
object for each parameter required and handle the user input in your source code.

Parameter definitions are usually contained directly in the Adapter Area.
Alternatively, if you are creating multiple adapters for a single external system and
more than one of them use the same Parameter definition, you may want to create the
Parameter definition directly in the Adapter Domain.

Note: If you are creating an adapter that must upload files, define a
Parameter with its Parameter Type set to either BINARY_FILE or
TEXT_FILE, as appropriate, and create an instance of it in the runtime
Parameter Set (see "Creating a Parameter Set" on page 4-28.) Create a
second Parameter called TMP_BLOB_ID, for example, and create an
instance of it in the same Parameter Set. Write code to upload the file
to a temporary location and store the ID for the file as the valueof
TMP_BLOB_ID. Use this value in your pre-execution function and
execution function.

Creating a Parameter

4-24 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Call the Create Parameter API
To create a Parameter, call the API CDR_PUB_DF_
PARAMETER.CREATEPARAMETER. Its signature is:

PROCEDURE CREATEPARAMETER(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_
LEVEL_FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PIO_PARAMNAMING IN OUT CDR_NAMING_VERSION_OBJ_TYPE,
 PIO_CDRPARAMOBJTYPE IN OUT CDR_PARAMETER_OBJ_TYPE,
 PI_CREATE_OBJECT IN VARCHAR2,
 PI_INSTANCE_SUBTYPE_ID IN CDR_NAMINGS.OBJECT_SUBTYPE_ID%TYPE,
 PI_PARENTNAMING IN OUT CDR_BASE_OBJ_TYPE,
 PO_DEFCLASSIFICATIONCOLL IN CDR_CLASSIFICATIONS_COLL
);

Enter parameter values as follows:

■ PIO_PARAMNAMING. Enter CDR_NAMING_VERSION_OBJ_TYPE values as
follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = null

– object_type_rc = '$OBJTYPES$PARAMETER'

– name = 'Enter_a_name_for_the_Parameter'

Note: For the Name and Description attributes, enter a meaningful
value appropriate for each Parameter. This is important because you
will probably create many Parameters and you will need to create
instances of them.

– namespace_obj_id = Enter_your_Adapter_Area's_obj_id

– namespace_obj_ver = 1

– namespace_start_obj_ver = 1

Creating a Parameter

Using APIs to Create Required Metadata Objects 4-25

– namespace_end_obj_ver= cdr_def_constants.cdr_max_def_object_
version

– owning_location_rc = null

– checked_out_flag_rc = '$YESNO$NO'

– checked_out_id = null

– object_subtype_id = null

– description = 'Enter_a_Description_for_the_Parameter'

– copied_from_company_id = null

– copied_from_obj_id = null

– copied_from_obj_ver = null

– ref_company_id = Enter_your_company_ID

– ref_obj_id = Enter_the_obj_ID_of_the_Variable_this_Parameter_
references

– ref_obj_ver = 1

– object_version_number = 1

– status_rc = '$NAMING_STATUS$INSTALLABLE'

– validation_status_rc = null

– version_label = null

■ PIO_CDRPARAMOBJTYPE. Enter CDR_PARAMETER_OBJ_TYPE values that
apply to the Parameter definition, as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– prompt = 'Enter_the_label_you_want_to_appear_in_the_UI'

– allowed_values_rc (Required) This attribute determines what type of value
the Parameter will support. For further information, see the chapter on
Parameters in the Oracle LSH Application Developer's Guide. The allowed
attribute values are:

* $PARAMALLOWVALS$PGMGENLOV (Program-generated list of
values)

* $PARAMALLOWVALS$STATICLOV (Static list of values)

* $PARAMALLOWVALS$SINGLEVALUE (Single value)

– lov_company_id = null

– lov_id = null

– lov_ver = null

– lov_prg_inst_company_id = null or, if you are defining a programmatically
generated list of values, enter the company_id of the Program instance that
you need to run to generate the LOV.

– lov_prg_inst_id = null or, if you are defining a programmatically generated
list of values, enter the obj_id of the Program instance that you need to run to
generate the LOV.

Creating a Parameter

4-26 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– lov_prg_inst_ver = null or, if you are defining a programmatically generated
list of values, enter the obj_ver of the Program instance that you need to run to
generate the LOV.

– lov_sc_ref_company_id = null or, if you are defining a programmatically
generated list of values, enter the company_id of the relevant Source Code
instance in the Program instance.

– lov_sc_ref_id = null or, if you are defining a programmatically generated list
of values, enter the obj_id of the relevant Source Code instance in the Program
instance.

– lov_sc_ref_ver = null or, if you are defining a programmatically generated list
of values, enter the obj_ver of the relevant Source Code instance in the
Program instance.

– lov_cla_level_id = null or, if you are defining a list of values based on terms in
a classification hierarchy level, enter the level_id of the of the relevant level.

– lov_default_cla_id = null

– lov_multi_flag_rc Enter $YESNO$YES if the Parameter supports either a static
list of values or a program-generated list of values and you want to support
selecting more than one value at a time in the user interface.

Enter $YESNO$NO if the Parameter supports only a single value.

– validation_rule_rc Enter one of the following values:

* $VALDNRULES$NONE (no validation rule defined)

* $VALDNRULES$USEALLOWEDVALS (the parameter's value will be validated
against the list of values defined for the parameter, either Programatic or
Static)

* $VALDNRULES$PROGRAMMATIC (the parameter's value will be validated
against a list of values generated by source code different from the source
code that generates the Parameter's list of values—if any)

– val_prg_inst_company_id = null or, if you are validating user-entered values
programmatically, enter the company_id of the Program instance that you run
to perform the validation.

– val_prg_inst_id = null or, if you are validating user-entered values
programmatically, enter the obj_id of the Program instance that you run to
perform the validation.

– val_prg_inst_ver = null or, if you are validating user-entered values
programmatically, enter the obj_ver of the Program instance that you run to
perform the validation.

– val_sc_ref_company_id = null or, if you are validating user-entered values
programmatically, enter the company_id of the relevant Source Code instance
in the Program instance..

– val_sc_ref_id = null or, if you are validating user-entered values
programmatically, enter the obj_id of the relevant Source Code instance in the
Program instance..

– val_sc_ref_ver = null or, if you are validating user-entered values
programmatically, enter the obj_ver of the relevant Source Code instance in
the Program instance..

– input_output_rc = '$PARAMDIRECTS$INOUT'

Creating a Parameter

Using APIs to Create Required Metadata Objects 4-27

– read_only_flag_rc = '$YESNO$NO'

– visible_flag_rc = '$YESNO$YES'

– mandatory_flag_rc = '$YESNO$YES'

– default_value = null (or enter a default value if you want one)

– position = null

– param_type_rc = null

Note: By default the system sets the Parameter type to Scalar.

– auto_share_field_flag_rc = null

■ PI_CREATEOBJECT Enter DEFN.

■ PI_INSTANCE_SUBTYPE_ID = null

■ PI_PARENTNAMING Enter CDR_BASE_OBJ_TYPE values that apply to your
Adapter Area as follows:

– company_id = Enter_the_company_id_of_your_Adapter_Area

– obj_id = Enter_the_obj_id_of_your_Adapter_Area

– obj_ver = 1

■ PO_DEFCLASSIFICATIONCOLL Null

Save the Parameter ID for Future Use
The input/output Parameter PIO_PARAMNAMING returns the Object ID (obj_id)
and version number (obj_ver) of the Parameter.

You will need this ID when you define a Parameter instance based on this Parameter.
Be careful to save a meaningful name with the ID, as you may have many Parameters.

Check in the Parameter
You must check in the Parameter so that other objects can reference it. Call API CDR_
PUB_DF_PARAMETER.CHECKINPARAMETER. Its signature is:

PROCEDURE CHECKINPARAMETER(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PIO_CDRNAMING IN OUT CDR_BASE_OBJ_TYPE,
 PI_COMMENT IN VARCHAR2
);

Enter values as follows:

■ PIO_BASEOBJECT. Enter CDR_BASE_OBJ_TYPE values to identify the variable.

– company_id = Enter_your_company_ID

– obj_id = Enter_the_Parameter's_obj_id

Creating a Parameter Set

4-28 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– obj_ver = 1

– object_version_number = 1

– namespace_obj_id = Enter_your_Adapter_Area's_obj_id

– namespace_obj_ver = 1

■ PI_COMMENT = null

Creating a Parameter Set
This section contains the following topics:

■ Call the Create Parameter Set API on page 4-28

■ Save the Parameter Set ID for Future Use on page 4-30

You may create one, two, or three Parameter Sets to collect user input during the
definition, installation, or execution of a Load Set, Data Mart, or Program, or the
launch of a visualization tool.

You must give these Parameter Sets specific names and attribute values so that the
system can use them properly; see "Planning Parameters and Parameter Sets" on
page 2-21.

Call the Create Parameter Set API
To create a Parameter, call the API CDR_PUB_DF_PARAMETER_
SET.CREATEPARAMETERSET. Its signature is:

PROCEDURE CREATEPARAMETERSET(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PIO_SOURCECDRNAMING IN OUT CDR_NAMING_VERSION_OBJ_TYPE,
 PI_CDRPSOBJTYPE IN CDR_PARAM_SETS_OBJ_TYPE,
 PI_CREATEOBJECT IN VARCHAR2,
 PI_INSTANCE_SUBTYPE_ID IN CDR_NAMINGS.OBJECT_SUBTYPE_ID%TYPE,
 PI_DEFCLASSIFICATIONCOLL IN CDR_CLASSIFICATIONS_COLL
);

Enter parameter values as follows:

■ PIO_PARAMNAMING. Enter CDR_NAMING_VERSION_OBJ_TYPE values as
follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = null

– object_type_rc = null

– name = 'Enter_one_of_the_required_names_for_the_Parameter_Set'

Note: The valid values are:

■ PARAMETERSET_LOADSETLEVEL_DEF

■ PARAMETERSET_OPERATORLEVEL

■ PARAMETERSET_LOADSETLEVEL_RUN

Creating a Parameter Set

Using APIs to Create Required Metadata Objects 4-29

– namespace_obj_id = Enter_your_Adapter_Area's_obj_id

– namespace_obj_ver = 1

– namespace_start_obj_ver = 1

– namespace_end_obj_ver= cdr_def_constants.cdr_max_def_object_
version

– owning_location_rc = null

– checked_out_flag_rc = '$YESNO$NO'

– checked_out_id = null

– object_subtype_id = null

– description = 'Enter_the_same_value_that_you_entered_for_the_
Parameter_Set_name'

– copied_from_company_id = null

– copied_from_obj_id = null

– copied_from_obj_ver = null

– ref_company_id = Enter_your_company_ID

– ref_obj_id = Enter_the_obj_ID_of_the_Variable_this_Parameter_
references

– ref_obj_ver = 1

– object_version_number = 1

– status_rc = '$NAMING_STATUS$INSTALLABLE'

– validation_status_rc = null

– version_label = null

■ PI_CDRPSOBJTYPE. Enter CDR_PARAM_SETS_OBJ_TYPE values that apply to
the Parameter Set definition, as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– usage = 'Enter_the_usage_value_required_for_Parameter_Sets_with_
this_name'

Note: The valid values are:

■ DEFINITION for Parameter Sets named PARAMETERSET_
LOADSETLEVEL_DEF

■ OPERATOR for Parameter Sets named PARAMETERSET_
OPERATORLEVEL

■ EXECUTION for Parameter Sets named PARAMETERSET_
LOADSETLEVEL_RUN

Creating a Parameter Instance in a Parameter Set

4-30 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– pr_ref_id = null

– pr_ref_ver = null

– parameter_set_type_rc = null

Save the Parameter Set ID for Future Use
You will need this ID for the namespace_obj_id when you create Parameter instances
inside this Parameter Set. Oracle LSH creates standard IDs for Adapter Parameter Sets:

■ PS1ID for Parameter Sets named PARAMETERSET_LOADSETLEVEL_DEF

■ PS2ID for Parameter Sets named PARAMETERSET_OPERATORLEVEL

■ PS3ID for Parameter Sets named PARAMETERSET_LOADSETLEVEL_RUN

Creating a Parameter Instance in a Parameter Set
For each Parameter definition you have created, create a Parameter instance in the
appropriate Parameter Set.

Call the Create Parameter API
To create a Parameter, call the API CDR_PUB_DF_
PARAMETER.CREATEPARAMETER. Enter parameter values as follows:

PROCEDURE CREATEPARAMETER(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PIO_PARAMNAMING IN OUT CDR_NAMING_VERSION_OBJ_TYPE,
 PIO_CDRPARAMOBJTYPE IN OUT CDR_PARAMETER_OBJ_TYPE,
 PI_CREATE_OBJECT IN VARCHAR2,
 PI_INSTANCE_SUBTYPE_ID IN CDR_NAMINGS.OBJECT_SUBTYPE_ID%TYPE,
 PI_PARENTNAMING IN OUT CDR_BASE_OBJ_TYPE,
 PO_DEFCLASSIFICATIONCOLL IN CDR_CLASSIFICATIONS_COLL
);

■ PIO_PARAMNAMING. Enter CDR_NAMING_VERSION_OBJ_TYPE values as

follows:

– company_id = Enter_your_company_ID

– obj_id = null

Creating a Parameter Instance in a Parameter Set

Using APIs to Create Required Metadata Objects 4-31

– obj_ver = null

– object_type_rc = '$OBJTYPES$PARAMREF'

– name = 'Enter_a_name_for_the_Parameter_instance'

– namespace_obj_id = Enter_the_Parameter_Set_ID

– namespace_obj_ver = 1

– namespace_start_obj_ver = 1

– namespace_end_obj_ver= cdr_def_constants.cdr_max_def_object_
version

– owning_location_rc = null

– checked_out_flag_rc = '$YESNO$NO'

– checked_out_id = null

– object_subtype_id = null

– description = 'Enter_a_Description_for_the_Parameter_instance'

– copied_from_company_id = null

– copied_from_obj_id = null

– copied_from_obj_ver = null

– ref_company_id = Enter_your_company_ID

– ref_obj_id = Enter_the_obj_ID_of_the_Parameter_definition_this_
Parameter_instance_references

– ref_obj_ver = 1

– object_version_number = 1

– status_rc = '$NAMING_STATUS$INSTALLABLE'

– validation_status_rc = null

– version_label = null

■ PIO_CDRPARAMOBJTYPE. Do not enter any values.

■ PI_CREATEOBJECT. Enter INST.

■ PI_INSTANCE_SUBTYPE_ID. Null

■ PI_PARENTNAMING. Enter the following CDR_BASE_OBJ_TYPE values. The
first four apply to the Parameter Set into which you are putting the Parameter
instance. The last two (namespace) attributes apply to the Adapter Area, which is
the parent of the Parameter Set.

– company_id = Enter your company ID; see "Getting Your Company ID" on
page 4-2.

– obj_id = Enter the Object ID of the Parameter Set.

– obj_ver = 1

– object_version_number = 1

– namespace_obj_id = Enter the Object ID of the Adapter Area.

– namespace_obj_ver = 1

■ PO_DEFCLASSIFICATIONCOLL. Null

Creating a Table Definition

4-32 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Creating a Table Definition
If you are creating a Load Set adapter and the external source data system has fixed
data structures, you may want to define those data structures as Tables in the Adapter
Area rather than uploading them or forcing the user to create them manually each
time a user creates a Load Set. This enhances performance, reduces the possibility of
error, and eliminates the need to connect to a remote database during Load Set
definition.

You can either create a Table Descriptor for every Table definition in every Load Set of
this type, or you can create a list of values and allow the person defining the Load Set
to select which Table Descriptors he or she wants.

To create a list of values:

■ Write a procedure to retrieve a list of all the Table definitions in the Adapter Area
and to insert them into a list values so that the user can select some or all of them
to be loaded by the Load Set.

■ When you create the Adapter Area, enter the procedure's name as the value for
auto_add_tab_desc_function.

Note: The above description is correct. The intended functions for
the above column and the Auto_Add_Tab_Desc_LOV column are
reversed.

■ When you create the Adapter Area, set allow_auto_add_tab_desc to YES.

In addition, you must:

■ Write a procedure to create Table Descriptors in Oracle LSH based on each Table
definition required.

■ When you create the Adapter Area, enter this procedure's name as the value for
auto_add_tab_desc_lov.

Note: Data Mart and Business Area adapters do not require Table
definitions because their source tables are within Oracle LSH.

Call the Create Table API
To create a Table definition, call the API CDR_PUB_DF_
TABLE.CREATETABLEDEFINITION. Enter parameter values as follows:

PROCEDURE CREATETABLEDEFINITION(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PIO_NAMING IN OUT CDR_NAMING_VERSION_OBJ_TYPE,
 PIO_TABLE IN OUT CDR_TABLE_OBJ_TYPE,
 PI_INSTANCESUBTYPEID IN NUMBER,
 PI_DEFCLASSIFICATIONCOLL IN CDR_CLASSIFICATIONS_COLL,
 PI_INSTCLASSIFICATIONCOLL IN CDR_CLASSIFICATIONS_COLL
);

Creating a Table Definition

Using APIs to Create Required Metadata Objects 4-33

■ PIO_NAMING. Enter CDR_NAMING_VERSION_OBJ_TYPE values that apply
to the Program definition, as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = null

– object_type_rc = '$OBJTYPES$TABLE'

– name = 'Enter_a_name_for_the_Table'

– namespace_obj_id = Enter_your_Adapter_Area's_obj_id

– namespace_obj_ver = 1

– namespace_start_obj_ver = 1

– namespace_end_obj_ver= cdr_def_constants.cdr_max_def_object_
version

– owning_location_rc = null

– checked_out_flag_rc = '$YESNO$NO'

– checked_out_id = null

– object_subtype_id = null

– description = 'Enter_a_Description_for_the_Table'

– copied_from_company_id = null

– copied_from_obj_id = null

– copied_from_obj_ver = null

– ref_company_id = null

– ref_obj_ver = null

– object_version_number = 1

– status_rc = '$NAMING_STATUS$INSTALLABLE'

– validation_status_rc = null

– version_label = null

■ PI_TABLE. Enter CDR_TABLE_OBJ_TYPE values as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– oracle_name = 'Enter_an_Oracle_name_for_the_Table'

– sas_name = 'Enter_a_SAS_name_for_the_Table'

– sas_label = 'Enter_a_SAS_label_for_the_Table'

– sas_v6_flag = '$YESNO$YES' if you are using SAS v6 or '$YESNO$NO' if you are
using a more recent SAS version

– audit_tabc_company_id = null

– audit_tabc_obj_id = null

– audit_tabc_obj_ver = null

Creating a Table Definition

4-34 Oracle Life Sciences Data Hub Adapter Toolkit Guide

– snapshot_flag_rc = 'set_to_$YESNO$YES_to_allow_snapshots or
$YESNO$NO_prevent_them'

– process_type_rc = Valid values are: $PROCESSTYPES$RELOAD (Reload),
$PROCESSTYPES$STAGINGWAUDIT (Staging with Audit),
$PROCESSTYPES$STAGINGWOAUDIT (Staging without Audit),
$PROCESSTYPES$TRANSWOAUDIT (Transactional without Audit),
$PROCESSTYPES$TRANSWAUDIT (Transactional with Audit)

– blinding_flag_rc = Enter_$YESNO$YES_if_the_adapter_will_load_blinded_
data_or_$YESNO$NO_if_it_will_not

■ PI_INSTANCESUBTYPEID. Null

■ PI_DEFCLASSIFICATIONCOLL. Null

■ PI_INSTCLASSIFICATIONCOLL. Null

Call the Create Column API
Call the API CDR_PUB_DF_TABLE.CREATECOLUMN to create Columns for the
Table, one at a time. You can create both the Column and the Variable on which it is
based at the same time.

■ PIO_NAMING. Enter CDR_NAMING_VERSION_OBJ_TYPE values as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = null

– object_type_rc = '$OBJTYPES$COLUMN'

– name = 'Enter_a_name_for_the_Column'

– namespace_obj_id = Enter_the_Table's_obj_ID

– namespace_obj_ver = 1

– namespace_start_obj_ver = 1

– namespace_end_obj_ver= cdr_def_constants.cdr_max_def_object_
version

– owning_location_rc = null

– checked_out_flag_rc = '$YESNO$NO'

– checked_out_id = null

– object_subtype_id = null

– description = 'Enter_a_Description_for_the_Column'

– copied_from_company_id = null

– copied_from_obj_id = null

– copied_from_obj_ver = null

– ref_company_id = null

– ref_obj_ver = null

– object_version_number = 1

– status_rc = '$NAMING_STATUS$INSTALLABLE'

Installing the Work Area

Using APIs to Create Required Metadata Objects 4-35

– validation_status_rc = null

– version_label = null

■ PIO_VARIABLE. Enter CDR_VAR_OBJ_TYPE values to define the Variable as
follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– oracle_name = 'Enter_an_Oracle_name_for_the_Table'

– oracle_datatype = 'Enter one: $ORADATATYPES$VARCHAR2,
$ORADATATYPES$NUMBER, $ORADATATYPES$DATE'

– length = 'Enter_a_length_for_the_Table'

– precision = 'If_your_Variable's_datatype_is_NUMBER,_enter_its_
precision'

– sas_v6_name = 'Enter_your_variable's_SASv6_name_(up_to_8_chars)'

– sas_v8_name = 'Enter_your_variable's_SASv8_name_(up_to_32_chars)'

– sas_label = 'Enter_your_variable's_SAS_label_(up_to_256_chars)'

– sas_format = 'Enter_your_variable's_SAS_format'

– nullable_flag = 'Enter_$YESNO$YES_if_the_value_can_be_ null_or_
$YESNO$NO_if_not'

– default value = Set_to_Null_or_enter_a_default_value_for_the_variable

■ PIO_COLUMN. Enter CDR_COLUMNS_OBJ_TYPE values to define the Variable
as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– position_number = 'Enter_your_column's_position_number_in_the_Table'

– nullable_flag = 'Enter_$YESNO$YES_if_the_value_can_be_ null_or_
$YESNO$NO_if_not'

■ PI_CREATETYPE Enter BOTH to create a Variable and a Column at the same time.

■ PI_DEFCLASSIFICATIONCOLL Null

Installing the Work Area
After you have created the Adapter Domain and all the definitional objects within it,
install the Work Area by calling the API CDR_PUB_DF_
WORKAREA.INSTALLWACONTROLLER and the Program instance it contains. This
API also checks in the Program instance and its definition.

Note: If the Program is checked out, which it normally is at this
point, and the person running this API is different from the person
who created the Program, Work Area installation fails. The person
who created(or most recently checked out) the Program definition
must either explicitly check in the Program or run the Work Area
installation. See Chapter 6, "Checking In Objects and Setting Their
Validation Status" for further information.

Installing the Work Area

4-36 Oracle Life Sciences Data Hub Adapter Toolkit Guide

To create a Work Area, call the API CDR_PUB_DF_
WORKAREA.CREATEWORKAREA. Its signature is:

PROCEDURE INSTALLWACONTROLLER(
 P_API_VERSION IN NUMBER,
 P_INIT_MSG_LIST IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_COMMIT IN VARCHAR2 := CDR_PUB_DEF_CONSTANTS.G_FALSE,
 P_VALIDATION_LEVEL IN NUMBER := CDR_PUB_DEF_CONSTANTS.G_VALID_LEVEL_FULL,
 X_RETURN_STATUS OUT VARCHAR2,
 X_MSG_COUNT OUT NUMBER,
 X_MSG_DATA OUT VARCHAR2,
 PIO_OWABASENAMING IN OUT CDR_BASE_OBJ_TYPE,
 PI_VINSTALLMODE IN CDR_INSTALLATIONS.INSTALLATION_MODE_RC%TYPE,
 PI_VFORCEREGEN IN CDR_INSTALLATIONS.FORCE_REGEN_FLAG_RC%TYPE,
 PI_VBATCH IN CDR_INSTALLATIONS.BATCH_FLAG_RC%TYPE,
 PI_VACTION IN CDR_INST_ELEMENTS.INSTALL_ACTION_RC%TYPE,
 PI_COINSTDETAILS IN CDR_INSTALLATION_DETAILS_COLL
);

Enter values as follows:

■ PIO_OWABASENAMING. Enter CDR_BASE_OBJ_TYPE values as follows:

– company_id = Enter_your_company_ID

– obj_id = Enter_the_Work_Area's_obj_ID

– obj_ver = Enter_the_Work_Area's_obj_ver

– object_version_number = Get_this_value_from_cdr_df_naming_v

– namespace_obj_id = Enter_your_Adapter_Area's_object_ID

– namespace_obj_ver = Enter_your_Adapter_Area's_obj_ver

■ PI_VINSTALLMODE. Enter '$INSTALLMODE$UPGRADE'

■ PI_VFORCEREGEN. Enter '$YESNO$YES'

■ PI_VBATCH. Enter '$YESNO$NO'

■ PI_VACTION. Enter one of the following values:

– '$INSTALLCMD$COMPLETE' Enter this value if this is the first time the Work
Area is being installed, or if the last installation was successful, or if the last
installation failed and you want to continue from the last successfully
completed phase.

– '$INSTALLCMD$CANCEL' Enter this value if the last installation failed and you
want to begin the installation process from the beginning.

Note: You must then run the API again with PI_VACTION set to
'$INSTALLCMD$COMPLETE'.

Installing the Work Area

Using APIs to Create Required Metadata Objects 4-37

■ PI_COINSTDETAILS. This is a collection of CDR_INST_DET_OBJ_TYPEs. For
each object in the Work Area that you want to install, initialize a CDR_INST_DET_
OBJ_TYPE and then extend the collection. Normally an adapter has only a single
Program instance in the Work Area. Enter values to identify it as follows:

– company_id = Enter_your_company_ID

– obj_id = null

– obj_ver = 1

– object_type_rc = For Programs, enter '$OBJTYPES$PROGRAMINST'.

– omit_from_install_flag_rc = '$YESNO$NO'

– install_action_rc = '$INSTOBJACT$REPLACE'

Installing the Work Area

4-38 Oracle Life Sciences Data Hub Adapter Toolkit Guide

5

Using the Generic Visualization Adapter 5-1

5 Using the Generic Visualization Adapter

This section contains the following topics:

■ Generic Visualization Adapter APIs

■ Generic Visualization Adapter Views

■ Generic Visualization Business Area Instance Attributes

■ Generic Visualization Adapter Security

■ Generic Visualization Adapter Definitional Components

Oracle Life Sciences Data Hub (Oracle LSH) includes a generic visualization adapter
that allows you to integrate an external tool with Oracle LSH to view data without
building a custom adapter. To use this adapter, you do not need to follow instructions
in any section of this guide other than this chapter.

To integrate your visualization tool with Oracle LSH:

■ Use an Oracle LSH view to display, when a user logs in to the visualization tool,
the Business Area instances to which the user has access; see Display User’s
Business Area Instances.

■ Use Oracle LSH APIs to allow the user to select appropriate blinding and currency
settings; see Getting Possible Blinding Types of a Business Area Instance and
Getting Snapshot Labels Common to All Tables in a BA Instance for a Given
Blinding Access Type.

■ Use Oracle LSH APIs to initialize the user’s selected Business Area instance with
those settings and to reset as required; see Initializing the Business Area Instance
and Resetting a Generic Visualization Business Area.

■ Use an Oracle LSH view to Retrieve Table Instance Details for the data you want to
display.

To use the adapter, Definers create Business Areas of type Generic Visualization. When
a Definer installs a Generic Visualization Business Area instance for the first time, the
adapter creates a database schema exclusively for the Business Area instance. As with
other Business Areas, data in Table instances mapped to the Business Area’s Table
Descriptors can be viewed in the visualization tool. Normally users log in directly to
the visualization tool through its URL.

Note: You do not need to define any service locations or service
instances for this adapter.

Generic Visualization Adapter APIs

5-2 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Generic Visualization Adapter APIs
The adapter includes public APIs that you can call from the external visualization
system.

■ Initializing the Business Area Instance

■ Resetting a Generic Visualization Business Area

■ Getting Possible Blinding Types of a Business Area Instance

■ Getting Snapshot Labels Common to All Tables in a BA Instance for a Given
Blinding Access Type

For more information about using APIs, see the Oracle Life Sciences Data Hub
Application Programming Interface Guide.

Initializing the Business Area Instance
Use the API CDR_PUB_API_GVA.SETINITIALIZEBA to initialize a particular Generic
Visualization Business Area instance with a given currency and blinding access type.
This API also looks for an Oracle LSH user account linked to the database account
with which the user logged in. If there is a linked user account, the API enforces the
security privileges of the user account; if not, the API enforces the security privileges
of the database account.

If the currency and the blinding access values are not set by the user, the API uses the
default values set in the Business Area instance properties and the user's privileges to
determine the data to display; see "Generic Visualization Business Area Instance
Attributes" on page 5-7 and "Generic Visualization Adapter Security" on page 5-8.

Initializing a Business Area Instance Repeatedly in the Same Session You can
invoke this API multiple times on the same Business Area instance to change the
currency and blinding access types in a single user session.

Initializing Multiple Business Area Instances in the Same Session You can also
invoke this API multiple times to allow a user to read data from multiple Business
Area instances as long as the user views either real or dummy data across all Business
Areas. The Real (BlindBreak) and Real (Unblinded) blinding access types are
considered as reading real data while NA/Dummy is considered as reading dummy
data.

If the user selects a blinding access type for a Business Area that is incompatible with
the blinding access types selected for other Business Areas in the same session, the API
errors out with the message, "There is a change in reading dummy data to blinded
data or vice-versa. Please reset access to all Business Areas using resetBAAccess api
and try again;" see "Resetting a Generic Visualization Business Area" on page 5-3.

The following settings and combinations of settings work:

■ NA/Dummy blinding access type on all Business Areas: The user sees only
dummy data in blinded Table instances.

■ Real (Unblinded) blinding access type on all Business Areas: The user sees
unblinded data in all Business Areas. This option is available only if all the
Business Area’s Table instances whose Blinding flag is set to Yes have a Blinding
Status of Unblinded.

■ Real (Blind Break) blinding access type on all Business Areas: The user sees
currently blinded data in blinded Table instances in all Business Areas.

Generic Visualization Adapter APIs

Using the Generic Visualization Adapter 5-3

■ Real (Unblinded) and Real (Blind Break) blinding access types: The user sees
unblinded data in Business Areas where this option is available and currently
blinded data in others.

Note: The user must always have the appropriate blinding-related
privileges. Without them the user can see only dummy data in Table
instances whose Blinding flag is set to Yes. Table instances whose
blinding flag is set to No contain data that was never blinded (NA for
Not Applicable) and is always available.

Signature

PROCEDURE SETINITILIZEBA(
PI_COMPANYID IN CDR_NAMINGS.COMPANY_ID%TYPE,
PI_OBJID IN CDR_NAMINGS.OBJ_ID%TYPE,
PI_OBJVER IN CDR_NAMING_VERSIONS.OBJ_VER%TYPE,
PI_VCURRENCY IN VARCHAR2,
PI_VBLINDINGACCESSTYPEIN VARCHAR2,
X_RETURN_STATUS OUT NOCOPY VARCHAR2,
X_MSG_COUNT OUT NOCOPY NUMBER,
X_MSG_DATA OUT NOCOPY VARCHAR2

Parameters This API has the following parameters:

PI_COMPANYID. Enter the Business Area instance’s company ID.

PI_OBJID. Enter the Business Area instance’s object ID.

PI_OBJVER. Enter the Business Area instance’s object version.

PI_VCURRENCY. Enter the currency value. The allowed values are Current or any
snapshot label common to all Table instances mapped to the Business Area’s Table
Descriptors.

PI_VBLINDINGACCESSTYPE. Enter the blinding access type. The allowed values
are: NA/Dummy , Real(Unblinded), or Real(BlindBreak). Note that there is no space
between Real and the parentheses/brackets.

Resetting a Generic Visualization Business Area
Use public API CDR_PUB_API_GVA.RESETBAACCESS to clear all the initializations
of Business Area schemas. It is equivalent to logging out and logging back in to the
system.

This API has no parameters.

Users cannot select incompatible blinding access types for different Business Areas in
the same session. If they do, the initialization API errors out with a message to call this
API.

You may want to trap the Initialization API’s error message and, if possible, display a
dialog box warning the user that the blinding access type is incompatible with open
Business Areas (or the visualization tool’s equivalent) and give the user the following
options:

■ Continue with the current setting, which will result in closing all other Business
Areas. If the user selects this option, run the Reset API and then the Initialization
API with the requested setting for the current Business Area.

Generic Visualization Adapter APIs

5-4 Oracle Life Sciences Data Hub Adapter Toolkit Guide

■ Change the setting for the current Business Area to be compatible with those
already open. If the user selects this option, run the Initialization API with the
appropriate setting.

Alternatively, display the Initialization API’s error message and provide a way in the
UI to invoke the Reset API to close all open Business Areas. Or trap the Initialization
API’s error message, invoke the Reset API to close all open Business Areas, and
display a message. In either case, the user can then select a Business Area and blinding
access type as required.

Getting Possible Blinding Types of a Business Area Instance
You can allow users with the necessary privileges to specify if they want to view only
nonblinded and dummy data, or data that includes unblinded or currently blinded
data; see "Generic Visualization Adapter Security" on page 5-8.

Use public API CDR_PUB_API_GVA.GETBAVALIDBLINDINGACCESSTYPES to get
the possible blinding access types of a Business Area instance in the current session,
based on the blinding statuses of underlying Business Area Table instances and the
user's privileges.

Note: The option to read unblinded data is available only if all
relevant Table instances—that is, all Table instances that are mapped
to the Business Area instance’s Table Descriptors and have their
Blinding Flag set to Yes—have a Blinding Status of Unblinded.

If you do not use the API or the user does not provide a selection, the system displays
the data specified for the Business Area instance; see "Default Blinding Access Type"
on page 5-8.

Signature

FUNCTION GETBAVALIDBLINDINGACCESSTYPES(
PI_COMPANYID IN CDR_NAMINGS.COMPANY_ID%TYPE,
PI_OBJID IN CDR_NAMINGS.OBJ_ID%TYPE,
PI_OBJVER IN CDR_NAMING_VERSIONS.OBJ_VER%TYPE)
RETURN BLINDINGACCESSTYPESCOLL PIPELINED;

Return A collection (BLINDINGACCESSTYPESCOLL) of the possible blinding
access types. The possible values are: NA/Dummy , Real(Unblinded), or
Real(BlindBreak). Note that there is no space between Real and the
parentheses/brackets.

Parameters This API has the following parameters:

PI_COMPANYID. Enter the Business Area instance’s company ID.

PI_OBJID. Enter the Business Area instance’s object ID.

PI_OBJVER. Enter the Business Area instance’s object version.

BLINDINGACCESSTYPESCOLL. This is the list of possible blinding access types.

Getting Snapshot Labels Common to All Tables in a BA Instance for a Given Blinding
Access Type

You can allow the user, on login, to choose to view current data or data based on a
snapshot label. A snapshot label is available for selection only if all source Table

Generic Visualization Adapter Views

Using the Generic Visualization Adapter 5-5

instances have the same label applied. Table instances that are pass-through views can
display only current data, so if one or more Table instance is a view, only current data
will be available for the Business Area.

Use public API CDR_PUB_API_GVA.GETSNAPSHOTLABELS to get the snapshot
labels common to all Table instances mapped to Table Descriptors in a single Business
Area instance. The API has an input parameter for blinding access type because
snapshot labels may be different for dummy and real data.

If you do not use the API or the user does not provide a snapshot label selection, the
system displays the data currency specified for the Business Area; see "Default
Currency" on page 5-7.

Signature

FUNCTION GETSNAPSHOTLABELS(
PI_COMPANYID IN CDR_NAMINGS.COMPANY_ID%TYPE,
PI_OBJID IN CDR_NAMINGS.OBJ_ID%TYPE,
PI_OBJVER IN CDR_NAMING_VERSIONS.OBJ_VER%TYPE,
PI_VBLINDINGACCESSTYPE IN VARCHAR2)
RETURN CURRENCYCOLL PIPELINED;

Return A collection (CURRENCYCOLL) of the snapshot labels for a particular
blinding access type in the Business Area instance common to all Tables within a
Business Area Instance.

Parameters This API has the following parameters.

PI_COMPANYID. Enter the Business Area instance’s company ID.

PI_OBJID. Enter the Business Area instance’s object ID.

PI_OBJVER. Enter the Business Area instance’s object version.

PI_VBLINDINGACCESSTYPE. Enter the blinding access type. The allowed values
are: NA/Dummy , Real(Unblinded), or Real(BlindBreak). Note that there is no space
between Real and the parentheses/brackets.

Generic Visualization Adapter Views
This section includes the following topics:

■ Display User’s Business Area Instances on page 5-5

■ Retrieve Table Instance Details on page 5-6

Display User’s Business Area Instances
Use naming view CDR_PUB_GENERIC_BA_V to retrieve all the Generic Visualization
Business Area instances on which a user has privileges to read data. You can use this
view to build a hierarchy in the visualization tool's user interface that displays each
Business Area instance to which the current user has access, in the context of its Work
Area, Application Area, and Domain.

This effectively enforces security by allowing the user to select only Business Areas to
which he or she has access.

For each Business Area, the view retrieves the following:

COMPANY_ID. NUMBER(6,0) The Business Area instance’s company ID.

BA_OBJ_ID. NUMBER(22,0) The Business Area instance’s object ID.

Generic Visualization Adapter Views

5-6 Oracle Life Sciences Data Hub Adapter Toolkit Guide

BA_OBJ_VER. NUMBER(7,0) The Business Area instance’s object version.

BA_NAME. VARCHAR2(200) The Business Area instance’s name.

SCHEMA_NAME. VARCHAR2(30) The Business Area instance’s unique schema
name.

BA_DESCRIPTION. VARCHAR2(2000) The Business Area instance’s description, if
any.

BA_STATUS_RC. VARCHAR2(30) The Business Area instance’s status. The possible
values are: $NAMING_STATUS$UPGRADEABLE or $NAMING_
STATUS$NONINSTALLABLE. See the Oracle Life Sciences Data Hub Application
Developer's Guide for more information.

BA_VALIDATION_STATUS_RC. VARCHAR2(30) The Business Area instance’s
validation status. The possible values are: $SYSVALDNSTEPS$DEVELOPMENT,
$SYSVALDNSTEPS$PRODUCTION, $SYSVALDNSTEPS$QUALITYCONTROL,
$SYSVALDNSTEPS$RETIRED.

BA_VERSION_LABEL. VARCHAR2(255) The Business Area instance version’s label,
if any.

WA_OBJ_ID. NUMBER(22,0) The Business Area instance’s parent Work Area’s object
ID.

WA_OBJ_VER. NUMBER(7,0) The Business Area instance’s parent Work Area’s object
version.

WORKAREA. VARCHAR2(4000) The Business Area instance’s parent Work Area’s
name.

WA_VALIDATION_STATUS_RC. VARCHAR2(30) The Business Area instance’s
parent Work Area’s validation status. The possible values are:
$SYSVALDNSTEPS$DEVELOPMENT, $SYSVALDNSTEPS$PRODUCTION,
$SYSVALDNSTEPS$QUALITYCONTROL, $SYSVALDNSTEPS$RETIRED.

APPLICATION_AREA. VARCHAR2(4000) The Work Area’s parent Application
Area’s name.

DOMAIN. VARCHAR2(4000) The Application Area’s parent Domain’s name.

Note: Multiple levels of Domains are not included in the hierarchy.

BA_DEF_OBJ_ID. NUMBER(22,0) The Business Area definition’s object ID.

BA_DEF_OBJ_VER. NUMBER(7,0) The Business Area definition’s object version.

BA_DEF_NAME. VARCHAR2(200) The Business Area definition’s name.

Retrieve Table Instance Details
Use view CDR_PUB_GENERIC_BA_TABLES_V to retrieve the Table instance details
for a given Generic Visualization Business Area instance in order to determine what
data to display.

The view retrieves the following attributes for each mapped Business Area Table
Descriptor and Table instance. See the Oracle Life Sciences Data Hub Application
Developer's Guide for more information.

COMPANY_ID. NUMBER(6,0) The Table instance’s company ID.

Generic Visualization Business Area Instance Attributes

Using the Generic Visualization Adapter 5-7

BA_OBJ_ID. NUMBER(22,0) The Business Area instance’s object ID.

BA_OBJ_VER. NUMBER(7,0) The Business Area instance’s object version.

BA_NAME. VARCHAR2(200) The Business Area instance’s name.

TD_OBJ_ID. NUMBER(22,0) The Table Descriptor’s object ID.

TD_OBJ_VER. NUMBER(7,0) The Table Descriptor’s object version.

TD_NAME. VARCHAR2(200) The Table Descriptor’s name.

TD_ORACLE_NAME. VARCHAR2(30) The Table Descriptor’s Oracle name.

TD_SAS_NAME. VARCHAR2(32) The Table Descriptor’s SAS name.

TI_OBJ_ID. NUMBER(22,0) The Table instance’s object ID.

TI_OBJ_VER. NUMBER(7,0) The Table instance’s object version.

TI_NAME. VARCHAR2(200) The Table instance’s name.

BLINDING_FLAG_RC. VARCHAR2(30) The Table instance’s Blinding flag setting.
The possible values are: $YESNO$YES if the Table instance can contain blinded data or
$YESNO$NO if it cannot.

BLINDING_STATUS_RC. VARCHAR2(30) The Table instance’s Blinding status. See
the Oracle Life Sciences Data Hub Application Developer's Guide for more information.

■ If the Table Instance’s Blinding flag is set to $YESNO$YES, the possible values are:
$BLIND_STATS$BLINDEDor $BLIND_STATS$UNBLINDED.

■ If the Table Instance’s Blinding flag is set to $YESNO$NO, the possible values are:
$BLIND_STATS$NOTAPPLICABLE or $BLIND_STATS$AUTHORIZED.

Generic Visualization Business Area Instance Attributes
Business Area instances of type Generic Visualization have several attributes:

■ Schema Name

■ Default Currency

■ Default Blinding Access Type

Schema Name
The Definer must enter a unique name for the schema of up to 30 characters. The value
is stored in uppercase.

If a schema already exists in the Oracle LSH installation with the same name, the
system automatically appends _n to the name, where n is 1 or the next higher integer if
there is already a schema name your_name_1 or higher.

The first time the Definer installs the Business Area instance, the installation function
creates a database schema with this name exclusively for the Business Area instance.

Default Currency
This setting controls the currency of data viewed by users if they do not explicitly
make another selection. The default value is Current. If all the source Table instances
mapped to the Business Area have same snapshot label(s) applied, the Definer can
select a shared snapshot for users to see by default.

Generic Visualization Adapter Security

5-8 Oracle Life Sciences Data Hub Adapter Toolkit Guide

Default Blinding Access Type
This setting controls the default blinding status of data available to users. Users'
privileges also determine which data they can view. The Definer’s own privileges
determine which values he or she can set. The possible settings include:

■ NA/Dummy Allows users to see all data in Table instances whose Blinding flag is
set to No and the dummy data in Table instances whose Blinding flag is set to Yes.
If all Table instances mapped to Business Area Table Descriptors have their
Blinding flag set to No, this is the only option available.

■ Real(Unblinded) If all Table instances whose Blinding flag is set to Yes have a
Blinding status of Unblinded, and if the Definer has the Read(Unblind) Business
Area Instance operation on the Business Area instance, the Definer can set the
Default Blinding Access Type to this value. In these Table instances, users with the
necessary privileges can see the real, unblinded data. Users without these
privileges must explicitly select the NA/Dummy blinding access type or else they
will not be able to see data in the Business Area at all. All users can see all data in
Table instances whose Blinding flag is set to No.

Note: The adapter can allow users with Blind Break privileges on all
Table instances whose Blinding flag is set to Yes and whose Blinding
Status is set to Blinded to select the Real (Blind Break) option,
regardless of the Default Blinding Access Type. All blind breaks are
audited.

Generic Visualization Adapter Security
Security for the generic visualization adapter has several components:

■ Database and User Accounts

■ Object Security

■ Data Blinding and Currency

■ Auditing

Database and User Accounts
You can use normal Oracle LSH security by assigning Oracle LSH user accounts to
user groups and assigning user groups to Business Area instances, but if your users do
not need Oracle LSH user accounts for other purposes, you can use simplified security
requirements that apply only to Generic Visualization Business Area instances.

Users must log in using an Oracle LSH database account. Database accounts can have
the following privileges directly assigned, either by the Business Area Definer with
Manage BA DB privileges on the Business Area instance or by an Administrator:

■ Read Data allows the user to see nonblinded and dummy data. All database
accounts to be used to access a Generic Visualization Business Area intance should
have this privilege.

■ Read Unblind allows the user to see unblinded data.

Users who should be able to read data that was never blinded, dummy data in blinded
Table instances and, optionally, data that has been unblinded, can log in using a
database account that has the required privilege(s) directly assigned. They do not need
an Oracle LSH user account.

Generic Visualization Adapter Security

Using the Generic Visualization Adapter 5-9

Users who should be able to view currently blinded data must have their own Oracle
LSH database account and a linked Oracle LSH user account with the privileges
normally required for blind breaks, including:

■ LSH Data Blind Break User application role

■ Blind Break privileges on every Table instance whose Blinding Status is Blinded
and that is mapped to one of the Business Area instance’s Table Descriptors

■ The user account must be assigned to a user group that is assigned to the Business
Area instance

When a user logs in, which requires an Oracle LSH database account, the Initialization
API checks for a linked Oracle LSH user account. If there is one, the API uses that
account's privileges to determine what data the user can view. If there is no linked
Oracle LSH user account, the user has access only to the data to which the database
account has access.

To assign privileges to database accounts in the Business Area instance user interface
itself, the Definer selects Manage DB Privileges from the Actions drop-down. The
security administrator can do the same for any Business Area instance in the Security
user interface, BA DB Privilege Access tab. All the database accounts defined in the
Oracle LSH instance are available for assignment.

See the Oracle Life Sciences Data Hub System Administrator's Guide for information on
creating Oracle LSH user and database accounts and the Oracle Life Sciences Data Hub
Implementation Guide for an explanation of Oracle LSH security.

Object Security
To view data, users must have privileges on a particular Business Area instance. You
can use a view to display for selection only the Business Area instances to which the
current user has access; see "Display User’s Business Area Instances" on page 5-5.

During installation the system creates synonyms in the Business Area instance schema
for all the Table Descriptors. The synonyms reference source views in the Work Area
schema(s) containing the actual database tables corresponding to the Table instances
mapped to the Table Descriptors. The source views enforce normal Oracle LSH
security.

Note: It is not necessary to have privileges on the Table instances
mapped to the Business Area instance’s Table Descriptors unless the
user needs to be able to view currently blinded data.

Data Blinding and Currency
You can use APIs to determine the appropriate blinding and currency settings for the
current session, based on the state of the data and the user’s privileges, and allow the
user to select only those settings; see "Getting Possible Blinding Types of a Business
Area Instance" on page 5-4 and "Getting Snapshot Labels Common to All Tables in a
BA Instance for a Given Blinding Access Type" on page 5-4.

Auditing
The adapter audits several actions, recording each in internal tables as follows. You
can log in as apps to see the audit trail for each.

Generic Visualization Adapter Definitional Components

5-10 Oracle Life Sciences Data Hub Adapter Toolkit Guide

■ CDR_BA_SCHEMA_ACCESS stores a record for each user access to a Business
Area instance schema using the initialization API.

■ CDR_BLIND_BREAKS stores a record of each blind breaks (sessions where a
privileged user views currently blinded data).

■ CDR_BA_DB_PRIVILEGES_A is the FND audit table for the CDR_BA_DB_
PRIVILEGES, which stores the association between database accounts and Generic
Visualization adapter privileges.

Generic Visualization Adapter Definitional Components
All the defined objects, from the Adapter Domain down, are shipped with Oracle LSH.
As shown in Figure 5–1, "Generic Visualization Adapter Components" these include:

■ Adapter Domain VISUALIZATION_ADAPTER

■ Adapter Area GENERIC_VISUALIZATION; see Table 4–2, "Sample Adapter
Settings" on page 4-11 for its attribute values.

■ Program GENERIC_VISUALIZATION_RUNTIME_PROG contains a Source Code
definition that includes a single function, the install_function, named CDR_GV_
ADAPTER.INSTALL. This function is called whenever a Definer installs a Generic
Visualization Business Area instance. It does the following:

– If a schema does not exist for the Business Area instance, it creates the schema.

– For each Table Descriptor in the Generic Visualization Business Area, it creates
or upgrades (as required) a corresponding synonym in the schema that
references a source view of the mapped Table instance in its Work Area
schema.

– If a previously created Business Area instance had a schema with the same
name, but that Business Area instance has been deleted, the install function
drops all the synonyms in the original schema and creates new ones for the
new Business Area.

■ Work Area GENERIC_VISUALIZATION_WA containing an instance of the
Program GENERIC_VISUALIZATION_RUNTIME_PROG. The Adapter Area
Work Area is installed in its own Oracle LSH schema.

■ Technology Type GVA; see Table 4–1, "Technology Types" for its attribute values.

Note: Generic Visualization Business Area instance attributes
Schema Name, Default Currency, and Default Blinding Access Type
are not stored in the define-time Parameter Set as in other adapters.
They are stored in satellite table CDR_BUSINESS_AREA_REFS so that
the public APIs can change their values.

Generic Visualization Adapter Definitional Components

Using the Generic Visualization Adapter 5-11

Figure 5–1 Generic Visualization Adapter Components

Generic Visualization Adapter Definitional Components

5-12 Oracle Life Sciences Data Hub Adapter Toolkit Guide

6

Checking In Objects and Setting Their Validation Status 6-1

6Checking In Objects and Setting Their
Validation Status

This section contains the following topics:

■ Running the Validation API on page 6-1

■ Explicitly Checking In an Object on page 6-2

Checking in all objects is required.

Setting objects' validation status is optional. It does not change any behavior and the
status is not visible in the user interface or to end users in any way. However, it may
be useful for your internal testing and validation purposes to use this tool. In addition,
the API that upgrades objects' validation status first checks in all objects and can be
used to simplify that task.

The validation API checks in the object you specify in the input parameter PI_VALOBJ,
and all the objects it contains (if any), and upgrades its validation status. If you specify
the Adapter Domain in PI_VALOBJ, the API attempts to check in and upgrade all the
objects in your adapter.

Note: The following conditions prevent a successful validation:

■ The validation of a particular object fails if the object is checked
out by a user different from the person running the validation
API. In this case, the person who has the object checked out must
either explicitly check in the object or run the validation API.

■ The validation process fails if the Work Area is included in the
process (which it is if you have specified either the Adapter
Domain, the Adapter Area, or the Work Area itself) and does not
have a validation status of Production. Use the API CDR_PUB_
DF_WORKAREA.UPDATEUSAGEINTENT to change it to
Production.

Running the Validation API
To set the validation status of all the objects in your Adapter Domain to Development,
Quality Control, or Production, run the API CDR_PUB_VL_
VALIDATION.UPDATEVALSTATUS and provide values relating to the Adapter
Domain.

Enter mandatory values or parameter PI_VALOBJ to specify your Adapter Domain:

■ company_id = Enter_your_company_ID

Explicitly Checking In an Object

6-2 Oracle Life Sciences Data Hub Adapter Toolkit Guide

■ obj_id = Enter_your_Adapter_Domain_ID

■ obj_ver = 1

■ obj_type_rc = '$OBJTYPES$ADAPTERDOMAIN'

■ validation_status_rc = Enter one of the following values:
$SYSVALDNSTEPS$RETIRED, $SYSVALDNSTEPS$DEVELOPMENT,
$SYSVALDNSTEPS$QUALITYCONTROL, $SYSVALDNSTEPS$PRODUCTION

■ object)_version_number = 1

Two output parameters indicate which objects were and were not successfully
upgraded:

■ PO_CASCADEDOBJCOL lists the objects that were successfully upgraded

■ PO_ERRORNAMINGCOLL lists the objects that could not be upgraded because
they are checked out by another user

Explicitly Checking In an Object
There is a different API for checking in each type of object. You have already explicitly
checked in Variables and Parameter definitions (see "Check in the Variable" on
page 4-23 and "Check in the Parameter" on page 4-27.

You may need the following APIs:

■ CDR_PUB_DF_PROGRAM.CHECKINPROGRAMDEFINITION

■ CDR_PUB_DF_PARAMETER_SET.CHECKINPARAMETERSETDEFINITION

■ CDR_PUB_DF_TABLE.CHECKIN

Each of these APIs has the same type of parameters:

■ PIO_BASEOBJECT. Enter CDR_BASE_OBJ_TYPE values to identify the object.

– company_id Enter your company ID; see "Getting Your Company ID" on
page 4-2.

– obj_id Enter the object’s Object ID.

– obj_ver = 1

– object_version_number = 1

– namespace_obj_id Enter your Adapter Area’s Object ID.

– namespace_obj_ver = 1

■ PI_COMMENT(Optional) Enter the reason you are checking in the Program.

7

Setting Up an Adapter 7-1

7Setting Up an Adapter

This section contains the following topics:

■ Defining a Service Location, Service, and Service Instance on page 7-1

■ Defining Remote Locations and Connections on page 7-1

■ Assigning User Groups to the Adapter Area on page 7-1

■ Installing and Starting the Distributed Processing Server on page 7-2

■ Edit cdrconfig.xml on page 7-2

In order to use and test your adapter by creating and running an object of the relevant
type, you must do these tasks in your local Oracle LSH installation. If you are
developing an adapter for use in other companies, provide information about these
tasks to the other companies.

Defining a Service Location, Service, and Service Instance
Do the following tasks in the Oracle LSH user interface. Instructions are in the Oracle
LSH System Administrator's Guide.

■ Add the service types required for the adapter to the Lookup CDR_SERVICE_
TYPES.

■ Define a service location for the computer where the external system is installed.

■ Define at least one service for each service type you added to the lookup.

■ Define at least one service instance for each service.

Defining Remote Locations and Connections
For Oracle-based systems, define at least one Remote Location and Connection; see the
chapter on registering remote locations and connections in the Oracle LSH System
Administrator's Guide.

Assigning User Groups to the Adapter Area
Assign one or more user groups to your Adapter Area. Users in user groups assigned
to the Adapter Area can see and select the new adapter type when they create a new
Load Set, Data Mart, Program, or Business Area. If you have not already created user
groups, see the Oracle LSH System Administrator's Guide for more information.

Note: The users in user groups assigned to Adapter Areas should
have roles that include ONLY View privileges. Giving users Modify
privileges on the objects in the Adapter Area could result in the
Adapter's becoming invalid and no longer working.

For example, if a user modifies a predefined Parameter in a Load Set
or Data Mart, the system automatically creates a new version of the
Parameter definition in the Adapter Area, creating a new version of
the Adapter Area itself, and the adapter becomes invalid.

Installing and Starting the Distributed Processing Server

7-2 Oracle Life Sciences Data Hub Adapter Toolkit Guide

You can assign user groups to Adapters in the user interface or by running an API.

User Interface Method User interface instructions are included in the chapter on
setting up adapters in the Oracle LSH System Administrator's Guide.

API Method Run the API CDR_PUB_SECURITY_PKG.ASSIGNUSRGRPTOOBJ. See
"API Method" on page 4-14.

Installing and Starting the Distributed Processing Server
For adapters that use the Distributed Processing (DP) Server during execution (those
that run on the operating system rather than PL/SQL), install and start the Distributed
Processing (DP) Server on the computer where the external system is installed.

Instructions for installing the DP Server are in the Oracle LSH Installation Guide;
instructions for starting the DP Server are in the Oracle LSH System Administrator's
Guide.

Edit cdrconfig.xml
The cdrconfig.xml shipped in the Oracle LSH client plug-in, cdrclient.exe, includes a
section for each adapter. You must add a section to this file for your adapter that
includes the path to the installed external system; see "Planning Integrated
Development Environment Adapters" on page 2-26.

At each installation, each Definer must copy this file to his or her computer, edited to
include the actual path to the system.

If you are developing an adapter for use by other companies, provide instructions for
editing the file.

See the Oracle LSH Installation Guide Section 7.15.2.1 "Install the Client Plug-In" for
further information.

8

Shipping an Adapter 8-1

8Shipping an Adapter

To package an adapter so that you can ship it for use in other companies, you must
provide an installation script and instructions for your customers.

Installation Script Write a PL/SQL installation script that loads both of the packages
you created in Step 1 of development—with the final, production-quality functions
and procedures. The installation script must:

■ Create an input parameter that accepts the value of the user group ID of the user
group the customer company wants to assign to the Adapter Area.

■ Read Package B from the file system, create a CLOB of the file, and pass the CLOB
to the CreateSourceCode API in Package A; see "Adapter Development Process"
on page 3-1.

Instructions Provide instructions that include the following information:

■ The user group to be assigned to the Adapter Area should include a role with
View (only) access to the Adapter Area and all objects within it, and should
include all users who will need to define or run Load Sets, Data Marts, Programs,
or Business Areas of the new adapter type.

The user who is running the installation script must also be included in the user
group with a role that has Create and Modify privileges on all objects in the
Adapter Area.

■ Customers must follow all the steps in Chapter 7, "Setting Up an Adapter".

8-2 Oracle Life Sciences Data Hub Adapter Toolkit Guide

	Contents
	Preface
	Finding More Information
	Documentation Accessibility

	1 About Adapters
	About Adapters
	Adapter Components
	Components and the User Interface

	2 Designing an Adapter
	Preparation
	Requirements for Load Set, Data Mart, Program, and Business Area Adapters
	Load Set Adapter Requirements
	Definition
	Installation
	Execution

	Data Mart Adapter Requirements
	Definition
	Installation
	Execution

	Program Adapter Requirements
	Definition
	Installation
	Execution

	Business Area Adapter Requirements
	Definition
	Installation
	Launching the Visualization Tool

	Planning Adapter Areas
	Planning Technology Types
	Planning Services
	Planning PL/SQL Functions and Procedures
	Object Definition Functions and Procedures
	Column_Upload_Function
	Auto_Add_Tab_Desc_Function
	Auto_Add_Tab_Desc_LOV
	Define_Time_Function
	Status_Recalc_Function
	Programs and Business Areas
	Data Mart Adapters

	Object Installation Functions
	Pre_Install_Function
	Install_Function
	Post_Install_Function

	Object Execution Functions and Procedures
	Build_IDE_Cfg_Function
	Build_Exe_Cfg_Function
	Pre_Execution_Function
	Execution_Function
	Post_Execution_Function
	Currency_Function
	Security_Recalc_Function

	Planning Parameters and Parameter Sets
	General Define-Time Parameters
	Table Descriptor Define-Time Parameters
	Runtime Parameters

	Adding Lookup Values
	Planning Planned Outputs
	Planning Data Structures
	Planning for Object Execution
	Execution Process
	Execution Command

	Planning Security
	Planning Integrated Development Environment Adapters
	IDE Launch Process from Within Oracle Life Sciences Data Hub
	Synchronizing Security with Integrated Environments
	Enforcing Security on Corresponding External Entities
	Establishing Context
	Tracking and Removing Object Access
	Tracking API
	Tracking Table

	Adding Source Code Types
	Planning Navigation in the External System to Business Areas
	Editing cdrconfig.xml
	Creating Subdirectories on IDE Computers

	3 Developing an Adapter
	Adapter Development Process
	Planning Programs and Packages
	Using the Security API Package During Development

	4 Using APIs to Create Required Metadata Objects
	Retrieving IDs
	Getting Your Company ID
	Getting an Object's Prref_Id and Prref_Ver

	Creating a Technology Type
	Call the Create Technology Type API
	Sample Technology Type Settings

	Modifying a Technology Type
	Creating an Adapter Domain
	Call the Create Adapter Domain API
	Save the Adapter Domain ID for Future Use

	Modifying an Adapter Domain
	Creating an Adapter Area
	Call the Create Adapter Area API
	Save the Adapter Area ID for Future Use
	Sample Adapter Settings

	Modifying an Adapter Area
	Assigning a User Group to the Adapter Area
	User Interface Method
	API Method

	Creating a Work Area
	Call the Create Work Area API
	Save the Work Area ID for Future Use

	Creating a Program Definition and Instance
	Query for the Tech Type ID
	Call the Create Program API
	Save the Program Definition and Instance IDs for Future Use

	Creating a Source Code Definition and Instance
	Call the Create Source Code API

	Creating a Variable
	Call the Create Variable API
	Save the Variable ID for Future Use
	Check in the Variable

	Creating a Parameter
	Call the Create Parameter API
	Save the Parameter ID for Future Use
	Check in the Parameter

	Creating a Parameter Set
	Call the Create Parameter Set API
	Save the Parameter Set ID for Future Use

	Creating a Parameter Instance in a Parameter Set
	Call the Create Parameter API

	Creating a Table Definition
	Call the Create Table API
	Call the Create Column API

	Installing the Work Area

	5 Using the Generic Visualization Adapter
	Generic Visualization Adapter APIs
	Initializing the Business Area Instance
	Resetting a Generic Visualization Business Area
	Getting Possible Blinding Types of a Business Area Instance
	Getting Snapshot Labels Common to All Tables in a BA Instance for a Given Blinding Access Type

	Generic Visualization Adapter Views
	Display User’s Business Area Instances
	Retrieve Table Instance Details

	Generic Visualization Business Area Instance Attributes
	Schema Name
	Default Currency
	Default Blinding Access Type

	Generic Visualization Adapter Security
	Database and User Accounts
	Object Security
	Data Blinding and Currency
	Auditing

	Generic Visualization Adapter Definitional Components

	6 Checking In Objects and Setting Their Validation Status
	Running the Validation API
	Explicitly Checking In an Object

	7 Setting Up an Adapter
	Defining a Service Location, Service, and Service Instance
	Defining Remote Locations and Connections
	Assigning User Groups to the Adapter Area
	Installing and Starting the Distributed Processing Server
	Edit cdrconfig.xml

	8 Shipping an Adapter

