

[1] Oracle® Life Sciences Data Hub
Application Developer's Guide

Release 2.4.8

E95831-02

November 2018

Oracle Life Sciences Data Hub Application Developer's Guide, Release 2.4.8

E95831-02

Copyright © 2006, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xv

Change Log .. xv
Finding More Information ... xv
Documentation Accessibility ... xv

1 Getting Started

About Application Development.. 1-1
Defining Objects .. 1-2

Predefined Object Types ... 1-3
Object Definitions and Instances, and their Containers ... 1-4

Developing a Business Application ... 1-6
Working in a Work Area... 1-7
Mapping Executables to Tables.. 1-7
Example of a Business Application ... 1-8

Developing Standard Definitions and Modular Applications .. 1-11
Ensuring Data Currency... 1-12

2 Creating Container Objects

Selecting a Domain .. 2-1
Set a Default Domain in Preferences ... 2-1
Select a Domain on the Applications Screen.. 2-2

Navigating in the Applications Tab ... 2-2
Browsing the Main Applications Screen... 2-2
Navigating Using Breadcrumbs... 2-3
Using the Actions Drop-Down ... 2-4

Creating Domains, Application Areas, Work Areas, and Objects.. 2-4
Creating Domains .. 2-4
Creating Application Areas .. 2-6
Creating Work Areas ... 2-7
Creating or Adding Children, including Object Instances .. 2-7
Creating Object Definitions .. 2-8

Modifying Domains, Application Areas, and Work Areas.. 2-8
Duplicating, Removing, Moving and Promoting Domains... 2-9

Duplicating or Copying a Domain .. 2-9
Removing a Domain .. 2-9

iv

Moving a Domain .. 2-9
Promoting a Domain .. 2-10

Managing Object Definitions ... 2-10
Copying Object Definitions ... 2-10
Moving Object Definitions... 2-11
Creating Object Definitions ... 2-11

3 Common Development Tasks

Creating and Reusing Objects ... 3-1
Finding an Appropriate Definition ... 3-2
Reusing Existing Definitions .. 3-2
Creating an Instance of an Existing Definition .. 3-3
Creating a New Definition and Instance .. 3-5
Creating and Using Object Descriptions .. 3-6

Naming Objects .. 3-6
Special Characters and Reserved Words .. 3-6
Duplicate Names: System Appends _1... 3-6
Automatic Name Truncation.. 3-7
Keep Container and Object Names Short for Integrated Development Environments 3-7
Naming Rules for Specific Object Types... 3-7
Customizable Naming Validation Package ... 3-8

Viewing Object Instances and Definitions... 3-8
Viewing Object Instances .. 3-8
Viewing Object Definitions... 3-9

Understanding Object Versions and Checkin/Checkout ... 3-9
About Object Versions.. 3-10
Checking Out Objects ... 3-11
Checking In Objects .. 3-13
Undoing Object Checkout ... 3-13
Version Labels ... 3-13
Version History ... 3-14
Versions of Component Objects.. 3-14

Upgrading Object Instances to a New Definition Version ... 3-15
Upgrading One or More Instances from the Definition .. 3-15
Upgrading to a Different Definition Version from an Instance ... 3-16
Upgrading to the Latest Version... 3-17

Copying, Cloning, and Moving Objects ... 3-17
Copying Objects .. 3-17
Comparison of Copying and Cloning Individual Objects .. 3-19
Cloning Objects ... 3-20
Moving Objects ... 3-22
Pasting Objects... 3-23

Removing Objects ... 3-24
Rules for Removing Objects .. 3-24

Classifying Objects and Outputs ... 3-25
About Classification.. 3-25
Classifying Objects.. 3-26

v

Classifying Outputs .. 3-27
Applying Security to Objects and Outputs ... 3-29

Viewing User Group Assignments... 3-29
Assigning User Groups to an Object .. 3-30
Removing User Group Assignments ... 3-30
Reassigning a User Group as Inherited ... 3-30

Validating Objects and Outputs .. 3-31
About Object Validation... 3-31
About Output Validation... 3-32
Validation Statuses.. 3-32
Changing Objects' Validation Status .. 3-32
Changing Outputs' Validation Status .. 3-33
Adding Supporting Information... 3-33
Validation Rules .. 3-35

Reordering and Renumbering Objects ... 3-36
Defining and Mapping Table Descriptors ... 3-36

About Table Descriptors .. 3-37
Creating a Table Descriptor... 3-38
Mapping Table Descriptors to Table Instances ... 3-45
Mapping Columns .. 3-48
Creating and Mapping Table Descriptors and Table Instances at the Same Time................ 3-52
Unmapping Table Descriptors .. 3-54
Modifying Table Descriptors... 3-55

Creating, Modifying, and Submitting Execution Setups .. 3-55
About Execution Setups and Templates.. 3-55
Creating an Execution Setup ... 3-57
Modifying an Execution Setup and Setting Parameters.. 3-59
Report Set and Workflow Execution Setups ... 3-65
Removing an Execution Setup .. 3-68
Activating a Version of an Execution Setup.. 3-68
Submitting an Execution Setup... 3-69

Viewing Data ... 3-70
Viewing Data within the Oracle Life Sciences Data Hub.. 3-70
Viewing Data with Visualizations .. 3-73
Viewing Data with Program-Generated Reports ... 3-73
Viewing Data Through an IDE.. 3-74

Viewing Jobs .. 3-74
Viewing All Outputs of a Program or Report Set ... 3-75

Viewing All Outputs of an Instance in the Work Area Properties Screen.............................. 3-75
Viewing All Outputs from the My Home or Reports Tab .. 3-75
Viewing All Outputs of a Program or Report Set .. 3-75

Using the Actions Drop-Down List ... 3-76
Defining Planned Outputs .. 3-77

4 Defining Tables

About Tables ... 4-1
Creating a Table.. 4-3

vi

Creating a New Table Definition and Instance.. 4-4
Creating an Oracle LSH Table From a SAS Data Set .. 4-5
Creating a New Instance of an Existing Table Definition ... 4-6

Setting and Modifying Table Attributes ... 4-6
Using the Table Properties Screen .. 4-8

Instance Properties... 4-8
Definition Properties.. 4-9
Buttons ... 4-9

Defining Table Columns .. 4-10
Create a New Column and Variable .. 4-10
Create a Column from an Existing Variable ... 4-12

Defining Table Constraints and Indexes ... 4-12
About Constraints ... 4-12
Check Constraint... 4-13
Non-Unique Index .. 4-13
Primary Key ... 4-14
Unique Key .. 4-14

Modifying Tables .. 4-15
Modifying Table Instance Properties ... 4-15
Modifying Table Definition Properties .. 4-16

5 Defining Programs

About Programs .. 5-2
Creating a Program... 5-3

Creating a New Program Definition and Instance.. 5-4
Creating an Instance of an Existing Program Definition.. 5-5

Using the Program Properties Screen... 5-6
Instance Properties... 5-6
Definition Properties.. 5-7
Buttons ... 5-8

Defining Table Descriptors.. 5-8
Defining Source Code ... 5-9

About Source Code ... 5-10
Creating Source Code .. 5-11
Calling APIs from Source Code .. 5-14
Creating and Using Static Reference Source Code... 5-15
Upgrading Source Code And Undoing Source Code Upgrades ... 5-16

Defining Parameters ... 5-22
Defining Planned Outputs .. 5-22

About Planned Outputs ... 5-22
Defining a Planned Output.. 5-24

Defining PL/SQL Programs... 5-25
Writing Primary Source Code in PL/SQL... 5-25
Testing PL/SQL Source Code ... 5-27
Creating a PL/SQL Package Storage Program... 5-28
Using a Sharable PL/SQL Package .. 5-28
Compiling and Executing a PL/SQL Program... 5-28

vii

Manipulating Documents through a PL/SQL Program ... 5-28
Defining View Programs ... 5-29

Creating Source Code for a View Program ... 5-29
About View Table Instances .. 5-29
About Table Descriptors in View Programs ... 5-30

Defining SAS Programs ... 5-30
SAS Program Development Process... 5-31
Connecting to SAS .. 5-31
SAS Program and Source Code Types ... 5-33
Writing SAS Primary Source Code... 5-34
Creating a SAS Macro Catalog .. 5-37
About SAS Format Catalogs in the Oracle Life Sciences Data Hub .. 5-38
Creating a SAS Format Catalog .. 5-38
Calling an API to Capture Output Parameter Values ... 5-39

Defining Oracle Reports Programs.. 5-41
Defining Informatica Programs.. 5-41

Creating a New Informatica Program.. 5-42
Using Your Existing Informatica Mappings and Workflows... 5-42
Creating and Synchronizing Source Code .. 5-43
Using PL/SQL Source Code in an Oracle LSH Informatica Program 5-43
Updating Table Descriptors... 5-44
Setting Informatica Program Parameters .. 5-44
Selective Index Management... 5-45
Adding Planned Outputs... 5-45
Informatica Integration .. 5-45

Defining Oracle Business Intelligence Publisher Programs .. 5-47
Integration with Oracle BI Publisher.. 5-47
About Oracle BI Publisher Program Source Code ... 5-49
About Oracle BI Publisher Program Planned Outputs ... 5-50
Setting Oracle BI Publisher Program Parameters... 5-50

Installing Program Instances .. 5-51
IDE Launch Settings ... 5-51

About Launch Settings ... 5-52
Setting the Blind Break Value.. 5-52
Setting the Shared Snapshot Label Value .. 5-53

Modifying Programs... 5-53
Modifying Program Instance Properties ... 5-54
Modifying Program Definition Properties .. 5-54

Setting Up Integrated Development Environments (IDEs) .. 5-56
Setting Up Oracle SQL Developer or SQL*Plus as an IDE.. 5-56
Setting Up SAS as an IDE... 5-57
Setting Up Informatica as an IDE ... 5-58

6 Defining Variables and Parameters

About Variables, Parameters, and Columns ... 6-1
Defining Variables .. 6-2

Creating Variables Automatically ... 6-2

viii

Creating Variables Manually.. 6-3
Modifying Variables .. 6-4

Using the Variable Properties Screen... 6-5
Definition Properties.. 6-5
Buttons ... 6-6

Defining Columns.. 6-6
Defining Parameters ... 6-6

About Parameters... 6-6
Creating a Parameter ... 6-8
Defining Parameter Details.. 6-11

Using the Parameter Properties Screen ... 6-13
About the Parameter Properties Screen... 6-14
Instance Properties.. 6-14
Define Values... 6-15
Validate Values.. 6-15
Definition Properties... 6-15
Variable Properties.. 6-16
Buttons .. 6-16

Setting Up Parameter Value Propagation... 6-16
About Parameter Value Propagation ... 6-16
Setting Up Value Propagation from the Source Parameter .. 6-18
Setting Up Value Propagation from the Target Parameter... 6-19

Defining and Using Parameter Sets .. 6-19
Explicitly Defining Parameter Sets .. 6-20

Defining Programatically Generated Lists of Values and Value Validation............................ 6-21
Modifying Parameters .. 6-23

Modifying a Parameter Instance... 6-24
Modifying a Parameter Definition.. 6-25

7 Defining Load Sets

About Load Sets.. 7-2
Creating a Load Set .. 7-4

Creating a New Load Set Definition and Instance.. 7-5
Creating an Instance of an Existing Load Set Definition.. 7-6

Using the Load Set Properties Screen .. 7-6
Instance Properties... 7-6
Definition Properties.. 7-7
Load Set Attributes .. 7-8
Buttons ... 7-8

Defining Table Descriptors.. 7-8
Setting Load Set Parameters.. 7-10
About Load Set Planned Outputs .. 7-10
Defining Different Load Set Types ... 7-11

Oracle Tables and Views.. 7-11
SAS .. 7-13
Text .. 7-17
Oracle Clinical Stable Interface .. 7-24

ix

Oracle Clinical Data Extract SAS Views .. 7-25
Oracle Clinical Data Extract Views .. 7-26
Oracle Clinical Design and Definition .. 7-28
Oracle Clinical Global Metadata .. 7-31
Oracle Clinical Labs ... 7-32
Oracle Clinical Randomization .. 7-34
Oracle Clinical Study Data .. 7-36

Installing Load Set Instances .. 7-38
Modifying Load Sets .. 7-39

Modifying Load Set Instance Properties.. 7-39
Modifying Load Set Definition Properties .. 7-40

8 Defining Data Marts

About Data Marts .. 8-2
Creating a Data Mart.. 8-2

Creating a New Data Mart Definition and Instance ... 8-3
Creating an Instance of an Existing Data Mart .. 8-3

Using the Data Mart Properties Screen .. 8-4
Instance Properties... 8-4
Definition Properties.. 8-5
Data Mart Attributes.. 8-5
Buttons ... 8-6

Defining Table Descriptors.. 8-6
Setting Data Mart Parameter Values .. 8-7
About Data Mart Planned Outputs... 8-7
Defining Different Types of Data Marts ... 8-8

Defining Text Data Marts.. 8-8
Defining SAS Data Marts ... 8-11
Defining Oracle Export Data Marts.. 8-13

Installing Data Mart Instances ... 8-14
Modifying Data Marts.. 8-14

Modifying Data Mart Instance Properties ... 8-15
Modifying Data Mart Definition Properties.. 8-15

9 Defining Report Sets

About Report Sets .. 9-2
How to Work on a Report Set .. 9-4
Creating Overlay Templates .. 9-6

About Overlay Templates... 9-6
Creating Template Files .. 9-7
Creating an Overlay Template Definition .. 9-7
Creating an Overlay Template File Definition... 9-8

Creating a Report Set .. 9-10
Creating a New Report Set Definition and Instance.. 9-10
Creating an Instance of an Existing Report Set Definition.. 9-12

Using the Report Set Properties Screen .. 9-12

x

Instance Properties.. 9-13
Definition Properties... 9-13
Buttons .. 9-14

Using the Report Set Structure View .. 9-15
Navigating to the Report Set Structure View.. 9-15
Building and Modifying the Report Set... 9-15

Creating and Setting Report Set Parameters.. 9-20
Setting Overlay Template Parameter Values .. 9-20
Setting Post-Processing Parameter Values .. 9-22
Setting Program Parameter Values... 9-25
Creating Parameters for Sharing Values within the Report Set ... 9-25

Defining Report Set Entries .. 9-26
Creating Multiple Report Set Entries ... 9-26
Setting Report Set Entry Properties .. 9-29
Adding Narratives .. 9-32

Defining Programs to Generate Reports .. 9-33
About Programs in Report Sets... 9-33
Assigning a Planned Output to a Report Set Entry ... 9-35
Options from the Report Set Program View Screen .. 9-36
Viewing Planned Output Assignments ... 9-37
Passing Report Set Entry Values to and from Programs... 9-38

Installing Report Sets ... 9-42
Installing the Report Set as a Whole with All Programs Checked In...................................... 9-42
Installing the Report Set as a Whole with Some Programs Checked Out 9-43
Installing a Single Program Instance in the Report Set ... 9-43

Validating Report Set Definitions and Outputs ... 9-44
Output Reuse .. 9-44
Program Output Validation Flag .. 9-45
Report Set Validation Status.. 9-46
Summary Output Validation Status... 9-47
Output-Oriented Validation.. 9-48
Definition-Oriented Validation... 9-49
Changing Validation Status... 9-50

About Report Set Planned Outputs ... 9-51
Modifying Report Sets ... 9-51

Modifying Report Set Instance Properties... 9-52
Modifying Report Set Definition Properties ... 9-52

10 Defining Workflows

About Workflows .. 10-1
Creating a Workflow .. 10-3

Creating a New Workflow Definition and Instance .. 10-3
Creating an Instance of an Existing Workflow ... 10-4

Using the Workflow Properties Screen... 10-4
Instance Properties.. 10-5
Definition Properties... 10-6
Buttons .. 10-6

xi

Adding Executables .. 10-7
About Executables as Workflow Activities ... 10-7
Adding an Executable to a Workflow.. 10-7
Mapping Table Descriptors within a Workflow... 10-8

Adding Workflow Structures.. 10-8
About Workflow Structures .. 10-8
Types of Workflow Structures .. 10-9
Adding Structures... 10-9

Defining Notifications ... 10-10
About Notifications... 10-10
Using Approvals ... 10-10
Creating a Notification ... 10-11
Modifying Notifications... 10-15

Defining Transitions .. 10-15
About Transitions.. 10-15
Creating Transitions ... 10-16

Defining Workflow Parameters ... 10-17
Workflow Planned Outputs .. 10-17
Installing Workflow Instances ... 10-17
Modifying Workflows.. 10-18

Modifying Workflow Instance Properties ... 10-18
Modifying Workflow Definition Properties.. 10-19

11 Defining Business Areas for Visualizations

About Visualizations .. 11-1
Creating a Business Area ... 11-2

Creating a New Business Area Definition and Instance ... 11-3
Creating an Instance of an Existing Business Area Definition ... 11-3

Using the Business Area Properties Screen ... 11-4
Instance Properties.. 11-4
Definition Properties... 11-5
Business Area Attributes.. 11-6
Buttons .. 11-6

Defining Table Descriptors... 11-6
Defining Joins .. 11-7

Defining a Join at the Table Level... 11-8
Defining a Join at the Column Level .. 11-9

Defining Business Area Hierarchies ... 11-9
Understanding Business Area Source Code .. 11-11
Setting Business Area Attributes and Parameters .. 11-11
Defining Oracle Business Intelligence Business Areas... 11-11

About OBIEE Business Areas .. 11-12
Defining an OBIEE Business Area .. 11-12
Manually Deploying the Master RPD File .. 11-14
Starting the WebLogic Server.. 11-15
Visualizing Business Area Data using OBIEE Answers.. 11-15
OBIEE Security .. 11-15

xii

Installing and Setting Up Oracle Business Intelligence Administration Tool...................... 11-16
Defining Generic Visualization Business Areas .. 11-17

Generic Visualization Business Area Instance Properties... 11-17
Assigning Security Privileges to Business Area Data.. 11-18

Launching Visualizations .. 11-19
Creating a Visualization... 11-19
Setting Data Currency and Blinding Values ... 11-19

Installing Business Area Instances .. 11-20
Modifying Business Areas .. 11-21

Modifying Business Area Instance Properties .. 11-22
Modifying Business Area Definition Properties... 11-22

12 Using, Installing, and Cloning Work Areas

Using the Work Area Properties Screen ... 12-1
Work Area Properties ... 12-2
Viewing a Work Area's Installation History ... 12-3
Viewing a Work Area's Version History ... 12-3
Changing a Work Area's Usage Intent... 12-4
Object Instance Information .. 12-5
Object Instance Actions ... 12-6
Adding Object Instances to a Work Area .. 12-7
Managing Table Instance Snapshot Labels in a Work Area .. 12-8

Personalizing Your Work Area Properties Screen .. 12-10
Installing a Work Area and Its Objects... 12-11

About Work Area Installation... 12-11
Running a Work Area Installation.. 12-13
Installing Individual Objects ... 12-15
Viewing Installation Results.. 12-15
What Happens During a Work Area Installation... 12-16

Cloning Work Areas for Testing and Production ... 12-21
Application Life Cycle.. 12-21
Cloning a Work Area.. 12-24

13 Execution and Data Handling

About Execution ... 13-1
Submitting Jobs for Execution.. 13-2
Data Processing Types.. 13-2

Processing Types Summary... 13-3
Transactional Processing.. 13-4
Reload Processing ... 13-4
Staging Processing .. 13-5
Transactional High Throughput Processing ... 13-6
SQL*Loader Processing for SAS Programs ... 13-7
Using Tables as Pass-Through Views .. 13-8

Data Auditing, Snapshots and Refresh Groups .. 13-8
Data Auditing .. 13-8
Data Snapshots .. 13-9

xiii

Refresh Groups.. 13-10
Processing Data Subsets .. 13-10
Forward Chaining ... 13-10
Backchaining .. 13-12

How Backchaining Works ... 13-12
Backchaining Rules ... 13-14
Backchaining Tips ... 13-14

Managing Blinded Data ... 13-15
Loading Real and Dummy Data ... 13-16
Managing Blinding Along the Data Flow ... 13-17
Unblinding Table Instances ... 13-19

Using Message-Triggered Submission from External Systems ... 13-19
About Message-Triggered Submission.. 13-20
Setup Required .. 13-20
XML Message Requirements... 13-21

14 System Reports

Running and Saving System Reports.. 14-1
Alphabetical Listing of Reports ... 14-1
Security Reports... 14-2

Blinding Rights Report ... 14-2
Operations for a Role Report... 14-3
User Group Assignments Report.. 14-3
Users in Group Report ... 14-3

Data Blinding Reports.. 14-4
Blind Breaks Report .. 14-4
Blinded Table Instances Audit Report ... 14-4
Blinded Table Instances Report... 14-5
Unblinded Outputs Report.. 14-5

Container Reports ... 14-5
Application Area Library Report.. 14-6
Domain Library Report .. 14-6
Work Area - All Instances Report... 14-6
Work Area Cloning Report.. 14-7
Work Area Installation History Report.. 14-7
Work Area Version History Report.. 14-8

Object Metadata Reports ... 14-8
Common Header Information... 14-9
All Instances of a Definition Report ... 14-9
Data Mart Report... 14-9
Data Mart Instance Report... 14-10
Load Set Report ... 14-11
Load Set Instance Report.. 14-11
Object Validation Report.. 14-12
Object Version History Report .. 14-12
Program Report ... 14-13
Program Instance Report ... 14-13

xiv

Report Set Report .. 14-14
Report Set Instance Report... 14-15
Table Report... 14-16
Table Instance Report ... 14-17
Workflow Report... 14-17
Workflow Instance Report ... 14-18

A Installation Requirements for Each Object Type

Installable Instances and their Definitions.. A-1
Component Object Types .. A-3
Organizational Objects .. A-4

B Object Ownership

Domains .. B-1
Application Areas.. B-4
Work Areas ... B-6

Glossary

xv

Preface

This book contains information on developing business applications in Oracle Life
Sciences Data Hub by defining and reusing objects.

Change Log

Finding More Information

Oracle Help Center
The latest user documentation for Oracle Life Sciences Data Hub is available at
http://docs.oracle.com/en/industries/health-sciences/lsh-248.

My Oracle Support
The latest release notes, patches and white papers are on My Oracle Support (MOS) at
https://support.oracle.com. For help with using MOS, see
https://docs.oracle.com/cd/E74665_01/MOSHP/toc.htm.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Date
Revised part
number Description

November
2018

E95831-02 Added a note to explain that if you want to
preserve the Sort Constraint in a SAS data set table
definition, you must make sure that the data set
that you load is not empty.

May 2018 E95831-01 Initial version.

http://docs.oracle.com/en/industries/health-sciences/lsh-248
https://support.oracle.com
https://docs.oracle.com/cd/E74665_01/MOSHP/toc.htm

xvi

1

Getting Started 1-1

1 Getting Started

This section contains information on the following topics:

■ About Application Development on page 1-1

■ Defining Objects on page 1-2

■ Developing a Business Application on page 1-6

■ Developing Standard Definitions and Modular Applications on page 1-11

■ Ensuring Data Currency on page 1-12

See also Chapter 3, "Common Development Tasks".

For an overview of Oracle LSH, see "Overview" in the Oracle Life Sciences Data Hub
Implementation Guide.

About Application Development
The Oracle Life Sciences Data Hub (Oracle LSH) allows you to load data from different
external systems (and from different trials on the same system), merge data and
produce reports for interim analysis and clinical trial reporting, all in compliance with
industry regulations.

To accomplish any of these goals you must develop an application. An application
typically loads data from an external system or reads Oracle LSH data, merges and/or
transforms the data, and produces one or more of the following outputs:

■ Reports. An application may generate simple reports—figures, listings, and
tabulations—on data in any standard format such as TXT or EPS.

■ Report Sets. An application may create a complex single- or multi-volume set of
reports with a single table of contents. With Oracle XML Publisher you can create
custom templates and use them to produce PDF outputs.

■ Data Marts. An application may generate large data files in any of the following
formats: text, Oracle Export, SAS X-port, SAS C-port, or SAS data sets. (The SAS
formats are available only if you have SAS).

■ Data Visualizations. An application may make data available so that users can
create ad hoc data queries in a tabular or graphical display using Oracle Business
Intelligence Enterprise Edition.

Integrated Development Environments (IDEs) To transform data or produce reports,
including the reports in Report Sets, you can use one of the several development
environments, including SAS, SQL*Plus, SQL Developer, Oracle Reports, Oracle
Business Intelligence Publisher (BIP) or any other system for which your company has

Defining Objects

1-2 Oracle Life Sciences Data Hub Application Developer's Guide

built or bought an Oracle LSH adapter (products not produced by Oracle are not
included with Oracle LSH and all Oracle products may not be included either; check
with Oracle Sales for information). In each environment, you write a program or create
a report as usual in that environment. You then store the source code in Oracle LSH
under version control. When you run the program in Oracle LSH, the system sends the
job to the appropriate engine for execution and stores the results in Oracle LSH with
the security you specify.

For example, if you have SAS installed on your personal computer you can launch
SAS directly from Oracle LSH and view Oracle LSH data from SAS as you develop
your SAS program.

Using Existing Programs If you have already developed SAS, PL/SQL, or Oracle
Reports programs that you want to continue to use, you can upload them to Oracle
LSH.

Using Existing Data Sets, Tables, and Data Text Files You can load SAS data sets,
Oracle tables, or text data files into Oracle LSH. Oracle LSH can read the structure of
data sets and tables in an external system and automatically create Oracle LSH Tables
with the same structure: Columns with the same data types, length, and name as the
external table columns or data set variables. (Every Oracle LSH Table has all the
required attributes of a SAS data set and an Oracle table.)

You can load data into Oracle LSH using text files in either fixed or delimited format.
However in this case you must manually create the target Oracle LSH Tables before
loading the data into them.

If you use Oracle Clinical, you can import all your Oracle Clinical Global Library
questions, question groups, and discrete value groups, which Oracle LSH converts
automatically to Oracle LSH Tables and other data structures.

Defining Objects
This section contains the following topics:

■ Predefined Object Types on page 1-3

■ Object Definitions and Instances, and their Containers on page 1-4

To develop an application in Oracle LSH, you define objects. For example, in Oracle
LSH a Program is a defined object. In addition to writing program source code in a
development environment, you must define a Program and each of its components
(Parameters, Source Code, and other components) as objects in the Oracle LSH user
interface.

Oracle LSH stores the objects you define as metadata in the Oracle LSH database
under version control. This approach has the following advantages:

■ Validation. All defined objects have a validation status that allows you to track
whether an object you are using has been fully tested and validated, for regulatory
compliance. Changes to validated objects are tracked so that they can be
revalidated. Your company must develop validation standards. You can validate
legacy programs that you have migrated into Oracle LSH, as well as Programs and
other defined objects that you create in Oracle LSH. See "Validating Objects and
Outputs" on page 3-31.

■ Reuse. You can reuse object definitions, which ultimately saves work, minimizes
the validation required, and promotes consistency. You can design and create a set
of modular, small-scope Programs to promote reuse and validation (see "Object

Defining Objects

Getting Started 1-3

Definitions and Instances, and their Containers" on page 1-4 and "Developing
Standard Definitions and Modular Applications" on page 1-11).

■ Security. The Oracle LSH security system allows you to control access to, and
operations on, defined objects and their outputs (primarily reports and report
sets); see "Applying Security to Objects and Outputs" on page 3-29.

■ Classification. Your company can develop a classification system to label defined
objects and their outputs and to create a customized user interface for outputs.
Users can use these classifications to search for objects and outputs (see
"Classifying Objects and Outputs" on page 3-25).

Predefined Object Types
Oracle LSH includes a set of predefined object types. Each object type is specialized for
a particular data handling function. There is a detailed chapter on each type of object
in this book. For an overview of how all the object types fit together, see "Overview" in
the Oracle Life Sciences Data Hub Implementation Guide. You can define the following
types of objects:

■ Tables. Oracle LSH Tables have characteristics of both Oracle tables and SAS data
sets, and can hold data from both SAS and Oracle source systems at the same time.
See Chapter 4, "Defining Tables".

■ Programs. Programs transform and/or report data using source code of a single
technology type: SAS, PL/SQL, or Oracle Reports. See Chapter 5, "Defining
Programs".

■ Load Sets. Load Sets load data into Oracle LSH Tables from external systems that
are integrated with Oracle LSH by an adapter or set of adapters. See Chapter 7,
"Defining Load Sets".

■ Report Sets. Report Sets allow you to define the hierarchical structure of a set of
reports, with each chapter and subchapter represented by an Entry in the Report
Set. Each Report Set Entry can contain a Program that produces the content of that
Chapter (for example, a SAS program that generates a summary table). The Report
Set Entry can also contain text (called a narrative) that is included in the output.

When you submit a Report Set for execution, the system executes all the Programs
on current data (or a data snapshot, if you have specified a snapshot) and creates a
table of contents. If you use Oracle XML Publisher, the Report Set collates the
outputs into one or more PDF documents based on custom templates. See
Chapter 9, "Defining Report Sets".

■ Data Marts. Data Marts allow you to export data stored in Oracle LSH to a file.
These files can be in a variety of different formats depending upon where you
would like to use the Data Mart's output, including Oracle Export, SAS data sets,
SAS transport, or text. See Chapter 8, "Defining Data Marts".

■ Workflows. You can use a Workflow to string together other Oracle LSH
executables—Load Sets, Programs, Report Sets, or Data Marts—so that they
execute as part of a single process in a predefined order. For example, if you have
one SAS Program that converts raw data sets into merged data sets and another
SAS Program that produces a summary report on the merged data, you can use a
Workflow to execute those Programs in order.

A Workflow can contain conditional branches to handle the success or failure of
each program or other activity. A Workflow can also generate Notifications—
customized email messages and Oracle LSH Home Page messages to users—at
specified points in the Workflow. There are two types of Notifications: those that

Defining Objects

1-4 Oracle Life Sciences Data Hub Application Developer's Guide

request an action from the recipient (Approvals) and those that simply provide
information (FYI). See Chapter 10, "Defining Workflows".

■ Business Areas. Business Areas provide a view onto Oracle LSH data for Oracle
Business Intelligence Enterprise Edition for the purpose of allowing
nonprogramming personnel to create ad hoc data visualizations. See Chapter 11,
"Defining Business Areas for Visualizations".

Each of these objects contains subcomponent objects that you must also define. Details
are included in the chapter on each type of object. Parameters and Variables have their
own chapter, Chapter 6, "Defining Variables and Parameters".

Object Definitions and Instances, and their Containers
To promote the reuse of object definitions, Oracle LSH allows you to create multiple
instances of the same object definition. The object instance is also a defined object, but
it consists primarily of a pointer to the definition.

For example, if you have a standard demography table, you can create instances of the
Table definition for use in many different studies. You may also have a standard
Program that reads from the Demography table to create a report. You can create
instances of the Program definition for use in different studies as well.

Organizational Objects
Oracle LSH has three types of container objects that hold object definitions and
instances. These containers are nested, or contained within one another, as shown in
Figure 1–1 and described as follows:

■ Domains. Domains contain Application Areas and object definitions that have
been explicitly moved into the Domain.

In addition, Domains can contain child Domains that themselves contain child
Domains, up to nine (9) levels, depending on the value of the Domain Nest Value
profile setting for your Oracle LSH implementation. A Domain can contain any
number of Domains at a single level. For example, if the Domain Nest Value
profile is set to one (1), a top-level Domain can contain any number of child
Domains, but those child Domains cannot contain any child Domains of their own.

You can use child and grandchild Domains to more finely organize object
definitions and applications.

In general, Domain security should be set up so that only a few people can create,
modify, or move object definitions in Domains. Only object definitions that have
been thoroughly tested and approved for reuse should be moved into Domains.

■ Application Areas. An Application Area contains a library of definitions
developed specifically for a particular application and the Work Areas necessary
to develop, test, and put the application into production.

■ Work Areas. A Work Area contains instances of all the object definitions required
for a particular application.

Defining Objects

Getting Started 1-5

Figure 1–1 Oracle LSH Organizational Structure

For information on planning an organizational structure of Domains, Libraries,
Application Areas and Work Areas for your company, see "Designing an
Organizational Structure" in the Oracle Life Sciences Data Hub Implementation Guide.

Object Definitions and Instances
In order to use an object you must create both the object definition and an instance of it
in a Work Area, and install the instance. If you work in a Work Area, the system
automatically creates both the definition and the instance at the same time.

The primary objects you define—Tables, Programs, Load Sets, Report Sets, Data Marts,
and Workflows—contain secondary objects. For example, a Table contains Columns
and Constraints, and a Program contains Source Code, Parameters, Table Descriptors,
Planned Outputs, and Execution Templates.

Object instances also contain objects, notably Execution Setups and Mappings. See
Appendix B, "Object Ownership" for further information.

Modifying Object Definitions To modify an object definition, you must first check it
out. Checking it out creates a new version of the definition—the one you are working
on. No one else can check out the definition until you either check it in or undo the
checkout. Existing versions of the object continue to function as before while you have
the definition checked out. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9 for further information.

The exception to this rule is Report Sets. Report Set definitions have a shared checkout
system, so that after one user checks out a Report Set, anyone with the necessary
security privileges on the Report Set can modify it. The system locks the sections
people are working on to prevent conflicting modifications.

If you modify an object contained in the definition, the system implicitly checks out
any secondary object you modify and implicitly checks it in again when you apply
your changes. For example, if you check out a Program, modify and upload your
Source Code, the system implicitly checks the Source Code out and then in again when
you apply your changes.

Modifying Object Instances Anyone with Modify privileges on an object instance
can modify it without checking it out. However, when you click the Update button to
begin modifying the object instance, the system creates a lock on the object so that no
one else can modify it at the same time. The system also implicitly checks out the
underlying object definition and increments its version number. When you click
Apply, the system releases the lock and implicitly checks in the definition.

Developing a Business Application

1-6 Oracle Life Sciences Data Hub Application Developer's Guide

Developing a Business Application
This section contains the following topics:

■ Working in a Work Area on page 1-7

■ Mapping Executables to Tables on page 1-7

■ Example of a Business Application on page 1-8

An application may be as complex as storing all the data and performing all the
analysis required for a study, or as simple as running a single set of reports.

An application typically includes the following general steps, each of which requires a
particular defined object type:

1. Make data available for processing by doing one or both of the following:

■ Load data from one or more external systems using Load Sets.

■ Use Programs to read data already stored in Oracle LSH.

2. Use Programs to transform the data in one or more steps.

3. Report and/or transport data out of Oracle LSH. Use Programs and Report Sets to
generate reports. Use Data Marts to write data to files for transport out of Oracle
LSH.

Use Tables to store data at each stage of processing in Oracle LSH.

You can use a Workflow to combine some or all of these steps into a single executable
process as shown in Figure 1–2. See "Predefined Object Types" on page 1-3 for a
description of each of these object types.

Figure 1–2 Example of Data Flow in a Work Area

Developing a Business Application

Getting Started 1-7

Working in a Work Area
As an Oracle LSH application developer, or Definer, you work in a Work Area,
creating instances of all the object definitions—Tables, Programs, Load Sets, Report
Sets, Workflows, Data Marts, and/or Business Areas—required by the application.

Work Areas contain only object instances, but you can see the properties of the
underlying object definition in the Work Area as well. In general, the instance
properties are displayed in the upper part of the Properties screen for the object, while
the definition properties are displayed in the lower part of the screen.

Creating New Object Definitions When you create an object instance in a Work Area,
you have the choice between creating an instance of an existing definition or creating a
new definition and instance at the same time. When you create a new definition and
instance at the same time, the system simultaneously creates the object definition in
the Application Area that contains the Work Area, and an instance of that definition in
the Work Area. You work on the definition through the instance in the Work Area.

Follow your company's standard operating procedures (SOPs) for testing and
validating each object you create (see "Validating Objects and Outputs" on page 3-31).

Creating Instances of Existing Definitions When your company begins to use Oracle
LSH, you will need to create many new object definitions. However, as time goes by
your company will develop libraries of tested and validated object definitions. Your
company may choose to move validated definitions that are suitable for reuse in other
applications into Domain libraries.

If you create an instance of an existing validated object and do not modify it, you do
not need to revalidate the definition. If you need to modify the definition because it is
flawed or needs to be updated, you can do so. You can then update some or all
instances of the definition. If you need to modify a definition because you need
different functionality, you can copy the definition and modify the copy. See "Reusing
Existing Definitions" on page 3-2 for further information.

Installing Work Areas You must install a Work Area and all its object instances to the
database in order to run executable objects (Programs, Load Sets, Report Sets,
Workflows, and Data Marts) or write data into Tables. See "Installing a Work Area and
Its Objects" on page 12-11 for further information.

Mapping Executables to Tables
To promote the reusability of Programs and other executable object definitions, Oracle
LSH requires adding a subcomponent called a Table Descriptor to definitions of
executable objects for each Table instance the executable reads from or writes to.

A Table Descriptor is very similar to a Table instance in that it consists of a pointer to a
Table definition. The Table Descriptor acts as the interface between the executable and
its source and target Table instances. You must map the Table Descriptor to the source
or target Table to enable the executable to read from or write to the Table instance.

This extra definitional layer facilitates the reuse of executable definitions. The
executable source code refers to source and target tables using the names of the Table
Descriptors included in the executable definition. Those Table Descriptors can be
mapped to Table instances with the same name and structure or a different name and,
if Column data types and lengths are compatible, a different structure.

For example, if the demographic table is called DEMOG in one study and DEMO in
another, you can use the same program to generate a demography report in both
studies, if the data types and lengths of the corresponding Columns are compatible.

Developing a Business Application

1-8 Oracle Life Sciences Data Hub Application Developer's Guide

Also, if a Program reads from some but not all Columns of a table, you can create a
Table Descriptor with only the necessary Columns and map it only to the required
Columns in the Table instance. In that case, it does not matter if the unmapped
Columns are incompatible.

In many cases, Oracle LSH can automatically map Table Descriptors to Table instances.
If necessary, you can map manually. See "Mapping Table Descriptors to Table
Instances" on page 3-45 for further information.

Example of a Business Application
You have both a SAS and an Oracle system integrated with Oracle LSH, with
demography and adverse events data for Study A in the SAS system and demography
and adverse events data for Study B in the Oracle system. You want to merge and
compare the data from the two studies.

To accomplish this you can do the following (see Figure 1–3 on page 1-10):

1. Define Load Set definitions and instances: you need one Oracle-type Load Set to
load both Oracle tables. You need one or two Load Sets for the SAS data sets. If
you use a SAS transport file containing both data sets you can load both data sets
with a single Load Set. If you load the data set files directly you need two Load
Sets, one for each. During Load Set definition, you specify the external tables and
data sets to load. The system does the following:

■ Oracle LSH creates target Table Descriptors with the same metadata structure
as the source tables and data sets.

■ When you invoke the Table Instances from Existing Table Descriptors job,
Oracle LSH creates a matching Table definition and instance for each source
table and data set—a total of four Table definitions and instances for Study A
Adverse Events, Study A Demography, Study B Adverse Events, and Study B
Demography.

■ When you invoke the Automatic Mapping By Name job, Oracle LSH maps
each Table Descriptor to its corresponding Table instance.

2. Create instances of two previously defined standard Oracle LSH Tables,
Demography and Adverse Events, to hold the merged data.

3. Define a Program definition and instance to merge the data from the SAS
Demography data set and the Oracle Demography table into your standard Oracle
LSH Demography Table. Name the Program "Merge Oracle and SAS Demog."

In the Program definition, create two source Table Descriptors based on the same
Table definition as the Load Set target Table instance. Invoke the Automatic
Mapping By Name job to map the Table Descriptors to the Table instances with the
same name.

In the Program definition, also create one target Table Descriptor based on your
standard Oracle LSH Table called Demography. In addition, create an instance of
the standard Demography Table to receive the data generated by the Program.
Invoke automatic mapping by name.

4. Define a Program definition and instance to merge the data from the SAS Adverse
Events data set and the Oracle Adverse Events table into your standard Oracle
LSH Adverse Events Table. Name the Program "Merge Oracle and SAS AE."

In the Program definition, create two source Table Descriptors based on the same
Table definition as the Load Set target Table instance. Invoke automatic mapping
by name.

Developing a Business Application

Getting Started 1-9

In the Program definition, create one target Table Descriptor based on your
standard Oracle LSH Table called Adverse Events. In addition, create an instance
of the standard Adverse Events Table to receive the data generated by the
Program. Invoke automatic mapping by name.

5. Define a Program definition and instance to read data from both the Demography
and Adverse Events Table instances and produce a report comparing adverse
events in Study A to those of Study B. Name the Program "Compare Adverse
Events in Two Studies."

In the Program definition, create two source Table Descriptors based on your
standard Oracle LSH Tables, one for Adverse Events and one for Demography.
Invoke automatic mapping by name.

The Program definition does not need any target Table Descriptors because it does
not write data to any Table instances. It does need a Planned Output to create the
actual report.

6. Define another Program definition and instance to read data from the
Demography Table instance and compare patient information from Study A to
patient information from Study B. Name the Program "Compare Demography
from Two Studies."

In the Program definition, create one source Table Descriptor based on the
standard Demography Table. Invoke automatic mapping by name.

The Program definition does not have any target Table Descriptors because it does
not write data to any Table instances. It does have a Planned Output to create the
actual report.

You can update data periodically by rerunning the Load Set instances. You can then
rerun the other Program instances in turn to update the report data.

If you would like to load the data, run the Programs, and generate the reports in a
single process, you can create a Workflow definition containing all the Load Set and
Program instances and defining the order in which they must be executed. You can
also include an email notification as part of the workflow to be automatically sent to a
group of people to alert them when the report is generated.

Developing a Business Application

1-10 Oracle Life Sciences Data Hub Application Developer's Guide

Figure 1–3 Business Application Example

Good Practice in Application Design Although it is possible to write one Program
instead of four in the above example to accomplish the same result, it is good practice
to divide the operations needed into discrete parts and define smaller Programs to
perform each part. These smaller-scope Programs are more generic and therefore more
reusable than one big Program. See "Developing Standard Definitions and Modular
Applications" on page 1-11.

Developing Standard Definitions and Modular Applications

Getting Started 1-11

Developing Standard Definitions and Modular Applications
You can reduce the amount of time required to develop and validate applications by
creating standard object definitions and reusing them as much as possible. To
encourage Definers to reuse standard definitions, make it clear which definitions are
standard by storing them in a library created especially for that purpose and/or
classifying them as Standard, for example.

Following are a few strategies for developing fstandard object definitions:

■ Develop standard Table definitions. If you have a standard set of Tables, with
standard data types and lengths for corresponding Columns in different Tables,
then you can easily reuse the same Table definition at different points in the data
flow, and write standard Programs to read from and write to the standard Tables.

You can develop your own company standards or use external standards such as
the CDISC data model.

The standard data model you use must be compatible with the data model of the
source system(s) you use. For example, if the Patient ID column or variable has a
length of 8 in the source system, the Patient ID Column in a standard Oracle LSH
Table must have a length of 8 or more.

■ Define more Programs with a smaller scope instead of fewer Programs with a
larger scope. You can then use the smaller-scope Programs as modules in multiple
applications.

For example, rather than define a single Program to merge data from different
studies and then analyze the data, define two separate Programs, one to merge
data and the other to analyze data. Both Programs are reusable in more situations.
You can reuse the combining Program before different analytical Programs, and
you can reuse the analytical Program, with minor modifications, on data from
either a single study or multiple studies.

You can include a series of Programs in a single Workflow, so that you can run all
the Programs in a single process, so that there is no time lost by running separate
Programs; the successful execution of one Program triggers the next in the series,
and some Programs can run in parallel.

■ Use Parameters. Make executable object definitions more reusable by defining
Parameters to contain information that may clearly change from one use of the
definition to another.

For example, if you want to use the same Program to generate a Demography
Report in several different studies, create a Parameter to contain the study name.
You can either make the Study Parameter enterable by the user who runs the
report, or, in the Execution Setup for each instance, bind the Study Parameter to
the value appropriate for each study.

■ Create Parameter Sets based on standard Table definitions. Both Oracle LSH
Parameter and Column definitions are based on a data structure called an Oracle
LSH Variable, which determines their data type and length. You can create
Parameter Sets containing Parameters based on the same Variables on which a
Table's Columns are based, and give the Parameter Set the same name as the Table
so that, when you are defining Program Parameters, you can easily find
Parameters with the same data type and length as the corresponding Table
Column. This approach has two advantages:

■ It promotes data type and length consistency along the data flow.

Ensuring Data Currency

1-12 Oracle Life Sciences Data Hub Application Developer's Guide

■ It makes automatic Parameter value propagation in Workflows and Report
Sets easier to set up.

Ensuring Data Currency
Oracle LSH provides two different ways to ensure that data in an Oracle LSH Table or
report reflects the most current source data: Workflows and backchaining execution. A
Workflow pushes the most current data forward, while a backchain goes backward
along the data flow to find more recent data and pull it into the current job. In both
cases, you must explicitly define the entire data flow from the source of the most
current data to the job to be run on the most current data.

A Workflow is a defined object. Backchaining is a type of execution that you must
specify as part of the Execution Setup for each executable along the data flow.

To ensure that the most current data is displayed in the report in Figure 1–4 below, you
can use either a Workflow or a Backchain; see below.

Figure 1–4 Example of a Workflow

Workflow To use a Workflow to ensure data currency, add all the executables —Load
Sets and Programs—in Work Area 2 in Figure 1–4 to a Workflow in the same Work
Area and define the order in which they should be executed. The Load Sets and

Ensuring Data Currency

Getting Started 1-13

Programs write to and read from the Tables as they do without a Workflow, but the
Tables are not part of the Workflow. When you execute the Workflow, the Load Set and
the Program that pulls data in from Work Area 1 can both run at the same time. The
next Program waits until both complete successfully, and then it runs. When it
completes successfully, the final Program runs, generating the report.

You can schedule a Workflow to run at regular intervals. If the external system is
Oracle Clinical, or if you have set up XML messaging in a different external system,
you can schedule a Workflow to run when triggered by the successful completion of a
job in the external system, such as batch validation in Oracle Clinical.

See Chapter 10, "Defining Workflows" for further information.

Backchain You must define at least one Execution Setup for each executable object
definition in any circumstances. The Execution Setup serves as the basis for the
submittal form that users need to run the executable.

To use backchaining to ensure data currency in this example, define an Execution
Setup especially for backchaining for each of the Programs and the Load Set that feed
data into the final Program. When a user runs the final Program (the one that
generates the report) with the Data Currency system parameter set to Most Current
Available, the system checks the Programs that feed data into the Report Program's
source Table instances to see if those Program instances have Execution Setups with
backchaining enabled.

If so, the system continues to check upstream for backchain Execution Setups in the
Load Sets or Programs that feed data into those source Table instances. The system
then compares the currency of the source and target data for each Program or Load Set
that has a backchain Execution Setup, and executes the Program or Load Set if its
source data is more current than its target data.

The system then runs each Program downstream in the data flow until the report
Program's source Table instances have the most current possible data, and then
executes the program that generates the report.

See "Backchaining" on page 13-12 for further information.

Ensuring Data Currency

1-14 Oracle Life Sciences Data Hub Application Developer's Guide

2

Creating Container Objects 2-1

2Creating Container Objects

This section contains the following topics:

■ Selecting a Domain on page 2-1

■ Navigating in the Applications Tab on page 2-2

■ Creating Domains, Application Areas, Work Areas, and Objects on page 2-4

■ Modifying Domains, Application Areas, and Work Areas on page 2-8

■ Duplicating, Removing, Moving and Promoting Domains on page 2-9

■ Managing Object Definitions on page 2-10

The Oracle Life Sciences Data Hub User's Guide includes information on the following
related topics:

■ Standard buttons and icons

■ Searching

The Applications tab of the Oracle Life Sciences Data Hub (Oracle LSH) is where you
do almost all your work as an Oracle LSH application developer. Your company can
design its own organizational structure consisting of nested Domains and Application
Areas. Domains and Application Areas can contain libraries of object definitions.
Application Areas also contain Work Areas, where you create instances of object
definitions whose purpose is to load, manipulate, report, and view data in Oracle LSH.
See Chapter 1, "Getting Started" for further information.

Selecting a Domain
While you are working on applications you can see one top-level Domain at a time.
You can select the Domain you see in two ways:

■ Set a Default Domain in Preferences on page 2-1

■ Select a Domain on the Applications Screen on page 2-2

Set a Default Domain in Preferences
You can select a default Domain through the Preferences link at the top of any screen.
Whenever you log in to Oracle LSH and click the Applications tab, you will see the
Domain you select in Preferences. For instructions, see "Setting Preferences" in the
Oracle Life Sciences Data Hub User's Guide.

If you do not select a Domain in Preferences, each time you log in to Oracle LSH you
see the Domain that is before all other Domains in alphabetical/numerical order. You
can then select a different Domain using the instructions below.

Navigating in the Applications Tab

2-2 Oracle Life Sciences Data Hub Application Developer's Guide

Select a Domain on the Applications Screen
You can change Domains at any time in the main Applications screen:

1. Click the Applications tab.

2. In the Select Domain field do one of the following:

■ Enter part of the name and use a wildcard; for example, if you enter %123%
the system retrieves all Domains that have 123 in sequence in any position in
their name.

■ Enter part of the Domain name and press Tab. Do not enter any special
characters.

3. The system opens the Search and Select window. Click the icon in the Quick
Select column for the Domain you want. The system returns to the Applications
screen and displays the Domain name in the Select Domain field.

4. Click Go.

Navigating in the Applications Tab
This section includes the following topics:

■ Browsing the Main Applications Screen on page 2-2

■ Navigating Using Breadcrumbs on page 2-3

Browsing the Main Applications Screen
In the main Applications screen you can see all the object definitions and instances in a
single Domain. To change Domains, see "Select a Domain on the Applications Screen"
on page 2-2.

Objects are displayed in a tree structure with expandable nodes, or branches as shown
in the following image. Oracle LSH displays all objects within their containing object
when you expand the node of the containing object. See Appendix B, "Object
Ownership" for information on object containing relationships in Oracle LSH.

Navigating by Object Ownership Within a Domain you see all the Domain's
Application Areas and child Domains. Within each Application Area you see all its
Work Areas. Within each Work Area you see all the objects it contains—instances of
Tables, Programs, Load Sets, Data Marts, Workflows, Report Sets, and Business Areas.
Within Report Sets you see the hierarchical Report Set Entry structure that corresponds
to the Report Set's table of contents.

Viewing Object Definitions To see the definitions contained in a Domain or
Application Area library, do the following:

Navigating in the Applications Tab

Creating Container Objects 2-3

1. Click the icon in the Manage Definitions column next to the Domain or
Application Area name.

Alternatively, you can click the hyperlink of the Domain or Application Area name
and then click the Manage Definitions button from the Domain or Application
Area's Properties screen.

2. All object types are listed alphabetically. Click Expand All to view all object
definitions for all object types.

Alternatively, you can expand the plus icon (+) next to an object type to view all
the objects of that type in that Domain or Application Area.

If you want to specifically see only one type of object, then you can click in the
Focus column next to that object type. This is particularly useful if you have many
objects of one type and want to minimize scrolling up and down the screen.

3. Click the definition name whose details you want to see. The following image
shows the definition icon.

Using Hyperlinks Click the name of any container or object to go to the Properties
screen for that object.

Navigating Using Breadcrumbs
Breadcrumbs are a series of links to the screens you navigated through to arrive in
your current location. They appear across the top of most Oracle LSH screens as
shown in Figure 2–1.

Each of the screen names displayed in the breadcrumb path is a link. You can click it to
return to that location.

Figure 2–1 Example of a Breadcrumb

Note: When you work on an object definition through an instance of
it in a Work Area, you can see almost all the properties of the
definition. However, to see all of a definition's properties, including its
definition, security assignments and classifications, you must either
navigate to it in its Domain or Application Area, or jump to it through
its link on the object instance screen.

Note: Some breadcrumb links do not work; for example, after
creating a new object. To recover from this situation, click the
Applications tab at the top of the page and navigate as described in
"Navigating in the Applications Tab" on page 2-2.

Creating Domains, Application Areas, Work Areas, and Objects

2-4 Oracle Life Sciences Data Hub Application Developer's Guide

Using the Actions Drop-Down
The Actions drop-down list appears in the upper right corner of many screens in the
Applications tab. The actions available in the list vary, depending on the context. Most
actions (those found in object definition and instance screens) are described in
Chapter 3, "Common Development Tasks". Work Area-related actions are described in
Chapter 12, "Using, Installing, and Cloning Work Areas". Reports are described in
Chapter 14, "System Reports".

To use the Actions drop-down list, do the following:

1. Click anywhere on the Actions field or arrow. The system displays the actions
available in the current screen.

2. Click the action you want to perform. The system displays the selected action in
the field.

3. Click Go. The system opens the appropriate screen.

Creating Domains, Application Areas, Work Areas, and Objects
This section includes the following topics:

■ Creating Domains on page 2-4

■ Creating Application Areas on page 2-6

■ Creating Work Areas on page 2-7

■ Creating or Adding Children, including Object Instances on page 2-7

■ "Creating Object Definitions" on page 2-8

Before creating Domains, Application Areas, and Work Areas, you should carefully
design a set of these structures; see "Designing an Organizational Structure" in the
Oracle Life Sciences Data Hub Implementation Guide. See also "Keep Container and Object
Names Short for Integrated Development Environments" on page 3-7.

Creating Domains
This section contains the following topics:

■ Creating a Top-Level Domain on page 2-5

■ Creating a Child Domain on page 2-6

A Domain is the highest-level organizational structure in Oracle LSH. Domains are
intended to contain logically related child Domains, Application Areas and/or a
library of validated object definitions that are suitable for reuse. See "Object Definitions
and Instances, and their Containers" on page 1-4 for further information.

Note: Oracle LSH can display a maximum of 200 rows at a time by
default, so if you define more than 200 Domains within a Domain, or
Application Areas within a Domain, or Work Areas within an
Application Area, or objects within either an Application Area or
Work Area, you get an error. Therefore, Oracle recommends that you
design your organizational structure to avoid this problem.
Alternatively, it is possible to reset the Oracle Applications profile
FND: View Object Max Fetch Size to display more than 200 rows at a
time; however this affects all your Oracle Applications.

Creating Domains, Application Areas, Work Areas, and Objects

Creating Container Objects 2-5

To create a Domain, you must have the LSH Bootstrap Security application role. You
must assign at least one user group to the Domain or no one will be able to use the
Domain.

Nesting Domains The number of levels of Domains contained within other Domains
is determined by setting the Domain Nest Value profile for your Oracle LSH instance.
If this value is set to 1, your top-level Domains cannot contain any child Domains. If
this value is set to 2, your top-level Domains can contain child Domains. If the value is
set to 3, the child Domains can contain child Domains, and so on.

See "Setting the Maximum Number of Nested Domains" in the Oracle Life Sciences Data
Hub System Administrator's Guide for instructions.

Creating a Top-Level Domain
A top-level Domain has no parent in the user interface. You can create any number of
Domains at the top hierarchical level.

To create a top-level Domain:

1. Navigate to the Application Development home page.

2. Click Maintain Domains. The Maintain Domains screen appears.

3. Click Create Domain. The Create Domain screen appears.

4. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

5. In the Classification section, select the following for the Domain:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

6. Click Apply. The Domain screen appears.

7. Forward Chain Enabled:

■ If checked, Programs and other executables in the Domain can be part of a
forward chaining execution process if they are set up for it. This is the default
value.

■ If unchecked, objects in the Domain cannot be part of a forward chaining
process even if they are set up for it.

To change this setting, click Update, check or uncheck ForwardChain Enabled,
and Apply. See "Forward Chaining" on page 13-10 for more information.

8. From the Actions drop-down list, select Apply Security and click Go. The system
opens the Manage Security screen.

9. Click Assign Group. The system opens the Search User Group screen.

10. If you know the name of the user group you want to assign to the Domain, enter it
in the Group Name field. You can also enter part of a name and the system will
return all groups that include the string you enter in their name. If you leave the
field blank, the system returns all user groups.

11. Click Go. The system displays all user groups that satisfy your query.

12. Select any number of user groups: click their Select check box and click Apply.

Creating Domains, Application Areas, Work Areas, and Objects

2-6 Oracle Life Sciences Data Hub Application Developer's Guide

13. Click Return to return to the Properties screen for the Domain.

Creating a Child Domain
A child Domain is a subdomain; a Domain contained in another Domain.

To create a Domain within a Domain, do the following:

1. On the main Applications screen, click the Create Child icon for the Domain in
which you want to create a child Domain.

2. From the Select Child drop-down list, select Domain.

3. Click OK. The Create Domain screen opens.

4. Follow the same procedure as for "Creating a Top-Level Domain" on page 2-5,
from Step 4 on.

Alternatively, do the following:

1. On the Applications Properties screen, click the name of the Domain in which you
want to create a child Domain. The Properties screen for that Domain opens.

2. From the Add drop-down list, select Domain.

3. Click Go. The Create Domain screen opens.

4. Follow the same procedure as for "Creating a Top-Level Domain" on page 2-5,
from Step 4 on.

Creating Application Areas
Application Areas contain Work Areas for the different life cycle stages of a single
application. They also contain any object definitions that are created specifically for
their application through one of their Work Areas.

To create an Application Area:

1. In a Domain, click Create Application Area. The Create Application Area screen
appears.

Alternatively, on the main Applications screen, click the Create Child icon next to
the Domain name, then select Application Area and click OK.

2. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

3. In the Classification section, select the following for the Application Area:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

4. Click Apply. The Application Area screen appears.

5. Forward Chain Enabled:

■ If checked, Programs and other executables in the Application Area can be
part of a forward chaining execution process if they are set up for it. This is the
default value.

■ If unchecked, objects in the Application Area cannot be part of a forward
chaining process even if they are set up for it.

Creating Domains, Application Areas, Work Areas, and Objects

Creating Container Objects 2-7

To change this setting, click Update, check or uncheck ForwardChain Enabled,
and Apply. See "Forward Chaining" on page 13-10 for more information.

Creating Work Areas
Application development work occurs in a Work Area. See also "Using the Work Area
Properties Screen" on page 12-1.

To create a Work Area:

1. Do one of the following:

■ In the Properties screen for Application Area, click Create Work Area.

■ In the Application Development page, click the Create Child icon in the row of
an Application Area.

The Create Work Area screen appears.

2. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

3. Select the Usage Intent that represents the way you plan to use this Work Area.
The options are: Development, Quality Control, and Production.

4. In the Classification section, select the following for the Work Area:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

5. Click Apply. The Work Area screen appears.

6. Forward Chain Enabled:

■ If checked, Programs and other executables in the Application Area can be
part of a forward chaining execution process if they are set up for it. This is the
default value.

■ If unchecked, objects in the Application Area cannot be part of a forward
chaining process even if they are set up for it.

To change this setting, click Update, check or uncheck ForwardChain Enabled,
and Apply. See "Forward Chaining" on page 13-10 for more information.

Creating or Adding Children, including Object Instances
In Oracle LSH a "child" is an object that is contained in another object, which is called
the "parent." In the main Applications screen you can use the Create Child icon to do
the following:

■ Add a child Domain or Application Area to a Domain; see "Creating a Child
Domain" on page 2-6 and "Creating Application Areas" on page 2-6.

■ Add a Work Area to an Application Area; "Creating Work Areas" on page 2-7.

■ Add object instances to a Work Area (and simultaneously add a new definition to
the parent Application Area, if you choose).

To add an object instance to a Work Area, do the following:

Modifying Domains, Application Areas, and Work Areas

2-8 Oracle Life Sciences Data Hub Application Developer's Guide

1. In the main Applications screen click the Create Child icon for the Workflow. The
Create Child screen appears

2. In the drop-down list, select the type of object you want to create.

3. Click OK. The system opens the relevant screen.

For information on creating each object type, see the following sections:

■ Business Area. See "Creating a Business Area" on page 11-2.

■ Data Mart. See "Creating a Data Mart" on page 8-2.

■ Load Set. See "Creating a Load Set" on page 7-4.

■ Program. See "Creating a Program" on page 5-3.

■ Report Set. See "Creating a Report Set" on page 9-10.

■ Table. See "Creating a Table" on page 4-3.

■ Workflow. See "Creating a Workflow" on page 10-3.

Creating Object Definitions
Oracle recommends always creating objects in a Work Area, where you can install and
test them. If you create an object definition directly in a Domain or Application Area,
you will not be able to test or use it until you create an instance of it in a Work Area
and install it.

However, you can create an object definition directly in a Domain or Application Area
library. See "Creating Object Definitions" on page 2-11.

Modifying Domains, Application Areas, and Work Areas
Domains, Application Areas, and Work Areas should be part of a carefully designed
organizational structure; see "Designing an Organizational Structure" in the Oracle Life
Sciences Data Hub Implementation Guide.

■ Name. You can update the name at any time.

■ Description. You can update the description at any time.

■ Usage Intent. This property belongs to Work Areas only. See "Changing a Work
Area's Usage Intent" on page 12-4.

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. You can change the classification values at any time. Use
caution, however, because this may have the effect of changing the classifications
of some or all objects contained in the Domain, Application Area, or Work Area,
and all their children, grandchildren, and so on. See "Designing a Classification
System" in the Oracle Life Sciences Data Hub Implementation Guide

Usage Intent. Work Areas have one additional attribute that you can update.See
"Cloning Work Areas for Testing and Production" on page 12-21 for further
information.

Note: To change the usage intent, do not click Update. Instead, select
Upgrade Usage Intent from the Actions drop-down list and click Go.

Duplicating, Removing, Moving and Promoting Domains

Creating Container Objects 2-9

Duplicating, Removing, Moving and Promoting Domains
This section includes the following topics:

■ Duplicating or Copying a Domain on page 2-9

■ Removing a Domain on page 2-9

■ Moving a Domain on page 2-9

■ Promoting a Domain on page 2-10

You must have special privileges to duplicate or remove a Domain.

Duplicating or Copying a Domain
To save time, you may want to set up one or more standard Domains with Application
Areas, Work Areas, even object definitions and instances, and duplicate them. You can
then modify the duplicate Domain; see "Modifying Domains, Application Areas, and
Work Areas" on page 2-8.

The procedure is slightly different depending on where the Domain is. Top-level
Domains are duplicated, and child Domains are copied. When you duplicate a top-level
Domain, the system automatically creates the duplicate at the top level also.

When you copy a child Domain (or any other object) you can choose the target
location for the copy. See "Copying Objects" on page 3-17 for instructions.

To duplicate a top-level Domain, do the following:

1. In the Applications Development screen, click Maintain Domains. The Maintain
Domains screen opens, displaying all the Domains to which you have access.

2. Select the Domain you want to duplicate by clicking the radio button next to it in
the Select column.

If you have access to many Domains you may need to click Next 10 one or more
times to find the Domain you want.

3. Click Duplicate. The system creates a new Domain at the top level with the name
Copy of Original Domain Name. You can find the new Domain listed
alphabetically under C for Copy.

Removing a Domain
Removing a Domain deletes the Domain and all the Application Areas, Work Areas,
object definitions and object instances it contains. If you have the necessary security
privileges, you can remove a Domain as you would any other object; see "Removing
Objects" on page 3-24.

You can remove a Domain in either the Maintain Domains screen or in the main
Applications screen.

Moving a Domain
If a Domain is nested in another Domain, you can move it to a different position in the
same nest or to a different nest. The system checks that the Maximum Domain Nest
Value will not be exceeded before performing the move operation. If the maximum
value would be exceeded by the move, the system does not perform the move.

To move a Domain, do the following:

1. Go to the parent Domain of the Domain you want to move.

Managing Object Definitions

2-10 Oracle Life Sciences Data Hub Application Developer's Guide

2. Select the Domain you want to move by clicking the Select check box.

3. Click the Move button. The Move Objects screen opens.

4. Navigate to the Domain into which you want to move the selected Domain. By
default, the system displays the current Domain and all its children. You can select
a different Domain using the Search field.

5. Click the Select radio button next to the Domain into which you want to paste the
previously selected Domain.

6. Click Apply. The system removes the Domain from its previous location and puts
it into the location you specified.

Promoting a Domain
If you have the necessary privileges you can promote a Domain; that is, move a
Domain currently nested in another domain to the top level of the Applications
hierarchy.

To promote a Domain, do the following:

1. Go to the Properties screen of the Domain you want to promote.

2. From the Actions drop-down list, select Promote Domain and click Go.

3. The system promotes the Domain to the top level. You can no longer see it in the
Applications Properties screen. Use the Search field to go to the Domain in its new
location.

Managing Object Definitions
This section includes the following topics:

■ Copying Object Definitions on page 2-10

■ Moving Object Definitions on page 2-11

■ Creating Object Definitions on page 2-11

See also "Removing Objects" on page 3-24.

You can work on Oracle LSH object definitions within a Domain or Application Area
from the Maintain Domain or Maintain Application Area screen. For more
information, see "Object Definitions and Instances, and their Containers" on page 1-4.

Copying Object Definitions
You can reuse Oracle LSH objects by copying their definitions from one container to
another.

Note: If the Domain currently inherits all its user group assignments
from its parent Domain, you must make the following preparation
before promoting it—explicitly assign those user groups to the
domain that should have access to it in its new position at the top of
the hierarchy. If you do not explicitly assign user groups before
promoting it, only a user with the Bootstrap security administrator
role will be able to see or work in the Domain after it is promoted.

Managing Object Definitions

Creating Container Objects 2-11

To copy one or more object definitions, do the following:

1. In the Application Development screen, click the icon in the Manage Definitions
column for the Domain or Application Area from which you want to copy the
object definition(s).

You can also reach the Maintain Library screen by clicking the Manage
Definitions button on the Domain or Application Area's Properties screen.

2. In the Maintain Library screen Oracle LSH objects are listed by object type. Click
Expand All to see all the object definitions sorted by object type. To see object
definitions of only one object type, click the + sign next to the object type.

3. Select the check box next to the object definition(s) you want to copy.

4. Click Copy. If the object definition(s) you selected to copy is/are currently
checked out by you, the system shows a message requesting confirmation to check
in the definition(s) before copying.

5. Click Yes. The Copy Object(s) screen opens. Select the Domain or Application Area
into which you want to paste the selected object definition(s). Follow instructions
in "Pasting Objects" on page 3-23.

Moving Object Definitions
You can move Oracle LSH object definitions from one container to another.

To move one or more Oracle LSH object definitions, do the following:

1. In the Application Development screen, click the Manage Definitions icon next to
the Domain or Application Area you want to copy the object definition(s) from.

You can also reach the Maintain Library screen by clicking the Manage
Definitions button on the Domain or Application Area's Properties screen.

2. In the Maintain Library screen Oracle LSH objects are listed by object type. Click
Expand All to see all the object definitions sorted by object type. To see object
definitions of only one object type, click the + sign next to the object type.

3. Select the check box next to the object definition(s) you want to move.

4. Click Move. If the object definition(s) you selected to move is/are currently
checked out, the system shows a message requesting confirmation to check in the
definition(s) before moving.

5. Click Yes. The Move Object(s) screen opens. Select the Domain or Application
Area into which you want to paste the selected object definition(s). Follow
instructions in "Pasting Objects" on page 3-23.

Creating Object Definitions
You can create Oracle LSH object definitions inside a Domain or Application Area.

Note: You cannot copy or move object definitions that are checked
out by someone else.

Note: You cannot copy or move object definitions that are checked
out by someone else.

Managing Object Definitions

2-12 Oracle Life Sciences Data Hub Application Developer's Guide

To create an Oracle LSH object definition, do the following:

1. In the Application Development screen, click the Manage Definitions icon next to
the Domain or Application Area you want to create the object definition in.

You can also reach the Maintain Library screen by clicking the Manage
Definitions button on the Domain or Application Area's Properties screen.

2. Select the object type from the Create drop-down list. Click Go.

3. Enter values specific to the object type to create an object definition of that type.

Note: In order to use or test changes to an object definition you must
create and install an instance of it in a Work Area. See "Creating or
Adding Children, including Object Instances" on page 2-7

3

Common Development Tasks 3-1

3 Common Development Tasks

This section contains information on the following topics, which are tasks common to
the definition of different types of Oracle LSH objects:

■ Creating and Reusing Objects on page 3-1

■ Naming Objects on page 3-6

■ Viewing Object Instances and Definitions on page 3-8

■ Understanding Object Versions and Checkin/Checkout on page 3-9

■ Upgrading Object Instances to a New Definition Version on page 3-15

■ Copying, Cloning, and Moving Objects on page 3-17

■ Removing Objects on page 3-24

■ Classifying Objects and Outputs on page 3-25

■ Applying Security to Objects and Outputs on page 3-29

■ Validating Objects and Outputs on page 3-31

■ Reordering and Renumbering Objects on page 3-36

■ Defining and Mapping Table Descriptors on page 3-36

■ Creating, Modifying, and Submitting Execution Setups on page 3-55

■ Viewing Data on page 3-70

■ Viewing Jobs on page 3-74

■ Viewing All Outputs of a Program or Report Set on page 3-75

■ Using the Actions Drop-Down List on page 3-76

■ Defining Planned Outputs on page 3-77

See also Chapter 1, "Getting Started".

Creating and Reusing Objects
This section contains the following topics:

■ Finding an Appropriate Definition on page 3-2

■ Reusing Existing Definitions on page 3-2

■ Creating an Instance of an Existing Definition on page 3-3

■ Creating a New Definition and Instance on page 3-5

Creating and Reusing Objects

3-2 Oracle Life Sciences Data Hub Application Developer's Guide

■ Creating and Using Object Descriptions on page 3-6

See also Naming Objects on page 3-6.

For information on creating new definitions, see the section for each object:

■ Creating a New Table Definition and Instance on page 4-4; includes instructions
for creating an Oracle LSH Table from a SAS data set

■ Creating a New Program Definition and Instance on page 5-4

■ Creating a New Load Set Definition and Instance on page 7-5

■ Creating a New Report Set Definition and Instance on page 9-10

■ Creating a New Data Mart Definition and Instance on page 8-3

■ Creating a New Workflow Definition and Instance on page 10-3

■ Creating a New Business Area Definition and Instance on page 11-3

Finding an Appropriate Definition
You can look for an appropriate definition to use in several ways:

■ If you know the location of the definition you need to use, click Create an Instance
of an Existing Definition and use the Search utility there; see "Using the Search
and Select Window" on page 3-4.

■ To search with other criteria, including classifications and validation status, go to
any screen with the Advanced Search utility, search, and make a note of the
results. See "Advanced Search" in the Oracle Life Sciences Data Hub User's Guide for
instructions.

■ In the main Applications screen, navigate to a Domain or Application Area where
you think you might find an appropriate definition, and click Maintain Definitions
to see all the definitions in that Domain or Application Area library. See
"Navigating in the Applications Tab" on page 2-2.

Reusing Existing Definitions
There are several ways you can reuse an existing definition:

■ Create an instance of an existing definition and use the definition as it is. This is
the easiest and fastest way to reuse a definition, requiring no revalidation of the
definition. Use this method if the definition you need is validated and appropriate
for your needs (see "Creating an Instance of an Existing Definition" on page 3-3).

■ Create an instance of an existing definition and then copy the definition to the
current Application Area. After you create an instance of an existing definition,
check in the definition through the instance if it is not already checked in. Then
check it out, selecting the option to create a copy of the definition in the current
Application Area (see "Checking Out an Object Definition through an Instance" on
page 3-11) and modify it as necessary.

This method leaves the original definition unchanged and readily available for
reuse elsewhere. You must validate the copied definition when you have finished
modifying it.

The system enforces unique object names within a container; see "Naming Objects"
on page 3-6.

■ Create an instance of an existing definition and modify it as necessary. If you
have the necessary privileges, you can modify the definition through the new

Creating and Reusing Objects

Common Development Tasks 3-3

instance. The system creates a new version of the definition, which you must
revalidate. You can label the new version to distinguish it from other versions; see
"Version Labels" on page 3-13.

Creating an Instance of an Existing Definition
Whenever possible, choose this option. It saves work by reducing the time required to
define and validate objects and by promoting consistency across the application. See
"Finding an Appropriate Definition" on page 3-2.

Figure 3–1 shows the process of creating an instance of an existing Program definition.
The process is similar for all object types. When you create a new instance of an
existing Program definition, you do not need to create Table Descriptors, Source Code,
Parameters, or Planned Outputs because they are included in the Program definition.
You do need to map the Table Descriptors to Table instances and define at least one
Execution Setup. You then install the Program instance and the Table instances to
which it is mapped, run and test the Program instance, validate it and assign user
groups to it according to your company's policies.

Figure 3–1 Creating a New Program Instance from an Existing Program Definition

To create an Instance of an existing Definition:

1. Select Create an Instance of an Existing Definition and click Apply.

The system displays the Definition Source field with a Search icon as shown here:

2. If you know the name of the object definition you want, enter it in the Definition
Source field.

If not, click the Search icon. The Search and Select pop-up window appears. See
"Using the Search and Select Window" below.

3. Select a subtype and classifications for the new object instance, if necessary.

4. Click Apply. The system creates a new instance of the definition you specified in
the current Work Area.

5. For all object types except Tables, you must map the Table Descriptors; see
"Mapping Table Descriptors to Table Instances" on page 3-45 for information.

For all executable objects, you must create at least one Execution Setup; see
"Creating, Modifying, and Submitting Execution Setups" on page 3-55.

Creating and Reusing Objects

3-4 Oracle Life Sciences Data Hub Application Developer's Guide

Using the Search and Select Window
The Search and Select window is called from many screens in Oracle LSH. It receives
its context from the calling screen. For example, if you click the Search icon in the
Create Program screen, the Search and Select function finds only Program definitions.

Enter values in the following fields:

1. Domain. From the drop-down list, select the name of the Domain that contains the
definition you need.

If the Domain you specified contains one or more child Domains, you can see the
child domain in the Domain drop-down list with the name of all parent domains
preceding it and separated by a right angle bracket (>). For example:

Domain 1 > Child Domain 1 > Child Domain 2 > Child Domain 3

The system populates the Application Area drop-down list with the names of
Application Areas contained in that Domain.

2. Application Area. If the definition is contained directly in a Domain library, do
not select an Application Area.

If the definition is contained in an Application Area, select the Application Area
from the drop-down list.

3. Search By. If you know the name or version label of the object, select either Name
or Version Label from the Search By drop-down list and enter either the name or
version label in the field to the right. You can use special characters such as the %
wildcard. For example, if you enter Study_12345% as a name, the system retrieves
all objects whose name begins with Study_12345.

4. Display All Versions If checked, the system returns all versions of the object with
the name you specified in the Search By field. If unchecked, the system returns
only the latest version. (If you specified Version Label in the Search By field, the
system returns only the version with that label.)

5. Display Not Null Version Labels If checked, the system returns only object
versions with a version label. This checkbox is relevant only if Name is selected in
the Search By field above.

6. Click Go. The system displays the results of the search, including, for each
definition retrieved, its name, version number, version label (if any), validation
status, the username of the person who created the definition, and the date on
which it was created. The system retrieves object definitions only if they are
currently checked in.

Note: For some object types this field is case-sensitive. If an object's
name begins with STUDY_12345 and you enter Study_12345% the
system does not retrieve the object because its name is not in
uppercase.

Notes: You can set your Preferences to make the system return only
definitions with a validation status of Production.

You cannot create a new object instance based on a definition whose
validation status is set to Retired.

Creating and Reusing Objects

Common Development Tasks 3-5

7. Select the definition you want by clicking the icon in the Quick Select column, or
by clicking its radio button and then clicking the Select button. The system returns
you to the screen you came from, displaying the name of the object you selected.

Creating a New Definition and Instance
If no object definition exists that suits your needs, or that you can modify to suit your
needs, you must create a new one.

When you create a new definition and instance at the same time, the system
simultaneously creates the definition in the current Application Area and an instance
of it in the current Work Area. As you save your work, the system applies your
changes to the appropriate object—definition or instance. The system applies the name
and description you enter to both the definition and instance unless there is a conflict
with either one; see "Naming Objects" on page 3-6.

Figure 3–2 shows the process of creating a new Program definition and instance. The
process is similar for all object types. You first create the object as a whole, classify both
the definition and the instance, then define component objects: in the case of Programs
these include Table Descriptors, Source Code, Parameters, and Planned Outputs. All
executable instances require mapping Table Descriptors to Table instances and
defining at least one Execution Setup. You must install all object instances in their
Work Area, assign user groups for object security and validate the definition and the
instance according to your company's policies.

Figure 3–2 Creating a New Program Definition and Instance

Specific instructions for each object type are included in the section on each type:

■ Creating a New Table Definition and Instance on page 4-4; includes instructions
for creating an Oracle LSH Table from a SAS data set

■ Creating a New Program Definition and Instance on page 5-4

■ Creating a New Load Set Definition and Instance on page 7-5

■ Creating a New Report Set Definition and Instance on page 9-10

■ Creating a New Data Mart Definition and Instance on page 8-3

■ Creating a New Workflow Definition and Instance on page 10-3

■ Creating a New Business Area Definition and Instance on page 11-3

There are also instructions for creating the following component objects:

■ Defining Parameters on page 6-6

■ Defining and Mapping Table Descriptors on page 3-36

■ Defining Source Code on page 5-9

■ Defining Table Columns on page 4-10

■ Defining Variables on page 6-2

Naming Objects

3-6 Oracle Life Sciences Data Hub Application Developer's Guide

Creating and Using Object Descriptions
The description of an object definition should provide information to help Definers
decide if they want to use the definition.

You can search for words and phrases in the description using the Advanced Search
feature.

Descriptions can contain up to 2000 characters.

Naming Objects
This section contains the following topics:

■ Special Characters and Reserved Words on page 3-6

■ Duplicate Names: System Appends _1 on page 3-6

■ Automatic Name Truncation on page 3-7

■ Naming Rules for Specific Object Types on page 3-7

■ Customizable Naming Validation Package on page 3-8

Make an object name as descriptive as possible to help other users understand its
purpose. Your company may develop naming conventions; see "Customizable Naming
Validation Package" on page 3-8.

Special Characters and Reserved Words
To avoid problems, do not use special characters such as (& @ * $ | % ~ -) in object
names, except for underscore (_). Also do not use Oracle SQL or PL/SQL reserved
words in object names, especially the Oracle name. For lists of reserved words, see:

Oracle® DatabaseSQL Language Reference at
http://download.oracle.com/docs/cd/E11882_01/server.112/e17118.pdf

Oracle® Database PL/SQL Language Reference at
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e17126.pdf

For the latest information, you can generate a list of all keywords and reserved words
with the V$RESERVED_WORDS view, described in the Oracle® Database Reference at
http://download.oracle.com/docs/cd/E11882_01/server.112/e17110.pdf.

Duplicate Names: System Appends _1
Oracle LSH enforces unique naming for each object type in the same container,
whether the container is an organizational object—Domain, Application Area or Work
Area—or a Report Set or Workflow. (Report Sets contain Programs. Workflows may
contain Programs, Load Sets, Report Sets, and/or Data Marts.) The system enforces
unique names only within the immediate container; for example, you cannot have two
Program instances named Program_A in the same Workflow, but you can have a
Program_A in a Workflow and another Program_A directly in the Application Area
that contains the Workflow.

If you try to create a second object of the same type and name in the same container,
the system creates the object but automatically appends an underscore and number 1
(_1) to the name. If you add a third object of the same type and name, the system
increments the number (_2). For example, if you create a Program called Merge in
Application Area 12345, and then create another Program called Merge in the same
Application Area, the system names the new Program Merge_1. If you create a third

http://download.oracle.com/docs/cd/E11882_01/server.112/e17118.pdf
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e17126.pdf
http://download.oracle.com/docs/cd/E11882_01/server.112/e17110.pdf

Naming Objects

Common Development Tasks 3-7

Program called Merge in the same Application Area, the system names the new
Program Merge_2.

Automatic Name Truncation
Names can contain up to 200 characters. However, the system populates the values for
Oracle Name and SAS Name with the value you enter for Name stored in uppercase,
truncating the Oracle Name to 30 characters and the SAS Name to 32 characters. You
can change the Oracle and SAS Names.

When you create a new object by uploading a table, view, data set, or column, the
system truncates the Oracle Name and also replaces the last two characters with the
number 01 or, if an object of the same type with the same name already exists in the
same container, the next highest number (in this case, 02).

Keep Container and Object Names Short for Integrated Development Environments
Although names can contain up to 200 characters, the maximum length of a file path is
256 characters in Windows. When you open an integrated development environment
(IDE) such as SAS or run a SAS Program on your personal computer, Oracle LSH uses
the actual full file path for Source Code definitions, Table instances, and the SAS
runtime script. If the full file path exceeds this length you get an error and cannot open
the IDE or run the Program. You can use a package to limit object name size or display
an error when an object's file path is too long; see "Customizable Naming Validation
Package" on page 3-8.

The full file path begins with the Oracle LSH username of the person who opens the
IDE followed by the directory name cdrwork. It also includes all Subdomains in the
path, if any. (The maximum number of Subdomains is 9. This number is configurable.)

■ Source Code definitions. The path for Source Code definitions is:
username>cdrwork>Domain_name>Subdomain_name(s) (0-9)>Application_ Area_
name>Program_definition_name>Source_Code_definition_nameversion_
number>fileref>source_code_filename

■ Table instances. The path for Table instances is: username>cdrwork>Domain_
name>Subdomain_name(s) (0-9)>Application_ Area_name>Work_Area_
name>program instance name>program version>Table_Descriptor_libname>
Table_Descriptor_SAS_name>

■ SAS runtime script. The path for x is: username>cdrwork>Domain_
name>Subdomain_name(s) (0-9)>Application_ Area_name>Work_Area_
name>Program_instance_name>version_number>setup

Naming Rules for Specific Object Types
This section contains the following topics:

■ Naming Domains on page 3-7

■ Naming Source Code Objects on page 3-8

■ Naming Parameters on page 3-8

■ Naming OBIEE Business Areas on page 3-8

Naming Domains
If you plan to export a Domain to another Oracle LSH instance, you may want to
avoid using spaces in its name. Domain names with spaces must be entered with

Viewing Object Instances and Definitions

3-8 Oracle Life Sciences Data Hub Application Developer's Guide

escape characters surrounding it in the Import Export Utility; for example: \" domain
name\".

Naming Source Code Objects
There are important requirements for Source Code names:

■ Source Code names must not include reserved words or special characters.

■ Source Code names must include a file extension; for example, .sas for SAS, .rpt
for Oracle Reports, or .sql for PL/SQL source code definitions. The system uses
the name you enter to name the actual file that contains the source code.

■ A Source Code's Oracle name must not be the same as the Oracle name of either a
Table Descriptor or another Source Code in the same PL/SQL Program definition.

Naming Parameters
Do not use spaces in the name of any Parameter you create for use in a Report Set. This
will cause an error during Report Set postprocessing because the Parameter name
becomes an HTML tag, and spaces are not allowed.

Naming OBIEE Business Areas
Give a unique name to each Business Area that uses the same service location.

Customizable Naming Validation Package
Oracle LSH object creation and modification code includes a call to a predefined
validation package from every object name field. By default, this package performs no
validation and returns a value of TRUE, allowing users to enter any name in the field.
However, you can customize the package to enforce your own naming conventions,
full path length, or other object attribute standards. See "Customizing Object
Validation Requirements" in the Oracle Life Sciences Data Hub System Administrator's
Guide.

Viewing Object Instances and Definitions
The process of viewing and modifying object instances and definitions is similar for all
object types. This section includes the following topics:

■ Viewing Object Instances on page 3-8

■ Viewing Object Definitions on page 3-9

Viewing Object Instances
When you view an object instance (such as a Program or Table instance) in a Work
Area, you see all the metadata details that apply to the object instance, including the
properties that belong to the instance and the properties that belong to the definition.

The fields and settings in the upper portion of the screen (labeled "Instance
Properties") belong to the object instance. The fields and settings in the lower portion
of the screen (labeled "Definition Properties"), including the information under the
subtabs in the middle of the screen, belong to the definition. The exception—for all
objects that contain Table Descriptors—is Table Descriptor mappings, which belong to
the instance but are displayed with the Table Descriptors, which belong to the
definition.

Understanding Object Versions and Checkin/Checkout

Common Development Tasks 3-9

Use the Actions drop-down list to see other characteristics of the instance, including
its classifications, security user group assignments, validation supporting information,
metadata reports, and Execution Setups.

Viewing Object Definitions
You can view object definitions two ways:

■ Viewing Object Definitions in Domains and Application Areas on page 3-9

■ Viewing Object Definitions from Instances in a Work Area on page 3-9

Viewing Object Definitions in Domains and Application Areas
To see an object definition where it is located, do the following:

1. In the main Applications screen, click the Domain or Application Area where the
object you want to see is located.

2. Expand the relevant object type (such as Report Set or Program).

3. Click the link for the definition you want to see.

You can see old versions of object definitions in the Version History screen from the
Actions drop-down list (see "Version History" on page 3-14).

You can also use Advanced Search to find old versions of objects or retired objects. See
"Advanced Search" in the Oracle Life Sciences Data Hub User's Guide.

Viewing Object Definitions from Instances in a Work Area
When you look at an object instance in a Work Area, you see many details of its source
definition as well. The fields and settings in the lower portion of the screen (labeled
"Definition Properties"), including the information under the subtabs in the middle of
the screen, belong to the definition. The exception—for all objects that contain Table
Descriptors—is Table Descriptor mappings, which belong to the instance but are
displayed with the Table Descriptors, which belong to the definition.

In an object instance in a Work Area, you cannot see the source definition's
classifications and user group assignments. To see these, you must go to the definition
in its Domain or Application Area. You can do this directly from the Work Area as
follows:

1. Click the Definition link in the Instance Properties section of the screen. The
system opens the Properties screen of the definition in its Domain or Application
Area.

2. Select the appropriate item—Apply Security or Assign Classification—from the
Actions drop-down list and click Go. The system opens the appropriate screen.

3. To return to the object instance you came from, click the second last link in the
breadcrumb at the top of the screen (see "Navigating Using Breadcrumbs" on
page 2-3) or click Return to go back to the Definition page and click the last
breadcrumb link from there.

Understanding Object Versions and Checkin/Checkout
This section includes the following topics:

■ About Object Versions on page 3-10

■ Checking Out Objects on page 3-11

Understanding Object Versions and Checkin/Checkout

3-10 Oracle Life Sciences Data Hub Application Developer's Guide

■ Checking In Objects on page 3-13

■ Undoing Object Checkout on page 3-13

■ Version Labels on page 3-13

■ Version History on page 3-14

■ Versions of Component Objects on page 3-14

About Object Versions
Oracle LSH keeps all object definitions and instances under version control,
maintaining a record of the user who created each new version, the date and time the
version was created, and, for definitions explicitly checked out, an optional comment
entered by the person who checked it out.

The system creates a new version of an object when it is checked out, either explicitly
or implicitly, and applies all changes to the new version until it is checked in. To make
further changes you must check it out and modify the new version.

The system creates new object versions with the same user group assignments
(security) and classifications as the previous version, but always gives new object
versions a validation status of Development, no matter what validation status the
previous version had.

When you create a new version of an object definition, instances of the previous
version continue to point to the previous version. You can upgrade one or more
instances to the new definition if you want to; see "Upgrading One or More Instances
from the Definition" on page 3-15.

Report Sets' versioning is different from other objects'; see Chapter 9, "Defining Report
Sets" for information on Report Sets. Domains and Application Areas are not
versioned; their version number is always 1.

Using Old Object Definition Versions You can use old versions of object definitions
as follows:

■ Do not upgrade instances. Instances continue to point to the definition version
selected when they were created until they are explicitly upgraded.

■ When you create a new instance of an existing object definition, you can select any
version of the definition after selecting "Display all Versions;" see "Creating an
Instance of an Existing Definition" on page 3-3.

■ You can copy an old version of an object definition at any time from its Version
History screen; see "Copying an Old Version of an Object Definition" on page 3-18.

■ If an object definition is not already checked out, you can check out an old version
of it either from its Version History screen or through an instance that points to the
old version.

Note: If the definition is already checked out, you have the option to
copy the version to the current Application Area.

Understanding Object Versions and Checkin/Checkout

Common Development Tasks 3-11

Checking Out Objects
This section contains the following topics:

■ Checking Out an Object Definition through an Instance on page 3-11

■ Checking Out an Object Definition Directly on page 3-12

■ Checking Out an Old Version of an Object Definition on page 3-12

When you check out an object, either explicitly or implicitly, Oracle LSH creates a new
version of it:

■ When you click Update to work on properties of an object definition or instance,
Oracle LSH checks the object out.

■ When you explicitly check out an object definition, Oracle LSH checks it out.

■ When you explicitly check out an object definition through an instance of it, Oracle
LSH implicitly checks out the instance and points it to the new version of the
definition.

■ When you create a new object definition or instance, Oracle LSH creates it as
checked out by you, including when you choose to copy the definition and check
it out (see "Checking Out an Object Definition through an Instance" on page 3-11.

While an object is checked out, only the person who initiated the checkout, either
explicit or implicit, can modify the object , check it in, or uncheck it. That person can
save changes multiple times. The exception is Report Sets, which allow multiple
people to work on different sections at the same time.

Checking Out an Object Definition through an Instance
When you check out an object definition through an instance of it, you have the option
to modify the definition in its current Domain or Application Area (if you have the
required privileges) or to create a copy of the definition in the current Application
Area, where you can modify it as necessary.

Note: When you check out an old version of an object, the system
behaves the same way as when you check out the latest version. It
creates a new version with the characteristics of the one you checked
out and gives it a version number equal to the latest version number
plus one.

The system does not display the fact that the new version is based on
an older version. If you want to make that clear, enter a checkout
comment or create a version label with the information.

Note: If another user has already checked out an object definition,
you cannot check out the object. However, you can copy the definition
and modify the copy.

Note: People with Checkin Administrator privileges can check in
objects checked out by others.

Understanding Object Versions and Checkin/Checkout

3-12 Oracle Life Sciences Data Hub Application Developer's Guide

The system points the instance to the new version of the definition whether you
choose to modify it in its current location or copy the definition to the current
Application Area.

To check out an object definition through an instance of it, do the following:

1. Navigate to the object instance.

2. Click Check Out. The Check Out screen appears.

3. Select one of the following:

■ Check out existing definition. This option allows you to modify the definition
in its current location if you have the required privileges.

If the definition is already checked out by another user, you get an error
message when you select this option.

■ Copy definition to the local Application Area and check out. This option is
useful if:

– you do not have the privileges required to modify the original definition
in its location

– the current version of the definition should remain easily available for
reuse

– the definition is checked out by another user

4. Click Apply.

Checking Out an Object Definition Directly
To explicitly check out an object definition directly in its Domain or Application Area,
do the following:

1. Navigate to the object definition.

2. Click Check Out. The Check Out screen appears.

3. Type the reason for checking out the object in the Comments field.

4. Click Apply.

Checking Out an Old Version of an Object Definition
From the object definition's Version History page:

1. Navigate to the object definition in its Domain or Application Area, either in the
Applications screen or by clicking the link to the definition in an instance of it.

2. From the Actions drop-down list, select View Version History. The Version
History screen opens; see "Version History" on page 3-14.

3. Select the version you want to check out and click Check Out. The system creates
a new version of the object based on the one you checked out, with a version
number that is equal to the latest version's number plus one. All the changes you
make apply to the new version.

Note: The system gives you this option even if the definition is
already located in the current Application Area.

Understanding Object Versions and Checkin/Checkout

Common Development Tasks 3-13

Checking In Objects
Oracle LSH finalizes an object version when it checks in the version, either explicitly or
implicitly, as follows:

■ When you install or clone an object instance, Oracle LSH checks in the instance. It
also checks in the underlying definition if it is not already checked in.

■ After you explicitly check out an object definition, you can explicitly check it in.

■ When you change the validation status of an object definition or instance, Oracle
LSH checks it in if it is not already checked in.

To check in an object:

1. Navigate to the object's screen.

2. Click Check In. The Check In screen appears.

3. Type the reason for checking in the object in the Comments field.

4. Click Apply.

Undoing Object Checkout
After you explicitly check out an object definition, you can explicitly uncheck it. Oracle
LSH discards the new version.

To undo a checkout for an object:

1. When you have checked out an object definition, the system displays a Check In
button and an Uncheck button.

2. Click Uncheck. A confirmation for undoing the checkout appears.

3. Click Yes.

Version Labels
You can use version labels to identify important versions of objects. These labels are
visible when you search for an object and when you upgrade object instances, and you
can filter search results to return only object versions with labels.

To label an object version, follow these steps:

1. Navigate to the object version you want to label. To label an object definition, you
must go to the definition in its Domain or Application Area.

Note: You can check in only those objects that you have checked out,
unless you have the Checkin Administrator privileges.

If someone else has checked out the definition and you do not have
Checkin Administrator privileges, you cannot check it in. If you are
working in an object instance, the username of the person who has
checked out the object definition is displayed. If you are working
directly on an object definition in an Application Area or Domain, you
can find out who has checked out the object by running the All
Instances report under Reports in the Actions drop-down list.

Note: You can undo a check out for only those objects which you
check in, even if you have the Checkin Administrator privileges.

Understanding Object Versions and Checkin/Checkout

3-14 Oracle Life Sciences Data Hub Application Developer's Guide

2. From the Actions drop-down list, select Version Label. Click Go.

3. Do one of the following:

■ Enter text for the label In the Version Label field.

■ Click the Search icon. The system displays all labels that have been created for
objects in the same location. Select one of them.

If you enter or select a label that has already been applied to a previous version of
the same object, you receive a warning. If you apply the label to the current
version, the system removes it from the previous version.

4. Click Apply. The system applies the label.

Version History
You can see the version history of object definitions (not instances) by selecting View
Version History from the Actions drop-down list.

You can select any version of the object and click Copy or Check Out to copy it or
check it out.

For each version you see the following information:

■ Name. The object version name is also a hyperlink to the object version definition.

■ Description of object version description.

■ Version number.

■ Status: Installable or Noninstallable.

■ Validation Status: Development, Quality Control, Production or Retired.

■ Last Modified By. Username of the person who created the version by modifying
the object definition.

■ Last Modified. The timestamp of the creation of the version.

If you click the + node you can see the following information:

■ Copied From. If the object version was created by modifying the previous version
of the object, that object version is displayed. If it was created by copying and
pasting an object from another location, or by cloning a Work Area and all its
objects, that information is displayed.

■ Version Label. If a label was applied to the version, the system displays the label.

■ Check In Comments. If the person who checked in the object version entered a
comment, the system displays it here.

■ Check Out Comments. If the person who created the object version by checking
out the previous version entered a comment, the system displays it here.

Versions of Component Objects
Oracle LSH implicitly increments and tracks the version number of components of
object definitions such as Source Code, Planned Outputs, Table Descriptors, and
Columns that are not contained directly in a Domain or Application Area but only in
other defined objects such as Programs or Tables.

To modify these objects you must check out their containing object. The system
automatically increments their version number behind the scenes when you modify
them within the containing object. When you check in the containing object, the

Upgrading Object Instances to a New Definition Version

Common Development Tasks 3-15

system applies a new version number to the modified component object as well as the
containing object. If you uncheck the container, you effectively uncheck the component
object as well and the system does not save the new version of either object.

The system increments the component's version number only if you modify it, so the
version number of the component object may not match the version number of the
containing object definition. Oracle LSH uses the information it stores about
component versions to reconstruct past versions of the definition as a whole.

Component object definitions that are contained directly in a Domain or Application
Area (Variables, Parameters, Parameter Sets, Notifications, and Overlay Templates)
can have version labels (see "Version Labels" on page 3-13). They can also have
classifications and user group assignments.

Upgrading Object Instances to a New Definition Version
This section contains the following topics:

■ Upgrading One or More Instances from the Definition on page 3-15

■ Upgrading to a Different Definition Version from an Instance on page 3-16

■ Upgrading to the Latest Version on page 3-17

If an object instance references a definition that has been updated since the instance
was created, you may want to update the instance so that it references the new version
of the definition. You can upgrade object instances to a newer version of their source
definition through the Actions drop-down list either from the definition or from the
instance.

For upgrading Source Code instances, see "Upgrading Source Code And Undoing
Source Code Upgrades" on page 5-16.

Upgrading One or More Instances from the Definition
To upgrade one or more instances of a definition to a newer version of the definition,
do the following:

1. Navigate to the definition in the Applications tab.

2. Check in the definition if it is not already checked in.

3. From the Actions drop-down list, select Upgrade All Instances and click Go. The
system opens the Upgrade Instances screen with all instances of the definition
displayed.

For each instance, the system displays the following information:

■ Object Name. The name of the object instance that points to any version of the
definition.

Note: If you don't see the Upgrade All Instances option in the
Actions drop-down list, then you are not in the latest version of the
definition. You can upgrade instances only from the latest definition
version.

The exception to the above is if you are upgrading Source Code
instances. See "Upgrading Multiple Source Code Instances" on
page 5-18.

Upgrading Object Instances to a New Definition Version

3-16 Oracle Life Sciences Data Hub Application Developer's Guide

■ Object Type. The type of the object.

■ Object Version. The version number of the instance.

■ Version Label. The version label of the instance.

■ Installed Version. The most recent version of the instance that was
successfully installed.

■ Validation Status. The instance's validation status.

■ Checked Out By. The name of the person who has checked out the instance. If
a person other than you has the instance checked out, then you cannot
upgrade it: the check box next to it is grayed out.

■ Definition Version. The version number of the definition to which the
instance currently points.

■ Definition Validation Status. The validation status of the definition.

■ Parent Name. The name of the Parent object.

■ Parent Object Type. The type of object that contains the instance.

■ Parent Validation Status. The parent's validation status.

■ Container. The container hierarchy for the instance.

4. Select one or more instances you want to upgrade. You can use the Select All and
Select None functions and/or select or deselect instances individually by checking
or unchecking their Select checkbox. Instances that already point to the current
version of the definition cannot be selected.

5. Click Upgrade. The system changes the source definition of the selected instances
to the new version of the definition.

Upgrading to a Different Definition Version from an Instance
To make an object instance point to a different version of its source definition, do the
following:

1. If the version of the definition to which you want to upgrade is not already
checked in, navigate to it in its Domain or Application Area and check it in.

2. Navigate to the object instance in a Work Area.

3. From the Actions drop-down list, select Upgrade Instance.

4. Click Go. The system displays the available versions of the object definition in the
lower portion of the screen.

For each version of the definition, the system displays the following information:

■ Version. The version number of the definition version.

■ Name. The name of the definition version.

■ Description. The description entered for the definition version.

■ Status. The definition version's installation status.

■ Validation Status. The definition version's validation status.

Note: If you find the Upgrade button not enabled, then the
definition you want to upgrade to, is not checked in.

Copying, Cloning, and Moving Objects

Common Development Tasks 3-17

■ Version Label. The label associated with the definition version, if any.

■ Checked Out By. If the definition version is checked out, the system displays
the username of the person who checked it out. You cannot upgrade to a
version that is checked out, and only the person who checked it out can check
it in.

5. Click the icon in the Upgrade column for the version to which you want to point
the instance. The icon of the version to which the instance is currently pointing is
grayed out.

Upgrading to the Latest Version
If you are working on an object instance that is not using the most current version of
its source definition, the following buttons appear in the Definition Properties portion
of the instance's screen:

■ View Latest. Click to view the latest version of the definition.

■ Upgrade to Latest. Click to upgrade to the latest version of the definition.

Copying, Cloning, and Moving Objects
This section contains the following topics:

■ Copying Objects on page 3-17

■ Comparison of Copying and Cloning Individual Objects on page 3-19

■ Cloning Objects on page 3-20

■ Moving Objects on page 3-22

■ Pasting Objects on page 3-23

Copying Objects
This section contains the following topics:

■ Copying One Object Instance, Domain, Application Area, or Work Area on
page 3-18

■ Copying One or More Objects at the Same Time on page 3-18

■ Copying an Old Version of an Object Definition on page 3-18

You can copy object definitions or instances from one location and paste them into
another. You can copy a whole Work Area, Application Area, or Domain, with all its
contents.

When you copy a very large object—a Work Area, Application Area, Domain, Report
Set, or Workflow—either by itself or as one of multiple selected objects, the system
launches the copy operation as a batch job and displays a message with the Job ID.

Note: You can select an older version than the one to which the
instance is currently pointing. This is useful if you want to undo an
earlier upgrade.

Note: This option is available only if the definition is checked in,
even if you are the person who has checked it out.

Copying, Cloning, and Moving Objects

3-18 Oracle Life Sciences Data Hub Application Developer's Guide

When you copy an object instance or definition, the system copies only the current
version (unless you explicitly select an older version in the View Version History
screen; see "Copying an Old Version of an Object Definition" on page 3-18). When you
paste the object into its new location, the system gives it a version number of one (1).

For additional information on the Copy operation, see "Comparison of Copying and
Cloning Individual Objects" on page 3-19.

Copying One Object Instance, Domain, Application Area, or Work Area
From the main Applications screen you can copy a single object instance, Domain,
Application Area, or Work Area.

All links between objects that are included in the container object you copy are also
copied. For example, if you copy a whole Application Area, and it includes an object
instance in a Work Area that points to an object definition in the Application Area, the
system copies the link, so that the copied instance in its new location points to the
copied definition in its new location. If you copy a Work Area where Table instances
are mapped to executable instances, the system copies the mappings so that the copied
Table instances are mapped to the copied executable instances.

1. Click the Applications tab. The main Applications screen opens.

2. Select one object and click Copy. The system opens the Copy Objects screen and
displays the objects you selected in the section labeled Source—Source objects to
be copied.

3. Follow instructions for "Pasting Objects" on page 3-23.

Copying One or More Objects at the Same Time
You can copy multiple objects at once if they are all in the same location to begin with
and you paste them all into the same location. If you copy a Program instance and
Table instance that are mapped to each other, the system automatically remaps them in
the new location.

To copy and paste multiple object definitions or instances at the same time, do the
following:

1. In the Applications tab, go to the Properties screen of the Domain, Application
Area, or Work Area that contains the objects you want to copy or, for Domains and
Application Areas, the Manage Definitions screen.

2. Select one or more objects and click Copy. The system opens the Copy Objects
screen and displays the objects you selected in the section labeled Source—Source
objects to be copied.

3. Follow instructions for "Pasting Objects" on page 3-23.

Copying an Old Version of an Object Definition
To copy an old version of an object definition, do the following:

1. Navigate to the object definition in its Domain or Application Area, either in the
Applications screen or by clicking the link to the definition in an instance of it.

2. From the Actions drop-down list, select View Version History. The Version
History screen opens; see "Version History" on page 3-14.

3. Select the version you want to check out and click Copy. The system opens the
Copy Objects screen and displays the objects you selected in the section labeled
Source—Source objects to be copied.

Copying, Cloning, and Moving Objects

Common Development Tasks 3-19

4. Follow instructions for "Pasting Objects" on page 3-23.

Comparison of Copying and Cloning Individual Objects
Cloning an object differs from copying an object as follows:

■ Instances and Definitions. You can copy object definitions as well as object
instances. You can clone only object instances.

■ Allowed Targets. You can copy an object definition or instance into the same
container—Domain, Application Area, or Work Area—that contains the source
object. In that case, the Copy operation creates a copy of the object with the name
Copy_of_source_object_name. You can clone an object instance only to a different
Work Area; not the same Work Area that contains the source object instance.

■ Replacement. If an object of the same type with the same name exists in the target
Work Area, the Copy operation creates a new object in the target Work Area with a
different name (_1 appended or final number incremented by 1). The Clone
operation upgrades the target object with a duplicate of the source object
(including the same name with nothing appended) unless the target is already
identical to the source, in which case the Clone operation takes no action on the
target object. Neither operation (Copy or Clone) compares the version number of
the source and target objects (see "Version Number" below).

If an object of the same type with the same name does not exist in the target Work
Area, the Clone and Copy operations both create a duplicate of the source object,
with the same name, in the target Work Area.

■ Implicit Cloning of Mappings and Table instances. If you clone a Program, Load
Set, Data Mart, Business Area, Report Set, or Workflow that is mapped to one or
more Table instances in the same Work Area, the Clone operation automatically
clones each Table instance and the mapping as well. If a source Table instance is in
a different Work Area, the system copies the mapping to the same Table instance.
The Copy operation does not copy any objects except those that are explicitly
selected.

If a Table instance with the same name already exists in the target Work Area of a
Clone operation with implicit cloning of a Table instance, the system checks to see
if the Table instance in the target Work Area was already cloned from the same
source Table instance or not. If it was, the clone proceeds without warning and
replaces the Table instance. If the target Table instance was originally defined in
the target Work Area, or if it was cloned or copied from a different Table instance,
you receive an error and cannot proceed with the cloning operation.

■ Validation Status. When you copy an object, the new object's validation status is
always set to Development, no matter what the validation status of the source

Note: Cloning upgrades Table instances and all other instances; it
does not delete data in Table instances unless the source Table instance
has been modified in a destructive way, such as removing a Column.
In that case, you get a warning when you make the destructive change
that the change may prevent upgrading during the next installation.
However, you do not receive a warning during the Clone operation.

Changing a table's Blinding flag to Y from N is not considered a
destructive change. Changing the Blinding flag from N to Y is allowed
if there is no dummy data loaded.

Copying, Cloning, and Moving Objects

3-20 Oracle Life Sciences Data Hub Application Developer's Guide

object was. When you clone an object, the new object has the same validation
status as the source object.

■ Version Number. When you copy an object, the new object's version number is
always set to 1, no matter what the version number of the source object was. When
you clone an object, the Clone operation increments the version number of the
target object by 1.

■ Security. The same privileges are required to copy and to clone objects: Read
privileges for the object type in the source location and Create or Modify
privileges for the object type in the target location.

For information about cloning an entire Work Area, see "Cloning Work Areas for
Testing and Production" on page 12-21.

Cloning Objects
This section contains the following topics:

■ Comparison of Cloning Individual Objects and Whole Work Areas on page 3-20

■ Cloning Objects from the Application Development Screen on page 3-21

■ Cloning Objects from the Work Area Screen on page 3-22

You can select one object instance to clone from either the Application Development
screen or from the main Work Area screen. In the Work Area screen you can also select
multiple objects and clone them at the same time to the same target Work Area.

See "Comparison of Copying and Cloning Individual Objects" on page 3-19 for
additional information about cloning object instances.

Comparison of Cloning Individual Objects and Whole Work Areas
Cloning object instances is different from cloning a whole Work Area in the following
ways:

■ Implicit Cloning of Mapped Table Instances. If you clone an individual
executable object—Program, Load Set, Data Mart, Business Area, Report Set, or
Workflow—that is mapped to one or more Table instances in the same Work Area,
the Clone operation automatically clones the Table instance and the mapping as
well.

If you clone a whole Work Area, the system replaces any Table instances in the
target Work Area that have been modified in the source Work Area since the last
clone.

■ Checks. When you clone a whole Work Area, the system duplicates the source
Work Area, resulting in an identical target Work Area. Any object instances

Note: When you copy or clone an object, none of its validation
supporting information links are maintained. They are maintained
when you move an object.

Note: When you select a Program instance that is mapped to one or
more Table instances in the same Work Area, Oracle LSH
automatically clones the Table instance(s) and the mapping(s) as well
as the Program instance.

Copying, Cloning, and Moving Objects

Common Development Tasks 3-21

present in the target Work Area before the clone are either dropped or replaced,
and objects that were not previously present are created.

When you clone an object instance, the system does the following before
performing the clone:

– Checks Table instance origin during implicit clone. When you clone an
individual Table instance implicitly by cloning an executable to which it is
mapped, and a Table instance with the same name already exists in the target
Work Area, the system checks to see if the Table instance in the target Work
Area was already cloned from the same source Table instance or not. If it was,
the clone proceeds without warning and replaces the Table instance. If the
target Table instance was originally defined in the target Work Area, or if it
was cloned or copied from a different Table instance, you receive a warning
and cannot proceed with the Clone operation.

– Prevents multiple executables from writing to the same Table instance.
When you clone an individual Table instance, either explicitly or implicitly
when you clone a Program or Load Set instance to which it is mapped, the
system does not allow the Clone operation to succeed if the result would be
that two executables (Programs or Load Sets) wrote to the same target Table
instance.

When you clone a whole Work Area, this is not an issue because the system
has already prevented multiple executables from writing to the same Table
instance in the source Work Area.

■ When you clone a whole Work Area, you must apply a label to the source and
target Work Areas. However, when you clone an object, you cannot apply a clone
label to the source and target objects.

■ When you clone a whole Work Area you can update the Usage Intent of the target
Work Area as part of the Clone operation.

■ When you clone an individual object instance the source Work Area is not checked
in as part of the cloning operation as it is when you clone a whole Work Area.

■ When you clone an individual object instance you cannot create a new target Work
Area as part of the cloning operation, as you can when you clone a whole Work
Area and specify an Application Area as the target.

For more information on Work Area cloning, see Chapter 12, "Using, Installing, and
Cloning Work Areas".

Cloning Objects from the Application Development Screen
To clone an object from the Application Development screen, do the following:

1. Click the Applications tab to open the Application Development screen.

Note: The system performs this check only when you clone a Table
instance implicitly. If you explicitly select a Table instance for cloning,
the system does not make this check: if a Table instance already exists
in the target Work Area with the same name, the new Table instance
replaces it, regardless of the target Table instance's origin.

After you have cloned a Table instance from two different source Table
instances, the system allows you to clone the Table instance implicitly
as well as explicitly from either source.

Copying, Cloning, and Moving Objects

3-22 Oracle Life Sciences Data Hub Application Developer's Guide

2. Expand the Application Area and Work Area that contain the object you want to
clone.

3. Click the icon in the Clone column on the same row as the object you want to
clone. The Clone Instances screen opens with the selected object displayed in the
Instance Objects to Be Cloned section.

4. In the Clone Destination section, select the Work Area in which you want to
create a clone of the object.

a. If you want to clone the object into a Work Area in a different Domain, click
the Search icon and follow instructions at "Select a Domain on the
Applications Screen" on page 2-2. The system displays the Application Areas
contained in the Domain.

b. Expand the node (+) of the Application Area that contains the target Work
Area.

c. Select the target Work Area.

5. Click Apply.

Cloning Objects from the Work Area Screen
To clone one or more objects from the Work Area screen, do the following:

1. In the Application Development screen, click the hyperlink in the Name column of
the Work Area that contains the object or objects you want to clone. The Work
Area Properties screen opens.

2. Select each object you want to copy and click Clone. The Clone Instances screen
opens with the selected object(s) displayed in the Instance Objects to Be Cloned
section.

3. In the Clone Destination section, select the Work Area in which you want to
create a clone of the object.

a. If you want to clone the object into a Work Area in a different Domain, click
the Search icon and follow instructions at "Select a Domain on the
Applications Screen" on page 2-2. The system displays the Application Areas
contained in the Domain.

b. Expand the node (+) of the Application Area that contains the target Work
Area.

c. Select the target Work Area.

4. Click Apply.

Moving Objects
Moving an object removes it from its original location and puts it into a new location
without breaking any references; that is, instances of a definition being moved
continue to point to the definition in its new location. The system moves all versions of
the object together. The Move operation is available inside Domains, Application
Areas, and Report Sets for object definitions and Report Set Entries, respectively. It is
not available in Work Areas for object instances.

You can move multiple objects at once if they are all in the same location to begin with
and you paste them all into the same new location.

Copying, Cloning, and Moving Objects

Common Development Tasks 3-23

You can move an object to a different location if you have Create privileges for that
object type in that location and Modify privileges on its parent object (Domain,
Application Area, or Report Set definition).

Use the Move operation to do the following:

■ Move object definitions from Application Areas to Domains when they have been
thoroughly tested and approved for reuse.

■ Move an Application Area or child Domain, with all its contents, to a different
Domain.

■ Move object definitions from one Application Area or Domain to another.

To move one or more objects, do the following:

1. Navigate to one of the following locations:

■ To move one or more object definitions: In the Applications tab, click Manage
Definitions for the Domain or Application Area from which you want to
move objects. In the Maintain Library screen that opens, select the object you
want to move and click Move.

■ To move one ore more Application Areas and/or child Domains: In the
Applications tab, click the Domain's hyperlink in the Name column. In the
Domain properties screen that opens, select one or more Application Areas
and child Domains and click Move.

■ To move a child Domain or Application Area, one at a time: In the
Applications tab, Application Development screen, click the icon in the
object's Move column.

2. If you are moving objects (not Application Areas or Domains) a confirmation
message appears, listing the objects you have selected to move that are currently
checked out, if any, and telling you that they will be checked in as part of the Move
operation.

Click Yes to continue with the operation. The Move Objects screen opens.

3. Select the new location: follow instructions for "Pasting Objects" on page 3-23.

Pasting Objects
Pasting is the second part of a copy, move, or clone operation. The objects you have
selected appear in the upper portion of the screen.

1. In the section labeled Destination—Target for objects when paste applied, select
the Domain into which you want to paste the object(s).

The current Domain is displayed by default. You can enter the name of another
Domain or click the Search icon and select another Domain; see "Using the Search
and Select Window" on page 3-4.

The system displays the Domain you selected and any child Domains and
Application Areas it contains. You can click the + nodes to see Work Areas and
objects within the Work Areas.

2. Click the Select radio button for the Domain, Application Area, Work Area, Report
Set or Workflow into which you want to paste the object or objects.

The system activates the radio button only for valid locations for the object type(s)
you have selected.

3. Click Apply. The system creates version one (1) of each object in the new location.

Removing Objects

3-24 Oracle Life Sciences Data Hub Application Developer's Guide

Removing Objects
If you have the necessary privileges, you can remove an object instance from a Work
Area or an object definition from an Application Area or Domain. After you remove an
object, the system prepends its name with a tilde (~). You can then use the original
name again within the same container.

The following rules apply:

■ Object metadata is never completely removed. The system gives the definition or
instance an end date but stores a record of it as it existed during the time it existed.
However, when a Table instance is removed, all its data is deleted.

■ You cannot remove an object instance that has been installed and executed.

■ You cannot remove an object definition that is used as a source definition by one
or more instances. You must remove the instance(s) first. If you try to remove an
object definition with an instance, you receive an error message with the name of
the instance object. To proactively check if a definition has instances, select
Upgrade Instances from the Actions drop-down. The system displays all
instances with their locations, validation statuses, and other information.

■ You cannot remove an object that contains objects that have not been deleted. This
applies to Domains, Application Areas, Work Areas, Report Sets, and Workflows.

To remove objects:

1. In the Applications tab, go to the location of the object you need to remove.

2. Select one or more objects to remove.

3. Click Remove. The system gives you a message asking you to confirm that you
want to remove the selected object(s).

4. Click Yes. The system removes the object or objects and returns you to the
Application Development screen.

Rules for Removing Objects
Oracle LSH enforces the following rules for object removal:

■ You cannot remove an object if other objects are dependent on it. For example, you
cannot remove an object definition if there are one or more instances of it. (You can
set the object definition's status to Retired, however, and then no additional
instances of it can be created.)

Note: If the target location already contains an object of the same
type and with the same name, the system appends _1 to the name of
the object you copy into the target location. If the object with the same
name already ends in a number, the system renames the copied object
with the number incremented by one (1).

Note: In the main Applications screen you can remove only one
object at a time. However, if you go to the Properties screen for a
Domain, Application Area, or Work Area, or the Manage Definitions
screen of a Domain or Application Area, you can remove multiple
objects at a time.

Classifying Objects and Outputs

Common Development Tasks 3-25

■ You cannot remove Table instances with a validation status of Production. This is
to protect production data.

■ In some cases the removed object is still displayed in the user interface. The
system then renames the object by prepending a tilde (~) to its name.

Using a tilde to rename the object signifies that the object has been removed and
allows you to create a new object of the same type in the same container with the
same name.

Examples:

■ If an executable object has been executed and then removed, it appears in the
Job Details page for the job preceded by a tilde (~).

■ You can remove a component object (such as a Parameter) from the object that
contains it (such as a Program) or an executable object (such as a Program)
from either a Report Set or a Workflow. In these cases Oracle LSH continues to
display the removed object in the Version History screen for its container but
renames the removed object by prepending one or more tildes (~) to its name
in previous versions of the container object. You can then create a new object
of the same type with the same name in the latest version of the same
container. The old versions of the container continue to function as before.

Classifying Objects and Outputs
This section contains the following topics:

■ About Classification on page 3-25

■ Classifying Objects on page 3-26

■ Classifying Outputs on page 3-27

About Classification
Classifications are logically related labels defined by your company that help people
find the objects you define and outputs they generate:

■ Oracle LSH displays outputs and submission forms (Execution Setups) by their
classifications in the Reports tab.

■ The Advanced Search feature allows people to search for object definitions,
instances, and outputs by their classifications.

When you create a new object, you must select a subtype for it according to your
company's policies. The subtype determines which classification hierarchy levels you
can or must use to classify your object.

There may be default or inherited classification values assigned to your object. You can
accept these or override them with values you select, according to your company's
policies.

Example Your company has set up a classification hierarchy with three levels,
Project, Study, and Site. The Project level values include all the therapeutic areas with
current trials. The Study level values include all the current trials, each linked to its
therapeutic area. The Site level values include all the sites participating in each trial,
each linked to its trial or trials. A given subtype may require classification only at the
Study level.

Classifying Objects and Outputs

3-26 Oracle Life Sciences Data Hub Application Developer's Guide

When you classify a Program instance, for example, that will be used in all sites for
Trial X, you classify it at the Study level to Trial X. If the whole Application Area where
the Program is located is devoted to Trial X, your company may have set up its
classification system so that all objects within the Application Area automatically
inherit the classification value Trial X from the Application Area. This may be true for
Work Areas within the Application Area and the object instances in the Work Areas as
well.

Reclassification You can reclassify an object definition or instance at any time.

To view or modify the classification of the definition, you must view it in its
location—Application Area or Domain. You cannot see the definition's classifications
from an instance of it in a Work Area.

Object Versions and Classifications Classifications apply to all versions of an object.
When you reclassify an object, either explicitly or through inheritance, the new
classifications apply to all versions of the object.

Classifying Objects
To classify an object instance or definition:

1. When you first create an object, a classification interface appears automatically. If
you are creating a new object definition and instance at the same time, a
classification interface appears for both the definition and the instance.

If you want to change or view the classifications afterward, go to the object and
select Assign Classification from the Actions drop-down list. To change the
classifications, click Update.

2. Select a Subtype from the drop-down list, according to your company's policy,
and click Go.

The system displays the classification hierarchies and levels defined for that
subtype. Under each hierarchy name, the system displays the levels of that
hierarchy for which objects of the subtype you specified must have a value. For
example, in the Project/Study/Site hierarchy, an object subtype may require
classification at the Study level, while classification at the Site level is optional. If
classification at the Project level is not predefined for the object subtype, the
Project level is not displayed.

For each level you see the following information:

■ Classification. The system displays the name of the level inside its hierarchy.

■ Type. The system displays whether the row shows a Subtype, a Hierarchy, a
Level, or a Term. For terms, this field does not say "Term" but displays
Inherited or Explicit, as the case may be.

■ Assignment Type. If the classification type is Inherited, the object is
automatically classified to the same value for this level as its container object.
For example, an object definition inherits the value from its Application Area
or Domain, and an object instance inherits the value from its Work Area.

If the classification type is Explicit, you can enter one or more values. There
may be a default value; if so, you can override it.

You can change the type. Normally it is best to leave inherited classifications
alone, but there may be times when a particular object should not inherit the
classification value of its parent.

Classifying Objects and Outputs

Common Development Tasks 3-27

■ Search and Add Value. If the assignment type is Explicit, you can search for
values and assign them to the object.

■ Mandatory. If Yes, objects of this subtype must have a value assigned for this
level, either explicitly or inherited. If No, you can assign a value from this
level to the object, but it is not required.

3. For Explicit-type assignments, you can search and add values, as follows. If
classification to the level is mandatory, you must do so.

■ Click the + icon in the Search and Add Value column. The system opens the
Select Classification Hierarchy Terms/Values screen with a field displayed for
each level in the hierarchy.

■ You can click Go to see all the possible classifications at once, or you can
narrow the search by specifying a value in one or more of the fields. For
example, in the Project/Study/Site hierarchy, if you enter Project A in the
Project field and then click Go, the system returns only studies and sites
related to Project A.

■ Select one or more values in the Results section and click Select and Continue.
The system returns to the Assign Classification screen with the value or values
you select displayed under their classification level.

4. Repeat for each level for which you want to assign classification values.

5. Click Apply. The system saves all the classification assignments you have made
for the object.

Classifying Outputs
This section contains the following topics:

■ Classifying Outputs Before They Are Generated on page 3-28

■ Classifying Outputs After They Are Generated on page 3-28

Classifying outputs is different from classifying other objects because you must
classify them before they are created. You can reclassify them after they are created if
you have the necessary privileges.

Report Sets have a single set of classifications for the Report Set as a whole. If
Programs contained in a Report Set have classifications, they have no effect.

Workflows do not have a Planned Output for the Workflow as a whole. Outputs
generated by Programs and other executables in a Workflow are classified according to
the Planned Output definition in the Program or other executable.

Planned Outputs An output is generated by running an executable object instance
—Program, Report Set, Load Set, or Data Mart—that has a Planned Output defined as
as a placeholder for the actual output. You classify the output by classifying the
Planned Output. The process for classifying a Planned Output is the same as
classifying any other object, except that you have an additional option: the Program
itself can create the classification at runtime; see "Classification by Parameter Value" on
page 3-28.

Note: The system applies classifications to objects by running the
Oracle LSH Context Index Refresh program every two minutes.
Therefore you may have to wait up to two minutes for your
classifications to take effect.

Classifying Objects and Outputs

3-28 Oracle Life Sciences Data Hub Application Developer's Guide

If you assign more than one classification value to a particular Planned Output, the
actual output appears in multiple places in the Reports screen.

Execution Setups If you set the Planned Outputs's assignment type for a particular
classification level to Inherited, the actual output inherits the value for that level from
the Execution Setup.

Since the Execution Setup belongs to the Program, Load Set, Data Mart, or Report Set
instance (unlike a Planned Output, which belongs to the definition), this approach
allows you to classify the outputs of different instances of the same definition in
different ways.

Classification by Parameter Value You can arrange for an output to be classified at
runtime by specifying a classification type of Parameter and specifying the Parameter
whose value is used as the classification assignment.

The Parameter can be an Input/Output Parameter visible, settable, and required in the
Execution Setup, so that the person submitting the Program or Report Set must enter a
value.

Alternatively, in the case of a Program, it can be an Output type Parameter and the
Program logic must populate its value with a valid classification term.

You can define a list of values for Parameters based on classification levels; see
"Defining Allowed Values" on page 6-12 for further information.

Classifying Outputs Before They Are Generated
The process is the same as for classifying object definitions and instances, except that
an additional option is available for outputs.

1. Go to the object—Program, Data Mart, Load Set, or Report Set—that will generate
the output you want to classify.

2. Click the Planned Outputs tab.

3. Click the link of the Planned Output you want to classify. The Planned Output
Properties screen opens.

4. Select Assign Classification from the Actions drop-down list and click Go. The
Classification screen opens.

5. Classify the Planned Output. Follow instructions at "Classifying Objects and
Outputs" on page 3-25. However, in Programs and Report Sets you have one
additional option: an assignment type of Parameter; see "Classification by
Parameter Value" on page 3-28.

If you select Parameter as the Assignment Type, the system adds another column
called Parameter instance and populates a drop-down list in that column for the
row with the names of all the Parameter instances in the Program or Report Set
instance. Select a Parameter that will return a valid value for that classification
level.

Classifying Outputs After They Are Generated
After you have run a Program, Report Set, Load Set, or Data Mart and created an
output, you can change its classifications if you have the necessary privileges.

Navigate to the output in Oracle LSH. There are several ways to do this:

Applying Security to Objects and Outputs

Common Development Tasks 3-29

■ My Home. In the Job Execution section at the bottom of the My Home page, click
the Job ID of the job that produced the output. The Job Execution Details screen
opens. Click the hyperlink that is the output's name.

You can see outputs through the My Home page only if you submitted them
yourself.

■ Reports. In the Reports tab, navigate to the output using its current classifications,
then click on the icon in the Action column.

■ Administration. In the Job Execution subtab of the Administration tab, query for
the job that produced the output. See "Querying for Jobs" in the Oracle Life Sciences
Data Hub System Administrator's Guide. The system returns the search results. Click
the Job ID of the job that produced the output, then click the hyperlink that is the
output's name.

If you have access to the Administration tab, you can see all users' jobs.

To reclassify the output, do the following:

1. In the Output Properties screen, select Assign Classification from the Actions
drop-down list. The Assign Classification screen opens.

2. Change the classifications as necessary; see "Classifying Objects" on page 3-26.

Applying Security to Objects and Outputs
This section contains the following topics:

■ Viewing User Group Assignments on page 3-29

■ Assigning User Groups to an Object on page 3-30

■ Removing User Group Assignments on page 3-30

■ Reassigning a User Group as Inherited on page 3-30

In order to view or perform any other operation on an object, a user must belong to a
user group assigned to the object. Objects automatically inherit the user group
assignments of their immediate container. Therefore, by default, any object you create
has the same user group assignments as its immediate container (Work Area,
Application Area, Domain, Report Set or Workflow).

If you have the necessary privileges you can accept these default assignments or
explicitly de-assign any of the user groups assigned to your object. You can also add
other user group assignments. The changes you make will be inherited by objects
contained by your object, if any.

Viewing User Group Assignments
To view user group assignments for an object:

1. Go to the Properties screen for the object.

2. From the Actions drop-down, select Apply Security. The Manage Security screen
opens.

Note: You can use the Advanced Search feature from most screens to
find outputs.

Applying Security to Objects and Outputs

3-30 Oracle Life Sciences Data Hub Application Developer's Guide

Each user group currently assigned to the object is displayed with its assignment
status, which reflects the way it was assigned to the object:

■ Assigned. The user group was explicitly assigned to the object.

■ Inherited. The object inherited the user group assignment from its containing
object.

3. Click Return to return to the object's Properties screen.

Assigning User Groups to an Object
To assign a new user group:

1. Go to the Properties screen for the object.

2. From the Actions drop-down, select Apply Security. The Manage Security screen
opens.

3. Click Assign Group. The Search User Group screen appears.

4. In the Group Name field, enter the name of the user group you want to add, if you
know it. If you do not know it, you can click Search to retrieve all user groups, or
enter part of the name plus % and click Search.

The system displays the search results.

5. Select one or more groups by checking the Select checkbox and clicking the Apply
button.

The system returns you to the Manage Security screen with the newly assigned
user group(s) displayed.

Removing User Group Assignments
To remove a user group assignment:

1. Go to the Properties screen for the object.

2. From the Actions drop-down, select Apply Security. The Manage Security screen
opens.

■ Click the icon in the Un-Assign column if the group's status is Assigned.

■ Click the icon in the Revoke column if the group's status is Inherited.

3. Click Yes when asked to confirm your action of unassigning or revoking the
selected user group from the selected object.

4. Click Return to return to the object's Properties screen.

Reassigning a User Group as Inherited
To re-assign a user group whose inherited assignment was revoked, do the following.
This operation restores the assignment as inherited; if the user group is revoked from
the parent object, it is automatically revoked from the current object as well.

1. Go to the Properties screen for the object.

2. From the Actions drop-down, select Apply Security. The Manage Security screen
opens.

3. Click the icon in the Un-Revoke column.

Validating Objects and Outputs

Common Development Tasks 3-31

Validating Objects and Outputs
This section includes the following topics:

■ About Object Validation on page 3-31

■ About Output Validation on page 3-32

■ Validation Statuses on page 3-32

■ Adding Supporting Information on page 3-33

■ Changing Objects' Validation Status on page 3-32

■ Validation Rules on page 3-35

About Object Validation
Your organization must develop standards for testing Oracle LSH defined objects to
demonstrate that they are valid; that is, that they handle data as they are designed to
do, without introducing any corruption. As you create object definitions and instances
you must follow your organization's policy for validating them in compliance with
industry regulations.

All Oracle LSH objects that are contained directly in a Domain, Application Area, or
Work Area—including definitions and instances of Tables, Programs, Load Sets, Data
Marts, Report Sets, Workflows, and Business Areas, as well as Variables, Parameters,
and Notifications—have an attribute called Validation Status with possible values
Development, Quality Control, Production, and Retired.

To support object validation, Oracle LSH provides the following tools:

■ Validation Status. When an object definition or instance meets the standards set
by your organization for a higher validation status, you can change its status. See
"Validation Statuses" on page 3-32 for further information.

■ Validation Supporting Information. You can link an object with outputs and
documents. See "Adding Supporting Information" on page 3-33 for further
information.

■ Report Coversheets. You can generate a coversheet for every report output that
displays all the defined objects that interacted with the data in the report from
when it was loaded into Oracle LSH to when it was reported out of Oracle LSH,
including the validation status of each object. See "Generating a Coversheet with
Validation and Data Currency Information" in the Oracle Life Sciences Data Hub
User's Guide for further information.

■ Work Area Usage Intent and Cloning. Work Areas have an attribute called Usage
Intent with the same list of values (except Retired) as the Validation Status
attribute: Development, Quality Control, Production. Oracle LSH enforces
Validation Rules based on the interaction of Work Area usage intent and object
validation statuses. Work Areas also have a special operation called cloning that
enables you to create clean, distinct environments for testing objects and for
production; see "Cloning Work Areas for Testing and Production" on page 12-21.

Note: It is possible to explicitly assign a user group that is already
assigned by inheritance. To unassign such a group, you must undo
both of its assignments: first Un-Assign and then Revoke.

Validating Objects and Outputs

3-32 Oracle Life Sciences Data Hub Application Developer's Guide

Special rules apply to the validation of Report Set Entries, which you can validate
independently from other Report Set Entries and the Report Set as a whole. See
"Validating Report Set Definitions and Outputs" on page 9-44 for further information.

About Output Validation
By default, outputs inherit the validation status of their Execution Setup. The
Execution Setup inherits its validation status from its executable instance. An instance
cannot have a higher validation status than its source definition. Therefore, by default
an output cannot have a validation status of Production unless the Program (or other)
definition used to produce it has a validation status of Production.

You can manually change the validation status of an output after it is generated; see
"Changing Objects' Validation Status" on page 3-32.

For Programs only, you can set a flag in the definition to force the system to set the
validation status of an output to Development regardless of the validation status of the
Program definition, instance, or Execution Setup. You can then upgrade the output's
validation status manually according to your company's policies. For information
about using this approach in Report Sets see "Validating Report Set Definitions and
Outputs" on page 9-44.

Validation Statuses
There are four validation statuses in Oracle LSH: Development, Quality Control,
Production, and Retired. Your organization must develop a policy on the use of
validation statuses. Oracle LSH enforces some behavior based on validation statuses;
see Validation Rules on page 3-35.

Development The Development status is intended for objects that are being
developed and unit tested. All new objects have a validation status of Development
when they are created.

Quality Control The Quality Control status is intended for objects that are ready for
or undergoing formal testing.

Production The Production status is intended of objects that are ready for or are
being used in a production environment.

Retired The Retired status is for objects you no longer wish to use. See "Rules for
Retired Objects" on page 3-36 for further information.

Changing Objects' Validation Status
Object definitions and instances both have a validation status. You must work directly
in the definition or instance to change its validation status.

When an object meets the standards set by your organization for the next validation
status, change the status as follows:

1. Navigate to the object definition or instance.

Note: One security privilege is required to upgrade an object's
validation status to Quality Control, and a different privilege is
required to upgrade an object's status to Production. If you have either
of these privileges, you can set an object's status to Retired.

Validating Objects and Outputs

Common Development Tasks 3-33

2. From the Actions drop-down list, select Support Validation Info. The Validation
Status screen appears.

3. From the Select Validation Status drop-down list, select the correct status.

4. Click Update. The system tries to change the validation status and returns a
message of success or failure.

Validation Cascade. The system tries to upgrade related objects at the same time
in accordance with the Validation Rules. If you are promoting an object instance to
a higher validation status than its underlying definition, the system tries to
promote the definition as well. If someone else has the definition checked out, the
operation fails.

If the definition contains secondary objects—such as Parameters— whose
definitions are at a lower status, the system tries to promote them as well, and the
operation fails if another user has checked them out.

Automatic Checkin. In most cases the system checks in the object and related
objects as part of the validation process and applies the new status to the
checked-in versions. However, you must manually check in an Execution Setup
before you can change its validation status.

5. Click Return. The system returns you to the Properties screen for the object.

Changing Outputs' Validation Status
To change an output's validation status, do the following:

1. Navigate to the output in one of these ways:

■ If you submitted the job, you can click the Job ID on the My Home page to
reach the Job Details screen, and then click the Output to reach the Output
screen.

■ In the Reports tab, navigate to the output according to its classifications and
click its icon in the Action column.

2. From the Actions drop-down list, select Support Validation Info and click Go.

3. From the Select Validation Status drop-down list, select the correct status.

4. Click Update. The system changes the validation status of the output.

5. Click Return. The system returns you to the Properties screen for the output.

Adding Supporting Information
This section contains two topics:

■ Adding a Supporting Document on page 3-34

■ Adding a Supporting Output on page 3-34

Before you promote an object to the next validation status, your organization may
require that you provide documentation about the object: either a link to an output

Note: One security privilege is required to upgrade an object's
validation status to Quality Control, and a different privilege is
required to upgrade an object's status to Production. If you have either
of these privileges, you can set an object's status to Retired.

Validating Objects and Outputs

3-34 Oracle Life Sciences Data Hub Application Developer's Guide

generated by the object, such as a report or log file, or a document such as a functional
requirements document for the object.

■ Outputs. You can use a log file to demonstrate that a Program or other executable
ran successfully. You can use a report to demonstrate that an executable object has
produced an appropriate report.

■ Documents. You can upload any document as supporting information; for
example, a requirements document or a set of test cases.

Adding a Supporting Document
To link an object to a document as supporting validation information, do the
following:

1. Navigate to the object.

2. From the Actions drop-down list, select Support Validation Info. The Validation
Status screen appears.

3. Under Supporting Documents, click Add. The Manage Supporting Documents
screen opens.

4. Enter a Name for the document.

5. Enter a Description for the document.

6. Click Browse. The system opens a standard Browse pop-up window.

7. Select any document on a local or shared drive and click Open.

8. Click Apply.

The system returns to the Supporting Information screen with the new supporting
output listed. The new supporting document's status is set to Active.

Version History. If you upload a different document in the future, the system
creates a new version of the supporting document. Click Version History to see
who changed the document when, with the reason for change, which is required.
You can also view the document uploaded for each previous version.

9. Click Return to go back to the object's Properties screen.

Obsolete The system does not delete any supporting documents. However, you can
mark a document as Obsolete by selecting it and clicking Obsolete.

Adding a Supporting Output
To link an object to an output as supporting validation information, do the following:

1. Navigate to the object.

2. From the Actions drop-down list, select Support Validation Info. The Validation
Status screen appears.

3. Under Supporting Outputs, click Add. The Manage Supporting Outputs screen
opens.

4. Enter a Description for the output (required).

Note: To add supporting information for an object definition, you
must navigate to the definition in its Domain or Application Area.
When you are in a Work Area you can add supporting information
only for object instances.

Validating Objects and Outputs

Common Development Tasks 3-35

5. Click the Search icon to find the output you need. The Search and Select screen
opens.

6. For Search Using, select either Hierarchy or Job ID.

If you select Hierarchy, select the hierarchy name and the level to which the
output is classified and enter the value in the Search field.

Or enter a high-level value only and check Include hierarchy based child in the
search to search all values in levels below the value you specify.

If you select Job ID, enter the job ID in the Search field.

7. Click Go. The system displays the results of the search.

8. Click the icon in the Quick Select column for the output you want.

The system returns to the Supporting Output Properties screen with the new
output listed.

9. Click Apply. The system returns to the Managing Supporting Outputs screen with
the new supporting output listed.

10. Click Return. The system returns to the Validation Status screen.

11. Click Return. The system returns to the object's Properties screen.

Validation Rules
The system enforces the following rules based on objects' validation status:

■ You can change an object's validation status only when it is checked in. If the
object is not checked in, the system tries to check it in. If another user has checked
it out, you cannot change the validation status.

Changing the validation status of a checked-in object does not change the version
number of the object.

■ You cannot promote an object instance to a validation status higher than its
underlying object definition. However, the system tries to promote the underlying
definition when you promote the instance. If the definition is checked out by
another user, the operation fails.

For example, if you create an instance of a Program definition whose validation
status is Quality Control, you can promote the instance to a validation status of
Quality Control, but you cannot promote it to Production until the definition has
been promoted to Production. However, the system attempts to promote the
definition to Production when you promote the instance, and if you have the
necessary privileges on the definition, and if the definition is not checked out by a
different user, the promotion succeeds.

■ Validation status is version-specific. Each time you create a new version of an
object by checking it out (including checking out a definition through an instance)
the system automatically gives the new version a validation status of
Development. The system does not change the validation status of any existing
versions.

■ When you copy an object, the validation status of the copy is set to Development
no matter what the validation status of the original is.

■ You cannot run an Execution Setup whose validation status is less than the
validation status of its owning object instance unless you have the IQ Submit
security privilege on the Execution Setup.

Reordering and Renumbering Objects

3-36 Oracle Life Sciences Data Hub Application Developer's Guide

■ To be installed in a Work Area, object instances must have a validation status equal
to or greater than the Usage Intent of the Work Area.

■ The Work Area cannot be promoted to a validation status higher than the
validation status of any of its object instances. However, if you try to promote a
Work Area to a status above that of any of its objects, you have the opportunity to
promote all the object instances and their underlying definition versions to the
same status in a cascade operation.

The cascade validation fails if a different user has checked out any of the object
definitions in need of promotion.

■ No executables can be run in a Work Area until the Work Area's validation status
is equal to or greater than its Usage Intent value, except by users with the special
Install Qualify Submit privilege on the Work Area. This is to allow testing of the
Work Area before making it generally available for use.

■ Full installation and the Replace operation on Table instances in partial installation
are not allowed in Work Areas with a usage intent of Production. This is to protect
production data from deletion.

■ You cannot remove a Table instance whose validation status is Production from a
Work Area of any usage intent.

Rules for Retired Objects The following rules apply to Retired objects:

■ If an executable object instance is set to Retired, it cannot be submitted for
execution, regardless of the validation status of it Execution Setups.

■ If a Work Area is set to Retired, no executable objects within it can be submitted
for execution.

■ If you clone a Retired Work Area, the clone's status is also set to Retired. In the
Work Area clone, the object instances retain the validation status they had in the
original Work Area. Retired objects are included in the cloning process.

Reordering and Renumbering Objects
You can use the Reorder function to change the order of some objects and the
Renumber function to create sequential numbering for some objects.

To reorder and/or renumber objects:

1. Click Reorder. The Reorder shuttle appears.

2. Select the object you want to move and click the Up and Down arrows to move it
in relation to the other objects.

3. Starting Entry Number (Report Sets only). By default, the object displayed at the
top is assigned the number one (1). You can enter a different starting number in
the Starting Entry Number field.

4. If you want to change the object's numbers to reflect the new order and/or the
new starting number, leave the Renumber flag set to Yes. If you change the setting
to No, the system keeps the original numbers (except the changed starting
number, if any) but displays the objects in the order you specify.

5. Click Apply. The new order and/or numbers are displayed in the original screens.

Defining and Mapping Table Descriptors
This section contains the following topics:

Defining and Mapping Table Descriptors

Common Development Tasks 3-37

■ About Table Descriptors on page 3-37

■ Creating a Table Descriptor on page 3-38

■ Mapping Table Descriptors to Table Instances on page 3-45

■ Creating and Mapping Table Descriptors and Table Instances at the Same Time on
page 3-52

■ Unmapping Table Descriptors on page 3-54

■ Modifying Table Descriptors on page 3-55

About Table Descriptors
Use Table Descriptors to map executable objects to the tables they read from and write
to. By having this table metadata in the executable object, you can map the executable
to source and target table instances that are compatible in terms of column data type
and length but that may not have exactly the same columns, table or column names, or
column lengths as the tables the executable object was originally created to work with.
This promotes reuse of Programs, Load Sets, Data Marts, and Business Areas.

In a Program definition's source code you refer to source and target Tables and
Columns by the names of the Table Descriptors and their Columns, not the actual
Table instances. In each instance of the Program you map the Table Descriptors to the
Table instances they must read from or write to. You can have multiple instances of the
same Program mapped to different source and target Table instances, and the Table
instances may have different names or a different (but compatible) structure (see
"Mapping Columns of Different Data Types and Lengths" on page 3-50).

For example, if Study 1 and Study 2 use demography tables with the same structure
but called Demog in Study 1 and Demo in Study 2, you can create a single Program
definition that reads from the demography table and creates several reports. You can
create one instance of the Program that reads from the Study 1 Demog Table and
another instance of the Program that reads from the Study 2 Demo Table.

Table Descriptors do not have constraints or data processing types. Different rules
apply to source and target Table Descriptors.

Source Table Descriptor A source Table Descriptor must be mapped to a Table
instance that contains data to be used as input. You can map a source Table Descriptor
to a Table instance located in any Work Area to which you have security access; in
other words, your Program (or Data Mart or Business Area) can operate or report on
data located anywhere in Oracle LSH where you have View privileges to Table
instances.

For example, if you have a different Application Area for each clinical trial, you can
pull data from each trial and combine data for a whole project by mapping the source
Table Descriptors of the Program that combines the data to Table instances in the Work
Area for each of the clinical trials.

The same Table instance can serve as a source for multiple Programs, Business Areas,
and Data Marts.

Target Table Descriptor A target Table Descriptor must be mapped to a Table
instance that receives data output from a Program or Load Set. Target Table
Descriptors must be mapped to a Table instance located in the same Work Area as the
Program or Load Set instance.

Mapping Rules The system enforces the following mapping rules:

Defining and Mapping Table Descriptors

3-38 Oracle Life Sciences Data Hub Application Developer's Guide

■ Only one Program can write to a Table instance; therefore only one target Table
Descriptor can be mapped to a particular Table instance.

■ A Table instance can be mapped to only one Table Descriptor in a Program
instance.

■ For additional rules, see "Using Format Conversions" on page 3-50 and "Mapping
Columns of Different Data Types and Lengths" on page 3-50.

Creating a Table Descriptor
There are several ways to create a Table Descriptor:

■ Adding Source Table Descriptors on page 3-38

■ Adding Target Table Descriptors from a Remote Location on page 3-39

■ Adding Target Table Descriptors from a SAS File on page 3-39

■ Adding a Table Descriptor from a Metadata File on page 3-41

■ Adding a Target Table Descriptor from an Existing Table Definition on page 3-40

■ Adding a New Target Table Descriptor on page 3-42

■ Creating Table Descriptors from Table Instances and Simultaneously Mapping
Them on page 3-53

See also:

■ Setting Table Descriptor Attributes on page 3-43

■ Mapping Table Descriptors to Table Instances on page 3-45

Adding Source Table Descriptors
This option is available for objects that have source Table Descriptors: Programs,
Business Areas, and Data Marts. To use this option, the Table instance you want to
read from must already be defined in Oracle LSH and you must have Read privileges
on it. You can create multiple Table Descriptors at a time from Table instances located
in a single Work Area.

The system bases the Table Descriptor on the same Table definition the Table instance
is based on, and automatically maps the new Table Descriptor to the Table instance.

1. In the Table Descriptors subtab in the Properties screen of a Program, Business
Area, or Data Mart instance, click Add Source.

The Create Table Descriptors from Table Instances screen opens.

2. Select the location of a Table instance for which you want to create a Table
Descriptor:

■ Select the Table instance's Domain from the Domain drop-down list.

Note: This functionality is also available in the Actions drop-down
as the Table Descriptors from Existing Table Instances item.

Note: You can also create a source Table Descriptor by creating a
target Table Descriptor and changing its Is Target attribute value to
No.

Defining and Mapping Table Descriptors

Common Development Tasks 3-39

■ Select the Table instance's Application Area from the Application Area
drop-down list. The choices are limited to Application Areas contained in the
Domain you selected.

■ Select the Table instance's Work Area from the Work Area drop-down list. The
choices are limited to Work Areas contained in the Application Area you
selected.

3. Click Go. The system displays all the Table instances in the Work Area you
selected.

4. Select one or more Table instances by clicking the Select checkbox.

5. Click Create Table Descriptor. The system returns you to the Create Table
Descriptors from Table Instances screen. To return to the Program's Properties
screen, click Return. Check that the mappings are complete.

Adding Target Table Descriptors from a Remote Location
This option is available for Oracle technology Programs and Load Sets.

The system searches for Variables in the same Application Area with the same name,
data type, and length as each of the variables in the data set. If a matching Variable
exists, the system bases a Column of the Table definition on it. If a Table definition
with the same name already exists in the Application Area, the system appends _1 to
it, or _x if the Table name already has a number appended, where x is the next larger
integer.

1. After defining the Remote Location and any other required attributes, go to the
Table Descriptors subtab of the Load Set's Properties screen and click Add Target
from Remote Location. The system opens the Upload Table Descriptors screen
with tables from the specified remote location displayed.

2. Select the tables from which you want to create Table Descriptors and click Apply.

For each selected table, the system creates a target Table Descriptor and Table
definition in the current Application Area. The system returns to the Load Set's
Properties screen.

3. You can update the Table Descriptor as necessary; click the Table Descriptor name.
See "Setting Table Descriptor Attributes" on page 3-43 and "Adding or Uploading
Columns" on page 3-45.

4. Click the Mapping icon for the Table Descriptor and map it to a Table instance. See
"Mapping Table Descriptors to Table Instances" on page 3-45.

Adding Target Table Descriptors from a SAS File
This option is available for objects that have target Table Descriptors and support this
option: Programs and some Load Sets. If you specify a single data set file, the system
creates a single Table Descriptor. If you specify a SAS transport file that contains more
than one data set, the system creates one Table Descriptor for each data set in the file.

The system searches for Variables in the same Application Area with the same name,
data type, and length as each of the variables in the data set. If a matching Variable
exists, the system bases a Column of the Table definition on it. If a Table definition
with the same name already exists in the Application Area, the system appends _1 to
it, or _x if the Table name already has a number appended, where x is the next larger
integer.

Defining and Mapping Table Descriptors

3-40 Oracle Life Sciences Data Hub Application Developer's Guide

1. In the Table Descriptors subtab of the Load Set or Program's Properties screen,
click Add Target from SAS File. The system opens the Create Table Descriptors
screen. with Create a New Table Definition and Descriptor from SAS file
selected.

2. Click Browse. The system opens a standard browse screen.

3. Navigate to the location of the SAS file.

4. Highlight the file and click OK, then click Apply

The system creates a target Table Descriptor and Table definition in the current
Work Area. The system returns to the Program or Load Set's Properties screen.

5. Click the Table Descriptor name to see the Table Descriptor screen. You can update
the Table Descriptor here as necessary; see "Setting Table Descriptor Attributes" on
page 3-43 and "Adding or Uploading Columns" on page 3-45.

6. Click the Mapping icon for the Table Descriptor and map it to a Table instance. See
"Mapping Table Descriptors to Table Instances" on page 3-45.

Adding a Target Table Descriptor from an Existing Table Definition
This option is available for objects that have target Table Descriptors: Programs and
Load Sets.

1. In the Table Descriptors subtab of the Program or Load Set's Properties screen,
click Add Target from Library. The system opens the Create Table Descriptors
screen with Create a Descriptor of an Existing Table Definition selected.

2. Click the Search icon. The system opens the Search and Select screen.

3. Select the location of a Table definition from which you want to create a Table
Descriptor:

■ Select the Table definition's Domain from the Domain drop-down list.

■ Select the Table definition's Application Area from the Application Area
drop-down list. The choices are limited to Application Areas contained in the
Domain you selected. Leave this field blank to search for definitions contained
in the Domain library.

■ If you know the exact name or version label of the definition you want, select
either Name or Version Label from the Search By drop-down list and enter the
name or version label in the blank field.

■ (Optional) Select Display All Versions and/or Display Not Null Version
Labels.

4. Click Go. The system displays the Table definitions in the Application Area or
Domain Library you selected.

5. Click the Quick Select icon for the Table definition from which you want to create
the Table Descriptor. The system populates the Definition Source field with the
definition you selected.

6. Click Apply. The system opens the screen for the new Table Descriptor.

Note: Oracle LSH gives SAS variables of SAS format BEST8 a length
of 8 and Precision set to null.

Defining and Mapping Table Descriptors

Common Development Tasks 3-41

7. You can update the Table Descriptor here as necessary; see "Setting Table
Descriptor Attributes" on page 3-43 and "Adding or Uploading Columns" on
page 3-45.

8. Click the Mapping icon for the Table Descriptor and map it to a Table instance. See
"Mapping Table Descriptors to Table Instances" on page 3-45.

Adding a Table Descriptor from a Metadata File
You can create aTable Descriptors by uploading a metadata (.mdd) file with a required
format, or create multiple Table Descriptors at once by uploading a zipped file
containing multiple metadata files.

Depending on the type of object for which you are creating the Table Descriptor, the
name of the button in the Table Descriptor tab varies: either Add, or Add Target, or
File.

Creating a Metadata File
If the file has an .mdd extension, the system expects a set of Column attribute values,
optionally preceded by a row identifying the delimiter and a row defining Table
attribute values, each of which must begin with a key word. A row beginning with
dashes is treated as a comment. For example:

--This is a comment.

Example 3–1 Sample Set Metadata File

lsh_delimiter = ,
--This section is for the Table attributes
lsh_table= DM,DEMOG Table,EMP,EMP,EMP,Staging with
Audit,Yes,Yes,Blinded,target,yes,yes

--The following are columnsComment Line 2
INITS,VARCHAR2,100,,inits,inits,2.,,inits,no,1
AGE,NUMBER,10,,2,age,age,2.,,age,yes,1
DOB,DATE,,,3,dob,dob,datetime.,,dob,yes,1,MM/DD/YY HH24:MI:SS

Delimiter The first row defines the delimiter used in the file. If not specified, Oracle
LSH treats it as a comma delimited file. The delimiter row must begin with lsh_
delimiter=

Table and Table Descriptor Attributes The second row lists the table attributes
required in the file. The Table attribute row must begin with lsh_table=

If the second row is not present or contains null values, the system assumes that the
filename (without extension) is the Table Name and follows the normal Oracle LSH
default behavior for the attribute values. The attributes and their required order in the
file are: Name, Description, Oracle Name, SAS Name, SAS Label, Process Type,
Allow Snapshot?, Blinding Flag?, Blinding Status, SAS Library Name, Is
Target?, Target as Dataset?

Some attributes have associated reference codelists and allow either the actual values
for the associated reference codelist (RC) columns or the decode values defined in the
"Meaning" attribute of the _RC lookup. For example, "select meaning from cdr_
lookups where lookup_code='< RC>' so that YES or Yes or $YESNO$YES are
acceptable values.

The following table outlines the applicable values for each Oracle LSH Table attribute
that has an associated reference codelist.

Defining and Mapping Table Descriptors

3-42 Oracle Life Sciences Data Hub Application Developer's Guide

Columns Subsequent rows must contain the column and variable attributes with
each represented by a new row in the text file with attributes. The position is
determined by the order in which the column /variable rows are processed. For
example, in a comma delimited file: Name, Data Type, Length, Precision, Oracle
Name, SAS Name, SAS Format, Description, SAS Label, Nullable, Default
Value, Date Format

Normal Oracle LSH validation rules apply to the Column or variable attributes. The
operation uses Oracle LSH default values if invalid values are provided for any of the
attributes.

Adding a New Target Table Descriptor
This option is available for objects that have target Table Descriptors: Programs and
Load Sets. If your Program will write to (or read from) a table that does not yet exist,
you can manually create the Table definition and Table Descriptor at the same time:

1. In the Table Descriptors subtab of the Program's Properties screen, click Add
Target from New. The system opens the Create Table Descriptors screen with
Create a New Table Definition and Descriptor selected.

2. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ Oracle Name (up to 30 characters, uppercase, no spaces). Enter text or accept
the default value. The system automatically creates the default from the text
you entered in the Name field, converting it to uppercase, with underscores (_
) substituted for spaces, truncated to 30 characters if necessary.

■ SAS Name (up to 32 characters, uppercase, no spaces). Enter text or accept the
default value. The system automatically creates the default from the text you

Note: Processing types that require audit keys are not supported.

Table 3–1 Table Attributes with Reference Codelist Values

Table Attribute Applicable Reference Codelist Values

Processing Type Staging with Audit, Staging without Audit, Transactional High
Throughput, Transactional without Audit

Allow Snapshot Yes, No

Blinding Flag Yes, No

Blinding Status Blinded, Unblinded

Is Target Yes, No

Target as dataset Yes, No

Data Type Date, Number, Varchar2

Nullable Nullable, Yes, No

Note: Each Table Descriptor within a particular executable object
must have a unique Oracle Name.

Defining and Mapping Table Descriptors

Common Development Tasks 3-43

entered in the Name field, converting it to uppercase, with underscores (_)
substituted for spaces.

■ Enter a SAS Label (optional, up to 256 characters). Enter text or accept the
default value. The system automatically creates the default from the text you
entered in the Name field.

■ Enter a SAS Library Name (optional, up to 8 characters).

3. Set Is Target and other Table Descriptor attributes; see "Setting Table Descriptor
Attributes" on page 3-43.

4. In the Classification section, select the following for the definition:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

5. Click Apply. The system opens the screen for the new Table Descriptor.

You can update it as necessary:

■ Click Update to modify attribute settings. See "Setting Table Descriptor
Attributes" on page 3-43.

■ Check out the Table definition to be able to add Columns. See "Adding or
Uploading Columns" on page 3-45.

6. If you make any changes, click Apply to save them. The system opens the Table
Descriptor Properties screen. Click Return. The system opens the Program's
Properties screen.

7. Click the Mapping icon for the Table Descriptor and map it to a Table instance. See
"Mapping Table Descriptors to Table Instances" on page 3-45.

Setting Table Descriptor Attributes
Table Descriptors may have the following attributes:

Is Target Select Yes to create a target Table Descriptor. Select No to create a source
Table Descriptor.

Target As Dataset (Available only in SAS Programs, and only when Is Target is set to
Yes.) Select Yes if you are using a legacy SAS program that uses data statements to
write to data sets. Because Program source code must write to Table Descriptors, and
Table Descriptors are views, you should use Proc SQL statements to write data to
tables in Oracle LSH. However, if you set this attribute to Yes, Oracle LSH adds a
processing step to enable SAS data statements to write to Oracle LSH Table
Descriptors. This extra processing step results in slower performance but allows you to
use existing programs.

Select No if the Program's source code uses Proc SQL statements to write to Table
Descriptors. This results in optimal performance.

Note: If you plan to use this Table Descriptor with an Oracle
Business Intelligence (OBIEE) Business Area, you can set the SAS
Library Name to $REPINIT. See "Defining Table Descriptors" on
page 11-6 for more information.

Defining and Mapping Table Descriptors

3-44 Oracle Life Sciences Data Hub Application Developer's Guide

Reveal Audit (Available only for source Table Descriptors; when Is Target is set to
No.) By default Reveal Audit is set to No and the Program, Data Mart, or Load Set can
read data from the Table instance mapped to this Table Descriptor that is or was
current at a particular point in time. By default it sees only current data, but it is
possible to specify a data snapshot at a past point in time in the Execution Setup of the
Program, Data Mart, or Load Set.

Each time a data record is changed in Oracle LSH, the system creates a new row with
the updated information. The system sets the end timestamp of the old record so that
it is no longer current. When a record is deleted, the system sets its end timestamp and
also adds a row explicitly recording the deletion. The set of rows for a single data
record constitutes its audit trail.

If you set Reveal Audit to Yes the system exposes all data in the Table instance at all
points in time to the Program, Data Mart, or Load Set reading from the Table instance,
and exposes the predefined audit columns CDR$CREATION_TS (creation timestamp),
CDR$CREATED_BY (creator username), CDR$MODIFICATION_TS (modification
timestamp), and CDR$MODIFIED_BY (modifier username).

You can use this functionality as follows:

■ Data Marts. If you set Reveal Audit to Yes for all the Table Descriptors in a Data
Mart, the resulting Data Mart output contains the complete audit trail of every
record that the mapped Table instances ever contained.

■ Programs. If you set Reveal Audit to Yes for all the Table Descriptors in a
Program, you can write source code that reads data from all points in time and
that references the audit columns.

■ Load Sets. Because the source Table Descriptors of most types of Load Sets point
to data files or tables outside of Oracle LSH that do not contain audit information,
it does not make sense to use the Reveal Audit feature with SAS, text, or most
Oracle Load Sets. However, Oracle Clinical uses a similar system for maintaining
an audit trail so you may want to use Reveal Audit with some Oracle Clinical
tables.

Oracle Clinical inserts a row each time a record is modified and sets the end
timestamp of the previous row for the same record. However, when a record is
deleted Oracle Clinical sets its end timestamp but does not add a row explicitly
recording the deletion.

Note: Because SAS does not support the $ special character, the SAS
Name of each of these internal column names has an underscore (_)
instead of a dollar sign ($) as follows: CDR_CREATION_TS, CDR_
CREATED_BY, CDR_MODIFICATION_TS, CDR_MODIFIED_BY.

Note: The Execution Setup user interface cannot detect if a Table
instance is mapped to a Table Descriptor whose Reveal Audit flag is
set to Yes, so it is possible for a user to specify a snapshot for such a
Table instance at execution time. However, during execution the
system ignores any snapshots set for Table instances mapped to a
source Table Descriptor whose Reveal Audit flag is set to Yes.

Defining and Mapping Table Descriptors

Common Development Tasks 3-45

Adding or Uploading Columns
You can upload Columns based on SAS data set variables:

1. Check out the Table Definition if it is not already checked out.

2. Click Upload Column. The system displays the Upload Column screen.

3. Click Browse. The system opens a standard Browse pop-up window.

4. Navigate to the data set from which you want to upload Columns and click Open,
then Apply. The system uploads all the variables from the data set as Columns in
the Table Descriptor and its source Table definition.

You can remove any Columns you do not need. To remove one or more Columns,
click the checkbox in the Select column and click Remove.

Mapping Table Descriptors to Table Instances
This section includes the following topics:

■ Creating Table Descriptors from Table Instances and Simultaneously Mapping
Them on page 3-53

■ Creating Table Instances from Table Descriptors and Simultaneously Mapping
Them on page 3-53

■ Automatic Mapping by Name on page 3-46

■ Mapping Table Descriptors Manually on page 3-47

■ Remapping on page 3-48

■ The Effects of Modifying the Table Descriptor or Table Instance on a Mapping on
page 3-48

A Program or other executable object instance can read data only when its source
Table Descriptors are mapped to the Table instances that contain the source data, and
can write data to Table instances only when target Table Descriptors are mapped to the
Table instances. In addition, both the executable instance and the Table instance must
be installed in the database. Table Descriptors must be mapped to Table instances at
both the Table and Column level.

Mapping Columns When you map a Table Descriptor to a Table instance, the system
may or may not be able to map Columns automatically. If not, you can map them
manually; see "Mapping Table Descriptors Manually" on page 3-47.

However, if a Target Table Descriptor in a Load Set or Program is updated or new
columns added, installation automatically upgrades the Table instance and completes
the mapping. Note that the Table instance is upgraded only if the changes to the Table
Descriptor are non-destructive, such as the addition of a column.

You can supply default values for any Columns that are still unmapped; see "Mapping
Columns to Constants" on page 3-50. In some cases, you can map columns of different
data types and lengths; see "Mapping Columns of Different Data Types and Lengths"
on page 3-50).

For source Table Descriptors you do not need to map Table instance Columns that are
not used by the Program.

Data Processing Compatibility Be sure to map target Table Descriptors to Table
instances whose data processing type is compatible with your source code:

Defining and Mapping Table Descriptors

3-46 Oracle Life Sciences Data Hub Application Developer's Guide

■ If you have insert, update, and delete statements in your source code, you must
map your target Table Descriptors to Table instances with a data processing type
of either Transactional or Staging.

■ If you have insert statements only, you must map your target Table Descriptors to
Table instances with a data processing type of either Reload or Staging.

Automatic Mapping by Name
The Automatic Mapping by Name job can run on multiple Table Descriptors in a
Program or other executable object. By default, it looks for a Table instance with the
same name in the same Work Area as the executable instance. If you are mapping
source Table Descriptors only, you can specify a different Work Area.

You can also use this feature for remapping Table Descriptors.

To run automatic mapping:

1. On the executable instance's Properties screen, select Automatic Mapping By
Name from the Actions drop-down list and click Go. (In a Report Set instance,
you can reach this screen from the Report Set structure screen by selecting the
Report Set instance or a Report Set Entry, then selecting Map from the drop-down
list and clicking Go.)

The system displays the Automatic Mapping by Name screen and, by default,
unmapped Table Descriptors only. The current Work Area is selected by default,
and if it contains a Table instance with the same name as an unmapped Table
Descriptor, the Table instance is displayed on the same row as the Table Descriptor.

2. In the View drop-down list, specify which Table Descriptors to display:

■ Unmapped. The system displays only unmapped Table Descriptors (the
default).

■ Mapped. The system displays only mapped Table Descriptors, so that you can
remap them to different Table instances.

■ Both Mapped and Unmapped. The system displays all Table Descriptors and
you can map and remap them as necessary.

3. Select the location of a Table instance you want to map to. Accept the current Work
Area or, only if you are mapping a source Table Descriptor, specify a different one
by doing the following:

■ Select the Table instance's Domain from the Domain drop-down list.

■ Select the Table instance's Application Area from the Application Area
drop-down list. The choices are limited to Application Areas contained in the
Domain you selected.

■ Select the Table instance's Work Area from the Work Area drop-down list.

■ Click Go. The system searches the selected Work Area for Table instances with
a name that matches the name of any of the displayed Table Descriptors and
displays them in the same row as the matching Table Descriptor if found.

4. Select one or more Table Descriptors with a matching Table instance in the
specified location and click Map. The system creates the Table-level mapping and
attempts to map Columns by name.

5. Map another Table Descriptor or click Return to display the executable's main
page.

6. Check the mapping status of the Table Descriptors you have mapped.

Defining and Mapping Table Descriptors

Common Development Tasks 3-47

■ If the system was able to map all their Columns, their mapping status is
Complete.

■ If the system could not map all the required Columns, their mapping status is
Incomplete and you must map them manually. See "Mapping Columns" on
page 3-48.

Mapping Table Descriptors Manually
If you want to map a Table Descriptor to a Table instance that has a different name,
you must map it manually. You can also use this method to remap a Table Descriptor
that is already mapped.

To map a Table Descriptor to a Table instance manually, go to the main Program
screen, Table Descriptors subtab, and do the following:

1. Click the icon in the Table Descriptor's Mapping column. The system opens the
Mapping screen with the Table Descriptor's name already entered in either the
From or To column, depending on whether it is a target or a source Table
Descriptor, respectively.

2. Click Update. Several fields become modifiable.

3. Click the Search icon next to the Map to Table Instance field. The system opens
the Search screen.

4. Select the Domain, Application Area, and Work Area of the Table instance to
which you want to map.

■ Select the Table instance's Domain from the Domain drop-down list.

■ Select the Table instance's Application Area from the Application Area
drop-down list. The choices are limited to Application Areas contained in the
Domain you selected.

■ If you know the exact name or version label of the Table instance you want,
select either Name or Version Label from the Search By drop-down list and
enter the name or version label in the blank field.

5. Click Go. The system displays all the Table instances that meet the criteria, and for
which you have View privileges.

You cannot map to a Table instance while its source Table definition is checked
out. The system displays Table instances whose source Table definition is currently
checked out as grayed out. You can look at the Table definition to see who has it
checked out.

6. Click the Quick Select icon for the Table instance you want to map.

The system enters the name of the Table instance you selected and automatically
tries to map it to the Table Descriptor. The system displays any Columns it finds
that match a Column in the Table Descriptor across from the matching Column.

If the system does not find a match, it populates a drop-down list for each Table
instance Column that contains the names of all the Table instance Columns.

7. For each Column of the Table instance, choose the Column from the drop-down
list that you want to map to the Table Descriptor Column displayed on the same
row.

Alternatively, you can map to a constant (see Mapping Columns to Constants on
page 3-50) or convert to a different data type (see "Mapping Columns of Different
Data Types and Lengths" on page 3-50) you can enter that information in the
Default Value or Format String field, respectively.

Defining and Mapping Table Descriptors

3-48 Oracle Life Sciences Data Hub Application Developer's Guide

8. Click Apply. The system saves the mapping and returns you to the Program
screen.

Remapping
You can remap a mapped Table Descriptor to a different Table instance in two ways:

■ If the Table Descriptor has the same name as the Table instance, use automatic
mapping by name; see "Automatic Mapping by Name" on page 3-46.

■ If the Table Descriptor has a different name from the Table instance, use manual
mapping; see "Mapping Table Descriptors Manually" on page 3-47.

The Effects of Modifying the Table Descriptor or Table Instance on a Mapping
A mapping is specific to a particular version of both the Table Descriptor and the Table
instance. When you check out either one:

■ The system upgrades the mapping to the new version of the Table Descriptor or
Table instance if possible. There are two conditions where it is not possible: You
modify a Table Descriptor from a source to a target and either:

– The Table instance is not in the same Work Area as the executable object that
owns the Table Descriptor.

– The Table instance is already mapped to another target Table Descriptor.

■ The system reevaluates the mapping and resets its status to either Complete or
Incomplete.

For a Mapping to be complete, all Columns must be mapped to Columns in the
Table instance or to constants, and all other mapping rules must be followed.

When you check out either a mapped Table Descriptor or a mapped Table instance,
there is no effect on the other object, only on the mapping.

Mapping Columns
This section includes the following topics:

■ Mapping Columns Automatically on page 3-48

■ Mapping Columns Manually on page 3-49

■ Mapping Columns to Constants on page 3-50

When you map a Table Descriptor to a Table instance using any method, the system
tries to map the Columns at the same time, by name. If the system cannot map the
Columns, the mapping status of the Table Descriptor is set to Incomplete. You must
map the Columns manually before you can install the Program instance.

In most cases you map each Column of the Table Descriptor to a Column in the Table
instance to which it is mapped. However, you can also map Columns to constants.

Mapping Columns Automatically
If you have mapped a Table Descriptor to a Table instance, but have not mapped the
columns, then the system can map columns automatically. Do the following:

1. In the Program instance's Properties screen, Table Descriptors subtab, click the
icon in the Mapping column for the Table Descriptor whose Columns you want to
map.

Defining and Mapping Table Descriptors

Common Development Tasks 3-49

2. Click the Reset to Default Mapping button. For each Table Descriptor, the system
checks the Table instance for a column with a matching name or a matching
variable reference. If it finds one, it maps the Table Descriptor column with the
Table instance column.

Nothing happens if you click this button when the Table Descriptor and Table instance
mapping is already complete.

If the system cannot find matching column names or variable reference names
between the Table Descriptor and the Table instance, then you cannot automatically
map in this way. You need to map columns manually as described in the next section.

Mapping Columns Manually
To map Table Descriptor Columns to Table instance Columns, do the following:

1. In the Program instance's Properties screen, Table Descriptors subtab, click the
icon in the Mapping column for the Table Descriptor whose Columns you want to
map.

The Mapping screen opens. It has a row for each Column divided into a set of
columns labeled From and another set labeled To. The system populates the From
and To sections as appropriate for the flow of data: if the Table Descriptor is a
source Table Descriptor, it is displayed in the To section because data appears to
flow from the Table instance to the Program through the Table Descriptor; if it is a
target Table Descriptor, it is displayed in the From portion because data appears to
flow through it to the target Table instance. (Table Descriptors never actually
contain data.)

2. Click Update. The system makes several fields enterable.

3. Select a Table instance. If a Table instance is not already specified in the upper
portion of the screen, or if you want to map the Table Descriptor to a different
Table instance, click the Search icon by the Map to Table Instance field.

The Search and Select screen opens with the current Work Area's Table instances
displayed by default.

If the Table Descriptor is a target Table Descriptor, you cannot select a different
Work Area. If the Table Descriptor is a source Table Descriptor, you can select a
Table instance in any Work Area:

■ Select the Table instance's Domain from the Domain drop-down list.

■ Select the Table instance's Application Area from the Application Area
drop-down list. The choices are limited to Application Areas contained in the
Domain you selected.

■ If you know the exact name or version label of the Table instance you want,
select either Name or Version Label from the Search By drop-down list and
enter the name or version label in the blank field.

Click the Quick Select icon for the Table instance you want to map to. the system
returns you to the Mapping screen with the Table instance information displayed.

4. Map Columns. Map each Table Descriptor Column to a Table instance Column or
a default value. You can also enter a conversion string if either the Table instance
Column or the constant is in a different format from the Table Descriptor Column:

■ Select a Table instance Column from the drop-down list to which to map the
Table Descriptor Column.

Defining and Mapping Table Descriptors

3-50 Oracle Life Sciences Data Hub Application Developer's Guide

■ Enter a value in the Default Value field to populate the Column to a constant;
see "Mapping Columns to Constants" on page 3-50.

■ If you are mapping Columns of different data types, enter a format string for
the system to use in the conversion, if necessary. See "Using Format
Conversions" on page 3-50.

5. Click Apply. The system validates the mappings you specified and returns you to
the Program instance's Properties screen.

If you specified an invalid mapping, the system displays an error message.

Using Format Conversions If you map to a Table instance Column or a constant with a
different data type or format than the Table Descriptor's Column, you can enter a
format conversion string for Oracle LSH to convert the value that is upstream in the
data flow to the correct format for the downstream value.

For example, if a source Table instance contains a number value that needs to be
converted to a dollar amount for the Program to analyze, enter a format conversion
such as: format=$99,999.00. If a source Column has a data value of 10000, Oracle LSH
converts that value to $10,000.00.

For format models, see the Oracle 9i SQL Reference Guide.

Mapping Columns of Different Data Types and Lengths If the data types and/or lengths of
the Table instance and Table Descriptor Columns do not match, mapping may still be
allowed. The rules are different for source and target Table Descriptors. See Figure 3–3
on page 3-52 for an illustration of the data flow.

The principles are:

■ Only Number data types can feed into Number data types and only Date data
types can feed into Date data types.

■ Shorter lengths can feed into longer lengths, but longer lengths cannot feed into
shorter lengths.

■ For Number data types, lesser precision can feed into greater precision, but greater
precision cannot feed into lesser precision.

■ On the source side, Table instance Columns of Number and Date data types can
feed into Table Descriptor Column Varchar2 data types.

■ On the target side, Table Descriptor Column Number data types can feed into
Table instance Column Varchar2 data types, but Date data types cannot.

Mapping Columns to Constants
There may be cases where a Table instance or Table Descriptor upstream in the data
flow does not contain a Column needed for mapping by a Table Descriptor or Table
instance Column downstream in the data flow:

■ a source Table instance does not contain a Column that is needed for mapping by a
source Table Descriptor

■ a target Table Descriptor does not have a Column needed for mapping by the
target Table instance

In these cases, you can map the existing Column of the source Table Descriptor or
target Table instance to a constant by supplying a default value for the Column.
Figure 3–3 shows how to supply constants for Columns in relation to the data flow
direction.

Defining and Mapping Table Descriptors

Common Development Tasks 3-51

If you are supplying a constant as a value to a Column whose data type is not
Varchar2, you must provide conversion information. For example, to convert the text
you enter as the constant to the Date data type, enter the value 04-JAN-2005 in the
Default Value column, and enter DD-MON-YYYY in the Format String column. The
system reads the constant as a date.

For any data type, the value after conversion cannot exceed the length defined for the
Column.

NULL is a valid constant value (if allowed by the receiving Column).

When you pass a constant to a Column downstream from it in the data flow (either to
a source Table Descriptor Column or a target Table instance Column (see Figure 3–3),
the specific requirements differ according to the data type of the receiving Column, as
follows:

Varchar2 If you pass a constant to a Column with a data type of Varchar2, the length
of the constant must be less than or equal to the length of the Column.

Number If you pass a constant to a Column with a data type of Number, the
following rules apply:

■ You must provide a number format (with a default) and the constant must be valid
when passed to a to_number with the supplied number format.

■ The length of number produced by to_number (constant, number format) must be
<= the length of the Column.

■ The precision of number produced by to_number (constant, number format) must
be <= the precision of the Column.

Date You must provide a date format and the constant must be valid when passed to
a to_date with the supplied number format.

Null Allowed EXCEPT if mapping from a target Table Descriptor to a Table instance
Column that is not nullable.

Defining and Mapping Table Descriptors

3-52 Oracle Life Sciences Data Hub Application Developer's Guide

Figure 3–3 Data Flow from Table Instances to Program Instance to Table Instances

Creating and Mapping Table Descriptors and Table Instances at the Same Time
This section contains information on the following topics:

■ Creating and Mapping Table Instances during Single Instance Installation on
page 3-52

■ Creating Table Descriptors from Table Instances and Simultaneously Mapping
Them on page 3-53

■ Creating Table Instances from Table Descriptors and Simultaneously Mapping
Them on page 3-53

Creating and Mapping Table Instances during Single Instance Installation
You can install an object from its Properties screen or Work Area even if its installation
status is Non Installable. For objects that have target Table Descriptors, such as
Programs and Load Sets, the system attempts to correct issues that are preventing the
object from being installed:

1. The system runs Automatic Mapping by Name to map any unmapped target Table
Descriptors to Table instances with the same name in the current Work Area, if
any.

2. If any target Table Descriptors remain unmapped, the system automatically creates
new Table instances in the current Work Area and maps them.

Both these tasks are performed by a batch job. If the system cannot resolve all issues
automatically, the job fails. You can view the job log in your My Home screen.

Defining and Mapping Table Descriptors

Common Development Tasks 3-53

Creating Table Descriptors from Table Instances and Simultaneously Mapping
Them
If the Table instance you need to read from or write to already exists in Oracle LSH,
you can create a Table Descriptor from the Table instance. The system bases the Table
Descriptor on the same Table definition the Table instance is based on, and
automatically maps the new Table Descriptor to the Table instance.

You can use this method to create multiple Table Descriptors at the same time from
Table instances located in a single Work Area.

This is the only method where the system creates a source Table Descriptor by default.
You can change the setting to Is Target if necessary.

To create a Table Descriptor from an existing Oracle LSH Table instance, do the
following:

1. In the Program's Properties screen, select Table Descriptors from Existing Table
Instances from the Actions drop-down list and click Go.

The Create Table Descriptors from Table Instances screen opens.

2. Select the location of a Table instance for which you want to create a Table
Descriptor:

■ Select the Table instance's Domain from the Domain drop-down list.

■ Select the Table instance's Application Area from the Application Area
drop-down list. The choices are limited to Application Areas contained in the
Domain you selected.

■ Select the Table instance's Work Area from the Work Area drop-down list. The
choices are limited to Work Areas contained in the Application Area you
selected.

3. Click Go. The system displays all the Table instances in the Work Area you
selected.

4. Select one or more Table instances by clicking the Select checkbox.

5. Click Create Table Descriptor. The system returns you to the Create Table
Descriptors from Table Instances screen. To return to the Program's Properties
screen, click Return. Check that the mappings are complete.

Creating Table Instances from Table Descriptors and Simultaneously Mapping
Them
You can create a Table instance in the current Work Area corresponding to each Table
Descriptor and map each pair. The system bases the Table instance on the same Table
definition the Table Descriptor is based on, and automatically maps the Table
Descriptor to the new Table instance.

Note: You can create target Table Descriptors only from Table
instances in the same Work Area as the Program.

Note: A Table instance can be mapped to only one Table Descriptor
in a Program instance. In addition, only one Program instance can
write to a particular Table instance. You get an error if you select a
Table instance whose selection would violate either of those rules.

Defining and Mapping Table Descriptors

3-54 Oracle Life Sciences Data Hub Application Developer's Guide

You can use this method to create multiple Table instances at the same time from Table
Descriptors located in a single Load Set, Program, Data Mart, Business Area, Report
Set or Workflow. In Report Sets and Workflows this option is available only at the
Report Set and Workflow level, not from individual Program instances in the Report
Set or Workflow.

To create a Table instance from one or more existing Table Descriptors in a single Load
Set, Program, Data Mart, or Business Area, do the following:

1. In the object's Properties screen, select Table Instances from Existing Table
Descriptors from the Actions drop-down list and click Go.

The Create Table Instances from Table Descriptors screen opens, displaying all the
unmapped Table Descriptors.

2. Select the Table Descriptors for which you want to create a Table instance by
clicking the box in the Select column.

3. Click Create Table Instance. The system displays a message asking if you want to
create the Table instance.

4. Click Yes.

The system returns you to the Create Table Instances from Table Descriptors
screen. To return to the Program's Properties screen, click Return. Check that the
mappings are complete.

Unmapping Table Descriptors
If a Table Descriptor is mapped to one Table instance and you need to map it to a
different Table instance, you must unmap it first.

To unmap a Table Descriptor, do the following:

1. In an executable object instance, click the Table Descriptor you want to unmap.

2. Click the icon in the Mapping column. The Mapping page opens.

3. Click Update. The screen becomes editable and the Unmap button appears.

4. Click Unmap. The system unmaps the Table Descriptor.

You can then click the Reset to Default Mapping button to automatically map
columns according to column names, or remap the Table Descriptor using any of the
methods described in this section; see "Mapping Table Descriptors to Table Instances"
on page 3-45.

Note: Table instances are created with the default settings for all
attributes, including Process Type (which is Staging with Audit). You
can go to the Table instances and update them as necessary.

Note: If you have created the object inside a Workflow, then use the
Actions drop-down list job Table Instances from Existing Tables
Descriptors from the Workflow's Properties screen. This job is not
available in the object's Properties screen.

Creating, Modifying, and Submitting Execution Setups

Common Development Tasks 3-55

Modifying Table Descriptors
To modify a Table Descriptor, you must also modify its source Table definition. You
must check out both the Program, Load Set, Data Mart, or Business Area that contains
the Table Descriptor and also check out the source Table definition. You can check out
the Table definition from the Table Descriptor.

Any Table instances and Table Descriptors that are based on the original version of the
source Table definition continue to reference the same version unless you choose to
upgrade them to the new version; see "Upgrading Object Instances to a New
Definition Version" on page 3-15.

You can also remove a Table Descriptor and add a different one.

Creating, Modifying, and Submitting Execution Setups
This section contains the following topics:

■ About Execution Setups and Templates on page 3-55

■ Creating an Execution Setup on page 3-57

■ Modifying an Execution Setup and Setting Parameters on page 3-59

■ Report Set and Workflow Execution Setups on page 3-65

■ Removing an Execution Setup on page 3-68

■ Activating a Version of an Execution Setup on page 3-68

■ Submitting an Execution Setup on page 3-69

See Chapter 13, "Execution and Data Handling" for information on using Execution
Setups in backchain execution and message-triggered submission.

About Execution Setups and Templates
In order to run an Oracle LSH executable object—Program, Load Set, Report Set,
Workflow, or Data Mart—you must create at least one Execution Setup for it.

Execution Setups become the submission form for the executable object. They can be
displayed in the Reports tab so that users with the appropriate privileges can submit
the associated Program, Load Set, Report Set, Workflow, or Data Mart for execution.

You can also create Execution Setups to submit a job at a single future point in time, on
a regularly scheduled basis, or when triggered by the receipt of an XML message from
an external system. These Execution Setups are not displayed in the Reports page, but
run automatically.

Execution Setups include a predefined set of system Parameters; see "System
Parameters" on page 3-60. They also include all the user-defined input and
input/output Parameters defined as visible in the executable object. These Parameters
are copies of the Parameters in the object and belong only to the Execution Setup. You
can modify them without affecting the executable object itself. You determine whether
these Parameters are visible to and settable by the person submitting the job.

More than one person can work on an Execution Setup at the same time, if they work
on different Parameter Sets. For example, one person can work on a Program's
Parameter settings and another person can work on system Parameters in the same
Execution Setup at the same time.

You can define multiple Execution Setups for the same executable object instance. For
example, you could define one Execution Setup for immediate execution, to be used to

Creating, Modifying, and Submitting Execution Setups

3-56 Oracle Life Sciences Data Hub Application Developer's Guide

test the Program, and another Execution Setup to run at regular intervals, for use on
production data. You could also define multiple Execution Setups with their
Parameters bound to different values.

Copying Execution Setups You can create a copy of one or more Execution Setups
for use with the same instance and then modify them as necessary.

Execution Templates If you create an Execution Setup that you think would be
useful to other instances of the same executable definition, you can make it available
for use as an Execution Template.

When you create an Execution Setup, you have the option of creating it from an
Execution Template. If you choose this option, the system displays a list of all the
Execution Setups that have been designated as Execution Templates in all instances of
the same object definition version, if any. You can select one and modify it as
necessary.

Forward Chaining Forward chaining is a special type of processing that executes the
programs automatically that directly or indirectly uses the data in a table, whenever
that table is updated. A single job—for example, the execution of a Load Set to load
data into Oracle LSH—triggers jobs that read from the tables the original job writes to,
and then triggers the jobs that read from tables the second set of programs writes to,
and so on. To be included in a forward chain, one Execution Setup for the executable
must be marked as Forward Chain Enabled and, if it should trigger additional
downstream forward chaining, as Cascade Enabled. In addition, the executable's Work
Area, Application Area, and Domain(s) must have forward chaining enabled. See
"Forward Chaining" on page 13-10 for more information.

Backchaining Backchaining is a special type of processing in Oracle LSH where the
system checks the data sources of a given executable to see if more current data exists
in Oracle LSH or even in a source data system, and if so, executes all the Load Sets and
Programs necessary to bring the most current data to the executable being submitted.
You can define a Submission Type of Backchain for an Execution Setup so that a
Program that operates on data generated by the current Program (for which you are
defining the Execution Setup) can trigger the execution of the current Program as part
of a backchain process. See "Backchaining" on page 13-12 for further information.

Execution Setup Classifications An Execution Setup has its own classifications. Its
classifications determine where Oracle LSH displays the submission form in the
Reports tab.

In addition, if a classification level value of any of the executable's Planned Outputs is
set to Inherited, the system classifies the corresponding actual output using the
classification value(s) of the Execution Setup for that level. The submission form and
the actual output are then located in the same folder on the Reports tab.

An Execution Setup's classification values, if inherited, are inherited from its object
(Program, Load Set, Data Mart, Report Set, or Workflow) instance. The object
instance's inherited classification values are inherited from the Work Area.

See "Classifying Objects and Outputs" on page 3-25 for instructions on classifying
defined objects, including Execution Setups.

Execution Setup and Output Security Execution Setups have their own user group
assignments, inherited from their executable instance, which inherits its assignments
from the Work Area. You can change the user group assignments if necessary; see
"Applying Security to Objects and Outputs" on page 3-29.

Creating, Modifying, and Submitting Execution Setups

Common Development Tasks 3-57

Execution Setup user group assignments determine two things:

■ The user groups' members can submit the Execution Setup to run the Program or
other executable, if they have the necessary privileges within the user group.

■ The user groups' members can view the output of the Program or other
executable, if they have the necessary privileges within the user group.

You can change an output's user group assignments after the output is generated.
To do so, navigate to the output in the Reports tab or from the job ID on your
Home Page and select Apply Security from the Actions drop-down.

If an output contains blinded or unblinded data, users needs special privileges to view
it; see "Managing Blinded Data" on page 13-15.)

Execution Setup Versions When you explicitly check out an Execution Setup, the
system creates a new version of the Execution Setup. In addition, when you modify an
Execution Setup, the system implicitly checks out the Execution Setup and gives it a
new version number.

When an active Execution Setup is submitted, the system implicitly checks it in, if it is
not already checked in; see "Activating a Version of an Execution Setup" on page 3-68.

Execution Setup Upgrade An Execution Setup must be synchronized with the
definition of its executable object's Parameters. You can synchronize it at any time by
selecting Upgrade Execution Setup from the Actions drop-down list in the Execution
Setup screen. When you submit the Execution Setup and when you install its
associated executable object, the system checks if an upgrade is required and performs
it. If the Execution Setup is checked in, the system implicitly checks it out, upgrades it,
and checks it in.

Creating an Execution Setup
The system creates an Execution Setup automatically if you click Submit directly in
the Properties screen of an executable object instance and no Execution Setup currently
exists. It is called Standard Execution Setup and is automatically set to be the default
Execution Setup. In addition, you can create any number of Execution Setups
manually as follows:

1. In the executable object instance for which you want to create an Execution Setup,
select Execution Setup from the Actions drop-down list.

The system opens the Execution Setup screen and displays any Execution Setups
that have already been defined for this executable object.

2. Click Create Execution Setup. The Create Execution Setup screen opens.

3. Select one of the following options:

■ Creating a New Execution Setup

Note: Only the user who first created or modified the Execution
Setup, and thereby checked it out, can undo the checkout. You can see
that person's username in the Checked Out By field.

Note: If the executable instance is modified to point to a different
object definition, the system cannot automatically upgrade the
Execution Setup. You must create a new Execution Setup.

Creating, Modifying, and Submitting Execution Setups

3-58 Oracle Life Sciences Data Hub Application Developer's Guide

■ Creating an Execution Setup from an Execution Template

Creating a New Execution Setup
When you choose to create a new Execution Setup without an Execution Template,
additional fields appear.

1. Enter values for the following fields:

■ Name. Give the Execution Setup a meaningful name, including an indication
of the Program or other executable it is for.

■ Description. Describe the Execution Setup, especially if there are multiple
Execution Setups for the same executable object.

■ Allow Use as Execution Template. Set to Yes if you want to make this
Execution Setup available as a template to other instances of the same
executable definition. Set to No if you do not want the Execution Setup to be
available as a template. You can change this setting only when the Execution
Setup is checked in.

2. Select a subtype and change classifications if necessary. The output resulting from
the submission of this Execution Setup may inherit its classifications from the
Execution Setup; see "Classifying Outputs" on page 3-27.

3. Click Apply. The system generates a default Execution Setup using the current
Parameter settings and returns you to the Execution Setup screen with the
Execution Setup name displayed in the Execution Setup List.

The current settings for Forward Chain Enabled and Cascade Enabled are
displayed. You can change these settings by selecting the Execution Setup and
clicking the appropriate button:

■ Forward Chain Enabled. If Yes, the Program or other executable can be
triggered during a forward chain process or begin the forward chain process.
Only one Execution Setup for the object can be set to Yes.

■ Cascade Enabled. If Yes, the Program or other executable can trigger the
execution of executables that read from the tables it writes to as part of the
forward chain process. Only one Execution Setup for the object can be set to
Yes, and it must also have Forward Chaining Enabled set to Yes.

Note: The Execution Setup's name is very important because users
submitting the executable from the Reports tab see only the Execution
Setup name and description and executable object type (and its
version number, validation status, and creation time). The Reports tab
does not display information about the executable object to be run
except for the object's type. Therefore the name/description
combination must be informative enough to allow users to
understand what they will get when they run the Execution Setup.

If you plan to make this Execution Setup available as an Execution
Template, remember that definers creating new Execution Setups
based on this one will see only its name, its owning executable
instance, and its validation and Runnable statuses.

If there are or will be other Execution Setups for the same object,
indicate what is unique about this one.

Creating, Modifying, and Submitting Execution Setups

Common Development Tasks 3-59

4. Click the Execution Setup's name in the Execution Setup column.

The system opens the Execution Setup Properties screen.

5. Modify as necessary. See "Modifying an Execution Setup and Setting Parameters"
on page 3-59.

6. Set the Execution Setup version to Active; see "Activating a Version of an
Execution Setup" on page 3-68.

Creating an Execution Setup from an Execution Template
When you choose to use an Execution Template, a search field appears.

1. Click the Search icon. The system displays all the Execution Setups available as
Execution Templates that have been created for instances of the same execution
object definition. For each Execution Template the system displays its Program
instance name, validation status, and runnable status.

2. Click the icon in the Quick Select column for the Execution Template you want to
use. The system returns you to the Create Execution Setup screen.

3. Click Apply. The system creates a new Execution Setup that is a copy of the
Execution Template you selected and returns you to the Execution Setup screen
with the Execution Setup name displayed in the lower portion of the screen.

4. Click the Execution Setup's name in the Execution Setup column.

The system opens the Execution Setup Properties screen.

5. Modify as necessary. See "Modifying an Execution Setup and Setting Parameters"
on page 3-59.

6. Set the Execution Setup version to Active; see "Activating a Version of an
Execution Setup" on page 3-68.

Modifying an Execution Setup and Setting Parameters
This section includes the following topics:

■ Name and Description on page 3-60

■ Allow Use as Execution Template on page 3-60

■ System Parameters on page 3-60

■ Runtime Parameters on page 3-65

See also:

■ Removing an Execution Setup on page 3-68

■ Activating a Version of an Execution Setup on page 3-68

■ Submitting an Execution Setup on page 3-69

Notes: Object types that do not write to tables, such as Data Marts,
cannot have Cascade enabled.

Even if these attributes are set to Yes, if forward chaining is not
enabled for the Work Area, this object cannot be executed as part of a
forward chaining process; see "Forward Chaining" on page 13-10 for
more information.

Creating, Modifying, and Submitting Execution Setups

3-60 Oracle Life Sciences Data Hub Application Developer's Guide

After you have generated a default Execution Setup you can modify the system
Parameters and the default values of the runtime Parameters. The Parameters in the
Execution Setup are copies of those in the executable object definition. Modifying them
has no effect on the object definition.

To appear in the Reports tab where it is available for general use, an Execution Setup
must be checked in and set to Active (see "Activating a Version of an Execution Setup"
on page 3-68). However, from the Execution Setup definition it is possible to submit
the Execution Setup even if it is checked out.

Name and Description
Click Update to modify the Execution Setup's Name and Description.

Allow Use as Execution Template
Set to Yes to make this Execution Setup available for use as a template to other
instances of this Program.

Set to No to make the Execution Setup unavailable as a template. This has no effect on
any existing Execution Setups based on this one.

System Parameters
The same set of system Parameters are included in all Execution Setups. You can
modify the Execution Setup to change the choices available to the person who uses the
submission screen to submit a job. Each system Parameter is described below.

The standard system Parameters are described below:

■ Submission Type on page 3-61

■ Notify on Completion on page 3-62

■ Data Currency on page 3-62

■ Execution Priority on page 3-62

■ Submission Mode on page 3-63

■ Blind Break on page 3-63

■ Force Execution on page 3-64

■ Timeout Value on page 3-64

■ Apply Snapshot Label on page 3-65

To modify system Parameters, do the following:

1. Click the System Parameters subtab in the Execution Setup screen. The System
Parameters screen opens.

2. Click the Update button in the System Parameters subtab.

3. You can modify the settings for any system Parameter as follows:

■ Select one of the following:

Note: The Execution Setup name is very important because it is what
users see in the Reports tab. The name must be descriptive enough to
allow users to understand what they will get when they run the
Execution Setup.

Creating, Modifying, and Submitting Execution Setups

Common Development Tasks 3-61

– Visible. The Parameter is visible and its value is modifiable in the
submission screen. This is the default value.

– Read Only. The Parameter is visible but not modifiable in the submission
screen.

– Hidden. The Parameter is not visible or modifiable in the submission
screen.

■ Allow. Each system Parameter has a defined list of values. Select the checkbox
for each value you want to make available to the user.

■ Default (Optional). Set one of the allowed values as the default by clicking the
radio button in the Default column next to the value. This value appears as
the default value in the Submission screen.

The system Parameters are:

Submission Type This system Parameter determines which submission methods this
Execution Setup accepts:

■ Deferred. A deferred submission runs once at a future scheduled time. Either you,
working in the Execution Setup definition, or a user working in the Reports tab,
can schedule the job to run one time in the future.

■ Immediate. An immediate submission runs as soon as possible. Either you,
working in the Execution Setup definition, or a user working in the Reports tab,
can submit the job for immediate execution.

■ Scheduled. A scheduled submission runs repeatedly on a regular schedule. Either
you, working in the Execution Setup definition, or a user working in the Reports
tab, can schedule the job to run on a regular basis in the future.

■ Backchain. Backchain Execution Setups are called by another job—one that
operates on data that has been loaded or generated directly or indirectly by this
Program or Load Set—that has been submitted with the Data Currency Parameter
set to Most Current Data Available. Users cannot submit a job for a backchain
execution. They can, however, submit an immediate, deferred, or scheduled job
that starts the backchain process. See "Backchaining" on page 13-12 for further
information.

■ Triggered. The Execution Setup accepts an XML message sent from an external
system as the trigger for submission. For example, when Oracle Clinical batch
validation has completed successfully, Oracle Clinical could send a message to
trigger loading fresh data into Oracle LSH. Users cannot submit a job for a
triggered execution. See "Using Message-Triggered Submission from External
Systems" on page 13-19 for further information.

Note: If you are defining an Execution Setup for backchaining, for
scheduled submission, or for triggered submission, you must define a
default value for each Parameter, including the system Parameters.

Note: If you define a backchain Execution Setup, you must click
Submit when you are finished. This creates a job of submission type
Backchain that waits until triggered by a backchain process. The
Execution Setup will not run during an actual backchain process
unless you have already submitted it.

Creating, Modifying, and Submitting Execution Setups

3-62 Oracle Life Sciences Data Hub Application Developer's Guide

Notify on Completion This setting determines when the person who submits a job
using this Execution Setup receives a notification upon completion of the job:

■ Job Failure. The submitter receives a Notification only if the job fails.

■ Never. The submitter does not receive any Notification about the status of the job.

■ Job Success. The submitter receives a Notification only if the job succeeds.

■ Job Warning. The submitter receives a Notification only if the job ends with a
status of Warning.

Data Currency This system Parameter has the following allowed values:

■ Current Immediate Source. This is the standard setting. The system processes the
most current data contained in the source Table instances (or, in the case of a Load
Set, the source data system).

■ Most Current Available (Triggers Backchain). This setting invokes a backchaining
job that reexecutes all Program and Load Set instances that directly or indirectly
feed data into the source Table instances of the current executable, if they meet the
following criteria:

– They have a submitted Execution Setup with a Submission Type of Backchain.

– Each executable instance between them and the current executable also has an
Execution Setup with a Submission Type of Backchain.

– Their source data is more current than their target data.

See "Backchaining" on page 13-12 for further information.

■ Specify Snapshot. This setting enables the user to specify a particular labeled or
timestamped snapshot of source data at a previous point in time to run the
Program against. If you select Specify Snapshot, you may also want to set the
following:

– Default Snapshot Label. From the drop-down list, select a snapshot label.
This label will appear as the default value in the submission form. The
drop-down list displays all snapshot labels shared by all source Table
instances.

– Lock Default Snapshot Label. If set to Yes, the person submitting the
Execution Setup cannot change data currency; the Data Currency subtab is
Read Only. If set to No, the submitter can change data currency in the Data
Currency subtab.

Execution Priority Set this value to determine the priority the system gives to the
execution of this job, compared to other jobs of the same technology type. The choices
are High, Normal, and Low.

Tip: When you define an Execution Setup to accept the Triggered
submission type, allow Immediate and Deferred submission as well.
The XML message must specify whether the job should be executed
immediately upon receipt of the message or at a scheduled time in the
future.

Creating, Modifying, and Submitting Execution Setups

Common Development Tasks 3-63

Submission Mode When the target Table instances require Reload or Transactional
High Throughput processing, you must specify Full or Incremental Processing. The
default value is Full.

■ Incremental mode for Reload processing. The system processes all records,
compares the primary or unique key of each record to the current records in the
table, and updates or inserts records as appropriate. Incremental mode never
deletes records and therefore takes less time to complete.

■ Full mode for Reload processing. The system does the same processing as in
incremental mode and then performs the additional step of soft-deleting all
records that were not reloaded. Full processing takes more time to complete but
accurately reflects the state of the data in the source.

■ Incremental mode for Transactional High Throughput processing. The system
appends data to the Table after the last record. The system hard-deletes data if the
Oracle LSH Program explicitly issues a Delete statement.

■ Full mode for Transactional High Throughput processing. The system truncates
the existing Table and loads fresh data into it. In this mode, you will lose all the
Blinded data in the Table, even if you run the job with the Dummy setting for
Blind Break.

You may decide to use incremental mode on jobs that are run frequently, but use full
mode at regular intervals on the same jobs when you need the most accurate data.

Blind Break This Parameter is relevant only when one or more source Table instances
either currently or formerly contained blinded data. Special privileges are required to
run a job on real, sensitive, blinded data and to see the resulting output. The values
available to the Definer in the Execution Setup depend on the current Blinding Status
of the source Table instances:

■ If none of the source Table instances has a Blinding Status, the only value available
is Not Applicable. You may want to hide the Parameter (set it to Hidden) to avoid
confusion.

■ If one or more of the source Table instances has a Blinding Status of Blinded, the
values available include Real (Blind Break) and Dummy. You can make the
Parameter Visible, allow both values, and make Dummy the default. Only users

Note: The system does not display the Incremental options for jobs
that do not have Reload or Transactional High Throughput Table
instances as targets.

Note: The default data loading mode is Full. If you do not want to
lose all your existing data, change the data loading mode to
Incremental.

Note: The submission screen contains additional system Parameters
that allow the user to apply a snapshot label to target Table instances
or to target and source Table instances at runtime. The user must also
supply the text of the label at runtime. See "Setting Submission Details
and Data Currency" in the Oracle Life Sciences Data Hub User's Guide
for further information.

Creating, Modifying, and Submitting Execution Setups

3-64 Oracle Life Sciences Data Hub Application Developer's Guide

with Blind Break privileges on all blinded source Table instances will be able to
select Real (Blind Break).

If you are using DMW and all source tables with a Blinding Status of Blinded are
blinded at the column, row, or cell level (not the table level), the Dummy Blind
Break option allows processing the masking values in LSH. These are stored in the
Dummy partition of the target table(s).

■ If one or more of the source Table instances has a Blinding Status of Unblinded,
and none of the source Table instances has a Blinding Status of Blinded, the values
available include Real (Unblinded) and Dummy. You can make the Parameter
Visible, allow both values, and make Dummy the default. Only users with
Unblind or Blind Break privileges on all unblinded source Table instances will be
able to select Real (Unblinded).

For further information, see "Managing Blinded Data" on page 13-15.

Force Execution If set to No, before running a job based on this Execution Setup, the
system compares the following for the current job and for the previous time the same
instance was executed and does not reexecute the job if all of the following are true:

■ The Program (or other executable) definition version is the same.

■ The Parameter values are the same.

■ The Source Job ID for the source Table instances is the same.

If all of the above are the same, then the same results should occur from running the
job again. The system does not run the job and instead gives the user a message that it
is a duplicate job. If any one of the above is different, the current job is not considered
a duplicate of a past job and the system executes it.

If set to Yes, the system runs the job even if the data has not been refreshed, the
Parameter settings are the same, and the Program version is the same.

Timeout Value You can set a default timeout value—the length of time the system
should continue to try to run the job after it has been submitted—by entering a
number in the Default Value field and selecting a default unit of time (Minutes, Hours,
Days, Weeks, Months). For example, if a report is scheduled to run once a day, a
timeout period of 24 hours would prevent generating two reports for the same day.

Tip: Oracle recommends processing DMW data in DMW, not LSH.
In particular, do not run DMW transformations and validation checks
in LSH.

Note: If you set the default value to Not Applicable or Dummy, the
System Parameters subtab displays the default value as No. If you set
the default to Real (Blind Break) or Real (Unblinded) the System
Parameters subtab displays it as Yes.

Note: In the case of a Report Set Execution Setup, the Report Set
itself always executes, whether Force Execution is set to Yes or not.
However, if Force Execution is set to No, the Programs in the Report
Set do not run if the conditions outlined above are true. In addition,
the Force Execution setting affects only Programs assigned to Report
Set Entries that are selected for inclusion in the job.

Creating, Modifying, and Submitting Execution Setups

Common Development Tasks 3-65

Alternatively, you can specify the allowed and default units of time without specifying
a default value, and let the user set the value.

Apply Snapshot Label The available values are:

■ None. Users cannot apply a snapshot label to any Table instances at runtime.

■ Both. Users can apply a snapshot label to both source and target Table instances at
runtime.

■ Target. Users can apply a snapshot label only to target Table instances at runtime.

Select one of these values to be the default. You can also specify a default label.

Runtime Parameters
The system generates the runtime Parameters in an Execution Setup from the input
and input/output Parameters, their default values and other settings, defined in the
executable object instance.

In the Runtime Parameters subtab the system displays each Parameter's default value
(if any) and its Required flag setting. You can change the default setting that will
appear in the submission screen by entering a value in the Parameter Value column.

If you want to view or change other settings, including Visible, Read Only, Required,
and the validation method, click the Parameter's hyperlink. See Chapter 6, "Defining
Variables and Parameters" for further information.

Predefined Runtime Parameters Some object types have predefined runtime
Parameters. In general, you should not change these Parameters in any way.

In particular, do not set values for the following Parameters in the Execution Setup:

■ In Oracle Load Sets, do not enter a remote location. This is a security risk. The user
submitting the Load Set for execution must have his or her own remote
location/connection, which requires a username and password on the external
Oracle system, or proper security access to a shared connection.

■ In SAS and Text Load Sets, do not specify the file to be uploaded. The person
submitting the Load Set for execution must enter a file name in the Server OS
Filename parameter or the Data File Name parameter depending on whether Load
From Server OS is Yes or No. The system uploads the file at the time that you
specify it. If you specify it during Load Set or Execution Setup definition, the data
in the file may be out of date by the time the user runs the Load Set.

Details about each predefined Parameter are included in the chapter about each object
type: "Setting Load Set Parameters" on page 7-10 and "Setting Data Mart Parameter
Values" on page 8-7. Also see "Setting Oracle BI Publisher Program Parameters" on
page 5-50.

Report Set and Workflow Execution Setups
This section contains the following topics:

■ About Report Set and Workflow Execution Setups on page 3-66

Note: If you add, remove, or modify Parameters in the executable
object, when you install the object the system automatically upgrades
its Execution Setups to reflect the change.

Creating, Modifying, and Submitting Execution Setups

3-66 Oracle Life Sciences Data Hub Application Developer's Guide

■ Modifying a Report Set or Workflow Execution Setup on page 3-66

For information on submitting a Report Set or Workflow for execution, see "Running a
Job from Reports, My Home, or Applications" in the Oracle Life Sciences Data Hub
User's Guide.

About Report Set and Workflow Execution Setups
Report Sets and Workflows have complex structures and contain other executable
objects, so their Execution Setups are more complex than other objects'.

Concurrent Editing Many people can work on a Report Set or Workflow Execution
Setup at the same time. However, only one person can work on a particular object or
Parameter Set at a time.

Upgrading Execution Setup Structure and Parameters The structure and Parameters
of the Report Set or Workflow definition and the Execution Setup must remain
synchronized. The system performs an automatic upgrade of the whole Execution
Setup—synchronizing it with both the structure and the Parameters of the Report Set
or Workflow—when the Report Set or Workflow is installed. In addition, when a
Program instance in a Report Set or Workflow is installed, the system upgrades the
Report Set or Workflow's Execution Setup to synchronize with the Program's
Parameters.

You can trigger synchronization manually at any time by selecting Upgrade Execution
Setup from the Actions drop-down list in the Execution Setup screen.

Execution Setup Versioning When a Report Set or Workflow is installed or
submitted, the system implicitly checks in any of its Execution Setups that are not
already checked in. When any user modifies any section of the Execution Setup, the
system implicitly checks out the Execution Setup and gives it a new version number.

The system also checks in the Report Set or Workflow and all its Execution Setups
when the Report Set or Workflow is copied.

Whenever the system performs an implicit checkin, if other people are working on any
part of the Execution Setup, the system immediately checks it out again so that they
can continue their work.

Modifying a Report Set or Workflow Execution Setup
This section contains information on the following sections of the screen:

■ Execution Setup Properties on page 3-67

■ Instances on page 3-67

■ Overlay Template Parameters on page 3-68

Note: You must install a Program instance in a Report Set for the
system to reflect changes to the Program's Parameters in the Report
Set's Execution Setup.

Note: Only the user who first created or modified the Execution
Setup, and thereby checked it out, can undo the checkout. You can see
that person's username in the Checked Out By field for the Report
Set-level Execution Setup.

Creating, Modifying, and Submitting Execution Setups

Common Development Tasks 3-67

■ Post-Processing Parameters on page 3-68

■ System Parameters on page 3-68

Execution Setup Properties You can click Update and modify the following
properties that belong to the Report Set Execution Setup as a whole:

■ Name of the Execution Setup.

■ Description of the Execution Setup.

■ Allow Use as Execution Template. Set to Yes to make this Execution Setup
available as a template for other Execution Setups in the Report Set definition.

Instances This tab displays information a little differently for Report Set and
Workflows:

■ Report Sets. For Report Sets, you see the Report Set structure, with Report Set
Entries displayed inside their parent Report Set Entries. You can Expand All,
expand a particular node, or select a Focus icon to expand a particular node and
hide the rest.

Click any Report Set Entry's hyperlink to set the runtime Parameters for that
Report Set Entry or its assigned Program instance.

■ Workflows. For Workflows, you see all executable objects contained in the
Workflow. Click any object's hyperlink to set its runtime Parameters.

The Instances subtab displays the following information:

■ Full Title. For Report Sets, this column displays each Report Set Entry's
concatenated full title that includes its Entry Number Prefix, Parent Number,
Delimiter, Entry Number, Entry Number Suffix, and Title.

For Workflows, this column displays the name of each executable object contained
in the Workflow.

■ Ready. If a checkmark in a green circle (the Ready icon) is displayed, all required
Parameters associated with the object on that line have a value. For Parameters
with a static list of values, the system checks if the value is valid. In Report Sets,
the system checks all Report Set Entries that are children of the Report Set instance
or Report Set Entry for which the icon is displayed; if any child Report Set Entry is
not ready, the Not Ready icon is displayed for the parent as well.

If an X in a red circle (the Not Ready icon) is displayed, at least one Parameter
does not have a value, or has an invalid value.

In the submission screen you can use the Refresh button to recalculate the status
of all the Ready? flags at the same time, to verify that all interdependent values are
valid.

■ Validation Status of the object on that line.

■ Volume Name. (Applies only to Report Sets) If the Report Set Entry begins a new
volume of the Report Set, the system displays the volume name.

Note: When you submit a Report Set for execution, you can specify
which Report Set Entries to execute by using the checkboxes in the
Include column.

Creating, Modifying, and Submitting Execution Setups

3-68 Oracle Life Sciences Data Hub Application Developer's Guide

■ Program Name. (Applies only to Report Sets) If a Program instance is assigned to
the Report Set Entry, the system displays its name.

■ Program Checked Out By. (Applies only to Report Sets) If the assigned Program
instance is checked out, the system displays the username of the person who
checked it out.

■ Planned Output Name. (Applies only to Report Sets) If a Planned Output of the
assigned Program instance is assigned to the Report Set Entry, the system displays
its name.

■ Filename Reference. (Applies only to Report Sets) If there is a Planned Output
assigned, the system displays its filename.

Parameters See "Creating Parameters for Sharing Values within the Report Set" on
page 9-25.

Overlay Template Parameters (Applies only to Report Sets) See "Setting Overlay
Template Parameter Values" on page 9-20 for information about each Parameter.

Post-Processing Parameters (Applies only to Report Sets) See "Setting
Post-Processing Parameter Values" on page 9-22 for information about each Parameter.

System Parameters The system displays the current values for the Execution Setup's
System Parameters; see "System Parameters" on page 3-60 for information about each
Parameter.

Removing an Execution Setup
You can remove an Execution Setup if you have delete privileges on Execution Setups
of the relevant subtype and also Modify privileges on the parent object's subtype.

To remove an Execution Setup, do the following:

1. In the Applications tab, go to the object instance that contains the Execution Setup
you want to remove.

2. Check out the object instance.

3. Select Execution Setup from the Actions drop-down list.

4. Click Go. The system opens the Execution Setup screen.

5. Select the Execution Setup you want to remove.

6. Click Remove. The system removes the Execution Setup.

Activating a Version of an Execution Setup
Only one version of an Execution Setup can appear in the Reports tab for submission
at any one time. Typically, it is the most recent version. However, you can select a
different version if you want to. Whichever version you want to use, you must
explicitly activate it or it does not appear in the Reports tab.

1. In the Applications tab, go to the object instance that contains the Execution Setup
you want to activate.

Note: Overlay Template Parameters are displayed in the Execution
Setup but not in the submission form.

Creating, Modifying, and Submitting Execution Setups

Common Development Tasks 3-69

2. Select Execution Setup from the Actions drop-down list.

3. Click Go. The system opens the Execution Setup screen.

4. Click the link to the Execution Setup. The system opens the Execution Setup's
Properties screen.

5. From the Actions drop-down list, select View Version History.

6. Click Go. The system opens the Execution Setup Version History screen with the
status of each version of the Execution Setup displayed in the Status column.

7. Select the version you want to be available for execution in the Reports tab and
click Set As Active. The system changes the status of that version to Runnable
Active. See "Execution Setup Statuses" on page 3-69.

Execution Setup Statuses To see an Execution Setup's status, select View Version
History from the Actions drop-down list. Execution Setups can have the following
statuses:

■ Not Runnable. An Execution Setup can be Not Runnable for the following
reasons:

– Its containing executable object instance has never been installed. To make the
Execution Setup runnable, install the object instance.

– Since the executable object instance was installed, one or more Parameters
have been modified. To make the Execution Setup runnable, select Upgrade
Execution Setup from the Actions drop-down list in the Execution Setup
screen.

– Changes have been made to the executable object instance (or its source
definition) that are incompatible with the Execution Setup and that the system
cannot automatically upgrade; for example, the executable instance now
points to a different object definition. In this case, you cannot make the
Execution Setup runnable. You must create a new Execution Setup.

■ Installable. The containing executable object instance has been installed, then
modified and checked in but not yet reinstalled. To make the Execution Setup
runnable, install the instance. The system automatically upgrades the Execution
Setup and changes its status to Runnable (unless the system cannot upgrade it, in
which case its status changes to Not Runnable).

■ Runnable. The Execution Setup is in synch with its containing executable object
instance but has not been set to Active. To make the Execution Setup runnable, set
it to Active.

■ Runnable Active. The Execution Setup is in synch with its containing executable
object instance and has been set to Active. It appears in the Reports tab. (Only one
version of an Execution Setup can be set to Active.)

Submitting an Execution Setup
When you have created an Execution Setup, you can submit it to execute the Program,
Load Set, Report Set, Workflow, or Data Mart, by clicking Submit in the Execution
Setups screen or in the Reports tab.

Note: You must also check in the Execution Setup on its Properties
screen or it does not appear in the Reports tab.

Viewing Data

3-70 Oracle Life Sciences Data Hub Application Developer's Guide

You can then set any Parameters defined as Visible and not Read Only and schedule
the job if the Execution Setup definition allows it. Instructions are included in
"Generating Reports and Running Other Jobs" in the Oracle Life Sciences Data Hub
User's Guide.

You can see the job's progress and details in the Jobs subtab of the object's Properties
screen or the Job Execution section of your My Home screen. Click the Job ID to open
the Job Details screen. Instructions for using the My Home screen are included in
"Viewing Reports and Other Outputs" in the Oracle Life Sciences Data Hub User's Guide.
You can also resubmit the Execution Setup from here.

If the job results in an output, you can see the output from the Job Details screen. If the
output is classified, you can also see it in the Reports tab. Instructions for browsing
and searching in the Reports tab are in "Viewing Reports and Other Outputs" in the
Oracle Life Sciences Data Hub User's Guide.

Viewing Data
This section contains the following topics:

■ Viewing Data within the Oracle Life Sciences Data Hub on page 3-70

■ Viewing Data with Visualizations on page 3-73

■ Viewing Data with Program-Generated Reports on page 3-73

■ Viewing Data Through an IDE on page 3-74

Viewing Data within the Oracle Life Sciences Data Hub
This section contains the following topics:

■ About Data Browsing on page 3-70

■ Customizing Data Browsing on page 3-71

About Data Browsing
You can view a Table instance's data only if:

■ The latest version of the Table instance is installed.

■ You have Read Data privileges for the Table instance.

■ For a blinded Table instance, you have blinding-related security privileges.

Navigation You can access the Browse Data feature in the following ways:

■ Work Area's Properties screen. Click the icon in the Browse Data column. The
icon is enabled only for Table instances whose latest version is installed.

■ Table instance's Properties screen. Select Browse Data from the Actions
drop-down list.

Note: In a Work Area you can see whether or not a Table instance
contains data. If the value in the Has Data column for the Table
instance is Yes, it contains data; if it is No, it does not contain data.

You can also see the latest and the installed Table instance version
numbers in the Work Area's Properties screen.

Viewing Data

Common Development Tasks 3-71

Data Currency By default you see the current data.

You can select a timestamp from the Data Currency drop-down list to view data which
is not current. The Data Currency drop-down list contains timestamps only if you
have loaded data into the Table instance multiple times. You can see the Table
instance's snapshot labels, if any, in parentheses next to the timestamp in the Data
Currency drop-down list.

For blinded Table instances, the Data Currency drop-down list contains different sets
of timestamps for dummy and real data. You can see the real data timestamps if you
select Real from the Blind Break option in the Customize screen. See "Customizing
Data Browsing" on page 3-71. You need the necessary privileges to use this feature.

Blinding For Table instances that support blinding, the following rules apply:

■ If the table contains blinded data, the system displays dummy data by default.

■ If the table contains unblinded data and you have the required privileges, the
system displays real data by default. If you do not have the privileges required to
see unblinded data, the system displays dummy data.

■ If the table does not support blinding, the system always displays real data.

Customizing Data Browsing
If you do not want to see all the Table Columns, or if you have the required privileges
and want to see blinded data, then click the Customize button on the Browse Data
screen.

You can customize the display through the following options:

Columns. When you click the Customize button for the first time, you can see the
Table's Column names in an area titled Included Columns. Another area titled
Available Columns contains no Column names. This is because by default, all
Columns are selected for viewing.

You can remove one or more Columns from view and also reorder them. After
reordering, the Column on the top in the Included Columns area in the Customize
Data Browse screen appears on the left in the Browse Data screen, and so on.

Do the following:

1. To remove Columns from view. Select the Column or Columns you want to
remove from view and move them into the Available Columns area of the shuttle.
You can use Shift+Click or Ctrl+Click to select multiple Columns. You can
double-click to move them or use the arrows.

2. To reorder columns. Use the Up and Down arrows to reorder the Columns in the
Included Columns area.

3. Click Apply.

You can now see the Columns you selected, in the order you selected.

Where Clause. You can use the Filter Table instance where feature to restrict the
data you see. To set up a Where filter,

1. Select either of the conditions to associate with a Table instance Column.

■ Show results when ALL results are met

■ Show results when ANY results are met

Viewing Data

3-72 Oracle Life Sciences Data Hub Application Developer's Guide

2. Select a Column from the drop-down list in the Column field. All available
Columns are listed according to their position.

3. Select a filter condition from the drop-down list. The available conditions depend
on the type of data in the particular Column.

4. Enter a value to filter by and select Apply. If the data type is VARCHAR 2, you
can select the Match Case checkbox to filter values by case.

You can add different filter conditions to the same Column or view a combination of
different Columns and conditions.

To include more Columns, select a Column from the drop-down list in the Add
Another section and select Add. You can then apply filter conditions to the second
Column. Similarly, use the Remove button to remove a Column and its filter
conditions.

For example, for a Demography table with Columns Age, Sex and Race, you can set up
the following Where filters:

■ To retrieve data about patients who are over 50 years old, select:

Column—Age, Condition—Greater than, Value—50

■ To see data about female patients who are older than 50 years, select:

Column—Age, Condition—Greater than, Value—50. Add another Column and
select:

Column—Sex, Condition—Is, Value—Female

■ To see records for patients of all races except white, select:

Column—Race, Condition—Is not, Value—White

Order By Clause. You can organize the data retrieved in any order using the Order
Table Instance by feature. You can specify an ascending or descending order for the
Column's values. By default, the system displays records by sorting the values from
the Column with an order number of 1 in ascending alphabetical or numerical order,
depending on the Column's data type.

To order a Table instance:

1. Select a Column from the drop-down list in the Column field. Columns are listed
according to their position in ascending order. Once selected, a Column does not
appear in the list.

2. Select either Ascending or Descending from the drop-down condition list. Data is
sorted in ascending order by default.

3. Select Apply.

You can add more Columns to order and view by using the choice list in the Add
Another section, and selecting the Add button.

Use the Remove button to remove a column from the Table instance display.

For example, for a Demography table with Columns Age, Race, and Sex:

■ To sort data by Age, select:

Column—Age

■ To sort data by Race, select:

Column—Race

■ To sort data in descending order of Age, and then ascending order of Sex, select:

Viewing Data

Common Development Tasks 3-73

Column—Age, Condition—Descending. Add another column and select:

Column —Sex

Blind Break The options you see in the Blind Break drop-down list depend on the
state of the Table instance and on your privileges:

■ Currently Blinded Table Instance. If the table contains blinded data, you may see
the following options:

– Dummy. The system displays dummy data, not the real, sensitive data. This is
the default behavior.

– Real (Blind Break). The system breaks the blind to show you the real,
sensitive data. This option is available only if you have the necessary
blinding-related privileges. The Table instance remains blinded.

■ Unblinded Table Instance. If the table has been unblinded, you may see the
following options:

– Real (Unblinded). The system displays the real, sensitive data that has been
unblinded (made available to everyone with Read Unblind privileges). This
option is available only if you have the necessary privileges. This is the default
behavior for people with those privileges.

– Dummy. The system displays dummy data, not the real, sensitive data. This is
the default behavior for people who do not have Read Unblind privileges.

■ Table Instance without Blinding. If the table does not support blinding (its
Blinding Flag is set to No), the system always displays real data; the Table
instance does not contain dummy data. The only option in the Blind Break
drop-down list is Not Applicable.

Viewing Data with Visualizations
After you have defined Business Areas (see Chapter 11, "Defining Business Areas for
Visualizations") you can create instantaneous on-screen visualizations of the data
specified in the Business Area.

Viewing Data with Program-Generated Reports
You can define a Program to display data in a report and run it at any time to see
current data. See Chapter 5, "Defining Programs" and "Creating, Modifying, and
Submitting Execution Setups" on page 3-55.

Tip: You can find more information on SQL in these books:

Oracle® DatabaseSQL Language Reference at
http://download.oracle.com/docs/cd/E11882_
01/server.112/e17118.pdf

Oracle® Database PL/SQL Language Reference at
http://download.oracle.com/docs/cd/E11882_
01/appdev.112/e17126.pdf

Oracle® Database Reference at
http://download.oracle.com/docs/cd/E11882_
01/server.112/e17110.pdf

http://download.oracle.com/docs/cd/E11882_01/server.112/e17118.pdf
http://download.oracle.com/docs/cd/E11882_01/server.112/e17118.pdf
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e17126.pdf
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e17126.pdf
http://download.oracle.com/docs/cd/E11882_01/server.112/e17110.pdf
http://download.oracle.com/docs/cd/E11882_01/server.112/e17110.pdf

Viewing Jobs

3-74 Oracle Life Sciences Data Hub Application Developer's Guide

Viewing Data Through an IDE
After you have installed a Work Area and loaded data into it (or, in the case of Oracle
data, created a view of data stored in an external system) you can use one of the
integrated development environments (IDEs) to view data in Oracle LSH. To do this,
you must set up a Program for this purpose:

1. Create a Program, including:

■ Source Table Descriptors mapped to the Table instances whose data you want
to view.

■ A Source Code object. You do not need to upload any actual source code files.

2. Check in and install both the Program and the Table instances.

3. Check out the Program definition.

4. In the Program instance, launch the IDE.

5. Query the data as necessary.

For further information, see Chapter 5, "Defining Programs".

Viewing Jobs
You can see a record of each submission of an executable object instance from the Jobs
subtab on its Properties screen. The Jobs subtab shows jobs submitted by all users for
all versions of the object instance.

You can set the Show filter to:

■ All. Displays all submissions of the object instance.

■ Deferred. Displays all submissions generated by Execution Setups with a single
deferred execution.

■ Scheduled. Displays all submissions generated by Execution Setups with an
execution schedule.

■ Today's. Displays all jobs with a Start TS of sysdate (the system ignores the time).

For each job, the system displays the following information. You can sort on any
column by clicking the column header.

■ Job ID. Click the hyperlink to see Job Execution Details. (Job execution details are
explained in the My Home section of the Oracle Life Sciences Data Hub User's Guide
chapter on tracking job execution.)

■ Submission Type. The way the job was submitted for execution:

– Immediate. The job was run as soon as it was submitted.

– Deferred. The job was set up to run once at a later point in time from when it
was submitted.

– Scheduled. The job was one of series of regularly sch

eduled executions of the same executable object.

– Backchain. The job was run as part of a backchain process ensuring that
another job ran on the most current data available. For further information see
"Backchaining" on page 13-12.

■ Job Status. The highest job status the job has achieved. If the job is in progress, the
status displayed is the current status. If the job has ended in failure or been

Viewing All Outputs of a Program or Report Set

Common Development Tasks 3-75

aborted, the system displays the execution status the job had at the time it ended.
For an explanation of job statuses, see the Oracle Life Sciences Data Hub User's Guide
chapter on job execution.

■ User Name. The name of the user who submitted the job.

■ Instance Version. The version number of the object instance at the time of
submission.

■ Execution Setup Name. The name of the Execution Setup used for submission.

■ Submit TS. The submission timestamp.

■ Start TS. The timestamp of the time the job started.

■ End TS. The timestamp of the time the job ended.

Viewing All Outputs of a Program or Report Set
You can view all existing outputs of executable objects several ways:

Viewing All Outputs of an Instance in the Work Area Properties Screen
You can see all outputs of a particular executable object instance from its Work Area;
see "View All Outputs" on page 12-7 for information.

Viewing All Outputs from the My Home or Reports Tab
You can also see outputs from the My Home and Reports tabs by clicking the Job ID.
For further information, see "Viewing Reports and Other Outputs" in the Oracle Life
Sciences Data Hub User's Guide.

Viewing All Outputs of a Program or Report Set
In addition to the preceding options, you can view all outputs of a Program or Report
Set as follows:

Viewing All Program Outputs
To view existing outputs for a Program, do the following:

1. Navigate to a Program definition or instance.

2. In the Planned Output subtab, click the name of the Planned Output whose
actually outputs you want to see. The selected Planned Output's Properties screen
opens.

3. From the Actions drop-down list, select View Existing Output. The View Existing
Outputs screen opens, listing all existing outputs.

Note: To update the job status as the system processes the job, click
Refresh.

Note: The system displays existing outputs for all instances of the
Program definition, even if you are in the Program instance's
Properties screen. You can click on the Program Instance Name
column heading to sort by Program instance.

Using the Actions Drop-Down List

3-76 Oracle Life Sciences Data Hub Application Developer's Guide

4. Click the icon in the View column to open the actual output file.

Viewing All Report Set or Report Set Entry Outputs
To view existing outputs for a Report Set, do the following:

1. Navigate to a Report Set or Report Set instance Structure view screen.

2. Select the Report Set top level or the Report Set Entry whose outputs you want to
see.

3. From the Select Object and: drop-down, select View All Outputs and click Go.
The View Existing Outputs screen opens, listing all existing outputs.

4. Click the icon in the View column to open the actual output file.

Information Displayed
For each Program, Report Set, or Report Set Entry output, the View Existing Outputs
screen displays the following information:

■ File Name. Click the hyperlink to see the output's properties.

■ Output Validation Status

■ Creation TS (timestamp)

■ Creation User (the username of the person who ran the Program instance that
generated the output)

■ Job ID. Click the hyperlink to see the job execution details.

■ Program Instance Name

■ Program Instance Version

■ Path to Executable Instance (the location of the Program or Report Set instance)

■ Title

Using the Actions Drop-Down List
You can use the Actions drop-down list to modify an object's classifications, security
user group assignments, validation status, and more.

Actions apply only to the object definition or the instance, not both. If you are in a
Work Area, you are working on an object instance and the action applies only to the
instance. To apply them to the definition, you must work in the definition directly in
its Domain or Application Area.

Not all actions are available for both object definitions and instances. Also, not all
actions change the object definition or instance; some actions only display specific
information about the object definition or instance.

You do not need to click either Update or Check Out.

The following choices are available. Unless otherwise noted, they are available for both
the definition (in its Domain or Application Area only) and the instance (in its Work
Area) if you have the necessary privileges.

■ Assign Classification. You can change the classification values assigned to the
object. Classification values help users find the object using Advanced Search and
in the case of instances, may affect the classification of the object's outputs. See
"Classifying Objects and Outputs" on page 3-25 for further information.

Defining Planned Outputs

Common Development Tasks 3-77

■ Apply Security. Objects automatically inherit the user group assignments of their
parent. You can remove those assignments and add others as necessary. See
"Applying Security to Objects and Outputs" on page 3-29 for further information.

■ Automatic Mapping by Name (executable instances only). Map Table Descriptors
to Table instances with the same name. See "Automatic Mapping by Name" on
page 3-46 for further information.

■ Execution Setups (executable instances only). See "Creating, Modifying, and
Submitting Execution Setups" on page 3-55 for further information.

■ Reports. You can generate reports that provide information about Table definitions
and instances; see Chapter 14, "System Reports" for further information.

■ Support Validation Info. You can change the instance's validation status and add
outputs and documents as supporting information. See "Validating Objects and
Outputs" on page 3-31 for further information.

■ Table Descriptors from Existing Table Instances (executable instances only).
Create Table Descriptors from existing Table instances and map them at the same
time. See "Creating Table Descriptors from Table Instances and Simultaneously
Mapping Them" on page 3-53 for further information.

■ Table Instances from Existing Table Descriptors (executable instances only).
Create Table instances from existing Table Descriptors and map them at the same
time. See "Creating Table Instances from Table Descriptors and Simultaneously
Mapping Them" on page 3-53 for further information.

■ Upgrade All Instances From the definition, you can upgrade any or all instances
of the definition to the latest version of the definition. See "Upgrading One or
More Instances from the Definition" on page 3-15 for further information.

■ Upgrade Instance (instances only). See "Upgrading Object Instances to a New
Definition Version" on page 3-15 for further information.

■ Version Label. You can apply a label to the current version of the object definition
or instance. See "Version Labels" on page 3-13 for further information.

■ View All Outputs. (Program definitions and instances only) Use this option to see
all outputs generated by a particular Program definition or instance; see "Viewing
All Outputs of a Program or Report Set" on page 3-75 for further information.

■ View Version History Use this option to see all previous versions of the definition.
See "Version History" on page 3-14 for further information.

Defining Planned Outputs
Different types of objects have different requirements for Planned Output definitions,
which are placeholders for the actual outputs generated by the object during
execution. See:

■ Defining Planned Outputs on page 5-22

■ Oracle Load Set Planned Outputs on page 7-13

■ SAS Load Set Planned Outputs on page 7-16

■ Text Load Set Planned Outputs on page 7-23

■ OC Stable Interface Tables Load Set Planned Outputs on page 7-25

■ OC DX SAS Views Load Set Planned Outputs on page 7-26

■ OC Data Extract Views Load Set Planned Outputs on page 7-28

Defining Planned Outputs

3-78 Oracle Life Sciences Data Hub Application Developer's Guide

■ OC Design and Definition Load Set Planned Outputs on page 7-31

■ OC Global Metadata Load Set Planned Outputs on page 7-32

■ OC Labs Load Set Planned Outputs on page 7-34

■ OC Randomization Load Set Planned Outputs on page 7-36

■ OC Study Data Load Set Planned Outputs on page 7-38

■ Text Data Mart Planned Outputs on page 8-11

■ SAS Data Mart Planned Outputs on page 8-12

■ Oracle Export Data Mart Planned Outputs on page 8-13

■ About Report Set Planned Outputs on page 9-51

■ Workflow Planned Outputs on page 10-17

4

Defining Tables 4-1

4Defining Tables

This section contains information on the following topics:

■ About Tables on page 4-1

■ Creating a Table on page 4-3

■ Setting and Modifying Table Attributes on page 4-6

■ Using the Table Properties Screen on page 4-8

■ Defining Table Columns on page 4-10

■ Defining Table Constraints and Indexes on page 4-12

■ Modifying Tables on page 4-15

About Tables
The tables that store data in the Oracle Life Sciences Data Hub (Oracle LSH) are Oracle
tables with additional metadata developed especially for Oracle LSH. Oracle LSH
database tables are designed to hold data that originated in either a SAS or an Oracle
system, or both. They are designed so that computer programs based on either Oracle
or SAS technology can read from or write to any Oracle LSH table. Oracle LSH tables
have the following special characteristics:

■ Both Oracle and SAS Metadata Attributes. Oracle LSH database tables have
Oracle and SAS names and a SAS label at both the table/data set and
column/variable levels.

■ Blinding Attributes. Oracle LSH tables have special attributes for use in
maintaining securely blinded clinical data. See "Managing Blinded Data" on
page 15 for further information.

■ Data Processing Attribute. Oracle LSH tables have a special attribute whose value
determines how the system processes data written to each table. Most methods of
data processing result in an audit trail of all data changes within the table. See
"Data Processing Types" on page 13-2.

Table Definitions and Instances You must create both a Table definition and a Table
instance, and install the instance in the database. See "Object Definitions and Instances,
and their Containers" on page 1-4 for further information.

The Table definition is a metadata representation of a Table that includes most of the
detailed specifications of the Table, including the number of Columns, the name, data
type and length of each Column, and primary key, unique key, and check constraints.

About Tables

4-2 Oracle Life Sciences Data Hub Application Developer's Guide

The Table instance contains a pointer to the Table definition and a few details such as a
mapping to at least one Table Descriptor contained in a Program or other executable
instance. To actually store data in a table, you must install the Table instance in the
database. The installation process instantiates the metadata from both the Table
instance and the Table definition to which it points in the database to create a database
table. Some attributes belong to both the definition and the instance. In this case, you
can overwrite the value in the instance, and the installation process creates a database
table with the value specified for the instance. As with other object definitions in
Oracle LSH, you can create multiple instances of the same Table definition.

Reading from and Writing to Tables There are several types of objects that can read
data from and/or write data to an Oracle LSH Table instance, as follows. Each type
contains a Table Descriptor for each Table instance they either read from or write to.
The Table Descriptor and Table instance must be mapped. For further information, see
"Defining and Mapping Table Descriptors" on page 3-36.

■ Programs. Programs can read from and/or write to installed Oracle LSH Table
instances. Report Sets and Workflows contain Programs, and therefore they can
indirectly read from and/or write to Table instances. Only one Program instance
can write to a particular Table instance.

■ Load Sets. A Load Set loads data from an external system into one or more
installed Oracle LSH Table instances (see Chapter 7, "Defining Load Sets").

■ Data Marts. A Data Mart reads data from an installed Oracle LSH Table instance
and copies the data into a file (see Chapter 8, "Defining Data Marts").

■ Business Areas. A Business Area contains Table Descriptors that allow a data
visualization tool to read data from Oracle LSH Table instances.

Creating Tables As you develop applications in Oracle LSH, you can create Oracle
LSH Tables in the following ways.

Working in a Work Area, you can:

■ Create a Table instance from an existing Table definition

■ Create a new Table instance and Table definition manually at the same time

■ Create a Table instance and Table definition from an existing SAS data set located
in an external system

Working in a Program, Load Set, Data Mart, or Business Area you can:

■ Create a Table Descriptor from an existing Table definition

■ Create a Table Descriptor and Table definition manually at the same time

■ Create a Table Descriptor from an existing SAS data set located in an external
system

■ Create one or more Table instances from one or more Table Descriptors (using the
Actions drop-down list)

■ Create one or more Table Descriptors from one or more Table instances (using the
Actions drop-down list)

In addition, working in a Load Set you can create a Table Descriptor from a table, data
set, or view in an external system.

You can also create a Table definition directly in a Domain or Application Area if you
have the necessary privileges. However, you cannot use the definition for storing data
until you create an instance of it in a Work Area and install it in the database.

Creating a Table

Defining Tables 4-3

Columns Table Columns are instances of Variables, as are Parameters. See Chapter 6,
"Defining Variables and Parameters"for further information.

Reports on Table Definitions and Instances From the Actions drop-down list, you
can generate reports that provide information on a Table definition or instance; see
Chapter 14, "System Reports"for further information.

Creating a Table
This section contains the following topics:

■ Creating a New Table Definition and Instance on page 4-4

■ Creating an Oracle LSH Table From a SAS Data Set on page 4-5

■ Creating a New Instance of an Existing Table Definition on page 4-6

When you create a Table in a Work Area, you are actually creating an instance of a
Table definition.

To create a new Table instance:

1. In a Work Area, select Table from the Add drop-down list.

2. Click Go.

The system displays the Create Table screen.

3. Choose one of the following options:

■ Create new table definition and instance. Choose this option if no Table
definition exists that can meet your needs, either as it is or with some
modification.

■ Create an instance of an existing Table definition. Choose this option if an
Oracle LSH Table definition already exists that meets your needs.

If you can adapt an existing Table definition to make it fit your needs, first
copy it into the current Application Area, then choose this option and select
the copied definition. See "Finding an Appropriate Definition" on page 3-2 and
"Reusing Existing Definitions" on page 3-2 for further information.

■ Create new table definition and instance from SAS data set. Choose this
option if you want to create an Oracle LSH Table with the same metadata
structure as an existing SAS data set.

4. Depending on your choice, follow one of the following sets of instructions:

■ Creating a New Table Definition and Instance on page 4-4

■ Creating an Oracle LSH Table From a SAS Data Set on page 4-5

■ Creating a New Instance of an Existing Table Definition on page 4-6

5. Modify the default attribute settings as necessary; see "Setting and Modifying
Table Attributes" on page 4-6.

6. Define Columns as necessary; see "Defining Table Columns" on page 4-10.

7. Define Constraints and Indexes as necessary; see "Defining Table Constraints and
Indexes" on page 4-12

Creating a Table

4-4 Oracle Life Sciences Data Hub Application Developer's Guide

Creating a New Table Definition and Instance

Figure 4–1 Process of Creating a Table Definition and Instance

When you select Create new table definition and instance in the Create Table screen,
additional fields appear.

1. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ Oracle Name (up to 30 characters, uppercase, no spaces). Enter text or accept
the default value. The system automatically creates the default from the text
you entered in the Name field, converting it to uppercase, with underscores (_
) substituted for spaces, truncated to 30 characters if necessary.

■ SAS Name (up to 32 characters, uppercase, no spaces). Enter text or accept the
default value. The system automatically creates the default from the text you
entered in the Name field, converting it to uppercase, with underscores (_)
substituted for spaces, truncated to 32 characters if necessary.

■ Enter a SAS Label (optional, up to 256 characters). Enter text or accept the
default value. The system automatically creates the default from the text you
entered in the Name field.

2. In the Classification section, select the following for both the definition and the
instance:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

3. Click Apply to save your work and continue defining the Table.

The system opens the Properties screen for the new Table instance.

4. Define the details. See:

■ Setting and Modifying Table Attributes on page 4-6

■ Defining Table Columns on page 4-10

■ Defining Table Constraints and Indexes on page 4-12

Creating a Table

Defining Tables 4-5

Creating an Oracle LSH Table From a SAS Data Set
You can upload SAS data set metadata into Oracle LSH to create a Table with the same
structure as a data set in an integrated external system. The system creates Table
Columns with the same data type and length as the variables in the data set.

The system searches for Variables in the same Application Area with the same name,
data type, and length as each of the variables in the data set. If a matching Variable
exists, the system bases a Column of the Table definition on it. If a Table definition
with the same name already exists in the Application Area, the system appends _1 to
it, or _x if the Table name already has a number appended, where x is the next larger
integer.

Figure 4–2 Process for creating a SAS Data Set

When you select Create new table definition and instance from SAS data set in the
Create Program screen, additional fields appear.

1. Click Browse. A standard Choose file pop-up window opens.

2. Select the .sas file on a local or shared drive and click Open.

3. In the Classification section, select the following for both the definition and the
instance:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

4. Click Apply to save your work and continue defining the Table.

The system opens the Properties screen for the new Table instance.

5. Define the Table details in the lower part of the screen. See:

■ "Defining Table Columns" on page 4-10

■ "Defining Table Constraints and Indexes" on page 4-12

Note: Oracle LSH gives SAS variables of SAS format BEST8 a length
of 8 and Precision set to null.

Setting and Modifying Table Attributes

4-6 Oracle Life Sciences Data Hub Application Developer's Guide

Creating a New Instance of an Existing Table Definition
If you use an existing Table as a definition source, its Columns and other properties are
already defined. See "Creating an Instance of an Existing Definition" on page 3-3.

Setting and Modifying Table Attributes
When you create a new Table definition and/or Table instance, the system populates
its attribute values. To change these values, as well as the name and other attributes
described in "Creating a New Table Definition and Instance" on page 4-4, click Update.

Process Type The processing type determines how Oracle LSH writes data to the
Table instance. See "Data Processing Types" on page 13-2 for information.

For Table instances that are the target of an Oracle-technology Load Set, you can
instead select Create Table as a View from the Process Type drop-down list. No
processing type is required because the system does not write data to the Table
instance. Instead, you use the Table instance as a pass-through view to see data in the
source system. The option appears after you map the Table instance to an
Oracle-technology Load Set.

Allow Snapshot Snapshots are possible only on audited Tables (Reload, Transactional
with Audit, or Staging with Audit). See "Data Snapshots" on page 13-9.

■ If set to No, creating and labeling snapshots of this Table instance is not allowed.

■ If set to Yes, users can create and label snapshots of this Table instance.

Blinding Flag This setting has effect only for Table instances. The setting in the Table
definition serves only as a default setting for instances of that Table definition. See
"Managing Blinded Data" on page 13-15 for further information.

■ If set to No, the Table instance is intended to never contain blinded data.

■ If set to Yes, the Table instance may contain blinded data. The system maintains
two sets of rows: one set for the real data and another set for dummy data,
effectively partitioning the table in the database.

Note: You can also create an Oracle LSH Table from a SAS data set
when you define Load Set Table Descriptors. You can then use the
Actions drop-down list item Table Instance from Existing Table
Descriptor to create an identical target Table instance and map the
two.

Note: The system prevents you from selecting a processing type that
requires a primary or unique key (Reload or Transactional with Audit)
until you have done the following:

■ Defined Columns for the Table

■ Defined a primary or unique key for the Table

■ In the Audit Key Constraint field, which appears when you select
a processing type that requires a primary or unique key, selected
the primary or unique key you want the system to use for
auditing. See "Data Auditing" on page 13-8.

Setting and Modifying Table Attributes

Defining Tables 4-7

Blinding Status If the Blinding Flag is set to Yes, you can set the Blinding Status
attribute to one of two values:

■ Blinded. The real, sensitive data cannot be viewed or operated on except by a user
with Blind Break privileges. Any user with normal security access to the Table
instance can view and operate on the dummy data.

■ Unblinded. A person with special privileges can change the Blinding Status from
Blinded to Unblinded; for example, at the end of a trial. After the status is set to
Unblinded, users require special, but less restrictive, privileges to view and
operate on the unblinded data. See the chapter on security in the Oracle Life
Sciences Data Hub Implementation Guide for more information on blinding-related
privileges. See also "Managing Blinded Data" on page 13-15.

If the Blinding Flag is set to No, you can set the Blinding Status attribute to one of two
values:

■ Not Applicable. This is the default value. It is intended for use with Table
instances that never will contain sensitive information that would require
blinding.

■ Authorized. Use this status in the rare case that the Table instance is the target of a
Program that reads from a blinded Table instance, and the Program is written in
such a way that this target Table instance will never contain sensitive data that
should be blinded. When the Blinding Status is set to Authorized, the system
allows users who have Blind Break privileges on all blinded source Table instances
to run the Program that writes to this Table instance. These users see a warning
and must confirm that they want to run the Program.

You may need to use this feature, for example, when creating dummy data; see
"Loading Real and Dummy Data" on page 13-16.

Definition Source This field applies to the instance only. It specifies the Table
definition to which this Table instance points. See "Definition Source" on page 4-16.

Tablespace Name If your company has created its own tablespaces, select the
appropriate tablespace for the actual database table created when you install this Table
instance. If you do not enter a value, the system creates the table in the default
tablespace for the database.

1. Click the Search icon. The Search and Select window opens.

Note: If you change the setting of the Blinding flag for a Table
instance that is already installed, you cannot use an Upgrade-mode
Work Area installation to reinstall the new version of the Table
instance. You must do a Full-mode Work Area install to apply a new
blinding status to an installed Table instance, which deletes the Table
instance's data; see "About Work Area Installation" on page 12-11.

Note: While you are developing a Program that reads from a blinded
Table instance and writes to a nonblinded Table instance, set the target
Table instance's Blinding flag to Yes until you are sure that neither the
Program nor its log file exposes any sensitive information.

Using the Table Properties Screen

4-8 Oracle Life Sciences Data Hub Application Developer's Guide

2. Enter the name of the tablespace you are looking for and click Go. You can use the
% wildcard, but not as the first character. The system displays the tablespaces that
meet the search criteria.

3. Click the Quick Select icon. The system returns you to the Table instance screen
with the selected tablespace displayed.

Using the Table Properties Screen
This section contains the following topics:

■ Instance Properties on page 4-8

■ Definition Properties on page 4-9

■ Buttons on page 4-9

■ Using the Actions Drop-Down List on page 3-76

■ Subtabs:

– Defining Table Columns on page 4-10

– Defining Table Constraints and Indexes on page 4-12

See also Figure 4–1, "Process of Creating a Table Definition and Instance" on page 4-4.

See "Modifying Tables" on page 4-15 for information on modifying Tables.

If you are working in a Work Area, you see the properties of both the Table instance
and the Table definition it references. If you are working directly on the definition in
an Application Area or Domain, you see only the properties of the definition.

Instance Properties
You can see the following instance properties:

Name You can click Update and modify the name. See "Naming Objects" on page 3-6
for further information.

Description You can click Update and modify the description. See "Creating and
Using Object Descriptions" on page 3-6 for further information.

Oracle Name This is the Table's name to be used in PL/SQL code.

SAS Name This is the Table's name to be used in SAS code.

SAS Label This is an optional field. You may see a SAS label for the Table here.

See "Setting and Modifying Table Attributes" on page 4-6 for a description of the
following:

■ Process Type on page 4-6

■ Allow Snapshot on page 4-6

Note: The list of tablespace name values is stored in the lookup
CDR_TABLESPACE_NAMES. For information on adding values, see "
Adding, Modifying, or Discontinuing a Lookup Value" in the Oracle
Life Sciences Data Hub System Administrator's Guide.

Using the Table Properties Screen

Defining Tables 4-9

■ Blinding Flag on page 4-6

■ Blinding Status on page 4-7

■ Definition Source on page 4-7

■ Tablespace Name on page 4-7

Validation Status This field displays the current validation status of the Table
instance. If you have the necessary privileges, you can change the validation status by
selecting Validation Supporting Information from the Actions drop-down list. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Table: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Version This field displays the current version number of the Table instance.

Version Label This field displays the version label, if any, for the current Table
instance version.

For further information on object versions, see "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Definition Properties

Checked Out Status This field displays the status of the definition: either Checked
Out or Checked In. You must check out the definition to modify Columns and
Constraints/Indexes. See "Understanding Object Versions and Checkin/Checkout" on
page 3-9 for further information.

Latest Version If set to Yes, this Table instance is pointing to the latest version of the
Table definition. If set to No, this Table instance is pointing to an older version of the
Table definition.

Checked Out By This field displays the username of the person who has the Table
definition checked out. See "Understanding Object Versions and Checkin/Checkout"
on page 3-9 for further information.

Version Label This field displays the version label, if any, for this definition version.

Validation Status This field displays the current validation status of the Table
definition. If you are working directly in the definition in an Application Area or
Domain and you have the necessary privileges, you can change the validation status
by selecting Validation Supporting Information from the Actions drop-down list. If
you are working in an instance of the Table in a Work Area, and you want to change
the validation status of the definition, you must go to the definition. See "Validating
Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Table: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Buttons
From a Table instance in a Work Area, you can use the following buttons:

Defining Table Columns

4-10 Oracle Life Sciences Data Hub Application Developer's Guide

Update Click Update to modify the Table instance properties. See "Modifying Table
Instance Properties" on page 4-15.

Check In/Out and Uncheck Click these buttons to check out, check in, or uncheck the
Table definition. Different buttons are displayed in the Table Definition Properties
section depending on the Checked Out Status and whether or not you are the person
who has the definition checked out. If someone else has checked out the definition,
you cannot check it in or uncheck it. The username of the person who has checked it
out is displayed. See "Understanding Object Versions and Checkin/Checkout" on
page 3-9.

Defining Table Columns
To create a new Table Column:

1. In the Columns subtab of a Table, click Add. The system displays the Create
Column screen.

2. Choose one of the following options:

■ Create a New Column and Variable. Choose this option if no Variable
definition exists that meets your needs. See "Create a New Column and
Variable" on page 4-10.

■ Create a Column from an Existing Variable. Choose this option if a Variable
already exists that meets your needs. Using this option whenever possible
increases consistency and reusability in your Oracle LSH applications.

See "Finding an Appropriate Definition" on page 3-2 and "Reusing Existing
Definitions" on page 3-2 for further information. For instructions, see
"Creating an Instance of an Existing Definition" on page 3-2.

Create a New Column and Variable
To create a new Column definition and instance at the same time, enter the following
information:

1. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ Data Type. Select one of the following from the drop-down list.

– VARCHAR2. Specifies a variable-length character string. For each row, the
system stores each value in the Column as a variable-length field unless a
value exceeds the Column's maximum length, in which case the system
returns an error.

– NUMBER. Stores zero, positive, and negative fixed and floating-point
numbers. A Number Column can contain a number with or without a

Note: Do not use special characters in column names, except
underscore (_). If you do use other special characters, Oracle LSH
automatically converts them to underscores in the SAS Name, whose
default value is derived from the Name. For example, if you upload a
column with the name COL$UMN, Oracle LSH automatically
converts the name to COL_UMN in the SAS Name.

Defining Table Columns

Defining Tables 4-11

decimal marker and/or a sign (-). All standard rules for the Oracle
Number data type apply.

– DATE. For each Date value, Oracle stores the following information:
century, year, month, date, hour, minute, and second. Although date and
time information can be represented in both character and number
datatypes, the Date datatype has special associated properties.

■ Length. The maximum number of bytes or characters of data that the Column
can hold. The requirements vary according to the data type:

– VARCHAR2. A value for length is required and must be between 1 and
4000 characters.

– DATE. The system disregards the length value, if any.

– NUMBER. A value for length is optional.You can leave the length and
precision null, and Oracle LSH treats the number column as having the
maximum possible length.

■ Precision. (This field appears only if you select a data type of NUMBER.) The
total number of digits allowed. For example, if Precision is set to 2 and a data
value is 34.333 is entered in this Column, the system stores the data value as
34.33. Oracle guarantees the portability of numbers with precision ranging
from 1 to 38.

■ Oracle Name. Name to use for the Column in PL/SQL source code. The value
defaults from the Name value, converted to uppercase and with underscores
substituted for spaces. You can change the default value.

■ SAS Name. Name to use for the Column in SAS source code. Enter text or
accept the default value. The system automatically creates the default from the
text you entered in the Name field, converting it to uppercase, with
underscores (_) substituted for spaces.

■ SAS Label (Optional) Enter up to 200 characters.

■ SAS Format Required:

– For columns of VARCHAR2 data type, by default, the system enters a
dollar sign ($) followed by the value you entered in the Length field.

– For columns of NUMBER data type, by default, the system enters a
period/full stop (.).

■ Default Value (optional). You can enter a value to serve as the default for this
Column.

■ Nullable. If set to Yes, null values are allowed in this column. If set to No,
each row must have a value in this column.

2. In the Classification section, select the following for the Variable:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

3. Click Apply to save your work and continue defining the Table.

The system opens the Properties screen for the new Table instance.

Defining Table Constraints and Indexes

4-12 Oracle Life Sciences Data Hub Application Developer's Guide

Create a Column from an Existing Variable
You can create individual Columns as instances of existing Columns, as you can for
other objects. In the case of Columns, a Column definition is really a Variable.

For instructions, see "Creating an Instance of an Existing Definition" on page 3-2.

Defining Table Constraints and Indexes
This section contains the following topics:

■ Check Constraint on page 4-13

■ Non-Unique Index on page 4-13

■ Primary Key on page 4-14

■ Unique Key on page 4-14

About Constraints
You can define Constraints to enforce limitations on data in each row of a table. Oracle
LSH automatically generates an index based on the Primary Key Constraint. Oracle
LSH Constraints and indexes appear as Oracle table constraints and indexes for Oracle
technology Programs and as SAS data set constraints and indexes for SAS technology
Programs.

You must define the Table's Columns before you can define Constraints.

Constraints are different from other Oracle LSH defined objects in that they belong to
the Table instance as well as to the definition. If you define or modify a Constraint in a
Table instance in a Work Area, the resulting Constraint is part of the Table instance but
not the Table definition on which it is based. The only way to make a Constraint a part
of the Table definition is to go to the definition directly in the Application Area or
Domain and add it there. After you have added a Constraint to a Table definition, all
Table instances created from it also have that Constraint defined. You can delete the
Constraint from the Table instance if you want to.

You must define a Primary or Unique Key for a Table in order to perform most types
of data processing (see "Data Processing Types" on page 13-2).

To create a Constraint:

1. In the Constraints/Indexes subtab of a Table, click Add.

The system displays the Create Constraint screen.

2. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ Type. Choose the type of Constraint. The system refreshes the display of the
lower portion of the screen depending on which type you choose. The
definition procedure varies by type: see "Check Constraint" on page 4-13,

Note: Oracle LSH supports the standard Oracle Not Null constraint,
but you define it as a Column attribute, not through the Table
Constraints user interface.

Defining Table Constraints and Indexes

Defining Tables 4-13

"Primary Key" on page 4-14, "Unique Key" on page 4-14.

3. Click Apply.

Check Constraint
The check Constraint allows you to specify allowable values for a particular Column.
For example, you can require that a particular Column contain either a Yes or No value
in every row.

If any row contains a different value for the Column, the system generates an error to
the Program writing to the Table instance. If the Program does not handle the error, the
job fails.

To define a Check Constraint:

1. Select Check Constraints from the Type drop-down list. The system refreshes the
lower portion of the screen.

2. From the Column Name drop-down list, select the Column for which you want to
define a list of allowable values.

3. In the Column Values section, enter one allowable Check Value value in the first
row.

4. To add an additional row, click Add Another Row.

5. Click Apply.

Non-Unique Index
You can define a non-unique index on any Column or set of Columns.

Unlike a Primary or Unique Key, a non-unique index does not validate each row for a
unique value but allows different rows to have the same value in the Column or set of
Columns that are part of the index.

Like other indexes, a non-unique index keeps rows sorted on the specified Column or
Columns so that the system can use faster search algorithms on the table, speeding up
queries on the table.

To define a non-unique index, do the following:

1. Select Non-Unique Index from the Type drop-down list. The system refreshes the
lower portion of the screen and lists all the Columns you have defined in the
current Table instance in the Table Columns side of the shuttle.

2. Select the Column or Columns you want to be part of the unique key and move
them into the Non-Unique Index side of the shuttle. You can use Shift+Click or
Ctrl+Click to select the Columns. You can double-click to move them or use the
arrows.

3. If necessary, use the Up and Down arrows to reorder the Columns in the key. You
should have the most general Column at the top and the most granular at the
bottom. For example, if your non-unique key is Patient, Visit, Test, you should list
them in that order.

Note: Oracle does not verify that check Constraints are not mutually
exclusive. Therefore, if you create multiple check Constraints, design
them carefully so their purposes do not conflict. Do not assume any
particular order of evaluation of the conditions.

Defining Table Constraints and Indexes

4-14 Oracle Life Sciences Data Hub Application Developer's Guide

4. Click Apply.

Primary Key
A Primary Key is a Column or set of Columns whose value(s) identify a row in a table
as unique. A single-Column Primary Key is commonly a unique ID. A multi-Column,
or composite, Primary Key might include, for example: Patient, Visit, Test, if each test
was conducted only once at a particular visit. None of the Columns that is part of a
Primary Key can have a null value in any row.

The system automatically creates an index based on the primary key, which it uses to
enforce a unique constraint. The index also speeds up queries on the table.

When you define a Primary Key, the system enforces constraints on the data:

■ The Column value(s) must serve as a unique identifier for each row.

■ No value in a key Column can be null. Columns that are part of a Primary Key
must have the Nullable attribute set to No (the check box must be cleared).

To define a Primary Key:

1. Select Primary Key from the Type drop-down list. The system refreshes the lower
portion of the screen and lists all the Columns you have defined in the current
Table instance in the Table Columns side of the shuttle.

2. Select the Column or Columns you want to be part of the primary key and move
them into the Primary Key side of the shuttle. You can use Shift+Click or
Ctrl+Click to select the Columns. You can double-click to move them or use the
arrows.

3. If necessary, use the Up and Down arrows to reorder the Columns in the key. You
should have the most general Column at the top and the most granular at the
bottom. For example, if your Primary Key is Patient, Visit, Test, you should list
them in that order so that you can use the automatically generated index.

4. Click Apply.

Unique Key
A Unique Key is similar to a Primary Key in that it can include one or more Columns
whose value(s) identify a row as unique. The difference is that the system allows null
values in the Columns that are part of a Unique Key.

Any number of rows can include null (empty) values. A null in a Column (or even all
Columns where allowed in a composite Unique Key) satisfies the Unique Key
Constraint. However, you cannot have identical non-null values in the Columns of a
partially null composite Unique Key Constraint.

If, as part of the definition of a Column that is part of a Unique Key, you disallow null
values for that Column, the system does not allow null values there.

The Unique Key also serves as an index.

To define a Unique Key:

1. Select Unique Key from the Type drop-down list. The system refreshes the lower
portion of the screen and lists all the Columns you have defined in the current
Table instance in the Table Columns side of the shuttle.

2. Select the Column or Columns you want to be part of the unique key and move
them into the Unique Key side of the shuttle. You can use Shift+Click or

Modifying Tables

Defining Tables 4-15

Ctrl+Click to select the Columns. You can double-click to move them or use the
arrows.

3. If necessary, use the Up and Down arrows to reorder the Columns in the key. You
should have the most general Column at the top and the most granular at the
bottom. For example, if your Unique Key is Patient, Visit, Test, you should list
them in that order so that you can use the key as an index.

4. Click Apply.

Modifying Tables
This section contains the following topics:

■ Modifying Table Instance Properties on page 4-15

■ Modifying Table Definition Properties on page 4-16

– Modifying Columns on page 4-17

– Modifying Constraints and Indexes on page 4-17

If you have the necessary privileges, you can modify a Table either through an
instance of it in a Work Area or directly in the definition in its Domain or Application
Area. In most cases it makes sense to work through an instance in a Work Area for the
following reasons:

■ In order to use or test changes to the definition you must create and install an
instance of it.

■ If you work through an instance, the system automatically repoints the instance to
the new version of the definition.

However, if you need to change properties of the definition, you must work directly in
the definition in its Domain or Work Area.

Whether you work in an instance or directly in the definition, when you check in the
new version of the definition you have the opportunity to upgrade instances of the
original definition to the new version; see "Upgrading Object Instances to a New
Definition Version" on page 3-15.

Modifying Table Instance Properties
On the Table instance's Properties screen, click Update to enter changes. Oracle LSH
creates a new version of the instance you are working on and applies your changes to
it when you click Apply. Click Cancel to discard your changes and the new version.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

You can modify the following:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

Note: You must reinstall the Table for the changes to take effect.

Modifying Tables

4-16 Oracle Life Sciences Data Hub Application Developer's Guide

Definition Source This field applies to the instance only. It specifies the Table
definition to which this Table instance points. It generally does not make sense to
change the source definition for the following reasons:

■ Changing the definition may result in a new set of Columns and
Constraints/Indexes.

■ The Status of the Table changes to Non Installable.

If you want to change to a new version of the same definition, use the Upgrade
Instance option from the Actions drop-down list.

See "Setting and Modifying Table Attributes" on page 4-6 for a description of the
following:

■ Process Type on page 4-6

■ Allow Snapshot on page 4-6

■ Blinding Flag on page 4-6

■ Blinding Status on page 4-7

■ Definition Source on page 4-7

■ Tablespace Name on page 4-7

Modifying Table Definition Properties
You can go to a Table definition's Properties screen in one of the following ways:

■ From the Table's Properties screen: Click the hyperlink of the Table definition that
appears in the Definition field. See "Definition Source" on page 4-7.

■ From the Domain or Application Area where you created the definition: Click
Manage Definitions to view all the definitions in that Domain or Application Area.
Click the definition name.

Once on the Table definition screen, click Update to enter changes. Oracle LSH creates
a new version of the definition. You can change the following properties:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

See "Setting and Modifying Table Attributes" on page 4-6 for a description of the
following:

■ Process Type on page 4-6

■ Allow Snapshot on page 4-6

■ Blinding Flag on page 4-6

■ Blinding Status on page 4-7

■ Definition Source on page 4-7

■ Tablespace Name on page 4-7

Modifying Tables

Defining Tables 4-17

Modifying Columns
To modify a Column in any way, you must check out the Table definition; Columns
belong to the Table definition.

You can delete and add Columns, and change the definition source Variable for a
Column (the source Variable determines the Column's data type, length, and default
value, if any). You cannot modify the data type, length, or default value except by
substituting a different Variable as the definition source.

Modifying Constraints and Indexes
When you create a Table instance from a Table definition, the system copies the
definition's constraints and indexes to the instance instead of referencing them there.
Therefore, any changes you make to the Table instance in the Work Area affect only the
instance.

Normal Oracle database rules apply to making changes in table constraints. Oracle
prevents changes that might be destructive. For example, you cannot change the
Column that constitutes the Primary Key unless the new Column's Nullable attribute
was previously set to No.

In most cases you cannot modify an installed Table instances's constraints without
dropping and replacing the Table instance during a Full or Partial Work Area
installation, resulting in the loss of all data. This is not allowed in a Table instance with
a validation status of Production.

If you must modify a Production Table instance's constraints, you may be able to
define a new Table instance with the required constraints and write a Program to
migrate the data into it, if the data and the new constraints are compatible.

If you modify the Table definition through the instance, the system points the instance
to the new version of the definition, so the changes apply to the instance as well as the
definition. If you modify the definition directly in its Domain or Application Area, the
changes affect only the definition, but you can upgrade instances to point to the new
version.

See "Defining Table Constraints and Indexes" on page 4-12 for further information.

Modifying Tables

4-18 Oracle Life Sciences Data Hub Application Developer's Guide

5

Defining Programs 5-1

5Defining Programs

This section contains information on the following topics:

■ About Programs on page 5-2

■ Creating a Program on page 5-3

■ Using the Program Properties Screen on page 5-6

■ Defining Table Descriptors on page 5-8

■ Defining Source Code on page 5-9

■ Defining Parameters on page 5-22

■ Defining Planned Outputs on page 5-22

■ Defining PL/SQL Programs on page 5-25

■ Defining View Programs on page 5-29

■ Defining SAS Programs on page 5-30

■ Defining Oracle Reports Programs on page 5-41

■ Defining Informatica Programs on page 5-41

■ Defining Oracle Business Intelligence Publisher Programs on page 5-47

■ Installing Program Instances on page 5-51

■ IDE Launch Settings on page 5-51

■ Modifying Programs on page 5-53

■ Setting Up Integrated Development Environments (IDEs) on page 5-56

About Programs

5-2 Oracle Life Sciences Data Hub Application Developer's Guide

Figure 5–1 Process of Creating a Program Definition and Instance

About Programs
To create an Oracle Life Sciences Data Hub (Oracle LSH) Program you write or upload
source code in SAS, PL/SQL, or Oracle Reports as you normally would. In addition,
you must create a defined object in Oracle LSH called a Program, and create defined
objects for each of the following included in your source code:

■ You must define a Table Descriptor object for each source and target table or data
set that your program reads from and writes to. You must then map each Table
Descriptor to the actual Table instance the program reads from or writes to.

■ You must define a Source Code object for the primary source code you write and
for any separate subroutines, macros, or formats you use.

■ You must define a Parameter object for each input, output, or input/output
parameter you declare in your source code.

■ You must define a Planned Output object for each output the Program will
produce, including reports, error files, and log files (except SAS log files, which the
system creates automatically).

■ As with other Oracle LSH executables, you must define at least one Execution
Setup to enable users to run the Program. See "Creating, Modifying, and
Submitting Execution Setups" on page 3-55 for further information.

Because these Program components are defined objects, Oracle LSH can keep them
and the Program as a whole under version control, and you can validate the Program.

A Program of any technology type (SAS, PL/SQL, or Oracle Reports) can operate on
any Oracle LSH data, regardless of the type of external system where the data
originated because all Oracle LSH Tables are compatible with both Oracle tables and
SAS data sets. Only one Program instance can write to any particular Table instance.

When you run a Program, the system launches the appropriate engine to execute the
code, compiles source code files as necessary in that environment, and launches the
primary source code file, running in batch mode. You must create an instance of a
Program definition and install it and the Table instances to which it is mapped before
you can run the Program; see "Installing Program Instances" on page 5-51.

Creating a Program

Defining Programs 5-3

Program Usage You can use a Program in several basic ways:

■ Standalone Object. You can use a Program to do one or both of the following:

– generate one or more reports on data

– manipulate data and write the transformed data to tables

■ Component of a Report Set. Report Sets must contain Programs in order to
generate the reports contained in the Report Set (see Chapter 9, "Defining Report
Sets").

■ Component of a Workflow. Any data transformation or generation of reports
done within a Workflow can only be accomplished by Programs (see Chapter 10,
"Defining Workflows").)

■ Container. Source Code objects must be stored in Programs. You may want to
create Programs specifically to store reusable source code files for reference as
subroutines in other Programs

■ Data Viewer. After the Program and its source Table instances are installed, you
can view data in the database tables in the Integrated Development Environment
(IDE). After the Program runs, you can also view data in the target Table instances.

Reports on Program Definitions and Instances From the Actions drop-down list,
you can generate reports that provide information on a Program definition or instance;
see Chapter 14, "System Reports" for information.

Creating a Program
When you create a Program in a Work Area, you are actually creating an instance of a
Program definition.

To create a new Program instance:

1. In a Work Area, select Program from the Add drop-down list.

2. Click Go.

The system displays the Create Program screen.

3. Choose one of the following options:

■ Create a new Program definition and instance. Choose this option if no
Program definition exists that can meet your needs, either as it is or with some
modification.

■ Create an instance from an existing Program definition. Choose this option if
a Program definition already exists that meets your needs.See "Finding an
Appropriate Definition" on page 3-2 and "Reusing Existing Definitions" on
page 3-2 for further information.

4. Depending on your choice, follow one of these sets of instructions:

■ Creating a New Program Definition and Instance on page 5-4

■ Creating an Instance of an Existing Definition on page 3-2

Note: For information about writing Programs that touch blinded
data, see "Setting and Modifying Table Attributes" on page 4-6 and
"Managing Blinded Data" on page 13-15.

Creating a Program

5-4 Oracle Life Sciences Data Hub Application Developer's Guide

Creating a New Program Definition and Instance
When you select Create a new Program definition and instance in the Create Program
screen, additional fields appear.

1. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ Program Type. The options are: PL/SQL, Oracle Reports, SAS Program, SAS
Format Catalog, SAS Macro Catalog, BI Publisher, and View. Your company
may support other Program Types and they may appear in this list. Follow
your company's instructions for such Program Types.

2. In the Classification section, select the following for both the definition and the
instance:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

3. Click Apply to save your work and continue defining the Program.

The system opens the Properties screen for the new Program instance.

4. Force Output Validation Status to 'Development' If selected, outputs of instances
of this Program definition are always created with a validation status of
Development. If deselected, the outputs inherit the validation status of the
Execution Setup that produced them, which in turn can inherit its validation status
from the Program instance. Your company can determine the default setting using
an Oracle profile; see "Setting Profile Values" in the Oracle Life Sciences Data Hub
System Administrator's Guide. To change this value, do the following:

a. Click the hyperlink to the Program definition in the Program in the Instance
Properties section of the screen. The Program definition's Properties screen
opens.

b. Click Update. Fields become enterable.

c. Select or deselect Force Output Validation Status to 'Development'.

d. Click Apply. The system saves the change.

e. To return to the Program instance and continue defining the Program instance
and definition at the same time, click the breadcrumb link to the Program
instance just above the screen title.

Creating a Program

Defining Programs 5-5

5. Define the Program details. For information and instructions see:

■ Defining and Mapping Table Descriptors on page 3-36

■ Defining Source Code on page 5-9

■ Defining Parameters on page 5-22

■ Defining Planned Outputs on page 5-22

■ Creating, Modifying, and Submitting Execution Setups on page 3-55

6. Click Check In. The system checks in Version 1 of both the Program definition and
instance.

7. Install the Program instance (see Chapter 12, "Using, Installing, and Cloning Work
Areas"). You can use the Install button on the Program instance Properties screen
or install the Program instance as part of a Work Area installation. The Install
button always performs an installation of type upgrade, installing the Program
instance only if the current version has not been installed previously.

8. Validate both the definition and the instance according to your company's policies.

For information on creating the different types of Programs, see:

■ Defining PL/SQL Programs on page 5-25.

■ Defining SAS Programs on page 5-30.

■ Defining Oracle Reports Programs on page 5-41.

■ Defining Oracle Business Intelligence Publisher Programs on page 5-47

Creating an Instance of an Existing Program Definition
If you use an existing Program as a definition source, its Source Code, Table
Descriptors, Parameters and other properties are already defined. See "Creating an
Instance of an Existing Definition" on page 3-2 for instructions.

After you have created the Program instance, you must map the Table Descriptors to
Table instances; see "Mapping Table Descriptors to Table Instances" on page 3-45. You
must also create at least one Execution Setup for the Program instance; see "Creating,
Modifying, and Submitting Execution Setups" on page 3-55.

Notes: This flag is a property of the Program definition, not the
Program instance. Its value applies to all instances of this Program
definition version.

The setting of this attribute is version-specific; if you change it in one
version, any other existing versions retain their existing value.
Subsequently created versions of this Program definition get their
default setting from the previous version.

Your company can set the default value for this attribute in a lookup.
For further information see "Adding and Modifying Lookup Values"
in the Oracle Life Sciences Data Hub System Administrator's Guide.
Newly created Programs get their default setting for this attribute
from the lookup.

Using the Program Properties Screen

5-6 Oracle Life Sciences Data Hub Application Developer's Guide

Using the Program Properties Screen
This section contains the following topics:

■ Instance Properties on page 5-6

■ Definition Properties on page 5-7

■ Buttons on page 5-8

■ Using the Actions Drop-Down List on page 3-76

■ Subtabs:

– Defining Table Descriptors on page 5-8

– Defining Source Code on page 5-9

– Defining Parameters on page 5-22

– Defining Planned Outputs on page 5-22

– Viewing Jobs on page 3-74

See also Figure 5–1, "Process of Creating a Program Definition and Instance" on
page 5-2.

See "Modifying Programs" on page 5-53 for information on modifying Programs.

If you are working in a Work Area, you see the properties of both the Program instance
and the Program definition it references. If you are working directly on the definition
in an Application Area or Domain, you see only the properties of the definition.

Instance Properties
You can see the following instance properties:

Name You can click Update and modify the name. See "Naming Objects" on page 3-6
for further information.

Description You can click Update and modify the description. See "Creating and
Using Object Descriptions" on page 3-6 for further information.

Definition This field specifies the Program definition to which this Program instance
points. For further information, see "Definition Source" on page 5-54.

To upgrade to a new version of the same definition, use the Upgrade to Latest button.
See "Upgrading to a Different Definition Version from an Instance" on page 3-16.

Blind Break This field indicates whether you can see real or dummy data in blinded
Table instances when you work on this Program from an IDE. Click Launch Settings
to make this selection. The choices depend on your privileges. If none of the Table
instances mapped to the Program instance contains either blinded or unblinded data,
the only possible setting is Not Applicable. See "IDE Launch Settings" on page 5-51 for
further information.

Shared Snapshot Label The default value you see here comes from the default
Execution Setup for this Program, if there is one. Otherwise the default value is
determined by your privileges. If the source Table instances have shared snapshot
labels, you can click Launch Settings and select one of them. See "IDE Launch
Settings" on page 5-51 for further information.

Using the Program Properties Screen

Defining Programs 5-7

Validation Status This field displays the current validation status of the Program
instance. If you have the necessary privileges, you can change the validation status by
selecting Validation Supporting Information from the Actions drop-down list. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Program: Installable or Non
Installable. Programs have an additional status called Installable IDE. You can install a
Program without a Source Code, if the Program has the Installable IDE status. You can
work on such a Program's Source Code in an IDE. See Appendix A, "Installation
Requirements for Each Object Type".

Version This field displays the current version number of the Program instance.

Version Label This field displays the version label, if any, for the current Program
instance version.

For further information on object versions, see "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Definition Properties

Checked Out Status This field displays the status of the definition: either Checked
Out or Checked In. You must check out the definition to modify Table Descriptors,
Source Code, Parameters, or Planned Outputs. However, you can change Table
Descriptor mappings without checking out the definition. See "Understanding Object
Versions and Checkin/Checkout" on page 3-9 for further information.

Latest Version If set to Yes, this Program instance is pointing to the latest version of
the Program definition. If set to No, this Program instance is pointing to an older
version of the Program definition.

View Latest You can see this button only if the current Program instance does not
point to the latest definition version. Click this button to view the latest Program
definition.

Upgrade to Latest This button is grayed out if the current Program instance already
points to the latest Program definition. Click this button to upgrade the current
Program instance to the latest definition version. For more information on upgrading
instances, see "Upgrading Object Instances to a New Definition Version" on page 3-15.

Checked Out By This field displays the username of the person who has the Program
definition checked out. See "Understanding Object Versions and Checkin/Checkout"
on page 3-9 for further information.

Version Label This field displays the version label, if any, for this definition version.

Program Type This field displays this Program definition's type: Oracle Reports,
PLSQL, SAS Program, SAS Format Catalog, or SAS Macro Catalog. See "Defining
PL/SQL Programs" on page 5-25, "Defining SAS Programs" on page 5-30, and
"Defining Oracle Reports Programs" on page 5-41.

Development Tool This field displays the tool required to work on the source code of
the Program: Oracle Reports, PL/SQL, or SAS.

Defining Table Descriptors

5-8 Oracle Life Sciences Data Hub Application Developer's Guide

Validation Status This field displays the current validation status of the Program
definition. If you are working directly in the definition in an Application Area or
Domain and you have the necessary privileges, you can change the validation status
by selecting Validation Supporting Information from the Actions drop-down list. If
you are working in an instance of the Program in a Work Area, and you want to
change the validation status of the definition, you must go to the definition. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Program: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Buttons
From a Program instance in a Work Area, you can use the following buttons:

Install Click Install to install the Program instance, including mapping target Table
Descriptors and installing mapped target Table instances; see "Installing Program
Instances" on page 5-51. For a list of reasons a Program instance may not be installable,
see Appendix A, "Installation Requirements for Each Object Type".

Launch IDE Click Launch IDE to launch the integrated development environment
(IDE) in which you write your program source code.

Submit Click Submit to run the Program instance. Before you can run the Program,
you must install it and create an Execution Setup for it (select Execution Setups from
the Actions drop-down list).

Update Click Update to modify the Program instance properties. See "Modifying
Program Instance Properties" on page 5-54.

Launch Settings Click Launch Settings to set the blinding status and currency of the
data you want to view while developing your Program; see "IDE Launch Settings" on
page 5-51.

Check In/Out and Uncheck Click these buttons to check out, check in, or uncheck the
Program definition. Different buttons are displayed in the Program Definition
Properties section depending on the Checked Out Status and whether or not you are
the person who has the definition checked out. If someone else has checked out the
definition, you cannot check it in or uncheck it. The username of the person who has
checked it out is displayed. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

View Latest/Upgrade to Latest If the definition is not the latest version, you can click
to view the latest version and upgrade to the latest version if you want to. See
"Upgrading to a Different Definition Version from an Instance" on page 3-16.

Defining Table Descriptors
To enable different instances of a single Program definition to run against different
source or target Tables—even Tables with different names or structure—Oracle LSH
requires Table Descriptors as part of the Program definition. You must include one
Table Descriptor for each Table instance the Program will read from or write to. Like a
Table instance, a Table Descriptor contains a pointer to a Table definition. The
difference is that a Table Descriptor exists only inside a Program or other executable

Defining Source Code

Defining Programs 5-9

object definition, while a Table instance is installed independently in the database. See
Defining and Mapping Table Descriptors on page 3-36 for further information.

You must map each Table Descriptor to the corresponding Table instance that the
Program instance will read from or write to. The system can do the mapping
automatically if you choose to create Table Descriptors from existing Table instances or
if the Table Descriptor has the same name as the Table instance. However, if the Table
instance is different enough from the Table Descriptor, you must map them manually.
See "Mapping Table Descriptors to Table Instances" on page 3-45).

The Program definition's source code refers to the Table Descriptor by name and
Column name as if it were an actual table or SAS data set containing data. The system
uses the mappings to translate the names used in the source code to those of the Table
instance to which the Table Descriptor is mapped.

Target Table instances must have a processing type. Be sure that the processing type of
each target Table instance is compatible with your source code; see "Data Processing
Types" on page 13-2 for further information.

There are several ways to create a Table Descriptor:

■ Creating Table Descriptors from Table Instances and Simultaneously Mapping
Them on page 3-53

■ Adding a New Target Table Descriptor on page 3-42

■ Adding Target Table Descriptors from a SAS File on page 3-39

■ Adding a Target Table Descriptor from an Existing Table Definition on page 3-40

See also "Mapping Table Descriptors to Table Instances" on page 3-45.

For information on how you can make data available to Program instances in an
Integrated Development Environment (IDE), see "IDE Launch Settings" on page 5-51.

Defining Source Code
This section contains information about Source Code in Oracle LSH, including:

■ About Source Code on page 5-10

■ Creating Source Code on page 5-11

■ Calling APIs from Source Code on page 5-14

■ Creating and Using Static Reference Source Code on page 5-15

■ Upgrading Source Code And Undoing Source Code Upgrades on page 5-16

See also:

■ Defining PL/SQL Programs on page 5-25

■ Defining SAS Programs on page 5-30

■ Defining Oracle Reports Programs on page 5-41

■ Defining Oracle Business Intelligence Publisher Programs on page 5-47

Note: Only one Program can write to any particular Table instance.
The system prevents you from mapping a Table instance to more than
one target Table Descriptor.

Defining Source Code

5-10 Oracle Life Sciences Data Hub Application Developer's Guide

About Source Code
A Source Code definition encapsulates the file containing the actual source code, so
that the source code is stored under version control, in compliance with industry
regulations (see "Versions of Component Objects" on page 3-14).

Every Oracle LSH Program must contain one primary source code object and may
contain any number of additional (secondary) source code objects serving as
subroutines.

Primary Source Code Each Program contains one primary Source Code definition,
listed first and given an Order number of one (1). When you execute the Program, the
system launches the Source Code definition you have defined as Primary. Normally
you write the primary source code especially for a particular Program. The primary
Source Code definition contains the file the system executes when the Program is
submitted. The primary source code references Table Descriptors, Parameters, Planned
Outputs, and other Source Code instances defined in the Program by their Oracle or
SAS name, as appropriate for the technology type (see "Writing Primary Source Code
in PL/SQL" on page 5-25 and"SAS Program and Source Code Types" on page 5-33).

Secondary Source Code Secondary Source Code objects are those with any order
number other than one (1). They are SAS macros or formats or PL/SQL packages that
are, in most cases, called by the primary source code.

Source Code definitions have a Sharable attribute that, if set to Yes, makes them
available for use as a definition source for Source Code instances in other Programs.
You can create Program definitions especially for the purpose of storing sharable
Source Code definitions. If you are working in SAS, you must create a Program
definition of type Macro Catalog to store macros, or a Program definition of type
Format Catalog to store formats. If you are working in Oracle technologies (Oracle
Reports or PL/SQL) you can create a Program definition of type PL/SQL to hold
sharable PL/SQL packages.

You can also create secondary Source Code especially for a particular program. In this
case Oracle LSH stores both the Source Code instance and its definition in the Program
in which you create them.

See "Upgrading Source Code And Undoing Source Code Upgrades" on page 5-16 for
information on how to upgrade Source Code instances pointing to a sharable Source
Code definition.

For further information, see:

■ Creating a SAS Macro Catalog on page 5-37

■ Creating a SAS Format Catalog on page 5-38

■ Creating a PL/SQL Package Storage Program on page 5-28

Execution When you submit an Execution Setup to run a Program, the system does
the following in sequence:

Note: The Source Code for Oracle LSH Programs of the BI Publisher
adapter type is automatically generated by the system. Do not edit or
upload the Source Code manually or the BI Publisher Program may
not work properly.

See "About Oracle BI Publisher Program Source Code" on page 5-49

Defining Source Code

Defining Programs 5-11

1. Initializes the batch environment for the appropriate technology

2. If necessary, compiles all the Source Code files in the order in which they are listed
in the Source Code subtab (all SAS macros and formats included in the Program
are compiled)

3. Launches the primary Source Code file using the Parameter values specified in the
Execution Setup

4. Launches any secondary Source Code files when they are called from the primary
file

5. Writes data to Table instances, if so directed by the source code

6. If directed by the source code, generates reports and classifies them as specified in
Planned Output definitions

Creating Source Code
When you create Source Code in a Program, you can either create an instance of an
existing Source Code definition, or a new Source Code definition and instance at the
same time:

1. In the Source Code subtab of a Program, click Add. The system displays the Create
Source Code screen.

2. Choose one of the following options:

■ Create a new Source Code definition and instance. Select this option in any
of the following situations:

– You are creating the primary Source Code for a Program

– The source code you want to use exists only outside Oracle LSH (you can
upload the actual source code file, but you must create a new Source Code
definition to store the uploaded file)

– You are creating a subroutine that does not yet exist in Oracle LSH (see
"Creating a SAS Macro Catalog" on page 5-37, "Creating a SAS Format
Catalog" on page 5-38, and "Creating a PL/SQL Package Storage Program"
on page 5-28).

■ Create an instance of an existing Source Code definition. Select this option in
any of the following situations:

– You are working in a PL/SQL Program and you want to reference a
package in another Program.

– You are working in a SAS Program and you want to reference a macro or
format in another Program.

Your company may have Programs created especially to store sharable Source
Code files in a designated Library or Application Area.

For more information on using SAS Format Catalogs and SAS Macro Catalogs,
see "Using a SAS Macro Catalog" on page 5-36 and "Using a SAS Format
Catalog" on page 5-36.

Note: You cannot set a Static-reference Source Code as primary. Also,
you cannot set a Source Code that points directly to a Program
definition as primary.

Defining Source Code

5-12 Oracle Life Sciences Data Hub Application Developer's Guide

3. Depending on your choice, follow one of the following sets of instructions:

■ Creating a New Source Code Definition and Instance on page 5-12

■ Creating an Instance of an Existing Source Code Definition on page 5-14

You can also create a source code instance that points to a Program definition. This is
so that you can use the same SAS Macro Catalog and SAS Format Catalog in other
Programs. See "SAS Program and Source Code Types" on page 5-33.

Creating a New Source Code Definition and Instance
When you select Create a new Source Code definition and instance in the Create
Source Code screen, additional fields appear.

This section contains instructions for all technology types. For instructions specific to
each technology, see the following sections:

■ Defining PL/SQL Programs on page 5-25

■ Defining SAS Programs on page 5-30

■ Defining Oracle Reports Programs on page 5-41

■ Defining Oracle Business Intelligence Publisher Programs on page 5-47

1. Enter values in the following fields:

■ Name. The system uses the name you enter for the actual source code file. If
you do not specify an extension, Oracle LSH appends the default extension for
that technology type: .sas for SAS source code, .rdf for Oracle Reports, or .sql
for PL/SQL. Do not use reserved words or special characters. See "Naming
Objects" on page 3-6 for further information.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ File Type. Select the file type from the list. The choices vary depending on the
Program Type. For an explanation, see "Defining SAS Programs" on page 5-30
or "Defining Oracle Reports Programs" on page 5-41. PL/SQL Programs'
Source Code must have a SQL file type.

■ Sharable. Select Yes to make the Source Code definition available for reuse.
See "Creating a PL/SQL Package Storage Program" on page 5-28 and
"Creating a SAS Macro Catalog" on page 5-37 for information about sharable
Source Code definitions.

Depending on your company's validation policies you may choose not to set
the Sharable flag to Yes until you have fully tested and validated the Source
Code. You can change the setting at any time in the Source Code subtab by
selecting the Source Code and clicking either Set Sharable or Set Not
Sharable.

Note: Oracle LSH creates the Source Code automatically for Oracle
LSH BI Publisher Programs. Do not create or edit this Source Code.
See "About Oracle BI Publisher Program Source Code" on page 5-49
for more information.

Note: You cannot set any SAS Macro Catalog or SAS Format Catalog
Source Code instance that points directly to a Program definition as
Sharable.

Defining Source Code

Defining Programs 5-13

2. Enter additional fields specific to each Program type:

■ SAS File Reference Name. If the Program is of type SAS, you may need to
enter a SAS File Reference Name:

– The first Source Code you create of type Program is automatically created
as the Program's primary Source Code. The SAS File Reference Name
value defaults to MAINPRG and you cannot change it. If you later set
another Source Code as primary, the system automatically changes its SAS
File Reference Name to MAINPRG and changes the original primary
Source Code's SAS File Reference Name to the Source Code instance
name, truncated to 8 characters.

– If the Source Code is a secondary Source Code that is not shared from
another Source Code, the value defaults to the Source Code's name,
truncated to 8 characters. You can change this value.

– If the Source Code is shared from another Program, the SAS File Reference
Name defaults from the shared Source Code and you cannot change it.

■ Oracle Package Name. If the Program is of type PL/SQL, enter a package
name. The package name must be unique within the Program. The package
name must match the package name in the actual PL/SQL source code.

■ Oracle Procedure Name. If the Program is of type PL/SQL, enter a procedure
name. The procedure name must match the procedure name in the actual
PL/SQL source code.

3. Write or upload the actual source code. Do one of the following:

■ For text-based source code files (PL/SQL and SAS), write code directly in the
Source Code Editor box.

■ If a source code file that fits your needs already exists on your PC or network,
click the Upload button to look for and select the file.

■ Click Launch IDE to open the development environment. Write source code
there to use in the Program, then upload the source code file to the Source
Code definition in Oracle LSH.

Note: In cases where the SAS File Reference Name value defaults, if
there are two names with the same value, the system truncates the
second one by one character and appends 1 (or increments the
number if there are three or more).

Note: If the Program is of type PL/SQL and you are defining the
primary Source Code, you must enter both a package name and a
procedure name.

Note: For Informatica Programs, you must only upload existing
XML files that contain Informatica mappings and workflows.

Defining Source Code

5-14 Oracle Life Sciences Data Hub Application Developer's Guide

4. Click Save and Continue to save your work. The system saves your work in the
database and returns to the Program instance screen.

By default the system sets the first Source Code you create for a Program to
Primary. If you want to specify that a different Source Code is the primary
one—the one executed first—in the Source Code subtab check the Select check box
of the Source Code you want to set as Primary and click Set As Primary. The
system changes the Primary setting for that Source Code to Yes, and for the
previous primary Source Code to No.

5. Validate both the definition and the instance according to your company's policies.

Creating an Instance of an Existing Source Code Definition
If you use an existing Source Code as a definition source, its contents are already
defined. However, you must specify whether or not to use a static reference; see
"Creating and Using Static Reference Source Code" on page 5-15 for information.

See "Creating an Instance of an Existing Definition" on page 3-2 for general
instructions.

Calling APIs from Source Code
Oracle publishes public PL/SQL APIs that allow you to do many things
programmatically that you can do through the user interface, including creating,
modifying, and installing objects. You can call these APIs within the context of defined
Oracle LSH Programs without any extra security. Refer to the Oracle Life Sciences Data
Hub System Application Programming Interface Guide for details.

Note: Before you can use the Launch IDE button you must install
the Program. To make the Program installable you must either create
and map at least one Table Descriptor or add one Source Code object
(Steps 1 and 2 above). For more information see "Installing Program
Instances" on page 5-51.

Note: If you are using SAS in a connected mode and the SAS
development environment does not open when you click Launch IDE,
you may need to define services for the environment and start Oracle
LSH Distributed Processes Server code in the same location. See
"Stopping and Starting Services and Queues" in the Oracle Life Sciences
Data Hub System Administrator's Guide.

If you are using SAS in Disconnected mode, SAS does not open when
you click Launch IDE. Instead, Oracle LSH puts the required data set
files on your personal computer and displays a message giving the
location. You must then open SAS locally and access the files as
necessary.

See "Connecting to SAS" on page 5-31 for further information.

Note: If the Program containing the Source Code or the Source Code
itself is ever deleted, the Programs that contain instances of the
deleted Source Code will no longer compile.

Defining Source Code

Defining Programs 5-15

For an example of calling a PL/SQL API from a SAS Program, see "Calling an API to
Capture Output Parameter Values" on page 5-39.

Creating and Using Static Reference Source Code
This section contains the following topics:

■ About Static Reference Source Code on page 5-15

■ Creating a Source Code for Use as a Static Reference on page 5-15

■ Using Static Reference Source Code on page 5-15

About Static Reference Source Code
You can write source code (PL/SQL package or SAS format) that is intended for reuse
in other Programs. If that Source Code is located in an installed Program
instance—usually because it reads data such as lookup values from an Oracle LSH
Table instance—you must specify a static reference when you create an instance of the
Source Code in another Program.

For example, if you want to supply an Investigator ID and return an Investigator
Name, you can do either of the following:

■ Create a Table Descriptor in your Program and map it to a Table instance that
includes columns for both Investigator ID and Name and reference that Table
Descriptor in the Source Code you create for your Program. This method does not
involve a static reference Source Code.

■ Reference a sharable Source Code in another Program instance whose purpose is
to take an Investigator ID and return the corresponding Investigator Name. The
Program instance that contains this sharable Source Code must have a Table
Descriptor that is mapped to a Table instance that includes columns for both
Investigator ID and Name. This is a static reference Source Code.

Creating a Source Code for Use as a Static Reference
If you are creating a PL/SQL Program or SAS Format Catalog to store static reference
Source Code definitions, you must create an instance of the Program and map one of
its source Table Descriptors to each Table instance required to be read, and install both
the Program instance and the Table instance. Do not define snapshot labels for these
Table instances and do not set their Blinding Flag to Yes.

Using Static Reference Source Code
In the Program in which you want to use the Source Code:

1. Add a Source Code object by creating an instance of an existing Source Code
definition. The Static Reference attribute appears.

2. Select Yes for Static Reference.

3. Click the Search icon for the Definition Source field.

The system then searches for installed Program instances rather than Program
definitions, because the Program containing the static reference Source Code must
be mapped to the necessary installed Table instance. Also, because only one
version of a Program instance can be installed at any given time, your Program

Note: Oracle LSH does not support creating a static reference to
Source Code contained in a Program instance inside a Report Set.

Defining Source Code

5-16 Oracle Life Sciences Data Hub Application Developer's Guide

always references the current installed version of the static reference Source Code's
Program instance.

4. Enter the Domain, Application Area, and Work Area where the Program instance
is located and select the Program instance.

5. Apply.

Upgrading Source Code And Undoing Source Code Upgrades
This section contains the following topics:

■ Upgrading a Single Source Code Instance on page 5-16

■ Upgrading Multiple Source Code Instances on page 5-18

■ Undoing Source Code Instance Upgrades on page 5-22

If the Source Code definition your Source Code instance is pointing to is not the most
current version, Oracle LSH sets the Latest Version field to No and allows you to view
the latest version and upgrade to it if you want to; see "Upgrading a Single Source
Code Instance" on page 5-16.

You can also undo an upgrade or choose a noncurrent version of a Source Code
definition at any time; see "Undoing Source Code Instance Upgrades" on page 5-22.

Working in the Source Code definition, you can upgrade all instances to the latest
version, using the Upgrade All Instances button or the Actions drop-down list.

If you created a Source Code instance along with a definition, then your Source Code
definition and instance are synchronized unless at some point you or someone else
manually pointed the Source Code instance to another version of the definition; see
"Undoing Source Code Instance Upgrades" on page 5-22.

If you created a Source Code instance that points to an existing Source Code definition,
any changes that have been made to the Source Code definition after you created the
Source Code instance are not reflected in the instance and Latest Version is set to No.

For Source Code instances that point to an existing Source Code definition, you can see
a hyperlink to the Source Code definition that the Source Code instance points to, in
the instance properties section of the Source Code screen.

Upgrading a Single Source Code Instance
You can upgrade a single Source Code instance in one of the following ways:

■ Upgrade to Latest button. This method allows upgrade to the latest version of the
Source Code definition only.

Note: You cannot upgrade a Source Code instance whose definition
is statically referenced. See "Creating and Using Static Reference
Source Code" on page 5-15.

Note: A Source Code instance and the Source Code definition it
points to, both always share the same screen. Therefore, in this section
Source Code screen refers to the screen that shows Source Code
instance properties in the upper portion and Source Code definition
properties in the lower portion of the screen.

Defining Source Code

Defining Programs 5-17

■ Upgrade Instance from the Actions drop-down list. This method allows changing
to any version of the Source Code definition.

Upgrade to Latest Use the Upgrade to Latest button to upgrade the Source Code
instance to the latest version of its definition.

This button is not available if:

■ The Source Code definition to which you want to upgrade is not checked in.

■ The Program definition containing the Source Code instance you want to upgrade
is not checked out, or is checked out by someone else.

■ The Source Code instance is already pointing to the latest version of its Source
Code definition (Latest Version is set to Yes).

■ The Source Code Definition is a static reference Source Code; see "Creating and
Using Static Reference Source Code" on page 5-15.

■ You do not have Modify privileges on the Source Code instance

To upgrade a Source Code instance to the latest version of its definition using the
Upgrade to Latest button, do the following:

1. Navigate to the Program instance or definition that contains the Source Code
instance you want to upgrade.

2. In the Source Code subtab, click the Source Code's hyperlink in the Name column.
The Source Code screen opens.

3. If you want to look at the latest version of the Source Code definition before
upgrading, click View Latest in the Definition Properties section of the screen.

To upgrade, click Upgrade to Latest. You receive a confirmation message.

4. In the confirmation message, click Yes. The system upgrades the Source Code
instance to the latest version of its source definition.

Upgrade Instance Use the Upgrade Instance item from the Actions drop-down list
on the Source Code screen, to upgrade the Source Code instance to any version of its
definition.

This option is not available (the Go button is grayed out) if:

■ The Source Code definition to which you want to upgrade is not checked in.

■ The Program definition containing the Source Code instance you want to upgrade
is not checked out, or is checked out by someone else.

■ The Source Code Definition is a static reference Source Code; see "Creating and
Using Static Reference Source Code" on page 5-15.

■ You do not have Modify privileges on the Source Code instance.

To point a Source Code instance to any version of its definition, do the following.

1. Navigate to the Program instance or definition that contains the Source Code
instance you want to upgrade.

2. In the Source Code subtab, click the Source Code's hyperlink in the Name column.
The Source Code screen opens.

3. If you want to look at the latest version of the Source Code definition before
upgrading, click View Latest in the Definition Properties section of the screen.

Defining Source Code

5-18 Oracle Life Sciences Data Hub Application Developer's Guide

To change the underlying definition to a different version, select Upgrade Instance
from the Actions drop-down list.

4. Click Go. The system displays the available versions of the Source Code definition
in the lower portion of the screen.

For each version of the definition, the system displays the following information:

■ Source Code Version. The version number of the Source Code definition
version.

■ Upgrade. The Upgrade icon is grayed out if the current Source Code instance
already points to that Source code definition version, or if that Source Code
definition version is currently checked out (someone is currently modifying
it).

■ Program Name. The name of the Program definition that owns the Source
Code definition. This remains the same for one Source Code definition.

■ Program Version. The version number of the Program that owns that Source
Code definition version.

■ Program Validation Status. The validation status of the Program that owns
that Source Code definition version.

■ Program Version Label. The label associated with the Program definition
version, if any.

■ Program Checked Out By. If the Program definition version is checked out,
the system displays the username of the person who checked it out. You
cannot upgrade to a version that is checked out, and only the person who
checked it out can check it in.

5. Click the icon in the Upgrade column for the version to which you want to point
the instance.

The system upgrades the Source Code instance and grays out its row, as it now
points to the version you selected.

Upgrading Multiple Source Code Instances
A Source Code instance may point to a Source Code definition or, in the case of SAS
Source Code instances, to a SAS Macro or Format Catalog Program definition. You can
upgrade Source Code instances from a Source Code screen or in the case of SAS Source
Code instances, from a Program instance's Properties screen.

As with other object types, you can go to a version of a definition and upgrade all the
instances that point to it.

If the Source Code definition is a SAS Macro or Format Catalog, follow the instructions
for upgrading Program and other object definitions at "Upgrading One or More
Instances from the Definition" on page 3-15.

Note: If someone is currently creating a new version, the new
version is not displayed at all.

Note: People with Checkin Administrator privileges can check in
objects checked out by other users.

Defining Source Code

Defining Programs 5-19

From the Source Code definition screen. To upgrade one or more Source Code
instances from a Source Code definition, do the following:

1. Navigate to the Program that contains the Source Code definition whose instances
you want to upgrade.

2. Check in the Program definition if it is not already checked in.

3. In the Source Code subtab, click the Source Code's hyperlink in the Name column.
The Source Code screen opens.

4. Click the Upgrade All Instances button in the Source Code definition properties
section of the screen.

5. The system opens the Upgrade Instances screen with all instances of the Source
Code definition displayed.

For each instance, the system displays the following information:

■ Program Name. The Program name that contains the Source Code instance.

■ Program Version. The version number of the Program that contains the Source
Code instance.

■ Program Version Label. The version label of the Program that contains the
Source Code instance.

■ Program Validation Status. The validation status of the Program that contains
the Source Code instance.

■ Program Checked Out By. The name of the person who has checked out the
Program definition, parent to the Source Code instance. If a person other than
you has the Program checked out, then you cannot upgrade the Source Code
instance: the check box next to it is grayed out.

■ Source Code Definition Version. The version number of the Source Code
definition to which that instance currently points.

■ Source Code Name. The name of the Source Code instance to which that
instance currently points.

■ SAS File Reference Name. The SAS file reference name, if any.

■ Container. The Domain > Application Area hierarchy for the instance.

6. Select one or more instances to upgrade. You can use the Select All and Select
None functions and/or select or deselect instances individually by checking or
unchecking their Select checkbox. Instances that already point to the current
version of the definition cannot be selected.

7. Click Upgrade. The system changes the source definition of the selected instances
to the version of the definition where you are working.

Note: If the check box next to an instance is grayed out, then either
the Program instance that owns it is checked out by someone else, or
the Source Code instance already points to the latest Source Code
definition.

Defining Source Code

5-20 Oracle Life Sciences Data Hub Application Developer's Guide

From the Program Definition screen. To upgrade multiple Source Code instances
that refer to a Program definition, do the following:

1. Navigate to the Program definition in the Applications tab.

2. Check in the definition if it is not already checked in.

3. From the Actions drop-down list, select Upgrade All Instances and click Go. The
system opens the Upgrade Instances screen displaying all Program instances and
Source Code instances that point to the Program definition.

4. From the View drop-down list, select Program Definition (Source Code
Instances). The system refreshes the screen and lists only the Source Code
instances that point to this Program definition.

5. For each instance, the system displays the following information:

■ Object Name. The name of the Program definition that contains the Source
Code instance.

■ Object Type. The type of the object. See Note above.

■ Object Version. The version number of the Program definition that contains
the Source Code instance.

■ Version Label. The version label of the Program definition that contains the
Source Code instance.

■ Installed Version. This field is not applicable for Source Code instance
upgrades because a Source Code instance is referred to by its owning Program
definition and Oracle LSH object definitions cannot be installed. This field
refers to the most recent version of the Program instance that was successfully
installed. It is relevant only for Program instances pointing to this Program
definition.

■ Validation Status. The Program definition's validation status.

Note: If the Upgrade button is not enabled, then the Source Code
definition you want to upgrade to, is not checked in. To check in that
Source Code definition, you must check in the Program definition that
owns it.

Note: The newly upgraded version of the definition is not
necessarily the latest version. It is the version you are currently
working on. To go to the latest Source Code definition version, click
the View Latest button from the Source Code definition properties
section of the Source Code screen.

Note: In the following, Object refers to the Program definition that
owns the Source Code instance. If you are viewing this information
with the selection Program Instance or Both in the View drop-down
list (see point 4 above), then Object refers to a Program instance,
where it is a Program instance that is referring to this Program
definition.

Defining Source Code

Defining Programs 5-21

■ Checked Out By. The name of the person who has checked out the Program
definition, parent to the Source Code instance. If a person other than you has
the Program checked out, then you cannot upgrade the Source Code instance
that points to it: the check box next to it is grayed out.

■ Definition Version. The version number of the definition to which the
instance currently points.

■ Definition Validation Status. This field does not apply to Source Code
instances. It is the validation status of the Program instance that points to a
version of the current Program definition.

■ Parent Name. The name of the Parent object.

■ Parent Object Type. The type of object that contains the Program definition
that owns the Source Code instance.

■ Parent Status. The parent's installation status.

■ Parent Validation Status. The parent's validation status.

■ Source Code Name. The name of the Source Code instance.

■ SAS File Reference Name. The SAS file reference name, if any.

■ Container. The Domain > Application Area hierarchy for the Program
definition that owns the Source Code instance.

6. Select one or more instances you want to upgrade. You can use the Select All and
Select None functions and/or select or deselect instances individually by checking
or unchecking their Select checkbox. Instances that already point to the current
version of the definition cannot be selected.

7. Click Upgrade. The system changes the source definition of the selected instances
to the new version of the definition.

Note the following:

■ The Upgrade button is grayed out if the Program definition you want to upgrade
to, is not checked in. Click Return to go back to the previous screen and check in
the definition first.

■ If a version of the Source Code Instance already points to the Program definition
you want to upgrade it to, then its row is grayed out.

■ If the latest version of the Source Code instance is checked out, then all older
versions are grayed out.

Note: In the following, Parent refers to the Object's parent. So for
Source Code instances, it is the parent of the Program definition that
owns the Source Code. That is, parent of a Program definition - such
as an Application Area.

Note: When upgrading a Source Code instance, you are actually
upgrading the Program definition that owns the Source Code
instance. However, for the sake of readability, the document describes
operations on the Source Code instance. Please remember that you
cannot check in or check out a Source Code instance, you can perform
these operations on only the Program definition that owns it.

Defining Parameters

5-22 Oracle Life Sciences Data Hub Application Developer's Guide

If you want to upgrade an older version of the Source Code instance, then you
should check in the latest Program definition that owns the Source Code instance
and return to this screen. Older version are now available for upgrading. When
you select an older version and click Upgrade, the system checks out the Source
Code instance, creates a new version and then upgrades it. The system refreshes
the screen with this information.

Undoing Source Code Instance Upgrades
You undo a Source Code instance upgrade by pointing the Source Code instance to an
earlier version of the Source Code definition than the one you upgraded the Source
Code instance to.

You can undo Source Code upgrades for a single Source Code instance or for multiple
Source Code instances.

Single Source Code instance To undo a Source Code instance upgrade, see
"Upgrade Instance" on page 5-17.

Multiple Source Code instances To undo multiple Source Code instances, see
"Upgrading Multiple Source Code Instances" on page 5-18.

Defining Parameters
Parameters enable you to use the same Source Code definition to achieve multiple
results, controlling the processing flow differently under different conditions, or
processing different data in different executions of the same Program. For example,
you can use the same Program to process data for different studies by defining a
Parameter for the study name.

If you use a parameter in your source code internally only, you do not need to create a
Parameter definition for it. However, if you want the Parameter to be settable at
runtime or in the Execution Setup definition, you must define it. When you define a
Parameter you can give it a default value and/or a list of values. See "Defining
Parameters" on page 6-6 for further information.

Defining Planned Outputs
This section contains the following topics:

■ About Planned Outputs on page 5-22

■ Defining a Planned Output on page 5-24

About Planned Outputs
A Planned Output is a placeholder for a file to be generated by a Program during
execution. There are three types: Primary, Secondary, and Error File. You can define
any number of any type of Planned Output.

Planned Outputs are not required; you can create Programs whose purpose is to
transform and write data to a Table rather than to produce a report.

Note: Programs of BI Publisher adapter type contain predefined
Parameters that you should not modify. See "Setting Oracle BI
Publisher Program Parameters" on page 5-50.

Defining Planned Outputs

Defining Programs 5-23

You must create a different Planned Output for each file you want to generate. If you
want to create the same report in two file types, define a Planned Output for each of
them (in that case you might also want to use a Parameter to determine which one to
produce at runtime).

The source code for the Program must specify how to create each Planned Output
defined in the Program and refer to each one by the name appropriate to the
development environment (for example, Oracle or SAS).

Primary Output A primary output is a report on data generated during the successful
execution of the Program. The purpose of the Program is to produce one or more
primary outputs (and may also transform data). You must write source code that
produces the report you want, and refer to the primary Planned Output by name in
the source code.

You can define more than one primary output for a single Program. For example, you
could create two primary Planned Outputs to present the same information in two
ways, such as a table and a graph; or you could divide the data results into two or
more categories for presentation, with a Planned Output for each category.

Secondary Output A secondary output is one that is not defined as either Primary or
Error File; for example, a log file. The execution engine produces a log file for every
execution of an Oracle LSH Program, but you may or may not need to define a
Planned Output as a placeholder for the log file:

■ The system automatically creates one secondary Planned Output for each
SAS-type Source Code definition, to hold the log file. SAS log files therefore
appear in the Reports tab navigation tree.

■ You can view the log file for Programs of all Oracle types from the Job screen. If
you want to have the log file appear as an entry in the Reports tab navigation tree
as well, you must create a secondary Planned Output for it.

■ For Oracle LSH Informatica Programs, defining Planned Outputs for the log files
has no effect. You can see the log files through the job. The Oracle LSH Informatica
Program generates an unexpected output for each log file at the time of execution,
but does not fail on account of this.

Error File An Error File Planned Output is a file generated automatically by the
system if a Program execution fails to generate a primary output defined as Required.
To define an Error File Planned Output you must also define at least one primary
Planned Output as Required in the same Program definition.

The very existence of an error file as an output indicates a failure.

Classifying Planned Outputs You can classify Planned Outputs. The system assigns
the same classification values to the actual output when the Program generates it.
Users find report outputs by their classifications in the Reports tab of the Oracle LSH
user interface. See "Defining Planned Outputs" on page 5-22 and "Classifying Outputs"
on page 3-27.

Report Sets and Planned Outputs To use a Planned Output as a report in a Report
Set, you must create an instance of the Program that generates the Planned Output in a
Report Set Entry in the Report Set.

All the primary Planned Outputs generated by the Program are included in the Report
Set Entry, in the order in which they are displayed in the Program. If there are more
than one primary Planned Outputs and you want to be able to choose which one(s) to
include, you should create the Program with an input Parameter for this purpose.

Defining Planned Outputs

5-24 Oracle Life Sciences Data Hub Application Developer's Guide

Secondary outputs and error files are not included in the Report Set's table of contents.

The Report Set produces the output in the file type you specify as part of the Planned
Output definition. If you have Publishing Light installed and want to use those
features for this Report, you must specify a file type of PDF.

Defining a Planned Output
To define a Planned Output:

1. In the Planned Output subtab of a Program, click Add. The system displays the
Planned Output For screen.

2. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Title. Enter text or accept the default value. The system automatically creates
the default from the text you entered in the Name field.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ File Name. You must define a File Name for each defined Planned Output of a
Program of any type. For most technology types it must include a file
extension. The system converts any spaces you enter to underscores (_). The
system uses the File Name to match the actual generated output to the
corresponding Planned Output in order to classify the actual output file.

In a non-SAS Program, refer to the output as the File Name in your source
code. In a SAS Program, make the File Name the same as the File Reference
Name plus a file extension; for example, if the File Reference Name is out1,
make the File Name out1.pdf.

■ Primary. If Yes, indicates that the output file will contain a report on data
generated by the Program during execution.

■ Error if generated. If Yes, the system generates an error if Program execution
fails to generate the output.

■ Error if not generated. If Yes, the system generates this output only if Program
execution fails to generate a Primary Planned Output. Its presence is an
indication that the Program failed. You must write the source code to generate
the text of the file. Note: You cannot define an Error file as Required.

■ File Reference Name. You must define a File Reference Name for each
Planned Output of a SAS Program. It should conform to SAS rules. You
should also define a File Reference Name if you plan to use an instance of the
Program in a Report Set and to pass Report Set Entry properties' values to the
Program. Oracle recommends making Planned Output File Reference Names
unique within a Program, but this is not enforced. See "Passing Report Set
Entry Values to and from Programs" on page 9-38.

The File Reference Name defaults to out1 for the first Planned Output, out2 for
the second, and so on.

3. Click Apply. The system saves the changes and returns you to the Program
Instance screen.

Note: You do not need to define a Planned Output for the .log file.

Defining PL/SQL Programs

Defining Programs 5-25

Planned Output Classification
You must define default classification values for the Planned Output. The system
applies these classifications to the actual output when it is generated by the execution
of the Program. The classifications you define for a Planned Output determine who
can see the actual output when it is generated, and where it appears in the navigation
tree in the Reports tab in Oracle LSH.

For further information, see "Classifying Outputs" on page 3-27.

Defining PL/SQL Programs
This section includes information on:

■ Writing Primary Source Code in PL/SQL on page 5-25

■ Testing PL/SQL Source Code on page 5-27

■ Creating a PL/SQL Package Storage Program on page 5-28

■ Using a Sharable PL/SQL Package on page 5-28

■ Compiling and Executing a PL/SQL Program on page 5-28

■ Manipulating Documents through a PL/SQL Program on page 5-28

See also: Setting Up Oracle SQL Developer or SQL*Plus as an IDE on page 5-56

Writing Primary Source Code in PL/SQL
When a Program is executed, the system launches its primary source code file. You
must use a specific syntax at the beginning of the PL/SQL source code and also write
the source code in such a way that it calls every secondary Source Code instance you
define and refers to all defined subcomponents by their Oracle name.

Required Syntax: Must Match Definitions In the primary Source Code of a PL/SQL
Program, the source code must begin by providing the Oracle Package name and
Oracle Procedure name defined for the Source Code, and declare all Parameters
defined in the Program with their data type, as shown in the following example,
where the first Parameter is a number and the second Parameter is a varchar2:

Example 5–1 Required Beginning of PL/SQL Code in a Primary Source Code File

create or replace package PACKAGE_NAME as
procedure PROCEDURE_NAME (parameter_1 number,parameter_2 varchar2);

end PACKAGE_NAME;
/
create or replace package body PACKAGE_NAME as
procedure MAIN (parameter_1 number,
parameter_2 varchar2) is
begin

Required Security Syntax There is a potential security hole in PL/SQL Programs
because they can be executed directly in the database outside of Oracle LSH security.

Note: Each PL/SQL Source Code definition within a particular
Program must have a unique Oracle package name.

Defining PL/SQL Programs

5-26 Oracle Life Sciences Data Hub Application Developer's Guide

Oracle LSH can prevent this if you add a specific code template. You should add this
to the beginning of the initialization block of your primary PL/SQL source code, as
shown below. When you first install the Program, the system compiles the PL/SQL
source code and inserts the actual Program ID generated by the system for the
Program. At runtime, the system checks that a database account corresponding to the
Program ID has been created. The service instance creates this database account to
allow execution of the PL/SQL packages. If the account exists, then the job has been
created through proper channels and is allowed to proceed. If it has not, the system
does not allow execution to proceed.

If you do not include the recommended code template, when you install the Program,
the system looks for either END; or END package_name; beginning at the end of the
source code, and inserts the security code at that point. However, at runtime the
Program is allowed to run up until that point. Any statements that appear in the
initialization block before the security code are allowed to execute.

Add the following template exactly as appears:

BEGIN /*Package initialization here*/
/* LSH GENERATES SECURITY CODE HERE, DO NOT REMOVE THIS COMMENT. */
/* Define your package initialization here */
NULL;

Insert the above template into the package initialization block of the package body, as
follows:

CREATE OR REPLACE PACKAGE pkg1 AS
/* define your procedures here */
PROCEDURE proc1;
END pkg1;
/
CREATE OR REPLACE PACKAGE BODY pkg1 AS
/* define your parameters here */

/* define your procedures here */
PROCEDURE proc1 IS
BEGIN
/* Define code here */
NULL;
END proc1;

BEGIN /*Package initialization here*/
/* LSH GENERATES SECURITY CODE HERE, DO NOT REMOVE THIS COMMENT. */
/* Define your package initialization here */
NULL;
END pkg1;

The first time you install the Program, the system updates your source code by
inserting the following code, including the actual program_id generated for the
program by the system:

IF NVL(SYS_CONTEXT('CDR_RUNTIME', <program-id>), 'X') <> 'Y'
THEN
 RAISE_APPLICATION_ERROR(-20005, 'EXECUTE NOT enabled.');
END IF;

Subcomponent References in PL/SQL You must refer to the defined subcomponents
of the Program in your PL/SQL source code as follows:

Defining PL/SQL Programs

Defining Programs 5-27

■ Table Descriptors. For each table you read from or write to in your source code,
you must define a source or target Table Descriptor. Refer to each Table Descriptor
as if it were a real database table, using its Oracle name. If the Table instance to
which a Table Descriptor is mapped has a different name from the Table
Descriptor, use the Table Descriptor's name, not the Table instance's.

■ Secondary Source Code. Refer to secondary Source Code instances by their Oracle
name.

■ Parameters. You must create a defined Parameter for each input and output
Parameter you use in your primary source code, and declare them in your source
code (see "Required Syntax: Must Match Definitions" on page 5-25). Refer to
defined Parameters by their Oracle name.

■ Planned Outputs. You must create a defined Planned Output for every output
generated by the primary source code at execution, including the log file. Refer to
each defined Planned Output by its File Name.

API for Ending PL/SQL Programs with a Status of Success, Warning, or Failure
Normally PL/SQL programs end with a status of Success unless there is a system
failure or unhandled SQL exception. However, if you are using a Program in a
Workflow, you may need to write your code so that the Program completes with a
status of Warning or Failure, depending on circumstances. In a Workflow, you can use
the completion status of a Program to determine which branch of activities to execute.

Oracle LSH ships with an API for this purpose called:

CDR_EXE_USER_UTILS.setCompletionStatus()

To call the package, enter one of the following lines of code in your source code exactly
as it appears below, at the point where you want the Program to return a status of
Success, Warning, or Failure:

CDR_EXE_USER_UTILS.setCompletionStatus(1);
CDR_EXE_USER_UTILS.setCompletionStatus(2);
CDR_EXE_USER_UTILS.setCompletionStatus(3);

CDR_EXE_USER_UTILS.setCompletionStatus(1) returns a status of Success.
CDR_EXE_USER_UTILS.setCompletionStatus(2) returns a status of Warning.
CDR_EXE_USER_UTILS.setCompletionStatus(3) returns a status of Failure.

Testing PL/SQL Source Code
To test PL/SQL code, you must first map the Table Descriptors to the Table instances
and check in and install the Program instance and all the Table instances it reads from
and writes to. You can then execute the Program. If the Program writes data to tables,
you can check the data; see "Viewing Data" on page 3-70.

If the Program generates a report, you can see the report in the Reports tab. You can
link to the report and the log file from the Job ID link in the Job Executions section of
your My Home tab.

Note: In a PL/SQL Program a Source Code and a Table Descriptor
cannot have the same Oracle name.

Defining PL/SQL Programs

5-28 Oracle Life Sciences Data Hub Application Developer's Guide

Creating a PL/SQL Package Storage Program
You can create PL/SQL Programs especially for the purpose of containing PL/SQL
packages as reusable (sharable) Source Code definitions, so that Definers can more
easily find them. You can group logically related packages in the same container
Program.

You can then use these sharable PL/SQL packages in Oracle LSH Programs of type
PL/SQL or Oracle Report (see "Using a Sharable PL/SQL Package" on page 5-28).

To create a storage Program for PL/SQL packages:

1. Create a Program of type PL/SQL. Give it a name and description that describe its
purpose, such as "Sharable Demography Subroutines."

2. (Optional) Add a primary Source Code definition of type PL/SQL to test the
packages. Set its Sharable flag to No.

3. Add the secondary Source Code definitions you want to share. You can create
them and write the code from within the storage Program, or you can copy them
from other Programs and paste them into the storage Program. They must all be of
type PL/SQL.

4. Check in, install, and test the Program.

5. When you have tested each one, set its Sharable flag to Yes. You can change this
setting without checking out the Program definition.

Using a Sharable PL/SQL Package
In Oracle LSH Programs of type PL/SQL or Oracle Report, you can create an instance
of a Source Code definition stored in another Program and marked as Sharable. Your
company may have Programs created especially for the purpose of storing sharable
PL/SQL packages.

To use a Sharable Source Code definition:

1. In a PL/SQL or Oracle Reports Program, create a secondary Source Code object as
an instance of an existing Source Code definition (see "Creating an Instance of an
Existing Source Code Definition" on page 5-14).

2. When you search for the definition source, specify the PL/SQL package storage
Program as the Program search criterion.

3. You can select one or more of the PL/SQL packages. The system includes the
source code for each package you select in the Source Code instance of your
Program.

See "Upgrading Source Code And Undoing Source Code Upgrades" on page 5-16 for
information on how to upgrade Source Code instances pointing to a sharable Source
Code definition.

Compiling and Executing a PL/SQL Program
The system compiles PL/SQL source code when you install the Program instance.
Therefore, when a Program containing PL/SQL packages is submitted for execution,
the system does not need to compile its source code.

Manipulating Documents through a PL/SQL Program
You can write a PL/SQL Program to retrieve BLOBs (binary large objects such as
documents created using the Microsoft Office Suite) from the database and use them,

Defining View Programs

Defining Programs 5-29

for example, as a Planned Output of the Program for inclusion in a Report Set. You can
also stream a BLOB into a Program.

Defining View Programs
This section includes information on:

■ Creating Source Code for a View Program on page 5-29

■ About View Table Instances on page 5-30

■ About Table Descriptors in View Programs on page 5-30

The View-type Program creates a database view of data in multiple Table instances.
When you install the View Program, the system creates a Table definition, a Target
Table Descriptor and a Table instance object of type View; and maps the Table instance
to the target Table Descriptor.

The resulting View Table instance created in the Work Area schema functions like any
database view and always displays current data available in the source Table
instances. You can combine data from various Table instances without storing the data
multiple times in the database. Other Programs, Business Areas and Data Marts can
also read from the View Table instance. View-type Programs cannot be executed and
therefore you cannot create them under a Report Set or Workflow.

The status of a View Program is 'Installable' if the View Program contains both a
Source Code and a source Table Descriptor. The View Program's Launch IDE behavior
is the same as that of a PL/SQL Program.

Creating Source Code for a View Program
When you launch the View Program, the system launches its primary source code file.

The following is a format of a SELECT statement that can be customized and saved as
Source Code in a View Program:

SELECT [hint] [{ { DISTINCT | UNIQUE } | ALL }] select_list FROM table_
reference [, table_reference]... [where_clause] [hierarchical_query_clause] [
group_by_clause] [HAVING condition] [model_clause] [{ UNION [ALL] |
INTERSECT | MINUS } (subquery)] [order_by_clause]

The SELECT query in the View Program Source Code can only reference the source
Table descriptors. It may call functions which are part of PL/SQL programs that are
statically referencedby the View Programs.

A View Program cannot contain any definition, runtime parameter or Planned
Outputs.

During installation, the system validates the SQL statement for any external
references. Therefore, the SQL statement cannot reference any public object in the
database.

About View Table Instances
You can only create a View Table instance by installing a View Program. You cannot
create or update a View Table instance from the Oracle LSH User Interface or through
APIs. Once created, the target Table Descriptor cannot be unmapped from its Table
instance. If you remove a View Program instance, its corresponding target Table
instance is also removed.

Defining SAS Programs

5-30 Oracle Life Sciences Data Hub Application Developer's Guide

If you modify the SELECT statement before installing the program, the system
synchronizes the Target Table Descriptor and the Table instance at the time of install.

A View Table instance has full currency traceability and can be used as a source table
for other Oracle LSH Programs, Data Marts and Business Areas. Every time you access
the view's current data, a currency timestamp is applied to the View Table.

You can use the Browse Data UI to view data in the View Table instance. You can use
the Apply Snapshot Label UI to select snapshot labels for all source Tables and apply
a snapshot label to the target View Table instance. You can remove a snapshot label
using the Manage Snapshot Label UI.

The validation status of a View Table instance must always be equal to or lower than
that of the source Table instances.

Any destructive change to a source Table Instance invalidates the View Table instance.
You must update and reinstall the View Program to resolve differences. The system
does not allow you to remove source Tables if the validation status of a View Table
instance is Production.

Blinding Status
The blinding status of the View Table instance is determined by that of the Table
Instances mapped to the source Table Descriptors in the View Program.

If you have blind-break privileges on source Table instances that support blinding, you
can authorize a view based on those Tables. You can authorize reading from blinded
sources only if all the source Table Descriptors are mapped. Use the Authorize Read
from Blinded Sources radio button on the View Program instance Properties page to
authorize a View Table. By default, the setting is No.

If mapping of any source Table Descriptors becomes incomplete or new Descriptors
are added, the Authorize Read from Blinded Sources setting is automatically set to
No. When the authorize setting is modified, the Program instance is implicitly checked
out.

About Table Descriptors in View Programs
You cannot map source Table Descriptors of a View Program to a View Table instance.

In a View Progam, if the target Table Descriptor and its corresponding View Table
instance exist, and if the SELECT query in the Source Code is modified, installation
automatically updates the corresponding Table definition in the Application Area
containing the Work Area. The system then updates the Table Descriptor and Table
instance to refer to the modified Table definition.

If the Table definition for the Table Descriptor is updated during installation, the
system checks if the Table definition exists in the local Application Area. If not, a copy
of the Table definition is created in the local Application Area and modified.

Defining SAS Programs
This section includes information on:

■ Connecting to SAS on page 5-31

■ SAS Program and Source Code Types on page 5-33

■ Writing SAS Primary Source Code on page 5-34

■ Creating a SAS Macro Catalog on page 5-37

Defining SAS Programs

Defining Programs 5-31

■ Creating a SAS Format Catalog on page 5-38

■ Calling an API to Capture Output Parameter Values on page 5-39

See also: Setting Up SAS as an IDE on page 5-57

SAS Program Development Process
There are three basic ways to use SAS source code in Oracle LSH:

■ Open SAS as an IDE from Oracle LSH on page 5-31

■ Upload Existing SAS Programs to Oracle LSH on page 5-31

■ Enter Source Code Directly in the Oracle LSH Source Code Definition on page 5-31

Open SAS as an IDE from Oracle LSH
If you have the SAS client installed on your PC, you can launch the SAS integrated
development environment (IDE) from an Oracle LSH Program instance.

If you plan to use the SAS (IDE) to develop an Oracle LSH Program, before you launch
the IDE:

■ Define and map the source Table Descriptors you need; see "Defining and
Mapping Table Descriptors" on page 3-36.

■ Install the Program instance; see "Installing a Work Area and Its Objects" on
page 12-11.

Oracle LSH then downloads the data views or files to SAS (depending on the type of
connection you are using; see Connecting to SAS on page 5-31) when you launch SAS
and you can read the data as necessary while you write the source code in SAS.

You can go back and forth between working in SAS and working in Oracle LSH as you
develop a Program. For example, if you declare an input or output parameter in your
SAS code, you can immediately go to Oracle LSH and create the required
corresponding Parameter in the Oracle LSH Program, and then go back to writing SAS
code.

When you are ready, go to the Source Code definition in the Oracle LSH Program
instance and upload your SAS source code.

Upload Existing SAS Programs to Oracle LSH
You may have many legacy SAS programs that you want to use on Oracle LSH data.
You can upload an existing SAS program to a Source Code definition in an Oracle LSH
SAS Program and create defined Parameters, Source Codes, Table Descriptors, and
Planned Outputs as required by Oracle LSH for the SAS source code.

Enter Source Code Directly in the Oracle LSH Source Code Definition
When you create a new Source Code definition and instance at the same time, you can
type or copy and paste source code text directly into the large Source Code field.

Connecting to SAS
There are three ways to connect to SAS for Program development: Connected Mode,
SAS Connected Mode with Work Area Data, and Disconnected Mode. You can specify
the mode you want to use in your User Preferences, although your choices may be
restricted by your company.

Defining SAS Programs

5-32 Oracle Life Sciences Data Hub Application Developer's Guide

■ Connected Mode. Your PC has the SAS client and SAS Access to Oracle installed
and is connected to the Oracle LSH database through a network. When you launch
SAS from a Program instance, Oracle LSH downloads views based on the Table
Descriptors defined in the Program. You write your program locally on the SAS
client, using the views to see data in Oracle LSH. You cannot write data to Oracle
LSH Table instances. If you run the Program locally, you write data to local data
set files.

When you are ready, go to the Program instance in Oracle LSH, upload the SAS
source code and upload any target SAS data sets you have created as Table
Descriptors.

■ SAS Connected Mode with Work Area Data. This mode is the same as Connected
mode except that it connects to the Work Area schema in the database. From SAS,
you can browse views of current data in all Table instances in the Work Area, not
just the Table instances linked to Table Descriptors of the Program.

You must use the SAS Access to Oracle tool to connect to Oracle LSH.

■ Disconnected Mode. Your PC has the SAS client installed and is connected to the
Oracle LSH database through a network. When you launch SAS from a Program
instance, Oracle LSH downloads data sets with the same structure as the
Program's Table Descriptors. In addition, Oracle LSH downloads the actual data
contained in the Table instances to which the Table Descriptors are mapped. You
can write your program, working locally on the downloaded data.

Oracle LSH creates a directory structure on your personal computer based on the
location of the Program, starting with the Domain (if you are using multiple levels
of Domains, all are represented): Drive:/CdrWork/your_LSH_database_acount_
name/Domain_name_(all_existing_domains)/Application_Area_name/Work_
Area_name/Program_instance_name/Program_instance_version/Table_
Descriptor_SAS_libname/data set file.

For Source Codes, Oracle LSH creates directories on your PC to contain the source
code files. The system creates one directory for Source Code definitions of type
Program and another for those of type Macro:

– Drive:/CdrWork/your_LSH_database_acount_name/Domain_name_(all_
existing_domains)/Application_Area_name/Program_definition_
name/Program_versionPrograms/source code files.

– Drive:/CdrWork/your_LSH_database_acount_name/Domain_name_(all_
existing_domains)/Application_Area_name/Program_definition_
name/Program_version/Macros/source code files.

When you are ready, go to the Program instance in Oracle LSH, upload the SAS
source code and upload any target SAS data sets you have created as Table
Descriptors.

Note: It is possible to work on the same Program in different modes
at different times. However, if you work first in Disconnected mode,
so that the system downloads data to your personal computer, and
then change to Connected mode, you may get an error that the source
data set already exists. In this case, the system continues to point to
the local data set instead of live data in Oracle LSH.

To avoid this problem, delete or move the data sets on your personal
computer that were downloaded from Oracle LSH.

Defining SAS Programs

Defining Programs 5-33

SAS Program and Source Code Types
Oracle LSH supports three types of SAS Programs and handles each one differently
during execution:

■ SAS Program

■ SAS Macro Catalog

■ SAS Format Catalog

SAS Macro Catalogs and SAS Format Catalogs can be referenced by primary or
secondary Source Code instances in a SAS Program and are compiled each time the
Program is executed, before the primary Source Code is launched.

SAS Program Define an Oracle LSH Program of type SAS Program to hold the
source code of a normal SAS program that manipulates data or generates one or more
reports. Upload this SAS source code to Oracle LSH as primary source code. In this
primary source code you can call SAS macros or formats stored in Oracle LSH
Programs of type SAS Macro Catalog or SAS Format Catalog, or stored in the same
Program as secondary Source Code of type Macro.

Before you launch the SAS development environment to write source code, you must
define a Program's source Table Descriptors and map them to Table instances so that
Oracle LSH can download the views or data for you to use.

In a SAS Program you can have two types of source code:

■ Program. Source Code of type Program is intended to hold the source code that
accomplishes the business purpose of the Program: merging or transforming data
and/or producing one or more figures, listings, or table reports. You must
designate the Source Code that serves this purpose as the primary Source Code so
that the system sends it to the SAS engine for execution. The actual SAS source
code file contained in the Source Code definition can call other Source Codes of
type Program or Macro, or Oracle LSH Programs of type SAS Macro Catalog or
SAS Format Catalog.

■ Macro. You can define a macro specifically for use within a particular Program.
These Source Code definitions can be displayed in any order. The system compiles
them before each execution and executes them in the order they are called by the
primary source code.

See "Writing SAS Primary Source Code" on page 5-34.

SAS Macro Catalog an Oracle LSH Program of type SAS Macro Catalog is intended
to store a set of macros that are approved for reuse in a variety of SAS Programs. You
can group a set of macros with related functions in a single Catalog; for example,
demography macros. In a SAS Macro Catalog Program you can have two types of
source code:

■ Macro. A Source Code definition of type Macro to hold the source code for a single
SAS macro. Set each macro's Sharable flag to Yes.

Note: Developing SAS code is an option only for customers who
purchase SAS separately from Oracle LSH. See "Setting Up Integrated
Development Environments (IDEs)" on page 5-56 for instructions on
how to set up SAS to work with Oracle LSH.

Defining SAS Programs

5-34 Oracle Life Sciences Data Hub Application Developer's Guide

■ Program. One or more Source Code definitions of type Program to test the macros.
Set its Sharable flag to No. This Source Code must be listed in the first (primary)
position so that Oracle LSH sends it to the SAS engine to test the macros.

SAS Format Catalog an Oracle LSH Program of type SAS Format Catalog is intended
to store a set of formats that are approved for reuse in a variety of SAS Programs. You
can group a set of formats with related functions in a single Catalog; for example,
demography formats. In a SAS Format Catalog Program you can have two types of
source code:

■ Macro. A Source Code definition of type Macro to hold additional source code to
support the format building steps. Set each macro's Sharable flag to Yes.

■ Program. One or more Source Code definitions of type Program to test the
formats. Set its Sharable flag to No. This Source Code must be listed in the first
(primary) position so that Oracle LSH sends it to the SAS engine to test the
formats.

For Source Code of type Macro in any Program type, you must upload the source
code, not the compiled binary file. The system compiles the macros defined in a
Program before each execution of a Program's primary source code.

Writing SAS Primary Source Code
Create a Source Code definition of type Program in a SAS Program to hold the source
code that accomplishes the business purpose of the Program: merging or transforming
data and/or producing one or more figures, listings, or table reports. You must
designate the Source Code that serves this purpose as the primary Source Code so that
Oracle LSH sends it to the SAS engine for execution. Its source code can call other
Source Codes of type Program or Macro contained in the same SAS Program, or Oracle
LSH Programs of type SAS Macro Catalog or SAS Format Catalog.

If you plan to launch the SAS development environment from Oracle LSH to write
source code, you must first define a Program's source Table Descriptors, map them to
Table instances, and install the Program and Table instances so that Oracle LSH can
download the views or data for you to use.

Subcomponent References in SAS You must refer to the defined subcomponents of
the Program in your SAS source code as described in the following sections:

■ Table Descriptors on page 5-34

■ SAS Secondary Source Code Instances on page 5-35

■ Parameters on page 5-35

■ Planned Outputs on page 5-35

Table Descriptors Oracle LSH Tables and Table Descriptors are compatible with SAS
data sets. The Table is equivalent to a data set, and Table Columns are equivalent to a
data set's variables.

Note: Do not include the string error: in any SAS source code.
Oracle LSH searches the Program execution log file for the string
"Error:" and errors out the Program execution if it finds the string. The
source code of the Program is copied into the log file. Therefore if you
include "Error:" in your source code, the Program will fail.

Defining SAS Programs

Defining Programs 5-35

Syntax. Write to each Table Descriptor defined within the Program as if it were a data
set, using the syntax SAS_library_name.SAS_name. You must read from and write to
the Table Descriptor, not the Table instance; if the name of the Table Descriptor or its
Columns differ from the Table instance's, use the Table Descriptor's.

Target As Dataset. Because Program source code must write to Table Descriptors, and
Table Descriptors are views, you should use Proc SQL statements to write to tables in
Oracle LSH. However, Oracle LSH provides a feature to allow you to use existing SAS
Programs written with data statements. The Target As Dataset attribute is available
only in SAS Programs, and only for target Table Descriptors.

If you set this attribute to Yes, Oracle LSH adds a processing step to enable SAS data
statements to write to Oracle LSH Table instances. This extra processing step results in
slower performance but allows you to use existing programs.

Select No if the Program's source code uses Proc SQL statements to write to tables.
This results in optimal performance.

SAS Secondary Source Code Instances In an Oracle LSH SAS Program you can
create secondary Source Code instances of four types:

■ SAS Macro Catalog. To use any of the macros included in Oracle LSH SAS Macro
Catalog in a Source Code instance, create an instance of the catalog Source Code in
your Program. Immediately before each execution of the Oracle LSH SAS Program
the macros are compiled in the SAS work library. You can call them by name from
the primary Source Code.

■ SAS Format Catalog. To use any of the formats included in an Oracle LSH SAS
Format Catalog in a Source Code instance, create a Source Code instance of the
whole catalog in your Program. Immediately before each execution of the Oracle
LSH SAS Program the formats are compiled in the SAS work library. You can call
them by name from the primary Source Code.

■ Macro. You can create a macro especially for use in the same Program where your
primary Source Code is located. You can also create an instance of a sharable
Source Code definition of type Macro from another SAS Program. Refer to
individual Source Codes of type Macro in your primary source code by their
name.

■ Program. You can use another Oracle LSH SAS Source Code of type Program (not
an Oracle LSH Program of type SAS Program) as an Include. If the Source Code
definition is located in the same Program as your primary Source Code, refer to it
by its name. If the Source Code definition is located in a different Program, refer to
it by its SAS File Reference Name.

Parameters For every input or output parameter in your SAS primary source code,
you must define a Parameter in Oracle LSH and refer to it by its name in your SAS
code. See "Defining Parameters" on page 6-6.

Planned Outputs You must define a Planned Output to hold each report to be
generated by a Program and refer to each one in the source code by its SAS File
Reference Name. Oracle LSH automatically generates a Planned Output for the log file
when you create the first Source Code in the Program. See "Defining Planned Outputs"
on page 5-22.

Tip: You can improve processing performance by selecting Target as
Dataset and using the SQL*Loader. See "SQL*Loader Processing for
SAS Programs" on page 13-7.

Defining SAS Programs

5-36 Oracle Life Sciences Data Hub Application Developer's Guide

You can successfully execute a SAS Program through Oracle LSH even if there are
unplanned Outputs. If the SAS Program's validation status is Development, the
system automatically generates a Planned Output with a file reference name created
from the first eight characters of the Output file name in the source code. Ensure that
the Output file name in the Source Code is enclosed in double quotations for Oracle
LSH to identify.

If the required Output is a SAS data set, Oracle LSH can generate a Planned Output if
the SAS Program's validation status is Development. You must define the new SAS
data set inside the library named "Target". Oracle LSH then treats the Output data set
as the SAS Program's target Table. The system compares the SAS data set filenames
with those of the target Table Descriptors and if they match, loads data from the SAS
data set into the mapped Table instance.

If the system does not find a target Table Descriptor, it checks out the Program, adds a
new target Table Descriptor to it, creates a new Table instance in the Work Area and
maps it to the newly created target Table Descriptor before installing the Program and
the Table instance. Data is then loaded from the SAS data set into the mapped Table
instance. Oracle LSH triggers separate jobs for each of these processes. The system
does not support Proc SQL and Insert commands in the generation of unplanned data
set Outputs.

Subsequent changes in source data set Table Descriptors must be matched in the target
Table manually.

Using a SAS Macro Catalog
To use any of the macros contained i an Oracle LSH SAS Macro Catalog, you create a
Source Code instance in the Program from which you need to call them.

Do the following:

1. In the Oracle LSH SAS Program where you need to use one or more of the macros
in the Catalog, create a Source Code as an instance of an existing definition.

2. In the Search screen, choose the Domain or Domain and Application Area where
the Macro Catalog you need is located, and select the SAS Macro Catalog radio
button. If you know the exact name of the Macro Catalog you need, enter it in the
Name field.

3. Click Go. The system returns the Macro Catalog(s) that satisfy the search
criteria—or, if you entered the exact name of a Macro Catalog, returns only that
one.

4. Select a Macro Catalog: select its box in the Select column and click the Select
button. The system adds an instance of the Catalog, including all the macros it
contains, and returns you to the Source Code screen.

You can now use any of the macros in your Program. At execution they are added to
your work library and you can call them by name from the primary source code.

Using a SAS Format Catalog
If your SAS code operates on data sets that require SAS formats for the proper
expression of their data, you must include the formats in your Oracle LSH SAS
Program (see "Defining SAS Programs" on page 5-30).

When you create a SAS Program in Oracle LSH that needs to use an Oracle LSH SAS
Format Catalog, do the following:

1. In the Oracle LSH SAS Program, create a secondary Source Code object as an
instance of an existing Source Code definition (see "Creating an Instance of an

Defining SAS Programs

Defining Programs 5-37

Existing Source Code Definition" on page 5-14).

If the Format Catalog includes a Table Descriptor for use as a static reference,
select the Static Reference radio button.

2. In the Search screen, choose the Domain or Domain and Application Area where
the Format Catalog is located and select the SAS Format Catalog radio button. If
you know the exact name of the Catalog you need, you can enter it.

3. Press Go. The system displays all the SAS Format Catalogs in the location you
specified—or, if you supplied the exact name of a Catalog, lists only that Catalog.

4. Select the Catalog you want by selecting the box next to it in the Select column
and click the Select button. The system adds the Catalog as a Source Code instance
to your Program and returns you to the Program's Properties screen.

You can now use any of the formats in your Program. At execution they are added to
your work library and you can call them by name from the primary source code, for
example:.

Creating a SAS Macro Catalog
Oracle LSH includes the Program type SAS macro Catalog especially for the purpose
of storing SAS macros that are approved for reuse. You can group logically related
macros in each SAS Macro Catalog.

You must upload the source code file, not the compiled binary file. When the Program
is submitted for execution, the system compiles its macros before executing the
primary source code.

Creating a SAS Macro Catalog
To create a SAS Macro Catalog in Oracle LSH:

1. Create a Program of type SAS Macro Catalog. Give it a name and description that
describe its purpose (see "Creating Source Code" on page 5-11).

2. For each SAS macro you want to store in the Catalog, create a Source Code
definition of type Macro.

3. If the macro does not already exist, create it either in SAS or in the Source Code
box. If the source code is on a local computer, upload the source code file (not the
compiled binary file) from SAS to Oracle LSH.

4. Set each macro's Sharable flag to Yes.

5. (Optional) Add a primary Source Code definition of type SAS Program to test to
SAS macros you store in the Catalog. Set its Sharable flag to No. Write the source
code and upload if necessary.

Note: You cannot set a Static-reference Source Code as primary. Also,
you cannot set a Source Code that points directly to a Program
definition as primary.

Note: You cannot set any macro Source Code instance that points
directly to a Program definition as Sharable.

Defining SAS Programs

5-38 Oracle Life Sciences Data Hub Application Developer's Guide

6. Test the macros and promote the Catalog to a higher validation status according to
your company's policies.

Nesting SAS Macros
It is possible to create macros that reference other macros contained in a different SAS
Macro Catalog in Oracle LSH. In this case, you include as a Source Code instance in
your Oracle LSH SAS Program only the SAS Macro Catalog that contains the macro
your primary source code references. When the Program is submitted for execution,
the system compiles the macro specified in the Program and automatically finds and
compiles the macro referenced by the Program's macro. You cannot use more than two
layers of macros; a macro referenced by another macro cannot reference yet other
macro.

About SAS Format Catalogs in the Oracle Life Sciences Data Hub
A SAS format translates short data value codes like zero (0) and one (1) to meaningful
data values such as Male and Female or Yes and No. Using SAS formats, you can store
a minimum amount of data and call the format to correctly display the data in a
report. The format itself can consist of source code containing hardcoded values, such
as:

Alternatively, the format can consist of a simple call to an Oracle LSH Table instance
that contains the relationships between the short stored values and the meaningful
display values.

In this case the format refers to a data set, now converted to an Oracle LSH Table
called Standard Formats that contains data such as:

You can create the Oracle LSH Table in several ways, including:

■ uploading a format data set from SAS using a Load Set

■ modifying an Oracle Clinical Discrete Value Group (DVG) table (loaded into
Oracle LSH by the Oracle Clinical Global Library adapter)

■ uploading a table from any integrated external system and modifying as necessary

A SAS format data set contains all the information required to define a format, such as
the format name; its starting and ending value; minimum, maximum, and default
length; and so on as columns or variables.

Creating a SAS Format Catalog
To create a SAS Format Catalog in Oracle LSH:

Note: This source code is not compiled when the Program is
executed because its Sharable flag is set to No.

Table 5–1 Format Table Example

Format Name Stored Code Display Value

$Sex. 0 Male

$Sex. 1 Female

$YesNo. 0 No

$YesNo. 1 Yes

Defining SAS Programs

Defining Programs 5-39

1. Create an Oracle LSH Program of type SAS Format Catalog. Give it a name and
description that describe its purpose.

2. If any of the formats in the Catalog are table-dependent, add the necessary Table
Descriptor(s) using the Oracle LSH Table definition that you created for formats as
the source Table definition (see "Creating a Table Descriptor" on page 3-38).

3. Map any Table Descriptors to Table instances (see Mapping Table Descriptors to
Table Instances on page 3-45).

4. Add a Source Code definition of type Program that contains the format source
code (see "Creating Source Code" on page 5-11).

If the format is Table-dependent, the source code must use the Table Descriptor as
input and include a SAS Proc format to create the format catalog in SAS.

You can also add Source Codes of type Macro to support the format building steps
if necessary.

5. Set the Source Code's Sharable flag to Yes.

6. Repeat as necessary; you can have multiple format Source Codes in a single Oracle
LSH SAS Format Catalog.

7. Apply. The system saves the Source Code definition(s) and instances in the
database and returns you to the Program's main page.

8. Install the Program in the database (see "Running a Work Area Installation" on
page 12-13).

Calling an API to Capture Output Parameter Values
You can call a public Oracle LSH API from SAS source code to capture the values of
output Parameters in a SAS Program contained in a Report Set or Workflow for the
purpose of passing their value during execution to another Program in the same
Report Set or Workflow (see "Setting Up Parameter Value Propagation" on page 6-16).

If you set up value propagation in a Report Set or Workflow, you must call an API
from each SAS Program whose output Parameter values you need to capture. You
must call the API once for each Parameter value you need. You may want to add the
API call to every SAS Program that contains output Parameters in case you later add
the Program to a Report Set or Workflow and want to use the output Parameter value
in value propagation. The API package procedure name is: Cdr_Pub_Exe_User_
Utils.setOutputParams.

The example below uses a PL/SQL wrapper to call the API. In this way you can call
the API multiple times and only connect to the database once from SAS, and only two
arguments are required for each output Parameter that you want to send back to
Oracle LSH:

Note: You cannot set a Static Reference Source Code as primary.
Also, you cannot set a Source Code that points directly to a Program
definition as primary.

Note: You cannot set any Source Code instance that points directly to
a Program definition as Sharable.

Defining SAS Programs

5-40 Oracle Life Sciences Data Hub Application Developer's Guide

■ pi_vparamName. Enter the Name of the output or input/output Parameter whose
value you want to capture.

■ pi_vparamValue. This procedure parameter receives the value of the Program
Parameter you specified as the value of pi_vparamName.

You can use the following code to call the API. Use %sysget (as shown) to get the
required values rather than hardcoding the values in the code.

SAS code
--
Proc SQL;
/*set the job context then send the output value*/
connect to oracle (user=%sysget(CDR_SCHEMA) pass=%sysget(CDR_PASSWD)
path=%sysget(CDR_DB));

/* pass output parameter back to LSH */
execute(exec my_plsql_package.setOutputParams(
'MyParamName'
,'My Param Value'
)
by oracle ;

PL/SQL code
--
CREATE OR REPLACE PACKAGE my_plsql_package AS
Procedure setOutputParams(
pi_vParamName IN varchar2
,pi_vParamValue IN varchar2
);
END my_plsql_package;
/

CREATE OR REPLACE PACKAGE BODY my_plsql_package AS
Procedure setOutputParams(
pi_vParamName IN varchar2
,pi_vParamValue IN varchar2
) IS
return_status VARCHAR2(10);
msg_count NUMBER;
msg_data VARCHAR2(2000);
BEGIN
 Cdr_Pub_Exe_User_Utils.setOutputParams(p_api_version => 1
 ,p_init_msg_list => Cdr_Pub_Def_Constants.G_FALSE
 ,p_commit => Cdr_Pub_Def_Constants.G_FALSE
 ,p_validation_level => Cdr_Pub_Def_Constants.G_VALID_LEVEL_FULL
 ,x_return_status => return_status
 ,x_msg_count => msg_count
 ,x_msg_data => msg_data
 ,pi_vparamName => pi_vParamName
 ,pi_vparamValue => pi_vParamValue) ;
 IF return_status <> 'S' THEN
 RAISE_APPLICATION_ERROR(-20200,'Failed to call Cdr_Pub_Exe_User_
Utils.setOutputParams: '||msg_data);
 END IF ;
END setOutputParams;
END my_plsql_package;
/

Defining Informatica Programs

Defining Programs 5-41

Defining Oracle Reports Programs
You can use Oracle Reports as an integrated development environment to develop
reports in Oracle LSH, launching Oracle Reports from a Program definition. Oracle
LSH Programs of type Oracle Reports can have two types of Source Code: Oracle
Reports, which are uploaded from Oracle Reports, and PL/SQL, for subroutines; see
"Creating a PL/SQL Package Storage Program" on page 5-28. (See also: "Setting Up
Integrated Development Environments (IDEs)" on page 5-56.

Oracle Reports Builder includes the following features:

■ A query builder with a visual representation of the specification of SQL statements
to obtain report data

■ Wizards that guide you through the report design process

■ Default report templates and layouts that can be customized to meet your
organization's reporting needs

■ The ability to generate code to customize how reports will run

■ A Live Previewer that allows you to edit report layouts in WYSIWYG mode

■ An integrated chart builder that helps you to graphically represent report data

■ Web publishing tools that dynamically generate web pages based on your
corporate data

■ Other standard report output formats like HTML, PDF, Postscript, and ASCII (to
make use of Oracle LSH's Publishing Light features, you must use PDF)

For information on using Oracle Reports Builder, see the Oracle Reports
documentation:

1. Go to Oracle documentation at

http://www.oracle.com/technology/documentation/index.html

2. Go to the URL for the Oracle Reports Developer Reports Builder manual for Oracle
Reports 6i, which is the release included with the Oracle LSH technology stack:

http://download-west.oracle.com/docs/pdf/A73172_01.pdf

Defining Informatica Programs
This section contains the following topics:

■ Creating a New Informatica Program on page 5-42

■ Using Your Existing Informatica Mappings and Workflows on page 5-42

■ Creating and Synchronizing Source Code on page 5-43

■ Using PL/SQL Source Code in an Oracle LSH Informatica Program on page 5-43

■ Updating Table Descriptors on page 5-44

■ Setting Informatica Program Parameters on page 5-44

■ Selective Index Management on page 5-45

Note: This URL is correct as of the date of publication. If you have
trouble with these instructions, try My Oracle Support.

http://www.oracle.com/technology/documentation/index.html

Defining Informatica Programs

5-42 Oracle Life Sciences Data Hub Application Developer's Guide

■ Adding Planned Outputs on page 5-45

■ Informatica Integration on page 5-45

See also: Setting Up Informatica as an IDE on page 5-58

Using Oracle LSH Informatica Programs, you can:

■ Access Informatica tools from within Oracle LSH to create and edit Informatica
mappings and workflows

■ Execute Informatica workflows from within Oracle LSH, on Oracle LSH data

Creating a New Informatica Program
To define a new Informatica Program, do the following:

1. After you create the Oracle LSH Informatica Program definition and instance,
create Table Descriptors in it and map them. This readies the Program for
installation. See "Defining Table Descriptors" on page 5-8 for more information on
Table Descriptors.

2. Install the Program and check it out.

3. Click Launch IDE to start Informatica's PowerCenter Designer. You can create
your mappings in the PowerCenter Designer. You can access other Informatica
components from the PowerCenter Designer; for example, you can go to the
Informatica Workflow Manager from the PowerCenter Designer to create
Informatica workflows.

See "IDE Launch Settings" on page 5-51 for information on data access settings for
IDEs. See the appropriate Informatica documentation for information on using
Informatica.

4. Export the mappings and workflows from Informatica when done and upload the
resultant XML files into the Source Code of the corresponding Oracle LSH
Informatica Program. See "Creating and Synchronizing Source Code" on page 5-43.

See "Informatica Integration" on page 5-45 for information about what happens behind
the scenes when you check out, check in, and launch an Informatica Program in Oracle
LSH.

Using Your Existing Informatica Mappings and Workflows
If you want to use your existing Informatica mappings and workflows from the first
time you install the Oracle LSH Informatica Program, do the following:

1. From Informatica, export the mappings and workflows. Informatica generates an
XML file for each mapping and each workflow.

2. In the Oracle LSH Informatica Program, create a Source Code definition and
instance and upload the XML files into the Source Code definition. See "Creating a
New Source Code Definition and Instance" on page 5-12 for instructions.

Note: When you launch Informatica PowerCenter Designer from an
Oracle LSH Informatica Program for the first time, you have to
configure the Oracle LSH Informatica Repository and connect to it.
Consult your Informatica Administrator for more information.

Defining Informatica Programs

Defining Programs 5-43

3. Install the Oracle LSH Program. Oracle LSH creates a folder in Informatica (in the
same format as described above) and imports the mapping and workflow files into
this Informatica folder.

For more information on installing Programs in general, see "Installing Program
Instances" on page 5-51.

Creating and Synchronizing Source Code
An Oracle LSH Informatica Program's Source Code holds the Informatica mapping
and workflow files.

You must create a new Source Code definition and instance when you upload
Informatica files for the first time. See "Creating a New Source Code Definition and
Instance" on page 5-12 for instructions.

When you make changes to mappings and workflows in Informatica, you must export
the mappings and workflows from Informatica when done and upload the resultant
XML files into the Oracle LSH Informatica Program's Source Code.

You can also use PL/SQL Source Code in an Oracle LSH Informatica Program by
creating a Source Code instance that refers to an installed Oracle LSH PL/SQL Source
Code definition. See "Using PL/SQL Source Code in an Oracle LSH Informatica
Program" on page 5-43.

Using PL/SQL Source Code in an Oracle LSH Informatica Program
Oracle LSH supports PL/SQL programs for Informatica through statically shared
Oracle LSH PL/SQL Source Code. See "Creating and Using Static Reference Source
Code" on page 5-15.

To use PL/SQL Source Code in an Oracle LSH Informatica Program, do the following:

1. Create an Oracle LSH PL/SQL Program, create a Source Code definition and
instance in this Program, upload or enter valid PL/SQL code in the Source Code
definition, and install the Program. See "Defining PL/SQL Programs" on
page 5-25.

2. In the Oracle LSH Informatica Program, create a Source Code object as an instance
of an existing Source Code definition (see "Creating an Instance of an Existing
Source Code Definition" on page 5-14.

3. When you search for the definition source, set Static Reference to Yes.

Note: Informatica exports the mappings and workflows into
separate XML files. When uploading the XMLs into the Oracle LSH
Informatica Program's Source Code, upload the mapping XML before
the workflow XML. This is because when you launch Informatica
from the Oracle LSH Informatica Program, the files are imported into
Informatica in the same order in which you uploaded them into the
Source Code definition, and Informatica needs the mapping XML first.

Oracle LSH Informatica Programs do not use the Primary and
Secondary classification for the Source Code objects, unlike other
Oracle LSH Programs.

Note: Do not edit the XML files from within Oracle LSH.

Defining Informatica Programs

5-44 Oracle Life Sciences Data Hub Application Developer's Guide

4. Select the PL/SQL Source Code definition you want to use and click Apply.

If you create a Source Code instance of PL/SQL Source Code as a static reference
(referring to the Source Code definition of an installed PL/SQL Program instance) in
your Oracle LSH Informatica Program, and this PL/SQL Program needs to read the
same source Tables as the Oracle LSH Informatica Program, copy the Oracle LSH
Informatica Program and the PL/SQL Program that contains the statically shared
Source Code, remove the original shared Source Code from the Oracle LSH
Informatica Program and replace it with the Source Code from the copied PL/SQL
Program, and map both the Informatica and the PL/SQL Program to new Table
Instances.

Updating Table Descriptors
Oracle LSH Informatica Programs can read Oracle LSH Table instances but cannot
write to target Table instances. When you launch Informatica, Oracle LSH creates
temporary Table instances to enable you to execute Informatica mappings from within
Informatica (as opposed to from Oracle LSH). These temporary Table instances are
only available for the current Informatica session. If you make any changes to the
structure of these tables through Informatica, you must make the same changes
manually in Oracle LSH.

See "Defining Table Descriptors" on page 5-8 and"Mapping Table Descriptors to Table
Instances" on page 3-45.

Oracle LSH Informatica Programs support indexes on Table instances and also allow
selective index management in addition to recreating indexes for all the Tables. See
"Selective Index Management" on page 5-45.

Setting Informatica Program Parameters
This section contains the following topics:

■ User-Defined Parameters on page 44

■ Predefined Parameters on page 5-44

User-Defined Parameters
You must define a corresponding Parameter with the same name and type in the
Oracle LSH Informatica Program for each parameter you use for mappings in
Informatica. You can pass values to Parameters when executing the Oracle LSH
Informatica Program.

See "Defining Parameters" on page 5-22.

Predefined Parameters
The Informatica adapter has the following predefined Parameters:

■ Bulk Load. Set this Parameter to Yes if you use bulk loading in the Informatica
workflow. Oracle LSH supports bulk loading of data only for the staging data
processing type. The system drops all indexes on the staging Tables and recreates
them after job execution, when you set this Parameter to Yes.

Note: You cannot add non-statically shared PL/SQL Source Code in
Oracle LSH Informatica Programs.

Defining Informatica Programs

Defining Programs 5-45

See "Staging Processing" on page 13-5 for more information on this data
processing type.

■ Drop and Recreate Index. If set to Yes, the system drops all indexes on all target
Table instances before the Oracle LSH Informatica Program is executed, and
recreates them after execution. If you do not want to recreate indexes for all the
target Table Descriptors, you can call an Oracle LSH API that allows selective
index management. See "Selective Index Management" on page 5-45.

■ Recover Workflow. If set to Yes, Oracle LSH recovers a suspended Informatica
workflow using the Informatica recover mechanism. If set to No, Oracle LSH
aborts a suspended Informatica workflow and restarts it.

■ WF Name. This is the name of the Informatica workflow that you want Oracle
LSH to execute. You must provide this name at the time of submitting the Oracle
LSH Informatica Program's Execution Setup. See "Creating, Modifying, and
Submitting Execution Setups" on page 3-55.

Selective Index Management
Use the Oracle LSH public API for selective index management to:

■ Select the target Table instances and the indexes/constraints that you want to
recreate.

■ Control index management at runtime, as opposed to before and after execution
(through the Drop and Recreate Indexes Parameter).

The API has the following signature:

CDR_PUB_EXE_RUNTIME.ActOnIndex(Create/Drop:<target_Table_instance_
name>:<index/constraint name>)

Call this API from a Stored Procedure Transformation in your Informatica mapping by
passing the following values to the Stored Procedure:

■ Create/Drop. Enter either Create or Drop.

■ Target Table Instance Name. Enter the Oracle LSH target Table instance name
whose index or constraint you want to drop or recreate.

■ Index/Constraint Name. Enter the index or constraint name.

For example:

CDR_PUB_EXE_RUNTIME.ActOnIndex(Create:T_EMPLOYEE:BMP1)

Adding Planned Outputs
No Planned Outputs are required for Informatica Programs. The system allows you to
create them but they have no effect.

See "Defining Planned Outputs" on page 5-22.

Informatica Integration
This section contains information on the following:

Note: Refer to the Oracle Life Sciences Data Hub System Application
Programming Interface Guide for more information on Oracle LSH
public APIs.

Defining Informatica Programs

5-46 Oracle Life Sciences Data Hub Application Developer's Guide

■ Informatica Folder Creation on page 5-46

■ Informatica Security Configuration on page 5-46

Informatica Folder Creation
Oracle LSH first creates a folder in Informatica when you install the Program for the
first time and subsequently for each check out of the Program. The Informatica folder
that Oracle LSH creates when you first install the Program is useful only if you already
have Informatica mappings and workflow that you want to deploy. For all subsequent
interactions with Informatica, Oracle LSH uses the Informatica folder that it creates at
the time of checking out the Program.

Informatica Folder Format When you install the Oracle LSH Informatica Program for
the first time, Oracle LSH creates an empty folder in Informatica with a name in this
format:

LSHProg_<Oracle LSH Program ID>_<Oracle LSH Program Version>

For example, for an Oracle LSH Program with the ID Prg098765, the corresponding
folder created in Informatica's PowerCenter Designer is: LSHProg_Prg098765_1.

See "Informatica Security Configuration" on page 5-46 for information on creating
Informatica mappings and workflows in the Informatica folder.

Informatica Security Configuration
This section contains the following topics:

■ Informatica Security Configuration on Checkout

■ Informatica Security Configuration on Checkin

■ Informatica Security Configuration on Launching the IDE

Informatica Security Configuration on Checkout When you check out an installed Oracle
LSH Informatica Program, the following takes place:

■ Oracle LSH creates another empty folder in Informatica with a name in the same
format as at the time of installation with the version number incremented by one:

LSHProg_<Oracle LSH Program ID>_<Oracle LSH Program Version>

■ Informatica associates this folder with a security group with the same name as the
folder, replacing the prefix Folder with Group. For example, for the Oracle LSH
Program with the ID Prg098765, the security group in Informatica is: Group_
Prg098765_1.

■ The Informatica admin user LSHAdmin owns this Informatica security group.

Click Launch IDE to start Informatica's PowerCenter Designer.

Note: Each version of the Oracle LSH Informatica Program instance
results in a new folder in Informatica. You have access to only the
latest Informatica folder.

Also note that although Informatica supports versioning, the Oracle
LSH Informatica Repository is nonversioned. You must access
versioning information for Oracle LSH Informatica Programs from
within Oracle LSH: go to the Actions drop-down list on the Program
Properties screen and select View Version History.

Defining Oracle Business Intelligence Publisher Programs

Defining Programs 5-47

Informatica Security Configuration on Checkin When you check in an Oracle LSH
Informatica Program, the corresponding Informatica folder is locked for write access.
However, all users continue to have read access to the Informatica folder. The user
who checks out the Program from Oracle LSH will get write access to the Informatica
folder.

Informatica Security Configuration on Launching the IDE When you launch the PowerCenter
Designer from an Oracle LSH Informatica Program:

■ Oracle LSH adds each user who checks out the Oracle LSH Informatica Program
to the Informatica security group. This user gets read/write privileges to the
Informatica folder. Note that when a user checks out an Oracle LSH Informatica
Program and launches Informatica, the user's read/write privileges from all other
Informatica folders are taken away. This is because a user can work on only one
Informatica folder at a time even if the user has privileges on other folders.

■ You can edit mappings and workflows in Informatica only if you launch
Informatica from an Oracle LSH Informatica Program that you checked out. You
have read-only privileges in Informatica if:

– Someone else has the Oracle LSH Informatica Program checked out

– The Oracle LSH Informatica Program is checked in

Defining Oracle Business Intelligence Publisher Programs
This section contains the following topics:

■ Integration with Oracle BI Publisher on page 5-47

■ About Oracle BI Publisher Program Source Code on page 5-49

■ About Oracle BI Publisher Program Planned Outputs on page 5-50

■ Setting Oracle BI Publisher Program Parameters on page 5-50

See also: Setting Up Integrated Development Environments (IDEs) on page 5-56

An Oracle LSH BI Publisher Program lets you use data from Oracle LSH Tables to
create reports using Oracle BI Publisher. You can run the Oracle LSH BI Publisher
Program from within Oracle LSH. The system generates a report in the desired output
format(s) for Oracle LSH Consumers.

Integration with Oracle BI Publisher
This section includes information on the process of integration between Oracle LSH
and Oracle BI Publisher:

■ Performing Oracle LSH Tasks on page 5-47

■ Performing Oracle BI Publisher Tasks on page 5-48

■ Running the Program on page 5-49

■ Editing an Existing Program on page 5-49

Performing Oracle LSH Tasks
■ Oracle LSH Creates Planned Outputs and Predefined Parameters. Oracle LSH

automatically adds to an Oracle LSH BI Publisher Program definition a Planned
Output for each report output format that Oracle BI Publisher supports, and two
predefined runtime Parameters.

Defining Oracle Business Intelligence Publisher Programs

5-48 Oracle Life Sciences Data Hub Application Developer's Guide

See "Setting Oracle BI Publisher Program Parameters" on page 5-50 and "About
Oracle BI Publisher Program Planned Outputs" on page 5-50.

■ Prepare the Program. You must create and map Table Descriptors in the Oracle
LSH BI Publisher Program and install it to enable launching Oracle BI Publisher.

See "Defining Table Descriptors" on page 5-8 and"Installing Program Instances" on
page 5-51 for instructions.

■ Check Out the Program. Before you launch Oracle BI Publisher, make sure you
check out the Oracle LSH BI Publisher Program, so that Oracle LSH can
synchronize the Program with the changes you make in Oracle BI Publisher.

Performing Oracle BI Publisher Tasks
Oracle LSH creates an Oracle BI Publisher report with the same name as the Oracle
LSH BI Publisher Program definition and places the report in a folder under My
Folders. The name of this folder is in this format:

<Program Definition Name>_<Program's obj_id>_Ver<Program's Version No>

Edit the Oracle BI Publisher report as follows:

1. Create a new Data Model and select the Data Source. The Data Source has a
name in the format LSH_DataSrc_<LSH_application_username>. Select the Data
Source that has your Oracle LSH application username in it. Select the Only Use
Default Schema checkbox before creating a query. Use the BI Publisher Query
Builder to create a query to fetch data from Oracle LSH Tables.

2. Create a new layout. Create a report template in any of the formats that Oracle BI
Publisher supports and save the template with this report. Set the Output Format
to All Formats to enable Oracle LSH to support all report formats when running
the Oracle LSH BI Publisher Program.

3. Save the report and exit Oracle BI Publisher. After you exit Oracle BI Publisher,
check in the Oracle LSH BI Publisher Program in Oracle LSH. Oracle LSH creates a
Source Code definition and instance and uploads the zipped BI Publisher report
into the Source Code. See "About Oracle BI Publisher Program Source Code" on
page 5-49.

Note: The Oracle LSH Program is equivalent to an Oracle BI
Publisher report.

Note: See "Setting Up Security for Oracle Business Intelligence
Publisher" in the Oracle Life Sciences Data Hub System Administrator's
Guide or contact your Oracle LSH System Administrator if you cannot
find a Data Source name with your application username in it.

Defining Oracle Business Intelligence Publisher Programs

Defining Programs 5-49

Running the Program
Create an Execution Setup for the Oracle LSH BI Publisher Program and run it. See
"Creating, Modifying, and Submitting Execution Setups" on page 3-55.

When you execute this Program, the system internally calls BI Publisher APIs to create
the report as designed in Oracle BI Publisher.

You can see the final report by going to the My Home tab in Oracle LSH and clicking
the Oracle LSH BI Publisher Program's Job ID. See "Tracking Job Execution" in the
Oracle Life Sciences Data Hub User's Guide.

Editing an Existing Program
When you make changes to the Table Descriptors in an Oracle LSH BI Publisher
Program:

■ You must reinstall and check out the Program after making these changes.

■ When you launch Oracle BI Publisher after these changes, Oracle BI Publisher gets
the latest tables per your changes in Oracle LSH, but if you want to change the
query, you must do that in Oracle BI Publisher.

■ When you return to Oracle LSH after saving the report in Oracle BI Publisher, you
must check in the Oracle LSH BI Publisher Program.

Do not change anything else in the Oracle LSH BI Publisher Program from within
Oracle LSH.

About Oracle BI Publisher Program Source Code

Source Code Creation
After you save the Oracle BI Publisher report and exit Oracle BI Publisher (that you
launched from Oracle LSH for the first time), you must check in the Oracle LSH BI
Publisher Program. The system creates a Source Code definition and instance and
uploads the zipped report file into the Source Code.

Source Code Updation
After every Oracle BI Publisher launch, the system automatically updates this zipped
report file when you check the Oracle LSH BI Publisher Program in.

Note: Refer to the (BI Publisher Administrator's and Developer's Guide
and the BI Publisher Report Designer's Guide) for complete details. You
can browse through the documentation online and download what
you need from the Oracle Technology Network. Use this hyperlink to
go to the list of available documentation for the Oracle Business
Intelligence Suite Enterprise Edition (version 10.1.3.4)
http://download.oracle.com/docs/cd/E10415_01/doc/nav/portal_
booklist.htm

Note: Do not change the Oracle LSH BI Publisher Program Source
Code in Oracle LSH. The system creates and updates the Source Code
automatically.

http://download.oracle.com/docs/cd/E10415_01/doc/nav/portal_booklist.htm
http://download.oracle.com/docs/cd/E10415_01/doc/nav/portal_booklist.htm

Defining Oracle Business Intelligence Publisher Programs

5-50 Oracle Life Sciences Data Hub Application Developer's Guide

About Oracle BI Publisher Program Planned Outputs
BI Publisher supports many output formats. When you create an Oracle LSH Program
of the BI Publisher adapter type, the system automatically adds a Planned Output for
each supported output format to the Oracle LSH BI Publisher Program definition. This
makes it possible to select any of the supported output formats when running the
Oracle LSH BI Publisher Program.

Setting Oracle BI Publisher Program Parameters
Oracle LSH BI Publisher Programs include the following types of Parameters:

■ Predefined Parameters

■ User-Defined Parameters

Predefined Parameters
An Oracle LSH BI Publisher Program has the following predefined runtime
Parameters:

■ BIP Report Output Format. You may set a default output format from the list of
values for this Parameter.

You can reset the output format at the time of submitting the execution setup. See
"Creating, Modifying, and Submitting Execution Setups" on page 3-55.

■ BIP Template. This refers to the layout template that you attach to a BI Publisher
report. You must type out the layout template's name that you defined in BI
Publisher. The template's name does not contain extension names. Do not change
anything else in this Parameter.

You can change the name at the time of submitting the execution setup. See
"Creating, Modifying, and Submitting Execution Setups" on page 3-55.

User-Defined Parameters
For each user-defined parameter you create in Oracle BI Publisher, create a Parameter
in Oracle LSH with the same name but of VARCHAR2 data type.

Note: Oracle LSH marks the latest zipped report file in the Oracle
LSH BI Publisher Program's Source Code as Primary. The system
disregards any other report files that may be present in the Source
Code definition, and uses only this Primary Source Code.

See "About Source Code" on page 5-10 for details on Oracle LSH
Source Code.

Note: Make sure that for each Planned Output, Error if Generated
and Error if Not Generated are both set to False. See "Defining
Planned Outputs" on page 5-22 for more information on Planned
Outputs.

Do not change anything else in the system-generated Planned
Outputs.

Note: Do not change any other properties of these Parameters except
the default values, or the Program's execution will fail.

IDE Launch Settings

Defining Programs 5-51

Installing Program Instances
You can install a Program instance directly from its Properties screen, using the Install
button, or in its Work Area (see "Installing a Work Area and Its Objects" on page 12-11).
If you are working with an integrated development environment (IDE) you must
install the Program instance in order to see source data in the IDE.

When you install a Program instance using the Install button on its Properties screen:

■ The system checks in the Program instance and definition, and also the Table
instances in the current Work Area to which the instance is mapped.

■ The system checks if the Program is installable. If not, the system performs
Automatic Mapping by Name on any unmapped target Table Descriptors. If the
Program is still not installable and there are still unmapped target Table
Descriptors, the system creates Table instances in the current Work Area from the
target Table Descriptors and maps them.

■ The system attempts to install the Program instance and its source and target Table
instances in the current Work Area. The system displays a success or error
message. If the installation fails, the error message displays the name of any
objects that were not installable.

Log File To see the log file for the installation, you must go to the Work Area
Installation screen, as follows:

1. Click the Applications tab. The main Application Development screen opens.

2. Click the name of the Work Area you are working in. The Work Area screen opens.

3. From the Actions drop-down list, select Installation History.

4. Click Go. The system displays the Installation History screen with the log files in
chronological order.

5. Click the View Log link for the most recent installation attempt or for the date and
time that you ran the install process. The system displays the log file.

For information on installation and on reading the log file, see "Installing a Work Area
and Its Objects" on page 12-11.

IDE Launch Settings
This section contains the following topics:

■ About Launch Settings on page 5-52

■ Setting the Blind Break Value on page 5-52

■ Setting the Shared Snapshot Label Value on page 5-53

Note: If any of the Table instances or the Program definition is not
installable, the system cannot install the Program instance. See
Appendix A, "Installation Requirements for Each Object Type" for the
reasons these objects may not be installable.

IDE Launch Settings

5-52 Oracle Life Sciences Data Hub Application Developer's Guide

About Launch Settings
You can work on Oracle LSH Programs from an integrated development environment
(IDE) which connects to the Oracle database hosting Oracle LSH and retrieves data
required for the Program.

To view data as you are developing an Oracle LSH Program in an IDE, do the
following before you launch the IDE:

■ Define and map the source Table Descriptors you need.

■ Install the Program instance; see "Installing Program Instances" on page 5-51.

■ Specify the Launch Settings for blinding and data currency. See "Setting the Blind
Break Value" on page 5-52 and "Setting the Shared Snapshot Label Value" on
page 5-52.

Default launch settings are determined by the Data Currency and Blind Break values
in the default Execution Setup and your privileges. For example, if the Blind Break
setting in the default Execution Setup is Real (Blind Break) but you do not have Blind
Break privileges on the Table instances mapped to the Program's source Table
Descriptors, your only Blind Break option is Dummy.

If there is no Execution Setup defined, the default Blind Break value and options are
defined by the blinding status of the Table instances and your privileges, and the
default Data Currency value is Current. The values you set here apply only during the
current session. See "Modifying an Execution Setup and Setting Parameters" on
page 3-59 for information on setting the Data Currency and Blind Break system
Parameters in the Execution Setup.

Setting the Blind Break Value
This setting is relevant only when one or more source Table instances either currently
or formerly contained blinded data (whose Blinding Flag is set to Yes). Special
privileges are required to view real blinded or real unblinded data in these Table
instances. You must have these special privileges on all such Tables, in order to see real
data in any of them.

Note: You must have Read Data privileges on the source Table
instances to be able to see Dummy data, if you do not have
blinding-related privileges.

Note: Launch Settings do not apply to statically referenced Table
instances. A statically referenced Table instance is mapped to a source
Table Descriptor of a Program containing a Source Code shared to the
Program you are working on in the IDE; see "Creating and Using
Static Reference Source Code" on page 5-15.

Note: If you generate an output on real blinded or real unblinded
data, you need additional privileges to see the output. See
"Blinding-Related Security Privileges" in the Oracle Life Sciences Data
Hub Implementation Guide for more information.

Modifying Programs

Defining Programs 5-53

The following choices are available depending both on the state of the data and on
your security privileges:

■ Not Applicable. If none of the data has ever been blinded, the only option
available is Not Applicable. No special privileges are required.

■ Dummy. This is the only option available to you if you do not have
blinding-related privileges for blinded Tables. You can also see this option if you
have blinding-related privileges. In that case, you can select this option to work
with dummy (not real) data in the IDE.

■ Real (Blind Break). If any of the data is currently blinded, and you have the
required privileges, you can select this option to view real data in the IDE,
according to your company's policies.

■ Real (Unblinded). If a blinded Table instance has now been unblinded, you can
see real data for the Table instance, provided you have the required privileges. If
there are more than one such Table instances, you need the required privileges for
all of them to be able to use this option.

Setting the Shared Snapshot Label Value
If all the relevant Table instances share one or more snapshot labels, those snapshot
labels appear in this drop-down list and you can select one. In addition, you normally
have the option to view the current data. Your options may be limited by the settings
in the default Execution Setup.

You can apply snapshot labels to all the Table instances that a Program reads from or
writes to, when you submit its Execution Setup; see "Data Currency" on page 3-62. You
can also apply snapshot labels in the Work Area; see "Adding, Removing, or Moving a
Snapshot Label" on page 12-9.

For more information on what snapshots are, see "Data Snapshots" on page 13-9.

Modifying Programs
This section contains the following topics:

■ Modifying Program Instance Properties on page 7-39

■ Modifying Program Definition Properties on page 5-54

– Modifying Table Descriptors on page 5-55

– Modifying Source Code on page 5-55

– Modifying Parameters on page 5-56

– Modifying Planned Outputs on page 5-56

Note: You must have Read Data privileges in order to see any data at
all.

Note: Blind Breaks are not allowed in SAS Connected Mode With
Work Area Data. Therefore, if you select Real (Blind Break) in SAS
Connected Mode With Work Area Data, you cannot see any data in
SAS. See "Connecting to SAS" on page 5-31.

Modifying Programs

5-54 Oracle Life Sciences Data Hub Application Developer's Guide

If you have the necessary privileges, you can modify a Program either through an
instance of it in a Work Area or directly in the definition in its Domain or Application
Area. In most cases it makes sense to work through an instance in a Work Area for the
following reasons:

■ In order to use or test changes to the definition you must create and install an
instance of it.

■ If you work through an instance, the system automatically repoints the instance to
the new version of the definition.

However, if you need to change properties of the definition, you must work directly in
the definition in its Domain or Work Area.

Whether you work in an instance or directly in the definition, when you check in the
new version of the definition you have the opportunity to upgrade instances of the
original definition to the new version; see "Upgrading Object Instances to a New
Definition Version" on page 3-15.

Modifying Program Instance Properties
On the Program instance's Properties screen, click Update to enter changes. Oracle
LSH creates a new version of the instance you are working on and applies your
changes to it when you click Apply. Click Cancel to discard your changes and the new
version.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

You can modify the following:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

Definition Source This field applies to the instance only. It specifies the Program
definition to which this Program instance points. It generally does not make sense to
change the source definition for the following reasons:

■ Changing the definition may result in a new set of Table Descriptors, Source Code,
Parameters, and Planned Outputs.

■ Any new Table Descriptors are not mapped.

■ The Program's status changes to Non Installable.

If you want to change to a new version of the same definition, use the Upgrade
Instance option from the Actions drop-down list.

Modifying Program Definition Properties
You can go to a Program definition's Properties screen in one of the following ways:

■ From the Program's Properties screen: Click the hyperlink of the Program
definition that appears in the Definition field. See "Definition" on page 5-6.

Note: You must reinstall the Program for the changes to take effect.

Modifying Programs

Defining Programs 5-55

■ From the Domain or Application Area where you created the definition: Click
Manage Definitions to view all the definitions in that Domain or Application Area.
Click the definition name.

Once on the Program definition screen, click Update to enter changes. Oracle LSH
creates a new version of the definition. You can change the following properties:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

Modifying Table Descriptors
Table Descriptors belong to the Program definition, but Table Descriptor mappings
belong to the Program instance. You must check out the definition to add, remove, or
update Table Descriptors, but not to map, unmap, or remap Table Descriptors.

If you need to change a Table Descriptor's columns, you must update the Table
Descriptor's definition source either to a different Table definition that meets your
needs, or to a new version of the same Table definition, after modifying the Table
definition. If you do not have the necessary privileges to modify the source Table
definition, you can probably copy the original Table definition, paste it into the current
Application Area, modify it as necessary, and use it as the new definition source.

In the Program instance you can map the Table Descriptor to a different Table instance.
See "Mapping Table Descriptors to Table Instances" on page 3-45 for further
information.

Modifying Source Code
Source Codes belong to the Program definition. You must check out the definition to
add, remove, or update Source Codes.

If a Source Code object has a value in its Shared From column, it is an instance of a
Source Code definition in another Program. You can modify only a few of its
properties; see "Source Code Instance" on page 5-55.

If a Source Code object does not have a value in its Shared From column, it's definition
was created in this Program. You can modify all its properties here; see "Source Code
Definition" on page 5-55.

Source Code Instance You can modify the Source Code name, description, definition
source, order, SAS file reference name (if a SAS Program), instance subtype and
instance classifications. You can upgrade to a different version of the Source Code
definition; see "Upgrading Source Code And Undoing Source Code Upgrades" on
page 5-16.

If you have the necessary privileges, you can go to the Program definition that
contains the Source Code definition (it is listed in the Shared From column) in the
Definitions subtab and modify it there, creating a new version. You must then change
the definition source for the Source Code instance in this Program to the new version.

Source Code Definition If the Source Code definition was created in this Program (in
which case there is no entry in the Shared From column) the Source Code definition is
located in this Program definition, and you can modify it here.

Setting Up Integrated Development Environments (IDEs)

5-56 Oracle Life Sciences Data Hub Application Developer's Guide

You can edit the actual source code, either in the Editor box or by modifying the file in
its development environment (such as SAS) and then uploading it again. You can also
change the other Source Code definition properties: File Type, Sharable, Subtype, and
classifications.

When you save your changes to a sharable Source Code definition, you have the
option to find all instances of the original sharable Source Code and decide whether or
not to update them to the new version of the Source Code. See "Upgrading One or
More Instances from the Definition" on page 3-15 for further information.

Modifying Parameters
Parameters belong to the Program definition. You must check out the definition to
add, remove, or update Parameters. See "Defining Parameters" on page 6-6 for
information.

You can also change some Parameter values and settings in Execution Setups. Select
Execution Setups from the Actions drop-down list in the Program instance in the
Work Area. See "Creating, Modifying, and Submitting Execution Setups" on page 3-55.

Modifying Planned Outputs
Planned Outputs belong to the Program definition. You must check out the definition
to add, remove, or update Planned Outputs. See "Defining Planned Outputs" on
page 5-22 for further information.

You can change Planned Outputs' classifications, which affect the classifications of the
actual outputs. See "Classifying Outputs" on page 3-27 for further information.

Setting Up Integrated Development Environments (IDEs)
This section contains the following topics:

■ Setting Up Oracle SQL Developer or SQL*Plus as an IDE on page 5-56

■ Setting Up SAS as an IDE on page 5-57

See also:

IDE Launch Settings on page 5-51

Setting Up Oracle SQL Developer or SQL*Plus as an IDE
To use either Oracle SQL Developer or SQL*Plus to edit and compile your Oracle LSH
PL/SQL Programs, do the following on your local PC:

■ Get the CD-ROM that contains the files cdrconfig.xml and cdrclient.exe from your
system administrator and insert it into your PC. InstallShield automatically runs
setup.exe, that loads cdrconfig.xml and cdrclient.exe to a location you specify on
your local computer.

■ Ensure that cdrconfig.xml has the correct directory path for the Oracle SQL
Developer or SQL*Plus executable.

Launching Oracle SQL Developer
When you click Launch IDE from an Oracle LSH PL/SQL Program, the following
takes place:

■ If your Oracle LSH PL/SQL Program contains a Source Code instance with a
PL/SQL package in it, then Oracle LSH compiles your PL/SQL package.

Setting Up Integrated Development Environments (IDEs)

Defining Programs 5-57

■ Oracle LSH launches Oracle SQL Developer. Connect to the Oracle LSH database
using your database user credentials.

■ Table instances mapped to your Program's source Table Descriptors appear as
synonyms in Oracle SQL Developer; for example, if the Oracle Name of a source
Table descriptor is DEMOG then there will be a synonym by the name DEMOG in
Oracle SQL Developer.

■ Table instances mapped to your Program's target Table Descriptors appear as
empty tables in Oracle SQL Developer.

You can edit, compile, and execute your PL/SQL package in Oracle SQL
Developer and these tables reflect the results of your data manipulation. However,
the data is not written to Oracle LSH Table instances.

Relaunching Oracle SQL Developer from within Oracle LSH If you relaunch Oracle
SQL Developer from within Oracle LSH:

■ Oracle LSH overwrites the PL/SQL package in Oracle SQL Developer with the
PL/SQL package contained in the Source Code instance of the Oracle LSH
PL/SQL Program.

■ Oracle LSH overwrites any tables that exist in your database schema with the
same name as Oracle LSH Tables mapped to the Oracle LSH PL/SQL Program.

Relaunching Oracle SQL Developer from outside Oracle LSH If you log in to Oracle
SQL Developer from outside Oracle LSH, you do not get access to the source tables but
you can edit the PL/SQL package.

Setting Up SAS as an IDE
To use SAS as an integrated development environment (IDE), do the following on your
local PC:

■ Get the CD-ROM that contains the files cdrconfig.xml and cdrclient.exe from your
system administrator and insert it into your PC. InstallShield automatically runs
setup.exe, that loads cdrconfig.xml and cdrclient.exe to a location you specify on
your local computer.

Note: If there are any bugs in your PL/SQL package, Oracle SQL
Developer fails to launch and an error message related to the bug
appears on the Oracle LSH screen.

Note: If you cannot find an Oracle LSH database connection to
which you can connect, you may have to set up the connection.
Contact your System Administrator for more information.

Note: If you do not want to lose changes you made to the PL/SQL
package in Oracle SQL Developer, you must upload your package
back into the Oracle LSH PL/SQL Program's Source Code instance
before you exit Oracle SQL Developer. See "Modifying Source Code"
on page 5-55 for instructions.

Setting Up Integrated Development Environments (IDEs)

5-58 Oracle Life Sciences Data Hub Application Developer's Guide

■ Install SAS on your PC in the location specified by your system administrator. The
location must match the directory path specified in cdrconfig.xml.

■ Ensure that cdrconfig.xml has the correct directory path for the SAS executable.

■ Set the user preference for the SAS connection mode. See "Connecting to SAS" on
page 5-31.

■ Install any software required to support the preferred connection mode
"Connecting to SAS" on page 5-31.

Setting Up Informatica as an IDE
To use Informatica IDE for creating mappings and workflows from within Oracle LSH,
do the following on your local PC:

■ Get the CD-ROM that contains the files cdrconfig.xml and cdrclient.exe from your
system administrator and insert it into your PC. InstallShield automatically runs
setup.exe, that loads cdrconfig.xml and cdrclient.exe to Drive:\Program
Files\Oracle\CDR.

■ Install the Informatica client on your PC in the location specified by your system
administrator. The location must match the directory path specified in
cdrconfig.xml.

■ Ensure that cdrconfig.xml has the correct directory path for the Informatica
executable.

■ Create a system Environment Variable in Windows with the name INFA_
DOMAINS_FILE and set its value to the full path of the domains.infa file; for
example:

INFA_DOMAINS_FILE=drive:\Informatica\PowerCenter8.1.1\domains.infa

■ Set up a user Data Source Name (DSN) named LSHModel for your Oracle LSH
database account. Oracle LSH imports source and target Tables from your
database account into the Informatica folder using this DSN.

Consult Microsoft Windows online help for instructions on setting up ODBC Data
Source Names.

6

Defining Variables and Parameters 6-1

6 Defining Variables and Parameters

This section contains the following topics:

■ About Variables, Parameters, and Columns on page 6-1

■ Defining Variables on page 6-2

■ Using the Variable Properties Screen on page 6-5

■ Defining Columns on page 6-6

■ Defining Parameters on page 6-6

■ Using the Parameter Properties Screen on page 6-13

■ Setting Up Parameter Value Propagation on page 6-16

■ Defining and Using Parameter Sets on page 6-19

■ Defining Programatically Generated Lists of Values and Value Validation on
page 6-21

■ Modifying Parameters on page 6-23

See "Defining Table Columns" on page 4-10 for information on defining Columns.

About Variables, Parameters, and Columns
In the Oracle Life Sciences Data Hub (Oracle LSH) a Variable is the definition source
for both Table Columns and Parameters. Its attributes include data type, length, name,
default value, and Nullable (Yes/No). These attributes form the basis of both Columns
and Parameters; both Columns and Parameters are instances of Variables. Both have
additional attributes. Parameters also serve as definitions for Parameter instances,
making the only three-level definitional relationship among Oracle LSH objects.

You can use the same Variable as the definition source for multiple Columns and
Parameters. This promotes consistency and compatibility: for example, if you base the
Study Column of all Tables in a single data flow on the Study Variable, and the Study
Parameter of all the Programs that read from and write to those Tables on the same
Variable, the Columns and Parameters have the same data type and length, and
Nullable setting.

The Nullable attribute, whose default value is Yes in a Variable, is expressed in
opposite ways in the user interface for Columns and for Parameters. When you see a
Variable whose Nullable attribute is set to Yes through a Column, you see a Nullable
setting whose default value is Yes, like the Variable's. When you see the same Variable
through a Parameter definition, you see a Required setting whose default value is No.
This is the same attribute setting expressed in different ways: if a Variable is Nullable,
it is not Required; if it is Required, it is not Nullable.

Defining Variables

6-2 Oracle Life Sciences Data Hub Application Developer's Guide

Defining Variables
This section includes the following topics:

■ Creating Variables Automatically on page 6-2

■ Creating Variables Manually on page 6-3

■ Modifying Variables on page 6-4

Oracle LSH creates Variables automatically based on the Oracle columns or SAS
variables that you load or upload from an external system. In addition, you can create
Oracle LSH Variables manually, either directly or as part of the process of creating a
Table Column or a Parameter.

Creating Variables Automatically
Oracle LSH creates Variables automatically based on equivalent metadata in external
systems in two basic ways:

■ Creating Variables through Load Sets on page 6-2

■ Creating Variables by Uploading SAS Data Sets and Variables during Table
Definition on page 6-3

Creating Variables through Load Sets
Oracle LSH creates Variables automatically when you define or run Load Sets to load
data from an external system. These Variables have the same data type and length and
other attributes as the external metadata on which they are based.

You can use these Variable definitions within the Application Area where they are
created. You can also copy or move them into a Domain library for the purpose of
reuse in other Application Areas, according to your organization's policies.

Oracle LSH creates Variables from Load Sets as follows:

■ SAS. When you define a SAS-type Load Set, you can choose to create the Load
Set's Table Descriptors from the SAS Data Sets you want to load. Oracle LSH
creates a Table definition for each SAS data set and an Oracle LSH Variable for
each SAS variable. The Oracle LSH Variables and Table definitions are located in
the same Application Area as the Load Set definition.

■ Oracle Tables and Views. When you define a Load Set of type Oracle Tables and
Views, you can choose to create the Load Set's Table Descriptors from the Oracle
tables or views you want to load. Oracle LSH creates a Table definition for each
external Oracle table or view and a Variable for each external column. The
Variables and Table definitions are located in the same Application Area as the
Load Set definition.

■ Oracle Clinical Data Extract. When you define an Oracle Clinical Data Extract
(DX) View Load Set (either Oracle or SAS), you can choose to upload the Load
Set's Table Descriptors from the DX Views you want to load. Oracle LSH creates a
Table definition for each DX View and a Variable for each Column. These
Variables and Table definitions are located in the same Application Area as the
Load Set definition.

■ Oracle Clinical Global Library. When you run a Global Library Load Set, Oracle
LSH creates a Domain with the same name as the Oracle Clinical Domain whose
Global Library you are loading (if it does not already exist) and converts all Oracle
Clinical Questions to Oracle LSH Variables. If a Question is assigned a Discrete
Value Group (DVG) in Oracle Clinical, Oracle LSH also creates a Parameter based

Defining Variables

Defining Variables and Parameters 6-3

on the Variable and gives it a list of values corresponding to the DVG values.
Oracle LSH also creates a Table definition from each Question Group.

Creating Variables by Uploading SAS Data Sets and Variables during Table
Definition
When you create a new Table in Oracle LSH, you have the option to upload the
metadata of a SAS data set, including its variables. When you add a Column to an
Oracle LSH Table, you have the option to upload a SAS variable. In both cases, the
system converts each SAS variable to an Oracle LSH Variable.

You have the same options when you create a Table Descriptor, which is a Table
instance contained in a Program or other executable object.

Creating Variables Manually
Every time you create a Column (in a Table Definition) or Parameter (in a Program,
Report Set, or Workflow definition or directly in a Parameter Set definition) you have
the option to manually create a Variable or to select an existing Variable as the
definition source of the Column or Parameter.

When you click Create LSH Variable in either the Create Parameter or Create Column
screen, additional fields appear.

1. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ Data Type. Variables can have a data type of VARCHAR2, NUMBER, or
DATE.

■ Length. The maximum number of bytes or characters of data that the Column
can hold. The requirements vary according to the data type:

– VARCHAR2. A value for length is required and must be between 1 and
4000 characters.

– DATE. The system disregards the length value, if any.

– NUMBER. A value for length is optional.You can leave the length and
precision null, and LSH treats the number column as having the
maximum possible length.

■ Precision. (This field appears only if you select a data type of NUMBER.) The
total number of digits allowed, not including the decimal marker or a positive
(+) or negative (-) sign. Its maximum value is 38.

■ Oracle Name (up to 30 characters, uppercase, no spaces). Enter text or accept
the default value. The system automatically creates the default from the text

Note: To promote consistency and compatibility, use existing
Variables as often as possible. See "Defining and Using Parameter
Sets" on page 6-19 for more information.

Note: Oracle LSH terminology differs from standard Oracle
terminology, in which this attribute is called Scale.

Defining Variables

6-4 Oracle Life Sciences Data Hub Application Developer's Guide

you entered in the Name field, converting it to uppercase, with underscores (_
) substituted for spaces, truncated to 30 characters if necessary.

■ SAS Name. The SAS Name is used during execution by SAS technologies. The
SAS Name can contain up to 32 characters.

If the value entered for the Name is 32 characters or less, the system uses it as
the default value for the SAS Name.

■ SAS Label. Enter text or accept the default value. The system automatically
creates the default from the text you entered in the Name field, converting it to
uppercase, with underscores (_) substituted for spaces.

■ SAS Format. The SAS Format is used during execution by SAS technologies.
SAS rules apply.

■ Default Value. This value becomes the default value of Columns and
Parameters based on this Variable. The default is null.

■ Nullable. If set to Yes, Columns based on this Variable can contain a null value
and Parameters based on this Variable are not Required. If set to No, by
default Columns based on this Variable must contain a value in each row and
Parameters based on this Variable must have a value at execution time. The
default value is Yes.

You can change the Nullable value for Columns and the Required value for
Parameters based on this Variable.

2. In the Classification section, select the following for both the definition and the
instance:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

3. Click Apply to save your work and continue defining the Parameter or Column.

Modifying Variables
To modify a Variable, do the following:

1. In the Application Area or Domain where the Variable is located, click Manage
Definitions. The system opens the Maintain screen for the Application Area or
Domain.

2. Expand the node (+) for Variables.

3. Click the hyperlink of the Variable you want to modify. The LSH Variable screen
opens.

4. Click Check Out. The system opens the Check Out screen.

5. Enter a reason for change in the Comment field and click Apply. The system
checks out the Variable.

6. Click Update. The system makes the fields editable.

7. Modify as necessary. You can modify all fields.

8. Click Apply. The system saves your changes.

Note: If the Variable is already checked out, you cannot check it out.

Using the Variable Properties Screen

Defining Variables and Parameters 6-5

If you wish, you can update one or more Parameters that reference this Variable to
reference the new version by using the Upgrade All Instances function in the Actions
drop-down list. See "Upgrading One or More Instances from the Definition" on
page 3-15.

Using the Variable Properties Screen
This section contains the following topics:

■ Definition Properties on page 6-5

■ Buttons on page 6-6

■ Using the Actions Drop-Down List on page 3-76

Definition Properties
You can click Update to modify any of these properties.

Name See "Naming Objects" on page 3-6.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

Data Type Variables can have a data type of VARCHAR2, NUMBER, or DATE. See
"Creating Variables Manually" on page 6-3 for more information.

Length You can change the length of a VARCHAR2 or NUMBER Variable. See
"Creating Variables Manually" on page 6-3 for more information.

Precision See "Creating Variables Manually" on page 6-3 for more information.

Oracle Name See "Creating Variables Manually" on page 6-3 for more information.

SAS Name See "Creating Variables Manually" on page 6-3 for more information.

SAS Label See "Creating Variables Manually" on page 6-3 for more information.

SAS Format This is the SAS representation of the data type for this Variable. See
"Creating Variables Manually" on page 6-3 for more information.

Default Value This field shows the default value, if any, for the Parameter definition
that refers to this Variable.

Nullable This field shows whether the Parameters of this Variable can contain null
values or not. See "Creating Variables Manually" on page 6-3 for more information.

Validation Status This field displays the current validation status of the Variable. If
you have the necessary privileges, you can change the validation status by selecting
Validation Supporting Information from the Actions drop-down list. See "Validating
Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Variable. A Variable is always
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Defining Columns

6-6 Oracle Life Sciences Data Hub Application Developer's Guide

Checked Out Status This field displays the status of the Variable: either Checked Out
or Checked In. See "Understanding Object Versions and Checkin/Checkout" on
page 3-9 for further information.

Checked Out By This field displays the username of the person who has the Variable
checked out. See "Understanding Object Versions and Checkin/Checkout" on page 3-9
for further information.

Latest Version If set to Yes, this is the latest version of the Variable definition.

Version This field displays the current version number of the Variable.

Version Label This field displays the version label, if any, for the Variable version.

Buttons

Check Out Click the Check Out button to check out the Variable. The button is
grayed out if the Variable is already checked out.

Update Click the Update button to modify a Variable. The button is grayed out if the
Parameter is not checked out or checked out by someone else.

Defining Columns
Defining Columns is covered in "Defining Table Columns" on page 4-10 in the chapter
on Tables.

Defining Parameters
This section contains the following topics:

■ About Parameters on page 6-6

■ Creating a Parameter on page 6-8

■ Defining Parameter Details on page 6-11

See also:

■ Setting Up Parameter Value Propagation on page 6-16

■ Defining and Using Parameter Sets on page 6-19

■ Modifying Parameters on page 6-23

About Parameters
In Oracle LSH you must create a defined object called a Parameter for each input and
output parameter in a Program's source code.

In Workflows and Report Sets you can define Parameters especially for the purpose of
passing their value (to be set in the Execution Setup definition or at runtime) to other
Parameters you specify within the Workflow or Report Set, reducing the number of
Parameters to be set at runtime. You can also pass the value of an output Parameter of
one Program in a Workflow or Report Set to the input value of another Parameter in
the same Workflow or Report Set (see "Setting Up Parameter Value Propagation" on
page 6-16).

Defining Parameters

Defining Variables and Parameters 6-7

A Parameter definition inherits attribute values from its source Variable (notably data
type, length, and default value, if any) and has additional attributes such as Required,
Visible, and Read Only, and its list of acceptable values, if any.

Using Parameters
You can use Parameters to increase the reusability of a Program; for example, if you
hardcode a value in source code and then want to change the value, you must create a
new version of the Program definition and revalidate it. No revalidation of the
Program definition is required when you rerun the same Program using a different
Parameter value.

Your company may develop a library of standard Parameters that are compatible with
standard Table Columns and available for reuse throughout Oracle LSH. Using
standard Parameters and Table Columns facilitates reusing Programs on different data
and streamlines Parameter value propagation in Workflows and Report Sets.

For example, you can create a Parameter Set containing Parameters based on the same
Oracle LSH Variables as the Columns in each standard Table, so that when you search
for a Parameter definition in a Program that will read from or write to a standard
Table, you can search in the Parameter Set with the same name as the Table.

Some more examples of Parameter usage:

■ Run on different data. Define a standard study demography report Program
definition and promote it to a Domain library. Create instances of this Program in
multiple Application Areas, each of which contains data for a different study. Bind
the value of the Study Parameter in the Execution Setup for each Program instance
to the appropriate Study Parameter value.

Or create a required Parameter settable at runtime to determine whether a
Program uses local lab range definitions, standard published reference ranges, or
panic ranges.

Similarly, use a Parameter to determine whether you run a Program on all adverse
events or only serious adverse events; or use a Parameter to determine whether
you run a Program on all Oracle Clinical Data Clarification Forms (DCFs) or only
those that have been outstanding for a certain time period.

■ Generate different report formats. Use a Parameter to generate multiple reports
on the same data, each in a different format. For example, create a Parameter
called Format with the values Table, Listing, and Figure. Write the source code so
that if the input value of the Format Parameter is table, the program produces a
table, and so on. If you want to include each format in a Report Set, but want each
report to be in a separate Report Set Entry, you can define an instance of the same
Program definition in each of three Report Set Entries and bind the Format
Parameter to a different value in the Execution Setup of each Program instance.

■ Run on a subset of data. Use Parameters for subsetting data; that is, limiting the
rows processed in a single Table. For example, from a single table that includes
data on both male and female patients, you might choose to report data separately,
processing only patients whose Sex Parameter value is Male or only patients

Note: A Load Set, Data Mart, and Business Area contains Parameters
defined by adapters used to create these objects. See "Setting Load Set
Parameters" on page 7-10, "Setting Data Mart Parameter Values" on
page 8-7, and "Setting Business Area Attributes and Parameters" on
page 11-11 for more details.

Defining Parameters

6-8 Oracle Life Sciences Data Hub Application Developer's Guide

whose Sex Parameter value is Female. To run the same Program both ways
automatically, create two instances of it in a Workflow or Report Set and bind the
value in the Execution Setup of each instance so that each instance uses a different
value for the Sex Parameter.

Parameters and Execution Setups
When you generate a default Execution Setup for a Program, the system automatically
includes a copy of all the Parameters you have defined.

You can modify Parameter settings in the Execution Setup to control the options
available to the person submitting the Program for execution; for example, if a
Parameter is set to Read-Only in the Execution Setup, a user submitting the Program
for execution cannot change the value of that Parameter. Execution Setups contain a
copy of the Parameters and changes made to Parameters in Execution Setups do not
affect Parameter settings in a Program definition or a Parameter definition.

You can define multiple Execution Setups, each with different Parameter settings; see
"Creating, Modifying, and Submitting Execution Setups" on page 3-55.

Creating a Parameter

Figure 6–1 Process of Creating the First Parameter Instance in a Program, Report Set, or
Workflow

Defining Parameters

Defining Variables and Parameters 6-9

When you create a Parameter in a Program, Report Set, or Workflow, you are actually
creating an instance of a Parameter definition. Follow the instructions below.

When you create a Parameter in an Application Area or Domain, you are creating a
Parameter definition only, but you can follow the instructions at "Create a New
Parameter Definition and Instance" on page 6-9.

To create a new Parameter instance:

1. In the Parameter subtab of a Program, Report Set, or Workflow, click Add.

The system displays the Create Parameter screen.

2. Choose one of the following options:

■ Create a new Parameter definition and instance. Choose this option if no
Parameter definition exists that can meet your needs.

■ Create an instance from an existing Parameter definition. Choose this option
if a Parameter definition already exists that meets your needs. See "Finding an
Appropriate Definition" on page 3-2 and "Reusing Existing Definitions" on
page 3-2 for further information.

If you use an existing Parameter as a definition source, its source Variable and
default values, list of allowable values, and/or validation rules are already
defined.

■ Create Parameters from an existing Parameter Set. This option creates
instances of all the Parameters in a single Parameter Set at once. This option
appears only the first time you create a Parameter in a Program, Report Set, or
Workflow. That is because an object can contain only a single Parameter Set.
See "Defining and Using Parameter Sets" on page 6-19 for more information on
Parameter Sets.

3. Depending on your choice, follow one of the following sets of instructions:

■ Create a New Parameter Definition and Instance on page 6-9

■ Creating an Instance of an Existing Definition on page 3-2

■ Create Parameters from an Existing Parameter Set on page 6-11

Create a New Parameter Definition and Instance
To create a new Parameter definition and instance at the same time, do the following:

1. Select Create a New Parameter Definition and Instance. Additional fields appear.

2. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

Notes: In principle, it is best to reuse Parameter definitions or
their source Variables as often as possible. The last two options both
reuse existing Parameter definitions. There are two advantages:

■ promotes data type and length consistency along the data flow
when Table Columns are also based on the same Variable

■ makes automatic Parameter value sharing in Workflows and
Report Sets easier to set up

Defining Parameters

6-10 Oracle Life Sciences Data Hub Application Developer's Guide

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

3. Set the following attributes:

■ Visible (Required). If set to Yes, the Parameter is visible and its value can be
changed. If set to No, it will not be visible at runtime and is therefore
effectively bound to the value set in the Execution Setup definition.

■ Required (Required). If set to Yes, the Parameter must have a value; the
system will not execute the Program if this Parameter does not have a value. If
set to No, the system executes the Program even if the Parameter does not
have a value.

■ Read Only (Optional, and only Visible Parameters can be Read Only). If set to
Yes, the person submitting the Program for execution can see the Parameter's
value but cannot change it. If set to No, the submitter can change the
Parameter's value at runtime.

■ Input Output (Required). From the drop-down list, choose one of the
following values: Input, Output, or Input/Output, to define the role of the
Parameter in the Program. If set to Input, the Parameter can receive a value at
runtime and pass it to the Program's source code. If set to Output, the
Parameter value is generated by the Program and can be passed to another
Program in the same Workflow or Report Set. If set to Input/Output, the
Parameter can receive a value at runtime and pass it to the Program's source
code, which may transform the value before reporting it.

■ Prompt (Optional). Use this field to specify the label to be displayed in the
Execution Setup for this Parameter. If you do not specify a Prompt, the system
uses the Parameter Name.

4. Specify the LSH Variable to be used as a definition source for the Parameter. You
can select an existing Variable or create a new one. See "About Variables,
Parameters, and Columns" on page 6-1 and "Creating Variables Manually" on
page 6-3.

5. Define the allowed and default values of the Parameter. See "Defining Allowed
Values" on page 6-12.

6. Define the validation rules for the Parameter. See "Setting Validation Rules" on
page 6-13.

7. Click Apply. The system returns you to the Parameters subtab of the Program
Properties screen. To continue defining the Parameter, click its hyperlink. Follow
instructions to Defining Parameter Details.

Note: Do not use spaces in the name of any Parameter you create for
use in a Report Set. This will cause an error in post-processing because
the Parameter name becomes an HTML tag, and spaces are not
allowed.

Note: All the above attributes except Input/Output can be changed
during the definition of the Execution Setup.

Defining Parameters

Defining Variables and Parameters 6-11

Create Parameters from an Existing Parameter Set
You can create multiple Parameters at the same time by creating instances of all the
Parameters in a Parameter Set. This option appears only the first time you add a
Parameter to a Program or other executables. See "Defining and Using Parameter Sets"
on page 6-19.

To create a new Parameter definition from an existing Parameter Set, do the following:

1. Select Create Parameters from an existing Parameter Set. Additional fields
appear.

2. Click the Search icon for the Definition Source field to locate the Parameter Set that
contains the Parameters you need. The Search and Select screen opens.

3. In the drop-down lists, select the Domain and Application Area in which to search
for a Parameter Set.

If you know the exact name of the Parameter Set, you can enter it in the Name
field.

4. Click Go. The system lists all Parameter Sets that meet the search criteria.

5. Click the Quick Select icon to select one Parameter Set. The system returns to the
Create Parameter Instance screen.

6. Click Apply. The system returns you to the Parameters subtab of the Program
Properties screen and, in the Program, creates instances of all the Parameters in the
Parameter Set.

If necessary, you can remove Parameters you do not need by selecting them and
clicking Remove.

To continue defining the Parameter, click its hyperlink. Follow instructions for
Defining Parameter Details.

Defining Parameter Details
This section contains the following topics:

■ Setting a Method of Determining Value on page 6-11

■ Defining Allowed Values on page 6-12

■ Setting Validation Rules on page 6-13

See also "Setting Up Parameter Value Propagation" on page 6-16.

Setting a Method of Determining Value
If you are defining a Parameter in the context of a Workflow or Report Set, you have a
choice between the following methods of determining the Parameter value. You must
choose one.

If you are defining a Parameter for a Program that is not part of a Workflow or Report
Set, getting the Parameter's value from another Parameter is not possible and this
choice does not appear.

■ Define Value. The Parameter's value must be set manually; either here, or in the
Execution Setup, or at runtime. You can specify one of several ways to determine
allowable value(s). See "Defining Allowed Values" on page 6-12.

■ Get Value From Another Parameter. You can set up value propagation within a
Workflow or Report Set so that this Parameter receives its value from another
Parameter in the same Workflow or Report Set. See "Setting Up Value Propagation

Defining Parameters

6-12 Oracle Life Sciences Data Hub Application Developer's Guide

from the Target Parameter" on page 6-19.

Defining Allowed Values
You can specify the values allowed for the Parameter in several ways, found in the List
of Values drop-down list. The system displays the appropriate interface for defining
each after you make a choice.

■ None. No list of allowable values is associated with the Parameter. The user can
enter any value. You can define a Program to validate the value; see "Defining
Programatically Generated Lists of Values and Value Validation" on page 6-21.

You can specify a default value. To force the user to set a value at runtime, select
Required and do not set a default value.

The system validates that the default value conforms to the Parameter's data type
and length (defined in the source Variable). If the data type is Date, the system
checks that it is in the format specified in User Preference.

■ Static List of Values. Create a list of specific values you want to allow for the
Parameter. These values will appear as the only possible choices for the Parameter.
Click Add Value to enter each value you want to allow. The system will display
them in the list of values in the order in which they appear here.

You can select one value to be the default value if you want to. To force the user to
set a value at runtime, select Required and do not set a default value.

The system validates that each value you define conforms to the Parameter's data
type and length (defined in the source Variable).

■ Classification List of Values. This option results in a list of allowable values that
comprises the values at a particular level of a classification hierarchy.

Select a classification hierarchy and level. The system generates a list of values
equal to the set of values defined for that hierarchy level. For example, if you
choose the Project, Study, and Site hierarchy and the Study level, the list of values
includes all the Study names.

If you define two Parameters in the same Program and base their allowed values
on the same classification hierarchy, on two adjacent levels, the allowable values
for the Parameter associated with the lower level are limited to those with a
relation to the value chosen for the Parameter associated with the higher level.

For example, if you define two Parameters whose possible values are linked to the
Project, Study, and Site hierarchy, with one associated with the Project level and
the other associated with the Study level, the possible values for the Project level
Parameter include all the Project values in the hierarchy. However, the possible
values for the Study level Parameter are limited to those related to the particular
Project value selected. If the value for the Project-level Parameter is Project 1, the
list of values that appears for the Study-level Parameter includes only those
studies that are part of Project 1. If you change the value of the Project level
Parameter to Project 2, the list of values for the Study level Parameter changes to
studies that are part of Project 2.

Note: Do not enter a comma (,) in the Parameter value string. The
system interprets a comma as a delimiter between two different
Parameter values.

Using the Parameter Properties Screen

Defining Variables and Parameters 6-13

The same is true for Parameters linked to each lower level. In this example, you
can define a third Parameter associated with the Site level whose values are
limited to sites that are part of the particular study selected.

■ Program Generated List of Values. You can define an Oracle LSH Program, or
Source Code within a Program, specifically for the purpose of dynamically
generating a list of values for a Parameter. You must check in and install the
Program.

You must write the source code in PL/SQL and use the following syntax to
generate a list of values:

FUNCTION <function name> (pi_paramRef IN CDR_PARAMETER_OBJ_TYPE,
pi_paramColl IN CDR_PARAMETER_COLL)
RETURNS CDR_VALS_COLL;

Click the Search icon and specify the Program and Source Code you want to use
to generate the list of values for the Parameter.

See "Defining Programatically Generated Lists of Values and Value Validation" on
page 6-21 for further information.

Setting Validation Rules
You can choose a method of validating the Parameter's value. If you select a method,
the system validates the Parameter value when the Program is submitted for
execution. If the Parameter has an invalid value, the system returns an error message
and does not execute the Program.

You can choose one of the following methods of validating the Parameter's value:

■ None. You can choose to accept any value entered by the user.

■ Programmatic. You can define an Oracle LSH Program specifically for the purpose
of dynamically validating the Parameter value. You must check in and install the
Program. See "Defining Programatically Generated Lists of Values and Value
Validation" on page 6-21 for further information.

Click the Search icon and specify the Program that contains the Source Code you
want to use to validate the value of the Parameter.

■ Validate Against LOV. If you defined a static list of values for the Parameter, the
system accepts the entered value only if it appears on that list.

Using the Parameter Properties Screen
This section contains the following topics:

■ About the Parameter Properties Screen on page 6-14

■ Instance Properties on page 6-14

■ Define Values on page 6-14

■ Validate Values on page 6-14

■ Definition Properties on page 6-14

Note: If you set a default value, the system validates its data type
and length each time you modify the Parameter.

Using the Parameter Properties Screen

6-14 Oracle Life Sciences Data Hub Application Developer's Guide

■ Variable Properties on page 6-16

■ Buttons on page 6-6

■ Using the Actions Drop-Down List on page 3-76

About the Parameter Properties Screen
You can reach this screen from Oracle LSH object definitions, instances, and Execution
Setups. Click Update to make changes to any of the settings but note the following:

■ Changing Parameter properties from an object's instance is the same as changing
Parameter properties from an object's definition. This is because Parameters
belong to an object definition.

■ The changes you make to the Parameter properties become the default settings for
all new Execution Setups for this object instance. But any existing Execution
Setups do not get updated with the changed Parameter properties until you
upgrade those Execution Setups. See Upgrading Execution Setup Structure and
Parameters on page 3-66 for information on upgrading Execution Setups.

■ If you are in an Execution Setup, the changes you make to the Parameter apply
only to the Execution Setup.

See "Modifying Parameters" on page 6-23 for information on modifying Parameter
properties.

Instance Properties
You can see the following instance properties:

Name You can click Update and modify the name. See "Naming Objects" on page 3-6
for further information.

Description You can click Update and modify the description. See "Creating and
Using Object Descriptions" on page 3-6 for further information.

Visible If set to Yes, the Parameter is visible by default in the Execution Setup of the
instance. If set to No, the Parameter is not visible by default. You can choose to keep
this setting as Yes in an object definition or instance, and change it whenever required,
in an Execution Setup.

Required If set to Yes, you must provide a value for this Parameter in the Submission
form for this instance. This setting is applicable only to visible Parameters. You can
choose to keep this setting as No in an object definition or instance, and change it
when required, in an Execution Setup.

Read Only If set to Yes, you cannot change the value of this Parameter. You can
choose to set this property to No in an object definition or instance, and change it
whenever required, in an Execution Setup.

Note: Changes made to Parameter properties from an Execution
Setup do not affect Parameter properties in the object's definition
because Execution Setups maintain an independent copy of the
Parameters.

Using the Parameter Properties Screen

Defining Variables and Parameters 6-15

Input / Output This setting indicates the type of Parameter. Parameters can be of type
Input, Output, or Input/Output.

Prompt This is the display prompt for the Parameter. By default it is the same as the
Parameter's name.

Definition You can upgrade to a new version of the same definition. See "Upgrading
to a Different Definition Version from an Instance" on page 3-16.

Version This field displays the current version number of the Parameter instance.

For further information on object versions, see "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Validation Status This field displays the current validation status of the Parameter
instance. See "Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Parameter: Installable or Non
Installable. The installable status of a Parameter depends on the installable status of its
parent object. See Appendix A, "Installation Requirements for Each Object Type" for
more details.

Define Values
This section displays the following settings:

List of Values If you have provided a method to determine the Parameter's value, a
list of values that are valid for the Parameter appear here. Else the value for this field is
None.

Default Value If you have specified a default value for the Parameter, the value
appears here.

See "Defining Allowed Values" on page 6-12 for more details on defining values for
Parameters.

Validate Values

Method of Validating Values If you have specified a method to validate Parameter
values, that method name appears here. See "Setting Validation Rules" on page 6-13 for
more details.

Definition Properties

Checked Out Status This field displays the status of the definition: either Checked
Out or Checked In. All Parameter properties belong to the Parameter definition as well
as the Parameter instance. You can modify all properties from the Parameter instance
whether or not the Parameter definition is checked out. See "Understanding Object
Versions and Checkin/Checkout" on page 3-9 for further information.

Latest Version If set to Yes, this Parameter instance is pointing to the latest version of
the Parameter definition. If set to No, this Parameter instance is pointing to an older
version of the Parameter definition.

Version Label This field displays the version label, if any, for this definition version.

Setting Up Parameter Value Propagation

6-16 Oracle Life Sciences Data Hub Application Developer's Guide

Validation Status This field displays the current validation status of the Parameter
definition. If you are working directly in the definition in an Application Area or
Domain and you have the necessary privileges, you can change the validation status
by selecting Validation Supporting Information from the Actions drop-down list. If
you are working in an instance of the Parameter in a Work Area, and you want to
change the validation status of the definition, you must go to the definition. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Load Set: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Variable Properties
This section displays the properties of the Variable that the Parameter definition
belongs to.

Data Type This field displays the data type of the Variable: VARCHAR2, NUMBER,
or DATE.

Oracle Name This field displays the Oracle name of the Variable to which the
Parameter definition belongs.

Length This field displays the length of VARHCAR2 or NUMBER type Variables.

SAS Name This field displays the SAS name of the Variable.

SAS Label This field displays the SAS label of the Variable.

SAS Format This field displays the SAS format of the Variable.

Buttons

Update Click the Update button to modify the Parameter instance. See "Modifying a
Parameter Instance" on page 6-24.

Setting Up Parameter Value Propagation
This section contains the following topics:

■ About Parameter Value Propagation on page 6-16

■ Setting Up Value Propagation from the Source Parameter on page 6-18

■ Setting Up Value Propagation from the Target Parameter on page 6-19

You can set up Parameter value propagation only in the context of a Workflow or
Report Set.

About Parameter Value Propagation
Within a Workflow or Report Set, you can set up automatic Parameter value
propagation so that a Parameter contained in a Program instance in the Workflow or
Report Set can receive its value automatically from another Parameter in the same
Workflow or Report Set; either the output Parameter of another Program, or a
Parameter created directly in the Workflow, Report Set, or Report Set Entry especially
for this purpose.

Setting Up Parameter Value Propagation

Defining Variables and Parameters 6-17

Value propagation has two benefits:

■ Consistency. Value propagation ensures a consistent value among the Parameters
you specify. For example, many Programs in a Report Set may have an input
Parameter for the Study value. If the whole Report Set concerns only one study,
you can set up value propagation from a special Value Propagation Parameter you
define at the top Report Set level for this purpose, and all the study Parameters in
the Report Set.

■ Ease of Submission. Value propagation makes it much easier to submit a Report
Set or Workflow for submission because all Parameters defined as getting their
value from another Parameter cannot be modified, and the person submitting the
job is not required to enter a value for them.

You can set up value propagation in the definition of either the source or the target
Parameter. If you want the value of a single Parameter to be propagated to multiple
other Parameters, it is more efficient to set it up from the source Parameter.

The rules for defining value propagation are slightly different in Workflows and
Report Sets.

Value Propagation in Workflows Because a Workflow has a set execution order, you
must always propagate Parameter values from Parameters whose value is entered or
generated earlier during Workflow execution to Parameters that require a value later
in Workflow execution. That is, the source Parameter must be either defined at the top
level of the Workflow or be an input Parameter of a Program executed before the
Programs containing the target Parameters to which its value is propagated.

Value Propagation in Report Sets In Report Sets, the rules for value propagation are
different depending on whether the source Parameter is defined directly in the Report
Set/Report Set Entry, or is an output Parameter of a Program in a Report Set Entry:

■ Propagating values from Report Set or Report Set Entry Parameters. If you
define a Parameter directly at the top level of the Report Set or in any Report Set
Entry especially for the purpose of propagating its value to other Parameters in
the Report Set or Report Set Entry, you must define the Parameter at the same
level or a higher level from the Report Set Entries that contain the target
Parameters.

■ Propagating values from Program output Parameters. Oracle LSH can adjust the
execution order of a Report Set to accommodate the Parameter value propagation
you define from the output Parameter of one Program to the input Parameter of
another Program. You can define value propagation from a Program Parameter in
a Report Set Entry that is displayed below a target Program Parameter's Report Set
Entry. However, the system does not allow circular value propagation.

Note: If you plan to use a triggered submission for a Workflow or
Report Set, you must ensure that each Parameter contained in the
Workflow or Report Set receives its value from a Parameter at the top
level of the Workflow or Report Set or from an output Parameter
generated by a Program within the Workflow or Report Set. For
information on triggered submission, see "Using Message-Triggered
Submission from External Systems" on page 13-19.

Setting Up Parameter Value Propagation

6-18 Oracle Life Sciences Data Hub Application Developer's Guide

Setting Up Value Propagation from the Source Parameter
The following kinds of Parameters can serve as the source of the value in Parameter
value propagation:

■ Program Output Parameters. You can use a Parameter value generated by one
Program in a Report Set or Workflow to populate the value an input Parameter of
one or more other Programs in the same Report Set or Workflow.

■ Report Set and Workflow Parameters. You can define Parameters especially for
this purpose directly in a Report Set, Report Set Entry, or Workflow.

■ Report Set Overlay Template and Post-Processing Parameters. All Report Set
Entries have the same set of predefined Parameters that the system uses to
generate a single or multivolume PDF output. These Parameters are predefined to
automatically pass their value to Parameters with the same name. You can
explicitly set up value sharing for Post-Processing Parameters but not for Overlay
Template Parameters; see "Creating and Setting Report Set Parameters" on
page 9-20 for further information.

You can set up value propagation either manually or automatically.

Setting Up Value Propagation Manually
To define value propagation from the source Parameter manually, do the following:

1. On the Parameter instance's screen, click the Update button. The screen refreshes
to make all fields editable.

2. Scroll down to the Value Propagation section. Click Add Parameters.

3. Choose from a list of Parameters. The system displays only Parameters that are
either:

■ contained in the same Report Set or Workflow

■ (in a Report Set only) defined directly in a Report Set Entry or a Program in a
Report Set Entry

In a Report Set, it is possible to feed a value from an output Parameter of one
Program to an input Parameter in a Program in the Report Set. The system
executes the Program that produces the output Parameter before executing the
Program that uses the value for an input Parameter. The system prevents a circular
reference.

Setting Up Value Propagation Automatically
You can set up automatic value propagation to Parameters that may be added in the
future to the Report Set or Workflow.

When you add a Program that contains a Parameter with the same name to the
Workflow or Report Set, the system automatically sets up value propagation to it from
this Parameter, and displays a message informing you that it has done so.

Note: It is possible to set a Parameter as a source for value
propagation even if the target Parameter is not of the same data type
or size or both. Such a mismatched value propagation causes the
Workflow or Report Set to fail when executed. You must make sure
you set up value propagation keeping in mind the data type and size
of the source and target Parameters.

Defining and Using Parameter Sets

Defining Variables and Parameters 6-19

For Report Sets, the system sets up automatic value propagation only to Parameters
that are in the direct flow below the value source Parameter.

For Workflows, the system sets up automatic value propagation only to Parameters
that occur downstream in the execution flow.

To set this up, select the Automatically Pass Value to Parameters With Same Name
check box.

Alternatively, if you prefer not to use automatic propagation or if you want to pass the
value to Parameters with a different name, you can set up value propagation Malay.
See "Setting Up Value Propagation Manually" on page 6-18.

Setting Up Value Propagation from the Target Parameter
This option is available only for Parameters contained in a Program that is part of a
Report Set or Workflow, and for Parameters defined directly in a Report Set Entry. The
Parameter's value must be passed to it by one of the following:

■ an output Parameter of a different Program in the same Report Set or Workflow

■ a Parameter created for this purpose in the Report Set or Workflow

■ in the case of post-processing Parameters in Report Sets, by the same predefined
post-processing Parameter at the top of the Report Set or Report Set Entry

Do the following to set value propagation from the target Parameter:

1. On the Parameter's screen, click Update. The screen refreshes to make all fields
editable.

2. Under Method of Determining Value, select Get Value From Another Parameter.

The system displays the Parameter field with a Search icon.

3. Click the Search icon. The system opens a screen listing all the eligible source
value Parameters contained in the Report Set or Workflow.

4. Select a Parameter by clicking its radio button and clicking the Select button. The
system enters the value source Parameter's name in the Parameter field and its
type and location in the fields below. You can click on Parameter Details to see the
whole definition of the value source Parameter.

Defining and Using Parameter Sets
Defining a set of standard Parameter Sets facilitates creating Parameter instances in
Program and other executable instances and facilitates setting up Parameter value
propagation in Report Sets and Workflows.

As soon as you add a Parameter to a Program, Report Set, or Workflow, behind the
scenes, the system creates a Parameter Set definition and instance in that executable's
definition. The Parameter you create really gets added to the Parameter Set definition
and instance. You can never see a Parameter Set instance in the user interface, but a
Parameter exists exclusively inside a Parameter Set. In addition, each executable can

Note: The system uses the Parameter links you set up here to
determine the execution order of Report Sets (which is not necessarily
the same as the display order). The system prevents you from defining
circular links.

Defining and Using Parameter Sets

6-20 Oracle Life Sciences Data Hub Application Developer's Guide

contain only a single Parameter Set. This is why you see the option of creating a
Parameter using an existing Parameter Set only once.

When you are working in a Program, Report Set, or Workflow, the simplest way to
create multiple Parameter instances is to create instances of all the Parameters in a
Parameter Set at the same time. However, you must create logical Parameter Sets in
Application Areas or Domains in order to use this functionality.

See "Process of Creating the First Parameter Instance in a Program, Report Set, or
Workflow" on page 6-8.

If you define the first Parameters by selecting a Parameter Set, then the system creates
an instance of that Parameter Set in the executable definition. The Parameter Set
definition remains in the Application Area or Domain. This has implications for
modifying the Parameters in your executable, as follows:

■ If you have Modify privileges on the Parameter Set definition in the Application
Area or Domain, you can make structural changes to the Parameter Set, but
behind the scenes the system checks out the Parameter Set definition, creates a
new version of it, and makes the same changes in the new version so that the
Parameter Set definition remains consistent with the Parameter Set instance in the
executable. The next time someone uses the same Parameter Set definition, he or
she will see the modified version as the most current. Structural changes include
adding and removing a Parameter and changing the source definition of any
Parameter.

■ If you do not have Modify privileges on the Parameter Set definition in the
Application Area or Domain, you cannot add or remove Parameters from your
executable, or change the source definition of any Parameter, because the
Parameter Set instance and definition must remain synchronized.

Solution 1 To avoid either of these situations and yet benefit from standard
Parameter Sets, before you create Parameters in a Program or other executable, copy
the Parameter Set definition in its Application Area or Domain and paste it into your
local Application Area. Create Parameters in your executable from the local Parameter
Set definition. You can then add and remove Parameters and the changes will affect
only the local copy of the Parameter Set definition.

Solution 2 Create a version label on the version of the Parameter Set that is the
correct, standard version. Always search for Parameter Sets with Version Labels that
are not null, and use the correct version.

Explicitly Defining Parameter Sets
You may want to take the time to develop standard Parameter Sets based on standard
Variables, logically grouped and meaningfully named.

To create a Parameter Set definition manually, do the following:

1. In the Applications tab, navigate to the Application Area or Domain where you
want to create the Parameter Set.

2. Click Manage Definitions. The system opens the Maintain Application Area (or
Domain) Library screen.

3. From the Create drop-down list, select Parameter Set.

4. Click Go. The system opens the Create Parameter Set Definition screen.

5. Enter a Name and Description of the Parameter Set that will help other users
determine whether to use this Parameter Set.

Defining Programatically Generated Lists of Values and Value Validation

Defining Variables and Parameters 6-21

6. Click Apply. The system opens the Parameter Set screen.

7. Under Parameters at the bottom of the page, click Add. The system opens the
Create Parameter screen.

8. Add as many Parameters as necessary. See instructions at "Creating a Parameter"
on page 6-8 and "Defining Parameter Details" on page 6-11.

9. To make the Parameter Set available for use, check it in.

Defining Programatically Generated Lists of Values and Value Validation
You can define Source Code within a Program to generate a list of values for a
Parameter, or to validate a user-entered value. You can use the same Source Code for
both purposes.

When you search for Source Code to use for a Parameter's programmatic LOV or value
validation, the system does not impose the normal security requirements; you can
select any sharable Source Code from any Program, whether or not you have standard
security access to the Program.

The source code you write must be in PL/SQL and must reference CDR_VALS_COLL,
a predefined Oracle database object of type Collection whose structure is effectively
the same as a table's, with rows and columns. CDR_VALS_COLL has two columns,
one for position (row number in the table) and one for value (the value to derive for
the list of values or validation). You must write source code that creates as many
positions as necessary and populates each with an appropriate value.

CDR_VALS_COLL is effectively empty except when a Program populates it within the
context of a particular user's session. Each user session "sees" its own collection only.

See example source code below.

To create a programmatically generated list of values for a Parameter, or to
programmatically validate a Parameter value, do the following:

1. Create an Oracle LSH Program of type PL/SQL. See "Creating a Program" on
page 5-3.

2. Add a Source Code definition to the PL/SQL Program. See "Defining Source
Code" on page 5-9 and "Defining PL/SQL Programs" on page 5-25.

3. In the Oracle Package field, enter the package name.

4. In the Oracle Procedure field, enter the function name. You are writing a function,
not a procedure, but enter the function name in this field.

5. Add a source Table Descriptor for each Table instance your code will read from, if
any. Map each Table Descriptor to the appropriate Table instance. See "Defining
Table Descriptors" on page 3-36 and "Mapping Table Descriptors to Table
Instances" on page 3-45.

6. Enter your PL/SQL source code in the Source Code field.

As with other PL/SQL source code in Oracle LSH, you must include the package
spec as well as the package body in your source code.

Note: If the source code generates only one value, the system assigns
that value to the Parameter automatically.

Defining Programatically Generated Lists of Values and Value Validation

6-22 Oracle Life Sciences Data Hub Application Developer's Guide

Be sure to use the same names for the package and function that you entered in
the Oracle Package and Oracle Procedure fields.

The syntax in Example 6–1 is required verbatim up to the beginning of the
function, except for the package and function names. See the examples for further
information.

7. Apply your changes, check in the Program definition, and install the Program
instance in its Work Area.

8. In the Parameter definition, specify the name of the Program and Source Code that
contain the code that will generate the LOV or validate the Parameter value. See
"Defining Allowed Values" on page 6-12 and "Setting Validation Rules" on
page 6-13.

Example 6–1 Simple Example

In this example, the source code creates two rows in the collection CDR_VALS_COLL.
Position 1 has the value Yes and position 2 has the value No. This example shows the
essential elements required in as simple a way as possible. However, you would not
want to use this particular source code because you could accomplish the same thing
much more simply by defining a static list of values with two values: Yes and No.

The package spec is the first five lines of code, up to the slash (/). The package name is
LOV and the function name is returnValues. Except for these names, for which you
can substitute any names you choose, all the code above the beginning of the actual
function (at begin) is required as is.

For each row in the collection the source code does the following in succession:

■ Creates the row itself by using an EXTEND command

■ Specifies the values for that row of the POSITION column

■ Specifies the values for that row of the VALUE column

■ Specifies that the function returns the value for position n

Example source code:

CREATE OR REPLACE package LOV as
FUNCTION returnValues (pi_tParam IN cdr_parameter_obj_type ,pi_cParamColl IN
cdr_parameter_coll) RETURN CDR_VALS_COLL;
end LOV;
/
CREATE OR REPLACE package body LOV as
FUNCTION returnValues (pi_tParam IN cdr_parameter_obj_type ,pi_cParamColl IN
cdr_parameter_coll) RETURN CDR_VALS_COLL IS
 valuesRecord CDR_VAL_OBJ_TYPE := new CDR_VAL_OBJ_TYPE(NULL,NULL);
 LOVCollection CDR_VALS_COLL := CDR_VALS_COLL();
 begin
 LOVCollection.EXTEND;
 valuesRecord.POSITION := 1;
 valuesRecord.VALUE := 'Yes';
 LOVCollection(1) := valuesRecord;

 LOVCollection.EXTEND;
 valuesRecord.POSITION := 2;
 valuesRecord.VALUE := 'No';
 LOVCollection(2) := valuesRecord;

 RETURN (LOVCollection);
end returnValues;

Modifying Parameters

Defining Variables and Parameters 6-23

end LOV;
/

Example 6–2 Pulling Column Values from a Table Instance

In the real world you would use a programmatically generated LOV to pull the
current values of a column in an Oracle LSH Table instance that meet a certain set of
criteria. In this case, you add a source Table Descriptor to the Program and map it to
the Table instance whose Column values you want to read.

In your source code you write a SELECT statement and WHERE clause to describe the
criteria for the values you want to retrieve. You then use the EXTEND command to
create n rows in the collection, where n is the number of values retrieved, and populate
each row with a POSITION value and a VALUE value.

Example 6–3 Pulling Values from an External System

You can pull values from a table in an external system if you include the necessary
remote location connection information so that the system can read data in the external
system.

Modifying Parameters
The types of changes you are able to make to a Parameter definition or instance
depend on many different interdependent factors:

■ Some Parameter properties belong to the Parameter instance, some to the
Parameter definition, and others to the Variable. These three definitional layers
may each belong to a different container, and you may have different privileges on
each.

■ To modify a Parameter within a Program or other executable object, you must
have Modify privileges on the Program or other executable object itself, and that
object must be checked out.

■ A Parameter Set instance must remain structurally the same as its Parameter Set
definition. If you add or remove Parameter instances from a Parameter Set
instance, the system automatically creates a new version of the Parameter Set
definition and removes them there as well. You must have Modify privileges on
the Parameter Set definition or you cannot add or remove Parameter instances
from the Parameter Set instance, or change the source Parameter definition for
Parameter instances within the Parameter Set instance.

■ If you are working in an Execution Setup, you can make very few changes to
Parameters.

You can make the following changes in the following locations:

Parameter Definition Parameter definitions are located in two places: contained
directly in an Application Area or contained directly in a Domain. In either of these
locations, if you have the required privileges, you can do the following:

■ Update the properties of the Parameter definition itself.

■ Select a different source definition Variable for the Parameter definition.

■ Check out the source definition Variable through the Parameter definition, then go
to the Variable and modify it. The Parameter definition references the new version
of the Variable.

Modifying Parameters

6-24 Oracle Life Sciences Data Hub Application Developer's Guide

Parameter Instance in a Parameter Set Definition If you have the necessary
privileges, you can go to a Parameter Set definition contained directly in a Domain or
Application Area and modify the Parameter instances it contains. You can make the
following changes:

■ If you have the necessary privileges on the Parameter definition, you check out the
Parameter definition through the Parameter instance, the go to the Parameter
definition and modify it. The Parameter instance references the new version of the
Parameter definition.

■ Using the Update button, you can modify the properties belonging to the
Parameter instance.

Parameter Instance in a Parameter Set Instance in an Executable Object Parameter
Set instances are located in Programs and other executables and in Execution Setups.
The following applies to Parameter Set instances that are located anywhere except in
an Execution Setup:

If you created the Parameter Set instance in the executable by creating Parameters
based on an existing Parameter Set, the Parameter Set definition is located in an
Application Area or Domain. In this case:

■ You cannot check out the Parameter definition from a Parameter instance.

■ You can select a different source definition Parameter for the Parameter instance
only if you have Modify privileges on the Parameter Set definition. This is a
structural change, and the system automatically checks out the Parameter Set
definition and creates a new version of it with the change.

If you created the Parameter Set instance in the executable by creating one Parameter
at a time—either defining a new Parameter definition and instance, or creating an
instance of an existing Parameter—then both the Parameter Set definition and the
Parameter Set instance are located in the same executable. In this case:

■ You can check out the source definition Parameter from the Parameter instance
and make changes as necessary.

■ Any structural changes you make—adding or removing Parameters, or selecting a
different source definition Parameter for an instance—are automatically applied to
the Parameter Set definition as well as the Parameter Set instance.

Parameter Instance in a Parameter Set Instance in an Execution Setup You cannot
update the Parameter instance or check out and modify the source definition
Parameter from a Parameter instance contained in an Execution Setup.

Modifying a Parameter Instance
To modify a Parameter instance in a Program or other executable, do the following:

1. Click the Parameters subtab to view the Parameter instances.

2. Click the hyperlink in the Name column of the Parameter you want to modify. The
system displays the Parameter Instance screen.

Note: Load Sets, Data Marts, Business Areas, and some Program
types have predefined Parameter instances whose source definition
Parameters are located in Adapter Areas. You should not modify these
Parameters, and the administrator should set up security so that it is
not possible to modify the Parameter definitions.

Modifying Parameters

Defining Variables and Parameters 6-25

3. Click Update. The system displays most fields as updatable.

4. Modify the settings and/or source definition as necessary.

5. Click Apply. The system saves your changes in the Parameter instance only.

Modifying a Parameter Definition
If you have the necessary privileges, you can modify a Parameter definition directly in
the Application Area or Domain, or through an instance of the Parameter in a
Parameter Set in an Application Area or Domain.

Modifying a Parameter Definition Directly in a Domain or Application Area To
modify a Parameter definition directly in a Domain or Application Area, do the
following:

1. Navigate to the Domain or Application Area in the Applications tab.

2. Click the Manage Definitions icon. The system opens the Maintain Library
screen.

3. Click the Parameter node (+). The system displays all the Parameters in the
Application Area library.

4. Click the hyperlink of the Parameter you want to modify. The system opens the
Parameter Definition screen.

5. Click Check Out. The system checks out the Parameter and creates a new version
of it.

6. Click Update. The system makes all the fields enterable.

7. Modify the settings as necessary. For an explanation of each setting, see "Create a
New Parameter Definition and Instance" on page 6-9 and "Defining Parameter
Details" on page 6-11.

If you need to change the attributes that belong to the Variable (Data Type, Length,
and, for Number types, Precision) you can select a different Variable in the
Definition field or, if you have Modify privileges on the source definition Variable,
you can check it out through the Parameter definition and modify it as necessary.
The Parameter definition references the new version of the Variable.

8. Click Apply. The system saves your changes.

Modifying a Parameter Definition through a Parameter Set When you modify a
Parameter definition through an instance of it in a Parameter Set, the instance

Note: You must check out the definition of the Program, Report Set,
or Workflow that contains a Parameter instance before you can update
its properties. If the executable definition is not checked out, the
Parameter instance's Update button is not enabled.

Note: Never change anything in a Parameter definition from a Load
Set, Data Mart, and Business Area. If you do, the adapter you used to
create the Load Set, Data Mart, or Business Area, becomes invalid and
either you cannot create any more objects of that adapter type, or the
objects you create do not work.

Modifying Parameters

6-26 Oracle Life Sciences Data Hub Application Developer's Guide

automatically points to the new version of the Parameter definition. To modify a
Parameter definition through an instance of it in a Parameter Set, do the following:

1. Navigate to the Domain or Application Area in the Applications tab.

2. Click the Manage Definitions icon. The system opens the Maintain Library
screen.

3. Click the Parameter Set node (+). The system displays all the Parameter Sets in
the Application Area library.

4. Click the hyperlink of the Parameter Set that contains the Parameter you want
to modify. The system opens the Parameter Set definition screen.

5. Click Check Out. The system checks out the Parameter Set and creates a new
version of it.

6. Click the hyperlink of the Parameter you want to modify. The system opens
the Parameter instance screen.

7. In the Parameter Definition section in the lower part of the screen, click Check
Out. The system opens the Check Out screen.

8. Enter the reason you are checking out the Parameter definition in the
Comment field and click Apply. The system returns you to the Parameter
instance screen.

9. Click the hyperlink to the Parameter definition in the Definition field in the
Instance Properties section at the top of the screen. The system opens the
Parameter Definition screen.

10. Click Update. The system makes fields enterable.

11. Modify the settings as necessary. For an explanation of each setting, see
"Create a New Parameter Definition and Instance" on page 6-9 and "Defining
Parameter Details" on page 6-11.

If you need to change the attributes that belong to the Variable (Data Type,
Length, and, for Number types, Precision) you can select a different Variable
in the Definition field or, if you have Modify privileges on the source
definition Variable, you can check it out through the Parameter definition and
modify it as necessary. The Parameter definition references the new version of
the Variable.

12. Click Apply. The system saves your changes.

7

Defining Load Sets 7-1

7Defining Load Sets

This section contains information on the following topics:

■ About Load Sets on page 7-2

■ Creating a Load Set on page 7-4

■ Using the Load Set Properties Screen on page 7-6

■ Defining Table Descriptors on page 7-8

■ Setting Load Set Parameters on page 7-10

■ About Load Set Planned Outputs on page 7-10

■ Defining Different Load Set Types on page 7-11

■ Oracle Tables and Views on page 7-11

■ SAS on page 7-13

■ Text on page 7-17

■ Oracle Clinical Stable Interface on page 7-24

■ Oracle Clinical Data Extract SAS Views on page 7-25

■ Oracle Clinical Data Extract Views on page 7-26

■ Oracle Clinical Design and Definition on page 7-28

■ Oracle Clinical Global Metadata on page 7-31

■ Oracle Clinical Labs on page 7-32

■ Oracle Clinical Randomization on page 7-34

■ Oracle Clinical Study Data on page 7-36

■ Installing Load Set Instances on page 7-38

■ Modifying Load Sets on page 7-39

About Load Sets

7-2 Oracle Life Sciences Data Hub Application Developer's Guide

Figure 7–1 Process of Creating a Load Set Definition and Instance

About Load Sets
To load data into the Oracle Life Sciences Data Hub (Oracle LSH), you define and run
a Load Set.

Oracle LSH allows you to load data from a wide variety of sources. The standard
Oracle LSH installation (without any special customizations) allows you to load data
from SAS, from any Oracle database, or from a text file. Oracle LSH also has a set of
Load Set types developed especially for Oracle Clinical that allow you to load data
from data extract views, from the discrepancy management subsystem, and from the
global library.

Oracle LSH uses a specialized executable defined object called a Load Set to handle
data loading. A Load Set definition identifies the type of source data system and
includes Table Descriptors that specify the required structure of one or more Tables
into which to load the data in Oracle LSH. For Oracle and SAS Load Sets the system
can create Table Descriptors based on tables or data sets in the source data system. For
all types, you can create Table instances based on Table Descriptors and map them
automatically, using a job in the Actions drop-down list.

For Load Sets that load files—SAS and Text—you should not specify the file during
Load Set definition because the system uploads the actual data file at that time. Let the
person who executes the Load Set specify the file to get the most current data. For the
same reason it does not make sense to set up a repeating schedule for running a SAS or
Text Load Set; you would be loading the same data each time.

For Oracle-technology Load Sets you can specify default values in the Load Set
definition for the tables to be loaded. The system only creates views during Load Set
definition, and always loads the most current data when you run the Load Set. You
can set up a repeating execution schedule to update the data as necessary.

At runtime, if the user submitting the Load Set specifies different external tables or
files to load from the ones you used to create the Table Descriptors, the Load Set will
run successfully if the data structure is compatible; see "Enforced Compatibility at
Runtime" on page 7-9.

For information on loading blinded data, see "Loading Real and Dummy Data" on
page 13-16.

About Load Sets

Defining Load Sets 7-3

Load Set Types The different types of Load Sets are as follows. You see only those
types that your company uses and that you have security access for.

■ Oracle Tables and Views. Oracle LSH loads data and metadata from any Oracle
database.

■ SAS. Oracle LSH loads one SAS data set at a time or, using a CPORT or XPORT
file, multiple data sets. The system loads metadata at the time of Load Set
definition and data at Load Set runtime.

■ Text. Oracle LSH loads one or more text files into one or more Table instances.

■ Oracle Clinical Data Extract Views. Oracle LSH loads patient data from Oracle
views defined in Oracle Clinical.

■ Oracle Clinical Data Extract SAS Views. Oracle LSH loads patient data from SAS
views defined in Oracle Clinical.

■ Oracle Clinical Global Metadata. Oracle LSH loads your Oracle Clinical Global
Library definitions and automatically converts them to Oracle LSH definitions as
follows: converts Oracle Clinical Questions to Oracle LSH Variables. If a Question
is associated with a DVG, Oracle LSH also converts the Question to an Oracle LSH
Parameter with the DVG as its list of allowed values. Oracle LSH converts Oracle
Clinical Question Groups to Oracle LSH Tables with Columns based on the
Variables corresponding to each Question in the Question Group.

■ Oracle Clinical Labs. Oracle LSH loads Lab definitions, Lab Ranges, and Lab
Assignment Criteria, and other Lab-related metadata (see "OC Labs Load Set Table
Descriptors" on page 7-33 for a complete list).

■ Oracle Clinical Study Data. Oracle LSH loads study-specific data including
discrepancies, Data Clarification Forms (DCFs), page tracking information and
patient status information.

■ Oracle Clinical Stable Interface. Oracle LSH loads tables described in the Oracle
Clinical 4.x Stable Interface Guide.

■ Oracle Clinical Randomization. Oracle LSH loads Oracle Clinical tables related to
the Randomization subsystem.

Security Each Load Set type uses a different predefined Oracle LSH adapter to
handle the data and metadata exchange between the external system and Oracle LSH.
An adapter consists of a group of predefined objects in an Adapter Area, which is
contained in an Adapter Domain.

Before you can create a Load Set for any Oracle source data system you must do the
following setup: enter connection information for the remote location into Oracle LSH
in the Remote Locations subtab of the Administration tab. Instructions are included in
the chapter "Registering Locations and Connections" in the Oracle Life Sciences Data
Hub System Administrator's Guide.

■ Create one or more user groups and assign them to Adapter Areas (see "Setting
Up Security for Adapters" in the Oracle Life Sciences Data Hub System
Administrator's Guide). Each Definer who will need to define Load Sets must
belong to a user group that is assigned to the Adapter Area that corresponds to the
Load Set type that he or she needs to define.

In addition, you must add an administrator a user group assigned to each
Oracle-technology adapter so that the administrator can define remote locations
for the Oracle adapters.

Creating a Load Set

7-4 Oracle Life Sciences Data Hub Application Developer's Guide

■ An administrator must define remote locations for the Oracle adapters. If you
want to use shared connections, the administrator must create them. See the
chapter on "Defining Remote Locations" in the Oracle Life Sciences Data Hub System
Administrator's Guide for further information.

■ Individual users with access to external Oracle systems can create their own
connections for use in defining and running Load Sets Preferences, accessed from
a link on the Oracle LSH My Home screen. See "Getting Started" in the Oracle Life
Sciences Data Hub User's Guide for further information.

Execution Load Sets, like other Oracle LSH executable objects, have Execution
Setups that serve as the basis for the submission form for running the job. You can
modify the default value of Parameters in the Execution Setup definition, and the user
submitting the Load Set can change them at runtime. See "Creating, Modifying, and
Submitting Execution Setups" on page 3-55.

Oracle LSH uses the Processing Type you define for the target Table instances to
determine how to process the data and whether to maintain an internal audit trail of
inserts, updates, and deletes (see "Data Processing Types" on page 13-2 for further
information).

Loading Blinded Data See "Loading Real and Dummy Data" on page 13-16.

Reports on Load Set Definitions and Instances From the Actions drop-down list,
you can generate reports that provide information on a Load Set definition or instance;
see Chapter 14, "System Reports" for information.

Creating a Load Set
When you create a Load Set in a Work Area, you are actually creating an instance of a
Load Set definition.

To create a new Load Set instance:

1. In a Work Area, select Load Set from the Add drop-down list.

2. Click Go.

The system displays the Create Load Set screen.

3. Choose one of the following options:

■ Create a new Load set Definition and Instance. Choose this option if no Load
Set definition exists that can meet your needs, either as it is or with some
modification.

Note: When you define any Oracle technology-based Load Set you
must enter a Remote Location and your own (or shared) connection
information in the Attributes section of the Load Set definition in
order to create the Load Set's Table Descriptors.

However, be careful not to enter your own or shared connection
information as a runtime Parameter because this represents a breach
of security on the source data system, enabling anyone with security
access to the Load Set itself to run the Load Set regardless of whether
he or she has the required privileges on the source system.

Leave the Parameter value empty so that the user must enter his or
her own connection information to run the Load Set.

Creating a Load Set

Defining Load Sets 7-5

■ Create an instance of an existing definition. Choose this option if a Load Set
definition already exists that meets your needs.

If you can adapt an existing Load Set definition to make it fit your needs, first
copy it into the current Application Area, then choose this option and select
the copied definition. See "Finding an Appropriate Definition" on page 3-2 and
"Reusing Existing Definitions" on page 3-2 for further information.

4. Depending on your choice, follow one of the following sets of instructions:

■ Creating a New Load Set Definition and Instance on page 7-5

■ Creating an Instance of an Existing Definition on page 3-2

Creating a New Load Set Definition and Instance
When you select Create a new Load set Definition and instance in the Create Load
Set screen, additional fields appear.

1. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ Load Set Type. See "Defining Different Load Set Types" on page 7-11 for
information.

2. In the Classification section, select the following for both the definition and the
instance:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

3. Click Apply to save your work and continue defining the Load Set.

The system opens the Properties screen for the new Load Set instance.

See the following sections for general information that applies to most Load Set types:

■ Setting Load Set Attributes on page 7-5

■ Setting Load Set Parameters on page 7-10

■ Defining Table Descriptors on page 7-8

■ About Load Set Planned Outputs on page 7-10

See "Defining Different Load Set Types" on page 7-11 for information about each type
of Load Set.

Setting Load Set Attributes
Some Load Set types include attributes. These vary depending on the type of Load Set;
see the instructions for each type of Load Set:

■ Oracle Load Set Attributes on page 7-12

■ SAS Load Set Attributes on page 7-14

■ Text Load Set Attributes on page 7-18

■ OC Stable Interface Tables Load Set Attributes on page 7-24

■ OC DX SAS Views Load Set Attributes on page 7-25

Using the Load Set Properties Screen

7-6 Oracle Life Sciences Data Hub Application Developer's Guide

■ OC Data Extract Views Load Set Attributes on page 7-27

■ OC Design and Definition Load Set Attributes on page 7-29

■ OC Global Metadata Load Set Attributes on page 7-32

■ OC Labs Load Set Attribute on page 7-33

■ OC Randomization Load Set Attributes on page 7-35

■ OC Study Data Load Set Attributes on page 7-36

These values cannot be changed at runtime.

Creating an Instance of an Existing Load Set Definition
If you use an existing Load Set as a definition source, all of its Table Descriptors,
Parameters and other characteristics are already defined. See "Creating an Instance of
an Existing Definition" on page 3-2 for instructions.

After you have created the Load Set instance, you must map the Table Descriptors to
Table instances; see "Mapping Table Descriptors to Table Instances" on page 3-45 for
instructions.

Using the Load Set Properties Screen
This section contains the following topics:

■ Instance Properties on page 7-6

■ Definition Properties on page 7-7

■ Load Set Attributes on page 7-8

■ Buttons on page 7-8

■ Using the Actions Drop-Down List on page 3-76

■ Subtabs:

– Defining Table Descriptors on page 7-8

– Setting Load Set Parameters on page 7-10

– About Load Set Planned Outputs on page 7-10

– Viewing Jobs on page 3-74

See also Figure 7–1, "Process of Creating a Load Set Definition and Instance" on
page 7-2.

See "Modifying Load Sets" on page 7-39 for information on modifying Load Sets.

If you are working in a Work Area, you see the properties of both the Load Set instance
and the Load Set definition it references. If you are working directly on the definition
in an Application Area or Domain, you see only the properties of the definition.

Instance Properties
You can see the following instance properties:

Name You can click Update and modify the name. See "Naming Objects" on page 3-6
for further information.

Using the Load Set Properties Screen

Defining Load Sets 7-7

Description You can click Update and modify the description. See "Creating and
Using Object Descriptions" on page 3-6 for further information.

Definition This field specifies the Load Set definition to which this Load Set instance
points. For further information, see "Definition Source" on page 7-40.

You can upgrade to a new version of the same definition. See "Upgrading to a
Different Definition Version from an Instance" on page 3-16.

Version Label This field displays the version label, if any, for the current Load Set
instance version.

Validation Status This field displays the current validation status of the Load Set
instance. If you have the necessary privileges, you can change the validation status by
selecting Validation Supporting Information from the Actions drop-down list. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Load Set: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Version This field displays the current version number of the Load Set instance.

For further information on object versions, see "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Definition Properties
You can see the following definition properties:

Checked Out Status This field displays the status of the definition: either Checked
Out or Checked In. You must check out the definition to modify Table Descriptors,
Parameters, or Planned Outputs. However, you can change Table Descriptor mappings
without checking out the definition. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9 for further information.

Latest Version If set to Yes, this Load Set instance is pointing to the latest version of
the Load Set definition. If set to No, this Load Set instance is pointing to an older
version of the Load Set definition.

Checked Out By This field displays the username of the person who has the Load Set
definition checked out. See "Understanding Object Versions and Checkin/Checkout"
on page 3-9 for further information.

Version Label This field displays the version label, if any, for this definition version.

Load Set / Adapter Type This field displays the type of Load Set or Adapter. See
"Load Set Types" on page 7-3.

Validation Status This field displays the current validation status of the Load Set
definition. If you are working directly in the definition in an Application Area or
Domain and you have the necessary privileges, you can change the validation status
by selecting Validation Supporting Information from the Actions drop-down list. If
you are working in an instance of the Load Set in a Work Area, and you want to
change the validation status of the definition, you must go to the definition. See
"Validating Objects and Outputs" on page 3-31 for further information.

Defining Table Descriptors

7-8 Oracle Life Sciences Data Hub Application Developer's Guide

Status This field displays the installable status of the Load Set: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Load Set Attributes
This section of the Load Set screen displays attribute values for the type of Load Set
you have created. See "Setting Load Set Attributes" on page 7-5.

Buttons
From a Load Set instance in a Work Area, you can use the following buttons:

Install Click Install to install the Load Set instance, including mapping target Table
Descriptors and installing mapped target Table instances; see "Installing Load Set
Instances" on page 7-38. For a list of reasons a Load Set instance may not be installable,
see Appendix A, "Installation Requirements for Each Object Type".

Submit Click Submit to run the Load Set instance. Before you can run the Load Set,
you must install it and create an Execution Setup for it (select Execution Setups from
the Actions drop-down list).

Update Click Update to modify the Load Set instance properties. See "Modifying
Load Set Instance Properties" on page 7-39. You can also update Load Set Attributes by
clicking Update in the Load Set Attributes section of the screen. See "Setting Load Set
Attributes" on page 7-5.

Check In/Out and Uncheck Click these buttons to check out, check in, or uncheck the
Load Set definition. Different buttons are displayed in the Load Set Definition
Properties section depending on the Checked Out Status and whether or not you are
the person who has the definition checked out. If someone else has checked out the
definition, you cannot check it in or uncheck it. The username of the person who has
checked it out is displayed. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Defining Table Descriptors
Load Sets have only target Table Descriptors. They must be compatible with the
structure of the external tables or data sets from which you are loading data and with
the Table instances into which you are loading data.

For all Load Set types, Oracle LSH can create the Table Descriptors based on data
structures you specify in the source system. You can then create Table instances based
on those Table Descriptors, or create Table instances based on standard (or any other
compatible Table definitions) and map the two. See "Mapping Columns of Different
Data Types and Lengths" on page 3-50 for an explanation of compatibility; for
example, a source column or variable is compatible with a target column of a longer
length, but not with a target column of a shorter length.

The target Table instance must have one of the following process types: For
information on the first three processing types, see "Data Processing Types" on
page 13-2.

■ Staging with Audit (the default)

■ Staging Without Audit

■ Reload

Defining Table Descriptors

Defining Load Sets 7-9

■ Pass-Through View For Oracle-technology Load Sets, you also have the option to
create the target Table instances as pass-through views so that the physical source
data remains in the external Oracle system. This approach allows you to minimize
data storage space. After you map the Table instance to an Oracle-type Load Set,
the system adds this option to the Processing Type drop-down list of the Table
instance.

It is not necessary to run Load Sets whose target Table instances are defined as
pass-through views. As soon as you install the Load Set, the data in the external
Oracle system is available to Oracle LSH.

Programs can use Table instances defined as pass-through views as sources just as
they can Table instances that contain data. When you run the Program, it reads
data in the source system and can write data to Oracle LSH Table instances.

Mapping Table Descriptors to Table Instances You can do either of the following:

■ Run the Table Instances from Existing Table Descriptors job from the Actions
drop-down list to create a Table instance of the same structure as the Table
Descriptor and automatically map the two. See "Creating Table Instances from
Table Descriptors and Simultaneously Mapping Them" on page 3-53 for
instructions.

■ Create a Table instance—for example, create an instance of a standard CDISC
Table definition—and map the Table Descriptor to the Table instance. If they have
the same name, you can run the Automatic Mapping by Name job from the
Actions drop-down list and it will map any Columns that have the same name. If
not, you can map them manually. See Mapping Table Descriptors to Table
Instances on page 3-45.

Enforced Compatibility at Runtime At runtime a user can specify a remote data
source with a different structure from the Table Descriptor you defined. If the structure
are incompatible—the differences are such that they would cause data corruption—
the load fails with an error.

The following types of differences cause a failure:

■ The target Oracle LSH Table Column of a character data type is shorter than the
source table column or data set variable.

■ For number data types, the length and precision combined are smaller in the target
than in the source.

■ The target Table Column has a data type that is incompatible with the source data
type. See "Mapping Columns" on page 3-48 for information on compatible data
types.

■ The source table or data set includes a column or variable that is not included in
the Table Descriptor.

See the section on each type of Load Set for details:

■ Oracle Load Set Table Descriptors on page 7-12

■ SAS Load Set Table Descriptors on page 7-14

■ Text Load Set Table Descriptors on page 7-18

■ OC Stable Interface Tables Load Set Table Descriptors on page 7-24

■ OC DX SAS Views Load Set Table Descriptors on page 7-26

■ OC Data Extract Views Load Set Table Descriptors on page 7-27

Setting Load Set Parameters

7-10 Oracle Life Sciences Data Hub Application Developer's Guide

■ OC Design and Definition Load Set Table Descriptors on page 7-29

■ OC Global Metadata Load Set Table Descriptors on page 7-32

■ OC Labs Load Set Table Descriptors on page 7-33

■ OC Randomization Load Set Table Descriptor on page 7-35

■ OC Study Data Load Set Table Descriptors on page 7-37

For general instructions see Defining and Mapping Table Descriptors on page 3-36.

Setting Load Set Parameters
Each Load Set type has a different set of runtime Parameters. The system uses these
Parameters to create the Execution Setup to be used to submit the Load Set for
execution.

The predefined Parameters are described for each type of Load Set:

■ Oracle Load Set Parameters on page 7-12

■ SAS Load Set Parameters on page 7-15

■ Text Load Set Parameters on page 7-20

■ OC Stable Interface Tables Load Set Parameter on page 7-24

■ OC DX SAS Views Load Set Parameters on page 7-25

■ OC Data Extract Views Load Set Parameters on page 7-28

■ OC Design and Definition Load Set Parameters on page 7-30

■ OC Global Metadata Load Set Parameters on page 7-32

■ OC Labs Load Set Parameters on page 7-33

■ OC Randomization Load Set Parameters on page 7-35

■ OC Study Data Load Set Parameters on page 7-37

About Load Set Planned Outputs
Oracle LSH automatically creates the following Planned Outputs for Load Sets:

■ Log File. Oracle LSH creates a log file Planned Output for all types of Load Sets. It
is the only Planned Output for Load Sets of Oracle Tables and Views and OC
adapters.

■ Error File. Oracle LSH creates an error file Planned Output for SAS and Text Load
Sets and saves each rejected row into this error file. The generation of the error file
does not indicate a job failure. A SAS or Text Load Set job fails when the number
of rejected records exceeds the value of the Maximum Allowed Errors parameter.

■ Input data file. For SAS and Text Load Sets, if you set the Save Input File attribute
to Yes, the system automatically creates a Planned Output and saves the input file

Note: Because these are predefined and required Parameters you
should not change anything except the default value in the Load Set
definition, or the Load Set may not function properly. For Remote
Location Parameters you should not even enter a default value for
security reasons.

Defining Different Load Set Types

Defining Load Sets 7-11

as an actual output at runtime. If you classify this Planned Output, the system
classifies the saved input file as an output with the classification you specified.

■ Control File. Oracle LSH creates this Planned Output for Text and SAS Load Sets.
This Planned Output is always generated for Text Load Set jobs. For SAS Load
Sets, the system generates it only for bulk loads (when you set the parameter
Direct to Yes). This Planned Output stores the SQL*Loader control file.

■ Textload.zip. Oracle LSH creates this Planned Output if you set the Save as Input
attribute to Yes while uploading a zipped Load Set file. This is applicable only to
Text Load sets.

You can classify a Planned Output in order to classify the actual output when it is
generated; see "Classifying Outputs" on page 3-27 for further information.

To view the log file or saved input file for a Load Set job, do one of the following:

■ Use the Search or Advanced Search feature.

■ Browse for the log file in the Outputs subtab of the Reports tab.

Defining Different Load Set Types
This section includes information on the following topics:

■ Oracle Tables and Views on page 7-11

■ SAS on page 7-13

■ Text on page 7-17

■ Oracle Clinical Global Metadata on page 7-31

■ Oracle Clinical Data Extract Views on page 7-26

■ Oracle Clinical Data Extract SAS Views on page 7-25

■ Oracle Clinical Labs on page 7-32

■ Oracle Clinical Study Data on page 7-36

■ Oracle Clinical Design and Definition on page 7-28

■ Oracle Clinical Stable Interface on page 7-24

■ Oracle Clinical Randomization on page 7-34

Oracle Tables and Views
This section contains the following topics:

■ About Oracle Tables and Views Load Sets on page 7-11

■ Oracle Load Set Attributes on page 7-12

■ Oracle Load Set Table Descriptors on page 7-12

■ Oracle Load Set Parameters on page 7-12

■ Oracle Load Set Planned Outputs on page 7-13

About Oracle Tables and Views Load Sets
Oracle Tables and Views Load Sets enable you to access data in Oracle LSH from any
Oracle system external to Oracle LSH. The source of the data in the external system

Defining Different Load Set Types

7-12 Oracle Life Sciences Data Hub Application Developer's Guide

can be either a database table or a view with column data types of varchar2, number,
and date.

The adapter loads the primary key definitions of the source tables to the target Table
instances when you define a Load Set.

You can take two approaches to Oracle data in Oracle LSH:

■ Load the physical data into Oracle LSH. Rerun the Load Set periodically to
refresh the data in Oracle LSH.

■ Define the Load Set's target Table instances as a pass-through view, so that the
physical source data remains in the external Oracle system. This approach allows
you to minimize data storage space.

Programs can use Table instances defined as pass-through views as sources just as
they can Table instances that contain data. When you run the Program, it reads
data in the source system and can write data to Oracle LSH Table instances.

You specify whether to use the Load Set to load or view data as part of the
definition of the target Table instance to which you map the Table Descriptor. The
system adds the Create Table as a View option to the Process Type drop-down list
of the Table instance after you map the Table instance to an Oracle-type Load Set.

Oracle Load Set Attributes
Click Update and enter values for the remote location and database schema that are
the source of the data to be loaded:

■ Remote Location. Click the Search icon and choose a source remote
location/connection combination from the list of values. The system displays only
those locations and connections to which you have security access.

If the location you need is not on the list, ask a system administrator to create a
defined Remote Location for it in the Administration user interface.

If you have a valid username and password for the required database, you can
create a connection in the Preferences hyperlink at the top of most Oracle LSH
screens. However, you cannot create a connection until an administrator has
created a remote location.

Your company may also use shared connections. If so, you can use those as well.

■ Schema. Select the database schema on the remote location where the table or
view resides.

Oracle Load Set Table Descriptors
Use the Upload Table Descriptors function to specify the tables you want to load. The
system generates a list of tables in the remote location that you specified in the
Attributes section.

See also "Defining Table Descriptors" on page 7-8.

Oracle Load Set Parameters
The following are Oracle Load Set runtime Parameters:

Note: All target Table instances of the Load Set must be defined the
same way—either as pass-through views or not. If some are defined as
pass-through views and others are not, execution of the Load Set fails.

Defining Different Load Set Types

Defining Load Sets 7-13

■ Remote Location. The user submitting the Load Set for execution must select his
or her own remote location/connection combination (or a remote location with a
shared connection) at runtime to ensure the proper security for the external
database. Do not enter a default value or change any of the other Parameter
settings.

■ Direct. If you set Direct to Yes (default is No), the system uses the direct path
INSERT to load data into the target Table instance(s).

■ Drop and Recreate Indexes. This parameter applies only if you set Direct to Yes.

If set to Yes (default), the system drops all non-unique indexes before running a
data-loading job and recreates the non-unique indexes after loading data into the
target Table instances. The system does not drop indexes if Direct is set to No.

■ Logging. This parameter applies only if you set Direct to Yes.

If set to Yes (default), in the event of a failure the system can recover data
committed to the database. If set to No, the system does not maintain a redo log
file and cannot recover any data when a database failure occurs.

Oracle Load Set Planned Outputs
Oracle Load Sets have only one Planned Output: a log file. See "About Load Set
Planned Outputs" on page 7-10 for further information.

Oracle Load Set Execution Setups
Do not set the Remote Location Parameter in the Execution Setup. See "Oracle Load
Set Parameters" on page 7-12.

For general information on defining Execution Setups, see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55

SAS
This section includes the following topics:

■ About SAS Load Sets on page 7-14

■ UTF8 Encoding on page 7-14

■ SAS Load Set Attributes on page 7-14

■ SAS Load Set Table Descriptors on page 7-14

■ SAS Load Set Parameters on page 7-15

■ SAS Load Set Planned Outputs on page 7-16

■ SAS Load Set Execution Setups on page 7-17

Note: When writing to multiple Table instances, if all the Table
instances are not of the Transactional High Throughput processing
type, the system first inserts data into the Transactional High
Throughput processing type Tables using the direct INSERT and
subsequently inserts data using the conventional INSERT into Tables
of other data processing types. The Load Set job completes with
warnings and writes warning messages to the job log.

Defining Different Load Set Types

7-14 Oracle Life Sciences Data Hub Application Developer's Guide

About SAS Load Sets
A SAS Load Set loads data from a SAS file into Oracle LSH. You can define a SAS Load
Set for a single data set or for multiple data sets in a SAS XPORT or CPORT file.

Each time you run a SAS Load Set, you load all the data contained in the source file at
runtime. You can load a zipped data set file (but not a zipped XPORT or CPORT file).

UTF8 Encoding
To ensure that Oracle LSH stores and displays special characters in your data correctly,
start SAS in UTF8 mode.

If you are using SAS 9.2:

■ In Windows:

Drive:\Program Files\SAS\SASFoundation\9.2\sas.exe" -CONFIG
Drive:\Program Files\SAS\SASFoundation\9.2\nls\u8\SASV9.CFG"

■ In UNIX:

sas -encoding UTF8
If you are using SAS 9.1.3 on UNIX, use sas_dbcs instead of sas to start in unicode
mode. For further information, see SAS Paper Paper 1036, Multilingual Computing with
the 9.1 SAS Unicode Server at:
http://support.sas.com/rnd/papers/sugi28/unicodeserver.pdf

SAS Load Set Attributes
The only attribute is the Save Input File? flag:

■ If set to Yes, the system saves the uploaded file as an output. See "SAS Load Set
Planned Outputs" on page 7-16.

■ If set to No, the uploaded file is deleted after the load completes. This is the
default value.

SAS Load Set Table Descriptors
If you are using a transport file as a source, you can load more than one data set with a
single Load Set, but you cannot load a zipped file. If you are using a data set file as a
source, you can load only that one data set but you can load it as a zipped file.

Oracle LSH automatically creates one Table Descriptor for each data set in the file you
specify. If you specify a transport file with data sets that have indexes defined, Oracle
LSH creates corresponding indexes in the Table definition as well.

To create Table Descriptors for a SAS Load Set, do the following:

1. In the Table Descriptors subtab of the Load Set, click Add. The system opens the
Create Table Descriptors screen.

2. Select Create New Table Definition(s) and Descriptor(s) from a SAS file. The
system refreshes the screen and adds a field with a Browse button.

3. Click Browse. The system opens a standard Browse window.

Note: If you are loading a data set, and the table descriptor
associated with its table definition uses a Sort Constraint, to preserve
the sort order, make sure that the data set is not empty.

http://support.sas.com/rnd/papers/sugi28/unicodeserver.pdf

Defining Different Load Set Types

Defining Load Sets 7-15

4. Navigate to the SAS file you want, select it, and click Open. The system returns to
the Create Table Descriptors screen and enters the name of the file you selected in
the Import From File field.

5. Click Apply. The system creates one Table Descriptor for each data set in the file
you specify.

You can use the Create Table Instances from Existing Table Descriptors job from the
Actions drop-down list to create and map all the Table instances you need.
Alternatively, you can create instances of any compatible Table definitions and map
them. See "Mapping Table Descriptors to Table Instances" on page 7-9 for further
information.

SAS Load Set Parameters
SAS Load Sets have the following runtime Parameters:

■ BLOB ID (Temporary). This Parameter is for internal use only. It contains a
pointer to the uploaded file.

■ Dataset File Name. Do not select a file while defining the Load Set. Oracle LSH
uploads the file when you submit the Load Set's Execution Setup. If you upload
the file during Load Set definition, the data will probably be outdated at the time
the Load Set is executed. Therefore, leave this field blank. The user must enter the
filename at runtime if Load From Server OS is set to No else the user has to enter
the Server OS filename.

■ Load from Server OS. You have the option to load a data set file from your local
computer or from a remote system. Set this parameter to Yes (default is No) if your
file is either on the Oracle LSH DP server or on another computer that has its
drives NFS-mounted on the DP server computer. If you set this parameter to No,
you must upload a data set file from your local computer at the time of submitting
the SAS Load Set job.

Note: To create a SAS Load Set definition, Oracle LSH loads the file
you specify with all its data. The more data the data set contains, the
longer it takes to create the Load Set and the more resources are
consumed. Therefore, copy the structure of the data set in SAS and use
the empty copy to create the Table Descriptors.

Note: These are predefined, required, runtime Parameters and you
should not change any of their properties, or the Load Set may not
function properly.

These Parameters take meaningful values only at the time of
submitting the Load Set's Execution Setup.

Note: The system can load remote SAS data set files only from an
Oracle LSH DP Server that is running the SAS and the SQL*Loader
services. In addition, the SAS Service Location must point to the
SQL*Loader executable. Provide the absolute path of the SQL*Loader
executable in the Details field of the SAS Service. See the chapter on
Setting Up Services in the Oracle Life Sciences Data Hub System
Administrator's Guide for more information.

Defining Different Load Set Types

7-16 Oracle Life Sciences Data Hub Application Developer's Guide

■ Server OS Filename. If you set Load From Server OS to Yes, enter the absolute
path of the remote data set file at the time of submitting the Load Set's Execution
Setup else leave this parameter blank.

■ Maximum Allowed Errors. Tolerance factor; the maximum number of invalid
records you are willing to accept before SQL*Loader stops the loading process and
marks the Load Set job as failed. The default value of this parameter is 0.

■ Direct. If set to Yes (default is No), the system uses the direct path INSERT to load
data from the SAS dataset file into the Oracle LSH target Table instance.

■ Drop and Recreate Indexes. If set to Yes (default), and if the value of the
parameter Direct is Yes, the system drops all non-unique indexes before running a
data-loading job and recreates the non-unique indexes after loading data into the
target Tables. The system does not drop indexes if Direct is set to No.

SAS Load Set Planned Outputs
Oracle LSH automatically creates the following Planned Outputs for SAS Load Sets:

■ SAS Loading Log File. Oracle LSH writes the job log into this Planned Output for
all jobs except bulk loading jobs. Bulk loading jobs write data from SAS data sets
into Transactional High Throughput Table instances.

■ SAS Loading Input Data File. If you set the Save Input File attribute to Yes, the
system uses that Planned Output as a placeholder for the input file saved as an
output during execution. If you set Save Input File to No, the system still creates
the Planned Output but does not create the actual output when you run the Load
Set.

You can classify the Planned Output and view the actual output through the
Oracle LSH Outputs user interface, subject to normal Oracle LSH security rules. To
view the contents of the file, you must download it and view it through SAS.

■ SAS Bulk Loading Error File. If you set the parameter Direct to Yes, and if the
data loading job encounters one or more invalid records, the system generates this
file and writes each rejected record into it. For SAS CPORT and XPORT files,
Oracle LSH consolidates the error files that SQL*Loader generates for each data
set.

Note: If you are uploading a SAS CPORT or XPORT file, note that
the value you enter here applies to each data set contained within the
CPORT or XPORT file.

Note: When writing to multiple Table instances, if all the Table
instances are not of the Transactional High Throughput processing
type, the system uses the direct path INSERT for the Transactional
High Throughput processing type Tables and the conventional
INSERT for Tables of other data processing types. The Load Set job
completes with warnings and writes warning messages to the job log.

Note: See Oracle® Database Utilities at
http://download.oracle.com/docs/cd/E11882_
01/server.112/e16536.pdf for more information on SQL*Loader
parameters at:

http://download.oracle.com/docs/cd/E11882_01/server.112/e16536.pdf
http://download.oracle.com/docs/cd/E11882_01/server.112/e16536.pdf

Defining Different Load Set Types

Defining Load Sets 7-17

■ SQL*Loader Log File. If you set the parameter Direct to Yes, SQL*Loader
generates this log file for each data set when writing to a Table instance and stores
in this Planned Output. For SAS CPORT and XPORT files, Oracle LSH
consolidates the log files that SQL*Loader generates for each data set.

■ SQL*Loader Control File. If you set the parameter Direct to Yes, SAS generates
the SQL*Loader control file for each data set when you run the Oracle LSH Load
Set job. The system stores the control file in this Planned Output. If you use
CPORT or XPORT, Oracle LSH consolidates all the control files into this Planned
Output.

SAS Load Set Execution Setups
When you define an Execution Setup for a SAS Load Set, be careful to give it a name
and description that will enable a person submitting the Load Set for execution to
understand which file should be loaded.

The file must contain data sets that correspond to the Table Descriptors defined for the
Load Set, but the Table Descriptors are created as part of the Load Set definition, while
the file should only be specified at runtime. Therefore, provide enough information in
the Execution Setup Name and Description to make it clear which data sets this Load
Set definition is intended to load.

In addition, do not enter a value for Dataset File Name or the Server OS Filename in
the Execution Setup definition. The person submitting the Load Set for execution must
enter a file name. The system uploads the file at the time that you specify it. If you
specify it during Load Set or Execution Setup definition, the data in the file may be out
of date by the time the user runs the Load Set.

Text
This section contains the following topics:

■ About Text Load Sets on page 7-17

■ UTF8 Encoding on page 7-14

■ Text Load Set Attributes on page 7-18

■ Text Load Set Table Descriptors on page 7-18

■ Text Load Set Parameters on page 7-20

■ Text Load Set Planned Outputs on page 7-23

■ Text Load Set Execution Setup on page 7-23

About Text Load Sets
A Text Load Set loads data in a text file in either fixed or delimited format into one or
more Table instances in Oracle LSH.

During Text Load Set definition, you can upload a metadata file. The system reads the
data structure from the file and creates a Table Descriptor with the same structure. You

Note: It does not make sense to schedule a SAS Load Set for repeated
execution because it would use the same BLOB ID each time,
reloading the same data.

If you schedule a single run of a SAS Load Set for a later time, it loads
the data that was current at the time you specified the file.

Defining Different Load Set Types

7-18 Oracle Life Sciences Data Hub Application Developer's Guide

can load multiple metadata files zipped together and create multiple Table Descriptors
at the same time.

During Text Load Set execution, you can include metadata files in a zipped file with
data files. For each metadata file, the system creates a matching Table Descriptors if
none exists or updates and synchronizes a Table Descriptor if it does exist, and loads
data from the data file(s). The system identifies files with extension .mdd as a
metadata definition file and treats other extensions as data files.

You can specify tolerance factors to determine whether or not to continue loading if
errors occur. See "Text Load Set Parameters" on page 7-20.

UTF8 Encoding
To ensure that Oracle LSH stores and displays special characters in your data correctly,
convert text files that are not already using UTF8 encoding to UTF8 before uploading
them to Oracle LSH.

To do this, copy the text in the text file into a a text editor such as Notepad or Wordpad
and use the Save As option to select UTF-8 as the Encoding value.

Text Load Set Attributes
The only attribute is the Save Input File? flag:

■ If set to Yes, the system saves the uploaded file as an output. This is especially
useful when uploading data files with multiple date formats; see "Text Load Set
Planned Outputs" on page 7-23.

■ If set to No, and the file was uploaded from the user's desktop, the uploaded file is
deleted after the load completes. This is the default value. If the file is uploaded
from the operating system, it is not deleted.

Text Load Set Table Descriptors
Oracle LSH can read the data structure from a metadata (.mdd) file using a specified
format (see Example 7–1) and define a Table Descriptor or read multiple metadata files
zipped together to create multiple Table Descriptors. You can also define a target Table
Descriptor manually; see "Adding a New Target Table Descriptor" on page 3-42.

You can create multiple Table Descriptors by uploading a zip file containing multiple
metadata files. The system unzips the file, identifies and reads the metadata files
(.mdd extension) and ignores any other files. It uses the metadata information to
either create new Table Descriptors or update and synchronize existing Table
Descriptors as the case may be.

Creating a Metadata File
If the file has an .mdd extension, the system expects a set of Column attribute values,
optionally preceded by a row identifying the delimiter and a row defining Table
attribute values, each of which must begin with a key word. A row beginning with
dashes is treated as a comment. For example:

--This is a comment.

Note: All text files must use carriage returns between records so that
each record appears on its own line.

Defining Different Load Set Types

Defining Load Sets 7-19

Example 7–1 Text Load Set Metadata File

lsh_delimiter = ,
--This section is for the Table attributes
lsh_table= DM,DEMOG Table,EMP,EMP,EMP,Staging with
Audit,Yes,Yes,Blinded,target,yes,yes

--The following are columnsComment Line 2
INITS,VARCHAR2,100,,inits,inits,2.,,inits,no,1
AGE,NUMBER,10,,2,age,age,2.,,age,yes,1
DOB,DATE,,,3,dob,dob,datetime.,,dob,yes,1,MM/DD/YY HH24:MI:SS

Delimiter The first row defines the delimiter used in the file. If not specified, Oracle
LSH treats it as a comma delimited file. The delimiter row must begin with lsh_
delimiter=

Table and Table Descriptor Attributes The second row lists the table attributes
required in the file. The Table attribute row must begin with lsh_table=

If the second row is not present or contains null values, the system assumes that the
filename (without extension) is the Table Name and follows the normal Oracle LSH
default behavior for the attribute values. The attributes and their required order in the
file are: Name, Description, Oracle Name, SAS Name, SAS Label, Process Type,
Allow Snapshot?, Blinding Flag?, Blinding Status, SAS Library Name, Is
Target?, Target as Dataset?, SDTM Identifier

Some attributes have associated reference codelists and allow either the actual values
for the associated reference codelist (RC) columns or the decode values defined in the
"Meaning" attribute of the _RC lookup. For example, "select meaning from cdr_
lookups where lookup_code='< RC>' so that YES or Yes or $YESNO$YES are
acceptable values.

The table below outlines the applicable values for each attribute that has an associated
reference codelist.

Columns Subsequent rows must contain the column and variable attributes with
each represented by a new row in the text file with attributes. The position is
determined by the order in which the column /variable rows are processed. For

Note: Processing types that require audit keys are not supported.

Table 7–1 Table Attributes with Reference Codelist Values

Attribute Values

Processing Type Staging with Audit, Staging without Audit, Transactional High
Throughput, Transactional without Audit

Allow Snapshot Yes, No

Blinding Flag Yes, No

Blinding Status Blinded, Unblinded

Is Target Yes, No

Target as dataset Yes, No

Data Type Date, Number, Varchar2

Nullable NullableYes, No

Defining Different Load Set Types

7-20 Oracle Life Sciences Data Hub Application Developer's Guide

example, in a comma delimited file: Name, Data Type, Length, Precision, Oracle
Name, SAS Name, SAS Format, Description, SAS Label, Nullable, Default
Value, Date Format

Normal Oracle LSH validation rules apply to the Column or variable attributes. The
operation uses Oracle LSH default values if invalid values are provided for any of the
attributes.

Text Load Set Parameters
Text Load Sets include the Parameters listed below. You can change their default
values in the Execution Setup definition. The user can change their values at runtime.

■ Data File Name. Do not select a file when defining the Load Set. Oracle LSH
uploads the file when you submit the Load Set's Execution Setup. If you upload
the file during Load Set definition, the data will probably be outdated at the time
the Load Set is executed. Therefore, leave this field blank. The user must enter the
filename at runtime if Load From Server OS is set to No.

■ Data Format. Choose either Fixed or Delimited:

– Fixed. The system uses the Load Set's target Table Descriptor Column
definitions to interpret the data type and length of the values in the text file.
The file must contain the correct number of characters for each value in each
column of each record.

In the case of Table Descriptor Columns with a Number data type (with a
fixed format file), if you data includes a sign (+/-), you must increase the
length by one to accommodate the positive (+) or negative (-) sign. In addition,
if the data includes numbers with decimal places, you must declare the
precision and increase the length by one to accommodate the decimal marker.
See "Defining Table Columns" on page 4-10 for further information.

– Delimited. With delimited records, you specify the character used in the
source file between each record as the separator character. Different records in
the same column can be of different lengths, up to the maximum allowed. The
system loads the contents between the separator character into each
consecutive Column of the target Table instance.

For example, if you have a Table instance with Columns Patient ID, Patient
Initials, and Date of Birth, and the separator character was a comma, and the
date format was DDMMYYYY, the first two records might look like this:

54602,EKP,04081949

66781,BAH,22011955

■ Delimiter Character. (Required for Delimited-format Load Sets only.) Specify the
character(s) used as the value delimiter in the source text file. In the example
above, the comma (,) is the separator character. The default character is the comma
(,). You can use any two unicode characters as a delimiter. For example, to use tab
as the delimiter character, enter \t.

Note: Because these are predefined, required Parameters you should
change only the values specified below or the Load Set may not
function properly. Do not change any other properties of these
parameters.

Defining Different Load Set Types

Defining Load Sets 7-21

■ Enclosing Character. (For Delimited-format Load Sets only; recommended but not
required.) If any record value may contain the delimiter character, you need an
enclosing character. Specify the character used to enclose each value. The default
character is double quotation marks (").

For example, if a double quotation mark (") were the enclosing character, the same
two records would look like this in the source text file:

"54602","EKP","04081949"

"66781","BAH","22011955"

You can use any single unicode character as an enclosing character.

■ Initial Records to Skip. If you want to not load records at the beginning of the file,
enter the number of records you want the system to skip. The default value is zero
(0).

■ Maximum Allowed Errors. Tolerance factor; the maximum number of invalid
rows you are willing to tolerate before the SQL*Loader stops the load process and
marks the Load Set job as failed. The default value is 0.

■ Temp LOB ID. This Parameter is for internal use only. Do not modify it.

■ Date Format. Enter the date format used in the source data or .mdd file, if any. The
date format you enter here must correspond exactly with the date field in the
source text file, else the Load Set cannot execute correctly. Do not enter a value
here if the source text file does not contain a date field.

■ Load From Server OS. You have the option to load a file from your local computer
or from a remote system. Set this parameter to Yes (default is No) if your file is
either on the Oracle LSH DP server or on another computer that has its drives

Note: Even if you specify that this is a fixed format Load Set, this
Parameter is displayed. Leave the default value as is.

Note: Even if you specify that this is a fixed format Load Set, this
Parameter is displayed and is required. Leave the default value as is;
the system does not use this value.

Notes: Both delimiter and enclosing characters should be characters
that never appear in the data content of the file.

The delimiter character and the enclosing character must be different.
If they are the same, the Load Set execution will fail.

Note: If you use a tab as the delimiter and specify an enclosing
character, the following limitations apply:

■ Tabs cannot be part of the data even if the data is enclosed.

■ The length of the data, including enclosing characters and
duplicate enclosing characters, cannot exceed 4000 characters.

Defining Different Load Set Types

7-22 Oracle Life Sciences Data Hub Application Developer's Guide

NFS-mounted on the DP server computer. If you set this parameter to No, you
must upload a text file from your local computer when running the Text Load Set
job by providing its name in the Data File Name parameter.

■ Server OS Filename. If you set Load From Server OS to Yes, enter the absolute
path of the remote file with the filename and extension, else leave this parameter
blank.

■ Direct. If set to Yes (default is No), the system uses the direct path INSERT to load
data from the text file into the Oracle LSH target Table. If the Table Descriptor
mapped to the Text Load Set is not of the Transactional High Throughput
processing type, the system loads data using the conventional INSERT and writes
warning messages to the job log.

■ (Optional) Rows. This parameter applies only when you set Direct to Yes.

It indicates the number of rows that SQL*Loader reads together at one time from
the datafile before writing them to the target Table and committing to the
database. If you leave this parameter blank, by default the system reads all the
rows from the datafile and then writes the data to the target Table.

For conventional path loads, (if you set Direct to No), this parameter indicates the
number of rows that SQL*Loader assigns to the bind array. If you leave this
parameter blank, Oracle LSH calculates the number of rows.

■ Drop and Recreate Indexes. If set to Yes (default), and if the value of the
parameter Direct is set to Yes, the system drops all non-unique indexes before
running a data-loading job and recreates the non-unique indexes after loading
data into the target Tables. The system does not drop indexes if Direct is set to No.

■ Recoverable. This parameter applies only when you set Direct to Yes.

If set to Yes (default), the system can recover data in the event of a failure. If set to
No, the data becomes unrecoverable because SQL*Loader does not maintain a
redo log file for the data.

Note: The system can load remote text files only from an Oracle LSH
DP Server that is running the SQL*Loader service.

Note: See the Oracle Database Utilities Guide (part number
B14215-01) for more information on this SQL*Loader Command-Line
Parameter.

Note: A very high or a very low value for Rows can adversely affect
the system's performance. Enter a value only if you are absolutely sure
that you need to change this.

See the Oracle Database Utilities Guide (part number B14215-01) for
more information on this SQL*Loader Command-Line Parameter.

Defining Different Load Set Types

Defining Load Sets 7-23

Text Load Set Planned Outputs
The system automatically creates four Planned Outputs for Text Load Sets:

■ Text Loading Log File (.log). The system writes the job log into the log file.

■ Text Loading Control File (.ctl) The system generates the SQL*Loader control file
and writes the SQL*Loader options to this file. This is useful when you use bulk
loading.

■ Text Loading Error File (.err). The system writes each invalid record that got
rejected while writing data into a target Table instance into this Planned Output.

■ Text Loading Input Data File. If you set the Save Input File attribute to Yes,
Oracle LSH uses a Planned Output as a placeholder for the input file saved as an
output during execution. If you set Save Input File to No, the system still creates
the Planned Output but does not create the actual output when you run the Load
Set.

If you upload a zipped file with Save as Input set to Yes, the system always saves
it as TEXTLOAD.ZIP—it does not have its original name when saved.

Setting Save as Input to Yes when you are loading multiple zipped files is
especially useful when uploading data files with multiple date formats. If the date
formats are the same, the Save as Input setting is immaterial. If the date formats
vary, and the Save as Input option is set to Yes, the system uses the date format
specified in each metadata file.

You can classify the Planned Output and view the actual output through the Oracle
LSH Outputs user interface, subject to normal Oracle LSH security rules. To view the
contents of the file, you must download it and view it through SAS.

Text Load Set Execution Setup
When you define an Execution Setup for a Text Load Set, be careful to give it a name
and description that will enable a person submitting the Load Set for execution to
understand which file should be loaded.

The file must contain data in a format that corresponds to the Table Descriptors
defined for the Load Set, but the Table Descriptors are created as part of the Load Set
definition, while the file can only be specified at runtime. Therefore, provide enough
information in the Execution Setup Name and Description to make it clear which data
this Load Set definition is intended to load.

In addition, do not enter a value for Data File Name or Server OS Filename in the
Execution Setup definition. The system uploads the file at the time that you specify it.
If you specify it during Load Set or Execution Setup definition, the data in the file may
be out of date by the time the user runs the Load Set.

Note: For more information on the SQL*Loader UNRECOVERABLE
clause at: Oracle® Database Utilities at
http://download.oracle.com/docs/cd/E11882_
01/server.112/e16536.pdf

http://download.oracle.com/docs/cd/E11882_01/server.112/e16536.pdf
http://download.oracle.com/docs/cd/E11882_01/server.112/e16536.pdf

Defining Different Load Set Types

7-24 Oracle Life Sciences Data Hub Application Developer's Guide

Oracle Clinical Stable Interface
This section contains the following topics:

■ About Oracle Clinical Stable Interface Load Sets on page 7-24

■ OC Stable Interface Tables Load Set Attributes on page 7-24

■ OC Stable Interface Tables Load Set Table Descriptors on page 7-24

■ OC Stable Interface Tables Load Set Parameter on page 7-24

■ OC Stable Interface Tables Load Set Planned Outputs on page 7-25

■ OC Stable Interface Tables Load Set Execution Setups on page 7-25

About Oracle Clinical Stable Interface Load Sets
Oracle Clinical Stable Interface Load Sets give you access to the metadata of all Oracle
Clinical tables that are part of Oracle Clinical's stable interface.

For information on Oracle Clinical tables and joins, request a copy of the Oracle
Clinical Stable Interface Guide from Oracle Support. This documentation is available
only to Oracle Clinical customers.

OC Stable Interface Tables Load Set Attributes
Click Update and enter a value for the following attribute:

Remote Location. Click the Search icon and select a source remote
location/connection combination from the list of values.

OC Stable Interface Tables Load Set Table Descriptors
Oracle LSH automatically creates Table Descriptors from the Oracle Clinical tables you
specify.

To specify the Oracle Clinical tables to load, do the following:

1. Click Upload Table Descriptors.

2. Select one or more Oracle Clinical views to load.

Refer to the Oracle Clinical documentation for information on these tables.
Functional information is in Creating a Study and Conducting a Study. Table
structure information is in the Oracle Clinical Stable Interface Guide.

3. Click Apply. The system returns you to the Load Set screen and displays the Table
Descriptors in the Table Descriptors subtab.

4. Map the Table Descriptors to Table instances. See "Mapping Table Descriptors to
Table Instances" on page 7-9 for instructions.

OC Stable Interface Tables Load Set Parameter
Oracle Clinical Labs Load Sets have the following runtime Parameter:

Note: It does not make sense to schedule a Text Load Set for repeated
execution because it would use the same BLOB ID each time,
reloading the same data.

If you schedule a single run of a Text Load Set for a later time, it loads
the data that was current at the time you specified the file.

Defining Different Load Set Types

Defining Load Sets 7-25

Remote Location. The user submitting the Load Set for execution must select his or
her own remote location/connection combination (or a remote location with a shared
connection) at runtime to ensure the proper security for the external database. Do not
enter a default value or change any of the other Parameter settings.

OC Stable Interface Tables Load Set Planned Outputs
The only Planned Output for any Oracle Clinical Load Set is a log file. See "About
Load Set Planned Outputs" on page 7-10 for further information.

OC Stable Interface Tables Load Set Execution Setups
Do not set the Remote Location Parameter in the Execution Setup. See "OC Stable
Interface Tables Load Set Parameter" on page 7-24.

For general information on defining Execution Setups, see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55

Oracle Clinical Data Extract SAS Views
This section contains the following topics:

■ About OC DX SAS Views on page 7-25

■ OC DX SAS Views Load Set Attributes on page 7-25

■ OC DX SAS Views Load Set Parameters on page 7-25

■ OC DX SAS Views Load Set Table Descriptors on page 7-26

■ OC DX SAS Views Load Set Planned Outputs on page 7-26

■ OC DX SAS Views Load Set Execution Setups on page 7-26

About OC DX SAS Views
Data Extract (DX) SAS Views Load Sets allow you to make Oracle Clinical patient data
available in Oracle LSH using the SAS DX Views your company has already defined in
Oracle Clinical. There is no need to redefine the views in Oracle LSH.

You can load views from one Study Access Account or Study Set Access Account at a
time.

OC DX SAS Views Load Set Attributes
Click Update and enter values for the following attributes:

■ Remote Location. Click the Search icon and select a source remote
location/connection combination from the list of values.

■ Study Name. Click the Search icon and select the name of the Study or Study Set
whose views you want. The system displays all studies that your connection has
access to in Oracle Clinical.

OC DX SAS Views Load Set Parameters
Oracle Clinical Data Extract SAS Views Load Sets have the following runtime
Parameters:

■ Remote Location. The user submitting the Load Set for execution must select this
or her own remote location/connection combination (or a remote location with a
shared connection) at runtime to ensure the proper security for the external

Defining Different Load Set Types

7-26 Oracle Life Sciences Data Hub Application Developer's Guide

database. Do not enter a default value or change any of the other Parameter
settings.

■ View Type. From the list of values, select the Oracle Clinical Study or Study Set
Access Account that maintains the views you want.

OC DX SAS Views Load Set Table Descriptors
You can upload views from the Remote Location and study you specified. Oracle LSH
uses the structure of the Oracle Clinical views to create the target Table Descriptor and
its underlying Table definition.

When you install an OC SAS DX Load Set using the Install button on the Load Set
screen, if the Load Set has no Table Descriptors, the system creates a target Table
Descriptor for each active SAS DX View at the specified Remote Location for the
specified Oracle Clinical study or study set. It also creates a matching Table instance in
the current Work Area for each Table Descriptor and maps the matching Table
Descriptor and Table instance.

OC DX SAS Views Load Set Planned Outputs
The only Planned Output for any Oracle Clinical Load Set is a log file. See "About
Load Set Planned Outputs" on page 7-10 for further information.

OC DX SAS Views Load Set Execution Setups
Do not set the Remote Location Parameter in the Execution Setup. See "OC DX SAS
Views Load Set Parameters" on page 7-25.

For general information on defining Execution Setups, see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55

Oracle Clinical Data Extract Views
This section contains the following topics:

■ About OC Data Extract View Load Sets on page 7-26

■ OC Data Extract Views Load Set Attributes on page 7-27

■ OC Data Extract Views Load Set Parameters on page 7-28

■ OC Data Extract Views Load Set Table Descriptors on page 7-27

■ OC Data Extract Views Load Set Planned Outputs on page 7-28

■ OC Data Extract Views Load Set Execution Setups on page 7-28

About OC Data Extract View Load Sets
Oracle Clinical Data Extract (DX) Views Load Sets allow you to make Oracle Clinical
patient data available in Oracle LSH using the Oracle DX Views your company has
already defined in Oracle Clinical. There is no need to redefine the views in Oracle
LSH.

You can load views, including union views, from one Access Account at a time.

Note: Because this is a predefined, required Parameter you should
not change anything except the default value in the Load Set
definition, or the Load Set may not function properly.

Defining Different Load Set Types

Defining Load Sets 7-27

You can either physically load patient records into Oracle LSH or use the Load Set as a
pass-through view to Oracle Clinical; see "Oracle Tables and Views" on page 7-11.

You can load views of any type—stable, snapshot, or current—that are maintained in
the specified access account. However, you can see data in current Oracle Clinical DX
Views in Oracle LSH only if you do not physically load the data into Oracle LSH.

There are two types of Oracle Clinical data extract view adapters: regular and
incremental. The regular one uses full-mode reload processing. The incremental
adapter uses incremental transactional processing, in either full or incremental load.
For fastest performance, create the Load Set using the Incremental type and select
incremental processing when you run the Load Set.

OC Data Extract Views Load Set Attributes
Click Update and enter values for the following attributes:

■ Remote Location. Click the Search icon and choose a source database/connection
combination from the list of values.

■ Study Name. From the list of values, select the name of the Study or Study Set
whose views you want. The system displays all studies that your connection has
access to in Oracle Clinical.

■ View Type. From the list of values, select the type of view you want to load; for
example, Stable, Snapshot, or Current.

OC Data Extract Views Load Set Table Descriptors
Use the Upload Table Descriptors function to specify the tables you want to load. The
system generates a list of tables in the study in the location that you specified in the
Attributes section.

When you install an OC DX Load Set using the Install button on the Load Set screen, if
the Load Set has no Table Descriptors, the system creates a target Table Descriptor for
each active Oracle DX View at the specified Remote Location for the specified Oracle

Table 7–2 OC Data Extract View Load Set Types

Load Set
Type

OC DX
View Types
Allowed

Processing
Type Used

Processing
Options
Available at
Runtime Deletion Behavior

Regular Stable,
Snapshot, or
Current

Reload Full Soft-deletes records that are not reloaded. See "Reload
Processing" on page 13-4.

Incremental Stable Transactional,
with or
without audit
(set in a
profile, can be
overwritten
for a target
table instance)

Full or
incremental

In Full mode, the adapter first deletes all data and
then loads all current data:

■ If you are using Transactional with Audit
processing, the original data is soft-deleted. The
data remains in the database with an end
timestamp reflecting the time of the job.

■ If you are using Transactional without Audit
processing, the original data is hard-deleted. No
record of the data is maintained.

In Incremental mode, uses DML statements to insert,
update, or soft-delete changed records. In addition,
data that has been hard-deleted in Oracle Clinical is
hard-deleted in Oracle LSH.

Defining Different Load Set Types

7-28 Oracle Life Sciences Data Hub Application Developer's Guide

Clinical study or study set. It also creates a matching Table instance in the current
Work Area for each Table Descriptor and maps the matching Table Descriptor and
Table instance.

OC Data Extract Views Load Set Parameters
Oracle Clinical Data Extract Oracle Views Load Sets have the following runtime
Parameters:

■ Remote Location. The user submitting the Load Set for execution must enter his or
her own remote location/connection combination (or a remote location and shared
connection) at runtime to ensure the proper security for the external database. Do
not enter a default value.

■ View Type. From the list of values, select the Oracle Clinical Study or Study Set
Access Account that maintains the views you want.

OC Data Extract Views Load Set Planned Outputs
The only Planned Output for any Oracle Clinical Load Set is a log file. See "About
Load Set Planned Outputs" on page 7-10 for further information.

OC Data Extract Views Load Set Execution Setups
Do not set the Remote Location Parameter in the Execution Setup. See "OC Data
Extract Views Load Set Parameters" on page 7-28.

For general information on defining Execution Setups, see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55

Oracle Clinical Design and Definition
This section contains the following topics:

■ About OC Design and Definition Load Sets on page 7-28

■ OC Design and Definition Load Set Attributes on page 7-29

■ OC Design and Definition Load Set Table Descriptors on page 7-29

■ OC Design and Definition Load Set Parameters on page 7-30

■ OC Design and Definition Load Set Planned Outputs on page 7-31

■ OC Design and Definition Load Set Execution Setups on page 7-31

About OC Design and Definition Load Sets
Oracle Clinical Design and Definition Load Sets load the metadata on which CRFs are
based, including:

■ Data Collection Modules (DCMs)

■ Data Collection Instruments (DCIs)

■ Procedures

■ Copy Groups

Note: Because this is a predefined, required Parameter you should
not change anything except the default value in the Load Set
definition, or the Load Set may not function properly.

Defining Different Load Set Types

Defining Load Sets 7-29

■ Data Extract Queries and Templates

OC Design and Definition Load Set Attributes
Click Update and enter values for the following attributes:

■ Remote Location. Click the Search icon and choose a source database/connection
combination from the list of values.

■ Design Sub-System. Click the Search icon and select either Study Design or Study
Definition. You can load tables from only one subsystem in a single Load Set. For a
list of the tables you can load from each subsystem, see "OC Design and Definition
Load Set Table Descriptors" on page 7-29.

OC Design and Definition Load Set Table Descriptors
Oracle LSH automatically creates Table Descriptors from the Oracle Clinical tables you
specify. The tables available depend on the subsystem you specified.

To specify the Oracle Clinical tables to load, do the following:

1. Click Upload Table Descriptors to specify the Oracle Clinical tables you want to
load. Oracle LSH generates a list of tables in the study in the location that you
specified in the Attributes section.

2. Select one or more Oracle Clinical tables to load. The choices available depend on
which subsystem you selected as an attribute; see "Study Design Table
Descriptors" on page 7-29 and "Study Definition Table Descriptors" on page 7-30.

Refer to the Oracle Clinical documentation for information on these tables.
Functional information is in Creating a Study. Table structure information is in the
Oracle Clinical Stable Interface Guide.

3. Click Apply. The system returns you to the Load Set screen and displays the Table
Descriptors in the Table Descriptors subtab.

4. Map the Table Descriptors to Table instances. See "Mapping Table Descriptors to
Table Instances" on page 7-9 for instructions.

Study Design Table Descriptors If you set the Design Sub-System attribute to Study
Design, you can load any of the following tables:

Blind Breaks
Clinical Planned Events
Clinical Planned Processes
Clinical Procedures
Clinical Studies
Clinical Study History
Clinical Study Objectives
Clinical Study States
Clinical Study Versions
Clinical Study Version Sizes
Clinical Subjects
Clin Study Enrollment Criteria
Clin St Termination Criteria
Combined Treatment Components
Daily Doses
Enrollment Plans
Factors
Interval Treat Regimen Assign
OCL Dosage Forms

Defining Different Load Set Types

7-30 Oracle Life Sciences Data Hub Application Developer's Guide

OCL Investigators
OCL Organization Units
OCL Product Masters
OCL Programs

Study Definition Table Descriptors If you set the Design Sub-System attribute to
Study Definition, you can load any of the following tables:

Copy Groups
Copy Group Details
Correlation Items
Data Extract Views
DCIs
DCI Books
DCI Book DCI Constraints
DCI Book Pages
DCI Book Physical Pages
DCI Form Versions
DCI Modules
DCI Module Pages
DCMs
DCM Conditional Branches
DCM Layout ABS Pages
DCM Layout Graphics
DCM Layout Text
DCM Questions
DCM Question Groups
DCM Ques Repeat Defaults
DCM Schedules
Procedures
Procedure Details
Procedure Questions
Procedure Question Groups
Procedure Texts
Procedure Variables
Proc Det Var Usage
Queries
Query Details
Query Key Cols
Query Where
Query Where Cols
Templates
Template Columns
Template Indexes
Template Index Cols
Unions
View Question Mappings
View Restrictions
View Restriction Cols
View Template Questions

OC Design and Definition Load Set Parameters
Oracle Clinical Design and Definition Load Sets have the following runtime
Parameters:

Defining Different Load Set Types

Defining Load Sets 7-31

■ Remote Location. The user submitting the Load Set for execution must select his
or her own remote location/connection combination (or a remote location with a
shared connection) at runtime to ensure the proper security for the external
database. Do not enter a default value or change any of the other Parameter
settings.

■ Study. The user submitting the Load Set for execution must specify the study from
which to load data.

OC Design and Definition Load Set Planned Outputs
The only Planned Output for any Oracle Clinical Load Set is a log file. See "About
Load Set Planned Outputs" on page 7-10 for further information.

OC Design and Definition Load Set Execution Setups
Do not set the Remote Location Parameter in the Execution Setup. See "OC Design and
Definition Load Set Parameters" on page 7-30.

For general information on defining Execution Setups, see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55

Oracle Clinical Global Metadata
This section contains the following topics:

■ About OC Global Metadata Load Sets on page 7-31

■ OC Global Metadata Load Set Attributes on page 7-32

■ OC Global Metadata Load Set Table Descriptors on page 7-32

■ OC Global Metadata Load Set Parameters on page 7-32

■ OC Global Metadata Load Set Planned Outputs on page 7-32

■ OC Global Metadata Load Set Execution Setups on page 7-32

About OC Global Metadata Load Sets
An Oracle Clinical Global Metadata Load Set loads your Oracle Clinical Global Library
definitions and automatically converts them to Oracle LSH definitions as follows:

■ Oracle LSH loads all Oracle Clinical Questions and converts them to Oracle LSH
Variables.

■ If a Question is associated with a Discrete Value Group (DVG) in Oracle Clinical,
Oracle LSH converts the Question to a Parameter and converts its DVG values to a
list of allowable values for the Parameter.

■ Oracle LSH loads all Oracle Clinical Question Groups and converts them to Oracle
LSH Table definitions with Columns based on the Variables corresponding to each
Question in the Question Group.

The first time you run an Oracle Clinical Global Metadata Load Set, the system creates
an Oracle LSH Domain called "Oracle Clinical Global Libraries" and an Application
Area for the particular Oracle Clinical Global Library Domain. The first time you run a

Note: Because this is a predefined, required Parameter you should
not change anything except the default value in the Load Set
definition, or the Load Set may not function properly.

Defining Different Load Set Types

7-32 Oracle Life Sciences Data Hub Application Developer's Guide

Load Set for a different OC Global Library Domain, Oracle LSH automatically creates
another Application Area for the new OC Global Library Domain.

Each subsequent time you run a Load Set for a Global Library Domain, Oracle LSH
add any new definitions and modifies any definitions that have been modified in
Oracle Clinical. If an Oracle Clinical Question has been removed from a Question
Group in Oracle Clinical, Oracle LSH removes the corresponding Column from the
corresponding Table. However, Oracle LSH does not delete or retire any Oracle LSH
object definitions if their corresponding Oracle Clinical object is retired.

Oracle Clinical Global Metadata Load Sets never delete any metadata because the
definitions may be in use in Oracle LSH. The processing is the same in either Full or
Incremental mode.

OC Global Metadata Load Set Attributes
There are no attributes.

OC Global Metadata Load Set Table Descriptors
No Table Descriptors are required or allowed.

OC Global Metadata Load Set Parameters
Oracle Clinical Global Metadata Load Sets include the Parameters listed below.

■ Remote Location. The user submitting the Load Set for execution must select his
or her own remote location/connection combination (or a remote location with a
shared connection) at runtime to ensure the proper security for the external
database. Do not enter a default value or change any of the other Parameter
settings.

■ Library Domain Name. From the list of values, select the name of the Oracle
Clinical Global Library Domain that you want to load. Do not change any of the
other Parameter settings.

OC Global Metadata Load Set Planned Outputs
The only Planned Output for an Oracle Clinical Global Metadata Load Set is a log file.
See "About Load Set Planned Outputs" on page 7-10 for further information.

OC Global Metadata Load Set Execution Setups
Do not set the Remote Location Parameter in the Execution Setup. See "OC Global
Metadata Load Set Parameters" on page 7-32.

For general information on defining Execution Setups, see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55

Oracle Clinical Labs
This section contains the following topics:

Note: The use of the term "Domain" is confusing because Oracle LSH
and Oracle Clinical use the term differently. The system creates an
Oracle LSH Domain to contain all Oracle Clinical Global Library
Domains. Within this Domain, Oracle LSH creates an Oracle LSH
Application Area for each OC Global Library Domain.

Defining Different Load Set Types

Defining Load Sets 7-33

■ About OC Labs Load Sets on page 7-33

■ OC Labs Load Set Attribute on page 7-33

■ OC Labs Load Set Table Descriptors on page 7-33

■ OC Labs Load Set Parameters on page 7-33

■ OC Labs Load Set Planned Outputs on page 7-34

■ OC Labs Load Set Execution Setups on page 7-34

About OC Labs Load Sets
Oracle Clinical Labs Load Sets load lab reference ranges and associated information
from Oracle Clinical Labs-related tables (see "OC Labs Load Set Table Descriptors" on
page 7-33 for a complete list).

The Lab Assignment Criteria table is not included. You can load it separately if
necessary, using the Oracle tables adapter.

Because Oracle Clinical Lab data tables are closely interrelated and are used in
multiple studies, you must load all lab tables each time you run the Load Set.
However, you can choose the Labs for which to load information.

Each execution of this type of Load Set retrieves the most recent creation or
modification timestamp from the Lab tables in Oracle Clinical.

OC Labs Load Set Attribute
Click Update and enter a value for the following attribute:

Remote Location. Click the Search icon and choose a source database/connection
combination from the list of values.

OC Labs Load Set Table Descriptors
Do not define any Table Descriptors. The system automatically creates Table
Descriptors for Lab tables. The Oracle Clinical tables loaded are:

Labs
Lab Panels
Lab Panel Questions
Lab Range Subsets
Lab Test Question Units
Lab Units
Lab Unit Conversions
Preferred Lab Units
Preferred Lab Unit Groups
Ranges

You must map the Table Descriptors to Table instances.See "Defining Table
Descriptors" on page 7-8 for instructions.

OC Labs Load Set Parameters
Oracle Clinical Labs Load Sets have the following runtime Parameters:

Note: Do not change any of these Table Descriptors. They belong to
the OC Labs adapter and any changes to them will make the adapter
invalid causing Load Sets of this type to stop working.

Defining Different Load Set Types

7-34 Oracle Life Sciences Data Hub Application Developer's Guide

■ Remote Location. The user submitting the Load Set for execution must select his
or her own remote location/connection combination (or a remote location with a
shared connection) at runtime to ensure the proper security for the external
database. Do not enter a default value or change any of the other Parameter
settings.

■ Lab. The user submitting the Load Set for execution can specify the lab for which
to load data.

OC Labs Load Set Planned Outputs
The only Planned Output for any Oracle Clinical Load Set is a log file. See "About
Load Set Planned Outputs" on page 7-10 for further information.

OC Labs Load Set Execution Setups
Do not set the Remote Location Parameter in the Execution Setup. See "OC Labs Load
Set Parameters" on page 7-33.

For general information on defining Execution Setups, see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55

Oracle Clinical Randomization
This section contains the following topics:

■ About OC Randomization Load Sets on page 7-34

■ OC Randomization Load Set Attributes on page 7-35

■ OC Randomization Load Set Table Descriptor on page 7-35

■ OC Randomization Load Set Parameters on page 7-35

■ OC Randomization Load Set Planned Outputs on page 7-36

■ OC Randomization Load Set Execution Setups on page 7-36

About OC Randomization Load Sets
Oracle Clinical Randomization Load Sets load real or dummy treatment pattern
information for Oracle Clinical studies. Randomization Load Sets load data from a
single Oracle Clinical table: TREAT_ASSIGN_ALL_VIEW.

This table contains two separate sets of data. One set contains the actual treatment
codes that reveal which patient is receiving which treatments. This information is
normally blinded in Oracle Clinical, and cannot be loaded into Oracle LSH until it has
been unblinded in Oracle Clinical. The second set of data is dummy data that Oracle
Clinical generates randomly.

Oracle LSH automatically sets the Blinding Flag of the target Table instance to Yes.

The same Load Set instance can load either the real treatment codes or the dummy
data. To load dummy data, no special security privileges are required. To load the real
codes, the user running the Load Set must satisfy security requirements in both Oracle
LSH and Oracle Clinical:

Note: Because this is a predefined, required Parameter you should
not change anything except the default value in the Load Set
definition, or the Load Set may not function properly.

Defining Different Load Set Types

Defining Load Sets 7-35

Oracle Clinical Blinding Security Security access to the real treatment codes within
Oracle Clinical is controlled by the Randomization Access Status Code (RAND_ACC_
STAT_TYPE_CODE). The Oracle Clinical Randomization Adapter checks the value of
this code in Oracle Clinical. The value in Oracle Clinical determines whether the real
data can be loaded or only the dummy data, and determines the value set for the
Blinding Status of the target Table instance:

■ If the value is either Open or Release, the Load Set can load the real codes. The
system sets the Blinding Status of the target Table instance to Unblinded.

■ If the value is Access, and the RXA_ACCESS.TREAT_ACCESS_STUDY view exists
in the user account being used to connect to Oracle Clinical, then the Load Set can
load the real codes. The system sets the Blinding Status of the target Table instance
to Blinded.

■ If the user is trying to download the real codes and the RAND_ACC_STAT_TYPE_
CODE value is anything other than Open, Release, or Access, the system raises an
error and the load fails.

Blinding Security To run a Randomization Load Set on dummy data, an LSH user
must have normal security access to the Load Set instance and to the target Table
instance.

In addition, to load the real treatment codes, the user must also have special
blinding-related privileges on the target Table instance within the same User Group
through which he or she has security access to the Table instance:

■ If the data is currently blinded, the user must have Blind Break privileges.

■ If the data has been unblinded, the user must have Read Unblind or Blind Break
privileges.

If the user has Unblind privileges, he or she can permanently unblind the data within
LSH; see "Unblinding Table Instances" on page 13-19. Even after data has been
permanently unblinded, users must have Read Unblind privileges to view the data.

OC Randomization Load Set Attributes
Oracle Clinical Randomization Load Sets have no attributes.

OC Randomization Load Set Table Descriptor
The system automatically creates a Table Descriptor (and its underlying Table
definition) for the Oracle Clinical table TREAT_ASSIGN_ALL_VIEW.

You must map the Table Descriptors to Table instances.See "Defining Table
Descriptors" on page 7-8 for instructions.

OC Randomization Load Set Parameters
Oracle Clinical Labs Load Sets have the following runtime Parameters:

■ Remote Location. The user submitting the Load Set for execution must select his
or her own remote location/connection combination (or a remote location with a
shared connection) at runtime to ensure the proper security for the external

Note: Do not change this Table Descriptor. It belongs to the OC
Randomization adapter and any changes to it will make the adapter
invalid.

Defining Different Load Set Types

7-36 Oracle Life Sciences Data Hub Application Developer's Guide

database. Do not enter a default value or change any of the other Parameter
settings.

■ Study. The user submitting the Load Set for execution must specify the study for
which to load real or dummy treatment codes.

■ Treatment Data Type. If set to Dummy (the default value) the system loads the
dummy data. If set to Real, the system loads the real treatment codes, if all security
requirements are met.

OC Randomization Load Set Planned Outputs
The only Planned Output for any Oracle Clinical Load Set is a log file. See "About
Load Set Planned Outputs" on page 7-10 for further information.

OC Randomization Load Set Execution Setups
Do not set the Remote Location Parameter in the Execution Setup. See "OC
Randomization Load Set Parameters" on page 7-35.

For general information on defining Execution Setups, see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55

Oracle Clinical Study Data
This section contains the following topics:

■ About OC Study Data Load sets on page 7-36

■ OC Study Data Load Set Attributes on page 7-36

■ OC Study Data Load Set Table Descriptors on page 7-37

■ OC Study Data Load Set Parameters on page 7-37

■ OC Study Data Load Set Planned Outputs on page 7-38

■ OC Randomization Load Set Execution Setups on page 7-38

About OC Study Data Load sets
Oracle Clinical Study Data Load Sets load study-specific non-patient data into LSH,
including:

■ Discrepancies

■ Data Clarification Forms (DCFs)

■ Page tracking information

■ Patient status information

See "OC Study Data Load Set Table Descriptors" on page 7-37 for a complete list of
tables that this Load Set type can load.

Each execution of this type of Load Set retrieves the most recent data from the selected
tables in Oracle Clinical.

OC Study Data Load Set Attributes
Click Update and enter a value for the following attribute:

Remote Location. Click the Search icon and choose a source remote
location/connection combination from the list of values.

Defining Different Load Set Types

Defining Load Sets 7-37

OC Study Data Load Set Table Descriptors
LSH automatically creates Table Descriptors and their underlying Table definitions
from the Oracle Clinical tables you specify. LSH stores the Table definitions in the
current Application Area.

To specify the Oracle Clinical tables to load, do the following:

1. Click Upload Table Descriptors to specify the Oracle Clinical tables you want to
load. The system generates a list of tables in the study in the location that you
specified in the Attributes section.

2. Select one or more Oracle Clinical tables to load. The choices are:

Data Clarification Forms
DCF Discrepancies
DCF Discrepancies Hist
DCF Pages
DCF Page Entries
DCF Print Status
DCF Status Tracking
Discrepancy Entries
Discrepancy Entries T
Discrepancy Entry Review Hist
Discrepancy Entry Review Hist T
Patient Positions
Patient Positions T
Patient Positions History
Patient Statuses
Received Pages
Received Pages T
Received Page History
Received Page History T
Validation Reported Values
Validation Reported Values T

Refer to the Oracle Clinical documentation for information on these tables.
Functional information about Data Clarification Forms (DCFs), discrepancies,
page tracking, and validated reported values is in Conducting a Study. Functional
information on patient positions and statuses is in Creating a Study. Table structure
information on all tables is in the Oracle Clinical Stable Interface Guide.

3. Click Apply. The system returns you to the Load Set screen and displays the Table
Descriptors in the Table Descriptors subtab.

4. Map the Table Descriptors to Table instances. See "Mapping Table Descriptors to
Table Instances" on page 7-9 for further information.

OC Study Data Load Set Parameters
Oracle Clinical Study Data Load Sets have the following runtime Parameters:

■ Remote Location. The user submitting the Load Set for execution must select his
or her own remote location/connection combination (or a remote location with a
shared connection) at runtime to ensure the proper security for the external
database. Do not enter a default value or change any of the other Parameter
settings.

■ Study. The user submitting the Load Set for execution must specify the study from
which to load data.

Installing Load Set Instances

7-38 Oracle Life Sciences Data Hub Application Developer's Guide

OC Study Data Load Set Planned Outputs
The only Planned Output for any Oracle Clinical Load Set is a log file. See "About
Load Set Planned Outputs" on page 7-10 for further information.

OC Randomization Load Set Execution Setups
Do not set the Remote Location Parameter in the Execution Setup. See "OC Study Data
Load Set Parameters" on page 37.

For general information on defining Execution Setups, see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55

Installing Load Set Instances
You can install a Load Set instance directly from its Properties screen, using the Install
button, or in its Work Area (see "Installing a Work Area and Its Objects" on page 12-11).

When you install a Load Set instance using the Install button on its Properties screen:

■ The system checks in the Load Set instance and definition, and also the Table
instances in the current Work Area to which the instance is mapped.

■ The system checks if the Load Set is installable. If not, the system performs
Automatic Mapping by Name on any unmapped Table Descriptors. If the Load Set
is still not installable and there are still unmapped Table Descriptors, the system
creates Table instances in the current Work Area from the Table Descriptors and
maps them.

In the case of Oracle Clinical DX Load Sets and Oracle Clinical SAS DX Load Sets,
if the Load Set has no Table Descriptors, the system creates a target Table
Descriptor for each active Data Extract View at the specified Remote Location for
the specified Oracle Clinical study or study set. It also creates a matching Table
instance in the current Work Area for each Table Descriptor and maps the
matching Table Descriptor and Table instance.

■ The system attempts to install the Load Set instance and the Table instances to
which it is mapped. The system displays a success or error message. If the
installation fails, the error message displays the name of any objects that were not
installable.

Log File To see the log file for the installation, you must go to the Work Area
Installation screen, as follows:

1. Click the Applications tab. The main Application Development screen opens.

2. Click the name of the Work Area you are working in. The Work Area screen opens.

3. From the Actions drop-down list, select Installation History.

Note: Because this is a predefined, required Parameter you should
not change anything except the default value in the Load Set
definition, or the Load Set may not function properly.

Note: If any of the mapped Table instances or the Load Set definition
is not installable, the system cannot install the Load Set instance. See
Appendix A, "Installation Requirements for Each Object Type" for the
reasons these objects may not be installable.

Modifying Load Sets

Defining Load Sets 7-39

4. Click Go. The system displays the Installation History screen with the log files in
chronological order.

5. Click the View Log link for the most recent installation attempt or for the date and
time that you ran the install process. The system displays the log file.

For information on installation and on reading the log file, see "Installing a Work Area
and Its Objects" on page 12-11.

Modifying Load Sets
This section contains the following topics:

■ Modifying Load Set Instance Properties on page 7-39

■ Modifying Load Set Definition Properties on page 7-40

– Modifying Table Descriptors on page 7-40

– Modifying Attributes and Parameters on page 7-40

– Modifying Planned Outputs on page 7-40

If you have the necessary privileges, you can modify a Load Set either through an
instance of it in a Work Area or directly in the definition in its Domain or Application
Area. In most cases it makes sense to work through an instance in a Work Area for the
following reasons:

■ In order to use or test changes to the definition you must create and install an
instance of it.

■ If you work through an instance, the system automatically repoints the instance to
the new version of the definition.

However, if you need to change properties of the definition, you must work directly in
the definition in its Domain or Work Area.

Whether you work in an instance or directly in the definition, when you check in the
new version of the definition you have the opportunity to upgrade instances of the
original definition to the new version; see "Upgrading Object Instances to a New
Definition Version" on page 3-15.

Modifying Load Set Instance Properties
On the Load Set instance's Properties screen, click Update to enter changes. Oracle
LSH creates a new version of the instance you are working on and applies your
changes to it when you click Apply. Click Cancel to discard your changes and the new
version.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

You can modify the following:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

Note: You must reinstall the Load Set for the changes to take effect.

Modifying Load Sets

7-40 Oracle Life Sciences Data Hub Application Developer's Guide

Definition Source This field applies to the instance only. It specifies the Load Set
definition to which this Load Set instance points. It generally does not make sense to
change the source definition for the following reasons:

■ Changing the definition may result in a new set of Table Descriptors, Parameters,
and Planned Outputs.

■ Any new Table Descriptors are not mapped.

■ The Load Set's status changes to Non Installable.

If you want to change to a new version of the same definition, use the Upgrade
Instance option from the Actions drop-down list.

Modifying Load Set Definition Properties
You can go to a Load Set definition's Properties screen in one of the following ways:

■ From the Load Set's Properties screen: Click the hyperlink of the Load Set
definition that appears in the Definition field. See "Definition" on page 7-7.

■ From the Domain or Application Area where you created the definition: Click
Manage Definitions to view all the definitions in that Domain or Application Area.
Click the definition name.

Once on the Load Set definition screen, click Update to enter changes. Oracle LSH
creates a new version of the definition. You can change the following properties:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

Modifying Table Descriptors
You cannot modify Load Set Table Descriptors because they must be identical to the
external table or data set on which they are based. However, for most Load Set types
you can add or remove Table Descriptors.

You can change the Table Descriptor mappings, which are part of the Load Set
instance, not the definition. You do not need to check out the definition to modify the
mappings. This may be useful if you want to load data into a standard Oracle LSH
Table instance whose name or Column names differ from the source Table or data set.

Table Descriptors belong to the Load Set definition.

Modifying Attributes and Parameters
You cannot add or remove Attributes or Parameters because they are predefined for
each Load Set type.

You can change some Parameter values in one or more Execution Setups. Select
Execution Setups from the Actions drop-down list in the Load Set instance in the
Work Area. See "Creating, Modifying, and Submitting Execution Setups" on page 3-55.

Modifying Planned Outputs
You cannot add or remove Planned Outputs because they are predefined for each
Load Set type.

Modifying Load Sets

Defining Load Sets 7-41

You can change the Planned Outputs' classifications, which affect the classifications of
the actual outputs. See "Classifying Outputs" on page 3-27 for further information.

Planned Outputs belong to the Load Set definition.

Modifying Load Sets

7-42 Oracle Life Sciences Data Hub Application Developer's Guide

8

Defining Data Marts 8-1

8Defining Data Marts

This section contains information on the following topics:

■ About Data Marts on page 8-2

■ Creating a Data Mart on page 8-2

■ Using the Data Mart Properties Screen on page 8-4

■ Defining Table Descriptors on page 8-6

■ Setting Data Mart Parameter Values on page 8-7

■ About Data Mart Planned Outputs on page 8-7

■ Defining Different Types of Data Marts on page 8-8

– Defining Text Data Marts on page 8-8

– Defining SAS Data Marts on page 8-11

– Defining Oracle Export Data Marts on page 8-13

■ Installing Data Mart Instances on page 8-14

■ Modifying Data Marts on page 8-14

Figure 8–1 Process of Creating a Data Mart Definition and Instance

About Data Marts

8-2 Oracle Life Sciences Data Hub Application Developer's Guide

About Data Marts
A Data Mart exports all the data in a set of Oracle Life Sciences Data Hub (Oracle LSH)
Table instances to one or more files for the purpose of recreating Oracle LSH data in an
external system in a verifiable and reproducible manner. A Data Mart is an Oracle LSH
primary executable object whose data file output is also called a Data Mart.

You can use Data Marts for many purposes, including:

■ submitting data to a regulatory agency

■ exporting a set of Oracle database tables to another system for data mining

■ sharing data with a partner organization

■ long-term data storage in text (or other) format

To include data from a Table instance in a Data Mart output, you create a Table
Descriptor and map it to the Table instance. You can include data from any number of
Table instances in a single Data Mart. As with other executables you can run a Data
Mart on current data or on a snapshot, depending on settings in its Execution Setup.

Data Mart Types You can create Data Marts in the following formats:

■ Text Export

– Text Fixed Format

– Text Delimited Format

■ SAS Export

– SAS Data Sets

– SAS Transport (CPORT or XPORT)

■ Oracle Export

Execution You define Execution Setups for Data Marts the same way you do for
other Oracle LSH executables. See "Creating, Modifying, and Submitting Execution
Setups" on page 3-55 for further information.

Reports on Data Mart Definitions and Instances From the Actions drop-down list,
you can generate reports that provide information on a Data Mart definition or
instance; see Chapter 14, "System Reports" for information.

Creating a Data Mart
When you create a Data Mart in a Work Area, you are actually creating an instance of a
Data Mart definition.

To create a new Data Mart instance:

1. In a Work Area, select Data Mart from the Add drop-down list.

2. Click Go.

The system displays the Create Data Mart screen.

3. Choose one of the following options:

■ Create a new Data Mart definition and instance. Choose this option if no
Data Mart definition exists that can meet your needs, either as it is or with
some modification.

Creating a Data Mart

Defining Data Marts 8-3

■ Create an instance from an existing Data Mart definition. Choose this option
if a Data Mart definition already exists that meets your needs.

If you can adapt an existing Data Mart definition to make it fit your needs,
first copy it into the current Application Area, then choose this option and
select the copied definition. See "Finding an Appropriate Definition" on
page 3-2 and "Reusing Existing Definitions" on page 3-2 for further
information.

4. Depending on your choice, follow one of the following sets of instructions:

■ Creating a New Data Mart Definition and Instance on page 8-3

■ Creating an Instance of an Existing Definition on page 3-2

Creating a New Data Mart Definition and Instance
When you select Create a new Data Mart definition and instance in the Create Data
Mart screen, additional fields appear.

1. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ Data Mart Type. The options are Oracle Export, SAS Export, and Text Export.
See "Defining Different Types of Data Marts" on page 8-8 for further
information.

2. In the Classification section, select the following for both the definition and the
instance:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

3. Click Apply to save your work and continue defining the Data Mart.

The system opens the Properties screen for the new Data Mart instance.

4. See the following instructions:

■ Defining Table Descriptors on page 8-6

■ Setting Data Mart Attribute Values on page 8-6

■ Setting Data Mart Parameter Values on page 8-7

■ About Data Mart Planned Outputs on page 8-7

Creating an Instance of an Existing Data Mart
If you create an instance of an existing Data Mart, its Table Descriptors and Attribute
and Parameter settings are already defined. See "Creating an Instance of an Existing
Definition" on page 3-2 for instructions.

After you have created the Data Mart instance, you must map the Table Descriptors to
Table instances; see "Mapping Table Descriptors to Table Instances" on page 3-45 for
instructions.

Using the Data Mart Properties Screen

8-4 Oracle Life Sciences Data Hub Application Developer's Guide

Using the Data Mart Properties Screen
This section contains the following topics:

■ Instance Properties on page 8-4

■ Definition Properties on page 8-5

■ Data Mart Attributes on page 8-5

■ Buttons on page 8-6

■ Using the Actions Drop-Down List on page 3-76

■ Subtabs:

– Defining Table Descriptors on page 8-6

– Setting Data Mart Parameter Values on page 8-7

– About Data Mart Planned Outputs on page 8-7

– Viewing Jobs on page 3-74

See also Figure 8–1, "Process of Creating a Data Mart Definition and Instance" on
page 8-1.

See "Modifying Data Marts" on page 8-14 for information on modifying Data Marts.

If you are working in a Work Area, you see the properties of both the Data Mart
instance and the Data Mart definition it references. If you are working directly on the
definition in an Application Area or Domain, you see only the properties of the
definition.

Instance Properties
You can see the following instance properties:

Name You can click Update and modify the name. See "Naming Objects" on page 3-6
for further information.

Description You can click Update and modify the description. See "Creating and
Using Object Descriptions" on page 3-6 for further information.

Definition Source This field specifies the Data Mart definition to which this Data
Mart instance points. See "Definition Source" on page 8-15.

You can upgrade to a new version of the same definition. See "Upgrading to a
Different Definition Version from an Instance" on page 3-16.

Validation Status This field displays the current validation status of the Data Mart
instance. If you have the necessary privileges, you can change the validation status by
selecting Validation Supporting Information from the Actions drop-down list. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Data Mart: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Version This field displays the current version number of the Data Mart instance.

Version Label This field displays the version label, if any, for the current Data Mart
instance version.

Using the Data Mart Properties Screen

Defining Data Marts 8-5

For further information on object versions, see "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Definition Properties

Checked Out Status This field displays the status of the definition: either Checked
Out or Checked In. You must check out the definition to modify Table Descriptors,
Parameters, or Planned Outputs. However, you can change Table Descriptor mappings
without checking out the definition. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9 for further information.

Latest Version If set to Yes, this Data Mart instance is pointing to the latest version of
the Data Mart definition. If set to No, this Data Mart instance is pointing to an older
version of the Data Mart definition.

Checked Out By This field displays the name of the person who has the Data Mart
definition checked out. See "Understanding Object Versions and Checkin/Checkout"
on page 3-9 for further information.

Version Label This field displays the version label, if any, for this definition version.

Data Mart Type This field displays this Data Mart definition's type: Text Export, SAS
Export, or Oracle Export. See Defining Different Types of Data Marts on page 8-8.

Validation Status This field displays the current validation status of the Data Mart
definition. If you are working directly in the definition in an Application Area or
Domain and you have the necessary privileges, you can change the validation status
by selecting Validation Supporting Information from the Actions drop-down list. If
you are working in an instance of the Data Mart in a Work Area, and you want to
change the validation status of the definition, you must go to the definition. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Data Mart: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Data Mart Attributes

Export File Name This attribute applies to all Data Mart types. It is the name of the
file where the output of the Data Mart gets stored. This is the only attribute for SAS
and Oracle Export types of Data Marts. See "SAS Data Mart Attribute" on page 8-12,
and "Oracle Export Data Mart Attribute" on page 8-13. Also see "Text Data Mart
Attributes" on page 8-9.

Mode This attribute applies only to Text Data Marts. It is the mode used to create the
text export file: Fixed or Delimited. See "About Text Data Marts" on page 8-8 for an
explanation of the two modes.

File Name Extension This attribute applies only to Text Data Marts. A Text Data Mart
output may be of .txt (Fixed mode) or .csv (Delimited mode) type. See "Text Data Mart
Attributes" on page 8-9.

Defining Table Descriptors

8-6 Oracle Life Sciences Data Hub Application Developer's Guide

Setting Data Mart Attribute Values
You cannot add or remove attributes or Parameters. They are predefined for each type
of Data Mart. You can change their values in the Data Mart definition, but not in the
Execution Setup.

To change attribute values:

1. Click the Update button in the Data Mart Attributes section of the screen.

2. Modify attribute values as necessary. Most attributes have an allowed list of
values. Use the Search icon to select one.

3. Click Apply.

For information on the attributes and Parameters specific to each type of Data Mart,
see:

■ Defining Text Data Marts on page 8-8

■ Defining SAS Data Marts on page 8-11

■ Defining Oracle Export Data Marts on page 8-13

Buttons
From a Data Mart instance in a Work Area, you can use the following buttons:

Install Click Install to install the Data Mart instance, including any mapped source
Table instances in the same Work Area; see "Installing Data Mart Instances" on
page 8-14. For a list of reasons a Data Mart instance may not be installable, see
Appendix A, "Installation Requirements for Each Object Type".

Submit Click Submit to run the Data Mart instance. Before you can run the Data
Mart, you must install it and create an Execution Setup for it (select Execution Setups
from the Actions drop-down list).

Update Click Update to modify the Data Mart instance properties. See "Modifying
Data Mart Instance Properties" on page 8-15. You can also edit Data Mart Attributes by
clicking the Update button in the Data Mart Attributes section of the screen. See
"Setting Data Mart Attribute Values" on page 8-6.

Check In/Out and Uncheck Click these buttons to check out, check in, or uncheck the
Data Mart definition. Different buttons are displayed in the Data Mart Definition
Properties section depending on the Checked Out Status and whether or not you are
the person who has the definition checked out. If someone else has checked out the
definition, you cannot check it in or uncheck it. The username of the person who has
checked it out is displayed. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Defining Table Descriptors
For all Data Mart types, you specify the data to include in the output file by adding
one or more source Table Descriptors to the Data Mart and mapping each one to a
Table instance whose data you want to export to the file. Depending on the type of
Data Mart, the system may create one file per Table Descriptor or one file for the Data
Mart as a whole; see "Defining Different Types of Data Marts" on page 8-8.

Data Marts can have only source Table Descriptors. They write to files, not tables.

About Data Mart Planned Outputs

Defining Data Marts 8-7

Oracle LSH automatically creates the Planned Outputs for a Data Mart based on the
Data Mart type and on the source Table Descriptors you specify. If you do not want to
include all the Columns in a source Table instance in the Data Mart output, delete the
unnecessary Columns from the Table Descriptor mapped to that Table instance.

For instructions, see "About Table Descriptors" on page 3-37 and "Mapping Table
Descriptors to Table Instances" on page 3-45.

Setting Data Mart Parameter Values
You cannot add or remove Parameters. They are predefined for each type of Data
Mart. You can change their value and other settings either in the Data Mart definition,
in the Execution Setup definition, or allow the user to set their value in the Execution
Setup at runtime.

To change Parameter values and other settings in the Data Mart definition:

1. Check out the Data Mart definition if it is not already checked out.

2. In the Parameters subtab, click the hyperlink in the Name column of the
Parameter you want to modify.

3. Click Update.

4. Modify the following attribute values if necessary:

■ Read Only. To prevent users from changing the value of this Parameter at
runtime, check Read Only. To allow users to change the value at runtime, leave
unchecked.

■ Prompt. The prompt is the label displayed for the Parameter in the Execution
Setup. You can change it if you want to.

■ Default Value. You can change the default value in the Parameters List of
Values. If you also make the Parameter Read Only, the default value becomes
the value used at runtime.

5. Click Apply.

For information on the attributes and Parameters specific to each type of Data Mart,
see:

■ Text Data Mart Parameters on page 8-9

■ SAS Data Mart Parameters on page 8-12

■ Oracle Export Data Mart Parameters on page 8-13

About Data Mart Planned Outputs
When you first create a Data Mart definition, the system creates one Planned Output
for the .log file and one or more others, depending on the Data Mart type. The
Filename attribute value determines the output file names. The system adds the
extension appropriate for the Data Mart type.

Note: Because these are predefined and required Parameters you
should not modify any attributes other than the following or the Data
Mart may not function properly.

Defining Different Types of Data Marts

8-8 Oracle Life Sciences Data Hub Application Developer's Guide

In addition, for SAS Dataset mode and Text Data Marts, when you add a Table
Descriptor to the Data Mart, the system creates a Planned Output whose file name is
the Table Descriptor name (in lowercase) plus the extension appropriate for the
mode:.sas7bdat or, for Text Data Marts, .txt or .csv.

You can modify the classification of a Planned Output, which affects the classification
of the corresponding actual Data Mart output; see "Classifying Outputs" on page 3-27.

At runtime the system creates only the outputs appropriate for the mode and other
settings. See:

■ Text Data Mart Planned Outputs on page 8-11

■ "SAS Data Mart Planned Outputs" on page 8-12

■ Oracle Export Data Mart Planned Outputs on page 8-13

Defining Different Types of Data Marts
Oracle LSH automatically creates Attributes, Parameters, and Planned Outputs for
Data Marts based on the Data Mart type.

This section includes information on the Parameters and Planned Outputs for each
Data Mart type:

■ Defining Text Data Marts on page 8-8

■ Defining SAS Data Marts on page 8-11

■ Defining Oracle Export Data Marts on page 8-13

Defining Text Data Marts
This section includes the following topics:

■ About Text Data Marts on page 8-8

■ Text Data Mart Attributes on page 8-9

■ Text Data Mart Parameters on page 8-9

■ Text Data Mart Planned Outputs on page 8-11

About Text Data Marts
There are two modes of Text-type Data Marts: Fixed and Delimited. Both modes
produce one file for each Table Descriptor, named Data_Mart_name.txt or .csv. You can
combine all the files in a single .zip file; see "Zip Result Flag" on page 8-9.

Fixed-format Data Marts use more space than delimited-format Data Marts but result
in faster performance.

Fixed Format Text Data Marts For a fixed-format Data Mart, Oracle LSH
automatically uses the length defined for each Column of the Table Descriptor to
determine the number of characters to dedicate to each column value in the output
file.

■ For Columns of data type Varchar2, the number of characters dedicated to a
column in the output file equals the defined Column length.

■ For Columns of data type Number, the system uses the Column length plus one
character for the plus (+) or minus (-) sign and, if the Column's number is defined

Defining Different Types of Data Marts

Defining Data Marts 8-9

as having precision, an additional character for the decimal point (or other decimal
marker).

■ For Columns of data type Date, the system uses the date format string that is part
of the Column definition or, if no format string is defined, uses 20 characters to
accommodate the default format, DD-MON-YYYY/HH24:MI:SS.

When the system generates the file, it inserts the actual value for each row and then
adds the number of spaces necessary (if any) to reach the number of characters
dedicated to that Column. At the end of each record, the system inserts the carriage
return appropriate for the operating system.

Delimited Format Text Data Marts For a delimited-format Data Mart, Oracle LSH
inserts a character as a delimiter after every column value for every record (except the
last) as well as a carriage return at the end of each record. You must specify the
character to be used as the delimiter. In addition, you can specify a different character
to be used as an enclosing character around each character and date column value, and
specify whether or not the system should actually use the enclosing character; see
"Text Data Mart Parameters" on page 8-9 for further information.

Text Data Mart Attributes
Text Data Marts have the following predefined attributes. To change their values, click
Update in the Attribute section of the screen.

Export File Name Enter the name you want to give the zipped file that holds the
individual text files. The default value is text_dm.zip. You must enter lowercase text.
If you remove the .zip as part of the value, the system adds it.

Mode Click the Search icon and then select either Fixed or Delimited. See "About
Text Data Marts" on page 8-8 for an explanation of the two modes. The default value is
Delimited.

File Name Extension Click the Search icon then select an extension for the file that
will contain the actual data. Select .txt for fixed mode Data Marts and .csv for
delimited mode.

Text Data Mart Parameters
Oracle LSH automatically creates Parameters for Text-type Data Marts. For
information on how you can modify them, see "Setting Data Mart Parameter Values"
on page 8-7.

Zip Result Flag Select one of the following values as the default:

Note: The system produces this zipped file only if at runtime the
value of the Zip Result Flag Parameter is either Zip or Both.

Note: Because these are predefined, required Parameters you should
change only the default value, Read Only setting, or Prompt for each
Parameter or the Data Mart may not function properly; see "Setting
Data Mart Parameter Values" on page 8-7.

Defining Different Types of Data Marts

8-10 Oracle Life Sciences Data Hub Application Developer's Guide

■ No. If set to No, the system does not generate a zipped file. The Data Mart output
consists of one text file for each Table Descriptor and the log file. The system
disregards the defined Export Filename.

■ Zip. If set to Zip, the system generates a single zipped file that includes the text
files generated for each Table Descriptor and the log file.

■ Both. If set to Both, the system generates a text file for each Table Descriptor,
creates a zipped file that contains all the text files and the log file, and also leaves a
copy of each text file and the log file outside the zipped file.

The default value is Zip.

FirstRow Desc If you are creating a fixed-format Text Data Mart, you must enter a
value for this Parameter, which determines the way the Data Mart handles the first
row for each Table Descriptor.

■ Yes. If set to Yes, the system inserts the Column names as the first row in the text
file for each Table Descriptor. If the Column name is too long for its length, the
system truncates it. If it is a different format (for example, a Column name in text
for a data type Number Column), the system inserts a warning in the Data Mart
log file.

■ No. If set to No, the system starts the file with the data of the first record, not the
Column names.

The system ignores this value for delimited text Data Marts.

Operating System Select your operating system: UNIX or MS Windows. The system
inserts the appropriate carriage return for the operating system at the end of every
record. If you are using Linux, select UNIX. The default value is UNIX.

Delimited-Format Text Data Mart Parameters
If you are creating a Delimited-format Text Data Mart, the following Parameters must
each have a value. The system ignores these values for fixed-format text Data Marts.
See Example 8–1, "Delimited Text Export Data Mart with Separator Character Only"
and Example 8–2, "Delimited Text Export Data Mart with Separator and Enclosed
Characters" for further information.

Separator Character The system appends the separator character (delimiter) to every
column value of every row (except the last value, where there is a carriage return
instead) in order to clarify where one value ends and the next one begins.

The separator character should not appear as part of any column value of any record.
The default value is a comma (,). You can enter any two characters. For example, to
specify tab as the separator character, enter \t.

Enclosing Character The system prepends and appends the enclosing character to
every character and date column value of every record. The character should be one
that does not appear as part of any column value of any record. The default value is a
double quotation mark (").

Use Enclosing Character? Select Yes or No.

Note: The delimiter character and the enclosing character must be
different. If they are the same, the Data Mart execution will fail.

Defining Different Types of Data Marts

Defining Data Marts 8-11

■ Yes. If set to Yes, the system encloses every column value with the character you
specify in the Enclosing Character Parameter.

■ No. If set to No, the system does not use the enclosing character.

Example 8–1 Delimited Text Export Data Mart with Separator Character Only

If your Table Descriptor has Columns Patient ID, Patient Initials, and Date of Birth, the
separator character was a comma, and the date format was DDMMYYYY, the first two
records might look like this:

54602,EKP,04081949

66781,BAH,22011955

Example 8–2 Delimited Text Export Data Mart with Separator and Enclosed Characters

If a single quotation mark (') were the enclosing character, the same two records would
look like this:

'54602','EKP','04081949'

'66781','BAH','22011955'

Text Data Mart Planned Outputs
Oracle LSH creates one Planned Output for each Table Descriptor in the Data Mart
definition. At runtime, the system generates one .txt or .csv file for each Planned
Output. The file type is determined by the value of the File Name Extension attribute.

Depending on the value of the Zip Result Flag Parameter, the system may also create a
Planned Output for a zipped file to contain all the files. The file name for this output is
filename_attribute_value.zip.

The system also creates a Planned Output for the log file, named text_dm.log.

You can classify a Planned Output in order to classify the actual output when it is
generated; see "Classifying Outputs" on page 3-27 for further information.

Defining SAS Data Marts
This section includes the following topics:

■ About SAS Data Marts on page 8-11

■ SAS Data Mart Attribute on page 8-12

■ SAS Data Mart Parameters on page 8-12

■ SAS Data Mart Planned Outputs on page 8-12

About SAS Data Marts
Oracle LSH supports the following types, or modes, of SAS Data Marts, when you
have purchased and installed SAS with Oracle LSH:

SAS CPORT A SAS CPORT Data Mart consists of a single .cport file containing data
from all the Table instances mapped to the Data Mart's Table Descriptors.

SAS XPORT A SAS XPORT Data Mart also consists of a single .xpt file containing
data from all the Table instances mapped to the Data Mart's Table Descriptors.

Defining Different Types of Data Marts

8-12 Oracle Life Sciences Data Hub Application Developer's Guide

SAS Data Sets A SAS Dataset Data Mart includes one .sas7bdat file for each Table
Descriptor. If you set the Zip Results Parameter to Zip, all the .sas7bdat files and the
.log file are included in a single .zip file.

SAS Data Mart Attribute
SAS Data Marts have one attribute: Filename. Enter a descriptive name. The system
gives this name to the Planned Output and to the actual Data Mart output file. Do not
add a file extension.

SAS Data Mart Parameters
Oracle LSH automatically creates Parameters for SAS Data Marts. You can change the
values of the following required Parameters only in the Data Mart definition:

Mode Select the mode that corresponds to the type of output you need: CPORT,
XPORT, or Dataset. The default value is CPORT.

Zip Results The Zip Results Parameter setting has an effect only for SAS Data Marts
of the Dataset mode. CPORT and XPORT Data Marts cannot be zipped.

For SAS Dataset Data Marts, select one of the following values:

■ No. If set to No, the system does not generate a zipped file. The Data Mart output
consists of one sas7bdat file for each Table Descriptor, plus the log file.

■ Zip. If set to Zip, the system generates a zipped file that includes the sas7bdat file
generated for each Table Descriptor and the log file. The system also generates and
uploads the individual SAS data sets for each Table Descriptor as separate
outputs.

The default value is Zip.

SAS Data Mart Planned Outputs
Oracle LSH includes a predefined Planned Output for the .log file and for each SAS
Data Mart mode. At runtime the system creates only the outputs appropriate for the
mode and, in the case of Dataset Data Marts, the Zip Results Parameter. The names
and file names for these Planned Outputs are:

■ CPORT: SAS DM.cport (name), filename_attribute_value.cport (file name)

■ XPORT: SAS DM.xpt (name), filename_attribute_value.xpt (file name)

■ Zipped Dataset. SAS DM.zip (name), filename_attribute_value.zip (file name)

■ Dataset (zipped or not): Both the name and filename are table_descriptor_
name.sas7bdat.

Note: For SAS XPORT format's compatibility with SAS v6, Oracle
LSH truncates long Table Column names (variables in a SAS data set)
to 8 characters. Also, because of a limitation in SAS v6, you must
ensure that Table instances mapped to a SAS XPORT Data Mart do not
contain character data longer than 200 characters, to prevent the Data
Mart's execution from failing.

Note: This attribute must have a value. The Data Mart is not
installable without a file name.

Defining Different Types of Data Marts

Defining Data Marts 8-13

All file names are in lowercase.

You can classify a Planned Output in order to classify the actual output when it is
generated; see "Classifying Outputs" on page 3-27 for further information.

Defining Oracle Export Data Marts
This section includes the following topics:

■ About Oracle Export Data Marts on page 8-13

■ Oracle Export Data Mart Attribute on page 8-13

■ Oracle Export Data Mart Parameters on page 8-13

■ Oracle Export Data Mart Planned Outputs on page 8-13

About Oracle Export Data Marts
Oracle LSH generates a command file for the Oracle Export utility to produce (in Table
mode) a single Oracle Export file containing the data and metadata of all the Table
instances mapped to the Table Descriptors of the Data Mart. The names of the export
tables are the same as their corresponding Table Descriptors.

You can send Oracle Export Data Marts only to another Oracle database. To import its
data, the external Oracle database must use the Oracle Import utility.

The Oracle Export file created by the Data Mart holds the tables in alphabetical order.

 See Oracle® Database Utilities 11g Release 2 (11.2), at
http://download.oracle.com/docs/cd/E11882_01/server.112/e16536.pdf.

Oracle Export Data Mart Attribute
There is only one attribute: the file name of the actual Data Mart output. The default
name is: oracle_export_dm.dmp. You can change this to a more meaningful name by
clicking Update and entering the name you prefer. If you remove the .dmp file
extension, the system adds it.

Oracle Export Data Mart Parameters
The Oracle Export Utility requires the following parameters. More information is
available in the Oracle Export Utility documentation.

Compress Should Oracle Export export data into a single extent? The default value
is Y.

Statistics Specifies the type of database optimizer statistics to generate when the
exported data is imported. Options are ESTIMATE, COMPUTE, and NONE. The
default value is ESTIMATE.

Oracle Export Data Mart Planned Outputs
For Oracle Export Data Marts, the system creates one Planned Output for the whole
Data Mart to contain data from all Table instances mapped to the Data Mart instance's

Note: Because these are predefined, required Parameters you should
change only the default value, Read Only setting, or Prompt for each
Parameter or the Data Mart may not function properly; see "Setting
Data Mart Parameter Values" on page 8-7.

http://download.oracle.com/docs/cd/E11882_01/server.112/e16536.pdf

Installing Data Mart Instances

8-14 Oracle Life Sciences Data Hub Application Developer's Guide

Table Descriptors. The Planned Output name is always Oracle Export DM Export File.
The file name is filename_attribute_value.dmp.

The system also creates a Planned Output for the log file. All Oracle Export log files
have the same name: oracle_export.log.

You can classify a Planned Output in order to classify the actual output when it is
generated; see "Classifying Outputs" on page 3-27 for further information.

Installing Data Mart Instances
You can install a Data Mart instance directly from its Properties screen, using the
Install button, or in its Work Area (see "Installing a Work Area and Its Objects" on
page 12-11).

When you install a Data Mart instance using the Install button on its Properties screen:

■ The system checks in the Data Mart instance and definition and also the Table
instances in the current Work Area to which the instance is mapped.

■ The system attempts to install the Data Mart instance and the Table instances to
which it is mapped. The system displays a success or error message. If the
installation fails, the error message displays the name of any objects that were not
installable.

Log File To see the log file for the installation, you must go to the Work Area
Installation screen, as follows:

1. Click the Applications tab. The main Application Development screen opens.

2. Click the name of the Work Area you are working in. The Work Area screen opens.

3. From the Actions drop-down list, select Installation History.

4. Click Go. The system displays the Installation History screen with the log files in
chronological order.

5. Click the View Log link for the most recent installation attempt or for the date and
time that you ran the install process. The system displays the log file.

For information on installation and on reading the log file, see "Installing a Work Area
and Its Objects" on page 12-11.

Modifying Data Marts
This section contains the following topics:

■ Modifying Data Mart Instance Properties on page 8-15

■ Modifying Data Mart Definition Properties on page 8-15

■ Modifying Table Descriptors on page 8-16

■ Modifying Attributes and Parameters on page 8-16

Note: If the Data Mart definition or any of the Table instances to
which the Data Mart is mapped is not installable, the system cannot
install the Data Mart instance. See Appendix A, "Installation
Requirements for Each Object Type" for the reasons these objects may
not be installable.

Modifying Data Marts

Defining Data Marts 8-15

■ Modifying Planned Outputs on page 8-16

If you have the necessary privileges, you can modify a Data Mart definition either
through an instance of it in a Work Area or directly in the definition in its Domain or
Application Area. In most cases it makes sense to work through an instance in a Work
Area for the following reasons:

■ In order to use or test changes to the definition you must create and install an
instance of it.

■ If you work through an instance, the system automatically repoints the instance to
the new version of the definition.

However, if you need to change properties of the definition as a whole, you must work
directly in the definition in its Domain or Work Area.

Whether you work in an instance or directly in the definition, when you check in the
new version of the definition you have the opportunity to upgrade instances of the
original definition to the new version; see "Upgrading Object Instances to a New
Definition Version" on page 3-15.

Modifying Data Mart Instance Properties
On the Data Mart instance's Properties screen, click Update to enter changes. Oracle
LSH creates a new version of the instance you are working on and applies your
changes to it when you click Apply. Click Cancel to discard your changes and the new
version.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

Definition Source This field applies to the instance only. It specifies the Data Mart
definition to which this Data Mart instance points. It generally does not make sense to
change the source definition for the following reasons:

■ Changing the definition may result in a new set of Table Descriptors, Parameters,
and Planned Outputs.

■ Any new Table Descriptors are not mapped.

■ The Data Mart's status changes to Non Installable.

 If you want to change to a new version of the same definition, use the Upgrade
Instance option from the Actions drop-down list.

Modifying Data Mart Definition Properties
You can go to a Data Mart definition's Properties screen in one of the following ways:

Note: You must install the new version for the changes to take effect.

Note: It is possible to select a new source definition of a different
Data Mart type. Exercise caution when selecting a different definition.

Modifying Data Marts

8-16 Oracle Life Sciences Data Hub Application Developer's Guide

■ From the Data Mart's Properties screen: Click the hyperlink of the Data Mart
definition that appears in the Definition field. See "Definition Source" on page 8-4.

■ From the Domain or Application Area where you created the definition: Click
Manage Definitions to view all the definitions in that Domain or Application Area.
Click the definition name.

Once on the Data Mart definition screen, click Update to enter changes. Oracle LSH
creates a new version of the definition. You can change the following properties:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

Modifying Table Descriptors
In the Data Mart definition you can remove existing Table Descriptors and add
different ones.You must check out the definition to add, remove, or update Table
Descriptors, but not to map, unmap, or remap Table Descriptors.

In the Data Mart instance, you can change the Table Descriptor mappings, which are
part of the Data Mart instance, not the definition; see "Mapping Table Descriptors to
Table Instances" on page 3-45. You do not need to check out the definition to modify
the mappings.

Modifying Attributes and Parameters
You cannot add or remove Attributes or Parameters because they are predefined for
each Data Mart type. Attributes and Parameters belong to the Data Mart definition.
You must check out the definition to update Parameters. In the Data Mart definition
you can change Attribute values and, for Parameters, the default value and Read Only
and Prompt settings. You should not change anything else or the Data Mart may not
function properly.

To change Parameter values at the instance level you can use the Execution Setup. To
make your settings available to other instances of the same Data Mart, allow the
Execution Setup to be used as a Template. Select Execution Setups from the Actions
drop-down list in the Data Mart instance in the Work Area. See "Creating, Modifying,
and Submitting Execution Setups" on page 3-55.

Modifying Planned Outputs
Planned Outputs are predefined for each Data Mart type and belong to the Data Mart
definition. You cannot modify Data Mart Planned Outputs except to change their
classifications, which affect the classifications of the actual Data Mart output. See
"Classifying Outputs" on page 3-27 for further information.

9

Defining Report Sets 9-1

9Defining Report Sets

This section contains information on the following topics:

■ About Report Sets on page 9-2

■ How to Work on a Report Set on page 9-4

■ Creating Overlay Templates on page 9-6

■ Creating a Report Set on page 9-10

■ Using the Report Set Properties Screen on page 9-12

■ Using the Report Set Structure View on page 9-15

■ Creating and Setting Report Set Parameters on page 9-20

■ Defining Report Set Entries on page 9-26

■ Defining Programs to Generate Reports on page 9-33

■ Installing Report Sets on page 9-42

■ Validating Report Set Definitions and Outputs on page 9-44

■ About Report Set Planned Outputs on page 9-51

■ Modifying Report Sets on page 9-51

About Report Sets

9-2 Oracle Life Sciences Data Hub Application Developer's Guide

Figure 9–1 Process of Creating a Report Set Definition and Instance

About Report Sets
A Report Set provides a way to organize, manage, and run a set of reports together
under version control. You can define numbered chapters, sections within the
chapters, and any number of levels of subsections, with reports and/or narrative text
at any level. When you choose to use postprocessing, the Oracle Life Sciences Data
Hub (Oracle LSH) generates a table of contents and hyperlinks to each report.

Each report in a Report Set is generated by the execution of a Program instance whose
corresponding Planned Output is assigned to the particular chapter, section, or
subsection (all of which are called Report Set Entries) where the report appears in the
final output. A single Program instance can generate multiple reports, each of which
can be assigned to a different Report Set Entry. Reports can take the form of tables,
listings, figures, or text, depending on the technology you use to create them and how
you define them.

You can include Program instances of different technology types—including SAS,
Oracle Reports, and PL/SQL—in the same Report Set. When you execute the Report
Set, the system sends each Program instance to the appropriate engine for execution
and integrates the results.

Postprocessing Oracle LSH includes Oracle XML Publisher for use in an optional
postprocessing step for Report Sets. During postprocessing, after the system has
generated all the reports, Oracle XML Publisher generates a single PDF file for the
entire Report Set (or breaks the Report Set into volumes if you choose), paginates and
concatenates the individual reports, numbers the pages, and creates PDF bookmarks.

To use the postprocessing feature you must create reusable Overlay Template RTF files
that include publishing specifications such as multilayered page layouts, graphics, and
watermarks for each type of page in your Report Set (for example, the table of
contents, listings, and figures, in landscape and portrait orientations). You upload

About Report Sets

Defining Report Sets 9-3

these RTF template files to an Overlay Template File, which is part of an Overlay
Template definition in Oracle LSH.

You can execute a Report Set without the postprocessing step to save time while you
are developing and testing the Report Set and its Program instances. In that case the
system generates an output for the Planned Output assigned to each included Report
Set Entry, with the file type specified for the Planned Output. The Post-Processing
Parameter called Post Process controls whether or not postprocessing is included in a
particular execution.

If you plan to use postprocessing you must define the file type of all Planned Outputs
assigned to Report Set Entries as PDF.

Parameter Value Propagation You can set up value sharing among Parameters to
promote consistency and reduce the work required to submit the Report Set for
execution.

For example, many Program instances may have a Parameter for Study Name or
Study ID. You can define a Report Set Parameter to collect the Study Name or ID at
runtime at the top level of the Report Set, and set up value sharing so that the person
submitting the Report Set for execution enters the value for Study Name or ID once,
and the system automatically propagates that value to the Study Name or ID
Parameter of all the Program instances you specify.

You can also use an output Parameter value of one Program to populate the value of
an input Parameter of another Program. See "Setting Up Parameter Value Propagation"
on page 6-16 for further information.

Concurrent Editing Multiple people can simultaneously modify a single Report Set.
The first person to modify it must check out the definition, but while it is checked out,
anyone else with Modify privileges on the Report Set definition can modify it.

However, only one person can work on any one section at a time; see "Concurrent
Editing of Report Sets" on page 9-5 for further information.

Execution Oracle LSH does not necessarily execute a Report Set in the order
displayed in the Structure view, but takes dependencies into account. If you have set
up value propagation from the output Parameter of one Program to the input
Parameter of another Program, the system executes the Program that produces the
output value before the Program that takes the input value.

The log file the system generates each time it runs a Report Set contains detailed
information about each stage of the Report Set execution.

Report Set submissions include two jobs, both of which are displayed on your My
Home page. The first job starts the second, which is a batch process.

Partial Execution Using the Execution Setup for the Report Set as a whole you can
submit the whole Report Set or specify one or more Report Set Entries to execute. You
can also select a single Report Set Entry in the Structure view and submit it with or
without Report Set Entries under it in the Report Set hierarchy. You can also submit a
single Program and the system will produce the Report Set Entries to which it is
assigned.

Note: Shared editing works only in a Report Set instance that is
contained directly in a Work Area. It does not work in a Report Set
instance that is contained in a Workflow.

How to Work on a Report Set

9-4 Oracle Life Sciences Data Hub Application Developer's Guide

Validation of Individual Report Set Entries You can validate different sections of the
Report Set at different times. See "Validating Report Set Definitions and Outputs" on
page 9-44 for details.

Reports on Report Set Definitions and Instances From the Actions drop-down list,
you can generate reports that provide information on a Report Set definition or
instance; see Chapter 14, "System Reports" for information.

How to Work on a Report Set
Report Sets can be very large and complex, and many people can work on them at the
same time; see "Concurrent Editing" on page 9-3. To make Report Set development
work best, use the following general process:

1. Create overlay template files and Overlay Template Definitions. To produce a
unified PDF output of your Report Set you must create RTF templates, upload
them to Oracle LSH, and define Overlay Template Definitions (OTDs) in Oracle
LSH. You must define OTDs before you can set values for the predefined Overlay
Template Parameters to specify which template(s) to use for each Report Set Entry,
or branch, of the Report Set.

You can use the same OTDs and OTD files for many Report Sets. See "Creating
Overlay Templates" on page 9-6 and "Setting Overlay Template Parameter Values"
on page 9-20 for further information.

2. Create the Report Set. Create the Report Set definition and an instance of it, then
click Update to set the Strict and Unique numbering properties for the Report Set.
See "Creating a Report Set" on page 9-10 for further information.

3. Set Parameter values at the top Report Set level. Set values at the top Report Set
level for predefined Overlay Template and Post-Processing Parameters. This
ensures that all Report Set Entries have values for these Parameters in the Report
Set instance and in the Execution Setup. "Creating and Setting Report Set
Parameters" on page 9-20.

4. Create Report Set Parameters (optional). To make the Report Set easier to submit
and to help ensure data consistency, you may want to define one or more
Parameters at the Report Set level. For example, if all the reports in a Report Set
are about the same study, and the Programs that create the reports have an input
Parameter to identify the study, you may want to define a Study Parameter at the
Report Set level and share its value with each Program's Study Parameter. The
Report Set Study Parameter appears at the top of the Report Set's Execution Setup
where the user can easily find it and set it once for the whole Report Set. See
"Setting Up Parameter Value Propagation" on page 6-16 for further information.

5. Define the Report Set structure. A Report Set has top-level chapters that contain
subchapters that can in turn contain any number of levels of sections and
subsections. All of these are called Report Set Entries. You must define a Report
Set's structure by defining hierarchical Report Set Entries from the top down; see
"Using the Report Set Structure View" on page 9-15.

6. Develop, test, and validate Report Set Entries and Programs. Develop the
Programs that generate the Report Set's reports. Assign each Program Planned
Output to the Report Set Entry (chapter, section, or subsection) where it should
appear. Add pre- and post-report narratives as necessary to Report Set Entries.
Adjust the settings for Post-Processing and Overlay Template Parameters as
necessary. Test and validate Programs, Report Set Entries, and report outputs
according to your company's standards. See "Defining Report Set Entries" on

How to Work on a Report Set

Defining Report Sets 9-5

page 9-26 and "Validating Report Set Definitions and Outputs" on page 9-44 for
further information.

Concurrent Editing of Report Sets
More than one person can work on a Report Set at the same time. After one person
checks out the Report Set, any other user with Modify privileges on the Report Set can
also work on it. In order to protect each person's work, the system enforces the
following behavior:

■ Report Set Structure. Many people can create, move, copy, modify, or remove
Report Set Entries as long as they are all working in different branches of the
Report Set.

One person cannot move, reorder, copy, or remove a Report Set Entry that is a
parent in the same hierarchy (branch) of a Report Set Entry that another person is
currently modifying.

■ Report Set Entry. Only one person at a time can modify a particular Report Set
Entry's properties. Different people can modify different Report Set Entries in
different branches of the Report Set hierarchy.

■ Program Instance. Only one person at a time can modify a particular Program
instance contained in the Report Set. Different people can modify different
Program instances.

■ Install Program Instance. One person can install a single Program instance in the
Report Set at any time without impacting the work of other people on the Report
Set. Installing a Program instance implicitly checks in the Report Set definition and
instance, installs the Report Set instance, and checks out the Report Set definition
and instance again.

■ Install Report Set. Installing a Report Set from a Work Area is permitted but not
recommended during concurrent editing. Oracle recommends installing a
Program instance from the Report Set Structure view as a means of installing the
Report Set structure during concurrent editing.

During installation of a Program in a Report Set, other people can continue to
work on the Report Set definition through the instance, including making changes
to the Report Set structure and Programs. However, noone can work on the Report
Set instance during installation of the Report Set in a Work Area. This includes
mapping Program instances. See "Installing Report Sets" on page 9-42 for further
information.

■ Execute Report Set. One person can execute a Report Set or a portion of a Report
Set without impacting the work of other people.

Note: If you try to make a change that is not allowed because of the
activity of another person, you get an error message with the
username of the person whose work is conflicting with yours. In most
cases you can click Apply again immediately and the system applies
your change.

Note: If the person running the Work Area installation has Checkin
Administrator privileges, all Program instances are checked in
without warning, including those checked out by other users.

Creating Overlay Templates

9-6 Oracle Life Sciences Data Hub Application Developer's Guide

Creating Overlay Templates
This section contains the following topics:

■ About Overlay Templates on page 9-6

■ Creating Template Files on page 9-7

■ Creating an Overlay Template Definition on page 9-7

■ Creating an Overlay Template File Definition on page 9-8

About Overlay Templates
Oracle LSH's postprocessing feature uses Oracle XML Publisher to generate a single-
or multi-volume PDF-format Report Set with a unified Table of Contents from the
individual PDF reports and narratives generated by the first stage of Report Set
execution.

To use the postprocessing feature, you must design and create RTF templates that can
include graphics, watermarks, hyperlinks, text variables, and the font styles and sizes
you prefer.

You create template files in Microsoft Word or a similar tool, save them as RTF files,
and upload each one to an Overlay Template Definition (OTD) File definition in an
OTD. In the OTD File definition you specify the file's orientation, paper size, language,
and rotation.

Templates Applied at Runtime For the Table of Contents and Narratives, Oracle LSH
uses the runtime values of the Post-Processing Parameters Paper Size, Language, and
Orientation to determine which template files associated with the OTD to apply. To
determine which template files to use for the actual reports, or content, Oracle LSH
uses Paper Size, Language, and the orientation of the actual PDF report output.

Therefore you can, for example, create a single OTD with template files for both A4
and US letter-sized paper, and use different values for the Paper Size Post-Processing
Parameter to print it out on A4 paper in Europe or Japan and letter-sized paper in the
US or Canada.

Note: For information on creating template files, see the Oracle XML
Publisher User's Guide, which is available on My Oracle Support and
the Oracle Technology Network.

Creating Overlay Templates

Defining Report Sets 9-7

Overlay You can create multiple template files in the same Overlay Template
definition with the same values for Paper Size, Orientation, and Language. In this case,
Oracle XML Publisher uses all of them, overlaying them on top of each other on each
page. For example, you can create one template file with a rotation of 90 degrees to
print the Report Set title and your company logo vertically along the side margin, and
another template file for the main body of the page with a rotation of 0. Because both
files have the same orientation and paper size, the system applies both; see Figure 9–2,
"Example with Banner Template File" on page 9-10.

Creating Template Files
Oracle recommends creating a single OTD containing all the template files you may
need to postprocess a single Report Set. Decide which options represented by
Post-Processing Parameters you want to support—A4 and/or US Letter-sized paper,
landscape and/or portrait orientation— and create the template files necessary to
support them in a single OTD. The values for the Post-Processing Parameters can be
set in the Report Set definition, in the Execution Setup definition, or by a user
submitting the Report Set for execution. Oracle LSH selects the template(s) to use for
each section of the Report Set based on these Parameter values at runtime.

OTD File Types You must create at least one RTF template file for each OTD File type
that you plan to use: Coversheet, Table of Contents, Content, Narrative, Narrative
Content, Page Numbering, TOC Overlay, and In Progress; see "Creating an Overlay
Template File Definition" on page 9-8 for a description of each file type.

Text Variables You can use text variables in your template files to substitute an actual
value from the Report Set at runtime. These variables are sensitive to context within
the Report Set. For example, if you use the text variable <?xdo66:title?> it displays
the title of the Report Set when used in the Coversheet or Table of Contents template,
and it displays the Report Set Entry title when displayed in a Narrative or Content
template for a chapter or section.

You can also use text variables to display the runtime value of user-defined
Parameters; for example, <?study?>. The variable displays the value of the Study
Parameter appropriate for the context: Report Set, Report Set Entry, or Program.

Footers You can include a footer in any of the OTDs if required. Enter the following
variable in the OTD RTF's footer: <?/xdobb:item/footer?>.

Creating an Overlay Template Definition
You create Overlay Template definitions directly in an Application Area or Domain
library, not a Work Area. They do not have instances.

To create an Overlay Template, do the following:

1. In a Domain or Application Area, click Manage Definitions.

2. From the Create drop-down list, select Overlay Template. The Create Overlay
Template screen opens.

3. Enter a Name for the Overlay Template.

4. Enter a Description for the Overlay Template.

Note: In Oracle LSH Release 2.4.8 the only language supported is
US English.

Creating Overlay Templates

9-8 Oracle Life Sciences Data Hub Application Developer's Guide

5. From the Default Paper Size drop-down list, select one of the following:

■ A4. The standard paper size used in Europe and Japan: 21 x 29.5 cm.

■ US Letter. The standard paper size used in North America: 8.5 x 11 inches.

This value serves as the default value for the corresponding Parameter of each
Overlay Template File. You can change the value for any Overlay Template File
definition as necessary.

6. From the Default Language drop-down list, select a language. In Oracle LSH
Release 2.4.8 the only option is US English.

This value serves as the default value for the corresponding Parameter of each
Overlay Template File in the Overlay Template.

7. Classify the Overlay Template definition; see "Classifying Objects and Outputs" on
page 3-25 for further information.

8. Click Apply. The Overlay Template Definition Properties screen appears.

9. Click Add to add Overlay Template File definitions (see "Creating an Overlay
Template File Definition" on page 9-8 below).

Creating an Overlay Template File Definition
An Overlay Template Definition (OTD) File is an Oracle LSH definitional object
contained in an OTD. It consists of an uploaded XML template—an RTF file that
contains formatting design information (see "Creating Template Files" on page 9-7)
and a set of Parameters that serve as labels.

To create an Overlay Template Definition File, do the following:

1. In the Overlay Template Definition Properties screen, click Add in the Overlay
Template Definition Files section. The Overlay Template Definition File screen
opens.

2. Click the Browse button to find the RTF template file you want to upload. The
system opens a standard Browse window.

3. Navigate to the location of the file you want to upload, select the file, and click
Open.

4. Select a Type:

■ Content. Files of type Content determine the appearance of the actual Report
Set reports. This is the default Type.

■ Coversheet. Files of type Coversheet determine the appearance of the Report
Set's title page.

■ In Progress. Create one OTD file of type In Progress. When the system cannot
execute a Report Set Entry because its associated Program instance is checked
out or fails execution, the system uses the In Progress OTD file as a
placeholder for the unexecuted report.

Tip: If you have some template files for A4 paper and others for US
Letter-sized paper, you can set this value to A4 first, for example,
upload all the template files for A4 paper, then change the default to
US Letter and upload all the template files for US Letter-sized paper.

Creating Overlay Templates

Defining Report Sets 9-9

■ Narrative. Files of type Narrative are used to display the pre- or post-
narratives for the report.

■ Narrative Content. Create and upload a PDF file (usually blank) for Oracle
XML Publisher to use to format the text content for the narrative specified in
the Report Set definition.

■ Page Numbering. Oracle XML Publisher requires a special OTD file for page
numbering because it must generate a page number dynamically for each
page. There is an XML tag that for the position and format of the page
number. See the Oracle XML Publisher documentation for further information.

To produce a Report Set with page numbers, you must define and upload one
OTD file of the Page Numbering type for each paper size/orientation
combination represented in this Overlay Template Definition.

■ Table of Contents. Files of type Table of Contents determine the appearance of
the Report Set's table of contents.

■ TOC Overlay. If necessary, use this type to provide a header and footer or
other overlay formatting for the table of contents.

5. Select a printing Orientation:

■ Portrait. Portrait files must be printed vertically.

■ Landscape. Landscape files must be printed horizontally.

The default value is Portrait.

6. Select a Paper Size. The default value comes from the Paper Size Parameter of the
Overlay Template definition.

■ A4. The standard paper size used in Europe and Japan: 21 x 29.5 cm.

■ US Letter. The standard paper size used in North America: 8.5 x 11 inches.

7. Select a Language. In the Oracle LSH Release 2.4.8 there is only one option: US
English.

8. Select a Rotation (in number of degrees):

For example, you can use a rotation of 90 or 270 degrees to create a banner along
one side of a page. The figure below shows the direction in which text appears
when you define two template files with a partite orientation and the same paper
size. The Content template has a rotation of zero (0) and the banner template file
has a rotation of 90.

Creating a Report Set

9-10 Oracle Life Sciences Data Hub Application Developer's Guide

Figure 9–2 Example with Banner Template File

Creating a Report Set
When you create a Report Set in a Work Area, you are actually creating an instance of
a Report Set definition.

To create a new Report Set instance:

1. In a Work Area, select Report Set from the Add drop-down list.

2. Click Go.

The system displays the Create Report Set screen.

3. Choose one of the following options:

■ Create a new Report Set definition and instance. Choose this option if no
Report Set definition exists that can meet your needs, either as it is or with
some modification.

■ Create an instance from an existing Report Set definition. Choose this option
if a Report Set definition already exists that meets your needs.

If you can adapt an existing Report Set definition to make it fit your needs,
first copy it into the current Application Area, then choose this option and
select the copied definition. See "Finding an Appropriate Definition" on
page 3-2 and "Reusing Existing Definitions" on page 3-2 for further
information.

4. Depending on your choice, follow one of the following sets of instructions:

■ Creating a New Report Set Definition and Instance on page 9-10

■ Creating an Instance of an Existing Report Set Definition on page 9-12

Creating a New Report Set Definition and Instance
When you select Create a new Report Set definition and instance in the Create
Report Set screen, additional fields appear.

Tip: Do not change the setting for Orientation (for example, from
landscape to portrait) simply because you are using a 90- or
270-degree rotation. The rotated file should have the same Orientation
setting as the other files with which it is to be used. Further
information is available in the Oracle XML Publisher User's Guide.

Creating a Report Set

Defining Report Sets 9-11

1. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6. The system uses the Name
internally. It must be unique within the container.

■ Title. The system enters the value you entered for the Name as the default
value. You can change it. It is the Title, not the Name, that appears on the
Report Set output. The Title is not required to be unique.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

2. In the Classification section, select the following for both the definition and the
instance:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

3. Click Apply to save your work and continue defining the Report Set.

The system opens the Properties screen for the new Report Set instance with the
Report Set definition checked out. The Report Set properties Strict Numbering
and Unique Numbering are both set to Yes by default. If you want to change their
values, you must go to the Report Set definition and change them there; click on
the Definition hyperlink in the Instance Properties section.

The properties are:

■ Strict Numbering. If set to Yes, Report Set Entries must be numbered
sequentially, with no gaps. The system automatically generates sequential
numbers. This is the default setting.

If set to No, gaps are allowed in the numbering of Report Set Entries. The
system generates sequential numbers by default, but you can override the
entry number and if you remove a Report Set Entry the system does not
renumber the remaining Report Set Entries to close the gap (however, you can
do this manually).

■ Unique Numbering. If set to Yes, each Report Set Entry must have a number
that is different from the number of all other Report Set Entries in the same
Report Set. The system automatically generates unique numbers.

If set to No, unique numbers are not required. The system generates unique
numbers by default, but you can override the entry number to create duplicate
numbers.

Using the Report Set Properties Screen

9-12 Oracle Life Sciences Data Hub Application Developer's Guide

Creating an Instance of an Existing Report Set Definition
Use this option if there is an existing Report Set that you can use exactly as it is. If you
use an existing Report Set as a definition source, you can use all the Report Set Entries,
Program instances, Planned Outputs, Execution Templates, Post-Processing and
Overlay Template Parameter values, and Parameter value propagation that are already
defined. See "Creating an Instance of an Existing Definition" on page 3-2 for
instructions.

After you have created the Report Set instance, you must map the Table Descriptors of
all the Program instances contained in it to Table instances; see "Mapping Table
Descriptors to Table Instances" on page 3-45 for instructions.

Using the Report Set Properties Screen
This section contains the following topics:

■ Instance Properties on page 9-13

■ Definition Properties on page 9-13

■ Buttons on page 9-14

■ Using the Actions Drop-Down List on page 3-76

■ Subtabs:

– Entries. See "Defining Report Set Entries" on page 9-26.

– Parameters. See "Creating Parameters for Sharing Values within the Report
Set" on page 9-25.

– Post-Processing. See "Setting Post-Processing Parameter Values" on page 9-22.

– Overlay Templates. See "Setting Overlay Template Parameter Values" on
page 9-20.

– Planned Outputs. See "About Report Set Planned Outputs" on page 9-51.

– Jobs. See "Viewing Jobs" on page 3-74.

Table 9–1 Possible Combinations or Strict and Unique Numbering Settings

Unique Numbering Strict Numbering

Automatic
Renumbering
Possible? Valid Example Invalid Example

Y Y Yes 14.2.1 Table

14.2.2 Listing

14.2.3 Table

14.2.1 Table

14.2.1 Listing

14.2.3 Table

Y N No 14.2.1 Table

14.2.3 Listing

14.2.6 Table

14.2.1 Table

14.2.1 Listing

14.2.3 Table

N Y No 14.2.1 Table

14.2.1 Listing

14.2.2 Table

14.2.1 Table

14.2.1 Listing

14.2.3 Table

N N No No restriction No restriction

Using the Report Set Properties Screen

Defining Report Sets 9-13

See also Figure 9–1, "Process of Creating a Report Set Definition and Instance" on
page 9-2.

See "Modifying Report Sets" on page 9-51 for information on modifying Report Sets.

If you are working in a Work Area, you see the properties of both the Report Set
instance and the Report Set definition it references. If you are working directly on the
definition in an Application Area or Domain, you see only the properties of the
definition.

Instance Properties
You can see the following instance properties:

Name You can click Update and modify the name. See "Naming Objects" on page 3-6
for further information.

Description You can click Update and modify the description. See "Creating and
Using Object Descriptions" on page 3-6 for further information.

Definition This field specifies the Report Set definition to which this Report Set
instance points. For information on modifying this field, see "Definition Source" on
page 9-52.

To upgrade to a new version of the same definition, use the Upgrade to Latest button.
See "Upgrading to a Different Definition Version from an Instance" on page 3-16.

Version This field displays the current version number of the Report Set instance.

Version Label This field displays the version label, if any, for the current Report Set
instance version.

For further information on object versions, see "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Validation Status This field displays the current validation status of the Report Set
instance. If you have the necessary privileges, you can change the validation status by
selecting Validation Supporting Information from the Actions drop-down list. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the install status of the Report Set: installable or
noninstallable. See Appendix A, "Installation Requirements for Each Object Type".

Definition Properties

Checked Out Status This field displays the status of the definition: either Checked
Out or Checked In. You must check out the definition to modify the Report Set
structure or to add, remove, assign, or reassign Program instances. You can change
Table Descriptor mappings without checking out the definition. See "Mapping" on
page 9-34 and "Understanding Object Versions and Checkin/Checkout" on page 3-9
for further information.

Latest Version If set to Yes, this Report Set instance is pointing to the latest version of
the Report Set definition. If set to No, this Report Set instance is pointing to an older
version of the Report Set definition.

Using the Report Set Properties Screen

9-14 Oracle Life Sciences Data Hub Application Developer's Guide

View Latest You can see this button only if the current Report Set instance does not
point to the latest definition version. Click this button to view the latest Report Set
definition.

Upgrade to Latest This button is grayed out if the current Report Set instance already
points to the latest Report Set definition. Click this button to upgrade the current
Report Set instance to the latest definition version. For more information on upgrading
instances, see "Upgrading Object Instances to a New Definition Version" on page 3-15.

Checked Out By This field displays the username of the person who has the Report
Set definition checked out. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9 for further information.

Version Label This field displays the version label, if any, for this definition version.

Strict Numbering If set to Yes, numbers must be sequential, with no gaps. If set to
No, gaps are allowed. You must be in the Report Set definition in its Application Area
or Domain to change this value.

Unique Numbering If set to Yes, numbers must be unique within the parent. If set to
No, duplicate numbers are allowed. You must be in the Report Set definition in its
Application Area or Domain to change this value.

Title This field displays the Report Set definition title.

Validation Status This field displays the current validation status of the Report Set
definition. If you are working directly in the definition in an Application Area or
Domain and you have the necessary privileges, you can change the validation status
by selecting Validation Supporting Information from the Actions drop-down list. If
you are working in an instance of the Report Set in a Work Area, and you want to
change the validation status of the definition, you must go to the definition. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Report Set: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Buttons
From a Report Set instance in a Work Area, you can use the following buttons:

Submit Click Submit to run the Report Set instance. Before you can run the Report
Set, you must install it and create an Execution Setup for it (select Execution Setups
from the Actions drop-down list).

Update Click Update to modify the Report Set instance properties. See "Modifying
Report Set Instance Properties" on page 9-52.

Check In/Out and Uncheck Click these buttons to check out, check in, or uncheck the
Report Set definition. Different buttons are displayed in the Report Set Definition
Properties section depending on the checked out status and whether or not you are the
person who has the definition checked out. If someone else has checked out the
definition, you cannot check it in or uncheck it. The username of the person who has
checked it out is displayed. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Using the Report Set Structure View

Defining Report Sets 9-15

View Latest/Upgrade to Latest If the definition is not the latest version, you can click
to view the latest version and upgrade to the latest version if you want to. See
"Upgrading to a Different Definition Version from an Instance" on page 3-16.

Using the Report Set Structure View
This section contains the following topics:

■ Navigating to the Report Set Structure View on page 9-15

■ Building and Modifying the Report Set on page 9-15

Navigating to the Report Set Structure View
To view, build, or modify a Report Set's structure, do the following:

1. Navigate to the Report Set instance in its Work Area in the Applications tab.

2. Click the Report Set name's hyperlink. The Report Set opens.

3. If it is not already showing, select Structure from the View drop-down list.

Building and Modifying the Report Set
This section contains the following topics:

■ Modifying the Report Set on page 9-15

■ Report Set Entry Information Displayed on page 9-19

The Report Set's Structure view, with Structure selected in the View drop-down,
shows the structure of the Report Set in a display similar to a table of contents.

Each chapter, section, and subsection is called a Report Set Entry. You can define any
number of levels of Report Set Entries. You must define Report Set Entries from the
top level down, creating each new Report Set Entry (RSE) as a child of an existing
Report Set Entry or of the Report Set itself.

Modifying the Report Set
In the Report Set Structure view you can build and modify the Report Set structure
and do many other things as follows:

1. Select the Report Set itself or a Report Set Entry (RSE).

2. From the Select and drop-down list, select the action you want to perform on the
selected Report Set or Report Set Entry.

Use Add RSE, Remove RSE, Reorder, Copy, and Move to create and modify the
Report Set structure. Details for all options are given below.

3. Click Go.

The following options are available:

Add Program The Create Program screen opens and you can either create (add) an
instance of an existing Program definition or create a new Program definition and
instance. If you add an instance of an existing Program that has at least one primary
Planned Output, the system assigns the first primary Planned Output to the selected
Report Set Entry. You can change the assignment if necessary by using the Assign
Planned Output option. See "Defining Programs to Generate Reports" on page 9-33 for

Using the Report Set Structure View

9-16 Oracle Life Sciences Data Hub Application Developer's Guide

information about Programs inside Report Sets and "Creating a Program" on page 5-3
for general instructions.

Add RSE The Add Entries screen opens and you can add one or more Report Set
Entries under (at the child level of) the one you selected or modify existing Entries; see
"Creating Multiple Report Set Entries" on page 26 for instructions. If the selected
Report Set or Report Set Entry already contains one or more child Report Set Entries,
the system adds the new ones below the existing ones.

After you have added Report Set Entries you can define additional details; see "Setting
Report Set Entry Properties" on page 9-29 and assign a Planned Output to the Report
Set Entry; see"Assign Planned Output" below.

Assign Planned Output The Assign Program Instance and Planned Output screen opens.
Do the following:

1. Click the Search icon to search for a Program already assigned to the Report Set.

2. Select the Planned Output you want to assign.

3. Click Select.

If you select a Report Set Entry that already has a Planned Output assigned, you can
change the assignment by selecting a different one.

Copy You can copy a Report Set Entry and its child Report Set Entries into another
location in the same Report Set or a different one. The Copy operation includes all
child Report Set Entries and the Execution Setup fragment for the selected Report Set
Entry and all its children (if such Execution Setup fragments exist). You have the
option to copy Program instances assigned to Report Set Entries being copied.

1. Select the Report Set Entry you want to copy and then select Copy from the
drop-down list.

2. Click Go. A message appears asking if you want to include Program instances
assigned to the Report Set Entry (and its children).

■ Click No if you do not want to copy Program instance(s).

■ Click Yes to copy Program instance(s).

3. Select the Report Set into which you want to copy the Report Set Entry; see
"Pasting Objects" on page 3-23.

If you choose to copy Program instances, the system copies their Execution Setups and
Table Descriptor mappings and maintains the existing links to Program definitions
and their Planned Outputs.

If there is already a Program with the same name in the target Report Set, the system
creates the copy with the name Copy Of Program_Name. When you copy a Report Set
Entry into the same Report Set, this always happens. If you prefer to have a single
instance of the Program in the Report Set, so that the Program is executed only once
during Report Set execution, do one of the following:

■ Remove the copied Program from the Report Set and assign the original Program
to the Report Set Entry.

Note: Only checked out Program instances can be assigned to a
Report Set Entry.

Using the Report Set Structure View

Defining Report Sets 9-17

■ Unassign the Program before you do the Copy operation and reassign it
afterward.

Default Execution Setup View and modify the default Execution Setup for selected
Report Set instance or Report Set Entry and its child Report Set Entries; see "Report Set
and Workflow Execution Setups" on page 3-65.

If no Execution Setups are defined, the system generates a default Execution Setup and
opens it.

Execution Setup The system displays all Execution Setups defined for the selected
Report Set instance. The list is the same regardless of which Report Set Entry you
select; you see the Execution Setups for the Report Set instance as a whole. You can
then click on the hyperlink of any Execution Setup and navigate to any Report Set
Entry to modify its settings.

If no Execution Setups are defined, the Create Execution Setup screen opens and you
can create one.

Install Program Install the Program instance assigned to the selected Report Set Entry. If
the Program instance is not installable you get an error message.

When you install a Program instance from the Report Set Structure view, the system
also checks in the Report Set definition and instance and installs the Report Set
instance, then checks the Report Set definition and instance back out. You can use this
functionality to install changes to the Report Set structure even if no Program instances
need to be installed.

Map You can map or remap (using Automatic Mapping by Name) the Table
Descriptors of all Programs assigned to the selected Report Set Entry and all its child
Report Set Entries at the same time. If you select the top level of the Report Set you can
map the Table Descriptors of all Programs in the Report Set. For further information,
see "Automatic Mapping by Name" on page 3-46. For other mapping options, see
"Mapping" on page 9-34.

Move You can move a Report Set Entry into another location in the same Report Set or
a different one. The Move operation includes all child Report Set Entries and the
Execution Setup fragment for the selected Report Set Entry and all its children.

If you move a Report Set Entry within the same Report Set, the system maintains the
existing links to Program instances and their Planned Outputs.

Note: You cannot select the Report Set's top level and then select
Copy from the drop-down list. You can copy a whole Report Set from
the Applications screen but not from the Report Set screen.

Note: To copy multiple Report Set Entries at the same level, click the
hyperlink of the parent Report Set Entry, then select and copy the
Report Set Entries.

Note: The Report Set instance is not installable until all the Table
Descriptors of all the Program instances it contains are mapped.

Using the Report Set Structure View

9-18 Oracle Life Sciences Data Hub Application Developer's Guide

If you move the Report Set Entry to a different Report Set, a message appears asking if
you want to include Program instances assigned to the Report Set Entry and its
children. If you choose to include Program instances, the system copies all Program
instances assigned to the Report Set Entries you are moving, and their Execution Setup
fragments (if any) and recreates the Program instance and Planned Output
assignments in the new location.

See "Pasting Objects" on page 3-23.

Quick Submit The system submits the selected item—either a Report Set Entry and all
its children, the entire Report Set, or a Program instance—using the default Execution
Setup with its default values, without opening the Execution Setup screen. The system
upgrades the Execution Setup if necessary and validates it. The submission fails if:

■ The Execution Setup cannot be upgraded; for example, if another user is currently
modifying the default Execution Setup

■ The Execution Setup is invalid; for example, the Parameters that apply to the
portion of the Report Set being submitted have invalid values

In the Job Execution section of the My Home page you see two jobs. A temporary job
starts the actual report generation job.

Remove RSE The system deletes the Report Set Entry you select. If you select a Report
Set Entry that contains other Report Set Entries, the system removes them also.

Reorder Select the Report Set or Report Set Entry whose child Report Set Entries you
want to reorder; see "Reordering and Renumbering Objects" on page 3-36.

Submit The system displays the Submit screen based on the default Execution Setup
for the selected Report Set instance. If you select a Report Set Entry and then Submit,
the Report Set Entry you selected, and all its children, are selected for inclusion in the

Note: Program instances are never removed implicitly from a Report
Set, even if all the Report Set Entries to which they are assigned are
moved or removed.

Note: You cannot select the Report Set's top level and then select
Move from the drop-down list. You can move a whole Report Set from
the Applications screen but not from the Report Set screen.

Note: If you try to remove a Report Set Entry to which other Report
Set Entries have links, you receive a warning. If you choose to
continue, the system removes the selected Report Set Entry and all
links between it and other Report Set Entries. The system does not
remove any Program instances assigned to any Report Set Entries
being removed.

Note: You cannot select the Report Set's top level and then select
Remove from the drop-down list. You can remove a Report Set from
the Applications screen but not from the Report Set screen.

Using the Report Set Structure View

Defining Report Sets 9-19

execution. You must define an Execution Setup and install the Report Set instance
before you can submit any part of it for execution.

View All Outputs The system displays a list of all outputs produced for the selected
Report Set or Report Set Entry. The system displays the following information for each
output: Output Validation Status, Creation TS (Timestamp), Creation User (the
username of the person who ran the job that created the output), Job ID, Program
Instance Name, Program Instance Version, Path to Executable (Program) Instance, and
Title.

In addition, there is an icon in the View column that you can click to view the output
itself.

View Output The system displays output properties information about the current
output produced for the selected Report Set or Report Set Entry, including: title, file
name, job ID, execution status, description, validation status, execution user (the
username of the person who executed the job), job start time, blinding status, and
primary output (yes/no).

To view the output itself, click View File.

Report Set Entry Information Displayed
The Report Set Structure view displays the following information about each Report
Set Entry and the Report Set as a whole:

■ Full Title is the Report Set Entry's concatenated title that includes its Entry
Number Prefix, Parent Number, Delimiter, Entry Number, Entry Number Suffix,
and Title, in that order.

■ VS (Validation Status) refers to the standard validation status of the Report Set
Entry; either Development (Dev), Quality Control (QC), or Production (Prod).

■ Summary Output VS (Validation Status) is the calculated validation status
derived from outputs' and child Report Set Entries' validation statuses. The
possible values are: Null, Not Assigned, N/A (Not Applicable), Development,
Quality Control, or Production; see "Summary Output Validation Status" on
page 9-47.

■ Output Creation TS (Timestamp). The system displays the timestamp of the
creation of the current output.

■ Narrative. If the checkbox is checked, there is a Pre- and/or Post-Narrative
assigned to the Report Set Entry.

■ Assigned Program Instance. If a Program instance is assigned to the Report Set
Entry, the system displays a link to its Properties screen.

■ Program Instance VS (Validation Status). If a Program instance is assigned to the
Report Set Entry, the system displays its validation status. You can click the
hyperlink to change its validation status if you have the required privileges.

■ Filename Reference of the Program's Source Code.

■ Assigned Planned Output. If a Planned Output of the assigned Program instance
is assigned to the Report Set Entry, the system displays its name.

■ Definition Checked Out By displays the username of the person who has checked
out the Program definition, if it is checked out.

Creating and Setting Report Set Parameters

9-20 Oracle Life Sciences Data Hub Application Developer's Guide

Creating and Setting Report Set Parameters
This section contains the following topics:

■ Setting Overlay Template Parameter Values on page 9-20

■ Setting Post-Processing Parameter Values on page 9-22

■ Setting Program Parameter Values on page 9-25

■ Creating Parameters for Sharing Values within the Report Set on page 9-25

Report Sets have two sets of predefined Parameters—Overlay Template Parameters
and Post-Processing Parameters—that determine how Oracle XML Publishes
post-processes the Report Set, using templates, to generate a single- or multi-volume
PDF output. The Parameters that are part of the Programs in a Report Set are used to
execute the Programs during Report Set execution. You can define Parameters directly
at the Report Set or Report Set Entry and share their values to Program Parameters to
simplify Report Set submission.

When you create an Execution Setup for a Report Set or Report Set Entry, the system
copies all these Parameters into the Execution Setup. You can modify them in the
Execution Setup without affecting the Parameters in the Report Set or Program
definitions.

Setting Overlay Template Parameter Values
This section contains the following topics:

■ Overlay Template Parameters on page 9-20

■ Setting Overlay Template Parameters on page 9-21

■ OTD Parameter Value Sharing on page 9-21

Oracle LSH Overlay Template definitions (OTDs) are designed to include all the
template files you need to postprocess a Report Set; see "Creating Overlay Templates"
on page 9-6. If you define your OTDs that way and this particular Report Set has no
unusual characteristics, you can simply enter the name of the OTD in the Default OTD
Parameter at the Report Set level and that value is propagated to all other OTD
Parameters throughout the Report Set.

However, if you need to use a different OTD for certain Report Set Entries or for
certain Narratives or report outputs, you can do so. See "Setting Overlay Template
Parameters" on page 9-21.

Overlay Template Parameters
The Report Set itself and Report Set Entries have a similar set of Overlay Template
Parameters:

The following Parameters apply to the Report Set as a whole only:

■ Coversheet OTD Oracle XML Publisher applies the specified OTD to the Report
Set's coversheet.

■ TOC (Table of Contents) OTD Oracle XML Publisher applies the specified OTD
to the Report Set's table of contents.

The following Parameters apply to each Report Set Entry and the Report Set itself:

Note: The value is displayed only where it is explicitly set.

Creating and Setting Report Set Parameters

Defining Report Sets 9-21

■ Default OTD. If the value for any other OTD Parameter at the top Report Set level
is null, XML Publisher uses the Default OTD value for that Parameter.

■ Pre-Narrative OTD. Oracle XML Publisher applies the specified OTD to the
Report Set Entry's Pre Narrative (text displayed on a page before the report), if
any.

■ Content OTD. Oracle XML Publisher applies the specified OTD to the Report Set
Entry's generated report output, if any.

■ Post-Narrative OTD. Oracle XML Publisher applies the specified OTD to the
Report Set Entry's Post Narrative (text displayed on a page after the report), if any.

Setting Overlay Template Parameters
Normally you need to set a value only for the Default OTD Parameter at the Report
Set level. Its value is automatically propagated to all other OTD Parameters unless you
explicitly specify a different value. OTDs are designed to accommodate all possible
needs in a Report Set; see "Creating Overlay Templates" on page 9-6.

To set an explicit value for an Overlay Template Parameter, do the following:

1. In the Default Value column for an Overlay Template Parameter, click the plus (+)
sign. A Search and Select screen opens.

2. Select the name of the Domain that contains the Overlay Template definition
(OTD) that you want to use.

3. If the OTD is not contained directly in that Domain, drill down to the subdomain
or Application Area that contains the OTD.

4. If you want to search for a specific OTD name or version label, select either Name
or Version Label from the Search By drop-down list and enter the value.

5. Click Go. The system displays the OTDs in the location you specified. If you
selected a name or version label it displays only OTDs with that name or version
label.

6. Select the OTD you want.

7. Click Apply.

OTD Parameter Value Sharing
OTD Parameters are predefined with automatic value sharing by name. That is, by
default each OTD Parameter gets its value from the next higher OTD Parameter in the
Report Set hierarchy with the same name. In addition, if there is no OTD Parameter

Note: You must create at least one Overlay Template definition
(OTD) before you can enter a value for the Default OTD Parameter.
See "Creating Overlay Templates" on page 9-6 for information.

Note: When you enter a value for an OTD Parameter, all the OTD
Parameters of the same name below it in the Report Set hierarchy
inherit that value unless you explicitly set a different value. Therefore
if, for example, you are using one OTD throughout the Report Set
with a few exceptions, you must set the Parameters of the same name
in the immediate child Report Set Entries to the default OTD; see
"OTD Parameter Value Sharing" on page 9-21.

Creating and Setting Report Set Parameters

9-22 Oracle Life Sciences Data Hub Application Developer's Guide

with the same name higher in the Report Set hierarchy that has an explicitly defined
value, it gets its value from the Default OTD Parameter at its own level. (The Default
OTD Parameter for each Report Set Entry gets its value using automatic sharing by
name from the next Default OTD Parameter above it in the Report Set hierarchy that
has an explicitly defined value.)

If you do not want to use the default shared value you can explicitly set any OTD
Parameter in any Report Set Entry. The corresponding Parameter of each of its child
(and grandchild, and so on) Report Set Entries (whether existing or subsequently
defined) gets the new value. If you want the child and grandchild Report Set Entries to
use the old value, you must change the value of the corresponding Parameter for each
of the immediate children of the Report Set Entry you changed.

All Overlay Template Parameters must have a value or Report Set postprocessing will
not work. Therefore at the top level of the Report Set you must do one of the following
if you want to use postprocessing:

■ Specify a value for the Default OTD Parameter only. In this case, the other OTD
Parameters at the Report Set level get their value from the Default OTD Parameter.

■ Specify a value for the Default OTD Parameter and, if you want any of the other
OTD Parameters to have a different value, specify a value for those Parameters.

■ Specify a value for every OTD Parameter except the Default OTD Parameter.

Setting Post-Processing Parameter Values
This section contains the following topics:

■ Post-Processing Parameters at the Report Set Level Only on page 9-22

■ Post-Processing Parameters at the Report Set and Report Set Entry Levels on
page 9-23

Oracle XML Publisher uses the values of a predefined set of Post-Processing
Parameters to control various aspects of generating a unified PDF output for the
Report Set. There is a similar set of Parameters at the Report Set level and at the Report
Set Entry level. Report Set Entry Post-Processing Parameters receive their default
value from the corresponding Parameter of their immediate parent Report Set or
Report Set Entry.

If you set these Parameter values at the Report Set level, the values you set become the
default settings for the corresponding Parameters in the Report Set Entries below. For
the Post-Processing Parameters that exist only in Report Set Entries, you can set the
values in the top-level Report Set Entries for the same effect.

You can override the value for any Post-Processing Parameter for any Report Set Entry
at any time. Changing a value for a Report Set Entry also changes the value of the
same Parameter for any existing and future child Report Set Entries of that Report Set
Entry.

Post-Processing Parameters at the Report Set Level Only
The following Post-Processing Parameters appear at the Report Set level only:

Post Process If set to Yes, the Report Set uses Oracle XML Publishing postprocessing
to apply overlay templates and generate one or more volumes of concatenated reports
in PDF format.

If set to No, the system disregards all other settings in the Post-Processing and Overlay
Templates tabs. The system generates a table of contents and hyperlinks to every

Creating and Setting Report Set Parameters

Defining Report Sets 9-23

report, each of which is a separate file with the type specified for the corresponding
Planned Output. This mode requires less time for execution and may be useful during
development.

Single Volume Output Name If you enter a value here, the system ignores all Volume
Breaks and produces a single postprocessed output, using this value as both the
output name and title. The system also uses the value for the output filename, with the
extension .pdf.

Start Page Number Enter a number (normally 1). If your Report Set is really a
continuation of another Report Set that you have defined separately, you can enter the
number of pages in the first Report Set (plus 1) as the value for the Starting Page
Parameter, to create continuous page numbering for both Report Sets.

Oracle XML Publisher can display page numbers as "1 of x," "2 of x," and so on. If you
enter a Starting Page value of 400, Oracle XML Publisher displays page one as "400 of
(x+400)" where x is the number of pages in the current Report Set.

Coversheet If set to Yes, Oracle XML Publisher incorporates the coversheet in the
PDF output. The default setting is Yes.

Coversheet Orientation Select either Portrait (vertical) or Landscape (horizontal) for
the orientation default value for the coversheet Overlay Template Definition. The
default value is Portrait. See "Creating Overlay Templates" on page 9-6 for more
information.

TOC If set to Yes, Oracle XML Publisher generates a table of contents (TOC) for the
Report Set. If set to No, Oracle XML Publisher does not generate a table of contents.

TOC Orientation Select either Portrait (vertical) or Landscape (horizontal) for the
orientation default value for the table of contents Overlay Template Definition. The
default value is Portrait. See "Creating Overlay Templates" on page 9-6 for more
information.

Post-Processing Parameters at the Report Set and Report Set Entry Levels
The following Post-Processing Parameters appear at the Report Set Entry level and,
unless otherwise noted, at the Report Set level:

Paper Size Select either A4 (European and Japanese standard) or US Letter (North
American standard).

Language In the Oracle LSH Release 2.4.8 there is only one option: English.

Calculated Title (Report Set Entry level only) Use this Parameter to receive a
generated title for the Report Set Entry from a Program output Parameter whose value

Note: If TOC is set to Yes for a Report Set that contains multiple
volumes, the system generates a single TOC in a separate PDF file.

Note: The system uses this setting to determine which OTD Files to
use from the specified OTD. Setting this Parameter does not guarantee
that your reports will print correctly for the size of paper. That
depends on the OTD file itself and on the output of the Program.

Creating and Setting Report Set Parameters

9-24 Oracle Life Sciences Data Hub Application Developer's Guide

is propagated to calculated_title. The default value is null. If this value is null at
runtime, the system uses the Report Set Entry's defined Full Title as the displayed title.
See "Passing Report Set Entry Values to and from Programs" on page 9-38.

Shared Title (Report Set Entry level only) Use the shared_title Parameter to pass
the Title properties values to the Program instance, so that the Program instance can
generate a different calculated title (the Program Title). See "Setting Title Properties" on
page 9-30 and "Passing Report Set Entry Values to and from Programs" on page 9-38.

Watermark Text Enter the text, if any, that you want in the watermark. (A watermark
is text printed across the page so that it appears to be beneath the content of the
report.) If the Overlay Template Definition file you specify does not have a watermark
defined, the system ignores this value.

If you want the watermark to display the current validation status (Development,
Quality Control, or Production) of the Report Set or Report Set Entry, enter: <VS>

To substitute your own terminology for any of the three validation statuses, enter three
pipes (|) after the VS, each followed by the value you want to display when the
validation status is Development, Quality Control, or Production, respectively. For
example:

■ To display "Dev," "QC," or "Final," enter: <VS|Dev|QC|Final>

■ To display no watermark if the validation status is Production, but "Dev" or "QC"
if the validation status is Development or Quality Control, enter: <VS|Dev|QC|>

You can also have a string of fixed text on either side of the validation status or its
equivalent, or only fixed text.

■ To display y text before the validation status and x text after it, enter: y
<VS|Dev|QC|Final> x

■ To display the string xyz by itself, enter: 'xyz'

Pre-Narrative Orientation Select either Portrait (vertical) or Landscape (horizontal)
for the orientation default value for Overlay Template Definitions for narratives that
appear before or instead of reports. The default value is Portrait. See "Creating Overlay
Templates" on page 9-6 for more information.

Post-Narrative Orientation Select either Portrait (vertical) or Landscape (horizontal)
for the orientation default value for Overlay Template Definitions for narratives that
appear after reports. The default value is Portrait. See "Creating Overlay Templates" on
page 9-6 for more information.

Hyperlink1...5 Target (Report Set Entry level only) You can set up your Overlay
Template to display hyperlinks to other Report Set Entries. If your Overlay Template is
set up for this, and you want to create a hyperlink to another Report Set Entry from the
current one, click the Search icon and select its Full Title from the list of values.

Table 9–2 Examples of Validation Status-Based Watermark Values

Parameter Value Development Quality Control Production

<VS> Development Quality Control Production

<VS|Dev|QC|Final> Dev QC Final

<VS|Dev|QC|> Dev QC <none>

y < VS|Dev|QC|Final> x y Dev x y QC x y Final x

Creating and Setting Report Set Parameters

Defining Report Sets 9-25

You can set up the Overlay Template to display up to five (5) of these hyperlinks to
other Report Set Entries, using the subsequently numbered Hlinkx Target Parameters.

Hyperlink1...5 Text (Report Set Entry level only) Enter the text to be displayed for
each hyperlink. The default text is the Full Title of the Report Set Entry you selected
for the corresponding HLinkx Target Parameter.

Setting Program Parameter Values
When you submit the Execution Setup for a Report Set or a Report Set Entry, the
system executes the associated Program(s) with the Parameter values supplied in the
Execution Setup. You can set Program Parameter values and attributes in the Program
definition or the Execution Setup definition.

Creating Parameters for Sharing Values within the Report Set
You can define your own Parameters at the Report Set level (or at the Report Set Entry
level) for the purpose of sharing a single value to similar Parameters in Program
instances throughout the Report Set (or in a particular Report Set Entry and its child
Report Set Entries), and set up automatic value propagation from those Parameters.

For example, if the Report Set should run on data for a single study, and many
Program instances included in the Report Set have a Parameter for Study Name or
Study ID, define a Report Set-level Parameter Study Name and/or Study ID and set
up automatic value propagation. Then the person submitting the Report Set for
execution only needs to enter the study name or ID a single time.

See "Setting Up Parameter Value Propagation" on page 6-16.

If a Parameter value should be the same throughout the Report Set, define the
Parameter at the Report Set level.

If the Parameter value should be the same in only a single chapter of the Report Set,
you can define the Parameter in the chapter-level Report Set Entry. If you set the
Parameter to Required and the Report Set Entry Parameter does not have a value at
runtime, the Ready flag is set to No, alerting the user to set a value. Alternatively,
define the source Parameter at the top level the Report Set and name it in such a way
that it is clear that it is used just in a particular Report Set Entry.

To create a Parameter for value sharing, do the following:

1. Go to the Parameters subtab of the Report Set or Report Set Entry.

Note: Do not use spaces in the name of any Parameter you create for
use in a Report Set. This will cause an error in postprocessing because
the Parameter name becomes an HTML tag, where spaces are not
allowed.

Note: If a Program Parameter gets its value from another Parameter
in a Report Set, at runtime the system gets the value from the source
Parameter even if the source Parameter is not included in the
submission (because it is in a Report Set Entry that is not included).
You can then enter a value manually. If the source Parameter is
required and does not have a value, you get an error message.

Defining Report Set Entries

9-26 Oracle Life Sciences Data Hub Application Developer's Guide

2. Click Add.

3. Create a Parameter, following instructions in "Defining Parameters" on page 6-6.

4. If you want to pass the value of this Parameter to all others in the Report Set (or
Report Set Entry) with the same name, do the following:

a. In the Parameter Instance screen, click Update.

b. Under Value Propagation, select Automatically pass value(s) to parameters
with the same name.

c. Click Apply.

When you add a Program instance to the Report Set that should receive a Parameter
value from this Parameter, define value propagation from this Parameter for the
Program instance Parameter; see "Setting Up Value Propagation from the Target
Parameter" on page 6-19.

Defining Report Set Entries
This section contains the following topics:

■ Creating Multiple Report Set Entries on page 9-26

■ Setting Report Set Entry Properties on page 9-29

■ Adding Narratives on page 9-32

Each Report Set Entry can contain one or more of the following:

■ Other Report Set Entries—these are subsections, or children, of the Report Set
Entry within which they are defined

■ One assigned Program instance and Planned Output to generate a report in the
chapter or section represented by the Report Set Entry.

■ Pre-Narrative—a text narrative displayed either before a report or instead of a
report in the chapter or section represented by the Report Set Entry. You can either
enter text or upload text from a file

■ Post-Narrative—a text narrative displayed after a report in the chapter or section
represented by the Report Set Entry. You can either enter text or upload text from a
file.

You assign a Program instance and Planned Output to a Report Set Entry from the
Report Set Structure view (see "Assign Planned Output" on page 9-16) or from a
Report Set Entry's Properties screen (see "Assigning a Planned Output to a Report Set
Entry" on page 9-35).

Creating Multiple Report Set Entries
To create a Report Set Entry, navigate to the Report Set or Report Set Entry under
which you want to create a new Report Set Entry, and:

1. Click Add. The Add Entries screen appears.

2. Enter values as necessary in the following fields for each Report Set Entry you
want to add at this level. Click Add 30 Entries if you need any additional rows.

■ Entry No. Prefix. (Optional) The system uses text you enter here, if any, in the
Full Title in the table of contents to identify the Report Set Entry. You can use
the prefix and suffix to include information that is not part of the actual title of
the Report Set Entry but which you need to display. For example, you may

Defining Report Set Entries

Defining Report Sets 9-27

require a set of reports so large that you decide to create multiple Report Set
definitions to manage it, with one for each volume. To make the numbering
unique across the larger set of reports, you must add the volume number as a
prefix to each Report Set Entry number.

Oracle truncates spaces at the beginning and end of text in fields. If you want
a space to appear between the prefix and the parent number, type \sp\ instead
of using the space bar on the keyboard.

If you want a delimiter character to appear between the prefix and the parent
number, you must type it here.

If you want the system to include the Entry No. Prefix in the Program Title
that is available to pass to the Program assigned to the Report Set Entry, leave
the checkbox selected. If not, deselect it. See "Passing Report Set Entry Values
to and from Programs" on page 9-38 for further information.

■ Parent Number. This read-only field contains the number of the Report Set
Entry that is the parent of all the Report Set Entries listed here. (If these Report
Set Entries are at the top level in the Report Set, this column contains no
value.)

The system automatically concatenates parent and child Report Set Entries'
numbers. If parent Report Set Entry 10 contains child Report Set Entries 1-3,
the system gives the child Report Set Entries numbers 10.1, 10.2, and 10.3. If
Report Set Entry 10.2 has two child Report Set Entries, they become 10.2.1 and
10.2.2, and so on.

You use the Delimiter Parameter to determine what punctuation the system
inserts between numbers; see Delimiter below.

If you want the system to include the Parent Number in the Program Title that
is available to pass to the Program assigned to the Report Set Entry, leave the
checkbox selected. If not, deselect it. See "Passing Report Set Entry Values to
and from Programs" on page 9-38 for further information.

■ Delimiter. Enter the character you want the system to use to separate the
Entry Number from the Entry Number of the parent Report Set Entry. If there
is no parent Report Set Entry, this value has no effect. The default is a period
(full stop) (.), which is used in the examples under Parent Number above. In
those examples, if you entered a comma as the Delimiter, for example, the
Report Set Entry numbers would be displayed as 10,1 10,2 and 10,3 and 10,2,1
and 10,2,2. Oracle truncates spaces at the beginning and end of text in fields. If
you want a space to appear between the delimiter and entry number, type
\sp\ instead of using the space bar on the keyboard.

If you want the system to include the Delimiter in the Program Title that is
available to pass to the Program assigned to the Report Set Entry, leave the
checkbox selected. If not, deselect it. See "Passing Report Set Entry Values to
and from Programs" on page 9-38 for further information.

■ Entry No. Accept the default value or enter the number that represents the
order number of this Report Set Entry in relation to other Report Set Entries
contained within the same parent Report Set Entry.

Defining Report Set Entries

9-28 Oracle Life Sciences Data Hub Application Developer's Guide

If you want the system to include the Entry No. in the Program Title that is
available to pass to the Program assigned to the Report Set Entry, leave the
checkbox selected. If not, deselect it. See "Passing Report Set Entry Values to
and from Programs" on page 9-38 for further information.

■ Entry No. Suffix. (Optional) The system uses text you enter here in the Full
Title in the table of contents to identify the Report Set Entry. If you need
additional numbers and/or text to follow the Report Set Entry's number in its
full title, enter it here. For example, you can include the word "Table,"
"Listing," or "Figure" (or any other text string) as the suffix.

If you want a space to appear between the entry number and the suffix, type
\sp\ at the beginning of the suffix.

If you want the system to include the Entry No. Suffix in the Program Title
that is available to pass to the Program assigned to the Report Set Entry, leave
the checkbox selected. If not, deselect it. See "Passing Report Set Entry Values
to and from Programs" on page 9-38 for further information.

■ Title. Enter a title for the Report Set or Report Set Entry. The system displays
this value as part of the Full Title in the table of contents to identify the Report
Set Entry. The title value is not required to be unique in the Report Set. You
can pass its value to the Program that generates the Report Set Entry's Planned
Output. The system passes the title value to the Report Set Entry name, which
is used internally only. (The internal name must be unique. If another Report
Set Entry exists with the same name, the system creates a unique name for the
newer Report Set Entry by appending or incrementing _1.)

This field is required unless the Placeholder flag is set to Yes, in which case the
system gives the Title the value: Placeholder.

■ Subtitle (Optional; Oracle LSH does not use this value). Enter a subtitle for the
Report Set Entry. The system can pass this value as a Parameter value for
post-processing; see "Passing Report Set Entry Values to and from Programs"
on page 9-38 for further information.

■ Report Type. (Optional; Oracle LSH does not use this value). From the
drop-down list, select Figure, Listing, or Table. The system can pass this value
as a Parameter value during execution; see "Passing Report Set Entry Values to
and from Programs" on page 9-38 for further information. The values

Note: If you enter numbers in a nonsequential order, after you apply
your changes, the system displays sibling Report Set Entries in order,
using the numbers you entered, provided that the set of entry
numbers does not violate the numbering settings defined in the parent
Report Set or Report Set Entry: if Strict is set to Yes, numbers must be
sequential, with no gaps; if Unique is set to Yes, numbers must be
unique within the parent.

To change the order, you can use the Reorder feature. See "Reordering
and Renumbering Objects" on page 3-36 for further information.

Note: The system concatenates the values of the fields up to and
including the Title, in the order shown, to create the Full Title for the
Report Set Entry.

Defining Report Set Entries

Defining Report Sets 9-29

displayed are configurable. Instructions are in the Oracle Life Sciences Data Hub
System Administrator's Guide

■ Placeholder. Set to Yes to exclude the Report Set Entry from the table of
contents. You can use this feature to force the system to accept unconventional
numbering. The system does not display a placeholder Report Set Entry in the
generated table of contents.

For example, if you have chapter 16 and subsections 16.1.1 and 16.1.2 but no
section 16.1, define section 16.1 as a placeholder. In the table of contents, the
system does not display 16.1 but it does display chapter 16 and subsections
16.1.1 and 16.1.2.

The default value is No (the report set entry is not a placeholder).

■ Strict. Set to Yes if you want to force numbering of Report Set Entries within
the Report Set Entry to be sequential, with no gaps. Set to No if you want to
allow gaps.

■ Unique. Set to Yes if you want to enforce unique numbering of Report Set
Entries within the Report Set Entry. Set to No if you want to allow duplicate
numbers.

■ Volume Break. Set to Yes if you want this Report Set Entry to start a new
volume in the post-processed PDF Report Set output.

■ Volume Name. If Volume Break is set to Yes, enter the title you want to give
the volume that will begin with this Report Set Entry. If Volume Break is set to
No, the system ignores the Volume Name, if any.

3. Repeat for as many Report Set Entries as you need with the same parent Report
Set or Report Set Entry.

4. Click Apply. The Report Set instance screen appears. To complete the definition of
these Report Set Entries, navigate to each Report Set Entry in turn and do the
following:

■ (Optional) Click Assign to assign a Program instance and Planned Output to
the Report Set Entry. This is required if you want to include a report in the
chapter or section represented by the Report Set Entry; but it is optional
because you can have Report Set Entries that serve only to organize their
subentries and/or display narrative text. See "Assigning a Planned Output to
a Report Set Entry" on page 9-35.

■ (Optional) Click Add a Pre-Narrative or Post-Narrative. Pre- and
post-narratives are text that appears immediately before or after the actual
generated report, or instead of a report, in a Report Set Entry. See "Adding
Narratives" on page 9-32.

■ (Optional) Click Update. The system makes all other Report Set Entry
property fields modifiable; see "Setting Report Set Entry Properties" on
page 9-29.

■ (Optional) Create Report Set Entry Parameters and/or change the default
value of Overlay Template and Post-Processing Parameters; see "Creating and
Setting Report Set Parameters" on page 9-20.

Setting Report Set Entry Properties
This section contains the following topics:

■ Setting Overall Properties on page 9-30

Defining Report Set Entries

9-30 Oracle Life Sciences Data Hub Application Developer's Guide

■ Setting Title Properties on page 9-30

■ Setting Assigned Program Properties on page 9-31

■ Adding Narratives on page 9-32

■ Setting Numbering Properties on page 9-32

■ Setting Volume Break Properties on page 9-32

In the main Report Set Entry screen you can set values for many Report Set Entry
properties. Reach this screen by clicking on the Report Set Entry's name in the Report
Set Structure view, or by navigating to it from the Report Set's Properties screen.

To modify most Report Set Entry properties you must click Update. However, to
assign a Program instance and/or Planned Output or to add a Narrative, you must not
click Update.

Setting Overall Properties
Enter values for the following properties for the Report Set Entry:

Title Enter a title for the Report Set or Report Set Entry. The system displays this
value as part of the Full Title in the table of contents to identify the Report Set Entry.
The title value is not required to be unique in the Report Set. The system passes the
title value to the Report Set Entry name, which is used internally only and is required
to be unique. If another Report Set Entry exists with the same name, the system creates
a unique name for the newer Report Set Entry.

This field is required unless the Placeholder flag is set to Yes.

Subtitle (Optional; Oracle LSH does not use this value.) Enter a subtitle for the
Report Set or Report Set Entry. The system can pass this value as a Parameter value for
post-processing; see "Passing Report Set Entry Values to and from Programs" on
page 9-38 for further information.

Description (Optional) Enter a description for the Report Set Entry.

Report Type (Optional; Oracle LSH does not use this value.) Select the expected
output type; for example, Table, Figure, or Listing. The system can pass this value as a
Parameter value during execution; see "Passing Report Set Entry Values to and from
Programs" on page 9-38 for further information. The values displayed are
configurable. Instructions are in the "Modifiable Lookups" section of the lookups
chapter in the Oracle Life Sciences Data Hub System Administrator's Guide.

Setting Title Properties
The system concatenates the title properties (except Placeholder) in the order shown
below, plus the Title, to generate the Full Title. The Report Set table of contents
displays the Full Title.

Select the checkbox of each property you want the system to concatenate with the Title
to generate the Program Title. The system can pass the Program Title to the assigned
Program instance during execution; see "Passing Report Set Entry Values to and from
Programs" on page 9-38 for further information.

Note: To change the Program Title or Full Title, see "Setting Title
Properties" on page 9-30.

Defining Report Set Entries

Defining Report Sets 9-31

For information about each property, see "Creating Multiple Report Set Entries" on
page 9-26.

The title properties are:

■ Entry No. Prefix

■ Parent Number

■ Delimiter

■ Entry No

■ Entry No. Suffix

■ Placeholder

Setting Assigned Program Properties
Report Set Entries have format-related properties whose values can be passed to the
assigned Program instance during Report Set execution. In your Program source code
you can use these values to format the report output; see "Passing Report Set Entry
Values to and from Programs" on page 9-38. Oracle LSH does not use these values. The
following properties are available for use. You can add allowed values for some of
them. Instructions are in the chapter "Adding and Modifying Lookup Values" in the
Oracle Life Sciences Data Hub System Administrator's Guide.

A Report Set Entry inherits default values for the Assigned Program Properties from
its parent Report Set Entry. The top-level Report Set uses system defaults. You can
reset them manually at any level.

Page Size Horizontal (Number) Enter the horizontal measurement of the page. If
your company does not configure a list of values, the default value is 210 (cms).

Page Size Vertical (Number) Enter the vertical measurement of the page. If your
company does not configure a list of values, the default value is 297 (cms).

Page Size Unit The unit in which the horizontal and vertical measurements are
given. If your company does not configure a list of values, the default value is cms
(centimeters).

Program Title Font Name Select the name of the font in which you want the title to
appear. If your company does not configure a list of values, the default value is
Courier.

Program Title Font Size (Number) Enter the size of the font in which you want the
title to appear. If your company does not configure a list of values, the default value is
10.

Footer Enter the text you want to use as the footer on each page of the report, up to
200 characters.

Page Size Margin Left (Number) Enter the size of the margin you want at the left
side of the page. If your company does not configure a list of values, the default value
is 3.42 (cms).

Note: You can assign a Program instance and Planned Output to a
Report Set Entry in either the Report Set Structure View or in the
Properties screen of the Report Set Entry.

Defining Report Set Entries

9-32 Oracle Life Sciences Data Hub Application Developer's Guide

Page Size Margin Top (Number) Enter the size of the margin you want at the top of
the page. If your company does not configure a list of values, the default value is 3.42
(cms).

Adding Narratives
You can add and remove Narratives only when you are not in update mode; see
"Adding Narratives" on page 9-32.

Setting Numbering Properties
You can modify the numbering properties as follows:

Strict If you want to require that all Report Set Entries contained in this Report Set
Entry have sequential numbering, with no gaps, select Yes. The default value is shared
from the parent Report Set Entry or Report Set.

Unique If you want to require that each Report Set Entry contained in this Report Set
Entry have a unique number within this Report Set Entry, select Yes. The default value
is shared from the parent Report Set Entry or Report Set.

Setting Volume Break Properties
Set the Volume Break properties as follows:

Volume Break If you want this Report Set Entry to be the first in a separate PDF file,
or volume of the Report Set, select Yes. The default value is No.

Volume Name If you want this Report Set entry to be the first in a separate PDF file,
or volume of the Report Set, enter the name of the volume you want it to start.

Adding Narratives
A narrative is text that you can add to a Report Set Entry either in addition to or
instead of reports generated by a Program instance. If a Report Set Entry contains both
narratives and a Program instance, the narratives appear on the same page as reports
either immediately before or after the report generated by the Program instance.

Narratives added as Pre-Narratives appear before the report, and narratives added as
Post-Narratives appear after the report.

To add a narrative, you must not be in Update mode.

1. In the Report Set Entry's Properties screen, click either the Pre-Narrative or
Post-Narrative Add button. The appropriate Add screen opens.

2. Either upload a file containing the text or enter the text:

Note: If you enter a Volume Name but set Volume Break to No,
Oracle XML Publisher does not create a volume break at this Report
Set Entry (and does not use the Volume Name value).

You can override these settings at the Report Set level by defining a
value for the Report Set Post-Processing Parameter Single Volume
Output Name. If that Parameter has a value, the system generates a
single volume with the name specified and ignores all Report Set
Entry volume-related values.

Defining Programs to Generate Reports

Defining Report Sets 9-33

■ To upload text, click Browse. The Choose file window opens. Browse and
select the text file. Click Open. The system copies the text into the Narrative
Description text box.

■ Alternatively, enter text in the Narrative Description text box.

3. Click Apply. The system returns you to the Report Set Entry screen.

Defining Programs to Generate Reports
This section contains the following topics:

■ About Programs in Report Sets on page 9-33

■ Assigning a Planned Output to a Report Set Entry on page 9-35

■ Options from the Report Set Program View Screen on page 9-36

■ Viewing Planned Output Assignments on page 9-37

■ Passing Report Set Entry Values to and from Programs on page 9-38

About Programs in Report Sets
A Report Set's reports are generated by Program instances in the Report Set. You can
create a Program definition and instance from within a Report Set, or you can create an
instance in a Report Set of a Program definition in an Application Area or Domain.
You can have Programs of different technology types (for example, SAS, PL/SQL, and
Oracle Reports) in the same Report Set. See Chapter 5, "Defining Programs" for general
information about Programs in Oracle LSH.

Each Program instance in a Report Set can have any number of primary Planned
Outputs, each of which corresponds to a single report output. You can assign each
Planned Output to a Report Set Entry. When you execute the Report Set, each report
appears in the Report Set in the location defined by its Report Set Entry.

Each Program instance in a Report Set is executed once during Report Set execution
and can be submitted with only one set of Parameter values. Therefore, when you
change a Program Parameter value in the Execution Setup definition or at submission
under one Report Set Entry, the value is effectively changed for all Report Set Entries
assigned to the same Program instance.

Similarly, when you execute the Report Set, you must select a single currency and
blinding status for the Report Set instance.

Only one person can check out and work on a particular Program instance in a Report
Set at a time. In addition:

■ Programs that are checked out by other people when you execute a Report Set are
not executed and a message to that effect appears in the Report Set output if you
create an Overlay Template for that purpose (see "Creating an Overlay Template

Note: The system does not store the file in Oracle LSH when you
upload it. The system copies the text content as a string.

Note: If you both upload a text file and enter text, the file you upload
overwrites the text you enter.

Defining Programs to Generate Reports

9-34 Oracle Life Sciences Data Hub Application Developer's Guide

Definition" on page 9-7). The information is also in the Report Set's log file. If you
have a Program checked out, the system executes the installed version of it.

■ Programs that are checked out during Report Set installation by another user are
not installed; see "Installing Report Sets" on page 9-42.

Developing Programs inside Report Sets is different from developing independent
Programs in the following ways:

■ Planned Outputs. You can assign each primary Planned Output that you want to
include in the Report Set to a different Report Set Entry. Do this in the Report Set
Entry or the Report Set Structure view; see "Assigning a Planned Output to a
Report Set Entry" on page 9-35. You are not required to assign every Planned
Output to a Report Set Entry. Any unassigned Planned Outputs are not included
in the Report Set output.

■ Mapping. All the standard Oracle LSH methods of mapping are available:

– Automatic Mapping by Name is available for multiple Program instances at
once from the Report Set Structure View and for one Program instance at a
time from the Program View.

– Create Table Descriptors from Existing Table Instances, which includes
mapping, is available from the Actions drop-down on each Program instance's
Properties screen.

– Create Table Instances from Existing Table Descriptors, which includes
mapping, is available from the Actions drop-down on the Report Set's
Properties screen. You can select Table Descriptors from all Program instances
in the Report Set.

■ Parameters. As with Programs outside of Report Sets, you can define Parameters
as necessary and set them in the Program instance, in the Execution Setup, or at
runtime. In addition, you can pass the values of Report Set Entry properties to the
Program instance and back; see "Passing Report Set Entry Values to and from
Programs" on page 9-38.

You can also define Parameters directly at the Report Set or Report Set Entry level
for the purpose of sharing their value with Program input Parameters at runtime,
and you can populate the value of one Program's input Parameter with the value
of another Program's output Parameter at runtime; see "Creating Parameters for
Sharing Values within the Report Set" on page 9-25.

■ Output Reuse. Unless you specify otherwise, Oracle LSH does not regenerate an
output if the Program instance version, data currency, and Parameter values have
not changed since the last execution that produced a nonretired output; see
"Output Reuse" on page 9-44.

You can force the system to run the job and regenerate the output by setting the
system Parameter Force Execution to Yes in the Execution Setup or at submission.

Note: If you map or modify the mappings of a checked-in Program
instance, the system implicitly checks out the Program instance. This
ensures that the Program instance and associated mappings must be
installed (and therefore versioned) if any of its mappings are
modified.

Defining Programs to Generate Reports

Defining Report Sets 9-35

You can add Programs, map their Table Descriptors, and submit them for execution in
several different Oracle LSH screens. See the following sections for details:

■ Report Set Structure View. To reach the Structure view, click the Report Set's
hyperlink under the Work Area and then select Structure from the View
drop-down if it is not already selected; see "Building and Modifying the Report
Set" on page 9-15.

■ Report Set Program View. To reach the Structure view, click the Report Set's
hyperlink under the Work Area and then select Program from the View
drop-down if it is not already selected; see "Options from the Report Set Program
View Screen" on page 9-36

■ Report Set Entry Add Screen. To reach the Add Report Set Entries screen, go first
to the Report Set Properties screen by clicking its hyperlink in the Report Set
Structure view. Then click Add Entries; see "Creating Multiple Report Set Entries"
on page 9-26.

■ Report Set Entry Properties Screen. To reach a Report Set Entry's Properties
screen, click its hyperlink in the Report Set Structure view; see "Setting Report Set
Entry Properties" on page 9-29.

Assigning a Planned Output to a Report Set Entry
After you assign a Program instance to a Report Set Entry, you can assign its primary
Planned Outputs to other Report Set Entries in the same Report Set. The system then
places the actual report generated by the Program instance for that Planned Output in
the chapter or subsection corresponding to the Report Set Entry.

If you select a Report Set Entry that already has a Planned Output assigned, you can
change the assignment by selecting a different one.

You can assign a Planned Output as follows:

■ In the Report Set Structure view, select the Report Set Entry to which you want to
assign a Planned Output, select Assign Planned Output from the drop-down list,
and click Go.

■ In the Report Set Entry Properties screen (not in Update mode), click the Assign
button.

In both cases, the Assign Program Instance and Planned Output screen opens. Do the
following:

Note: Setting Force Execution to Yes reruns all the Program
instances whose Report Set Entries are included in the execution. Use
this option only if you want all of these outputs to be reproduced.

Note: It is possible to include Program instances in a Report Set that
transform data, or that both transform and report data. However, for
the best Report Set execution performance, Oracle recommends
including only Program instances that report data, not Programs that
transform data, inside a Report Set. Instead, run transform Program
instances outside the Report Set and use their target Table instances as
the source Table instances for Program instances in the Report Set.

Defining Programs to Generate Reports

9-36 Oracle Life Sciences Data Hub Application Developer's Guide

1. In the Search By Program Instance field, click the Search icon. The Search and
Select window opens.

2. Click Go, or enter the name of the Program instance whose Planned Output you
want to assign and then click Go.

The system lists Program instances already assigned to the Report Set. If you have
entered the name of the Program instance, the system displays only that Program
instance.

3. Click the icon in the Quick Select column for the Program instance whose Planned
Output you want to assign.

The system returns you to the Assign Planned Output screen with the Program
instance name displayed.

4. Click Go. The system displays the Planned Outputs of the selected Program
instance.

If a Planned Output is already assigned to a Report Set Entry, the system displays
that Report Set Entry's number and title in the Assigned to RSE column.

5. Select the Planned Output you want to assign and click the Select button. The
system assigns the Planned Output to the current Report Set Entry. If you select a
Planned Output that is already assigned to another Report Set Entry, the system
removes it from that Report Set Entry.

Options from the Report Set Program View Screen
To reach the Program View screen, navigate to the Report Set in the Applications tab
hierarchy and click its hyperlink. Then select Program from the View drop-down list.

In the Report Set Structure view you can build and modify the Report Set structure
and do many other things as follows:

1. Select a Program instance.

2. Select one of the following items from the drop-down list.

3. Click Go.

The following actions are available:

■ Copy. The system opens the Paste screen and copies the Program instance you
selected into the location you specify: either a Report Set or a Work Area. The
system copies the Program instance's Execution Setup(s) and Table Descriptor
mappings. See "Copying, Cloning, and Moving Objects" on page 3-17 for
instructions.

■ Default Execution Setup. If a default Execution Setup already exists for this
Program, the system displays it. If a default Execution Setup does not yet exist, the

Note: If the Report Set Entry already has a Planned Output assigned,
the screen is populated with the Planned Output's Program instance
and all its Planned Outputs. You can select a different Planned Output
of the same Program or follow the instructions below to select a
different Program instance and Planned Output.

Note: The system displays only checked-in Program instances.

Defining Programs to Generate Reports

Defining Report Sets 9-37

system automatically creates one; see "Creating, Modifying, and Submitting
Execution Setups" on page 3-55 for further information.

■ Install. The system installs the selected Program instance. You can install a
Program instance if it is checked in or if you have checked it out.

■ Map. The standard Mapping screen opens. The Table Descriptors of this Program
only are available for mapping; see "Defining and Mapping Table Descriptors" on
page 3-36. You can map Table Descriptors for multiple Program instances at once
in the Report Set Structure view.

■ Remove. The system deletes the selected Program instance. If the Program
instance is assigned to one or more Report Set Entries, you get a warning. You can
see where its Planned Outputs are assigned by clicking its hyperlink to open its
Properties screen and then clicking the Planned Outputs tab.

The Program definition is not affected.

■ Quick Submit. The system submits the Program instance using the default
Execution Setup with its default values, without opening the Execution Setup
screen. The system upgrades the Execution Setup if necessary and validates it. The
submission fails if:

■ The Execution Setup cannot be upgraded; for example, if another user is
currently modifying the default Execution Setup

■ The Execution Setup is invalid; for example, the Parameters that apply to the
portion of the Report Set being submitted have invalid values

In the Job Execution section of the My Home page you see two jobs. A temporary
job starts the actual report generation job.

■ Submit. The system opens the submission screen for the default Execution Setup.
From there you can set Parameters and submit the Program instance. The system
automatically includes in the submission all Report Set Entries to which the
Program is assigned. See "Creating, Modifying, and Submitting Execution Setups"
on page 3-55.

To submit a different Execution Setup, click the Program's hyperlink to open its
Properties screen. Select Execution Setups from the Actions drop-down list and
follow instructions in "Creating, Modifying, and Submitting Execution Setups" on
page 3-55.

View Programs Click a Program's hyperlink in the Name column to go to that
Program's Properties screen.

Viewing Planned Output Assignments
You can see information about Planned Output assignments in the following places:

■ In the Report Set instance's Program view, there is a column that displays the
number of primary Planned Outputs each Program has, and another column for
the number of primary Planned Outputs that are not currently assigned to a
Report Set Entry. To see which Planned Outputs are assigned to which Report Set
Entries, click the hyperlink on the Program's name, then open the Planned
Outputs tab.

Note: You can submit a Program instance in a Report Set only if it is
installed and assigned to at least one Report Set Entry.

Defining Programs to Generate Reports

9-38 Oracle Life Sciences Data Hub Application Developer's Guide

■ In the Report Set instance's Structure view, there is a column for Assigned Planned
Output that displays the name of the Planned Output assigned to each Report Set
Entry.

■ In the Properties screen for each Report Set Entry, the system displays the name of
the Program instance and Planned Output currently assigned to the Report Set
Entry. This is the only place where you can create and remove Planned Output
assignments. See "Assigning a Planned Output to a Report Set Entry" on page 9-35
for instructions.

Passing Report Set Entry Values to and from Programs
This section contains the following topics:

■ Report Set Entry Properties Available for Passing on page 9-38

■ Passing Values from a Report Set Entry to a Program Instance on page 9-39

■ Passing Values from a Program Instance to the Report Set for Post-Processing on
page 9-40

You can pass the values of title- and formatting-related Report Set Entry properties to
the Program assigned to a Report Set Entry, use these values in the Program's source
code during execution, and then send a values back to the Report Set for use during
postprocessing.

Different Report Set Entries assigned to the same Program instance can have different
values for the same Report Set Entry properties. If you use this feature, your source
code must handle the input from different Report Set Entries, and the output to
different Report Set Entries, correctly.

Report Set Entry Properties Available for Passing
You can pass the values of Report Set Entry assigned program properties and several
additional properties from a Report Set Entry to its assigned Program and use them in
the Program to format the output of the Report Set Entry. See "Setting Assigned
Program Properties" on page 9-31 for a description of each Program property.

■ Page Size Horizontal

■ Page Size Vertical

■ Page Size Unit

■ Program Title Font Name

■ Program Title Font Size

■ Footer

■ Page Size Margin Left

■ Page Size Margin Top

You can also pass values for the following:

■ File Reference Name Each Planned Output can have only one file reference name,
and each Planned Output is assigned to only one Report Set Entry. Oracle
recommends using the file reference name in your Program code to distinguish the
properties of one Report Set Entry from another one to which another Planned
Output of the same Program instance is assigned. However, Oracle LSH does not
enforce unique File Reference Names among a Program's Planned Outputs; you
must do that manually.

Defining Programs to Generate Reports

Defining Report Sets 9-39

■ Full Title. The system uses the full title in the Report Set's table of contents. The
Full Title includes all of the following, concatenated in the following order:

Entry No. Prefix||Parent No.||Delimiter||Entry No.||Entry No. Suffix||" " ||
Title

■ Program Title. The system does not use the Program title. It always includes the
Title and can include any of the other elements that the Full Title can, in the same
order, if you so specify; see "Setting Title Properties" on page 9-30 and "Passing
Report Set Entry Values to and from Programs" on page 9-38.

Passing Values from a Report Set Entry to a Program Instance
The method of passing Report Set Entry values to a Program instance differs
depending on whether you are working in SAS or Oracle Reports or PL/SQL.

SAS Oracle LSH includes a SAS data set named LSH_RS.RS_TITLE that is available
when you open the SAS IDE or execute a SAS Program from within the context of a
Report Set. LSH_RS.RS_TITLE includes the values of all Program properties, plus the
file reference name, Full Title, Program Title, and Report Type for all the Report Set
Entries to which the Program instance is assigned. The primary key is the file reference
name of the Planned Output assigned to each Report Set Entry.

Your source code can reference any of the values in LSH_RS.

Note: Oracle LSH does not enforce file reference name uniqueness
among a Program's Planned Outputs. If you plan to pass values from
a Report Set Entry to its Program instance, you must ensure that each
Planned Output assigned to a Report Set Entry has a different file
reference name.

Table 9–3 Report Set Entry Properties and Corresponding LSH_RS Data Set Variables

Property Number Variable Type Length Format Informat Label

File Reference Name 1 FILE_REF Char 8 $8. $8. FILE_REF

Title 2 TITLE Char 4000 $4000. $4000. TITLE

Full Title 3 TOCTITLE Char 4000 $4000. $4000. TOCTITLE

Program Title 4 RSETITLE Char 200 $200. $200. RSETITLE

Prefix 5 PREFIX Char 200 $200. $200. PREFIX

Parent No. 6 PARENT Char 4000 $4000. $4000. PARENT

Delimiter 7 DELIMIT Char 30 $30. $30. DELIMIT

Entry No. 8 ENTRY Char 200 $200. $200. ENTRY

Suffix 9 SUFFIX Char 200 $200. $200. SUFFIX

Subtitle 10 TITLE2 Char 200 $200. $200. TITLE2

Report Type 11 REP_TYPE Char 4000 $100. $4000. REP_TYPE

Footer 12 FOOTER Char 200 $200. $200. FOOTER

Program Title Font Name 13 FONTNAME Char 4000 $20. $4000. FONTNAME

Program Title Font Size 14 FONTSIZE Num 8 6. 7. FONTSIZE

Page Size Horizontal 15 PS_HORI Num 8 6. 7. PS_HORI

Defining Programs to Generate Reports

9-40 Oracle Life Sciences Data Hub Application Developer's Guide

Passing Values from a Program Instance to the Report Set for Post-Processing
You call Oracle LSH APIs from either SAS or Oracle Reports or PL/SQL to pass values
from the executed Program instance to the Report Set for postprocessing.

Refer the Oracle Life Sciences Data Hub Application Programming Interface Guide for
details.

SAS The example function below uses APIs to retrieve values from the Program
instance and pass them to Oracle LSH for Report Set postprocessing. It uses a PL/SQL
wrapper that you call from SAS. Within the wrapper, the function calls several Oracle
LSH public APIs to do the work.

If a particular Planned Output is not assigned to a Report Set Entry when you execute
the Program instance, the function returns "Title for fileref_name" with the fileref name
of the unassigned Planned Output.

Example 9–1 Function to Pass Title and Other Values from SAS to Oracle LSH

SAS code
--
Proc SQL;
/*set the job context then send the output value*/
connect to oracle (user=%sysget(CDR_SCHEMA) pass=%sysget(CDR_PASSWD)
path=%sysget(CDR_DB));

/* pass output parameter, sub title and title back to LSH */
execute(exec my_plsql_package.CallLSHApi(
'MyParamName'
,'My Param Value'
,'out1'
,'My Output Title'
,'out1'
,My Output Sub Title'
)
by oracle ;

PL/SQL code
--
CREATE OR REPLACE PACKAGE my_plsql_package AS
Procedure CallLSHApi(
pi_vParamName IN varchar2
,pi_vParamValue IN varchar2
,pi_vTitleFileRef IN varchar2
,pi_vTitle IN varchar2
,pi_vSubTitleFileRef IN varchar2
,pi_vSubTitle IN varchar2
);
END my_plsql_package;

Page Size Vertical 16 PS_VERT Num 8 6. 7. PS_VERT

Page Size Unit 17 PS_UNIT Char 20 $20. $20. PS_UNIT

Page Size Margin Left 18 PS_LEFT Num 8 6.2 8.2 PS_LEFT

Page Size Margin Top 19 PS_TOP Num 8 6.2 8.2 PS_TOP

Volume Name 20 VOL_NAME Char 255 $255. $255. VOL_NAME

Table 9–3 (Cont.) Report Set Entry Properties and Corresponding LSH_RS Data Set Variables

Property Number Variable Type Length Format Informat Label

Defining Programs to Generate Reports

Defining Report Sets 9-41

/

CREATE OR REPLACE PACKAGE BODY my_plsql_package AS
Procedure CallLSHApi(
pi_vParamName IN varchar2
,pi_vParamValue IN varchar2
,pi_vTitleFileRef IN varchar2
,pi_vTitle IN varchar2
,pi_vSubTitleFileRef IN varchar2
,pi_vSubTitle IN varchar2
) IS

return_status VARCHAR2(10);
msg_count NUMBER;
msg_data VARCHAR2(2000);
BEGIN
 Cdr_Pub_Exe_User_Utils.setOutputParams(p_api_version => 1
 ,p_init_msg_list => Cdr_Pub_Def_Constants.G_FALSE
 ,p_commit => Cdr_Pub_Def_Constants.G_FALSE
 ,p_validation_level => Cdr_Pub_Def_Constants.G_VALID_LEVEL_FULL
 ,x_return_status => return_status
 ,x_msg_count => msg_count
 ,x_msg_data => msg_data
 ,pi_vparamName => pi_vParamName
 ,pi_vparamValue => pi_vParamValue) ;
 IF return_status <> 'S' THEN
 RAISE_APPLICATION_ERROR(-20200,'Failed to call Cdr_Pub_Exe_User_
Utils.setOutputParams: '||msg_data);
 END IF ;
 Cdr_Pub_Exe_User_Utils.SetCustomOutputTitle(p_api_version => 1
 ,p_init_msg_list => Cdr_Pub_Def_Constants.G_FALSE
 ,p_commit => Cdr_Pub_Def_Constants.G_FALSE
 ,p_validation_level =>Cdr_Pub_Def_Constants.G_VALID_LEVEL_FULL
 ,x_return_status => return_status
 ,x_msg_count => msg_count
 ,x_msg_data => msg_data
 ,pi_vFileRef=> pi_vTitleFileRef
 ,pi_vValue => pi_vTitle) ;
 IF return_status <> 'S' THEN
 RAISE_APPLICATION_ERROR(-20200,'Failed to call Cdr_Pub_Exe_User_
Utils.SetCustomOutputTitle: '||msg_data);
 END IF ;
 Cdr_Pub_Exe_User_Utils.SetCustomOutputSubTitle(p_api_version => 1
 ,p_init_msg_list => Cdr_Pub_Def_Constants.G_FALSE
 ,p_commit => Cdr_Pub_Def_Constants.G_FALSE
 ,p_validation_level => Cdr_Pub_Def_Constants.G_VALID_LEVEL_FULL
 ,x_return_status => return_status
 ,x_msg_count => msg_count
 ,x_msg_data => msg_data
 ,pi_vFileRef=> pi_vSubTitleFileRef
 ,pi_vValue => pi_vSubTitle) ;
 IF return_status <> 'S' THEN
 RAISE_APPLICATION_ERROR(-20200,'Failed to call Cdr_Pub_Exe_User_
Utils.SetCustomOutputSubTitle: '||msg_data);
 END IF ;
END CallLSHApi;
END my_plsql_package;
/

Installing Report Sets

9-42 Oracle Life Sciences Data Hub Application Developer's Guide

Oracle Reports or PL/SQL To pass Title and Program property values from a Program
instance to the Report Set for postprocessing in a PL/SQL Program, you can call
Oracle LSH public APIs:

■ Cdr_Pub_Exe_User_Utils.SetCustomOutputTitle. Use this API to pass the title
from the Report Set Entry to the Program instance.

■ Cdr_Pub_Exe_User_Utils.SetCustomOutputSubTitle. Use this API to pass the
subtitle from the Report Set Entry to the Program instance.

■ Cdr_Pub_Exe_User_Utils.setOutputParams. Use this API to pass every other
value you need from the Report Set Entry to the Program instance.

Installing Report Sets
This section contains the following topics:

■ Installing the Report Set as a Whole with All Programs Checked In on page 9-42

■ Installing the Report Set as a Whole with Some Programs Checked Out on
page 9-43

■ Installing a Single Program Instance in the Report Set on page 9-43

Installing a Report Set is complicated because of its size and the fact that many people
can work on it at the same time. Depending on the exact timing of your action and
other people's actions, you may receive an error message that the system cannot
perform your action immediately because of a conflict with another user. Your work
will not be lost and you can try again in a short time.

At the end of the installation process the system upgrades all checked in Report Set
Execution Setups as necessary to synchronize them with the Report Set definition.

During the installation process, the Report Set instance itself (which includes the
mappings of its Program instances to Table instances) is unavailable for modification.
If the Report Set is very large the installation process may take a long time, so plan
your installation accordingly.

To see a list of reasons Report Set instances may not be installable, see Appendix A,
"Installation Requirements for Each Object Type".

Installing the Report Set as a Whole with All Programs Checked In
To install a Report Set as a whole, install its Work Area and include the Report Set in
the installation.

If all the Programs in the Report Set are checked in, the system installs the whole
Report Set and leaves the Report Set itself and all its Programs checked in. You can
look at the installation log to see the details.

See "Installing a Work Area and Its Objects" on page 12-11 for further information.

Note: If someone is working on an Execution Setup, the Execution
Setup is implicitly checked out. Checked out Execution Setups are not
upgraded during installation. No message is displayed.

Installing Report Sets

Defining Report Sets 9-43

Installing the Report Set as a Whole with Some Programs Checked Out
If you install a Report Set instance and some of its Program instances are checked out
by you and noone else, the system checks them in, checks in the Report Set instance
and its source definition, and installs the Report Set instance.

If you install a Report Set instance and some of its Program instances are checked out
by you and some by someone other than you, and you do not have the LSH Checkin
Admin role, the system checks in and installs only the Program instances that were
checked out by you. It does not check in the Program instances checked out by others,
and it does not check in the Report Set instance or definition or install the Report Set
instance.

To see which Programs were and were not installed, look at the installation log file.

Installing a Single Program Instance in the Report Set
When you install a single Program instance in a Report Set, the system does the
following:

■ Checks in the Program instance. its mappings, and its source Program definition.
(If the Program definition is checked out by a user other than the user installing
the Program instance, the installation fails.)

■ Checks in the Report Set Entry to which the Program instance is assigned and all
Report Set Entries above it in the hierarchy

■ Installs the Program instance

■ Installs the Report Set Entries, regardless of the setting of the Omit From Install
flag

■ Installs the Report Set instance

■ Installs the Table instances to which the Program's Table Descriptors are mapped,
if they are not already installed

No other Program instances in the Report Set are checked in or installed.

You can install a Program instance in a Report Set in several different ways:

■ In the Report Set Structure view, select one of the Report Set Entries assigned to
the Program instance, select Install Program from the drop-down list, and click
Go.

■ In the Report Set Program View, select the Program instance, select Install from
the drop-down list, and click Go.

■ In the Program instance's Properties screen, click Install.

Note: If a user with the LSH Checkin Admin role installs a Report
Set, all Program instances in the Report Set are checked in during the
installation.

Note: The Report Set definition remains checked out.

Validating Report Set Definitions and Outputs

9-44 Oracle Life Sciences Data Hub Application Developer's Guide

Validating Report Set Definitions and Outputs
This section contains the following topics:

■ Output Reuse on page 9-44

■ Program Output Validation Flag on page 9-45

■ Report Set Validation Status on page 9-46

■ Summary Output Validation Status on page 9-47

■ Output-Oriented Validation on page 9-48

■ Definition-Oriented Validation on page 9-49

■ Changing Validation Status on page 9-50

A Report Set may have many Report Set Entries and Program instances in different
stages of development at the same time, with reports on data that may become stable
at different times. Each of these—Report Set Entries, Program instances, and
outputs—has a validation status. You can promote different parts of the Report Set to a
new validation status at different times.

Because of this complexity, Oracle LSH provides several tools and other functionality
to help you manage Report Set validation:

■ Output reuse. Each time you run a Program in a Report Set, the system checks if a
duplicate output already exists. If it does, the system does not generate the output
again, so that any validation work you have done on the output is still valid. See
Output Reuse on page 9-44 for further information.

■ Validation Status. Report Set instances and definitions both have a validation
status like the validation status of other objects. There are some special rules for
Report Sets; see "Report Set Validation Status" on page 9-46.

■ Summary Output Validation Status. Report Set instances have an additional
status that is automatically calculated for every Report Set Entry and the Report
Set instance as a whole; see "Summary Output Validation Status" on page 9-47.

There are two basic processes you can use to validate a Report Set output:

■ Validate the content of each report output manually according to your company
standards; see "Output-Oriented Validation" on page 9-48.

■ Validate each Program definition and instance according to your company
standards. The Execution Setup inherits its validation status from the Program
instance, and the output inherits its validation status from the Execution Setup; see
"Definition-Oriented Validation" on page 9-49.

Oracle LSH supports both approaches with a flag for each Program definition; see
"Program Output Validation Flag" on page 9-45. It is possible to use both approaches
within a single Report Set.

See "Validating Objects and Outputs" on page 3-31 for general information about
validation.

Output Reuse
Each time you run a Program in a Report Set, either directly or through the Report Set,
the system checks if a duplicate output already exists. An output is a duplicate if it is
generated by the same version of the same Program instance with the same Parameter
values on data of the same currency and blinding status.

Validating Report Set Definitions and Outputs

Defining Report Sets 9-45

If the current Program execution would produce an output that is a duplicate of an
existing output, the system reuses the existing output in the Report Set unless it has a
validation status of Retired.

If all of a Program's Planned Outputs have reusable non-Retired duplicate outputs, the
system does not execute the Program at all during the Report Set execution. If one or
more Planned Outputs assigned to a Report Set Entry that is included in the execution
does not have a reusable duplicate output, the system executes the Program and
generates all outputs, but sets the new duplicate outputs' validation status to Retired.

If the system cannot execute a Program instance because it is checked out, or if it fails
execution, the Report Set cannot reuse existing outputs because the Program version is
different. The Report Set uses the In Progress OTD file as a placeholder for the
ungenerated output.

The Jobs screen shows all subjobs that actually ran. The Report Set log file shows
which subjobs produced the outputs that were actually used and lists the outputs.

Report Set Entry Properties and Reuse Title- and format-related Report Set Entry
properties can be passed to the Program instance assigned to that Report Set Entry.
The same Program instance may have multiple Planned Outputs assigned to different
Report Set Entries.

Oracle LSH tracks these Report Set Entry-specific values separately from other
Parameter values and treats them differently in its duplicate output logic. If one of
these values changes, only the output related to the Report Set Entry with the changed
value is regenerated. All other outputs—assigned to other Report Set Entries—are
reused if a duplicate non-Retired output exists.

For example, if Program A has Planned Outputs assigned to Report Set Entries 1.1, 1.2,
and 1.3, and you enter a new value for Title or Font Size in Report Set Entry 1.1 only,
and all other Parameter values and the data currency and Program instance version
are the same since the last time the Program instance was executed, then the existing
outputs for Report Set Entries 1.2 and 1.3 are reused.

Program Output Validation Flag
The flag Force Output Validation Status to 'Development' is part of every Program
definition. If selected, outputs of instances of this Program definition are always
created with a validation status of Development. Use this setting if you plan to
validate the contents of the output.

If deselected, the outputs inherit the validation status of the Execution Setup that
produced them, which in turn can inherit its validation status from the Program
instance. Use this setting if you plan to validate the source data and the Program, and
allow the output to inherit its validation status from the Program's.

Your company can determine the default setting using an Oracle profile; see "Setting
the Default Value for: Force Output Validation Status to Development" in the chapter
on setting profile values in the Oracle Life Sciences Data Hub System Administrator's
Guide.

You can use both approaches in a single Report Set for different Programs.

Note: You can force the system to produce and use new outputs for
the Report Set Entries included in a submission, even if they are
duplicates, by setting the Force Execution flag to Yes in the Execution
Setup.

Validating Report Set Definitions and Outputs

9-46 Oracle Life Sciences Data Hub Application Developer's Guide

Report Set Validation Status
Oracle LSH enforces the following validation rules for Report Sets, their Report Set
Entries, and their Program instances:

■ You can change the validation status of any Report Set Entry without affecting the
validation status of other Report Set Entries either above or below it in the Report
Set structure.

■ A Report Set or Report Set Entry cannot have a higher validation status than any
of the Program instances it contains.

■ A Report Set cannot have a higher validation status than any of its Report Set
Entries.

■ By default, the system calculates the validation status for a Report Set and for a
Report Set volume, if any, as the lowest status of all the Report Set Entries it
contains.

The system cascades a validation status promotion as follows:

■ Cascade Promotion from Report Set to Report Set Entries. If you try to promote a
Report Set to a higher validation status and all the Program instances in the Report
Set are at that status (or higher), but all the Report Set Entries are not, you have the
option of cascading the higher status to all the Report Set Entries as part of the
Report Set promotion. If you choose not to cascade, the operation fails, because a
Report Set cannot have a higher validation status than its Report Set Entries.

For example, if you want to promote a Report Set from Development to Quality
Control (QC), and all of its Program instances are already at QC but some of its
Report Set Entries are still at Development, you must promote the Report Set
Entries to QC in order to promote the Report Set as a whole to QC. You can do this
through a cascade operation as part of the Report Set promotion.

■ Cascade Promotion from Parent to Child Report Set Entries. If you promote a
Report Set Entry that has one or more child (or grandchild, etc.) Report Set Entries
with a lower validation status, you receive a message offering you the opportunity
to cascade the promotion to all its children. If you choose to proceed, the operation
upgrades all child (and grandchild, and so on) Report Set Entries.

If you choose not to cascade, the operation will proceed for just the parent Report
Set Entry.

■ Cascade Promotion from Program Instance to Definition. As with Program
instances outside Report Sets, you can cascade a validation promotion from the
Program instance to its definition. If another user has checked out the definition,
the operation fails.

■ Cascade Promotion from the Report Set Output to Contributing Outputs in the
Same Job. When you promote a Report Set PDF output, if any of the individual
outputs included in it have a validation status lower than the one to which you are
promoting the cumulative output, you receive a message asking if you would like
to promote the contributing outputs produced in the same job. You must validate
all or none of the PDF outputs.

For example, if you choose to run only one Program instance during the Report
Set execution, and that Program instance produces multiple outputs, you can
upgrade the validation status of all outputs produced by the Program at the same
time.

Validating Report Set Definitions and Outputs

Defining Report Sets 9-47

Oracle LSH enforces the following behavior for the Report Set and its components at
the following validation statuses:

■ Development. When you create a new Report Set Entry, either by defining it or by
copying it from another Report Set, it automatically receives a validation status of
Development. Anyone with Modify privileges on the Report Set can work on it.
Users can check out a Program definition through an instance of it in the Report
Set if they have Modify privileges on the Program definition.

■ Quality Control. When a Report Set Entry's validation status is set to Quality
Control, a user must have the Modify QC privilege on Report Sets to modify the
Report Set Entry in any way, including the addition or removal of a Program
instance and Planned Output assignment. A user must have the Modify Validation
Status QC privilege on Report Sets to set the validation status back to
Development.

■ Production. When a Report Set Entry's validation status is set to Production, a
user must have the Modify Production privilege on Report Sets to modify the
Report Set Entry in any way, including the addition or removal of a Program
instance and Planned Output assignment. A user must have the Modify Validation
Status Production privilege on Report Sets to set the validation status back to
Development.

■ Retired. You cannot set the validation status of a Report Set Entry, or a Program
instance in a Report Set, to Retired. If you no longer want to use a Report Set Entry
or Program instance, remove it from the Report Set.

Summary Output Validation Status
In addition to the standard validation status (VS), each Report Set Entry also has a
Summary Output Validation Status (SOVS). You can use this status to track which
Report Set Entries do not yet have a Planned Output assigned and, if you are
validating outputs manually, which outputs have not yet been promoted to a new
validation status.

The system automatically calculates the SOVS for each Report Set Entry based on the
validation status of its actual "current" output (if any) and on the SOVS of its child
Report Set Entries (if any).

The Summary Output Validation Status can have the following values:

■ Null. The system displays no SOVS if a Report Set Entry has a Planned Output
assigned but no usable current output, or if the assigned Program instance is
checked out.

■ Unassigned. If a Report Set Entry is not marked as a placeholder and does not
have a Planned Output or a Narrative assigned, the SOVS is Unassigned.

■ N/A (Not Applicable). If a Report Set Entry has no child Report Set Entries and
either is marked as a placeholder or has a Narrative assigned, its SOVS is N/A. If
a Report Set Entry does have one or more child Report Set Entries, its SOVS is
N/A only if it meets both of the following conditions: all its and, in addition,

– The SOVS of all its child Report Set Entries is N/A.

Note: Because you are forced to validate all or none of the
contributing PDF outputs, if you plan to validate a report set output,
be sure to selectively remove from the job any Report Set Entries that
should not be validated.

Validating Report Set Definitions and Outputs

9-48 Oracle Life Sciences Data Hub Application Developer's Guide

– It is marked as a placeholder or has a Narrative assigned.

■ Development. If any of a Report Set Entry's child Report Set Entries has an SOVS
of Null or Unassigned, the parent Report Set Entry's SOVS is Development.

In addition, a Report Set Entry inherits the SOVS of its current output (if any) or
any of its child Report Set Entries (if any), whichever has the lowest SOVS. If any
of these is Development, the Report Set Entry is also set to Development.

■ Retired. If the current output of a Report Set Entry is manually set to Retired, the
Report Set Entry's SOVS is also set to Retired. When the Report Set Entry's
Program generates a new output, the system changes the Report Set Entry's SOVS
to reflect that output's validation status.

■ Quality Control (QC). A Report Set Entry has an SOVS of Quality Control if the
lowest SOVS of any of its child Report Set Entries or its current output (if any) is
Quality Control.

■ Production. A Report Set Entry has an SOVS of Production if the lowest SOVS of
any of its child Report Set Entries or its current output (if any) is Production.

The Report Set definition inherits the SOVS of its child Report Set Entry with the
lowest SOVS. The Report Set instance inherits its SOVS from the Report Set definition.

The SOVS is displayed only in the context of a Report Set instance in a Work Area, not
for the Report Set definition in its Application Area or Domain.

Output-Oriented Validation
In the output-oriented validation approach, you validate an actual report, including all
its data, using the same validation standards your company has always used. The
system continues to include the report you have validated in the Report Set as long as
you continue to run the same Program instance version with the same currency,
blinding status, and Parameter values; see "Output Reuse" on page 9-44 for further
information.

If you use the same Program instance to generate a new output of data of a different
currency or blinding status, or change any other Parameter values, you must validate
the resulting new output.

The output-oriented validation process includes the following steps:

1. When you define Programs for use in a Report Set, set the Force Output
Validation Status to 'Development' flag to Yes; see "Creating a Program" on
page 5-3 for further information.

2. Define and test the Report Set structure and Program instances inside the Report
Set over time.

Note: Although this status supports a practice of not including
Narratives and Planned Outputs in the same Report Set Entry, it is in
fact possible to have both. Be aware that if you assign a Narrative to a
Report Set Entry before you assign a Planned Output, the SOVS will
be N/A instead of Unassigned.

Note: The Force Output Validation Status to 'Development' flag is
a property of the Program definition, not the instance.

Validating Report Set Definitions and Outputs

Defining Report Sets 9-49

3. When the data a particular Program reports on reaches a point where it should be
included in a report for internal use or submission, apply a snapshot label—for
example, "Interim"—to the relevant Table instances, either through the job that
writes the data to the Table instances or directly in the Work Area("Managing
Table Instance Snapshot Labels in a Work Area" on page 12-8). This step is optional
but recommended.

4. Run the Report Set Entries assigned to the Program that runs on the stable data.

5. Validate each resulting output according to your company's policies, first to
Quality Control (QC) and then to Production. The system applies the validation
status of the output to the Summary Output Validation Status (SOVS) of the
corresponding Report Set Entry; see "Summary Output Validation Status" on
page 9-47.

6. Manually upgrade the standard validation status (VS) of the Program instance and
definition and the associated Report Set Entry.

7. Follow the same process for other outputs and their Program instances and
definitions and Report Set Entries, until the entire Report Set reaches a higher
validation status.

When the source data for the original Program reaches another point where it should
be included in a report for internal use or submission, apply another snapshot label;
for example, "Final," and repeat the process.

Definition-Oriented Validation
In the definition-oriented validation approach, you develop standards for validating
the Program instances (and their source Program definitions) that generate each
Report Set report output. For example, you can use different sets of test data to test
whether the report output contains the correct data. When you have successfully
validated the Program definition and instance and set their validation status to
Production, the Execution Setups of the Program instances inherit the validation status
of Production and the outputs they produce also inherit a validation status of
Production.

If you run the same version of the Program instance with different data currency,
blinding status, or other Parameter values, the new outputs also have a validation
status of Production.

The definition-oriented validation process includes the following steps:

1. When you define Programs for use in a Report Set, set the Force Output
Validation Status to 'Development' flag to No; see "Creating a Program" on
page 5-3 for further information.

Note: The Report Set output as a whole inherits the validation status
of the Program output with the lowest validation status.

The Report Set definition and instance, and each volume defined in a
Report Set, inherit the validation status of the Report Set Entry with
the lowest validation status they contain.

Note: The Force Output Validation Status to 'Development' flag is
a property of the Program definition, not the instance.

Validating Report Set Definitions and Outputs

9-50 Oracle Life Sciences Data Hub Application Developer's Guide

2. Define and test the Report Set structure and Program instances inside the Report
Set over time.

3. Promote each Program instance and the Report Set Entries to which it is assigned
to Quality Control, according to your company's policies.

4. Promote each Program instance and the Report Set Entries to which it is assigned
to Production, according to your company's policies.

5. Run the Report Set, or parts of the Report Set, on the appropriate data snapshot(s).
The resulting output inherits its validation status from the Execution Setup that
generated it, which in turn inherits its validation status from the Report Set
instance. If the Report Set instance is set to Production, the output is also set to
Production.

You can manually reset the validation status of an output at any time, subject to your
company's policies.

Changing Validation Status
This section contains the following topics:

■ Changing the Validation Status of an Output on page 9-50

■ Changing the Validation Status of a Report Set Entry on page 9-51

■ Changing the Validation Status of a Program Instance in a Report Set on page 9-51

Changing the Validation Status of an Output
When you upgrade the validation status of an output, you must validate the status off
all contributing outputs produced during the same job.

To change the Validation Status of a Report Set output, do the following:

1. Navigate to the Report Set output in either the Reports or My Home page:

■ In the Reports tab, navigate the hierarchy that contains the Report Set, then
click the icon in the Action column for the output.

■ In the Job Executions section of the My Home page, click the Job ID, then on
the Output Name.

2. From the Actions drop-down, select Validation Supporting Info and click Go.

3. Select the Validation Status you want from the drop-down list and click Update. If
any of the contributing Program outputs produced during the same Report Set
execution have a validation status lower than the new validation status you are
applying, the system displays a message giving the number of such outputs and
asks if you want to continue.

If you choose to continue, all contributing outputs are promoted.

If you choose not to continue, none of the contributing outputs is promoted.

Note: The Report Set output inherits the validation status of the
Program output with the lowest validation status.

The Report Set definition and instance, and each volume defined in a
Report Set, automatically receive the validation status of the lowest
Report Set Entry they contain.

Modifying Report Sets

Defining Report Sets 9-51

Changing the Validation Status of a Report Set Entry
To change the Validation Status of a Report Set Entry, do the following:

1. Navigate to the main page for the Report Set Entry. For example, from the Report
Set structure screen, navigate in the Report Set hierarchy to the Report Set Entry
and click its name.

2. From the Actions drop-down, select Validation Supporting Info and click Go.

3. Select the Validation Status you want from the drop-down list and click Update.

Changing the Validation Status of a Program Instance in a Report Set
To change the Validation Status of a Program instance in a Report Set, do the
following:

1. Navigate to the main page for the Program instance. For example, from the Report
Set structure screen, navigate in the Report Set hierarchy to a Report Set Entry to
which the Program instance is assigned, then click the Program name in the
Assigned Program Instance column.

2. From the Actions drop-down, select Validation Supporting Info and click Go.

3. Select the Validation Status you want from the drop-down list and click Update.

About Report Set Planned Outputs
Individual reports in a Report Set are the Planned Outputs of the Program instances
associated with the Report Set.

In addition, the system automatically creates two Planned Outputs for the Report Set
as a whole:

■ The Report Set log file.

■ The Report Set itself; all reports on data. By default, the system creates one
Planned Output and gives it the same name (not the title) as the Report Set.

You can define volume breaks and volume names in Report Set Entries. The
system produces each volume as a separate file. Volumes are not displayed in the
Planned Outputs subtab. See "Setting Report Set Entry Properties" on page 9-29 for
further information.

You can override Volume Break settings in Report Set Entries by defining a value
for the Single Volume Output Name Post-Processing Parameter at the Report Set
level.

■ The table of contents is generated as a separate file if the TOC Parameter is set to
Yes and the Report Set contains multiple volumes.

Modifying Report Sets
This section contains the following topics:

■ Modifying Report Set Instance Properties on page 9-52

■ Modifying Report Set Definition Properties on page 9-52

– Modifying the Report Set Structure on page 9-53

– Modifying Report Set Entries on page 9-53

– Modifying Programs on page 9-53

Modifying Report Sets

9-52 Oracle Life Sciences Data Hub Application Developer's Guide

If you have the necessary privileges, you can modify a Report Set either through an
instance of it in a Work Area or directly in the definition in its Domain or Application
Area. In most cases it makes sense to work through an instance in a Work Area for the
following reasons:

■ In order to use or test changes to the definition you must create and install an
instance of it.

■ If you work through an instance, the system automatically repoints the instance to
the new version of the definition.

However, if you need to change properties of the definition, you must work directly in
the definition in its Domain or Work Area.

Whether you work in an instance or directly in the definition, when you check in the
new version of the definition you have the opportunity to upgrade instances of the
original definition to the new version; see "Upgrading Object Instances to a New
Definition Version" on page 3-15.

Modifying Report Set Instance Properties
On the Report Set instance's Properties screen, click Update to enter changes. Oracle
LSH creates a new version of the instance you are working on and applies your
changes to it when you click Apply. Click Cancel to discard your changes and the new
version.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

You can modify the following:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

Definition Source This field applies to the instance only. It specifies the Report Set
definition to which this Report Set instance points. It generally does not make sense to
change the source definition for the following reasons:

■ Changing the definition may result in a new set of Table Descriptors, Source Code,
Parameters, and Planned Outputs.

■ Any new Table Descriptors are not mapped.

■ The Report Set's status changes to Non Installable.

If you want to change to a new version of the same definition, use the Upgrade
Instance option from the Actions drop-down list.

Modifying Report Set Definition Properties
You can go to a Report Set definition's Properties screen in one of the following ways:

■ From the Report Set's Properties screen: Click the hyperlink of the Report Set
definition that appears in the Definition field. See "Definition" on page 9-13.

Note: You must reinstall the Report Set for the changes to take effect.

Modifying Report Sets

Defining Report Sets 9-53

■ From the Domain or Application Area where you created the definition: Click
Manage Definitions to view all the definitions in that Domain or Application Area.
Click the definition name.

Once on the Report Set definition screen, click Update to enter changes. Oracle LSH
creates a new version of the definition. You can change the following properties:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

Modifying the Report Set Structure
You can modify the Report Set's structure in two places:

■ Report Set Structure view. You can add, remove, copy, and move Report Set
Entries here; see "Using the Report Set Structure View" on page 9-15.

■ Report Set or Report Set Entry Properties screen. You can also add, remove, copy,
and move Report Set Entries in Entries subtab of the Properties screen of the
parent Report Set or Report Set Entry; see "Defining Report Set Entries" on
page 9-26.

Modifying Report Set Entries
To modify many aspects of a Report Set Entry definition, you must go to its Properties
screen. You can go to the Properties screen by clicking its hyperlink in the Report Set
Structure view or in its parent Report Set or Report Set Entry's Properties screen, then
do the following:

■ Click Update to modify a Report Set Entry's properties, change its Program or
Planned Output assignment, or its associated narrative(s)see "Defining Report Set
Entries" on page 9-26.

■ Click the Entries subtab to add, remove, or reorder a Report Set Entry's child
Report Set Entries.

■ Click the Parameters subtab to add, remove, or modify Parameters defined in the
Report Set Entry for the purpose of value sharing; see "Creating Parameters for
Sharing Values within the Report Set" on page 9-25.

■ Click the Post-Processing subtab to change the value or properties of the
predefined post-processing Parameters; see "Setting Post-Processing Parameter
Values" on page 9-22.

■ Click the Overlay Templates subtab to change the value or properties of the
predefined overlay template Parameters; see "Setting Overlay Template Parameter
Values" on page 9-20.

In addition, you can use the Report Set Structure view to change a Report Set Entry's
Program or Planned Output assignment or reorder its child Report Set Entries; see
"Using the Report Set Structure View" on page 9-15.

Modifying Programs
The Program instances contained in a Report Set belong to the Report Set definition.
Their mappings belong to the Report Set instance. You modify Programs in a Report
Set the same way you modify Programs outside a Report Set; see Chapter 5, "Defining

Modifying Report Sets

9-54 Oracle Life Sciences Data Hub Application Developer's Guide

Programs". You can reach the Program instance screen in a Report Set by clicking its
hyperlink in any of several places:

■ Click its hyperlink in the Report Set Structure view next to one of the Report Set
Entries to which it is assigned.

■ Click its hyperlink in the Report Set Program view.

■ Click it hyperlink in the Properties screen of one of the Report Set Entries to which
it is assigned.

You can map the Table Descriptors of a Program in a Report Set in several different
ways; see "Mapping" on page 9-34.

10

Defining Workflows 10-1

10 Defining Workflows

This section contains information on the following topics:

■ About Workflows on page 10-1

■ Creating a Workflow on page 10-3

■ Using the Workflow Properties Screen on page 10-4

■ Adding Executables on page 10-7

■ Adding Workflow Structures on page 10-8

■ Defining Notifications on page 10-10

■ Defining Transitions on page 10-15

■ Defining Workflow Parameters on page 10-17

■ Workflow Planned Outputs on page 10-17

■ Installing Workflow Instances on page 10-17

■ Modifying Workflows on page 10-18

Figure 10–1 Process of Creating a Workflow Definition and Instance

About Workflows
Workflows allow you to create a single automated process that includes multiple steps,
or activities, with conditional branching. The activities can include Oracle Life Sciences

About Workflows

10-2 Oracle Life Sciences Data Hub Application Developer's Guide

Data Hub (Oracle LSH) executables—Load Sets, Programs, Report Sets, and Data
Marts—and Structures such as Fork, And, and Or.

Using a single Workflow you can, for example:

■ Load data from SAS and Oracle Clinical into Oracle LSH, write Programs to
combine, transform and report the data, combine the results into a Report Set, and
notify the appropriate people that the Report Set is available

■ Use the results of one Program in a subsequently executed Program in the same
Workflow

■ Use Programs that run on different applications, such as SAS and PL/SQL, in the
same Workflow

■ Generate a Report Set or Data Mart intended for submission to a regulatory
agency and send Notifications to the appropriate people requesting their formal
approval before sending the Report Set or Data Mart to the regulatory agency

■ Include Program outputs in the zipped file of a Data Mart

Workflow Components A Workflow includes the following components, which you
must define. Executable instances in a Workflow, Workflow Structures, and
Notifications are all called Workflow activities.

■ Oracle LSH Executable Object Instances. To execute a Load Set, Program, Report
Set, or Data Mart as part of a Workflow, you must create an instance of it in the
Workflow. See "Adding Executables" on page 10-7.

■ Workflow Structures. You can add predefined structural activities such as Fork,
And and Or to control Workflow execution. See "Adding Workflow Structures" on
page 10-8.

■ Notifications. Notifications are messages sent to Oracle LSH users either simply to
convey information or to request approval. You can link a Notification to the
completion of an activity in the Workflow. For example, when a Load Set
execution completes you can request approval from one or more people. The
Workflow waits while these people verify that the Load Set successfully loaded
the correct data. Only after receiving approval from one or all recipients
(depending on how you define the Notification) does the Workflow proceed to the
next activity. You can also use a Notification to alert a group of people that a report
has been successfully generated on fresh data. See "Defining Notifications" on
page 10-10.

■ Transitions. Transitions define the condition, if any, required to move from one
activity to the next. You must define a Transition between each sequential pair of
activities. See "Defining Transitions" on page 10-15.

■ Workflow Parameters. You can define Parameters directly in the Workflow for the
purpose of passing their value (which is set in the Execution Setup definition or at
runtime) to input Parameters of the executables within the Workflow. You can also
set up value propagation from the output Parameter of one Program to the input
Parameter of another Program executed later in the Workflow. See "Setting Up
Parameter Value Propagation" on page 6-16.

Workflow Rules Workflows must conform to a number of rules to be valid and
installable. See "Workflow" on page A-3 and "Workflow Instance" on page A-3 for
further information.

Creating a Workflow

Defining Workflows 10-3

Execution During Workflow execution the system detects when one activity has
ended and triggers the beginning of the next if the necessary condition has been met,
according to your definition of the Workflow activities and Transitions.

The system prevents access to data produced by Programs within a Workflow to
Programs outside the Workflow until execution of the entire Workflow has been
completed (see "Refresh Groups" on page 13-10).

The system uses Oracle Workflow to create and execute Workflows.

You define Execution Setups for Workflows the same way you do for other
executables. See "Creating, Modifying, and Submitting Execution Setups" on page 3-55
for further information.

Reports on Workflow Definitions and Instances From the Actions drop-down list,
you can generate reports that provide information on a Workflow definition or
instance; see Chapter 14, "System Reports" for information.

Creating a Workflow
When you create a Workflow in a Work Area, you are actually creating an instance of a
Workflow definition.

To create a new Workflow instance:

1. In a Work Area, select Workflow from the Add drop-down list.

2. Click Go.

The system displays the Create Workflow screen.

3. Choose one of the following options:

■ Create a new Workflow definition and instance. Choose this option if no
Workflow definition exists that can meet your needs, either as it is or with
some modification.

■ Create an instance from an existing Workflow definition. Choose this option
if a Workflow definition already exists that meets your needs.

If you can adapt an existing Workflow definition to make it fit your needs, first
copy it into the current Application Area, then choose this option and select
the copied definition. See "Finding an Appropriate Definition" on page 3-2 and
"Reusing Existing Definitions" on page 3-2 for further information.

4. Depending on your choice, follow one of the following sets of instructions:

■ Creating a New Workflow Definition and Instance on page 10-3

■ Creating an Instance of an Existing Definition on page 3-2

Creating a New Workflow Definition and Instance
When you select Create a new Workflow definition and instance in the Create
Workflow screen, additional fields appear.

1. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

2. In the Classification section, select the following for both the definition and the
instance:

Using the Workflow Properties Screen

10-4 Oracle Life Sciences Data Hub Application Developer's Guide

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

3. Click Apply to save your work and continue defining the Workflow.

The system opens the Properties screen for the new Workflow instance.

4. Define the Workflow details. It may help you to draw a diagram on paper or white
board of the Workflow so you can see which executables, Structures, Notifications
and Transitions you need to define. Begin by adding executables and Workflow
Structures. See:

■ Adding Executables on page 10-7

■ Adding Workflow Structures on page 10-8

■ Defining Notifications on page 10-10

5. Next, add Transitions and Workflow Parameters and create at least one Execution
Setup. See:

■ Defining Transitions on page 10-15

■ Defining Parameters on page 6-6

6. After you have finished setting up Parameter value propagation, define at least
one Execution Setup. See Creating, Modifying, and Submitting Execution Setups
on page 3-55.

7. Click Check In. The system checks in Version 1 of the Workflow definition.

8. Install the Workflow instance (see Chapter 12, "Using, Installing, and Cloning
Work Areas").

9. Validate both the definition and the instance according to your company's policies.

Creating an Instance of an Existing Workflow
If you use an existing Workflow as a definition source, all of its elements, Transitions,
Parameters and other characteristics are already defined. See "Creating an Instance of
an Existing Definition" on page 3-2 for instructions.

You must go into each executable instance contained in the Workflow and map its
Table Descriptors to Table instances. You must map target Table Descriptors to Table
instances located in the same Work Area as the Workflow instance. See "Mapping
Table Descriptors to Table Instances" on page 3-45 for instructions.

Using the Workflow Properties Screen
This section contains the following topics:

■ Instance Properties on page 10-5

■ Definition Properties on page 10-6

Note: If you have developed the executables outside the Workflow
there may be mapping conflicts because only one Program instance
can write to a Table instance. See "Mapping Table Descriptors within a
Workflow" on page 10-8 for further information.

Using the Workflow Properties Screen

Defining Workflows 10-5

■ Buttons on page 10-6

■ Using the Actions Drop-Down List on page 3-76

■ Subtabs:

– Adding Executables on page 10-7

– Adding Workflow Structures on page 10-8

– Defining Notifications on page 10-10

– Defining Transitions on page 10-15

– Defining Workflow Parameters on page 10-17

– Workflow Planned Outputs on page 10-17

– Viewing Jobs on page 3-74

See also Figure 10–1, "Process of Creating a Workflow Definition and Instance" on
page 10-1

See "Modifying Workflows" on page 10-18 for information on modifying Workflows.

If you are working in a Work Area, you see the properties of both the Workflow
instance and the Workflow definition it references. If you are working directly on the
definition in an Application Area or Domain, you see only the properties of the
definition.

Instance Properties
You can see the following instance properties:

Name You can click Update and modify the name. See "Naming Objects" on page 3-6
for further information.

Description You can click Update and modify the description. See "Creating and
Using Object Descriptions" on page 3-6 for further information.

Definition This field specifies the Workflow definition to which this Workflow
instance points. For further information, see "Definition Source" on page 10-18.

You can upgrade to a new version of the same definition. See "Upgrading to a
Different Definition Version from an Instance" on page 3-16.

Version This field displays the current version number of the Workflow instance.

Version Label This field displays the version label, if any, for the current Workflow
instance version.

For further information on object versions, see "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Validation Status This field displays the current validation status of the Workflow
instance. If you have the necessary privileges, you can change the validation status by
selecting Validation Supporting Information from the Actions drop-down list. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Workflow: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Using the Workflow Properties Screen

10-6 Oracle Life Sciences Data Hub Application Developer's Guide

Definition Properties

Checked Out Status This field displays the status of the definition: either Checked
Out or Checked In. You must check out the definition to add, remove, or modify
activities, structures, or transitions. However, you can map Table Descriptors without
checking out the definition. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9 for further information.

Latest Version If set to Yes, this Workflow instance is pointing to the latest version of
the Workflow definition. If set to No, this Workflow instance is pointing to an older
version of the Workflow definition.

Checked Out By This field displays the username of the person who has the
Workflow definition checked out. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9 for further information.

Version Label This field displays the version label, if any, for this definition version.

Validation Status This field displays the current validation status of the Workflow
definition. If you are working directly in the definition in an Application Area or
Domain and you have the necessary privileges, you can change the validation status
by selecting Validation Supporting Information from the Actions drop-down list. If
you are working in an instance of the Workflow in a Work Area, and you want to
change the validation status of the definition, you must go to the definition. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Workflow: Installable or Non
Installable. See Appendix A, "Installation Requirements for Each Object Type".

Buttons
From a Workflow instance in a Work Area, you can use the following buttons:

Install Click Install to install the Workflow instance, including mapping target Table
Descriptors and installing mapped target Table instances; see "Installing Workflow
Instances" on page 10-17. For a list of reasons a Workflow instance may not be
installable, see Appendix A, "Installation Requirements for Each Object Type".

Submit Click Submit to run the Workflow instance. Before you can run the
Workflow, you must install it and create an Execution Setup for it (select Execution
Setups from the Actions drop-down list).

Update Click Update to modify the Workflow instance properties. See "Modifying
Workflow Instance Properties" on page 10-18.

Check In/Out and Uncheck Click these buttons to check out, check in, or uncheck the
Workflow definition. Different buttons are displayed in the Workflow Definition
Properties section depending on the Checked Out Status and whether or not you are
the person who has the definition checked out. If someone else has checked out the
definition, you cannot check it in or uncheck it. The username of the person who has
checked it out is displayed. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Adding Executables

Defining Workflows 10-7

Adding Executables
This section includes the following topics:

■ About Executables as Workflow Activities on page 10-7

■ Adding an Executable to a Workflow on page 10-7

■ Mapping Table Descriptors within a Workflow on page 10-8

About Executables as Workflow Activities
Oracle LSH executables—Load Sets, Programs, Report Sets, and Data Marts—are the
substance of a Workflow; the purpose of a Workflow is to execute them as a single
process, with contingencies for the success or failure of the execution of each one.

You must add executables to the Workflow before you can define Transitions between
them or Parameter value propagation. However, you can add executables to the
Workflow over time and add or modify Transitions and Parameter value propagation
as necessary.

Although you have the option of creating a new executable from within the Workflow,
Oracle recommends that you either use an existing validated definition of a Load Set,
Program, Report Set, or Data Mart, or create a new one in a Work Area first so that you
can test it independently before creating an instance of it in the Workflow. However,
this may lead to mapping conflicts; see "Mapping Table Descriptors within a
Workflow" on page 10-8 for further information.

Adding an Executable to a Workflow
To add an Oracle LSH executable to the Workflow, go to the Table of Contents tab and
do the following:

1. From the Add drop-down list, select the type of executable you want to add.

2. Click Go. The system opens the Create screen for the object type you selected.

3. Choose one of the following.

■ Create an instance of an existing object definition. See "Creating an Instance
of an Existing Definition" on page 3-2 for instructions.

■ Create a new object definition and instance.

4. Click Apply.

See "Finding an Appropriate Definition" on page 3-2 and "Creating and Reusing
Objects" on page 3-1 for general information on reusing object definitions.

Note: Oracle does not support multiple concurrent users developing
a Report Set inside a Workflow. If more than one person will work on
the Report Set at a time, develop the Report Set directly in a Work
Area and add it to the Workflow when it is ready.

Note: Oracle recommends this option because you can run and test
the executable independently before including it in the Workflow.

Adding Workflow Structures

10-8 Oracle Life Sciences Data Hub Application Developer's Guide

Mapping Table Descriptors within a Workflow
When you add a Load Set, Program, Report Set or Data Mart instance to the Workflow
through a Workflow instance, you cannot map Table instances to Table Descriptors
from the executable's screen. You must use the Table Instances from Existing Table
Descriptors job from the Actions drop-down list on the Workflow's Properties screen.

See "Adding a New Target Table Descriptor" on page 3-42 for further information.

If you create a Load Set or a Program in the same Work Area where your Workflow
instance is located, and then create a new instance of that Load Set or Program inside
the Work Area, the system does not allow you to map the instance in the Workflow to
the same target Table instances. Only one executable can write to any particular Table
instance. You can do either of the following:

■ Create new Table instances and map them to the Program or Load Set instance
that is contained in the Workflow. You can use the Table Instances from Existing
Table Descriptors job in the Actions drop-down list to create the Table instances
and map them automatically.

■ Unmap the target Table instances from the instance of the Program or Load Set
that is contained directly in the Work Area.

If you unmap before adding the Program or Load Set to the Workflow, and if the
Table instances have the same name as the Table Descriptors, you can run the
Automatic Mapping By Name job in the Actions drop-down list after you add the
instances to the Workflow.

See "Mapping Table Descriptors to Table Instances" on page 3-45 for further
information.

Adding Workflow Structures
This section contains the following topics:

■ About Workflow Structures on page 10-8

■ Types of Workflow Structures on page 10-9

■ Adding Structures on page 10-9

About Workflow Structures
Workflow Structures are predefined activities that you use to control the execution of
the Workflow. They can detect the completion status of the previous activity through
their input Transition(s) and fire the next one or more activities as specified for their
type.

You must add the number of Structures you need; if you need two Forks, for example,
you must add two Forks. You need to be able to distinguish the two Forks from one
other when you define the Workflow's Transitions. Therefore, give them unique
names; for example, append the name of the preceding activity, such as Program_A_
Fork.

Structures can be followed only by unconditional Transitions.

When you create a Workflow, the system automatically adds one Start Structure and
one of each End Structure to the Workflow. You must add Transitions to connect the
Start Structure to the first Workflow activity and to connect one End-type Structure to
the last activity on each branch.

Adding Workflow Structures

Defining Workflows 10-9

Types of Workflow Structures
Each Workflow Structure has its own function, as follows:

And

An And activity has multiple input activities and a single output activity. It
synchronizes events; it waits for all incoming Transitions to be completed before
proceeding with the next Transition.

Fork

A Fork activity has a single input activity and multiple output activities, creating two
or more branches. The subsequent activities run in parallel.

Or

An Or activity has multiple inputs and a single output. It fires the next Transition as
soon as any one of its input activities completes.

Start

All Workflows must contain a single Start Structure as their first activity. A Workflow
can contain only one Start. If you need to begin with more than one activity—for
example, two or three SAS Load Sets, each loading a different data set—use a Fork
immediately after the Start, with an unconditional Transition to each Load Set after the
Fork.

End_Success

End_Success ends Workflow execution with a status of Success. Use this Structure at
the end of the successful completion of the Workflow. If you have multiple branches
with parallel activities, use an And Structure before End_Success so that they must all
complete successfully before Workflow execution ends with success.

End_Failure

End_Failure ends Workflow execution with a status of Failure. Use this Structure
following a Transition with a condition of Failure, after each executable. If the
executable fails to execute properly, execution of the Workflow ends with an error.

Use this Structure also following a Notification of type Approval, after a conditional
Transition whose condition is Failure. If an Approval times out—its recipients do not
either approve or reject it within the defined timeout period—the system interprets the
timeout as a failure.

End_Warning

End_Warning ends Workflow execution with a status of Warning.

You can use this Structure after a conditional Transition whose condition is Warning.

Adding Structures
You can add Workflow Structures in the following places in the Workflow user
interface:

1. In the Activities subtab, choose a Structure from the Add drop-down list and click
Go. The Create Workflow Structure screen opens.

Defining Notifications

10-10 Oracle Life Sciences Data Hub Application Developer's Guide

2. From the Structure Type drop-down list, select the type of Structure you want to
add.

3. Enter a name for the Structure. The name will help you distinguish this structure
from others of the same type, so that you create the transitions you intend.

4. Click Apply.

Defining Notifications
This section includes the following topics:

■ About Notifications on page 10-10

■ Using Approvals on page 10-10

■ Creating a Notification on page 10-11

■ Modifying Notifications on page 10-15

About Notifications
A Notification is a message that you can define as an activity in a Workflow to be sent
to recipients you specify after the completion of another Workflow activity. A
Notification can include the following:

■ a subject line

■ a text message

■ a link to an Oracle LSH output

■ a request for approval or rejection

A Notification appears on the Oracle LSH My Home screen of each recipient. Each
Oracle LSH user can also set a user preference to receive Notifications as email. See
"Using Notifications" in the Oracle Life Sciences Data Hub User's Guide for instructions.

You can create a set of standard Notification definitions for reuse.

Types of Notifications There are two types of Notifications:

■ FYI (For Your Information). FYI Notifications pass information to the recipients.
They can contain text and a hyperlink to an Oracle LSH output. You must specify
one or more recipients by user group and role.

■ Approval. Approvals pass information to the recipients and also request action
from the recipients. The system waits for a response before proceeding to the next
activity in that branch of the Workflow. You can define the Notification to require
action from one or from all recipients.

Using Approvals
You can use an Approval as a manual checkpoint in the Workflow's business
process—for example, to ensure that the system loaded the correct lab data before
generating a report on the data—or as a record that a report output has been reviewed
and approved (see "Writing Text for Approvals" on page 10-14).

In the Notification you specify whether approval is required by one or all of the
recipients to proceed to the next Workflow activity. You also specify a timeout period.
You can specify a backup group of recipients to receive the Notification if the timeout
period expires, plus a timeout period for the backup recipients.

Defining Notifications

Defining Workflows 10-11

When a user receives an approval-type Notification, it includes two buttons labeled
Approve and Reject, respectively, but the approval or rejection is not of the
Notification itself. You must make it clear to the recipient in the text what will happen
if he or she clicks each button.

You must define two Transitions following a Notification, one for each condition:
Success and Failure. The system interprets an approval by the required number of
recipients as success, and a rejection or a timeout as a failure.

Success and Failure Conditions In the Workflow, you must define two Transitions
following each Approval Notification, one each for success and failure. The system
interprets an approval as a success, and a rejection or a timeout as a failure.

Creating a Notification
When you create a Notification in a Work Area, you are actually creating an instance of
a Notification definition.

To create a new Notification instance:

1. In a Work Area, select Notification from the Add drop-down list.

2. Click Go.

The system displays the Create Notification screen.

3. Choose one of the following options:

■ Create a new Notification definition and instance. Choose this option if no
Notification definition exists that can meet your needs, either as it is or with
some modification.

■ Create an instance from an existing Notification definition. Choose this
option if a Notification definition already exists that meets your needs.

If you can adapt an existing Notification definition to make it fit your needs,
first copy it into the current Application Area, then choose this option and
select the copied definition. See "Finding an Appropriate Definition" on
page 3-2 and "Reusing Existing Definitions" on page 3-2 for further
information.

4. Depending on your choice, follow one of the following sets of instructions:

■ Creating a New Notification Definition and Instance on page 10-11

■ Creating an Instance of an Existing Definition on page 3-2

Creating a New Notification Definition and Instance
When you select Create a new Notification definition and instance in the Create
Notification screen, additional fields appear.

1. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

Note: The Name does not appear on the actual notification sent to
recipients. Recipients see the Subject instead. Definers searching for a
Notification definition to use can see the Name.

Defining Notifications

10-12 Oracle Life Sciences Data Hub Application Developer's Guide

■ Subject. Enter the summary text recipients see, up to 80 characters including
text variable values. See "Creating and Using Text Variables" on page 10-14.

■ Type. Select FYI (For Your Information) or Approval. See "Types of
Notifications" on page 10-10.

■ Priority. In Oracle LSH Release 2.4.8 this field has no effect.

■ Primary Recipient Timeout. This field applies only to Notifications of type
Approval. Specify the days, hours, and/or minutes from the time the system
sends the Notification to the time the Notification times out for the primary
recipients.

■ Backup Recipient Timeout. This field applies only to Notifications of type
Approval. Specify the days, hours, and/or minutes from the time the
Notification times out for the primary recipients to the time the Notification
times out for the backup recipients. If you do not plan to add backup
recipients, enter a zero (0) in each field.

2. If you selected Approval as the type, select a value for Approval By:

■ All Recipients. The system moves to the next Workflow activity after the
success Transition only after all recipients have approved the Notification.

■ Any Recipients. The system moves to the next Workflow activity after the
success Transition as soon as any one recipient approves the Notification.

In the case of All Recipients, if a single recipient rejects the Notification, and in
the case of Any Recipients, if all the recipients reject the Notification, the
system moves to the next Workflow activity after the error Transition.

Timeout and Rejection are both failures and the system moves to the workflow
after the error transition in both the cases.

3. In the Classification section, select the following for both the definition and the
instance:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

4. Click Apply to save your work and continue defining the Notification.

The system opens the Properties screen for the new Notification instance. You
must click Update to add recipients or links to outputs.

5. Define the Notification details. See:

■ Specifying Notification Recipients on page 10-13

■ Defining a Link to a Planned Output on page 10-13

■ Writing Notification Messages on page 10-13

■ Defining Notification Parameters on page 10-14

6. Click Check In.

The system checks in Version 1 the Notification definition. The definition is located
directly in the current Application Area. The instance is located in the Workflow.

Creating an Instance of an Existing Notification
If you create an instance of an existing Notification, its Recipients, Parameters,
Message, and other attributes are already defined. You can modify them as necessary

Defining Notifications

Defining Workflows 10-13

in the instance. See "Creating an Instance of an Existing Definition" on page 3-2 for
instructions.

Specifying Notification Recipients
You specify recipients by their user group and role. The system sends the Notification
to all users who have the role you select in the user group you select. You can specify
any number of combinations of user groups and roles.

To add recipients:

1. Click Update. The system refreshes the screens with enterable fields.

2. From the Group drop-down list, select the user group to whom you want to send
the Notification.

3. From the Role drop-down list, select the role required for Notification recipients.

4. From the Recipient Type drop-down list, select either Primary or Backup.

■ Primary recipients receive the Notification when it is first generated by the
Workflow.

■ Backup recipients receive the Notification only if the first group of recipients
do not approve or reject the Notification before the timeout period ends.

5. Click Add Recipient. The system adds the user group and role combination to the
recipient list.

6. Click Apply.

If you want to specify one or more recipients by name, you must create a user group
specifically for this purpose and add the users to the group. Creating user groups
requires administrative privileges.

Defining a Link to a Planned Output
In the Notification definition you must define a link to a Planned Output of an
executable contained in the Workflow. At runtime, the system generates a link to the
actual output generated from the Planned Output, and puts the link into the
Notification in a reserved area of the Notification.

To define a link to a Planned Output:

1. Click Update. The system refreshes the screens with enterable fields.

2. Click Add Planned Output. The Search and Add Planned Outputs screen
appears.

3. From the Activities in the Workflow drop-down list, select the executable to
whose output you want to create a link.

4. In the Output Name field, enter the name or title of the Planned Output to which
you want to create a link. You can use special characters; see "Using Special
Characters" in the Oracle Life Sciences Data Hub User's Guide for instructions.

5. Click Go. The system performs the search and displays the results.

6. Select the Planned Output you want by clicking its Select checkbox and clicking
the Select button.

Writing Notification Messages
This section includes the following topics:

■ Creating and Using Text Variables on page 10-14

Defining Notifications

10-14 Oracle Life Sciences Data Hub Application Developer's Guide

■ Writing Text for Approvals on page 10-14

Creating and Using Text Variables The Message is the text content of the
Notification. The message and Parameters are part of the Notification definition, and
you must click the hyperlink to the definition to define them.

To create the Notification message:

1. Click the hyperlink to the definition located under the Subject line. The
Notification definition's Properties screen appears.

2. Click Update. The system refreshes the screen and makes the fields enterable.

3. In the Messages subtab, enter text in the Body field. You can use the Insert
Parameter button to insert runtime Parameter values into the body of the text; see
"Defining Notification Parameters" on page 10-14.

4. Click Apply.

Writing Text for Approvals When you write text for approval Notifications, be careful
to make it clear to the recipient what a response of Approve or Reject means. For
example, use wording such as:

■ If you have reviewed this report and believe its contents are accurate, click
Approve. If you have reviewed this report and believe its contents are not
accurate, click Reject.

■ Please review the report on the lab data load at the link below. If the system has
loaded the correct data, click Approve. If not, click Reject.

The system does not link the approval or rejection to the actual report. In case of an
approval, it proceeds to the step following the success Transition in the Workflow. If
rejected, the system proceeds to the step following the error Transition. Therefore, if
clicking Approve indicates approval of the report's contents, ensure that the
Notification text conveys that understanding.

The system keeps a record of all approvals and rejections.

Defining Notification Parameters
You can save time and ensure consistency and quality by reusing Notification
definitions with clear, carefully worded text that includes Parameters as text variables
so that you can use them in multiple situations.

The system places the Parameter value in the message at the point where you insert
the Parameter, displayed in the Notification definition preceded by an ampersand (&).
At runtime the system replaces the backslashes and the Parameter name with the
current value of the Parameter.

The Parameter appears in the Execution Setup of the Workflow under the Notification.
You can define a Parameter directly in the Workflow that will appear at the top of the
Execution Setup and set up value propagation from that Parameter to the Notification
Parameter; see "Defining Parameters" on page 6-6.

For example, you can use the same Notification definition for multiple reports and
multiple studies by inserting the following Parameters into the message text:

■ Study Name

■ Report Title

Defining Transitions

Defining Workflows 10-15

The person submitting the Workflow for execution enters the correct value for that
execution and the system propagates the value to the Notification, so that Notification
recipients see the appropriate study and report title.

Modifying Notifications
The system copies all the attributes of a Notification definition to the instance. Your
changes affect only the instance of the Notification in the Workflow, not the source
definition. You can modify the following attributes:

■ Priority

■ Recipients

■ Approval Required By All Recipients

■ Timeout

■ Backup Recipients

■ Backup Timeout

■ Link to Planned Output

Defining Transitions
This section includes the following topics:

■ About Transitions on page 10-15

■ Creating Transitions on page 10-16

About Transitions
Transitions specify the sequence of activities in the Workflow and the condition, if any,
necessary to proceed from one activity to the next. You must explicitly define the
Transition between each sequential pair of activities.

You must add activities (Oracle LSH executables—Load Sets, Programs, Report Sets,
Data Marts, and Notifications—and Workflow Structures—Start, And, Or, Fork, and
the End Structures—before you can define the Transitions between them.

Each activity (except Start and End Structures) must have a Transition defined
immediately before and after it in the Workflow. In addition, each Transition must
have an activity defined immediately before and after it.

You can define more than one Transition following a single activity, but each Transition
must each have a different condition. To create parallel branches where each branch is
the result of the same condition of the same activity, use a Fork activity.

Transitions can be conditional or unconditional:

■ Unconditional Transitions occur as soon as the first activity has completed. If the
first activity is an executable, either a success or failure end status triggers the next

Note: If the Parameter value is so long that the subject or body
exceeds the maximum size, the system truncates the subject or text.
The maximum size of the subject is 80 characters. The maximum size
of the body is 32K characters.

Defining Transitions

10-16 Oracle Life Sciences Data Hub Application Developer's Guide

activity. You can define an unconditional Transition after either an executable or a
structural activity.

Conditional Transitions can occur only after an executable or a Notification. The
executable must return a completion status of success, warning or failure and you
must define a conditional transition to handle each completion status.

See "Workflow Rules" on page 10-2 for further information.

Creating Transitions
Create Transitions in the Workflow's Properties screen, Transitions subtab.

1. In the Transitions subtab, click Add Transition. The system opens the Create
Workflow Transition screen.

2. Display the From drop-down list. The system displays all the activities you have
created for the Workflow.

3. Select the activity that occurs earlier in the Workflow of the two whose Transition
you are defining. For example, if you are defining the Transition between the
Workflow Structure Start and the first executable, choose Start in the From
column.

4. From the To drop-down, choose the second activity of the two whose Transition
you are defining. This activity will occur immediately following the first if the
condition is met.

5. From the Condition drop-down list, choose the condition you want to apply to the
Transition. The choices are:

■ Error. If the first activity of the pair ends in failure (or a Notification times out,
or is rejected), the system uses this Transition to determine the next activity.

■ None. The Transition is unconditional. The second activity is fired regardless
of the completion status of the first.

■ Success. If the first activity of the pair ends in success (or a Notification of type
Approval is approved), the system uses this Transition to determine the next
activity.

■ Warning. If the first activity of the pair ends in warning, the system uses this
Transition to determine the next activity.

6. Click Apply. The system returns you to the Transitions subtab and displays the
Transition you just defined in the last row.

Continue adding Transitions until you have covered all those necessary for the
Workflow. Each activity (except Start and End ones) should occur at least once in the
From column and once in the To column. If you use Forks or create branches for
different outcomes (success or failure), some activities must appear multiple times in
either or both columns.

Note: If you define an unconditional Transition between two
activities, you cannot also define conditional Transitions between the
same two activities.

Installing Workflow Instances

Defining Workflows 10-17

Defining Workflow Parameters
You can define Parameters directly in the Workflow for the purpose of passing their
value to the input Parameters of Programs and Report Sets contained in the Workflow.
See "Defining Parameters" on page 6-6 and "Setting Up Parameter Value Propagation"
on page 6-16 for information.

Workflow Planned Outputs
A Workflow may generate multiple report outputs, but the system uses the Planned
Outputs defined for Programs contained in the Workflow to generate them.

The Workflow itself has no Planned Outputs. Outputs are produced by the executable
objects under the Workflow. Therefore Planned Outputs are defined directly under the
objects.

Installing Workflow Instances
You can install a Workflow instance directly from its Properties screen, using the
Install button, or in its Work Area (see "Installing a Work Area and Its Objects" on
page 12-11).

When you install a Workflow instance using the Install button on its Properties screen:

■ The system checks in the Workflow instance and definition, and also the Table
instances in the current Work Area to which the instance is mapped.

■ The system checks if the Workflow is installable. If not, the system performs
Automatic Mapping by Name on any unmapped target Table Descriptors. If the
Workflow is still not installable and there are still unmapped target Table
Descriptors, the system creates Table instances in the current Work Area from the
target Table Descriptors and maps them.

■ The system attempts to install the Workflow instance and its source and target
Table instances in the current Work Area. The system displays a success or error
message. If the installation fails, the error message displays the name of any
objects that were not installable.

Log File To see the log file for the installation, you must go to the Work Area
Installation screen, as follows:

1. Click the Applications tab. The main Application Development screen opens.

2. Click the name of the Work Area you are working in. The Work Area screen opens.

3. From the Actions drop-down list, select Installation History.

4. Click Go. The system displays the Installation History screen with the log files in
chronological order.

5. Click the View Log link for the most recent installation attempt or for the date and
time that you ran the install process. The system displays the log file.

Note: If any of the Table instances or the Workflow definition is not
installable, the system cannot install the Workflow instance. See
Appendix A, "Installation Requirements for Each Object Type" for the
reasons these objects may not be installable.

Modifying Workflows

10-18 Oracle Life Sciences Data Hub Application Developer's Guide

For information on installation and on reading the log file, see "Installing a Work Area
and Its Objects" on page 12-11.

Modifying Workflows
This section contains the following topics:

■ Modifying Workflow Instance Properties on page 10-18

■ Modifying Workflow Definition Properties on page 10-19

– Modifying Activities and Transitions on page 10-19

– Modifying Parameters on page 10-19

– Modifying Table Descriptor Mappings on page 10-20

If you have the necessary privileges, you can modify a Workflow either through an
instance of it in a Work Area or directly in the definition in its Domain or Application
Area. In most cases it makes sense to work through an instance in a Work Area for the
following reasons:

■ In order to use or test changes to the definition you must create and install an
instance of it.

■ If you work through an instance, the system automatically repoints the instance to
the new version of the definition.

However, if you need to change properties of the definition, you must work directly in
the definition in its Domain or Work Area.

Whether you work in an instance or directly in the definition, when you check in the
new version of the definition you have the opportunity to upgrade instances of the
original definition to the new version; see "Upgrading Object Instances to a New
Definition Version" on page 3-15.

Modifying Workflow Instance Properties
On the Workflow instance's Properties screen, click Update to enter changes. Oracle
LSH creates a new version of the instance you are working on and applies your
changes to it when you click Apply. Click Cancel to discard your changes and the new
version.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

You can modify the following:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

Definition Source This field applies to the instance only. It specifies the Workflow
definition to which this Workflow instance points. It generally does not make sense to
change the source definition for the following reasons:

Note: You must reinstall the Workflow for the changes to take effect.

Modifying Workflows

Defining Workflows 10-19

■ Changing the definition may result in a new set of Activities, Transitions,
Notifications, and Parameters.

■ Any new Table Descriptors are not mapped.

■ The Workflow's status changes to Non Installable.

If you want to change to a new version of the same definition, use the Upgrade
Instance option from the Actions drop-down list.

Modifying Workflow Definition Properties
You can go to a Workflow definition's Properties screen in one of the following ways:

■ From the Workflow's Properties screen: Click the hyperlink of the Workflow
definition that appears in the Definition field. See "Definition" on page 10-5.

■ From the Domain or Application Area where you created the definition: Click
Manage Definitions to view all the definitions in that Domain or Application Area.
Click the definition name.

Once on the Workflow definition screen, click Update to enter changes. Oracle LSH
creates a new version of the definition. You can change the following properties:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

Modifying Activities and Transitions
Activities (executable instances, Notification instances, and Workflow Structures) and
Transitions belong to the Workflow definition. You cannot modify them, but you can
add and remove them.

Modifying Parameters
Parameters belong to the Workflow definition. You must check out the Workflow
definition to modify Parameters.

You can change the following:

■ You can add and remove Parameters owned directly by the Workflow, modify
their default value and other settings, and change the Parameters to which they
propagate their value at runtime.

■ You can modify Parameter value propagation relations defined in the Workflow
from the output Parameter of one Program to the input Parameter of another
Program executed subsequently in the Workflow.

You cannot modify, add, or remove the Parameters that belong to the Programs and
other executables inside a Workflow, except to redefine their value propagation
relationships. See "Setting Up Parameter Value Propagation" on page 6-16.

You can change some Parameter values and settings in one or more Execution Setups.
Select Execution Setups from the Actions drop-down list in the Workflow instance in
the Work Area. See "Creating, Modifying, and Submitting Execution Setups" on
page 3-55.

Modifying Workflows

10-20 Oracle Life Sciences Data Hub Application Developer's Guide

Modifying Table Descriptor Mappings
All the Table Descriptors in a Workflow belong to the executable instances it contains,
including Load Sets, Programs, Data Marts, and the Program instances contained in
Report Set instances in the Workflow.

However, you can use the Actions drop-down item Table Instances from Existing
Table Descriptors directly from the Workflow, to create Table instances from existing
Table Descriptors owned by any Program instance in the Workflow and map them at
the same time; see "Creating Table Instances from Table Descriptors and
Simultaneously Mapping Them" on page 3-53.

You can also use Automatic Mapping by Name directly from the Workflow; see
"Automatic Mapping by Name" on page 3-46.

11

Defining Business Areas for Visualizations 11-1

11Defining Business Areas for Visualizations

This section contains information on the following topics:

■ About Visualizations on page 11-1

■ Creating a Business Area on page 11-2

■ Using the Business Area Properties Screen on page 11-4

■ Defining Table Descriptors on page 11-6

■ Defining Joins on page 11-7

■ Defining Business Area Hierarchies on page 11-9

■ Understanding Business Area Source Code on page 11-11

■ Setting Business Area Attributes and Parameters on page 11-11

■ Defining Oracle Business Intelligence Business Areas on page 11-11

■ Defining Generic Visualization Business Areas on page 11-17

■ Launching Visualizations on page 11-19

■ Installing Business Area Instances on page 11-20

■ Modifying Business Areas on page 11-21

About Visualizations
The Oracle Life Sciences Data Hub (Oracle LSH) is integrated with visualization tools,
to allow nontechnical users to quickly create onscreen graphical and tabular displays
and interactive dashboards of Oracle LSH data. Any Oracle LSH data can be made
available for this purpose—freshly loaded source data or merged and transformed
data.

You make data available to the visualization tool by defining one or more Business
Areas in Oracle LSH. You define Table Descriptors in a Business Area and map them to
Table instances. The visualization tool can read data contained in the Table instances to
which the Table Descriptors are mapped. An Oracle LSH Business Area corresponds to
an Oracle Business Intelligence Enterprise Edition (OBIEE) Repository and a particular
visualization can see data through a single Business Area. Your company may support
other visualization tools and an Oracle LSH Business Area of that type may
correspond to an element in those visualization tools.

You can also define Joins between the Table Descriptors and Hierarchies (drill-down
structures) of Columns in the same Table Descriptor or in joined Table Descriptors.
Joins and Hierarchies help determine how visualizations can compare and organize
data; see "Defining Joins" on page 11-7 and "Defining Business Area Hierarchies" on

Creating a Business Area

11-2 Oracle Life Sciences Data Hub Application Developer's Guide

page 11-9.

When you launch a Visualization tool from a Business Area or from the Visualizations
subtab of the Reports tab, you can choose to see non-current and blinded data, if you
have the appropriate privileges, through the Launch Settings screen. If you open
OBIEE directly (not from within Oracle LSH) you can view only current and not
blinded data regardless of your privileges.

Reports on Business Area Definitions and Instances From the Actions drop-down
list, you can generate reports that provide information on a Business Area definition or
instance; see Chapter 14, "System Reports" for information.

Creating a Business Area
When you create a Business Area in a Work Area, you are actually creating an instance
of a Business Area definition.

Figure 11–1 Process of Creating a Business Area Definition and Instance

To create a new Business Area instance:

1. In a Work Area, select Business Area from the Add drop-down list.

2. Click Go.

The system displays the Create Business Area screen.

3. Choose one of the following options:

■ Create a new Business Area definition and instance. Choose this option if no
Business Area definition exists that can meet your needs, either as it is or with
some modification.

■ Create an instance from an existing Business Area definition. Choose this
option if a Business Area definition already exists that meets your needs.

If you can adapt an existing Business Area definition to make it fit your needs,
first copy it into the current Application Area, then choose this option and
select the copied definition. See "Finding an Appropriate Definition" on
page 3-2 and "Reusing Existing Definitions" on page 3-2 for further
information.

4. Depending on your choice, follow one of the following sets of instructions:

Creating a Business Area

Defining Business Areas for Visualizations 11-3

■ Creating a New Business Area Definition and Instance on page 11-3

■ Creating an Instance of an Existing Definition on page 3-3

Creating a New Business Area Definition and Instance
When you select Create a new Business Area definition and instance in the Create
Business Area screen, additional fields appear.

1. Enter values in the following fields:

■ Name. See "Naming Objects" on page 3-6.

■ Description. See "Creating and Using Object Descriptions" on page 3-6.

■ Business Area Type. Select the adapter from the drop-down list.

If you select GENERIC_VISUALIZATION, you must then enter a schema
name for the Business Area. See "Defining Generic Visualization Business
Areas" on page 11-17 for more information.

2. In the Classification section, select the following for both the definition and the
instance:

■ Subtype. Select a subtype according to your company's policies.

■ Classification Values. See "Classifying Objects and Outputs" on page 3-25 for
instructions.

3. Click Apply to save your work and continue defining the Business Area.

The system opens the Properties screen for the new Business Area instance.

4. Define the Business Area details. For information and instructions see:

■ Defining Table Descriptors on page 11-6

■ Defining Joins on page 11-7

■ Defining Business Area Hierarchies on page 11-9

5. Click Check In. The system checks in Version 1 of both the Business Area
definition and instance.

6. Install the Business Area instance (see Chapter 12, "Using, Installing, and Cloning
Work Areas"). On creation of the Generic Visualization Business Area, its status is
'Not Installable'.

7. Validate both the definition and the instance according to your company's policies.

Creating an Instance of an Existing Business Area Definition
If you use an existing Business Area as a definition source, its Table Descriptors, Joins
and Hierarchies (if any) are already defined. See "Creating an Instance of an Existing
Definition" on page 3-2 for instructions.

Note: For OBIEE Business Areas, the Business Area name is
displayed in the OBIEE Answers user interface as the Subject Area.

Note: A Generic Visualization Business Area does not contain Joins,
Hierarchies, Source Code, or Parameters.

Using the Business Area Properties Screen

11-4 Oracle Life Sciences Data Hub Application Developer's Guide

After you have created the Business Area instance, you must map the Table
Descriptors to Table instances; see "Mapping Table Descriptors to Table Instances" on
page 3-45 for instructions.

Using the Business Area Properties Screen
This section contains the following topics:

■ Instance Properties on page 11-4

■ Definition Properties on page 11-5

■ Business Area Attributes on page 11-6

■ Buttons on page 11-6

■ Using the Actions Drop-Down List on page 3-76

■ Subtabs:

– Defining Table Descriptors on page 11-6

– Defining Joins on page 11-7

– Defining Business Area Hierarchies on page 11-9

– Setting Business Area Attributes and Parameters on page 11-11

– Understanding Business Area Source Code on page 11-11

See also Figure 11–1, "Process of Creating a Business Area Definition and Instance" on
page 11-2.

See "Modifying Business Areas" on page 11-21 for information on modifying Business
Areas.

If you are working in a Work Area, you see the properties of both the Business Area
instance and the Business Area definition it references. If you are working directly on
the definition in an Application Area or Domain, you see only the properties of the
definition.

Instance Properties
You can see the following instance properties:

Name You can click Update and modify the name. See "Naming Objects" on page 3-6
for further information.

Description You can click Update and modify the description. See "Creating and
Using Object Descriptions" on page 3-6 for further information.

Definition This field specifies the Business Area definition to which this Business
Area instance points. For further information, see "Definition Source" on page 11-22.

You can upgrade to a new version of the same definition. See "Upgrading to a
Different Definition Version from an Instance" on page 3-16.

Validation Status This field displays the current validation status of the Business
Area instance. If you have the necessary privileges, you can change the validation
status by selecting Validation Supporting Information from the Actions drop-down
list. See "Validating Objects and Outputs" on page 3-31 for further information.

Using the Business Area Properties Screen

Defining Business Areas for Visualizations 11-5

Status This field displays the installable status of the Business Area: Installable or
Non Installable. See Appendix A, "Installation Requirements for Each Object Type".

Version This field displays the current version number of the Business Area instance.

Version Label This field displays the version label, if any, for the current Business
Area instance version.

Schema Name (Generic Visualization Business Areas) The unique name of the
schema created for the Business Area.

Default Blinding Access Type (Generic Visualization Business Areas) The data
displayed by default in visualizations based on this Business Area; see "Default
Blinding Access Type" on page 11-17.

Default Snapshot Label (Generic Visualization Business Areas) The data currency
displayed by default in visualizations based on this Business Area; see "Default
Currency" on page 11-17.

For further information on object versions, see "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Definition Properties

Checked Out Status This field displays the status of the definition: either Checked
Out or Checked In. You must check out the definition to modify Table Descriptors,
Joins, and Business Area Hierarchies. However, you can change Table Descriptor
mappings without checking out the definition. See "Understanding Object Versions
and Checkin/Checkout" on page 3-9 for further information.

Latest Version If set to Yes, this Business Area instance is pointing to the latest
version of the Business Area definition. If set to No, this Business Area instance is
pointing to an older version of the Business Area definition.

Checked Out By This field displays the username of the person who has the Business
Area definition checked out. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9 for further information.

Version Label This field displays the version label, if any, for this definition version.

Business Area / Adapter Type This field displays the name of the Business Area
adapter.

Validation Status This field displays the current validation status of the Business
Area definition. If you are working directly in the definition in an Application Area or
Domain and you have the necessary privileges, you can change the validation status
by selecting Validation Supporting Information from the Actions drop-down list. If
you are working in an instance of the Business Area in a Work Area, and you want to
change the validation status of the definition, you must go to the definition. See
"Validating Objects and Outputs" on page 3-31 for further information.

Status This field displays the installable status of the Business Area: Installable or
Non Installable. See Appendix A, "Installation Requirements for Each Object Type".

Defining Table Descriptors

11-6 Oracle Life Sciences Data Hub Application Developer's Guide

Business Area Attributes
This section of the Business Area screen displays attributes for the type of Business
Area you have created. See "Setting Business Area Attributes and Parameters" on
page 11-11 for more information.

Buttons
From a Business Area instance in a Work Area, you can use the following buttons:

Install Click Install to install the Business Area instance, including mapped Table
instances in the same Work Area; see "Installing Business Area Instances" on
page 11-20. For a list of reasons a Business Area instance may not be installable, see
Appendix A, "Installation Requirements for Each Object Type".

Launch Visualization Click Launch Visualization to go to the Launch Visualization
screen; see "Launching Visualizations" on page 11-19. You can see the Launch
Visualization button only after you have installed the Business Area. See "Installing
Business Area Instances" on page 11-20.

Update Click Update to modify the Business Area instance properties. See
"Modifying Business Area Instance Properties" on page 11-22.

Check In/Out and Uncheck Click these buttons to check out, check in, or uncheck the
Business Area definition. Different buttons are displayed in the Business Area
Definition Properties section depending on the Checked Out Status and whether or
not you are the person who has the definition checked out. If someone else has
checked out the definition, you cannot check it in or uncheck it. The username of the
person who has checked it out is displayed. See "Understanding Object Versions and
Checkin/Checkout" on page 3-9.

Defining Table Descriptors
You make data available to visualizations by mapping the Table instances that contain
the data to Table Descriptors in a Business Area. Any one visualization can access data
through one and only one Business Area. The more Table Descriptors you include in a
Business Area, the more data is accessible to a single visualization.

Business Areas have source Table Descriptors only. They can read data but they cannot
write data to Tables instances.

If you do not want data from a particular Table instance Column available to
visualizations, remove the Column from the Table Descriptor that is mapped to that
Table instance.

You can map Business Area Table Descriptors to Table instances in any Work Area.

If the Table instances to which you want to map a Business Area's Table Descriptors
already exist, the simplest way to add and map Table Descriptors to the Business Area
is to use the Table Descriptors from Existing Table Instances job from the Actions
drop-down list. See "Creating Table Descriptors from Table Instances and
Simultaneously Mapping Them" on page 3-53 for further information.

Note: When a Generic Visualization Business Area Definition is
created, its status is 'Not Installable'.

Defining Joins

Defining Business Areas for Visualizations 11-7

For additional information about Table Descriptors see the following sections:

■ About Table Descriptors on page 3-37

■ Creating a Table Descriptor on page 3-38

■ Mapping Table Descriptors to Table Instances on page 3-45

Defining Joins
You can define a Join between two Table Descriptors to allow a visualization to query
and display data from two Table instances as if they were one unified table.

You must define Table Descriptors before you can define Joins between them. You can
create Joins between two and only two Table Descriptors.

You can define a Join between Table Descriptor A and Table Descriptor B, another Join
between Table Descriptors B and C, and another between Table Descriptors C and D,
for example. Furthermore, in this same example you can create a join between Table
Descriptors D and A.

However, if you create a Join between Table Descriptor A and Table Descriptor B, you
cannot create a Join between the same Table Descriptors with their positions reversed
(Table Descriptor B and Table Descriptor A).

Joined Columns For each Join, you must specify at least one pair of equivalent
Columns, one Column from each Table Descriptor, that are equivalent in terms of their
data content; for example, Table A's Patient Column and Table B's Pat Column, both of
which contain the patient ID. The joined Columns must be of the same data type.

Note: Set the SAS Library Name of the source Table Descriptor to
$REPINIT if you want to enable queries from the OBIEE repository's
Repository Init Block to access Table instances mapped to this Table
Descriptor. These queries fetch data from the Oracle LSH Table
instances at user-defined refresh intervals to initialize Repository
Variables.

If you do not set the SAS Library Name to $REPINIT, OBIEE cannot
access the mapped Table instances and the automatic, periodic OBIEE
repository queries will fail.

Note: Joins are not supported in Generic Visualization Business
Areas.

Note: For Business Areas of type OBIEE, joins work only if Table
instances have a Primary Key constraint.

Also, OBIEE Business Areas support only one-to-many relationships;
for example, if you want to create a join between an employee table
and a department table, you must add the department table to the Join
first, because a department can have multiple employees in it, but an
employee can belong to only one department.

Defining Joins

11-8 Oracle Life Sciences Data Hub Application Developer's Guide

If you specify more than one pair of equivalent Columns, the system sees rows in the
two Table instances as being the same only if they have the same value in both
Columns. For example, if you create a Column Join between Table A's Investigator
Column and Table B's Inv Column, both of which contained an investigator ID, as well
as the Patient/Pat join, the visualization query would see rows as being the same in
the two Table instances only if they shared the same investigator ID as well as the
same Patient ID.

Inner and Outer Joins By default, an Oracle LSH Join is an inner join. That is, only
rows where the joined Columns share the same value are evaluated for the query.
Rows that exist in either Table instance that do not have an equivalent row in the other
Table instance are not included in the visualization.

You have the option to create an outer join. In an outer join, the visualization query
evaluates all the rows in the Table instance you define as Table A plus all the rows in
Table B where each joined Column has the same value as a row in Table A.

Defining a Join at the Table Level
To define an Oracle LSH Join:

1. From the Joins subtab on the Properties screen of the Business Area, click Add.
The system displays the Join for Business Area screen.

2. Enter a name for the Join.

3. Enter a description for the Join (optional).

4. Click the Search icon to the right of the Table A field.

5. Click Go to see a list of all the Table Descriptors you have defined for the Business
Area. Alternatively, enter the exact name of the Table Descriptor you want, or use
special characters if you are unsure of the name (see "Searching" in the Oracle Life
Sciences Data Hub User's Guide for instructions).

The system displays one or more Table Descriptors.

6. Click the Quick Select icon to select the Table Descriptor you want.

7. If you want to define an outer join, select Yes in the Table A Outer Join field.

8. Click the Search icon to the right of the Table B field.

9. Click Go to see a list of all the Table Descriptors you have defined for the Business
Area. Alternatively, enter the exact name of the Table Descriptor you want, or use
special characters if you are unsure of the name (see "Searching" in the Oracle Life
Sciences Data Hub User's Guide for instructions).

The system displays one or more Table Descriptors.

10. Click the Quick Select icon to select the Table Descriptor you want.

Note: Although some visualization tools allow the use of other
operators to join columns, Oracle LSH always applies the "equal to"
(=) operator.

Note: In an outer join, the system evaluates all the rows of the Table
instance you map to the Table Descriptor you define as Table A; see
"Inner and Outer Joins" on page 11-8.

Defining Business Area Hierarchies

Defining Business Areas for Visualizations 11-9

11. Click Apply. See "Defining a Join at the Column Level" on page 11-9.

Defining a Join at the Column Level
To define which two Columns are joined, do the following:

1. Define the Table Descriptors in the Join; see "Defining a Join at the Table Level" on
page 11-8.

2. In the Join properties screen, click Update. The system displays an Add Join
Column button.

3. Click Add Join Column. The system displays a drop-down list under each Table
Descriptor included in the Join.

4. For the Table Descriptor on the left, select the Column you want to define as part
of the Column Join from the drop-down list.

5. For the Table Descriptor on the right, select the Column you want to define as part
of the Column Join from the drop-down list.

6. Click Apply. The system saves your work.

Click Return to go back to the main Business Area screen.

Defining Business Area Hierarchies
Many visualization tools allow drilling down into more and more detailed data or up
into more and more general data. To allow this functionality for visualizations of
Oracle LSH data, you must define Business Area Hierarchies.

Business Area Hierarchies define hierarchical relations among Table Columns to
organize data in a meaningful way, from general to specific, so that data values at the
lower levels aggregate into the data values at higher levels.

For example, you could define a Hierarchy for the Columns Study, Patient, Visit, Test,
in that order, from the most general to the most specific. The system uses the
Hierarchy and the data values for each row to interpret the data values in the Columns
hierarchically: all tests belong to a visit; all visits are associated with a patient, and all
patients are part of a study.

If Table Descriptors are defined as joined, you can create a Business Area Hierarchy
that includes Columns from both Table Descriptors. For example, you could create a
Business Area Hierarchy for the Columns Investigator Name, Patient, and Gender
where the Investigator Name is in the Sites Table and the Patient and Gender Columns
are in the Demography Table.

When you define a Business Area Hierarchy, you assign each Column an order
number. The Column with order number one is the top, or most general, level of the
Business Area Hierarchy, and each subsequently numbered Column is the next lower
Hierarchy level. Sequential Columns must be contained either in the same Table
Descriptor or in joined Table Descriptors.

Note: The two Columns must have the same data type.

Note: Hierarchies are not supported in Generic Visualization
Business Areas.

Defining Business Area Hierarchies

11-10 Oracle Life Sciences Data Hub Application Developer's Guide

Grouping Columns You can include two or more Columns in the same Business Area
Hierarchy level by using the Group With Previous flag. For example, you could define
the following Business Area Hierarchy:

Example 11–1 Business Area Hierarchy Column Grouping

The example above shows a three-level hierarchy. Investigator ID and Investigator
Name are both in the top level, which makes sense because they are alternate values
for the same type of information. Patient is the middle level and Gender is the bottom
level. In a visualization, users can drill down from the investigator by either name or
ID, or view them both, to all patients for whom a particular investigator is responsible,
to an investigator's male patients or the same investigator's female patients.

To define a Business Area Hierarchy:

1. From the Business Area Hierarchies subtab on the Properties screen of the
Business Area, click Add. The system displays the Create Business Area
Hierarchies screen.

2. Enter a name for the Business Area Hierarchy (required).

3. Enter a description for the Business Area Hierarchy (optional).

4. Click Apply. The system displays the Properties screen of the new hierarchy.

5. Click Update. The system adds the Add Another Row button.

6. Click Add Another Row.

7. Click the Search icon in the Table column. The system opens a Search and Select
screen.

8. Click Go to see a list of all the Table Descriptors you have defined for the Business
Area. Alternatively, enter the exact name of the Table Descriptor you want, or use
special characters if you are unsure of the name (see "Searching" in the Oracle Life
Sciences Data Hub User's Guide for instructions).

The system displays one or more Table Descriptors.

9. Click the Quick Select icon to select the Table Descriptor that is mapped to the
Table instance you want to include in the Hierarchy.

10. Click the Search icon in the Column Name column. The system opens a Search
and Select screen.

11. Click Go to see a list of all the Columns in the Table Descriptor. Alternatively, enter
the exact name of the Column you want, or use special characters if you are
unsure of the name (see "Searching" in the Oracle Life Sciences Data Hub User's
Guide for instructions).

The system displays one or more Columns.

12. Click the Quick Select icon to select the Column you want to include in the
Hierarchy.

Order number Column Group With Previous?

1 Investigator ID —

2 Investigator Name Yes

3 Patient —

4 Gender —

Defining Oracle Business Intelligence Business Areas

Defining Business Areas for Visualizations 11-11

13. Repeat Steps 6-12.

This time the system displays only the Table Descriptor you selected in Step 9 and
any other Table Descriptors that are part of a Join that includes the Table
Descriptor you selected.

In addition, beginning with the second row, you can choose to group the Column
with the previous one at the same level of the Hierarchy; see "Grouping Columns"
on page 11-10.

14. When you have added all the rows you want in the Hierarchy, click Apply. the
system saves your changes.

Click Return to go back to the Business Area Properties screen.

Understanding Business Area Source Code
In the context of an Oracle LSH Business Area, the Source Code object is used to store
files required for integration with an external visualization tool. This is different from
the way Source Code is used in Oracle LSH Programs where the Oracle LSH Source
Code object contains actual program source code.

For information on OBIEE Business Area Source Code see "About OBIEE Business
Areas" on page 11-12.

Setting Business Area Attributes and Parameters
Some types of Business Areas, including third-party types not covered by this
documentation, may have attributes and Parameters. When you create a Business Area
of those types, attributes or Parameters required for the visualization tool may appear
on the Business Area Properties page.

OBIEE Business Areas have one attribute; see "Defining Oracle Business Intelligence
Business Areas" on page 11-11.

Defining Oracle Business Intelligence Business Areas
This section contains the following:

■ About OBIEE Business Areas on page 11-12

■ Defining an OBIEE Business Area on page 11-12

■ Visualizing Business Area Data using OBIEE Answers on page 11-15

■ OBIEE Security on page 11-15

■ Installing and Setting Up Oracle Business Intelligence Administration Tool on
page 11-16

For information on using the OBIEE Administration Tool and Presentation Services to
create visualizations—Answers and Dashboards—see the Oracle Business Intelligence
documentation, including online help.

Note: Source Code is not supported in Generic Visualization
Business Areas.

Defining Oracle Business Intelligence Business Areas

11-12 Oracle Life Sciences Data Hub Application Developer's Guide

About OBIEE Business Areas
When you install an OBIEE Business Area for the first time the system generates an
Oracle BI repository (.rpd) file—which is required for creating and displaying Subject
Areas, Answers, and Dashboards in Oracle BI Presentation Services—and copies it to
the BI Server. This generating .rpd allows the creation of visualizations of LSH data
through OBIEE Answers without the use of the OBIEE Administration tool. Oracle
LSH stores the .rpd file in the OBIEE Business Area Source Code definition.

The system deploys the .rpd files from all the OBIEE Business Areas that share the
same OBIEE Service Location Name onto that Oracle BI Server and merges them into a
single .rpd file as each Business Area is installed.

If you are using OBIEE 11g, each time you install an OBIEE Business Area you must
open Oracle Enterprise Manager, manually deploy the merged, or master, .rpd file and
restart the BI Service for the Business Area to become available to users; see "Manually
Deploying the Master RPD File" on page 11-14. If you are using OBIEE 10g, this
process is automatic each time you install the Business Area.

Customizing the RPD File Using OBIEE Administration Tool Oracle LSH takes
advantage of only a small number of the features that OBIEE has to offer. If you are
experienced with OBIEE you may wish to make changes to the Business Area's default
.rpd file using the OBIEE Administration Tool and upload the resultant .rpd to replace
the system-generated .rpd in the Business Area in Oracle LSH.

In order to ensure that subsequent installations of the Business Area do not overwrite
those customizations, the system tracks the origin of the .rpd file. When Oracle LSH
creates an .rpd file during installation, it populates the File Reference Name with the
value SYSTEM. When a user uploads a customized .rpd file the system populates the
File Reference Name with the value USER.

Each time you install the Business Area, the system checks if the current .rpd file was
generated by the system or manually uploaded to the Business Area. If the file was
generated by Oracle LSH and not manually uploaded and the Table Descriptor, Join,
or Hierarchy definitions have changed, then the system generates a new .rpd file and
stores this as a new version of that Source Code.

If the current .rpd file was uploaded, the system does not override it with a new file
even if you have made changes in Oracle LSH. You must make corresponding
changes—adding, deleting, or modifying tables, joins, and hierarchies—in the
Administration Tool and reupload the file.

Defining an OBIEE Business Area
Oracle recommends developing an OBIEE Business Area in the following order:

1. Create the Business Area; see "Creating a Business Area" on page 11-2. Special
information for OBIEE Business Areas:

■ Name. The Business Area name is displayed in OBIEE Answers as the Subject
Area. The name must be unique among Business Areas using the same
service location. If it is not unique, when you install the Business Area you
receive an error message with the location of the previously installed Business
Area with the same name.

Note: Do not change the name of a previously installed Business
Area. This will cause problems with the .rpd file.

Defining Oracle Business Intelligence Business Areas

Defining Business Areas for Visualizations 11-13

■ OBIEE Service Location Name. Select the value for the computer with the
Presentation Server you want this Business Area to use, if more than one is
available in your company.

2. Add Table Descriptors and map them to the Table instances that contain the data
you want to make available in OBIEE; see "Defining Table Descriptors" on
page 11-6.

3. If you want to add joins and hierarchies in Oracle LSH, do so now; see "Defining
Joins" on page 11-7 and "Defining Business Area Hierarchies" on page 11-9. See
"About OBIEE Business Areas" on page 11-12.

4. Install the Business Area to create the initial .rpd file. Install it again if you make
changes in Oracle LSH before working in the OBIEE Administration Tool. The
system generates a new .rpd file with your changes.

5. Click Launch IDE to open the OBIEE Administration Tool. When prompted for a
repository password, enter blank and continue. Work on the .rpd file in this tool,
using the OBIEE user documentation.

If you make structural changes in the OBIEE Administration Tool—changes to
tables, joins, or hierarchies—you must make the same changes in Oracle LSH so
that the .rpd file is always synchronized with the Business Area definition.
Otherwise you will not be able to use the new structures in OBIEE. For example, if
you add a column to a table in OBIEE but do not add the column in the Business
Area Table Descriptor and map it to a column in its Table instance, you will not be
able to see the data in the column in OBIEE.

6. When you are finished making changes, upload the .rpd file to the Business Area:

a. In the Source Code tab, click the link to the Source Code definition.

b. Click Browse.... The .rpd file is generally stored on the C drive, in the
CdrWork folder. The full path of the repository file looks like this:

Drive:\CdrWork\LSH_database_username\OBIEE_BA_Domain_name\OBIEE_BA_
Application_Area_name\OBIEE_BA_Work_Area_name\OBIEE_BA_name\OBIEE_BA_
version_number\

Note: To enable the OBIEE repository to query the source Table
instances that the Oracle LSH OBIEE Business Area uses, set the SAS
Library Name of the mapped Table Descriptor to $REPINIT. See
"Defining Table Descriptors" on page 11-6.

Note: Do not explicitly create a Source Code definition. The Source
Code is automatically created when you install the Business Area. Its
name is determined by the value of the Details attribute in the Deploy
service defined for the service location you selected.

Note: Customization in the OBIEE Administration Tool is optional.

Note: Oracle LSH supports uploading zipped .rpd files. However,
you must give the .zip file exactly the same name as the .rpd file; for
example, test.zip must contain test.rpd.

Defining Oracle Business Intelligence Business Areas

11-14 Oracle Life Sciences Data Hub Application Developer's Guide

c. Click Apply.

7. Install the Business Area. If you are using OBIEE 10g, the system creates a new
version of the Source Code definition that contains the newly uploaded file and
deploys the file to the repository folder path defined on the Oracle BI Server,
merging it into the master .rpd file.

8. If you are using OBIEE 11g, manually deploy the master .rpd file to the BI Server
and restart the BI Service; see "Manually Deploying the Master RPD File" on
page 11-14.

Manually Deploying the Master RPD File
Manually deploy the new version of the master .rpd file on your OBIEE 11g BI Server
using the Oracle Enterprise Manager. This step is required every time you install a
Business Area.

1. Open the Oracle Enterprise Manager using the URL specific to your environment.

2. In the left-hand panel, navigate to Farm_bifoundation_domain, then Business
Intelligence, then coreapplication. Then click the Deployment tab, and then the
Repository subtab.

3. Click Lock and Edit Configuration near the top. A confirmation message appears.

4. Under Upload BI Server Repository, click the Browse button for the Repository
File field and select the master .rpd file.

5. Enter the repository password and confirm password. The password must be
same as the administrator password stored in LSH under Remote Location
Connections. This is very important for the integration. Click Apply.

6. Click Activate Changes at the top of the screen. A confirmation message appears.

7. Click Restart and confirm.

8. Ensure that Restart All completed successfully. This indicates the successful
deployment of the .rpd on the BI Server and a successful restart of the BI Server
services. The Business Area .rpd is now ready to be used through the OBIEE
Presentation Service (BI Answers).

Note: If an .rpd file does not appear in the Source Code tab after
installation, check the Jobs subtab. If the Execution Status is Pending
Logon or Obtain Service, there is a problem with the Distributed
Processing (DP) Server on the BI Server computer.

Note: If the URL does not work, you may need to restart the
WebLogic Server; see "Starting the WebLogic Server" on page 11-15.

Note: The location of the master .rpd file is determined by the edited
obieedeploy.cmd file; ask your administrator for it.

Defining Oracle Business Intelligence Business Areas

Defining Business Areas for Visualizations 11-15

Starting the WebLogic Server
If the URL for Oracle Enterprise Manager is not working, the WebLogic Server may be
down. To start it:

1. On the BI Server computer, right-click Command Prompt under the Start menu
and select Run as Administrator.

2. Change directory to the Domain folder under the OBIEE installation folder; for
example, E:\oracle\fmw\user_projects\domains\bifoundation_domain.

3. Run the command startWeblogic.cmd under this folder. The system prompts you
for the WebLogic Server username and password.

4. Check that the command window displays the message "Server started in
RUNNING mode."

Visualizing Business Area Data using OBIEE Answers
You can access OBIEE data visualizations in two ways:

■ In Oracle LSH, go to the Visualizations subtab of the Reports tab; locate the
Business Area under its classification hierarchy; click the View icon in the Actions
column for the Business Area; and click Launch Visualization.

The system launches the Oracle Business Intelligence Presentation Services
interface. Navigate to the Subject Area with the same name as the Business Area
and follow instructions in the OBIEE user documentation to create Answers and
Dashboards.

■ Outside Oracle LSH, go to the URL of the computer corresponding to the Service
Location Name. The system launches the Oracle Business Intelligence Presentation
Services interface. Navigate to the Subject Area with the same name as the
Business Area and follow instructions in the OBIEE user documentation to create
Answers and Dashboards.

OBIEE Security
OBIEE security is handled through Oracle LSH.

End User Security
Security access to OBIEE visualizations is determined by users' security privileges on
the Business Area on which the visualization is based. The automatically generated
RPDUpdates.txt file contains the information required to initiate user authentication.
This file is passed to the BI Server during Business Area installation and RPD file
merge and deployment operation.

When you launch an OBIEE visualization from within Oracle LSH , you can see
noncurrent and blinded Oracle LSH data if you have the required privileges.

If you access an OBIEE visualization outside of Oracle LSH, through the URL of the
OBIEE Presentation Services, you cannot see blinded or noncurrent data regardless of
your privileges.

Developer Security
Developers must have normal security access to modify the Business Area.

When you launch the OBIEE Administration Tool or an OBIEE visualization from
within Oracle LSH , you can see noncurrent and blinded Oracle LSH data if you have
the required privileges.

Defining Oracle Business Intelligence Business Areas

11-16 Oracle Life Sciences Data Hub Application Developer's Guide

When you launch the OBIEE Administration Tool from Oracle LSH, the system create
synonyms to the Business Area's Table Descriptors for your database account, and the
OBIEE Administration Tool connects to the LSH database with your database account.
The logon trigger authenticates against Oracle LSH user privileges.

Installing and Setting Up Oracle Business Intelligence Administration Tool
To use the Oracle Business Intelligence Administration Tool, you must do the
following on your local PC:

■ Get the CD-ROM that contains the Oracle LSH files cdrconfig.xml and
cdrclient.exe from your system administrator and insert it into your PC.
InstallShield automatically runs setup.exe to load cdrconfig.xml and cdrclient.exe
to a location you specify on your local computer.

■ Install Oracle BI Client Tools on your PC in the location specified by your system
administrator. The location must match the directory path specified in
cdrconfig.xml.

■ Ensure that cdrconfig.xml has the correct directory path for the Oracle BI
Administration tool.

■ In the Oracle BI Administration Tool, set up connectivity with the Oracle LSH
database. See "Set Up Database Connectivity" on page 11-16 for information.

■

■ Add and set the following environment variables on the PC through advanced
system properties:

– ORACLE_HOME Enter the absolute path of the Oracle Home on your PC; for
example:

Drive:\Program Files\Oracle Business Intelligence Enterprise Edition Plus
Client\oraclebi\orahome

– ORACLE_INSTANCE Enter the absolute path to Oracle BI orainst1 on your
PC; for example:

Drive:\Program Files\Oracle Business Intelligence Enterprise Edition Plus
Client\oraclebi\orainst

– ORACLE_BI_APPLICATION You must enter the following value exactly:

coreapplication

Set Up Database Connectivity
To access Oracle LSH data in the Administration Tool on your PC, you must set up
connectivity between the Oracle LSH database and your PC. You can use a system
ODBC DSN or the Oracle Call Interface (OCI10g):

■ Set Up Database Connectivity Using a System DSN

1. Create a valid Oracle driver-based System Data Source Name (DSN) on your
PC that points to the LSH database.

2. Consult Microsoft Windows online help for instructions on creating the
System DSN.

3. Use the Test Connection button to test the connection.

■ Set Up Database Connectivity Using OCI 11g

Defining Generic Visualization Business Areas

Defining Business Areas for Visualizations 11-17

1. Create an entry in your PC's tnsnames.ora file with the name and connection
details for the LSH database server.

2. Create an entry in your PC's tnsnames.ora file with the name and connection
details for the LSH database server.

3. Test the connection by trying to connect to the Oracle LSH database using
sqlplus as apps. For example:

sqlplus apps/apps_password@lsh_database_name

Defining Generic Visualization Business Areas
Oracle LSH includes a Generic Visualization adapter to allow you to integrate the data
visualization tool of your choice with Oracle LSH so that your end users can view
Oracle LSH data through that tool. See the Oracle Life Sciences Data Hub Adapter Toolkit
Guide for information on using the Generic Visualization adapter.

After setting up integration, you define and install one or more Business Area
instances of type GENERIC_VISUALIZATION. Users can then access the data
visualizations through the tool's URL. Users can then access data visualizations
through the tool's URL.

Generic Visualization Business Area Instance Properties
Generic Visualization Business Area instances have the following properties:

Schema Name Enter a unique name for the schema of up to 30 characters. The value
is stored in uppercase. Do not use special characters or reserved words; see "Naming
Objects" on page 3-6. Users will be able to use this account to log in to the integrated
visualization tool.

If a schema already exists in the Oracle LSH installation with the same name, the
system automatically appends _n to the name, where n is 1 or the next higher integer if
there is already a schema name your_name_1 or higher.

Default Currency This setting controls the data viewed by users if they do not
explicitly make another selection at login. The default value is Current. If all the source
Table instances mapped to the Business Area have the same snapshot label applied
and you want users to see that snapshot data by default, select the snapshot label.

Default Blinding Access Type This setting controls the data available to users. Users'
privileges also determine which data they can view. Your own privileges determine
which values you can set. The possible settings include:

■ NA/Dummy All users, regardless of their privileges, can see data in Table
instances whose Blinding flag is set to No and the dummy data in Table instances
whose Blinding flag is set to Yes. If all Table instances mapped to Business Area
Table Descriptors have their Blinding flag set to No, this is the only option
available.

■ Real(Unblinded) If all Table instances whose Blinding flag is set to Yes have a
Blinding status of Unblinded, you can set the Default Blinding Access Type to this
value. In these Table instances, users with the necessary privileges can see the real,
unblinded data, and users without these privileges see the dummy data. All users
can see data in Table instances whose Blinding flag is set to No.

Defining Generic Visualization Business Areas

11-18 Oracle Life Sciences Data Hub Application Developer's Guide

Table Descriptors Generic Visualization Business Area Table Descriptors can be
mapped to any Table instance type including 'View' Table instances.

Assigning Security Privileges to Business Area Data
Unlike other Business Areas, which are installed in their Work Area's schema, Oracle
LSH installs each Generic Visualization Business Area instance in its own schema
outside the Work Area schema. There are simplified security requirements for data in
this schema.

Users can log in to the integrated visualization tool using an Oracle LSH database
account. The system checks if there is an Oracle LSH user account linked to the
database account. If there is a linked user account, the system uses it to determine the
user's privileges. If there is no linked user account, the system uses the database
account itself to determine the user's privileges.

The database account can have one or two privileges assigned:

■ Read Data. This privilege allows the user to view data that was never blinded and
dummy data in Table instances that are currently blinded. All database accounts
that should have access to the Business Area instance data should have this
privilege.

■ Read Unblind. This privilege allows the user to view data that has been
permanently unblinded.

If a user should be able to view currently blinded data, he or she must have an Oracle
LSH user account with all the required Blind Break privileges and a linked database
account. An administrator must set up the user account and appropriate privileges.

If you have the Manage GVA BA Database Access operation on Business Area
instances and belong to a user group assigned to a Business Area instance, you can
grant or revoke Read Data and Read Unblind privileges database accounts for the
Business Area instance. Oracle LSH audits all changes to these permissions.

To grant privileges to database accounts on Business Area instance data:

1. In the Business Area instance Properties page, select Manage DB Privileges from
the Actions drop-down list. Select Go.

You see the the privileges Read Access and Read Unblind Access. You can
expand either privilege to view the database accounts currently assigned to that
privilege.

2. To change assignments, select the plus (+) icon in the Manage column for either
Read Access or Read Unblind Access. A screen opens displaying available
accounts for assignment and those already selected for the privilege.

3. Use the arrow icons to grant or revoke the selected privilege to one or more
accounts:

■ To grant an account the privilege you selected, double-click or use the arrow
icons to move the account from Available Users to Selected Users.

Note: The adapter can allow users with Blind Break privileges on all
Table instances whose Blinding flag is set to Yes and whose Blinding
Status is set to Blinded to select the Real (Blind Break) option when
they log in, regardless of the Default Blinding Access Type. All blind
breaks are audited.

Launching Visualizations

Defining Business Areas for Visualizations 11-19

■ To revoke the privilege, double-click or use the arrow icons to move an
account from Selected Users to Available Users.

4. Click Apply.

Launching Visualizations
This section contains the following topics:

■ Creating a Visualization on page 11-19

■ Setting Data Currency and Blinding Values on page 11-19

Creating a Visualization
To create a Visualization from a Business Area instance:

1. Click Launch. Oracle LSH opens the Launch Visualization screen.

2. The Launch Visualization screen displays details about the Business Area instance,
and launch settings—data currency, and data blinding-related settings—for data
that becomes available to OBIEE. To edit these settings, click Launch Settings.
Oracle LSH opens the Launch Settings screen. See "Setting Data Currency and
Blinding Values" on page 11-19.

3. After making your selections in the Launch Settings screen, click Launch on the
Launch Visualization screen. Oracle LSH opens the OBIEE Administration Tool.

Setting Data Currency and Blinding Values
This section contains the following topics:

■ Setting the Blind Break Value on page 11-19

■ Setting the Shared Snapshot Value on page 11-20

You can determine the blinding status and currency of the data you see by clicking the
Launch Settings button and selecting a value for Blind Break and Shared Snapshot
Label.

Setting the Blind Break Value
This setting is relevant only when one or more source Table instances either currently
or formerly contained blinded data. Special privileges are required to view real data
that is either currently blinded or was formerly blinded. You must have these special
privileges on all such Tables, in order to see real data in any of them.

Note: Launching the IDE is not supported for Generic Visualization
Business Areas.

Note: When you launch the OBIEE Administration Tool, you have to
log in with an Oracle LSH username and password.

Note: You must have Read Data privileges in order to see any data at
all.

Installing Business Area Instances

11-20 Oracle Life Sciences Data Hub Application Developer's Guide

The following choices are available depending both on the state of the data and on
your security privileges:

■ Not Applicable. If none of the data has ever been blinded, the only option
available is Not Applicable. No special privileges are required.

■ Dummy. This is the only option available to you if you do not have
blinding-related privileges for blinded Tables. You can also see this option if you
have blinding-related privileges. In that case, you can select this option to work
with dummy (not real) data in Oracle Business Intelligence Enterprise Edition.

■ Real (Blind Break). If any of the data is currently blinded, and you have the
required privileges, you can select this option to view real data in Oracle Business
Intelligence Enterprise Edition according to your company's policies. The table(s)
containing the blinded data remain blinded after you run the visualization.

■ Real (Unblinded). If a blinded Table instance has now been unblinded, you can
see real data for the Table instance, provided you have the required privileges. If
there are more than one such Table instances, you need the required privileges for
all of them to be able to use this option.

Setting the Shared Snapshot Value
If all the relevant Table instances share one or more snapshot labels, those snapshot
labels appear in this drop-down list and you can select one.

In addition, you normally have the option to view the current data.

You can apply snapshot labels in the Work Area; see "Adding, Removing, or Moving a
Snapshot Label" on page 12-9.

For more information on what snapshots are, see "Data Snapshots" on page 13-9.

Installing Business Area Instances
You can install a Business Area instance directly from its Properties screen, using the
Install button, or in its Work Area (see "Installing a Work Area and Its Objects" on
page 12-11).

When you install a Business Area instance using the Install button on its Properties
screen:

■ The system checks in the Business Area instance and definition, and also the Table
instances in the current Work Area to which the instance is mapped.

■ The system attempts to install the Business Area instance and its source Table
instances in the current Work Area. The system displays a success or error
message. If the installation fails, the error message displays the name of any
objects that were not installable.

Note: If a Table instance is defined as a pass-through view,
visualizations always display current data in it, regardless of this
setting.

Modifying Business Areas

Defining Business Areas for Visualizations 11-21

■ In an OBIEE Business Area, the system may generate a repository file; see "About
OBIEE Business Areas" on page 11-12.

Log File To see the log file for the installation, you must go to the Work Area
Installation screen, as follows:

1. Click the Applications tab. The main Application Development screen opens.

2. Click the name of the Work Area you are working in. The Work Area screen opens.

3. From the Actions drop-down list, select Installation History.

4. Click Go. The system displays the Installation History screen with the log files in
chronological order.

5. Click the View Log link for the most recent installation attempt or for the date and
time that you ran the install process. The system displays the log file.

For information on installation and on reading the log file, see "Installing a Work Area
and Its Objects" on page 12-11.

Modifying Business Areas
This section contains the following topics:

■ Modifying Business Area Instance Properties on page 11-22

■ Modifying Business Area Definition Properties on page 11-22

– Modifying Table Descriptors on page 11-23

– Modifying Joins on page 11-23

– Modifying Business Area Hierarchies on page 11-23

– Modifying Business Area Source Code on page 11-23

If you have the necessary privileges, you can modify a Business Area either through
an instance of it in a Work Area or directly in the definition in its Domain or
Application Area. In most cases it makes sense to work through an instance in a Work
Area for the following reasons:

■ In order to use or test changes to the definition you must create and install an
instance of it.

■ If you work through an instance, the system automatically repoints the instance to
the new version of the definition.

However, if you need to change properties of the definition, you must work directly in
the definition in its Domain or Work Area.

Whether you work in an instance or directly in the definition, when you check in the
new version of the definition you have the opportunity to upgrade instances of the
original definition to the new version; see "Upgrading Object Instances to a New
Definition Version" on page 3-15.

Note: If the Business Area definition or any of its source Table
instances in the current Work Area is not installable, the system cannot
install the Business Area instance. See Appendix A, "Installation
Requirements for Each Object Type" for the reasons these objects may
not be installable.

Modifying Business Areas

11-22 Oracle Life Sciences Data Hub Application Developer's Guide

Modifying Business Area Instance Properties
On the Business Area instance's Properties screen, click Update to enter changes.
Oracle LSH creates a new version of the instance you are working on and applies your
changes to it when you click Apply. Click Cancel to discard your changes and the new
version.

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

You can modify the following:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

Definition Source This field applies to the instance only. It specifies the Business
Area definition to which this Business Area instance points. It generally does not make
sense to change the source definition for the following reasons:

■ Changing the definition may result in a new set of Table Descriptors, Joins, and
Business Area Hierarchies.

■ Any new Table Descriptors are not mapped.

■ The Business Area's status changes to Non Installable.

If you want to change to a new version of the same definition, use the Upgrade
Instance option from the Actions drop-down list.

Default Blinding Access Type (Generic Visualization Business Areas) See "Default
Blinding Access Type" on page 11-17.

Default Currency (Generic Visualization Business Areas) See "Default Currency" on
page 11-17.

Modifying Business Area Definition Properties
You can go to a Business Area definition's Properties screen in one of the following
ways:

■ From the Business Area's Properties screen: Click the hyperlink of the Business
Area definition that appears in the Definition field. See "Definition" on page 11-4.

■ From the Domain or Application Area where you created the definition: Click
Manage Definitions to view all the definitions in that Domain or Application Area.
Click the definition name.

Once on the Business Area definition screen, click Update to enter changes. Oracle
LSH creates a new version of the definition. You can change the following properties:

Name See "Naming Objects" on page 3-6 for further information.

Description See "Creating and Using Object Descriptions" on page 3-6 for further
information.

Note: You must reinstall the Business Area for the changes to take
effect.

Modifying Business Areas

Defining Business Areas for Visualizations 11-23

You can modify some properties through the Actions drop-down list; see "Using the
Actions Drop-Down List" on page 3-76 for further information.

Modifying Table Descriptors
Table Descriptors belong to the Business Area definition, but Table Descriptor
mappings belong to the Business Area instance. You must check out the definition to
add, remove, or update Table Descriptors, but not to map, unmap, or remap Table
Descriptors.

You can remove the existing Table Descriptors and add different ones. See "Creating a
Business Area" on page 11-2 for information about the function of Table Descriptors in
a Business Area.

Oracle LSH enforces the following rules:

■ You cannot remove a Table Descriptor if any Join or Hierarchy references it.

■ You cannot change a Table Descriptor's source Table definition to a different Table
definition if any Join or Hierarchy references the Table descriptor.

■ You cannot remove a Column from a Table Descriptor if any Join or Hierarchy
references it.

You can change the Table Descriptor mappings, which are part of the Business Area
instance, not the definition; see "Mapping Table Descriptors to Table Instances" on
page 3-45.

Modifying Joins
Joins belong to the Business Area definition.You must check out the definition to add,
remove, and modify Joins. See "Defining Joins" on page 11-7 for information about
Joins.

Modifying Business Area Hierarchies
Business Area Hierarchies belong to the Business Area definition. You must check out
the definition to add, delete, and modify Business Area Hierarchies. See "Defining
Business Area Hierarchies" on page 11-9 for information about Business Area
Hierarchies.

To change the order of the hierarchy columns, click Reorder. See "Reordering and
Renumbering Objects" on page 3-36.

Modifying Business Area Source Code
Business Area Source Code belongs to the Business Area definition. You must check
out the definition to make any changes to the Source Code instance, for example,
editing and uploading an OBIEE repository file for OBIEE Business Areas. See "About
OBIEE Business Areas" on page 11-12 for more information on OBIEE Business Area
Source Code.

Note: Oracle LSH does not prevent all changes that might cause
your Business Area to not function properly. For example, you are
allowed to change the underlying Variable of a Column even if the
Column is part of a Join. However, if you select a Variable that has a
different data type, the Join may no longer work.

Modifying Business Areas

11-24 Oracle Life Sciences Data Hub Application Developer's Guide

12

Using, Installing, and Cloning Work Areas 12-1

12Using, Installing, and Cloning Work Areas

This section contains information on the following topics

■ Using the Work Area Properties Screen on page 12-1

■ Personalizing Your Work Area Properties Screen on page 12-10

■ Installing a Work Area and Its Objects on page 12-11

■ Cloning Work Areas for Testing and Production on page 12-21

Using the Work Area Properties Screen
To reach the Work Area Properties screen, click the Applications tab and navigate to
the Application Area that contains the Work Area, then click the Work Area's
hyperlink. You can also use the Search field from many other Oracle LSH screens.

You can see information about the Work Area as a whole and about all the object
instances it contains.

Work Area information and actions:

■ Work Area Properties on page 12-2

■ Viewing a Work Area's Installation History on page 12-3

■ Viewing a Work Area's Version History on page 12-3

Object instance information and actions:

■ Object Instance Information on page 12-5

■ Object Instance Actions on page 12-6

■ Adding Object Instances to a Work Area on page 12-7

■ Managing Table Instance Snapshot Labels in a Work Area on page 12-8

Oracle Life Sciences Data Hub (Oracle LSH) Work Areas are designed to allow many
people to work simultaneously on developing different parts of a single application. In
addition, depending on your company's policies, you may have one or more Work
Areas of your own to work in. You may or may not be able to create Work Areas
yourself.

As you define the objects required for a particular application, you must install them
in the database before you can run the executable objects or write data to tables; see
"Installing a Work Area and Its Objects" on page 12-11.

Using the Work Area Properties Screen

12-2 Oracle Life Sciences Data Hub Application Developer's Guide

Work Area Properties
A Work Area itself has the following properties:

Usage Intent Work Areas have a special property called Usage Intent that interacts
with the validation status of the Work Area and its contained object instances to
enforce certain system behavior. The valid usage intent values are the same as the
validation status, except for Retired. They are Development, Quality Control, and
Production.

For an explanation of the interaction of usage intent and validation status, see "Work
Area Usage Intent and Validation Status" in the Oracle Life Sciences Data Hub
Implementation Guide.

Validation Status The validation status of the Work Area itself. You cannot promote a
Work Area to a higher validation status until every object it contains has a validation
status equal to or greater than the new Work Area validation status.

Status A Work Area's status is either Installable or Non Installable. The status is
Installable only if every object instance contained in it is Installable. However, even if
the status is Non Installable, you can run the installation job as follows:

■ You can run upgrade or partial installation if you omit the noninstallable objects.

■ You can run full installation. If an executable object is noninstallable, the system
automatically performs automatic mapping by name for any unmapped target
Table Descriptors, looking for Table instances of the same name in the current
Work Area. If any target Table Descriptors remain unmapped, the system creates
Table instances from them in the current Work Area and maps them. The
executable object may then be installable.

■ You can install individual objects; see "Installing Individual Objects" on
page 12-15.

Version The current version of the Work Area. (You can see information about
previous versions by selecting View Version History from the Actions drop-down
list.)

Cloning Label If this Work Area was the source or target of a Work Area clone, the
system displays the label entered at the time of clone.

Version Label If a user has applied a label to this version of the Work Area, the
system displays it here. To create a label for the current Work Area version, select
Version Label from the Actions drop-down list.

Domain The system displays the Domain in which the Work Area is located.

Note: Even if a Work Area's status is Installable, you cannot install it
if the source definition of any of its object instances is checked out by
another user.

However, if you have the Checkin Administrator privileges you can
check in all objects that are checked out by other users and install the
Work Area. The system displays a warning indicating that you are
checking in objects checked out by other users. Normal object security
privileges on the Work Area and its objects is also required.

Using the Work Area Properties Screen

Using, Installing, and Cloning Work Areas 12-3

Application Area The system displays the Application Area in which the Work Area
is located.

Forward Chain Enabled If checked, Programs and other executables in the Work
Area can be part of a forward chaining execution process if they are set up to do so. If
unchecked, no Program or other executable in the Work Area can be part of a forward
chaining process even if they are set up for it; see "Forward Chaining" on page 13-10
for more information.

Viewing a Work Area's Installation History
To see a record of each previous installation of the Work Area, do the following:

1. From the Actions drop-down, select Installation History.

2. Click Go. The system displays the Work Area Install History screen.

The Install History screen includes the following information:

Installation Attempt The system assigns a number x.y to each installation attempt,
where x is the version number and y is installation attempt on that version represented
by the row. For example, if the current Work Area version number is 3 and there have
been 5 installation attempts on version 3, then the most recent installation attempt
number is 3.5, and the previous one is 3.4.

Install Status The system displays the final status of the installation attempt. If the
installation was successful, the status is Installed. If the installation was not successful,
the system displays the status corresponding to the last installation phase completed
successfully. See "Work Area Installation Phases and Statuses" on page 12-18.

Install Mode The system displays the mode used to run the installation: Full, Partial,
or Upgrade. See "Installation Modes" on page 12-12 for further information.

Force to Regenerate Scripts If set to Yes, the installation process regenerated
installation scripts even for objects that had not changed since the previous successful
installation. If set to No, the installation process generated installation scripts only for
objects that had changed since the last successful installation.

Installed By The username of the person who initiated the installation attempt.

Installation Date The date on which the installation was completed.

View Log Click the icon in the View Log column to see the log file for the installation.
See "Reading the Log File" on page 12-16 for further information.

Viewing a Work Area's Version History
To see the Work Area's version history, do the following:

1. From the Actions drop-down, select View Version History.

2. Click Go. The system displays the Work Area's Version History screen.

The Version History screen includes the following information:

Name The Work Area version's name.

Description The Work Area version's description.

Using the Work Area Properties Screen

12-4 Oracle Life Sciences Data Hub Application Developer's Guide

Version The Work Area version's version number.

Status The installation status: either Installable or Non Installable.

Validation Status The validation status of the Work Area: either Development,
Quality Control, or Production.

Usage Intent The usage intent of the Work Area: either Development, Quality
Control, or Production.

Last Modified By The username of the person who last made any changes to the
Work Area, including checking out any object instance in the Work Area.

Last Modified The date of the last modification to the Work Area.

Version Details
To view additional details about a Work Area version, click the Show hyperlink or its
plus (+) icon. The system displays the following information, if it exists:

Cloned From If the Work Area version was created by cloning another Work Area
onto this one, the system displays the name of the original Work Area.

Cloning Label If the Work Area version was created by cloning another Work Area
onto this one, the system displays the label created for the cloning operation.

Version Label If a user created a label for the Work Area version, the system displays
the label.

Changing a Work Area's Usage Intent
Work Areas have a special property called Usage Intent that interacts with the
validation status of the Work Area and its contained object instances to enforce certain
system behavior. The valid usage intent values are the same as the validation status,
except for Retired. They are Development, Quality Control, and Production.

For an explanation of the interaction of usage intent and validation status, see "Work
Area Usage Intent and Validation Status" in the Oracle Life Sciences Data Hub
Implementation Guide. For a discussion of Work Area usage, see "Work Areas" in Oracle
Life Sciences Data Hub Implementation Guide.

When a Work Area is first created, its usage intent is set to Development.

Special privileges are required to modify a Work Area's usage intent.

To modify the usage intent, do the following:

1. From the Actions drop-down list, select Update Usage Intent.

2. Click Go.

3. In the Description field, enter the reason you are making the change.

4. From the Usage Intent drop-down, select the value you want to apply:
Development, Quality Control, or Production.

5. Click Apply. The system makes the change and returns you to the Work Area's
Properties screen.

Using the Work Area Properties Screen

Using, Installing, and Cloning Work Areas 12-5

Object Instance Information
The Work Area properties screen can display the following information about each
object instance contained in the Work Area. You can reduce the number of columns
displayed and change the right-to-left order in which they are displayed by clicking
the Customize button or selecting a different view; see "Personalizing Your Work Area
Properties Screen" on page 12-10.

You can change the top-to-bottom display order of a Work Area's objects by sorting on
the fields with an asterisk (*) below.

Name* The name of the object instance. The name is hyperlinked; click it and the
system opens the Properties screen for that object instance.

Type* The object type.

Technology* For executable object instances, this is the technology type; for example,
SAS or PLSQL for Programs; Oracle Clinical Labs or SAS for Load Sets. For Table
instances, it is the processing type; for example Staging or Transactional with Audit.

Description The object description entered by its Definer.

Latest Version The number of the latest version of the object instance.

Installed Version The number of the version of the object instance that is currently
installed.

Status* Objects can have the following statuses:

■ Installable. The object either is installed or can be installed.

■ Non Installable. The object has problems that prevent it from being installed. See
Appendix A, "Installation Requirements for Each Object Type" for the reasons each
object type may be noninstallable.

■ Upgradable. This status applies only to Table instances. If a Table instance is
Upgradable, you can install it using any mode. If it is Non Upgradable, you cannot
install it in upgrade mode. See information on Upgrade mode under "Installation
Modes" on page 12-12.

Validation Status* Development, Quality Control, Production, or Retired; See
"Validating Objects and Outputs" on page 3-31 for further information.

Note: The Install option for single object instances is always
available, even for objects with a status of Non Installable. The system
automatically addresses the problem of unmapped Table Descriptors
during installation; see "Installing Individual Objects" on page 12-15.

Note: An object instance of any type is not installable if its source
definition is checked out by a user different from the person initiating
the installation (except a Checkin Administrator), or if its source
definition is not installable for any other reason.

Using the Work Area Properties Screen

12-6 Oracle Life Sciences Data Hub Application Developer's Guide

Has Data* This field applies only to Table instances. If set to Yes, the Table instance
contains data. If set to No, the Table instance does not contain data.

Definition Checked Out By* If the source definition of the object instance is checked
out, the system displays the username of the person who has checked it out.

Created TS* Timestamp when the object was created.

Created By* User ID of the person who created the object.

Last Modified TS* Timestamp of the most recent modification of the object.

Last Modified By* User ID of the person who most recently modified the object.

Installed TS* Timestamp of the most recent installation of the object.

Last Submit TS* This field applies only to executable instances: timestamp of the
most recent submission of the object.

Last Refresh TS* This field applies only to Table instances: timestamp of the most
recent job that wrote data to the Table instance.

Browse Data, Install, Launch, Submit See "Object Instance Actions" below.

Object Instance Actions
You can take actions on individual object instances by one or more of the following
methods:

Using the Icons in the Object's Row
The following actions are available on each object's row if your view displays them:

Browse Data This action applies only to Table instances. It opens the Browse Data
screen for the Table instance; see "Viewing Data within the Oracle Life Sciences Data
Hub" on page 3-70.

Install This action installs a single object at a time. For Table instances, it performs an
upgrade installation.

Launch This action applies only to Program and Business Area instances. It opens
the integrated development environment for the appropriate technology for the object.

Submit This action applies only to executable instances. The system displays the
Submission screen based on the default Execution Setup. You can modify Parameter
values as required and submit the job.

Using the Drop-Down List
Additional actions are available in the drop-down list.

1. Select an object.

2. Select an item from the Select Object and: drop-down list. The following actions
are available:

Using the Work Area Properties Screen

Using, Installing, and Cloning Work Areas 12-7

Add Source Table This action applies only to executable instances. It allows you to
create a Table Descriptor from an existing Table instance for the selected executable
instance.

Browse Data This action applies only to Table instances. It opens the Browse Data
screen for the Table instance; see "Viewing Data within the Oracle Life Sciences Data
Hub" on page 3-70.

Copy See "Copying Objects" on page 3-17 for information. You can select and copy
multiple objects at the same time.

Clone See "Cloning Objects" on page 3-20 for information. You can select and clone
multiple objects at the same time.

Default Execution Setup Displays the default Execution Setup for that instance. You
can then modify it; see "Creating, Modifying, and Submitting Execution Setups" on
page 3-55.

Execution Setup Displays the Execution Setup listing screen for the executable
instance. You can then select any Execution Setup defined for the executable and
modify or submit it; see "Creating, Modifying, and Submitting Execution Setups" on
page 3-55.

Remove The system immediately removes the object from the user interface so that it
is no longer visible. The object is not deleted from the database until the next Work
Area installation, at which point the system automatically drops it. You can select and
remove multiple objects at the same time.

To protect data, when you try to remove a Table instance:

■ The system does not remove the Table instance if its validation status is
Production.

■ If the Table instance is mapped to a Table Descriptor in one or more Programs,
Load Sets, Data Marts, or Business Areas, the system displays a warning listing the
executable objects to which it is mapped. It also displays the validation status of
the Table instance, and whether or not the Table instance is installed.

■ If the Table instance is not mapped to any Table Descriptors, the system displays a
confirmation message.

View All Outputs This action applies only to executable objects. It displays a list of all
outputs produced by the instance. You can click the links to view the actual outputs.

View Output This action applies only to executable objects. It displays the most recent
output produced by the default Execution Setup for the instance.

Adding Object Instances to a Work Area
To add an object to a Work Area, do the following:

1. From the Add drop-down list, select the type of object you want to add.

2. Click Go. The system displays the Create screen for the type of object you want to
add.

Note: If you remove a Table instance, you lose all the data it contains.

Using the Work Area Properties Screen

12-8 Oracle Life Sciences Data Hub Application Developer's Guide

For instructions on creating objects, see the chapter on each object or click Help
from the Create or object properties screen.

Managing Table Instance Snapshot Labels in a Work Area
You can add, remove, or move labels to or from the data in any or all of the Table
instances in a Work Area at the same time.

By default, the system displays the most recent snapshots of all audited Table
instances in the Work Area that contain data. If you want to work with an older
snapshot, perform a query; see "Querying for Snapshots" on page 12-8.

This section contains the following topics:

■ Querying for Snapshots on page 12-8

■ Table Instance Information Displayed on page 12-8

■ Adding, Removing, or Moving a Snapshot Label on page 12-9

Querying for Snapshots
To add, remove, or move a label from one or more snapshots that are not the most
current, start by searching for the Table instance snapshots you want to act on:

1. In the Work Area Properties screen, select Manage Snapshot Labels from the
Actions drop-down list. The system opens the Manage Snapshot Labels screen.

2. Blinding Status. Tables that contain blinded data have two partitions, one that
contains the real, sensitive, blinded data, and one that contains dummy data. You
can apply different labels, one at a time, to snapshots of the blinded and dummy
partitions. You must specify whether you want the system to query for blinded or
dummy.

The system always queries for snapshots of nonblinded Table instances (Table
instances that do not contain blinded data).

3. Select one of the following:

■ Most Recent Refresh Timestamp as of. To search by timestamp, click the
button next to Most Recent Refresh Timestamp as of and then select a date and
time from the drop-down list.

■ Snapshot Label. To search by label, click the button next to Snapshot Label
and then select a label from the drop-down list.

4. Click Search. The system populates the lower portion of the screen with the Table
instance snapshots in the Work Area that satisfy the search criteria.

Table Instance Information Displayed
The system displays the following information for each snapshot that satisfies the
search criteria you specified in the upper portion of the screen:

■ Table. The name of the Table instance of which this is a snapshot.

■ Blinding Status.

– If Blinded, the action you are about to take affects the blinded partition of a
Table instance that contains blinded or unblinded data.

– If Dummy, the action you are about to take affects the dummy partition of a
Table instance that contains blinded or unblinded data.

Using the Work Area Properties Screen

Using, Installing, and Cloning Work Areas 12-9

– If Not Applicable, the Table instance does not contain blinded or unblinded
data.

■ Writing Instance Type. The object type that writes data to this Table instance:
either a Load Set instance or a Program instance.

■ Writing Instance Name. The name of the Writing Instance.

■ Job ID. The unique ID of the job that wrote the data to the Table instance at the
time in the Refresh TS column.

■ Snapshot Label. The snapshot label or labels currently applied to the Table
instance snapshot.

■ Source Currency Information. Currency (timestamp) of the Table instances or
external tables or views that the Writing Instance (Program or Load Set) read from
when writing to the Table instance snapshot. If the Writing Instance is a Load Set,
source timestamp comes from the Load Set execution time for all Load Set types
except Oracle Clinical Load Sets; Oracle Clinical type Load Sets get source
timestamp from the Oracle Clinical system.

■ Refresh TS. The timestamp that defines the snapshot of the Table instance.

Adding, Removing, or Moving a Snapshot Label
To add, remove, or move a snapshot label, do the following:

1. The most current snapshots available are displayed by default. If you want to
work on older snapshots, enter a query; see "Querying for Snapshots" on
page 12-8.

2. Specify the label to want to add, remove, or move. Either enter it in the Snapshot
Label field or, if the label you want to add or remove has already been used in this
Work Area, do the following:

■ Click the Search icon for the Snapshot Label field. The system opens a Search
pop-up window.

■ Enter the label you are looking for, or use special characters if you do not
know the exact label. Special characters are explained in the "Searching"
chapter of the Oracle Life Sciences Data Hub User's Guide.

■ Click Go. The system returns all the labels that fit the criteria.

■ Click the Quick Select icon for the label you want.

■ The system returns to the Manage Snapshot Label screen with the label you
selected in the Snapshot Label field.

3. Click the Select checkbox to select the snapshots to which you want to add, or
from which you want to remove, the label.

4. Click one of the following:

■ Add Snapshot Label. The system adds the label you specify to the snapshot(s)
you specify.

■ Remove Snapshot Label. The system removes the label from the snapshot(s)
you specify.

■ Add/Move Snapshot Label. For each Table instance you specify, if the label
you specify is currently applied to any snapshot, the system removes the label
from that snapshot and moves it to the snapshot you specify.

Personalizing Your Work Area Properties Screen

12-10 Oracle Life Sciences Data Hub Application Developer's Guide

Personalizing Your Work Area Properties Screen
So much information is available on the objects in the Work Area that it does not fit
easily onto a standard computer screen. You can free up space by removing columns
you don't use or changing the order in which columns are displayed so that the ones
you need most often are easily visible. You can scroll to any columns you do not
remove.

You can select an alternative view from the View drop-down if other views are
available, or create your own custom view. After you create your view, other people
can use it too.

To personalize your view of the Work Areas Properties screen:

1. Click the Customize button.

2. Do one of the following:

■ If you want to use an existing view without changes, select Yes in the Display
View column in the view's row. Skip to the last step: click Apply.

■ If you want to create a new view beginning with the default values, click
Create View. The system opens the Update View screen displaying the default
settings.

■ If you want to create a new view beginning with an existing view, select a
view and click Duplicate. The system opens the Update View screen
displaying the settings of the view you duplicated.

■ To modify an existing view, click the pencil icon in its Update column. The
system opens the Update View screen displaying the settings of the view.

3. Enter values in the following fields:

■ View Name. Enter a name for your view or change the existing name.

■ Number of Rows to Display: From the drop-down, select a number of rows to
display in the Work Area screen at a time. The options are 5, 10, 25, and 50.

■ Set as Default. Check this box to display this view each time you enter the
Work Area Properties screen.

■ Description. (Optional) Enter a description. For example, you can provide
information that will help other people decide if they want to base their own
view on this one.

4. Remove columns from display (optional). If you want to remove columns, move
them from the Columns Displayed list to the Available Columns list, either by
double-clicking on them or by selecting them and using the Remove button. You
can also use Remove All and then add the columns you want using the Move
button.

5. Change column display order (optional). The left-to-right display order of
columns on the Work Area Properties screen is determined by the top-to-bottom
order of columns in the Columns Displayed list. The topmost column here is
displayed farthest to the left. Select a column whose order you want to change and
use the up and down arrows to move it relative to the other columns.

6. Change the Sort settings (optional). Use the Sort settings to determine the order in
which object instances are displayed by default. You can also change the Sort order

Note: You cannot remove the Name column.

Installing a Work Area and Its Objects

Using, Installing, and Cloning Work Areas 12-11

directly in the Work Area Properties screen at any time (by clicking on column
headings) without affecting the view.

■ Column Name. From the drop-down list in the First Sort row, select the
column you want to sort on.

■ Sort Order. From the drop-down list, select the order you want to use:
Ascending or Descending.

You can define a Second Sort to control the order of objects within the limits of the
First Sort, and a Third Sort to control the order of objects within the limits of the
Second Sort.

7. Rename Columns and Set Totalling. Click the Rename Columns/Totalling
button.

■ Rename Columns. You can change the displayed heading for most columns.
Enter the replacement text in the New Column Name text box next to the
default column heading.

■ Display Totals. This option is displayed by default for numeric columns.
However, it is not useful in these cases to check this option.

8. Click Apply.

Installing a Work Area and Its Objects
This section contains the following topics:

■ About Work Area Installation on page 12-11

■ Running a Work Area Installation on page 12-13

■ Installing Individual Objects on page 12-15

■ Viewing Installation Results on page 12-15

■ What Happens During a Work Area Installation on page 12-16

About Work Area Installation
To use a Table, Program, Load Set, Data Mart, Report Set, Workflow, or Business Area
definition that you have created in Oracle LSH, you must create an instance of it in a
Work Area and install the instance and the Work Area itself. The first time you install
a particular Work Area, the system does the following:

■ Creates an Oracle LSH Schema—a set of database schemas; see "Schemas" on
page 12-17

■ Instantiates Table instances as database tables

■ Instantiates Table Descriptors in executable objects and Business Areas as views
onto the tables to which they are mapped

■ Compiles source code for PL/SQL -type Programs, including PL/SQL Programs
contained in Report Sets and Workflows

■ Associates an Oracle Warehouse Builder Task with every executable object, for use
in executing the object

Note: SAS and Oracle Reports Programs are compiled at runtime by
SAS and Oracle Reports, respectively.

Installing a Work Area and Its Objects

12-12 Oracle Life Sciences Data Hub Application Developer's Guide

After you install a Work Area, the system keeps it under version control. As soon as
you change anything in an installed Work Area—check out an object instance, add or
delete an object instance, or even change the description—the system creates a new
version of the Work Area that contains all the changes you make before re-installing
the Work Area.

Installation Modes Oracle LSH supports three installation modes: Full, Upgrade, and
Partial. See the section on the Omitted flag on page 12-14 for further details on how
each installation mode handles omitted objects.

■ Full installation drops and replaces the entire set of schemas. All
objects—including tables, checked-out objects, and any objects whose Omitted flag
is checked but have been previously installed—are dropped, replaced, and
checked in. Full installation deletes all data. During a full installation the entire
Work Area is locked and no one can modify any object in the Work Area,
including objects whose Omitted flag is checked.

Full installation may be useful during development and quality control testing
when data may be corrupted and no audit trail is required. When you change an
installed Table's blinding flag, you must do a Full Work Area installation to apply
the new blinding status to the Table instance.

■ Upgrade installation compares the Work Area's installed objects to the current
objects and adds new objects and replaces objects that have changed—except for
Table instances, which are always upgraded rather than replaced so as to save all
data.

Upgrade installation never drops an object. If you check the Omitted flag for an
object and run Upgrade installation, the object is not installed.

During an upgrade installation the entire Work Area is locked and no one can
modify any object in the Work Area, including objects that are omitted from the
installation.

■ Partial installation allows you to specify the action you want the installation job to
take on the objects you include in the installation, including explicitly dropping
objects. For each table you can specify whether to replace or upgrade the table; if
you choose to replace it, the system deletes its data; if you choose to upgrade it,
the system upgrades the table to the new version without deleting its data.

During a partial installation, you and other users can continue to work on the
objects that are omitted from the installation.

Partial installation is useful during development, when multiple developers are
working in the same Work Area and need to install and test their objects at
different times.

Note: If you install a single executable object using the Install icon or
drop-down item the system tries to map any unmapped Table
Descriptors and may create target Table instances; see "Installing
Individual Objects" on page 12-15. This functionality is not available
when you install at the Work Area level.

Note: To safeguard data, Oracle LSH allows only nondestructive
installation modes in Work Areas with a Usage Intent of Production.
You can use Upgrade mode or Partial mode, but in Partial mode Table
instances must have Upgrade as their assigned action.

Installing a Work Area and Its Objects

Using, Installing, and Cloning Work Areas 12-13

Installation Rules The system cannot install a Work Area in the following
circumstances:

■ The Work Area has a status of Retired.

■ The Work Area version is not the most current version.

■ The Work Area has a usage intent of Production and the installation mode is set to
Full or to Partial with an action other than Upgrade for one or more Table
instances.

■ The validation status of any object included in the installation is less than the
usage intent of the Work Area.

■ No objects have changed in the Work Area since the last successful installation.

■ A previous attempt to install the same version of the Work Area was unsuccessful,
and has not been cancelled by the user.

■ The source definition of one or more object instances included in the installation
have been explicitly checked out by a user other than the person initiating the
installation.

■ The system cannot install a Program instance or other executable if the Table
instances to which it is mapped are not either already installed or included in the
same installation.

■ If the source code of a PL/SQL Program included in the installation does not
compile, the installation fails.

Running a Work Area Installation
To install a Work Area and one or more of the objects it contains, go to the Work Area
and do the following:

1. Click Installation in the Properties screen of the Work Area you want to install.
The system displays the Work Area Installation screen.

2. Choose a mode of installation. See "Installation Modes" on page 12-12 for further
information.

■ Full installation drops and replaces the entire schema with all objects,
including tables, deleting all data.

■ Upgrade installation automatically add and replaces only objects that are new
or changed since the last successful installation, and always upgrades tables,
rather than deleting them, so that it does not delete data.

■ Partial installation allows you to specify which objects you want to install and
what action you want the installation job to take on the objects you include.

Note: People with Checkin Administrator privileges can install
objects checked out by other people.

Note: To safeguard data, Oracle LSH allows only nondestructive
installation modes in Work Areas with a Usage Intent of Production.
You can use Upgrade mode or Partial mode, but in Partial mode Table
instances must have Upgrade as their assigned action.

Installing a Work Area and Its Objects

12-14 Oracle Life Sciences Data Hub Application Developer's Guide

3. In the Install Actions drop-down list, select Process Current Installation to
Completion. This is the only option currently available.

4. Choose whether or not to run a batch install:

■ If you select Batch Install, the system runs the installation as a batch process.
The installation job is placed on a queue and the system returns control of the
UI to the user. You can abort the installation if necessary.

■ If you do not select Batch Install, the system runs the installation in interactive
mode. The installation job does not go onto a queue and therefore can run
more quickly than in batch mode. However, you cannot do anything else in
Oracle LSH until the installation has completed. You cannot abort the
installation. Interactive mode is appropriate when you are installing a small
number of objects.

5. Choose whether or not to Force Script Regeneration. During installation, the
system generates two sets of scripts for objects that have changed since the last
successful installation:

■ DDL scripts for each object included in the installation. The system uses these
scripts to create the actual schema objects during installation.

■ Scripts to be used at runtime for some of the objects; for example, a SAS script
for a SAS-based Program that establishes the appropriate SAS views for
accessing Oracle LSH data.

If you select this option, the system generates new scripts for all objects in the
installation, even if they have not changed. All objects are either replaced or, if
they are Tables, upgraded. This is useful if your schema has become corrupted and
you want to recreate all objects without losing any data.

Checking this attribute has an effect only in Upgrade mode. In Full mode the
system always regenerates scripts for every object regardless of the setting of this
attribute. In Partial mode the system uses the action you specify in the Actions
column for each object to determine whether to regenerate the scripts.

6. Review the objects to be installed. You can sort the objects in the Work Area by
clicking most of the column headings, including: Name, Type, Installable,
Upgradable, Definition Checked Out By, and Current Version Installed?.

7. Check the box in the Omitted column for each object you want to omit from the
installation. The system automatically checks this box for objects whose status is
Non Installable. You can also use the Omit All and Omit None buttons.

You can omit any object in any installation mode and, if the object you omit has
never been installed, it will be truly excluded from the installation process.
However, if it has already been installed, the system takes a different action
depending on the installation mode:

■ Full. In Full mode, the installation process drops the object and replaces it
with the same version that was already installed. If a Table instance has
already been installed and you run a Full installation on its Work Area, the
system drops and replaces the Table instance and deletes all its data, even if
you check its Omitted checkbox.

■ Upgrade. In Upgrade mode, objects marked as Omitted are not installed.

■ Partial. In Partial mode, when you check an object's Omitted checkbox, the
system automatically sets the Action for the object to No Action. If you leave
Action set to No Action, the object is omitted. If you change this setting, the
installation does not omit the object, but performs the action you specify.

Installing a Work Area and Its Objects

Using, Installing, and Cloning Work Areas 12-15

8. To save your changes but install later, click Apply.

To install now, click Apply and Install.

Installing Individual Objects
You can install any object by clicking the Install icon in its row. If the object is not
installable the system automatically performs automatic mapping by name for any
unmapped target Table Descriptors, looking for Table instances of the same name in
the current Work Area. If any target Table Descriptors remain unmapped, the system
creates Table instances from them in the current Work Area and maps them. The
executable object may then be installable; see Appendix A, "Installation Requirements
for Each Object Type".

If the object is installable, the system performs an upgrade installation for the selected
instance and any of the Table instances to which it is mapped that are not already
installed. If the object being installed or any of its mapped Table instances is not
installable, the installation fails and the system displays an error message with the
name of the noninstallable object.

If the object being installed is an Oracle Clinical SAS or Oracle Data Extract Load Set
and there are no target Table Descriptors defined, the system automatically creates
target Table Descriptors, Table instances, and Table definitions based on all the active
SAS or Oracle Data Extract views defined for the selected Oracle Clinical study or
study set, and maps the Table Descriptors and corresponding Table instances.

Viewing Installation Results
When you start an installation, the system displays the Installation Processing
Monitoring screen. It has the same information as the Installation screen. If you are
running installation in interactive (not batch) mode, all the fields are read-only. In
batch mode you can use the Abort button to stop the installation job.

When the installation completes, a different display appears depending on whether
the installation completed successfully or failed; see:

■ Failed Installations on page 12-15

■ Successful Installations on page 12-16

Failed Installations
If the installation fails, the system displays the status Install Failed. The Installation
Status displays the last phase the installation process reached. See "Installation Rules"
on page 12-13 for some of the reasons an installation may fail, and "Work Area
Installation Phases and Statuses" on page 12-18.

Note: Objects with a value of No in the Installable column are
automatically omitted from the installation in all modes.

Note: Before the installation can begin, the system must wait for all
job executions of Work Area Programs, Load Sets, Report Sets, or
Workflows currently running to complete. The system prevents new
jobs from starting.

Installing a Work Area and Its Objects

12-16 Oracle Life Sciences Data Hub Application Developer's Guide

You cannot roll back any changes made by the installation process.

To see what actions the installation took, look at the log file.

Finding the Log File To view the log file, do the following:

1. Click Cancel to return to the main Work Area screen.

2. From the Actions drop-down list, select Installation History.

3. Click Go. The system displays the Installation History screen.

4. Click the View Log link for the most recent installation attempt. The system
displays the log file.

Reading the Log File In the log file, you see a record of all the phases the installation
process passed through before failing. See "Work Area Installation Phases and
Statuses" on page 12-18 for information on these phases.

The log file contains information about parts of the installation that failed, with an
error message. Each failed activity is called a "unit." This is an Oracle Warehouse
Builder term and can be a package or other unit.

For example, if the installation fails because the PL/SQL code in a Program did not
compile, the log file contains a message like the following:

Calling Create deployment
Unit Name=PKG_CDR_W4_170DAE141_1_$CREATE_7
ORA-00900: invalid SQL statement
Unit Name=PKG_CDR_W4_170DAE141_1_$CREATE_7
ORA-04042: procedure, function, package, or package body does not exist
fail to complete create deployment
Set install status to $INSTSTATUSES$CREATEACTIVE
set work area status to install failed

Note the name of the unit and then look at the bottom of the log file for further details
about the problem(s) with the unit.

Successful Installations
If the installation succeeds, the system displays a status of Installed and an installation
status of Installation Completed Successfully.

Each object included in the installation is displayed, and you can click the View Script
link for any object to see the DDL scripts the system generated for that object.

Click View Installation Log to see the log file.

What Happens During a Work Area Installation
This section contains the following topics:

■ Schemas on page 12-17

■ Object Name Resolution on page 12-17

■ Work Area Objects Converted to Oracle LSH Schema and OWB Objects on
page 12-17

Note: You must cancel the installation by clicking Cancel or Cancel
Installation before you can try again to install the Work Area.

Installing a Work Area and Its Objects

Using, Installing, and Cloning Work Areas 12-17

■ Work Area Installation Phases and Statuses on page 12-18

■ Work Area Status on page 12-20

During installation, Oracle LSH uses Oracle Warehouse Builder (OWB) to convert
Work Area definitional objects to database objects.

Schemas
Each Work Area is installed to its own set of Oracle database schemas, collectively
called an Oracle LSH schema. An Oracle LSH schema encompasses all the installation
targets, including Oracle database schemas and file systems.

Each Oracle LSH schema includes a primary Oracle database schema and one or more
auxiliary Oracle database schemas. Auxiliary schemas contain compiled PL/SQL code
and private synonyms to resolve naming conflicts.

Primary Schema Each Oracle LSH schema includes one primary schema that owns
all installed database objects except the compiled PL/SQL code. The primary schema
is name Wcccc_nnnn, where cccc is the company ID and nnnn is the internal
hexadecimal ID of the Work Area.

Auxiliary Schemas Auxiliary schemas contain all the Work Area's compiled PL/SQL
code and private synonyms that resolve the object instances referenced in the PL/SQL
code to the actual Tables in the primary schema or in the primary schemas of other
Work Areas (see"Object Name Resolution" on page 12-17).

The auxiliary schemas are named Wcccc_nnnn_x, where nnnn is the internal
hexadecimal ID of the Work Area and x is a unique identifier for the auxiliary schema.

Object Name Resolution
Because you can reuse Oracle LSH object definitions such as Tables, Table Descriptors,
and Programs in Oracle LSH, there can be naming conflicts within a Work Area. For
example, two PL/SQL Programs may refer to two different Tables called Adverse
Events, one of which contains raw source data, while the other contains transformed
data.

Oracle LSH resolves any naming conflicts in PL/SQL programs (including Oracle
Reports Programs and including Report Sets, Workflows, Load Sets, and Data Marts)
by using private synonyms in as many auxiliary schemas as necessary. For each
PL/SQL Program, the system records the name of the auxiliary schema that resolves
its Table Descriptors' naming conflicts.

For security reasons, PL/SQL Programs cannot be stored in the primary schema. They
are stored in an auxiliary schema. If a PL/SQL Program includes multiple packages,
they are all installed in the same auxiliary schema.

The system analyzes the PL/SQL Programs to be created for a Work Area, determines
the number of auxiliary database schemas needed, and creates them. This analysis is
performed in Oracle LSH metadata tables during the installation Preparation in
Progress phase; the actual auxiliary schemas and their private synonyms are created
during installation.

Work Area Objects Converted to Oracle LSH Schema and OWB Objects
Oracle Warehouse Builder converts defined objects in a Work Area to Oracle LSH
schema objects as follows:

Installing a Work Area and Its Objects

12-18 Oracle Life Sciences Data Hub Application Developer's Guide

Table Instance A Table instance becomes a database table, with any user-defined
constraints and any system-defined or user-defined indexes as well as a data
manipulation view, an associated Instead-Of trigger, and supporting PL/SQL package.

If a Table instance is defined as a pass-through view, it becomes a view in the database.

Executables For each executable object—Program, Load Set, Report Set, Workflow,
or Data Mart—the system creates its Table Descriptors as views onto the Table
instances to which they are mapped and generates a PL/SQL package.

Source Table Descriptors each become a view that does the following:

■ resolves the Table Descriptor to the real table

■ maps Table Descriptor Columns to real table columns

■ implements Oracle LSH's dynamic security mechanism

■ implements currency snapshotting

■ implements incremental data access

■ implements blinding

Target Table Descriptors each become a view that does the following:

■ resolves the Table Descriptors to the DML View

■ maps Table Descriptor Columns to underlying table columns

■ implements Oracle LSH's dynamic security mechanism

PL/SQL Programs, including those contained in Report Sets and Workflows, become:

■ compiled PL/SQL code in an auxiliary schema or schemas

■ synonyms to map names used in the PL/SQL Program to the proper source or
target view in the primary schema

■ synonyms to map names of external package references to packages in another
auxiliary schema

For SAS and Oracle Reports Programs, OWB creates an OWB Task to call the DP
Server and to grant access to the appropriate database tables.

Work Area Installation Phases and Statuses
The Work Area installation process includes many phases. As the job progresses
through these phases the system assigns it different installation statuses. The system
displays the highest status reached during the process when the process is complete.
You can also see the job's progress from phase to phase in the log file.

After completing each phase, the system checks the value of the Abort flag. If the
installation is running in batch mode and the user has clicked the Abort button to stop
the installation, the system stops the job. You cannot roll back any changes the job may
have made up to that point.

Installation Specification The system gathers the attribute settings for the
installation: Batch Mode (Yes/No), Force Script Regeneration (Yes/No), Installation
Mode (Full, Upgrade, Partial), Install Status of the previous installation, if any
(statuses noted after each phase in this list), Installation Number (current installation
number for this Work Area version plus one).

Related Installation Status: SPECIFIED (Specification phase complete)

Installing a Work Area and Its Objects

Using, Installing, and Cloning Work Areas 12-19

Preparation The system performs all tasks required before the Generation Phase,
including obtaining the necessary locks, identifying the objects to be installed and the
actions to be taken on them, checking in objects, and ensuring that the installation is
valid (see "Installation Rules" on page 12-13).

Related Installation Status: PREPARED (Preparation phase complete)

Generation In a full or upgrade installation the system determines how many
schemas are necessary to hold the installed objects and which objects to place in which
schema. The system generates the DDL scripts that will be used to install, drop, drop
and replace, or upgrade each object included in the installation and, in a full or
upgrade installation, the schemas themselves.

Related Installation Statuses: GEN_ACTIVE (Generation phase in progress),
GENERATED (Generation phase complete)

Quiescence If the Work Area is currently being installed, the system prevents jobs
from starting that are based on the submission of Oracle LSH Programs, Load Sets,
Report Sets, Workflows, or Data Marts installed in the Work Area, and waits for any
jobs currently running to complete. In a partial installation, the system prevents or
waits for job executions only of the objects being installed; the execution of objects not
included in the partial installation can proceed.

Related Installation Status: QUIESCING (quiescing runtime processing)

Unit Definition Oracle LSH calls the Oracle Warehouse Builder (OWB) interface
packages to create the deployment units that OWB will use to carry out the required
actions on each object in the installation.

Related Installation Statuses: DEF_ACTIVE (Unit Definition phase in progress),
DEFINED (Unit Definition phase complete)

Schema Activities The system creates the Oracle schemas required by the installation
if they do not yet exist. In a full installation the system drops existing schemas creates
new schemas.

Related Installation Statuses: SCHEMA_ACTIVE (Schema Activities in progress),
SCHEMA_COMPLETE (Schema Activities complete)

Upgrade Prepare OWB compares the proposed table and table-related changes to the
state of the objects in the database schema and prepares an upgrade plan script to
implement the upgrade. This phase applies only to upgrade installations and partial
installations where the action on an object is Upgrade.

Related Installation Statuses: UPGPREP_ACTIVE (Upgrade prepare in progress),
UPGPREPARED (Upgrade prepare complete), UPGPREP_FAILED (Upgrade prepare
failed)

Upgrade Deploy OWB carries out the upgrade plan and stores the initial state of the
tables and their data in backup tables. This phase applies only to upgrade installations
and partial installations where the action on an object is Upgrade.

Related Installation Statuses: UPGDEPL_ACTIVE (Upgrade deployment in progress),
UPGDEPLOYED (Upgrade deployment complete), UPGDEPL_FAILED (Upgrade
deployment failed)

Upgrade Finalization OWB discards the backup tables. The upgraded tables contain
the data. This phase applies only to upgrade installations and partial installations
where the action on an object is Upgrade.

Installing a Work Area and Its Objects

12-20 Oracle Life Sciences Data Hub Application Developer's Guide

Related Installation Statuses: UPGFIN_ACTIVE (Upgrade finalization in progress),
UPGFINALIZED (Upgrade finalization complete)

Drop OWB performs the deployment units for any dropped objects.

Related Installation Statuses: DROP_ACTIVE (Drop phase in progress), DROPPED
(Drop phase complete)

Create OWB performs the deployment units for any objects being created.

Related Installation Statuses: CREATE_ACTIVE (Create phase in progress), CREATED
(Create phase complete)

Completion The system performs the following clean-up tasks:

■ For full and upgrade installations the Work Area Status is set to Installed. If there
are any objects that are checked out in the Work Area (due to being omitted from
the installation) the system then checks out the Work Area and changes its status
to In Definition.

■ For partial installations, if the Work Area contains omitted objects whose current
version has not been installed, the Work Area is checked in with a status of Partial
Install and checked out again with a status of In Definition.

■ If the Parameters or Parameter settings for a newly installed program have
changed, existing repeating, deferred, or backchain submissions are cancelled
without notification.

■ The system releases the state of quiescence.

■ The system releases the installation lock.

Related Installation Status: INSTALLED (Installation completed successfully)

Work Area Status
As the Work Area moves through its life cycle of development, installation,
modification, reinstallation, and retirement, the system assigns it a Work Area Status
as follows:

In Definition The Work Area has been defined but not yet installed, or has been
installed and is now being modified.

Locked for Installation The Work Area and all its object instances are locked. No one
can check them out or run any jobs. This status applies to full and upgrade
installations.

Locked Partial The object instances included in a partial installation are locked. No
one can check out locked objects or submit locked executables for execution.

Partial Install The Work Area has never had a full installation but has been through a
successful partial installation.

Installed The Work Area has been successfully installed and is available for use.

Retired The Work Area still exists in the database but you cannot submit any of its
executable objects for execution; see "Retired" on page 12-24 for further information.

Cloning Work Areas for Testing and Production

Using, Installing, and Cloning Work Areas 12-21

Cloning Work Areas for Testing and Production
Oracle LSH supports cloning Work Areas so that you can make an exact copy of a
Work Area and all the objects it contains and install it to a new Oracle LSH Schema to
create a test or production data environment.

When you first create an object of any kind, including a Work Area, its validation
status is set to Development. Your company should develop standards for promoting
objects to the validation status Quality Control, and from Quality Control to
Production. Oracle LSH enforces rules concerning the interaction of the validation
statuses of a Work Area and each of its objects, and the value of the Work Area's Usage
Intent attribute, to support the validation process.

Tools Oracle LSH uses the following tools to support validation and separate
environments for testing and production:

■ Usage Intent Attribute. Work Areas have attribute called Usage Intent with the
possible values Development, Quality Control, and Production.

■ Cloning. Work Areas have an operation called cloning that creates an exact
duplicate of the Work Area and all its object instances.

■ Validation Status. All object definitions and instances, including Work Areas,
have a validation status with the possible values Development, Quality Control,
Production, and Retired.

When all the object instances in a Work Area, and the object definitions on which they
are based, reach a higher validation status than the Work Area's Usage Intent, a user
with the necessary privileges can clone the Work Area and set the new Work Area's
Usage Intent attribute to the next higher value. See Figure 12–1, "Application
Development and Validation Process" on page 12-22.

Rules Oracle LSH enforces the following rules:

■ To be installed in a Work Area, object instances must have a validation status equal
to or greater than the Usage Intent of the Work Area.

■ A Work Area cannot be promoted to a validation status higher than the validation
status of any of its object instances.

■ No executables can be run in a Work Area until the Work Area's validation status
is equal to or greater than its Usage Intent value, except by users with the special
Install Qualify Submit privilege on the Work Area. This is to allow testing of a
Work Area before making it available to the full set of users with security access to
it.

■ Full installation is not allowed in Work Areas with a Usage Intent of Production.
This is to protect production data from deletion.

Application Life Cycle
The intended Work Area usage includes the following stages: Development, Quality
Control, and Production. Figure 12–1, "Application Development and Validation
Process" shows these stages.

Cloning Work Areas for Testing and Production

12-22 Oracle Life Sciences Data Hub Application Developer's Guide

Figure 12–1 Application Development and Validation Process

Development When you create a Work Area, the system sets both its Usage Intent
attribute and its validation status to Development. When you create an object
definition or instance, the system sets its validation status to Development. When you
have successfully conducted unit testing on an object, according to your organization's
standards, set the object's validation status to Quality Control (or request a privileged
user to change the status, depending on your security design).

Cloning Work Areas for Testing and Production

Using, Installing, and Cloning Work Areas 12-23

When all the object instances in a Work Area have a validation status of Quality
Control, a privileged user clones the Work Area, creating duplicates of all object
instances, with pointers to the same object definitions and the same validation statuses
as the originals. The version number of the new object instances is 1. The system
creates a label for both Work Areas indicating that they are identical at the time of
cloning. The privileged user enters text for the label and creates the new Work Area
with a Usage Intent of Quality Control. However, its validation status should remain
at Development.

Quality Control Install the new Quality Control Work Area. While its validation
status (Development) is lower than its Usage Intent (Quality Control), only a user with
the Install Qualify Submit privilege can run executables. That privileged user loads
fresh data and tests the installation. The privileged user then promotes the Work Area
validation status to Quality Control. Users with normal security access to the Quality
Control Work Area can then test the objects.

If testers find bugs or other problems, developers should fix them in the Development
Work Area. To do this, you can clone the QC Work Area onto the development Work
Area, overwriting the old one, perform a full installation, and load fresh data. When
all objects have been fixed and tested, and their validation status upgraded, you can
clone the development Work Area onto the QC Work Area.

Promote each object definition and instance to Production when it meets your
production standards. Clone the QC Work Area to create a Production Work Area.

Production Install the new Production Work Area. While its validation status is
lower than its Usage Intent, only a user with the Install Qualify Submit privilege can
run executables. That privileged user loads fresh data and tests the installation. The
privileged user then promotes the Work Area validation status to Production. Users
with normal security access to the Production Work Area can then run the application.

Run the application as necessary for your business purposes. Using the same cloning
procedures described above, modify the objects as necessary over time. Make
modifications through the Development Work Area, test each modified object
definition in the QC Work Area, and clone the QC Work Area to the Production Work
Area.

Note: If new objects are being developed in the Development Work
Area, do not clone the QC Work Area onto the original Development
Work Area or they will be lost. Instead, do one of the following:

■ Create a new Work Area and clone the QC Work Area onto the
new Work Area. Give the new Work Area a unique name such as
"Post-QC Development." Copy and paste new objects that are
ready for testing into the Post-QC Development Work Area before
cloning it onto the QC Work Area for testing.

■ Clone the current Development Work Area onto the QC Work
Area. Test only objects whose validation status is set to QC.

Note: The cloning operation replaces only objects that have been
modified. Cloning does not replace Production Table instances or
data.

Cloning Work Areas for Testing and Production

12-24 Oracle Life Sciences Data Hub Application Developer's Guide

Retired When you close a trial, you can set its Production Work Area's validation
status to Retired. This prevents anyone from running any executables within the Work
Area. However, you can still use the data as input to a Program or other executable in
a different Work Area. For example, you can merge and analyze the data with data
from other closed or current trials.

When you retire a Work Area, you may also want to change its user group
assignments so that only a very limited group of people can change its validation
status back to Production and run Programs or other executables on the data.

If you need to run a Program in a Production Work Area after you have set its
validation status to Retired, you must set its validation status back to Production. For
example, to track patients and update their adverse event records after the trial has
closed, set the Work Area's validation status back to Production, run the necessary
Programs, and set the validation status back to Retired. Alternatively, create a new
Work Area for this purpose.

Cloning a Work Area
You can use the cloning operation together with the Usage Intent Work Area attribute
and object validation statuses (Development, Quality Control, Production, and
Retired) to create clean, controlled, distinct environments for application development,
testing, and production. See "Application Life Cycle" on page 12-21.

The cloning operation is similar to the copy operation except that it is possible to clone
a Work Area over an existing Work Area, so that the clone overwrites the existing
Work Area. For example, if you already have a Quality Control usage intent Work
Area, and several objects fail quality control testing, you can update the objects in the
Development Work Area and then clone the whole Development Work Area onto the
QC Work Area, creating a new version of the QC Work Area.

Object instances in the Work Area clone point to the same source definitions in the
same location that the instances in the original (source) Work Area did.

When you clone a Work Area, you specify a label that the system applies to the source
and target Work Area version. The label is proof that the source and target Work Area
versions are identical. All the object instances in the two Work Areas are identical, and
corresponding objects' validation status is the same. If you clone the same version of
the same Work Area more than once, the system uses the same label each time.

To clone a Work Area, do the following:

1. You can begin a cloning operation in two different places:

■ In the original Work Area's Properties screen, click Clone.

■ In the main Application Development screen, click the icon in the Clone
column for the original Work Area.

The system opens the Step 1 Clone Work Area screen.

2. In the Clone Label field, enter the text for the label. This text will be displayed in
the relevant version of the source and target Work Areas.

3. From the Usage Intent drop-down, select the Usage Intent you want to set for the
target Work Area.

Note: If you clone onto a Work Area that contains objects, the
cloning operation replaces only those objects that have a different
version number from the same object in the source Work Area.

Cloning Work Areas for Testing and Production

Using, Installing, and Cloning Work Areas 12-25

4. In the Clone Destination area, click the button in the Select column to specify the
target.

If you select an Application Area, the cloning operation creates a new Work Area
in that Application Area. The new Work Area's name is the same as the source
Work Area with "_1" appended.

If you select an existing Work Area, the cloning operation overwrites that Work
Area.

5. Click Review. The system displays information about the source (original) and
target Work Areas, including all object instances in the source, for you to review.
For each object, the system displays the action to be taken in the target Work Area:

■ Create. If the object does not exist in the target Work Area, the system creates
it.

■ Replace. If the object exists in the target Work Area and has been modified in
the source Work Area since the last clone, the system replaces the target object
with the source object.

■ Remove. If the object exists in the target Work Area but not in the source Work
Area, the system removes the object in the target Work Area.

■ No Action. If the object exists in the target Work Area and has not been
modified in the source since the last clone, the system does not modify the
target object.

If you see a problem, click Cancel to cancel the cloning operation and return to the
Work Area.

6. To run the cloning operation, click Finish. The system performs the cloning
operation and opens the Properties screen of the target Work Area, displaying a
confirmation message that the clone was successful.

Cloning Work Areas for Testing and Production

12-26 Oracle Life Sciences Data Hub Application Developer's Guide

13

Execution and Data Handling 13-1

13Execution and Data Handling

This section contains information on the following topics:

■ About Execution on page 13-1

■ Submitting Jobs for Execution on page 13-2

■ Data Processing Types on page 13-2

■ Data Auditing, Snapshots and Refresh Groups on page 13-8

■ Processing Data Subsets on page 13-10

■ Forward Chaining on page 13-10

■ Backchaining on page 13-12

■ Managing Blinded Data on page 13-15

■ Using Message-Triggered Submission from External Systems on page 13-19

About Execution
The Oracle Life Sciences Data Hub (Oracle LSH) offers the following capabilities
related to execution and data handling:

■ You can submit a job for immediate execution or schedule it for a later date and
time or set it up to run at regular intervals; see "Submitting Jobs for Execution" on
page 13-2.

■ You can set up and run backchain execution to ensure that you are processing the
most current data available in the source data system; see "Backchaining" on
page 13-12.

■ If you are using Reload processing, you can choose to run in either Full or
Incremental mode; use Incremental mode to quickly load and changed data; use
Full mode to do the same and also to delete records that are not reloaded; see
"Reload Processing" on page 13-4.

■ Apply snapshot labels to the target or both source and target Table instances that a
particular job reads from and writes to; see "Data Snapshots" on page 13-9.

■ Maintain blinded data; see "Managing Blinded Data" on page 13-15.

Each job submitted from the user interface is called a master job. A master job may
execute a single executable object, such as a Program, Load Set, or Data Mart. When a
user submits a Report Set, the master job includes the execution of all the Program
instances contained in the Report Set. A Workflow execution may include the
execution of other executable objects. A Program execution using backchaining is also
a master job that includes multiple subjobs.

Submitting Jobs for Execution

13-2 Oracle Life Sciences Data Hub Application Developer's Guide

Oracle LSH uses the runtime platform of the Oracle Warehouse Builder for all internal
execution. Some additional information is available in "Stopping and Starting Services
and Queues" in the Oracle Life Sciences Data Hub System Administrator's Guide.

Submitting Jobs for Execution
You execute each type of Oracle LSH executable object—Programs, Load Sets, Report
Sets, Workflows, and Data Marts—in the same way.

Before you can submit any executable object, you must do the following:

■ Define an Execution Setup for the executable instance. See "Creating, Modifying,
and Submitting Execution Setups" on page 3-55 for instructions.

■ Map the executable instance's source and target Table Descriptors to Table
instances; see "Mapping Table Descriptors to Table Instances" on page 3-45.

■ Install the instance and all the Table instances to which it is mapped; see
Chapter 12, "Using, Installing, and Cloning Work Areas".

■ Ensure that the source Table instances contain data.

After you have submitted a job, you can track its progress and see details about the job
in the Job Execution section of your My Home screen. For information about the job
information displayed, see "Tracking Job Execution" in the Oracle Life Sciences Data Hub
User's Guide.

Submitting a Job from the Applications Tab While you are defining an executable
object, it's easiest to submit it directly from the instance in its Work Area. You can also
submit jobs from your My Home screen and from the Reports tab; see "Generating
Reports and Running Other Jobs" in the Oracle Life Sciences Data Hub User's Guide.

To submit a job from the Applications tab, do the following:

1. In the appropriate Work Area, navigate to the installed executable instance you
want to submit.

2. Click Run. The Submission screen opens.

Alternatively, in the Actions drop-down list, click Execution Setups, then Click
the Submit icon of the Execution Setup you want to use. The Submission screen
opens.

3. Set values for Submission Details, Submission Parameters, and Data Currency as
necessary. For information on each of these, see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55.

4. Click Submit. The system submits the job for execution and displays the job ID.

Data Processing Types
This section contains the following topics:

■ Processing Types Summary on page 13-3

■ Transactional Processing on page 13-4

■ Reload Processing on page 13-4

■ Staging Processing on page 13-5

■ Transactional High Throughput Processing on page 13-6

■ SQL*Loader Processing for SAS Programs on page 13-7

Data Processing Types

Execution and Data Handling 13-3

■ Using Tables as Pass-Through Views on page 13-8

Oracle LSH offers four different basic types of data processing to accommodate the
different technologies used for loading data into Oracle LSH and operating on data
within Oracle LSH: transactional, reload, staging, and transactional high throughput.
The types are described in the following sections.

The type of processing the system uses depends on the processing type specified for
the target Table instance, not the Program. However, you must be careful to choose a
processing type for a Table instance that is compatible with the Program that writes to
it:

■ If the processing type is Transactional, the source code must explicitly update,
insert, and delete records.

■ If the processing type is Reload, the source code must simply ensure that all
records from the source are loaded (as Inserts) into the target Table instance.

Program instances need to be compatible only with Table instances they write to. Any
Program instance can read from a Table instance of any processing type.

Although only one Program instance can write to a particular Table instance, some
data processing types allow more than one execution of that Program to run at the
same time.

Processing Types Summary
Each processing type is described in the following sections. The following table
summarizes the differences among Oracle LSH data processing types in terms of
whether they require Unique or Primary Keys, are audited, and the kind of data
deletion that they effect:

■ Reload and Transactional with Audit types require either a Primary Key or a
Unique Key to be defined for the Table instance. Staging and Transactional
without Audit types do not require a Primary or Unique Key.

■ Transactional, Reload, and Transactional High Throughput Table instances must
be mapped to target Table Descriptors of the same type. Staging Table instances
can be mapped to target Table Descriptors of any processing type.

Table 13–1 Summary of Oracle LSH Data Processing Types

Processing Type
UK/PK
Required? Audited? Data Deletion

Transactional with Audit Yes Yes Soft-deletes data specified by the Program with explicit
DML Delete statements.

Transactional without
Audit

No No Hard-deletes data specified by the Program with explicit
DML Delete statements.

Reload Yes Yes In Full mode, soft-deletes all data not reinserted. In
Incremental mode, does not delete data.

Staging with Audit No Yes Deletes all data immediately before the next Program
execution; saves a copy of the data.

Staging without Audit No No Hard-deletes all data immediately before the next Program
execution.

Transactional High
Throughput

No No Truncates the Table in Full mode. Hard-deletes data with
explicit DML Delete statements in the Incremental mode.

Data Processing Types

13-4 Oracle Life Sciences Data Hub Application Developer's Guide

From the point of view of the Program writing to the Table instance, a
Transactional target Table Descriptor can be mapped to either a Transactional or
Staging Table instance and a Reload target Table Descriptor can be mapped to
either a Reload or Staging Table instance. Staging Table Descriptors must be
mapped to Staging Table instances.

■ All types except Staging are serialized, so that only one job can write to the Table
instance at a time. For staging Table instances, if more than one job writes to the
Table instance at a time, the system ensures that there is at least one second's
difference in the refresh timestamp.

Different processing types handle data deletion differently:

■ Transactional processing deletes only those records specified in Delete statements
in the Program source code. If the Table instance is audited, the system only
soft-deletes the data.

■ Incremental Reload processing never deletes data. Full Reload processing
soft-deletes all records not explicitly reloaded.

■ Staging Without Audit processing deletes all the data written by the previous job
at the beginning of the next job. Staging With Audit does not delete data.

■ Transactional High Throughput processing truncates the Table in the Full mode.
In the Incremental mode, hard-deletes data if the Program source code specifically
issues a Delete statement.

Transactional Processing
In transactional processing, the Program writing to the Table instance does the work of
determining which records are inserted, updated, and deleted. The system populates
the target database table using explicit DML statements (Insert, Update, or Delete) in
the Program's source code. The system processes only those records that the Program
specifies; records not explicitly inserted, updated, or deleted are not processed. If a
record is explicitly updated but if the data remains the same, the system updates its
refresh timestamp.

The Program writing to the table can "see" all current data, including changes it has
made and records from previous jobs that are still current. Only one job can write to a
Transactional table at a time. The system serializes them.

There are several data processing types that use transactional processing:

■ Transactional with Audit. The system maintains a record of all changes to all
records, including deleted records, over time. Only one Program instance at a time
can write to a Table instance of this type.

■ Transactional without Audit. The system maintains only the current set of
records. Only one Program execution at a time can write to a Table instance of this
type.

Reload Processing
In Reload processing, the internal data processing algorithm does the work of
determining which records to insert, update, and delete. The Program writing to the
Table instance simply inserts data (and must insert all data from the source). The
system compares the unique or primary key of each inserted record to the existing
records to determine whether the record insertion is treated as an insert or an update:
if a record already exists with the same unique or primary key, the system treats the

Data Processing Types

Execution and Data Handling 13-5

loading of that record as an update. The way the system processes deletions depends
on whether the job is run in Full or Incremental mode (see below).

If the updated record does not include any data changes, the system simply changes
its refresh timestamp to the timestamp of the current job.

Reload processing requires a primary or unique key defined for the target Table
instance. If both exist, you must specify which one to use for data processing. It is not
necessary to have a primary or unique key defined on the source; for example, a Load
Set can successfully load SAS data into an Oracle LSH Table instance even if no
primary or unique key is defined for the dataset in the source SAS system.

Programs writing to reload tables can "see" only data processed in the current job.

Reload Table instances are always audited. Only one job can write to a Reload table at
a time. The system serializes them.

There are two modes of reload processing: Incremental and Full. The mode used is set
in the Execution Setup for the Program writing to the Reload table. It can be bound or
settable at runtime by the person submitting the job.

■ Incremental Reload. In incremental processing, the system never deletes a record.
If a record is not reloaded it remains in the system but its timestamp is not
updated.

■ Full Reload. Full reload processing is the same as incremental processing except
for one additional step: after processing all the records, the system soft-deletes all
records that were not reloaded. The system keeps soft-deleted records in the
database associated with an end timestamp and inserts an additional row to
explicitly record the deletion.

If you are incrementally adding records to a table, or loading updated versions of
different subsets of data, choose Incremental. If you are reloading a complete set of the
most up-to-date records that may be missing some records due to deletions, choose
Full

Incremental Reload Example Use Incremental Reload processing for the target Table
instance of a Load Set that loads new lab data every week. Do not use Full Reload for
loads that contain only new data, because Full Reload would delete all the data not
explicitly loaded.

Full Reload Example Use Full Reload processing occasionally for cleanup with jobs
that normally use Incremental Processing. For example, use Incremental Reload to
load the external demography table nightly, but use Full Reload on the same table once
a month before running a monthly report, to delete any records that have been deleted
from the external table.

Staging Processing
Staging Tables are compatible with any type of Program; that is, you can map a
Program target Table Descriptor of any type—Staging, Reload, or Transactional—to a
staging Table instance.

Staging processing is designed specifically to hold data only for the duration of the
execution of the Program or Load Set that writes to the Table instance. If the Program
to which a staging Table instance is mapped is contained in a Report Set of Workflow,
the system retains the data for the duration of the master job (the whole Report Set or
Workflow). However, you can choose to audit a staging Table instance, so that its data
is never hard-deleted:

Data Processing Types

13-6 Oracle Life Sciences Data Hub Application Developer's Guide

■ Staging with Audit. In staging processing with auditing, the system does not
delete any data; the records remain in the table with a creation timestamp equal to
the refresh timestamp of the job that inserted them. The staging processing logic
allows a job to process only records whose creation timestamp is equal to its own
timestamp. Records in a staging Table instance do not have an end timestamp.

There is no relationship between records with one creation timestamp and those
with another, whether or not they share a unique or primary key. For example,
loading the same set of records twice will result in the table containing two
complete sets of the loaded records.

■ Staging without Audit In staging processing without auditing, immediately
before the next execution of the Program, the system hard-deletes the data in the
table. This setting saves space in the database.

More than one job can run on a staging table instance at a time. Each job can "see" only
the records whose creation timestamp is equal to its own refresh timestamp.

Example You might want to audit data in a staging table that you use for reports on
different subsets of data; for example, a Table that holds Adverse Events data that you
report in groups according to patient age: one report for Patients in their 20s, another
for those in their 30s, and so on.

Transactional High Throughput Processing
This is an audit-less processing type, specifically designed to load large volumes of
raw data as quickly as possible. It also supports DML statements.

This processing type supports full and incremental data loading.

You can load large volumes of data by splitting the data loading job and yet be able to
view all of the data together in a single snapshot.

This processing type has the following features:

■ Displays All Data in a Single Snapshot. This data processing type makes all of
the data available in a single snapshot even if the data is loaded through multiple
jobs (when you use the Full data loading mode).

■ Supports Blinding. This data processing type provides full support for data
Blinding. You can mark the data loaded into the target Table of this processing
type as Blinded or Dummy in the same way as with the other data processing
types.

Note: If you convert a Transactional High Throughput data
processing type Table into a Table with any of the other processing
types (by modifying the Table's Process Type attribute), you are
required to perform a full install of the Table when you install the
Work Area next. This results in the re-creation of the Table and you
lose all the existing data.

Data Processing Types

Execution and Data Handling 13-7

■ Supports Full and Incremental Data Loading Modes. This processing type
supports both incremental and full data loads. The default mode is full. In the full
mode, the system truncates the existing Table and loads fresh data into it. In this
mode, you will lose all the Blinded data in the Table, even if you run the job with
the Dummy Blind Break setting.

In the incremental mode, the new data is appended to the Table. The system
hard-deletes data only if the Oracle LSH Program explicitly issues a Delete
statement.

■ Supports Compression. If you create Oracle LSH Table instances marked with
Transactional High Throughput data processing type in a tablespace that supports
compression, you can compress these Tables.

■ Supports Serialized Data Writing and Parallel Data Reading. Only one job can
write data to a Table instance at a time. However, multiple jobs can read data from
a Table instance, even when another writing job is running in parallel.

■ Does Not Support Logical Rollback on Failure. In the event of a failure during
data load, the system does not roll back the data that is already committed to the
database. For example, if a job is inserting 5000 records into a Transactional High
Throughput Table, and encounters an error at the 4000th record, the 3999 records
already committed to the database are not rolled back.

This is different from all the other data processing types, in that, when a job fails,
the system removes all the data written to the Table and committed to the database
as part of that job.

■ Does Not Require Unique/Primary Key. You do not have to specify a
unique/primary key for Table instances of this processing type. However if you
specify these constraints, the Transactional High Throughput data processing type
enforces them.

SQL*Loader Processing for SAS Programs
You can improve performance for SAS Programs by directly inserting records into
tables using the SQL Loader.

The following conditions are required:

■ The Program must be of type SAS Program (not SAS Format or SAS Macro).

■ The target tables must be of data processing type Staging, either with or without
Audit.

Note: If the table is blinded and data has been loaded into both
partitions then performing a load using full mode will delete the data
from both partitions. You will lose all Blinded data if you choose the
full mode for loading data, even if you run the job with the Dummy
Blind Break setting. The system warns you if a new data-loading job is
about to overwrite Blinded data giving you the option to cancel the
job.

Note: The default data loading mode is Full. If you do not want to
lose all your existing data, change the data loading mode to
Incremental.

Data Auditing, Snapshots and Refresh Groups

13-8 Oracle Life Sciences Data Hub Application Developer's Guide

■ The target tables must also have the Target as Dataset attribute set to Yes.

■ A service in a SAS service location must have the absolute path of the SQL*Loader
executable in its Details field (instructions are in the Oracle Life Sciences Data Hub
System Administrator's Guide).

If all these conditions are not met, the system uses conventional processing.

Using Tables as Pass-Through Views
For Table instances that are the target of an Oracle-technology Load Set, you can
specify in the Process Type drop-down list that the Table instance is a pass-through
view. No processing type is required because the system does not write data to the
Table instance. Instead, you use the Table instance as a view to see data in the source
system.

For further information, see "About Oracle Tables and Views Load Sets" on page 7-11.

Data Auditing, Snapshots and Refresh Groups
To enable auditing of all changes to data, provide consistent views of data at a point in
time, and provide consistent views across a set of tables, Oracle LSH implements table
auditing, snapshots, and multi-table refresh groups.

Data Auditing
When a table is audited, Oracle LSH never truly deletes data from the table, but
records each change to each record over time, including deletion. Because the data
remains in the table, with timestamps for each update, you can recreate the state of
data in the table at any previous point in time in a data snapshot.

If a Table is used in such a way that an audit trail is unnecessary—for example, the
Table is used only as a temporary staging area—then you can save space in the
database by using a processing type without auditing.

Auditing in Transactional and Reload Processing
The audit facility for Transactional and Reload processing is based on a self-journaling
mechanism: record "versioning" within a table. Each record's uniqueness is defined by
a primary or unique key; for example, in a patient enrollment table, the patient ID is
the primary key. No other patient has the same ID.

Therefore each time a Program or Load Set writes a row to a Table instance with a
patient ID that already exists in the Table instance, the stem sees the new row as an
update for an existing patient. Instead of making a change in the existing row,
however, the system sets the end timestamp for the existing row for the patient and
inserts a new row with the current Column values and a creation timestamp equal to
the end timestamp of the previous row. Each row effectively becomes a version of a
patient record that is current during the period between its creation timestamp and its
end timestamp. Only one version of a record is current at any point in time. The
current row always has distant future end timestamp: 3 million Julian.

The timestamp used for records' creation and end timestamp is constant for a given
master job; it is the refresh timestamp (REFRESH_TS) of the job.

Insertions When a new record—a record whose primary or unique key value does
not match any other in the Table instance—is inserted, the system sets the creation

Data Auditing, Snapshots and Refresh Groups

Execution and Data Handling 13-9

timestamp to the job timestamp (REFRESH_TS) and the end timestamp to 3 million
Julian.

Updates As records are updated, either through explicit updates in transactional
processing or implicitly in reload processing, for each modified record the system:

■ sets the end timestamp to the job's refresh timestamp for the most recent row

■ inserts a new row with a creation timestamp equal to the job's refresh timestamp
and an end timestamp of 3 million Julian

Deletions When a record is deleted, either explicitly through transactional processing
or implicitly through full reload processing, the system sets the end timestamp of the
current row to the job's refresh timestamp minus 1 second and also inserts an
additional row to explicitly document the deletion. This deletion row has a creation
timestamp set to the job's refresh timestamp minus second and an end timestamp of
the job's refresh timestamp. This is called "soft-deletion;" the record remains in the
database.

Auditing in Staging Processing
Auditing in Staging processing is much simpler; the system saves a copy of data
written to the Table instance for each job. Each set of records has the same creation
timestamp—the refresh timestamp of the job that created them. With each job, the
entire current set of records is inserted. While the job that inserts the records can also
perform updates or deletions of those records, there is no audit of these changes.

Data Snapshots
Snapshots allow Oracle LSH to view the data in one or more Table instances in the
state it was in at the completion of any job that modified data in the Table instance(s).

The system uses the master job's refresh timestamp for the creation timestamp (and,
for deleted records, end timestamp) of all records processed in a master job.

The system uses the master job's refresh timestamp for the creation timestamp (and,
for deleted records, end timestamp) of all records processed in a master job, even if the
job takes place over a number of hours and includes incremental commits. A master
job is any job submitted explicitly for execution. Some master jobs include subjobs; for
example, Workflows, Report Sets and any executable submitted using backchaining.

A snapshot comprises all the records in a Table instance that are current at a given
point in time. For reload and audited transaction Table instances, a snapshot is the set
of records whose end timestamp is greater than, and whose creation timestamp is less
than or equal to, a given refresh timestamp. For audited staging Table instances, it is
the set of records whose creation timestamp equals the refresh timestamp.

Using snapshots has the following benefits:

■ When Programs subsequently access the resulting data, the system bases a stable
view of the data on the most recent refresh timestamp, providing a consistent view
of the data even if the table is being updated at the time the Program reading the
data is running.

■ It is possible to recreate data as it was at an earlier point in time.

■ Access to incompletely loaded data is prevented and rollbacks of incomplete loads
are supported even if there have been incremental commits.

You can label snapshots in two ways:

Processing Data Subsets

13-10 Oracle Life Sciences Data Hub Application Developer's Guide

■ When you run a job you can specify a label to be applied to the source and/or
target Table instances (see instructions for "Generating Reports and Running Other
Jobs" in the Oracle Life Sciences Data Hub User's Guide).

■ In a Work Area, you can apply a snapshot label to a data timestamp in one or more
Table instances in the Work Area; see "Adding, Removing, or Moving a Snapshot
Label" on page 12-9.

Refresh Groups
The system treats any set of tables that are populated by the same master job as a
refresh group. The system prevents access to any of the tables until changes to all the
tables populated in the Program are complete. The Oracle LSH job tracking record for
the execution of each of these applies to all of their contained tables.

For example:

■ The target Table instances of a Load Set or Program that populates a multiple table
instances

■ a Workflow containing multiple Programs that write to table instances

Processing Data Subsets
It is possible to define a Program that processes only a subset of the data in its source
tables based on subsetting Parameters. However, if the Program is defined in such a
way that the data subset Parameters are modifiable, it does not make sense to use
target table processing types that are intended to support incremental or time-based
snapshot processing.

Use staging Table instances with or without audit for subsetting. Use staging without
audit when you do not need to maintain audited results; for example, in a Workflow
that reads data for a subset of patients, reorganizes the data into the temporary table,
and runs a series of reports.

If you need to save the results, use staging with audit.

If you want to use Parameters to process different subsets without deleting the data
from previously loaded subsets, use reload processing in incremental mode.

You can use staging tables with any Program technology type (SAS, Oracle Reports, or
PL/SQL).

Forward Chaining
Using forward chaining execution you can automatically update all tables
downstream in a data flow that directly or indirectly read from a table when that
source table is updated. When the first Program, Load Set, or Workflow in the forward
chain runs, it triggers the execution of some or all Programs or other executables that
read from the tables it writes to. Those executables can in turn trigger the execution of
all Programs or other executables that read from the tables they write to, and so on.

The system detects dependencies and executes the chain in the proper order so that
data in all impacted tables is synchronized and all report outputs reflect the latest data.
Where there are no dependencies, jobs run in parallel.

Forward chaining can include executables in many Work Areas, Application Areas,
and even Domains—unlike Workflows, which are limited to a single Work Area. All
executable object types—Load Sets, Programs, Workflows, Report Sets, and Data
Marts—can be part of a forward chaining process. Load Sets can only be triggered

Forward Chaining

Execution and Data Handling 13-11

manually as the first object in a chain, and Data Marts can only be the end of their data
flow branch.

You can trigger a forward chain by using the Forward Chaining-enabled Execution
Setup of any executable in the chain, and that will trigger the execution of downstream
executables in just that downstream branch—those that directly or indirectly read from
the tables written to by the executable object you run.

To participate in a forward chain execution, a Program or other executable object
instance and related objects must meet all the following conditions:

■ The executable must have an Execution Setup with Forward Chaining enabled.

■ If it is not the first object in the chain, the preceding executables in the chain—the
ones that write to the tables it reads from— must have an Execution Setup with
Cascade enabled.

■ The Work Area, Application Area, and Domain(s) containing the executable must
have Forward Chaining enabled.

■ The executable's validation status must be equal to or greater than its Work Area's
Usage Intent.

■ The Work Area's own validation status should be equal to or greater than its
Usage Intent.

By default, all Domains, Application Areas, and Work Areas have Forward Chaining
enabled. If it is disabled for a Domain, Application Area, or Work Area, no executables
anywhere in the container can participate in forward chaining, even if they meet the
other requirements.

The first Execution Setup created for an executable object also has Forward Chaining
(and Cascade) enabled by default.

You can change the Forward Chaining and Cascade settings at any level at any time.

Report Only Mode You can run an executable that qualifies for forward chaining in
Order Only mode to produce a report of all the downstream executables that would be
executed as part of a forward chain. The report is part of the job's log file.

Starting a Forward Chain Process When you submit an Execution Setup that has
Forward Chaining enabled, select a Data Currency of Most Current Available (Trigger
Forward Chain). The system displays the following additional fields:

■ Report Only: Select it to run in Report Only Mode.

■ Desired Top Level Hierarchy: By default this is set to All and all possible objects
that are part of the forward chain are included. However, you can limit the scope
of the job by selecting a Work Area, Application Area, or Domain above the object

Note: If the user who submits the forward chain job does not have
the privileges to execute any object included in the chain, the system
does not execute that object or any objects downstream from it.

If any individual object execution fails, the system does not execute
any objects downstream from it. Other subjobs continue unaffected,
but the master job status is Failed.

If the system detects a loop in dependencies, the job fails.

Backchaining

13-12 Oracle Life Sciences Data Hub Application Developer's Guide

being executed that you want to serve as the top level of the hierarchy; objects
outside it are not included in the job.

Backchaining
In backchaining, the system checks upstream along a data flow where backchaining is
enabled to see if more recent data is available. You create a backchain data flow by
defining a backchain-enabled Execution Setup for each executable along the data flow,
and submitting the Execution Setup for execution.

If the system finds more recent data anywhere in the data flow where backchaining is
enabled, it runs executable objects in the data flow starting at the point with more
recent data in order to feed the most recent data into the program being executed.

Oracle Clinical Data Extract Load Sets (both Oracle and SAS) allow the system to
interpret data currency in the source system so that a backchain can reach as far as the
source tables or data sets in Oracle Clinical. If more current data exists in the source
system, the backchain process triggers the execution of the Load Set(s) to load the
more recent data into Oracle LSH.

How Backchaining Works
When at least one of the Programs or Load Sets that writes data to a Table instance that
a Program instance reads from has a backchain Execution Setup defined and
submitted, Oracle LSH displays "Most Current Available" as an allowed value for the
Data Currency system parameter in the Execution Setup for the Program instance.
When a user submits a job with the Data Currency parameter set to Most Current
Available, the system invokes a backchain process that does the following:

■ The backchain process checks each Program or Load Set instance that writes to the
job's source Table instances, looking for a job submission with the Submission
Type system parameter set to Backchain. This is a backchain job submission. (To
create a backchain job submission, create an Execution Setup with Submission
Type set to Backchain and submit it for execution.)

■ For each Program instance with a backchain job submission, the backchain process
checks each Program or Load Set instance that writes to its source Table instances
to see if those Programs or Load Set instances also have a backchain job
submission.

■ The backchain job continues to look farther and farther upstream each branch of
the data flow until it reaches either the source data system or a Program or Load
Set instance that does not have a backchain job submission.

■ On each branch, when the backchain job has gone as far upstream as it can, it
compares the data currency of the source and target data of the last Program or
Load Set that has a backchain job submission.

■ If the source data is more current than the target data, the backchain process
executes the Program or Load Set instance to refresh the target data. The backchain
job then executes the next Program to refresh its target data, and so on. Each job
submitted by the backchain process uses the blinding and priority system
parameter values set in the job submitted by the user with the data currency set to
Most Current Data Available.

■ If the target data is already as current as the source data, the backchain job does
not execute the Program or Load Set instance, but instead checks the source and
target data currency of the next Program downstream, and so on. When it finds a

Backchaining

Execution and Data Handling 13-13

Program whose target data is less current than its source data, the backchain job
executes that Program instance and each subsequent Program instance.

■ When all branches with backchaining enabled have the most current possible data,
the backchain job triggers the execution of the original job submitted (with Data
Currency set to Most Current Available). See Figure 13–1, "Backchain Example".

Figure 13–1 Backchain Example

In the example shown in Figure 13–1, the user submits Program X with the Data
Currency system parameter set to Most Current Available. This submission starts a
backchain process that checks all the Programs that populate the Table instances that
Program X reads from for a backchain job submission. In this example, the backchain
process finds that Programs A and B have backchain job submissions, but Programs C
and D do not. The backchain process then checks the Load Sets that populate the
source Table instances of Programs A and B for a backchain job submission. Load Sets
A and B both have backchain job submissions.

The backchain process then checks the data currency of the Load Sets' source and
target data. Load Set A's target data is less current than its source, but Load Set B's
target data is current. The backchain process checks the data currency of Table B1
compared to Table B2, and finds that B2 is less current.

The backchain process executes Load Set A, and Table A1 becomes current. The
backchain process executes Program A, and Table A2 becomes current. The backchain
process executes Program B, and Table B2 becomes current. The backchain process

Backchaining

13-14 Oracle Life Sciences Data Hub Application Developer's Guide

then executes Program X, which then has the most current data available. However,
because Programs C and D did not have backchain jobs submitted, Program X does
not have the most current data from the source system for those streams. This is true
even for stream C, where Load Set C has a backchain job submission but Program C
does not.

Note that even if Table A2 is current in relation to its source Table before the backchain
process, it becomes noncurrent after the execution of Load Set A updates Table A1.
However, Program A then runs and Table A2 becomes current again.

Backchaining Rules
The system enforces the following rules:

■ A particular executable can have only one Execution Setup with a submission type
of Backchain.

■ Only master jobs can have backchaining Execution Setups or run with Most
Current Data Available set.

■ The same Load Set or other executable with a backchain job submission can be
executed by backchain processes initiated by any number of executable objects
downstream in a data flow submitted with data currency set to Most Current Data
Available. For example, if more than one Program reads from the Tables populated
by a Load Set, and if the Load Set has a backchain job submission, the Load Set can
be executed as part of a backchain process when either Program is submitted with
its data currency set to Most Current Data Available.

■ If an executable has multiple source Tables and multiple executables write to those
Tables, each of these data flows is processed separately for backchaining, and
backchaining can execute successfully even if some data flows go all the way back
to the source system and others reach a point where backchaining is not enabled
within Oracle LSH.

For example, if you have a Program that combines treatment codes with patient
data, you may not want to enable backchaining on the treatment codes, because
they should never be automatically loaded into Oracle LSH, but you do want to
see the most recent patient data.

■ Backchaining is not possible in Load Sets that load files: Text and SAS.

■ Backchaining is not possible with Load Sets whose target Table instances are
created as pass-through views. The execution of the entire backchain fails.

■ The security for the entire backchain is determined by the security required for the
job submitted with Data Currency set to Most Current Available. In other words, if
a user has the privileges required to run Program X in the example above, he or
she can submit Program X and the entire backchain job can run and invoke every
job required for a successful backchain, even if the user does not have the security
privileges required to run any of the upstream jobs triggered by the backchain job.

Backchaining Tips
Keep the following in mind:

Submit the Execution Setup
When you define a backchain Execution Setup, you must click Submit when you are
finished. This does not actually run the job, but the Execution Setup will not run
during an actual backchain process unless you have submitted it once already.

Managing Blinded Data

Execution and Data Handling 13-15

Recover from a Canceled Job
If a user cancels the job created for the backchain Execution Setup, the backchain
process cannot run that job or any job dependent on it (upstream, or earlier, in the data
flow). To recover, do the following:

1. Create another Execution Setup with a submission type of Backchain.

2. Set the Force Duplicate Execution Parameter to Yes.

3. Submit the Execution Setup.

Supply Default Parameter Values
Since backchain jobs are executed automatically, you must supply default values for all
required Parameters in backchaining Execution Setups. If you use subsetting
Parameters, be sure to be consistent in all the Execution Setups involved in a single
backchain job.

Otherwise, if you allow manually submitted executions of the same program to use
different subsetting parameter values, then the tables may look up-to-date to
backchaining, but only be up-to-date for a particular, different subset of the data.

Do Not Include Workflows with Approval Requests
The system allows you to include a Workflow in a backchaining data flow. However, if
a Workflow includes an activity such as an Approval Request that requires manual
intervention, the backchain will not be able to complete automatically. Therefore, do
not include Workflows in a backchain data flow if they contain Approval Requests.

Expect Slower Performance
Because backchaining execution involves checking for more recent data upstream in
the data flow, and then executing multiple objects, processing potentially large
amounts of data, it is generally much slower than standard Oracle LSH execution,
which operates on the most current data or a specified snapshot of data in the
immediate source Table instances.

Managing Blinded Data
This section includes the following topics:

■ Loading Real and Dummy Data on page 13-16

■ Managing Blinding Along the Data Flow on page 13-17

■ Unblinding Table Instances on page 13-19

For additional information on data blinding, see "Security for Blinded Data" in the
Oracle Life Sciences Data Hub Implementation Guide.

You may want to hide, or blind, treatment codes or other information that would
reveal which patients were receiving which treatments.

Oracle LSH supports data blinding in:

■ the Oracle LSH Table instances you specify

■ all reports and other outputs generated using one or more blinded Table instances
as a source

■ all Table instances downstream in the data flow from a blinded Table instance: If a
Program instance that reads from a blinded or unblinded Table instance attempts

Managing Blinded Data

13-16 Oracle Life Sciences Data Hub Application Developer's Guide

to write data to a nonblinded target Table instance, the submission fails—unless
the target Table instance is explicitly authorized to accept data from such a
Program and a user with Blind Break privileges explicitly confirms that the
Program can be executed.

All Table instances have a Blinding flag attribute that indicates whether or not they
may contain data that is sensitive and must be blinded at some point in time.

If a Table instance's Blinding Flag is set to Yes, then Oracle LSH maintains two
partitioned sets of rows for the Table instance: one set of rows of real data and one set
of rows of dummy data. Programs that run on data in these Table instances operate on
only one set of data at a time: either the real data or the dummy data.

Table instances also have a Blinding Status attribute. If a Table instance's Blinding flag
is set to Yes, its Blinding Status can be either Blinded or Unblinded to indicate the
current state of the data. If a Table instance's Blinding flag is set to No, its Blinding
Status can be either Not Applicable (the default) or Authorized; see "Exception
Authorization" on page 13-18.

Loading Real and Dummy Data
When you load data into Oracle LSH, you must declare the data to be either real or
dummy data by setting the Blind Break system Parameter. You cannot load real data
and dummy data at the same time. However, only one Program or Load Set can write
data to any particular Table instance. Different technologies require different
approaches to populating the real and dummy data partitions of blinded Table
instances.

SAS and Text Load Sets Define your SAS and Text Load Sets so that the file to be
loaded must be specified at runtime. Load a file containing real data in one run, and a
file with the same structure but containing dummy data in another run. When you
load each file, take care to set the Blind Break system Parameter correctly. The system
flags each record in the blinded file as blinded and each record in the dummy file as
not blinded.

Oracle Tables and Views The same strategy does not work with Oracle Load Sets
because the source table is part of the Load Set definition. Instead, as shown in
Figure 13–2, you can:

Note: Oracle LSH cannot ascertain whether data in an external
system requires blinding or not. You must set up your security system
so that only people who understand the issues and the source data can
run Load Sets that may load sensitive data.

Managing Blinded Data

Execution and Data Handling 13-17

Figure 13–2 Populating the Blinded and Nonblinded Partitions with Oracle Source Data

■ Create a Load Set to load all data from the source table, defining the target Table
instance with its Blinding flag set to Yes and its Blinding Status set to Blinded.

■ Create a dummy data generator Program that reads from the Load Set's target
Table instance and writes to a nonblinded Table instance with the same structure.
The Program should retain the primary key column values but replace the data in
all columns that contain sensitive data with dummy data. The target Table
instance must have its Blinding flag set to No and its Blinding Status set to
Authorized; see"Exception Authorization" on page 13-18.

■ Create another Program that simply reads data and writes the data—with no
changes—into another Table instance with the same structure, but with its
Blinding flag set to Yes and its Blinding Status set to Blinded. Map the Program to
two source Table instances: the blinded Load Set target Table instance and the
nonblinded target Table instance of the first Program. Use a Parameter to
determine which Table instance the Program reads from.

To load real data into the blinded partition of the target Table instance, run this
Program with its Blind Break system Parameter set to Real (Blind Break) and the
Parameter you created set so that it reads from the blinded Table instance.

To load dummy data into the dummy partition of the target Table instance, run
this Program with its Blind Break system Parameter set to Dummy and the
Parameter you created set so that it reads from the nonblinded Table instance.

Oracle Clinical Randomization When you load treatment codes into Oracle LSH
from Oracle Clinical using a Randomization Load Set, the privileges you have in
Oracle Clinical and the state of the data in Oracle Clinical determine which data you
can load into Oracle LSH. Oracle LSH partitions the data appropriately; see "Oracle
Clinical Randomization" on page 7-34.

Managing Blinding Along the Data Flow
When a Load Set writes to a Table instance whose Blinding flag is set to Yes, the
system changes the values available for the Blind Break system Parameter in the
Execution Setup for the Load Set to Real (Blind Break) and Dummy instead of Not
Applicable.

Note: Blind Break privileges are required to run both Programs.

Managing Blinded Data

13-18 Oracle Life Sciences Data Hub Application Developer's Guide

The same is true for any Program that reads data from that blinded Table instance and
so on downstream in the data flow as Programs read from blinded or unblinded Table
instances and write to other blinded or unblinded Table instances.

In each case, the person running the Program must set the Blind Break system
Parameter in the Execution Setup.

■ If it is set to Real (Blind Break), the system runs the Program on the data in the
blinded partition of the source Table instance and writes to the blinded partition of
the target Table instance.

■ If it is set to Dummy, the system runs the Program on the data in the dummy
partition of the source Table instance and writes to the dummy partition of the
target Table instance.

■ If you are using DMW and want to process masking values instead of the real data
in LSH, use the Dummy Blind Break option. After program execution, DMW
masking values are stored in the dummy partition of blinded target tables.

The Dummy Blind Break option is not available if any of the source tables is
blinded at the table level.

Special privileges are required to run a Load Set or Program that has one or more
source or target Table instances with its Blinding flag set to Yes. For complete
information on blinding-related privileges, see the chapter on security in the Oracle Life
Sciences Data Hub Implementation Guide.

Normal Usage Oracle LSH requires that downstream Table instances have the
Blinding flag set to Yes, but you must set the flag manually. Oracle LSH enforces the
rule at runtime. If you attempt to run a Program that writes real data from a Table
instance whose Blinding flag is set to Yes (with a Blinding Status of either Blinded or
Unblinded) into a nonblinded Table instance (with its Blinding flag set to No and its
Blinding Status set to Not Applicable)) the submission fails.

Exception Authorization There may be cases where you need to create a Program
that reads from one or more blinded or unblinded Table instances and writes to one or
more nonblinded Table instances; for examples, see "Loading Real and Dummy Data"
on page 13-16 and Figure 13–3 below.

In this case you must set the nonblinded target Table instance's Blinding flag to No
and its Blinding Status to Authorized. The system then allows users with special
privileges on the blinded or unblinded source Table instances to run the Program after
confirming that it is safe.

Tip: Oracle recommends processing DMW data in DMW, not LSH.
In particular, do not run DMW transformations and validation checks
in LSH.

Using Message-Triggered Submission from External Systems

Execution and Data Handling 13-19

Figure 13–3 Reading from a Blinded Table and Writing to a Nonblinded Table

In this example, one source Table instance contains treatment codes and is blinded.
The other contains patient data and is not blinded. A Program reads from both Table
instances, transforms data, and writes to two Table instances. One target Table
instance, VAD1, combines patient data with treatment codes and must be blinded.
However, target Table instance VAD2 does not include any treatment code information
and does not need to be blinded.

Only users with Blind Break privileges can run PROG_VAD on real data as long as
either Table instance TRT or VAD1 has a Blinding Status of Blinded. If the Blinding
Status of both of Table instances changes to Unblinded, then users with Read Unblind
privileges as well as those with Blind Break privileges can run PROG_VAD.

Unblinding Table Instances
At some point, such as the end of a clinical trial, you may want to make the real,
sensitive data that has been blinded during the study, available to a larger group of
people for analysis and reporting. To do this, you unblind Table instances that have
been blinded, and then run Programs on the real (now unblinded) data.

Special security privileges are required to unblind and reblind a Table instance. See the
security chapter in the Oracle Life Sciences Data Hub Implementation Guide for
information.

To unblind a blinded Table instance:

1. Navigate to the Table instance in its Work Area.

2. Click Update.

3. Change the Blinding Status to Unblinded.

4. Click Apply.

Using Message-Triggered Submission from External Systems
This section contains the following topics:

■ About Message-Triggered Submission on page 13-20

■ Setup Required on page 13-20

Note: You can reblind an unblinded Table instance by setting the
Blinding Status back to Blinded.

Using Message-Triggered Submission from External Systems

13-20 Oracle Life Sciences Data Hub Application Developer's Guide

■ XML Message Requirements on page 13-21

About Message-Triggered Submission
It is possible to trigger jobs in Oracle LSH by sending an XML message from an
external system. For example, if you load patient data into Oracle LSH from Oracle
Clinical, you may want to wait until batch validation completes successfully before
loading the updated data into Oracle LSH.

Oracle LSH listens at its Event Queue (an Oracle Streams Advanced Queue) for
incoming messages. When a message arrives, the system parses the message and
triggers the execution of the job.

The message must use a specific XML schema (see Example 13–1, "Required XML
Schema for Messages"). The system checks the validity of the schema structure and all
its supplied values. If anything is invalid, the system does not execute the job.

The system sends an email notification to the submitting user of success, failure,
warning or error, if the XML message so specifies (see "Notification Type" on
page 13-21).

A message cannot exceed a total of 4000 characters. Messages are never deleted from
the Event Queue.

For information about creating an Execution Setup to be triggered upon receipt of an
XML message, see "Creating, Modifying, and Submitting Execution Setups" on
page 3-55.

Setup Required
 To set up message-triggered submission you must do the following:

■ Execution Setup. Create an Execution Setup for the Load Set (or other executable)
that accepts the Triggered submission type (see "Creating, Modifying, and
Submitting Execution Setups" on page 3-55) as well as the Immediate and
Deferred submission types.

■ Oracle LSH User Account. Create a user account in Oracle LSH for the external
system user who will create the database link from the remote location. If you
want the external system user to receive email notifications, set it up in the user
account; see "Creating User Accounts" in the Oracle Life Sciences Data Hub System
Administrator's Guide for information.

If the application that triggers the submission is part of the Oracle E-Business
Suite, it is not necessary to create another user account.

■ Oracle LSH Database Account. If the external system's database is separate from
Oracle LSH, create a database account in Oracle LSH for the user account; see
"Creating Database Accounts" in the Oracle Life Sciences Data Hub System
Administrator's Guide for information.

■ Grant Execute on the API Security Package cdr_pub_api_initialization to the
user with the LSH database account.

■ Database Link. In the remote database, use the Oracle LSH database account user
ID and password to create a database link to the Oracle LSH database.

■ XML Message. Send an XML message from the external system using the required
XML schema; see Example 13–1, "Required XML Schema for Messages". In the
XML message, the user ID you specify must be the same as the user ID used to
create the database link.

Using Message-Triggered Submission from External Systems

Execution and Data Handling 13-21

An Oracle LSH API package called cdr_pub_exe_msg_api with the procedure
Submit Message is available for use in enqueuing messages; see the Oracle Life
Sciences Data Hub Application Programming Interface Guide.

For information about enqueuing messages, see the Oracle® Streams Advanced
Queuing User's Guide at http://download.oracle.com/docs/cd/B19306_
01/server.102/b14257.pdf.

XML Message Requirements
You must use XML messages that follow a specific schema (shown in Example 13–1,
"Required XML Schema for Messages").

The schema requires the following information:

Executable Specification
The XML message must identify an existing, installed executable object instance to be
executed, including its Domain(s), Application Area, and Work Area, and the
Execution Setup to be used. The Execution Setup must be active and defined to accept
the Triggered submission type.

System Parameter Values
The XML message must supply valid values for all System Parameters whose value
should be different from the default values defined in the Execution Setup. The System
Parameters included in the schema are:

Submission Type The XML message must supply a submission type of either
Immediate or Deferred. If Immediate, the system executes the job immediately after
receiving and processing the message. If Deferred, the system executes the job at a date
and time specified in the message using the format DD-MON-YYYY HH24:MI (for
example, 31-MAY-2010 13:45). If, at submission time, the supplied scheduled time is in
the past, the job will be executed immediately.

Run Mode If you are using the Reload processing type, the XML message must
supply a run mode of either Full or Incremental. See "Data Processing Types" on
page 13-2.

Execution Priority The XML message must supply an execution priority of either
Normal, Low, or High.

Notification Type The XML message must specify under what circumstances the
system should send the user a notification. You can specify one or more of the
following values:

■ None. The system never sends a notification to the user.

■ Success. The system sends a notification to the user if the job executes successfully.

■ Failure. The system sends a notification to the user if the job execution fails.

Note: If the executable object instance is contained in a Work Area
and Application Area that are contained in a nested Domain, enter the
names of all the Domains, starting at the top level and inserting a
forward slash between Domain names. For example, if the object is
contained in Study123_Domain contained in ProjectABC_Domain,
enter ProjectABC_Domain/Study123_Domain.

http://download.oracle.com/docs/cd/B19306_01/server.102/b14257.pdf
http://download.oracle.com/docs/cd/B19306_01/server.102/b14257.pdf

Using Message-Triggered Submission from External Systems

13-22 Oracle Life Sciences Data Hub Application Developer's Guide

■ Warning. The system sends a notification to the user if the job ends with a
warning.

■ Error. The system sends a notification to the user if the job end with an error.

Data Currency Type The XML message must specify the data currency type of the
data, and the Execution Setup must be defined appropriately for that type.

■ Current. The system runs the job on data that is current in the immediate source
tables at the time of execution.

■ Backchain. The system uses backchaining to find the most current data available.
The Execution Setup must have a submission type of Immediate or Deferred and a
data currency type of Most Current Available. The Execution Setups for Programs
feeding data to the source tables must have a submission type of Backchain. See
"Backchaining" on page 13-12 for further information.

Snapshot Label If you want the job to apply a snapshot label to Oracle LSH data,
enter one of the following values:

■ Target. If set to Target, the system applies a snapshot label to target Table
instances only.

■ Both. If set to Both, the system applies a snapshot label to both source and target
Table instances.

Label If you enter either Target or Both as the value for Snapshot Label, enter the text
of the label as this Parameter value.

Blind Break Flag The XML message must indicate whether this job is being run on
real, blinded data. All Oracle LSH security rules pertaining to blinding apply to
message-triggered jobs. The submitting user must have the required privileges or the
job does not run.

■ No. A value of No indicates that the job is not a blind break. This is the default
value.

■ Yes. A value of Yes indicates the job is to be run on real, blinded data.

Force Execution Flag The XML message must indicate whether or not to execute the
job even if the resulting output will be the same as for the last execution.

■ Yes. If set to Yes, the system always executes the job.

■ No. If set to No, the system compares the executable definition version, the
Parameter settings, and the source data currency for the previous execution of the
same executable with the current ones and does not execute the job if they are all
the same. The system sends a Notification to the Home page of the user who
submitted the job stating that the job was not executed.

User ID
The Oracle Applications Account ID of the user for whom the job is being submitted:

■ If the message is sent from a remote database, the system checks the user ID
specified in the message matches a database account in Oracle LSH.

Note: The system does not support using message-triggered
submission on data snapshots. Do not enter Snapshot as a value.

Using Message-Triggered Submission from External Systems

Execution and Data Handling 13-23

■ If the message is sent from within Oracle LSH, the user ID specified in the message
must be the same as the logged-in Oracle LSH user who sends the message.

■ If the message is sent from an application in the Oracle E-Business Suite that
shares the same database as Oracle LSH, the database account is APPS. The system
checks that the user ID specified in the message matches the Oracle Applications
Account ID with which the XML message-sending user has logged into the
E-Business Suite.

Request ID
The XML message must supply an identifier to be included in execution logs and
messages back to the submitter.

Required XML Schema
The XML message must use the schema shown in the following example.

Example 13–1 Required XML Schema for Messages

<?xml version="1.0" encoding="iso-8859-1"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="SubmissionRequest">
 <xs:annotation>
 <xs:documentation>Oracle LSH submission request submitted via event
queue</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ProgramSpecification">
 <xs:annotation>
 <xs:documentation>Identifies the program to be
executed</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="domain" type="xs:string" use="required"/>
 <xs:attribute name="applicationArea" type="xs:string" use="required"/>
 <xs:attribute name="workArea" type="xs:string" use="required"/>
 <xs:attribute name="program" type="xs:string" use="required"/>
 <xs:attribute name="executionSetup" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="SystemParameters" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Provides values for required system parameters.
Elements can be omitted; defaults will be supplied during
processing.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SubmissionTypeRc" minOccurs="0">
 <xs:annotation>
 <xs:documentation>IMMEDIATE or DEFERRED. If DEFERRED, supply a
datetime, in schedStartTs, at which the job is to be executed. DD-MM-YYYY HH24:MI
IF time is in the past, the job will be executed immediately.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="value" default="IMMEDIATE">
 <xs:simpleType>
 <xs:restriction base="xs:string">

Using Message-Triggered Submission from External Systems

13-24 Oracle Life Sciences Data Hub Application Developer's Guide

 <xs:enumeration value="IMMEDIATE"/>
 <xs:enumeration value="DEFERRED"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="schedStartTs" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="RunModeRc" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="value" default="FULL">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="FULL"/>
 <xs:enumeration value="INCREMENTAL"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="ExecutionPriorityRc" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="value" default="NORMAL">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="LOW"/>
 <xs:enumeration value="NORMAL"/>
 <xs:enumeration value="HIGH"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="NotificationTypeRc" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="value" default="FAILURE">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="SUCCESS"/>
 <xs:enumeration value="WARNING"/>
 <xs:enumeration value="FAILURE"/>
 <xs:enumeration value="NONE"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="CurrencyTypeRc" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="value" default="CURRENT">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="CURRENT"/>
 <xs:enumeration value="BACKCHAIN"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="SnapshotLabel" minOccurs="0">

Using Message-Triggered Submission from External Systems

Execution and Data Handling 13-25

 <xs:complexType>
 <xs:attribute name="ApplySnapshotLabel" default="BOTH">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="BOTH"/>
 <xs:enumeration value="TARGETS"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Label" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="BlindBreakFlag" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="value" default="NO">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="YES"/>
 <xs:enumeration value="NO"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="ForceExecutionFlag" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="value" default="NO">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="YES"/>
 <xs:enumeration value="NO"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ProgramParameters" minOccurs="0">
 <xs:annotation>
 <xs:documentation>If the specified program requires parameter values,
they are specified in this element.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ParameterSetting" minOccurs="0"
maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Each supplied parameter setting must have name
and a value. </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="value" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Using Message-Triggered Submission from External Systems

13-26 Oracle Life Sciences Data Hub Application Developer's Guide

 </xs:sequence>
 <xs:attribute name="userId" type="xs:string" use="required">
 <xs:annotation>
 <xs:documentation>Oracle Applications account of the user for whom the
job will be executed. </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="requestId" type="xs:string" use="required">
 <xs:annotation>
 <xs:documentation>An identifer supplied by the application that
generates the request. This ID will be included in execution logs and messages
back to the submitter.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

14

System Reports 14-1

14 System Reports

This chapter contains the following sections:

■ Running and Saving System Reports on page 14-1

■ Alphabetical Listing of Reports on page 14-1

■ Security Reports on page 14-2

■ Data Blinding Reports on page 14-4

■ Container Reports on page 14-5

■ Object Metadata Reports on page 14-8

The Oracle Life Sciences Data Hub (Oracle LSH) generates reports on demand that
provide an audit trail of the activities performed using Oracle LSH and present
information on the state of the system's various components.

Running and Saving System Reports
Information on where to run each report is included in the section on the report.

You can run a report only if you have security access to the screen from which it is
launched and to the metadata included in the report.

To generate a system report:

1. In the relevant screen, select Reports from the Actions drop-down and click Go.
The system displays the reports that are available in your current context.

2. Select the report you want and click Generate Report. If the report has parameters,
enter values for the parameters. The system generates the report and displays it in
PDF format.

3. To open the report in a separate window, click Export and then click Open.

4. To save the report to your personal computer, do one of the following:

■ Click Export and then click Save.

■ Click Save a Copy in the PDF toolbar.

You can print the local copy if required.

Alphabetical Listing of Reports
Oracle LSH provides the following System reports. Click a report name to view more
information.

Security Reports

14-2 Oracle Life Sciences Data Hub Application Developer's Guide

All Instances (Work Area) Report; see Work Area - All Instances Report on page 14-6
All Instances of a Definition Report on page 14-9
Application Area Library Report on page 14-6
Blind Breaks Report on page 14-4
Blinded Table Instances Audit Report on page 14-4
Blinded Table Instances Report on page 14-5
Blinding Rights Report on page 14-2
Cloning Report; see Work Area Cloning Report on page 14-7
Data Mart Instance Report on page 14-10
Data Mart Report on page 14-9
Domain Library Report on page 14-6
Installation History Report; see Work Area Installation History Report on page 14-7
Load Set Instance Report on page 14-11
Load Set Report on page 14-11
Object Validation Report on page 14-12
Object Version History Report on page 14-12
Operations for a Role Report on page 14-3
Program Instance Report on page 14-13
Program Report on page 14-13
Report Set Instance Report on page 14-15
Report Set Report on page 14-14
Security Report; see User Group Assignments Report on page 14-3
Table Instance Report on page 14-17
Table Report on page 14-16
Unblinded Outputs Report on page 14-5
User Group Assignments Report on page 14-3
Users in Group Report on page 14-3
Version History Report; see Work Area Version History Report on page 14-8
Work Area - All Instances Report on page 14-6
Work Area Cloning Report on page 14-7
Work Area Installation History Report on page 14-7
Work Area Version History Report on page 14-8
Workflow Instance Report on page 14-18
Workflow Report on page 14-17

Security Reports
This section contains the following reports:

■ Blinding Rights Report on page 14-2

■ Operations for a Role Report on page 14-3

■ User Group Assignments Report on page 14-3

■ Users in Group Report on page 14-3

Blinding Rights Report
The Blinding Rights report lists each user-defined security role that has
blinding-related privileges.

The report includes a section for each of the following:

■ Read Unblind Rights for Table Instances

■ Unblind Rights for Table Instances

■ Blind Break Rights for Table Instances

Security Reports

System Reports 14-3

■ Read Unblind Rights for Outputs

■ Unblind Rights for Outputs

■ Blind Break Rights for Outputs

In each section, the reports display all roles that have the relevant operation assigned,
and the subtype the assignment applies to.

To run the Blinding Rights report, click the Security tab, then click the Roles subtab
and follow instructions in "Running and Saving System Reports" on page 14-1.

Operations for a Role Report
The Operations for a Role report displays all the operations associated with a
user-defined security role in Oracle LSH.

For each operation, the report displays the following information:

■ Subtype

■ Object Type

■ Operation

■ Timestamp of Assignment of Operation

To run the Operations for a Role report, click the Security tab, then click the Roles
subtab and follow instructions in "Running and Saving System Reports" on page 14-1.

User Group Assignments Report
The User Group Assignments report displays information on every user group
assigned to a particular object. You can choose to include only current assignments or
all past assignments.

The following information is displayed for each User Group:

■ Group Name

■ Activity Type (Inherited, Assigned, Revoked, Unassigned, or Unrevoked)

■ Activity Timestamp

■ Group Assigned By

To run the User Group Assignments report, navigate to the Properties screen of the
Domain, Application Area, Work Area, or object definition or instance whose user
group assignments you want to see, and follow instructions in "Running and Saving
System Reports" on page 14-1.

See "Header Information for Object Instances" on page 14-9 for details on the header
section.

Users in Group Report
The Users in Group report lists the roles assigned to a selected user group as well as
the users assigned to a particular role. For each role and user, the report displays the
following information:

■ Role

■ Description of Role

■ User ID

Data Blinding Reports

14-4 Oracle Life Sciences Data Hub Application Developer's Guide

■ Timestamp of Assignment

■ Added by

■ Timestamp of Removal

■ Removed by

To run the Users in Group report, click the Security tab, then click the User Groups
subtab and follow instructions in "Running and Saving System Reports" on page 14-1.
If you want to include users added or removed in the past, select the corresponding
checkbox.

Data Blinding Reports
This section contains the following reports:

■ Blind Breaks Report on page 14-4

■ Blinded Table Instances Audit Report on page 14-4

■ Blinded Table Instances Report on page 14-5

■ Unblinded Outputs Report on page 14-5

Blind Breaks Report
The Blind Breaks report displays information about each time real data has been
accessed from a Table instance, including:

■ Each time a job has been run against a selected blinded Table instance in Blind
Break mode to display real data

■ Each time an IDE (integrated development environment such as SAS) has been
launched with the Blind Break setting set to Real (Blind Break)

■ Each time a visualization (through an external tool such as Oracle Business
Intelligence Enterprise Edition) has been launched with the Blind Break setting set
to Real (Blind Break)

■ Each time data has been browsed with the Blind Break setting set to Real (Blind
Break)

The Blind Breaks report displays the following details:

■ Header Information—Details of Containership, Instances and Definitions. See
"Header Information for Object Instances" on page 14-9 for details on the header
section.

■ Blind Breaks—Job ID or Activity Type, Blind break TimeStamp, Blind Break By,
Instance Name, Instance Type, Instance Validation Status

To run the Blind Breaks (or Blindbreak) report, navigate to the table instance and
follow instructions in "Running and Saving System Reports" on page 14-1.

Blinded Table Instances Audit Report
The Blinded Table Instances Audit report displays all Table instances whose blinding
flag or blinding status has been changed in a particular Work Area. For each such
Table instance, the report details every change to the blinding flag or blinding status.
For each change, the report displays the following information:

■ Containership—Domain, Application Area Name, Work Area Name

Container Reports

System Reports 14-5

■ Table Instance Details—Table Instance Name, Version, Validation Status, Action
Type, Timestamp, Action By

To run a Blinded Table Instances Audit report, navigate to the Work Area's Properties
screen and follow instructions in "Running and Saving System Reports" on page 14-1.

Blinded Table Instances Report
The Blinded Table Instances report displays details of all Table instances in a Work
Area, regardless of their Blinding Status, and displays their Blinding Flag setting and
Blinding Status.

The report has the following information for each Table instance:

■ Containership—Domain, Application Area Name and Work Area Name

■ Table Instance Details—Table Instance Name, Version, Validation Status, Source
Definition Name, Source Definition Version, Created Time Stamp, Blinding Flag,
and Blinding Status.

To run a Blinded Table Instances report, navigate to the Work Area's Properties screen
and follow instructions in "Running and Saving System Reports" on page 14-1.

Unblinded Outputs Report
The Unblinded Outputs report displays all jobs run on real, unblinded data in a
particular Table instance.

The Unblinded Outputs report has the following sections:

■ Header Information—Details of Containership, Instances and Definitions. See
"Header Information for Object Instances" on page 14-9 for details on the header
section.

■ Jobs and Output Details—The report displays the following details for each job:
Job ID, Job Submission Timestamp, Job Submitted by, Output Name, Output
Creation Timestamp, Owning Executable Instance, Executable Type, Executable
Validation Status.

■ Table Instance Status—The report displays the following details for the source
Table instance at the time of job submission: Job ID, Validation Status, Blinding
Flag, Blinding Status.

To run an Unblinded Outputs report, navigate to the table instance's Properties screen
and follow instructions in "Running and Saving System Reports" on page 14-1.

Container Reports
This section contains the following reports:

■ Application Area Library Report on page 14-6

■ Domain Library Report on page 14-6

■ Work Area - All Instances Report on page 14-6

■ Work Area Cloning Report on page 14-7

■ Work Area Installation History Report on page 14-7

■ Work Area Version History Report on page 14-8

Container Reports

14-6 Oracle Life Sciences Data Hub Application Developer's Guide

Application Area Library Report
The Application Area Library report displays information on objects contained in a
particular Application Area. You can select the types of objects to include in the report.
The report lists objects by their type.

Besides information on Domain, Application Area Name and Work Area Name, the
report lists the following for each object:

■ Name

■ Description

■ Version

■ Status

■ Checked In or Out?

■ Check out by

■ Validation Status

To run an Application Area Library report, navigate to the application area's
Properties screen and follow instructions in "Running and Saving System Reports" on
page 14-1.

Domain Library Report
The Domain Library report displays information on objects contained in a particular
Domain. You can select the types of objects to include in the report. The report lists
objects by their type.

For each object, the report displays the Domain name and Classification in addition to
the following information:

■ Name

■ Description

■ Version

■ Status

■ Checked In or Out?

■ Check out by

■ Validation Status

To run a Domain Library report, navigate to the domains's Properties screen and
follow instructions in "Running and Saving System Reports" on page 14-1.

Work Area - All Instances Report
The Work Area - All Instances report details every object instance in a selected work
area.

The report provides Containership information such as Domain Name, Application
Area Name, Work Area Name, Validation Status, and Classification. It also contains
the following information on every instance:

Instance Details
■ Instance Name

Container Reports

System Reports 14-7

■ Instance Version

■ Last Modified by

■ Last Modified TS

■ Source Definition Name

■ Source Definition Version

■ Checked In or Out?

■ Definition's Application Area

■ Definition's Domain

To run a Work Area-All Instances report, navigate to the work area's Properties screen
and follow instructions in "Running and Saving System Reports" on page 14-1.

Work Area Cloning Report
The Work Area Cloning report details the complete cloning history of a selected work
area.

The report provides Containership information such as Domain Name, Application
Area Name, Work Area Name, Validation Status, and Classification. It also contains
the following information on every cloned work area:

Work Area Details
■ Clone Work Area Name

■ Description

■ Status

■ Validation Status

■ Usage Intent

■ Cloned from Work Area Version

■ Cloned Timestamp

■ Clone Labels (if any)

■ Cloned by

■ Version Label

To run a Work Area Cloning report, navigate to the work area's Properties screen and
follow instructions in "Running and Saving System Reports" on page 14-1.

Work Area Installation History Report
The Work Area Installation History report is a record of every installation in the
selected Work Area.

The report provides Containership information such as Domain Name, Application
Area Name, Work Area Name, Validation Status, and Classification. It also contains
the following information for every installation:

Installation Details
■ Installation Attempt

■ Install Status

Object Metadata Reports

14-8 Oracle Life Sciences Data Hub Application Developer's Guide

■ Install Mode

■ Force to regenerate scripts

■ Installed By

■ Installation Timestamp

To run a Work Area Installation History report, navigate to the work area's Properties
screen and follow instructions in "Running and Saving System Reports" on page 14-1.

Work Area Version History Report
The Work Area Version History report is a record of every version of the selected Work
Area.

The report provides Containership information such as Domain Name, Application
Area Name, Work Area Name, Validation Status, and Classification. It also provides
the following information for every version of the work area:

Version Details
■ Version

■ Description

■ Status

■ Validation Status

■ Usage Intent

■ Version Label

■ Last Modified Timestamp

■ Last Modified By

■ Cloned from Version

To run a Work Area Version History report, navigate to the work area's Properties
screen and follow instructions in "Running and Saving System Reports" on page 14-1.

Object Metadata Reports
Oracle LSH object metadata reports present an overview of an object's history and
current status.

This section contains the following:

■ Common Header Information on page 14-9

■ All Instances of a Definition Report on page 14-9

■ Data Mart Report on page 14-9

■ Data Mart Instance Report on page 14-10

■ Load Set Report on page 14-11

■ Load Set Instance Report on page 14-11

■ Object Validation Report on page 14-12

■ Object Version History Report on page 14-12

■ Program Report on page 14-13

Object Metadata Reports

System Reports 14-9

■ Program Instance Report on page 14-13

■ Report Set Report on page 14-14

■ Report Set Instance Report on page 14-15

■ Table Report on page 14-16

■ Table Instance Report on page 14-17

■ Workflow Report on page 14-17

■ Workflow Instance Report on page 14-18

Common Header Information
This section contains the following:

■ Header Information for Object Definitions on page 14-9

■ Header Information for Object Instances on page 14-9

Header Information for Object Definitions
Header information for object definitions is divided into two parts:

■ Containership—Domain Name and Application Area Name.

■ Definition Details—Name, Description, Latest Version, Creation Time, Created
by, Checked in or out?, Last Modified Time, Last Modified by, Validation Status,
Classification

Header Information for Object Instances
Header information for object instances is divided into three parts:

■ Containership—Domain Name, Application Area Name and Work Area Name.

■ Instance Details—Instance Name, Description, Version, Last Modified Time, Last
Modified by, Validation Status, Classification.

■ Definition Details—Definition Name, Description, Latest Version, Checked in or
out?, Checked out by, Last Modified Time, Last Modified by.

All Instances of a Definition Report
The All Instances of a Definition report contains information on all the object instances
that are based on or point to a selected definition.

The report displays information in the format described in "Header Information for
Object Instances" on page 14-9.

To run an All Instances of a Definition report, navigate to the definition's Properties
screen and follow instructions in "Running and Saving System Reports" on page 14-1.

Data Mart Report
A Data Mart report contains information about the current status of a single Data Mart
definition. This is the same information that is available in the Data Mart's Properties
screen and its subtabs.

For information on a Data Mart's version history, see "Object Version History Report"
on page 14-12. For information on Data Marts, see Chapter 8, "Defining Data Marts".

The Data Mart report has three sections:

Object Metadata Reports

14-10 Oracle Life Sciences Data Hub Application Developer's Guide

■ Header—See Header Information for Object Definitions on page 14-9 for details on
the Header section.

■ Attributes—A table displaying the values of the attributes Data Mart Type, File
Name, File Name Extension, and Mode.

■ Child Objects—Tables displaying information about each of the following Data
Mart components:

■ Table Descriptors. For each Table Descriptor, the report displays the Name,
Yes or No settings for Is Target?, Oracle Name, SAS Name, and SAS Library
Name.

■ Parameters. For each Parameter, the report displays the Prompt, Default
Value, and Yes or No settings for Visible?, and Required?.

■ Planned Output. For each Planned Output, the report displays the Name, File
Name, Yes or No settings for Primary?, Error if generated?, and Error if not
generated?.

To generate a Data Mart report, navigate to the Data Mart's Properties screen. Select
Definition Report from the list of reports available for object instances while
following instructions in "Running and Saving System Reports" on page 14-1.

Data Mart Instance Report
The Data Mart Instance report includes all the definitional information that pertains to
the instance, including information about the underlying Data Mart definition. See
"Data Mart Report" on page 14-9 for definition related information.

The Data Mart Instance report contains the information available in the Data Mart
instance's Properties screen and its subtabs. It has four sections:

■ Header—See "Header Information for Object Instances" on page 14-9 for details on
the header section.

■ Attributes—A table displaying values of the attributes Data Mart Type, File
Name, File Name Extension, and Mode.

■ Child Objects—Tables displaying information about each of the Data Mart
components- Table Descriptors, Parameters, Planned Output. See "Data Mart
Report" on page 14-9 for details of these components. Additionally, you can see
mapping information about Table Descriptors.

■ Mapping Information—Detailed mapping information for the Data Mart
instance. This section has two subsections.

– The first subsection displays the following information: TD Table Definition
Name, Description, Latest Version, Checked In or Out, Checked out by, Last
Modified Time, Last Modified by, Validation Status.

Note: These tables display all possible information for each
component. Some of the table columns may not be applicable to a
particular type of Data Mart or to a particular component.

Note: All Data Mart Table Descriptors are of type Source, not Target.

Object Metadata Reports

System Reports 14-11

– The second subsection displays details about the tables that the Table
Descriptors are mapped to. This table has two parts, one for the Table
Descriptor and the other for the Table instance.

* Table Descriptor—Consisting of the Column Name and Data Type.

* Table Instance—Consisting of the Column Name, Format String, Default
Value, Data Type and Mapping Status.

To generate a Data Mart Instance report, navigate to the Data Mart instance's
Properties screen. Select Definition Report from the list of reports available for object
instances while following instructions in "Running and Saving System Reports" on
page 14-1.

Load Set Report
A Load Set report contains information about the current status of a single Load Set
definition. This is the same information that is available in the Load Set's Properties
screen and its subtabs. For information on a Load Set's version history, see "Object
Version History Report" on page 14-12.

For information on Load Sets, see Chapter 7, "Defining Load Sets"

The Load Set report has three sections:

■ Header—See Header Information for Object Definitions on page 14-9 for details on
the Header section.

■ Attributes—The second section displays the values of the attributes Adapter Type,
Remote Location Name, Database Schema, Study Name, View Type, Design
Sub-System, and Yes or No settings for Save to File/Save Input File?.

■ Child Objects—The third section displays tables with information about each of
the following Load Set components.

■ Table Descriptors. For each Table Descriptor, the report displays the Name,
Yes or No settings for Is Target?, Oracle Name, and SAS Name.

■ Parameters. For each Parameter, the report displays the Prompt, Default
Value, and Yes or No settings for Visible?, and Required?.

To generate a Load Set report, navigate to the Load Set's Properties screen. Select
Definition Report from the list of reports available for object instances while
following instructions in "Running and Saving System Reports" on page 14-1.

Load Set Instance Report
The Load Set Instance report includes all the definitional information pertaining to the
instance, including information about the underlying Load Set definition.

The Load Set Instance report contains the same information available in the Load Set
instance's Properties screen and its subtabs. It has four sections.

■ Header—See "Header Information for Object Instances" on page 14-9 for details on
the header section.

Note: Child Object tables display all possible information for each
component. Some of the table columns may not be applicable to a
particular type of Load Set or to a particular component.

Object Metadata Reports

14-12 Oracle Life Sciences Data Hub Application Developer's Guide

■ Attributes—The second section displays a table with values of the attributes
Database Schema, Study Name, View Type, Design Sub-System, and Yes or No
settings for Save to File/Save Input File?.

■ Child Objects— Similar to the Load Set report, the third section displays tables
with information about Table Descriptors and Parameters. See "Load Set Report"
on page 14-11 for details on Child Objects.

■ Mapping Information—Similar to the Data Mart Instance report, the last section
presents mapping information for the Load Set instance in two subsections. See
"Data Mart Instance Report" on page 14-10 for details.

To generate a Load Set Instance report, navigate to the Load Set Instance's Properties
screen. Select Definition Report from the list of reports available for object instances
while following instructions in "Running and Saving System Reports" on page 14-1.

Object Validation Report
The Object Validation report displays information about the validation life cycle of a
selected object instance. The report reflects changes to the object instance's validation
status and lists all supporting documents and supporting outputs associated with the
object instance.

The report has the following sections:

■ Header—See "Header Information for Object Instances" on page 14-9 for details on
the header section.

■ Validation Status—For each change in the validation cycle, the report displays the
following: Validation Status, Status Update Timestamp, Updated by, and
Comments.

■ Supporting Document—For each supporting document, the report displays the
following information: Name, File Name, Description, Version, Uploaded by,
Status, Validation Status at Time of Upload.

■ Supporting Outputs—For each supporting output, the report displays the
following information: Output Name, Job ID, Description, Added by, Status,
Validation Status at Time of Adding.

To generate an Object Validation report, navigate to the object instance's Properties
scree. Select Validation Report from the list of reports available for object instances
while following instructions in "Running and Saving System Reports" on page 14-1.

Object Version History Report
The Object Version History report is a record of every version of the selected object
definition.

The Object Version History report has two sections.

■ Header—See "Header Information for Object Definitions" on page 14-9 for details
on the Header section.

■ Version History—The second section displays the following details about the
object: Version, Description, Status, Validation Status, Copied from Version,
Version Label, Last Modified Timestamp, Last Modified by, Check in/Check out
comments, if any.

To generate an Object Validation report, navigate to the Properties screen of an object
instance definition. Select Version History Report from the list of reports available for
object instances while following instructions in "Running and Saving System Reports"

Object Metadata Reports

System Reports 14-13

on page 14-1.

Program Report
A Program report contains information about a single Program definition. For
information on a Program's version history, see "Object Version History Report" on
page 14-12.

For information on Programs, see Chapter 5, "Defining Programs".

The Program report contains the same information that is present in the Program's
Properties screen and its subtabs. It has three sections:

■ Header—See "Header Information for Object Definitions" on page 14-9 for details
on the Header section.

■ Attributes—The second section displays a table with the value of the attribute
Program Type.

■ Child Objects—The third section displays tables with information about each of
the following Program components:

■ Table Descriptors. For each Table Descriptor, the report displays the Name,
Yes or No settings for Is Target?, Oracle Name, and SAS Name.

■ Parameters. For each Parameter, the report displays the Prompt, Default
Value, and Yes or No settings for Visible?, and Required?.

■ Planned Output. For each Planned Output, the report displays the Name, File
Name, Yes or No settings for Primary?, Error if generated?, and Error if not
generated?.

■ Source Code. For each Source Code, the report displays the Source Code
Name, Description, Yes or No settings for Primary?, Share Type, File Type, Yes
or No settings for Sharable?, File Name, Source Code Shared From?, and the
actual source code.

To generate a Program report, navigate to the Program's Properties screen. Select
Definition Report from the list of reports available while following instructions in
"Running and Saving System Reports" on page 14-1.

Program Instance Report
The Program Instance report includes the definitional information pertaining to the
instance, including information about the underlying Program definition. See
"Program Report" on page 14-13 for details on Program definitions.

The Program Instance report contains the same information available in the Program
instance's Properties screen and its subtabs. It has four sections:

■ Header—See "Header Information for Object Instances" on page 14-9 for details on
the header section.

■ Attributes—The second section displays a table with the value of the attribute
Program Type.

Note: Child Object tables display all possible information for each
component. However, some of the table columns may not be
applicable to particular types of Programs or components.

Object Metadata Reports

14-14 Oracle Life Sciences Data Hub Application Developer's Guide

■ Child Objects—Similar to the Program report, the third section displays tables
with information about the following Program components—Table Descriptors,
Parameters, Planned Output and Source Code. See "Program Report" on
page 14-13 for details.

■ Mapping Information— Similar to the mapping information of the Data Mart
Instance report, the last section presents mapping information for the Program
instance in two subsections. See "Data Mart Instance Report" on page 14-10 for
details.

To generate a Program Instance report, navigate to the Properties screen of a Program
Instance. Select Definition Report from the list of reports available while following
instructions in "Running and Saving System Reports" on page 14-1.

Report Set Report
The Report Set report contains information about the current status of a single Report
Set including its child objects. The report contains the same information that is
available in the Report Set's Properties screen and its subtabs. You can choose whether
or not to include information on Post-Processing and Overlay Template Parameters for
the Report Set and each Report Set Entry.

For information on a Report Set's version history, see "Object Version History Report"
on page 14-12.

For more information on Report Sets, see Chapter 9, "Defining Report Sets".

The Report Set report has following sections:

■ Header—See Header Information for Object Definitions on page 14-9 for details on
the Header section.

■ Attributes—The second section displays Attribute values- Title, Yes or No settings
for Strict Numbering?, and Yes or No settings for Unique Numbering?.

If you selected Post-Processing Parameters or Overlay Template Parameters, the
report displays these both at the Report Set level and for each Report Set Entry
(see below).

■ Child Objects—The third section displays tables with information about the
following components.

■ Planned Output. For each Planned Output, the report displays Name, File
Name, Yes or No settings for Primary?, Yes or No settings for Error if
generated?, and Error if not generated?.

■ Post-Processing. For Post-processing, the report displays Parameter, Yes or No
settings for Default?, Yes or No settings for Value Propagation?, Yes or No
settings for Visible?, and Yes or No settings for Required?.

■ Overlay Templates. For each Overlay Template, the report displays Prompt,
Yes or No settings for Default?, Yes or No settings for Read Only?, Yes or No
settings for Visible?, and Yes or No settings for Required?.

■ Parameters. For each Parameter, the report displays Prompt, Yes or No
settings for Default?, Yes or No settings for Read Only?, Yes or No settings for
Visible?, and Yes or No settings for Required?.

Report Set Entries
The Report Set report also displays tables with information about each Report Set
Entry in numerical order.

Object Metadata Reports

System Reports 14-15

■ Report Set Entry Number. For the Report Set Entry identified by its number and
title, the report displays the Entry Name, Title, Yes or No settings for Pre
Narrative?, Yes or No settings for Post Narrative?, Placeholder, Yes or No settings
for Has Children?, and Yes or No settings for Omitted?.

The Pre and Post narratives are also shown with the Report Set Entry's details.

■ Post-Processing. For Post-processing, the report displays Parameter, Yes or No
settings for Default?, Yes or No settings for Value Propagation?, Yes or No settings
for Visible?, and Yes or No settings for Required?.

■ Overlay Templates. For each Overlay Template, the report displays Prompt, Yes or
No settings for Default?, Yes or No settings for Read Only?, Yes or No settings for
Visible?, and Yes or No settings for Required?.

■ Parameters. For each Parameter, the report displays Prompt, Yes or No settings for
Default?, Yes or No settings for Read Only?, Yes or No settings for Visible?, and
Yes or No settings for Required?.

Program Instance under Report Set Entry (Full Title) When a Report Set Entry
within a Report Set contains a Program instance, the report details the Program
definition that the particular Program instance points to.

■ Table Descriptors. For each Table Descriptor, the report displays the Name, Yes or
No settings for Is Target?, Oracle Name, SAS Name, SAS Library Name, Mapping
Status, Mapped to Table Instance, TI (Table Instance) Work Area, TI (Table
Instance) Application Area, TI (Table Instance) Domain.

■ Parameters. For each Program instance Parameter, the report displays the Prompt,
Default Value, Yes or No settings for Visible?, and Yes or No settings for
Required?.

■ Planned Output. For each Planned Output, the report displays the Name, File
Name, Yes or No settings for Error if generated?, and Error if not generated?.

■ Source Code. For Source Code, the report displays the Name, Description, Yes or
No settings for Primary?, Share Type, File Type, Yes or No settings for Sharable?,
File Name, Source Code Shared From location and the actual source code.

To generate a Report Set report, navigate to the Properties screen of a Report Set. Select
Definition Report from the list of reports available while following instructions in
"Running and Saving System Reports" on page 14-1.

You can select any or all of the following optional components to include in the Report
Set Definition report—Post Processing Parameters, Overlay Templates Parameters,
Narratives.

Report Set Instance Report
The Report Set Instance report includes all the definitional information that pertains to
the instance, including information about the underlying Report Set definition. See
"Report Set Report" on page 14-14.

The Report Set instance report contains the same information that is available in the
Report Set instance's Properties screen and its subtabs. It has three sections.

■ Header—See "Header Information for Object Instances" on page 14-9 for details on
the header section.

■ Attributes—The second section displays a table with values of the attributes Title,
Strict Numbering, and Unique Numbering.

Object Metadata Reports

14-16 Oracle Life Sciences Data Hub Application Developer's Guide

■ Child Objects—Similar to the Report Set report, the third section displays tables
with information about each of the following components—Planned Output,
Post-Processing, Overlay Templates and Parameters. See the section on Child
Objects in the "Report Set Report" on page 14-14 for details. Additionally, you can
see mapping information about Table Descriptors.

Report Set Entries
Similar to the Report Set report, the Report Set Instance report also displays tables
with information about each Report Set Entry in numerical order. See the section on
Report Set Entries in the"Report Set Report" on page 14-14 for details.

Program Instance under Report Set Entry (Full Title) When a Report Set Entry
within a Report Set contains a Program instance, the report details the Program
definition that the particular Program instance points to.

The Program Instance details are displayed in the following subsections—Table
Descriptors, Parameters, Planned Output, Source Code and Mapping Details. See the
section on Program Instance under Report Set Entry in the "Report Set Report" on
page 14-14 for details.

Mapping Details provides information about the tables mapped with the Table
Descriptors of the Program Instance in two parts:

■ Table Descriptor—Column Name, Data Type

■ Table Instance—Column Name, Format String, Default Value, Data Type,
Mapping Status

To generate a Report Set Instance report, navigate to the Properties screen of a Report
Set Instance. Select Definition Report from the list of reports available while following
instructions in "Running and Saving System Reports" on page 14-1.

You can select any or all of the following optional components to include in the Report
Set Instance report—Post Processing Parameters, Overlay Templates Parameters,
Narratives.

Table Report
A Table report contains information about the current status of a single Table
definition. This is the same information that is available in the Table's Properties screen
and its subtabs.

For information on Tables, see Chapter 4, "Defining Tables".

The Table report has the following three sections:

■ Header—See Header Information for Object Definitions on page 14-9 for details on
the Header section.

■ Attributes—The second section displays the values of the attributes Oracle Name,
SAS Name, SAS Label, Process Type, Allow Snapshot?, Blinding Flag.

■ Child Objects—The third section displays tables with information about each of
the following Table components:

Note: These tables display all possible information for each
component. Some of the columns may not be applicable to a particular
type of Table or to a particular component.

Object Metadata Reports

System Reports 14-17

■ Columns. For each Column, the report displays the Name, Position, Oracle
Name, SAS Name, SAS Label, Data Type, Length, Precision, SAS Format,
Default Value, Mandatory?, and Variable Name.

■ Constraints. For each Constraint, the report displays the Name, Type, Column
Name (s), Join Table, and Value(s) allowed.

To generate a Table report, navigate to the Properties screen of a Table. Select
Definition Report from the list of reports available while following instructions in
"Running and Saving System Reports" on page 14-1.

Table Instance Report
The Table Instance report includes all the definitional information that pertains to the
instance, including information about the underlying Table definition. See "Table
Report" on page 14-16.

The Table Instance report contains the same information that is available in the Table
instance's Properties screen and its subtabs. Similar to the Table report, the Table
Instance report has three sections—Header, Attributes and Child Objects. See "Table
Report" on page 14-16 for details.

To generate a Table Instance report, navigate to the Properties screen of a Table
Instance. Select Definition Report from the list of reports available while following
instructions in "Running and Saving System Reports" on page 14-1.

Workflow Report
The Workflow report contains information about the current status of a single
Workflow. This is the same information that is available in the Workflow's Properties
screen and its subtabs. For information on a Workflow's version history, see "Object
Version History Report" on page 14-12.

For more information on Workflows, see Chapter 10, "Defining Workflows".

The Workflow report has the following two sections:

■ Header—See Header Information for Object Definitions on page 14-9 for details on
the Header section.

■ Child Objects—The third section displays tables with information about each of
the following Workflow components:

■ Executable Instances and Workflow Structures. For each Executable Instance
and Workflow Structure, the report displays the Name, Type, Description,
Checked out by, and Status.

■ Parameters. For each Parameter, the report displays the Prompt, Default
Value, Yes or No settings for Visible?, and Yes or No settings for Required?.

■ Transitions. For each Transition, the report displays From Object Name, From
Object Type, Condition, To Object, and To Object Type.

■ Mapping Details. The report displays information about the mapping
between executable instances contained in the Workflow and Table instances.

Note: These tables display all possible information for each
component. Some of the table columns may not be applicable to a
particular type of Workflow or to a particular component.

Object Metadata Reports

14-18 Oracle Life Sciences Data Hub Application Developer's Guide

The Workflow report includes information on each executable object instance included
in the Workflow. These may include Data Marts, Programs, Load Sets and Report Sets.
The information displayed is the same as in the report for each object type. See "Data
Mart Report" on page 14-9, "Program Report" on page 14-13, "Load Set Report" on
page 14-11, and "Report Set Report" on page 14-14.

To generate a Workflow report, navigate to the Properties screen of a Workflow. Select
Definition Report from the list of reports available while following instructions in
"Running and Saving System Reports" on page 14-1.

Workflow Instance Report
The Workflow Instance report includes all the definitional information that pertains to
the instance, including information about the underlying Workflow definition. The
Workflow instance report contains the same information that is available in the
Workflow instance's Properties screen and its subtabs.

Similar to the Workflow report, the Workflow Instance report has two
sections—Header and Child Objects. See "Workflow Report" on page 14-17 for details.

The Workflow Instance report contains information on each executable object instance
included in the Workflow. The object instances may include Data Marts, Programs,
Load Sets and Report Sets. The information displayed is the same as in the report for
each object type. See "Data Mart Instance Report" on page 14-10, "Program Instance
Report" on page 14-13, "Load Set Instance Report" on page 14-11, and "Report Set
Instance Report" on page 14-15.

To generate a Workflow Instance report, navigate to the Properties screen of a
WorkflowInstance. Select Definition Report from the list of reports available while
following instructions in "Running and Saving System Reports" on page 14-1.

A

Installation Requirements for Each Object Type A-1

A Installation Requirements for Each Object
Type

This section contains the following topics:

■ Installable Instances and their Definitions on page A-1

■ Component Object Types on page A-3

■ Organizational Objects on page A-4

Most definitional objects have a status with two possible values: Installable and Non
Installable. Some of these objects—object definitions and component objects—are
never installed directly, but their status affects the status of other objects. If an object
definition is not installable, instances of that definition are also not installable. If a
component object is not installable, the object definition of which it is a part may also
be noninstallable.

Different object types can be noninstallable for different reasons. This section gives the
reasons each object type can be noninstallable. Objects are listed in alphabetical order
within their section.

Installable Instances and their Definitions
When you install a Work Area, you install the object instances within it and through
them, the definitional metadata contained in their source definition objects. Therefore
both object definitions and instances have an installation status.

Business Area A Business Area definition is not installable if:

■ The Business Area has no Table Descriptors

Business Area Instance A Business Area instance is not installable if:

■ Its source Business Area definition is not installable

■ Any of its Table Descriptor mappings are incomplete

Data Mart A Data Mart definition is not installable if:

■ It has no Table Descriptors

■ It has any required Parameters with no value set

■ It has any Parameter values that fail validation (either List of Values or
programmatic validation)

■ It does not have a value for the Filename attribute

Installable Instances and their Definitions

A-2 Oracle Life Sciences Data Hub Application Developer's Guide

■ The File Name value does not have an extension of .dmp

Data Mart Instance A Data Mart instance is not installable if:

■ Its source Data Mart definition is not installable

■ Any of its Table Descriptor mappings are incomplete

Load Set A Load Set definition is not installable if:

■ It has no Table Descriptors

Load Set Instance A Load Set instance is not installable if:

■ Its source Load Set definition is not installable

■ Any of its Table Descriptor mappings are incomplete

Program Program definitions have an additional installation status called "Installable
IDE." A Program definition has this status when it has at least one Table Descriptor
and all its Table Descriptors are mapped. When a Program has this status, you can
install it (from the Program instance screen only, not the Work Area) and view the data
in the Table instances mapped to the Program's source Table Descriptors from the IDE.
However, you cannot run the Program in Oracle LSH until you have uploaded the
source code and installed the Program instance.

A Program definition is not installable if:

■ The Program contains a Source Code definition that does not contain a source code
file

■ The Program contains a Source Code instance whose definition is not installable

■ The Program contains a Table Descriptor whose source Table definition is not
installable

Program Instance A Program instance is not installable if:

■ Its source Program definition's status is Not Installable or "Installable IDE"

■ Any of its Table Descriptor mappings are incomplete

Report Set A Report Set definition is not installable if:

■ Parameter instances owned directly by the Report Set or Report Set Entries are not
set up to propagate their values to at least one Parameter within a Report Set Entry
Program instance

■ Circular Parameter value propagation is defined; for example, the value of an
output Parameter of Program instance A is propagated to an input Parameter of
Program instance B, and the value of an output Parameter of Program B is
propagated to an input Parameter of Program A

■ It contains a Program instance whose status is either Not Installable or Installable
IDE.

Report Set Instance A Report Set instance is not installable if:

■ Its source Report Set definition is not installable or "Installable IDE"

■ Any of the Table Descriptor mappings owned by Program instances within the
Report Set instance are incomplete

Component Object Types

Installation Requirements for Each Object Type A-3

Table A Table definition is not installable if it contains no Columns.

Table Instance A Table instance is not installable if its source Table definition is not
installable.

Workflow A Workflow definition is not installable if:

■ The Workflow does not contain one and only one Start Structure and at least one
End-type Structure (End_Success, End_Failure, or End_Warning)

■ Each branch of the Workflow does not end with an End-type Structure

■ All of the Workflow's Transitions do not have an activity at each end

■ Each Workflow activity (except Start and End) do not have an activity at each end

■ Parameter instances owned directly by the Workflow are not set up to propagate
their value to at least one Parameter within a Workflow activity

■ Parameter linking conflicts with the execution order of the Workflow; for example,
if the output Parameter of a Program is linked to the input Parameter of another
Program that is set to execute earlier in the Workflow

■ Transitions are circular; that is, a Transition cannot lead from one activity to
another that is set to execute earlier in the Workflow. For example, if you define a
Transition from Program A to Program B, and another Transition from Program B
to Program C, you cannot also define a Transition from Program C to Program A.
The system generates an installation status of Not Installable.

The exception to this rule is that a Transition following a Notification can point to
an earlier activity in the Workflow, if there is an End activity defined. For example,
a rejection of an Approval-type Notification can lead to a Load Set earlier in the
Workflow, so that the Workflow is effectively restarted from that point. The system
generates an installation status of: Installable, Includes Circular Reference.

Workflow Instance A Workflow is not installable if:

■ Its source Workflow definition is not installable

■ Any of the Table Descriptor mappings owned by Workflow activities are
incomplete

■ There is circular mapping; that is, a Program within the Workflow reads from a
Table instance that a subsequently executed Program writes to

Component Object Types
Component objects are contained in other objects. They are not installed directly in a
Work Area but only through the objects in which they are contained. If a component
object is not installable, its parent object is not installable either.

The following component objects have a status:

Notification A Notification definition is always installable.

Notification Instance A Notification instance is also always installable. If no primary
timeout period is defined, the system uses zero (0) as the default, and the installation
of the Workflow instance in which it is contained does not fail.

Parameter A Parameter definition is always installable.

Organizational Objects

A-4 Oracle Life Sciences Data Hub Application Developer's Guide

Parameter Instance A Parameter instance is always installable.

Parameter Set A Parameter Set definition is always installable.

Parameter Set Instance A Parameter Set instance is always installable.

Planned Output A Planned Output is always installable.

Source Code A Source Code definition is not installable if it does not contain a
source code file.

Source Code Instance A Source Code instance is not installable if its Source Code
definition is not installable.

Table Descriptor A Table Descriptor is not installable if its source Table definition is
not installable.

Variable A Variable is always installable.

Organizational Objects
There are only three organizational object types: Domains, Application Areas, and
Work Areas. Of these, only Work Areas are ever installed, and only Work Areas have a
status.

Work Area A Work Area is not installable if:

■ It has a status of Retired, Lock for Install, or Lock for Partial Install.

■ Its version is not the most current version.

■ It has a usage intent of Production and the installation mode is set to Full.

■ The same version of the Work Area has already been successfully installed.

■ The source definition of one or more object instances included in the installation
have been explicitly checked out by a user other than the person initiating the
installation.

Note: If the same version of the Work Area has already been
successfully installed you cannot run an Upgrade installation unless
you use Force Regeneration.

Note: It is possible to install a Work Area which has objects checked
out by other users if you have the Superuser Checkin Administrator
privilege, in addition to normal object security privileges. The system
displays a warning indicating that you are checking in objects checked
out by other users. It then checks in the objects and installs the Work
Area.

B

Object Ownership B-1

BObject Ownership

In the Oracle Life Sciences Data Hub (Oracle LSH), object definitions and instances are
"owned" by their immediate container object. The following diagrams show the Oracle
LSH data model for object ownership:

■ Figure B–1, "Object Ownership within a Domain"

■ Figure B–2, "Object Ownership within an Application Area"

■ Figure B–3, "Object Ownership within a Work Area"

Object ownership has ramifications in many areas of Oracle LSH, including security
(user group assignments) and classification; it is possible for objects to inherit the user
group assignments and classifications of their owning objects. In addition, Oracle LSH
enforces unique names for objects of the same type in the same container object.

Domains
Domains contain Application Areas and object definitions. Depending on the setting
of the Object definitions contained directly in a Domain constitute the Domain library.

In addition, Domains can contain child Domains that themselves contain child
Domains, up to nine (9) levels, depending on the value of the Domain Nest Value
profile setting for your LSH implementation. A Domain can contain any number of
Domains at a single level. For example, if the Domain Nest Value profile is set to one
(1), a top-level Domain can contain any number of child Domains, but those child
Domains cannot contain any child Domains of their own.

The various objects contained within a Domain are as follows:

■ Application Areas. The objects contained in the Application Area are listed
separately.

■ Table Definitions. These contain—Columns and Constraints.

■ Workflow Definitions. These contain:

– Execution Templates containing Parameter Set Instances that in turn, contain
Parameter Instances

– Load Set Instances

– Data Mart Instances

– Report Set Instances

– Program Instances

– Parameter Set Instances that contain Parameter Instances

Domains

B-2 Oracle Life Sciences Data Hub Application Developer's Guide

– Parameter Set Definitions that contain Parameter Instances

– Planned Outputs

– Workflow Structure Instances

– Notification Instances

■ Report Set Definitions. These contain:

– Program Instances

– Report Set Entries. These contain—Report Set Entries, Parameter Set
Definitions containing Parameter Instances, Parameter Set Instances
containing Parameter Instances

– Planned Outputs

– Parameter Set Instances that contain Parameter Instances

– Parameter Set Definitions that contain Parameter Instances

– Execution Templates. These contain Parameter Set Instances that in turn,
contain Parameter Instances.

■ Overlay Templates

■ Variables

■ Notification Definitions. These contain Parameter Set Definitions containing
Parameter Instances and Parameter Set Instances containing Parameter Instances.

■ Workflow Structure Definitions

■ Parameter Definitions

■ Parameter Set Definitions containing Parameter Instances

■ Business Areas. These contain—Hierarchies, Table Descriptors, Joins.

■ Program Definitions. These contain:

– Planned Outputs

– Parameter Set Definitions that contain Parameter Instances

– Parameter Set Instances that contain Parameter Instances

– Table Descriptors

– Source Code Definitions

– Source Code Instances

– Execution Templates. These contain Parameter Set Instances that in turn,
contain Parameter Instances.

■ Load Set Definitions. These contain:

– Planned Outputs

– Parameter Set Definitions that contain Parameter Instances

– Parameter Set Instances that contain Parameter Instances

– Table Descriptors

– Execution Templates. These contain Parameter Set Instances that in turn,
contain Parameter Instances.

■ Data Mart Definitions. These contain:

Domains

Object Ownership B-3

– Planned Outputs

– Parameter Set Definitions that contain Parameter Instances

– Parameter Set Instances that contain Parameter Instances

– Table Descriptors

– Execution Templates. These contain Parameter Set Instances that in turn,
contain Parameter Instances.

Figure B–1 shows all layers of object ownership within a Domain, except for objects
contained in the Application Area. See Figure B–2 for object ownership within an
Application Area.

Note: Report Set Entries inside Report Set Definitions can be nested
indefinitely.

Application Areas

B-4 Oracle Life Sciences Data Hub Application Developer's Guide

Figure B–1 Object Ownership within a Domain

Application Areas
Application Areas contain exactly the same objects as Domains, except that Domains
contain Application Areas and Application Areas contain Work Areas. Both Domains

Application Areas

Object Ownership B-5

and Application Areas can include all object definition types. Figure B–2 shows all
possible layers of object ownership within an Application Area.

Figure B–2 Object Ownership within an Application Area

Note: Report Set Entries inside Report Set Definitions can be nested
indefinitely.

Work Areas

B-6 Oracle Life Sciences Data Hub Application Developer's Guide

Work Areas
Work Areas contain object instances, each of which points to an object definition
located either in an Application Area or in a Library. This diagram shows only object
ownership, so you cannot see the pointers to the definitions. Most object instances
point to an object definition with the same type name; for example, Program instances
point to Program definitions. There are two exceptions: both a Parameter and a Table
Column point to a Variable as their definition source.

Figure B–3 shows all possible layers of object ownership within a Work Area. The
objects are Program Instances, Load Set Instances, Report Set Instances, Data Mart
Instances, Work Flow Instances, each of which contain the following objects:

■ Table Descriptor to Table Instance mapping

■ Execution Setups. These contain Parameter Set Instances containing Parameter
Instances, and Jobs containing Outputs.

In addition, Work Areas also contain:

■ Table Instances that contain Constraints

■ Business Area Instances that contain Table Descriptor to Table Instance mappings

Work Areas

Object Ownership B-7

Figure B–3 Object Ownership within a Work Area

Work Areas

B-8 Oracle Life Sciences Data Hub Application Developer's Guide

Glossary-1

Glossary

activity

An element of a Workflow; either an executable object such as a Program, a structural
object such as a Fork, or a Notification.

adapter

An interface between Oracle LSH and another system. Oracle LSH includes adapters
that allow you to load data into Oracle LSH from other systems, to transform data by
creating Programs in integrated development environments, and to create
visualizations of Oracle LSH data for display in other systems.

application

The set of all the defined objects required to perform a particular business function
such as loading and analyzing data for a study or producing a particular set of reports.

Application Area

A container that is used to develop and manage the Oracle LSH objects required for a
single business application (such as a study, project, or set of reports); contains one or
more Work Areas where the set of object instances (such as Table and Program
instances) necessary for the business application are installed.

Application Area library

A set of object definitions contained directly in an Application Area.

audit

A record of each change made to each record in a Table instance defined with a
processing type that includes auditing, with the timestamp of the change and the user
ID of the person who made the change. You can recreate the state of data in an audited
table as it was at any point in time.

blind break

A single execution of a job on data defined as blinded in Oracle LSH, so that the
sensitive blinded data is displayed in the job output, but is not permanently
unblinded. Blind breaks may be required for patient medical emergencies or for
reporting purposes during the course of a clinical trial.

blinded data

Data that must be hidden in Oracle LSH because its display would reveal patient
treatment patterns in a double-blind clinical trial. If you specify that a table supports
blinding, Oracle LSH creates a partition, allowing you to load the blinded data in the
"real data" partition of the table and, optionally, to load dummy data in the "dummy

browse

Glossary-2

data" partition. Oracle LSH requires standard object security privileges to run a
Program on dummy data but requires additional security privileges to run the same
Program on real (blinded) data.

browse

Navigate through the user interface looking for an output or definitional object.

Business Area

Oracle LSH definitional object used by a visualization tool such as Oracle Business
Intelligence Enterprise Edition to create ad hoc, onscreen visualizations of Oracle LSH
data.

check constraint

A check constraint applies to a particular Table column and specifies allowed data
values for that column.

child object

An object contained in, or owned by, another object.

classification

(1) The act of associating an Oracle LSH object definition or object instance with one or
more values in one or more classification hierarchies, for the purpose of categorizing
the object so that it can be found during searching and browsing. (2) The actual
classification hierarchy value or set of values associated with an Oracle LSH object
definition or object instance. (3) The Oracle LSH subsystem of single- and multi-level
hierarchies and their values used in searching and browsing.

classification hierarchy

Hierarchical or flat structure consisting of one or more levels, with one or more values
in each level. If a hierarchy contains multiple levels, they must be logically related and
the values in each level must be logically related to values in adjacent levels (each
value must be related to one and only one value in the next higher hierarchy level, but
can be related to many values in the next lower level). Used in searching and
browsing.

cloning

A special copy operation for Work Areas that results in an identical Work Area,
including all its contained object instances and mappings. All object instances in the
clone have the same version number and validation status as their counterparts in the
original Work Area, and the two Work Areas share a user-specified label.

constraint

A constraint on an Oracle LSH Table or Column similar to an Oracle column or table
constraint. See also check constraint, primary key constraint, and unique key
constraint.

Consumer

An Oracle LSH user who retrieves (consumes) information from the Oracle LSH
database by running and viewing reports and creating onscreen data visualizations.

container object

An object that contains, or owns, another object; also called a parent object or
organizational object.

Entry

Glossary-3

Data Mart

(1) A large quantity of data extracted from one or more user-defined Oracle LSH Table
instances in one of several formats. (2) The definitional object that generates the Data
Mart output.

data source

An Oracle LSH Table instance or source data system table, view, or data set from
which an Oracle LSH Program reads data.

data transformation

See Program.

date data type

The Oracle date data type is defined as the number of days since the beginning of the
Julian Calendar in a floating point numeric. Oracle LSH stores all date values in this
format but displays dates and accepts entry of dates in one of several European, US or
Standard formats (such as DD-MON-YYYY) based on user preference.

Definer

An Oracle LSH user who develops applications by defining objects in Oracle LSH,
typically a programmer.

definition

See object definition.

definitional object

Objects defined by the user in Oracle LSH, including Oracle LSH Tables, executables,
and their components; includes both object definitions and object instances. See also
object definition and object instance.

development environment

An installed Work Area whose usage intent is set to Development and whose database
schemas are used for the purpose of developing Oracle LSH object definitions and
instances. Oracle LSH supports maintaining separate Work Areas and schemas as
development, quality control, and production environments so that data from a
development or quality control environment is never mixed with production data.

Domain

A container that is used to group Application Areas and/or other Domains and/or to
store and control a library of object definitions.

Domain library

A set of object definitions contained directly in a Domain; intended as a collection of
valid, production-quality object definitions suitable for reuse.

dummy data

Alternative data with blinded information obfuscated, processed instead of the real
(sensitive, blinded) data for the purpose of testing Programs and producing reports
prior to unblinding the real data.

Entry

See Report Set Entry.

execution

Glossary-4

execution

(1) The running of a particular Oracle LSH job; for example, running a Program to
generate an output. (2) The Oracle LSH runtime subsystem that manages the execution
of jobs.

Execution Setup

A defined object that is a component of each Oracle LSH executable object instance
(Programs, Report Sets, Data Marts, Load Sets, Workflows) whose purpose is to
control the execution of the executable object. It includes input Parameters whose
values are either bound or settable at submission. The Execution Setup serves as the
basis for the submission form of an executable object.

Execution Template

An Execution Setup that has been explicitly made available for use as a template to
other instances of the same executable object definition version. Definers can use
Execution Templates as the basis for an Execution Setup in another instance of the
same executable object definition.

full reload processing

Processing mode for executables writing to Reload Tables in which all rows in a data
source are reinserted in their current state by a Program or other executable object, and
rows that are not reloaded are soft-deleted. Oracle LSH automatically detects which
rows are new inserts, which are updates, which are unchanged and implicitly deletes
any rows that are not reloaded.

IDE

See Integrated Development Environment (IDE).

incremental reload processing

Processing mode for executables writing to Reload Tables in which only those rows
that have been added or modified since the last time the same Program or other
executable object was run are processed. Unchanged rows can also be reloaded and are
ignored by the processing. Incremental reload processing does not delete records and
therefore can be used to selectively load different subsets of data without impacting
other data in the target table.

index

A non-unique index provides a way to optimize access to data in a table via columns
included in the index. See also unique indexes unique key constraint and primary key
constraint.

instance

See object instance.

installation

The process of converting selected Oracle LSH object instances in a single Work Area
into installable components such as PL/SQL packages and DDL scripts and
instantiating those components in an Oracle LSH schema.

Integrated Development Environment (IDE)

In Oracle LSH, an external source code development software application that can be
launched directly from the Oracle LSH user interface for the purpose of writing or
editing Program source code, integrated with Oracle LSH by a system that includes: a

object instance

Glossary-5

syntax-directed editor, graphical tools for program entry, integrated support for
compiling and running the program, and a mechanism for relating compilation errors
back to the source. Oracle LSH Release 2.4.8 supports IDEs for Oracle PL/SQL, SAS,
and Oracle Reports.

library

See Domain library and Application Area library.

Load Set

an Oracle LSH executable whose purpose is to move data and metadata into Oracle
LSH from an external source data system that is connected to Oracle LSH by an
adapter customized for the source data system. The adapter handles constraints on the
structure of the target Table Descriptors, provides the Parameters, and supplies the
source code for the installed Load Set.

mapping

(1) (noun) A mapping defines the relationship between a Table Descriptor in a
Program or other executable object and a Table instance in a Work Area that the
executable object reads from or writes to. Each column of the Table Descriptor and the
Table instance must be mapped to a column of a compatible data type and length in
the other, or to a constant. (2) (verb) Creating a mapping.

master job

A job launched by the submission of an Execution Setup. When a user submits a Load
Set, Program, Data Mart, Report Set, or Workflow, the resulting job is a master job.
Some master jobs have subjobs: Report Set executions include Program executions as
subjobs. Workflow executions may include Program, Load Set, Data Mart, and/or
Report Set executions as subjobs.

narrative

A block of text that annotates a generated report or report set. May precede the body
of the report (pre-narrative) or follow it (post-narrative).

Notification

Message routed within Oracle LSH or (optionally) by email; contains a subject name,
text, and one or more hyperlinks to Oracle LSH outputs or other objects; can be used
for collecting informal approvals or comments or for broadcasting text.

object definition

The definitional metadata details of an Oracle LSH object, stored in an Application
Area or Domain library and created (normally) through an instance of the definition
that is contained in a Work Area. The metadata varies depending on the definition's
object type, but includes a name, subtype, validation status and classification(s). For
example, Table definitions also contain Columns and Constraints; Program definitions
contain Source Code, Parameters, Planned Outputs, and Table Descriptors.

object instance

An instance of Oracle LSH object definition; contains a pointer to an object definition,
which contains most of the definitional details, and a few attributes including a name,
subtype, validation status, classification(s), and (for executable instances only)
mappings. Object instances are located in a Work Area and installed in the database.

object subtype

Glossary-6

object subtype

Subcategory of a predefined object type that serves to differentiate classification and
security requirements among objects of the same object type; for example, Financial
Report Set and Clinical Report Set. Object subtypes have the same operations allowed
as their object type. One subtype for each object type is shipped with Oracle LSH; an
Administrator may define additional object subtypes.

object type

A predefined category of Oracle LSH definitional objects shipped with Oracle LSH; for
example, Report Sets or Tables. Object instances constitute a separate object type; that
is, a Report Set instance is a different object type from a Report Set definition and can
have different classification and security requirements defined at the subtype level.

operation

An action that can be performed by a user on an object; for example, view or modify.
Operations are predefined for object types. The Oracle LSH Administrator defines
roles and associates them with operations on object subtypes as part of the Oracle LSH
security system.

Oracle LSH schema

A set of Oracle database schemas (one primary schema and one or more auxiliary
schemas) that owns all permanent objects that are populated by the installation of a
single Oracle LSH Work Area, including tables, views, packages, or schema stores. An
Oracle LSH schema also contains all data loaded into its tables.

organizational object type

Category of Oracle LSH object types used solely as containers of other objects; includes
Domains and Application Areas.

output

In Oracle LSH, a file generated by the execution of a Program, Workflow, Report Set,
or Data Mart; either the primary output reporting on or containing data, or a
secondary output such as a log file or an error file. Also called an actual output to
distinguish it from a Planned Output definition.

Overlay Template Definition (OTD)

A layout template for PDF outputs of Oracle LSH Report Sets; can include boilerplate
text, graphical elements such as logos and lines, and placeholders for Parameter values
for data (such as Study) and publishing specifications (such as font style and size).

Parameter

A defined object that acts as a simple scalar variable and is based on an Oracle LSH
Variable definition. In a Program or other Oracle LSH executable object, an input
Parameter supplies a runtime value to the executable object and an output Parameter
holds a value generated during execution. In addition to a pointer to an Oracle LSH
Variable, a Parameter contains a list of allowable values, rules for validating the
supplied value, a mandatory/not mandatory setting, and classification(s). Parameter
values can be propagated within the context of a Report Set or a Workflow.

Parameter Set

A definitional object created automatically by Oracle LSH to contain the Parameters
contained in a single primary definitional object.

Report Set

Glossary-7

parent object

An object that contains, or owns, another object; also called a container object.

Planned Output

An object definition contained in an Oracle LSH executable object definition that
serves as a placeholder for an actual output to be generated during execution and
specifies the classification(s) of the actual output. Primary Planned Outputs report on
or contain data; secondary Planned Outputs include log files and error files.

primary key constraint

A column or set of columns whose value(s) identify a row in a Table as unique; often a
unique ID. The system enforces the following constraints on the data contained in
primary key columns: values cannot be null, and the value or combination of values in
primary key column(s) must be unique for each row.

privilege

In Oracle LSH, a privilege is an operation on an object subtype assigned to a user
through a role in a user group. A user has the privilege necessary to perform an
operation on an object when he or she is assigned to a user group that has access to the
object, and within that user group is assigned to a role that allows the operation on the
object's subtype.

production environment

An installed Work Area whose usage intent is set to Production and whose database
schemas contain only valid Oracle LSH objects interacting with real clinical or other
data in an audited and regulatory-compliant manner.

Program

An Oracle LSH defined executable object that functions as a computer program to
transform data and/or generate one or more reports. Contains Source Code and one
or more Table Descriptor(s); may also contain one or more Planned Outputs and
Parameters.

quality control (QC) environment

An installed Work Area whose usage intent is set to Quality Control and whose
database schemas are used for the purpose of testing Oracle LSH object definitions,
adapters, and loads of data and metadata before using them in a production
environment. Oracle LSH supports maintaining separate Work Areas and schemas as
development, quality control, and production environments so that data from a
development or quality control environment is never mixed with production data.

report

(1) The primary output generated by a Program; contains a set of clinical or other data
for in-house review or submission to regulatory agencies. Reports may be displayed as
listings, figures, tables, or text and may be generated in one of several file formats. (2)
A predefined output generated by the system on demand; for example, a coversheet
for a report.

Report Set

(1) A collection of reports generated by a single execution process and integrated with
a table of contents. May be generated in PDF format using custom templates with
graphics and including bookmarks and hyperlinks. (2) The primary Oracle LSH
definitional object that produces the Report Set output.

Report Set Entry

Glossary-8

Report Set Entry

One of the items in the table of contents of a Report Set; may contain other Report Set
Entries, narratives, and/or one or more reports generated by a single Program; a
Report Set chapter or subchapter.

role

(1) User-defined component of the Oracle LSH security system corresponding to a
professional title or function; assigned to operations on object subtypes, to user
groups, and to individual users within those groups. To perform a particular operation
on an Oracle LSH object, a user must have a role assigned to that operation for the
object's subtype in a user group with access to the object. (2) Predefined application
roles shipped with Oracle LSH that control access to portions of the Oracle LSH user
interface.

runtime

The point in time when a user submits an executable object for execution.

runtime subsystem

The Oracle LSH subsystem that manages the execution of installed executable object
instances as well as the tracking of, and access to, the progress and results of the
executions.

search

Facility for finding existing defined objects and outputs in Oracle LSH, using criteria
including object type, name, and classifications (including keywords). Oracle LSH
includes simple and advanced search options.

snapshot

A set of data, or data and objects, at a particular point in time.

Source Code

(uppercase) A secondary definitional object owned by an Oracle LSH Program
containing a file of user-written computer instructions (source code) whose purpose is
to perform a task.

source code

(lowercase) The computer instructions used by a Program to perform a task. Source
code may be written in an Integrated Development Environment (IDE) in the context
of an Oracle LSH Program or written outside Oracle LSH and then uploaded and
stored in Oracle LSH; in Oracle LSH, source code is stored in the definitional object
called Source Code.

source data system

An application external to, but integrated with, Oracle LSH that collects data loaded
into or accessed by Oracle LSH through an adapter.

Source Table Descriptors

A Table Descriptor used to link a Program to a Table instance containing data used as
input to the Program.

staging table processing

Data processing type used for Programs that write to Tables defined as Staging. If the
Table is defined as Not Audited, each time the Program that writes to it is executed,

transactional processing

Glossary-9

the system hard-deletes the data resulting from the previous execution. If the Table is
defined as Audited, the system saves a copy of the complete set of data resulting from
the previous execution, but operates only on current data.

structure

See Workflow Structure and Table structure.

subjob

A subjob is a job that is executed as part of a master job. For example, Report Set
executions are master jobs that include Program executions as subjobs, and Workflow
executions are master jobs that can include Load Set, Program, Report Set, and/or
Data Mart executions as subjobs.

subtype

See object subtype.

Table

An Oracle LSH metadata representation of a table-like object (Oracle view or SAS
dataset); includes a description of the object as a whole, its columns, and constraints
that apply to one or more of its columns. Appears as an Oracle view to all installed
Programs except those based on SAS technology, where it appears as a SAS dataset or
SAS view.

Table constraint

See constraint.

Table Descriptor

An instance of an Oracle LSH Table defined within an Oracle LSH executable
object—Load Set, Program, Workflow, Report Set, or Data Mart—or in a Business
Area, for the purpose of linking the executable object or Business Area to an installed
Table and its data by mapping.

Table structure

The number of Columns a Table definition contains and the data type and length of
each one.

Target Table Descriptors

A Table Descriptor used to link a Program to a Table instance to which the Program
writes data.

test environment

See quality control (QC) environment.

transform, transforming Program

See Program.

transactional processing

Data processing type used to write to Table instances defined as transactional.
Programs writing to transactional Tables must use explicit Insert, Update, and Delete
commands in their source code.

transition

Glossary-10

transition

An element of a Workflow that defines one workflow activity as sequential to another
and specifies the condition, if any, for the execution of the second.

unblind

Change a Table instance's blinding status from Blinded to Unblinded.

unique key constraint

A column or combination of columns that identifies a row in a Table as unique; similar
to a primary key except that null values are allowed in columns that are part of the
unique key. You can explicitly disallow null values at the column level.

usage intent

An attribute of Work Areas indicating the Work Area's purpose; either Development,
Quality Control, or Production. Oracle LSH enforces rules based on the interaction of a
Work Area's usage intent attribute and the validation status of the Work Area and the
object instances contained in it.

user group

Unit defined by an Oracle LSH Administrator for use in security that includes one or
more users and one or more roles, and is assigned to one or more Oracle LSH objects.
To perform an operation on an Oracle LSH object or output, a user must belong to a
user group assigned to that object and be assigned a role within that user group that
permits the operation on the object's subtype.

validation

(1)Process through which object definitions and instances reach the stage where they
can be declared stable and valid according to an Oracle LSH customer's policies. (2)
Process required by regulatory agencies to certify that a computer system used in
clinical trials is stable and functions properly.

validation status

An object attribute that indicates the life cycle stage of the object: Development,
Quality Control, Production, or Retired. Oracle LSH enforces rules based on the
interaction of a Work Area's usage intent attribute and the validation status of the
Work Area and the object instances contained in it.

Variable

An Oracle LSH defined object equivalent to a SAS variable or Oracle table column that
serves as a source definition for Oracle LSH Parameters and Table Columns. Oracle
LSH creates Variables from Oracle table columns and SAS dataset variables the first
time a particular Oracle table or SAS dataset is loaded into Oracle LSH. The user can
define Variables during Parameter or Table Column definition.

version

Restorable, saved state of an object definition.

visualization

An ad hoc graphical and/or text presentation of data created in an interactive
onscreen environment.

XML Publisher

Glossary-11

Work Area

A container in an Application Area where Definers create the object instances required
to support the business purpose of the Application Area. Work Areas have two special
operations: installation, during which some or all of the object instances contained in
the Work Area are instantiated or upgraded in an Oracle LSH schema and the Oracle
LSH schema is created if necessary; and cloning, which creates a duplicate Work Area
that shares a label with the original Work Area.

Workflow

An executable Oracle LSH defined object that includes other Oracle LSH executable
defined objects such as Load Sets, Programs, Data Marts, and Report Sets, as well as
Notifications; executed as a whole in a defined sequence that can include conditional
branching.

Workflow Structure

Predefined object that controls the execution of the Workflow; a Workflow Structure
can detect the completion status of the previous activity and fire the next one or more
activities as specified for their type: Start, End, And, Or, Fork.

XML Publisher

Oracle product integrated with Oracle LSH for use in generating PDF-format Report
Sets and enabling the use of custom overlay templates. Also used to produce internal
PDF-format reports.

XML Publisher

Glossary-12

Index-1

Index

A
Actions Drop-Down list, 3-76
Actions drop-down list, 2-4

Apply Security, 2-5
Administration tab, 3-29
Advanced Search utility, 3-2, 3-25
Appendix B, "Object Ownership", 2-2
Application Areas, 2-1

classification, 2-6
creating, 2-6

application areas, B-4
application life cycle, 12-21
Applications, 1-6

, 1-1
Development screen, 2-12
screen, 2-2

Create Child screen, 2-8
tab, 2-1

approvals
using, 10-10

automatic checkin, 3-33
Automatic Mapping By Name job, 1-8

B
backchaining, 1-12, 1-13, 3-56, 13-12

Execution Setups, 3-61
rules, 13-14
tips, 13-14

blind break, 3-63, 3-73
privileges, 4-7

blinding, 3-71, 4-6
blinding statuses, 4-7
breadcrumbs, 2-3

links, 2-3
not working, 2-3

browsing data, 3-70
customizing, 3-71
order by clause, 3-72
where clause, 3-71

Business Areas, 1-4
business areas

attributes and parameters, 11-11
creating, 11-2
creating definition and instance, 11-3

defining hierarchies, 11-9
deploying the RPD file, 11-14
generic visualization, 11-17
GV BAs

launching visualizations, 11-19
installing instances, 11-20
modifying, 11-21
OBIEE, 11-11
Properties screen, 11-4
source code, 11-11
visualizing, 11-15

buttons, 5-8

C
CDISC data model, 1-11
CDR_TABLESPACE_NAMES lookup, 4-8
check constraint, 4-13
Child Domain

Select Child drop-down list, 2-6
classification, 1-3, 2-5, 3-25

assignment type, 3-26
explicit, 3-27
inherited, 3-26

classification values, 2-6
details, 3-26
hierarchies, 3-26
Input/Output Parameters, 3-28
Parameter values, 3-28
planned outputs, 5-25
subtype, 2-6, 3-26

columns, 3-42
adding or uploading, 3-45
constraints

modifying, 4-17
creating, new, 4-10
displaying, 3-71
mapping, 3-45

columns to constants, 3-50
different data types, 3-50

names
special characters, 3-44, 4-10

component object types, A-3
concurrent editing, 3-66
Constraints, 4-17
constraints, 4-12

Index-2

container objects, 1-4
creating

Child Domain, 2-6
Domains, 2-4

D
data auditing, 13-8
data blinds

creating, 13-15
data currency, 1-12, 3-71

backchaining, 1-13
Most Current Available parameter, 1-13

Data Marts, 1-1
data marts, 1-1, 1-3

creating, 8-2
creating definition and instance, 8-3
installing Instances, 8-14
modifying, 8-14
modifying definition properties, 8-15
Oracle Export, 8-13
overview, 8-2
planned outputs, 8-7
Properties screen, 8-4
SAS, 8-11
setting parameter values, 8-7
text, 8-8
types, 8-8

data processing types, 13-2
data snapshots, 13-9
data subsets processing, 13-10
Data Visualizations, 1-1
definition source, 4-7
delimiters, 3-41
designing an Organizational Structure, 2-4
displaying

200 rows, 2-4
maximum, 2-4

Domains, 2-1
changing, 2-2
child, 2-2
copied, 2-9
Create Application Area screen, 2-6
Create Child icon, 2-6
creating, 2-4

Create Domain screen, 2-5
descriptions, 2-5
LSH Bootstrap Security application role, 2-5
names, 2-5
top-level, 2-5
user groups, 2-5

default, 2-1
duplicated, 2-9
highest-level, 2-4
maintaining, 2-5
Move Objects screen, 2-10
moving, 2-9
nesting

Domain Nest Value, 2-5
Setting the Maximum Number of Nested

Domains, 2-5
promoting, 2-10
removing, 2-9
selecting, 2-2
subdomains, 2-6

domains, B-1

E
execution

overview, 13-1
submitting jobs, 13-2

Execution Setups, 3-28
activating versions, 3-68
backchaining, 1-13
classifications, 3-56
copying, 3-56
creating, 3-55
execution templates, 3-56
implicit checkins, 3-66
implicit checkouts, 3-66
manual checkins, 3-33
modifying, 3-59
notifications, 3-62
Output security, 3-56
overview, 3-55
removing, 3-68
setting parameters, 3-59
statuses, 3-69

installable, 3-69
not runnable, 3-69
runnable, 3-69
runnable active, 3-69

submitting, 3-69
synchronization, 3-66
undoing checkouts, 3-66
updating, 3-60
upgrades, 3-57
upgrading, 3-66
versioning, 3-66
versions, 3-57

external system submission, 13-19

F
FND

View Object Max Fetch Size, 2-4
Focus column, 2-3

G
glossary, Glossary-1
good practices, 1-10

I
implicit check out, 1-5
implicit checkins, 1-5, 3-66
indexes, 4-12
install, 1-7
installable instances, A-1

Index-3

installation results, 12-15
installing Load Set Instances, 7-38
Instances subtab

Report Sets, 3-67
Workflows, 3-67

Integrated Development Environments (IDEs), 1-1

J
joins

defining, 11-7

L
Load Set Definitions

modifying properties, 7-40
Load Set Instances

installing, 7-38
modifying properties, 7-39

Load Sets, 1-3
load sets

creating, 7-4
creating definition and instance, 7-5
modifying, 7-39
Oracle Clincial Labs, 7-32
Oracle Clinical Data Extract Oracle Views, 7-26
Oracle Clinical Data Extract SAS Views, 7-25
Oracle Clinical Global Library, 7-31
Oracle Clinical Randomization, 7-34
Oracle Clinical Stable Interface Tables, 7-24
Oracle Clinical Study Data, 7-36
Oracle Clinical Study Design and Definition, 7-28
Oracle Tables and Views, 7-11
overview, 7-2
planned outputs, 7-10
runtime parameters, 7-10
SAS, 7-13
table descriptors, 7-8
text, 7-17
types, 7-11

M
Maintain Domains screen, 2-5, 2-9
Manage Definitions button, 2-3
Manage Security screen, 2-5, 3-30
message-triggered submission, 13-19
metadata files

creating, 3-41
Modify privileges, 1-5
modifying, 9-15
Modifying Object Instances, 1-5

N
Navigating, 3-70
non-unique index, 4-13
Not Ready icon, 3-67
notifications

creating, 10-11
defining, 10-10

modifying, 10-15
types, 10-10

O
OBIEE

administration tool, 11-16
OBIEE answers, 11-15
OBIEE BAs

defining, 11-11
overview, 11-12

OBIEE security, 11-15
Object and Output security, 3-29
Object Definitions and Instances, 1-5

upgrading Object Instances, 3-15
Upgrade All Instances option, 3-15
Upgrading to the Latest Version, 3-17

viewing Object Definitions, 3-9
version history, 3-9

viewing Object Instances, 3-8
object ownership

application areas, B-4
domains, B-1
work areas, B-6

Objects, 2-2
checking in, 3-13

automatic checkin, 3-33
Check In screen, 3-13
Checkin Administrator privileges, 3-13

checking out, 3-11
Check Out screen, 3-12
Checkin Administrator privileges, 3-11
unchecking, 3-13

classifying, 3-25, 3-26
cloning, 3-19, 3-20

checks, 3-20
Clone Destination, 3-22
Clone Instances screen, 3-22
duplicating, 3-19
implicit cloning of mappings, 3-19
required privileges, 3-20
validation status, 3-19
version number, 3-20

component versions, 3-14
version numbers, 3-15

containers, 1-4
copying, 3-17

Copy Objects screen, 3-18
defining, 1-2
definition properties, 1-7
Definitions

Checked Out By description, 3-17
checking out, 1-5, 3-12
Copied From, 3-14
copying, 2-10
creating, 2-11
creating a new Definition and Instance, 3-5
creating instances, 3-3
finding, 3-2
managing, 2-3

Index-4

modifying, 1-5
moving, 2-11
names, 2-3
reusing, 1-2, 3-2
revalidating, 1-7
standards, 1-11
viewing, 2-2

deleting, 3-24
descriptions, 3-6

2000 characters limit, 3-6
instances, 2-3

modifying, 1-5
Maintain Library screen, 2-11
modifying, 3-17
moving, 3-22

exceptions, 3-22
Move Objects screen, 3-23

names
conventions, 3-6, 3-7
Domain names, 3-7
duplicate names, 3-6
IDE names, 3-7
limits, 3-7
OBIEE Business Area names, 3-8
Oracle names, 3-7
Parameter names, 3-8
reserved words, 3-6
rules, 3-7
SAS names, 3-7
Source Code names, 3-8
special characters, 3-6
truncation, 3-7
Validation package names, 3-8

nodes, 2-2
pasting, 3-23
primary, 1-5
removing, 3-24

multiple objects, 3-24
name changes, 3-24
object metadata, 3-24
rules, 3-24

reordering and renumbering, 3-36
Renumber flag, 3-36
Reorder shuttle, 3-36

retired objects, 3-36
secondary, 1-5
validating, 3-31

rules, 3-35
tools, 3-31

versioning, 3-10
versions, 3-10

checking out, 3-11
checkout comment, 3-11
old versions, 3-10

objects, A-4
installing, 12-15
name resolution, 12-17

Oracle Business Intelligence Enterprise Edition, 1-4
Oracle Export data marts, 8-13
Oracle LSH Context Index Refresh, 3-27

Oracle LSH Context Index Refresh program, 3-27
Oracle XML Publisher, 1-3
Organizational Objects, 1-4

Application Areas, 1-4
Domains, 1-4
Work Areas, 1-4

organizational objects, A-4
Outputs, 3-27

changing validation status, 3-33
classifying, 3-27, 3-28
validating, 3-32
validation statuses, 3-32
viewing, 3-75

My Home tab, Reports tab, 3-75
Planned Output subtab, 3-75
Work Area Properties screen, 3-75

overlay templates, 9-6
creating, 9-7
creating definitions, 9-7
overview, 9-6

P
Parameters, 1-4

sending values to other Parameters, 6-18
sets, 1-11
using, 1-11

parameters, 6-6
allowed values, 6-12
creating, 6-8
defining details, 6-11
getting values from other parameters, 6-19
propagating values, 6-16
validation rules, 6-13

Planned Outputs, 3-27
Planned Output Properties screen, 3-28
Planned Outputs tab, 3-28

planned outputs
classification, 5-25
defining, 3-77, 5-24
overview, 5-22
programs, 5-22
viewing assignments, 9-37

PL/SQL source code
see source code, 5-25

plus icon (+), 2-3
Preferences

link, 2-1
setting, 2-1

processing type, 4-6
Programs, 1-3

creating, 5-3
creating definition and instance, 5-4
creating instance, 5-5
definition properties, 5-7
instance properties, 5-6
overview, 5-2
Program Properties screen, 5-6
using, 5-3
validation statuses, 3-32

Index-5

programs
connecting to SAS, 5-31
creating view programs source code, 5-29
defining SAS programs, 5-30
defining view programs, 5-29
planned outputs, 5-22
SAS program types, 5-33
SAS programs

development, 5-31
writing, 5-34

source code, see source code, 5-10
view programs table instances, 5-29

Properties screen, 1-7, 2-3

Q
Quick Select, 2-2

R
Ready icon, 3-67
reclassification, 3-26
reload processing, 13-4
report coversheets, 3-31
Report Sets, 1-1, 1-3

narrative, 1-3
report sets

assigning planned outputs, 9-35
building, 9-15
concurrent editing, 9-5
creating, 9-10
creating definition and instance, 9-10
formatting, 9-6
generation through programs, 9-33
installing, 9-42
modifying, 9-51
narratives, 9-32
overview, 9-2
parameters, creating and setting, 9-20
planned outputs, 9-51
post-processing parameters, 9-22
programs, 9-33
Properties screen, 9-12
report set entries, 9-26
structure view, 9-15
using, 9-4
validating, 9-44
viewing planned outputs, 9-37

Reports, 1-1
reports, 14-1

container reports, 14-5
data blinding reports, 14-4
object metadata reports, 14-8
security reports, 14-2

runtime parameters, 3-65
predefined, 3-65

S
SAS data marts, 8-11
SAS file reference names, 5-13

SAS macro catalog
creating, 5-37
using, 5-36

SAS planned outputs, 5-35
SAS primary source code, 5-34
SAS program types, 5-33
SAS secondary source code, 5-35
Search and Select window, 2-2, 3-4
Search By drop-down list, 3-4

Display All Versions option, 3-4
Display Not Null version labels, 3-4
name, 3-4
version label, 3-4

Search icon, 3-3
Search User Group screen, 2-5
Search utility, 3-2
security, 1-3
security reports, 14-2
shared checkout system, 1-5
shared snapshot labels, 5-6
snapshots, 4-6
source code

calling APIs, 5-14
creating, 5-11
creating, new, 5-12
defining, 5-9
instances, creating from definition, 5-14
overview, 5-10
PL/SQL package storage programs, 5-28
PL/SQL source code, 5-25

executing, 5-28
manipulating documents, 5-28
using, sharable packages, 5-28

primary, 5-10
SAS source code

about macro catalogs, 5-38
creating macro catalogs, 5-38

secondary, 5-10
static references, 5-15
testing PL/SQL source code, 5-27
upgrading, 5-16
writing PL/SQL source code, 5-25
writing SAS code, 5-34

staging processing, 13-5
subdomain, 2-6
supporting documents, 3-34

Manage Supporting Documents screen, 3-34
obsoleting, 3-34
status, 3-34
version history, 3-34

supporting Outputs, 3-34
Manage Supporting Outputs screen, 3-34

system parameters, 3-60, 3-61
Apply Snapshot labels, 3-65
blind break, 3-63
data currency, 3-62
defining Execution Setups, 3-61
execution priority, 3-62
force execution, 3-64
modifying, 3-60

Index-6

notifications, 3-62
reload processing, full mode, 3-63
reload processing, incremental mode, 3-63
settings, 3-60
submission modes, 3-63

default, 3-63
submission types, 3-61

backchain, 3-61
deferred, 3-61
immediate, 3-61
scheduled, 3-61
triggered, 3-61

THT processing, full mode, 3-63
THT processing, incremental mode, 3-63
timeout values, 3-64

system reports
listing, 14-1
running, saving, 14-1

T
Table Descriptors, 1-7

adding from metadata, 3-41
attributes, 3-41
creating, 3-38
data processing compatibility, 3-45
defining, 5-8, 8-6
mapping rules, 3-37
mapping to instances, 3-45
mapping to Table instances, 3-45
overview, 3-37
simultaneous creating and mapping with

TIs, 3-52
source Table Descriptors, 3-37

adding, 3-38
Is Target attribute, 3-38

target Table Descriptors, 3-37
adding from existing definitions, 3-40
adding from SAS, 3-39
adding new ones, 3-42
adding remotely, 3-39

Upload Table Descriptors screen, 3-39
table descriptors

defining, 11-6
Tables, 1-3

attributes, 3-41
Read privileges, 3-38
Table Instances screen, 3-39

tables
attributes, modifying, 4-6
buttons, Work Area, 4-9
check constraint, 4-13
columns, 4-10

defining, 4-10
modifying, 4-17

constraints, 4-12
creating, 4-2, 4-3
creating from data sets, SAS, 4-5
data blinds, see data blinds, 13-15
definition properties, 4-9

modifying, 4-16
instance properties, 4-8

modifying, 4-15
modifying, 4-15
new Table instance and definition, creating, 4-4
new Table instance, creating, 4-3
overview, 4-1
pass-through views, 13-8
primary keys, 4-14
processing types, 13-3
reading and writing, 4-2
refresh groups, 13-10
reload processing, 13-4
staging processing, 13-5
THT processing, 13-6
transactional processing, 13-4
unique keys, 4-14

tablespace names, 4-7
text data marts, 8-8
timestamps, 3-71
transactional high throughput processing, 13-6
transactional processing, 13-4
transitions

creating, 10-16
defining, 10-15
overview, 10-15

U
unique keys, 4-6
user groups, 3-29

assigning, 3-30
assignments, 3-29
reassigning, 3-30
revoking assignments, 3-31

V
validation, 1-2

adding supporting information, 3-33
automatic checkins, 3-33
rules, 3-35
security privileges, 3-33
validation cascade, 3-33

Validation statuses, 3-14, 3-32
changing, 3-32
Development, 3-10
Production, 3-4
Quality Control, 3-14
Retired, 3-4

Variables, 1-4
variables

overview, 6-1
version history, 3-14
version labels, 3-13
versions of objects, 3-9
View Existing Outputs screen, 3-75
viewing data, 3-70

IDE, 3-74
program-generated reports, 3-73

Index-7

visualizations, 3-73
viewing jobs, 3-74

job columns, 3-74
Show filter, 3-74

viewing object definitions, 3-9
visualizations

overview, 11-1

W
WebLogic server

starting, 11-15
wildcards, 2-2
Windows file path length, 3-7
Work Areas, 1-7, 2-1

classification, 2-7
classification values, 2-7
Subtype, 2-7

cloning, 3-31
creating, 2-7
full-mode installations, 4-7
installing, 1-7
upgrade-mode installations, 4-7
usage intent, 2-7, 3-31

work areas, B-6
cloning, 12-21, 12-24
installation history, 12-3
installation processes, 12-16
installing, 12-11
personalizing Properties screen, 12-10
Properties Screen, 12-1
running, 12-13
usage intent, 12-4
version history, 12-3

Workflows, 1-3
creating definition and instance, 10-3
data currency, 1-12
notifications, 1-3
scheduling, 1-13

workflows, 1-3
adding executables, 10-7
adding structures, 10-8
creating, 10-3
defining parameters, 10-17
installing instances, 10-17
mapping table descriptors, 10-8
modifying, 10-18
overview, 10-1
Properties screen, 10-4
structure types, 10-9

Index-8

	Contents
	Preface
	Change Log
	Finding More Information
	Documentation Accessibility

	1 Getting Started
	About Application Development
	Defining Objects
	Predefined Object Types
	Object Definitions and Instances, and their Containers
	Organizational Objects
	Object Definitions and Instances

	Developing a Business Application
	Working in a Work Area
	Mapping Executables to Tables
	Example of a Business Application

	Developing Standard Definitions and Modular Applications
	Ensuring Data Currency

	2 Creating Container Objects
	Selecting a Domain
	Set a Default Domain in Preferences
	Select a Domain on the Applications Screen

	Navigating in the Applications Tab
	Browsing the Main Applications Screen
	Navigating Using Breadcrumbs
	Using the Actions Drop-Down

	Creating Domains, Application Areas, Work Areas, and Objects
	Creating Domains
	Creating a Top-Level Domain
	Creating a Child Domain

	Creating Application Areas
	Creating Work Areas
	Creating or Adding Children, including Object Instances
	Creating Object Definitions

	Modifying Domains, Application Areas, and Work Areas
	Duplicating, Removing, Moving and Promoting Domains
	Duplicating or Copying a Domain
	Removing a Domain
	Moving a Domain
	Promoting a Domain

	Managing Object Definitions
	Copying Object Definitions
	Moving Object Definitions
	Creating Object Definitions

	3 Common Development Tasks
	Creating and Reusing Objects
	Finding an Appropriate Definition
	Reusing Existing Definitions
	Creating an Instance of an Existing Definition
	Using the Search and Select Window

	Creating a New Definition and Instance
	Creating and Using Object Descriptions

	Naming Objects
	Special Characters and Reserved Words
	Duplicate Names: System Appends _1
	Automatic Name Truncation
	Keep Container and Object Names Short for Integrated Development Environments
	Naming Rules for Specific Object Types
	Naming Domains
	Naming Source Code Objects
	Naming Parameters
	Naming OBIEE Business Areas

	Customizable Naming Validation Package

	Viewing Object Instances and Definitions
	Viewing Object Instances
	Viewing Object Definitions
	Viewing Object Definitions in Domains and Application Areas
	Viewing Object Definitions from Instances in a Work Area

	Understanding Object Versions and Checkin/Checkout
	About Object Versions
	Checking Out Objects
	Checking Out an Object Definition through an Instance
	Checking Out an Object Definition Directly
	Checking Out an Old Version of an Object Definition

	Checking In Objects
	Undoing Object Checkout
	Version Labels
	Version History
	Versions of Component Objects

	Upgrading Object Instances to a New Definition Version
	Upgrading One or More Instances from the Definition
	Upgrading to a Different Definition Version from an Instance
	Upgrading to the Latest Version

	Copying, Cloning, and Moving Objects
	Copying Objects
	Copying One Object Instance, Domain, Application Area, or Work Area
	Copying One or More Objects at the Same Time
	Copying an Old Version of an Object Definition

	Comparison of Copying and Cloning Individual Objects
	Cloning Objects
	Comparison of Cloning Individual Objects and Whole Work Areas
	Cloning Objects from the Application Development Screen
	Cloning Objects from the Work Area Screen

	Moving Objects
	Pasting Objects

	Removing Objects
	Rules for Removing Objects

	Classifying Objects and Outputs
	About Classification
	Classifying Objects
	Classifying Outputs
	Classifying Outputs Before They Are Generated
	Classifying Outputs After They Are Generated

	Applying Security to Objects and Outputs
	Viewing User Group Assignments
	Assigning User Groups to an Object
	Removing User Group Assignments
	Reassigning a User Group as Inherited

	Validating Objects and Outputs
	About Object Validation
	About Output Validation
	Validation Statuses
	Changing Objects' Validation Status
	Changing Outputs' Validation Status
	Adding Supporting Information
	Adding a Supporting Document
	Obsolete

	Adding a Supporting Output

	Validation Rules

	Reordering and Renumbering Objects
	Defining and Mapping Table Descriptors
	About Table Descriptors
	Creating a Table Descriptor
	Adding Source Table Descriptors
	Adding Target Table Descriptors from a Remote Location
	Adding Target Table Descriptors from a SAS File
	Adding a Target Table Descriptor from an Existing Table Definition
	Adding a Table Descriptor from a Metadata File
	Adding a New Target Table Descriptor
	Setting Table Descriptor Attributes
	Adding or Uploading Columns

	Mapping Table Descriptors to Table Instances
	Automatic Mapping by Name
	Mapping Table Descriptors Manually
	Remapping
	The Effects of Modifying the Table Descriptor or Table Instance on a Mapping

	Mapping Columns
	Mapping Columns Automatically
	Mapping Columns Manually
	Using Format Conversions
	Mapping Columns of Different Data Types and Lengths

	Mapping Columns to Constants

	Creating and Mapping Table Descriptors and Table Instances at the Same Time
	Creating and Mapping Table Instances during Single Instance Installation
	Creating Table Descriptors from Table Instances and Simultaneously Mapping Them
	Creating Table Instances from Table Descriptors and Simultaneously Mapping Them

	Unmapping Table Descriptors
	Modifying Table Descriptors

	Creating, Modifying, and Submitting Execution Setups
	About Execution Setups and Templates
	Creating an Execution Setup
	Creating a New Execution Setup
	Creating an Execution Setup from an Execution Template

	Modifying an Execution Setup and Setting Parameters
	Name and Description
	Allow Use as Execution Template
	System Parameters
	Runtime Parameters

	Report Set and Workflow Execution Setups
	About Report Set and Workflow Execution Setups
	Modifying a Report Set or Workflow Execution Setup

	Removing an Execution Setup
	Activating a Version of an Execution Setup
	Submitting an Execution Setup

	Viewing Data
	Viewing Data within the Oracle Life Sciences Data Hub
	About Data Browsing
	Customizing Data Browsing

	Viewing Data with Visualizations
	Viewing Data with Program-Generated Reports
	Viewing Data Through an IDE

	Viewing Jobs
	Viewing All Outputs of a Program or Report Set
	Viewing All Outputs of an Instance in the Work Area Properties Screen
	Viewing All Outputs from the My Home or Reports Tab
	Viewing All Outputs of a Program or Report Set
	Viewing All Program Outputs
	Viewing All Report Set or Report Set Entry Outputs
	Information Displayed

	Using the Actions Drop-Down List
	Defining Planned Outputs

	4 Defining Tables
	About Tables
	Creating a Table
	Creating a New Table Definition and Instance
	Creating an Oracle LSH Table From a SAS Data Set
	Creating a New Instance of an Existing Table Definition

	Setting and Modifying Table Attributes
	Using the Table Properties Screen
	Instance Properties
	Definition Properties
	Buttons

	Defining Table Columns
	Create a New Column and Variable
	Create a Column from an Existing Variable

	Defining Table Constraints and Indexes
	About Constraints
	Check Constraint
	Non-Unique Index
	Primary Key
	Unique Key

	Modifying Tables
	Modifying Table Instance Properties
	Modifying Table Definition Properties
	Modifying Columns
	Modifying Constraints and Indexes

	5 Defining Programs
	About Programs
	Creating a Program
	Creating a New Program Definition and Instance
	Creating an Instance of an Existing Program Definition

	Using the Program Properties Screen
	Instance Properties
	Definition Properties
	Buttons

	Defining Table Descriptors
	Defining Source Code
	About Source Code
	Creating Source Code
	Creating a New Source Code Definition and Instance
	Creating an Instance of an Existing Source Code Definition

	Calling APIs from Source Code
	Creating and Using Static Reference Source Code
	About Static Reference Source Code
	Creating a Source Code for Use as a Static Reference
	Using Static Reference Source Code

	Upgrading Source Code And Undoing Source Code Upgrades
	Upgrading a Single Source Code Instance
	Upgrading Multiple Source Code Instances
	Undoing Source Code Instance Upgrades

	Defining Parameters
	Defining Planned Outputs
	About Planned Outputs
	Defining a Planned Output
	Planned Output Classification

	Defining PL/SQL Programs
	Writing Primary Source Code in PL/SQL
	Testing PL/SQL Source Code
	Creating a PL/SQL Package Storage Program
	Using a Sharable PL/SQL Package
	Compiling and Executing a PL/SQL Program
	Manipulating Documents through a PL/SQL Program

	Defining View Programs
	Creating Source Code for a View Program
	About View Table Instances
	About Table Descriptors in View Programs

	Defining SAS Programs
	SAS Program Development Process
	Open SAS as an IDE from Oracle LSH
	Upload Existing SAS Programs to Oracle LSH
	Enter Source Code Directly in the Oracle LSH Source Code Definition

	Connecting to SAS
	SAS Program and Source Code Types
	Writing SAS Primary Source Code
	Using a SAS Macro Catalog
	Using a SAS Format Catalog

	Creating a SAS Macro Catalog
	Creating a SAS Macro Catalog
	Nesting SAS Macros

	About SAS Format Catalogs in the Oracle Life Sciences Data Hub
	Creating a SAS Format Catalog
	Calling an API to Capture Output Parameter Values

	Defining Oracle Reports Programs
	Defining Informatica Programs
	Creating a New Informatica Program
	Using Your Existing Informatica Mappings and Workflows
	Creating and Synchronizing Source Code
	Using PL/SQL Source Code in an Oracle LSH Informatica Program
	Updating Table Descriptors
	Setting Informatica Program Parameters
	User-Defined Parameters
	Predefined Parameters

	Selective Index Management
	Adding Planned Outputs
	Informatica Integration
	Informatica Folder Creation
	Informatica Security Configuration
	Informatica Security Configuration on Checkout
	Informatica Security Configuration on Checkin
	Informatica Security Configuration on Launching the IDE

	Defining Oracle Business Intelligence Publisher Programs
	Integration with Oracle BI Publisher
	Performing Oracle LSH Tasks
	Performing Oracle BI Publisher Tasks
	Running the Program
	Editing an Existing Program

	About Oracle BI Publisher Program Source Code
	About Oracle BI Publisher Program Planned Outputs
	Setting Oracle BI Publisher Program Parameters

	Installing Program Instances
	IDE Launch Settings
	About Launch Settings
	Setting the Blind Break Value
	Setting the Shared Snapshot Label Value

	Modifying Programs
	Modifying Program Instance Properties
	Modifying Program Definition Properties
	Modifying Table Descriptors
	Modifying Source Code
	Modifying Parameters
	Modifying Planned Outputs

	Setting Up Integrated Development Environments (IDEs)
	Setting Up Oracle SQL Developer or SQL*Plus as an IDE
	Setting Up SAS as an IDE
	Setting Up Informatica as an IDE

	6 Defining Variables and Parameters
	About Variables, Parameters, and Columns
	Defining Variables
	Creating Variables Automatically
	Creating Variables through Load Sets
	Creating Variables by Uploading SAS Data Sets and Variables during Table Definition

	Creating Variables Manually
	Modifying Variables

	Using the Variable Properties Screen
	Definition Properties
	Buttons

	Defining Columns
	Defining Parameters
	About Parameters
	Using Parameters
	Parameters and Execution Setups

	Creating a Parameter
	Create a New Parameter Definition and Instance
	Create Parameters from an Existing Parameter Set

	Defining Parameter Details
	Setting a Method of Determining Value
	Defining Allowed Values
	Setting Validation Rules

	Using the Parameter Properties Screen
	About the Parameter Properties Screen
	Instance Properties
	Define Values
	Validate Values
	Definition Properties
	Variable Properties
	Buttons

	Setting Up Parameter Value Propagation
	About Parameter Value Propagation
	Setting Up Value Propagation from the Source Parameter
	Setting Up Value Propagation Manually
	Setting Up Value Propagation Automatically

	Setting Up Value Propagation from the Target Parameter

	Defining and Using Parameter Sets
	Explicitly Defining Parameter Sets

	Defining Programatically Generated Lists of Values and Value Validation
	Modifying Parameters
	Modifying a Parameter Instance
	Modifying a Parameter Definition

	7 Defining Load Sets
	About Load Sets
	Creating a Load Set
	Creating a New Load Set Definition and Instance
	Setting Load Set Attributes

	Creating an Instance of an Existing Load Set Definition

	Using the Load Set Properties Screen
	Instance Properties
	Definition Properties
	Load Set Attributes
	Buttons

	Defining Table Descriptors
	Setting Load Set Parameters
	About Load Set Planned Outputs
	Defining Different Load Set Types
	Oracle Tables and Views
	About Oracle Tables and Views Load Sets
	Oracle Load Set Attributes
	Oracle Load Set Table Descriptors
	Oracle Load Set Parameters
	Oracle Load Set Planned Outputs
	Oracle Load Set Execution Setups

	SAS
	About SAS Load Sets
	UTF8 Encoding
	SAS Load Set Attributes
	SAS Load Set Table Descriptors
	SAS Load Set Parameters
	SAS Load Set Planned Outputs
	SAS Load Set Execution Setups

	Text
	About Text Load Sets
	UTF8 Encoding
	Text Load Set Attributes
	Text Load Set Table Descriptors
	Text Load Set Parameters
	Text Load Set Planned Outputs
	Text Load Set Execution Setup

	Oracle Clinical Stable Interface
	About Oracle Clinical Stable Interface Load Sets
	OC Stable Interface Tables Load Set Attributes
	OC Stable Interface Tables Load Set Table Descriptors
	OC Stable Interface Tables Load Set Parameter
	OC Stable Interface Tables Load Set Planned Outputs
	OC Stable Interface Tables Load Set Execution Setups

	Oracle Clinical Data Extract SAS Views
	About OC DX SAS Views
	OC DX SAS Views Load Set Attributes
	OC DX SAS Views Load Set Parameters
	OC DX SAS Views Load Set Table Descriptors
	OC DX SAS Views Load Set Planned Outputs
	OC DX SAS Views Load Set Execution Setups

	Oracle Clinical Data Extract Views
	About OC Data Extract View Load Sets
	OC Data Extract Views Load Set Attributes
	OC Data Extract Views Load Set Table Descriptors
	OC Data Extract Views Load Set Parameters
	OC Data Extract Views Load Set Planned Outputs
	OC Data Extract Views Load Set Execution Setups

	Oracle Clinical Design and Definition
	About OC Design and Definition Load Sets
	OC Design and Definition Load Set Attributes
	OC Design and Definition Load Set Table Descriptors
	OC Design and Definition Load Set Parameters
	OC Design and Definition Load Set Planned Outputs
	OC Design and Definition Load Set Execution Setups

	Oracle Clinical Global Metadata
	About OC Global Metadata Load Sets
	OC Global Metadata Load Set Attributes
	OC Global Metadata Load Set Table Descriptors
	OC Global Metadata Load Set Parameters
	OC Global Metadata Load Set Planned Outputs
	OC Global Metadata Load Set Execution Setups

	Oracle Clinical Labs
	About OC Labs Load Sets
	OC Labs Load Set Attribute
	OC Labs Load Set Table Descriptors
	OC Labs Load Set Parameters
	OC Labs Load Set Planned Outputs
	OC Labs Load Set Execution Setups

	Oracle Clinical Randomization
	About OC Randomization Load Sets
	OC Randomization Load Set Attributes
	OC Randomization Load Set Table Descriptor
	OC Randomization Load Set Parameters
	OC Randomization Load Set Planned Outputs
	OC Randomization Load Set Execution Setups

	Oracle Clinical Study Data
	About OC Study Data Load sets
	OC Study Data Load Set Attributes
	OC Study Data Load Set Table Descriptors
	OC Study Data Load Set Parameters
	OC Study Data Load Set Planned Outputs
	OC Randomization Load Set Execution Setups

	Installing Load Set Instances
	Modifying Load Sets
	Modifying Load Set Instance Properties
	Modifying Load Set Definition Properties
	Modifying Table Descriptors
	Modifying Attributes and Parameters
	Modifying Planned Outputs

	8 Defining Data Marts
	About Data Marts
	Creating a Data Mart
	Creating a New Data Mart Definition and Instance
	Creating an Instance of an Existing Data Mart

	Using the Data Mart Properties Screen
	Instance Properties
	Definition Properties
	Data Mart Attributes
	Setting Data Mart Attribute Values

	Buttons

	Defining Table Descriptors
	Setting Data Mart Parameter Values
	About Data Mart Planned Outputs
	Defining Different Types of Data Marts
	Defining Text Data Marts
	About Text Data Marts
	Text Data Mart Attributes
	Text Data Mart Parameters
	Text Data Mart Planned Outputs

	Defining SAS Data Marts
	About SAS Data Marts
	SAS Data Mart Attribute
	SAS Data Mart Parameters
	SAS Data Mart Planned Outputs

	Defining Oracle Export Data Marts
	About Oracle Export Data Marts
	Oracle Export Data Mart Attribute
	Oracle Export Data Mart Parameters
	Oracle Export Data Mart Planned Outputs

	Installing Data Mart Instances
	Modifying Data Marts
	Modifying Data Mart Instance Properties
	Modifying Data Mart Definition Properties
	Modifying Table Descriptors
	Modifying Attributes and Parameters
	Modifying Planned Outputs

	9 Defining Report Sets
	About Report Sets
	How to Work on a Report Set
	Creating Overlay Templates
	About Overlay Templates
	Creating Template Files
	Creating an Overlay Template Definition
	Creating an Overlay Template File Definition

	Creating a Report Set
	Creating a New Report Set Definition and Instance
	Creating an Instance of an Existing Report Set Definition

	Using the Report Set Properties Screen
	Instance Properties
	Definition Properties
	Buttons

	Using the Report Set Structure View
	Navigating to the Report Set Structure View
	Building and Modifying the Report Set
	Modifying the Report Set
	Add Program
	Add RSE
	Assign Planned Output
	Copy
	Default Execution Setup
	Execution Setup
	Install Program
	Map
	Move
	Quick Submit
	Remove RSE
	Reorder
	Submit
	View All Outputs
	View Output

	Report Set Entry Information Displayed

	Creating and Setting Report Set Parameters
	Setting Overlay Template Parameter Values
	Overlay Template Parameters
	Setting Overlay Template Parameters
	OTD Parameter Value Sharing

	Setting Post-Processing Parameter Values
	Post-Processing Parameters at the Report Set Level Only
	Post-Processing Parameters at the Report Set and Report Set Entry Levels

	Setting Program Parameter Values
	Creating Parameters for Sharing Values within the Report Set

	Defining Report Set Entries
	Creating Multiple Report Set Entries
	Setting Report Set Entry Properties
	Setting Overall Properties
	Setting Title Properties
	Setting Assigned Program Properties
	Adding Narratives
	Setting Numbering Properties
	Setting Volume Break Properties

	Adding Narratives

	Defining Programs to Generate Reports
	About Programs in Report Sets
	Assigning a Planned Output to a Report Set Entry
	Options from the Report Set Program View Screen
	Viewing Planned Output Assignments
	Passing Report Set Entry Values to and from Programs
	Report Set Entry Properties Available for Passing
	Passing Values from a Report Set Entry to a Program Instance
	SAS

	Passing Values from a Program Instance to the Report Set for Post-Processing
	SAS
	Oracle Reports or PL/SQL

	Installing Report Sets
	Installing the Report Set as a Whole with All Programs Checked In
	Installing the Report Set as a Whole with Some Programs Checked Out
	Installing a Single Program Instance in the Report Set

	Validating Report Set Definitions and Outputs
	Output Reuse
	Program Output Validation Flag
	Report Set Validation Status
	Summary Output Validation Status
	Output-Oriented Validation
	Definition-Oriented Validation
	Changing Validation Status
	Changing the Validation Status of an Output
	Changing the Validation Status of a Report Set Entry
	Changing the Validation Status of a Program Instance in a Report Set

	About Report Set Planned Outputs
	Modifying Report Sets
	Modifying Report Set Instance Properties
	Modifying Report Set Definition Properties
	Modifying the Report Set Structure
	Modifying Report Set Entries
	Modifying Programs

	10 Defining Workflows
	About Workflows
	Creating a Workflow
	Creating a New Workflow Definition and Instance
	Creating an Instance of an Existing Workflow

	Using the Workflow Properties Screen
	Instance Properties
	Definition Properties
	Buttons

	Adding Executables
	About Executables as Workflow Activities
	Adding an Executable to a Workflow
	Mapping Table Descriptors within a Workflow

	Adding Workflow Structures
	About Workflow Structures
	Types of Workflow Structures
	Adding Structures

	Defining Notifications
	About Notifications
	Using Approvals
	Creating a Notification
	Creating a New Notification Definition and Instance
	Creating an Instance of an Existing Notification
	Specifying Notification Recipients
	Defining a Link to a Planned Output
	Writing Notification Messages
	Defining Notification Parameters

	Modifying Notifications

	Defining Transitions
	About Transitions
	Creating Transitions

	Defining Workflow Parameters
	Workflow Planned Outputs
	Installing Workflow Instances
	Modifying Workflows
	Modifying Workflow Instance Properties
	Modifying Workflow Definition Properties
	Modifying Activities and Transitions
	Modifying Parameters
	Modifying Table Descriptor Mappings

	11 Defining Business Areas for Visualizations
	About Visualizations
	Creating a Business Area
	Creating a New Business Area Definition and Instance
	Creating an Instance of an Existing Business Area Definition

	Using the Business Area Properties Screen
	Instance Properties
	Definition Properties
	Business Area Attributes
	Buttons

	Defining Table Descriptors
	Defining Joins
	Defining a Join at the Table Level
	Defining a Join at the Column Level

	Defining Business Area Hierarchies
	Understanding Business Area Source Code
	Setting Business Area Attributes and Parameters
	Defining Oracle Business Intelligence Business Areas
	About OBIEE Business Areas
	Defining an OBIEE Business Area
	Manually Deploying the Master RPD File
	Starting the WebLogic Server
	Visualizing Business Area Data using OBIEE Answers
	OBIEE Security
	End User Security
	Developer Security

	Installing and Setting Up Oracle Business Intelligence Administration Tool
	Set Up Database Connectivity

	Defining Generic Visualization Business Areas
	Generic Visualization Business Area Instance Properties
	Assigning Security Privileges to Business Area Data

	Launching Visualizations
	Creating a Visualization
	Setting Data Currency and Blinding Values
	Setting the Blind Break Value
	Setting the Shared Snapshot Value

	Installing Business Area Instances
	Modifying Business Areas
	Modifying Business Area Instance Properties
	Modifying Business Area Definition Properties
	Modifying Table Descriptors
	Modifying Joins
	Modifying Business Area Hierarchies
	Modifying Business Area Source Code

	12 Using, Installing, and Cloning Work Areas
	Using the Work Area Properties Screen
	Work Area Properties
	Viewing a Work Area's Installation History
	Viewing a Work Area's Version History
	Version Details

	Changing a Work Area's Usage Intent
	Object Instance Information
	Object Instance Actions
	Using the Icons in the Object's Row
	Using the Drop-Down List

	Adding Object Instances to a Work Area
	Managing Table Instance Snapshot Labels in a Work Area
	Querying for Snapshots
	Table Instance Information Displayed
	Adding, Removing, or Moving a Snapshot Label

	Personalizing Your Work Area Properties Screen
	Installing a Work Area and Its Objects
	About Work Area Installation
	Running a Work Area Installation
	Installing Individual Objects
	Viewing Installation Results
	Failed Installations
	Successful Installations

	What Happens During a Work Area Installation
	Schemas
	Object Name Resolution
	Work Area Objects Converted to Oracle LSH Schema and OWB Objects
	Work Area Installation Phases and Statuses
	Work Area Status

	Cloning Work Areas for Testing and Production
	Application Life Cycle
	Cloning a Work Area

	13 Execution and Data Handling
	About Execution
	Submitting Jobs for Execution
	Data Processing Types
	Processing Types Summary
	Transactional Processing
	Reload Processing
	Staging Processing
	Transactional High Throughput Processing
	SQL*Loader Processing for SAS Programs
	Using Tables as Pass-Through Views

	Data Auditing, Snapshots and Refresh Groups
	Data Auditing
	Auditing in Transactional and Reload Processing
	Auditing in Staging Processing

	Data Snapshots
	Refresh Groups

	Processing Data Subsets
	Forward Chaining
	Backchaining
	How Backchaining Works
	Backchaining Rules
	Backchaining Tips
	Submit the Execution Setup
	Recover from a Canceled Job
	Supply Default Parameter Values
	Do Not Include Workflows with Approval Requests
	Expect Slower Performance

	Managing Blinded Data
	Loading Real and Dummy Data
	Managing Blinding Along the Data Flow
	Unblinding Table Instances

	Using Message-Triggered Submission from External Systems
	About Message-Triggered Submission
	Setup Required
	XML Message Requirements
	Executable Specification
	System Parameter Values
	User ID
	Request ID
	Required XML Schema

	14 System Reports
	Running and Saving System Reports
	Alphabetical Listing of Reports
	Security Reports
	Blinding Rights Report
	Operations for a Role Report
	User Group Assignments Report
	Users in Group Report

	Data Blinding Reports
	Blind Breaks Report
	Blinded Table Instances Audit Report
	Blinded Table Instances Report
	Unblinded Outputs Report

	Container Reports
	Application Area Library Report
	Domain Library Report
	Work Area - All Instances Report
	Work Area Cloning Report
	Work Area Installation History Report
	Work Area Version History Report

	Object Metadata Reports
	Common Header Information
	Header Information for Object Definitions
	Header Information for Object Instances

	All Instances of a Definition Report
	Data Mart Report
	Data Mart Instance Report
	Load Set Report
	Load Set Instance Report
	Object Validation Report
	Object Version History Report
	Program Report
	Program Instance Report
	Report Set Report
	Report Set Instance Report
	Table Report
	Table Instance Report
	Workflow Report
	Workflow Instance Report

	Installable Instances and their Definitions
	Component Object Types
	Organizational Objects
	Domains
	Application Areas
	Work Areas

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

