Agente con più strumenti

Scopri come creare un agente che utilizza più strumenti.

Un agente di supporto con uno strumento RAG e più strumenti di funzione

In questo esempio viene fornita una dimostrazione di un agente dotato di una knowledge base (utilizzando AgenticRagTool) e di una raccolta di strumenti di funzione personalizzati (utilizzando Toolkit).

Prima di iniziare, creare una knowledge base per lo strumento RAG. Vedere Creazione di una Knowledge Base. Per l'origine dati, creare un file di storage degli oggetti. Copiare quindi l'OCID della knowledge base e incollarlo in un blocco note.

Python

product_support_agent.py

from oci.addons.adk import Agent, AgentClient
from oci.addons.adk.tool.prebuilt import AgenticRagTool
from custom_function_tools import AccountToolkit

def main():

    # Assuming the resources were already provisioned
    agent_endpoint_id = "ocid1.genaiagentendpoint..."
    knowledge_base_id = "ocid1.genaiagentknowledgebase..."

    client = AgentClient(
        auth_type="api_key",
        profile="DEFAULT",
        region="us-chicago-1"
    )

    instructions = """
    You are customer support agent.
    Use RAG tool to answer product questions.
    Use function tools to fetch user and org info by id.
    Only orgs of Enterprise plan can use Responses API.
    """

    agent = Agent(
        client=client,
        agent_endpoint_id=agent_endpoint_id,
        instructions=instructions,
        tools=[
            AgenticRagTool(knowledge_base_ids=[knowledge_base_id]),
            AccountToolkit()
        ]
    )

    agent.setup()

    # This is a context your existing code is best at producing (e.g., fetching the authenticated user id)
    client_provided_context = "[Context: The logged in user ID is: user_123] "

    # Handle the first user turn of the conversation
    input = "What is the Responses API?"
    input = client_provided_context + " " + input
    response = agent.run(input)
    response.pretty_print()

    # Handle the second user turn of the conversation
    input = "Is my user account eligible for the Responses API?"
    input = client_provided_context + " " + input
    response = agent.run(input, session_id=response.session_id)
    response.pretty_print()


if __name__ == "__main__":
    main()

Java

ProductSupportAgent.java


import com.oracle.bmc.ConfigFileReader;
import com.oracle.bmc.adk.agent.Agent;
import com.oracle.bmc.adk.agent.RunOptions;
import com.oracle.bmc.adk.client.AgentClient;
import com.oracle.bmc.adk.tools.prebuilt.AgenticRagTool;
import com.oracle.bmc.adk.run.RunResponse;
import com.oracle.bmc.auth.BasicAuthenticationDetailsProvider;
import com.oracle.bmc.auth.SessionTokenAuthenticationDetailsProvider;

import java.util.Arrays;
public class ProductSupportAgent {

  public static void main(String[] args) throws Exception {
    final String configLocation = "~/.oci/config";
    final String configProfile = "DEFAULT";
    final String agentEndpointId = "ocid1.genaiagentendpoint.oc1.us-chicago-1...";
    final String knowledgeBaseId ="ocid1.genaiagentknowledgebaseppe.oc1.us-chicago-1...";

    BasicAuthenticationDetailsProvider authProvider =
            new SessionTokenAuthenticationDetailsProvider(
                    ConfigFileReader.parse(configLocation, configProfile));

    AgentClient agentClient = AgentClient.builder()
        .authProvider(authProvider)
        .region("us-chicago-1")
        .build();

    final String instructions =
        "You are customer support agent. Use KB tool to answer product questions. Use tools to fetch user and org info by id. Only orgs of Enterprise plan can use Responses API.";

    Agent agent = Agent.builder()
            .client(agentClient)
            .agentEndpointId(agentEndpointId)
            .instructions(instructions)
            .tools(
                Arrays.asList(
                    new AccountToolkit(),
                    AgenticRagTool.builder().knowledgeBaseIds(Arrays.asList(knowledgeBaseId))))
            .build();

    agent.setup();

    final String clientProvidedContext = "[Context: The logged in user ID is: user_123]";

    // Handle the first user turn of the conversation
    String input = "What is the Responses API?";
    input = clientProvidedContext + " " + input;
    final Integer maxStep = 3;
    RunOptions runOptions = RunOptions.builder().maxSteps(maxStep).build();
    RunResponse response = agent.run(input, runOptions);
    response.prettyPrint();

    // Handle the second user turn of the conversation
    input = "Is my user account eligible for the Responses API?";
    input = clientProvidedContext + " " + input;
    runOptions.setSessionId(response.getSessionId());
    response = agent.run(input, runOptions);
    response.prettyPrint();
  }
}


Informazioni: questo esempio mostra anche la gestione delle conversazioni a più turni utilizzando session_id per mantenere il contesto tra i turni. Scopri di più sull'esempio di gestione delle conversazioni in più turni.


L'agente utilizza un AccountToolkit personalizzato. È possibile creare la propria classe toolkit personalizzata ereditando da oci.addons.adk, la classe Toolkit.

Una classe Toolkit consente di organizzare gli strumenti correlati in un'unica classe.

È possibile riutilizzare lo stesso toolkit in agenti diversi. È inoltre possibile mantenere uno stato all'interno dell'istanza della classe Toolkit. L'ADK richiama il metodo di istanza in modo che lo stato sia disponibile per i metodi con il decorator @tool.

Python

custom_function_tools.py

from typing import Dict, Any
from oci.addons.adk import Toolkit, tool

class AccountToolkit(Toolkit):

    @tool
    def get_user_info(self, user_id: str) -> Dict[str, Any]:
        """Get information about a user by user_id

        Args:
            user_id (str): The user ID to get information about

        Returns:
            Dict[str, Any]: A dictionary containing the user information
        """
        # Here is a mock implementation
        return {
            "user_id": user_id,
            "account_id": "acc_111",
            "name": "John Doe",
            "email": "john.doe@example.com",
            "org_id": "org_222",
        }

    @tool
    def get_org_info(self, org_id: str) -> Dict[str, Any]:
        """Get information about an organization by org_id

        Args:
            org_id (str): The organization ID to get information about

        Returns:
            Dict[str, Any]: A dictionary containing the organization information
        """
        # Here is a mock implementation
        return {
            "org_id": org_id,
            "name": "Acme Inc",
            "admin_email": "admin@acme.com",
            "plan": "Enterprise",
        }

Java

AccountToolkit.java

package demos.singleTurnMultiTools.accountToolkitAgent;

import com.oracle.bmc.adk.tools.Param;
import com.oracle.bmc.adk.tools.Tool;
import com.oracle.bmc.adk.tools.Toolkit;
import java.util.HashMap;
import java.util.Map;
public class AccountToolkit extends Toolkit {


  @Tool(name = "getUserInfo", description = "Get user info")
  public static Map<String, String> getUserInfo(
      @Param(description = "The user id.") String userId) {

    Map<String, String> userData = new HashMap<>();
    if (userId.equals("user_123")) {
      userData.put("user_id", userId);
      userData.put("account_id", "acc_111");
      userData.put("name", "John Doe");
      userData.put("email", "john.doe@example.com");
      userData.put("org_id", "org_222");
    } else {
      userData.put("user_id", userId);
      userData.put("account_id", "acc_111");
      userData.put("name", "Jane Doe");
      userData.put("email", "jane.doe@example.com");
      userData.put("org_id", "org_333");
    }
    return userData;
  }


  @Tool(name = "getOrgInfo", description = "Get org info")
  public static Map<String, String> getOrgInfo(@Param(description = "The org id.") String orgId) {

    Map<String, String> orgData = new HashMap<>();
    orgData.put("orgId", orgId);
    orgData.put("name", "Acme Inc");
    orgData.put("adminEmail", "admin@acme.com");
    orgData.put("plan", "Enterprise");
    return orgData;
  }
}