
1

Oracle® Health Sciences mHealth Connector Cloud Service
Cloud-to-Cloud Connector Framework for Data Ingestion from a Third-Party Cloud Service

Release 1.4

F19304-01

June 2019

Contents
■ Introduction

■ Connector Framework Components

■ Typical Workflow

■ Create and Configure an HTTP Connector

■ On-boarding a Device Cloud

■ Documentation Accessibility

Introduction
The Cloud Connector framework allows customers to import data collected and
managed by a third-party or device vendor's cloud platform to Oracle mHealth
Connector Cloud. This document explains how device cloud vendors and the Oracle
services team can use a set of standard connectors, including the standard HTTP
connector, which accepts messages in JSON format from an external service.

If you are interested in connecting to mHealth Connector, please contact your Oracle
sales representative or email Oracle Health Sciences at: healthsciences_ww_
grp@oracle.com.

You can also visit the Oracle Health Sciences website at:
https://www.oracle.com/industries/health-sciences/index.html

Connector Framework Components
The four components of the connector framework are the connector, the interpreter,
the mapper, and the messenger.

Figure 1 mHealth Connector Cloud-to-Cloud Connector framework components

healthsciences_ww_grp@oracle.com
healthsciences_ww_grp@oracle.com
https://www.oracle.com/industries/health-sciences/index.html


2

■ Connector—This provider-specific code manages connection and communication
with the provider's devices and services. It's responsible for device discovery,
connection management, and communication of data from the external devices or
cloud services, including the processing of any provider-specific communication
metadata, known as the envelope. The three types of connectors are generic,
specialized, and custom.

■ Interpreter—The interpreter parses device payloads and extracts data and
telemetry information. Interpreters can be categorized as JSON or binary. Binary
interpreters support additional payload grammars which can be used to parse
device-native binary payloads.

■ Mapper—The device model mapper takes data extracted from incoming device
data and processes it into messages that are compatible with the mHealth
Connector cloud message format. You can create a mapping between the fields
extracted from the incoming data parsed by the interpreter, to the fields of
mHealth Connector device model format. The mapping docCloud-to-Cloud
Connector Framework for Data Ingestion from a Third-Party Cloud Serviceument
associates a grammar and a device model.

■ Messenger—The messenger communicates information about the device
registration, device metadata, and device message to the Oracle Internet of Things
service instance embedded within the mHealth Connector platform.

Typical Workflow
In a typical workflow, a device cloud vendor calls a REST endpoint published by the
mHealth Connector. The mHealth Cloud Service framework invokes a series of
mappings and transformation steps, configured for each clinical study, to create a new
data message and stores the message in the mHealth Cloud Service.

Table 1 Typical workflow

Task More Information Description

Create an HTTP connector
and configure it.

Give a name and credentials
for authentication.

Create and configure HTTP
Connector.

Verify that the connector has
stared.

Once the connector
configuration is saved, it is
automatically started by the
framework.

Review status and messages
on the connector screen.

Create and configure HTTP
Connector.



3

Create and Configure an HTTP Connector
Connectors manage the connection and communication with devices or with
third-party cloud services. They also process the metadata and telemetry data from the
devices or the services. HTTP Connector hosts a set of HTTP servers that are
front-ended with a load balancer. The HTTP Connector must be configured for basic
authentication. For authentication configuration, create a user account with the
administrator role in the embedded IoT cloud service console and configure the same
in the Connector screen.

1. Open the Internet of Things Cloud Service management console.

2. Click Menu .

3. Click Devices, and then click Connectors.

4. On the Connectors page, click Create New Connector .

5. Enter values in the Name and Description fields.

6. If you need only one instance of the connector, select 1 in the Scale Factor field.

7. In the Type field, select Generic.

8. In the Telemetry section, select the appropriate values.

■ Protocol: Select HTTP Server.

Create/upload device
models.

Device models define the
structure of a transformed
message.

Once a message is received,
the interpreter transforms or
maps incoming messages to
a message format defined in
the device model.

Create a new device model.

Create an interpreter. The interpreter transforms
or maps a message to an
mHealth Connecter message
format.

From the Interpreter screen,
configure an interpreter
specifying selection criteria,
a device model, and the
payload processing
information. Create an
interpreter for each device
message format.

Configure interpreter.

Review device registration. Send sample data from
calling published mHealth
Connector REST endpoint
and verify that the virtual
device instance and
message created per the
structure specified in the
mapping screen of the
interpreter.

Manage a virtual device.

Table 1 (Cont.) Typical workflow

Task More Information Description



4

■ Authentication: Select Basic authentication, and then enter your user name
and password. You must have administrative access to perform this step.

■ Envelope: Click Add Grammar, and add the details in the Grammar window.
Use the Map field to map the required device metadata fields with the values
of the interpreted envelope data.

■ Payload encoding: If your payload is in JSON, select asciihex. if your payload
is in base64-encoded binary, select base64.

9. Click Save. When you receive the message, Saved successfully, click Back.

The generic connector is listed on the Connectors page and the State field displays
the status of the connector. The five states are STARTING, STARTED, FAILED,
STOPPING, and STOPPED. STARTED indicates that the connector is ready to
accept device data.

■ To modify your generic connector, click Edit .

■ To remove the generic connector, click Delete .

■ To create an instance of your generic connector, click Start .

Note: The Edit, Delete, and Start buttons are enabled only when the
connector is in STOPPED state.

■ To view the device notifications that the connector receives, click connectors_
messageALERT .

Note: On the Notifications page, click the data under Content to
view the device information. You can also create an interpreter from
this page when device data is received for the first time. See Configure
an Interpreter.

■ To view the details of your generic connector, click View .

Figure 2 View the Cloud-to-Cloud Connector framework details



Note: Depending on the volume, frequency of the data, etc., it is
possible for a single connector to serve multiple clinical studies at the
sane time. When a connector supports more than one study, make sure
that a unique study identifier or a combination of attributes are
included in the data payload so the framework can route the message
to the correct mHealth study datastore.

5

Create an Interpreter
An interpreter parses the payload and extracts the device telemetry data. The
framework then uses the data to form a device message in the mHealth Cloud. You
create interpreters on the embedded IoT cloud service Devices configuration screen.

To create an interpreter you need the following:

■ Selection criteria: The framework uses the selection criteria to decide which
interpreter(s) to use to process the message received by a connector. If multiple
interpreters are created with same selection criteria, the input messages will be
processed by all those Interpreters. See Configure an Interpreter to define selection
criteria.

Example: If the "type" attribute in the message payload contains string "E1," the
Interpreter associated with this selection criterion will be used to process the
message.

Figure 3 Selection criteria for creating an interpreter

■ Device model: Identify the device model. The device model's attributes are used
for mapping the message attributes.

■ Sample payload: Provide a sample JSON payload data so that the mapping tool
can start creating a source message-to-device model attributes mapping.

■ Device metadata: Map the standard metadata fields such as Name, Hardware ID,
or custom fields from parsed sample data (for example, Hardware ID mapped to
KEY_UID (as per sample)).

Configure an Interpreter
To create an Interpreter from the management console:

1. Open the Oracle Internet of Things Cloud Service management console.

2. Click Menu .

3. Click Devices, and then click Interpreters.

4. On the Interpreters page, click Create New Interpreter .



6

5. Enter values in the Name and Description fields.

6. In the Selection Criteria field, select an attribute and map it to a pattern or value.
The connector uses the selection criteria to select the interpreter.

Figure 4 Selection criteria for configuring an interpreter

7. Select the Device Model, and click Add Grammar.

a. Do one of the following:

For a JSON payload, enter the payload data in Sample Data and click
Validate. The interpreted values are listed.

For a binary payload, enter the payload in Sample Data, enter the binary
grammar in Grammar, and click Validate.

The interpreted values are listed.

b. From the Map list box, select an attribute of the device model.

c. From the adjacent combo box, select Property, ATTRIBUTE, and then the field
of one of the interpreted values. Values can also be combined or manipulated
using the Formula menu.

d. To select another attribute, click Add.

e. Repeat steps c and d to map the attributes of the device model that you need
in the device message.



7

Figure 5 Map the attributes of the device model

8. In the Device Metadata section, select a field from the list box and map it to an
attribute.

9. Click Add, and repeat the step for all the fields that you wish to map. These fields
appear as metadata in the device record when the device is registered in Oracle
Internet of Things Cloud Service.

10. Click Save.

11. When you receive a message, Saved successfully, click Back.

On the Interpreters page, your interpreter is listed and its Device Model is
displayed.

■ To modify any of the fields of your interpreter, click Edit .

■ To remove the interpreter, click Delete .

On-boarding a Device Cloud
To send data to mHealth Cloud Service, a device cloud needs POST device messages
for JSON format to a HTTP connector REST resource created in the mHealth Cloud
Service. The entities within a JSON payload must be accessible using JSONPath
notation. Although a data message can have an array of entities, it is expected that
every POST message includes the same number of entities.

If one HTTP Connector handles data messages across multiple clinical studies, make
sure that each message includes a study identifier field. Similarly, it is assumed that a
subject identifier (a non-PII value) and a physical or virtual device identifier and /or
serial number is included in every message. For example:



No

Payload

Comment

1 {
"deviceId" : "abcs-1234",
"deviceSerialNumber" : "serial#",
"studyname" : "clinical study",
"subjectId" : "patient identifier (non-PII)",
"event_timestamp" : "UTC time in ISO date format
yyyy-mm-ddTHH:mi:ssZ",
"attribute_1" : "attribute_1_value",
"attribute_2" : attribute_2_value
}

Vendor cloud sends
device messages in JSON
format. One message per
HTTP POST request.

2 {
"deviceId" : "abcs-1234",
"deviceSerialNumber" : "serial#",
"studyname" : "clinical study",
"subjectId" : "patient identifier (non-PII)",
"event_timestamp" : "UTC time in ISO date format
yyyy-mm-ddTHH:mi:ssZ",
"attribute_1" : ["attribute_1_value_1",
"attribute_1_value_2", "attribute_1_value_3" ],
"attriibute_2" : attribute_2_value
}

In this example, one of
the JSON attribute values
is an array. Payload from
vendor cloud contains a
message entity per POST
request. In the 1.4
version, mHealth only
supports a bounded
array. It is expected that
all POST requests include
an array with the same
number of elements.

3 {
"deviceId" : "abcs-1234",
"deviceSerialNumber" : "serial#",
"studyname" : "clinical study",
"subjectId" : "patient identifier (non-PII)",
"event_timestamp" : "UTC time in ISO date format
yyyy-mm-ddTHH:mi:ssZ",
"attribute_1" : {
"attr1": "attribute_1_value",
"attr2": "attribute_2_value"
}
"attribute_2" : attribute_2_value
}

In this example, the
HTTP POST request
includes a message
payload with complex
JSON objects (except
array) as values.

8

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.



9

Cloud-to-Cloud Connector Framework for Data Ingestion from a Third-Party Cloud Service, Release 1.4
Part Number F19304-01

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered
trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



10


	Introduction
	Connector Framework Components
	Typical Workflow
	Create and Configure an HTTP Connector
	Create an Interpreter
	Configure an Interpreter

	On-boarding a Device Cloud
	Documentation Accessibility

