
Oracle® Cloud
Using Oracle Blockchain Platform

F26726-35
March 2024

Oracle Cloud Using Oracle Blockchain Platform,

F26726-35

Copyright © 2020, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

 Preface

Documentation Accessibility x

Related Topics x

Conventions x

1 What's Oracle Blockchain Platform?

What's a Blockchain? 1-1

Why Should I Use Blockchain? 1-2

What Are the Advantages of Oracle Blockchain Platform? 1-3

What Do I Get with Oracle Blockchain Platform? 1-6

2 Get Started Using Samples

What Are Chaincode Samples? 2-1

Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v2.x) 2-2

Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v1.4.7) 2-3

3 Manage the Organization and Network

What's the Console? 3-1

Modify the Console Timeout Setting 3-4

Find and Understand Your Oracle Blockchain Platform Version Number 3-4

Monitor the Network 3-4

How Can I Monitor the Blockchain Network? 3-5

What Type of Information Is on the Dashboard? 3-5

View Network Activity 3-7

Manage Nodes 3-7

What Types of Nodes Are in a Network? 3-7

Find Information About Nodes 3-8

View General Information About Nodes 3-8

Access Information About a Specific Node 3-9

View a Diagram of the Peers and Channels in the Network 3-10

iii

Find Node Configuration Settings 3-10

Start and Stop Nodes 3-10

Restart a Node 3-11

Set the Log Level for a Node 3-11

Manage Channels 3-11

What Are Channels? 3-12

View Channels 3-12

Create a Channel 3-13

View a Channel’s Ledger Activity 3-14

View or Update a Channel’s Organizations List 3-15

Join a Peer to a Channel 3-16

Add an Anchor Peer 3-16

Change or Remove an Anchor Peer 3-17

View Information About Deployed Chaincodes 3-17

Work With Channel Policies and ACLs 3-18

What Are Channel Policies? (Hyperledger Fabric v2.x) 3-18

What Are Channel Policies? (Hyperledger Fabric v1.4.7) 3-19

Add or Modify a Channel's Policies 3-20

Delete a Channel's Policies 3-21

What Are Channel ACLs? 3-21

Update Channel ACLs 3-22

Add or Remove Orderers To or From a Channel 3-22

Set the Orderer Administrator Organization 3-22

Edit Ordering Service Settings for a Channel 3-23

Manage Certificates 3-24

Typical Workflows to Manage Certificates 3-24

Export Certificates 3-25

Import Certificates to Add Organizations to the Network 3-25

What's a Certificate Revocation List? 3-27

View and Manage Certificates 3-27

Revoke Certificates 3-27

Apply the CRL 3-28

Manage Ordering Service 3-28

What is the Ordering Service? 3-28

Join the Participant or Scaled-Out OSNs to the Founder's Ordering Service 3-30

Edit Ordering Service Settings for the Network 3-31

View Ordering Service Settings 3-32

4 Understand and Manage Nodes by Type

Manage CA Nodes 4-1

iv

View and Edit the CA Node Configuration 4-1

View Health Information for a CA Node 4-1

Manage the Console Node 4-2

View and Edit the Console Node Configuration 4-2

View Health Information for the Console Node 4-2

Manage Orderer Nodes 4-3

View and Edit the Orderer Node Configuration 4-3

View Health Information for an Orderer Node 4-3

Add an Orderer Node 4-4

Manage Peer Nodes 4-4

View and Edit the Peer Node Configuration 4-4

List Chaincodes Installed on a Peer Node 4-4

View Health Information for a Peer Node 4-5

Manage REST Proxy Nodes 4-5

How's the REST Proxy Used? 4-5

Add Enrollments to the REST Proxy 4-5

View and Edit the REST Proxy Node Configuration 4-6

View Health Information for a REST Proxy Node 4-7

5 Extend the Network

Add Oracle Blockchain Platform Participant Organizations to the Network 5-1

Typical Workflow to Join a Participant Organization to an Oracle Blockchain Platform
Network 5-1

Add Fabric Organizations to the Network 5-3

Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform
Network 5-4

Create a Fabric Organization's Certificates File 5-5

Prepare the Fabric Environment to Use the Oracle Blockchain Platform Network 5-7

Add Organizations with Third-Party Certificates to the Network 5-8

Typical Workflow to Join an Organization With Third-Party Certificates to an Oracle
Blockchain Platform Network 5-8

Third-Party Certificate Requirements 5-10

Create an Organization's Third-Party Certificates File 5-17

Prepare the Third-Party Environment to Use the Oracle Blockchain Platform Network 5-18

6 Develop Chaincodes

Write a Chaincode 6-1

Use a Mock Shim to Test a Chaincode 6-3

Deploy a Chaincode on a Peer to Test the Chaincode 6-5

v

7 Build Chaincodes with Low-Code Blockchain App Builder

Using the Blockchain App Builder Command Line Interface 7-1

Install and Configure Blockchain App Builder CLI 7-3

Upgrade Blockchain App Builder CLI 7-10

Create a Chaincode Project with the Blockchain App Builder CLI 7-11

Input Specification File 7-12

Scaffolded TypeScript Chaincode Project 7-23

Scaffolded Go Chaincode Project 7-43

Deploy Your Chaincode Using the CLI 7-63

Deploy Your Chaincode to a Local Hyperledger Fabric Network 7-64

Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network 7-69

Package Your Chaincode Project for Manual Deployment to Oracle Blockchain
Platform 7-70

Test Your Chaincode Using the CLI 7-71

Test Your Chaincode on a Local Hyperledger Fabric Network 7-71

Test Your Chaincode on a Remote Oracle Blockchain Platform Network 7-76

Execute Berkeley DB SQL Rich Queries 7-77

Upgrading Chaincode Projects in the CLI 7-78

Synchronize Specification File Changes With Generated Source Code 7-79

Apply a Patch to the Blockchain App Builder CLI 7-80

Writing Unit Test Cases and Coverage Reports for the Chaincode Project 7-80

Generate a Postman Collection Using the CLI 7-81

Troubleshoot Blockchain App Builder CLI 7-86

Using the Blockchain App Builder Extension for Visual Studio Code 7-88

Install and Configure the Blockchain App Builder Extension for Visual Studio Code 7-90

Upgrade the Blockchain App Builder Extension for Visual Studio Code 7-96

Create a Chaincode Project with the Blockchain App Builder VS Code Extension 7-97

Input Specification File 7-99

Scaffolded TypeScript Chaincode Project 7-110

Scaffolded Go Chaincode Project 7-130

Deploy Your Chaincode Using Visual Studio Code 7-150

Deploy the Chaincode to a Local Hyperledger Fabric Network 7-150

Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network 7-154

Package Your Chaincode Project for Manual Deployment to Oracle Blockchain
Platform 7-155

Test Your Chaincode Using Visual Studio Code 7-155

Test Your Chaincode on a Local Hyperledger Fabric Network 7-156

Testing Lifecycle Operations on a Remote Oracle Blockchain Platform Network 7-157

Execute Berkeley DB SQL Rich Queries 7-157

Generate CLI Commands from Queries 7-159

Upgrading Chaincode Projects in Visual Studio Code 7-159

vi

Synchronize Specification File Changes With Generated Source Code 7-159

Debugging from Visual Studio Code 7-160

Generate a Postman Collection Using Visual Studio Code 7-162

Troubleshoot Blockchain App Builder Visual Studio Code Extension 7-166

Tokenization Support Using Blockchain App Builder 7-168

Token Taxonomy Framework 7-174

Input Specification File for Token Taxonomy Framework 7-174

Scaffolded TypeScript Project for Token Taxonomy Framework 7-179

Scaffolded Go Project for Token Taxonomy Framework 7-291

ERC-721 7-410

Input Specification File for ERC-721 7-410

Scaffolded TypeScript NFT Project for ERC-721 7-416

Scaffolded Go NFT Project for ERC-721 7-507

ERC-1155 7-601

Input Specification File for ERC-1155 7-601

ERC-1155 Tokenization Flow 7-609

Scaffolded TypeScript Token Project for ERC-1155 7-613

Scaffolded Go Token Project for ERC-1155 7-736

Deploying and Testing Token Chaincode 7-869

Working With the Sample Token Specification Files 7-870

Disaster Recovery Support for Tokenization 7-871

8 Deploy and Manage Chaincodes

Deploy and Manage Chaincodes on Hyperledger Fabric v2.x 8-1

Typical Workflow to Deploy Chaincodes 8-1

Use Quick Deployment 8-2

Use Advanced Deployment 8-3

Deploy a Chaincode 8-5

Chaincode Life Cycle 8-6

Specify an Endorsement Policy 8-8

View an Endorsement Policy 8-9

Find Information About Chaincodes 8-9

Delete a Chaincode 8-10

Manage Chaincode Versions 8-10

Upgrade a Chaincode 8-10

What Are Private Data Collections? 8-11

Add Private Data Collections 8-11

View Private Data Collections 8-13

Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7 8-14

Typical Workflow to Deploy Chaincodes 8-14

vii

Use Quick Deployment 8-15

Use Advanced Deployment 8-16

Instantiate a Chaincode 8-17

Specify an Endorsement Policy 8-18

View an Endorsement Policy 8-19

Find Information About Chaincodes 8-19

Manage Chaincode Versions 8-20

Upgrade a Chaincode 8-20

What Are Private Data Collections? 8-21

Add Private Data Collections 8-22

View Private Data Collections 8-24

9 Develop Blockchain Applications

Before You Develop an Application 9-1

Use the Hyperledger Fabric SDKs to Develop Applications 9-2

Update the Hyperledger Fabric v2.x SDKs to Work with Oracle Blockchain Platform 9-4

Update the Hyperledger Fabric v1.4.7 SDKs to Work with Oracle Blockchain Platform 9-6

Use the REST APIs to Develop Applications 9-8

Make Atomic Updates Across Chaincodes and Channels 9-9

Ethereum Interoperability 9-11

Include Oracle Blockchain Platform in Global Distributed Transactions 9-13

10

Work With Databases

Query the State Database 10-1

What's the State Database? 10-1

Rich Queries in the Console 10-2

Supported Rich Query Syntax 10-3

SQL Rich Query Syntax 10-3

CouchDB Rich Query Syntax 10-6

State Database Indexes 10-7

Differences in the Validation of Rich Queries 10-8

Create the Rich History Database 10-8

What's the Rich History Database? 10-9

Create the Oracle Database Classic Cloud Service Connection String 10-9

Enable and Configure the Rich History Database 10-11

Modify the Connection to the Rich History Database 10-12

Configure the Channels that Write Data to the Rich History Database 10-13

Monitor the Rich History Status 10-14

Limit Access to Rich History 10-14

viii

Rich History Database Tables and Columns 10-15

A Node Configuration

CA Node Attributes A-1

Console Node Attributes A-2

Orderer Node Attributes A-2

Peer Node Attributes A-4

REST Proxy Node Attributes A-8

B Using the Fine-Grained Access Control Library Included in the Marbles
Sample

Fine-Grained Access Control Library Functions B-3

Example Walkthough Using the Fine-Grained Access Control Library B-8

Fine-Grained Access Control Marbles Sample B-12

C Run Solidity Smart Contracts with EVM on Oracle Blockchain Platform

Configuring the Fab3 Proxy C-8

D Updating Applications for Hyperledger Fabric v2.x

ix

Preface

Learn how to use the service to use and manage blockchains.

Topics:

• Documentation Accessibility

• Related Topics

• Conventions

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Topics
These related Oracle resources provide more information.

• For a full list of guides, refer to the Books tab in the Oracle Blockchain Platform
Help Center.

• Oracle Public Cloud: http://cloud.oracle.com
• Managing and Monitoring Oracle Cloud

Conventions
Conventions used in this document are described in this topic.

Text Conventions

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://cloud.oracle.com

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Videos and Images

Your company can use skins and styles to customize the look of the application, dashboards,
reports, and other objects. It is possible that the videos and images included in the product
documentation look different than the skins and styles your company uses.

Even if your skins and styles are different than those shown in the videos and images, the
product behavior and techniques shown and demonstrated are the same.

Preface

xi

1
What's Oracle Blockchain Platform?

This topic contains information to help you understand what Oracle Blockchain Platform is.

Topics:

• What's a Blockchain?

• Why Should I Use Blockchain?

• What Are the Advantages of Oracle Blockchain Platform?

• What Do I Get with Oracle Blockchain Platform?

What's a Blockchain?
A blockchain is a system for maintaining distributed ledgers of facts and the history of the
ledger’s updates. A blockchain is a continuously growing list of records, called blocks, that
are linked and secured using cryptography.

This allows organizations that don't fully trust each other to agree on the updates submitted to
a shared ledger by using peer to peer protocols rather than a central third party or manual
offline reconciliation process. Blockchain enables real-time transactions and securely shares
tamper-proof data across a trusted business network.

A blockchain network has a founder that creates and maintains the network, and participants
that join the network. All organizations included in the network are called members.

Oracle Blockchain Platform is a permissioned blockchain, which provides a closed ecosystem
where only invited organizations (or participants) can join the network and keep a copy of the
ledger. Permissioned blockchains use an access control layer to enforce which organizations
have access to the network. The founding organization, or blockchain network owner,
determines the participants that can join the network. All nodes in the network are known and
use consensus protocol to ensure that the next block is the only version of truth. There are
three steps to consensus protocol:

• Endorsement — This step determines whether to accept or reject a transaction.

• Ordering — This step sorts all transactions within a time period into a sequence or block.

• Validation — This step verifies that the required endorsement are gotten in compliance
with the endorsement policy and organization permissions.

Blockchain's key properties

Shared, transparent, and decentralized— The network maintains a distributed ledger of
facts and update history. All network participants see consistent data. Data is distributed and
replicated across the network’s organizations. Any authorized organizations can access data.

Immutable and irreversible — Each new block contains a reference to the previous block,
which creates a chain of data. Data is distributed among the network organizations.
Blockchain records can only be appended and can't be undetectably altered or deleted.
Consensus is required before blocks or transactions are written to the ledger. Therefore, the
existence and validity of a data record can't be denied. After endorsement policies are

1-1

satisfied and consensus is reached, data is grouped into blocks and blocks are
appended to the ledger with cryptographically secured hashes that provide
immutability. Only those members authorized to have the corresponding encryption
keys can view data.

Encryption — All records are encrypted.

Closed ecosystem — Joined organizations can have a copy of the ledger.
Organizations are known in the real world. Consensus protocols depend on knowing
who the organizations are.

Speed — Transactions are verified in minutes. Network members interact directly.

Blockchain example

An example of an organization that benefits from using blockchain is a supply chain
contract manufacturing company. Suppose this company is located in the United
States and uses a third-party company in Mexico to source materials for and produce
electronic components. With a blockchain network, the manufacturing company can
quickly know the answers to the following questions:

• Where is the product in the production cycle?

• Where is the product being produced?

• Does the product contain ethically sourced materials?

• Does the product meet specifications and exporting compliance rules?

• When is ownership transferred?

• Does the invoice match and should the organization pay it?

• How should the organization handle any exceptions to the manufacturing,
shipping, or receiving process?

Why Should I Use Blockchain?
Implementing blockchain can help you manage and bring efficiency to many aspects of
your business practices.

The key benefits of using a blockchain are:

Increase Business Velocity — You can create a trusted network for business-to-
business transactions and extend and automate your operations beyond the
enterprise. With blockchain, you can optimize business decisions by providing real-
time information visibility across your company's ecosystem.

Reduce Operation Costs — Use blockchain to accelerate transactions and eliminate
cumbersome offline reconciliations by using a trusted shared fabric of common
information. Blockchains help you eliminate intermediaries and related costs, possible
single points of failure, and time delay by using a peer to peer business network.

Reduce the cost of fraud and regulatory compliance — Blockchain allows you to
gain the security of knowing that business critical records are made tamper-proof with
securely replicated, cryptographically linked blocks that protect against single point of
failure and insider tampering.

Chapter 1
Why Should I Use Blockchain?

1-2

What Are the Advantages of Oracle Blockchain Platform?
Using Oracle Blockchain Platform to create and manage your blockchain network has many
advantages over other available blockchain products.

As a preassembled PaaS, Oracle Blockchain Platform includes all the dependencies required
to support a blockchain network: compute, storage, containers, identity services, event
services, and management services. Oracle Blockchain Platform includes the blockchain
network console to support integrated operations. This helps you start developing
applications within minutes, and enables you to complete a proof of concept in days or weeks
rather than months.

How Oracle Blockchain Platform Adds Value to Hyperledger Fabric

Oracle Blockchain Platform is based on the Hyperledger Fabric project from the Linux
Foundation, and it extends the open source version of Hyperledger Fabric in many ways.

Provisioning and Integration in Oracle Cloud Infrastructure

• Includes preassembled PaaS with template-based provisioning. See Before You Create
Your Instance.

• Uses Oracle Cloud Infrastructure to incorporate infrastructure dependencies (managed
containers, virtual machines, identity management, block and object storage).

• Supports multi-cloud, hybrid blockchain network topology that spans multiple Oracle
Cloud Infrastructure data centers, on-premises deployments of Hyperledger Fabric, and
third-party clouds to link blockchain nodes across organizations, data centers, and
continents.

Operates as an Oracle Managed Service

• Includes Oracle operations monitoring.

• Has zero-downtime managed patching and updates.

• Includes embedded ledger and configuration backups.

Enhances Security

• Uses data in-transit encryption based on TLS 1.2, prioritizing forward-secrecy ciphers in
the TLS cipher-suite.

• Uses data at-rest encryption for all configuration and ledger data.

• Isolates customers from other tenants and the Oracle staff.

• Includes a web application firewall to protect blockchain components against
cyberattacks, including predefined Open Web Access Security Project (OWASP) rules,
aggregated threat intelligence from multiple sources, and layer 7 distributed denial-of-
service (DDoS) attacks.

• Provides audit logging of all API calls to the blockchain resources, with records available
through an authenticated, filterable query API or as batched files from Oracle Cloud
Infrastructure Object Storage.

Leverages Built-In Oracle Identity Cloud Service Integration

• Provides user and role management. See Set Up Users and Application Roles.

Chapter 1
What Are the Advantages of Oracle Blockchain Platform?

1-3

• Provides authentication for the Oracle Blockchain Platform console, REST Proxy,
and CA.

• Supports identity federation and third-party client certificate support to enable
consortia formation and simplifies member onboarding.

Adds REST Proxy

• Supports a rich set of Fabric APIs through REST calls for simpler transaction
integration. See REST API for Oracle Blockchain Platform.

• Enables synchronous and asynchronous invocations. Enables events and
callbacks and DevOps operations.

• Simplifies integration and insulates applications from underlying changes in
transaction flow.

Accelerates Integration

• Provides plug-and-play enterprise adapters using Oracle Integration Cloud Service
to integrate Oracle SaaS, PaaS, and on-premises applications with blockchain
transactions, queries, and events. See Oracle Integration.

• Blockchain-enabled Oracle Flexcube, Open Banking API Platform, and other
Oracle applications with embedded blockchain APIs.

• Enables ERP, EPM, GL, SCM, and HCM business processes in Oracle SaaS, on-
premises, and non-Oracle systems to rapidly integrate with blockchain to
streamline data exchange and conduct trusted transactions with other
organizations.

Provides the Management and Operations Console

• Provides a comprehensive, intuitive web user interface and wizards to automate
many administration tasks. For example, adding organizations to the network,
adding new nodes, creating new channels, deploying chaincodes, browsing the
ledger, and more. See Oracle Blockchain documentation library.

• Enables DevOps through REST APIs for administration and monitoring of
blockchain.

• Dynamically handles configuration updates without node restart.

• Includes dashboards, ledger browser, and log viewers for monitoring and
troubleshooting.

Replaces Ledger DB World State Store With Oracle Berkeley DB

• Provides Couch DB rich query support at Level DB performance.

• Provides SQL-based rich query support. See What's the State Database?

• Validates query results at commit time to ensure ledger integrity and avoid
phantom reads.

Integrates Rich History Database

• Enables transparent shadowing of transaction history and private data collections
to Autonomous Data Warehouse or Database as a Service and the use of
Analytics or Business Intelligence (for example, Oracle Analytics Cloud or third-
party tools) on blockchain transaction history and world state data. See Create the
Rich History Database.

Chapter 1
What Are the Advantages of Oracle Blockchain Platform?

1-4

https://cloud.oracle.com/oic
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/index.html

• Supports standard tables and blockchain tables for storing rich history. Blockchain tables
are tamperproof append-only tables, which can be used as a secure ledger while also
being available for transactions and queries with other tables.

Includes Low-Code Blockchain App Builder

Blockchain App Builder assists with rapid development, testing, debugging, and deployment
of chaincode on Oracle Blockchain Platform networks. Blockchain App Builder generates
complex chaincodes in TypeScript (for Node.js chaincode) and Go (for Golang chaincode)
from a simple specification file. Blockchain App Builder supports the full development life
cycle either from a command-line interface or as an extension for Visual Studio Code.

Blockchain App Builder also includes tokenization support for both fungible and non-fungible
tokens. Token classes and methods are automatically generated, and additional token
methods are provided so that developers can create complex business logic for tokens.

Highly Available Architecture and Resilient Infrastructure

Built for business-critical enterprise applications, Oracle Blockchain Platform is designed for
continuous operation as a highly secure, resilient, scalable platform. This platform provides
continuous monitoring and autonomous recovery of all network components based on
continuous backup of the ledger blocks and configuration information.

Each customer instance uses a framework of multiple managed VMs and containers to
ensure high availability. This framework includes:

• Peer node containers distributed across multiple VMs to ensure resiliency if one of the
VMs is unavailable or is being patched.

• Orderers, fabric-ca, console, and REST proxy nodes are replicated in all VMs for
transparent takeover to avoid outages.

• Isolated VM environments for customer chaincode execution containers for greater
security and stability.

Built-in integration with Oracle Identity Cloud Service for user authentication, roles
management, and identity federation immediately leverages Oracle Identity Cloud Service
accounts and enables easy onboarding of consortium members who prefer using SAML-
based federation for authentication against their own identity providers.

Oracle Blockchain Platform is an Oracle managed services in which provisioning, running,
and maintaining all of the infrastructure is transparent to customers. The entire framework
can be provisioned with only a few clicks and user inputs, such as which shape to use, the
initial number of peers, and if the instance type is Founder or Participant. The rest of the
instance is automatically defined by the QuickStart shape you selected. See Before You
Create an Oracle Blockchain Platform Instance.

The platform is integrated with Oracle Cloud operations management and monitoring service
for continuous DevOps. Full stack zero-downtime patching and upgrades are provided with
the platform. These are transparently performed by Oracle operations with no customer
downtime required. And if any security vulnerabilities are discovered, emergency security
patching is enabled for the operating system and all of the components that comprise the
service. Ongoing adaptive intelligent cyber-threat detection, mitigation, and remediation are
provided as part of the Oracle Cloud Infrastructure security-in-depth approach. This
leverages machine learning-based adaptive intelligence for quick detection of intrusions and
abnormal behaviors, and automated patching as one of the tools for faster remediation. See
Oracle Cloud Infrastructure Documentation.

Chapter 1
What Are the Advantages of Oracle Blockchain Platform?

1-5

https://docs.cloud.oracle.com/iaas/Content/Security/Concepts/security.htm

Oracle Blockchain Platform supported by Oracle Cloud Infrastructure and Oracle
Cloud Operations delivers the best-in-class levels of availability, performance, and
security. For availability SLAs, see Oracle PaaS and IaaS Public Cloud Services -
Pillar Document.

What Do I Get with Oracle Blockchain Platform?
Your instance includes everything you need to build, run, and monitor a complete
production-ready blockchain network based on Hyperledger Fabric.

Your Oracle Blockchain Platform instance is defined by the shape and the underlying
platform version of Hyperledger Fabric that you selected when you created your
instance. See Before You Create Your Instance. Your instance includes validating peer
nodes, a membership services provider (MSP), and an ordering service.

The platform versions for instances, Hyperledger Fabric v2.x and Hyperledger Fabric
v1.4.7, use different processes for chaincode lifecycle management. See Typical
Workflow to Deploy Chaincodes (Hyperledger Fabric v2.x) or Typical Workflow to
Deploy Chaincodes (Hyperledger Fabric v1.4.7).

In addition, REST proxy nodes are provided and a default channel is created. Use the
console user interface to further configure, administer, and monitor the network, as
well as install, deploy, and upgrade smart contracts (also known as chaincodes). The
Developer Tools tab contains sample chaincodes that you can deploy and run to help
you quickly understand how the blockchain network works.

Because Oracle Blockchain Platform is part of the Oracle Cloud platform, it’s pre-
assembled with the underlying cloud services, including containers, compute, storage,
identity cloud services for authentication, object store for embedded archiving, and
management and log analytics for operations and troubleshooting. You can configure
multiple peer nodes and channels for availability, scalability, and confidentiality, and
Oracle Cloud will automatically handle the underlying dependencies.

Additional instances can be created for other organizations and joined into your
blockchain network. As an Oracle Cloud service, each instance includes replicated
resources, monitoring and recovery agents, embedded archiving of configuration data
and ledger blocks, and integration with management and log analytics services to help
Oracle operations monitor and troubleshoot any issues. It also includes zero-downtime
managed patching to resolve any issues and upgrade the service components without
interrupting your operations.

Chapter 1
What Do I Get with Oracle Blockchain Platform?

1-6

https://www.oracle.com/assets/paas-iaas-pub-cld-srvs-pillar-4021422.pdf
https://www.oracle.com/assets/paas-iaas-pub-cld-srvs-pillar-4021422.pdf

2
Get Started Using Samples

This topic contains information about the samples included in your instance. Using samples is
the fastest way for you to get familiar with Oracle Blockchain Platform.

Topics

• What Are Chaincode Samples?

• Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v1.4.7)

What Are Chaincode Samples?
Oracle Blockchain Platform includes chaincode samples written in Go and Node.js to help
you learn how to implement and manage your network’s chaincodes.

To get to the Chaincode Samples page in the Oracle Blockchain Platform console, open the
Developer Tools tab and select Samples.

The Chaincode Samples page contains:

• The Balance Transfer sample is a simple chaincode representing two parties with
account balances and operations to query the balances and transfer funds between
parties.

• The Marbles sample includes a chaincode to create marbles where each marble has a
color and size attribute. You can assign a marble to an owner and enable operations to
query status and trade marbles by name or color between owners.

• The Car Dealer sample includes a chaincode to manage the production, transfer, and
querying of vehicle parts; the vehicles assembled from these parts; and transfer of the
vehicles.
In this sample, a large auto maker and its dealers and buyers have created a blockchain
network to streamline its supply chain activities. Blockchain helps them reduce the time
required to reconcile issues with the vehicle and parts audit trail.

• The Fiat Money Token sample includes a chaincode to manage the complete life cycle of
a fractional fungible token that represents fiat money. After you initialize the token, create
token user accounts, and assign the minter role, you can issue, transfer, and burn tokens.
You can also track token account balances and transaction history. For more information
about the token samples, see Working With the Sample Token Specification Files.

• The Loyalty Token sample includes a chaincode to manage a loyalty program by using
tokens. Loyalty points can be awarded, redeemed, and transferred. For more information
about the token samples, see Working With the Sample Token Specification Files.

• The NFT Art Collection Marketplace sample includes a chaincode to simulate a
marketplace for buying and selling non-fungible tokens (NFTs) associated with works of
art. In this sample, museums can mint (create) NFTs for artworks in the blockchain
network. Consumers can then buy and then resell NFTs from the museums. The NFT Art
Collection Marketplace sample is designed for chaincode development in TypeScript, and
is in available in two versions: one for the ERC-721 token standard, and one for the

2-1

ERC-1155 token standard. For more information about the token samples, see
Working With the Sample Token Specification Files.

Use the Download sample here links under each sample to download the sample
chaincode. The download contains the Go and Node.js versions of the chaincode.

The download also contains a Java version of the chaincode.

Explore Oracle Blockchain Platform Using Samples
(Hyperledger Fabric v2.x)

You can install, deploy, and invoke the sample chaincodes that are included in Oracle
Blockchain Platform.

You must be an administrator to install and deploy sample chaincodes. If you've got
user permissions, then you can invoke sample chaincodes.

1. Go to the console and select the Developer Tools tab.

2. Click the Samples pane.

The Chaincode Samples page is displayed.

3. Locate the sample chaincode and install it.

a. Choose the sample chaincode that you want to use and click the
corresponding Install button.

b. In the Install Chaincode dialog, specify one or more peers to install the
chaincode on, and select which chaincode language you want to use (Go,
Node.js, or Java). Click Install.

4. Deploy the chaincode.

a. Click the chaincode’s Deploy button.

b. In the Deploy Chaincode dialog select the channel you want to deploy the
chaincode on. Click Deploy.

5. Go to the Channels tab and click the name of the channel that you deployed the
sample chaincode on.

a. In the Channel Information page, click the Deployed Chaincodes pane to
confirm the chaincode's deployment on the channel.

b. You can use the Ledger pane to locate information about individual
transactions on the channel.

6. Click the Ledger pane and confirm the following.

• The Ledger Summary indicates one deployment occurred. A deployment
consists of an approval and a commit.

• In the Ledger table, locate the two blocks with a Type of data.

• Click the first block and in the Transactions table, click the arrow icon to
display more information about the block. Confirm that the Function Name field
displays ApproveChaincodeDefinitionForMyOrg.

• Click the second block and confirm that the Function Name field displays
CommitChaincodeDefinition.

7. If needed, go to the Chaincodes tab and deploy the chaincode on other channels.

Chapter 2
Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v2.x)

2-2

If you're working on a network that contains multiple members and have deployed the
chaincode on the founder, then you don’t have to deploy the chaincode on the
participants where you installed the same chaincode. In such cases, the chaincode is
already deployed on the participants.

a. Locate the package ID of the chaincode you want to deploy in the table and click it.

The Installed Peers Summary page is displayed.

b. Click Deployed on Channels.

c. On the Deployed Channels Summary page, click the Deploy on a New Channel
button.

d. In the Deploy Chaincode dialog specify the required information, and then click
Deploy.

8. Invoke the chaincode.

a. Go to the Chaincode Samples page, locate the chaincode you're working with, and
click its Invoke button.

b. In the Invoke Chaincode dialog, select a channel to run the transaction on.

c. In the Action field, specify an action to complete using the chaincode.

d. Click Execute.

9. Confirm whether the chaincode invoked successfully.

a. Go to the Channels tab, and locate and click the channel the chaincode was installed
on.

b. In the Ledger Summary table, locate the block number that indicates an invocation
occurred.

c. Click the block and confirm that in the Transactions table you see Success in the
Status column.

10. If needed, go to the Samples page and invoke any other operations on the chaincode.

Explore Oracle Blockchain Platform Using Samples
(Hyperledger Fabric v1.4.7)

You can install, instantiate, and invoke the sample chaincodes included in Oracle Blockchain
Platform.

 Tutorial

You must be an administrator to install and instantiate sample chaincodes. If you've got user
permissions, then you can invoke sample chaincodes.

1. Go to the console and select the Developer Tools tab.

2. Click the Samples pane.

The Chaincode Samples page is displayed.

3. Locate the sample chaincode and install it.

a. Choose the sample chaincode that you want to use and click the corresponding
Install button.

Chapter 2
Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v1.4.7)

2-3

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/tutorial-install-chaincode-oci

b. In the Install Chaincode dialog, specify one or more peers to install the
chaincode on, and select which chaincode language you want to use (Go,
Node.js, or Java). Click Install.

4. Instantiate the chaincode.

a. Click the chaincode’s Instantiate button.

b. In the Instantiate Chaincode dialog select the channel you want to instantiate
the chaincode to, and specify any required parameters. Click Instantiate.

5. Go to the Channels tab and click the name of the channel that you instantiated the
sample chaincode to.

a. In the Channel Information page, click the Instantiated Chaincodes pane to
confirm the chaincode's deployment on the channel.

b. You can use the Ledger pane to locate information about individual
transactions on the channel.

6. Click the Ledger pane and confirm the following.

• The Ledger Summary indicates one deployment occurred.

• In the Ledger table, locate the block with the Type of data (sys).

• Click the block and in the Transactions table, click the arrow icon to display
more information about the block. Confirm that the Function Name field
displays “deploy.”

7. If needed, go to the Chaincodes tab and instantiate the chaincode on other
channels.

If you're working on a network that contains multiple members and have
instantiated the chaincode on the founder, then you don’t have to instantiate the
chaincode on the participants where you installed the same chaincode. In such
cases, the chaincode is already instantiated and running on the participants.

a. Locate the name of the chaincode you want to instantiate in the table and click
it.

b. In the Chaincode Information page, click the Instantiate on a New
Chaincode button.

c. In the Instantiate Chaincode dialog specify the required information.

8. Invoke the chaincode.

a. Go to the Chaincode Samples page, locate the chaincode you're working with,
and click its Invoke button.

b. In the Invoke Chaincode dialog, select a channel to run the transaction on.

c. In the Action field, specify an action to execute the chaincode.

d. Click Execute. The Transaction Results shows returned values, and the API
details field displays the detailed log of all blockchain processes performed
from invoking the transaction.

9. Confirm whether the chaincode invoked successfully.

a. Go to the Channels tab, and locate and click the channel the chaincode was
installed on.

b. Confirm that the Ledger pane is selected, and in the Query Ledger table,
locate the block number indicating that an invocation occurred.

Chapter 2
Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v1.4.7)

2-4

c. Click the block and confirm that in the Transactions table you see “Success” in the
Status column.

10. If needed, go to the Samples page and invoke any other operations on the chaincode.

Chapter 2
Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v1.4.7)

2-5

3
Manage the Organization and Network

This topic contains information to help you understand the console and how you can use it to
manage the channels and nodes that make up your organization and the blockchain network.

Topics

• What's the Console?

• Modify the Console Timeout Setting

• Find and Understand Your Oracle Blockchain Platform Version Number

• Monitor the Network

• Manage Nodes

• Manage Channels

• Manage Certificates

• Manage Ordering Service

What's the Console?
The Oracle Blockchain Platform console helps you monitor the blockchain network and
perform day to day administrative tasks.

When you provisioned your Oracle Blockchain Platform instance, all of the capabilities you
need to begin work on your blockchain network were added to the console.

You can use the console to perform tasks such as managing nodes, configuring network
channels and policies, and deploying chaincodes. You can also monitor and troubleshoot the
network, view node status, view ledger blocks, and find and view log files.

In most cases, each member of your network has its own console that they use to manage
their organization and monitor the blockchain network. Your role in the network (founder or
participant) determines the tasks you can perform in your console. For example, if you're a
participant, then you can’t add another participant to the network. Only the founder can add a
participant to the network.

Also, what you can do in the console is determined by your access privileges (either
Administrator or User). For example, only an Administrator can set an anchor peer or create
a new channel.

Your instance includes sample chaincodes that you can use to get started. See Explore
Oracle Blockchain Platform Using Samples (Hyperledger Fabric v2.x) or Explore Oracle
Blockchain Platform Using Samples (Hyperledger Fabric v1.4.7).

The console is divided into tabs.

Dashboard Tab

Use the Dashboard tab for an overview of the network’s performance. See What Type of
Information Is on the Dashboard?

3-1

On the Dashboard tab, you’ll find:

• A banner showing you how many different components are on your network. For
example, how many channels and chaincodes.

• The number of user transactions on a channel during a specific time range.

• The number of nodes that are running or stopped.

• The number of endorsements and commits by peers.

• Utilization statistics for your instance's partitions.

Network Tab

The Network tab is where you view a list of the members in your network. The first
time you use the Network tab after setting up your instance, you’ll see the nodes you
created during set up.

You can use the Network tab to:

• Find the organization IDs of the members in your network, their Membership
Service Provider (MSP) IDs, and roles.

• Add a participant to the network.

• See a graphical representation of the network’s structure.

• Configure, view, or import the orderer settings.

• Manage certificates.

• Add new orderering service node into network.

• Export the network config block.

Nodes Tab

Go to the Nodes tab to view a list of the nodes in your network. The first time you use
the Nodes tab after setting up your instance, you’ll see:

• The console node.

• The number of peer nodes you requested when provisioning.

• The number of orderer nodes associated with your instance type. Standard has
three orderer nodes and cannot be scaled up, while Enterprise has three and
additional can be added.

• One Fabric certificate authority (CA) node representing the membership service.

• One REST proxy node.

During the founder instance provisioning a default channel was created and all peers
were added to it.

Use the Nodes tab to:

• View and set node configurations.

• Export and import peers.

• Start, stop, and restart nodes.

• Configure and start a new orderer node.

• See a graphical representation of which peer nodes are using which channels.

Chapter 3
What's the Console?

3-2

• Click a node's name to find more information about it.

Channels Tab

The Channels tab shows you the channels in your network, the peers using the channels,
and the chaincodes deployed on the channels. The first time you use the Channels tab after
setting up your instance, you’ll see the default channel that was created and all of the peers
in your network added to it.

Use the Channels tab to:

• Add new channels.

• See the number of chaincodes deployed on a channel.

• Click a channel's name to find more information about it, such as its ledger summary, the
peers and OSNs joined to the channel, and the channel's policies and ACLs.

• Join peers to the channel.

• Manage the ordering service of the channel.

• Add or remove an ordering service node (OSN) for a channel.

• View and update the ordering service’s settings.

• Configure rich history for the channel.

• Run and analyze rich queries on chaincodes in the channel.

• (Hyperledger Fabric v2.x) Upgrade a chaincode.

Chaincodes Tab

Note that Oracle Blockchain Platform refers to smart contracts as chaincodes.

Go to the Chaincodes tab to view a list of the chaincode packages installed on the instance.
The first time you use the Chaincodes tab after setting up your instance, no chaincodes are
displayed in the list because no chaincodes were included during set up. You must add the
needed chaincodes.

You can use the Chaincodes tab to:

• Install and deploy a chaincode using the Quick or Advanced deploy option.

• See how many peers have a chaincode installed.

• Find out how many channels a chaincode was deployed on.

• (Hyperledger Fabric v1.4.7) Upgrade a chaincode.

Developer Tools Tab

The Developer Tools tab is designed to help you learn blockchain fundamentals like how to
write chaincodes and create blockchain applications.

You can use the Developer Tools tab to:

• Download Blockchain App Builder for Oracle Blockchain Platform - a set of tools and
samples to help you create, test, and debug chaincode projects using a command line
interface or a Visual Studio Code extension.

• Find templates and the Hyperledger Fabric mock shim to help you create chaincodes.

• Link to the SDKs and APIs that you need to write blockchain applications.

Chapter 3
What's the Console?

3-3

• Use the sample chaincodes to learn about chaincodes. Install, deploy, and invoke
the sample chaincodes.

Modify the Console Timeout Setting
The Oracle Blockchain Platform console attempts to contact the nodes on the network
for 600 seconds before it times out.

In most cases you won’t have to adjust this setting, but if the console is frequently not
responding, then consider increasing the timeout value. Oracle doesn’t recommend
decreasing the timeout value.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab go to the nodes table and locate the console node. Use the
nodes table’s type column to find the Console node.

3. Click the node’s More Actions menu and then click Edit Configuration.

The Configure dialog is displayed.

4. In the Request Timeout (s) field, type or use the arrow buttons to indicate the
timeout length in seconds.

5. Click Submit.

The timeout length changes immediately, and you don’t have to restart the
console.

Find and Understand Your Oracle Blockchain Platform
Version Number

Use this topic to find and understand your Oracle Blockchain Platform instance's
version number.

1. Go to the console and in the top right of the screen, locate and click your user
name.

2. Select About.

Your instance's version number will look similar to the following example:

23.3.3

where:

• 23 is the year

• 3 is the quarter

• 3 is the minor release number

Monitor the Network
The console provides several ways for you to monitor the activity and health of your
blockchain network. For example, you can find summary information about the total
number of blocks submitted to the ledger, or you can search for and locate information
about specific chaincode transactions that happened on a specific channel.

Chapter 3
Modify the Console Timeout Setting

3-4

How Can I Monitor the Blockchain Network?
You can use the console to locate the following sources of information to help you understand
what’s happening on your network.

Network Overview Information

Use the Dashboard tab if you need at-a-glance information about how well the whole network
is working and to spot any general issues such as a high rate of failing transactions. See
View Network Activity .

Ledger Summary

For information about the runtime statistics for transactions on a specific channel, go to the
channel’s Ledger Summary area. You can drill into a specific transaction for more information
about it, such as which member initiated the transaction and which peer endorsed it. See
View a Channel’s Ledger Activity.

Node Health

Use a node’s Health Summary area to help you understand how the node is performing on
the network; for example, CPU utilization and memory utilization. See:

• View Health Information for a CA Node

• View Health Information for the Console Node

• View Health Information for an Orderer Node

• View Health Information for a Peer Node

• View Health Information for a REST Proxy Node

What Type of Information Is on the Dashboard?
The console’s Dashboard tab provides an overview of how well your network is functioning.
You can use this information to identify any issue and to navigate to other tabs in the console
where you can learn more about and resolve any issues.

Summary Bar

This section shows the components in your network (for example, how many nodes and
chaincodes). You can click a component number to go to the console tab for more information
or to perform tasks related to the component. If your instance is a development instance, then
“Development mode” is displayed in the bottom right of the summary bar.

At the top of the console, you’ll see what type of instance you’re working with. If you’re a
network founder, then you’ll see “(Founder)”. If you’re a participant in a network, then the top
of your console displays the name of the network you’re joined to. For example, “(Participant
of <foundername>)”.

Health

This section shows how many nodes are running and how many are stopped in the network.
Click the node numbers to go to the Nodes tab to investigate why a node might be stopped,
or for more information about the nodes in the network.

Chapter 3
Monitor the Network

3-5

The nodes in your network are partitioned inside of a virtual machine (VM). This
section also shows the percentage of the partition memory used, and the percentage
of CPU and disk used. If the memory percentage is relatively low (for example, 50% or
lower), then you can create another peer node without your system’s performance
decreasing significantly. If the percentage is close to 100, then your system most likely
can’t support another peer node.

Channel Activity

This area shows how many blocks have been created and how many transactions
have been executed based on the number of blocks created. Note that you might see
more blocks created than user transactions. For example, if you create a new channel
or you deploy a chaincode, then those are classified as system-level transactions and
are included in blocks, but not classified as user transactions. This area shows the top
four channels that have handled the most transactions, and for each channel shows
the number of transactions that have succeeded and failed.

Note the following information:

• User transactions are transactions that were invoked as part of the chaincode’s
execution, and not underlying actions such as setting up the network, creating
channels, and installing and deploying chaincodes.

• A block can contain multiple user transactions.

You can filter the amount of activity information that is displayed. You can select a set
time range (for example, last hour or last week), or you can select Custom and pick
the dates you want activity information for.

Peer Activity

This area shows the number of endorsement and commits completed by the network’s
peer nodes. This area shows the top four peer nodes that have endorsed and
committed the most transactions, and for each of those four peers, this area shows the
number of endorsements and commits that have succeeded and failed.

Note the following information:

• A transaction is an endorsement, and a commit is when a transaction is written to
the block.

• Commits can be either user transactions or system transactions

• Commits are the number of transactions that have been committed to the block.
Commits aren’t blocks.

• Only specific peers must do endorsements, but all peers must do commits.

You can filter the amount of activity information that is displayed. You can select a set
time range (for example, last hour or last week), or you can select Custom and pick
the dates you want activity information for.

Chapter 3
Monitor the Network

3-6

View Network Activity
Use the console’s Dashboard tab to find information about your blockchain network’s
activities, such as percentage of nodes that are running or stopped, and how successfully the
network is executing chaincode transactions.

You can use this information as a starting place and then use the other tabs in the console to
drill into any issues that you discover. For information about what displays in the Dashboard
tab, see What Type of Information Is on the Dashboard?

1. Go to the console and select the Dashboard tab.

2. To see channel and peer activity information that occurred at a specific time such as for
the last week or month, go to the filter dropdown menu and select the time range you
want. Select Custom to enter specific begin and end dates and click Apply.

Manage Nodes
This topic contains general information about managing the nodes in your network, such as
describing the types of nodes in your blockchain network, how to view your nodes and their
topology, how to stop and start them, and how to set logging levels for a node.

What Types of Nodes Are in a Network?
A blockchain network contain console, peer, orderer, certification authority (CA), and REST
proxy nodes. The nodes that display in your console depend upon if you're the founder of or a
participant in a network.

For example, if you're a participant in a network, your console won’t display an orderer node
for that network. If you're a founder, your console displays all node types.

What nodes are included in a new instance?

After you provision your instance and access the Nodes tab for the first time, you’ll see:

• One console node.

• The number of peers you requested during set up. These peers display with the
Peer(Member) type. The maximum number of peer nodes that can be included with an
instance is 16.

• An orderer node, or ordering service node (OSN), representing an ordering service.

• A Fabric certificate authority (CA) representing the membership service.

• A REST proxy node.

I need more information about the different node types

Use this table to find more information about nodes.

Chapter 3
Manage Nodes

3-7

Node Type What Does This Node Do? Displays In
Founder or
Participant
Instance

Number of
Nodes per
Instance

Can I Add
Another Node
After
Provisioning
My Instance?

CA This node provides and
manages peer node
credentials and member
credentials.

Founder

Participant

1 No

Console This node is the console
component.

Founder

Participant

1 No

Orderer This node provides
communication between
nodes. It guarantees the
delivery of transactions into
blocks and blocks into the
blockchain.

If you're a participant, then
you must import the
founder’s ordering service
setting into your instance so
that all peer nodes can
communicate.

Founder

Participant

3 Enterprise
Edition: Yes

Standard
Edition: No

Peer This node contains a copy
of the ledger and writes
transactions to the ledger.
This node can also endorse
transactions.

Your network can contain
member or remote peers.

Founder

Participant

2 to 16
The number of
peer nodes you
can add was
specified when
your instance
was created.

Yes

REST Proxy This node maps an
application identity to a
blockchain member, which
allows users and
applications to call the
Oracle Blockchain Platform
REST APIs.

Founder

Participant

1 No

Find Information About Nodes
This section contains information about where in the console you can find information
about the nodes in your instance and network.

View General Information About Nodes
Use the Nodes tab to view general information about all of the nodes in your network.
For example, Name, Route, Type, and Status.

You can also use the Nodes tab to drill into details about a specific node. For more
information about node types, see What Types of Nodes Are in a Network?

1. Go to the console and select the Nodes tab.

Chapter 3
Manage Nodes

3-8

2. In the Nodes tab confirm that the List View (and not the Topology View) is displaying.

Column Description

Route Oracle Blockchain Platform generated the URLs when you provisioned your
instance or when you create new nodes.
If you use the Hyperledger Fabric SDK, then you need these URLs to specify
which peers you want the SDK to interact with.

Type Indicates the node type.

MSP ID Membership Service Provider ID.

Status Indicates if the node is running or down. Also indicates if there's an unapplied
configuration change for the node. Note the following statuses:
• Up — The node is running and working normally.
• Down — The node is stopped.
• N/A — This status displays for remote peers because your instance doesn’t

have the permissions required to get the peer’s status.

IsConfigured If the node’s configuration was updated you need to restart the node for the
updates to take effect. Nodes with the yes status are running (and not stopped).

More Actions
Menu

Your permissions determine the options available from the More Actions menu.
If you're an administrator, this button provides links to modify the node’s
configuration. Administrators and users can stop, start, and restart nodes.

Access Information About a Specific Node
Use the Nodes tab to access information about a specific. For example, health information or
log files.

1. Go to the console and select the Nodes tab.

2. Click a node’s name to go to the Node Information page. The panes that display in the
Node Information page depend on the node type you select.

Pane Available
for Which
Node
Types?

What can I do in this pane?

Health All View metrics to help you understand how the node is performing on
the network. Example of metrics include CPU Utilization and
Memory Utilization.
For a Peer node, this pane displays information about endorsed and
committed transactions.

Logs All View and download log files to discover and troubleshoot issues
with a node.

Channels Peer View a list of channels the selected peer node is using for its
communications with other nodes. Join the peer node to other
existing channels as needed. Go to the Channel page to create a
new channel and specify which peer nodes can join it.

Chaincodes Peer View the chaincodes that are installed on the peer node. Go to the
Chaincode page to install a new chaincode or upgrade an existing
chaincode.

Transaction
Statistics

REST proxy View the total queries, failed queries, total invocations, and failed
invocations handled by the REST proxy.

Chapter 3
Manage Nodes

3-9

View a Diagram of the Peers and Channels in the Network
Use the Topology view to access an interactive diagram that shows which network
peers are using which channels.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click Topology View to see a diagram showing the peer nodes
in your network and which channels they’re using.

3. Hover over a peer to highlight it and the channels it’s using.

Find Node Configuration Settings
Use the Nodes tab to find a specific node’s configuration settings. If you’re an
administrator, then you can update a node’s configuration settings. If you’re a user,
then you can view a node’s configuration settings.

1. Go to the console and select the Nodes tab.

2. Go to the Nodes table, locate the node that you want configuration setting
information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and click
View.

The Configure dialog is displayed, showing the attributes specific to the node type
you selected. See Node Configuration.

Start and Stop Nodes
You can start or stop CA, orderer, peer, and the REST proxy nodes in your network.
You can’t start or stop the console node or remote peer nodes.

You can start and stop nodes depending upon the traffic in your network. For example,
if network traffic is light, then you can stop unneeded peer nodes and orderer nodes.

You can also restart a node. See Restart a Node.

When you stop a peer node, Oracle Blockchain Platform removes the peer’s listing on
the Channel tab and Chaincodes tab. If you stop all peers that have the chaincode
installed, then the Chaincodes tab doesn’t list the chaincode. If you stop all peers
joined to a channel, then the Channels tab lists the channel, but its information isn't
available to view.
Before stopping a node for an extended period of time, you should transfer all this
peer's responsibilities to other running peers, and then remove all the responsibilities
this peer has.

• Check all other peers' gossip bootstrap address lists, remove the peer address,
and add another running peer's address if needed. After peer configuration
change, restart the peer.

• Check all channels' anchor peer lists, remove the peer from the anchor peer lists,
and add another running peer to the anchor peer list if needed.

• If a channel is joined only to this peer, or if chaincode is deployed only on this
peer, you should consider using another running peer to join the same channel
and deploy the same chaincode.

Chapter 3
Manage Nodes

3-10

You must be an administrator to perform this task.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the node that you want to start or stop,
and click the node’s More Actions button.

3. Click either the Start or Stop option. The node’s status changes to either up or down and
information is written to the node’s log file.

Restart a Node
You can restart the CA, orderer, peer, and REST proxy nodes in your network. You can’t
restart the console node or remote peer nodes.

You should restart a node if it's not responding or running properly, or if you’ve updated a
node’s configuration. You can also start or stop a node. See Start and Stop Nodes.

You must be an administrator to perform this task.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the node that you want to restart, and
click the node’s More Actions button.

3. Click Restart.

The node’s status changes to restarting and information is written to the log file.

Set the Log Level for a Node
If you’re an administrator, then you can specify the type of information you want to include in
a node’s log files. For example, ERROR, WARNING, INFO, or DEBUG.

By default, every node’s log level is set to INFO. When developing and testing your network,
Oracle suggests that you set the logging level to DEBUG. If you're working in a production
environment, then use ERROR.

Only an administrator can change a node’s log level setting. If you're a user, then you can
view a node’s log level settings.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the nodes table, locate the node you want to update, click its
More Actions menu, and click Edit Configuration.

If you have user permissions, then your console will have the View option that you click
to see the node’s log level setting and other configuration settings.

The Configure dialog is displayed.

3. In the Log Level field, select the log level you want to use.

4. Click Submit.

Manage Channels
This topic contains information about managing the channels in your network, such as how to
create and view channels, how to join peers and designate and anchor peer, how to work
with policies and access control lists, and how to associate orderers with a channel.

Chapter 3
Manage Channels

3-11

What Are Channels?
Channels partition and isolate peers and ledger data to provide private and
confidential transactions on the blockchain network.

Members define and structure channels to allow specific peers to conduct private and
confidential transactions that other members on the same blockchain network can't
see or access. Each channel includes:

• Peers

• Shared ledger

• Chaincodes instantiated on the channel

• One or more ordering service nodes

• Channel policy definitions and ACLs where the definitions are applied

Each peer that joins a channel has its own identity that authenticates it to the channel
peers and services. Although peers can belong to multiple channels, the information
on transactions, ledger state, and channel membership is restricted to peers within
each channel.

You can use the Oracle Blockchain Platform console or the Hyperledger Fabric SDK to
create channels on your blockchain network. See View Channels.

View Channels
Members in your network use channels to privately communicate blockchain
transactions information.

Use the Channel tab to view a list of the channels in your network, create and monitor
channels, specify anchor peers, and upgrade the instantiated chaincodes used on
your channels.

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channel table, click the channel name you want information about. Note that
if all peers joined to the channel are stopped, then the channel is listed but its
information isn't available to view.

The Channel Information page is displayed.

3. Click through the Channel Information page's panes to find information about the
channel.

Section What can I do in this pane?

Ledger Get information about the channel’s ledger activity such as
block number and the number of user transactions in the block.
Click a block number to drill into information about its
transactions. You can use the filter field to specify the summary
information that you want to see (for example, information from
the last day or last month), or use the custom option to enter
start and end times. See View a Channel’s Ledger Activity.

Chapter 3
Manage Channels

3-12

Section What can I do in this pane?

(Hyperledger Fabric v2.x)
Deployed Chaincodes

View the list of chaincodes that have been deployed on the
channel.

(Hyperledger Fabric
v1.4.7) Instantiated
Chaincodes

View the list of chaincodes that have been instantiated on the
channel.

Orderers View a list of the orderers currently active, and allows you to
add a new OSN to join the channel.

Peers View the list of peers that are joined to the channel. Use this
section to set anchor peers for the channel.

Organizations View the list of network members whose peers are using the
channel to communicate.

Channel Policies View the list of the standard policies and any policies that you
created for the channel. Use this section to add, modify, and
delete policies.

ACLs View the access control lists (ACLs) and the policies used to
manage which organizations and roles can access the
channel's resources.

Create a Channel
You can add channels to the network and specify which members can use the channel, and
which peers can join the channel. You can’t delete channels.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.

2. In the Channels tab, click Create a New Channel.

3. In the Channel Name field, enter a unique name for the channel. The channel's name
can be up to 128 characters long.

4. In the Organizations section, select any additional members that you want to
communicate on the channel.

If you’re working in a participant instance, you need to add the founder to your instance
before the founder’s MSP ID displays in the Organization section. To add the founder
organization, go to the Network tab and click the Add Organization button to upload the
founder’s certificates.

5. In the MSP ID ACL section, specify the organizations that have access to the channel
and permissions for each selected organization. Note that you can add more
organizations to or delete them from the channel later, as needed.

Your organization’s permissions are set to write (ReaderWriter) and you can't modify this
setting. By default, other member’s permissions are set to write (ReaderWriter), but you
can change them to read (ReaderOnly) if you don’t want the members to invoke
chaincodes and to only read channel information and blocks on the channel.

6. (Optional) In the Peers to Join Channel field, select one or more peers. Note the
following information:

• If your network contains participants, the participants’ peers don’t display in this list.
Participants must use their consoles to join peers to the channel. A participant can’t
join its peers to the channel unless its organization was added to the channel’s MSP
ID ACL section.

Chapter 3
Manage Channels

3-13

• If you want to create the channel only, then don’t select any peers. You can
add peers to the channel later.

7. Click Submit.

The channel table displays the new channel.

After you create the channel, you can:

• (Hyperledger Fabric v2.x) Deploy a chaincode on the channel. See Deploy a
Chaincode.

• (Hyperledger Fabric v1.4.7) Instantiate a chaincode on the channel. See
Instantiate a Chaincode.

• If the network contains participants, then they use their consoles to join member
peers to the channel. See Join a Peer to a Channel.

View a Channel’s Ledger Activity
Use the ledger to find summary information and runtime statistics for transactions on a
specific channel.

1. Go to the console and select the Channels tab.

2. In the channel table, click the channel name that you want transaction information
about. In the Channel Information page, confirm that the Ledger pane is selected.

3. Use the Ledger Summary area to find basic information about the channel’s
activity, such as the total number of blocks in the ledger’s chain and the total
number of user transactions on the channel.

4. To see blockchain activity that occurred at a specific time such as the last day or
week, use the filter drop-down list to select the time range that you want. To locate
and drill down into a specific set of transactions, select Custom and enter search
criteria in the Start Time and End Time fields, or click the calendar icon and pick
the dates that you want. Click Apply.

If you select a specific time period (for example, Last day) and then select it again
to re-run the query, the query doesn’t run again. To get the latest information, click
the Refresh button.

The following transaction types can be displayed for a block:

• genesis — The transaction that runs the configuration block to initialize the
channel.

• data (sys) — The transaction that starts the chaincode’s container to make the
chaincode available for use.

• data — A chaincode transaction called for execution on the channel.

5. To find more information about a specific transaction, locate the transaction in the
query ledger table and click it. The transactions table displays the transaction’s
details.

For any given block, the transactions in the table are listed in the order of the
transaction number, which is assigned by the ordering service when the block is
created. Because of this, the transactions listed in the table might have time
stamps (which are from the peer's endorsement of the chaincode) that are before
or after other transactions in the same block. The time range of transactions in a
single block is governed by ordering service settings including the batch timeout

Chapter 3
Manage Channels

3-14

parameter (the time that the ordering service waits for additional transactions after an
initial transaction before cutting a block).

Transaction Detail Description

TxID The unique alphanumeric ID assigned to the transaction. The TxID
is constructed as a hash of a nonce concatenated with the signing
identity's serialized bytes.

Time The transaction’s time stamp (date and time that the transaction
occurred).

Chaincode The name of the chaincode that executed the transaction. This field
can show the name of a chaincode that you wrote, installed, and
deployed, but can also show a system chaincode.
System chaincode options are:

• (Hyperledger Fabric v2.x) _lifecycle — For lifecycle requests,
such as install, deploy, and upgrade.

• (Hyperledger Fabric v1.4.7) LSCC — For lifecycle requests,
such as instantiate, install, and upgrade.

• QSCC — For querying. This chaincode includes APIs for ledger
query.

Status Status that indicates whether the transaction succeeded or failed.

6. Click the triangle icon next to the TxID to view in-depth information about the transaction,
such as function name, arguments, validation results, response status, the initiator, and
the endorser.

If a transaction failed, you can use the TxID to search the error logs on the peer node or
orderer nodes for more information.

View or Update a Channel’s Organizations List
You can view the list of the organizations that have access to the channel. If you created the
channel, then you can change an organization’s permissions on the channel, and you can
add organizations to or remove them from the channel

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the channels
in your network.

2. In the channels table, locate the channel that you want information about, click the
channels More Actions button, and click Edit Channel Organizations.

The Edit Organizations page is displayed.

3. In the MSP ID ACL section, you can do the following:

• Modify an organization’s permissions. The organization that created the channel is
set to write (ReaderWriter). You can't change this setting.

• If you’re the network founder, then clear an organization’s checkbox to delete it from
the channel. If you’re a network participant, then use the Delete button to delete an
organization from the channel. If you delete an organization from a channel, then the
organization and its peers can no longer query, invoke, and instantiate a chaincode
on the channel. And the removed organization’s peers can’t join the channel.

• Click an organization’s checkbox to add the organization to the channel and set its
permissions. By default, each member’s permissions is set to write (ReaderWriter),

Chapter 3
Manage Channels

3-15

but you can change it to read (ReaderOnly) if you don’t want the member to
invoke chaincodes and to only read channel information and blocks on the
channel.

4. Click Submit to save the changes.

Join a Peer to a Channel
You can add a peer node to a channel so that the node can use it to exchange private
transaction information with other peer nodes on the channel.

Note the following information:

• When you create a channel, you specify which local peer nodes can join the
channel.

• If you’re creating a network containing a participant, then you can select the
participant as a member on the channel. Or you can add the participant after the
channel is created.

• Your instance has multiple availability domains or fault domains, and Oracle
recommends that you join one peer from each partition to the channel. This is
because if one VM is unavailable that the channel is still available for
endorsements and commits. To determine which domain a peer is located in, in
the More Actions menu select Show AD Info to see the availability domain
information.

• You can join a maximum of seven peers from each domain.

See Create a Channel.

You must be an administrator to perform this task.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the peer node that you want to add to a channel.

3. In the Node Information page, click the Channels pane to view the list of channels
the peer is already using.

4. Click Join New Channels.

The Join New Channels dialog is displayed.

5. Click the Channel Name field and from the list select the name of the channel to
join. Click the field again to select another channel. Click Join.

Add an Anchor Peer
Each member using a channel must designate at least one anchor peer. Anchor peers
are primary network contact points, and are used to discover and communicate with
other network peers on the channel.

You can designate one or more peers in your organization as an anchor peer on a
channel. For a high availability network, you can specify two or more anchor peers. All
members using the network channel must use their console to designate one or more
of their peer nodes as anchor peers.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.

Chapter 3
Manage Channels

3-16

The Channels tab is displayed and the channel table contains a list of all of the channels
on your network.

2. In the channels table, click the channel name you want to add anchor peers to.

The Channel Information page is displayed.

3. In the Channel Information page, click the Peers pane.

4. Locate the peer or peers that you want to designate as anchor peers and click their
Anchor Peer checkboxes to select them.

5. Click the Apply button.

Change or Remove an Anchor Peer
You can change or remove a channel's anchor peers. Anchor peers are primary network
contact points, and are used to discover and communicate with other network peers on the
channel.

Before you change or remove the channel's anchor peers, note the following information:

• To communicate on the channel, you must designate one or more peers in your
organization as an anchor peer.

• For a high availability network, you can specify two or more anchor peers.

• All members using the network channel must use their console to designate one or more
of their peer nodes as anchor peers.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the channels
on your network.

2. In the channels table, click the channel name you want to remove anchor peers from.

The Channel Information page is displayed.

3. In the Channel Information page, click the Peers pane.

4. Locate the peer or peers that you want to remove as anchor peers and clear their
Anchor Peer checkboxes. Alternatively, to add another peer as an anchor peer, click its
Anchor Peer checkbox to select it.

5. Click the Apply button.

View Information About Deployed Chaincodes
You can view information about the chaincodes that are deployed on the different channels in
your network.

You might need information about deployed chaincodes to determine if you need to upgrade
the chaincode, or to find out which channels the chaincode was deployed on.

1. Go to the console and select the Channels tab.

2. In the channels table, click the channel name with the chaincode that you want to view
information for.

3. In the Channel Information page, confirm that the Deployed Chaincodes pane is selected

Chapter 3
Manage Channels

3-17

4. In the chaincode table, you can:

• Click the chaincode package ID to go to the Chaincodes tab to learn more
information about it. For example, the peers that the chaincode is installed on
and the channels that the chaincode is deployed on.

• In a chaincode’s More Actions menu, click View Chaincode Definition to find
details about the chaincode’s definition, including the endorsement policy.

5. (Optional) If you see a channel listing without a chaincode, then you can go to the
Chaincodes tab and deploy a chaincode to the channel. See Deploy a Chaincode.

Work With Channel Policies and ACLs
This topic contains information about a channel's policies and access control lists
(ACLs). It provides an overview of what policies are, policy types, and how to modify
them, as well as how to use ACLs to manage which organizations and roles can
access a channel's resources.

What Are Channel Policies? (Hyperledger Fabric v2.x)
A policy defines a set of conditions. The required parties must meet the policy's
conditions before their signatures are considered valid and the corresponding request
happens on the network.

The blockchain network is managed by these policies. Policies check the identity
associated with a request against the policy associated with the resource needed to
fulfill the request. Policies are located in the channel's configuration.

After you configure the channel's policies, you assign them to the channel's ACLs
resources to determine which members are required to sign before a change or action
can happen on the channel. For example, suppose you modified the Writers policy to
include members from Organization A or Organization B. Then you assigned the
Writers policy to the channel's cscc/GetConfigBlock ACL resource. Now only a
member from Organization A or Organization B can call GetConfigBlock on the cscc
component.

What Are the Policy Types?

There are two policy types: Signature and ImplicitMeta.

• Signature — Specifies a combination of evaluation rules. It supports combinations
of AND, OR, and NOutOf. For example, you could define something like “An
admin of org A and 2 other admins" or "11 of 20 org admins.”
Any new policies you create will be Signature policies.

• ImplicitMeta — This policy type is only valid in the context of configuration. It
aggregates the result of evaluating policies deeper in the configuration hierarchy,
which are defined by Signature policies. It supports default rules, for example “A
majority of the organization admin policies.”

When Are Policies Created?

When you add a channel to the network, Oracle Blockchain Platform creates default
policies. The default policies are: Admins, Writers, Readers, Endorsement,
LifecycleEndorsement (ImplicitMeta policies), and Creator (Signature policy). If
needed, you can modify these policies or create new policies.

Note the following important issue about channel policies:

Chapter 3
Manage Channels

3-18

• You can use the console to create a channel and set your organization's ACL to
ReaderOnly. After you save the new channel, you can't update this ACL setting from the
channel's Edit Organization option.

However, you can use the console's Manage Channel Policies functionality to add your
organization to the Writers policy, which overwrites the channel's ReaderOnly ACL
setting.

What Are Channel Policies? (Hyperledger Fabric v1.4.7)
A policy defines a set of conditions. The required parties must meet the policy's conditions
before their signatures are considered valid and the corresponding request happens on the
network.

The blockchain network is managed by these policies. Policies check the identity associated
with a request against the policy associated with the resource needed to fulfill the request.
Policies are located in the channel's configuration.

After you configure the channel's policies, you assign them to the channel's ACLs resources
to determine which members are required to sign before a change or action can happen on
the channel. For example, suppose you modified the Writers policy to include members from
Organization A or Organization B. Then you assigned the Writers policy to the channel's
cscc/GetConfigBlock ACL resource. Now only a member from Organization A or Organization
B can call GetConfigBlock on the cscc component.

What Are the Policy Types?

There are two policy types: Signature and ImplicitMeta.

• Signature — Specifies a combination of evaluation rules. It supports combinations of
AND, OR, and NOutOf. For example, you could define something like “An admin of org A
and 2 other admins" or "11 of 20 org admins.”
Note that when you modify the Oracle Blockchain Platform's default Admins policy, which
was created as an ImplicitMeta policy, you'll use the Signature policy. Any new policies
you create will be Signature policies.

• ImplicitMeta — This policy type is only valid in the context of configuration. It aggregates
the result of evaluating policies deeper in the configuration hierarchy, which are defined
by Signature policies. It supports default rules, for example “A majority of the organization
admin policies.”
Oracle Blockchain Platform uses the ImplicitMeta policy type to create the Admins policy.
When you modify the Admins policy, you'll use the Signature policy. You can't create or
modify any policies using the ImplicitMeta policy. Oracle Blockchain Platform only
supports modifying or creating policies using the Signature policy type.

When Are Policies Created?

When you add a channel to the network, Oracle Blockchain Platform creates default policies.
The default policies are: Admins (ImplicitMeta policy), Creator, Writers, and Readers
(Signature policies). If needed, you can modify these policies or create new policies.

Note the following important issues about channel policies:

• You can use the console to create a channel and set your organization's ACL to
ReaderOnly. After you save the new channel, you can't update this ACL setting from the
channel's Edit Organization option.

Chapter 3
Manage Channels

3-19

However, you can use the console's Manage Channel Policies functionality to add
your organization to the Writers policy, which overwrites the channel's ReaderOnly
ACL setting.

• When you use the Hyperledger Fabric SDKs to create a channel, Fabric uses the
ImplicitMeta policies as the default channel policies for Readers and Writers.
When the channel uses these policies, the Oracle Blockchain Platform console
can't guarantee that the administrative operations (for example, edit organization)
will be successfully processed.

To correct this issue, update the readers and writers policies to Signature policies,
and define the policy rules as needed. See https://hyperledger-
fabric.readthedocs.io/en/release-1.3/access_control.html

• When you use the Hyperledger Fabric SDKs or CLI to create a channel, the
Creator policy isn't included in the configtx.yaml file. The Creator policy is required
by Oracle Blockchain Platform to allow the channel creator to edit a channel's
configuration. You must manually edit the configtx.yaml file and add the Creator
policy.

Add or Modify a Channel's Policies
You can add or modify a channel's policy to specify which members are required to
perform a specific action on the channel. After you define policies, you assign them to
the channel's ACLs.

Before you add or update policies, you need to understand how Oracle Blockchain
Platform creates default channel policies. See What Are Channel Policies?
(Hyperledger Fabric v1.4.7) or What Are Channel Policies? (Hyperledger Fabric v2.x).

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.
The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the channel name that you want to add policies to or
modify policies for.
The Channel Information page is displayed.

3. In the Channel Information page, click the Channel Policies pane.

4. Do one of the following:

• To add a new policy, click the Create a New Policy button. The Create Policy
dialog is displayed. Enter a name in the Policy Name field and select
Signature in the Policy Type field. Expand the Signature Policy section.

• To modify an existing policy, click a policy's name. The Update Policy dialog
is displayed.

5. Click the Add Identity button to add an organization. Or modify an existing
signature policy as needed. Note the following information:

Field Description

MSP ID From the dropdown menu, select the
organization that must sign the policy.

Chapter 3
Manage Channels

3-20

https://hyperledger-fabric.readthedocs.io/en/release-1.3/access_control.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/access_control.html

Field Description

Role Select the corresponding peer role required
by the policy. Usually this will be member.
You can find a peer’s role by viewing its
configuration information.

Policy Expression Mode In most cases, you’ll use Basic. Select
Advanced to write an expression string
using AND, OR, and NOutOf. For
information about how to write a valid policy
expression string, see Endorsement policies
in the Hyperledger Fabric documentation.

Signed By Select how many members must sign the
policy to fulfill the request.

6. If you're adding a new policy, then click Create. If you're modifying a policy, then click
Update.

Delete a Channel's Policies
You can delete channel policies that you have created.

You can't delete the default policies: Admins, Creator, Readers, Writers, Endorsement, and
LifecycleEndorsement. Also, you can't delete a channel policy if it is assigned to an ACL.
Before you try to delete a channel policy, confirm that the policy isn't assigned.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.
The Channels tab is displayed and the channel table contains a list of all of the channels
on your network.

2. In the channels table, click the channel that you want to delete a policy from.
The Channel Information page is displayed.

3. In the Channel Information page, click the Channel Policies pane.

4. Locate the policy that you want to delete and click its More Options button.

5. Click Remove and confirm the deletion.

What Are Channel ACLs?
Access control lists (ACLs) use policies to manage which organizations and roles can access
a channel's resources.

Users interact with the blockchain network by targeting components such as the query
system chaincode (qscc), lifecycle system chaincode (_lifecycle on Hyperledger Fabric
v2.x, lscc on Hyperledger Fabric v1.4.7), configuration system chaincode (cscc), peer, and
event. These components are associated with specific resources (for example,
GetConfigBlock or GetChaincodeData) that you can assign policies to at the channel level.
These policies are a part of the channel's configuration.

A policy defines which organizations and roles can request a resource. When a request is
made, the policy tells the system to check the requester's identity and determine if it's
authorized to make the request. When you create a channel, Oracle Blockchain Platform
includes the default Hyperledger Fabric ACLs with the channel. Oracle Blockchain Platform
also creates default policies (Admin, Creator, Writers, and Readers; also Endorsement and
LifecycleEndorsement on Hyperledger Fabric v2.x) for the channel. You can modify these

Chapter 3
Manage Channels

3-21

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2-endorse-policy

policies or create new policies as needed. See What Are Channel Policies?
(Hyperledger Fabric v2.x) or What Are Channel Policies? (Hyperledger Fabric v1.4.7).

Update Channel ACLs
You can update the channel's ACLs by assigning policies to the channel's resources. A
policy defines which organizations and roles can request a resource

Before you update a channel's ACLs, you should understand what policies and ACLs
are. See What Are Channel Policies? (Hyperledger Fabric v1.4.7) and What Are
Channel ACLs?

1. Go to the console and select the Channels tab.
The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the name of the channel that you want to update ACLs
for.
The Channel Information page is displayed.

3. In the Channel Information page, click the ACLs pane.

4. In the Resources table, locate the resource that you want to update. Click the
resource's Expand button and select the policy that you want to assign to the
resource.

5. Modify the other resource's policies as needed.

6. Click Update ACLs.

Add or Remove Orderers To or From a Channel
The orderer admin organization can add or remove orderers from a channel.

To add orderers to a channel:

1. In the founder console, open the Channels tab and select the channel to see its
details view.

2. Open the Orderers subtab. All orderer nodes currently joined to the channel are
listed.

3. Click Join Channel. Select an OSN not yet in this channel and click Join.

To remove orderers from a channel:

1. In the founder console, open the Channels tab and select the channel to see its
details view.

2. Open the Orderers subtab. All orderer nodes currently joined to the channel are
listed.

3. Select the orderer you want to remove from the channel and from its More Actions
menu select Remove.

Set the Orderer Administrator Organization
You can assign the administration of OSNs in a channel to any organization. Normally
either the founder or the channel creator would be assigned.

1. In the founder console, open the Channels tab.

Chapter 3
Manage Channels

3-22

2. Select the channel for which you want to set the orderer administrator organization, and
from the Action menu select Manage OSNs Admin.

3. Select from the list of available organizations, and click Submit.

Edit Ordering Service Settings for a Channel
You can update the ordering service settings for a particular channel.

Note the following important information about editing the ordering service settings for a
channel:

• Separately you can update the ordering service settings for the entire network as
described in Edit Ordering Service Settings for the Network.

• If you change the ordering service settings and there are applications running against the
network, then those applications must be manually updated to use the revised ordering
service settings.

• It isn’t common, but in some situations, you might expose a different ordering service to
some of the network participants. In this case, you’ll export the updated network config
block and the required participants will import the revised settings. See Join the
Participant or Scaled-Out OSNs to the Founder's Ordering Service.

You must be an administrator to perform this task.

1. Go to the founder’s console and select the Channels tab.

2. Locate the channel, click the More Actions menu, and select Update Ordering Service
Settings.

The Ordering Service Settings dialog is displayed.

3. Update the settings as needed.

Field Description

Batch Timout (ms) Specify the amount of time in milliseconds that
the system should wait before creating a batch.
Enter a number between 1 and 3600000.

Max Message Count Specify the maximum number of message to
include in a batch. Enter a number between 1
and 4294967295.

Absolute Message Bytes Specify the maximum number of bytes allowed
for the serialized messages in a batch.
This number must be larger than the value you
enter in the Preferred Message Bytes field.

Preferred Message Bytes Specify the preferred number of bytes allowed
for the serialized messages in a batch. A
message larger than this size results in a larger
batch, but the batch size will be equal to or less
than the number of bytes you specified in the
Absolute Message Bytes field.
Oracle recommends that you set this value to 1
MB or less.

The value that you enter in this field must be
smaller than the value you enter in the Absolute
Message Bytes field.

Snapshot Interval Size Defines number of MB per which a snapshot is
taken.

Chapter 3
Manage Channels

3-23

4. Click Update.

The updated settings are saved.

Manage Certificates
This topic contains information about how to manage your network’s certificates,
including how to import and export certificates to set up your blockchain network, and
how to manage and revoke certificates.

Typical Workflows to Manage Certificates
Here are the common tasks for managing your network’s certificates.

Adding Organizations to the Network

You must be an administrator to perform these tasks.

Task Description More Information

Export or prepare an
organization's certificates

The organization that wants to
join the network either outputs
or writes its certificates file
and gives it to the founder.

Export Certificates

Create a Fabric Organization's
Certificates File

Create an Organization's
Third-Party Certificates File

Import member certificates The founder imports the
organization's certificates file
to add the organization to the
network.

Import Certificates to Add
Organizations to the Network

View certificates The founder can view and
manage the network’s
certificates.

View and Manage Certificates

Revoking Certificates

You must be an administrator to perform these tasks.

Task Description More Information

Decide which certificates to
revoke

View the certificates on your
system to determine which
ones to revoke to keep the
network secure.

View and Manage Certificates

Select the certificates to
revoke

Revoke the certificates in your
CA.

Revoke Certificates

Apply CRL Generates and applies an
updated CRL to ensure that
clients with revoked
certificates can’t access
channels.

Apply the CRL

Chapter 3
Manage Certificates

3-24

Export Certificates
Founders and participant organizations must import and export certificate JSON files to
create the network.

Note the following information:

• For the founder to add a participant organization to the blockchain network, the
participant must export its certificates file and make it available to the founder. The
founder then uploads the certificates file to add the participant organization to the
network.

• The certificate export file contains admincerts, cacerts, and tlscacerts.

• You might need to export certificates for blockchain or application developers. For
example, a client application needs the TLS certificate to interact with peers or orderers.

For information about writing certificate files required to add Hyperledger Fabric or Third-
Party organizations to the network, see Extend the Network.

1. Go to the console and select the Network tab.

2. In the Network tab, go to the Organizations table, locate the member that you want to
export certificates for, and click its More Actions button.

3. Click Export Certificates.

Note that files exported by the console and REST APIs are only compatible for import
with the same component. That is you can't successfully use the REST API to import an
export file created with the console. Likewise, you can't successfully use the console to
import an export file created with the REST API.

4. Specify where to save the file. Click OK to save the certificates file.

5. Send the certificates JSON file to the founder for import. See Import Certificates to Add
Organizations to the Network.

Import Certificates to Add Organizations to the Network
To add an organization to the network, the founder must import a certificates file that was
exported or prepared by the organization that wants to join the network.

You can import certificates for the following organization types.

Type Description

Oracle Blockchain Platform Participant Organization You can import a participant organization into a Oracle
Blockchain Platform network. You upload the certificates
that the participant organization exported from the
console and sent to you.
For information about creating certificates for upload and
a list of the other steps that you need to perform to
successfully set up a participant organization on the
network, see Join the Participant or Scaled-Out OSNs to
the Founder's Ordering Service.

Chapter 3
Manage Certificates

3-25

Type Description

Hyperledger Fabric Organization You can import a Hyperledger Fabric organization into
an Oracle Blockchain Platform network. To successfully
upload a Fabric organization’s certificates file, you must
modify the certificates file to replace all instances of \n
with the newline character.
See Typical Workflow to Join a Fabric Organization to an
Oracle Blockchain Platform Network.

Third-Party Certificate Organization You can import an organization that is using certificates
generated from a third-party CA server. To successfully
upload a third-party organization’s certificates file, you
must modify the certificates file to replace all instances
of \n with the newline character.
See Typical Workflow to Join an Organization With
Third-Party Certificates to an Oracle Blockchain Platform
Network.

You must be an administrator to import certificates.

1. Go to the console and select the Network tab.

2. In the Network tab, click Add Organizations. The Add Organizations page is
displayed.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

3. Click Upload Organization Certificates. The File Upload dialog is displayed.

4. Browse for and select the JSON file containing the certificate information for the
organization you want to add to the network. Usually this file is named
certs.json. Click Open.

5. (Optional) Click the plus (+) icon to locate and upload another organization’s
certificate information.

6. Click Add. The organizations that you added are displayed in the Organization
table.

Note the following information for Oracle Blockchain Platform participant,
Hyperledger Fabric, and third-party certificate organizations. Even though the
founder uploaded the certificate information, the added organization can’t use the
ordering service to communicate on the network until it imports the founder’s
ordering service settings. The founder must export its ordering service settings
and give the resulting file to the joining organizations for import. See one of the
following:

• For Oracle Blockchain Platform participants, see Join the Participant or
Scaled-Out OSNs to the Founder's Ordering Service.

• For Hyperledger Fabric organizations, see Prepare the Fabric Environment to
Use the Oracle Blockchain Platform Network.

• For third-party certificate organizations, see Prepare the Third-Party
Environment to Use the Oracle Blockchain Platform Network.

Chapter 3
Manage Certificates

3-26

What's a Certificate Revocation List?
You use a certificate revocation list (CRL) to help manage the certificates throughout your
network.

A CRL is a list of digital certificates that the issuing Certificate Authority (CA) has revoked
before their scheduled expiration date and should no longer be trusted and used on the
network. For example, you should revoke any certificates that have been lost, stolen, or
compromised.

After you use the Manage Certificates functionality to revoke certificates for users, Oracle
Blockchain Platform creates the CRL. To ensure that the certificates are revoked throughout
the network, you’ll need to:

• Use the Apply CRL functionality after you join peers to a channel created by another
network member. Apply CRL prevents clients with revoked certificates from accessing the
channel. See Apply the CRL.

View and Manage Certificates
Use the console to view and manage the user certificates in your instance and any of the
certificates you imported when building the network.

1. Go to the console and select the Network tab.

2. In the Network tab, locate your organization’s ID and click its More Actions button.
Select Manage Client Certificates.

Note that the Certificate Summary table will be empty until you add users to your
instance. Also, the administrator’s certificate doesn’t display in this table. This is to
prevent you from accidentally revoking the administrator’s certificate.

Organizations with third-party certificates or Hyperledger Fabric organization with
revoked certificates won't display in this table. In such cases, you must use the native
Hyperledger Fabric CLI or SDK to import the organization's certificate revocation list
(CRL) file.

The Certificates Summary dialog is displayed and shows a list of the certificates in your
instance.

3. As needed, perform any of the following tasks:

• Revoke certificates. See Revoke Certificates.

• If you’ve revoked certificates and are working in a network with multiple members,
then use Apply CRL after you join peers to a channel created by another network
member. Apply CRL prevents clients with revoked certificates from accessing the
channel. See Apply the CRL.

Revoke Certificates
An organization can revoke certificates for any of its users. To ensure that the network
remains secure, you should revoke certificates in case they’re lost, stolen, or compromised.

You must be an administrator to perform this task.

1. Go to the console and select the Network tab.

Chapter 3
Manage Certificates

3-27

2. In the Network tab, locate your organization’s ID and click its More Actions
button. Select Manage Client Certificates.

The Certificates Summary dialog is displayed.

3. In the Certificates Summary dialog, locate and select the IDs of the users that you
want to revoke certificates for.

4. Click Revoke and confirm that you want to permanently revoke certificates for the
selected users.

The users with revoked certificate display in the table and are added to the CRL.

5. If you’re working in a network with other members, then to ensure that their
revoked certificates are cleaned up across the network, you must do the following:

• If you’re working in a network with multiple members, then apply the CRL after
you join peers to a channel created by another network member. Apply CRL
prevents clients with revoked certificates from accessing the channel. See
Apply the CRL.

Apply the CRL
If you're working in a network, then you must apply the CRL after you join peers to a
channel created by another network member. Apply CRL prevents members with
revoked certificates from accessing the channel.

You must do the following tasks before applying the CRL:

• Revoke certificates. See Revoke Certificates

You must be an administrator to perform this task.

1. Go to the console and select the Network tab.

2. In the Network tab, locate your organization’s ID and click its More Actions
button. Select Manage Client Certificates.

The Certificates Summary dialog is displayed.

3. Click the Apply CRL button and confirm that you want to apply the CRL.

Manage Ordering Service
This topic contains information about how founders and participants manage the
ordering service.

In addition to the content covered in this topic, several channel-specific tasks for the
orderer nodes can be performed on the Channels page of the console. See:

• Add or Remove Orderers To or From a Channel

• Set the Orderer Administrator Organization

• Edit Ordering Service Settings for a Channel

What is the Ordering Service?
Oracle Blockchain Platform supports Raft as the consensus type.

For more information on the Hyperledger Fabric implementation of the Raft protocol,
see: The Ordering Service - Raft.

Chapter 3
Manage Ordering Service

3-28

https://hyperledger-fabric.readthedocs.io/en/release-2.5/orderer/ordering_service.html#raft

With the older Kafka consensus type, the whole network can have at most two orderer nodes,
and they have to join all channels. In some cases, they may be overloaded, and cannot be
scaled out. With the Raft consensus type, the network can have an arbitrary number of
orderer nodes, and each channel can define its own orderer node set. Different channels can
use different orderer nodes, and orderer nodes will no longer be the bottleneck.

However, the Raft consensus type can be complicated to configure properly. There are rules
about what can or can't be done, and if these rules are not followed the channel and even the
network may not work. The following guidelines should reduce the problems you encounter:

Keep the Majority of the Ordering Service Nodes (OSN) Alive

The Raft consensus algorithm requires that the majority of ordering service nodes (OSNs)
are working; otherwise no consensus can be made. Majority means greater than 50%. For
example, for five OSNs, there must be at least three OSNs working; for six OSNs, there must
be at least four OSNs working.

• If there are 50% or less OSNs working in the network, network management will no
longer be functional. No new channels can be created, no new orderer nodes can be
added into network, no orderer can be removed from network, and so on.

• If there are 50% or less OSNs working in the application channel, no transaction can be
submitted to this application channel. Queries may still function correctly, however
administrative operations such as adding a new organization, changing the access
control list, or instantiating or deploying chaincodes will fail.

Be cautious when adding a new OSN to the network or an application channel. Ensure the
owner is trustworthy and the OSN is robust.

When removing OSNs or an organization, ensure that more than 50% of the OSNs will
remain working. For example, if you had 2 organizations with 3 OSNs each, if you removed
one organization, during the removal it would be interpreted as only 50% of the OSNs being
functional. Add an OSN to the remaining organization before deleting the extraneous
organization to ensure that you always exceed 50% of the OSNs working.

Do Not Add or Remove Orderers Frequently

Every time a new OSN is added into a network or channel, or an existing OSN is removed
from a channel, the current Raft OSN cluster will briefly become unstable. During this period,
no transactions can be handled, and an error message similar to the following may indicate
such a status:

UNKNOWN: Stream removed
SERVICE UNAVAILABLE
BAD REQUEST

This may last a few minutes. If you have removed the previous Raft leader OSN from the
channel, this may last as long as 20 minutes.

Ensure that you aren't adding or removing orderers frequently. If multiple orderers must be
added or removed, do one at a time ensuring that the network has returned to operational
status before making the next change.

Ensure the New Orderer is Started As Soon As Possible

When adding a new orderer into network, usually two organizations will be involved: the
founder and the owner of the new orderer. Both parties must follow the instructions in Join the

Chapter 3
Manage Ordering Service

3-29

Participant or Scaled-Out OSNs to the Founder's Ordering Service all the way to
completion or the founder won't be able to manage the network.

Join the Participant or Scaled-Out OSNs to the Founder's Ordering
Service

When you provision a participant instance, it is created with 3 orderers. There orderers
are inactive until they are joined to a network. When you scale out a founder, the new
orderers are also inactive until they are joined to a network.

If multiple orderers must be added or removed, do one at a time ensuring that the
network has returned to operational status before making the next change. See What
is the Ordering Service? for additional important details about adding, removing,
starting, and stopping Raft orderers.

Export the OSN Settings From the Participant or Scaled-Out Orderers

To join the participant or scaled-out orderers to a network, you need to export their
settings and import them into the founder.

1. In the participant console (or the founder console for scaled-out orderers), on the
Node tab find the orderer node (or the first orderer node if multiple nodes exist).
Select the Action menu for this node and select Export OSN Settings.

This will generate a JSON file with the settings and save the file. The file contains
the organization's certificate and the selected orderer service node (OSN) settings
signed by the private key of the administrator of the participant organization. This
file needs to be sent to the administrator of the founder instance.

Applications being run on channels using this OSN also require this exported TLS
certificate. See Before You Develop an Application.

2. In the founder console, open the Network tab. Click Add OSN. A window opens
prompting you for the location of the JSON file provided by the participant. Select
to upload the file and click Add.

The participant organization or newly scaled-out orderer will be added to the
orderer organization section of the system channel list.

Export the Founder's Configuration Settings

Once the participant or scaled-out orderers have been added to the founder, you need
to export the founder's settings and import them to the participant or scaled-out
orderer.

1. In the founder console, open the Network tab. Click Export Network Config
Block.

The network configuration block contains the latest system channel configuration
block. This can be saved and sent to the participant administrator.

2. In the participant console (or the founder console for scaled-out orderers), on the
Node tab find the orderer node (or the first orderer node if multiple nodes exist).
Select the Action menu for this node and select Import Network Config Block.

You'll be prompted for the file sent by the founder instance administrator.

3. In the participant console, refresh the Node tab. The orderer node status should
be listed as "down". From the Action menu select Start.

Chapter 3
Manage Ordering Service

3-30

Each orderer node started will be added to the Raft cluster in the founder.

Each time a new OSN is added by scaling out the orderer (as described in Scale Your
Instance) these steps need to be repeated to add the new OSN to the Raft cluster.

Note:

You can't add multiple OSNs into a network in a single batch. Ensure only 1 OSN is
added at a time.

Edit Ordering Service Settings for the Network
You can update the ordering service settings for the founder instance.

Note the following important information about editing the ordering service settings:

• The updated settings are used when you create new channels and are not applied to
existing channels.

• Separately you can update the ordering service settings for an individual existing
channels as described in Edit Ordering Service Settings for a Channel.

• If you change the ordering service settings and there are applications running against the
network, then those applications must be manually updated to use the revised ordering
service settings.

• It isn’t common, but in some situations, you might expose a different ordering service to
some of the network participants. In this case, you’ll export the updated network config
block and the required participants will import the revised settings. See Join the
Participant or Scaled-Out OSNs to the Founder's Ordering Service.

You must be an administrator to perform this task.

1. Go to the founder’s console and select the Network tab.

2. Click the Ordering Service Settings button.

The Ordering Service Settings dialog is displayed.

3. Update the settings as needed.

Field Description

Batch Timeout (ms) Specify the amount of time in milliseconds that
the system should wait before creating a batch.
Enter a number between 1 and 3600000.

Max Message Count Specify the maximum number of message to
include in a batch. Enter a number between 1
and 4294967295.

Absolute Message Bytes Specify the maximum number of bytes allowed
for the serialized messages in a batch.
This number must be larger than the value you
enter in the Preferred Message Bytes field.

Chapter 3
Manage Ordering Service

3-31

Field Description

Preferred Message Bytes Specify the preferred number of bytes allowed
for the serialized messages in a batch. A
message larger than this size results in a larger
batch, but the batch size will be equal to or less
than the number of bytes you specified in the
Absolute Message Bytes field.
Oracle recommends that you set this value to 1
MB or less.

The value that you enter in this field must be
smaller than the value you enter in the Absolute
Message Bytes field.

Snapshot Interval Size Defines number of MB per which a snapshot is
taken.

4. Click Update.

The updated settings are saved.

View Ordering Service Settings
You can view the founder's ordering service settings that were imported into a
participant’s Oracle Blockchain Platform instance.

If the founder changes the ordering service settings the new settings must be ported to
the participant as described in Join the Participant or Scaled-Out OSNs to the
Founder's Ordering Service. If there are applications running against the network, then
those applications must be manually updated to use the revised ordering service
settings.

1. Go to the participant’s console and select the Network tab.

2. Click Ordering Service Settings and click View.

The Ordering Settings dialog is displayed.

Chapter 3
Manage Ordering Service

3-32

4
Understand and Manage Nodes by Type

This topic contains information to help you understand the different node types and where
you can get more information about how the nodes are performing in the network.

Topics:

• Manage CA Nodes

• Manage the Console Node

• Manage Orderer Nodes

• Manage Peer Nodes

• Manage REST Proxy Nodes

Manage CA Nodes
This topic contains information about certificate authority (CA) nodes, including how to view
and edit the CA node configuration, and how to view the health information for the CA node.

View and Edit the CA Node Configuration
A certificate authority (CA) node’s configuration determines how the node performs and
behaves on the network.

Only administrators can change a node’s configuration. If you've got user permissions, then
you can view a node’s configuration settings. See CA Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the CA node that you want configuration
information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an administrator,
locate and click Edit Configuration. If you're a user, locate and click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure dialog.

6. Restart the node to apply any changes that you made.

View Health Information for a CA Node
You can check a certificate authority (CA) node’s metrics to see how the node is performing
on the blockchain network. This information helps you discover and diagnose performance
problems.

The Health pane displays the node’s performance metrics: CPU utilization and memory
utilization.

4-1

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the CA node you want to see health
information for.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

If the utilization percentages are consistently high, then contact Oracle Support.

Manage the Console Node
This topic contains information about the console node, including how to view and edit
the console node configuration, and how to view the health information for the console
node.

View and Edit the Console Node Configuration
The console node’s configuration determines how it performs and behaves on the
network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See Console Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the console node and click its
More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and click
View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

6. Restart the node to apply any changes that you made.

View Health Information for the Console Node
You can check the console node’s metrics to see how it's performing on the blockchain
network. This information helps you discover and diagnose performance problems.

The Health pane displays these performance metrics: CPU utilization and memory
utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the console node.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

Note the following information:

Chapter 4
Manage the Console Node

4-2

• If the CPU Utilization percentage is too high, then it might be because too many
users are trying to access the console at the same time, or that the console is having
technical issues.

• If the utilization percentages are consistently high, then contact Oracle Support

Manage Orderer Nodes
This topic contains information about ordering service nodes (OSNs), including how to view
and edit OSNs, how to view the health information for an OSN, and how to add an additional
OSN.

View and Edit the Orderer Node Configuration
An orderer node’s configuration determines how the node performs and behaves on the
network.

Only administrators can change a node’s configuration. If you've got user permissions, then
you can view a node’s configuration settings. See Orderer Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the orderer node that you want
configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an administrator,
locate and click Edit Configuration. If you're a user, locate and click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure dialog.

6. Restart the node to apply any changes that you made.

View Health Information for an Orderer Node
You can check an orderer node’s metrics to see how the node is performing on the
blockchain network. This information helps you discover and diagnose performance
problems.

The Health pane displays these performance metrics: CPU utilization and memory utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the orderer node you want to see health information
for.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

If the utilization percentages are consistently high, then contact Oracle Support. If the
Disk Utilization percentage is too high, then the ledger might not get stored on the node
properly.

Chapter 4
Manage Orderer Nodes

4-3

Add an Orderer Node
Founder instances are provisioned with 3 OSNs, all of which are active after instance
creation. Additional OSNs can be scaled out as described in Scale Your Instance.
These OSNs will not be started automatically. You must start them and export the
updated network configuration block to the partipant instances as described in Join the
Participant or Scaled-Out OSNs to the Founder's Ordering Service.

Participant instances are created with 3 OSNs, but none of these OSNs are joined to
the network or started when the instance is provisioned. You must follow the
instructions in Join the Participant or Scaled-Out OSNs to the Founder's Ordering
Service in order to join them to the network and start the nodes. If you want to scale
out the participant OSNs these steps must be repeated.

Manage Peer Nodes
This topic contains information about peer nodes, including how to view and edit peer
nodes, how to get a list of chaincodes installed on a peer, and how to find health
information for a peer node.

View and Edit the Peer Node Configuration
A peer node’s configuration determines how the node performs and behaves on the
network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See Peer Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the peer node that you want
configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and click
View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

6. Restart the node to apply any changes that you made.

List Chaincodes Installed on a Peer Node
You can view a list of the chaincodes and their versions installed on a specific peer
node in your network.

If you don’t see the chaincode or the chaincode version you were expecting, then you
can install a chaincode or upgrade a chaincode to the peer node. You must be an
administrator to install or upgrade a chaincode.

1. Go to the console and select the Nodes tab.

Chapter 4
Manage Peer Nodes

4-4

2. In the Nodes tab, click the name of the peer node you want to see information for.

The Node Information page is displayed.

3. Click the Chaincodes pane to view a list of chaincodes installed on the selected peer
node.

View Health Information for a Peer Node
You can check a peer node’s metrics to see how the node is performing on the blockchain
network. This information helps you discover and diagnose performance problems.

The Health pane displays these performance metrics: CPU utilization, memory utilization,
user transactions endorsed, and user transactions committed.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the peer node you want to see health information for.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

Note the following information:

• If the CPU Utilization and Memory Utilization percentages are too high, then it might
be because the peer is overloaded with endorsement requests. Consider adding
another peer or changing the endorsement policy.

• If the Disk Utilization percentage is too high, then the ledger might not get stored on
the node properly.

• The User Transactions Endorsed and User Transaction Committed metrics are
collected and refreshed every ten minutes. The counts you see are cumulative.

• If the utilization percentages are consistently high, then contact Oracle Support.

Manage REST Proxy Nodes
This topic contains information to help you understand how the REST proxy is used, add
enrollments to the REST proxy, and view and edit the REST proxy nodes.

How's the REST Proxy Used?
The REST proxy maps an application identity to a blockchain member, which allows users
and applications to call the Oracle Blockchain Platform REST APIs.

Instead of using the native Hyperledger Fabric APIs, Oracle Blockchain Platform can use the
REST proxy to interact with the Hyperledger Fabric network. When you use the native
Hyperledger Fabric APIs, you connect to the peers and orderer directly. However, the REST
proxy allows you to query or invoke a Fabric chaincode through the RESTful protocol.

Add Enrollments to the REST Proxy
You can add Hyperledger Fabric enrollments to the REST proxy. Enrollments allow users to
call the REST proxy without an enrollment certificate.

If you want to add a user to an enrollment, they must already exist in IDCS, and be assigned
to the REST_USER role.

Chapter 4
Manage REST Proxy Nodes

4-5

Use the Blockchain Platform console to add new enrollments and associate IDCS
users with these enrollments. The enrollments are managed entirely within Blockchain
Platform, not within IDCS.

For information about how users access the REST resources, see REST API for
Oracle Blockchain Platform.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, find the REST proxy node you want to add an enrollment to, and
click the Action menu for this node.

3. Click View or Manage Enrollments to see a list of the node’s current enrollments.

A list of the current enrollments is displayed. You can delete existing enrollments
as well as adding new ones from this page.

4. Expand Create New Enrollment.

5. In the Enrollment ID field, enter the name of the enrollment to add.

The enrollment ID can include only alphanumeric characters, hyphens (-), and
underscores (_).

6. Optionally, in the User ID field, enter the ID of a user with the REST_USER role to
associate with the enrollment. Click Enroll.

After you click Enroll:

• The enrollment is created and displays in the Enrollments table.

• The new enrollment is copied to each REST Proxy node in the network.

• If you specified a user ID, that ID is associated with the enrollment, and cannot
be removed from the associated REST users list. If the user ID is not a valid
REST user, an error is returned.

• If you specified a user ID, the generated enrollment certificate includes the ID
as the username attribute.

• User IDs that contain a colon (:) are not supported for REST API calls that use
basic authentication.

7. In the Associated REST Client Users pane you can view and manage any users
associated with a current enrollment, including deleting a user from an enrollment.

8. Add another user to the enrollment by expanding Associate New Users. Enter
the email or ID of a user that is already assigned the REST_USER role. Click
Associate.

After you've created an enrollment and associated a user with it, when you use REST
to run transactions on the blockchain the initiator listed in the details of the block will
be listed as the new enrollment rather that the original default user.

View and Edit the REST Proxy Node Configuration
A REST proxy node’s configuration determines how the node performs and behaves
on the network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See REST Proxy Node Attributes.

1. Go to the console and select the Nodes tab.

Chapter 4
Manage REST Proxy Nodes

4-6

2. In the Nodes tab, go to the Nodes table, locate the REST proxy node that you want
configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an administrator,
locate and click Edit Configuration. If you're a user, locate and click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s Proposal Wait Time (ms), Transaction
Wait Time (ms), Log Level, and Transaction Event Logging attributes as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure dialog.

View Health Information for a REST Proxy Node
You can check a REST proxy node’s metrics to see how the node is performing on the
blockchain network. This information helps you discover and diagnose performance
problems.

The Health pane displays these performance metrics: CPU utilization and memory utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the REST proxy node you want to see health information for.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

If the utilization percentages are consistently high, then contact Oracle Support.

Chapter 4
Manage REST Proxy Nodes

4-7

5
Extend the Network

This topic contains information to help founders add organizations to the blockchain network.
This topic also contains information to help organizations join a network.

Topics

• Add Oracle Blockchain Platform Participant Organizations to the Network

• Add Fabric Organizations to the Network

• Add Organizations with Third-Party Certificates to the Network

Add Oracle Blockchain Platform Participant Organizations to the
Network

This topic contains information about joining an Oracle Blockchain Platform participant
organization to an Oracle Blockchain Platform network.

Typical Workflow to Join a Participant Organization to an Oracle
Blockchain Platform Network

Here are the tasks the founder and participants organizations need to perform to set up a
blockchain network.

Adding Participant Organizations to a Blockchain Network

Task Who Does This? Description More Information

Export the participant
organization's certificates
and import them into the
network

Participant organization
outputs certificates

Founder organization
uploads certificates

In the participant
organization's instance,
use the wizard to output
the certificates into a JSON
file and send them to the
founder organization.

The founder uploads the
certificates to add the
participant to the network.

Import Certificates to Add
Organizations to the
Network

Export the participant
organization's ordering
service node (OSN)
settings and send to the
founder administrator

Participant organization
outputs a settings file

Founder organization
uploads the settings

In the participant
organization's instance,
export the settings into a
JSON file and sends them
to the founder organization.

The founder uploads the
settings to add the ordering
service.

Join the Participant or
Scaled-Out OSNs to the
Founder's Ordering Service

5-1

Task Who Does This? Description More Information

Export the founder
organization's network
configuration block and
upload it to the participant
organization

Founder organization
exports network
configuration block
information

Participant organization
uploads network
configuration block
information

In the founder’s instance,
download the network
configuration block
information (JSON file).

Then in the participant’s
instance, upload the
network configuration
block.

Join the Participant or
Scaled-Out OSNs to the
Founder's Ordering Service

Join Participant Organizations to the Channel and Set Anchor Peers

Task Who Does This? Description More Information

Create a channel Founder organization In the founder’s instance,
create a channel that the
founder and participants
use to communicate. Add
the founder’s peers to the
channel.

You must select any newly
added participants and
assign them permissions
on the channel.

Note that instead of
creating a new channel,
you can add participants to
an existing channel.

Create a Channel

Join participants to the
channel

Participant organization In the participant’s
instance, join the channel
that was created in the
founder’s instance.

Join a Peer to a Channel

Set anchor peers on the
founder and participants

Founder organization

Participant organization

In the founder and
participant instances,
specify which peers you
want to use as anchor
peers. You must select at
least one anchor peer for
each member.

Add an Anchor Peer

Deploy the Chaincode Across the Blockchain Network

Task Who Does This? Description More Information

Install the chaincode on the
founder

Founder organization In the founder’s instance,
upload and install the
chaincode. Choose the
peers to install the
chaincode on.

• (Hyperledger Fabric
v2.x) Use Quick
Deployment

• (Hyperledger Fabric
v1.4.7)Use Quick
Deployment

Chapter 5
Add Oracle Blockchain Platform Participant Organizations to the Network

5-2

Task Who Does This? Description More Information

Deploy the chaincode and
specify an endorsement
policy on the founder

Founder organization In the founder’s instance,
deploy the chaincode to
activate it on the network.

An endorsement policy is
required to specify the
number of members that
must approve chaincode
transactions before they’re
submitted to the ledger.

• (Hyperledger Fabric
v2.x) Deploy a
Chaincode

• (Hyperledger Fabric
v1.4.7) Instantiate a
Chaincode

• (Hyperledger Fabric
v2.x) Specify an
Endorsement Policy

• (Hyperledger Fabric
v1.4.7) Specify an
Endorsement Policy

Install the chaincode on the
participant

Participant organization In the participant’s
instance, install the
chaincode that your
network will use.

Because you’ll install the
same chaincode that you
installed and deployed on
the founder, you don’t need
to deploy the chaincode on
the participant. When the
participant installs the
chaincode, it’s already
deployed.

• (Hyperledger Fabric
v2.x) Use Quick
Deployment

• (Hyperledger Fabric
v1.4.7)Use Quick
Deployment

Run Transactions

Task Who Does This? Description More Information

Invoke the chaincode and
monitor network activity
and ledger updates

Founder organization

Participant organization

Begin using your network’s
chaincode for transactions.

Both the founder and the
participants can use their
consoles to find out
information about the
activity on the network.
Specifically, you can use
the console’s Channels tab
to locate information about
specific ledger transactions

• Find Information About
Nodes

• View a Channel’s
Ledger Activity

Add Fabric Organizations to the Network
This topic contains information about joining Hyperledger Fabric organizations to an Oracle
Blockchain Platform network.

Chapter 5
Add Fabric Organizations to the Network

5-3

Typical Workflow to Join a Fabric Organization to an Oracle
Blockchain Platform Network

Here are the tasks that a Fabric organization and the Oracle Blockchain Platform
founder organization need to perform to join a Fabric organization to the Oracle
Blockchain Platform network.

Task Who Does This? Description More Information

Create the certificate file for
the Fabric organization

Fabric organization Find the Fabric
organization’s Admin, CA,
and TLS certificate
information and use it to
compose a JSON
certificates file.

Create a Fabric
Organization's Certificates
File

Upload Fabric
organization's certificate
file to the Oracle
Blockchain Platform
network

Founder organization Use the console to upload
and import the Fabric
organization's certificate
file to add the Fabric
organization to the
network.

Import Certificates to Add
Organizations to the
Network

Create a channel Founder organization Create a new channel and
add the Fabric organization
to it.

Create a Channel

Export the ordering service
settings from founder

Founder organization Output the founder’s
ordering services settings
to a JSON file and send the
file to the Fabric
organization.

Join the Participant or
Scaled-Out OSNs to the
Founder's Ordering Service

Compose orderer
certificate file

Fabric organization Create a file named
orderer.pem that includes
the tlscacert information.
Go to the exported ordering
service settings file and
copy the tlscacert
information. After you paste
the tlscacert information
into the orderer.pem file,
you must replace all
instances of \n with the
newline character.

The orderer.pem file must
have the following format:

-----BEGIN
CERTIFICATE-----
...
...
...
-----END
CERTIFICATE-----

Create a Fabric
Organization's Certificates
File

Chapter 5
Add Fabric Organizations to the Network

5-4

Task Who Does This? Description More Information

Provide ordering service
settings

Founder organization Open the ordering service
settings file and find the
ordering service’s address
and port and give them to
the Fabric organization. For
example:

"orderingServiceNod
es": [
{
"address":
"grpcs://
example_address:777
7",
...
}]

NA

Add the Fabric organization
to the network

Fabric organization The Fabric organization
copies certificates into its
environment, sets
environment variables,
fetches the genesis block,
joins the channel, and
installs the chaincode.

Prepare the Fabric
Environment to Use the
Oracle Blockchain Platform
Network

Create a Fabric Organization's Certificates File
For a Fabric organization to join an Oracle Blockchain Platform network, it must write a
certificates file containing its admincerts, cacerts, and tlscacerts information. The Oracle
Blockchain Platform founder organization imports this file to add the Fabric organization to
the network.

The Fabric certificates information is stored in PEM files located in the Fabric organization’s
MSP folder. For example, network_name_example/crypto-config/
peerOrganizations/example_org.com/msp/.

The certificates file must be in written in JSON and must contain the following fields. For all
certificates, when you copy the certificate information into the JSON file, you must replace
each new line with \n, so that the information is all on one line with no spaces, as shown in
the following example.

• mspid — Specifies the name of the Fabric organization.

• type — Indicates that the organization is a network participant. This value must be
Participant.

• admincert — Contains the contents of the organization’s Admin certificates file:
Admin@example_org.com-cert.pem.

• cacert — Contains the contents of the organization’s CA certificates file:
ca.example_org-cert.pem.

• tlscacert — Contains the contents of the organization’s TLS certificate file:
tlsca.example_org-cert.pem.

Chapter 5
Add Fabric Organizations to the Network

5-5

• intermediatecerts— This optional element contains the contents of an
intermediate CA certificates file. Do not specify this element unless there is an
intermediate CA certificates file.

• nodeouidentifiercert— This section contains certificates that identify Node OU
roles.

• adminouidentifiercert— Contains the contents of the organization’s certificate file
that is used to identify Node OU admin roles. If you do not need the admin role,
you can use the cacert file contents, or intermediate certificate file contents, as the
adminouidentifier contents.

• clientouidentifiercert— Contains the contents of the organization’s certificate file
that is used to identify Node OU client roles.

• ordererouidentifiercert— Contains the contents of the organization’s certificate
file that is used to identify Node OU orderer roles. If you do not need the orderer
role, you can use the cacert file contents, or intermediate certificate file contents,
as the ordererouidentifier contents.

• peerouidentifiercert— Contains the contents of the organization’s certificate file
used to identify Node OU peer roles.

Structure the file similar to the following example:

{
 "mspID": "examplemspID",
 "type": "Participant",
 "certs": {
 "admincert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
 "cacert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
 "tlscacert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n"
 "nodeouidentifiercert": {
 "adminouidentifiercert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
 "clientouidentifiercert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
 "ordererouidentifiercert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
 "peerouidentifiercert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n"
 }
 }
}

Chapter 5
Add Fabric Organizations to the Network

5-6

Prepare the Fabric Environment to Use the Oracle Blockchain Platform
Network

You must modify the Fabric organization’s environment before it can use the Oracle
Blockchain Platform network.

Confirm that the following prerequisite tasks were completed. For more information, see
Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform Network.

• The Fabric organization’s certificate file was created and sent to the Oracle Blockchain
Platform network founder.

• The network founder uploaded the certificates file to add the Fabric organization to the
network.

• The network founder created a new channel and added the Fabric organization to it.

• The network founder downloaded its ordering service settings and sent them to the
Fabric organization.

• The Fabric organization created the orderer certificate file.

• The network founder gave the ordering service address and port to the Fabric
organization.

You must add the Fabric organization and install and test the chaincode.

1. Navigate to the Fabric network directory and launch the peer container.

2. Fetch the channel’s genesis block with this command:

peer channel fetch 0 mychannel.block -o ${orderer_addr}:${orderer_port} -
c mychannel --tls --cafile orderer.pem --logging-level debug

Where:

• {orderer_addr} is the Founder’s orderer address.

• {orderer_port} is the Founder’s port number.

• -c mychannel is the name of the channel that the Founder created. This is the
channel where the Fabric organization will send and receive transactions on the
Oracle Blockchain Platform network.

• orderer.pem is the Founder’s orderer certificate file.

3. Join the channel with this command:

peer channel join -b mychannel.block -o ${orderer_addr}:${orderer_port} --
tls --cafile orderer.pem --logging-level debug

4. Install the chaincode with this command:

peer chaincode install -n mycc -v 1.0 -l "golang" -p ${CC_SRC_PATH}

Where CC_SRC_PATH is the folder that contains the chaincode.

Chapter 5
Add Fabric Organizations to the Network

5-7

5. Instantiate the chaincode with this command:

peer chaincode instantiate -o ${orderer_addr}:${orderer_port} --
tls --cafile orderer.pem -C mychannel -n mycc -l golang -v 1.0 -c
'{"Args":["init","a","100","b","200"]}' -P <policy_string> --
logging-level debug

6. Invoke the chaincode with this command:

peer chaincode invoke -o ${orderer_addr}:${orderer_port} --tls
true --cafile orderer.pem -C mychannel -n mycc -c '{"Args":
["invoke","a","b","10"]}' --logging-level debug

7. Query the chaincode with this command:

peer chaincode query -C mychannel -n mycc -c '{"Args":
["query","a"]}' --logging-level debug

Add Organizations with Third-Party Certificates to the
Network

This topic contains information about joining organizations using third-party certificates
to an Oracle Blockchain Platform network.

Typical Workflow to Join an Organization With Third-Party Certificates
to an Oracle Blockchain Platform Network

Organization with certificates issued by a third-party certificate authority (CA) can join
the Oracle Blockchain Platform network as participants.

Client-only Organizations

These participants are client-only organizations and have no peers or orderers. They
cannot create channels, join peers or install chaincode.

After joining the network, these organizations can use an SDK or a Hyperledger Fabric
CLI to:

• Deploy, invoke, and query chaincode if they're a client organization administrator.

• Invoke and query chaincode if they're a client organization non-administrator.

To control who can deploy and invoke chaincode when client-only organizations are
part of the network:

• The chaincode owner who installs the chaincode onto peers can decide who can
deploy the chaincode by using the Hyperledger Fabric peer chaincode package -
i instantiation policy command to set the instantiation policy for the chaincode.

• The chaincode instantiator can use the Hyperledger Fabric peer chaincode
instantiate -P endorsement policy command to set the endorsement policy
controlling who can invoke the chaincode.

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-8

• The channel owner can decide who can invoke or query a chaincode by setting the
channel proposal and query access control list. See Hyperledger Fabric Access Control
Lists.

Workflow

Here are the tasks that an organization with third-party certificates and the Oracle Blockchain
Platform founder need to perform to join the organization to an Oracle Blockchain Platform
network.

Task Who Does This? Description More Information

Get the third-party
certificates

Third-party certificates
(participant) organization

Go to the third-party CA
server and generate the
required certificates files.
Format the files as needed
for import into the network.

Third-Party Certificate
Requirements

Create the certificates file
for import

Third-party certificates
(participant) organization

Find the participant’s
Admin and CA certificate
information and use it to
compose a JSON
certificates file.

Create an Organization's
Third-Party Certificates File

Upload a certificate file for
the third-party (participant)
organization

Founder organization Use the console to upload
and import the participant’s
certificate file to add the
participant to the network.

Import Certificates to Add
Organizations to the
Network

Export the ordering service
settings from network
founder and provide them
to the third-party
(participant) organization

Founder organization Output the founder’s
ordering services settings
to a JSON file and send the
file to the participant.
Open the ordering service
settings file and find the
ordering service’s address
and port and give them to
the participant. For
example:

"orderingServiceNod
es": [
{
"address":
"grpcs://
example_address:777
7"
...
}]

Join the Participant or
Scaled-Out OSNs to the
Founder's Ordering Service

Create the channel Founder Create a new channel and
add the participant to it.

Create a Channel

Install and deploy the
chaincode

Founder In the founder’s instance,
upload, install, and deploy
the chaincode. Choose the
network peers to install the
chaincode on.

• (Hyperledger Fabric
v2.x) Use Quick
Deployment

• (Hyperledger Fabric
v1.4.7)Use Quick
Deployment

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-9

https://hyperledger-fabric.readthedocs.io/en/release-2.2/access_control.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/access_control.html

Task Who Does This? Description More Information

Set up the third-party
(participant) organization's
environment

Third-party certificates
(participant) organization

To query or invoke
chaincodes, the participant
must:
• Add the founder's

ordering service's
address and port to
the participant's
environment.

• Configure the
environment to use
Hyperledger Fabric
CLI or SDKs.

• Install the chaincode
on peers.

Prepare the Third-Party
Environment to Use the
Oracle Blockchain Platform
Network

Third-Party Certificate Requirements
To successfully join the network, an organization must generate the required third-
party certificates. The information in these certificates is used to create the
organization's certificates file, which is then imported into the founder's instance.

Which Certificates Do Organizations Need to Provide?

You must generate the following certificates from your CA server:

• Client Public Certificate

• CA Root Certificate

What Are the Requirements for These Certificates?

The certificates must meet the following requirements:

• When generating the private key, you must use the Elliptic Curve Digital Signature
Algorithm (ECDSA). This algorithm is the only accepted algorithm for Fabric MSP
keys.

• The Subject Key Identifier (SKI) is mandatory and you must indicate it as x509
extensions in the extension file.

• You must convert the key files from the .key to the .pem format.

• You must convert the certificates from the .crt to the .pem format.

Creating the Certificates

The following walkthrough is an example of how to use OpenSSL or the Hyperledger
Fabric cryptogen utility to generate your certificates. For detailed information on the
commands used, refer to:

• OpenSSL documentation

• cryptogen utility documentation

To create your certificates using OpenSSL:

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-10

https://www.openssl.org/docs/man1.1.1/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/cryptogen.html

1. Create a self-signed CA certificate/key:

openssl ecparam -name prime256v1 -genkey -out ca.key
openssl pkcs8 -topk8 -inform PEM -in ca.key -outform pem -nocrypt -out ca-
key.pem
openssl req -new -key ca-key.pem -out ca.csr
openssl x509 -req -days 365 -in ca.csr -signkey ca-key.pem -out ca.crt -
extensions x509_ext -extfile opensslca.conf
openssl x509 -in ca.crt -out ca.pem -outform PEM

Our example opensslca.conf file:

[req]
default_bits = 2048
distinguished_name = subject
req_extensions = req_ext
x509_extensions = x509_ext
string_mask = utf8only

[subject]
countryName = CN
#countryName_default = US

stateOrProvinceName = Beijing
#stateOrProvinceName_default = NY

localityName = Beijing
#localityName_default = New York

organizationName = thirdpartyca, LLC
#organizationName_default = Example, LLC

Use a friendly name here because its presented to the user. The
server's DNS
names are placed in Subject Alternate Names. Plus, DNS names here is
deprecated
by both IETF and CA/Browser Forums. If you place a DNS name here,
then you
must include the DNS name in the SAN too (otherwise, Chrome and
others that
strictly follow the CA/Browser Baseline Requirements will fail).
commonName = thirdpartyca
#commonName_default = Example Company

emailAddress = ca@thirdpartyca.com

Section x509_ext is used when generating a self-signed certificate.
I.e., openssl req -x509 ...
[x509_ext]

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-11

subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer

You only need digitalSignature below. *If* you don't allow
RSA Key transport (i.e., you use ephemeral cipher suites), then
omit keyEncipherment because that's key transport.
basicConstraints = CA:TRUE
keyUsage = Certificate Sign, CRL Sign, digitalSignature,
keyEncipherment
subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me
confused
In either case, you probably only need serverAuth.
extendedKeyUsage = serverAuth, clientAuth

Section req_ext is used when generating a certificate signing
request. I.e., openssl req ...
[req_ext]

subjectKeyIdentifier = hash

basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment
subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me
confused
In either case, you probably only need serverAuth.
extendedKeyUsage = serverAuth, clientAuth

[alternate_names]

DNS.1 = localhost
DNS.2 = thirdpartyca.com
#DNS.3 = mail.example.com
#DNS.4 = ftp.example.com

Add these if you need them. But usually you don't want them or
need them in production. You may need them for development.
DNS.5 = localhost
DNS.6 = localhost.localdomain
DNS.7 = 127.0.0.1

2. Create a user certificate/key using above CA key:

openssl ecparam -name prime256v1 -genkey -out user.key
openssl pkcs8 -topk8 -inform PEM -in user.key -outform pem -nocrypt
-out user-key.pem
openssl req -new -key user-key.pem -out user.csr

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-12

openssl x509 -req -days 365 -sha256 -CA ca.pem -CAkey ca-key.pem -
CAserial ca.srl -CAcreateserial -in user.csr -out user.crt -extensions
x509_ext -extfile openssl.conf
openssl x509 -in user.crt -out user.pem -outform PEM

Our example openssl.conf file:

[req]
default_bits = 2048
default_keyfile = tls-key.pem
distinguished_name = subject
req_extensions = req_ext
x509_extensions = x509_ext
string_mask = utf8only

The Subject DN can be formed using X501 or RFC 4514 (see RFC 4519 for a
description).
Its sort of a mashup. For example, RFC 4514 does not provide
emailAddress.
[subject]
countryName = CN
#countryName_default = US

stateOrProvinceName = Beijing
#stateOrProvinceName_default = NY

localityName = Beijing
#localityName_default = New York

organizationName = thirdpartyca, LLC
#organizationName_default = Example, LLC

Use a friendly name here because its presented to the user. The
server's DNS
names are placed in Subject Alternate Names. Plus, DNS names here is
deprecated
by both IETF and CA/Browser Forums. If you place a DNS name here,
then you
must include the DNS name in the SAN too (otherwise, Chrome and
others that
strictly follow the CA/Browser Baseline Requirements will fail).
commonName = admin@thirdpartyca.com
#commonName_default = Example Company

emailAddress = admin@thirdpartyca.com
#emailAddress_default = test@example.com

Section x509_ext is used when generating a self-signed certificate.
I.e., openssl req -x509 ...
[x509_ext]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer

You only need digitalSignature below. *If* you don't allow

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-13

RSA Key transport (i.e., you use ephemeral cipher suites), then
omit keyEncipherment because that's key transport.
basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment

subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me
confused
In either case, you probably only need serverAuth.
#extendedKeyUsage = Any Extended Key Usage
#extendedKeyUsage = serverAuth, clientAuth

Section req_ext is used when generating a certificate signing
request. I.e., openssl req ...
[x509_ca_ext]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer

You only need digitalSignature below. *If* you don't allow
RSA Key transport (i.e., you use ephemeral cipher suites), then
omit keyEncipherment because that's key transport.
basicConstraints = CA:TRUE
keyUsage = Certificate Sign, CRL Sign, digitalSignature,
keyEncipherment
subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me
confused
In either case, you probably only need serverAuth.
#extendedKeyUsage = Any Extended Key Usage
extendedKeyUsage = serverAuth, clientAuth

Section req_ext is used when generating a certificate signing
request. I.e., openssl req ...
[req_ext]
subjectKeyIdentifier = hash
basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment
subjectAltName = @alternate_names
nsComment = "OpenSSL Generated Certificate"

RFC 5280, Section 4.2.1.12 makes EKU optional
CA/Browser Baseline Requirements, Appendix (B)(3)(G) makes me
confused
In either case, you probably only need serverAuth.

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-14

#extendedKeyUsage = Any Extended Key Usage
#extendedKeyUsage = serverAuth, clientAuth

[alternate_names]
DNS.1 = localhost
DNS.3 = 127.0.0.1
DNS.4 = 0.0.0.0
Add these if you need them. But usually you don't want them or
need them in production. You may need them for development.
DNS.5 = localhost
DNS.6 = localhost.localdomain
DNS.7 = 127.0.0.1
IPv6 localhost
DNS.8 = ::1

To create your certificates using the Hyperledger Fabric cryptogen utility:

• The following cryptogen commands are used to create Hyperledger Fabric key material:

cryptogen generate --config=./crypto-config.yaml

Our example crypto-config.yaml file:

Copyright IBM Corp. All Rights Reserved.
#
SPDX-License-Identifier: Apache-2.0
#

--
-
"PeerOrgs" - Definition of organizations managing peer nodes

--
-
PeerOrgs:
 #
--
-
 # Org1
 #
--
-
 - Name: Org1
 Domain: org1.example.com
 EnableNodeOUs: true
 #
--
-
 # "Specs"
 #
--
-
 # Uncomment this section to enable the explicit definition of hosts

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-15

in your
 # configuration. Most users will want to use Template, below
 #
 # Specs is an array of Spec entries. Each Spec entry consists
of two fields:
 # - Hostname: (Required) The desired hostname, sans the
domain.
 # - CommonName: (Optional) Specifies the template or explicit
override for
 # the CN. By default, this is the template:
 #
 # "{{.Hostname}}.{{.Domain}}"
 #
 # which obtains its values from the
Spec.Hostname and
 # Org.Domain, respectively.
 #
--

 # Specs:
 # - Hostname: foo # implicitly "foo.org1.example.com"
 # CommonName: foo27.org5.example.com # overrides Hostname-
based FQDN set above
 # - Hostname: bar
 # - Hostname: baz
 #
--

 # "Template"
 #
--

 # Allows for the definition of 1 or more hosts that are created
sequentially
 # from a template. By default, this looks like "peer%d" from 0
to Count-1.
 # You may override the number of nodes (Count), the starting
index (Start)
 # or the template used to construct the name (Hostname).
 #
 # Note: Template and Specs are not mutually exclusive. You may
define both
 # sections and the aggregate nodes will be created for you.
Take care with
 # name collisions
 #
--

 Template:
 Count: 2
 # Start: 5
 # Hostname: {{.Prefix}}{{.Index}} # default
 #
--

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-16

 # "Users"
 #
--
-
 # Count: The number of user accounts _in addition_ to Admin
 #
--
-
 Users:
 Count: 1
 #
--
-
 # Org2: See "Org1" for full specification
 #
--
-
 - Name: Org2
 Domain: org2.example.com
 EnableNodeOUs: true
 Template:
 Count: 2
 Users:
 Count: 1

What's Next?

After confirming that you’ve outputted and updated the proper files, you can then create the
certificates file for import into the Oracle Blockchain Platform network. See Create an
Organization's Third-Party Certificates File.

Create an Organization's Third-Party Certificates File
To join an Oracle Blockchain Platform network, the organization must write a certificates file
containing its admincert and cacert information. The network founder imports this file to add
the organization to the network.

Go to the certificates files that you generated from the CA server to find the information that
you need to create the certificates file. See Third-Party Certificate Requirements.

The certificates file must be in written in JSON and contain the following fields:

• mspid — Specifies the name of the organization.

• type — Indicates that the organization is a network participant. This value must be
Participant.

• admincert — Contains the contents of the organization’s Admin certificates file. When
you copy the certificates information into the JSON file, you must replace each new line
with \n.

• cacert — Contains the contents of the organization’s CA certificates file. When you copy
the certificates information into the JSON file, you must replace each new line with \n.

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-17

This is how the file needs to be structured:

{
 "mspID": "examplemspID",
 "type": "Participant",
 "certs": {
 "admincert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
 "cacert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n"
 }
}

Prepare the Third-Party Environment to Use the Oracle Blockchain
Platform Network

You must set up the third-party organization's environment before it can use the Oracle
Blockchain Platform network.

Confirm that the following prerequisite tasks were completed. For information, see
Typical Workflow to Join an Organization With Third-Party Certificates to an Oracle
Blockchain Platform Network.

• The third-party organization’s certificate file was created and sent to the Oracle
Blockchain Platform network founder.

• The network founder uploaded the certificates file to add the third-party
organization to the network.

• The network founder exported the orderer service's settings and gave the service's
address and port to the third-party organization and the organization added them
to the environment.

• The network founder created a new channel and added the third-party
organization to it.

• The network founder installed and instantiated the chaincode.

Setup organization's Environment

Before the third-party organization can successfully use the Oracle Blockchain
Platform network, it must set up its environment to use Hyperledger Fabric CLI or
SDKs. See the Hyperledger Fabric documentation.

Install the Chaincode

The third-party organization must install the chaincode on the peers. These peers
must then be joined to the channel so that the chaincode can be invoked.

Deploy the Chaincode

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-18

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-latest

If needed, the third-party organizations can deploy the chaincode on the channel. For
example:

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_TLS_ROOTCERT_FILE=$PWD/tls-ca.pem
export CORE_PEER_MSPCONFIGPATH=$PWD/crypto-config/peerOrganizations/
customerorg1.com/users/Admin@customerorg1.com/msp
export CORE_PEER_LOCALMSPID="customerorg1"

gets channel name from input###
CHANNEL_NAME=$1

echo "######### going to instantiate chaincode on channel ${CHANNEL_NAME}
##########"
CORE_PEER_ADDRESS=${peer_host}:${port} peer chaincode instantiate
-o ${peer_host}:${port} --tls $CORE_PEER_TLS_ENABLED --cafile
./tls-ca.pem -C ${CHANNEL_NAME} -n obcs-example02 -v v0 -c '{"Args":
["init","a","100","b","200"]}'

Invoke the Chaincode

Third-party organizations use the Hyperledger Fabric CLI or SDKs to invoke the chaincode.
For example:

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_TLS_ROOTCERT_FILE=$PWD/tls-ca.pem
export CORE_PEER_MSPCONFIGPATH=$PWD/crypto-config/peerOrganizations/
customerorg1.com/users/User1@customerorg1.com/msp
export CORE_PEER_LOCALMSPID="customerorg1"

gets channel name from input
CHANNEL_NAME=$1

do query or invoke on chaincode

CORE_PEER_ADDRESS=${peer_host}:${port} peer chaincode query -C
${CHANNEL_NAME} -n $2 -c '{"Args":["query","a"]}'

CORE_PEER_ADDRESS=${peer_host}:${port} peer chaincode invoke -o
${peer_host}:${port} --tls $CORE_PEER_TLS_ENABLED --cafile ./tls-
ca.pem -C ${CHANNEL_NAME} -n $2 -c '{"Args":["invoke","a","b","10"]}'

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-19

6
Develop Chaincodes

This topic contains information to help you understand how to write and test chaincodes for
use in Oracle Blockchain Platform.

Topics

• Write a Chaincode

• Use a Mock Shim to Test a Chaincode

• Deploy a Chaincode on a Peer to Test the Chaincode

Write a Chaincode
A chaincode is written in Go, Node.js, or Java and then packaged into a ZIP file that is
installed on the Oracle Blockchain Platform network.

Chaincodes define the data schema in the ledger, initialize it, perform updates when triggered
by applications, and respond to queries. Chaincodes can also post events that allow
applications to be notified and perform downstream operations. For example, after purchase
orders, invoices, and delivery records have been matched by a chaincode, it can post an
event so that a subscribing application can process related payments and update an internal
ERP system.

Resources for Chaincode Development

Oracle Blockchain Platform uses Hyperledger Fabric as its foundation. Use the Hyperledger
Fabric documentation to help you write valid chaincodes.

• Welcome to Hyperledger Fabric. The Key Concepts and Tutorials sections should be
read before you write you own chaincode.

• Go Programming Language. The Go compilers, tools, and libraries provide a variety of
resources that simplify writing chaincodes.

• Package shim. Package shim provides APIs for the chaincode to access its state
variables, transaction context and call other chaincodes. This documents the actual
syntax required for your chaincode.

Oracle Blockchain Platform provides downloadable samples that help you understand how to
write chaincodes and applications. See What Are Chaincode Samples?

You can add rich-query syntax to your chaincodes to query the state database. See SQL Rich
Query Syntax and CouchDB Rich Query Syntax.

Package and Zip a Go Chaincode

Once you've written your chaincode, place it in a ZIP file. You don't need to create a package
for the Go chaincode or sign it — the Oracle Blockchain Platform installation and deployment
process does this for you as described in Typical Workflow to Deploy Chaincodes
(Hyperledger Fabric v2.x) or Typical Workflow to Deploy Chaincodes (Hyperledger Fabric
v1.4.7).

6-1

https://hyperledger-fabric.readthedocs.io/en/latest/
https://golang.org/dl/
https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim?tab=doc

If your chaincode has any external dependencies, you can place them in the vendor
directory of your ZIP file.

Vendor the Shim for Go Chaincodes (Hyperledger Fabric v2.x)

The Go chaincode shim dependency, which was previously included with earlier
versions of Hyperledger Fabric, is not included with Hyperledger Fabric v2.x. The shim
must now be vendored (imported) to Go chaincodes before they are installed on a
peer running Hyperledger Fabric v2.x.

You can use Go modules or a third-party tool such as govendor to vendor the
chaincode shim and update it to the version that works with Hyperledger Fabric v2.x.

For more information, see Chaincode shim changes (Go chaincode only) and Upgrade
Chaincodes with vendored shim in the Hyperledger Fabric documentation. For more
information about Go modules, see Go Modules Reference.

Package and Zip a Node.js Chaincode

If you're writing a Node.js chaincode, you need to create a package.json file with
two sections:

• The scripts section declares how to launch the chaincode.

• The dependencies section specifies the dependencies.

The following is a sample package.json for a Node.js chaincode:

{
 "name": "chaincode_example02",
 "version": "1.0.0",
 "description": "chaincode_example02 chaincode implemented in
Node.js",
 "engines": {
 "node": ">=8.4.0",
 "npm": ">=5.3.0"
 },
 "scripts": { "start" : "node chaincode_example02.js" },
 "engine-strict": true,
 "license": "Apache-2.0",
 "dependencies": {
 "fabric-shim": "~1.3.0"
 }
}

The packaging rules for a Node.js chaincode are:

• package.json must be in the root directory.

• The entry JavaScript file can be located anywhere in the package.

• If "start" : "node <start>.js" isn't specified in the package.json,
server.js must be in the root directory.

Place the chaincode and package file in a ZIP file to install it on Oracle Blockchain
Platform.

Package and Zip a Java Chaincode

Chapter 6
Write a Chaincode

6-2

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2-shim-changes
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2-shim-upgrade
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2-shim-upgrade
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=go-docs-modules

If you're writing a Java chaincode, you can choose Gradle or Maven to build the chaincode.

If you're using Gradle, place the chaincode, build.gradle, and settings.gradle in a ZIP file to
install it on Oracle Blockchain Platform. The following is a sample file list of a chaincode
package:

Archive: example_gradle.zip
 Length Date Time Name
--------- ---------- ----- ----
 610 02-14-2019 01:36 build.gradle
 54 02-14-2019 01:28 settings.gradle
 0 02-14-2019 01:28 src/
 0 02-14-2019 01:28 src/main/
 0 02-14-2019 01:28 src/main/java/
 0 02-14-2019 01:28 src/main/java/org/
 0 02-14-2019 01:28 src/main/java/org/hyperledger/
 0 02-14-2019 01:28 src/main/java/org/hyperledger/fabric/
 0 02-14-2019 01:28 src/main/java/org/hyperledger/fabric/example/
 5357 02-14-2019 01:28 src/main/java/org/hyperledger/fabric/example/
SimpleChaincode.java
--------- -------
 6021 10 files

If you're using Maven, place the chaincode and pom.xml in a ZIP file to install it on Oracle
Blockchain Platform. The following is a sample file list of a chaincode package:

Archive: example_maven.zip
 Length Date Time Name
--------- ---------- ----- ----
 3313 02-14-2019 01:52 pom.xml
 0 02-14-2019 01:28 src/
 0 02-14-2019 01:28 src/chaincode/
 0 02-14-2019 01:28 src/chaincode/example/
 4281 02-14-2019 01:28 src/chaincode/example/SimpleChaincode.java
--------- -------
 7594 5 files

Testing a Chaincode

After you write your chaincode, then you need to test it. See:

• Use a Mock Shim to Test a Chaincode

• Deploy a Chaincode on a Peer to Test the Chaincode

Installing and Deploying a Chaincode

After you’ve tested your chaincode, you can deploy it by following the information in Typical
Workflow to Deploy Chaincodes (Hyperledger Fabric v2.x) or Typical Workflow to Deploy
Chaincodes (Hyperledger Fabric v1.4.7).

Upgrading a Chaincode

You can upgrade a deployed chaincode by following the steps in Upgrade a Chaincode
(Hyperledger Fabric v2.x) or Upgrade a Chaincode (Hyperledger Fabric v1.4.7).

Use a Mock Shim to Test a Chaincode
This method of testing involves using a mock version of the stub
shim.ChaincodeStubInterface. With this you can simulate some functionality of your

Chapter 6
Use a Mock Shim to Test a Chaincode

6-3

chaincode before deploying it to Oracle Blockchain Platform. You can also use this
library to build unit tests for your chaincode.

1. Create a test file that matches the name of the chaincode file.

For example, if car_dealer.go is the actual implementation code for you smart
contract, you would create a test suite called car_dealer_test.go containing all
the tests for car_dealer.go. The test suite filename should be in the *_test.go
format.

2. Create your package and import statements.

package main

import (
 "fmt"
 "testing"

 "github.com/hyperledger/fabric/core/chaincode/shim"
)

3. Create your unit test.

/*
* TestInvokeInitVehiclePart simulates an initVehiclePart
transaction on the CarDemo cahincode
 */
func TestInvokeInitVehiclePart(t *testing.T) {
 fmt.Println("Entering TestInvokeInitVehiclePart")

 // Instantiate mockStub using CarDemo as the target chaincode
to unit test
 stub := shim.NewMockStub("mockStub", new(CarDemo))
 if stub == nil {
 t.Fatalf("MockStub creation failed")
 }

 var serialNumber = "ser1234"

 // Here we perform a "mock invoke" to invoke the function
"initVehiclePart" method with associated parameters
 // The first parameter is the function we are invoking
 result := stub.MockInvoke("001",
 [][]byte{[]byte("initVehiclePart"),
 []byte(serialNumber),
 []byte("tata"),
 []byte("1502688979"),
 []byte("airbag 2020"),
 []byte("aaimler ag / mercedes")})

 // We expect a shim.ok if all goes well
 if result.Status != shim.OK {
 t.Fatalf("Expected unauthorized user error to be returned")
 }

 // here we validate we can retrieve the vehiclePart object we

Chapter 6
Use a Mock Shim to Test a Chaincode

6-4

just committed by serianNumber
 valAsbytes, err := stub.GetState(serialNumber)
 if err != nil {
 t.Errorf("Failed to get state for " + serialNumber)
 } else if valAsbytes == nil {
 t.Errorf("Vehicle part does not exist: " + serialNumber)
 }
}

Note:

Not all interfaces of the stub are implemented. Stub functions

• GetQueryResult
• GetHistoryForKey
are not supported, and attempting to call either of these will result in an error.

Deploy a Chaincode on a Peer to Test the Chaincode
After you create a chaincode, you must install, deploy, and invoke it to test that it works
correctly.

To learn more about writing a chaincode, see Write a Chaincode.

Follow these steps to deploy and test your chaincode.

1. Identify the channel or create a new channel and add peers to it. See Join a Peer to a
Channel.

2. Install the chaincode on the peers and deploy it on the channel.

• (Hyperledger Fabric v2.x) See Use Quick Deployment.

• (Hyperledger Fabric v1.4.7) See Use Quick Deployment.

3. Use the Invoke and query REST APIs to test the chaincode with cURL through the REST
proxy. See REST API for Oracle Blockchain Platform for descriptions of each endpoint
and correct cURL syntax to invoke each operation.

4. Go to the Channels tab in the console and locate and click the name of the channel
running the blockchain.

5. In the channel’s Ledger pane, view the chaincode’s ledger summary.

Chapter 6
Deploy a Chaincode on a Peer to Test the Chaincode

6-5

7
Build Chaincodes with Low-Code Blockchain
App Builder

Blockchain App Builder for Oracle Blockchain Platform is a tool set that assists with rapid
development, testing, debugging, and deployment of chaincode on Oracle Blockchain
Platform networks, comprising cloud BaaS nodes on Oracle Cloud Infrastructure or on-
premises nodes using Enterprise Edition.

A smart contract (also known as a chaincode) defines the different states of a business object
between two or more parties and business logic that validates and implements changes as
the object moves between these different states. At the heart of every blockchain application
is one or more chaincodes. A chaincode must be bug-free and tested before it is deployed.

You can use Blockchain App Builder to generate complex chaincodes in TypeScript (for
Node.js chaincode) and Go (for Golang chaincode) from a simple specification file. With the
specification file you can specify multiple asset definitions and behaviors. You can then
generate and test your chaincodes either on your local system by using a preconfigured
instance of Hyperledger Fabric inside Blockchain App Builder, or by connecting to your
Oracle Blockchain Platform network.

Note:

Although JavaScript isn't supported by Blockchain App Builder, because TypeScript
projects are compiled to JavaScript, you can add basic JavaScript to a TypeScript
project if needed.

Blockchain App Builder supports the full development life cycle either from a command-line
interface or as an extension for Visual Studio Code.

To get the Blockchain App Builder tools and samples, in the console open the Developer
Tools tab and select the Blockchain App Builder pane. From here you can download the
command-line interface tools or the Visual Studio Code extension. Additionally, there are
samples - Fabcar, Marbles, Fiat Money Token, Loyalty Token, NFT Art Collection
Marketplace, and Fractional NFT in Real Estate - which can be used to see how the tools
work or as a template for your own chaincode projects.

Topics:

• Using the Blockchain App Builder Command Line Interface

• Using the Blockchain App Builder Extension for Visual Studio Code

• Tokenization Support Using Blockchain App Builder

Using the Blockchain App Builder Command Line Interface
The Blockchain App Builder command line interface helps you build and scaffold a fully-
functional chaincode project from a specification file.

7-1

After the project is built, you can run and test it on a local Hyperledger Fabric network,
or your provisioned Oracle Blockchain Platform network. You can then run SQL rich
queries, debug the chaincode, or write and run unit tests using the generated code.

Table 7-1 Workflow When Using the CLI

Task Description Related Topics

Install and configure Download the Blockchain App
Builder CLI from your Oracle
Blockchain Platform console and
install it and any prerequisite
software.

• Install and Configure Blockchain
App Builder CLI

Create the chaincode project Create a specification file for the
chaincode project.

• Create a Chaincode Project with
the Blockchain App Builder CLI

Generate the chaincode Edit the specification file to define the
assets and chaincodes to generate,
and then run the CLI initialization
process to generate your chaincode
from the specification file.

Detailed reference information about
the structure and contents of the
specification file and the generated
chaincode project:
• Input Specification File
• Scaffolded TypeScript

Chaincode Project
• Scaffolded Go Chaincode

Project

Detailed information about
tokenization support:
• Tokenization Support Using

Blockchain App Builder
• Scaffolded TypeScript Token

Project for ERC-1155
• Scaffolded Go Token Project for

ERC-1155
• Scaffolded TypeScript NFT

Project for ERC-721
• Scaffolded Go NFT Project for

ERC-721
• Scaffolded TypeScript Project for

Token Taxonomy Framework
• Scaffolded Go Project for Token

Taxonomy Framework

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-2

Table 7-1 (Cont.) Workflow When Using the CLI

Task Description Related Topics

Deploy the chaincode After your chaincode project is
created, you can deploy it locally to
the included pre-configured
Hyperledger Fabric network, or
remotely to your Oracle Blockchain
Platform Cloud or Enterprise Edition.

You can also package the chaincode
project for manual deployment to
Oracle Blockchain Platform.

• Deploy Your Chaincode to a
Local Hyperledger Fabric
Network

• Deploy Your Chaincode to a
Remote Oracle Blockchain
Platform Network

• Package Your Chaincode
Project for Manual Deployment
to Oracle Blockchain Platform

Test the chaincode After your chaincode is running on a
network, you can test any of the
generated methods.

Additionally, If you chose to create
the executeQuery method during
your chaincode development, you
can run SQL rich queries if your
chaincode is deployed to an Oracle
Blockchain Platform network.

• Test Your Chaincode on a Local
Hyperledger Fabric Network

• Test Your Chaincode on a
Remote Oracle Blockchain
Platform Network

• Execute Berkeley DB SQL Rich
Queries

Debug the chaincode The Blockchain App Builder
extension for Visual Studio Code
includes line-by-line debugging of
your chaincode.

• Debugging from Visual Studio
Code

Synchronize your updates When you update your specification
file, you can synchronize the
changes with the generated
chaincode files.

• Synchronize Specification File
Changes With Generated
Source Code

Apply patches to the Blockchain App
Builder CLI

You can use the patch command to
apply a patch to the Blockchain App
Builder CLI.

• Apply a Patch to the Blockchain
App Builder CLI

Run unit tests A basic unit test case setup is
included in the project. Additional
tests can be added and run.

• Writing Unit Test Cases and
Coverage Reports for the
Chaincode Project

Install and Configure Blockchain App Builder CLI

The following platforms are supported:

• macOS

• Oracle Linux 8.0 or 9.0

• Microsoft Windows 10 or 11

After you've completed the installation process:

• Verify your installation.

• If you're using Go chaincode projects, complete the additional configuration steps.

Prerequisites

Before you install Blockchain App Builder CLI on your local system, you must install the
prerequisites.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-3

Note:

Blockchain App Builder coordinates with Oracle Blockchain Platform and its
compilers. If you use any versions of the prerequisites other than the ones
mentioned in the following section, deploying your chaincode to a remote
Oracle Blockchain Platform network might fail.

When you install Blockchain App Builder, a prerequisites check runs first. If the
prerequisites check fails, the installation process is stopped.

• macOS

• Linux

• Windows

macOS
Prerequisites

• Rancher Desktop (tested with 1.4.1). Blockchain App Builder can also work with
Docker, but it has been tested and verified with Rancher Desktop. If you plan to
use Rancher Desktop, uninstall Docker completely before installing Rancher
Desktop. After you install Rancher Desktop, ensure that the container runtime is
set to dockerd (moby). To verify the container runtime in Rancher Desktop
1.4.1, click Kubernetes Settings, and then Container Runtime.

• The latest release of Node.js version 18 (tested with 18.15.0 and 18.16.0). Do not
use versions of Node.js earlier or later than version 18.

• npm v8.x or v9.x (tested with 9.5.0 and 9.5.1)

• Go v1.20.10. After installing Blockchain App Builder, see Additional Setup for Go
Chaincode Projects.

• If you want to use the synchronization feature of Blockchain App Builder, install Git
and then configure your user name and email as shown in the following
commands. Specify your user name and email address in the place of
<your_name> and <email>.

git config --global user.name "<your_name>"

git config --global user.email "<email>"

Install Node.js and npm by Using nvm

Using nvm to install Node.js and npm gives you the ability to run more commands
without sudo.

1. Enter the following command to install nvm:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/
install.sh | bash

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-4

2. Add the following code snippet to the applicable file: ~/.bash_profile, ~/.profile,
~/.bashrc or ~/.zshrc.

export NVM_DIR="$HOME/.nvm"
[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh" # This loads nvm
[-s "$NVM_DIR/bash_completion"] && \. "$NVM_DIR/bash_completion" #
This loads nvm bash_completion

3. Log out and then log back in to your operating system.

4. Enter the following command to verify the nvm installation:

nvm version

5. Enter the following command to install Node.js and npm:

nvm install 18.16.0

6. Enter the following command to set Node.js 18.16.0 as the default in nvm:

nvm alias default 18.16.0

Linux
Prerequisites

• Docker v20.10.0 or later

• Docker Compose v1.23.0 or later

• The latest release of Node.js version 18 (tested with 18.15.0 and 18.16.0). Do not use
versions of Node.js earlier or later than version 18.

• npm v8.x or v9.x (tested with 9.5.0 and 9.5.1)

• Go v1.20.10. After installing Blockchain App Builder, see Additional Setup for Go
Chaincode Projects.

• If you want to use the synchronization feature of Blockchain App Builder, install Git and
then configure your user name and email as shown in the following commands. Specify
your user name and email address in the place of <your_name> and <email>.

git config --global user.name "<your_name>"

git config --global user.email "<email>"

Install Node.js and npm by Using nvm

Using nvm to install Node.js and npm gives you the ability to run more commands without
sudo.

1. Enter the following command to install nvm:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/install.sh
| bash

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-5

2. Add the following code snippet to the applicable file: ~/.bash_profile,
~/.profile, ~/.bashrc or ~/.zshrc.

export NVM_DIR="$HOME/.nvm"
[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh" # This loads nvm
[-s "$NVM_DIR/bash_completion"] && \. "$NVM_DIR/bash_completion"
This loads nvm bash_completion

3. Log out and then log back in to your operating system.

4. Enter the following command to verify the nvm installation:

nvm version

5. Enter the following command to install Node.js and npm:

nvm install 18.16.0

6. Enter the following command to set Node.js 18.16.0 as the default in nvm:

nvm alias default 18.16.0

Install Docker

Ensure that dnf is updated and pointing to the current repository based on your
kernel.

1. Enter the following command to add Docker to the repository list:

sudo dnf config-manager --add-repo=https://download.docker.com/
linux/centos/docker-ce.repo

2. Enter the following command to install Docker:

dnf install docker-ce -y --allowerasing

3. Enter the following command to start Docker as a service:

sudo systemctl enable --now docker

4. Enter the following commands to ensure that the current user has access to
Docker:

sudo groupadd docker
sudo usermod -aG docker $USER

5. Enter the following command to restart the system:

sudo reboot

Install Docker Compose

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-6

1. Enter the following curl command to get Docker Compose:

sudo curl -L https://github.com/docker/compose/releases/download/v2.5.0/
docker-compose-linux-x86_64 -o /usr/local/bin/docker-compos

2. Enter the following command to add executable permissions to Docker Compose:

sudo chmod +x /usr/local/bin/docker-compose

Windows
Prerequisites

• Rancher Desktop (tested with 1.4.1). Blockchain App Builder can also work with Docker,
but it has been tested and verified with Rancher Desktop.

• The latest release of Node.js version 18 (tested with 18.15.0 and 18.16.0). Do not use
versions of Node.js earlier or later than version 18.

• npm v8.x or v9.x (tested with 9.5.0 and 9.5.1)

• Go v1.20.10. After installing Blockchain App Builder, see Additional Setup for Go
Chaincode Projects.

• If you want to use the synchronization feature of Blockchain App Builder, install Git and
configure your user name and email as shown in the following commands. Specify your
user name and email address in the place of <your_name> and <email>.

git config --global user.name "<your_name>"

git config --global user.email "<email>"

Install Rancher Desktop

Complete the following steps to install Rancher Desktop on Microsoft Windows.

1. If Docker is installed on your local computer, uninstall it completely.

2. Download and install Rancher Desktop.

3. After the installation wizard completes, before you open Rancher Desktop, run the
following commands:

wsl --install
wsl --set-default-version 2
wsl --setdefault rancher-desktop

4. Open Rancher Desktop to complete the setup process.

5. After you install Rancher Desktop, ensure that the container runtime is set to dockerd
(moby). To verify the container runtime in Rancher Desktop 1.4.1, click Kubernetes
Settings, and then Container Runtime.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-7

Install Blockchain App Builder

Download the Blockchain App Builder CLI package (oracle-ochain-cli-
x.x.x.tgz) from the Developer Tools tab on the Blockchain App Builder pane of
the Oracle Blockchain Platform console.

• macOS

• Linux

• Windows

macOS
1. Enter the following command to install Xcode or the XCode command line tools

(xcode-select).

sudo xcode-select –install

2. Enter the following command to install Blockchain App Builder (adjust the name of
the .tgz file for the version that you are installing):

npm install -g oracle-ochain-cli-x.x.x.tgz

Note that Mac OS Catalina can have issues with xcode-select. If you encounter these
issues, use the following command to reset and restart xcode-select:

xcode-select –-reset

Linux
1. Enter the following command to install Blockchain App Builder (adjust the name of

the .tgz file for the version that you are installing):

npm install -g oracle-ochain-cli-x.x.x.tgz

2. Log out as the current user and then log in again so that group membership takes
effect.

Windows
After you've installed all the prerequisite software, enter the following command to
install Blockchain App Builder (adjust the name of the .tgz file for the version that you
are installing):

npm install -g oracle-ochain-cli-x.x.x.tgz

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-8

Verify the Installation

In your terminal, type ochain -v. The output shows the Blockchain App Builder CLI usage,
options, and commands.

Additional Setup for Go Chaincode Projects

To develop a Go project, you must set the GOPATH environment variable. This allows Go to
locate your workspace and run your code.

• macOS

• Linux

• Windows

macOS
Before setting the GOPATH environment variable, make sure that a go/ folder exists in
your $HOME directory. If not, enter the following command to create a go/ directory in your
home directory:

mkdir $HOME/go

Set your GOPATH environment variable by adding the following variables to the applicable file:
~/.bash_profile, ~/.profile, ~/.bashrc or ~/.zshrc.

export PATH=$PATH:/usr/local/go/bin
export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin

After editing the file, run the following command to make your changes take effect
immediately:

source ~/.bash_profile

Alternately, you can apply the change system-wide by adding the previous variables to
the /etc/bashrc file.

Linux
Before setting the GOPATH environment variable, make sure that a go/ folder exists in
your $HOME directory. If not, enter the following command to create a go/ directory in your
home directory:

mkdir $HOME/go

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-9

Set your GOPATH environment variable by adding the following variables to the
applicable file: ~/.bash_profile, ~/.profile, ~/.bashrc or ~/.zshrc.

export PATH=$PATH:/usr/local/go/bin
export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin

After editing the file, run the following command to make your changes take effect
immediately:

source ~/.bash_profile

Alternately, you can apply the change system-wide by adding the previous variables to
the /etc/bashrc file.

Windows
Create a go/ directory in your home directory: C:\Users\<username>\go.

Upgrade Blockchain App Builder CLI
To upgrade Blockchain App Builder, you must uninstall the previous version and then
install the newer version.

1. Run the following command to uninstall Blockchain App Builder.

npm uninstall -g @oracle/ochain-cli

2. Verify that Blockchain App Builder is no longer installed by running the following
command.

ochain -v

If Blockchain App Builder is no longer installed, an error message similar to the
following text is displayed.

-bash: ochain: command not found

3. Download the latest version of the Blockchain App Builder CLI package (oracle-
ochain-cli-x.x.x.tgz) from the Developer Tools tab on the Blockchain App
Builder pane of the Oracle Blockchain Platform console, and then install
Blockchain App Builder. For more information, see Install and Configure
Blockchain App Builder CLI.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-10

Create a Chaincode Project with the Blockchain App Builder CLI
To create a chaincode project when using the Blockchain App Builder CLI, you scaffold a
chaincode project from a detailed specification file. The generated project then contains all
the files than you need.

Background

Blockchain App Builder's init command initializes and scaffolds a ready-to-use chaincode
project. Based on simple input, the init command can generate complex chaincode projects
that include the following features:

• Multiple assets (models) and their behaviors (controllers)

• Auto-generate CRUD (Create/Read/Update/Delete) and non-CRUD methods

• Automatic validation of arguments

• Marshalling/unmarshalling of arguments

• Transparent persistence capability (ORM)

• The ability to call rich queries

The generated project follows the model/controller and decorator pattern, which allows an
asset's properties that are maintained on the ledger to be specified as typed fields and
extended with specific behaviors and validation rules. This pattern reduces the number of
lines of code, which helps in readability and scalability.

Prerequisites

Before you scaffold a project, you must create an input specification file. For more
information, see Input Specification File.

Scaffolding the Chaincode Project with the init Command

Typing ochain init -h will list the command usage with all its options. The init command
has the following options:

• --cc/-c:
The name of the chaincode project. The default value is MyChaincode.

• --lang/-l
The language of the scaffolded chaincode. Blockchain App Builder supports Typescript
(ts) and Go (go). If no option is specified, the language defaults to ts.

• --conf/-f or --spec
The path to an input specification file. Blockchain App Builder reads the input
specification file and generates the scaffolded project with many helper tools, which help
in reducing the overall development effort. Taking full advantage of the input specification
file can significantly reduce the development time.

The specification file can be in yaml or json format. If the path is not specified, it
defaults to the current directory. See Input Specification File.

• --out/-o
The output directory of the scaffolded chaincode project. If not specified, the scaffolded
project is generated in the current directory.

The output is a fully contained, lightweight, and scalable Typescript or Go chaincode
project.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-11

• --root/-r
Valid and required only for Go. The root directory in the GOHOME variable for
your Go chaincodes. The default value is example.com.

Example

my-mac:~ name$ ochain init --cc MyNewTsProject --lang ts --conf
spec.yml

Defaults

If no options are specified in the ochain init command, the name of the scaffolded
project is MyChaincode and the language is TypeScript.

The MyChaincode.model.ts file contains only one asset, called MyAsset, with one
property named value. The MyChaincode.controller.ts file contains one controller
with the corresponding CRUD methods for the MyAsset model.

Output

When the process is complete, you'll have a fully-functional chaincode project that you
can deploy either locally or to a remote Oracle Blockchain Platform instance. For a
detailed overview of the files created, see:

• Scaffolded TypeScript Chaincode Project

• Scaffolded Go Chaincode Project

For a detailed overview of a token-based project, see also:

• Scaffolded TypeScript Token Project for ERC-1155

• Scaffolded Go Token Project for ERC-1155

• Scaffolded TypeScript NFT Project for ERC-721

• Scaffolded Go NFT Project for ERC-721

• Scaffolded TypeScript Project for Token Taxonomy Framework

• Scaffolded Go Project for Token Taxonomy Framework

Input Specification File
The Blockchain App Builder initialization command reads the input specification file
and generates the scaffolded project with several tools to assist in the chaincode
development process.

With the specification file you can specify multiple asset definitions and behavior,
CRUD and non-CRUD method declaration, custom methods, validation of arguments,
auto marshalling/unmarshalling, transparent persistence capability, and invoking rich
data queries using SQL SELECTs or CouchDB Query Language. These features will
be generated for you.

For information on specifying token assets see the following topics:

• Input Specification File for Token Taxonomy Framework

• Input Specification File for ERC-721

• Input Specification File for ERC-1155

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-12

The specification file can be written in either yaml or json. You can see sample specification
files in both formats in the Blockchain App Builder package download:

• Fabcar-Typescript.yml
• Marbles-Go.yml

Note:

As per Go conventions, exported names begin with a capital letter. Therefore all the
asset properties and methods must have names starting with capital letters in the
specification file.

Structure of the Specification File

Typically, you structure a specification file in the following way:

assets:
 name:
 type:
 properties:
 name:
 type:
 id:
 derived:
 strategy:
 algorithm:
 format:
 mandatory:
 default:
 validate:
 methods:
 crud:
 others:
customMethods:

Blockchain App Builder supports two special asset types, embedded assets and token
assets, in addition to generic assets with no specified type. The special assets are defined as
type: embedded or type: token under the assets: section of the specification file.

Table 7-2 Specification File Parameter Descriptions and Examples

Entry Description Examples

assets: This property takes
the definition and
behavior of the asset.
You can give multiple
asset definitions
here.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-13

Table 7-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

name: The name of the
asset.

The following names
are reserved. Do not
use these names for
assets.
• account
• role
• hold
• token
• authorization
• tokenAdmin
• Account
• Role
• Hold
• Token
• Authorization
• TokenAdmin

name: owner # Information about the owner

type: Asset types
The following special
asset types are
supported:
• embedded
• token
If you do not specify a
type parameter in
the assets section,
the asset is of the
generic type.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-14

Table 7-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

type:
type: embedded

If this property is set
to embedded the
asset is defined as an
embedded asset.
Embedded assets do
not have CRUD
methods and have to
be part of another
asset to store in the
ledger.

In the example, the
property address is
embedded, and is
defined in another
asset.

Embedded assets do
not support circular
references. For
instance, in the
previous example the
address asset
cannot contain a
reference to the
employee asset.

Asset: employee

name: employee
 properties:
 name: employeeId
 type: string
 mandatory: true
 id: true

 name: firstName
 type: string
 validate: max(30)
 mandatory: true

 name: lastName
 type: string
 validate: max(30)
 mandatory: true

 name: age
 type: number
 validate: positive(),min(18)

 name: address
 type: address

Asset: address

name: address

type: embedded

properties:
 name: street
 type: string

 name: city
 type: string

 name: state
 type: string

 name: country
 type: string

properties: Describe all the
properties of an
asset.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-15

Table 7-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

name: The name of the
property. name: ownerId # Unique ID for each owner

id: • true
This specifies the
identifier of this asset.
This property is
mandatory.

name: owner # Information about the
owner
properties:
 name: ownerId # Unique ID for each owner
 type: string
 mandatory: true
 id: true
 name: name # Name of the owner
 type: string
 mandatory: true

type: Property types
The following basic
property types are
supported:
• number
• float
• string
• boolean
• date
• array
For Go chaincodes,
number is mapped to
int and float is
mapped to float64.
Other types are not
currently supported,
including the
following types:
• complex
• unsigned/

signed int
• 8/16/32/64

bits

name: year # Model year
 type: number
 mandatory: true
 validate: min(1910),max(2020)
 name: color # Color -
no validation as color names are innumerable
 type: string
 mandatory: true

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-16

Table 7-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

derived: This property
specifies that the id
property is derived
from other keys.
Dependent properties
should be string
datatype and not an
embedded asset.

This property has two
mandatory
parameters:
• strategy: takes

values of concat
or hash.

• format: takes
an array of
specification
strings and
values to be
used by the
strategy.

Example 1:
• The property

employeeID is
dependent on
the firstName
and lastName
properties.

• This property is a
concatenation of
the values listed
in the format
array.

• IND%1#%2%tIND
is the 0th index
in the array and
describes the
final format.

• %n is a position
specifier that
takes its values
from the other
indexes in the
array.

• %t indicates the
value should be
stub.timestam
p from the
channel header.

• If you need to
use the
character % in
the format

Example 1

name: employee
 properties:
 name: employeeId
 type: string
 mandatory: true
 id: true
 derived:
 strategy: concat
 format:
["IND%1#%2%tIND","firstName","lastName"]

 name: firstName
 type: string
 validate: max(30)
 mandatory: true

 name: lastName
 type: string
 validate: max(30)
 mandatory: true

 name: age
 type: number
 validate: positive(),min(18)

Example 2

name: account
 properties:
 name: accountId
 type: string
 mandatory: true
 id: true
 derived:
 strategy: hash
 algorithm: 'sha256'
 format:
["IND%1#%2%t","bankName","ifsccode"]

 name: bankName
 type: string
 validate: max(30)
 mandatory: true

 name: ifsccode

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-17

Table 7-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

string, it should
be escaped with
another %.

• The final format
in this example
would be:
INDfirstName#
lastName16068
85454916IND

Example 2:
• When using

hash, you must
also use the
algorithm
parameter. The
default is
sha256; md5 is
also supported.

• IND%1#%2%t is
the 0th index in
the array and
describes the
final format.

• %n is a position
specifier that
takes its values
from the other
indexes in the
array.

• %t indicates the
value should be
stub.timestam
p from the
channel header.

• If you need to
use the
character % in
the format
string, it should
be escaped with
another %.

 type: string
 mandatory: true

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-18

Table 7-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

mandatory: • true
• false
The corresponding
property is
mandatory and
cannot be skipped
while creating an
asset.

name: phone # Phone number - validate as
(ddd)-ddd-dddd where dashes could also be periods
or spaces
type: string
mandatory: true
validate: /^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?
([0-9]{4})$/
name: cars # The list of car VINs owned by
this owner
type: string[]
mandatory: false

default: This gives you the
default value of this
property.

validate: The given property is
validated against
some of the out-of-
box validations
provided by
Blockchain App
Builder. You can
chain validations if
you ensure that the
chain is valid.

If the validate
property is not
provided, then the
validation is done
against only the
property type.

validate:
type: number

• positive()
• negative()
• min()
• max()
These validations can
be chained together
separated by
commas.

name: offerApplied
type: number
validate: negative(),min(-4)

name: year # Model year
type: number
mandatory: true
validate: min(1910),max(2020)

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-19

Table 7-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

validate:
type: string

• min()
• max()
• email()
• url()
• /regex/ -

supports PHP
regex

For Go chaincodes,
regular expressions
which contain certain
reserved characters
or whitespace
characters should be
properly escaped.

name: website
type: string
mandatory: false
validate: url()

name: phone # Phone number - validate as (ddd)-
ddd-dddd where dashes could also be periods or
spaces
type: string
mandatory: true
validate: /^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?
([0-9]{4})$/

name: Color #Color can be red, blue, or green
type: string
mandatory: true
validate: /^\\s*(red|blue|green)\\s*$/

validate:
type: boolean

• true
• false
In the example, the
validation of property
active is by the type
itself (boolean)

name: active
type: boolean

validate:
type: array

By type itself, in the
form of type:
number[], this
conveys that the
array is of type
number.

You can enter limits
to the array in the
format number[1:5]
which means
minimum length is 1,
maximum is 5. If
either one is avoided,
only min/max is
considered.

name: items
type: number[:5]

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-20

Table 7-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

validate:
type: date

• min()
• max()
Date should be one
of these formats:
• YYYY-MM-DD
• YYYY-MM-

DDTHH:MM:SSZ,
where T
separates the
date from the
time, and the Z
indicates UTC.
Timezone offsets
can replace the Z
as in -05:00 for
Central Daylight
Savings Time.

name: expiryDate
type: date
validate: max('2020-06-26')

name: completionDate
type: date
validate: min('2020-06-26T02:30:55Z')

methods: Use this to state
which of the CRUD
(Create/Read/
Update/Delete) or
additional methods
are to be generated.

By default, if nothing
is entered, all CRUD
and other methods
are generated.

methods:
 crud: [create, getById, update, delete]
 others: [getHistoryById, getByRange]

crud: • create
• getByID (read)

• update
• delete
If this array is left
empty, no CRUD
methods will be
created.

If the crud parameter
is not used at all, all
four methods will be
created by default.

The crud parameter
is not applicable to
token and embedded
assets.

methods:
 crud: [create, getById, delete]
 others: [] # no other methods will be created

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-21

Table 7-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

others: • getHistoryByI
d

• getByRange
getHistoryById
returns the history of
the asset in a list.

getByRange returns
all the assets in a
given range. For
more information, see
getByRange
(TypeScript) and
GetByRange (Go).

If this array is left
empty, no other
methods will be
created.

If the others
parameter is not used
at all, both methods
will be created by
default.

The others
parameter is not
applicable to token
and embedded
assets.

methods:
 crud: [create, delete]
 others: [] # no other methods will be created

 methods:
 crud: [create, getById, update, delete]
 others: [getHistoryById, getByRange]

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-22

Table 7-2 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

customMethods: This property creates
invokable custom
method templates in
the main controller
file. It takes the
method signature and
creates the function
declaration in the
controller file.

You can provide
language specific
function declarations
here.

We provide a custom
method named
executeQuery. If it's
added to the
specification file, it
details how Berkeley
DB SQL and
CouchDB rich
queries can be
executed. This
method can be
invoked only when
you are connected to
Oracle Blockchain
Platform Cloud or
Enterprise Edition.

TypeScript

customMethods:
 - executeQuery
 - "buyCar(vin: string, buyerId: string,
sellerId: string, price: number, date: Date)"
 - "addCar(vin: string, dealerId: string,
price: number, date: Date)"

Go

customMethods:
 - executeQuery
 - "BuyCar(vin string, buyerId string,
sellerId string, price int)"
 - "AddCar(vin string, dealerId string, price
int)"

Scaffolded TypeScript Chaincode Project
Blockchain App Builder takes the input from your specification file and generates a fully-
functional scaffolded chaincode project. The project contains automatically generated classes
and functions, CRUD methods, SDK methods, automatic validation of arguments,
marshalling/un-marshalling and transparent persistence capability (ORM).

If the chaincode project uses the TypeScript language, the scaffolded project contains three
main files:

• main.ts
• <chaincodeName>.model.ts
• <chaincodeName>.controller.ts
All the necessary libraries are installed and packaged. The tsconfig.json file contains the
necessary configuration to compile and build the TypeScript project.

The <chaincodeName>.model.ts file in the model subdirectory contains multiple asset
definitions and the <chaincodeName>.controller.ts file in the controller
subdirectory contains the assets behavior and CRUD methods.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-23

The various decorators in model.ts and controller.ts provide support for
features like automatic validation of arguments, marshalling/unmarshalling of
arguments, transparent persistence capability (ORM) and calling rich queries.

Reference:

• Models

• Decorators

• ORM

• SDK Methods

• Controller

• Automatically Generated Methods

• Controller Method Details

• Custom Methods

• Init Method

Models

Every model class extends the OchainModel class, which has an additional read-only
property called assetType. This property can be used to fetch only assets of this type.
Any changes to this property are ignored during the creation and updating of the asset.
The property value by default is <modelName>.

The OchainModel class enforces decorator behaviors on properties of the class.

@Id('supplierId')
export class Supplier extends OchainModel<Supplier> {
 public readonly assetType = 'supplier';
 @Mandatory()
 @Validate(yup.string())
 public supplierId: string;

Decorators

Class decorators
@Id(identifier)

This decorator identifies the property which uniquely defines the underlying asset.
This property is used as a key of the record, which represents this asset in the
chaincode's state. This decorator is automatically applied when a new TypeScript
project is scaffolded. The 'identifier' argument of the decorator takes the value from
specification file.

@Id('supplierId')
export class Supplier extends OchainModel{
...
}

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-24

Property decorators
Multiple property decorators can be used. The decorators are resolved in top to bottom
order.

@Mandatory()

This marks the following property as mandatory so it cannot be skipped while saving to the
ledger. If skipped it throws an error.

@Mandatory()
public supplierID: string;

@Default(param)

This property can have a default value. The default value in the argument (param) is used
when the property is skipped while saving to the ledger.

@Default('open for business')
@Validate(yup.string())
public remarks: string;

@Validate(param)

The following property is validated against the schema presented in the parameter. The
argument param takes a yup schema and many schema methods can be chained together.
Many complex validations can be added. Refer to https://www.npmjs.com/package/yup for
more details.

@Validate(yup.number().min(3))
public productsShipped: number;

@ReadOnly(param)

This property decorator marks the underlying property as having a read-only value. The
value in the argument, for example param, is used when the property is saved in the ledger.
Once the value is set it cannot be edited or removed.

@ReadOnly('digicur')
public token_name: string;

@Embedded(PropertyClass)

This property decorator marks the underlying property as an embeddable asset. It takes the
embeddable class as a parameter. This class should extend the EmbeddedModel class. This
is validated by the decorator.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-25

https://www.npmjs.com/package/yup

In this example, Employee has a property called address of type Address, which is to
be embedded with the Employee asset. This is denoted by the @Embedded() decorator.

export class Employee extends OchainModel<Employee> {

 public readonly assetType = 'employee';

 @Mandatory()
 @Validate(yup.string())
 public emplyeeID: string;

 @Mandatory()
 @Validate(yup.string().max(30))
 public firstName: string;

 @Mandatory()
 @Validate(yup.string().max(30))
 public lastName: string;

 @Validate(yup.number().positive().min(18))
 public age: number;

 @Embedded(Address)
 public address: Address;
}

export class Address extends EmbeddedModel<Address> {

 @Validate(yup.string())
 public street: string;

 @Validate(yup.string())
 public city: string;

 @Validate(yup.string())
 public state: string;

 @Validate(yup.string())
 public country: string;
}

When a new instance of the Address class is created, all the properties of the Address
class are automatically validated by the @Validate() decorator. Note that the Address
class does not have the assetType property or @Id() class decorator. This asset and
its properties are not saved in the ledger separately but are saved along with the
Employee asset. Embedded assets are user defined classes that function as value
types. The instance of this class can only be stored in the ledger as a part of the
containing object (OchainModel assets). All the above decorators are applied
automatically based on the input file while scaffolding the project.

@Derived(STRATEGY, ALGORITHM, FORMAT)

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-26

This decorator is used for defining the attribute derived from other properties. This decorator
has two mandatory parameters:

• STRATEGY: takes values of CONCAT or HASH. Requires an additional parameter ALGORITHM if
HASH is selected. The default algorithm is sha256; md5 is also supported.

• FORMAT: takes an array of specification strings and values to be used by the strategy.

@Id('supplierID')
export class Supplier extends OchainModel<Supplier> {

 public readonly assetType = 'supplier';

 @Mandatory()
 @Derived(STRATEGY.HASH.'sha256',['IND%1IND%2','license','name'])
 @Validate(yup.string())
 public supplierID: string;

 @Validate(yup.string().min(2).max(4))
 public license: string;

 @Validate(yup.string().min(2).max(4))
 public name: string;

Method decorators
@Validator(…params)

This decorator is applied on methods of the main controller class. This decorator is important
for parsing the arguments, validating against all the property decorators and returning a
model/type object. Controller methods must have this decorator to be invokable. It takes
multiple user-created models or yup schemas as parameters.

The order of the parameters must be exactly the same as the order of the arguments in the
method.

In the following example, the Supplier model reference is passed in the parameter that
corresponds to the asset type in the method argument. At run time, the decorator parses
and converts the method argument to a JSON object, validates against the Supplier
validators, and after successful validation converts the JSON object to a Supplier object and
assigns it to the asset variable. Then the underlying method is finally called.

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await this.Ctx.Model.save(asset);
}

In the following example, multiple asset references are passed; they correspond to the object
types of the method arguments. Notice the order of the parameters.

@Validator(Supplier, Manufacturer)
public async createProducts(supplier: Supplier, manufacturer: Manufacturer) {
}

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-27

Apart from asset references, yup schema objects can also be passed if the arguments
are of basic-types. In the following example, supplierId and rawMaterialSupply are
of type string and number respectively, so the yup schema of similar type and correct
order is passed to the decorator. Notice the chaining of yup schema methods.

@Validator(yup.string(), yup.number().positive())
public async fetchRawMaterial(supplierID: string, rawMaterialSupply:
number) {
 const supplier = await this.Ctx.Model.get(supplierID, Supplier);
 supplier.rawMaterialAvailable = supplier.rawMaterialAvailable +
rawMaterialSupply;
 return await this.Ctx.Model.update(supplier);
}

ORM

Transparent Persistence Capability or simplified ORM is captured in the Model class of
the Context (Ctx) object. If your model calls any of the following SDK methods, access
them by using this.Ctx.Model.

SDK methods that implement ORM are the following methods:

• save – this calls the Hyperledger Fabric putState method

• get – this calls the Hyperledger Fabric getState method

• update – this calls the Hyperledger Fabric putState method

• delete – this calls the Hyperledger Fabric deleteState method

• history – this calls the Hyperledger Fabric getHistoryForKey method

• getByRange – this calls the Hyperledger Fabric getStateByRange method

• getByRangeWithPagination – this calls the Hyperledger Fabric
getStateByRangeWithPagination method

For more information, see: SDK Methods.

SDK Methods

Note:

Beginning with version 21.3.2, the way to access the ORM methods has
changed. Run the ochain --version command to determine the version
of Blockchain App Builder.

In previous releases, the ORM methods were inherited from the OchainModel class. In
version 21.3.2 and later, the methods are defined on the Model class of Context (Ctx)
object. To call these methods, access them by using this.Ctx.Model.<method_name>.

The following example shows a method call in previous releases:

@Validator(Supplier)
public async createSupplier(asset: Supplier){

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-28

 return await asset.save();
}

The following example shows a method call from the version 21.3.2 and later:

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await this.Ctx.Model.save(asset);
}

After you upgrade to version 21.3.2, make this change in all chaincode projects that you
created with an earlier version of Blockchain App Builder. If you use the sync command to
synchronize changes between the specification file and your source code, the changes are
automatically brought to your controller for the ready-to-use methods. You still need to
manually resolve any conflicts.

save
The save method adds the caller asset details to the ledger.

This method calls the Hyperledger Fabric putState internally. All marshalling/unmarshalling
is handled internally. The save method is part of the Model class, which you access by using
the Ctx object.

Ctx.Model.save(asset: <Instance of Asset Class> , extraMetadata?: any) :
Promise <any>

Parameters:

• extraMetadata : any (optional) – To save metadata apart from the asset into the ledger.

Returns:

• Promise<any> - Returns a promise on completion

Example:

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await this.Ctx.Model.save(asset);
}

get
The get method is a method of OchainModel class which is inherited by the concrete model
classes of {chaincodeName}.model.ts. The get method is part of the Model class,
which you access by using the Ctx object.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-29

If you would like to return any asset by the given id, use the generic controller method
getAssetById.

Ctx.Model.get(id: string, modelName: <Model Asset Class Name>) :
Promise<asset>

Parameters:

• id : string – Key used to save data into the ledger.

• modelName: <Model Asset Class Name> – (Optional) Model asset class to return.

Returns:

• Promise: <Asset> - If the modelName parameter is not provided and data exists in
ledger, then Promise<object> is returned. If the id parameter does not exist in
ledger, an error message is returned. If the modelName parameter is provided, then
an object of type <Asset> is returned. Even though any asset with given id is
returned from the ledger, this method will take care of casting into the caller Asset
type. If the asset returned from the ledger is not of the Asset type, then it throws
an error. This check is done by the read-only assetType property in the Model
class.

Example:

@Validator(yup.string())
public async getSupplierById(id: string) {
 const asset = await this.Ctx.Model.get(id, Supplier);
 return asset;
}

In the example, asset is of the type Supplier.

update
The update method updates the caller asset details in the ledger. This method returns
a promise.

This method calls the Hyperledger Fabric putState internally. All the marshalling/
unmarshalling is handled internally. The update method is part of the Model class,
which you can access by using the Ctx object.

Ctx.Model.update(asset: <Instance of Asset Class> , extraMetadata?:
any) : Promise <any>

Parameters:

• extraMetadata : any (optional) – To save metadata apart from the asset into the
ledger.

Returns:

• Promise<any> - Returns a promise on completion

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-30

Example:

@Validator(Supplier)
public async updateSupplier(asset: Supplier) {
 return await this.Ctx.Model.update(asset);
}

delete
This deletes the asset from the ledger given by id if it exists. This method calls the
Hyperledger Fabric deleteState method internally. The delete method is part of the Model
class, which you can access by using the Ctx object.

Ctx.Model.delete(id: string): Promise <any>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise <any> - Returns a promise on completion.

Example:

@Validator(yup.string())
public async deleteSupplier(id: string) {
 const result = await this.Ctx.Model.delete(id);
 return result;
}

history
The history method is part of the Model class, which you can access by using the Ctx
object. This method returns the asset history given by id from the ledger, if it exists.

This method calls the Hyperledger Fabric getHistoryForKey method internally.

Ctx.Model.history(id: string): Promise <any>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise <any[]> - Returns any [] on completion.

Example

@Validator(yup.string())
public async getSupplierHistoryById(id: string) {
 const result = await this.Ctx.Model.history(id);

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-31

 return result;
}

Example of the returned asset history for getSupplierHistoryById:

[
 {
 "trxId":
"8ef4eae6389e9d592a475c47d7d9fe6253618ca3ae0bcf77b5de57be6d6c3829",
 "timeStamp": 1602568005,
 "isDelete": false,
 "value": {
 "assetType": "supplier",
 "supplierId": "s01",
 "rawMaterialAvailable": 10,
 "license": "abcdabcdabcd",
 "expiryDate": "2020-05-28T18:30:00.000Z",
 "active": true
 }
 },
 {
 "trxId":
"92c772ce41ab75aec2c05d17d7ca9238ce85c33795308296eabfd41ad34e1499",
 "timeStamp": 1602568147,
 "isDelete": false,
 "value": {
 "assetType": "supplier",
 "supplierId": "s01",
 "rawMaterialAvailable": 15,
 "license": "valid license",
 "expiryDate": "2020-05-28T18:30:00.000Z",
 "active": true
 }
 }
]

getByRange
The getByRange method is a static method of OchainModel class which is inherited by
the concrete Model classes of {chaincodeName}.model.ts.

This returns a list of asset between the range startId and endId. This method calls
the Hyperledger Fabric getStateByRange method internally.

If the modelName parameter is not provided, the method returns Promise<Object []
>. If the modelName parameter is provided, then the method handles casting into the
caller Model type. In the following example, the result array is of the type Supplier. If
the asset returned from the ledger is not of the Model type, then it will not be included
in the list. This check is done by the read-only assetType property in the Model class.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-32

To return all the assets between the range startId and endId, use the generic controller
method getAssetsByRange.

Ctx.Model.getByRange(startId: string, endId: string, modelName: <Asset Model
Class Name>): Promise <any>

Parameters:

• startId : string – Starting key of the range. Included in the range.

• endId : string – Ending key of the range. Excluded of the range.

• modelName: <Model Asset Class Name> – (Optional) Model asset class to return.

Returns:

• Promise< Asset[] > - Returns array of <Asset> on completion.

Example:

@Validator(yup.string(), yup.string())
public async getSupplierByRange(startId: string, endId: string) {
 const result = await this.Ctx.Model.getByRange(startId, endId, Supplier);
 return result;
}

getByRangeWithPagination
The getByRangeWithPagination method is a static method of OchainModel class which is
inherited by the concrete Model classes of {chaincodeName}.model.ts.

This returns a list of asset between the range startId and endId. This method calls the
Hyperledger Fabric getStateByRangeWithPagination method internally.

If the modelName parameter is not provided, the method returns Promise<Object [] >. If the
modelName parameter is provided, then the method handles casting into the caller Model
type. In the following example, the result array is of the type Supplier. If the asset returned
from the ledger is not of the Model type, then it will not be included in the list. This check is
done by the read-only assetType property in the Model class.

To return all the assets between the range startId and endId, filtered by page size and
bookmarks, use the generic controller method getAssetsByRange.

public async getByRangeWithPagination<T extends OchainModel<T>>(startId:
string, endId: string, pageSize: number, bookmark?: string, instance?: new
(data: any, skipMandatoryCheck: boolean, skipReadOnlyCheck: boolean) => T):
Promise<T[]>

Parameters:

• startId : string – Starting key of the range. Included in the range.

• endId : string – Ending key of the range. Excluded from the range.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-33

• pageSize : number - The page size of the query.

• bookmark : string - The bookmark of the query. Output starts from this
bookmark.

• modelName: <Model Asset Class Name> – (Optional) Model asset class to return.

Returns:

• Promise< Asset[] > - Returns array of <Asset> on completion.

getId
When the asset has a derived key as Id, you can use this method to get a derived ID.
This method will return an error if the derived key contains %t (timestamp).

Parameters:

• object – Object should contain all the properties on which the derived key is
dependent.

Returns:

• Returns the derived key as a string.

Example:

@Validator(yup.string(), yup.string())

public async customGetterForSupplier(license: string, name: string){
 let object = {
 license : license,
 name: name
 }
 const id = await this.Ctx.Model.getID(object);
 return this.Ctx.Model.get(id);
}

For token SDK methods, see the topics under Tokenization Support Using Blockchain
App Builder.

Controller

Main controller class extends OchainController. There is only one main controller.

export class TSProjectController extends OchainController{

You can create any number of classes, functions, or files, but only those methods that
are defined within the main controller class are invokable from outside, the rest of
them are hidden.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-34

Automatically Generated Methods

As described in Input Specification File, you can specify which CRUD methods you want
generated in the specification file. For example, if you selected to generate all methods, the
result would be similar to:

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await this.Ctx.Model.save(asset);
}

@Validator(yup.string())
public async getSupplierById(id: string) {
 const asset = await this.Ctx.Model.get(id, Supplier);
 return asset;
}

@Validator(Supplier)
public async updateSupplier(asset: Supplier) {
 return await this.Ctx.Model.update(asset);
}

@Validator(yup.string())
public async deleteSupplier(id: string) {
 const result = await this.Ctx.Model.delete(id);
 return result;
}

@Validator(yup.string())
public async getSupplierHistoryById(id: string) {
 const result = await this.Ctx.Model.history(id);
 return result;
}

@Validator(yup.string(), yup.string())
public async getSupplierByRange(startId: string, endId: string) {
 const result = await this.Ctx.Model.getByRange(startId, endId, Supplier);
 return result;
}

Controller Method Details

Apart from the above model CRUD and non-CRUD methods, Blockchain App Builder
provides out-of-the box support for other Hyperledger Fabric methods from our controller.
These methods are:

• getAssetById
• getAssetsByRange
• getAssetHistoryById
• query
• queryWithPagination
• generateCompositeKey

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-35

• getByCompositeKey
• getTransactionId
• getTransactionTimestamp
• getChannelID
• getCreator
• getSignedProposal
• getArgs
• getStringArgs
• getMspID
• getNetworkStub

Note:

These methods are available with the this context in any class that extends
the OChainController class.

For example:

public async getModelById(id: string) {
 const asset = await this.getAssetById(id);
 return asset;
}
@Validator(yup.string(), yup.string())
public async getModelsByRange(startId: string, endId: string) {
 const asset = await this.getAssetsByRange(startId, endId);
 return asset;
}
public async getModelHistoryById(id: string) {
 const result = await this.getAssetHistoryById(id);
 return result;
}

getAssetById
The getAssetById method returns asset based on id provided. This is a generic
method and be used to get asset of any type.

this.getAssetById(id: string): Promise<byte[]>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise <byte []> - Returns promise on completion. You have to convert
byte[] into an object.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-36

getAssetsByRange
The getAssetsByRange method returns all assets present from startId (inclusive) to endId
(exclusive) irrespective of asset types. This is a generic method and can be used to get
assets of any type.

this.getAssetsByRange(startId: string, endId: string):
Promise<shim.Iterators.StateQueryIterator>

Parameters:

• startId : string – Starting key of the range. Included in the range.

• endId : string – Ending key of the range. Excluded of the range.

Returns:

• Promise< shim.Iterators.StateQueryIterator> - Returns an iterator on completion.
You have to iterate over it.

getAssetHistoryById
The getAssetHistoryById method returns history iterator of an asset for id provided.

this.getAssetHistoryById(id: string):
Promise<shim.Iterators.HistoryQueryIterator>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise<shim.Iterators.HistoryQueryIterator> - Returns a history query iterator.
You have to iterate over it.

query
The query method will run a Rich SQL/Couch DB query over the ledger. This method is only
supported for remote deployment on Oracle Blockchain Platform. This is a generic method
for executing SQL queries on the ledger.

this.query(queryStr: string):
Promise<shim.Iterators.StateQueryIterator>

Parameters:

• queryStr : string - Rich SQL/Couch DB query.

Returns:

• Promise<shim.Iterators.StateQueryIterator> - Returns a state query iterator. You
have to iterate over it.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-37

queryWithPagination
This method runs a Rich SQL/Couch DB query over the ledger, filtered by page size
and bookmarks. This method is only supported for remote deployment on Oracle
Blockchain Platform. This is a generic method for executing SQL queries on the
ledger.

public async queryWithPagination(query: string, pageSize: number,
bookmark?: string)

Parameters:

• query : string - Rich SQL/Couch DB query.

• pageSize : number - The page size of the query.

• bookmark : string - The bookmark of the query. Output starts from this
bookmark.

Returns:

• Promise<shim.Iterators.StateQueryIterator> - Returns a state query iterator.
You have to iterate over it.

generateCompositeKey
This method generates and returns the composite key based on the indexName and
the attributes given in the arguments.

this.generateCompositeKey(indexName: string, attributes:
string[]): string

Parameters:

• indexName : string - Object Type of the key used to save data into the ledger.

• attributes: string[] - Attributes based on which composite key will be
formed.

Returns:

• string - Returns a composite key.

getByCompositeKey
This method returns the asset that matches the key and the column given in the
attribute parameter while creating composite key. indexOfId parameter indicates the
index of the key returned in the array of stub method SplitCompositeKey. Internally
this method calls Hyperledger Fabric’s getStateByPartialCompositeKey,
splitCompositeKey and getState.

this.getByCompositeKey(key: string, columns: string[],
indexOfId: number): Promise<any []>

Parameters:

• key: string – Key used to save data into ledger.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-38

• columns: string[] - Attributes based on key is generated.

• indexOfId: number - Index of attribute to be retrieved from Key.

Returns:

• Promise< any [] - Returns any [] on completion.

getTransactionId
Returns the transaction ID for the current chaincode invocation request. The transaction ID
uniquely identifies the transaction within the scope of the channel.

this.getTransactionId(): string

Parameters:

• none

Returns:

• string - Returns the transaction ID for the current chaincode invocation request.

getTransactionTimestamp
Returns the timestamp when the transaction was created. This is taken from the transaction
ChannelHeader, therefore it will indicate the client's timestamp, and will have the same value
across all endorsers.

this.getTransactionTimestamp(): Timestamp

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Timestamp - Returns the timestamp when the transaction was created.

getChannelID
Returns the channel ID for the proposal for chaincode to process.

this.getChannelID(): string

Parameters:

• none

Returns:

• string - Returns the channel ID.

getCreator
Returns the identity object of the chaincode invocation's submitter.

this.getCreator(): shim.SerializedIdentity

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-39

Parameters:

• none

Returns:

• shim.SerializedIdentity - Returns identity object.

getSignedProposal
Returns a fully decoded object of the signed transaction proposal.

this.getSignedProposal():
shim.ChaincodeProposal.SignedProposal

Parameters:

• none

Returns:

• shim.ChaincodeProposal.SignedProposal - Returns decoded object of the
signed transaction proposal.

getArgs
Returns the arguments as array of strings from the chaincode invocation request.

this.getArgs(): string[]

Parameters:

• none

Returns:

• string [] - Returns arguments as array of strings from the chaincode
invocation.

getStringArgs
Returns the arguments as array of strings from the chaincode invocation request.

this.getStringArgs(): string[]

Parameters:

• none

Returns:

• string [] - Returns arguments as array of strings from the chaincode
invocation.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-40

getMspID
Returns the MSP ID of the invoking identity.

this.getMspID(): string

Parameters:

• none

Returns:

• string - Returns the MSP ID of the invoking identity.

getNetworkStub
The user can get access to the shim stub by calling getNetworkStub method. This will help
user to write its own implementation of working directly with the assets.

this.getNetworkStub(): shim.ChaincodeStub

Parameters:

• none

Returns:

• shim.ChaincodeStub - Returns chaincode network stub.

invokeCrossChaincode
You can use this method in a chaincode to call a function in another chaincode. Both
chaincodes must be installed on the same peer.

this.invokeCrossChaincode(chaincodeName: string, methodName: string, args:
string[], channelName: string): Promise<any>

Parameters:

• chaincodeName – The name of the chaincode to call.

• methodName - The name of the method to call in the chaincode.

• arg - The argument of the calling method.

• channelName - The channel where the chaincode to call is located.

Returns:

• Promise<any> - Returns a JSON object that contains three fields:

– isValid - true if the call is valid.

– payload - The output returned by the cross-chaincode call, as a JSON object.

– message - The message returned by the cross-chaincode call, in UTF-8 format.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-41

invokeChaincode
You can use this method in a chaincode to call a function in another chaincode. Both
chaincodes must be installed on the same peer.

this.invokeChaincode(chaincodeName: string, methodName: string, args:
string[], channelName: string): Promise<any>

Parameters:

• chaincodeName – The name of the chaincode to call.

• methodName - The name of the method to call in the chaincode.

• arg - The argument of the calling method.

• channelName - The channel where the chaincode to call is located.

Returns:

• Promise<any> - Returns a JSON object that contains three fields:

– isValid - true if the call is valid.

– payload - The output returned by the cross-chaincode call, as a JSON object.

– message - The message returned by the cross-chaincode call, in UTF-8
format.

Custom Methods

The following custom methods were generated from our example specification file.

The executeQuery shows how SQL rich queries can be called. The validators against
the arguments are added automatically by Blockchain App Builder based on the type
of the argument specified in the specification file.

/**
*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP
CS/EE network.
*
*/
@Validator(yup.string()}
public async executeQuery(query: string) {
 const result = await OchainController.query(query);
 return result;
}
@Validator(yup.string(), yup.number()}
public async fetchRawMaterial(supplierId: string, rawMaterialSupply:
number) {
}
@Validator(yup.string(), yup.string(), yup.number())
public async getRawMaterialFromSupplier(manufacturerId: string,
supplierId: string, rawMaterialSupply: number) {
}
@Validator(yup.string(), yup.number(), yup.number())

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-42

public async createProducts(manufacturerId: string, rawMaterialConsumed:
number, productsCreated: number) {
}
public async sendProductsToDistribution() {
}

Init Method

A custom init method is provided in the controller with an empty definition. If you use
Blockchain App Builder to deploy or upgrade, the init method is called automatically. If you
deploy or upgrade from the Oracle Blockchain Platform console on the Hyperledger Fabric
v1.4.7 platform, the init method is also called automatically. If you deploy or upgrade from
the Oracle Blockchain Platform console on the Hyperledger Fabric v2.x platform, you must
call the init method manually. You can use a third-party tool such as Postman to call the
init method manually.

export class TestTsProjectController extends OchainController {
 public async init(params: any) {
 return;
}

If you would like to initialize any application state at this point, you can use this method to do
that.

Scaffolded Go Chaincode Project
Blockchain App Builder takes the input from your specification file and generates a fully-
functional scaffolded chaincode project. The project contains automatically generated classes
and functions, CRUD methods, SDK methods, automatic validation of arguments,
marshalling/un-marshalling and transparent persistence capability (ORM).

If the chaincode project is in the Go language, the scaffolded project contains three main
files:

• main.go
• <chaincodeName>.model.go
• <chaincodeName>.controller.go
All the necessary libraries are installed and packaged.

The <chaincodeName>.model.go file in the model subdirectory contains multiple asset
definitions and the <chaincodeName>.controller.go file in the controller
subdirectory contains the asset's behavior and CRUD methods. The various Go struct tags
and packages in model.go and controller.go provide support for features like automatic
validation of arguments, marshalling/unmarshalling of arguments, transparent persistence
capability (ORM) and calling rich queries.

The scaffolded project can be found in $GOPATH/src/example.com/<chaincodeName>
Reference:

• Model

• Validators

• ORM

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-43

• SDK Methods

• Composite Key Methods

• Stub Method

• Other Methods

• Utility Package

• Controller

• Automatically Generated Methods

• Custom Methods

• Init Method

Model

Asset Type Property

By default every struct will have an additional property called AssetType. This property
can be useful in fetching only assets of this type. Any changes to this property is
ignored during create and update of asset. The property value by default is
<modelName>.

type Supplier struct {
AssetType string 'json:"AssetType" default:"TestGoProject.Supplier"'

SupplierId string 'json:"SupplierId"
validate:"string,mandatory" id:"true'
RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
License string 'json:"License"
validate:"string,min=10"'
ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
Active bool 'json:"Active" validate:"bool"
default:"true"'
Metadata interface{} 'json:"Metadata,omitempty"'
}

Validators

Id
id:"true"

This validator identifies the property which uniquely defines the underlying asset. The
asset is saved by the value in this key. This validator automatically applies when a
new Go project is scaffolded.

In the below screenshot "SupplierId" is the key for the supplier asset and has a tag
property id:"true" for the SupplierId property.

type Supplier struct {
 Supplierld string 'json:"Supplierld"

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-44

validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Derived
derived:"strategy,algorithm,format"

This decorator is used for defining the attribute derived from other properties. This decorator
has two mandatory parameters:

• strategy: takes values of concat or hash. Requires an additional parameter algorithm if
hash is selected. The default algorithm is sha256; md5 is also supported.

• format: takes an array of specification strings and values to be used by the strategy.

type Supplier struct{
 AssetType string 'json:"AssetType" final:"chaincode1.Supplier"'
 SupplierId string 'json:"SupplierId" validate:"string" id:"true"
mandatory:"true"
derived:"strategy=hash,algorith=sha256,format=IND%1%2,License,Name"'
 Name string 'json:"Name" validate:"string,min=2,max=4"'
 License string 'json:"License" validate:"string,min=2,max=4"'
}

Mandatory
validate:"mandatory"

This marks the following property as mandatory and cannot be skipped while saving to the
ledger. If skipped it throws an error. In the below example, "SupplierId" has a
validate:"mandatory" tag.

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-45

Default
default:"<param>"

This states that the following property can have a default value. The default value in
the default tag is used when the property is skipped while saving to the ledger. In the
below example property, Active has a default value of true, provided as tag
default:"true"

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Validate types
Basic Go types are validated for a property by defining a validate tag. These are the
validate tags based on types:

• string: validate: "string"
• date: validate: "date"
• number: validate: "int"
• boolean: validate: "bool"

Min validator
validate:"min=<param>"

Using the min validator, minimum value can be set for a property of type number and
string.

For type int: In the example, RawMaterialAvailable property has a minimum value of
0 and if a value less than 0 is applied to RawMaterialAvailable an error will be
returned.

For type string: For the string type minimum validator will check the length of the
string with the provided value. Therefore, in the below example the License property
has to be minimum 10 characters long.

Example:

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-46

validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Max validator
validate:"max=<param>"

Using the max validator, the maximum value can be set for a property of type number and
string.

For type int: Like the min validator, for type int, if a value provided for the structfield is
greater than the value provided in the validator then an error will be returned.

For type string: Like the min validator, max validator will also check the length of the string
with given value. In the example, the Domain property has a maximum value of 50, so if the
Domain property has a string length more than 50 characters, then an error message will be
returned.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold" validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"
validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Date validators
Before validator:

validate:"before=<param>"

The before validator validates a property of type date to have a value less than the specified
in parameter.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-47

In this example, the ExpiryDate property should be before "2020-06-26" and if not it
will return an error.

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

After validator:

validate:"after=<param>"

The before validator validates a property of type date to have a value greater than the
specified in parameter.

In this example, the CompletionDate property should be after "2020-06-26" and if not
it will return an error.

Type Supplier struct {
 Manufacturerld string 'json:"Manufacturerld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,max=8"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int"'
 CompletionDate date.Date 'json:"CompletionDate"
validate:"date,after=2020-06-26"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

URL validator
validate:"url"

The URL validator will validate a property for URL strings.

In this example, the Domain property has to be a valid URL.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-48

validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold" validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"
validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"string,url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Regexp validator
validate:"regexp=<param>"

Regexp validator will validate property for the input regular expression.

In this example, the PhoneNumber property will validate for a mobile number as per the
regular expression.

type Customer struct {
Customerld string 'json:"Customerld" validate:"string,mandatory"
id:"true"'
Name string 'json:"Name" validate:"string,mandatory"'
ProductsBought int 'json:"ProductsBought" validate:"int"'
OfferApplied int 'json:"OfferApplied" validate :"int,nax=0"'
PhoneNumber string 'json:"PhoneNumber" validate:"string,regexp=A\(?
([0-9]{3})\)?[-.]?([0-9]{3})[-.]?([0-9]{4})$"'
Received bool 'json:"Received" validate:"bool"'
Metadata interface{} 'json:"Metadata,omitempty"'
}

Multiple validators
Multiple validators can be applied a property.

In this example, the Domain property has validation for a string, URL, and min and max string
length.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold" validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"
validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"string,url,min=30,max=50"'

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-49

 Metadata interface{} 'json:"Metadata,omitempty"'
}

ORM

Transparent Persistence Capability or simplified ORM is captured in the Model class of
the Context (Ctx) object. If your model calls any of the following SDK methods, access
them by using t.Ctx.Model.

SDK methods that implement ORM are the following methods:

• Save – this calls the Hyperledger Fabric PutState method

• Get – this calls the Hyperledger Fabric GetState method

• Update – this calls the Hyperledger Fabric PutState method

• Delete – this calls the Hyperledger Fabric DeleteState method

• History – this calls the Hyperledger Fabric GetHistoryForKey method

• GetByRange – this calls the Hyperledger Fabric GetStateByRange method

• GetByRangeWithPagination – this calls the Hyperledger Fabric
GetStateByRangeWithPagination method

SDK Methods

Go chaincodes implement Transparent Persistence Capability (ORM) with the model
package.

Note:

Beginning with version 21.2.3, the way to access the ORM methods has
changed. Run the ochain --version command to determine the version
of Blockchain App Builder.

In previous releases, the ORM methods were exposed as static methods in the model
package. The methods are now defined on the model receiver, which holds the
transaction stub. To call these methods, you use the model receiver held by the
transaction context in the controller. You call these methods as
t.Ctx.Model.<method_name> instead of model.<method_name>.

The following example shows Save and Get method calls in previous releases:

func (t *Controller) CreateSupplier(asset Supplier) (interface{},
error) {
 return model.Save(&asset)
}

func (t *Controller) GetSupplierById(id string) (Supplier, error) {
 var asset Supplier
 _, err := model.Get(id, &asset)
 return asset, err
}

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-50

The following example shows Save and Get method calls from the version 21.2.3 and later:

func (t *Controller) CreateSupplier(asset Supplier) (interface{}, error) {
 return t.Ctx.Model.Save(&asset)
}

func (t *Controller) GetSupplierById(id string) (Supplier, error) {
 var asset Supplier
 _, err := t.Ctx.Model.Get(id, &asset)
 return asset, err
}

After you upgrade to version 21.2.3, make this change in all chaincode projects that you
created with an earlier version of Blockchain App Builder. If you use the sync command to
synchronize changes between the specification file and your source code, the changes are
automatically brought to your controller for the ready-to-use methods. You still need to
manually resolve any conflicts.

The following ORM methods are exposed via the model package:

Get
Queries the ledger for the stored asset based on the given ID.

func Get(Id string, result ...interface{}) (interface{}, error)

Parameters:

• Id - The ID of the asset which is required from the ledger.

• result (interface{}) - This is an empty asset object of a particular type, which is
passed by reference. This object will contain the result from this method. To be used only
if type-specific result is required.

• asset (interface) - Empty asset object, which is passed by reference. This object will
contain the result from this method. To be used only if type-specific result is required.

Returns:

• interface {} - Interface contains the asset in the form of map[string]interface{}.
Before operating on this map, it is required to assert the obtained interface with type
map[string]interface{}. To convert this map into an asset object, you can use the
utility API util.ConvertMaptoStruct (see: Utility Package).

• error - Contains an error if returned, or is nil.

Update
Updates the provided asset in the ledger with the new values.

func Update(args ...interface{}) (interface{}, error)

Parameters:

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-51

• obj (interface) - The object that is required to be updated in the ledger is
passed by reference into this API with the new values. The input asset is
validated and verified according to the struct tags mentioned in the model
specification and then stored into the ledger.

Returns:

• interface{} - The saved asset is returned as an interface.

• error - Contains an error if returned, or is nil.

Save
Saves the asset to the ledger after validating on all the struct tags.

func Save(args ...interface{}) (interface{}, error)

Parameters:

• obj/args[0] (interface{}) - The object that needs to be stored in the ledger is
passed by reference in this utility method.

• metadata/args[1] (interface{}) - This parameter is optional. It has been given
in order to facilitate you if you're required to store any metadata into the ledger
along with the asset at the runtime. This parameter can be skipped if no such
requirement exists.

Returns:

• interface {} - The asset is returned as an interface.

• error - Contains an error if returned, or is nil.

Delete
Deletes the asset from the ledger.

func Delete(Id string) (interface{}, error)

Parameters:

• id (string) - The ID of the asset which is required to be deleted from the ledger.

Returns:

• interface {} - Contains the asset being deleted in the form of
map[string]interface{}.

GetByRange
Returns the list of assets by range of IDs.

func GetByRange(startKey string, endKey string, asset ...interface{})
([]map[string]interface{}, error)

Parameters:

• startkey (string) - Starting ID for the range of objects which are required.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-52

• endkey (string) - End of the range of objects which are required.

• asset interface - (optional) Empty array of assets, which is passed by reference. This
array will contain the result from this method. To be used if type-specific result is
required.

Returns:

• []map[string]interface{} - This array contains the list of assets obtained from the
ledger. You can access the objects iterating over this array and asserting the objects as
map[string]interface{} and using utility to convert to asset object.

• error - Contains an error if returned, or is nil.

GetByRangeWithPagination
The GetByRangeWithPagination method is a static method of OchainModel class which is
inherited by the concrete Model classes of {chaincodeName}.model.ts.

This returns a list of asset between the range startId and endId, filtered by page size and
bookmark. This method calls the Hyperledger Fabric GetStateByRangeWithPagination
method internally.

If the modelName parameter is not provided, the method returns Promise<Object [] >. If the
modelName parameter is provided, then the method handles casting into the caller Model
type. In the following example, the result array is of the type Supplier. If the asset returned
from the ledger is not of the Model type, then it will not be included in the list. This check is
done by the read-only assetType property in the Model class.

To return all the assets between the range startId and endId, filtered by page size and
bookmarks, use the generic controller method getAssetsByRange.

func (m *Model) GetByRangeWithPagination(startKey string, endKey string,
pageSize int32, bookmark string, asset ...interface{})
([]map[string]interface{}, error)

Parameters:

• startkey : string – Starting key of the range. Included in the range.

• endkey : string – Ending key of the range. Excluded from the range.

• pageSize : number – The page size of the query.

• Bookmark : string – The bookmark of the query. Output starts from this bookmark.

• asset interface – (Optional) An empty array of assets, passed by reference. This array
will contain the result from this method. Use this parameter to get type-specific results.

Returns:

• []map[string]interface{} – An array that contains the list of assets retrieved from the
ledger. You can access the objects by iterating over this array and asserting the objects
as map[string]interface{} and using a utility for conversion to an asset object.

• error – Contains an error if an error is returned, otherwise nil.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-53

GetHistoryById
Returns the history of the asset with the given ID.

func GetHistoryByID(Id string) ([]interface{}, error)

Parameters:

• Id (string) - ID of the asset for which the history is needed.

Returns:

• []interface{} - This slice contains the history of the asset obtained from the
ledger in form of slice of map[string]interface{}. You can access each history
element by iterating over this slice and asserting the objects as
map[string]interface{} and using utility to convert to asset object.

• error - Contains the error if observed.

Query
The query method will run a SQL/Couch DB query over the ledger. This method is
only supported for remote deployment on Oracle Blockchain Platform. This is a
generic method for executing SQL queries on the ledger.

func Query(queryString string) ([]interface{}, error)

Parameters:

• queryString (string) - Input the query string.

Returns:

• []interface{} - This will contain the output of the query. The result is in form of
slice of interfaces. You need to iterate over the slice and use the elements by
converting them to proper types.

• error - Contains the error if observed.

QueryWithPagination
The query method will run a SQL/Couch DB query over the ledger, filtered by page
size and bookmark. This method is only supported for remote deployment on Oracle
Blockchain Platform. This is a generic method for executing SQL queries on the
ledger.

func (m *Model) QueryWithPagination(queryString string, pageSize
int32, bookmark string) ([]interface{}, error)

Parameters:

• queryString (string) - Rich SQL/Couch DB query.

• pageSize : number - The page size of the query.

• bookmark : string - The bookmark of the query. Output starts from this
bookmark.

Returns:

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-54

• []interface{} - This will contain the output of the query. The result is in form of slice of
interfaces. You need to iterate over the slice and use the elements by converting them to
proper types.

• error - Contains the error if observed.

InvokeCrossChaincode
You can use this method in a chaincode to call a function in another chaincode. Both
chaincodes must be installed on the same peer.

func InvokeCrossChaincode(chaincodeName string, method string, args
[]string, channelName string) (interface{}, error)

Parameters:

• chaincodeName – The name of the chaincode to call.

• methodName - The name of the method to call in the chaincode.

• arg - The argument of the calling method.

• channelName - The channel where the chaincode to call is located.

Returns:

• interface{} - Returns a map[string]interface{} object that contains three keys:

– isValid - true if the call is valid.

– payload - The output returned by the cross-chaincode call, as a JSON object.

– message - The message returned by the cross-chaincode call, in UTF-8 format.

Return Value Example:

{
 "isValid": true,
 "message": "Successfully invoked method [CreateAccount] on sub-
chaincode [erc721_go_453]",
 "payload": {
 "AccountId":
"oaccount~6b83b8ab931f99442897dd04cd7a2a55f808686f49052a40334afe3753fda4c4",
 "AssetType": "oaccount",
 "BapAccountVersion": 0,
 "NoOfNfts": 0,
 "OrgId": "appdev",
 "TokenType": "nonfungible",
 "UserId": "user2"
 }
}

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-55

InvokeChaincode
You can use this method in a chaincode to call a function in another chaincode. Both
chaincodes must be installed on the same peer.

func InvokeChaincode(chaincodeName string, method string, args
[]string, channelName string) (interface{}, error)

Parameters:

• chaincodeName – The name of the chaincode to call.

• methodName - The name of the method to call in the chaincode.

• arg - The argument of the calling method.

• channelName - The channel where the chaincode to call is located.

Returns:

• interface{} - Returns a map[string]interface{} object that contains three
keys:

– isValid - true if the call is valid.

– payload - The output returned by the cross-chaincode call, in UTF-8 format.

– message - The message returned by the cross-chaincode call, in UTF-8
format.

Return Value Example:

{
 "isValid": true,
 "message": "Successfully invoked method [CreateAccount] on sub-
chaincode [erc721_go_453]",
 "payload":
"{\"AssetType\":\"oaccount\",\"AccountId\":\"oaccount~c6bd7f8dcc339bf71
44ea2e1cf953f8c1df2f28482b87ad7895ac29e7613a58f\",\"UserId\":\"user1\",
\"OrgId\":\"appdev\",\"TokenType\":\"nonfungible\",\"NoOfNfts\":0,\"Bap
AccountVersion\":0}"
}

Composite Key Methods

GenerateCompositeKey
This method generates and returns the composite key based on the indexName and
the attributes given in the arguments.

func GenerateCompositeKey(indexName string, attributes []string)
(string, error)

Parameters:

• indexName (string) - Object type of the composite key.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-56

• attrbutes ([]string) - Attributes of the asset based on which the composite key has
to be formed.

Returns:

• string - This contains the composite key result.

• error - Contains the error if observed.

GetByCompositeKey
This method returns the asset that matches the key and the column given in the parameters.
The index parameter indicates the index of the key returned in the array of stub method
SplitCompositeKey.

Internally this method calls Hyperledger Fabric's getStateByPartialCompositeKey,
splitCompositeKey and getState.

func GetByCompositeKey(key string, columns []string, index int)
(interface{}, error)

Parameters:

• key (string) - Object type provided while creating composite key.

• column ([]string) - This is the slice of attributes on which the ledger has to be queried
using the composite key.

• index(int) - Index of the attribute.

Returns:

• Interface{} - Contains the list of assets which are result of this method.

• error - Contains any errors if present.

Stub Method

GetNetworkStub
This method will return the Hyperledger Fabric chaincodeStub.

You can get access to the shim stub by calling the GetNetworkStub method. This will help
you write your own implementation working directly with the assets.

func GetNetworkStub() shim.ChaincodeStubInterface

Parameters:

• none

Returns:

• shim.ChaincodeStubInterface - This is the Hyperledger Fabric chaincode stub.

Other Methods

• GetTransactionId()
• GetTransactionTimestamp()

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-57

• GetChannelID()
• GetCreator()
• GetSignedProposal()
• GetArgs()
• GetStringArgs()
• GetCreatorMspId()
• GetId

GetTransactionId
Returns the transaction ID for the current chaincode invocation request. The
transaction ID uniquely identifies the transaction within the scope of the channel.

func GetTransactionId() string

Parameters:

• none

Returns:

• string - This contains the required transaction ID.

GetTransactionTimestamp
Returns the timestamp when the transaction was created. This is taken from the
transaction ChannelHeader, therefore it will indicate the client's timestamp, and will
have the same value across all endorsers.

func GetTransactionTimestamp() (*timestamp.Timestamp, error)

Parameters:

• none

Returns:

• timestamp.Timestamp - Contains the timestamp required.

• error - Contains any errors if present.

GetChannelID
Returns the channel ID for the proposal for the chaincode to process.

func GetChannelID() string

Parameters:

• none

Returns:

• string - Contains the required channel ID as a string.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-58

GetCreator
Returns the identity object of the chaincode invocation's submitter

func GetCreator() ([]byte, error)

Parameters:

• none

Returns:

• []byte - Contains the required identity object serialized.

• error - Contains any errors if present.

GetSignedProposal
Returns a fully decoded object of the signed transaction proposal.

func GetSignedProposal() (*peer.SignedProposal, error)

Parameters:

• none

Returns:

• *peer.SignedProposal - Contains the required signed proposal object.

• error - Contains any errors if present.

GetArgs
Returns the arguments as array of strings from the chaincode invocation request.

func GetArgs() [][]byte

Parameters:

• none

Returns:

• [][]byte - Contains the arguments passed.

GetStringArgs
Returns the arguments intended for the chaincode Init and Invoke as a string array.

func GetStringArgs() []string

Parameters:

• none

Returns:

• []string - Contains the required arguments as a string array.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-59

GetCreatorMspId
Returns the MSP ID of the invoking identity.

func GetCreatorMspId() string

Parameters:

• none

Returns:

• string - Returns the MSP ID of the invoking identity.

GetId
When the asset has a derived key as Id, you can use this method to get a derived ID.
This method will return an error if the derived key contains %t (timestamp).

Parameters:

• object - Object should contain all the properties on which the derived key is
dependent.

Returns:

• Returns the derived key as a string.

Example:

func (t *Controller) CustomGetterForSupplier(License string, Name
string)(interface{}, error){
 var asset Supplier
 asset.License = License
 asset.Name = Name
 id,err := t.Ctx.Model.GetId(&asset)

 if err !=nil {
 return nil, fmt.Errorf("error in getting ID %v", err.Error())
 }
 return t.GetSupplierById(id)
}

Utility Package

The following methods in the utility package may be useful:

Util.CreateModel
Parses the provided JSON string and creates an asset object of the provided type.

func CreateModel(obj interface{}, inputString string) error

Parameters:

• inputString (string) - The input JSON string from which the object is to be
created.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-60

• obj (interface{}) - The reference of the object that is to be created from the JSON
string. This object will store the created model which is also validated as per validator
tags.

Returns:

• error - Contains any errors found while creating or validating the asset.

util.ConvertMapToStruct
Convert the provided map into object of provided type.

func ConvertMapToStruct(inputMap map[string](interface{}), resultStruct
interface{}) error

Parameters:

• inputMap (map[string](interface{})) - Map which needs to be converted into the
asset object.

• resultStruct (interface{}) - The reference of the required asset object which needs
to be generated from the map. Contains the result asset object required.

Returns:

• error - Contains any errors found while creating or validating the asset.

For token SDK methods, see the topics under Tokenization Support Using Blockchain App
Builder.

Controller

The Controller.go file implements the CRUD and custom methods for the assets.

You can create any number of classes, functions, or files, but only those methods that are
defined on chaincode struct are invokable from outside, the rest of them are hidden.

Automatically Generated Methods

As described in Input Specification File, you can specify which CRUD methods you want
generated in the specification file. For example, if you selected to generate all methods, the
result would be similar to:

//
//Supplier
//
func (t *ChainCode) CreateSupplier(inputString string) (interface{}, error) {
 var obj Supplier
 err := util.CreateModel(&obj, inputString)
 if err != nil {
 return nil, err
 }
 return model.Save(&obj)
}

func (t *ChainCode) GetSupplierById(id string) (interface{}, error) {
 asset, err := model.Get(id)
 return asset, err

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-61

}

func (t *ChainCode) UpdateSupplier(inputString string) (interface{},
error) {
 var obj Supplier
 err := util.CreateModel(&obj, inputstring)
 if err != nil {
 return nil, err
 }
return model.Update(&obj)
}

func (t *ChainCode) DeleteSupplier(id string) (interface{}, error) {
 return model.Delete(id)
}

func (t *ChainCode) GetSupplierHistoryById(id string) (interface{},
error) {
 historyArray, err := model.GetHistoryByld(id)
 return historyArray, err
}

func (t *ChainCode) GetSupplierByRange(startkey string, endKey string)
(interface{}, error) {
 assetArray, err := model.GetByRange(startkey, endKey)
 return assetArray, err
}

Custom Methods

The following custom methods were generated from our example specification file.

The executeQuery shows how SQL rich queries can be called. The validators against
the arguments are added automatically by Blockchain App Builder based on the type
of the argument specified in the specification file.

You can implement the functionality according to the business logic. If you add custom
methods, add them to the controller file. If you add custom methods to the library
instead of the controller file, your changes will be lost when the library folder contents
are updated during the synchronization or chaincode upgrade processes.

//
//Custom Methods
//
/*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP
CS/EE network.
*/
func (t *ChainCode) ExecuteQuery(inputQuery string) (interface{},
error) {
 resultArray, err := model.Query(inputQuery)
 return resultArray, err
}

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-62

func (t *ChainCode) FetchRawMaterial(supplierId string, rawMaterialSupply
int) (interface{}, error) {
 return nil, nil
}

func (t *ChainCode) GetRawMaterialFromSupplier(manufacturerId string,
supplierId string, rawMaterialSupply int) (interface{} error) {
 return nil, nil
}

Func (t *ChainCode) CreateProducts(manufacturerId string,
rawMaterialConsumed int, productsCreated int) (interface{}, error) {
 return nil, nil
}

func (t *ChainCode) SendProductsToDistribution() (interface{}, error) {
 return nil, nil
}

For Go chaincodes, every custom method should return two values: empty interface, error.
For example:

func (t *Controller) FetchRawMaterial(supplierId string, rawMaterialSupply
int) (interface{}, error) {
 return nil, nil
}

Init Method

A custom Init method is provided in the controller with an empty definition. If you use
Blockchain App Builder to deploy or upgrade, the Init method is called automatically. If you
deploy or upgrade from the Oracle Blockchain Platform console on the Hyperledger Fabric
v1.4.7 platform, the Init method is also called automatically. If you deploy or upgrade from
the Oracle Blockchain Platform console on the Hyperledger Fabric v2.x platform, you must
call the Init method manually. You can use a third-party tool such as Postman to call the
Init method manually.

type Controller struct {
}
func (t *Controller) Init(args string) (interface{}, error)
 { return nil, nil
}

If you would like to initialize any application state at this point, you can use this method to do
that.

Deploy Your Chaincode Using the CLI
Once your chaincode project is created, you can deploy it locally to the automatically
generated Hyperledger Fabric network, or remotely to your Oracle Blockchain Platform Cloud
or Enterprise Edition. You can also package the chaincode project for manual deployment to
Oracle Blockchain Platform.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-63

Deploy Your Chaincode to a Local Hyperledger Fabric Network
Once you have created your chaincode project, you can deploy it to a local
Hyperledger Fabric network. This single-channel test network is created for you when
you install Blockchain App Builder.

The Blockchain App Builder ochain run command starts the Hyperledger Fabric
network, other services, and installs and deploys the chaincode for you.

my-mac:GOProject myname$ ochain run -h
Usage: run [options] [...args]
Run chaincode project locally in debug mode.

Arguments :
[...args] (optional) Chaincode instantiate arguments. Arguments should
be space separated.

Options:
-h, --help output command usage information
-D, --debug enable debug logging
-P, --debug-port (optional) specify debug process port
-b, --build (optional) rebuild runtime if already exists
-p, --project (optional) Path to Chaincode project to run. If not
specified, it defaults to current directory.

Examples :
$> ochain run

Token Projects

For token chaincode projects, you must specify a list of admins with the ochain run
command:

ochain run <adminList array>

The adminList array is an array of information that specifies the token admins. The
adminList array is a mandatory parameter when you deploy a token chaincode project
for the first time. If you deploy the project again, you can pass an empty array for the
adminList parameter or you can use the adminList parameter to add token admins.
Other deployers who are not the first-time deployer must supply an empty array for the
adminList parameter. The parameter information is different for fungible tokens and
non-fungible tokens:

• For fungible tokens that use the Token Taxonomy Framework standard, the
parameters are org_id and user_id.

• For any tokens that use the ERC-1155 standard, the parameters are orgId and
userId.

• For non-fungible tokens that use the ERC-721 standard and a TypeScript project,
the parameters are orgId and userId.

• For non-fungible tokens that use the ERC-721 standard and a Go project, the
parameters are OrgId and UserId.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-64

The following examples are for non-fungible tokens.

Example adminList array for TypeScript on Mac OSX and Linux:

'[{"userId":"userid", "orgId":"OrgMSPId"}]'

Example adminList array for Go on Mac OSX and Linux:

'[{"UserId":"userid", "OrgId":"OrgMSPId"}]'

Example adminList array for TypeScript on Microsoft Windows:

"[{\"userId\":\"userid\", \"orgId\":\"OrgMSPId\"}]"

Example adminList array for Go on Microsoft Windows:

"[{\"UserId\":\"userid\", \"OrgId\":\"OrgMSPId\"}]"

For the local Hyperledger Fabric network, the OrgMSPId field is fixed to the value Org1MSP.

If you would like to see the debug logs, you can pass the --debug option to the command. On
Windows, use Command Prompt instead of PowerShell if you specify the --debug option.
You can run the basic network and deploy the chaincode on a different port from the default
by passing the --port option to the command.

Verifying

The following logs show that the chaincode has been installed and deployed successfully.

my-mac:TSProject myname$ ochain run
Recreating orderer.example.com ... done
Recreating ca.example.com ... done
Recreating peer0.org1.example.com ... done
[2020-09-23T18: 04:09.132] [INFO] default -
============ Started Install Chaincode ============
[2020-09-23T18:04:09.193] [INFO] default Chaincode TSProject:l not installed.
[2020-09-23T18:04:09.317] [INFO] default - Successfully sent install
Proposal and received ProposalResponse
[2020-09-23T18:04:09.317] [INFO] default - Successfully installed chaincode
TSProject
[2020-09-23T18:04:09.317] [INFO] default -
============ Finished Install Chaincode ============
[2020-09-23T18:04:09.317] [INFO] default - Successfully installed chaincode
TSProject
[2020-09-23T18:04:09.318] [INFO] default -
============ started instantiate Chaincode ============
[2020-09-23T18:04:09.366] [INFO] default - Successfully sent Proposal and
received ProposalResponse
[2020-09-23T18:04:11.434] [INFO] default - The chaincode instantiate
transaction has been committed on peer localhost:7051
[2020-09-23T18:04:11.434] [INFO] default - The chaincode instantiate
transaction was valid.
[2020-09-23T18:04:11.435] [INFO] default - Successfully sent transaction to

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-65

the orderer.
[2020-09-23T18:04:11.435] [INFO] default - Successfully instantiated
chaincode TSProject on channel mychannel
[2020-09-23T18:04:11.435] [INFO] default -
============ Finished instantiate Chaincode ============
[2020-09-23T18:04:11.4351 INFO] default - Successfully instantiated
chaincode TSProject on channel mychannel
INFO (Runtime): Chaincode TSProject installed and ready:
INFO (RunCommand): Chaincode TSProject deployed

Troubleshooting

You may encounter the following issues when running your chaincode project on a
local network.

Missing Go permissions
While installing Go chaincode project in local network, you might see an error similar
to the following:

My-Mac:GoProj myname$ ochain run
Starting ca.example.com ... done
Starting orderer.example.com ... done
Starting peer0.orgl.example.com ... done
INFO (Runtime): 2020/06/22 22:57:09 build started

INFO (Runtime): Building

INFO (Runtime): go build runtime/cgo: copying /Users/myname/Library/
Caches/go-build/f8/.….….d: open /usr/local/go/pkg/darwin_amd64/
runtine/
cgo.a: permission denied

ERROR (Runtime): go build runtine/cgo: copying /Users/myname/Library/
Caches/go-build/f8/.….….d: open /usr/local/go/pkg/darwin_amd64/runtime/
cgo.a: permission denied

INFO (Runtime): An error occurred while building: exit status 1

Stopping peer0.orgl.exmple.com ... done
Stopping ca.example.com ... done
Stopping orderer.example.con ... done

This is due to missing permissions for Go. This error has been seen only in Mac OS.
This is a known issue:

• https://github.com/golang/go/issues/37962

• https://github.com/golang/go/issues/24674

• https://github.com/udhos/update-golang/issues/15

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-66

https://github.com/golang/go/issues/37962
https://github.com/golang/go/issues/24674
https://github.com/udhos/update-golang/issues/15

Solution: change the permissions of your $GOROOT and try ochain run again:

sudo chmod -R 777 /usr/local/go

Deployment failure
Due to deployment failure, corrupt deployment, Docker peer container full, or Docker peer
was killed in local network, you may see an error similar to:

============ Started instantiate Chaincode ============
[2028-19-01T19:25:lO.372] [ERROR] default - Error instantiating Chaincode
GollGl on channel mychannel, detailed
error: Error: error starting container: error starting container: Failed to
generate platform-specific docker
build: Failed to pull hyperledger/fabric-ccenv:latest : API error (404):
manifest for hyperledger/
fabric-ccenv:latest not found: manifest unknown: manifest unknown
[2020-19-01T19:25:10.372] (INFO) default -
============ Finished instantiate Chaincode ============
[2020-19-01119:25:10.372] [ERROR] default - Error: Error instantiating
Chaincode Goll01 on channel mychannel,
detailed error: Error: error starting container: error starting container:
Failed to generate platfom-specific
docker build: Failed to pull hyperledger/fabric-ccenv: latest : API error
(404): manifest for hyperledger/
fabric-ccenv:lalest not found: manifest unknown: manifest unknown exited:
signal: terminated
INFO: exited: signal: terminated

ERROR: Error in Chaincode deployment

This is due to a peer container not able to start up properly again.

Solution: try the ochain run command again, but with the -b option. This option rebuilds the
runtime for you.

ochain run -b

Environment Rebuild Required
Rebuild your environment if you see a channel not found error or an error similar to the
following text:

Starting ca.example.com ...
Starting orderer.example.com ...
Starting orderer.example.com ... error
ERROR: for orderer.example.com
Cannot start service orderer.example.com:
error while creating mount source path '/host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-cli/
runtime/network/basic-network/config': mkdir /host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0: operation not permitted
Starting ca.example.com... error

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-67

ERROR: for ca.example.com
Cannot start service ca.example.com: error while creating mount source
path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/crypto-config/peerOrganizations/org1.example.com/ca': mkdir /
host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
ERROR: for orderer.example.com
Cannot start service orderer.example.com: error while creating mount
source path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/config': mkdir /host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0: operation not permitted
ERROR: for ca.example.com
Cannot start service ca.example.com: error while creating mount source
path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/crypto-config/peerOrganizations/org1.example.com/ca': mkdir /
host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
Encountered errors while bringing up the project.
ERROR: Starting ca.example.com ...
Starting orderer.example.com ...
Starting orderer.example.com ... error
ERROR: for orderer.example.com
Cannot start service orderer.example.com: error while creating mount
source path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/config': mkdir /host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0: operation not permitted
Starting ca.example.com ... error
ERROR: for ca.example.com
Cannot start service ca.example.com: error while creating mount source
path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/crypto-config/peerOrganizations/org1.example.com/ca': mkdir /
host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
ERROR: for orderer.example.com
Cannot start service orderer.example.com: error while creating mount
source path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/config': mkdir /host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0: operation not permitted
ERROR: for ca.example.com
Cannot start service ca.example.com: error while creating mount source
path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/crypto-config/peerOrganizations/org1.example.com/ca': mkdir /
host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0: operation not permitted
Encountered errors while bringing up the project.
ERROR: Error in Chaincode deployment

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-68

To rebuild your local environment, run the following command:

ochain run -b

Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network
After you've deployed and tested your chaincode project on a local network to ensure it's
working as designed, you can deploy it to Oracle Blockchain Platform.

Deploy Your Chaincode

Usage: ochain deploy [options] [...args]
The following arguments and options can be used with the ochain deploy command:

my-mac:TSProject myname$ ochain deploy -h
Usage: deploy [options] [...args]
Deploy chaincode project to Oracle Blockchain Platform

Arguments:
 [...args] (optional) Chaincode instantiate arguments. Arguments
should be space separated.

Options :
 -h, --help output command usage information
 -D, --debug enable debug logging
 -P, --project <project> (optional) Path to Chaincode project to
deploy. If not specified, it defaults to current directory.
 -c, --channel <channel> (optional) Blockchain Channel to deploy
chaincode to. If not specified, it defaults to the 'default' channel.
 -u, --username <username> (required) A user name that has install
chaincode privileges. Contact your administrator for more details.
 -v, --userversion <userversion> (optional) A user-specified chaincode
version.
 If a version isn't specified, for a new
chaincode it will start at v1 and then increment to v2, v3, and so on.
 For an existing chaincode, v1.a will increment
to v1.a1, v1 will increment to v2, and v1.0 will increment to v1.1.
 -s --sign <password> (required) Password to authenticate user.
 -r --url <url> (required) URL of the remote OBP
instance. Example: https://<blockchain-instance-url>:7443/

Examples:
$> ochain deploy -u <username> -s <password> -r <url of the remote OBP
instance> -c <name of the channel>

Enter the Oracle Identity Cloud Service user name and password for an Oracle Blockchain
Platform user with the ADMIN or REST_CLIENT roles. For more information about users and
roles, see Set Up Users and Application Roles.

To invoke the chaincode, only the REST_CLIENT role is necessary. To deploy or upgrade the
chaincode, the IDCS user must also be assigned the ADMIN role.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-69

After the chaincode has successfully deployed to the remote Oracle Blockchain
Platform, the log will show that the following events occurred:

• Oracle Blockchain Platform details were successfully fetched.

• The list of peers was successfully fetched.

• The chaincode project was successfully installed.

• The chaincode project was successfully approved and committed.

• The chaincode was successfully deployed on each peer and the channel.

In an environment with multiple organizations, to re-deploy the chaincode on the same
channel through a participant instance, use the console to deploy the chaincode.

Upgrading the Chaincode Project

Upgrading the chaincode is handled automatically by Blockchain App Builder. After
you make changes to your chaincode, call the ochain deploy command again,
which will automatically upgrade the project for you. When you run the ochain
deploy command again, specify an empty array for the adminList parameter or use
the adminList parameter to add token admins. If you are not the first-time deployer,
you must supply an empty array for the adminList parameter.

If your upgrade is successful, the log will show that the following events occurred:

• Oracle Blockchain Platform details were successfully fetched.

• The list of peers was successfully fetched.

• A check was made to determine if the chaincode project is already installed, and if
so, the version was fetched.

• The chaincode version was successfully upgraded (for example, from version 1.0
to 2.0).

In an environment with multiple organizations, to upgrade the chaincode, use the
console and manually approve the chaincode from the participants.

Package Your Chaincode Project for Manual Deployment to Oracle Blockchain
Platform

You can package your chaincode projects for manual deployment to Oracle Blockchain
Platform Cloud or Enterprise Edition.

Usage: ochain package
The package command creates an archive file that contains only the build and
distribution files. The binary, libs, node_modules, and test folders from your
chaincode project are not included. This archive file can be manually uploaded to
Oracle Blockchain Platform for deployment.

Because of changes to software prerequisites, when you run the ochain package
command for TypeScript chaincode, you are prompted for the provisioning date of the
Oracle Blockchain Platform instance that you want to create the package for. The
TypeScript chaincode created in Blockchain App Builder is not compatible with
previous versions of Oracle Blockchain Platform without changes to the underlying

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-70

infrastructure. Blockchain App Builder packages the chaincode infrastructure accordingly
based on your selection.

my-mac:~ myname$ ochain package -h
Usage: package [options]
Package and archive an Ochain chaincode project
Options :
 -h, --help output command usage information
 -D, --debug enable debug logging
 -p, --project <path> Path to the Ochain chaincode project to be
packaged. If not specified, it defaults to current directory.
 -o, --out <path> Path to the generated chaincode archive file. If
not specified, it defaults to current directory.
About:
This CLI command packages and archives an existing chaincode project
Examples:
$> ochain package --project <Path to the Ochain chaicode project> —out <Path
to the generated chaincode archive file>

When the command completes successfully, the location of the package is returned.

This command takes two optional arguments:

• --project
This option defines the location of the Blockchain App Builder chaincode project to
package. If not specified, the location defaults to the current directory.

• --out
This option can be used to give the output path of the generated archive file. If not
specified, it defaults to the current directory.

Example:

ochain package -p /Blockchain/DevTools/bp1/CC -o /Blockchain/DevTools/bp1/
output

"Your chaincode project has been packaged at /Blockchain/DevTools/bp1/output/
CC.zip"

Test Your Chaincode Using the CLI
If your chaincode is running on a network, you can test any of the generated methods.
Additionally, If you chose to create the executeQuery method during your chaincode
development, you can run SQL rich queries if your chaincode is deployed to an Oracle
Blockchain Platform network.

Test Your Chaincode on a Local Hyperledger Fabric Network
Once your chaincode project is running on a local network, you can test it.

Open a new shell and navigate to the project directory to interact with your chaincodes. After
a chaincode is installed and deployed, you can submit transactions to the functions inside
your chaincode by using the ochain invoke and ochain query commands.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-71

ochain invoke
Usage: ochain invoke <methodName> <methodArguments>
The following are arguments and options taken by the ochain invoke command:

my-mac:TSProject myname$ ochain invoke -h
Usage: invoke [options] <methodName> [...args]
Invoke a Chaincode transaction

Arguments :
 <methodName> (required) Name of chaincode method to invoke.
 [...args] (optional) Chaincode method input parameters if any.
Parameters should be space separated strings/JSON strings for objects.

Options:
 -h, --help output command usage information
 -D, --debug enable debug logging
 -P, --project <path> (optional) Path to Chaincode project to
deploy. If not specified, it defaults to current directory.
 -c, --channel <channel> (optional) Blockchain Channel to deploy
chaincode to. If not specified, it defaults to the 'default' channel.
 -u, --username <username> (optional, if -r option is applied) A
user name that has install chaincode privileges. Contact your
administrator for more details.
 -s, --sign <password> (optional) Password to authenticate user.
 -r, --url <url> (required) URL of the remote OBP
instance. Example: https://<blockchain-instance-url>:7443/

Examples:
$> ochain invoke <method>
(without chaincode initial arguments)
$> ochain invoke <method>
'{"manufacturerId":"m01","rawMaterialAvailable":9,"productsAvailable":4
,"completionDate":"05-26-2020"}'
(for a single parameter)
$> ochain invoke <method> 's01' 's10'
$> ochain invoke <method> 's01'
'{"manufacturerId":"m01","rawMaterialAvailable":9,"productsAvailable":4
,"completionDate":"05-26-2020"}'
(for multiple parameters)
$> ochain invoke <method> 's01' 's10' -r <url of the remote OBP
instance> -u <username> -s <password>
(for remote invocation)

Mac OSX and Linux

If the method takes one argument, enter it as a string. For example:

ochain invoke createSupplier
'{"supplierId":"s01","rawMaterialAvailable":5,"license":"valid
supplier","expiryDate":"2020-05-30","active":true}'

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-72

Another example:

ochain invoke getSupplierDetails 's01'
'{"supplierId":"s01","rawMaterialAvailable":5,"license":"valid
supplier","expiryDate":"2020-05-30","active":true}'

If the method takes more than one argument, they should be separated by a space. For
example:

ochain invoke getSupplierByRange 's01' 's03'

If you have embedded assets in your chaincode such as an employee asset which uses an
embedded address asset:

name: employee
 properties:
 name: employeeId
 type: string
 mandatory: true
 id: true

 name: firstName
 type: string
 validate: max(30)
 mandatory: true

 name: lastName
 type: string
 validate: max(30)
 mandatory: true

 name: age
 type: number
 validate: positive(),min(18)

 name: address
 type: address

name: address

type: embedded

properties:
 name: street
 type: string

 name: city
 type: string

 name: state
 type: string

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-73

 name: country
 type: string

You would use something similar to the following to invoke the chaincode:

ochain invoke createEmployee '{"employeeID":"e01", "firstName":"John",
"lastName":"Doe",
"age":35, "address":{"street":"Elm Ave", "city":"LA",
"state":"California", "country":"US"}}'

Windows

Windows command prompt doesn't accept single quotes ('), so all arguments have to
be kept in double quotes ("). Any argument that contains a double quote must be
escaped.

For example:

ochain invoke createSupplier
"{\"supplierId\":\"s01\",\"rawMaterialAvailable\":5,\"license\":\"valid
supplier\",\"expiryDate\":\"2020-05-30\",\"active\":true}"

If the method takes more than one argument, they should be separated by a space.
For example:

ochain invoke getSupplierByRange "s01" "s03"

If you have embedded assets in your chaincode such as an employee asset which
uses an embedded address asset as shown above, you can use something similar to
the following to invoke the chaincode:

ochain invoke createEmployee "{\"employeeID\":\"e01\",
\"firstName\":\"John\",
\"lastName\":\"Doe\", \"age\":35, \"address\":{\"street\":\"Elm Ave\",
\"city\":\"LA\",
\"state\":\"California\", \"country\":\"US\"}}"

Validations

The method arguments are validated against the validations specified in the
specification file. If any validation fails, errors will be listed in the output.

When it invokes successfully it should display a log similar to:

========== Started Invoke Chaincode ==========
[2020-06-23T18:37:54.563] [INFO] default - Successfully sent Proposal
and received ProposalResponse
[2020-06-23T18:37:56.619] [INFO default - The chaincode invoke
transaction has been committed on peer localhost:7051
[2020-06-23T18:37:56.619] [INFO] default - The chaincode invoke
transaction was valid.
[2020-06-23T18:37:56.620] [INFO default - Successfully sent
transaction to the orderer.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-74

[2020-06-23T18:37:56.620] [INFO] default - Successfully invoked method
"createSupplier" on chaincode "TSProject" on channel "mychannel"
[2020-06-23T18:37:56.620] [INFO] default -
========== Finished Invoke Chaincode ==========

ochain query
Usage: ochain query <methodName> <methodArguments>
Following are the arguments and options taken by the ochain query command:

my-mac:TSProject myname$ ochain query -h
Usage: query [options] <methodName> [...args]
Invoke a Chaincode Query.

Arguments :
 <methodName> (required) Name of chaincode method to invoke.
 [...args] (optional) Chaincode method input parameters if any.
Parameters should be space separated strings/JSON strings for objects.

Options:
 -h, --help output command usage information
 -D, --debug enable debug logging
 -P, --project <path> (optional) Path to Chaincode project to
deploy. If not specified, it defaults to current directory.
 -c, --channel <channel> (optional) Blockchain Channel to deploy
chaincode to. If not specified, it defaults to the 'default' channel.
 -u, --username <username> (optional, if -r option is applied) A user
name that has install chaincode privileges. Contact your administrator for
more details.
 -s, --sign <password> (optional) Password to authenticate user.
 -r, --url <url> (required) URL of the remote OBP instance.
Example: https://<blockchain-instance-url>:7443/

Examples:
$> ochain query <method>
(without chaincode initial arguments)
$> ochain query <method> s01
(for a single parameter)
$> ochain query <method> 's01' 's10'
$> ochain query <method> 's01' '{"manufacturerId":"m01"}'
(for multiple parameters)
$> ochain query <method> 's01' 's10' -r <url of the remote OBP instance> -u
<username> -s <password>
(for remote query)

The ochain query command follows the same rules of passing <methodName> and
<methodArguments> as ochain invoke.

• On Mac OSX and Linux, single quotes can be used and there's no need to escape
quotes within arguments.

• On Windows, all arguments must surrounded by double quotes and any quote within an
argument must be escaped.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-75

Testing Multiple Token Users Locally

To test a token project with multiple users locally, you can use the tokenUser property
to change the caller of each transaction. Every scaffolded chaincode project includes
a .ochain.json file, which stores metadata of the chaincode. You change the caller
by updating the value of tokenUser field in the .ochain.json file.

{
 "name": "digiCurrCC",
 "description": "Chaincode package for digiCurrCC",
 "chaincodeName": "digiCurrCC",
 "chaincodeType": "node",
 "configFileLocation": "/Users/user1/token.yml",
 "appBuilderVersion": "21.2.3",
 "nodeVersion": "v12.18.1",
 "tokenUser": "admin"
}

When a project is scaffolded, the tokenUser property is set to the default admin user of
the local network. To change the caller of a transaction, change the tokenUser
property to match the user_id property that was set when the account was created
when the createAccount (TypeScript) or CreateAccount (Go) method was called.

Automatic Installation and Deployment After Update

Whenever you update your chaincode, the changes will be compiled, installed and
deployed automatically when it's deployed to a local network. There is no need to strip
down or bring up the local network again. All projects will be automatically compiled
and deployed on every change.

Test Your Chaincode on a Remote Oracle Blockchain Platform Network

After your chaincode project has successfully deployed to your remote Oracle
Blockchain Platform network, you can test it as described in Test Your Chaincode on a
Local Hyperledger Fabric Network.

If you deployed your chaincode manually, instead of using Blockchain App Builder, you
must call the init function manually before you test your chaincode.

You can use the same ochain invoke and ochain query commands to perform all
method transactions on a remote Oracle Blockchain Platform Cloud or Enterprise
Edition network; everything supported on the local network is also supported on the
remote network. Pass the URL of the remote Oracle Blockchain Platform instance (-
r), user name (-u) and password (-s) options to the command.

Example

ochain invoke createSupplier
'{"supplierId":"s01","rawMaterialAvailable":5,"license":"valid
supplier","expiryDate":"2020-05-30","active":true}' -r
[https://%3cblockchain-instance-url%3e:7443/]https://<blockchain-
instance-url>:7443/
-u idcqa -s password

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-76

Testing Token Projects on a Remote Oracle Blockchain Platform Network

You can test chaincode projects that work with tokens by using Blockchain App Builder, the
Oracle Blockchain Platform REST proxy, or the Hyperledger Fabric SDK.

Blockchain App Builder

You can use the Blockchain App Builder CLI to invoke transactions with multiple users to test
token chaincodes.

To test with multiple users, change the authorization parameters (user name and password
options) in the invoke and query commands.

Oracle Blockchain Platform REST Proxy

You can use the REST proxy in Oracle Blockchain Platform to run your token chaincode on a
remote Oracle Blockchain Platform network. Use any REST Proxy client, such as Postman
REST Client, to test your chaincode project.

To test multiple users, change the authorization parameters (user name and password) in
your REST client, or connect to a different instance of Oracle Blockchain Platform.

Execute Berkeley DB SQL Rich Queries
If you chose to create the executeQuery method during your chaincode development, you
can run SQL rich queries if your chaincode is deployed to an Oracle Blockchain Platform
network.

If you have used executeQuery in the customMethods section of the specification file, a
corresponding executeQuery method will be created in the controller.

Specification file:

customMethods:
 - executeQuery
 - "fetchRawMaterial(supplierid: string, rawMaterialSupply: number)"
 - "getRawMaterialFromSupplier(manufacturerId: string, supplierld:
string, rawMaterialSupply: number)"
 - "createProducts(manufacturerId: string, rawMaterialConsumed: number,
productsCreated: number)"
 - "sendProductsToDistribution()"

Controller file:

**
*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP CS/EE network.
*
*/
@Validator(yup.string())
public async executeQuery(query: string) {
 const result = await this.query(query);
 return result;
}

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-77

You can invoke this method to execute Berkeley DB SQL rich queries on Oracle
Blockchain Platform network, ensuring that you use the -r, -u and -s options to
specify the remote Oracle Blockchain Platform instance URL, user name and
password respectively.

Example query for TypeScript:

ochain query executeQuery "SELECT key, valueJson FROM <STATE> WHERE
json_extract(valueJson, '$.rawMaterialAvailable') = 4" -r
[https://%3cblockchain-instance-url%3e:7443/]https://<blockchain-
instance-url>:7443/
-u idcqa -s password

Example query for Go:

ochain query executeQuery "SELECT key, valueJson FROM <STATE> WHERE
json_extract(valueJson, \"$.rawMaterialAvailable\") = 4" -r
[https://%3cblockchain-instance-url%3e:7443/]https://<blockchain-
instance-url>:7443/
-u idcqa -s password

The entire SQL query is taken in the argument, so you can make changes to your
query on the fly. The syntax is different for TypeScript and Go chaincode. As shown in
the previous example, the Go query uses double quotation marks for the query
parameters instead of single quotation marks. The double quotation marks must be
preceded by backslash characters.

Upgrading Chaincode Projects in the CLI
You can use this command to upgrade existing chaincode projects to use the new
features of the updated Blockchain App Builder. This command works with both
TypeScript and Go projects.

For Go projects, upgrade to Go v1.20.10 before you run the command to upgrade your
chaincode project.

Usage:

upgrade [options]

my-mac:Project myname$ ochain upgrade -h
Usage: upgrade [options]
Upgrade App Builder chaincode project
Options :
 -h, --help output command usage information
 -D, --debug enable debug logging
 -p, --project <path> (optional) Path to Chaincode project to
upgrade. If not specified, it defaults to current directory.
 -cc, --chaincode (optional) To upgrade chaincode project
Examples :
$> ochain upgrade --project <path of chaincode dir>

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-78

To upgrade a chaincode project, navigate to the directory containing the project and then
enter the following command:

ochain upgrade

If you encounter problems while upgrading a chaincode project, you can use the --debug
option to generate debug logs. On Microsoft Windows, use Command Prompt instead of
PowerShell if you specify the --debug option.

After you upgrade a chaincode project, synchronize the specification file with the generated
source code. For more information, see Synchronize Specification File Changes With
Generated Source Code.

Synchronize Specification File Changes With Generated Source Code
You can use the ochain sync command to bring new changes from the specification file to
the current source files (model and controller). The command works with both TypeScript and
Go projects.

Note:

• Synchronization is unidirectional: you can bring changes from your specification file into
your chaincode project, but not the other way around. Changes made in your chaincode
project remain as-is after the synchronizing process.

• The ochain sync command works only if the chaincode project was scaffolded by
using a specification file. Do not delete, rename or move the specification file if you plan
to synchronize any changes from the specification file to the source code in the future.

• If you used a single specification file to generate more than one chaincode project, you
can synchronize only one project at a time by using the ochain sync command.

Usage:

sync [options] [...args]

my-mac:TsProject myname@ ochain sync -h
Usage: sync [options] [...args]
Synchronize Changes from spec file to the required chaincode.
Arguments:
 [...args] (optional) Sync Arguments.
Options :
 -h, --help output command usage information
 -D, --debug enable debug logging
 -p, --project <path> (optional) Path to Chaincode project to sync. If
not specified, it defaults to current directory
 -c, --confirm <bool> (optional) Parameter to ensure if you have
resolved all the conflicts, and commit changes
Examples :
$> ochain sync
without chaincode initial arguments

The ochain sync command has two optional arguments:

• -p / --project

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-79

This option takes the chaincode project directory where the synchronization needs
to be performed. If not specified, it defaults to the current directory.

• -c / --confirm
This option takes Boolean (true/false) values. If there are any conflicts during the
merging process, you must resolve those conflicts manually and set this option to
true in the next synchronization cycle. Don't use this option if you're not sure that
the conflicts have been merged.

If the ochain sync command fails and you have installed and configured all
prerequisites including Git and the Git username and password, complete the following
steps to reinitialize the synchronization operation:

1. Check the specification file for errors and fix any errors that you find.

2. In the chaincode project folder, remove the following folders if they are
present: .sync_temp, .sync_backup, and .sync_repo.

3. In the src folder, remove the .git folder if it is present.

4. In the project root folder, edit the ochain.json file and set the syncEnabled
property to false. Save and close the file.

5. Retry the ochain sync command.

Apply a Patch to the Blockchain App Builder CLI
You can use the patch command to apply a patch to the Blockchain App Builder
command-line interface (CLI).

Usage:

patch [options]

my-mac:TsProject myname@ ochain patch -h
Usage: patch [options]

Apply PatchFix to ochain

Options :
 -h, --help output command usage information
 -D, --debug enable debug logging
 -p, --path <path> Path to Patch Zip file

To apply a patch to a project, navigate to the directory that contains the project and
then enter the following command. You must pass the path to the archive file that
contains the patch as an option to the patch command.

ochain patch --path path_to_archive_file

Writing Unit Test Cases and Coverage Reports for the Chaincode
Project

Blockchain App Builder includes support for writing unit test cases and coverage
reports for the generated chaincode projects.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-80

Note:

If you're running your unit tests in VS Code, it can be done in the Terminal window.

TypeScript

To write unit test cases for a TypeScript chaincode, refer to the file
<chaincodeName>.spec.ts in the tests folder inside the generated chaincode project.
This file provides the complete unit testing setup for TypeScript chaincodes, and also an
example unit test case in the comments section for reference. Following the example, you will
be able write unit test cases for your chaincode methods.

The unit test cases can be run by executing the command npm run test from the chaincode
project folder. This will also give you the coverage reports.

Go

To write unit test cases for a Go chaincode, refer to the file src/src_test.go inside the
generated chaincode project. This file provides the complete unit testing setup for Go
chaincodes, and also an example unit test case in the comments section for reference.
Following the example, you will be able write unit test cases for your chaincode methods.

The unit test cases can be run by executing the command go test from the chaincode
project folder. For coverage, add the flag --cover.

Example: go test --cover.

Generate a Postman Collection Using the CLI
You can use the generate command to create a Postman collection that includes example
payloads for all of your chaincode controller APIs.

Postman is a tool that you can use to work with and test REST APIs. The generate command
creates a Postman collection that is based on the chaincode that was automatically
generated from a declarative specification file. The Postman collection contains the payloads
for all of the methods that are specified in the chaincode controller file. You can change the
variable values in the Postman collection file to make REST API calls.

The generated Postman collection includes default values for all APIs in the controller. To
learn more about Postman, see https://www.postman.com/. After you generate a Postman
collection, you can directly import it and use it by changing the default values in the payload
and variables.

Usage:

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-81

https://www.postman.com/

generate [options]

my-mac:TsProject myname$ ochain generate -h
Usage: generate [options]

Generates the postman collection for the chaincode.

Options :
 -h, --help output command usage information
 -D, --debug enable debug logging
 -c, --collection This option is mandatory to generate a
Postman collection.
 -p, --project <path> Path to the chaincode project to generate
the Postman collection from. If not specified, it defaults to current
directory.
 -o, --out <path> Path to the generated Postman collection
JSON file. If not specified, it defaults to current directory.

To generate a Postman collection, navigate to the directory that contains the project
and then enter the following command. You must run the generate command from
the chaincode directory or an error will occur. If the specified Postman collection
already exists, you are prompted whether to overwrite it.

ochain generate --collection --project path_to_chaincode_project --out
path_to_postman_collection_to_generate

Postman Collection Structure

The generated Postman collection includes two types of requests, invoke requests and
query requests:

• Invoke requests include all write operations, which use the endpoint /
transactions

• Query requests include all get operations, which use the endpoint /chaincode-
queries

To differentiate between getter and non-getter methods in the controller APIs, a
decorator is used in TypeScript chaincodes and a comment is used in Go chaincodes.
If you define a getter method in the controller, you must use the GetMethod decorator
for TypeScript or the GetMethod comment for Go, as shown in the following table.

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-82

TypeScript Go

Every getter method has a GetMethod decorator:

@GetMethod()
@Validator()
public async getAllTokenAdmins() {
 await
this.Ctx.ERC1155Auth.checkAuthorizati
on("ERC1155ADMIN.getAllAdmins",
"TOKEN");
 return await
this.Ctx.ERC1155Admin.getAllAdmins();
}

Every getter method has a GetMethod comment
block:

/**
 * GetMethod
 */
func (t *Controller)
GetAllTokenAdmins() (interface{},
error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Admin.
GetAllAdmins", "TOKEN")
 if err != nil && !auth {
 return nil,
fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return
t.Ctx.Admin.GetAllTokenAdmins()
}

Generated Postman collections include variables with default values, as shown in the
following table.

Variable Name Description Default Value Context

bc-url The REST proxy URL of
the Oracle Blockchain
Platform instance where
the chaincode is
deployed

https://test-xyz-
abc.blockchain.ocp.
oraclecloud.com:744
3/restproxy

all chaincodes

bc-channel The channel where the
chaincode is deployed

default all chaincodes

bc-admin-user The name of the admin
user (a user with the
admin role that can
access all POST
requests). By default,
this user is the caller of
all POST requests in the
chaincode

bc-admin-user value all chaincodes

bc-admin-password The password for the
admin user

bc-admin-password
value

all chaincodes

bc-timeout The timeout value in the
body of every POST
request to indicate the
timeout interval

6000 all chaincodes

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-83

Variable Name Description Default Value Context

bc-sync The sync value in the
body of every POST
request to indicate
whether the request is
synchronous or
asynchronous

true all chaincodes

bc-chaincode-name The chaincode name,
which is used in every
POST request

chaincode name all chaincodes

bc-org-id The default orgId
parameter for all POST
requests

bc-org-id value token chaincodes only

bc-user-id The default userId
parameter for all POST
requests

bc-user-id value token chaincodes only

bc-token-id The default tokenId
parameter for all POST
requests

bc-token-id value token chaincodes only

In every generated request, all of the parameters with default values are generated.
Functions that have struct/class parameters will have a placeholder object in the
request body, as shown in the following examples.

API with a struct/class parameter

{
 "chaincode": "{{bc-chaincode-name}}",
 "args": [
 "CreateArtCollectionToken",
 "{\"TokenId\":\"{{bc-token-id}}\",\"TokenDesc\":\"TokenDesc
value\",\"TokenUri\":\"TokenUri value\",\"TokenMetadata\":
{\"Painting_name\":\"Painting_name
value\",\"Description\":\"Description value\",\"Image\":\"Image
value\",\"Painter_name\":\"Painter_name
value\"},\"Price\":999,\"On_sale_flag\":true}",
 "quantity value"
],
 "timeout": {{bc-timeout}},
 "sync": {{bc-sync}}
}

API without a struct/class parameter

{
 "chaincode": "{{bc-chaincode-name}}",
 "args": [
 "CreateAccount",
 "{{bc-org-id}}",
 "example_minter",
 "true",

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-84

 "true"
],
 "timeout": {{bc-timeout}},
 "sync": {{bc-sync}}
}

The default value for most API parameters is parameter_name value, with some exceptions.
The following examples show some of the exceptions.

• The filters parameter in GetAccountTransactionHistoryWithFilters:

"{\"PageSize\":20,\"Bookmark\":\"\",\"StartTime\":\"2022-01-16T15:16:36+00
:00\",\"EndTime\":\"2022-01-17T15:16:36+00:00\"}"

• The filters parameter in GetSubTransactionsByIdWithFilters:

"{\"PageSize\":20,\"Bookmark\":\"\}"

A struct or class has different default values, as shown in the following table:

Data Type Default Value

boolean/bool true
int/number 999
date 2022-01-16T15:16:36+00:00
other parameter_name value

ERC-1155 Token Projects

The ERC-1155 standard includes common methods for both fungible and non-fungible
tokens. The generated Postman collection for an ERC-1155 project that uses both fungible
and non-fungible tokens includes two different POST requests, one for each type of token, for
these common methods. If an ERC-1155 project uses only fungible or non-fungible tokens
but not both types, then the generated Postman collection includes only one POST request
for these common methods. The following table illustrates the generated API for the AddRole
method.

Fungible Tokens Non-Fungible Tokens

Request Name AddRole -For Fungible AddRole -For NonFungible

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-85

Fungible Tokens Non-Fungible Tokens

Request Body
{
 "chaincode": "{{bc-
chaincode-name}}",
 "args": [
 "AddRole",
 "{{bc-org-id}}",
 "{{bc-user-
id}}",
 "role value
(for example, minter /
burner)",

"{\"TokenId\":\"{{bc-
token-id}}\"}"
],
 "timeout": {{bc-
timeout}},
 "sync": {{bc-sync}}
}

{
 "chaincode": "{{bc-
chaincode-name}}",
 "args": [
 "AddRole",
 "{{bc-org-id}}",
 "{{bc-user-
id}}",
 "role value
(for example, minter /
burner)",

"{\"TokenName\":\"TokenN
ame value\"}"
],
 "timeout": {{bc-
timeout}},
 "sync": {{bc-sync}}
}

Troubleshoot Blockchain App Builder CLI
The following information can be used to troubleshoot system problems with
Blockchain App Builder CLI.

Prerequisites issues
Errors can occur if you modify or upgrade any of the prerequisite software that is
required by Blockchain App Builder. You can use the preReqCheck command to
check that your installation of Blockchain App Builder still meets the prerequisites.
Usage:
preReqCheck [options]

my-mac:TsProject myname$ ochain preReqCheck -h
Usage: patch [options]

Validates the pre-requisites of Blockchain App Builder

Options :
 -h, --help output command usage information
 -D, --debug enable debug logging

If the prerequisites check fails with errors and warnings when you attempt to install
Blockchain App Builder, you might see an error similar to the following example:

npm ERR! code 1
npm ERR! path

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-86

C:\Users\opc\AppData\Roaming\npm\node_modules\@oracle\ochain-cli
npm ERR! command failed
npm ERR! command C:\Windows\system32\cmd.exe /d /s /c node build/pre-
install.js
npm ERR! NodeJs version is correct.
npm ERR! NPM version is correct.
npm ERR! Error:
npm ERR! Found 1 error(s) in pre-requisites check, failed with following
errors:
npm ERR! 1. Golang version mismatch. Expected 1.20.x, but found 1.18.5.
npm ERR!
npm ERR! Found 3 warning(s) in pre-requisites check.
npm ERR! 1. Docker is not installed. Please install Docker >= 18.09.0. To
deploy chaincodes in the local environment, please install the recommended
version of Docker.
npm ERR! 2. Docker Compose is not installed. Please install Docker Compose
>= 1.23.0. To deploy chaincodes in the local environment, please install the
recommended version of Docker Compose.
npm ERR! 3. Git is not Installed. To sync chaincodes, please install the Git
according to the documentation.
npm ERR! at preRequsiteCheck
(C:\Users\opc\AppData\Roaming\npm\node_modules\@oracle\ochain-
cli\build\lib\util\pre-install.js:435:15)
npm ERR! at Object.<anonymous>
(C:\Users\opc\AppData\Roaming\npm\node_modules\@oracle\ochain-cli\build\pre-
install.js:10:44)
npm ERR! at Module._compile (node:internal/modules/cjs/loader:1254:14)
npm ERR! at Module._extensions..js (node:internal/modules/cjs/
loader:1308:10)
npm ERR! at Module.load (node:internal/modules/cjs/loader:1117:32)
npm ERR! at Module._load (node:internal/modules/cjs/loader:958:12)
npm ERR! at Function.executeUserEntryPoint [as runMain] (node:internal/
modules/run_main:81:12)
npm ERR! at node:internal/main/run_main_module:23:47

npm ERR! A complete log of this run can be found in:
npm ERR! C:\Users\opc\AppData\Local\npm-
cache_logs\2023-08-25T09_58_34_514Z-debug-0.log

Deployment failure
Due to deployment failure, corrupt deployment, a Docker peer container being full, or a
Docker peer being killed in the local network, you may see an error similar to:

============ Started instantiate Chaincode ============
[2028-19-01T19:25:lO.372] [ERROR] default - Error instantiating Chaincode
GollGl on channel mychannel, detailed
error: Error: error starting container: error starting container: Failed to
generate platform-specific docker
build: Failed to pull hyperledger/fabric-ccenv:latest : API error (404):
manifest for hyperledger/
fabric-ccenv:latest not found: manifest unknown: manifest unknown
[2020-19-01T19:25:10.372] (INFO) default -
============ Finished instantiate Chaincode ============

Chapter 7
Using the Blockchain App Builder Command Line Interface

7-87

[2020-19-01119:25:10.372] [ERROR] default - Error: Error instantiating
Chaincode Goll01 on channel mychannel,
detailed error: Error: error starting container: error starting
container: Failed to generate platfom-specific
docker build: Failed to pull hyperledger/fabric-ccenv: latest : API
error (404): manifest for hyperledger/
fabric-ccenv:lalest not found: manifest unknown: manifest unknown
exited: signal: terminated
INFO: exited: signal: terminated

ERROR: Error in Chaincode deployment

This is due to a peer container not able to start up properly again. To work around this
behavior, complete the following step.

• Open a new terminal window in the chaincode project and run the ochain run
-b command.

Blockchain App Builder CLI rebuilds the local fabric environment and deploys your
chaincode to the new environment.

Mac OSX: Xcode
After a Mac OSX upgrade, or if Xcode is not installed, you might see an error similar
to the following in the error log:

gyp: No Xcode or CLT version detected!
gyp ERR! configure error
gyp ERR! stack Error: `gyp` failed with exit code: 1
gyp ERR! stack at

• To work around this behavior, open a terminal window and run the following
commands:

sudo rm -rf $(xcode-select --print-path)
xcode-select --install

Using the Blockchain App Builder Extension for Visual
Studio Code

The Blockchain App Builder extension for Visual Studio Code helps you build and
scaffold a fully-functional chaincode project from a specification file.

After the project is built, you can run and test it on a local Hyperledger Fabric network,
or your provisioned Oracle Blockchain Platform network. You can then run SQL rich
queries, debug the chaincode, or write and run unit tests using the generated code.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-88

Table 7-3 Workflow When Using the VS Code Extension

Task Description More Information

Install and configure Download the Blockchain App
Builder VS Code extension from your
Oracle Blockchain Platform console
and install it and any prerequisite
software.

• Install and Configure the
Blockchain App Builder
Extension for Visual Studio
Code

Create the chaincode project Create a specification file for the
chaincode project.

• Create a Chaincode Project with
the Blockchain App Builder VS
Code Extension

Generate the chaincode Edit the specification file to define the
assets and chaincodes to generate,
and then generate your chaincode
from the specification file.

Detailed reference information about
the structure and contents of the
specification file and the generated
chaincode project:
• Input Specification File
• Scaffolded TypeScript

Chaincode Project
• Scaffolded Go Chaincode

Project

Detailed information about
tokenization support:
• Tokenization Support Using

Blockchain App Builder
• Scaffolded TypeScript NFT

Project for ERC-721
• Scaffolded Go NFT Project for

ERC-721
• Scaffolded TypeScript Project for

Token Taxonomy Framework
• Scaffolded Go Project for Token

Taxonomy Framework

Deploy the chaincode After your chaincode project is
created, you can deploy it locally to
the included pre-configured
Hyperledger Fabric network, or
remotely to your Oracle Blockchain
Platform Cloud or Enterprise Edition.

You can also package the chaincode
project for manual deployment to
Oracle Blockchain Platform.

• Deploy the Chaincode to a Local
Hyperledger Fabric Network

• Deploy Your Chaincode to a
Remote Oracle Blockchain
Platform Network

• Package Your Chaincode
Project for Manual Deployment
to Oracle Blockchain Platform

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-89

Table 7-3 (Cont.) Workflow When Using the VS Code Extension

Task Description More Information

Test the chaincode After your chaincode is running on a
network, you can test any of the
generated methods.

Additionally, If you chose to create
the executeQuery method during
your chaincode development, you
can run SQL rich queries if your
chaincode is deployed to an Oracle
Blockchain Platform network.

• Test Your Chaincode on a Local
Hyperledger Fabric Network

• Testing Lifecycle Operations on
a Remote Oracle Blockchain
Platform Network

• Execute Berkeley DB SQL Rich
Queries

Debug the chaincode You can do line-by-line debugging in
Visual Studio Code.

• Debugging from Visual Studio
Code

Synchronize your updates When you update your specification
file, you can synchronize the
changes with the generated
chaincode files.

• Synchronize Specification File
Changes With Generated
Source Code

Running unit tests A basic unit test case setup is
included in the project. Additional
tests can be added and run.

• Writing Unit Test Cases and
Coverage Reports for the
Chaincode Project

Install and Configure the Blockchain App Builder Extension for Visual
Studio Code

The Blockchain App Builder extension for Visual Studio Code can be downloaded
through the Oracle Blockchain Platform console.

The following platforms are supported:

• macOS

• Oracle Linux 8.0 or 9.0

• Microsoft Windows 10 or 11

Prerequisites

Before you install Blockchain App Builder on your local system, you must install the
prerequisites.

Note:

Blockchain App Builder coordinates with Oracle Blockchain Platform and its
compilers. If you use any versions of the prerequisites other than the ones
mentioned in the following section, deploying your chaincode to a remote
Oracle Blockchain Platform network might fail.

When you install Blockchain App Builder, a prerequisites check runs first. If the
prerequisites check fails, the installation process is stopped.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-90

• macOS

• Linux

• Windows

macOS
Prerequisites

• Rancher Desktop (tested with 1.4.1). Blockchain App Builder can also work with Docker,
but it has been tested and verified with Rancher Desktop. If you plan to use Rancher
Desktop, uninstall Docker completely before installing Rancher Desktop. After you install
Rancher Desktop, ensure that the container runtime is set to dockerd (moby). To
verify the container runtime in Rancher Desktop 1.4.1, click Kubernetes Settings, and
then Container Runtime.

• The latest release of Node.js version 18 (tested with 18.15.0 and 18.16.0), and npm v8.x
or 9.x (tested with 9.5.0 and 9.5.1)
Check the Node.js version by running the following command: node --version
Check the npm version by running the following command: npm --version
If you use a manager such as nvm or nodenv to install Node.js and npm, set the default/
global version and then restart Visual Studio Code so that the version will be detected by
the Prerequisites page.

Do not use versions of Node.js earlier or later than version 18.

• Go version v1.20.10. After installing Blockchain App Builder, see Additional Setup for Go
Chaincode Projects.
Check the Go version by running the following command: go version

• If you plan to use the synchronization feature of Blockchain App Builder, install Git and
configure your user name and email as shown in the following commands. Specify your
user name and email address in the place of <your_name> and <email>.

git config --global user.name "<your_name>"

git config --global user.email "<email>"

• Visual Studio Code version 1.66.0 or later
Check the Visual Studio Code version by running the following command: code --
version

Install Node.js and npm by Using nvm

Using nvm to install Node.js and npm gives you the ability to run more commands without
sudo.

1. Enter the following command to install nvm:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/install.sh
| bash

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-91

2. Add the following code snippet to the applicable file: ~/.bash_profile,
~/.profile, ~/.bashrc or ~/.zshrc.

export NVM_DIR="$HOME/.nvm"
[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh" # This loads nvm
[-s "$NVM_DIR/bash_completion"] && \. "$NVM_DIR/bash_completion"
This loads nvm bash_completion

3. Log out and then log back in to your operating system.

4. Enter the following command to verify the nvm installation:

nvm version

5. Enter the following command to install Node.js and npm:

nvm install 18.16.0

6. Enter the following command to set Node.js 18.16.0 as the default in nvm:

nvm alias default 18.16.0

The output of the command is the following text:

default -> 18.16.0 (-> v18.16.0)

Linux
Prerequisites

• Docker v18.09.0 or later

• Docker Compose v1.23.0 or later

• The latest release of Node.js version 18 (tested with 18.15.0 and 18.16.0), and
npm v8.x or v9.x (tested with 9.5.0 and 9.5.1)
Check the Node.js version by running the following command: node --version
Check the npm version by running the following command: npm --version
If you use a manager such as nvm or nodenv to install Node.js and npm, set the
default/global version and then restart Visual Studio Code so that the version will
be detected by the Prerequisites page.

Do not use versions of Node.js earlier or later than version 18.

• Go version v1.20.10. After installing Blockchain App Builder, see Additional Setup
for Go Chaincode Projects.
Check the Go version by running the following command: go version

• If you plan to use the synchronization feature of Blockchain App Builder, install Git
and configure your user name and email as shown in the following commands.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-92

Specify your user name and email address in the place of <your_name> and <email>.

git config --global user.name "<your_name>"

git config --global user.email "<email>"

• Visual Studio Code version 1.66.0 or later
Check the Visual Studio Code version by running the following command: code --
version

Install Node.js and npm by Using nvm

Using nvm to install Node.js and npm gives you the ability to run more commands without
sudo.

1. Enter the following command to install nvm:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/install.sh
| bash

2. Add the following code snippet to the applicable file: ~/.bash_profile, ~/.profile,
~/.bashrc or ~/.zshrc.

export NVM_DIR="$HOME/.nvm"
[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh" # This loads nvm
[-s "$NVM_DIR/bash_completion"] && \. "$NVM_DIR/bash_completion" #
This loads nvm bash_completion

3. Log out and then log back in to your operating system.

4. Enter the following command to verify the nvm installation:

nvm version

5. Enter the following command to install Node.js and npm:

nvm install 18.16.0

6. Enter the following command to set Node.js 18.16.0 as the default in nvm:

nvm alias default 18.16.0

The output of the command is the following text:

default -> 18.16.0 (-> v18.16.0)

Windows
Prerequisites

• Rancher Desktop (tested with 1.4.1). Blockchain App Builder can also work with Docker,
but it has been tested and verified with Rancher Desktop.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-93

• The latest release of Node.js version 18 (tested with 18.15.0 and 18.16.0). Do not
use versions of Node.js earlier or later than version 18.

• npm v8.x or v9.x (tested with 9.5.0 and 9.5.1)

• Go v1.20.10. After installing Blockchain App Builder, see Additional Setup for Go
Chaincode Projects.

• If you want to use the synchronization feature of Blockchain App Builder, install Git
and configure your user name and email as shown in the following commands.
Specify your user name and email address in the place of <your_name> and
<email>.

git config --global user.name "<your_name>"

git config --global user.email "<email>"

Install Rancher Desktop

Complete the following steps to install Rancher Desktop on Microsoft Windows.

1. If Docker is installed on your local computer, uninstall it completely.

2. Download and install Rancher Desktop.

3. After the installation wizard completes, before you open Rancher Desktop, run the
following commands:

wsl --install
wsl --set-default-version 2
wsl --setdefault rancher-desktop

4. Open Rancher Desktop to complete the setup process.

5. After you install Rancher Desktop, ensure that the container runtime is set to
dockerd (moby). To verify the container runtime in Rancher Desktop 1.4.1, click
Kubernetes Settings, and then Container Runtime.

Install the Blockchain App Builder Extension

1. Download the extension from the Developer Tools tab on the Blockchain App
Builder pane of the Oracle Blockchain Platform console. On the Blockchain App
Builder pane, under the Download section, select Visual Studio Code
Extension.

2. In Visual Studio Code, open the Extensions panel and then from the More
Actions menu, select Install from VSIX.

3. Locate the downloaded oracle-ochain-extension-x.x.x.vsix file and
then click Install. (Adjust the name of the .vsix file for the version that you are
installing.)

4. Restart Visual Studio Code to complete installation of the extension.

5. To use the specification file validation functions, which automatically validate the
specification file as you type, install the YAML extension from Red Hat. Open the

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-94

Extensions panel, search for YAML, install the YAML Language Support extension, and
then restart Visual Studio Code.

After installation, you can use the Oracle Blockchain App Builder icon on the left side of
Visual Studio Code to open the Blockchain App Builder panel.

Additionally, the Blockchain App Builder command line interface (CLI) is automatically
installed as part of the extension for Visual Studio Code if you haven't already installed it
separately. The CLI commands can be run from any terminal application, including the Visual
Studio Code console window. Blockchain App Builder is installed globally, so you can run the
CLI commands from any location in the file system.

Additional Setup for Go Chaincode Projects

To develop a Go project, you must set the GOPATH environment variable. This allows Go to
locate your workspace and run your code.

• macOS

• Linux

• Windows

macOS
Before setting the GOPATH environment variable, make sure that a go/ folder exists in
your $HOME directory. If not, enter the following command to create a go/ directory in your
home directory:

mkdir $HOME/go

Set your GOPATH environment variable by adding the following variables to the applicable file:
~/.bash_profile, ~/.profile, ~/.bashrc or ~/.zshrc.

export PATH=$PATH:/usr/local/go/bin
export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin

After editing the file, run the following command to make your changes take effect
immediately:

source ~/.bash_profile

Alternately, you can apply the change system-wide by adding the previous variables to
the /etc/bashrc file.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-95

Linux
Before setting the GOPATH environment variable, make sure that a go/ folder exists in
your $HOME directory. If not, enter the following command to create a go/ directory in
your home directory:

mkdir $HOME/go

Set your GOPATH environment variable by adding the following variables to the
applicable file: ~/.bash_profile, ~/.profile, ~/.bashrc or ~/.zshrc.

export PATH=$PATH:/usr/local/go/bin
export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin

After editing the file, run the following command to make your changes take effect
immediately:

source ~/.bash_profile

Alternately, you can apply the change system-wide by adding the previous variables to
the /etc/bashrc file.

Windows
Create a go/ directory in your home directory: C:\Users\<username>\go.

Upgrade the Blockchain App Builder Extension for Visual Studio Code
To upgrade Blockchain App Builder, you must uninstall the previous version and then
install the newer version.

1. In Visual Studio Code, open the Extensions panel and then select the Blockchain
App Builder extension.
The Blockchain App Builder extension page is displayed.

2. Click Uninstall.

3. After Blockchain App Builder is uninstalled, restart Visual Studio Code.

4. Download the latest version of the Blockchain App Builder extension from the
Developer Tools tab on the Blockchain App Builder pane of the Oracle
Blockchain Platform console, and then install Blockchain App Builder. For more
information, see Install and Configure the Blockchain App Builder Extension for
Visual Studio Code.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-96

Create a Chaincode Project with the Blockchain App Builder VS Code
Extension

To create a Chaincode Project when using the Blockchain App Builder, you need to scaffold a
chaincode project from a detailed specification file. This generates a project with all the files
you need.

Background

Blockchain App Builder initializes and scaffolds a chaincode project right out of the box for
you. Based on simple input, Create New Chaincode can generate complex chaincode
projects with features such as:

• Multiple assets (models) and their behaviors (controllers)

• Auto-generate CRUD (Create/Read/Update/Delete) and non-CRUD methods

• Automatic validation of arguments

• Marshalling/unmarshalling of arguments

• Transparent persistence capability (ORM)

• Calling rich queries

• Transient and private data support

• Identity management

The generated project follows model/controller and decorator pattern, which allows an asset's
properties maintained on the ledger to be specified as typed fields and extended with specific
behaviors and validation rules. This reduces the number of lines of code which helps in
readability and scalability.

Create a Specification File

Before you begin, you need to create an input specification file. Note that you cannot alter the
sample specification files that were installed as part of Blockchain App Builder, but you can
duplicate them or use them as a reference file for your own specification files.

1. In the Specifications pane, select Create New Spec File.

2. The Specifications Details pane opens:

• Enter the name for the specification file.

• Select the file type - YAML and JSON are supported.

• Optionally enter a description for the file.

• The Reference File drop-down allows you to generate your specification file from a
pre-existing file in your workspace if you have a file you'd like to use as a template. If
nothing is selected, the created file will be empty and you can enter your specification
from scratch.

• Enter the location where you want the specification file to be stored on your system.

Click Save.

The new specification file is created and appears in the Specifications pane. Click on it to
open it in the editor.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-97

Import a Specification File

If you have a pre-existing specification file, you can import it:

1. In the Specifications pane, click More Actions and select Import Specification.

2. Browse to your file and click Import Specification.

The specification file is imported and appears in the Specifications pane. Click on it to
open it in the editor.

Duplicate a Specification File

You can also duplicate a specification file that's already in your Specifications pane
by right-clicking it and selecting Duplicate. Right-click the file and select Rename to
update the name.

The details about the contents of specifications files are described here: Input
Specification File. Use this information and the sample specification templates to
create your specification content.

Validate a Specification File

If you installed the YAML Language Support extension, the specification file is
automatically validated as you type. The following validation features are supported
automatically:

• Command completion

• Completion of scalar nodes to schema defaults

• Context-sensitive help when you hover over a property or method

• Indents for array items as you type

• Syntax error detection

Scaffolding the Chaincode Project

When you have a specification file that meets your needs, generate your chaincode
project.

1. In the Chaincodes pane, select Create New Chaincode.

2. The Chaincode Details pane opens:

• Enter the name of your chaincode project.

• Select the language: TypeScript or Go.

• Select the specification file that you're using to create the chaincode.

• Enter the location or Go domain where you want the project to be created
within your local development environment.

Click Create.

When your project is created, it will be shown in the Chaincodes pane. All the files
required by the chaincode will be in the project. For a detailed overview of the files
created, see:

• Scaffolded TypeScript Chaincode Project

• Scaffolded Go Chaincode Project

For a detailed overview of a token-based project, see also:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-98

• Scaffolded TypeScript Token Project for ERC-1155

• Scaffolded Go Token Project for ERC-1155

• Scaffolded TypeScript NFT Project for ERC-721

• Scaffolded Go NFT Project for ERC-721

• Scaffolded TypeScript Project for Token Taxonomy Framework

• Scaffolded Go Project for Token Taxonomy Framework

Note:

• The Chaincodes pane allows you open and work with content within the
chaincode project, but won't let you add, delete, or rename files within the
project. To do that, right-click your project and select Open in Explorer. This
opens the project in the VS Code Explorer view.

• Deleting or renaming files in the chaincode project can potentially break the link
between the project files and the specification file used to create it. If you plan
to synchronize your code between the two, don't change the file names.

Import an Existing Chaincode Project

If you've created a chaincode project through the CLI or you've cleaned your VS Code
blockchain content and want to import a locally saved project, in the Chaincodes pane click
the More Actions... icon and select Import Chaincode. Browse to the project and click
Import Chaincode.

Input Specification File
The Blockchain App Builder initialization command reads the input specification file and
generates the scaffolded project with several tools to assist in the chaincode development
process.

With the specification file you can specify multiple asset definitions and behavior, CRUD and
non-CRUD method declaration, custom methods, validation of arguments, auto marshalling/
unmarshalling, transparent persistence capability, and invoking rich data queries using SQL
SELECTs or CouchDB Query Language. These features will be generated for you.

For information on specifying token assets see the following topics:

• Input Specification File for Token Taxonomy Framework

• Input Specification File for ERC-721

• Input Specification File for ERC-1155

The specification file can be written in either yaml or json. You can see sample specification
files in both formats in the Blockchain App Builder package download:

• Fabcar-Typescript.yml
• Marbles-Go.yml

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-99

Note:

As per Go conventions, exported names begin with a capital letter. Therefore
all the asset properties and methods must have names starting with capital
letters in the specification file.

Structure of the Specification File

Typically, you structure a specification file in the following way:

assets:
 name:
 type:
 properties:
 name:
 type:
 id:
 derived:
 strategy:
 algorithm:
 format:
 mandatory:
 default:
 validate:
 methods:
 crud:
 others:
customMethods:

Blockchain App Builder supports two special asset types, embedded assets and token
assets, in addition to generic assets with no specified type. The special assets are
defined as type: embedded or type: token under the assets: section of the
specification file.

Table 7-4 Specification File Parameter Descriptions and Examples

Entry Description Examples

assets: This property takes
the definition and
behavior of the asset.
You can give multiple
asset definitions
here.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-100

Table 7-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

name: The name of the
asset.

The following names
are reserved. Do not
use these names for
assets.
• account
• role
• hold
• token
• authorization
• tokenAdmin
• Account
• Role
• Hold
• Token
• Authorization
• TokenAdmin

name: owner # Information about the owner

type: Asset types
The following special
asset types are
supported:
• embedded
• token
If you do not specify a
type parameter in
the assets section,
the asset is of the
generic type.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-101

Table 7-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

type:
type: embedded

If this property is set
to embedded the
asset is defined as an
embedded asset.
Embedded assets do
not have CRUD
methods and have to
be part of another
asset to store in the
ledger.

In the example, the
property address is
embedded, and is
defined in another
asset.

Embedded assets do
not support circular
references. For
instance, in the
previous example the
address asset
cannot contain a
reference to the
employee asset.

Asset: employee

name: employee
 properties:
 name: employeeId
 type: string
 mandatory: true
 id: true

 name: firstName
 type: string
 validate: max(30)
 mandatory: true

 name: lastName
 type: string
 validate: max(30)
 mandatory: true

 name: age
 type: number
 validate: positive(),min(18)

 name: address
 type: address

Asset: address

name: address

type: embedded

properties:
 name: street
 type: string

 name: city
 type: string

 name: state
 type: string

 name: country
 type: string

properties: Describe all the
properties of an
asset.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-102

Table 7-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

name: The name of the
property. name: ownerId # Unique ID for each owner

id: • true
This specifies the
identifier of this asset.
This property is
mandatory.

name: owner # Information about the
owner
properties:
 name: ownerId # Unique ID for each owner
 type: string
 mandatory: true
 id: true
 name: name # Name of the owner
 type: string
 mandatory: true

type: Property types
The following basic
property types are
supported:
• number
• float
• string
• boolean
• date
• array
For Go chaincodes,
number is mapped to
int and float is
mapped to float64.
Other types are not
currently supported,
including the
following types:
• complex
• unsigned/

signed int
• 8/16/32/64

bits

name: year # Model year
 type: number
 mandatory: true
 validate: min(1910),max(2020)
 name: color # Color -
no validation as color names are innumerable
 type: string
 mandatory: true

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-103

Table 7-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

derived: This property
specifies that the id
property is derived
from other keys.
Dependent properties
should be string
datatype and not an
embedded asset.

This property has two
mandatory
parameters:
• strategy: takes

values of concat
or hash.

• format: takes
an array of
specification
strings and
values to be
used by the
strategy.

Example 1:
• The property

employeeID is
dependent on
the firstName
and lastName
properties.

• This property is a
concatenation of
the values listed
in the format
array.

• IND%1#%2%tIND
is the 0th index
in the array and
describes the
final format.

• %n is a position
specifier that
takes its values
from the other
indexes in the
array.

• %t indicates the
value should be
stub.timestam
p from the
channel header.

• If you need to
use the
character % in
the format

Example 1

name: employee
 properties:
 name: employeeId
 type: string
 mandatory: true
 id: true
 derived:
 strategy: concat
 format:
["IND%1#%2%tIND","firstName","lastName"]

 name: firstName
 type: string
 validate: max(30)
 mandatory: true

 name: lastName
 type: string
 validate: max(30)
 mandatory: true

 name: age
 type: number
 validate: positive(),min(18)

Example 2

name: account
 properties:
 name: accountId
 type: string
 mandatory: true
 id: true
 derived:
 strategy: hash
 algorithm: 'sha256'
 format:
["IND%1#%2%t","bankName","ifsccode"]

 name: bankName
 type: string
 validate: max(30)
 mandatory: true

 name: ifsccode

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-104

Table 7-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

string, it should
be escaped with
another %.

• The final format
in this example
would be:
INDfirstName#
lastName16068
85454916IND

Example 2:
• When using

hash, you must
also use the
algorithm
parameter. The
default is
sha256; md5 is
also supported.

• IND%1#%2%t is
the 0th index in
the array and
describes the
final format.

• %n is a position
specifier that
takes its values
from the other
indexes in the
array.

• %t indicates the
value should be
stub.timestam
p from the
channel header.

• If you need to
use the
character % in
the format
string, it should
be escaped with
another %.

 type: string
 mandatory: true

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-105

Table 7-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

mandatory: • true
• false
The corresponding
property is
mandatory and
cannot be skipped
while creating an
asset.

name: phone # Phone number - validate as
(ddd)-ddd-dddd where dashes could also be periods
or spaces
type: string
mandatory: true
validate: /^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?
([0-9]{4})$/
name: cars # The list of car VINs owned by
this owner
type: string[]
mandatory: false

default: This gives you the
default value of this
property.

validate: The given property is
validated against
some of the out-of-
box validations
provided by
Blockchain App
Builder. You can
chain validations if
you ensure that the
chain is valid.

If the validate
property is not
provided, then the
validation is done
against only the
property type.

validate:
type: number

• positive()
• negative()
• min()
• max()
These validations can
be chained together
separated by
commas.

name: offerApplied
type: number
validate: negative(),min(-4)

name: year # Model year
type: number
mandatory: true
validate: min(1910),max(2020)

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-106

Table 7-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

validate:
type: string

• min()
• max()
• email()
• url()
• /regex/ -

supports PHP
regex

For Go chaincodes,
regular expressions
which contain certain
reserved characters
or whitespace
characters should be
properly escaped.

name: website
type: string
mandatory: false
validate: url()

name: phone # Phone number - validate as (ddd)-
ddd-dddd where dashes could also be periods or
spaces
type: string
mandatory: true
validate: /^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?
([0-9]{4})$/

name: Color #Color can be red, blue, or green
type: string
mandatory: true
validate: /^\\s*(red|blue|green)\\s*$/

validate:
type: boolean

• true
• false
In the example, the
validation of property
active is by the type
itself (boolean)

name: active
type: boolean

validate:
type: array

By type itself, in the
form of type:
number[], this
conveys that the
array is of type
number.

You can enter limits
to the array in the
format number[1:5]
which means
minimum length is 1,
maximum is 5. If
either one is avoided,
only min/max is
considered.

name: items
type: number[:5]

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-107

Table 7-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

validate:
type: date

• min()
• max()
Date should be one
of these formats:
• YYYY-MM-DD
• YYYY-MM-

DDTHH:MM:SSZ,
where T
separates the
date from the
time, and the Z
indicates UTC.
Timezone offsets
can replace the Z
as in -05:00 for
Central Daylight
Savings Time.

name: expiryDate
type: date
validate: max('2020-06-26')

name: completionDate
type: date
validate: min('2020-06-26T02:30:55Z')

methods: Use this to state
which of the CRUD
(Create/Read/
Update/Delete) or
additional methods
are to be generated.

By default, if nothing
is entered, all CRUD
and other methods
are generated.

methods:
 crud: [create, getById, update, delete]
 others: [getHistoryById, getByRange]

crud: • create
• getByID (read)

• update
• delete
If this array is left
empty, no CRUD
methods will be
created.

If the crud parameter
is not used at all, all
four methods will be
created by default.

The crud parameter
is not applicable to
token and embedded
assets.

methods:
 crud: [create, getById, delete]
 others: [] # no other methods will be created

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-108

Table 7-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

others: • getHistoryByI
d

• getByRange
getHistoryById
returns the history of
the asset in a list.

getByRange returns
all the assets in a
given range. For
more information, see
getByRange
(TypeScript) and
GetByRange (Go).

If this array is left
empty, no other
methods will be
created.

If the others
parameter is not used
at all, both methods
will be created by
default.

The others
parameter is not
applicable to token
and embedded
assets.

methods:
 crud: [create, delete]
 others: [] # no other methods will be created

 methods:
 crud: [create, getById, update, delete]
 others: [getHistoryById, getByRange]

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-109

Table 7-4 (Cont.) Specification File Parameter Descriptions and Examples

Entry Description Examples

customMethods: This property creates
invokable custom
method templates in
the main controller
file. It takes the
method signature and
creates the function
declaration in the
controller file.

You can provide
language specific
function declarations
here.

We provide a custom
method named
executeQuery. If it's
added to the
specification file, it
details how Berkeley
DB SQL and
CouchDB rich
queries can be
executed. This
method can be
invoked only when
you are connected to
Oracle Blockchain
Platform Cloud or
Enterprise Edition.

TypeScript

customMethods:
 - executeQuery
 - "buyCar(vin: string, buyerId: string,
sellerId: string, price: number, date: Date)"
 - "addCar(vin: string, dealerId: string,
price: number, date: Date)"

Go

customMethods:
 - executeQuery
 - "BuyCar(vin string, buyerId string,
sellerId string, price int)"
 - "AddCar(vin string, dealerId string, price
int)"

Scaffolded TypeScript Chaincode Project
Blockchain App Builder takes the input from your specification file and generates a
fully-functional scaffolded chaincode project. The project contains automatically
generated classes and functions, CRUD methods, SDK methods, automatic validation
of arguments, marshalling/un-marshalling and transparent persistence capability
(ORM).

If the chaincode project uses the TypeScript language, the scaffolded project contains
three main files:

• main.ts
• <chaincodeName>.model.ts
• <chaincodeName>.controller.ts
All the necessary libraries are installed and packaged. The tsconfig.json file
contains the necessary configuration to compile and build the TypeScript project.

The <chaincodeName>.model.ts file in the model subdirectory contains multiple
asset definitions and the <chaincodeName>.controller.ts file in the
controller subdirectory contains the assets behavior and CRUD methods.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-110

The various decorators in model.ts and controller.ts provide support for features like
automatic validation of arguments, marshalling/unmarshalling of arguments, transparent
persistence capability (ORM) and calling rich queries.

Reference:

• Models

• Decorators

• ORM

• SDK Methods

• Controller

• Automatically Generated Methods

• Controller Method Details

• Custom Methods

• Init Method

Models

Every model class extends the OchainModel class, which has an additional read-only
property called assetType. This property can be used to fetch only assets of this type. Any
changes to this property are ignored during the creation and updating of the asset. The
property value by default is <modelName>.

The OchainModel class enforces decorator behaviors on properties of the class.

@Id('supplierId')
export class Supplier extends OchainModel<Supplier> {
 public readonly assetType = 'supplier';
 @Mandatory()
 @Validate(yup.string())
 public supplierId: string;

Decorators

Class decorators
@Id(identifier)

This decorator identifies the property which uniquely defines the underlying asset. This
property is used as a key of the record, which represents this asset in the chaincode's state.
This decorator is automatically applied when a new TypeScript project is scaffolded. The
'identifier' argument of the decorator takes the value from specification file.

@Id('supplierId')
export class Supplier extends OchainModel{
...
}

Property decorators
Multiple property decorators can be used. The decorators are resolved in top to bottom
order.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-111

@Mandatory()

This marks the following property as mandatory so it cannot be skipped while saving
to the ledger. If skipped it throws an error.

@Mandatory()
public supplierID: string;

@Default(param)

This property can have a default value. The default value in the argument (param) is
used when the property is skipped while saving to the ledger.

@Default('open for business')
@Validate(yup.string())
public remarks: string;

@Validate(param)

The following property is validated against the schema presented in the parameter.
The argument param takes a yup schema and many schema methods can be chained
together. Many complex validations can be added. Refer to https://www.npmjs.com/
package/yup for more details.

@Validate(yup.number().min(3))
public productsShipped: number;

@ReadOnly(param)

This property decorator marks the underlying property as having a read-only value.
The value in the argument, for example param, is used when the property is saved in
the ledger. Once the value is set it cannot be edited or removed.

@ReadOnly('digicur')
public token_name: string;

@Embedded(PropertyClass)

This property decorator marks the underlying property as an embeddable asset. It
takes the embeddable class as a parameter. This class should extend the
EmbeddedModel class. This is validated by the decorator.

In this example, Employee has a property called address of type Address, which is to
be embedded with the Employee asset. This is denoted by the @Embedded() decorator.

export class Employee extends OchainModel<Employee> {

 public readonly assetType = 'employee';

 @Mandatory()

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-112

https://www.npmjs.com/package/yup
https://www.npmjs.com/package/yup

 @Validate(yup.string())
 public emplyeeID: string;

 @Mandatory()
 @Validate(yup.string().max(30))
 public firstName: string;

 @Mandatory()
 @Validate(yup.string().max(30))
 public lastName: string;

 @Validate(yup.number().positive().min(18))
 public age: number;

 @Embedded(Address)
 public address: Address;
}

export class Address extends EmbeddedModel<Address> {

 @Validate(yup.string())
 public street: string;

 @Validate(yup.string())
 public city: string;

 @Validate(yup.string())
 public state: string;

 @Validate(yup.string())
 public country: string;
}

When a new instance of the Address class is created, all the properties of the Address class
are automatically validated by the @Validate() decorator. Note that the Address class does
not have the assetType property or @Id() class decorator. This asset and its properties are
not saved in the ledger separately but are saved along with the Employee asset. Embedded
assets are user defined classes that function as value types. The instance of this class can
only be stored in the ledger as a part of the containing object (OchainModel assets). All the
above decorators are applied automatically based on the input file while scaffolding the
project.

@Derived(STRATEGY, ALGORITHM, FORMAT)

This decorator is used for defining the attribute derived from other properties. This decorator
has two mandatory parameters:

• STRATEGY: takes values of CONCAT or HASH. Requires an additional parameter ALGORITHM if
HASH is selected. The default algorithm is sha256; md5 is also supported.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-113

• FORMAT: takes an array of specification strings and values to be used by the
strategy.

@Id('supplierID')
export class Supplier extends OchainModel<Supplier> {

 public readonly assetType = 'supplier';

 @Mandatory()
 @Derived(STRATEGY.HASH.'sha256',['IND%1IND%2','license','name'])
 @Validate(yup.string())
 public supplierID: string;

 @Validate(yup.string().min(2).max(4))
 public license: string;

 @Validate(yup.string().min(2).max(4))
 public name: string;

Method decorators
@Validator(…params)

This decorator is applied on methods of the main controller class. This decorator is
important for parsing the arguments, validating against all the property decorators and
returning a model/type object. Controller methods must have this decorator to be
invokable. It takes multiple user-created models or yup schemas as parameters.

The order of the parameters must be exactly the same as the order of the arguments
in the method.

In the following example, the Supplier model reference is passed in the parameter
that corresponds to the asset type in the method argument. At run time, the decorator
parses and converts the method argument to a JSON object, validates against the
Supplier validators, and after successful validation converts the JSON object to a
Supplier object and assigns it to the asset variable. Then the underlying method is
finally called.

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await this.Ctx.Model.save(asset);
}

In the following example, multiple asset references are passed; they correspond to
the object types of the method arguments. Notice the order of the parameters.

@Validator(Supplier, Manufacturer)
public async createProducts(supplier: Supplier, manufacturer:
Manufacturer) {
}

Apart from asset references, yup schema objects can also be passed if the arguments
are of basic-types. In the following example, supplierId and rawMaterialSupply are

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-114

of type string and number respectively, so the yup schema of similar type and correct order
is passed to the decorator. Notice the chaining of yup schema methods.

@Validator(yup.string(), yup.number().positive())
public async fetchRawMaterial(supplierID: string, rawMaterialSupply: number)
{
 const supplier = await this.Ctx.Model.get(supplierID, Supplier);
 supplier.rawMaterialAvailable = supplier.rawMaterialAvailable +
rawMaterialSupply;
 return await this.Ctx.Model.update(supplier);
}

ORM

Transparent Persistence Capability or simplified ORM is captured in the Model class of the
Context (Ctx) object. If your model calls any of the following SDK methods, access them by
using this.Ctx.Model.

SDK methods that implement ORM are the following methods:

• save – this calls the Hyperledger Fabric putState method

• get – this calls the Hyperledger Fabric getState method

• update – this calls the Hyperledger Fabric putState method

• delete – this calls the Hyperledger Fabric deleteState method

• history – this calls the Hyperledger Fabric getHistoryForKey method

• getByRange – this calls the Hyperledger Fabric getStateByRange method

• getByRangeWithPagination – this calls the Hyperledger Fabric
getStateByRangeWithPagination method

For more information, see: SDK Methods.

SDK Methods

Note:

Beginning with version 21.3.2, the way to access the ORM methods has changed.
Run the ochain --version command to determine the version of Blockchain
App Builder.

In previous releases, the ORM methods were inherited from the OchainModel class. In
version 21.3.2 and later, the methods are defined on the Model class of Context (Ctx) object.
To call these methods, access them by using this.Ctx.Model.<method_name>.

The following example shows a method call in previous releases:

@Validator(Supplier)
public async createSupplier(asset: Supplier){
 return await asset.save();
}

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-115

The following example shows a method call from the version 21.3.2 and later:

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await this.Ctx.Model.save(asset);
}

After you upgrade to version 21.3.2, make this change in all chaincode projects that
you created with an earlier version of Blockchain App Builder. If you use the sync
command to synchronize changes between the specification file and your source
code, the changes are automatically brought to your controller for the ready-to-use
methods. You still need to manually resolve any conflicts.

save
The save method adds the caller asset details to the ledger.

This method calls the Hyperledger Fabric putState internally. All marshalling/
unmarshalling is handled internally. The save method is part of the Model class, which
you access by using the Ctx object.

Ctx.Model.save(asset: <Instance of Asset Class> , extraMetadata?:
any) : Promise <any>

Parameters:

• extraMetadata : any (optional) – To save metadata apart from the asset into the
ledger.

Returns:

• Promise<any> - Returns a promise on completion

Example:

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await this.Ctx.Model.save(asset);
}

get
The get method is a method of OchainModel class which is inherited by the concrete
model classes of {chaincodeName}.model.ts. The get method is part of the
Model class, which you access by using the Ctx object.

If you would like to return any asset by the given id, use the generic controller method
getAssetById.

Ctx.Model.get(id: string, modelName: <Model Asset Class Name>) :
Promise<asset>

Parameters:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-116

• id : string – Key used to save data into the ledger.

• modelName: <Model Asset Class Name> – (Optional) Model asset class to return.

Returns:

• Promise: <Asset> - If the modelName parameter is not provided and data exists in ledger,
then Promise<object> is returned. If the id parameter does not exist in ledger, an error
message is returned. If the modelName parameter is provided, then an object of type
<Asset> is returned. Even though any asset with given id is returned from the ledger,
this method will take care of casting into the caller Asset type. If the asset returned from
the ledger is not of the Asset type, then it throws an error. This check is done by the
read-only assetType property in the Model class.

Example:

@Validator(yup.string())
public async getSupplierById(id: string) {
 const asset = await this.Ctx.Model.get(id, Supplier);
 return asset;
}

In the example, asset is of the type Supplier.

update
The update method updates the caller asset details in the ledger. This method returns a
promise.

This method calls the Hyperledger Fabric putState internally. All the marshalling/
unmarshalling is handled internally. The update method is part of the Model class, which you
can access by using the Ctx object.

Ctx.Model.update(asset: <Instance of Asset Class> , extraMetadata?: any) :
Promise <any>

Parameters:

• extraMetadata : any (optional) – To save metadata apart from the asset into the ledger.

Returns:

• Promise<any> - Returns a promise on completion

Example:

@Validator(Supplier)
public async updateSupplier(asset: Supplier) {
 return await this.Ctx.Model.update(asset);
}

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-117

delete
This deletes the asset from the ledger given by id if it exists. This method calls the
Hyperledger Fabric deleteState method internally. The delete method is part of the
Model class, which you can access by using the Ctx object.

Ctx.Model.delete(id: string): Promise <any>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise <any> - Returns a promise on completion.

Example:

@Validator(yup.string())
public async deleteSupplier(id: string) {
 const result = await this.Ctx.Model.delete(id);
 return result;
}

history
The history method is part of the Model class, which you can access by using the
Ctx object. This method returns the asset history given by id from the ledger, if it
exists.

This method calls the Hyperledger Fabric getHistoryForKey method internally.

Ctx.Model.history(id: string): Promise <any>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise <any[]> - Returns any [] on completion.

Example

@Validator(yup.string())
public async getSupplierHistoryById(id: string) {
 const result = await this.Ctx.Model.history(id);
 return result;
}

Example of the returned asset history for getSupplierHistoryById:

[
 {

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-118

 "trxId":
"8ef4eae6389e9d592a475c47d7d9fe6253618ca3ae0bcf77b5de57be6d6c3829",
 "timeStamp": 1602568005,
 "isDelete": false,
 "value": {
 "assetType": "supplier",
 "supplierId": "s01",
 "rawMaterialAvailable": 10,
 "license": "abcdabcdabcd",
 "expiryDate": "2020-05-28T18:30:00.000Z",
 "active": true
 }
 },
 {
 "trxId":
"92c772ce41ab75aec2c05d17d7ca9238ce85c33795308296eabfd41ad34e1499",
 "timeStamp": 1602568147,
 "isDelete": false,
 "value": {
 "assetType": "supplier",
 "supplierId": "s01",
 "rawMaterialAvailable": 15,
 "license": "valid license",
 "expiryDate": "2020-05-28T18:30:00.000Z",
 "active": true
 }
 }
]

getByRange
The getByRange method is a static method of OchainModel class which is inherited by the
concrete Model classes of {chaincodeName}.model.ts.

This returns a list of asset between the range startId and endId. This method calls the
Hyperledger Fabric getStateByRange method internally.

If the modelName parameter is not provided, the method returns Promise<Object [] >. If the
modelName parameter is provided, then the method handles casting into the caller Model
type. In the following example, the result array is of the type Supplier. If the asset returned
from the ledger is not of the Model type, then it will not be included in the list. This check is
done by the read-only assetType property in the Model class.

To return all the assets between the range startId and endId, use the generic controller
method getAssetsByRange.

Ctx.Model.getByRange(startId: string, endId: string, modelName: <Asset Model
Class Name>): Promise <any>

Parameters:

• startId : string – Starting key of the range. Included in the range.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-119

• endId : string – Ending key of the range. Excluded of the range.

• modelName: <Model Asset Class Name> – (Optional) Model asset class to return.

Returns:

• Promise< Asset[] > - Returns array of <Asset> on completion.

Example:

@Validator(yup.string(), yup.string())
public async getSupplierByRange(startId: string, endId: string) {
 const result = await this.Ctx.Model.getByRange(startId, endId,
Supplier);
 return result;
}

getByRangeWithPagination
The getByRangeWithPagination method is a static method of OchainModel class
which is inherited by the concrete Model classes of {chaincodeName}.model.ts.

This returns a list of asset between the range startId and endId. This method calls
the Hyperledger Fabric getStateByRangeWithPagination method internally.

If the modelName parameter is not provided, the method returns Promise<Object []
>. If the modelName parameter is provided, then the method handles casting into the
caller Model type. In the following example, the result array is of the type Supplier. If
the asset returned from the ledger is not of the Model type, then it will not be included
in the list. This check is done by the read-only assetType property in the Model class.

To return all the assets between the range startId and endId, filtered by page size
and bookmarks, use the generic controller method getAssetsByRange.

public async getByRangeWithPagination<T extends
OchainModel<T>>(startId: string, endId: string, pageSize: number,
bookmark?: string, instance?: new (data: any, skipMandatoryCheck:
boolean, skipReadOnlyCheck: boolean) => T): Promise<T[]>

Parameters:

• startId : string – Starting key of the range. Included in the range.

• endId : string – Ending key of the range. Excluded from the range.

• pageSize : number - The page size of the query.

• bookmark : string - The bookmark of the query. Output starts from this
bookmark.

• modelName: <Model Asset Class Name> – (Optional) Model asset class to return.

Returns:

• Promise< Asset[] > - Returns array of <Asset> on completion.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-120

getId
When the asset has a derived key as Id, you can use this method to get a derived ID. This
method will return an error if the derived key contains %t (timestamp).

Parameters:

• object – Object should contain all the properties on which the derived key is dependent.

Returns:

• Returns the derived key as a string.

Example:

@Validator(yup.string(), yup.string())

public async customGetterForSupplier(license: string, name: string){
 let object = {
 license : license,
 name: name
 }
 const id = await this.Ctx.Model.getID(object);
 return this.Ctx.Model.get(id);
}

For token SDK methods, see the topics under Tokenization Support Using Blockchain App
Builder.

Controller

Main controller class extends OchainController. There is only one main controller.

export class TSProjectController extends OchainController{

You can create any number of classes, functions, or files, but only those methods that are
defined within the main controller class are invokable from outside, the rest of them are
hidden.

Automatically Generated Methods

As described in Input Specification File, you can specify which CRUD methods you want
generated in the specification file. For example, if you selected to generate all methods, the
result would be similar to:

@Validator(Supplier)
public async createSupplier(asset: Supplier) {
 return await this.Ctx.Model.save(asset);
}

@Validator(yup.string())
public async getSupplierById(id: string) {
 const asset = await this.Ctx.Model.get(id, Supplier);
 return asset;
}

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-121

@Validator(Supplier)
public async updateSupplier(asset: Supplier) {
 return await this.Ctx.Model.update(asset);
}

@Validator(yup.string())
public async deleteSupplier(id: string) {
 const result = await this.Ctx.Model.delete(id);
 return result;
}

@Validator(yup.string())
public async getSupplierHistoryById(id: string) {
 const result = await this.Ctx.Model.history(id);
 return result;
}

@Validator(yup.string(), yup.string())
public async getSupplierByRange(startId: string, endId: string) {
 const result = await this.Ctx.Model.getByRange(startId, endId,
Supplier);
 return result;
}

Controller Method Details

Apart from the above model CRUD and non-CRUD methods, Blockchain App Builder
provides out-of-the box support for other Hyperledger Fabric methods from our
controller. These methods are:

• getAssetById
• getAssetsByRange
• getAssetHistoryById
• query
• queryWithPagination
• generateCompositeKey
• getByCompositeKey
• getTransactionId
• getTransactionTimestamp
• getChannelID
• getCreator
• getSignedProposal
• getArgs
• getStringArgs
• getMspID
• getNetworkStub

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-122

Note:

These methods are available with the this context in any class that extends the
OChainController class.

For example:

public async getModelById(id: string) {
 const asset = await this.getAssetById(id);
 return asset;
}
@Validator(yup.string(), yup.string())
public async getModelsByRange(startId: string, endId: string) {
 const asset = await this.getAssetsByRange(startId, endId);
 return asset;
}
public async getModelHistoryById(id: string) {
 const result = await this.getAssetHistoryById(id);
 return result;
}

getAssetById
The getAssetById method returns asset based on id provided. This is a generic method and
be used to get asset of any type.

this.getAssetById(id: string): Promise<byte[]>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise <byte []> - Returns promise on completion. You have to convert byte[] into
an object.

getAssetsByRange
The getAssetsByRange method returns all assets present from startId (inclusive) to endId
(exclusive) irrespective of asset types. This is a generic method and can be used to get
assets of any type.

this.getAssetsByRange(startId: string, endId: string):
Promise<shim.Iterators.StateQueryIterator>

Parameters:

• startId : string – Starting key of the range. Included in the range.

• endId : string – Ending key of the range. Excluded of the range.

Returns:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-123

• Promise< shim.Iterators.StateQueryIterator> - Returns an iterator on
completion. You have to iterate over it.

getAssetHistoryById
The getAssetHistoryById method returns history iterator of an asset for id provided.

this.getAssetHistoryById(id: string):
Promise<shim.Iterators.HistoryQueryIterator>

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Promise<shim.Iterators.HistoryQueryIterator> - Returns a history query
iterator. You have to iterate over it.

query
The query method will run a Rich SQL/Couch DB query over the ledger. This method
is only supported for remote deployment on Oracle Blockchain Platform. This is a
generic method for executing SQL queries on the ledger.

this.query(queryStr: string):
Promise<shim.Iterators.StateQueryIterator>

Parameters:

• queryStr : string - Rich SQL/Couch DB query.

Returns:

• Promise<shim.Iterators.StateQueryIterator> - Returns a state query iterator.
You have to iterate over it.

queryWithPagination
This method runs a Rich SQL/Couch DB query over the ledger, filtered by page size
and bookmarks. This method is only supported for remote deployment on Oracle
Blockchain Platform. This is a generic method for executing SQL queries on the
ledger.

public async queryWithPagination(query: string, pageSize: number,
bookmark?: string)

Parameters:

• query : string - Rich SQL/Couch DB query.

• pageSize : number - The page size of the query.

• bookmark : string - The bookmark of the query. Output starts from this
bookmark.

Returns:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-124

• Promise<shim.Iterators.StateQueryIterator> - Returns a state query iterator. You
have to iterate over it.

generateCompositeKey
This method generates and returns the composite key based on the indexName and the
attributes given in the arguments.

this.generateCompositeKey(indexName: string, attributes:
string[]): string

Parameters:

• indexName : string - Object Type of the key used to save data into the ledger.

• attributes: string[] - Attributes based on which composite key will be formed.

Returns:

• string - Returns a composite key.

getByCompositeKey
This method returns the asset that matches the key and the column given in the attribute
parameter while creating composite key. indexOfId parameter indicates the index of the key
returned in the array of stub method SplitCompositeKey. Internally this method calls
Hyperledger Fabric’s getStateByPartialCompositeKey, splitCompositeKey and getState.

this.getByCompositeKey(key: string, columns: string[],
indexOfId: number): Promise<any []>

Parameters:

• key: string – Key used to save data into ledger.

• columns: string[] - Attributes based on key is generated.

• indexOfId: number - Index of attribute to be retrieved from Key.

Returns:

• Promise< any [] - Returns any [] on completion.

getTransactionId
Returns the transaction ID for the current chaincode invocation request. The transaction ID
uniquely identifies the transaction within the scope of the channel.

this.getTransactionId(): string

Parameters:

• none

Returns:

• string - Returns the transaction ID for the current chaincode invocation request.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-125

getTransactionTimestamp
Returns the timestamp when the transaction was created. This is taken from the
transaction ChannelHeader, therefore it will indicate the client's timestamp, and will
have the same value across all endorsers.

this.getTransactionTimestamp(): Timestamp

Parameters:

• id : string – Key used to save data into the ledger.

Returns:

• Timestamp - Returns the timestamp when the transaction was created.

getChannelID
Returns the channel ID for the proposal for chaincode to process.

this.getChannelID(): string

Parameters:

• none

Returns:

• string - Returns the channel ID.

getCreator
Returns the identity object of the chaincode invocation's submitter.

this.getCreator(): shim.SerializedIdentity

Parameters:

• none

Returns:

• shim.SerializedIdentity - Returns identity object.

getSignedProposal
Returns a fully decoded object of the signed transaction proposal.

this.getSignedProposal():
shim.ChaincodeProposal.SignedProposal

Parameters:

• none

Returns:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-126

• shim.ChaincodeProposal.SignedProposal - Returns decoded object of the signed
transaction proposal.

getArgs
Returns the arguments as array of strings from the chaincode invocation request.

this.getArgs(): string[]

Parameters:

• none

Returns:

• string [] - Returns arguments as array of strings from the chaincode invocation.

getStringArgs
Returns the arguments as array of strings from the chaincode invocation request.

this.getStringArgs(): string[]

Parameters:

• none

Returns:

• string [] - Returns arguments as array of strings from the chaincode invocation.

getMspID
Returns the MSP ID of the invoking identity.

this.getMspID(): string

Parameters:

• none

Returns:

• string - Returns the MSP ID of the invoking identity.

getNetworkStub
The user can get access to the shim stub by calling getNetworkStub method. This will help
user to write its own implementation of working directly with the assets.

this.getNetworkStub(): shim.ChaincodeStub

Parameters:

• none

Returns:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-127

• shim.ChaincodeStub - Returns chaincode network stub.

invokeCrossChaincode
You can use this method in a chaincode to call a function in another chaincode. Both
chaincodes must be installed on the same peer.

this.invokeCrossChaincode(chaincodeName: string, methodName: string,
args: string[], channelName: string): Promise<any>

Parameters:

• chaincodeName – The name of the chaincode to call.

• methodName - The name of the method to call in the chaincode.

• arg - The argument of the calling method.

• channelName - The channel where the chaincode to call is located.

Returns:

• Promise<any> - Returns a JSON object that contains three fields:

– isValid - true if the call is valid.

– payload - The output returned by the cross-chaincode call, as a JSON object.

– message - The message returned by the cross-chaincode call, in UTF-8
format.

invokeChaincode
You can use this method in a chaincode to call a function in another chaincode. Both
chaincodes must be installed on the same peer.

this.invokeChaincode(chaincodeName: string, methodName: string, args:
string[], channelName: string): Promise<any>

Parameters:

• chaincodeName – The name of the chaincode to call.

• methodName - The name of the method to call in the chaincode.

• arg - The argument of the calling method.

• channelName - The channel where the chaincode to call is located.

Returns:

• Promise<any> - Returns a JSON object that contains three fields:

– isValid - true if the call is valid.

– payload - The output returned by the cross-chaincode call, as a JSON object.

– message - The message returned by the cross-chaincode call, in UTF-8
format.

Custom Methods

The following custom methods were generated from our example specification file.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-128

The executeQuery shows how SQL rich queries can be called. The validators against the
arguments are added automatically by Blockchain App Builder based on the type of the
argument specified in the specification file.

/**
*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP CS/EE
network.
*
*/
@Validator(yup.string()}
public async executeQuery(query: string) {
 const result = await OchainController.query(query);
 return result;
}
@Validator(yup.string(), yup.number()}
public async fetchRawMaterial(supplierId: string, rawMaterialSupply: number)
{
}
@Validator(yup.string(), yup.string(), yup.number())
public async getRawMaterialFromSupplier(manufacturerId: string, supplierId:
string, rawMaterialSupply: number) {
}
@Validator(yup.string(), yup.number(), yup.number())
public async createProducts(manufacturerId: string, rawMaterialConsumed:
number, productsCreated: number) {
}
public async sendProductsToDistribution() {
}

Init Method

A custom init method is provided in the controller with an empty definition. If you use
Blockchain App Builder to deploy or upgrade, the init method is called automatically. If you
deploy or upgrade from the Oracle Blockchain Platform console on the Hyperledger Fabric
v1.4.7 platform, the init method is also called automatically. If you deploy or upgrade from
the Oracle Blockchain Platform console on the Hyperledger Fabric v2.x platform, you must
call the init method manually. You can use a third-party tool such as Postman to call the
init method manually.

export class TestTsProjectController extends OchainController {
 public async init(params: any) {
 return;
}

If you would like to initialize any application state at this point, you can use this method to do
that.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-129

Scaffolded Go Chaincode Project
Blockchain App Builder takes the input from your specification file and generates a
fully-functional scaffolded chaincode project. The project contains automatically
generated classes and functions, CRUD methods, SDK methods, automatic validation
of arguments, marshalling/un-marshalling and transparent persistence capability
(ORM).

If the chaincode project is in the Go language, the scaffolded project contains three
main files:

• main.go
• <chaincodeName>.model.go
• <chaincodeName>.controller.go
All the necessary libraries are installed and packaged.

The <chaincodeName>.model.go file in the model subdirectory contains multiple
asset definitions and the <chaincodeName>.controller.go file in the
controller subdirectory contains the asset's behavior and CRUD methods. The
various Go struct tags and packages in model.go and controller.go provide
support for features like automatic validation of arguments, marshalling/unmarshalling
of arguments, transparent persistence capability (ORM) and calling rich queries.

The scaffolded project can be found in $GOPATH/src/example.com/
<chaincodeName>
Reference:

• Model

• Validators

• ORM

• SDK Methods

• Composite Key Methods

• Stub Method

• Other Methods

• Utility Package

• Controller

• Automatically Generated Methods

• Custom Methods

• Init Method

Model

Asset Type Property

By default every struct will have an additional property called AssetType. This property
can be useful in fetching only assets of this type. Any changes to this property is

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-130

ignored during create and update of asset. The property value by default is <modelName>.

type Supplier struct {
AssetType string 'json:"AssetType" default:"TestGoProject.Supplier"'

SupplierId string 'json:"SupplierId"
validate:"string,mandatory" id:"true'
RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
License string 'json:"License" validate:"string,min=10"'
ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
Active bool 'json:"Active" validate:"bool"
default:"true"'
Metadata interface{} 'json:"Metadata,omitempty"'
}

Validators

Id
id:"true"

This validator identifies the property which uniquely defines the underlying asset. The asset
is saved by the value in this key. This validator automatically applies when a new Go project
is scaffolded.

In the below screenshot "SupplierId" is the key for the supplier asset and has a tag
property id:"true" for the SupplierId property.

type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Derived
derived:"strategy,algorithm,format"

This decorator is used for defining the attribute derived from other properties. This decorator
has two mandatory parameters:

• strategy: takes values of concat or hash. Requires an additional parameter algorithm if
hash is selected. The default algorithm is sha256; md5 is also supported.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-131

• format: takes an array of specification strings and values to be used by the
strategy.

type Supplier struct{
 AssetType string 'json:"AssetType" final:"chaincode1.Supplier"'
 SupplierId string 'json:"SupplierId" validate:"string" id:"true"
mandatory:"true"
derived:"strategy=hash,algorith=sha256,format=IND%1%2,License,Name"'
 Name string 'json:"Name" validate:"string,min=2,max=4"'
 License string 'json:"License" validate:"string,min=2,max=4"'
}

Mandatory
validate:"mandatory"

This marks the following property as mandatory and cannot be skipped while saving
to the ledger. If skipped it throws an error. In the below example, "SupplierId" has a
validate:"mandatory" tag.

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Default
default:"<param>"

This states that the following property can have a default value. The default value in
the default tag is used when the property is skipped while saving to the ledger. In the
below example property, Active has a default value of true, provided as tag
default:"true"

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-132

default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Validate types
Basic Go types are validated for a property by defining a validate tag. These are the validate
tags based on types:

• string: validate: "string"
• date: validate: "date"
• number: validate: "int"
• boolean: validate: "bool"

Min validator
validate:"min=<param>"

Using the min validator, minimum value can be set for a property of type number and string.

For type int: In the example, RawMaterialAvailable property has a minimum value of 0 and
if a value less than 0 is applied to RawMaterialAvailable an error will be returned.

For type string: For the string type minimum validator will check the length of the string with
the provided value. Therefore, in the below example the License property has to be
minimum 10 characters long.

Example:

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Max validator
validate:"max=<param>"

Using the max validator, the maximum value can be set for a property of type number and
string.

For type int: Like the min validator, for type int, if a value provided for the structfield is
greater than the value provided in the validator then an error will be returned.

For type string: Like the min validator, max validator will also check the length of the string
with given value. In the example, the Domain property has a maximum value of 50, so if the

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-133

Domain property has a string length more than 50 characters, then an error message
will be returned.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold"
validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"
validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Date validators
Before validator:

validate:"before=<param>"

The before validator validates a property of type date to have a value less than the
specified in parameter.

In this example, the ExpiryDate property should be before "2020-06-26" and if not it
will return an error.

Type Supplier struct {
 Supplierld string 'json:"Supplierld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,min=0"'
 License string 'json:"License"
validate:"string,min=10"'
 ExpiryDate date.Date 'json:"ExpiryDate"
validate:"date,before=2020-06-26"'
 Active bool 'json:"Active" validate:"bool"
default :"true"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

After validator:

validate:"after=<param>"

The before validator validates a property of type date to have a value greater than the
specified in parameter.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-134

In this example, the CompletionDate property should be after "2020-06-26" and if not it will
return an error.

Type Supplier struct {
 Manufacturerld string 'json:"Manufacturerld"
validate:"string,mandatory" id:"true"'
 RawMaterialAvailable int 'json:"RawMaterialAvailable"
validate:"int,max=8"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int"'
 CompletionDate date.Date 'json:"CompletionDate"
validate:"date,after=2020-06-26"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

URL validator
validate:"url"

The URL validator will validate a property for URL strings.

In this example, the Domain property has to be a valid URL.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold" validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"
validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"string,url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

Regexp validator
validate:"regexp=<param>"

Regexp validator will validate property for the input regular expression.

In this example, the PhoneNumber property will validate for a mobile number as per the
regular expression.

type Customer struct {
Customerld string 'json:"Customerld" validate:"string,mandatory"
id:"true"'
Name string 'json:"Name" validate:"string,mandatory"'
ProductsBought int 'json:"ProductsBought" validate:"int"'

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-135

OfferApplied int 'json:"OfferApplied"
validate :"int,nax=0"'
PhoneNumber string 'json:"PhoneNumber"
validate:"string,regexp=A\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?([0-9]
{4})$"'
Received bool 'json:"Received" validate:"bool"'
Metadata interface{} 'json:"Metadata,omitempty"'
}

Multiple validators
Multiple validators can be applied a property.

In this example, the Domain property has validation for a string, URL, and min and
max string length.

type Retailer struct {
 Retailerld string 'json:"Retailerld"
validate:"string,mandatory" id:"true"'
 ProductsOrdered int 'json:"ProductsOrdered"
validate:"int,mandatory"'
 ProductsAvailable int 'json:"ProductsAvailable"
validate:"int" default:"1"'
 ProductsSold int 'json:"ProductsSold"
validate:"int"'
 Remarks string 'json:"Remarks" validate:"string"
default :"open for business"'
 Items []int 'json:"Items"
validate:"array=int,range=l-5"'
 Domain string 'json:"Domain"
validate:"string,url,min=30,max=50"'
 Metadata interface{} 'json:"Metadata,omitempty"'
}

ORM

Transparent Persistence Capability or simplified ORM is captured in the Model class of
the Context (Ctx) object. If your model calls any of the following SDK methods, access
them by using t.Ctx.Model.

SDK methods that implement ORM are the following methods:

• Save – this calls the Hyperledger Fabric PutState method

• Get – this calls the Hyperledger Fabric GetState method

• Update – this calls the Hyperledger Fabric PutState method

• Delete – this calls the Hyperledger Fabric DeleteState method

• History – this calls the Hyperledger Fabric GetHistoryForKey method

• GetByRange – this calls the Hyperledger Fabric GetStateByRange method

• GetByRangeWithPagination – this calls the Hyperledger Fabric
GetStateByRangeWithPagination method

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-136

SDK Methods

Go chaincodes implement Transparent Persistence Capability (ORM) with the model
package.

Note:

Beginning with version 21.2.3, the way to access the ORM methods has changed.
Run the ochain --version command to determine the version of Blockchain
App Builder.

In previous releases, the ORM methods were exposed as static methods in the model
package. The methods are now defined on the model receiver, which holds the transaction
stub. To call these methods, you use the model receiver held by the transaction context in the
controller. You call these methods as t.Ctx.Model.<method_name> instead of
model.<method_name>.

The following example shows Save and Get method calls in previous releases:

func (t *Controller) CreateSupplier(asset Supplier) (interface{}, error) {
 return model.Save(&asset)
}

func (t *Controller) GetSupplierById(id string) (Supplier, error) {
 var asset Supplier
 _, err := model.Get(id, &asset)
 return asset, err
}

The following example shows Save and Get method calls from the version 21.2.3 and later:

func (t *Controller) CreateSupplier(asset Supplier) (interface{}, error) {
 return t.Ctx.Model.Save(&asset)
}

func (t *Controller) GetSupplierById(id string) (Supplier, error) {
 var asset Supplier
 _, err := t.Ctx.Model.Get(id, &asset)
 return asset, err
}

After you upgrade to version 21.2.3, make this change in all chaincode projects that you
created with an earlier version of Blockchain App Builder. If you use the sync command to
synchronize changes between the specification file and your source code, the changes are
automatically brought to your controller for the ready-to-use methods. You still need to
manually resolve any conflicts.

The following ORM methods are exposed via the model package:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-137

Get
Queries the ledger for the stored asset based on the given ID.

func Get(Id string, result ...interface{}) (interface{}, error)

Parameters:

• Id - The ID of the asset which is required from the ledger.

• result (interface{}) - This is an empty asset object of a particular type, which
is passed by reference. This object will contain the result from this method. To be
used only if type-specific result is required.

• asset (interface) - Empty asset object, which is passed by reference. This
object will contain the result from this method. To be used only if type-specific
result is required.

Returns:

• interface {} - Interface contains the asset in the form of
map[string]interface{}. Before operating on this map, it is required to assert
the obtained interface with type map[string]interface{}. To convert this map
into an asset object, you can use the utility API util.ConvertMaptoStruct (see:
Utility Package).

• error - Contains an error if returned, or is nil.

Update
Updates the provided asset in the ledger with the new values.

func Update(args ...interface{}) (interface{}, error)

Parameters:

• obj (interface) - The object that is required to be updated in the ledger is
passed by reference into this API with the new values. The input asset is
validated and verified according to the struct tags mentioned in the model
specification and then stored into the ledger.

Returns:

• interface{} - The saved asset is returned as an interface.

• error - Contains an error if returned, or is nil.

Save
Saves the asset to the ledger after validating on all the struct tags.

func Save(args ...interface{}) (interface{}, error)

Parameters:

• obj/args[0] (interface{}) - The object that needs to be stored in the ledger is
passed by reference in this utility method.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-138

• metadata/args[1] (interface{}) - This parameter is optional. It has been given in
order to facilitate you if you're required to store any metadata into the ledger along with
the asset at the runtime. This parameter can be skipped if no such requirement exists.

Returns:

• interface {} - The asset is returned as an interface.

• error - Contains an error if returned, or is nil.

Delete
Deletes the asset from the ledger.

func Delete(Id string) (interface{}, error)

Parameters:

• id (string) - The ID of the asset which is required to be deleted from the ledger.

Returns:

• interface {} - Contains the asset being deleted in the form of
map[string]interface{}.

GetByRange
Returns the list of assets by range of IDs.

func GetByRange(startKey string, endKey string, asset ...interface{})
([]map[string]interface{}, error)

Parameters:

• startkey (string) - Starting ID for the range of objects which are required.

• endkey (string) - End of the range of objects which are required.

• asset interface - (optional) Empty array of assets, which is passed by reference. This
array will contain the result from this method. To be used if type-specific result is
required.

Returns:

• []map[string]interface{} - This array contains the list of assets obtained from the
ledger. You can access the objects iterating over this array and asserting the objects as
map[string]interface{} and using utility to convert to asset object.

• error - Contains an error if returned, or is nil.

GetByRangeWithPagination
The GetByRangeWithPagination method is a static method of OchainModel class which is
inherited by the concrete Model classes of {chaincodeName}.model.ts.

This returns a list of asset between the range startId and endId, filtered by page size and
bookmark. This method calls the Hyperledger Fabric GetStateByRangeWithPagination
method internally.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-139

If the modelName parameter is not provided, the method returns Promise<Object []
>. If the modelName parameter is provided, then the method handles casting into the
caller Model type. In the following example, the result array is of the type Supplier. If
the asset returned from the ledger is not of the Model type, then it will not be included
in the list. This check is done by the read-only assetType property in the Model class.

To return all the assets between the range startId and endId, filtered by page size
and bookmarks, use the generic controller method getAssetsByRange.

func (m *Model) GetByRangeWithPagination(startKey string, endKey
string, pageSize int32, bookmark string, asset ...interface{})
([]map[string]interface{}, error)

Parameters:

• startkey : string – Starting key of the range. Included in the range.

• endkey : string – Ending key of the range. Excluded from the range.

• pageSize : number – The page size of the query.

• Bookmark : string – The bookmark of the query. Output starts from this
bookmark.

• asset interface – (Optional) An empty array of assets, passed by reference.
This array will contain the result from this method. Use this parameter to get type-
specific results.

Returns:

• []map[string]interface{} – An array that contains the list of assets retrieved
from the ledger. You can access the objects by iterating over this array and
asserting the objects as map[string]interface{} and using a utility for
conversion to an asset object.

• error – Contains an error if an error is returned, otherwise nil.

GetHistoryById
Returns the history of the asset with the given ID.

func GetHistoryByID(Id string) ([]interface{}, error)

Parameters:

• Id (string) - ID of the asset for which the history is needed.

Returns:

• []interface{} - This slice contains the history of the asset obtained from the
ledger in form of slice of map[string]interface{}. You can access each history
element by iterating over this slice and asserting the objects as
map[string]interface{} and using utility to convert to asset object.

• error - Contains the error if observed.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-140

Query
The query method will run a SQL/Couch DB query over the ledger. This method is only
supported for remote deployment on Oracle Blockchain Platform. This is a generic method
for executing SQL queries on the ledger.

func Query(queryString string) ([]interface{}, error)

Parameters:

• queryString (string) - Input the query string.

Returns:

• []interface{} - This will contain the output of the query. The result is in form of slice of
interfaces. You need to iterate over the slice and use the elements by converting them to
proper types.

• error - Contains the error if observed.

QueryWithPagination
The query method will run a SQL/Couch DB query over the ledger, filtered by page size and
bookmark. This method is only supported for remote deployment on Oracle Blockchain
Platform. This is a generic method for executing SQL queries on the ledger.

func (m *Model) QueryWithPagination(queryString string, pageSize int32,
bookmark string) ([]interface{}, error)

Parameters:

• queryString (string) - Rich SQL/Couch DB query.

• pageSize : number - The page size of the query.

• bookmark : string - The bookmark of the query. Output starts from this bookmark.

Returns:

• []interface{} - This will contain the output of the query. The result is in form of slice of
interfaces. You need to iterate over the slice and use the elements by converting them to
proper types.

• error - Contains the error if observed.

InvokeCrossChaincode
You can use this method in a chaincode to call a function in another chaincode. Both
chaincodes must be installed on the same peer.

func InvokeCrossChaincode(chaincodeName string, method string, args
[]string, channelName string) (interface{}, error)

Parameters:

• chaincodeName – The name of the chaincode to call.

• methodName - The name of the method to call in the chaincode.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-141

• arg - The argument of the calling method.

• channelName - The channel where the chaincode to call is located.

Returns:

• interface{} - Returns a map[string]interface{} object that contains three
keys:

– isValid - true if the call is valid.

– payload - The output returned by the cross-chaincode call, as a JSON object.

– message - The message returned by the cross-chaincode call, in UTF-8
format.

Return Value Example:

{
 "isValid": true,
 "message": "Successfully invoked method [CreateAccount] on sub-
chaincode [erc721_go_453]",
 "payload": {
 "AccountId":
"oaccount~6b83b8ab931f99442897dd04cd7a2a55f808686f49052a40334afe3753fda
4c4",
 "AssetType": "oaccount",
 "BapAccountVersion": 0,
 "NoOfNfts": 0,
 "OrgId": "appdev",
 "TokenType": "nonfungible",
 "UserId": "user2"
 }
}

InvokeChaincode
You can use this method in a chaincode to call a function in another chaincode. Both
chaincodes must be installed on the same peer.

func InvokeChaincode(chaincodeName string, method string, args
[]string, channelName string) (interface{}, error)

Parameters:

• chaincodeName – The name of the chaincode to call.

• methodName - The name of the method to call in the chaincode.

• arg - The argument of the calling method.

• channelName - The channel where the chaincode to call is located.

Returns:

• interface{} - Returns a map[string]interface{} object that contains three
keys:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-142

– isValid - true if the call is valid.

– payload - The output returned by the cross-chaincode call, in UTF-8 format.

– message - The message returned by the cross-chaincode call, in UTF-8 format.

Return Value Example:

{
 "isValid": true,
 "message": "Successfully invoked method [CreateAccount] on sub-chaincode
[erc721_go_453]",
 "payload":
"{\"AssetType\":\"oaccount\",\"AccountId\":\"oaccount~c6bd7f8dcc339bf7144ea2e
1cf953f8c1df2f28482b87ad7895ac29e7613a58f\",\"UserId\":\"user1\",\"OrgId\":\"
appdev\",\"TokenType\":\"nonfungible\",\"NoOfNfts\":0,\"BapAccountVersion\":0
}"
}

Composite Key Methods

GenerateCompositeKey
This method generates and returns the composite key based on the indexName and the
attributes given in the arguments.

func GenerateCompositeKey(indexName string, attributes []string)
(string, error)

Parameters:

• indexName (string) - Object type of the composite key.

• attrbutes ([]string) - Attributes of the asset based on which the composite key has
to be formed.

Returns:

• string - This contains the composite key result.

• error - Contains the error if observed.

GetByCompositeKey
This method returns the asset that matches the key and the column given in the parameters.
The index parameter indicates the index of the key returned in the array of stub method
SplitCompositeKey.

Internally this method calls Hyperledger Fabric's getStateByPartialCompositeKey,
splitCompositeKey and getState.

func GetByCompositeKey(key string, columns []string, index int)
(interface{}, error)

Parameters:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-143

• key (string) - Object type provided while creating composite key.

• column ([]string) - This is the slice of attributes on which the ledger has to be
queried using the composite key.

• index(int) - Index of the attribute.

Returns:

• Interface{} - Contains the list of assets which are result of this method.

• error - Contains any errors if present.

Stub Method

GetNetworkStub
This method will return the Hyperledger Fabric chaincodeStub.

You can get access to the shim stub by calling the GetNetworkStub method. This will
help you write your own implementation working directly with the assets.

func GetNetworkStub() shim.ChaincodeStubInterface

Parameters:

• none

Returns:

• shim.ChaincodeStubInterface - This is the Hyperledger Fabric chaincode stub.

Other Methods

• GetTransactionId()
• GetTransactionTimestamp()
• GetChannelID()
• GetCreator()
• GetSignedProposal()
• GetArgs()
• GetStringArgs()
• GetCreatorMspId()
• GetId

GetTransactionId
Returns the transaction ID for the current chaincode invocation request. The
transaction ID uniquely identifies the transaction within the scope of the channel.

func GetTransactionId() string

Parameters:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-144

• none

Returns:

• string - This contains the required transaction ID.

GetTransactionTimestamp
Returns the timestamp when the transaction was created. This is taken from the transaction
ChannelHeader, therefore it will indicate the client's timestamp, and will have the same value
across all endorsers.

func GetTransactionTimestamp() (*timestamp.Timestamp, error)

Parameters:

• none

Returns:

• timestamp.Timestamp - Contains the timestamp required.

• error - Contains any errors if present.

GetChannelID
Returns the channel ID for the proposal for the chaincode to process.

func GetChannelID() string

Parameters:

• none

Returns:

• string - Contains the required channel ID as a string.

GetCreator
Returns the identity object of the chaincode invocation's submitter

func GetCreator() ([]byte, error)

Parameters:

• none

Returns:

• []byte - Contains the required identity object serialized.

• error - Contains any errors if present.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-145

GetSignedProposal
Returns a fully decoded object of the signed transaction proposal.

func GetSignedProposal() (*peer.SignedProposal, error)

Parameters:

• none

Returns:

• *peer.SignedProposal - Contains the required signed proposal object.

• error - Contains any errors if present.

GetArgs
Returns the arguments as array of strings from the chaincode invocation request.

func GetArgs() [][]byte

Parameters:

• none

Returns:

• [][]byte - Contains the arguments passed.

GetStringArgs
Returns the arguments intended for the chaincode Init and Invoke as a string array.

func GetStringArgs() []string

Parameters:

• none

Returns:

• []string - Contains the required arguments as a string array.

GetCreatorMspId
Returns the MSP ID of the invoking identity.

func GetCreatorMspId() string

Parameters:

• none

Returns:

• string - Returns the MSP ID of the invoking identity.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-146

GetId
When the asset has a derived key as Id, you can use this method to get a derived ID. This
method will return an error if the derived key contains %t (timestamp).

Parameters:

• object - Object should contain all the properties on which the derived key is dependent.

Returns:

• Returns the derived key as a string.

Example:

func (t *Controller) CustomGetterForSupplier(License string, Name string)
(interface{}, error){
 var asset Supplier
 asset.License = License
 asset.Name = Name
 id,err := t.Ctx.Model.GetId(&asset)

 if err !=nil {
 return nil, fmt.Errorf("error in getting ID %v", err.Error())
 }
 return t.GetSupplierById(id)
}

Utility Package

The following methods in the utility package may be useful:

Util.CreateModel
Parses the provided JSON string and creates an asset object of the provided type.

func CreateModel(obj interface{}, inputString string) error

Parameters:

• inputString (string) - The input JSON string from which the object is to be created.

• obj (interface{}) - The reference of the object that is to be created from the JSON
string. This object will store the created model which is also validated as per validator
tags.

Returns:

• error - Contains any errors found while creating or validating the asset.

util.ConvertMapToStruct
Convert the provided map into object of provided type.

func ConvertMapToStruct(inputMap map[string](interface{}), resultStruct
interface{}) error

Parameters:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-147

• inputMap (map[string](interface{})) - Map which needs to be converted into
the asset object.

• resultStruct (interface{}) - The reference of the required asset object which
needs to be generated from the map. Contains the result asset object required.

Returns:

• error - Contains any errors found while creating or validating the asset.

For token SDK methods, see the topics under Tokenization Support Using Blockchain
App Builder.

Controller

The Controller.go file implements the CRUD and custom methods for the assets.

You can create any number of classes, functions, or files, but only those methods that
are defined on chaincode struct are invokable from outside, the rest of them are
hidden.

Automatically Generated Methods

As described in Input Specification File, you can specify which CRUD methods you
want generated in the specification file. For example, if you selected to generate all
methods, the result would be similar to:

//
//Supplier
//
func (t *ChainCode) CreateSupplier(inputString string) (interface{},
error) {
 var obj Supplier
 err := util.CreateModel(&obj, inputString)
 if err != nil {
 return nil, err
 }
 return model.Save(&obj)
}

func (t *ChainCode) GetSupplierById(id string) (interface{}, error) {
 asset, err := model.Get(id)
 return asset, err
}

func (t *ChainCode) UpdateSupplier(inputString string) (interface{},
error) {
 var obj Supplier
 err := util.CreateModel(&obj, inputstring)
 if err != nil {
 return nil, err
 }
return model.Update(&obj)
}

func (t *ChainCode) DeleteSupplier(id string) (interface{}, error) {
 return model.Delete(id)

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-148

}

func (t *ChainCode) GetSupplierHistoryById(id string) (interface{}, error) {
 historyArray, err := model.GetHistoryByld(id)
 return historyArray, err
}

func (t *ChainCode) GetSupplierByRange(startkey string, endKey string)
(interface{}, error) {
 assetArray, err := model.GetByRange(startkey, endKey)
 return assetArray, err
}

Custom Methods

The following custom methods were generated from our example specification file.

The executeQuery shows how SQL rich queries can be called. The validators against the
arguments are added automatically by Blockchain App Builder based on the type of the
argument specified in the specification file.

You can implement the functionality according to the business logic. If you add custom
methods, add them to the controller file. If you add custom methods to the library instead of
the controller file, your changes will be lost when the library folder contents are updated
during the synchronization or chaincode upgrade processes.

//
//Custom Methods
//
/*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP CS/EE
network.
*/
func (t *ChainCode) ExecuteQuery(inputQuery string) (interface{}, error) {
 resultArray, err := model.Query(inputQuery)
 return resultArray, err
}

func (t *ChainCode) FetchRawMaterial(supplierId string, rawMaterialSupply
int) (interface{}, error) {
 return nil, nil
}

func (t *ChainCode) GetRawMaterialFromSupplier(manufacturerId string,
supplierId string, rawMaterialSupply int) (interface{} error) {
 return nil, nil
}

Func (t *ChainCode) CreateProducts(manufacturerId string,
rawMaterialConsumed int, productsCreated int) (interface{}, error) {
 return nil, nil
}

func (t *ChainCode) SendProductsToDistribution() (interface{}, error) {

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-149

 return nil, nil
}

For Go chaincodes, every custom method should return two values: empty interface,
error. For example:

func (t *Controller) FetchRawMaterial(supplierId string,
rawMaterialSupply int) (interface{}, error) {
 return nil, nil
}

Init Method

A custom Init method is provided in the controller with an empty definition. If you use
Blockchain App Builder to deploy or upgrade, the Init method is called automatically.
If you deploy or upgrade from the Oracle Blockchain Platform console on the
Hyperledger Fabric v1.4.7 platform, the Init method is also called automatically. If you
deploy or upgrade from the Oracle Blockchain Platform console on the Hyperledger
Fabric v2.x platform, you must call the Init method manually. You can use a third-
party tool such as Postman to call the Init method manually.

type Controller struct {
}
func (t *Controller) Init(args string) (interface{}, error)
 { return nil, nil
}

If you would like to initialize any application state at this point, you can use this method
to do that.

Deploy Your Chaincode Using Visual Studio Code
Once your chaincode project is created, you can deploy it locally to the automatically
generated Hyperledger Fabric network, or remotely to your Oracle Blockchain Platform
Cloud or Enterprise Edition. You can also package the chaincode project for manual
deployment to Oracle Blockchain Platform.

Deploy the Chaincode to a Local Hyperledger Fabric Network
Once you have created your chaincode project, you can test it in a local Hyperledger
Fabric basic network.

When you install the Blockchain App Builder extension for VS Code, it automatically
creates a Hyperledger Fabric network with a single channel. This will be listed as
Local Environment in the Environments pane. You can't delete or modify this
environment; you can just deploy chaincodes to it and rebuild it if it stops working
correctly.

Blockchain App Builder chaincode deployment starts the Hyperledger Fabric basic
network, other services, and installs and deploys the chaincode for you.

1. In the Chaincode Details pane, select Deploy.

2. In the deployment wizard:

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-150

• Ensure the correct chaincode name is selected.

• Select your target environment - for local deployment choose Local Environment.

• Select the channel you want to deploy to. A channel named "mychannel" is created
by default with the extension's installation, and can be used for testing.

• Optionally enter any initial parameters that may be required.

• For token projects, the first time that you deploy you must enter a list of token admins
as a parameter. The list is an array of {user_id, org_id} information that specifies
the token admins. For the local Hyperledger Fabric network, use the value Org1MSP
for the org_id field. For NFT chaincodes, the keys for the adminList parameter are
userId and orgId for TypeScript and UserId and OrgId for Go. After the first time
you deploy, you can supply an empty array for the adminList parameter or you can
use the adminList parameter to add token admins. Other deployers who are not the
first-time deployer must supply an empty array for the adminList parameter. To do
so, open the Init parameter list in the deployment pane and then click the minus
sign (–) button next to the adminList parameter, which will select an empty array.

3. Click Deploy.

When the chaincode has finished deploying, the Output console will state that it has
successfully installed and deployed it on the given channel.

Troubleshooting

You may encounter the following issues when running your chaincode project on a local
network.

Missing Go permissions
While installing Go chaincode project in local network, you might see an error similar to the
following in the Output console:

INFO (Runtime): 2020/06/22 22:57:09 build started

INFO (Runtime): Building

INFO (Runtime): go build runtime/cgo: copying /Users/myname/Library/
Caches/go-build/f8/.….….d: open /usr/local/go/pkg/darwin_amd64/runtine/
cgo.a: permission denied

ERROR (Runtime): go build runtine/cgo: copying /Users/myname/Library/
Caches/go-build/f8/.….….d: open /usr/local/go/pkg/darwin_amd64/runtime/
cgo.a: permission denied

INFO (Runtime): An error occurred while building: exit status 1

This is due to missing permissions for Go. This error has been seen only in Mac OS. This is
a known issue:

• https://github.com/golang/go/issues/37962

• https://github.com/golang/go/issues/24674

• https://github.com/udhos/update-golang/issues/15

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-151

https://github.com/golang/go/issues/37962
https://github.com/golang/go/issues/24674
https://github.com/udhos/update-golang/issues/15

Solution: change the permissions of your $GOROOT and try deploying again:

sudo chmod -R 777 /usr/local/go

Deployment failure
Due to deployment failure, corrupt deployment, a Docker peer container being full, or
a Docker peer being killed in the local network, you may see an error similar to:

============ Started instantiate Chaincode ============
[2028-19-01T19:25:lO.372] [ERROR] default - Error instantiating
Chaincode GollGl on channel mychannel, detailed
error: Error: error starting container: error starting container:
Failed to generate platform-specific docker
build: Failed to pull hyperledger/fabric-ccenv:latest : API error
(404): manifest for hyperledger/
fabric-ccenv:latest not found: manifest unknown: manifest unknown
[2020-19-01T19:25:10.372] (INFO) default -
============ Finished instantiate Chaincode ============
[2020-19-01119:25:10.372] [ERROR] default - Error: Error instantiating
Chaincode Goll01 on channel mychannel,
detailed error: Error: error starting container: error starting
container: Failed to generate platfom-specific
docker build: Failed to pull hyperledger/fabric-ccenv: latest : API
error (404): manifest for hyperledger/
fabric-ccenv:lalest not found: manifest unknown: manifest unknown
exited: signal: terminated
INFO: exited: signal: terminated

ERROR: Error in Chaincode deployment

This is due to a peer container not able to start up properly again.

Solution: Rebuild your runtime by selecting your local environment in the
Environments pane, right-clicking and selecting Rebuild Local Environment.
Attempt to deploy again.

Environment Rebuild Required
You may see an error similar to:

Starting ca.example.com ...
Starting orderer.example.com ...
Starting orderer.example.com ... error
ERROR: for orderer.example.com
Cannot start service orderer.example.com:
error while creating mount source path '/host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0/node_modules/@oracle/ochain-
cli/runtime/network/basic-network/config': mkdir /host_mnt/c/
Users/opc/.vscode/extensions/oracle.oracle-blockchain-1.4.0: operation
not permitted
Starting ca.example.com... error
ERROR: for ca.example.com
Cannot start service ca.example.com: error while creating mount source

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-152

path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/crypto-config/peerOrganizations/org1.example.com/ca': mkdir /
host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-blockchain-1.4.0:
operation not permitted
ERROR: for orderer.example.com
Cannot start service orderer.example.com: error while creating mount source
path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/config': mkdir /host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0: operation not permitted
ERROR: for ca.example.com
Cannot start service ca.example.com: error while creating mount source path
'/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-blockchain-1.4.0/
node_modules/@oracle/ochain-cli/runtime/network/basic-network/crypto-config/
peerOrganizations/org1.example.com/ca': mkdir /host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0: operation not permitted
Encountered errors while bringing up the project.
ERROR: Starting ca.example.com ...
Starting orderer.example.com ...
Starting orderer.example.com ... error
ERROR: for orderer.example.com
Cannot start service orderer.example.com: error while creating mount source
path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/config': mkdir /host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0: operation not permitted
Starting ca.example.com ... error
ERROR: for ca.example.com
Cannot start service ca.example.com: error while creating mount source path
'/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-blockchain-1.4.0/
node_modules/@oracle/ochain-cli/runtime/network/basic-network/crypto-config/
peerOrganizations/org1.example.com/ca': mkdir /host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0: operation not permitted
ERROR: for orderer.example.com
Cannot start service orderer.example.com: error while creating mount source
path '/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-
blockchain-1.4.0/node_modules/@oracle/ochain-cli/runtime/network/basic-
network/config': mkdir /host_mnt/c/Users/opc/.vscode/extensions/
oracle.oracle-blockchain-1.4.0: operation not permitted
ERROR: for ca.example.com
Cannot start service ca.example.com: error while creating mount source path
'/host_mnt/c/Users/opc/.vscode/extensions/oracle.oracle-blockchain-1.4.0/
node_modules/@oracle/ochain-cli/runtime/network/basic-network/crypto-config/
peerOrganizations/org1.example.com/ca': mkdir /host_mnt/c/Users/opc/.vscode/
extensions/oracle.oracle-blockchain-1.4.0: operation not permitted
Encountered errors while bringing up the project.
ERROR: Error in Chaincode deployment

You need to rebuild your local environment. In the App Builder Environments pane, right-
click your local environment and select Rebuild Local Environment.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-153

Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network
After you've deployed and tested your chaincode project on a local network to ensure
it's working as designed, you can deploy it to Oracle Blockchain Platform.

Create a Connection Configuration to an Oracle Blockchain Platform Instance

You must have a Blockchain Platform instance up and running to complete this step.

1. In the Visual Studio Code Environments pane, click the Create Environment
icon.

2. On the Environments Details wizard:

• Enter the name for your remote environment.

• Enter a description.

• In Remote Url, enter the URL of the remote Oracle Blockchain Platform
instance.

• Enter the Oracle Identity Cloud Service user name and password for an
Oracle Blockchain Platform user with the ADMIN or REST_CLIENT roles. To
invoke the chaincode, only the REST_CLIENT role is necessary. To deploy or
upgrade the chaincode, the IDCS user must also be assigned the ADMIN role.
For more information about users and roles, see Set Up Users and Application
Roles.

3. Click Create to save the environment. The user name and password are saved
temporarily in the local Visual Studio Code session. If you close Visual Studio
Code and then start a new Visual Studio Code session, you must enter the user
name and password again.

Deploy Your Chaincode

1. Select the chaincode project you want to deploy in the Chaincodes pane.

2. In the Chaincode Details pane, select Deploy.

3. In the deployment wizard, the name of the chaincode project should be pre-filled.

• Select your target environment - for remote deployment choose the Oracle
Blockchain Platform environment you set up previously.

• Enter the name of the channel you want to deploy to.

• Optionally set any required initial parameters.

4. Click Deploy.

After the chaincode is successfully deployed to the remote Oracle Blockchain
Platform, the console log will show that the following events occurred:

• The Oracle Blockchain Platform details were successfully fetched.

• The list of peers was successfully fetched.

• The chaincode project was successfully installed.

• The chaincode project was successfully approved and committed.

• The chaincode was successfully deployed on each peer and the channel.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-154

In an environment with multiple organizations, to re-deploy the chaincode on the same
channel through a participant instance, use the console to deploy the chaincode.

Upgrading the Chaincode Project

Upgrading the chaincode is handled automatically by Blockchain App Builder. After you make
changes to your chaincode, just deploy again, which will automatically upgrade the project for
you. When you run the upgrade process, you can pass an empty array for the adminList
parameter or use the adminList parameter to add token admins. If you are not the first-time
deployer, you must supply an empty array for the adminList parameter. To pass an empty
array for the adminList parameter, open the Init parameter list in the deployment pane and
then click the minus sign (–) button next to the adminList parameter, which will select an
empty array.

If your upgrade is successful, the log will show that the following events occurred:

• The Oracle Blockchain Platform details were successfully fetched.

• The list of peers was successfully fetched.

• A check was made to determine if the chaincode project is already installed, and if so, the
version was fetched.

• The chaincode version was successfully upgraded (for example, from version 1.0 to 2.0).

In an environment with multiple organizations, to upgrade the chaincode, use the console and
manually approve the chaincode from the participants.

Package Your Chaincode Project for Manual Deployment to Oracle Blockchain
Platform

You can package your chaincode projects for manual deployment to Oracle Blockchain
Platform Cloud or Enterprise Edition.

The Package function creates an archive file that contains only the build and distribution files.
The binary, libs, node_modules, and test folders from your chaincode project are not
included. This archive file can be manually uploaded to Oracle Blockchain Platform for
deployment.

1. Select your chaincode project in the Chaincodes pane.

2. Right-click and select Package.

3. Select a location to save the package to, and then click Select Output Folder.

Because of changes to software prerequisites, when you run the Package function for
TypeScript chaincode, you are prompted for the provisioning date of the Oracle Blockchain
Platform instance that you want to create the package for. The TypeScript chaincode created
in Blockchain App Builder is not compatible with previous versions of Oracle Blockchain
Platform without changes to the underlying infrastructure. Blockchain App Builder packages
the chaincode infrastructure accordingly based on your selection.

When the command completes successfully, the location of the package is returned.

Test Your Chaincode Using Visual Studio Code
If your chaincode is running on a network, you can test any of the generated methods.
Additionally, If you chose to create the executeQuery method during your chaincode

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-155

development, you can run SQL rich queries if your chaincode is deployed to an Oracle
Blockchain Platform network.

Test Your Chaincode on a Local Hyperledger Fabric Network
Once your chaincode project is running on a local network, you can test it.

Blockchain App Builder contains a built-in wizard to assist you with invoking or
querying your chaincode.

1. Select your chaincode project in the Chaincodes pane. In the Chaincode Details
pane, select Execute. The chaincode name should already be selected. Ensure
the target environment is set to Local Environment and the channel will default to
the only channel available.

2. In the Function field, select your method from the drop-down list. Every method
available in the chaincode is listed.

3. In the Function Param field, select the More Actions (…) button. This will launch
a window with available properties for your selected method. Enter the properties,
click Omit for any non-mandatory property you don't want submitted when you
invoke your method, and click Save.

4. Click Invoke.

The Output console window will show that the function has been invoked.
Alternatively, in the Chaincode Actions pane, the Function Output window displays
the output. Click the More Actions (…) button to see this output formatted.

If you want to save the method and parameters you just ran, you can click Save and
enter a name and description for it. It will be saved in your chaincode project in the
Queries folder. To use it again, right-click it and select Open.

If you make any changes to the controller file that would alter the methods, select the
Reload icon at the top of the Chaincode Execute pane. The change should now be
reflected in the Function drop-down list.

Note:

If you don't want to use the wizard for testing, you can also run the
Blockchain App Builder command line tools in the Visual Studio Code
Terminal window. Follow the instructions provided here to test with the
command line: Test Your Chaincode on a Local Hyperledger Fabric Network.

Testing Multiple Token Users Locally

To test a token project with multiple users locally, you can use the tokenUser property
to change the caller of each transaction. Every scaffolded chaincode project includes
a .ochain.json file, which stores metadata of the chaincode. You change the caller
by updating the value of tokenUser field in the .ochain.json file.

{
 "name": "digiCurrCC",
 "description": "Chaincode package for digiCurrCC",
 "chaincodeName": "digiCurrCC",
 "chaincodeType": "node",

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-156

 "configFileLocation": "/Users/user1/token.yml",
 "appBuilderVersion": "21.2.3",
 "nodeVersion": "v12.18.1",
 "tokenUser": "admin"
}

When a project is scaffolded, the tokenUser property is set to the default admin user of the
local network. To change the caller of a transaction, change the tokenUser property to match
the user_id property that was set when the account was created when the createAccount
(TypeScript) or CreateAccount (Go) method was called.

Automatic Installation and Deployment After Update

Whenever you update and save your chaincode, the changes will be compiled, installed and
deployed automatically. There is no need to strip down or bring up the local network again. All
projects will be automatically compiled and deployed on every change.

Testing Lifecycle Operations on a Remote Oracle Blockchain Platform Network

Once your chaincode project has successfully deployed to your remote Oracle Blockchain
Platform network, you can test it as described in Test Your Chaincode on a Local Hyperledger
Fabric Network.

You can use the same invoke and query commands to perform all method transactions on a
remote Oracle Blockchain Platform Cloud or Enterprise Edition network; everything supported
on the local network is also supported on the remote network. Select the Oracle Blockchain
Platform instance as your target environment when executing your tests.

Testing Token Projects on a Remote Oracle Blockchain Platform Network

You can test chaincode projects that work with tokens by using Blockchain App Builder, the
Oracle Blockchain Platform REST proxy, or the Hyperledger Fabric SDK.

Blockchain App Builder

You can use the Visual Studio Code extension to invoke transactions with multiple user to
test token chaincodes. To test with multiple users, change the authorization parameters (user
name and password) in the Environments tab and then save the environment. While invoking
transactions, select the same environment from the drop-down list and then execute the
transaction.

Oracle Blockchain Platform REST Proxy

You can use the REST proxy in Oracle Blockchain Platform to run your a token chaincode on
a remote Oracle Blockchain Platform network. Use any REST Proxy client, such as Postman
REST Client, to test your chaincode project.

To test multiple users, change the authorization parameters (user name and password) in
your REST client, or connect to a different instance of Oracle Blockchain Platform.

Execute Berkeley DB SQL Rich Queries
If you chose to create the executeQuery method during your chaincode development, you
can run SQL rich queries if your chaincode is deployed to an Oracle Blockchain Platform
network.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-157

If you have used executeQuery in the customMethods section of the specification file, a
corresponding executeQuery method will be created in the controller.

Specification file:

customMethods:
 - executeQuery
 - "fetchRawMaterial(supplierid: string, rawMaterialSupply: number)"
 - "getRawMaterialFromSupplier(manufacturerId: string, supplierld:
string, rawMaterialSupply: number)"
 - "createProducts(manufacturerId: string, rawMaterialConsumed:
number, productsCreated: number)"
 - "sendProductsToDistribution()"

Controller file:

**
*
* BDB sql rich queries can be executed in OBP CS/EE.
* This method can be invoked only when connected to remote OBP CS/EE
network.
*
*/
@Validator(yup.string())
public async executeQuery(query: string) {
 const result = await OchainController.query(query);
 return result;
}

You can invoke this method to execute Berkeley DB SQL rich queries on Oracle
Blockchain Platform network, ensuring that you select the Oracle Blockchain Platform
environment that you created as your target environment when running the queries.

Example:

1. In the Chaincode Details pane, select Execute. The chaincode name, target
environment, and channel should already be pre-filled from the deployment step.

2. In the Function Name field, select executeQuery from the drop-down list.

3. In the Function Param field, select the More Actions (…) button. This will launch
a window where you can enter the query string. Enter the arguments for your
query, and click Save.

4. Click Query.

The Output window and the will show the query being executed and the result.

ochain query executeQuery "SELECT key, valueJson FROM <STATE> WHERE
json_extract(valueJson, '$.rawMaterialAvailable') = 4"

The entire SQL query is taken in the argument, so you can make changes to your
query on the fly.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-158

Generate CLI Commands from Queries
If you have saved queries in a chaincode project in Visual Studio Code, you can automatically
generate the equivalent CLI commands.

You must have at least one saved query in a chaincode project to generate CLI commands
for Mac OSX and Linux and for Microsoft Windows.

1. Expand the project in the Chaincodes pane.

2. Right-click Queries.

3. Click Generate CLI Commands.

Two text files are generated and displayed in the Queries section of the Chaincodes pane:
CLIcommandsForLinux.txt and CLIcommandsForWindows.txt. Select the file name
to open the file and show the corresponding CLI commands.

Upgrading Chaincode Projects in Visual Studio Code
You can upgrade existing chaincode projects in Visual Studio Code to use the new features
of the updated Blockchain App Builder.

For Go projects, upgrade to Go v1.20.10 before you run the command to upgrade your
chaincode project.

To upgrade a chaincode project, right-click the project in the Oracle Blockchain Platform pane
of Visual Studio Code, and then click Upgrade.

When you open the detail view of a chaincode project from a previous version of Blockchain
App Builder, you are prompted with the following message: New chaincode library is
available. Would you like to upgrade? You can select from three options:

• Yes. The chaincode project is upgraded. The chaincode files in the lib folder are
replaced. If you made any changes to these library files, back up the modified files or
track the changes that you made before you run the upgrade.

• Later. Upgrade notification is postponed for 24 hours. You are notified again after 24
hours.

• No. You are not prompted again to upgrade. You can still upgrade the project at any time
by right-clicking and selecting Upgrade, as described previously.

After you upgrade a chaincode project, synchronize the specification file with the generated
source code. For more information, see Synchronize Specification File Changes With
Generated Source Code.

Synchronize Specification File Changes With Generated Source Code
You can use the synchronization function to bring new changes from the specification file to
the chaincode source files (model and controller). The function works with both TypeScript
and Go projects.

Note:

• Synchronization is unidirectional: you can bring changes from your specification file into
your chaincode project, but not the other way around. Changes made in your chaincode
project remain as-is after the synchronizing process.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-159

• The command works only if the chaincode project was scaffolded by using a
specification file. Do not delete, rename or move the specification file if you plan to
synchronize any changes from the specification file to the source code in future.

• During synchronization, the chaincode files in the lib folder are automatically
upgraded. If you make any changes to these library files, back up the modified
files or track the changes that you make before you use the synchronization
function, so that you can apply those changes again after synchronization.

To synchronize your specification and chaincode files:

1. In the Specifications pane, select the specification file that you updated to open
its Specification Details pane. At the top of the pane, click Chaincodes to open
the pane showing which chaincodes were generated from the specification file.

2. Select the Sync check box beside each chaincode that you want to update with
the new changes. You can synchronize more than one chaincode that was
generated from a specification file at a time. Click Synchronize.

The chaincode projects now contain updated files.

Resolving Conflicts

Because you can edit both the synchronization files and chaincode files, it's possible to
end up with conflicts where the updated specification file could overwrite a change that
you've made to the chaincode file. In these cases, when you attempt to synchronize an
error is displayed stating that there's a conflict. You can use the Conflicts pane to
resolve these errors.

1. On the Conflicts pane, click the name of the chaincode file where the conflicts
exist. The file opens in an editor with the conflicts highlighted.

In the example shown, Marble124 is in the specification file, and Marble123 is in
the chaincode model file.

2. Above the conflict is a list of options. Click Accept Current Change to override
the specification file and use what is currently in the chaincode file. Click Accept
Incoming Change to override the chaincode file and use what is currently in the
specification file.

3. Return to the Conflicts pane. Select the Sync check box next to the conflict
name, and then click Confirm Changes. If you have multiple conflicts, resolve all
of them before before clicking Confirm Changes.

Debugging from Visual Studio Code
Blockchain App Builder includes line-by-line debug support from Visual Studio Code
for both TypeScript and Go projects.

On Microsoft Windows, configure Visual Studio Code to use Command Prompt as the
default terminal instead of PowerShell. In the terminal menu in Visual Studio Code,
click Select Default Profile, and then select Command Prompt.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-160

Before you can debug your Go chaincode project, you must install the required Go tools in
Visual Studio Code. In Visual Studio Code, open the Command Palette and then run the Go:
Install/Update Tools command. Install all of the Go extensions that are listed.

Visual Studio Code uses Delve to debug Go. When you debug a Go chaincode for the first
time, you will be prompted to install Delve. Accept the Delve installation before continuing.
Visual Studio Code includes a built-in debugger for TypeScript.

To run line-by-line debugging:

1. Open your chaincode project in Visual Studio Code Explorer. In the Chaincodes pane,
right-click your chaincode and select Open in Explorer.

2. Attach breakpoints to your code wherever necessary.

3. Go to the Run menu and click Start Debugging. This attaches the debugger. It may take
several seconds for the debugger to attach to the chaincode.

4. Call any command from the Terminal which would execute your code.
If you've been using the Visual Studio Code interface to test your chaincode so far, you
can follow the invocation syntax outlined in Test Your Chaincode on a Local Hyperledger
Fabric Network.

The debugger will stop at your breakpoints. You can then start the debugging.

5. Restart debugging to reflect new changes.

Because the chaincode is running in debug mode, the hot deployment of new changes does
not happen automatically. You must manually restart the debugging process, using the debug
controls in Visual Studio Code, in order to make the latest changes take effect.

Troubleshooting

On Windows 11, you might encounter an error similar to the following:

dlv: failed to install dlv(github.com/go-delve/delve/cmd/dlv@latest): Error:
Command failed:
C:\Program Files (x86)\Go\bin\go.exe get -x github.com/go-delve/delve/cmd/
dlv@latest
get https://proxy.golang.org/github.com/go-delve/delve/cmd/dlv/@v/list
get https://proxy.golang.org/github.com/@v/list
get https://proxy.golang.org/github.com/go-delve/@v/list
get https://proxy.golang.org/github.com/go-delve/delve/cmd/@v/list
get https://proxy.golang.org/github.com/go-delve/delve/@v/list
get https://proxy.golang.org/github.com/@v/list: 410 Gone (0.420s)
get https://proxy.golang.org/github.com/go-delve/delve/cmd/@v/list: 410
Gone (1.040s)
get https://proxy.golang.org/github.com/go-delve/@v/list: 410 Gone (1.062s)
get https://proxy.golang.org/github.com/go-delve/delve/cmd/dlv/@v/list:
410 Gone (1.066s)
get https://proxy.golang.org/github.com/go-delve/delve/@v/list: 200 OK
(1.448s)
go: found github.com/go-delve/delve/cmd/dlv in github.com/go-delve/delve
v1.8.3C:\Users\<UserName>\go\pkg\mod\github.com\go-
delve\delve@v1.8.3\service\debugger\debugger.go:28:2:found packages native
(proc.go) and
your_operating_system_and_architecture_combination_is_not_supported_by_delve(
support_sentinel.go) in C:\Users\Asus\go\pkg\mod\github.com\go-
delve\delve@v1.8.3\pkg\proc\native

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-161

There is no workaround for this error at this time.

Generate a Postman Collection Using Visual Studio Code
You can create a Postman collection that includes example payloads for all of your
chaincode controller APIs.

Postman is a tool that you can use to work with and test REST APIs. The generate
command creates a Postman collection that is based on the chaincode that was
automatically generated from a declarative specification file. The Postman collection
contains the payloads for all of the methods that are specified in the chaincode
controller file. You can change the variable values in the Postman collection file to
make REST API calls.

The generated Postman collection includes default values for all APIs in the controller.
To learn more about Postman, see https://www.postman.com/. After you generate a
Postman collection, you can directly import it and use it by changing the default values
in the payload and variables.

To generate a Postman collection for a chaincode project in Visual Studio Code,
complete the following steps.

1. Select the chaincode project in the Chaincodes pane.

2. Right-click the chaincode name and then select Generate Postman Collection.

3. Select a location to save the Postman collection to, and then click Select Output
Folder.

If the specified Postman collection already exists, you are prompted whether to
overwrite it.

Postman Collection Structure

The generated Postman collection includes two types of requests, invoke requests and
query requests:

• Invoke requests include all write operations, which use the endpoint /
transactions

• Query requests include all get operations, which use the endpoint /chaincode-
queries

To differentiate between getter and non-getter methods in the controller APIs, a
decorator is used in TypeScript chaincodes and a comment is used in Go chaincodes.
If you define a getter method in the controller, you must use the GetMethod decorator
for TypeScript or the GetMethod comment for Go, as shown in the following table.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-162

https://www.postman.com/

TypeScript Go

Every getter method has a GetMethod decorator:

@GetMethod()
@Validator()
public async getAllTokenAdmins() {
 await
this.Ctx.ERC1155Auth.checkAuthorizati
on("ERC1155ADMIN.getAllAdmins",
"TOKEN");
 return await
this.Ctx.ERC1155Admin.getAllAdmins();
}

Every getter method has a GetMethod comment
block:

/**
 * GetMethod
 */
func (t *Controller)
GetAllTokenAdmins() (interface{},
error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Admin.
GetAllAdmins", "TOKEN")
 if err != nil && !auth {
 return nil,
fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return
t.Ctx.Admin.GetAllTokenAdmins()
}

Generated Postman collections include variables with default values, as shown in the
following table.

Variable Name Description Default Value Context

bc-url The REST proxy URL of
the Oracle Blockchain
Platform instance where
the chaincode is
deployed

https://test-xyz-
abc.blockchain.ocp.
oraclecloud.com:744
3/restproxy

all chaincodes

bc-channel The channel where the
chaincode is deployed

default all chaincodes

bc-admin-user The name of the admin
user (a user with the
admin role that can
access all POST
requests). By default,
this user is the caller of
all POST requests in the
chaincode

bc-admin-user value all chaincodes

bc-admin-password The password for the
admin user

bc-admin-password
value

all chaincodes

bc-timeout The timeout value in the
body of every POST
request to indicate the
timeout interval

6000 all chaincodes

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-163

Variable Name Description Default Value Context

bc-sync The sync value in the
body of every POST
request to indicate
whether the request is
synchronous or
asynchronous

true all chaincodes

bc-chaincode-name The chaincode name,
which is used in every
POST request

chaincode name all chaincodes

bc-org-id The default orgId
parameter for all POST
requests

bc-org-id value token chaincodes only

bc-user-id The default userId
parameter for all POST
requests

bc-user-id value token chaincodes only

bc-token-id The default tokenId
parameter for all POST
requests

bc-token-id value token chaincodes only

In every generated request, all of the parameters with default values are generated.
Functions that have struct/class parameters will have a placeholder object in the
request body, as shown in the following examples.

API with a struct/class parameter

{
 "chaincode": "{{bc-chaincode-name}}",
 "args": [
 "CreateArtCollectionToken",
 "{\"TokenId\":\"{{bc-token-id}}\",\"TokenDesc\":\"TokenDesc
value\",\"TokenUri\":\"TokenUri value\",\"TokenMetadata\":
{\"Painting_name\":\"Painting_name
value\",\"Description\":\"Description value\",\"Image\":\"Image
value\",\"Painter_name\":\"Painter_name
value\"},\"Price\":999,\"On_sale_flag\":true}",
 "quantity value"
],
 "timeout": {{bc-timeout}},
 "sync": {{bc-sync}}
}

API without a struct/class parameter

{
 "chaincode": "{{bc-chaincode-name}}",
 "args": [
 "CreateAccount",
 "{{bc-org-id}}",
 "example_minter",
 "true",

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-164

 "true"
],
 "timeout": {{bc-timeout}},
 "sync": {{bc-sync}}
}

The default value for most API parameters is parameter_name value, with some exceptions.
The following examples show some of the exceptions.

• The filters parameter in GetAccountTransactionHistoryWithFilters:

"{\"PageSize\":20,\"Bookmark\":\"\",\"StartTime\":\"2022-01-16T15:16:36+00
:00\",\"EndTime\":\"2022-01-17T15:16:36+00:00\"}"

• The filters parameter in GetSubTransactionsByIdWithFilters:

"{\"PageSize\":20,\"Bookmark\":\"\}"

A struct or class has different default values, as shown in the following table:

Data Type Default Value

boolean/bool true
int/number 999
date 2022-01-16T15:16:36+00:00
other parameter_name value

ERC-1155 Token Projects

The ERC-1155 standard includes common methods for both fungible and non-fungible
tokens. The generated Postman collection for an ERC-1155 project that uses both fungible
and non-fungible tokens includes two different POST requests, one for each type of token, for
these common methods. If an ERC-1155 project uses only fungible or non-fungible tokens
but not both types, then the generated Postman collection includes only one POST request
for these common methods. The following table illustrates the generated API for the AddRole
method.

Fungible Tokens Non-Fungible Tokens

Request Name AddRole -For Fungible AddRole -For NonFungible

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-165

Fungible Tokens Non-Fungible Tokens

Request Body
{
 "chaincode": "{{bc-
chaincode-name}}",
 "args": [
 "AddRole",
 "{{bc-org-id}}",
 "{{bc-user-
id}}",
 "role value
(for example, minter /
burner)",

"{\"TokenId\":\"{{bc-
token-id}}\"}"
],
 "timeout": {{bc-
timeout}},
 "sync": {{bc-sync}}
}

{
 "chaincode": "{{bc-
chaincode-name}}",
 "args": [
 "AddRole",
 "{{bc-org-id}}",
 "{{bc-user-
id}}",
 "role value
(for example, minter /
burner)",

"{\"TokenName\":\"TokenN
ame value\"}"
],
 "timeout": {{bc-
timeout}},
 "sync": {{bc-sync}}
}

Troubleshoot Blockchain App Builder Visual Studio Code Extension
The following can be used to troubleshoot system problems with Blockchain App
Builder Visual Studio Code extension.

Prerequisites issues
Errors can occur if you modify or upgrade any of the prerequisite software that is
required by Blockchain App Builder. You can use the Installed Dependencies
function to check that your installation of Blockchain App Builder still meets the
prerequisites. On the Blockchain App Builder welcome page in Visual Studio Code,
click Installed Dependencies. A table is displayed that shows you the required
version and the actual installed version of components that Blockchain App Builder
uses. Required components are indicated by an asterisk (*).

If the prerequisites check fails with errors and warnings when you attempt to install
Blockchain App Builder, you might see an error similar to the following example in the
output pane in Visual Studio Code:

Error:
Aborting installation. Error:
Found 1 error(s) in pre-requisites check, failed with following errors:
1. Golang version mismatch. Expected 1.20.x, but found 1.18.5.

Found 3 warning(s) in pre-requisites check.
1. Docker is not installed. Please install Docker >= 18.09.0. To
deploy chaincodes in the local environment,
please install the recommended version of Docker.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-166

2. Docker Compose is not installed. Please install Docker Compose >= 1.23.0.
To deploy chaincodes in the
local environment, please install the recommended version of Docker Compose.
3. Git is not installed. To sync chaincodes, please install the Git
according to the documentation.

Deployment failure
Due to deployment failure, corrupt deployment, a Docker peer container being full, or a
Docker peer being killed in the local network, you may see an error similar to:

============ Started instantiate Chaincode ============
[2028-19-01T19:25:lO.372] [ERROR] default - Error instantiating Chaincode
GollGl on channel mychannel, detailed
error: Error: error starting container: error starting container: Failed to
generate platform-specific docker
build: Failed to pull hyperledger/fabric-ccenv:latest : API error (404):
manifest for hyperledger/
fabric-ccenv:latest not found: manifest unknown: manifest unknown
[2020-19-01T19:25:10.372] (INFO) default -
============ Finished instantiate Chaincode ============
[2020-19-01119:25:10.372] [ERROR] default - Error: Error instantiating
Chaincode Goll01 on channel mychannel,
detailed error: Error: error starting container: error starting container:
Failed to generate platfom-specific
docker build: Failed to pull hyperledger/fabric-ccenv: latest : API error
(404): manifest for hyperledger/
fabric-ccenv:lalest not found: manifest unknown: manifest unknown exited:
signal: terminated
INFO: exited: signal: terminated

ERROR: Error in Chaincode deployment

This is due to a peer container not able to start up properly again.

Solution: Rebuild your runtime by selecting your local environment in the Environments
pane, right-clicking and selecting Rebuild Local Environment. Attempt to deploy again.

Resetting Extension Data
It is possible for your Blockchain App Builder user data to get corrupted. This option clears
your data from Blockchain App Builder without impacting anything stored locally.

1. Open the Command Palette from the View menu.

2. In the Command Palette, type Reset Extension.

3. Select Oracle Blockchain Platform Reset Extension Data. VS Code will clear the
existing blockchain data and reload the default installation data. This will not affect the
files stored locally in your system, but you will have to import them back into VS Code
and reconfigure any environments you had previously set up.

Chapter 7
Using the Blockchain App Builder Extension for Visual Studio Code

7-167

Mac OSX: Xcode
After a Mac OSX upgrade, or if Xcode is not installed, you might see an error similar
to the following in the error log:

gyp: No Xcode or CLT version detected!
gyp ERR! configure error
gyp ERR! stack Error: `gyp` failed with exit code: 1
gyp ERR! stack at

• To work around this behavior, open a terminal window and run the following
commands:

sudo rm -rf $(xcode-select --print-path)
xcode-select --install

Tokenization Support Using Blockchain App Builder
You can use Blockchain App Builder to manage the complete life cycle of a token. You
can tokenize existing assets and automatically generate token classes and methods to
use for token lifecycle management.

• Tokenization

• Tokens and the Account/Balance Model

• Token Standards

• Tokenization Flow

• Access Control

• MVCC Optimization

Tokenization

Tokenization is a process where physical or digital assets are represented by tokens,
which can be transferred, tracked, and stored on a blockchain. By representing assets
as tokens, you can use the blockchain ledger to establish the state and ownership of
an asset, and use standard blockchain platform functions to transfer ownership of an
asset.

Blockchain App Builder includes tokenization support: token classes and methods are
automatically generated, and additional token methods are provided so that
developers can create complex business logic for tokens. The automatically generated
project contains token lifecycle classes and functions, CRUD methods, and additional
token SDK methods, and supports automatic validation of arguments, marshalling/
unmarshalling, and transparent persistence capability. You can use these controller
methods to initialize tokens, control access, set up accounts, manage roles, and
manage the life cycle of tokens.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-168

The following diagram shows the token architecture implemented by Blockchain App Builder,
including the token API and token SDK.

Automatically Generated Token API
Blockchain App Builder automatically generates methods to support tokens and token life
cycles. You can use these methods to initialize tokens, manage roles and accounts, and
complete other token lifecycle tasks without any additional coding.

Token SDK
The Token SDK includes methods that help you develop complex business logic for token
applications.

Multiversion Concurrency Control (MVCC) Optimization
The MVCC optimization for token chaincode can reduce errors for transfer, mint, burn, and
hold operations.

Tokens and the Account/Balance Model

Blockchain App Builder supports fungible and non-fungible tokens. Fungible tokens have an
interchangeable value. Any quantity of fungible tokens has the same value as any other
equal quantity of the same class of token. Non-fungible tokens are unique. Tokens can also
be either whole or fractional. Fractional tokens can be subdivided into smaller parts, based on
a specified number of decimal places.

Tokens can also be described by behaviors. Supported behaviors for fungible tokens include:
mintable, transferable, divisible, holdable, burnable, and roles (minter, burner, and

Chapter 7
Tokenization Support Using Blockchain App Builder

7-169

holder). Supported behaviors for non-fungible tokens include: mintable,
transferable, singleton, indivisible, burnable, and roles (minter and burner).

The tokenization feature uses an account/balance model to represent tokenized
assets as balances in an account. Accounts are similar to typical banking accounts,
where deposits and transfers and other state transitions affect the balance of an
account. The balance of every account is tracked globally, to ensure that transaction
amounts are valid. The on-hold balance (for fungible tokens) and transaction history
are also tracked.

Any user who possesses tokens or completes token-related operations at any point
must have an account on the network. Every account is identified by a unique ID
(account_id). The account ID is created by combining a user name or email ID
(user_id) of the instance owner or the user who is logged in to the instance with the
membership service provider ID (org_id) of the user in the current network
organization. Ready-to-use methods are provided for account creation. Because the
account ID includes the organization ID, users can be supported across multiple
organizations.

Token Standards

Blockchain App Builder extends the standards and classifications of the Token
Taxonomy Framework, the ERC-721 standard, and the ERC-1155 standard to define
the anatomy and behavior of tokens. ERC-1155 is a standard that supports both
fungible and non-fungible tokens (NFTs). ERC-721 is a standard for NFTs. The Token
Taxonomy Framework was developed by the Token Taxonomy Initiative. For more
information, see Token Taxonomy Framework.

The following table describes the token types that Blockchain App Builder supports:

Standard Supported Token Types

Token Taxonomy Framework • fractional fungible tokens

ERC-721 • whole non-fungible tokens

ERC-1155 • whole fungible tokens
• fractional fungible tokens
• whole non-fungible tokens
• fractional non-fungible tokens

Tokenization Flow

Because Blockchain App Builder supports tokenization by extending the input
specification file syntax, you create token-specific projects the same way that you
create other projects, either by using the CLI or in Visual Studio Code. For more
information, see Input Specification File.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-170

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=blockchain-oci-appb-ttf

A typical tokenization flow follows these basic steps:

• Decide which token standard to use.

• Decide what token behaviors to specify (mintable, transferable, divisible,
indivisible, singleton, holdable, burnable, and roles).

• Define the token asset and its properties in the input specification file.

• Scaffold the chaincode project from the input specification file. This creates a scaffolded
project, including a model that contains the token asset definition and its properties and a
controller that contains the token's behavior and methods.

• Deploy and test the chaincode project.

After you deploy a token-based project, the typical flow for creating tokens and completing
lifecycle operations follows these steps:

• A token chaincode is deployed, and the users in the list passed to the initialization
method become Token Admin users of the chaincode.

• A tokenized asset is initialized, which creates the token_id, a unique identifier for that
particular instance of token.

• Accounts must be created for every user who will possess tokens or complete token-
related operations.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-171

• If the roles behavior is specified for the token, then roles must be added to users
before they can complete token-related operations.

• Token life cycle methods can then be used, based on the behaviors that were
specified for the token asset. For example, you can call a method to mint tokens
for an account.

Access Control

Tokenization support includes an access control feature that supports both role-based
and ownership-based control mechanisms. With role-based control, users can call
specific methods with an associated role such as Token Admin or Token Minter. With
ownership-based control, you can restrict users from accessing assets that they do not
own. With ownership-based access control, specific methods can be called by the
users who own the assets, such as the Token Owner or Account Owner. For specific
information on access control for methods, see the individual entries for the methods
documented in the following topics:

• Scaffolded TypeScript Token Project for ERC-1155

• Scaffolded Go Token Project for ERC-1155

• Scaffolded TypeScript NFT Project for ERC-721

• Scaffolded Go NFT Project for ERC-721

• Scaffolded TypeScript Project for Token Taxonomy Framework

• Scaffolded Go Project for Token Taxonomy Framework

Role-based access control supports the following personas:

Token Admin
Token Admin users can be assigned when a token chaincode is deployed. The Token
Admin user information is saved in the state database. A Token Admin user can grant
and remove Token Admin privileges for other users. A Token Admin user cannot
remove their own Token Admin privileges. A Token Admin user can assign the Org
Admin, minter, burner, or notary role to any user.

Org Admin
The extended Token Taxonomy Framework methods support the Org Admin role. A
Token Admin user can assign the Org Admin role to any user. Org Admin users have
administrative privileges, but only within their organization. They can create accounts
or see account balances, but only for users in their organization. Org Admin users
who have a minter, burner, or notary role can assign that role to other users in their
organization.

Token Minter
A user who is assigned the minter role is a Token Minter, and can mint tokens.

Token Burner
A user who is assigned the burner role is a Token Burner, and can burn tokens.

Token Notary
A user who is assigned the notary role is a Token Notary. A Token Notary acts as a
third party in transactions between payers and payees. A Token Notary can either
trigger the completion of a token transfer from a payer to a payee, or can instead
return the tokens to the payer's account.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-172

Vault Manager
A user who is assigned the vault role is the Vault Manager. The Vault Manager can unlock a
locked NFT. The vault role is applicable only for the extended ERC-721 and ERC-1155
standards. Assigning the vault role to a user is a prerequisite for locking NFTs. Only one user
per chaincode can be assigned the vault role.

Ownership-based access control supports the following personas:

Account Owner
Any user that has an account is an Account Owner.

Token Owner
Any user that currently owns a non-fungible token is the Token Owner of that token.

Role-based access control and ownership-based access control are also combined in some
methods. For example, role-based access control lets a user with the minter role create
tokens. With ownership-based access control, a non-fungible token owner can modify the
custom properties of a token, but cannot modify the token metadata. When a user with the
minter role creates a non-fungible token (NFT), they become the owner of the NFT. As the
owner of that NFT, they can modify the custom properties (for an art collection token, the
token price is a custom property). After the token creator transfers the NFT to another user,
the second user becomes the owner, and the user who created the token is no longer the
owner of the token. Because of ownership-based access control, the new owner can now
update a custom property value, but the previous owner no longer can. Because of role-
based access control, the previous owner can still mint an NFT, but the new user cannot.

You can also write your own access control functions, or disable access control. The
automatically generated code that controls access is shown in the following examples.

TypeScript:

await this.Ctx.<Token Standard>Auth.checkAuthorization(...)

Go:

auth, err := t.Ctx.<Token Standard>Auth.CheckAuthorization(...)

Note:

To remove the automatically generated access control function, remove the
previous line of code from your TypeScript or Go project.

MVCC Optimization

Hyperledger Fabric databases use multi-version concurrency control (MVCC) to avoid
double-spending and data inconsistency. When the same state is updated, a new version of
the record overwrites the old version. If there are concurrent requests to update the same key
in a block, an MVCC_READ_CONFLICT error might be generated.

To reduce MVCC errors for transfer, mint, burn, and hold operations, you can enable the
MVCC optimization for token chaincode. This optimization works on Oracle Blockchain
Platform only. By default, the optimization is disabled. To enable the optimization, complete
the applicable following step.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-173

• CLI: Specify the Boolean -m or --enable_mvcc_optimization parameter with the
ochain init command. By default, the parameter is set to false. To enable the
optimization, add -m true to the ochain init command line.

• Visual Studio Code: When you create a chaincode, select Enable MVCC
optimization on the Create Chaincode window.

To use the optimization with chaincode created in previous versions of Blockchain App
Builder, complete the following steps:

1. After you install the latest version of Blockchain App Builder, upgrade the
chaincode as described in Upgrading Chaincode Projects in the CLI and
Upgrading Chaincode Projects in Visual Studio Code.

2. Edit the .ochain.json file in the root folder of the chaincode to set
enableMvccOptimization to true.

3. Synchronize the chaincode, which adds the optimization and creates two new
folders in the root folder of the the chaincode: statedb and tokens. For more
information about synchronization, see Synchronize Specification File Changes
With Generated Source Code and Synchronize Specification File Changes With
Generated Source Code.

Other methods to work around MVCC_READ_CONFLICT errors including having the
client application retry requests when this error is generated, or using a queue to
capture concurrent requests before they are sent to the blockchain network. For more
information, see Read-Write set semantics in the Hyperledger Fabric documentation.

Note:

The MVCC optimization does not work on hybrid networks that include both
Oracle Blockchain Platform and Hyperledger Fabric peers, or for testing on a
local Hyperledger Fabric network. Do not enable the MVCC optimization on
hybrid networks, as this might lead to inconsistencies between peers.

Token Taxonomy Framework
Blockchain App Builder supports an extended version of the Token Taxonomy
Framework to work with fractional fungible tokens.

• Input Specification File for Token Taxonomy Framework

• Scaffolded TypeScript Project for Token Taxonomy Framework

• Scaffolded Go Project for Token Taxonomy Framework

Input Specification File for Token Taxonomy Framework
The Blockchain App Builder initialization command reads the input specification file
and generates the scaffolded project with several tools to assist in the chaincode
development process.

You can define standard assets and token assets that are based on the Token
Taxonomy Framework in the same specification file. You cannot define token assets
based on more than one standard in the same specification file.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-174

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=hlf-docs-readwrite

For information on including standard assets in the specification file, see Input Specification
File.

The following sample specification files for fungible token assets are available in the
Blockchain App Builder package:

• FiatMoneyToken.yml
• LoyaltyToken-Go.yml
In addition to the standard properties and sections, fungible token assets support the
behavior and anatomy sections in the specification file. Fungible token assets also support
the standard property. The following example shows the structure of a specification file for a
fungible token asset based on the Token Taxonomy Framework:

assets:
 - name: OBPTOK # Asset name
 type: token # Asset type

 anatomy:
 type: fungible # Token type
 unit: fractional # Token unit

 behavior: # Token behaviors
 - divisible:
 decimal: 2
 - mintable:
 max_mint_quantity: 1000
 - transferable
 - burnable
 - roles:
 minter_role_name: minter

 properties:
 - name: currency_name # Custom attribute to represent the token in
certain currency. This attribute is helpful for exchanging the tokens with
fiat currency.
 type: string

 - name: token_to_currency_ratio # Custom attribute to specify the
token to currency ratio. This attribute is helpful for exchanging the tokens
with fiat currency.
 type: number

Table 7-5 Parameter Descriptions and Examples for a Fungible Token Specification File

Entry Description Examples

type: You must specify
type: token in the
assets section.

assets:
 - name: OBPTOK # Asset name
 type: token # Asset type

Chapter 7
Tokenization Support Using Blockchain App Builder

7-175

Table 7-5 (Cont.) Parameter Descriptions and Examples for a Fungible Token Specification File

Entry Description Examples

standard: The standard
property represents
the token standard to
follow during
chaincode
generation. Only the
ttf+ value is
supported for fungible
tokens. If the
standard property is
not specified for a
fungible token, the
Token Taxonomy
Framework (TTF)
standard is followed.

 standard: ttf+ # Token standard

anatomy: The anatomy section
has two mandatory
parameters for
fungible tokens:
• type:

fungible
A quantity of
fungible tokens
has the same
value as another
equal quantity of
the same class
of tokens.

• unit:
fractional
A fractional token
can be
subdivided into
smaller units
based on a
specified number
of decimal
places.

anatomy:
 type: fungible # Token type
 unit: fractional # Token unit

Chapter 7
Tokenization Support Using Blockchain App Builder

7-176

Table 7-5 (Cont.) Parameter Descriptions and Examples for a Fungible Token Specification File

Entry Description Examples

behavior: This section
describes the
capabilities and
restrictions of the
token. The mintable
and transferable
behaviors are
mandatory for
fungible tokens.
• mintable: This

mandatory
behavior
supports minting
new token
instances. The
optional
max_mint_quan
tity parameter
specifies the
total number of
tokens that can
be minted. If you
do not specify
the
max_mint_quan
tity parameter,
any number of
tokens can be
minted.

• transferable:
This mandatory
behavior
supports
transferring
ownership of
tokens.

• divisible: This
optional behavior
describes how
tokens can be
subdivided. The
decimal
parameter
specifies the
number of
decimal places
that can be used.
The smallest
fraction possible
with the number
of decimal
places is the
smallest unit of
the token that

behavior:
 - mintable:
 max_mint_quantity: 20000
 - transferable
 - divisible:
 decimal: 1
 - burnable
 - holdable
 - roles:
 minter_role_name: minter
 burner_role_name: burner
 notary_role_name: notary

Chapter 7
Tokenization Support Using Blockchain App Builder

7-177

Table 7-5 (Cont.) Parameter Descriptions and Examples for a Fungible Token Specification File

Entry Description Examples

can be owned. If
the decimal
parameter is not
specified, the
default is zero
decimal places.

• burnable: This
optional behavior
supports
deactivating, or
burning, tokens.
Burning does not
delete a token
but instead
places it in a
permanent state
where it cannot
be used. Burning
is not reversible.

• holdable: This
optional behavior
indicates
whether token
balances can be
put on hold
between a payer
and payee.

• roles: This
optional behavior
restricts token
behaviors to
users with
specific roles.
Currently three
roles are
available:
minter_role_n
ame,
burner_role_n
ame, and
notary_role_n
ame. If you do
not specify roles,
then any user
can act as a
minter, burner, or
notary. For
example, if the
burner role is not
specified, any
account user
implicitly has the
burner role. If the
burner role is

Chapter 7
Tokenization Support Using Blockchain App Builder

7-178

Table 7-5 (Cont.) Parameter Descriptions and Examples for a Fungible Token Specification File

Entry Description Examples

specified, then
during the token
setup process,
the Token
Admin user must
assign the
burner role to
other users
explicitly.

To create multiple fungible token IDs that use different max_mint_quantity parameters,
create a separate token asset for each token ID in the specification file, with a 1:1 relationship
between token asset and token ID.

To create multiple fungible token IDs that use the same max_mint_quantity parameter or no
max_mint_quantity parameter, create a single token asset in the specification file to use for
all of the token IDs.

Scaffolded TypeScript Project for Token Taxonomy Framework
Blockchain App Builder takes the input from your token specification file and generates a
fully-functional scaffolded chaincode project.

The project automatically generates token lifecycle classes and functions, including CRUD
and non-CRUD methods. Validation of arguments, marshalling/unmarshalling, and
transparent persistence capability are all supported automatically.

For information on the scaffolded project and methods that are not directly related to tokens,
see Scaffolded TypeScript Chaincode Project.

Reference:

• Model

• Controller

– Automatically Generated Token Methods

– Custom Methods

• Token SDK Methods

Model

Every tokenized model class extends the Token class, which in turn extends the OchainModel
class. The Token class is imported from ../lib/token. Transparent Persistence Capability,
or simplified ORM, is captured in the OchainModel class.

import * as yup from 'yup';
import { Id, Mandatory, Validate, ReadOnly } from '../lib/decorators';
import { Token } from '../lib/token';

@Id('token_id')
export class Digicur extends Token<Digicur> {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-179

 public readonly assetType = 'otoken';

 @Mandatory()
 @Validate(yup.string().required().matches(/^[A-Za-z0-9][A-Za-
z0-9_-]*$/).max(16))
 public token_id: string;

 @ReadOnly('digicur')
 public token_name: string;

 @Validate(yup.string().trim().max(256))
 public token_desc: string;

 @ReadOnly('fungible')
 public token_type: string;

@ReadOnly(["divisible","mintable","transferable","burnable","holdable",
"roles"])
 public behaviors: string[];

 @ReadOnly({minter_role_name: "minter", burner_role_name: "burner",
notary_role_name: "notary"})
 public roles: object;

 @ReadOnly({max_mint_quantity: 20000})
 public mintable: object;

 @ReadOnly({decimal: 1})
 public divisible: object;

 @Validate(yup.number())
 public token_to_currency_ratio: number;

 @Validate(yup.string())
 public currency_representation: string;

}

Controller

The main controller class extends the OchainController class. There is only one main
controller.

export class DigiCurrCCController extends OchainController{

You can create any number of classes, functions, or files, but only those methods that
are defined within the main controller class are invokable. The other methods are
hidden.

You can use the token SDK methods to write custom methods for your business
application.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-180

Automatically Generated Token Methods

Blockchain App Builder automatically generates methods to support tokens and token life
cycles. You can use these methods to initialize tokens, manage roles and accounts, and
complete other token lifecycle tasks without any additional coding. Controller methods must
have a @Validator(...params) decorator to be invokable.

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Holdable Behavior

– Burnable Behavior

Methods for Access Control Management

addTokenAdmin
This method adds a user as a Token Admin of the chaincode. This method can be called only
by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string())
public async addTokenAdmin(org_id: string, user_id: string) {
 await this.Ctx.Auth.checkAuthorization('ADMIN.addAdmin', 'TOKEN');
 return await this.Ctx.Admin.addAdmin(org_id, user_id);
}

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was added as a Token
Admin of the chaincode.

Return Value Example:

{"msg":"Successfully added Admin (Org_Id: Org1MSP, User_Id: User1)"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-181

removeTokenAdmin
This method removes a user as a Token Admin of the chaincode. This method can be
called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string())
public async removeTokenAdmin(org_id: string, user_id: string) {
 await this.Ctx.Auth.checkAuthorization('ADMIN.removeAdmin',
'TOKEN');
 return await this.Ctx.Admin.removeAdmin(org_id, user_id);
}

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was removed as a
Token Admin of the chaincode.

Return Value Example:

{"msg": "Successfully removed Admin (Org_Id: Org1MSP, User_Id: User1)"}

isTokenAdmin
This method returns the Boolean value true if the caller of the function is a Token
Admin, otherwise it returns false. A Token Admin or Org Admin can call this function
on any other user in the blockchain network. Other users can call this method only on
their own accounts.

@Validator(yup.string(), yup.string())
 public async isTokenAdmin(org_id: string, user_id: string) {
 await this.Ctx.Auth.checkAuthorization("ADMIN.isUserTokenAdmin",
"TOKEN");
 return await this.Ctx.Auth.isUserTokenAdmin(org_id, user_id);
 }

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• The method returns true if the caller is a Token Admin, otherwise it returns false.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-182

getAllTokenAdmins
This method returns a list of all users who are a Token Admin of the chaincode. This method
can be called only by the Token Admin or any Org Admin of the chaincode.

@Validator()
public async getAllTokenAdmins() {
 await this.Ctx.Auth.checkAuthorization('ADMIN.getAllAdmins', 'TOKEN');
 return await this.Ctx.Admin.getAllAdmins();
}

Parameters:

• none

Returns:

• On success, an admins array in JSON format that contains orgId and userId objects.

Return Value Example:

{"admins":[{"org_id":"Org1MSP","user_id":"admin"}]}

addOrgAdmin
This method adds a user as an Org Admin of the organization. This method can be called
only by a Token Admin of the chaincode or an Org Admin of the specified organization.

@Validator(yup.string(), yup.string())
 public async addOrgAdmin(org_id: string, user_id: string) {
 await this.Ctx.Auth.checkAuthorization("ADMIN.addOrgAdmin", "TOKEN",
{ org_id });
 return await this.Ctx.Admin.addOrgAdmin(org_id, user_id);
 }

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was added as an Org
Admin of the organization.

Return Value Example:

{
 "msg": "Successfully added Org Admin (Org_Id: Org1MSP, User_Id:
orgAdmin)"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-183

removeOrgAdmin
This method removes a user as an Org Admin of the organization. This method can
be called only by a Token Admin of the chaincode or by an Org Admin of the specified
organization.

@Validator(yup.string(), yup.string())
 public async removeOrgAdmin(org_id: string, user_id: string) {
 await this.Ctx.Auth.checkAuthorization("ADMIN.removeOrgAdmin",
"TOKEN", { org_id });
 return await this.Ctx.Admin.removeOrgAdmin(org_id, user_id);
 }

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was removed as an
Org Admin of the organization.

Return Value Example:

{
 "msg": "Successfully removed Org Admin (Org_Id Org1MSP User_Id
orgAdmin)"
}

getOrgAdmins
This method returns a list of all users who are an Org Admin of an organization. This
method can be called only by a Token Admin of the chaincode or by an Org Admin of
any organization.

 @Validator()
 public async getOrgAdmins() {
 await this.Ctx.Auth.checkAuthorization("ADMIN.getOrgAdmins",
"TOKEN");
 return await this.Ctx.Admin.getAllOrgAdmins();
 }

Parameters:

• none

Returns:

• On success, an array in JSON format that contains orgId and userId objects.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-184

Return Value Example:

{
 "admins": [
 {
 "org_id": "Org1MSP",
 "user_id": "orgadmin"
 },
 {
 "org_id": "Org1MSP",
 "user_id": "orgadmin1"
 },
 {
 "org_id": "Org1MSP",
 "user_id": "orgadmin2"
 }
]
}

Methods for Token Configuration Management

init
This method is called when the chaincode is deployed or upgraded. Every Token Admin is
identified by the user_id and org_id information in the mandatory adminList parameter.
The user_id is the user name or email ID of the instance owner or the user who is logged in
to the instance. The org_id is the membership service provider (MSP) ID of the user in the
current network organization.

Any Token Admin user can add and remove other Token Admin users by calling the addAdmin
and removeAdmin methods.

public async init(adminList: TokenAdminAsset[]) {
 await this.Ctx.Admin.initAdmin(adminList);
 return;
}

Parameters:

• adminList array – An array of {user_id, org_id} information that specifies the list of
token admins. The adminList array is a mandatory parameter.

Parameter example, Mac OSX and Linux CLI:

'[{"user_id":"userid", "org_id":"OrgMSPId"}]'

Parameter example, Microsoft Windows CLI:

"[{\"user_id\":\"userid\", \"org_id\":\"OrgMSPId\"}]"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-185

Parameter example, Oracle Blockchain Platform console:

["[{\"user_id\":\"userid\", \"org_id\":\"OrgMSPId\"}]"]

initialize<Token Name>Token
This method creates a token and initializes the token properties. The asset and its
properties are saved in the state database. This method can be invoked only by a
Token Admin of the chaincode.

@Validator(Digicur)
 public async initializeDigicurToken(token_asset: Digicur) {
 await this.Ctx.Auth.checkAuthorization('TOKEN.save', 'TOKEN');
 return await this.Ctx.Token.save(token_asset)
 }

Parameters:

• asset: <Token Class> – The token asset is passed as the parameter to this
method. The properties of the token asset are described in the model file.

Returns:

• On success, a JSON representation of the token asset that was created.

Return Value Example:

{
 "assetType": "otoken",
 "token_id": "digiCurr101",
 "token_name": "digicur",
 "token_type": "fungible",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 },
 "currency_name": "DOLLAR",
 "token_to_currency_ratio": 1
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-186

update<Token Name>Token
This method updates token properties. After a token asset is created, only the token_desc
property and custom properties can be updated. This method can be called only by a Token
Admin of the chaincode.

@Validator(Digicur)
public async updateDigicurToken(token_asset: Digicur) {
 await this.Ctx.Auth.checkAuthorization('TOKEN.update', 'TOKEN');
 return await this.Ctx.Token.update(token_asset);
}

Parameters:

• asset: <Token Class> – The token asset is passed as the parameter to this method.
The properties of the token asset are described in the model file.

Returns:

• On success, an updated JSON representation of the token asset.

Return Value Example:

{
 "assetType": "otoken",
 "token_id": "digiCurr101",
 "token_name": "digicur",
 "token_desc": "Digital Currency equiv of dollar",
 "token_type": "fungible",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 },
 "currency_name": "DOLLAR",
 "token_to_currency_ratio": 1
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-187

getTokenDecimals
This method returns the number of decimal places that were configured for a
fractional token. If the divisible behavior was not specified for the token, then the
default value is 0. This method can be called only by a Token Admin or Org Admin of
the chaincode.

@Validator(yup.string())
public async getTokenDecimals(token_id: string) {
 const token_asset = await this.getTokenObject(token_id);
 await this.Ctx.Auth.checkAuthorization('TOKEN.getDecimals',
'TOKEN');
 return {
 msg: `Token Id: ${token_id} has $
{this.Ctx.Token.getDecimals(token_asset)} decimal places.`
 };
}

Parameters:

• token_id: string – The ID of the token.

Returns:

• On success, a JSON string showing the number of token decimal places.

Return Value Example:

{"msg":"Token Id: digiCurr101 has 1 decimal places."}

getTokenById
This method returns a token object if it is present in the state database. This method
can be called only by a Token Admin or an Org Admin of the chaincode.

@Validator(yup.string())
public async getTokenById(token_id: string) {
 await this.Ctx.Auth.checkAuthorization('TOKEN.get', 'TOKEN');
 const token = await this.getTokenObject(token_id);
 return token;
}

Parameters:

• token_id: string – The ID of the token.

Returns:

• On success, a JSON object that represents the token asset.

Return Value Example:

{
 "assetType": "otoken",
 "token_id": "digiCurr101",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-188

 "token_name": "digicur",
 "token_desc": "Digital Currency equiv of dollar",
 "token_type": "fungible",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 "burner_role_name": "burner",
 "notary_role_name": "notary"
 },
 "mintable": {
 "max_mint_quantity": 2000
 },
 "divisible": {
 "decimal": 1
 },
 "currency_name": "DOLLAR",
 "token_to_currency_ratio": 1
}

getTokenHistory
This method returns the token history for a specified token ID. Any user can call this method.

 @Validator(yup.string())
 public async getTokenHistory(tokenId: string) {
 await this.Ctx.Auth.checkAuthorization("TOKEN.getTokenHistory", "TOKEN");
 return await this.Ctx.Token.history(tokenId);
 }

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a JSON object that represents the token history.

Return Value Example:

[
 {
 "trxId":
"0d75f09446a60088afb948c6aca046e261fddcd43df416076201cdc5565f1a35",
 "timeStamp": "2023-09-01T16:48:41.000Z",
 "value": {
 "assetType": "otoken",
 "token_id": "token",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-189

 "token_name": "fiatmoneytok",
 "token_desc": "updatedDesc",
 "token_standard": "ttf+",
 "token_type": "fungible",
 "token_unit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 },
 {
 "trxId":
"3666344878b043b65d5b821cc79c042ba52aec467618800df5cf14eac69f72fa",
 "timeStamp": "2023-08-31T20:24:55.000Z",
 "value": {
 "assetType": "otoken",
 "token_id": "token",
 "token_name": "fiatmoneytok",
 "token_standard": "ttf+",
 "token_type": "fungible",
 "token_unit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-190

getAllTokens
This method returns all tokens that are stored in the state database. This method can be
called only by a Token Admin or an Org Admin of the chaincode. This method uses Berkeley
DB SQL rich queries and can only be called when connected to the remote Oracle
Blockchain Platform network.

@Validator()
public async getAllTokens() {
 await this.Ctx.Auth.checkAuthorization('TOKEN.getAllTokens', 'TOKEN');
 return await this.Ctx.Token.getAllTokens();
}

Parameters:

• none

Returns:

• On success, a JSON object that represents all token assets.

getTokensByName
This method returns all token objects with a specified name. This method can be called only
by a Token Admin or Org Admin of the chaincode. This method uses Berkeley DB SQL rich
queries and can only be called when connected to the remote Oracle Blockchain Platform
network.

@Validator(yup.string())
public async getTokensByName(token_name: string) {
 await this.Ctx.Auth.checkAuthorization('TOKEN.getTokensByName', 'TOKEN');
 return await this.Ctx.Token.getTokensByName(token_name);
}

Parameters:

• token_name: string – The name of the tokens to retrieve. The name corresponds to the
token_name property in the specification file. The value is the class name of the token.

Returns:

• On success, a JSON object of all token assets that match the name.

Methods for Account Management

createAccount
This method creates an account for a specified user and token. An account must be created
for any user who will have tokens at any point. Accounts track balances, on-hold balances,
and transaction history. An account ID is an alphanumeric set of characters, prefixed with
oaccount~<token asset name>~ and followed by a hash of the user name or email ID
(user_id) of the instance owner or the user who is logged in to the instance, the membership
service provider ID (org_id) of the user in the current network organization. This method can

Chapter 7
Tokenization Support Using Blockchain App Builder

7-191

be called only by a Token Admin of the chaincode or by an Org Admin of the specified
organization.

 @Validator(yup.string(), yup.string(), yup.string())
 public async createAccount(org_id: string, user_id: string,
token_type: string) {
 await this.Ctx.Auth.checkAuthorization("ACCOUNT.createAccount",
"TOKEN", { org_id });
 return await this.Ctx.Account.createAccount(org_id, user_id,
token_type);
 }

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

• token_type: string – The type of the token, which must be fungible.

Returns:

• On success, a JSON object of the account that was created. The
bapAccountVersion parameter is defined in the account object for internal use.

Return Value Example:

{
 "assetType": "oaccount",
 "account_id":
"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf4
8eb",
 "bapAccountVersion": 0,
 "user_id": "admin",
 "org_id": "Org1MSP",
 "token_type": "fungible",
 "token_id": "",
 "token_name": "",
 "balance": 0,
 "onhold_balance": 0
}

associateTokenToAccount
This method associates a fungible token with an account. This method can be called
only by a Token Admin of the chaincode or by an Org Admin of the relevant
organization.

 @Validator(yup.string(), yup.string())
 public async associateTokenToAccount(account_id: string, token_id:
string) {
 await this.Ctx.Auth.checkAuthorization("ACCOUNT.associateToken",
"TOKEN", { account_id });

Chapter 7
Tokenization Support Using Blockchain App Builder

7-192

 return await this.Ctx.Account.associateToken(account_id, token_id);
 }

Parameters:

• account_id: string – The ID of the account.

• token_id: string – The ID of the token.

Returns:

• On success, a JSON object of the updated account. The bapAccountVersion parameter
is defined in the account object for internal use.

Return Value Example:

{
 "assetType": "oaccount",
 "account_id":
"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf48eb",
 "bapAccountVersion": 0,
 "user_id": "admin",
 "org_id": "Org1MSP",
 "token_type": "fungible",
 "token_id": "fungible",
 "token_name": "fiatmoneytok",
 "balance": 0,
 "onhold_balance": 0
}

getAccount
This method returns account details for a specified user and token. This method can be
called only by a Token Admin of the chaincode, an Org Admin of the specified organization,
or the AccountOwner of the account.

@Validator(yup.string(), yup.string(), yup.string())
public async getAccount(token_id: string, org_id: string, user_id: string) {
 const account_id = await this.Ctx.Account.generateAccountId(token_id,
org_id, user_id);
 await this.Ctx.Auth.checkAuthorization("ACCOUNT.getAccount", "TOKEN",
{ account_id });
 return await this.Ctx.Account.getAccountWithStatus(account_id);
}

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-193

• On success, a JSON account object that includes the following properties:

• account_id – The ID of the user account.

• user_id – The user name or email ID of the user.

• org_id – The membership service provider (MSP) ID of the user in the current
organization.

• token_id – The ID of the token.

• token_name – The name of the token.

• balance – The current balance of the account.

• onhold_balance – The current on-hold balance of the account.

• bapAccountVersion – An account object parameter for internal use.

• status – The current status of the user account.

Return Value Example:

{
 "bapAccountVersion": 0,
 "assetType": "oaccount",
 "status": "active",
 "account_id":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "user_id": "idcqa",
 "org_id": "appdev",
 "token_type": "fungible",
 "token_id": "t1",
 "token_name": "obptok",
 "balance": 0,
 "onhold_balance": 0
}

getAccountHistory
This method returns account history details for a specified user and token. This
method can be called only by a Token Admin of the chaincode or the AccountOwner of
the account.

 @Validator(yup.string(), yup.string(), yup.string())
 public async getAccountHistory(token_id: string, org_id: string,
user_id: string) {
 const account_id = await
this.Ctx.Account.generateAccountId(token_id, org_id, user_id);
 await this.Ctx.Auth.checkAuthorization("ACCOUNT.history", "TOKEN",
{ account_id });
 return await this.Ctx.Account.history(account_id);
 }

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-194

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, an array of JSON account objects that includes the following properties:

• trxId – The transaction ID of the transaction as returned by the ledger.

• timeStamp – The time of the transaction.

• value – A JSON string of the account object.

Return Value Example:

[
 {

"trxId":"2gsdh17fff222467e5667be042e33ce18e804b3e065cca15de306f837e416d7c3e",
 "timeStamp":1629718288,
 "value":{
 "assetType":"oaccount",

"account_id":"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d
546d64f368642f622f",
 "user_id":"user1",
 "org_id":"Org1MSP",
 "token_id":"digiCurr101",
 "token_name":"digicur",
 "balance":100,
 "onhold_balance":0,
 "bapAccountVersion": 1
 },
 {

"trxId":"9fd07fff222467e5667be042e33ce18e804b3e065cca15de306f837e416d7c3e",
 "timeStamp":1629718288,
 "value":{
 "assetType":"oaccount",

"account_id":"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d
546d64f368642f622f",
 "user_id":"user1",
 "org_id":"Org1MSP",
 "token_id":"digiCurr101",
 "token_name":"digicur",
 "balance":0,
 "onhold_balance":0,
 "bapAccountVersion": 0
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-195

 }
]

getAccountOnHoldBalance
This method returns the current on-hold balance for a specified account and token.
This method can be called only by a Token Admin of the chaincode, an Org Admin of
the specified organization, or the AccountOwner of the account.

 @Validator(yup.string(), yup.string(), yup.string())
 public async getAccountOnHoldBalance(token_id: string, org_id:
string, user_id: string) {
 const account_id = await
this.Ctx.Account.generateAccountId(token_id, org_id, user_id);
 await
this.Ctx.Auth.checkAuthorization("ACCOUNT.getAccountOnHoldBalance",
"TOKEN", { account_id });
 return await this.Ctx.Account.getAccountOnHoldBalance(account_id);
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the current on-hold balance.

Return Value Example:

{"msg":"Total Holding Balance is: 0","holding_balance":0}

getAllAccounts
This method returns a list of all accounts. This method can be called only by a Token
Admin of the chaincode. This method uses Berkeley DB SQL rich queries and can
only be called when connected to the remote Oracle Blockchain Platform network.

@Validator()
public async getAllAccounts() {
 await this.Ctx.Auth.checkAuthorization('ACCOUNT.getAllAccounts',
'TOKEN');
 return await this.Ctx.Account.getAllAccounts();
}

Parameters:

• none

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-196

• On success, a JSON array of all accounts.

getUserByAccountId
This method returns user details (org_id and user_id) for a specified account. This method
can be called by any user of the chaincode.

@Validator(yup.string())
public async getUserByAccountId(account_id: string) {
 return await this.Ctx.Account.getUserByAccountId(account_id);
}

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, a JSON object of the user details (org_id, token_id, and user_id).

Return Value Example:

{
 "token_id": "digiCurr101",
 "user_id": "user1",
 "org_id": "Org1MSP"
}

getAccountBalance
This method returns the current balance for a specified account and token. This method can
be called only by a Token Admin of the chaincode, an Org Admin of the specified
organization, or the AccountOwner of the account.

 @Validator(yup.string(), yup.string(), yup.string())
 public async getAccountBalance(token_id: string, org_id: string, user_id:
string) {
 const account_id = await this.Ctx.Account.generateAccountId(token_id,
org_id, user_id);
 await this.Ctx.Auth.checkAuthorization("ACCOUNT.getAccountBalance",
"TOKEN", { account_id });
 return await this.Ctx.Account.getAccountBalance(account_id);
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the current account balance.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-197

Return Value Example:

{"msg":"Current Balance is: 0","user_balance":0}

getAllOrgAccounts
This method returns a list of all token accounts that belong to a specified organization.
This method can be called only by a Token Admin of the chaincode or by an Org
Admin of the specified organization.

 @Validator(yup.string())
 public async getAllOrgAccounts(org_id: string) {
 await
this.Ctx.Auth.checkAuthorization("ACCOUNT.getAllOrgAccounts", "TOKEN",
{ org_id });
 return await this.Ctx.Account.getAllOrgAccounts(org_id);
 }

Parameters:

• org_id: string – The membership service provider (MSP) ID of the
organization.

Returns:

• On success, a list of all accounts for the specified organization.

Return Value Example:

[
 {
 "key":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "valueJson": {
 "bapAccountVersion": 0,
 "assetType": "oaccount",
 "account_id":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "user_id": "idcqa",
 "org_id": "appdev",
 "token_type": "fungible",
 "token_id": "token",
 "token_name": "fiatmoneytok",
 "balance": 0,
 "onhold_balance": 0
 }
 },
 {
 "key":
"oaccount~620fcf5deb5fd5a65c0b5b10fda129de0f629ccd232c5891c130e24a574df
50a",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-198

 "valueJson": {
 "bapAccountVersion": 0,
 "assetType": "oaccount",
 "account_id":
"oaccount~620fcf5deb5fd5a65c0b5b10fda129de0f629ccd232c5891c130e24a574df50a",
 "user_id": "example_minter",
 "org_id": "appdev",
 "token_type": "fungible",
 "token_id": "token",
 "token_name": "fiatmoneytok",
 "balance": 0,
 "onhold_balance": 0
 }
 }
]

Methods for Role Management

addRole
This method adds a role to a specified user and token. This method can be called only by a
Token Admin of the chaincode or by an Org Admin of the specified organization who also
holds the specified role.

 @Validator(yup.string(), yup.string(), yup.string(), yup.string())
 public async addRole(token_id: string, role: string, org_id: string,
user_id: string) {
 const token_asset = await this.getTokenObject(token_id);
 const account_id = await this.Ctx.Account.generateAccountId(token_id,
org_id, user_id);
 await this.Ctx.Auth.checkAuthorization("TOKEN.addRoleMember", "TOKEN",
{ token_id, org_id, role });
 return await this.Ctx.Token.addRoleMember(role, account_id, token_asset);
 }

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to add to the specified user. The mintable and
burnable behaviors correspond to the minter_role_name and burner_role_name
properties of the specification file. Similarly, the notary role corresponds to the
notary_role_name property of the specification file.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message with account details.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-199

Return Value Example:

{"msg":"Successfully added role 'minter' to Account Id:
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (Org-Id: Org1MSP, User-Id: user1)"}

removeRole
This method removes a role from a specified user and token. This method can be
called only by a Token Admin of the chaincode or by an Org Admin of the specified
organization who also holds the specified role.

 @Validator(yup.string(), yup.string(), yup.string(), yup.string())
 public async removeRole(token_id: string, role: string, org_id:
string, user_id: string) {
 const token_asset = await this.getTokenObject(token_id);
 const account_id = await
this.Ctx.Account.generateAccountId(token_id, org_id, user_id);
 await this.Ctx.Auth.checkAuthorization("TOKEN.removeRoleMember",
"TOKEN", { token_id, org_id, role });
 return await this.Ctx.Token.removeRoleMember(role, account_id,
token_asset);
 }

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to remove from the specified user. The
mintable and burnable behaviors correspond to the minter_role_name and
burner_role_name properties of the specification file. Similarly, the notary role
corresponds to the notary_role_name property of the specification file.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message with account details.

Return Value Example:

{"msg":"Successfully removed role 'minter' from Account Id:
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (Org-Id: Org1MSP, User-Id: user1)"}

getAccountsByRole
This method returns a list of all account IDs for a specified role and token. This
method can be called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string())
public async getAccountsByRole(token_id: string, role: string) {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-200

 await this.Ctx.Auth.checkAuthorization('ROLE.getAccountsByRole', 'TOKEN');
 return await this.Ctx.Role.getAccountsByRole(token_id, role);
}

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to search for.

Returns:

• On success, a JSON array of account IDs.

Return Value Example:

{"accounts":
["oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f36864
2f622f"]}

getAccountsByUser
This method returns a list of all account IDs for a specified organization ID and user ID. This
method can be called only by the Token Admin of the chaincode, by the Org Admin of the
specified organization, or by the Account Owner specified in the parameters.

 @Validator(yup.string(), yup.string())
 public async getAccountsByUser(org_id: string, user_id: string) {
 await this.Ctx.Auth.checkAuthorization("ACCOUNT.getAccountsByUser",
"TOKEN", { org_id, user_id });
 return await this.Ctx.Account.getAccountsByUser(org_id, user_id);
 }

Parameters:

• org_id string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a JSON array of account IDs.

Return Value Example:

{"accounts":
["oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f36864
2f622f"]}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-201

getUsersByRole
This method returns a list of all users for a specified role and token. This method can
be called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string())
public async getUsersByRole(token_id: string, role: string) {
 await this.Ctx.Auth.checkAuthorization('ROLE.getUsersByRole',
'TOKEN');
 return await this.Ctx.Role.getUsersByRole(token_id, role);
}

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to search for.

Returns:

• On success, a JSON array of the user objects (org_id, token_id, and user_id).

Return Value Example:

{"users":
[{"token_id":"digiCurr101","user_id":"user1","org_id":"Org1MSP"}]}

isInRole
This method returns a Boolean value to indicate if a user and token has a specified
role. This method can be called only by a Token Admin of the chaincode, the
AccountOwner of the account, or an Org Admin of the specified organization.

 @Validator(yup.string(), yup.string(), yup.string(), yup.string())
 public async isInRole(token_id: string, org_id: string, user_id:
string, role: string) {
 const token_asset = await this.getTokenObject(token_id);
 const account_id = await
this.Ctx.Account.generateAccountId(token_id, org_id, user_id);
 await this.Ctx.Auth.checkAuthorization("TOKEN.isInRole", "TOKEN",
{ account_id });
 return { result: await this.Ctx.Token.isInRole(role, account_id,
token_asset) };
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

• role: string – The name of the role to search for.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-202

• On success, a JSON string of the Boolean result.

Return Value Example:

{"result":"false"}

getOrgAccountsByRole
This method returns information about all accounts that have a specified role in a specified
organization. This method can be called only by a Token Admin of the chaincode or by an
Org Admin of the specified organization.

 @Validator(yup.string(), yup.string(), yup.string())
 public async getOrgAccountsByRole(token_id: string, role: string, org_id:
string) {
 await this.Ctx.Auth.checkAuthorization("ROLE.getOrgAccountsByRole",
"TOKEN", { org_id });
 return await this.Ctx.Role.getOrgAccountsByRole(token_id, role, org_id);
 }

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to check for.

• org_id: string – The membership service provider (MSP) ID of the organization.

Returns:

• On success, a list of all accounts with the specified role in the specified organization.

Return Value Example:

{
 "accounts": [

"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf48eb",

"oaccount~9c650574af9025a6106c8d12a801b079eda9ae2e3399fc2fbd5bd683d738a850"
]
}

getOrgUsersByRole
This method returns information about all users that have a specified role in a specified
organization. This method can be called only by a Token Admin of the chaincode or by an
Org Admin of the specified organization.

 @Validator(yup.string(), yup.string(), yup.string())
 public async getOrgUsersByRole(token_id: string, role: string, org_id:
string) {
 await this.Ctx.Auth.checkAuthorization("ROLE.getOrgUsersByRole",
"TOKEN", { org_id });

Chapter 7
Tokenization Support Using Blockchain App Builder

7-203

 return await this.Ctx.Role.getOrgUsersByRole(token_id, role,
org_id);
 }

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to check for.

• org_id: string – The membership service provider (MSP) ID of the
organization.

Returns:

• On success, a list of all users with the specified role in the specified organization.

Return Value Example:

{
 "users": [
 {
 "token_id": "token",
 "user_id": "admin",
 "org_id": "Org1MSP"
 },
 {
 "token_id": "token",
 "user_id": "orgAdmin",
 "org_id": "Org1MSP"
 }
]
}

Methods for Transaction History Management

getAccountTransactionHistory
This method returns an array of account transaction history details for a specified user
and token. This method can be called only by the Token Admin of the chaincode, an
Org Admin of the specified organization, or the AccountOwner of the account.

 @Validator(yup.string(), yup.string(), yup.string())
 public async getAccountTransactionHistory(token_id: string, org_id:
string, user_id: string) {
 const account_id = await
this.Ctx.Account.generateAccountId(token_id, org_id, user_id);
 await
this.Ctx.Auth.checkAuthorization("ACCOUNT.getAccountTransactionHistory"
, "TOKEN", { account_id });
 return await
this.Ctx.Account.getAccountTransactionHistory(account_id, org_id,
user_id.toLowerCase());
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-204

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, an array of JSON account transaction objects that includes the following
properties:

• transaction_id – The ID of the transaction.

• transacted_account – The account with which the transaction took place.

• transaction_type – The type of transaction.

• transacted_amount – The amount of the transaction.

• timestamp – The time of the transaction.

• balance – The account balance at the time of the transaction.

• onhold_balance – The on-hold balance at the time of the transaction.

• token_id – The ID of the token.

• holding_id – A unique identifier returned by the holdTokens method.

Return Value Example:

[
 {
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc77
5",
 "transacted_amount": 20,
 "timestamp": "2021-08-17T06:04:24.000Z",
 "balance": 930,
 "onhold_balance": 0,
 "token_id": "digiCurr101",
 "transaction_type": "BULKTRANSFER",
 "sub_transactions": [
 {
 "transacted_account":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642
f622f",
 "transaction_type": "DEBIT",
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc77
5~c4ca4238a0b923820dcc509a6f75849b",
 "transacted_amount": 10
 },
 {
 "transacted_account":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471aaa1210

Chapter 7
Tokenization Support Using Blockchain App Builder

7-205

c706e",
 "transaction_type": "DEBIT",
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8
e0fc775~c81e728d9d4c2f636f067f89cc14862c",
 "transacted_amount": 10
 }
]
 },
 {
 "transaction_id":
"otransaction~757864d5369bd0539d044caeb3bb4898db310fd7aa740f45a99387719
03d43da",
 "transacted_amount": 50,
 "timestamp": "2021-08-17T06:02:44.000Z",
 "balance": 950,
 "onhold_balance": 0,
 "token_id": "digiCurr101",
 "transacted_account":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "transaction_type": "DEBIT"
 }
]

getAccountTransactionHistoryWithFilters
This method returns an array of account transaction history details for a specified user
and token. This method can be called only by the Token Admin of the chaincode, an
Org Admin of the specified organization, or the AccountOwner of the account. This
method can only be called when connected to the remote Oracle Blockchain Platform
network.

 @Validator(yup.string(), yup.string(), yup.string(),
yup.object().nullable())
 public async getAccountTransactionHistoryWithFilters(token_id:
string, org_id: string, user_id: string, filters?: Filters) {
 const account_id = await
this.Ctx.Account.generateAccountId(token_id, org_id, user_id);
 await
this.Ctx.Auth.checkAuthorization("ACCOUNT.getAccountTransactionHistoryW
ithFilters", "TOKEN", { account_id });
 return await
this.Ctx.Account.getAccountTransactionHistoryWithFilters(account_id,
org_id, user_id.toLowerCase(), filters);
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-206

• user_id: string – The user name or email ID of the user.

• filters: string – An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the
default page size is 20. The Bookmark property determines the starting index of the
records to return. For more information, see the Hyperledger Fabric documentation. The
StartTime and EndTime properties must be specified in RFC-3339 format.

Example:
ochain invoke GetAccountTransactionHistoryWithFilters 'token1' 'appbuilder12'
'user_minter'
'{"PageSize":10,"Bookmark":"1","StartTime":"2022-01-25T17:41:42Z","EndTime":"20
22-01-25T17:59:10Z"}'

[
 {
 "transaction_id":
"otransaction~672897b5a4fa78b421c000e4d6d4f71f3d46529bfbb5b4be10bf5471dc35ce8
9",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:46:04.000Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~16c38d804413ebabf416360d374f76c973d4e71c74adfde73cc40c7c274883b8",
 "transaction_type": "DEBIT",
 "balance": 90,
 "onhold_balance": 0
 },
 {
 "transaction_id":
"otransaction~467bb67a33aaffca4487f33dcd46c9844efdb5421a2e7b6aa2d53152eb2c6d8
5",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:45:47.000Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~fbf95683b21bbc91a22205819ac1e2e9c90355d536821ed3fe22b7d23915c248",
 "transaction_type": "DEBIT",
 "balance": 95,
 "onhold_balance": 0
 },
 {
 "transaction_id":
"otransaction~c6d56ce54a9bbe24597d1d10448e39316dc6f16328bf3c5b0c8ef10e1dfeb39
7",
 "transacted_amount": 100,
 "timestamp": "2022-04-20T15:44:26.000Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~deb5fb0906c40506f6c2d00c573b774e01a53dd91499e651d92ac4778b6add6a",
 "transaction_type": "MINT",
 "balance": 100,
 "onhold_balance": 0

Chapter 7
Tokenization Support Using Blockchain App Builder

7-207

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

 }
]

getSubTransactionById
This method returns an array of account transaction history details for a specified user
and token. This method can be called only by the Token Admin of the chaincode or
the AccountOwner of the account.

 @Validator(yup.string())
 public async getSubTransactionsById(transaction_id: string) {
 await
this.Ctx.Auth.checkAuthorization("ACCOUNT.getSubTransactionsById",
"TOKEN", { transaction_id });
 return await
this.Ctx.Account.getSubTransactionsById(transaction_id);
 }

Parameters:

• transaction_id: string – The ID of the bulk transfer transaction.

Returns:

• An array of account subtransaction objects in JSON format for a specified bulk
transfer transaction ID.

Example:
ochain invoke GetAccountSubTransactionHistory
'otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6f8
64b9b'

[
 {
 "transacted_account":
"oaccount~16c38d804413ebabf416360d374f76c973d4e71c74adfde73cc40c7c27488
3b8",
 "transaction_type": "DEBIT",
 "transaction_id":
"otransaction~6e0f8fe4a6430322170b9c619b04b6c9f1c8d257923f611b866bdf69d
7fe6cb8~c81e728d9d4c2f636f067f89cc14862c",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:52:21.000Z",
 "token_id": "token1",
 "balance": 80,
 "onhold_balance": 0
 },
 {
 "transacted_account":
"oaccount~fbf95683b21bbc91a22205819ac1e2e9c90355d536821ed3fe22b7d23915c
248",
 "transaction_type": "DEBIT",
 "transaction_id":
"otransaction~6e0f8fe4a6430322170b9c619b04b6c9f1c8d257923f611b866bdf69d

Chapter 7
Tokenization Support Using Blockchain App Builder

7-208

7fe6cb8~c4ca4238a0b923820dcc509a6f75849b",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:52:21.000Z",
 "token_id": "token1",
 "balance": 85,
 "onhold_balance": 0
 }
]

getSubTransactionsByIdWithFilters
This method returns an array of account subtransaction history details for a specified
transaction.

 @Validator(yup.string(), yup.object().nullable())
 public async getSubTransactionsByIdWithFilters(transaction_id: string,
filters?: SubTransactionFilters) {
 await
this.Ctx.Auth.checkAuthorization("ACCOUNT.getSubTransactionsByIdWithFilters",
 "TOKEN", { transaction_id });
 return await
this.Ctx.Account.getSubTransactionsByIdWithFilters(transaction_id, filters);
 }

Parameters:

• transaction_id: string – The ID of the transaction.

• filters: string – An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the
default page size is 20. The Bookmark property determines the starting index of the
records to return. For more information, see the Hyperledger Fabric documentation. The
StartTime and EndTime properties must be specified in RFC-3339 format.

Returns:

• An array of account subtransaction objects in JSON format for a specified bulk transfer
transaction ID.

Example:
ochain invoke GetAccountSubTransactionHistoryWithFilters
'otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6f864b9b'
'{"PageSize":10,"Bookmark":"1"}'

[
 {
 "transaction_id":
"otransaction~6e0f8fe4a6430322170b9c619b04b6c9f1c8d257923f611b866bdf69d7fe6cb
8~c81e728d9d4c2f636f067f89cc14862c",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:52:21.000Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~16c38d804413ebabf416360d374f76c973d4e71c74adfde73cc40c7c274883b8",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-209

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

 "transaction_type": "DEBIT",
 "balance": 80,
 "onhold_balance": 0
 },
 {
 "transaction_id":
"otransaction~6e0f8fe4a6430322170b9c619b04b6c9f1c8d257923f611b866bdf69d
7fe6cb8~c4ca4238a0b923820dcc509a6f75849b",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:52:21.000Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~fbf95683b21bbc91a22205819ac1e2e9c90355d536821ed3fe22b7d23915c
248",
 "transaction_type": "DEBIT",
 "balance": 85,
 "onhold_balance": 0
 }
]

getTransactionById
This method returns the history of a Transaction asset.

@Validator(yup.string())
 public async getTransactionById(transaction_id: string) {
 return await
this.Ctx.Transaction.getTransactionById(transaction_id);
 }

Parameters:

• transaction_id string – The ID of the transaction asset.

Returns:

• On success, an JSON array of the history for the transaction.

Return Value Example:

{
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8
e0fc775",
 "history": [
 {
 "trxId":
"68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc775",
 "timeStamp": 1629180264,
 "value": {
 "assetType": "otransaction",
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8
e0fc775",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-210

 "token_id": "digiCurr101",
 "from_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f0376
152df",
 "to_account_id": "",
 "transaction_type": "BULKTRANSFER",
 "amount": 20,
 "timestamp": "2021-08-17T06:04:24.000Z",
 "number_of_sub_transactions": 2,
 "holding_id": ""
 }
 }
],
 "sub_transactions": [
 {
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc77
5~c4ca4238a0b923820dcc509a6f75849b",
 "history": [
 {
 "trxId":
"68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc775",
 "timeStamp": 1629180264,
 "value": {
 "assetType": "otransaction",
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc77
5~c4ca4238a0b923820dcc509a6f75849b",
 "token_id": "digiCurr101",
 "from_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f0376
152df",
 "to_account_id":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642
f622f",
 "transaction_type": "TRANSFER",
 "amount": 10,
 "timestamp": "2021-08-17T06:04:24.000Z",
 "number_of_sub_transactions": 0,
 "holding_id": ""
 }
 }
]
 },
 {
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc77
5~c81e728d9d4c2f636f067f89cc14862c",
 "history": [
 {
 "trxId":
"68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc775",
 "timeStamp": 1629180264,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-211

 "value": {
 "assetType": "otransaction",
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8
e0fc775~c81e728d9d4c2f636f067f89cc14862c",
 "token_id": "digiCurr101",
 "from_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d8
5f0376152df",
 "to_account_id":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471a
aa1210c706e",
 "transaction_type": "TRANSFER",
 "amount": 10,
 "timestamp": "2021-08-17T06:04:24.000Z",
 "number_of_sub_transactions": 0,
 "holding_id": ""
 }
 }
]
 }
]
}

deleteHistoricalTransactions
This method deletes older transactions from the state database.

@Validator(yup.date())
 public async deleteHistoricalTransactions(time_to_expiration:
Date) {
 await
this.Ctx.Auth.checkAuthorization('TRANSACTION.deleteTransactions',
'TOKEN');
 return await
this.Ctx.Transaction.deleteTransactions(time_to_expiration);
 }

Parameters:

• time_to_expiration Date – A time stamp that indicates when to delete
transactions. Transaction assets that are older than the specified time will be
deleted.

Return Value Example:

"payload": {
 "msg": "Successfuly deleted transaction older than date: Thu Aug
19 2021 11:19:36 GMT+0000 (Coordinated Universal Time).",
 "transactions": [

"otransaction~ec3366dd48b4ce2838f820f2f138648e6e55a07226713e59b411ff31b
0d21058"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-212

]
}

Methods for Token Behavior Management - Mintable Behavior

issueTokens
This method mints tokens, which are then owned by the caller of the method. The caller
must have an account and the minter role. The number of tokens that can be minted is
limited by the max_mint_quantity property of mintable behavior in the specification file. If
the max_mint_quantity property is not specified, an unlimited number of tokens can be
minted. The quantity must be within the decimal values specified by the decimal parameter
of the divisible behavior in the specification file. This method can be called only by the
AccountOwner of the account with the minter role.

@Validator(yup.string(), yup.number().positive())
public async issueTokens(token_id: string, quantity: number) {
 const token_asset = await this.getTokenObject(token_id);
 return await this.Ctx.Token.mint(quantity, token_asset);
}

Parameters:

• token_id: string – The ID of the token.

• quantity – The number of tokens to mint.

Returns:

• On success, a message with account details.

Return Value Example:

{
 "msg": "Successfully minted 1000 tokens to Account Id: \
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f03761
52df (Org-Id: Org1MSP, User-Id: user1) ",
}

getTotalMintedTokens
This method returns the total number of minted tokens for a specified token. This method
can be called only by a Token Admin or any Org Admin of the chaincode.

@Validator(yup.string())
 public async getTotalMintedTokens(token_id: string) {
 const token_asset = await this.getTokenObject(token_id);
 await this.Ctx.Auth.checkAuthorization('TOKEN.getTotalMintedTokens',
'TOKEN');
 const totalMintedTokens = await
this.Ctx.Token.getTotalMintedTokens(token_asset);
 return {
 msg: `Total minted token for Token Id: ${token_id} is $
{totalMintedTokens} tokens.`,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-213

 quantity: totalMintedTokens
 };
 }

Parameters:

• token_id: string – The ID of the token.

Returns:

• On success, a JSON string indicating the total number of tokens.

Return Value Example:

{"msg":"Total minted token for Token Id: digiCurr101 is 100
tokens.","quantity":100}

getNetTokens
This method returns the total net number of tokens available in the system for a
specified token. The net token total is the amount of tokens remaining after tokens are
burned. In equation form: net tokens = total minted tokens - total burned tokens. If no
tokens are burned, then the number of net tokens is equal to the total minted tokens.
This method can be called only by a Token Admin or any Org Admin of the chaincode.

@Validator(yup.string())
public async getNetTokens(token_id: string) {
 const token_asset = await this.getTokenObject(token_id);
 await this.Ctx.Auth.checkAuthorization('TOKEN.getNetTokens',
'TOKEN');
 const netTokens = await this.Ctx.Token.getNetTokens(token_asset);
 return {
 msg: `Net supply of token for Token Id: ${token_id} is $
{netTokens} tokens.`,
 quantity: netTokens
 };
}

Parameters:

• token_id: string – The ID of the token.

Returns:

• On success, a JSON string indicating the net number of tokens.

Return Value Example:

{"msg":"Net supply of token for Token Id: digiCurr101 is 0
tokens.","quantity":0}

Methods for Token Behavior Management - Transferable Behavior

Chapter 7
Tokenization Support Using Blockchain App Builder

7-214

transferTokens
This method transfers tokens from the caller to a specified account. The caller of the method
must have an account. The quantity must be within the decimal values specified by the
decimal parameter of the divisible behavior in the specification file. This method can be
called only by the AccountOwner of the account.

@Validator(yup.string(), yup.string(), yup.string(), yup.number().positive())
public async transferTokens(token_id: string, to_org_id: string, to_user_id:
string, quantity: number) {
 const token_asset = await this.getTokenObject(token_id);
 const to_account_id = await this.Ctx.Account.generateAccountId(token_id,
to_org_id, to_user_id);
 return await this.Ctx.Token.transfer(to_account_id, quantity,
token_asset);
}

Parameters:

• token_id: string – The ID of the token.

• to_org_id: string – The membership service provider (MSP) ID of the receiver
(payee) in the current organization.

• to_user_id: string – The user name or email ID of the receiver.

• quantity: number – The number of tokens to transfer.

Returns:

• On success, a message with details for both payer and payee accounts.

Return Value Example:

{
 "msg": "Successfully transferred 400 tokens from account id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f03761
52df (Org-Id: Org1MSP, User-Id: user1) to account id:
oaccount~digicur~682bb71de419602af74e3f226345ef308445ca51010737900c112435f676
152df (Org-Id: Org1MSP, User-Id: user2) ",
}

bulkTransferTokens
This method is used to perform bulk transfer of tokens from the caller account to the
accounts that are specified in the flow object. The quantities must be within the decimal
values specified by the decimal parameter of the divisible behavior in the specification
file.The caller of this method must have an account already created. This method can be
called only by the AccountOwner of the account.

@Validator(yup.string(), yup.array().of(yup.object()))
public async bulkTransferTokens(token_id: string, flow: object[]) {
 const token_asset = await this.getTokenObject(token_id);
 return await this.Ctx.Token.bulkTransfer(flow, token_asset);
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-215

Parameters:

• token_id: string – The ID of the token.

• flow : object[] – An array of JSON objects that specify receivers and
quantities.

[{
 "to_org_id": "Org1MSP",
 "to_user_id": "user1",
 "quantity": 10
}, {
 "to_org_id": "Org1MSP",
 "to_user_id": "user2",
 "quantity": 10
}]

– to_orgId: string – The membership service provider (MSP) ID of the
receiver in the current organization.

– userId: string – The user name or email ID of the receiver.

– quantity: number – The number of tokens to transfer.

Returns:

• A message indicating success.

Return Value Example:

{
 "msg": "Successfully transferred 20 tokens from Account
Id
'oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d8
5f0376152df' (Org-Id: Org1MSP, User-Id: admin).",
 "from_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d8
5f0376152df",
 "sub_transactions": [
 {
 "to_account_id":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "amount": 10
 },
 {
 "to_account_id":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471a
aa1210c706e",
 "amount": 10
 }
]
}

Methods for Token Behavior Management - Holdable Behavior

Chapter 7
Tokenization Support Using Blockchain App Builder

7-216

holdTokens
This method creates a hold on behalf of the owner of the tokens with the to_account_id
account. A notary account is specified, which is responsible to either complete or release the
hold. When the hold is created, the specified token balance from the payer is put on hold. A
held balance cannot be transferred until the hold is either completed or released. The caller
of this method must have an account already created. This method can be called only by the
AccountOwner of the account.

@Validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.string(), yup.string(), yup.number().positive(), yup.date())
public async holdTokens(
 token_id: string,
 operation_id: string,
 to_org_id: string,
 to_user_id: string,
 notary_org_id: string,
 notary_user_id: string,
 quantity: number,
 time_to_expiration: Date
) {
 const token_asset = await this.getTokenObject(token_id);
 const to_account_id = await this.Ctx.Account.generateAccountId(token_id,
to_org_id, to_user_id);
 const notary_account_id = await
this.Ctx.Account.generateAccountId(token_id, notary_org_id, notary_user_id);
 return await this.Ctx.Token.hold(operation_id, to_account_id,
notary_account_id, quantity, time_to_expiration, token_asset);
}

Parameters:

• token_id: string – The ID of the token.

• operation_id: string – A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

• to_org_id: string – The membership service provider (MSP) ID of the receiver in the
current organization.

• to_user_id: string – The user name or email ID of the receiver.

• notary_org_id: string – The membership service provider (MSP) ID of the notary in
the current organization.

• notary_user_id: string – The user name or email ID of the notary.

• quantity: number – The number of tokens to put on hold.

• time_to_expiration – The time when the hold expires. Specify 0 for a permanent hold.
Otherwise use the RFC-3339 format. For example, 2021-06-02T12:46:06Z.

Returns:

• On success, a message with the caller's account and hold details.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-217

Return Value Example:

{
 "msg":"AccountId
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85
f0376152df (Org-Id: Org1MSP , User-Id: admin) is successfully
holding 10 tokens"
}

executeHoldTokens
This method completes a hold on a token. A quantity of tokens previously held by a
token owner is transferred to a receiver. If the quantity value is less than the actual
hold value, then the remaining amount is available again to the original owner of the
tokens. This method can be called only by the AccountOwner ID with the notary role
for the specified operation ID. The hold can only be completed by the notary.

@Validator(yup.string(), yup.string(), yup.number().positive())
public async executeHoldTokens(token_id: string, operation_id: string,
quantity: number) {
 const token_asset = await this.getTokenObject(token_id);
 return await this.Ctx.Token.executeHold(operation_id, quantity,
token_asset);
}

Parameters:

• token_id: string – The ID of the token.

• operation_id: string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

• quantity: number – The number of on-hold tokens to transfer.

Returns:

• On success, a message with the caller's account ID and the quantity of the
transaction.

Return Value Example:

{
 "msg":"Account Id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85
f0376152df (Org-Id: Org1MSP, User-Id: admin) is successfully executed
'10' tokens from Operation Id 'opr_121'."
}

releaseHoldTokens
This method releases a hold on tokens. The transfer is not completed and all held
tokens are available again to the original owner. This method can be called by the

Chapter 7
Tokenization Support Using Blockchain App Builder

7-218

AccountOwner ID with the notary role within the specified time limit or by the payer, payee, or
notary after the specified time limit.

@Validator(yup.string(), yup.string())
public async releaseHoldTokens(token_id: string, operation_id: string) {
 const token_asset = await this.getTokenObject(token_id);
 return await this.Ctx.Token.releaseHold(operation_id, token_asset);
}

Parameters:

• token_id: string – The ID of the token.

• operation_id: string – A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

Returns:

• On success, a message indicating that the hold was released.

Return Value Example:

{
 "msg":"Successfully released '10' tokens from Operation Id 'opr_121' to
Account Id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f03761
52df (Org-Id: Org1MSP, User-Id: user1)."
}

getOnHoldIds
This method returns a list of all of the holding IDs for a specified account. This method can
be called by a Token Admin of the chaincode, an Org Admin of the specified organization, or
the AccountOwner of the account.

 @Validator(yup.string(), yup.string(), yup.string())
 public async getOnHoldIds(token_id: string, org_id: string, user_id:
string) {
 const account_id = await this.Ctx.Account.generateAccountId(token_id,
org_id, user_id);
 await this.Ctx.Auth.checkAuthorization("ACCOUNT.getOnHoldIds", "TOKEN",
{ account_id });
 return await this.Ctx.Account.getOnHoldIds(account_id);
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-219

• On success, a JSON list of holding IDs.

Return Value Example:

{"msg":"Holding Ids are:
ohold~digicur~digiCurr101~opr_121","holding_ids":
["ohold~digicur~digiCurr101~opr_121"]}

getOnHoldDetailsWithOperationId
This method returns the on-hold transaction details for a specified operation ID and
token. This method can be invoked by anyone.

@Validator(yup.string(), yup.string())
public async getOnHoldDetailsWithOperationId(token_id: string,
operation_id: string) {
 return await
this.Ctx.Hold.getOnHoldDetailsWithOperationId(token_id, operation_id);
}

Parameters:

• token_id: string – The ID of the token.

• operation_id: string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

Returns:

• On success, a JSON hold object that includes the following properties:

• holding_id – The holding ID of the transaction.

• operation_id: string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

• from_account_id – The account ID of the current owner of the on-hold tokens.

• to_account_id – The account ID of the receiver.

• notary_account_id – The account ID of the notary.

• token_id: string – The ID of the saved token.

• quantity – The amount of tokens that are on hold for the holding ID.

• time_to_expiration – The duration until the hold expires.

Return Value Example:

{
 "assetType": "ohold",
 "holding_id": "ohold~digicur~digiCurr101~opr_121",
 "operation_id": "opr_121",
 "token_name": "digicur",
 "from_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d8
5f0376152df",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-220

 "to_account_id":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642
f622f",
 "notary_account_id":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471aaa1210
c706e",
 "token_id": "digiCurr101",
 "quantity": 10,
 "time_to_expiration": "2022-08-01T18:30:00.000Z"
}

getOnHoldBalanceWithOperationId
This method returns the on-hold balance for a specified operation ID and token. This method
can be invoked by anyone.

@Validator(yup.string(), yup.string())
public async getOnHoldBalanceWithOperationId(token_id: string, operation_id:
string) {
 return await this.Ctx.Hold.getOnHoldBalanceWithOperationId(token_id,
operation_id);
}

Parameters:

• token_id: string – The ID of the token.

• operation_id: string – A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

Returns:

• On success, a JSON string indicating the holding balance.

Return Value Example:

{
 "msg": "Current Holding Balance of Operation 'opr_121' for token
'digiCurr101' is: 10",
 "holding_balance": 10
}

Methods for Token Behavior Management - Burnable Behavior

burnTokens
This method deactivates, or burns, tokens from the transaction caller's account. The caller of
this method must have an account and the burner role. The quantity must be within the
decimal values specified by the decimal parameter of the divisible behavior in the
specification file. This method can be called by the AccountOwner of the account with the
burner role.

@Validator(yup.string(), yup.number().positive())
public async burnTokens(token_id: string, quantity: number) {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-221

 const token_asset = await this.getTokenObject(token_id);
 return await this.Ctx.Token.burn(quantity, token_asset);
}

Parameters:

• token_id: string – The ID of the token.

• quantity – The number of tokens to burn.

Returns:

• On success, a success message with the quantity of tokens burned and the
account ID.

Return Value Example:

{
 "msg": "Successfully burned 10 tokens from account id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85
f0376152df (Org-Id: Org1MSP, User-Id: admin)"
}

Custom Methods

You can use the token SDK methods to write custom methods for your business
application.

To avoid double-spending, do not combine multiple async functions that operate on the
same key-value pairs in the state database. Instead, use the bulkTransferTokens
method to make multiple transfers in one method.

The following example shows how to use token SDK methods in custom methods.
When the buyTicket method is called, it transfers 20 tokens from the caller's account
to the seller's account, and returns the transaction message of the transfer.

@Validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.string())
public async buyTicket(token_id: string, seller_org_id: string,
seller_user_id: string) {
 const token = await this.getTokenObject(token_id);

 /**
 * The following method
this.Ctx.Account.generateAccountId(token_id, seller_org_id,
seller_user_id) generates account id of the seller.
 */
 const seller_account_id = await
this.Ctx.Account.generateAccountId(token_id, seller_org_id,
seller_user_id);

 /**
 * The following method this.Ctx.Token.transfer(seller_account_id,
20, token) transfers the quantity 20 from caller's
 * account & to seller's account.
 */

Chapter 7
Tokenization Support Using Blockchain App Builder

7-222

 const transaction = await this.Ctx.Token.transfer(seller_account_id, 20,
token);

 return transaction;
}

If you use more than one token SDK method in a custom method, do not use methods that
will affect the same key-value pairs in the state database. The following example shows the
incorrect way to make multiple transfers:

@Validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.string())
public async sendTokens(token_id: string, user1_org_id: string,
user1_user_id: string, user2_org_id: string, user2_user_id: string) {
 const token = await this.getTokenObject(token_id);
 const user1_account_id = await Account.generateAccountId(token_id,
user1_org_id, user1_user_id);
 const user2_account_id = await Account.generateAccountId(token_id,
user2_org_id, user2_user_id);
 await token.transfer(user1_account_id, 20);
 await token.transfer(user2_account_id, 30);
}

Instead, use the bulkTransferTokens method to transfer to multiple accounts from the
caller's account, as shown in the following code snippet.

bulkTransferTokens(token_id: string, flow: object[])

Note:

If you use more than one token SDK method in a custom method that might affect
the same key-value pairs in the state database, enable the MVCC optimization for
token chaincodes. For more information, see MVCC Optimization.

Token SDK Methods

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Holdable Behavior

– Burnable Behavior

Chapter 7
Tokenization Support Using Blockchain App Builder

7-223

Methods for Access Control Management

The token SDK provides an access control function. Some methods can be called only
by a Token Admin, Org Admin, or AccountOwner of the token. You can use this feature
to ensure that operations are carried out only by the intended users. Any unauthorized
access results in an error. To use the access control function, import the
Authorization class from the ../lib/auth module.

import { Authorization } from '../lib/auth';

addAdmin
This method adds a user as a Token Admin of the token chaincode.

Ctx.Admin.addAdmin(org_id: string, user_id: string)

Parameters:

• user_id – The user name or email ID of the user.

• org_id – The membership service provider (MSP) ID of the user in the current
network organization.

Returns:

• On success, a promise message with a JSON object that lists details for the user
added as a Token Admin of the token chaincode. On error, a rejection with an
error message.

Return Value Example:

{
 "msg": "Successfully added Admin (Org_Id: Org1MSP, User_Id: user1)"
}

removeAdmin
This method removes a user as a Token Admin of the token chaincode.

Ctx.Admin.removeAdmin(org_id: string, user_id: string)

Parameters:

• user_id – The user name or email ID of the user.

• org_id – The membership service provider (MSP) ID of the user in the current
network organization.

Returns:

• On success, a promise message with a JSON object that lists details for the user
who is no longer a Token Admin of the token chaincode. On error, a rejection with
an error message.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-224

Return Value Example:

{
 "msg": "Successfully removed Admin (Org_Id: Org1MSP, User_Id: user1)"
}

getAllAdmins
This method returns a list of all users who are a Token Admin of the token chaincode.

Ctx.Admin.getAllAdmins()

Parameters:

• none

Returns:

• On success, a promise with a JSON object that lists details for all users who are a Token
Admin of the token chaincode. On error, a rejection with an error message.

Return Value Example:

{
 "admins": [
 {
 "orgId": "Org1MSP",
 "userId": "admin"
 }
]
}

checkAuthorization
Use this method to add an access control check to an operation. Certain token methods can
be run only by a Token Admin or AccountOwner of the token or by the MultipleAccountOwner
for users with multiple accounts. The access control mapping is described in the ../lib/
constant.ts file. You can modify access control by editing the ../lib/constant.ts
file. To use your own access control or to disable access control, remove the access control
code from the automatically generated controller methods and custom methods.

export const TOKENACCESS = {
 ADMIN: {
 isUserTokenAdmin: ["Admin", "OrgAdmin"],
 addTokenAdmin: ["Admin"],
 removeTokenAdmin: ["Admin"],
 getAllAdmins: ["Admin", "OrgAdmin"],
 addOrgAdmin: ["Admin", "OrgAdminForOrgId"],
 removeOrgAdmin: ["Admin", "OrgAdminForOrgId"],
 getOrgAdmins: ["Admin", "OrgAdmin"],
 },
 TOKEN: {
 save: ["Admin"],
 getAllTokens: ["Admin", "OrgAdmin"],

Chapter 7
Tokenization Support Using Blockchain App Builder

7-225

 get: ["Admin", "OrgAdmin"],
 update: ["Admin"],
 getDecimals: ["Admin", "OrgAdmin"],
 getTokensByName: ["Admin", "OrgAdmin"],
 addRoleMember: ["Admin", "OrgAdminRoleCheck"],
 removeRoleMember: ["Admin", "OrgAdminRoleCheck"],
 isInRole: ["Admin", "OrgAdminForAccountId", "AccountOwner"],
 getTotalMintedTokens: ["Admin", "OrgAdmin"],
 getNetTokens: ["Admin", "OrgAdmin"],
 getTokenHistory: ["Admin", "OrgAdmin"],
 },
 ROLE: {
 getAccountsByRole: ["Admin"],
 getOrgAccountsByRole: ["Admin", "OrgAdminForOrgId"],
 getUsersByRole: ["Admin"],
 getOrgUsersByRole: ["Admin", "OrgAdminForOrgId"],
 },
 TRANSACTION: {
 deleteTransactions: ["Admin"],
 },ACCOUNT: {
 createAccount: ["Admin", "OrgAdminForOrgId"],
 associateToken: ["Admin", "OrgAdminForAccountId"],
 getAllAccounts: ["Admin"],
 getAllOrgAccounts: ["Admin", "OrgAdminForOrgId"],
 getAccountsByUser: ["Admin", "OrgAdminForOrgId",
"MultipleAccountOwner"],
 getAccount: ["Admin", "OrgAdminForAccountId", "AccountOwner"],
 history: ["Admin", "AccountOwner"],
 getAccountTransactionHistory: ["Admin", "OrgAdminForAccountId",
"AccountOwner"],
 getAccountTransactionHistoryWithFilters: ["Admin",
"OrgAdminForAccountId", "AccountOwner"],
 getSubTransactionsById: ["Admin", "TransactionInvoker"],
 getSubTransactionsByIdWithFilters: ["Admin", "TransactionInvoker"],
 getAccountBalance: ["Admin", "OrgAdminForAccountId",
"AccountOwner"],
 getAccountOnHoldBalance: ["Admin", "OrgAdminForAccountId",
"AccountOwner"],
 getOnHoldIds: ["Admin", "OrgAdminForAccountId", "AccountOwner"],
 getConversionHistory: ["Admin", "OrgAdminForAccountId",
"AccountOwner"],
 },
 ACCOUNT_STATUS: {
 get: ["Admin", "OrgAdminForAccountId", "AccountOwner"],
 history: ["Admin", "OrgAdminForAccountId", "AccountOwner"],
 activateAccount: ["Admin", "OrgAdminForOrgId"],
 suspendAccount: ["Admin", "OrgAdminForOrgId"],
 deleteAccount: ["Admin", "OrgAdminForOrgId"],
 },
 TOKEN_CONVERSION: {
 initializeExchangePoolUser: ["Admin"],
 addConversionRate: ["Admin"],
 updateConversionRate: ["Admin"],

Chapter 7
Tokenization Support Using Blockchain App Builder

7-226

 getConversionRate: ["Admin", "OrgAdmin", "AnyAccountOwner"],
 getConversionRateHistory: ["Admin", "OrgAdmin", "AnyAccountOwner"],
 tokenConversion: ["Admin", "AnyAccountOwner"],
 getExchangePoolUser: ["Admin"],
 },
}

await this.Ctx.Auth.checkAuthorization(<parameters>);

Parameters:

• classFuncName: string – The map value between the class and methods as described
in the ../lib/constant.ts file.

• ...args – A variable argument where args[0] takes the constant 'TOKEN' and args[1]
takes the account_id to add an access control check for an AccountOwner. To add an
access control check for a MultipleAccountOwner, args[1] takes the org_id and
args[2] takes the user_id.

Returns:

• On success, a promise. On error, a rejection with an error message.

isUserTokenAdmin
This method returns the Boolean value true if the caller of the function is a Token Admin.
Otherwise the method returns false.

Ctx.Auth.isUserTokenAdmin()

Parameters:

• user_id – The user name or email ID of the user.

• org_id – The membership service provider (MSP) ID of the user in the current network
organization.

Returns:

• A Boolean response and an error message if an error is encountered.

addOrgAdmin
This method adds a user as an Org Admin of the organization.

Ctx.Admin.addOrgAdmin(org_id, user_id)

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-227

• On success, a message that includes details of the user who was added as an
Org Admin of the organization.

Return Value Example:

{
 "msg": "Successfully added Org Admin (Org_Id: Org1MSP, User_Id:
orgAdmin)"
}

removeOrgAdmin
This method removes a user as an Org Admin of the organization.

Ctx.Admin.removeOrgAdmin(org_id, user_id)

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was removed as an
Org Admin of the organization.

Return Value Example:

{
 "msg": "Successfully removed Org Admin (Org_Id Org1MSP User_Id
orgAdmin)"
}

getOrgAdmins
This method returns a list of all users who are an Org Admin of an organization.

Ctx.Admin.getAllOrgAdmins()

Parameters:

• none

Returns:

• On success, an array in JSON format that contains orgId and userId objects.

Return Value Example:

{
 "admins": [
 {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-228

 "org_id": "Org1MSP",
 "user_id": "orgadmin"
 },
 {
 "org_id": "Org1MSP",
 "user_id": "orgadmin1"
 },
 {
 "org_id": "Org1MSP",
 "user_id": "orgadmin2"
 }
]
}

Methods for Token Configuration Management

getTokenDecimals
This method returns the number of decimal places available for a fractional token. If the
divisible behavior is not specified, then the default value is 0.

Ctx.Token.getTokenDecimals(token_id: string)

Parameters:

• token_id: string – The ID of the token.

Returns:

• On success, the decimal places of the token, in the number data type. On error, it returns
with an error message.

Return Value Example:

1

getAllTokens
This method returns all the token assets saved in the state database. This method uses
Berkeley DB SQL rich queries and can only be called when connected to the remote Oracle
Blockchain Platform network.

Ctx.Token.getAllTokens()

Parameters:

• none

Returns:

• On success, it returns a promise with all the token assets. On error, it returns an error
message.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-229

Return Value Example:

{
 "returnCode": "Success",
 "error": "",
 "result": {
 "txid":
"98e0a0a115803d25b843d630e6b23c435a192a03eb0a301fc9375f05da49a8b2",
 "payload": [
 {
 "key": "token1",
 "valueJson": {
 "assetType": "otoken",
 "token_id": "token1",
 "token_name": "vtok",
 "token_type": "fungible",
 "behaviours": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "holdable",
 "roles"
],
 "roles": {
 "burner_role_name": "burner",
 "notary_role_name": "notary"
 },
 "mintable": {
 "max_mint_quantity": 0
 },
 "divisible": {
 "decimal": 1
 }
 }
 }
],
 "encode": "JSON"
 }
}

getTokensByName
This method returns all the token assets with the specified name. This method uses
Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network.

Ctx.Token.getTokensByName(token_name: string)

Parameters:

• token_name: string – The name of the token, which corresponds to the
Token_name property of the model. The value is the class name of the token.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-230

Returns:

• It returns an array of all of the token assets of the specified name, in JSON format.

Return Value Example:

{
 "returnCode": "Success",
 "error": "",
 "result": {
 "txid":
"98e0a0a115803d25b843d630e6b23c435a192a03eb0a301fc9375f05da49a8b2",
 "payload": [
 {
 "key": "token1",
 "valueJson": {
 "assetType": "otoken",
 "token_id": "token1",
 "token_name": "vtok",
 "token_type": "fungible",
 "behaviours": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "holdable",
 "roles"
],
 "roles": {
 "burner_role_name": "burner",
 "notary_role_name": "notary"
 },
 "mintable": {
 "max_mint_quantity": 0
 },
 "divisible": {
 "decimal": 1
 }
 }
 }
],
 "encode": "JSON"
 }
}

get
This method returns a token object if it is present in the state database.

Ctx.Token.get(token_id: string)

Parameters:

• token_id: string – The ID of the token to return.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-231

Returns:

• On success, a promise with the JSON representation of the token. On error, a
rejection with an error message.

Return Value Example:

{
 "assetType": "otoken",
 "token_id": "token1",
 "token_name": "account",
 "token_desc": "Token 1",
 "token_type": "fungible",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "holdable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner",
 "notary_role_name": "notary"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "divisible": {
 "decimal": 1
 },
 "token_to_currency_ratio": 2,
 "currency_representation": "EURO"
}

isTokenType
This method indicates whether a token asset exists with the specified ID.

Ctx.Token.isTokenType(token_id: string)

Parameters:

• token_id: string – The ID of the token to check.

Returns:

• On success, a promise with true if a token asset exists with the specified ID. On
error, a rejection with an error message.

Return Value Example:

true

Chapter 7
Tokenization Support Using Blockchain App Builder

7-232

save
This method creates a token and saves its properties in the state database.

Ctx.Token.save(token: <Instance of Token Class>,extraMetadata?:any)

Parameters:

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, a promise message with token details. On error, a rejection with an error
message.

Return Value Example:

{
 "assetType":"otoken",
 "token_id":"digiCurr101",
 "token_name":"digicur",
 "token_type":"fungible",
 "behaviors":[
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":1000
 },
 "divisible":{
 "decimal":2
 },
 "currency_name":"DOLLAR",
 "token_to_currency_ratio":1
}

update
This method updates token properties. After a token asset is created, you update only the
token_desc value and its custom properties.

Ctx.Token.update(token: <Instance of Token Class>)

Parameters:

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-233

• On success, a promise message with token details. On error, a rejection with an
error message.

Return Value Example:

{
 "assetType":"otoken",
 "token_id":"digiCurr101",
 "token_name":"digicur",
 "token_desc":"Digital Currency equiv of dollar",
 "token_type":"fungible",
 "behaviors":[
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":1000
 },
 "divisible":{
 "decimal":2
 },
 "currency_name":"DOLLAR",
 "token_to_currency_ratio":1
}

getByRange
This method calls the fabric getStateByRange method internally. Even though any
asset with the given ID is returned from the ledger, this method casts the asset into
the caller Asset type.

<Token ClassCtx.Token.getByRange(start_token_id: string, end_token_id:
string, token_class_reference?: <Instance of Token Class>)

Parameters:

• startId: string – The starting key of the range. This key is included in the
range.

• endId: string – The end key of the range. This key is excluded from the range.

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, a promise with an array of <Token Class>. On error, a rejection with
an error message.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-234

Example:

@validator(yup.string(), yup.string())
public async getDigiCurrGetByRange(start_token_id: string, end_token_id:
string) {
 return await this.Ctx.Token.getByRange(start_token_id, end_token_id,
DigiCurr);
}

Return Value Example:

[
 {
 "assetType": "otoken",
 "token_id": "token1",
 "token_name": "digicur",
 "token_desc": "Token 1",
 "token_type": "fungible",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "holdable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner",
 "notary_role_name": "notary"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "divisible": {
 "decimal": 0
 },
 "token_to_currency_ratio": 1.5,
 "currency_representation": "USD"
 },
 {
 "assetType": "otoken",
 "token_id": "token2",
 "token_name": "digicur",
 "token_desc": "Token2",
 "token_type": "fungible",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "holdable",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-235

 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner",
 "notary_role_name": "notary"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "divisible": {
 "decimal": 0
 },
 "token_to_currency_ratio": 1,
 "currency_representation": "EURO"
 }
]

history
This method returns history for the specified token.

Ctx.Token.history(tokenId)

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a promise with an array of the account history details for the
specified token. On error, a rejection with an error message.

Return Value Example:

[
 {
 "trxId":
"0d75f09446a60088afb948c6aca046e261fddcd43df416076201cdc5565f1a35",
 "timeStamp": "2023-09-01T16:48:41.000Z",
 "value": {
 "assetType": "otoken",
 "token_id": "token",
 "token_name": "fiatmoneytok",
 "token_desc": "updatedDesc",
 "token_standard": "ttf+",
 "token_type": "fungible",
 "token_unit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-236

],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 },
 {
 "trxId":
"3666344878b043b65d5b821cc79c042ba52aec467618800df5cf14eac69f72fa",
 "timeStamp": "2023-08-31T20:24:55.000Z",
 "value": {
 "assetType": "otoken",
 "token_id": "token",
 "token_name": "fiatmoneytok",
 "token_standard": "ttf+",
 "token_type": "fungible",
 "token_unit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 }
]

Methods for Account Management

getCallerAccountId
This method returns the account ID of the caller.

Ctx.Account.getCallerAccountId(token_id: string)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-237

• tokenId: string – The ID of the token.

Returns:

• On success, a promise with the caller account ID. On error, a rejection with an
error message.

Return Value Example:

oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f

generateAccountId
This method returns an account ID, which is an alphanumeric set of characters,
prefixed with oaccount~<token asset name>~ and followed by a hash of the user
name or email ID (user_id) of the instance owner or the user who is logged in to the
instance, the membership service provider ID (org_id) of the user in the current
network organization and the unique token ID (token_id).

Ctx.Account.generateAccountId(token_id: string, org_id: string,
user_id: string)

Parameters:

• tokenId: string – The ID of the token.

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a promise with the generated account ID. On error, a rejection with
an error message.

Return Value Example:

oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f

createAccount
This method creates an account for a specified user and token. Every user who has
tokens at any point must have an account. Accounts track a user's balance, on-hold
balance, and transaction history. An account ID is an alphanumeric set of characters,
prefixed with oaccount~<token asset name>~ and followed by a hash of the user
name or email ID (user_id) of the instance owner or the user who is logged in to the
instance, the membership service provider ID (org_id) of the user in the current

Chapter 7
Tokenization Support Using Blockchain App Builder

7-238

network organization. This method can be called only by the Token Admin of the chaincode
or by an Org Admin of the specified organization.

this.Ctx.Account.createAccount(org_id: string, user_id: string, token_type:
string)

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

• token_type: string – The type of the token, which must be fungible.

Returns:

• On success, the new account object in JSON format.

Return Value Example:

{
 "assetType": "oaccount",
 "bapAccountVersion": 0,
 "account_id":
"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf48eb",
 "user_id": "admin",
 "org_id": "Org1MSP",
 "token_type": "fungible",
 "token_id": "",
 "token_name": "",
 "balance": 0,
 "onhold_balance": 0
}

associateTokenToAccount
This method associates a fungible token with an account. This method can be called only by
a Token Admin of the chaincode or by an Org Admin of the relevant organization.

async associateTokenToAccount(account_id: string, token_id: string)

Parameters:

• account_id: string – The ID of the account.

• token_id: string – The ID of the token.

Returns:

• On success, a JSON object of the updated account.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-239

Return Value Example:

{
 "assetType": "oaccount",
 "bapAccountVersion": 0,
 "account_id":
"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf4
8eb",
 "user_id": "admin",
 "org_id": "Org1MSP",
 "token_type": "fungible",
 "token_id": "fungible",
 "token_name": "fiatmoneytok",
 "balance": 0,
 "onhold_balance": 0
}

getAccountWithStatus
This method returns account details for a specified account, including account status.

Ctx.Account.getAccountWithStatus(account_id: string)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, a promise with the account details. On error, a rejection with an error
message.

Return Value Example:

{
 "bapAccountVersion": 0,
 "assetType": "oaccount",
 "status": "active",
 "account_id":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "user_id": "idcqa",
 "org_id": "appdev",
 "token_type": "fungible",
 "token_id": "t1",
 "token_name": "obptok",
 "balance": 0,
 "onhold_balance": 0
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-240

getAccount
This method returns account details for a specified account.

Ctx.Account.getAccount(account_id: string)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, a promise with the account details. On error, a rejection with an error
message.

Return Value Example:

{
 "assetType":"oaccount",
 "bapAccountVersion": 0,

"account_id":"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d
546d64f368642f622f",
 "user_id":"user1",
 "org_id":"Org1MSP",
 "token_id":"digiCurr101",
 "token_name":"digicur",
 "balance":0,
 "onhold_balance":0
}

history
This method returns an array of the account history details for a specified account.

Ctx.Account.history(account_id: string)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, a promise with the array of account history details. On error, a rejection with
an error message. The return value is the same as the getAccountHistory method.

Return Value Example:

[
 {

"trxId":"2gsdh17fff222467e5667be042e33ce18e804b3e065cca15de306f837e416d7c3e",
 "timeStamp":1629718288,
 "value":{
 "assetType":"oaccount",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-241

"account_id":"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62c
ba5c3d546d64f368642f622f",
 "user_id":"user1",
 "org_id":"Org1MSP",
 "token_id":"digiCurr101",
 "token_name":"digicur",
 "balance":100,
 "onhold_balance":0,
 "bapAccountVersion": 1
 },
 {

"trxId":"9fd07fff222467e5667be042e33ce18e804b3e065cca15de306f837e416d7c
3e",
 "timeStamp":1629718288,
 "value":{
 "assetType":"oaccount",

"account_id":"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62c
ba5c3d546d64f368642f622f",
 "user_id":"user1",
 "org_id":"Org1MSP",
 "token_id":"digiCurr101",
 "token_name":"digicur",
 "balance":0,
 "onhold_balance":0,
 "bapAccountVersion": 0
 }
 }
]

getAccountOnHoldBalance
This method returns the on-hold balance for a specified account.

Ctx.Account.getAccountOnHoldBalance(account_id: string)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, a promise with a JSON object that shows the on-hold balance for the
specified account. On error, a rejection with an error message.

Return Value Example:

{
 "holding_balance":0,
 "msg":"Total Holding Balance of Account Id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3

Chapter 7
Tokenization Support Using Blockchain App Builder

7-242

68642f622f (org_id: Org1MSP, user_id: user1) is 0"
}

getAllAccounts
This method returns a list of all accounts. This method uses Berkeley DB SQL rich queries
and can only be called when connected to the remote Oracle Blockchain Platform network.

Ctx.Account.getAllAccounts()

Parameters:

• none

Returns:

• On success, a promise with a JSON object that lists all accounts. On error, a rejection
with an error message.

Return Value Example:

[
 {
 "key":
"oaccount~digicur~2e2ef3375ae347cbd7b4d3d7be5cece803f9c36a184aaf2b8d332c5d2dc
ead52",
 "valueJson": {
 "assetType": "oaccount",
 "account_id":
"oaccount~digicur~2e2ef3375ae347cbd7b4d3d7be5cece803f9c36a184aaf2b8d332c5d2dc
ead52",
 "user_id": "admin",
 "org_id": "Org1MSP",
 "token_id": "digiCurr101",
 "token_name": "digicur",
 "bapAccountVersion": 0,
 "balance": 0,
 "onhold_balance": 0
 }
 },
 {
 "key":
"oaccount~digicur~30080c7e5ba94035af57fbbccbbb495e92515e4b2b3dbcd476eb1c0343e
4da65",
 "valueJson": {
 "assetType": "oaccount",
 "account_id":
"oaccount~digicur~30080c7e5ba94035af57fbbccbbb495e92515e4b2b3dbcd476eb1c0343e
4da65",
 "bapAccountVersion": 0,
 "user_id": "user1",
 "org_id": "Org1MSP",
 "token_id": "digiCurr101",
 "token_name": "digicur",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-243

 "balance": 0,
 "onhold_balance": 0
 }
 },
 {
 "key":
"oaccount~digicur~cbde438258cb01a82f71a9a9f8029243c40c6d836a50543212052
9c2b3c2ff0c",
 "valueJson": {
 "assetType": "oaccount",
 "account_id":
"oaccount~digicur~cbde438258cb01a82f71a9a9f8029243c40c6d836a50543212052
9c2b3c2ff0c",
 "bapAccountVersion": 0,
 "user_id": "user2",
 "org_id": "Org1MSP",
 "token_id": "digiCurr101",
 "token_name": "digicur",
 "balance": 0,
 "onhold_balance": 0
 }
 },
 {
 "key":
"oaccount~digicur~ecbc3aefcc562d3049c988717940195b30297e95012b7824bbd33
a57ca50a626",
 "valueJson": {
 "assetType": "oaccount",
 "account_id":
"oaccount~digicur~ecbc3aefcc562d3049c988717940195b30297e95012b7824bbd33
a57ca50a626",
 "bapAccountVersion": 0,
 "user_id": "user3",
 "org_id": "Org1MSP",
 "token_id": "digiCurr101",
 "token_name": "digicur",
 "balance": 500,
 "onhold_balance": 0
 }
 }
]

getUserByAccountId
This method returns the user details for a specified account.

Ctx.Account.getUserByAccountId(account_id: string)

Parameters:

• account_id: string – The ID of the account.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-244

• On success, a promise with a JSON object that includes three properties:

– user_id – The user name or email ID of the user.

– org_id – The membership service provider (MSP) ID of the user in the current
network organization.

– token_id – The ID of the token.

• On error, a rejection with an error message.

Return Value Example:

{
 "token_id": "digiCurr101",
 "user_id": "user1",
 "org_id": "Org1MSP"
}

getAccountBalance
This method returns the account balance for a specified account.

Ctx.Account.getAccountBalance(account_id: string)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, a promise message with a JSON object that includes two properties:

– msg – A message showing the current balance.

– user_balance – The numeric value of the current balance.

• On error, a rejection with an error message.

Return Value Example:

{
 "msg": "Current Balance is: 200",
 "user_balance": 200
}

getAllOrgAccounts
This method returns a list of all token accounts that belong to a specified organization.

Ctx.Account.getAllOrgAccounts(org_id: string)

Parameters:

• org_id: string – The membership service provider (MSP) ID of the organization.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-245

• On success, a list of all accounts for the specified organization.

Return Value Example:

[
 {
 "key":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "valueJson": {
 "bapAccountVersion": 0,
 "assetType": "oaccount",
 "account_id":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "user_id": "idcqa",
 "org_id": "appdev",
 "token_type": "fungible",
 "token_id": "token",
 "token_name": "fiatmoneytok",
 "balance": 0,
 "onhold_balance": 0
 }
 },
 {
 "key":
"oaccount~620fcf5deb5fd5a65c0b5b10fda129de0f629ccd232c5891c130e24a574df
50a",
 "valueJson": {
 "bapAccountVersion": 0,
 "assetType": "oaccount",
 "account_id":
"oaccount~620fcf5deb5fd5a65c0b5b10fda129de0f629ccd232c5891c130e24a574df
50a",
 "user_id": "example_minter",
 "org_id": "appdev",
 "token_type": "fungible",
 "token_id": "token",
 "token_name": "fiatmoneytok",
 "balance": 0,
 "onhold_balance": 0
 }
 }
]

Methods for Role Management

addRoleMember
This method adds a role to a specified user and token.

Ctx.Token.addRoleMember(role: string, account_id: string, token:
<Instance of Token Class>)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-246

Parameters:

• role: string – The name of the role to add to the specified user. The mintable and
burnable behaviors correspond to the minter_role_name and burner_role_name
properties of the specification file. Similarly, the notary role corresponds to the
notary_role_name property of the specification file.

• account_id: number – The account ID to add the role to.

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, a promise with a success message. On error, a rejection with an error
message.

Return Value Example:

{
 "msg":"Successfully added role minter to
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642f
622f (org_id : Org1MSP, user_id : user1)"
}

removeRoleMember
This method removes a role from a specified user and token.

Ctx.Token.removeRoleMember(role: string, account_id: string, token:
<Instance of Token Class>)

Parameters:

• role: string – The name of the role to remove from to the specified user. The
mintable and burnable behaviors correspond to the minter_role_name and
burner_role_name properties of the specification file. Similarly, the notary role
corresponds to the notary_role_name property of the specification file.

• account_id: number – The account ID to remove the role from.

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, a promise with a success message. On error, a rejection with an error
message.

Return Value Example:

{
 "msg":"successfully removed member_id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642f
622f (org_id : Org1MSP, user_id : user1) from role minter"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-247

getAccountsByRole
This method returns a list of all accounts for a specified role and token.

Ctx.Role.getAccountsByRole(token_id: string, role: string)

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to search for.

Returns:

• On success, a promise with a JSON object that lists all accounts for the specified
role and token. On error, a rejection with an error message.

Return Value Example:

{
 "accounts": [

"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d8
5f0376152df",

"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f"
]
}

getAccountsByUser
This method returns a list of all account IDs for a specified user.

async getAccountsByUser(org_id: string, user_id: string)

Parameters:

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a JSON array of account IDs.

Return Value Example:

{"accounts":
["oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64
f368642f622f"]}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-248

getUsersByRole
This method returns a list of all users for a specified role and token.

Ctx.Role.getUsersByRole(token_id: string, role: string)

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to search for.

Returns:

• On success, a promise with a JSON object that lists all users for the specified role and
token. On error, a rejection with an error message.

Return Value Example:

{
 "users":[
 {
 "token_id":"digiCurr101",
 "user_id":"user1",
 "org_id":"Org1MSP"
 }
]
}

isInRole
This method indicates whether a user and token has a specified role.

Ctx.Token.isInRole(role: string, account_id: string, token: <Instance of
Token Class>)

Parameters:

• role: string – The name of the role to check.

• account_id: number – The account ID to check.

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, a promise with true if the user has the role, and false if the user does
not have the role. On error, a rejection with an error message.

Return Value Example:

{"result":"true"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-249

roleCheck
This method checks if the provided account ID is a member of any role.

Ctx.Token.roleCheck(account_id: string, token: <Instance of Token
Class>)

Parameters:

• account_id: string – The account ID to check.

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• If the account ID is part of any role, it returns true. Otherwise, it returns false.

Return Value Example:

{ result: true }

getOrgUsersByRole
This method returns information about all users that have a specified role in a
specified organization.

Ctx.Role.getOrgUsersByRole(token_id: string, role: string, org_id:
string)

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to check for.

• org_id: string – The membership service provider (MSP) ID of the
organization.

Returns:

• On success, a list of all users with the specified role in the specified organization.

Return Value Example:

{
 "users": [
 {
 "token_id": "token",
 "user_id": "admin",
 "org_id": "Org1MSP"
 },
 {
 "token_id": "token",
 "user_id": "orgAdmin",
 "org_id": "Org1MSP"
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-250

]
}

getOrgAccountsByRole
This method returns information about all accounts that have a specified role in a specified
organization.

Ctx.Role.getOrgAccountsByRole(token_id: string, role: string, org_id: string)

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to check for.

• org_id: string – The membership service provider (MSP) ID of the organization.

Returns:

• On success, a list of all accounts with the specified role in the specified organization.

Return Value Example:

{
 "accounts": [

"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf48eb",

"oaccount~9c650574af9025a6106c8d12a801b079eda9ae2e3399fc2fbd5bd683d738a850"
]
}

Methods for Transaction History Management

getTransactionById
This method returns the history of a Transaction asset.

async getTransactionById(transaction_id: string)

Parameters:

• transaction_id: string – The ID of the transaction asset.

Returns:

• On success, the transaction asset history.

Return Value Example:

{
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc77
5",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-251

 "history": [
 {
 "trxId":
"68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc775",
 "timeStamp": 1629180264,
 "value": {
 "assetType": "otransaction",
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8
e0fc775",
 "token_id": "digiCurr101",
 "from_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d8
5f0376152df",
 "to_account_id": "",
 "transaction_type": "BULKTRANSFER",
 "amount": 20,
 "timestamp": "2021-08-17T06:04:24.000Z",
 "number_of_sub_transactions": 2,
 "holding_id": ""
 }
 }
],
 "sub_transactions": [
 {
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8
e0fc775~c4ca4238a0b923820dcc509a6f75849b",
 "history": [
 {
 "trxId":
"68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc775",
 "timeStamp": 1629180264,
 "value": {
 "assetType": "otransaction",
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8
e0fc775~c4ca4238a0b923820dcc509a6f75849b",
 "token_id": "digiCurr101",
 "from_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d8
5f0376152df",
 "to_account_id":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "transaction_type": "TRANSFER",
 "amount": 10,
 "timestamp": "2021-08-17T06:04:24.000Z",
 "number_of_sub_transactions": 0,
 "holding_id": ""
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-252

 },
 {
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc77
5~c81e728d9d4c2f636f067f89cc14862c",
 "history": [
 {
 "trxId":
"68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc775",
 "timeStamp": 1629180264,
 "value": {
 "assetType": "otransaction",
 "transaction_id":
"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965e63a9bbf1d8e0fc77
5~c81e728d9d4c2f636f067f89cc14862c",
 "token_id": "digiCurr101",
 "from_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f0376
152df",
 "to_account_id":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471aaa1210
c706e",
 "transaction_type": "TRANSFER",
 "amount": 10,
 "timestamp": "2021-08-17T06:04:24.000Z",
 "number_of_sub_transactions": 0,
 "holding_id": ""
 }
 }
]
 }
]
}

deleteHistoricalTransactions
This method returns an array of the transaction history details for a specified account.

async deleteHistoricalTransactions(time_to_expiration: Date)

Parameters:

• time_to_expiration: Date – A time stamp that indicates when to delete transactions.
Transaction assets that are older than the specified time will be deleted..

Returns:

• The return value is the same as the getAccountTransactionHistory method.

• On success, a promise with the array of account transaction objects:

– transaction_id – The ID of the transaction.

– transacted_account – The account with which the transaction took place.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-253

– transaction_type – The type of transaction.

– transacted_amount – The amount of the transaction.

– timestamp – The time of the transaction.

– balance – The account balance at the time of the transaction.

– onhold_balance – The on-hold balance at the time of the transaction.

– sub_transactions – For bulk transfers only, a list of transactions that are part
of a bulk transfer.

– holding_id – A unique identifier returned by the holdTokens method.

– token_id – The ID of the token.

• On error, a rejection with an error message.

Return Value Example:

"payload": {
 "msg": "Successfuly deleted transaction older than date:
Thu Aug 19 2021 11:19:36 GMT+0000 (Coordinated Universal Time).",
 "transactions": [

"otransaction~ec3366dd48b4ce2838f820f2f138648e6e55a07226713e59b411ff31b
0d21058"
]
 }

getAccountTransactionHistory
This method returns an array of the transaction history details for a specified account.

Ctx.Account.getAccountTransactionHistory(account_id: string)

Parameters:

• account_id: string – The ID of the account.

Returns:

• The return value is the same as the getAccountTransactionHistory method.

• On success, a promise with the array of account transaction objects:

– transaction_id – The ID of the transaction.

– transacted_account – The account with which the transaction took place.

– transaction_type – The type of transaction.

– transacted_amount – The amount of the transaction.

– timestamp – The time of the transaction.

– balance – The account balance at the time of the transaction.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-254

– onhold_balance – The on-hold balance at the time of the transaction.

– sub_transactions – For bulk transfers only, a list of transactions that are part of a
bulk transfer.

– holding_id – A unique identifier returned by the holdTokens method.

– token_id – The ID of the token.

• On error, a rejection with an error message.

Return Value Example:

[
 {

"transaction_id":"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965
e63a9bbf1d8e0fc775",
 "transacted_amount":20,
 "timestamp":"2021-08-17T06:04:24.000Z",
 "balance":60,
 "onhold_balance":0,
 "token_id":"digiCurr101",
 "transaction_type":"BULKTRANSFER",
 "sub_transactions":[
 {

"transacted_account":"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca
51010737900c1d85f0376152df",
 "transaction_type":"CREDIT",

"transaction_id":"otransaction~68f46c90d0d8d6b93d827e6b9e0152b4845e6e42a61965
e63a9bbf1d8e0fc775~c4ca4238a0b923820dcc509a6f75849b",
 "transacted_amount":10
 }
]
 },
 {

"transaction_id":"otransaction~757864d5369bd0539d044caeb3bb4898db310fd7aa740f
45a9938771903d43da",
 "transacted_amount":50,
 "timestamp":"2021-08-17T06:02:44.000Z",
 "balance":50,
 "onhold_balance":0,
 "token_id":"digiCurr101",

"transacted_account":"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca
51010737900c1d85f0376152df",
 "transaction_type":"CREDIT"
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-255

getAccountTransactionHistoryWithFilters
This method returns an array of the transaction history details for a specified account.
This method can only be called when connected to the remote Oracle Blockchain
Platform network.

await
this.Ctx.Account.getAccountTransactionHistoryWithFilters(account_id:
string, filters?: Filters)

Parameters:

• account_id: string – The ID of the account.

• filters: string – An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0,
the default page size is 20. The Bookmark property determines the starting index
of the records to return. For more information, see the Hyperledger Fabric
documentation. The StartTime and EndTime properties must be specified in
RFC-3339 format.

Example:
ochain invoke getAccountTransactionHistoryWithFilters 'token1'
'appbuilder12' 'user_minter'
'{"PageSize":10,"Bookmark":"1","StartTime":"2022-01-25T17:41:42Z","EndTim
e":"2022-01-25T17:59:10Z"}'

[
 {
 "transaction_id":
"otransaction~672897b5a4fa78b421c000e4d6d4f71f3d46529bfbb5b4be10bf5471d
c35ce89",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:46:04.000Z",
 "token_id": "token1",
 "transacted_account":
"oaccount~16c38d804413ebabf416360d374f76c973d4e71c74adfde73cc40c7c27488
3b8",
 "transaction_type": "DEBIT",
 "balance": 90,
 "onhold_balance": 0
 },
 {
 "transaction_id":
"otransaction~467bb67a33aaffca4487f33dcd46c9844efdb5421a2e7b6aa2d53152e
b2c6d85",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:45:47.000Z",
 "token_id": "token1",
 "transacted_account":
"oaccount~fbf95683b21bbc91a22205819ac1e2e9c90355d536821ed3fe22b7d23915c
248",
 "transaction_type": "DEBIT",
 "balance": 95,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-256

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

 "onhold_balance": 0
 },
 {
 "transaction_id":
"otransaction~c6d56ce54a9bbe24597d1d10448e39316dc6f16328bf3c5b0c8ef10e1dfeb39
7",
 "transacted_amount": 100,
 "timestamp": "2022-04-20T15:44:26.000Z",
 "token_id": "token1",
 "transacted_account":
"oaccount~deb5fb0906c40506f6c2d00c573b774e01a53dd91499e651d92ac4778b6add6a",
 "transaction_type": "MINT",
 "balance": 100,
 "onhold_balance": 0
 }
]

getSubTransactionHistory
This method returns an array of the transaction history details for a specified transaction.

await this.Ctx.Account.getSubTransactionHistory(transaction_id)

Parameters:

• transaction_id: string – The ID of the bulk transfer transaction.

Example:
ochain invoke GetAccountSubTransactionHistory
'otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6f864b9b'

[
 {
 "transacted_account":
"oaccount~16c38d804413ebabf416360d374f76c973d4e71c74adfde73cc40c7c274883b8",
 "transaction_type": "DEBIT",
 "transaction_id":
"otransaction~6e0f8fe4a6430322170b9c619b04b6c9f1c8d257923f611b866bdf69d7fe6cb
8~c81e728d9d4c2f636f067f89cc14862c",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:52:21.000Z",
 "token_id": "token1",
 "balance": 80,
 "onhold_balance": 0
 },
 {
 "transacted_account":
"oaccount~fbf95683b21bbc91a22205819ac1e2e9c90355d536821ed3fe22b7d23915c248",
 "transaction_type": "DEBIT",
 "transaction_id":
"otransaction~6e0f8fe4a6430322170b9c619b04b6c9f1c8d257923f611b866bdf69d7fe6cb
8~c4ca4238a0b923820dcc509a6f75849b",
 "transacted_amount": 5,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-257

 "timestamp": "2022-04-20T15:52:21.000Z",
 "token_id": "token1",
 "balance": 85,
 "onhold_balance": 0
 }
]

getSubTransactionHistoryWithFilters
This method returns an array of the subtransaction history details for a specified
transaction.

await
this.Ctx.Account.getSubTransactionHistoryWithFilters(transaction_id:
string, filters?: SubTransactionFilters)

Parameters:

• transaction_id: string – The ID of the bulk transfer transaction.

• filters: string – An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0,
the default page size is 20. The Bookmark property determines the starting index
of the records to return. For more information, see the Hyperledger Fabric
documentation. The StartTime and EndTime properties must be specified in
RFC-3339 format.

Example:
ochain invoke GetAccountSubTransactionHistoryWithFilters
'otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6f8
64b9b' '{"PageSize":10,"Bookmark":"1"}'

[
 {
 "transaction_id":
"otransaction~6e0f8fe4a6430322170b9c619b04b6c9f1c8d257923f611b866bdf69d
7fe6cb8~c81e728d9d4c2f636f067f89cc14862c",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:52:21.000Z",
 "token_id": "token1",
 "transacted_account":
"oaccount~16c38d804413ebabf416360d374f76c973d4e71c74adfde73cc40c7c27488
3b8",
 "transaction_type": "DEBIT",
 "balance": 80,
 "onhold_balance": 0
 },
 {
 "transaction_id":
"otransaction~6e0f8fe4a6430322170b9c619b04b6c9f1c8d257923f611b866bdf69d
7fe6cb8~c4ca4238a0b923820dcc509a6f75849b",
 "transacted_amount": 5,
 "timestamp": "2022-04-20T15:52:21.000Z",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-258

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

 "token_id": "token1",
 "transacted_account":
"oaccount~fbf95683b21bbc91a22205819ac1e2e9c90355d536821ed3fe22b7d23915c248",
 "transaction_type": "DEBIT",
 "balance": 85,
 "onhold_balance": 0
 }
]

Token Behavior Management

The token lifecycle management methods are based on the the standards of the Token
Taxonomy Framework. To use the token lifecycle methods, import the Token class from
the ../lib/token module.

import { Token } from '../lib/token';

Methods for Token Behavior Management - Mintable Behavior

mint
This method mints a quantity of tokens, which are then owned by the caller of the method.
The caller must have an account and the minter role. The quantity must be within the
decimal values specified by the decimal parameter of the divisible behavior in the
specification file.

Ctx.Token.mint(quantity: number, token: <Instance of Token Class>)

Parameters:

• quantity: number – The total number of tokens to mint.

• token: <Instance of Token Class> – The token asset to mint.

Returns:

• On success, a promise with a success message and toAccount details. On error, a
rejection with an error message.

Return Value Example:

{
 "msg":"Successfully minted 1000 tokens to Account Id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f03761
52df (Org-Id: Org1MSP, User-Id: admin)"
}

getTotalMintedTokens
This method returns the total number of tokens minted.

Ctx.Token.getTotalMintedTokens(token: <Instance of Token Class>)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-259

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, the quantity of minted tokens, in the number data type. On error, it
returns with an error message.

Return Value Example:

4000

getNetTokens
This method returns the net quantity of tokens that are available in the system. The
net tokens are the amount of tokens remaining after tokens are burned. In equation
form: net tokens = total minted tokens - total burned tokens. If no tokens are burned,
then the number of net tokens is equal to the total minted tokens.

Ctx.Token.getNetTokens(token: <Instance of Token Class>)

Parameters:

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, the quantity of net tokens, in the number data type. On error, it
returns with an error message.

Return Value Example:

2000

getMaxMintQuantity
This method returns the maximum mintable quantity for a token. If the
max_mint_quantity behavior is not specified, then the default value is 0, which allows
any number of tokens to be minted.

Ctx.Token.getMaxMintQuantity(token: <Instance of Token Class>)

Parameters:

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, the maximum mintable quantity of the token, in the number data
type. On error, it returns with an error message.

Return Value Example:

20000

Methods for Token Behavior Management - Transferable Behavior

Chapter 7
Tokenization Support Using Blockchain App Builder

7-260

transfer
This method transfers tokens from the transaction caller to the to_account_id account. The
caller of this method must have an account and the quantity must be within the decimal
values specified by the decimal parameter of the divisible behavior in the specification file.

Ctx.Token.transfer(to_account_id: string, quantity: number, token: <Instance
of Token Class>)

Parameters:

• to_account_id: string – The account ID to receive the tokens.

• quantity: number – The total number of tokens to transfer.

Returns:

• On success, a promise with a success message. On error, a rejection with an error
message.

Return Value Example:

{
 "msg":"Successfully transferred 50 tokens from account id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f03761
52df (Org-Id: Org1MSP, User-Id: admin) to account id:
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642f
622f (Org-Id: Org1MSP, User-Id: user1)"
}

bulkTransfer
This method is used to perform bulk transfer of tokens from the caller account to the
accounts that are specified in the flow object. The caller of this method must have an
account already created.

Ctx.Token.bulkTransfer(flow: object[], token: <Instance of Token Class>)

Parameters:

• flow: object[] – An array of JSON objects specifying the receiver details and quantity.
The transfer quantity must be within the decimal values specified by the decimal
parameter of the divisible behavior in the specification file. For example:

[{
 "to_org_id": "Org1MSP",
 "to_user_id": "user1",
 "quantity": 10
}, {
 "to_org_id": "Org1MSP",
 "to_user_id": "user2",
 "quantity": 10
}]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-261

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, a promise with a success message and account information. On
error, a rejection with an error message.

Return Value Example:

{
 "from_account_id":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "msg": "Successfully transferred 2 tokens from Account Id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (Org-Id: Org1MSP, User-Id: user1)",
 "sub_transactions": [
 {
 "amount": 1,
 "to_account_id":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471a
aa1210c706e"
 },
 {
 "amount": 1,
 "to_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d8
5f0376152df"
 }
]
}

Methods for Token Behavior Management - Holdable Behavior

hold
This method creates a hold on behalf of the owner of the tokens with the
to_account_id account. A notary account is specified, which is responsible to either
complete or release the hold. When the hold is created, the specified token balance
from the payer is put on hold. A held balance cannot be transferred until the hold is
either completed or released. The caller of this method must have an account already
created.

Ctx.Token.hold(operation_id: string, to_account_id: string,
notary_account_id: string, quantity: number, time_to_expiration: Date,
token: <Instance of Token Class>)

Parameters:

• operation_id: string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

• to_account_id: string – The ID of the account to receive the tokens.

• notary__account_id: string – The ID of the notary account.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-262

• quantity: number – The total number of tokens to put on hold.

• time_to_expiration: Date – The duration until the hold expires. Specify 0 for a
permanent hold. Otherwise use the RFC-3339 format. For example, 2021-06-02T12.

• token: <Instance of Token Class> – The token asset to hold.

Returns:

• On success, a promise with a success message. On error, a rejection with an error
message.

Return Value Example:

{
 "msg": "account id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f03761
52df (org_id : Org1MSP, user_id : user1) is successfully holding 10 tokens",
}

executeHold
This method completes a hold on tokens, transferring the specified quantity of tokens
previously on hold to the receiver. If the quantity value is less than the actual hold value,
then the remaining amount is available again to the original owner of the tokens. This
method can be called only by the AccountOwner ID with the notary role for the specified
operation ID. The hold can only be completed by the notary.

Ctx.Token.executeHold(operation_id: string, quantity: number, token:
<Instance of Token Class>)

Parameters:

• operation_id: string – A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

• quantity: number – The total number of tokens to complete a hold on.

• token: <Instance of Token Class> – The token asset to complete a hold on.

Returns:

• On success, a promise with a success message. On error, a rejection with an error
message.

Return Value Example:

{
 "msg": "user with accountId:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f03761
52df (org_id : Org1MSP, user_id : user1) has successfully executed 5
tokens(digiCurr101) from the hold with Operation Id opr_121",
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-263

releaseHold
This method releases a hold on tokens. The transfer is not completed and all held
tokens are available again to the original owner. This method can be called by the
AccountOwner ID with the notary role within the specified time limit or by the payer,
payee, or notary after the specified time limit.

Ctx.Token.releaseHold(operation_id: string, token: <Instance of Token
Class>)

Parameters:

• operation_id: string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

• token: <Instance of Token Class> – The token asset to release a hold on.

Returns:

• On success, a promise with a success message. On error, a rejection with an
error message.

Return Value Example:

{
 "msg": "Successfully released 5 tokens from Operation Id opr_121 to
Account Id:
oaccount~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f0376152
df (org_id : Org1MSP, user_id : user1)",
}

getOnHoldIds
This method returns a list of all of the holding IDs for a specified account.

Ctx.Account.getOnHoldIds(account_id: string)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, a promise with a JSON object that lists all holding IDs for the
specified account. On error, a rejection with an error message.

Return Value Example:

{
 "msg":"Holding Ids are: ohold~digicur~digiCurr101~opr_121",
 "holding_ids":[
 "ohold~digicur~digiCurr101~opr_121"
]
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-264

getOnHoldDetailsWithOperationId
This method returns the on-hold transaction details for a specified operation ID and token.

Ctx.Hold.getOnHoldDetailsWithOperationId(token_id: string, operation_id:
string)

Parameters:

• token_id: string – The ID of the token.

• operation_id: string – A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

Returns:

• On success, a hold object that includes the following properties:

– holding_id – The holding ID of the transaction.

– operation_id: string – A unique ID to identify the hold operation. Typically this ID
is passed by the client application.

– from_account_id – The account ID of the current owner of the on-hold tokens.

– to_account_id – The account ID of the receiver.

– notary_account_id – The account ID of the notary.

– token_id: string – The ID of the saved token.

– quantity – The amount of tokens that are on hold for the holding ID.

– time_to_expiration – The duration until the hold expires.

• On error, a rejection with an error message.

Return Value Example:

{
 "assetType": "ohold",
 "holding_id": "ohold~digicur~digiCurr101~opr_121",
 "operation_id": "opr_121",
 "token_name": "digicur",
 "from_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f0376
152df",
 "to_account_id":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642
f622f",
 "notary_account_id":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471aaa1210
c706e",
 "token_id": "digiCurr101",
 "quantity": 10,
 "time_to_expiration": "2022-08-01T18:30:00.000Z"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-265

getOnHoldBalanceWithOperationId
This method returns the on-hold balance for a specified operation ID and token. This
method can be invoked by anyone.

Ctx.Hold.getOnHoldBalanceWithOperationId(token_id: string,
operation_id: string)

Parameters:

• token_id: string – The ID of the token.

• operation_id: string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

Returns:

• On success, a promise object with the on-hold balance for the specified operation
ID and token. On error, a rejection with an error message

Return Value Example:

{
 "msg": "Current Holding Balance of Operation 'op1' for token
'token1' is: 10",
 "holding_balance": 10
}

Methods for Token Behavior Management - Burnable Behavior

burn
This method deactivates, or burns, tokens from the transaction caller's account. The
caller of this method must have an account and the burner role. The quantity must be
within the decimal values specified by the decimal parameter of the divisible
behavior in the specification file.

Ctx.Token.burn(quantity: number, token: <Instance of Token Class>)

Parameters:

• quantity: number – The total number of tokens to burn.

• token: <Instance of Token Class> – The token asset to burn.

Returns:

• On success, a promise with a success message. On error, a rejection with an
error message.

Return Value Example:

{
 "msg":"Successfully burned 10 tokens from account id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85

Chapter 7
Tokenization Support Using Blockchain App Builder

7-266

f0376152df (Org-Id: Org1MSP, User-Id: admin)"
}

TypeScript Methods for Token Conversion
Blockchain App Builder automatically generates methods that you can use to convert fungible
tokens that use the Token Taxonomy Framework standard.

The token conversion methods include the concept of the exchange pool. The exchange
pool account is funded by other token accounts. When you mint tokens, you can specify that
a percentage of the minted tokens are transferred to the exchange pool account.

• Token Conversion Process

• Automatically Generated Token Conversion Methods

• Token Conversion SDK Methods

Token Conversion Process

A typical flow for converting tokens follows these steps:

1. Call the initializeExchangePoolUser method to initialize the exchange pool user.

2. Call the createExchangePoolAccounts method to create exchange pool accounts. Create
an exchange pool account for every type of fungible token that you want to convert from
or convert to.

3. Call the addConversionRate method to set the conversion rate for each pair of tokens
that you want to convert between.

4. Fund the exchange pool token accounts in one of the following ways:

• Transfer tokens to the exchange pool token accounts using the standard transfer
methods.

• Call the mintWithFundingExchangePoolToken method when minting tokens, which
can transfer a percentage of minted tokens to an exchange pool account.

5. Call the tokenConversion method to convert between two fungible tokens. A single user
can convert tokens between two of their token accounts, or a pair of users can directly
convert tokens from one account to another.

6. The exchange pool user can view the exchange pool account balances and account
transactions.

• Call the getAccount method to view the balances of each of the exchange pool token
accounts.

• Call the getAccountTransactionHistory and
getAccountTransactionHistoryWithFilters methods to view account transactions
for each of the exchange pool token accounts.

Automatically Generated Token Conversion Methods

Blockchain App Builder automatically generates methods to convert between different types
of fungible tokens. Controller methods must have a @Validator(...params) decorator to be
invokable.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-267

initializeExchangePoolUser
This method initializes the exchange pool user, which is a one-time activity. This
method can be called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string())
public async initializeExchangePoolUser(org_id: string, user_id:
string){
 await
this.Ctx.Auth.checkAuthorization('TOKEN_CONVERSION.initializeExchangePo
olUser', 'TOKEN');
 return await
this.Ctx.TokenConvertor.initializeExchangePoolUser(org_id, user_id);
}

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the exchange pool user.

Return Value Example:

{
 "assetType": "oconversion",
 "convertor_id":
"bcb1f3b1442c625d3ce205660c5e717c5858a1fe1e12c325df799a851ceaa09b",
 "org_id": "Org1MSP",
 "user_id": "exchangepooluser"
}

createExchangePoolAccounts
This method creates exchange pool token accounts for a given array of token IDs.
This method can be called only by a Token Admin of the chaincode.

@Validator(yup.array().of(yup.string()))
public async createExchangePoolAccounts(token_ids: string[]){
 await
this.Ctx.Auth.checkAuthorization('TOKEN_CONVERSION.initializeExchangePo
olUser', 'TOKEN');
 return await
this.Ctx.TokenConvertor.createExchangePoolAccounts(token_ids);
}

Parameters:

• token_ids: string [] – An array of token IDs.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-268

• On success, a list of objects that includes details of the exchange pool accounts that
were created.

Return Value Example:

[
 {
 "account_id":
"oaccount~cc9d84f6d4a5976532493ef5200c9603e138adc35166ffd5fd1aad9c1647f034",
 "token_id": "USD",
 "status": "created"
 },
 {
 "account_id":
"oaccount~3d4933111ec8bd6cc1ebb43f2b2c390deb929cfa534f9c6ada8e63bac04a13c0",
 "token_id": "INR",
 "status": "created"
 }
]

addConversionRate
This method adds a conversion rate for a pair of tokens. The token conversion rate can be
specified up to eight decimal places. This method can be called only by a Token Admin of the
chaincode.

@Validator(yup.string(), yup.string(), yup.number())
public async addConversionRate(from_token_id:string , to_token_id:string,
token_conversion_rate: number) {
 await
this.Ctx.Auth.checkAuthorization('TOKEN_CONVERSION.addConversionRate',
'TOKEN');
 return await
this.Ctx.TokenConvertor.addConversionToken(from_token_id,to_token_id,token_co
nversion_rate);
}

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

• token_conversion_rate: number – The rate at which to convert from_token_id token to
the to_token_id token.

Returns:

• On success, a JSON representation of the conversion rate object.

Return Value Example:

{
 "assetType": "oconversionRate",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-269

 "conversion_rate_id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559fcbc80b94034648bf405c9491da
cf8d57873b",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "conversion_rate": 10
}

getConversionRate
This method gets the current conversion rate for a pair of tokens. This method can be
called by the Token Admin of the chaincode, any Org Admin, and by any token
account owner.

@Validator(yup.string(), yup.string())
public async getConversionRate(from_token_id:string ,
to_token_id:string) {
 await
this.Ctx.Auth.checkAuthorization('TOKEN_CONVERSION.getConversionRate',
'TOKEN');
 const conversion_rate_id = await
this.Ctx.TokenConversionRate.getConversionRateId(from_token_id,
to_token_id);
 return await this.Ctx.TokenConversionRate.get(conversion_rate_id);
}

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

Returns:

• On success, a JSON representation of the conversion rate object.

Return Value Example:

{
 "assetType": "oconversionRate",
 "conversion_rate_id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559fcbc80b94034648bf405c9491da
cf8d57873b",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "conversion_rate": 10
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-270

updateConversionRate
This method updates the current conversion rate for a pair of tokens. The token conversion
rate can be specified up to eight decimal places. This method can be called only by a Token
Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.number())
public async updateConversionRate(from_token_id:string , to_token_id:string,
token_conversion_rate: number) {
 await
this.Ctx.Auth.checkAuthorization('TOKEN_CONVERSION.updateConversionRate',
'TOKEN');
 return await
this.Ctx.TokenConvertor.updateTokenConversionRate(from_token_id,to_token_id,t
oken_conversion_rate);
}

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

• token_conversion_rate: number – The rate at which to convert from_token_id token to
the to_token_id token.

Returns:

• On success, a JSON representation of the updated conversion rate object.

Return Value Example:

{
 "assetType": "oconversionRate",
 "conversion_rate_id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559fcbc80b94034648bf405c9491dacf8d57
873b",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "conversion_rate": 20
}

mintWithFundingExchangePool
This method mints tokens in the caller's account based on the specified token ID and
quantity. A percentage of tokens from the minted quantity is then transferred to the exchange
pool token account.

@Validator(yup.string(), yup.number(), yup.number())
public async mintWithFundingExchangePool(token_id: string, token_quantity:
number, percentage_token_to_exchange_pool: number) {
 return await
this.Ctx.TokenConvertor.mintWithFundingExchangePool(token_id,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-271

token_quantity, percentage_token_to_exchange_pool);
}

Parameters:

• token_id: string – The ID of the token to mint.

• token_quantity: number – The total number of tokens to mint.

• percentage_token_to_exchange_pool: number – The percentage of minted
tokens to transfer to the exchange pool token account.

Returns:

• On success, a message that indicates that minting and funding the exchange pool
were successful.

Return Value Example:

{
 "msg": "Successfully minted 100 tokens to Account Id:
oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf48
eb (Org-Id: Org1MSP, User-Id: admin) and Successfully transfered 20
tokens to exchange pool Account with Account Id:
oaccount~cc9d84f6d4a5976532493ef5200c9603e138adc35166ffd5fd1aad9c1647f0
34 (Org-Id: Org1MSP, User-Id: exchangepooluser) "
}

tokenConversion
This method converts tokens from the caller's account to the account specified by the
to_token_id, to_org_id and to_user_id values. This method can be called by the
Token Admin of the chaincode and by any token account owner. An exchange pool
user cannot call this method.

@Validator(yup.string(),yup.string(),yup.string(),yup.string(),yup.numb
er())
public async tokenConversion(from_token_id:string, to_token_id:string,
to_org_id:string, to_user_id:string, token_quantity:number){
 await
this.Ctx.Auth.checkAuthorization('TOKEN_CONVERSION.tokenConversion',
'TOKEN');
 return await
this.Ctx.TokenConvertor.tokenConversion(from_token_id,to_token_id,to_or
g_id,to_user_id,token_quantity);
}

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

• to_org_id: string – The membership service provider (MSP) ID of the user in
the current organization to receive the tokens.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-272

• to_user_id: string – The user name or email ID of the user to receive the tokens.

• token_quantity: number – The total number of tokens to transfer.

Returns:

• On success, a message that indicates the token conversion was successful.

Return Value Example:

{
 "msg": "Succesfully converted 5 of tokens with tokenId: [USD] from
AccountId:
oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf48eb
(Org-Id: Org1MSP, User-Id: admin) to 100 of tokens with tokenId: [INR] to
AccountId:
oaccount~25e2e66718b6dbb59aea9c32acebec60e09d912b2578d4933d377ae5d0628f1e
(Org-Id: Org1MSP, User-Id: user) as per the conversion rate of 20"
}

getConversionHistory
This method returns the token conversion history for a specified token account. This method
can be called by the Token Admin of the chaincode, an Org Admin of the specified
organization, or by the token account owner.

@Validator(yup.string(), yup.string(), yup.string())
 public async getConversionHistory(token_id: string, org_id: string,
user_id: string) {
 const account_id = await this.Ctx.Account.generateAccountId(token_id,
org_id, user_id);
 await this.Ctx.Auth.checkAuthorization("ACCOUNT.getConversionHistory",
"TOKEN", { account_id });
 return await this.Ctx.Account.getTokenConversionHistory(account_id,
org_id, user_id);
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON object with conversion history details.

Return Value Example:

[
 {
 "transaction_id":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-273

"otransaction~34edd19e03ec8bbbc77bc3372081410a824a5c10f9aa522b3a6390d7e
8cb11cf",
 "from_account_id":
"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf4
8eb",
 "to_account_id":
"oaccount~25e2e66718b6dbb59aea9c32acebec60e09d912b2578d4933d377ae5d0628
f1e",
 "transacted_amount": 5,
 "converted_amount": 100,
 "conversion_rate": "20",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "balance": 75,
 "onhold_balance": 0,
 "timestamp": "2022-11-30T11:03:20.000Z",
 "transaction_type": "TOKEN_CONVERSION_DEBIT"
 }
]

getConversionRateHistory
This method returns the token conversion rate history for a pair of tokens. This
method can be called by the Token Admin of the chaincode, any Org Admin, and by
any token account owner.

@Validator(yup.string(), yup.string())
public async getConversionRateHistory(from_token_id:string ,
to_token_id:string) {
 const conversion_rate_id = await
this.Ctx.TokenConversionRate.getConversionRateId(from_token_id,to_token
_id);
 await
this.Ctx.Auth.checkAuthorization('TOKEN_CONVERSION.getConversionRateHis
tory', 'TOKEN');
 return await
this.Ctx.TokenConversionRate.history(conversion_rate_id);
}

Parameters:

• from_token_id: string – The ID of the token to convert from, for the purpose of
calculating the conversion rate.

• to_token_id: string – The ID of the token to convert to, for the purpose of
calculating the conversion rate.

Returns:

• On success, a JSON object with conversion rate history details.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-274

Return Value Example:

 [
 {
 "trxId":
"0b1ba7bc2620e1438b6580365e5c0ab852247ccfa5a3eb2157d3baca02c0e521",
 "timeStamp": "2022-11-30T10:23:38.000Z",
 "value": {
 "assetType": "oconversionRate",
 "conversion_rate_id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559fcbc80b94034648bf405c9491dacf8d57
873b",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "conversion_rate": 20
 }
 },
 {
 "trxId":
"36fc40ddb3d8308ee7e156af700da131d78d941fe390fc57985b7589e7035d5c",
 "timeStamp": "2022-11-30T10:13:18.000Z",
 "value": {
 "assetType": "oconversionRate",
 "conversion_rate_id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559fcbc80b94034648bf405c9491dacf8d57
873b",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "conversion_rate": 10
 }
 }
]

getExchangePoolUser
This method returns the org_id and user_id values for the exchange pool user. This method
can be called only by a Token Admin of the chaincode.

@Validator()
public async getExchangePoolUser() {
 await
this.Ctx.Auth.checkAuthorization('TOKEN_CONVERSION.getExchangePoolUser',
'TOKEN');
 return await this.Ctx.TokenConvertor.getExchangePoolUser();
}

Parameters:

• none

Returns:

• On success, a message with information about the exchange pool user.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-275

Return Value Example:

{
 "assetType": "oconversion",
 "convertor_id":
"bcb1f3b1442c625d3ce205660c5e717c5858a1fe1e12c325df799a851ceaa09b",
 "org_id": "Org1MSP",
 "user_id": "exchangepooluser"
}

Token Conversion SDK Methods

initializeExchangePoolUser
This method initializes the exchange pool user, which is a one-time activity. This
method can be called only by a Token Admin of the chaincode.

Ctx.TokenConvertor.initializeExchangePoolUser(orgId: string, userId:
string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the exchange pool user.

Return Value Example:

{
 "assetType": "oconversion",
 "convertor_id":
"bcb1f3b1442c625d3ce205660c5e717c5858a1fe1e12c325df799a851ceaa09b",
 "org_id": "Org1MSP",
 "user_id": "exchangepooluser"
}

createExchangePoolAccounts
This method creates exchange pool token accounts for a given array of token IDs.
This method can be called only by a Token Admin of the chaincode.

Ctx.TokenConvertor.createExchangePoolAccounts(token_ids: string[])

Parameters:

• token_ids: string [] – An array of token IDs.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-276

• On success, a list of objects that includes details of the exchange pool accounts that
were created.

Return Value Example:

[
 {
 "account_id":
"oaccount~cc9d84f6d4a5976532493ef5200c9603e138adc35166ffd5fd1aad9c1647f034",
 "token_id": "USD",
 "status": "created"
 },
 {
 "account_id":
"oaccount~3d4933111ec8bd6cc1ebb43f2b2c390deb929cfa534f9c6ada8e63bac04a13c0",
 "token_id": "INR",
 "status": "created"
 }
]

addConversionToken
This method adds tokens with a new conversion rate for a specified token. The token
conversion rate can be specified up to eight decimal places. This method can be called only
by a Token Admin of the chaincode.

Ctx.TokenConvertor.addConversionToken(fromTokenId: string, toTokenId:
string, tokenConversionRate: number)

Parameters:

• fromTokenId: string – The ID of the token to convert from.

• toTokenId: string – The ID of the token to convert to.

• tokenConversionRate: number – The rate at which to convert from_token_id token to
the to_token_id token.

Returns:

• On success, a JSON representation of the conversion rate object.

Return Value Example:

{
 "assetType": "oconversionRate",
 "conversion_rate_id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559fcbc80b94034648bf405c9491dacf8d57
873b",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "conversion_rate": 10
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-277

get
This method gets the current conversion rate for a pair of tokens. This method can be
called by the Token Admin of the chaincode and by any token account owner.

Ctx.TokenConversionRate.get(id: string)

Parameters:

• id: string – The ID of the token conversion rate object.

Returns:

• On success, a JSON representation of the conversion rate object.

Return Value Example:

{
 "assetType": "oconversionRate",
 "conversion_rate_id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559fcbc80b94034648bf405c9491da
cf8d57873b",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "conversion_rate": 10
}

updateTokenConversionRate
This method updates the current conversion rate for a pair of tokens. The token
conversion rate can be specified up to eight decimal places. This method can be
called only by a Token Admin of the chaincode.

Ctx.TokenConvertor.updateTokenConversionRate(fromTokenId: string,
toTokenId: string, tokenConversionRate: number)

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

• token_conversion_rate: number – The rate at which to convert from_token_id
token to the to_token_id token.

Returns:

• On success, a JSON representation of the updated conversion rate object.

Return Value Example:

{
 "assetType": "oconversionRate",
 "conversion_rate_id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559fcbc80b94034648bf405c9491da

Chapter 7
Tokenization Support Using Blockchain App Builder

7-278

cf8d57873b",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "conversion_rate": 20
}

mintWithFundingExchangePool
This method mints tokens in the caller's account based on the specified token ID and
quantity. A percentage of tokens from the minted quantity is then transferred to the exchange
pool token account.

Ctx.TokenConvertor.mintWithFundingExchangePool(tokenId: string,
tokenQuantity: number, percentageTokenToExchangePool: number)

Parameters:

• token_id: string – The ID of the token to mint.

• token_quantity: number – The total number of tokens to mint.

• percentage_token_to_exchange_pool: number – The percentage of minted tokens to
transfer to the exchange pool token account.

Returns:

• On success, a message that indicates that minting and funding the exchange pool were
successful.

Return Value Example:

{
 "msg": "Successfully minted 100 tokens to Account Id:
oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf48eb
(Org-Id: Org1MSP, User-Id: admin) and Successfully transfered 20 tokens to
exchange pool Account with Account Id:
oaccount~cc9d84f6d4a5976532493ef5200c9603e138adc35166ffd5fd1aad9c1647f034
(Org-Id: Org1MSP, User-Id: exchangepooluser) "
}

tokenConversion
This method converts tokens from the caller's account to the account specified by the
to_token_id, to_org_id, and to_user_id values. This method can be called by the Token
Admin of the chaincode and by any token account owner. An exchange pool user cannot call
this method.

Ctx.TokenConvertor.tokenConversion(fromTokenId: string, toTokenId: string,
toOrgId: string, toUserId: string, tokenQuantity: number)

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-279

• to_org_id: string – The membership service provider (MSP) ID of the user in
the current organization to receive the tokens.

• to_user_id: string – The user name or email ID of the user to receive the
tokens.

Returns:

• On success, a message that indicates the token conversion was successful.

Return Value Example:

{
 "msg": "Succesfully converted 5 of tokens with tokenId: [USD] from
AccountId:
oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf48
eb (Org-Id: Org1MSP, User-Id: admin) to 100 of tokens with tokenId:
[INR] to AccountId:
oaccount~25e2e66718b6dbb59aea9c32acebec60e09d912b2578d4933d377ae5d0628f
1e (Org-Id: Org1MSP, User-Id: user) as per the conversion rate of 20"
}

getTokenConversionHistory
This method returns the token conversion history for a specified token account. This
method can be called by the Token Admin of the chaincode, an Org Admin of the
specified organization, and by the token account owner.

Ctx.Account.getTokenConversionHistory(account_id: string, org_id:
string, user_id: string)

Parameters:

• account_id: string – The ID of the fungible token account.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON object with conversion history details.

Return Value Example:

[
 {
 "transaction_id":
"otransaction~34edd19e03ec8bbbc77bc3372081410a824a5c10f9aa522b3a6390d7e
8cb11cf",
 "from_account_id":
"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf4
8eb",
 "to_account_id":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-280

"oaccount~25e2e66718b6dbb59aea9c32acebec60e09d912b2578d4933d377ae5d0628f1e",
 "transacted_amount": 5,
 "converted_amount": 100,
 "conversion_rate": "20",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "balance": 75,
 "onhold_balance": 0,
 "timestamp": "2022-11-30T11:03:20.000Z",
 "transaction_type": "TOKEN_CONVERSION_DEBIT"
 }
]

history
This method returns the token conversion rate history for a pair of tokens. This method can
be called by the Token Admin of the chaincode, any Org Admin, and by any token account
owner.

Ctx.TokenConversionRate.history(conversion_rate_id: string)

Parameters:

• conversion_rate_id: string – The ID of the conversion rate object.

Returns:

• On success, a JSON object with conversion rate history details.

Return Value Example:

 [
 {
 "trxId":
"0b1ba7bc2620e1438b6580365e5c0ab852247ccfa5a3eb2157d3baca02c0e521",
 "timeStamp": "2022-11-30T10:23:38.000Z",
 "value": {
 "assetType": "oconversionRate",
 "conversion_rate_id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559fcbc80b94034648bf405c9491dacf8d57
873b",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "conversion_rate": 20
 }
 },
 {
 "trxId":
"36fc40ddb3d8308ee7e156af700da131d78d941fe390fc57985b7589e7035d5c",
 "timeStamp": "2022-11-30T10:13:18.000Z",
 "value": {
 "assetType": "oconversionRate",
 "conversion_rate_id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559fcbc80b94034648bf405c9491dacf8d57

Chapter 7
Tokenization Support Using Blockchain App Builder

7-281

873b",
 "from_token_id": "USD",
 "to_token_id": "INR",
 "conversion_rate": 10
 }
 }
]

getExchangePoolUser
This method returns the OrgId and UserId values for the exchange pool user. This
method can be called only by a Token Admin of the chaincode.

Ctx.TokenConvertor.getExchangePoolUser()

Parameters:

• none

Returns:

• On success, a message with information about the exchange pool user.

Return Value Example:

{
 "assetType": "oconversion",
 "convertor_id":
"bcb1f3b1442c625d3ce205660c5e717c5858a1fe1e12c325df799a851ceaa09b",
 "org_id": "Org1MSP",
 "user_id": "exchangepooluser"
}

TypeScript Methods for Token Account Status
Blockchain App Builder automatically generates methods that you can use to manage
account status for fungible tokens that use the Token Taxonomy Framework standard.

You can use the following methods to put token user accounts in the active,
suspended, or deleted states.

When an account is suspended, the account user cannot complete any write
operations, which include minting, burning, transferring, and holding tokens.
Additionally, other users cannot transfer tokens to or hold tokens in a suspended
account. A suspended account can still complete read operations.

An account with a non-zero token balance cannot be deleted. You must transfer or
burn all tokens in an account before you can delete the account. After an account is in
the deleted state, the account state cannot be changed back to active or suspended.

• Automatically Generated Account Status Methods

• Account Status SDK Methods

Chapter 7
Tokenization Support Using Blockchain App Builder

7-282

Automatically Generated Account Status Methods

Blockchain App Builder automatically generates methods to manage token account status.
Controller methods must have a @Validator(...params) decorator to be invokable.

getAccountStatus
This method gets the current status of the token account. This method can be called by the
Token Admin of the chaincode, an Org Admin of the specified organization, or by the token
account owner. This method also supports data migration for existing chaincode that is
upgraded to a newer version.

@Validator(yup.string(), yup.string(), yup.string())
 public async getAccountStatus(token_id: string, org_id: string, user_id:
string) {
 const account_id = await this.Ctx.Account.generateAccountId(token_id,
org_id, user_id);
 await this.Ctx.Auth.checkAuthorization("ACCOUNT_STATUS.get", "TOKEN",
{ account_id });
 try {
 return await this.Ctx.AccountStatus.getAccountStatus(account_id);
 } catch (err) {
 return await
this.Ctx.AccountStatus.getDefaultAccountStatus(account_id);
 }
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the token account status.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-283

getAccountStatusHistory
This method gets the history of the account status. This method can be called by the
Token Admin of the chaincode, an Org Admin of the specified organization, or by the
token account owner.

 @Validator(yup.string(), yup.string(), yup.string())
 public async getAccountStatusHistory(token_id: string, org_id:
string, user_id: string) {
 const account_id = await
this.Ctx.Account.generateAccountId(token_id, org_id, user_id);
 await this.Ctx.Account.getAccount(account_id);
 await this.Ctx.Auth.checkAuthorization("ACCOUNT_STATUS.history",
"TOKEN", { account_id });
 const status_id = await
this.Ctx.AccountStatus.generateAccountStatusId(account_id);
 let account_status_history: any;
 try {
 account_status_history = await
this.Ctx.AccountStatus.history(status_id);
 } catch (err) {
 return [];
 }
 return account_status_history;
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the account status history.

Return Value Example:

[
 {
 "trxId":
"d5c6d6f601257ba9b6edaf5b7660f00adc13c37d5321b8f7d3a35afab2e93e63",
 "timeStamp": "2022-12-02T10:39:14.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "suspended"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-284

 }
 },
 {
 "trxId":
"e6c850cfa084dc20ad95fb2bb8165eef3a3bd62a0ac867cccee57c2003125183",
 "timeStamp": "2022-12-02T10:37:50.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
 }
 }
]

activateAccount
This method activates a token account. This method can be called only by a Token Admin of
the chaincode or an Org Admin of the specified organization. Deleted accounts cannot be
activated.

@Validator(yup.string(), yup.string(), yup.string())
 public async activateAccount(token_id: string, org_id: string, user_id:
string) {
 await this.Ctx.Auth.checkAuthorization("ACCOUNT_STATUS.activateAccount",
"TOKEN", { org_id });
 const account_id = await this.Ctx.Account.generateAccountId(token_id,
org_id, user_id);
 return await this.Ctx.Account.activateAccount(account_id);
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9

Chapter 7
Tokenization Support Using Blockchain App Builder

7-285

6d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "active"
}

suspendAccount
This method suspends a token account. This method can be called only by a Token
Admin of the chaincode or an Org Admin of the specified organization. After an
account is suspended, you cannot complete any operations that update the account.
A deleted account cannot be suspended.

@Validator(yup.string(), yup.string(), yup.string())
 public async suspendAccount(token_id: string, org_id: string,
user_id: string) {
 await
this.Ctx.Auth.checkAuthorization("ACCOUNT_STATUS.suspendAccount",
"TOKEN", { org_id });
 const account_id = await
this.Ctx.Account.generateAccountId(token_id, org_id, user_id);
 return await this.Ctx.Account.suspendAccount(account_id);
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "suspended"
}

deleteAccount
This method deletes a token account. This method can be called only by a Token
Admin of the chaincode or an Org Admin of the specified organization. After an

Chapter 7
Tokenization Support Using Blockchain App Builder

7-286

account is deleted, you cannot complete any operations that update the account. The
deleted account is in a final state and cannot be changed to any other state. To delete an
account, the account balance and the on-hold balance must be zero.

@Validator(yup.string(), yup.string(), yup.string())
 public async deleteAccount(token_id: string, org_id: string, user_id:
string) {
 await this.Ctx.Auth.checkAuthorization("ACCOUNT_STATUS.deleteAccount",
"TOKEN", { org_id });
 const account_id = await this.Ctx.Account.generateAccountId(token_id,
org_id, user_id);
 return await this.Ctx.Account.deleteAccount(account_id);
 }

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "deleted"
}

Account Status SDK Methods

getAccountStatus
This method gets the current status of the token account.

Ctx.AccountStatus.getAccountStatus(account_id: string)

Parameters:

• account_id: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-287

Return Value Example:

{
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "active"
}

saveAccountStatus
This method saves the status object (if a status object is not present) for the token
account, and sets the status to the specified value.

Ctx.AccountStatus.saveAccountStatus(account_id: string, status:
AccountStatus)

Parameters:

• account_id: string – The ID of the token account.

• status: AccountStatus – The status to set for the specified account.

AccountStatus is an enum type which must be active, suspended, or deleted.

Returns:

• On success, a JSON representation of the account status object.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "active"
}

getAccountStatusHistory
This method gets the history of the account status.

Ctx.AccountStatus.history(status_id: string)

Parameters:

• status_id: string – The ID of the account status object.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-288

Returns:

• On success, a JSON representation of the account status history.

Return Value Example:

[
 {
 "trxId":
"d5c6d6f601257ba9b6edaf5b7660f00adc13c37d5321b8f7d3a35afab2e93e63",
 "timeStamp": "2022-12-02T10:39:14.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "suspended"
 }
 },
 {
 "trxId":
"e6c850cfa084dc20ad95fb2bb8165eef3a3bd62a0ac867cccee57c2003125183",
 "timeStamp": "2022-12-02T10:37:50.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
 }
 }
]

activateAccount
This method activates a token account.

Ctx.Account.activateAccount(account_id: string)

Parameters:

• account_id: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-289

Return Value Example:

{
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "active"
}

suspendAccount
This method suspends a token account.

Ctx.Account.suspendAccount(account_id: string)

Parameters:

• account_id: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "suspended"
}

deleteAccount
This method deletes a token account.

Ctx.Account.deleteAccount(account_id: string)

Parameters:

• account_id: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-290

Return Value Example:

{
 "assetType": "oaccountStatus",
 "status_id":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "account_id":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "deleted"
}

Scaffolded Go Project for Token Taxonomy Framework
Blockchain App Builder takes the input from your token specification file and generates a
fully-functional scaffolded chaincode project.

The project automatically generates token lifecycle classes and functions, including CRUD
and non-CRUD methods. Validation of arguments, marshalling/unmarshalling, and
transparent persistence capability are all supported automatically.

For information on the scaffolded project and methods that are not directly related to tokens,
see Scaffolded Go Chaincode Project.

Reference:

• Model

• Controller

– Automatically Generated Token Methods

– Custom Methods

• Token SDK Methods

Model

Transparent Persistence Capability, or simplified ORM, is captured in the OchainModel class.

package src
type Digicur struct {
 AssetType string `json:"AssetType"
final:"otoken"`
 Token_id string `json:"Token_id"
id:"true" mandatory:"true" validate:"regexp=^[A-Za-z0-9][A-Za-
z0-9_-]*$,max=16"`
 Token_name string `json:"Token_name"
final:"digicur"`
 Token_desc string `json:"Token_desc"
validate:"max=256"`
 Token_type string `json:"Token_type"
final:"fungible" validate:"regexp=^fungible$"`
 Behavior []string `json:"Behavior"
final:"[\"divisible\",\"mintable\",\"transferable\",\"burnable\",\"holdable\"
,\"roles\"]"`
 Roles map[string]interface{} `json:"Roles"
final:"{\"minter_role_name\":\"minter\",\"burner_role_name\":\"burner\",\"not

Chapter 7
Tokenization Support Using Blockchain App Builder

7-291

ary_role_name\":\"notary\"}"`
 Mintable map[string]interface{} `json:"Mintable"
final:"{\"Max_mint_quantity\":20000}"`
 Divisible map[string]interface{} `json:"Divisible"
final:"{\"Decimal\":1}"`
 Token_to_currency_ratio int
`json:"Token_to_currency_ratio" validate:"int"`
 Currency_representation string
`json:"Currency_representation" validate:"string"`
 Metadata interface{}
`json:"Metadata,omitempty"`
}

Controller

There is only one main controller.

type Controller struct {
 Ctx trxcontext.TrxContext
}

You can create any number of classes, functions, or files, but only those methods that
are defined within the main controller class are invokable. The other methods are
hidden.

You can use the token SDK methods to write custom methods for your business
application.

If you use more than one token SDK method in a custom method, do not use methods
that will affect the same key-value pairs in the state database.

Instead, use the BulkTransferTokens method to transfer to multiple accounts from the
caller's account, as shown in the following code snippet.

BulkTransferTokens(token_id string, flow: []map[string]interface{})

Note:

If you use more than one token SDK method in a custom method that might
affect the same key-value pairs in the state database, enable the MVCC
optimization for token chaincodes. For more information, see MVCC
Optimization.

Automatically Generated Token Methods

Blockchain App Builder automatically generates methods to support tokens and token
life cycles. You can use these methods to initialize tokens, manage roles and
accounts, and complete other token lifecycle tasks without any additional coding.
Controller methods must be public to be invokable. Public method names begin with
an upper case character. Method names that begin with a lower case character are
private.

• Access Control Management

Chapter 7
Tokenization Support Using Blockchain App Builder

7-292

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Holdable Behavior

– Burnable Behavior

Methods for Access Control Management

AddTokenAdmin
This method adds a user as a Token Admin of the chaincode. This method can be called only
by a Token Admin of the chaincode.

func (t *Controller) AddTokenAdmin(org_id string, user_id string)
(interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Admin.AddAdmin", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Admin.AddTokenAdmin(org_id, user_id)
}

Parameters:

• org_id string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was added as a Token
Admin of the chaincode.

Return Value Example:

{
 "msg": "Successfully added Token Admin (Org_Id: Org1MSP, User_Id: user1)"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-293

RemoveTokenAdmin
This method removes a user as a Token Admin of the chaincode. This method can be
called only by a Token Admin of the chaincode.

func (t *Controller) RemoveTokenAdmin(org_id string, user_id string)
(interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Admin.RemoveAdmin",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Admin.RemoveAdmin(org_id, user_id)
}

Parameters:

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was removed as a
Token Admin of the chaincode.

Return Value Example:

{"msg":"Successfuly removed Admin (Org_Id Org1MSP User_Id user1)"}

IsTokenAdmin
This method returns the Boolean value true if the caller of the function is a Token
Admin, otherwise it returns false. A Token Admin or Org Admin can call this function
on any other user in the blockchain network. Other users can call this method only on
their own accounts.

func (t *Controller) IsTokenAdmin(org_id string, user_id string)
(interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Admin.IsTokenAdmin",
"TOKEN", map[string]string{"org_id": org_id, "user_id": user_id})
 if err != nil || !auth {
 return false, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.Auth.IsUserTokenAdmin(org_id, user_id)
}

Parameters:

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-294

• user_id string – The user name or email ID of the user.

Returns:

• The method returns true if the caller is a Token Admin, otherwise it returns false.

Return Value Example:

{"result":false}

GetAllTokenAdmins
This method returns a list of all users who are a Token Admin of the chaincode. This method
can be called only by the Token Admin or Org Admin of the chaincode.

func (t *Controller) GetAllTokenAdmins() (interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Admin.GetAllAdmins", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Admin.GetAllAdmins()
}

Parameters:

• none

Returns:

• On success, a JSON list of admins that includes OrgId and UserId objects.

Return Value Example:

{"admins":[{"OrgId":"Org1MSP","UserId":"admin"},
{"OrgId":"Org1MSP","UserId":"user2"}]}

AddOrgAdmin
This method adds a user as an Org Admin of the organization. This method can be called
only by a Token Admin of the chaincode or by an Org Admin of the specified organization.

func (t *Controller) AddOrgAdmin(org_id string, user_id string)
(interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Admin.AddOrgAdmin",
"TOKEN", map[string]string{"org_id": org_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Admin.AddOrgAdmin(org_id, user_id)
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-295

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was added as an
Org Admin of the organization.

Return Value Example:

{
 "msg": "Successfully added Org Admin (Org_Id: Org1MSP, User_Id:
orgAdmin)"
}

RemoveOrgAdmin
This method removes a user as an Org Admin of an organization. This method can be
called only by a Token Admin of the chaincode or by an Org Admin of the specified
organization.

func (t *Controller) RemoveOrgAdmin(org_id string, user_id string)
(interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Admin.RemoveOrgAdmin", "TOKEN",
map[string]string{"org_id": org_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.Admin.RemoveOrgAdmin(org_id, user_id)
}

Parameters:

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was removed as an
Org Admin of the organization.

Return Value Example:

{
 "msg": "Successfully removed Org Admin (Org_Id Org1MSP User_Id
orgAdmin)"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-296

GetOrgAdmins
This method returns a list of all users who are an Org Admin of an organization. This method
can be called only by a Token Admin of the chaincode or by any Org Admin.

func (t *Controller) GetOrgAdmins() (interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Admin.GetOrgAdmins",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Admin.GetAllOrgAdmins()
}

Parameters:

• none

Returns:

• On success, a JSON list that includes OrgId and UserId objects.

Return Value Example:

{
 "admins": [
 {
 "OrgId": "Org1MSP",
 "UserId": "orgadmin"
 },
 {
 "OrgId": "Org1MSP",
 "UserId": "orgadmin1"
 },
 {
 "OrgId": "Org1MSP",
 "UserId": "orgadmin2"
 }
]
}

Methods for Token Configuration Management

Init
This method is called when the chaincode is deployed. Every Token Admin is identified by
the user_id and org_id information in the mandatory adminList parameter. The user_id is
the user name or email ID of the instance owner or the user who is logged in to the instance.
The org_id is the membership service provider (MSP) ID of the user in the current network
organization.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-297

Any Token Admin user can add and remove other Token Admin users by calling the
AddTokenAdmin and RemoveTokenAdmin methods.

func (t *Controller) Init(adminList []admin.TokenAdminAsset)
(interface{}, error) {
 list, err := t.Ctx.Admin.InitAdmin(adminList)
 if err != nil {
 return nil, fmt.Errorf("initializing admin list failed %s",
err.Error())
 }
 return list, nil
}

Parameters:

• adminList array – An array of {user_id, org_id} information that specifies the
list of token admins. The adminList array is a mandatory parameter.

Parameter example, Mac OSX and Linux CLI:

'[{"user_id":"userid", "org_id":"OrgMSPId"}]'

Parameter example, Microsoft Windows CLI:

"[{\"user_id\":\"userid\", \"org_id\":\"OrgMSPId\"}]"

Parameter example, Oracle Blockchain Platform console:

["[{\"user_id\":\"userid\", \"org_id\":\"OrgMSPId\"}]"]

Initialize<Token Name>Token
This method creates a token and initializes the token properties. The asset and its
properties are saved in the state database. This method can be invoked only by a
Token Admin of the chaincode.

func (t *Controller) InitializeDigicurToken(asset Digicur)
(interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Token.Save", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Token.Save(&asset)
}

Parameters:

• asset <Token Class> – The token asset is passed as the parameter to this
method. The properties of the token asset are described in the model file.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-298

• On success, a JSON representation of the token asset that was created.

Return Value Example:

{
 "AssetType": "otoken",
 "Token_id": "digiCurr101",
 "Token_name": "digicur",
 "Token_desc": "",
 "Token_type": "fungible",
 "Behavior": ["divisible", "mintable", "transferable", "burnable",
"roles"],
 "Roles": {
 "minter_role_name": "minter"
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Divisible": {
 "Decimal": 2
 },
 "Currency_name": "",
 "Token_to_currency_ratio": 1
}

Update<Token Name>Token
This method updates token properties. After a token asset is created, only the token_desc
property and custom properties can be updated. This method can be called only by a Token
Admin of the chaincode.

func (t *Controller) UpdateDigicurToken(asset Digicur) (interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Token.Update", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Token.Update(&asset)
}

Parameters:

• asset <Token Class> – The token asset is passed as the parameter to this method. The
properties of the token asset are described in the model file.

Returns:

• On success, an updated JSON representation of the token asset.

Return Value Example:

{
 "AssetType": "otoken",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-299

 "Token_id": "digiCurr101",
 "Token_name": "digicur",
 "Token_desc": "Digital Currency equiv of dollar",
 "Token_type": "fungible",
 "Behavior": ["divisible", "mintable", "transferable", "burnable",
"roles"],
 "Roles": {
 "minter_role_name": "minter"
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Divisible": {
 "Decimal": 2
 },
 "Currency_name": "",
 "Token_to_currency_ratio": 1
}

GetTokenDecimals
This method returns the number of decimal places that were configured for a
fractional token. If the divisible behavior was not specified for the token, then the
default value is 0. This method can be called only by a Token Admin or Org Admin of
the chaincode.

func (t *Controller) GetTokenDecimals(token_id string) (interface{},
error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Token.GetTokenDecimals", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 tokenDecimal, err := t.Ctx.Token.GetTokenDecimals(token_id)
 if err != nil {
 return nil, fmt.Errorf("Error in GetTokenDecimals %s",
err.Error())
 }
 response := make(map[string]interface{})
 response["msg"] = fmt.Sprintf("Token Id: %s has %d decimal
places.", token_id, tokenDecimal)
 return response, nil
}

Parameters:

• token_id string – The ID of the token.

Returns:

• On success, a JSON string showing the number of token decimal places.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-300

Return Value Example:

{"msg":"Token Id: digiCurr101 has 1 decimal places."}

GetTokenById
This method returns a token object if it is present in the state database. This method can be
called only by a Token Admin or Org Admin of the chaincode.

func (t *Controller) GetTokenById(token_id string) (interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Token.Get", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 tokenAsset, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 return tokenAsset.Interface(), err
}

Parameters:

• token_id string – The ID of the token.

Returns:

• On success, a JSON object that represents the token asset.

Return Value Example:

{
 "AssetType": "otoken",
 "Token_id": "digiCurr101",
 "Token_name": "digicur",
 "Token_desc": "Digital Currency equiv of dollar",
 "Token_type": "fungible",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "Roles": {
 "minter_role_name": "minter"
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Divisible": {
 "Decimal": 2

Chapter 7
Tokenization Support Using Blockchain App Builder

7-301

 },
 "Currency_name": "",
 "Token_to_currency_ratio": 1
}

GetTokenHistory
This method returns the token history for a specified token ID. Any user can call this
method.

func (t *Controller) GetTokenHistory(token_id string) (interface{},
error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Token.GetTokenHistory", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.Token.History(token_id)
}

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a JSON object that represents the token history.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2023-09-01T16:46:33Z",
 "TxId":
"12333b8a4f63aa9b3a34072efcbd7df546c6d1e7d82a7a9596e899383656d6f7",
 "Value": {
 "AssetType": "otoken",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "Currency_name1": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-302

 "minter_role_name": "minter"
 },
 "Token_desc": "updated description",
 "Token_id": "token",
 "Token_name": "fiatmoneytok",
 "Token_to_currency_ratio": 0,
 "Token_type": "fungible",
 "Token_unit": "fractional"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-09-01T16:04:25Z",
 "TxId":
"99702e2dad7554a5ee4716a0d01d3e394cbce39bea8bade265d8911f30ebad0b",
 "Value": {
 "AssetType": "otoken",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "Currency_name1": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "minter_role_name": "minter"
 },
 "Token_desc": "",
 "Token_id": "token",
 "Token_name": "fiatmoneytok",
 "Token_to_currency_ratio": 0,
 "Token_type": "fungible",
 "Token_unit": "fractional"
 }
 }
]

GetAllTokens
This method returns all tokens that are stored in the state database. This method can be
called only by a Token Admin or Org Admin of the chaincode.

func (t *Controller) GetAllTokens() (interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Token.GetAllTokens", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-303

err.Error())
 }
 return t.Ctx.Token.GetAllTokens()
}

Parameters:

• none

Returns:

• On success, a JSON object that represents all token assets.

Return Value Example:

"payload": [
 {
 "key": "t1",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "holdable",
 "burnable",
 "roles"
],
 "Currency_name": "Currency_name value",
 "Divisible": {
 "Decimal": 8
 },
 "Mintable": {
 "Max_mint_quantity": 10000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter",
 "notary_role_name": "notary"
 },
 "Token_desc": "Token_desc value",
 "Token_id": "t1",
 "Token_name": "obptok",
 "Token_to_currency_ratio": 2,
 "Token_type": "fungible",
 "Token_unit": "fractional"
 }
 }
]

GetTokensByName
This method returns all token objects with a specified name. This method can be
called only by a Token Admin or Org Admin of the chaincode. This method uses

Chapter 7
Tokenization Support Using Blockchain App Builder

7-304

Berkeley DB SQL rich queries and can only be called when connected to the remote Oracle
Blockchain Platform network.

func (t *Controller) GetTokensByName(token_name string) (interface{}, error)
{
 auth, err := t.Ctx.Auth.CheckAuthorization("Token.GetTokensByName",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Token.GetTokensByName(token_name)
}

Parameters:

• token_name string – The name of the tokens to retrieve. The name corresponds to the
Token_name property in the specification file. The value is the class name of the token.

Returns:

• On success, a JSON object of all token assets that match the name.

Return Value Example:

"payload": [
 {
 "key": "t1",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "holdable",
 "burnable",
 "roles"
],
 "Currency_name": "Currency_name value",
 "Divisible": {
 "Decimal": 8
 },
 "Mintable": {
 "Max_mint_quantity": 10000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter",
 "notary_role_name": "notary"
 },
 "Token_desc": "Token_desc value",
 "Token_id": "t1",
 "Token_name": "obptok",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-305

 "Token_to_currency_ratio": 999,
 "Token_type": "fungible",
 "Token_unit": "fractional"
 }
 },
 {
 "key": "obp2",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "holdable",
 "burnable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 8
 },
 "Mintable": {
 "Max_mint_quantity": 10000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter",
 "notary_role_name": "notary"
 },
 "Token_desc": "",
 "Token_id": "obp2",
 "Token_name": "obptok",
 "Token_to_currency_ratio": 0,
 "Token_type": "fungible",
 "Token_unit": "fractional"
 }
 }
]

Methods for Account Management

CreateAccount
This method creates an account for a specified user and token. An account must be
created for any user who will have tokens at any point. Accounts track balances, on-
hold balances, and transation history. An account ID is an alphanumeric set of
characters, prefixed with oaccount~<token asset name>~ and followed by a hash of
the user name or email ID (user_id) of the instance owner or the user who is logged
in to the instance, the membership service provider ID (org_id) of the user in the

Chapter 7
Tokenization Support Using Blockchain App Builder

7-306

current network organization. This method can be called only by a Token Admin of the
chaincode or an Org Admin of the specified organization.

unc (t *Controller) CreateAccount(org_id string, user_id string, token_type
string) (interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Account.CreateAccount",
"TOKEN", map[string]string{"org_id": org_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Account.CreateAccount(org_id, user_id, token_type)
}

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

• token_type: string – The type of the token, which must be fungible.

Returns:

• On success, a JSON object of the account that was created. The BapAccountVersion
parameter is defined in the account object for internal use.

Return Value Example:

{
 "AssetType":"oaccount",

"AccountId":"oaccount~a73085a385bc96c4a45aa2dff032e7dede82c0664dee5f396b7c585
4eeafd4bd",
 "BapAccountVersion": 0,
 "UserId":"user1",
 "OrgId":"Org1MSP",
 "AccountType":"fungible",
 "TokenId":"",
 "TokenName":"",
 "Balance":0,
 "BalanceOnHold":0
}

AssociateTokenToAccount
This method associates a fungible token with an account. This method can be called only by
a Token Admin of the chaincode or by an Org Admin of the relevant organization.

func (t *Controller) AssociateTokenToAccount(account_id string, token_id
string) (interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Account.AssociateToken",
"TOKEN", map[string]string{"account_id": account_id})

Chapter 7
Tokenization Support Using Blockchain App Builder

7-307

 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.Account.AssociateToken(account_id, token_id)
}

Parameters:

• account_id string – The ID of the account.

• token_id string – The ID of the token.

Returns:

• On success, a JSON object of the updated account. The BapAccountVersion
parameter is defined in the account object for internal use.

Return Value Example:

{
"AssetType":"oaccount",
"AccountId":"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a
7eb54bdbebf48eb",
"BapAccountVersion": 0,
"UserId":"admin",
"OrgId":"Org1MSP",
"AccountType":"fungible",
"TokenId":"token1",
"TokenName":"loyaltok",
"Balance":0,
"BalanceOnHold":0
}

GetAccount
This method returns account details for a specified user and token. This method can
be called only by a Token Admin of the chaincode, an Org Admin of the specified
organization, or the AccountOwner of the account.

func (t *Controller) GetAccount(token_id string, org_id string,
user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
org_id, user_id)
 if err != nil {
 return nil, err
 }
 auth, err := t.Ctx.Auth.CheckAuthorization("Account.GetAccount",
"TOKEN", map[string]string{"account_id": account_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-308

 return t.Ctx.Account.GetAccountWithStatus(account_id)
}

Parameters:

• token_id string – The ID of the token.

• org_id string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a JSON account object that includes the following properties:

• AccountId – The ID of the user account.

• UserId – The user name or email ID of the user.

• OrgId – The membership service provider (MSP) ID of the user in the current
organization.

• TokenId – The ID of the token.

• Balance – The current balance of the account.

• BalanceOnHold – The current on-hold balance of the account.

• BapAccountVersion – An account object parameter for internal use.

• Status – The current status of the user account.

Return Value Example:

{
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "AssetType": "oaccount",
 "Balance": 95,
 "BalanceOnHold": 0,
 "BapAccountVersion": 8,
 "OrgId": "appdev",
 "Status": "active",
 "TokenId": "obp1",
 "TokenName": "obptok",
 "TokenType": "fungible",
 "UserId": "idcqa"
}

GetAccountHistory
This method returns account history details for a specified user and token. This method can
be called only by a Token Admin of the chaincode or the AccountOwner of the account.

func (t *Controller) GetAccountHistory(token_id string, org_id string,
user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id, org_id,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-309

user_id)
 if err != nil {
 return nil, err
 }
 auth, err := t.Ctx.Auth.CheckAuthorization("Account.History",
"TOKEN", map[string]string{"account_id": account_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.Account.History(account_id)
}

Parameters:

• token_id string – The ID of the token.

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, an array of JSON account objects that includes the following
properties:

• TxId – The transaction ID of the transaction as returned by the ledger.

• Timestamp – The time of the transaction.

• IsDelete – A Boolean value that indicates whether the record is deleted.

• Value – A JSON string of the account object. The BapAccountVersion parameter
is defined in the account object for internal use.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2023-08-28T19:31:15Z",
 "TxId":
"adde470a63860ec1013bd5c5987e8a506a48942a91b0f39fc8e561374042bd27",
 "Value": {
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "AssetType": "oaccount",
 "Balance": 100,
 "BalanceOnHold": 0,
 "BapAccountVersion": 1,
 "OrgId": "Org1MSP",
 "TokenId": "t1",
 "TokenName": "obptok",
 "TokenType": "fungible",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-310

 "UserId": "idcqa"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-08-28T19:30:23Z",
 "TxId":
"8fbeda2ba60ba175091faae5ae369247775f2cba45c4d6d1ead6f0b05be84743",
 "Value": {
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "AssetType": "oaccount",
 "Balance": 0,
 "BalanceOnHold": 0,
 "BapAccountVersion": 0,
 "OrgId": "Org1MSP",
 "TokenId": "t1",
 "TokenName": "obptok",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-08-28T19:29:54Z",
 "TxId":
"19bb296ae71709e91b097ba5d9ebd7f7522095880382fbf5913334a46a6026aa",
 "Value": {
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "AssetType": "oaccount",
 "Balance": 0,
 "BalanceOnHold": 0,
 "BapAccountVersion": 0,
 "OrgId": "Org1MSP",
 "TokenId": "",
 "TokenName": "",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 }
]

GetAccountOnHoldBalance
This method returns the current on-hold balance for a specified account and token. This
method can be called only by a Token Admin of the chaincode, an Org Admin of the specified
organization, or the AccountOwner of the account.

func (t *Controller) GetAccountOnHoldBalance(token_id string, org_id string,
user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id, org_id,
user_id)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-311

 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Account.GetAccountOnHoldBalance",
"TOKEN", map[string]string{"account_id": account_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 response, err :=
t.Ctx.Account.GetAccountOnHoldBalance(account_id)
 return response, err
}

Parameters:

• token_id string – The ID of the token.

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the current on-hold balance.

Return Value Example:

{
 "holding_balance": 0,
 "msg": "Total Holding Balance of Account Id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (org_id: Org1MSP, user_id: user1) is 0"
}

GetAllAccounts
This method returns a list of all accounts. This method can be called only by a Token
Admin of the chaincode. This method uses Berkeley DB SQL rich queries and can
only be called when connected to the remote Oracle Blockchain Platform network.

func (t *Controller) GetAllAccounts() (interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Account.GetAllAccounts", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Account.GetAllAccounts()
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-312

• none

Returns:

• On success, a JSON array of all accounts.

Return Value Example:

[
 {
 "key":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "valueJson": {
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "AssetType": "oaccount",
 "Balance": 100,
 "BalanceOnHold": 0,
 "BapAccountVersion": 1,
 "OrgId": "appdev",
 "TokenId": "t1",
 "TokenName": "obptok",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 }
]

GetUserByAccountId
This method returns user details (org_id and user_id) for a specified account. This method
can be called by any user of the chaincode.

func (t *Controller) GetUserByAccountId(account_id string) (interface{},
error) {
 return t.Ctx.Account.GetUserByAccountById(account_id)
}

Parameters:

• account_id string – The ID of the account.

Returns:

• On success, a JSON object of the user details (org_id, token_id, and user_id).

Return Value Example:

{"org_id":"Org1MSP","token_id":"digiCurr101","user_id":"user1"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-313

GetAccountBalance
This method returns the current balance for a specified account and token. This
method can be called only by a Token Admin of the chaincode, an Org Admin of the
specified organization, or the AccountOwner of the account.

func (t *Controller) GetAccountBalance(token_id string, org_id string,
user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
org_id, user_id)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Account.GetAccountBalance", "TOKEN",
map[string]string{"account_id": account_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 response, err := t.Ctx.Account.GetAccountBalance(account_id)
 return response, err
}

Parameters:

• token_id string – The ID of the token.

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the current account balance.

Return Value Example:

{"msg":"Current Balance of
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f is 0","user_balance":0}

GetAllOrgAccounts
This method returns a list of all token accounts that belong to a specified organization.
This method can be called only by a Token Admin of the chaincode or by an Org
Admin of the specified organization.

func (t *Controller) GetAllOrgAccounts(org_id string) (interface{},
error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Account.GetAllOrgAccounts", "TOKEN",
map[string]string{"org_id": org_id})
 if err != nil && !auth {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-314

 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Account.GetAllOrgAccounts(org_id)
}

Parameters:

• org_id: string – The membership service provider (MSP) ID of the organization.

Returns:

• On success, a list of all accounts for the specified organization.

Return Value Example:

[
 {
 "key":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "valueJson": {
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "AssetType": "oaccount",
 "Balance": 0,
 "BalanceOnHold": 0,
 "BapAccountVersion": 0,
 "OrgId": "appdev",
 "TokenId": "token",
 "TokenName": "fiatmoneytok",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 },
 {
 "key":
"oaccount~9c650574af9025a6106c8d12a801b079eda9ae2e3399fc2fbd5bd683d738a850",
 "valueJson": {
 "AccountId":
"oaccount~9c650574af9025a6106c8d12a801b079eda9ae2e3399fc2fbd5bd683d738a850",
 "AssetType": "oaccount",
 "Balance": 0,
 "BalanceOnHold": 0,
 "BapAccountVersion": 0,
 "OrgId": "appdev",
 "TokenId": "token",
 "TokenName": "fiatmoneytok",
 "TokenType": "fungible",
 "UserId": "example_minter"
 }
 }
]

Methods for Role Management

Chapter 7
Tokenization Support Using Blockchain App Builder

7-315

AddRole
This method adds a role to a specified user and token. This method can be called
only by a Token Admin of the chaincode or by an Org Admin of the specified
organization who also has the specified role.

func (t *Controller) AddRole(token_id string, user_role string, org_id
string, user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
org_id, user_id)
 if err != nil {
 return nil, err
 }
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Token.AddRoleMember", "TOKEN",
map[string]string{"org_id": org_id, "token_id": token_id, "role":
user_role})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.Token.AddRoleMember(user_role, account_id,
tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

• user_role string – The name of the role to add to the specified user. The
mintable and burnable behaviors correspond to the minter_role_name and
burner_role_name properties of the specification file. Similarly, the notary role
corresponds to the notary_role_name property of the specification file.

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a message with account details.

Return Value Example:

 {"msg":"Successfully added role minter to
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (org_id : Org1MSP, user_id : user1)"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-316

RemoveRole
This method removes a role from a specified user and token. This method can be called only
by a Token Admin of the chaincode or an Org Admin of the specified organization who also
has the specified role.

func (t *Controller) RemoveRole(token_id string, user_role string, org_id
string, user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id, org_id,
user_id)
 if err != nil {
 return nil, err
 }
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 auth, err := t.Ctx.Auth.CheckAuthorization("Token.RemoveRoleMember",
"TOKEN", map[string]string{"org_id": org_id, "token_id": token_id, "role":
user_role})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Token.RemoveRoleMember(user_role, account_id,
tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

• user_role string – The name of the role to remove from the specified user. The
mintable and burnable behaviors correspond to the minter_role_name and
burner_role_name properties of the specification file. Similarly, the notary role
corresponds to the notary_role_name property of the specification file.

• org_id string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a message with account details.

Return Value Example:

{"msg":"successfully removed member_id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642f
622f (org_id : Org1MSP, user_id : user1) from role minter"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-317

GetAccountsByRole
This method returns a list of all account IDs for a specified role and token. This
method can be called only by a Token Admin of the chaincode.

func (t *Controller) GetAccountsByRole(token_id string, user_role
string) (interface{}, error) {
 auth, err:=
t.Ctx.Auth.CheckAuthorization("Role.GetAccountsByRole", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Role.GetAccountsByRole(token_id, user_role)
}

Parameters:

• token_id string – The ID of the token.

• user_role string – The name of the role to search for.

Returns:

• On success, a JSON array of account IDs.

Return Value Example:

{
 "accounts": [

"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4"
]
}

GetAccountsByUser
This method returns a list of all account IDs for a specified organization ID and user
ID. This method can be called only by a Token Admin of the chaincode, an Org Admin
of the specified organization, or by the Account Owner specified in the parameters.

func (t *Controller) GetAccountsByUser(org_id string, user_id string)
(interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Account.GetAccountsByUser", "TOKEN",
map[string]string{"org_id": org_id, "user_id": user_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.Account.GetAccountsByUser(org_id, user_id)
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-318

• org_id string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a JSON array of account IDs.

Return Value Example:

{
 "accounts": [

"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4"
]
}

GetUsersByRole
This method returns a list of all users for a specified role and token. This method can be
called only by a Token Admin of the chaincode or by the Account Owner specified in the
parameters.

func (t *Controller) GetUsersByRole(token_id string, user_role string)
(interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Role.GetUsersByRole",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Role.GetUsersByRole(token_id, user_role)
}

Parameters:

• token_id string – The ID of the token.

• user_role string – The name of the role to search for.

Returns:

• On success, a JSON array of the user objects (org_id and user_id).

Return Value Example:

{"Users":[{"org_id":"Org1MSP","token_id":"digiCurr101","user_id":"user1"}]}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-319

IsInRole
This method returns a Boolean value to indicate if a user and token has a specified
role. This method can be called only by the Token Admin of the chaincode, an Org
Admin of the specified organization, or the AccountOwner of the account.

func (t *Controller) IsInRole(token_id string, org_id string, user_id
string, user_role string) (interface{}, error) {
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
org_id, user_id)
 if err != nil {
 return nil, err
 }
 auth, err := t.Ctx.Auth.CheckAuthorization("Token.IsInRole",
"TOKEN", map[string]string{"account_id": account_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 result, err := t.Ctx.Token.IsInRole(user_role, account_id,
tokenAssetValue.Interface())
 if err != nil {
 return nil, fmt.Errorf("error in IsInRole %s", err.Error())
 }
 response := make(map[string]interface{})
 response["result"] = result
 return response, nil
}

Parameters:

• token_id string – The ID of the token.

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

• user_role string – The name of the role to search for.

Returns:

• On success, a JSON string of the Boolean result.

Return Value Example:

{"result":false}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-320

GetOrgUsersByRole
This method returns information about all users that have a specified role in a specified
organization. This method can be called only by a Token Admin of the chaincode or by an
Org Admin of the specified organization.

func (t *Controller) GetOrgUsersByRole(token_id string, user_role string,
org_id string) (interface{}, error) {
 auth, err := t.Ctx.Auth.CheckAuthorization("Role.GetOrgUsersByRole",
"TOKEN", map[string]string{"org_id": org_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Role.GetOrgUsersByRole(token_id, user_role, org_id)
}

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to check for.

• org_id: string – The membership service provider (MSP) ID of the organization.

Returns:

• On success, a list of all users with the specified role in the specified organization.

Return Value Example:

{
 "Users": [
 {
 "org_id": "Org1MSP",
 "token_id": "token",
 "user_id": "admin"
 },
 {
 "org_id": "Org1MSP",
 "token_id": "token",
 "user_id": "orgAdmin"
 }
]
}

GetOrgAccountsByRole
This method returns information about all accounts that have a specified role in a specified
organization. This method can be called only by a Token Admin of the chaincode or by an
Org Admin of the specified organization.

func (t *Controller) GetOrgAccountsByRole(token_id string, user_role string,
org_id string) (interface{}, error) {
 auth, err :=

Chapter 7
Tokenization Support Using Blockchain App Builder

7-321

t.Ctx.Auth.CheckAuthorization("Role.GetOrgAccountsByRole", "TOKEN",
map[string]string{"org_id": org_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.Role.GetOrgAccountsByRole(token_id, user_role,
org_id)
}

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to check for.

• org_id: string – The membership service provider (MSP) ID of the
organization.

Returns:

• On success, a list of all accounts with the specified role in the specified
organization.

Return Value Example:

{
 "accounts": [

"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf4
8eb",

"oaccount~9c650574af9025a6106c8d12a801b079eda9ae2e3399fc2fbd5bd683d738a
850"
]
}

Methods for Transaction History Management

GetAccountTransactionHistory
This method returns an array of account transaction history details for a specified user
and token. This method can be called only by the Token Admin of the chaincode, an
Org Admin of the specified organization, or the AccountOwner of the account.

func (t *Controller) GetAccountTransactionHistory(token_id string,
org_id string, user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
org_id, user_id)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Account.GetAccountTransactionHistory",
"TOKEN", map[string]string{"account_id": account_id})

Chapter 7
Tokenization Support Using Blockchain App Builder

7-322

 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }

 transactionArray, err :=
t.Ctx.Account.GetAccountTransactionHistory(account_id, org_id, user_id)
 return transactionArray, err
}

Parameters:

• token_id string – The ID of the token.

• org_id string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, an array of JSON account transaction objects that includes the following
properties:

• balance – The account balance.

• holding_id – The ID of a holding account.

• onhold_balance – The on-hold balance.

• timestamp – The time of the transaction.

• token_id – The ID of the token.

• transacted_account – The account with which the transaction took place.

• transacted_amount – The amount of the transaction.

• transaction_id – The ID of the transaction.

• transaction_type – The type of transaction.

Return Value Example:

[{
 "balance": 199,
 "onhold_balance": 0,
 "timestamp": "2021-08-16T17:42:32.905+05:30",
 "token_id": "digiCurr101",
 "transacted_account":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642
f622f",
 "transacted_amount": 1,
 "transaction_id":
"otransaction~c8a9fa001aba6e0d8391b034655889df47eb5103713840b999a4ab41f5e57b3
8",
 "transaction_type": "DEBIT"
}, {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-323

 "balance": 200,
 "onhold_balance": 0,
 "timestamp": "2021-08-16T17:41:59.262+05:30",
 "token_id": "digiCurr101",
 "transacted_account":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "transacted_amount": 100,
 "transaction_id":
"otransaction~65a0bf8ae8108baa7495fbab91c205651c055e9f480f6808753287173
026aa69",
 "transaction_type": "MINT"
}]

GetAccountTransactionHistoryWithFilters
This method returns an array of account transaction history details for a specified user
and token. This method can be called only by the Token Admin of the chaincode, an
Org Admin of the specified organization, or the AccountOwner of the account. This
method can only be called when connected to the remote Oracle Blockchain Platform
network.

func (t *Controller) GetAccountTransactionHistoryWithFilters(token_id
string, org_id string, user_id string,
filters ...account.AccountHistoryFilters) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
org_id, user_id)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Account.GetAccountTransactionHistoryWith
Filters", "TOKEN", map[string]string{"account_id": account_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }

 // sample format of filter: []string{"3", "",
"2022-01-16T15:16:36+00:00", "2022-01-17T15:16:36+00:00"}
 transactionArray, err :=
t.Ctx.Account.GetAccountTransactionHistoryWithFilters(account_id,
org_id, user_id, filters...)
 return transactionArray, err
}

Parameters:

• token_id string – The ID of the token.

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-324

• filters: string – An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the
default page size is 20. The Bookmark property determines the starting index of the
records to return. For more information, see the Hyperledger Fabric documentation. The
StartTime and EndTime properties must be specified in RFC-3339 format.

Example:
ochain invoke GetAccountTransactionHistoryWithFilters 'token1' 'appbuilder12'
'user_minter'
'{"PageSize":10,"Bookmark":"1","StartTime":"2022-01-25T17:41:42Z","EndTime":"20
22-01-25T17:59:10Z"}'

[
 {
 "transaction_id":
"otransaction~3f9c306b0ef6994885939c1a6eb5f063b06617ecb932d4a043f323ba53d55f9
f",
 "transacted_amount": 200,
 "timestamp": "2022-02-15T18:27:13.000Z",
 "token_id": "token1",
 "transacted_account":
"oaccount~obptok~26e046c8ba8b98da2cdabb78113d67200581ea3d4eea5aa324
1abd3598e05d05",
 "transaction_type": "DEBIT",
 "balance": 9200,
 "onhold_balance": 0
 },
 {
 "transaction_id":
"otransaction~f1d37c3abd5c85c0a399f246d8eb68257c49ab4fe4cdfd3501908583c51c421
e",
 "transacted_amount": 200,
 "timestamp": "2022-02-15T18:27:02.000Z",
 "token_id": "token1",
 "transaction_type": "BULKTRANSFER",
 "number_of_sub_transactions": 2,
 "balance": 9600,
 "onhold_balance": 0
 },
 {
 "transaction_id":
"otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6f864b9
b",
 "transacted_amount": 200,
 "timestamp": "2022-02-15T18:26:57.000Z",
 "token_id": "token1",
 "transaction_type": "BULKTRANSFER",
 "number_of_sub_transactions": 2,
 "balance": 9800,
 "onhold_balance": 0
 },
 {
 "transaction_id":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-325

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

"otransaction~07331a1f7be99d6750973674a783da9ec9ca17df23747cdf52d388865
d93f9a",
 "transacted_amount": 10000,
 "timestamp": "2022-02-15T18:26:30.000Z",
 "token_id": "token1",
 "transacted_account":
"oaccount~obptok~88b62f329f20fffc6fc9231cb51019a5e9550c78b657123d140897
62397d2b55",
 "transaction_type": "MINT",
 "balance": 10000,
 "onhold_balance": 0
 }
]

GetSubTransactionsById
This method returns an array of subtransaction history details for a specified
transaction.

func (t *Controller) GetSubTransactionsById(transaction_id string)
(interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Account.GetSubTransactionsById",
"TOKEN", map[string]string{"transaction_id": transaction_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.Account.GetSubTransactionsById(transaction_id)
}

Parameters:

• transaction_id string – The ID of the transaction.

Example:
ochain invoke GetAccountSubTransactionHistory
'otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6f8
64b9b'

[
 {
 "transaction_id":
"otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6
f864b9b~c4ca4238a0b923820dcc509a6f75849b",
 "transacted_amount": 100,
 "timestamp": "2022-02-15T18:26:57.000Z",
 "token_id": "token1",
 "transacted_account":
"oaccount~obptok~6600eb38d365552b76f41d4186acece104f31eae331a440f963e6f
a75b62ff21",
 "transaction_type": "DEBIT",
 "balance": 9900,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-326

 "onhold_balance": 0
 },
 {
 "transaction_id":
"otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6f864b9
b~c81e728d9d4c2f636f067f89cc14862c",
 "transacted_amount": 100,
 "timestamp": "2022-02-15T18:26:57.000Z",
 "token_id": "token1",
 "transacted_account":
"oaccount~obptok~26e046c8ba8b98da2cdabb78113d67200581ea3d4eea5aa3241abd3598e0
5d05",
 "transaction_type": "DEBIT",
 "balance": 9800,
 "onhold_balance": 0
 }
]

GetSubTransactionsByIdWithFilters
This method returns an array of subtransaction history details for a specified transaction.

func (t *Controller) GetSubTransactionsByIdWithFilters(transaction_id
string, filters ...account.SubTransactionFilters) (interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Account.GetSubTransactionsByIdWithFilters",
"TOKEN", map[string]string{"transaction_id": transaction_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Account.GetSubTransactionsByIdWithFilters(transaction_id,
filters...)
}

Parameters:

• transaction_id string – The ID of the transaction.

• filters: string – An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the
default page size is 20. The Bookmark property determines the starting index of the
records to return. For more information, see the Hyperledger Fabric documentation. The
StartTime and EndTime properties must be specified in RFC-3339 format.

Example:
ochain invoke GetAccountSubTransactionHistoryWithFilters
'otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6f864b9b'
'{"PageSize":10,"Bookmark":"1"}'

[
{
"transaction_id":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-327

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

"otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6
f864b9b~c4ca4238a0b923820dcc509a6f75849b",
"transacted_amount": 100,
"timestamp": "2022-02-15T18:26:57.000Z",
"token_id": "token1",
"transacted_account":
"oaccount~obptok~6600eb38d365552b76f41d4186acece104f31eae331a440f963e6f
a75b62ff21",
"transaction_type": "DEBIT",
"balance": 9900,
"onhold_balance": 0
},
{
"transaction_id":
"otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6
f864b9b~c81e728d9d4c2f636f067f89cc14862c",
"transacted_amount": 100,
"timestamp": "2022-02-15T18:26:57.000Z",
"token_id": "token1",
"transacted_account":
"oaccount~obptok~26e046c8ba8b98da2cdabb78113d67200581ea3d4eea5aa3241abd
3598e05d05",
"transaction_type": "DEBIT",
"balance": 9800,
"onhold_balance": 0
}
]

GetTransactionById
This method returns the history of a Transaction asset.

func (t *Controller) GetTransactionById(transaction_id string)
(interface{}, error) {
 return t.Ctx.Transaction.GetTransactionById(transaction_id)
}

Parameters:

• transaction_id string – The ID of the transaction asset.

Returns:

• On success, an JSON array of the history for the transaction.

Return Value Example:

{
 "history": [
 {
 "IsDelete": "false",
 "Timestamp": "2021-08-16 20:19:05.028 +0530 IST",
 "TxId":
"67042154a6853011d111b13f73943f06d2a6ae3cfb9a84cb104482c359eb2220",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-328

 "Value": {
 "Amount": 3,
 "AssetType": "otransaction",
 "FromAccountId":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642
f622f",
 "HoldingId": "ohold~digicur~digiCurr101~op2",
 "NumberOfSubTransactions": 0,
 "Timestamp": "2021-08-16T20:19:05+05:30",
 "ToAccountId":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642
f622f",
 "TokenId": "digiCurr101",
 "TransactionId":
"otransaction~67042154a6853011d111b13f73943f06d2a6ae3cfb9a84cb104482c359eb222
0",
 "TransactionType": "RELEASEHOLD"
 }
 }
],
 "transaction_id":
"otransaction~67042154a6853011d111b13f73943f06d2a6ae3cfb9a84cb104482c359eb222
0"
}

DeleteHistoricalTransactions
This method deletes older transactions from the state database.

func (t *Controller) DeleteHistoricalTransactions(timestamp string)
(interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Transaction.DeleteHistoricalTransactions",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Transaction.DeleteHistoricalTransactions(timestamp)
}

Parameters:

• timestamp string – A time stamp that indicates when to delete transactions.
Transaction assets that are older than the specified time will be deleted.

Methods for Token Behavior Management - Mintable Behavior

IssueTokens
This method mints tokens, which are then owned by the caller of the method. The caller
must have an account and the minter role. The number of tokens that can be minted is
limited by the max_mint_quantity property of mintable behavior in the specification file. If
the max_mint_quantity property is not specified, an unlimited number of tokens can be
minted. The quantity must be within the decimal values specified by the decimal parameter

Chapter 7
Tokenization Support Using Blockchain App Builder

7-329

of the divisible behavior in the specification file. This method can be called only by
the AccountOwner of the account with the minter role.

func (t *Controller) IssueTokens(token_id string, quantity float64)
(interface{}, error) {
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 return t.Ctx.Token.Mint(quantity, tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

• quantity float64 – The number of tokens to mint.

Returns:

• On success, a message with account details.

Return Value Example:

{"msg":"Successfully minted 100 tokens to account
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (org_id : Org1MSP, user_id : user1)"}

GetTotalMintedTokens
This method returns the total number of minted tokens for a specified token. This
method can be called only by a Token Admin or Org Admin of the chaincode.

func (t *Controller) GetTotalMintedTokens(token_id string)
(interface{}, error) {
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Token.GetTotalMintedTokens", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return
t.Ctx.Token.GetTotalMintedTokens(tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-330

• On success, a JSON string indicating the total number of tokens.

Return Value Example:

{"msg":"total minted amount for token with id digiCurr101 is
1000","quantity":1000}

GetNetTokens
This method returns the total net number of tokens available in the system for a specified
token. The net token total is the amount of tokens remaining after tokens are burned. In
equation form net tokens = total minted tokens - total burned tokens. If no tokens are burned,
then the number of net tokens is equal to the total minted tokens. This method can be called
only by a Token Admin or Org Admin of the chaincode.

func (t *Controller) GetNetTokens(token_id string) (interface{}, error) {
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 auth, err := t.Ctx.Auth.CheckAuthorization("Token.GetNetTokens", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Token.GetNetTokens(tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

Returns:

• On success, a JSON string indicating the net number of tokens.

Return Value Example:

{"msg":"net minted amount for token with id digiCurr101 is
1000","quantity":1000}

Methods for Token Behavior Management - Transferable Behavior

TransferTokens
This method transfers tokens from the caller to a specified account. The caller of the method
must have an account. The quantity must be within the decimal values specified by the
decimal parameter of the divisible behavior in the specification file. This method can be
called only by the AccountOwner of the account.

func (t *Controller) TransferTokens(token_id string, to_org_id string,
to_user_id string, quantity float64) (interface{}, error) {
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-331

 return nil, err
 }
 to_account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
to_org_id, to_user_id)
 if err != nil {
 return nil, err
 }
 return t.Ctx.Token.Transfer(to_account_id, quantity,
tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

• to_org_id string – The membership service provider (MSP) ID of the receiver in
the current organization.

• to_user_id string – The user name or email ID of the receiver.

• quantity float64 – The number of tokens to transfer.

Returns:

• On success, a message with details for both accounts.

Return Value Example:

{"msg":"successfully transferred 1 tokens from account
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (org_id : Org1MSP, user_id : user1) to account
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85
f0376152df (org_id : Org1MSP, user_id : admin)"}

BulkTransferTokens
This method is used to perform bulk transfer of tokens from the caller account to the
accounts that are specified in the flow object. The quantities must be within the
decimal values specified by the decimal parameter of the divisible behavior in the
specification file.The caller of this method must have an account already created. This
method can be called only by the AccountOwner of the account.

func (t *Controller) BulkTransferTokens(token_id string,
flow[]map[string]interface{}) (interface{}, error) {
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 return t.Ctx.Token.BulkTransfer(flow, tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-332

• flow[]map[string]interface{} – An array of JSON objects that specify receiver details
and quantities.

– to_org_id string – The membership service provider (MSP) ID of the receiver in
the current organization.

– to_user_id string – The user name or email ID of the receiver.

– quantity float64 – The number of tokens to transfer.

For example:

[{
 "to_org_id": "Org1MSP",
 "to_user_id": "user1",
 "quantity": 10
}, {
 "to_org_id": "Org1MSP",
 "to_user_id": "user2",
 "quantity": 10
}]

Returns:

• A message indicating success.

Return Value Example:

{
 "from_account_id":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642
f622f",
 "msg": "Successfully transferred 2 tokens from Account Id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642f
622f (Org-Id: Org1MSP, User-Id: user1)",
 "sub_transactions": [
 {
 "amount": 1,
 "to_account_id":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471aaa1210
c706e"
 },
 {
 "amount": 1,
 "to_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f0376
152df"
 }
]
}

Methods for Token Behavior Management - Holdable Behavior

Chapter 7
Tokenization Support Using Blockchain App Builder

7-333

HoldTokens
This method creates a hold on behalf of the owner of the tokens with the
to_account_id account. A notary account is specified, which is responsible to either
complete or release the hold. When the hold is created, the specified token balance
from the payer is put on hold. A held balance cannot be transferred until the hold is
either completed or released. The caller of this method must have an account already
created. This method can be called only by the AccountOwner of the account.

func (t *Controller) HoldTokens(token_id string, operation_id string,
to_org_id string, to_user_id string, notary_org_id string,
notary_user_id string, quantity float64, TimeToExpiration string)
(interface{}, error) {
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 notary_account_id, err :=
t.Ctx.Account.GenerateAccountId(token_id, notary_org_id,
notary_user_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting notary account id
from org_id: %s and user_id: %s with token_id: %s, error %s ",
notary_org_id, notary_user_id, token_id, err.Error())
 }
 to_account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
to_org_id, to_user_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting to_account id
from org_id: %s and user_id: %s with token_id: %s, error %s ",
to_org_id, to_user_id, token_id, err.Error())
 }
 return t.Ctx.Token.Hold(operation_id, to_account_id,
notary_account_id, quantity, TimeToExpiration,
tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

• operation_id string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

• to_org_id string – The membership service provider (MSP) ID of the receiver in
the current organization.

• to_user_id string – The user name or email ID of the receiver.

• notary_org_id string – The membership service provider (MSP) ID of the
notary in the current organization.

• notary_user_id string – The user name or email ID of the notary.

• quantity float64 – The number of tokens to put on hold.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-334

• time_to_expiration – The time when the hold expires. Specify 0 for a permanent hold.
Otherwise use the RFC-3339 format. For example, 2021-06-02T12:46:06Z.

Returns:

• On success, a message with the caller's account and hold details.

Return Value Example:

{"msg":"AccountId
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642f
622f (org_id : Org1MSP, user_id : user1) is successfully holding 2 tokens"}

ExecuteHoldTokens
This method completes a hold on a token. A quantity of tokens previously held by a token
owner is transferred to a receiver. If the quantity value is less than the actual hold value,
then the remaining amount is available again to the original owner of the tokens. This
method can be called only by the AccountOwner ID with the notary role. The hold can only
be completed by the notary.

func (t *Controller) ExecuteHoldTokens(token_id string, operation_id string,
quantity float64) (interface{} error) {
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 return t.Ctx.Token.ExecuteHold(operation_id, quantity,
tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

• operation_id string – A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

• quantity float64 – The number of on-hold tokens to transfer.

Returns:

• On success, a message with the caller's account ID and the quantity of the transaction.

Return Value Example:

{"msg":"Account Id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642f
622f (org_id : Org1MSP, user_id : user1) has successfully executed '1'
tokens(digiCurr101) from the hold with Operation Id 'op1'"}

ReleaseHoldTokens
This method releases a hold on tokens. The transfer is not completed and all held tokens are
available again to the original owner. This method can be called by the Account Owner ID

Chapter 7
Tokenization Support Using Blockchain App Builder

7-335

with the notary role within the specified time limit or by the payer, payee, or notary
after the specified time limit.

func (t *Controller) ReleaseHoldTokens(token_id string, operation_id
string) (interface{} error) {
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 return t.Ctx.Token.ReleaseHold(operation_id,
tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

• operation_id string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

Returns:

• On success, a message indicating that the hold was released.

Return Value Example:

{"msg":"Successfully released '3' tokens from Operation Id 'op2' to
Account Id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (org_id : Org1MSP, user_id : user1)"}

GetOnHoldIds
This method returns a list of all of the holding IDs for a specified account. This method
can be called by the Token Admin of the chaincode, an Org Admin of the specified
organization, or the Account Owner of the account.

func (t *Controller) GetOnHoldIds(token_id string, org_id string,
user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
org_id, user_id)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.Auth.CheckAuthorization("Account.GetOnHoldIds", "TOKEN",
map[string]string{"account_id": account_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.Account.GetOnHoldIDs(account_id)
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-336

Parameters:

• token_id string – The ID of the token.

• org_id string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a JSON list of holding IDs. A holding ID is a concatenation of the ohold
asset type, the name of the token, the token ID, and the operation ID.

Return Value Example:

{"holding_ids":["ohold~loyaltok123~t1~op1"],"msg":"Holding Ids are:
[ohold~loyaltok123~t1~op1]"}

GetOnHoldDetailsWithOperationId
This method returns the on-hold transaction details for a specified operation ID and token.
This method can be invoked by anyone.

func (t *Controller) GetOnHoldDetailsWithOperationId(token_id string,
operation_id string) (interface{} error) {
 return t.Ctx.Hold.GetOnHoldDetailsWithOperationId(token_id, operation_id)
}

Parameters:

• token_id string – The ID of the token.

• operation_id string – A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

Returns:

• On success, a JSON hold object that includes the following properties:

• HoldingId – The holding ID of the transaction.

• OperationId – A unique ID to identify the hold operation. Typically this ID is passed by
the client application.

• FromAccountId – The account ID of the current owner of the on-hold tokens.

• ToAccountId – The account ID of the receiver.

• NotaryAccountId – The account ID of the notary.

• TokenId – The ID of the saved token.

• Quantity – The amount of tokens that are on hold for the holding ID.

• TimeToExpiration – The duration until the hold expires.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-337

Return Value Example:

{
 "AssetType": "ohold",
 "HoldingId": "ohold~digicur~digiCurr101~op1",
 "OperationId": "op1",
 "TokenName": "digicur",
 "FromAccountId":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "ToAccountId":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471a
aa1210c706e",
 "NotaryAccountId":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d8
5f0376152df",
 "TokenId": "digiCurr101",
 "Quantity": 2,
 "TimeToExpiration": "0"
}

GetOnHoldBalanceWithOperationId
This method returns the on-hold balance for a specified operation ID and token. This
method can be invoked by anyone.

func (t *Controller) GetOnHoldBalanceWithOperationId(token_id string,
operation_id string) (interface{} error) {
 return t.Ctx.Hold.GetOnHoldBalanceWithOperationId(token_id,
operation_id)
}

Parameters:

• token_id string – The ID of the token.

• operation_id string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

Returns:

• On success, a JSON string indicating the holding balance.

Return Value Example:

{
 "holding_balance": 10,
 "msg": "Current Holding Balance of OperationId opr_121 for token
digiCurr101 is : 10"
}

Methods for Token Behavior Management - Burnable Behavior

Chapter 7
Tokenization Support Using Blockchain App Builder

7-338

BurnTokens
This method deactivates, or burns, tokens from the transaction caller's account. The caller of
this method must have an account and the burner role. The quantity must be within the
decimal values specified by the decimal parameter of the divisible behavior in the
specification file. This method can be called by the Account Owner of the account with the
burner role.

func (t *Controller) BurnTokens(token_id string, quantity float64)
(interface{} error) {
 tokenAssetValue, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, err
 }
 return t.Ctx.Token.Burn(quantity, tokenAssetValue.Interface())
}

Parameters:

• token_id string – The ID of the token.

• quantity float64 – The number of tokens to burn.

Returns:

• On success, a success message with the quantity of tokens burned and the account ID.

Return Value Example:

{"msg":"Successfully burned 1 tokens from account id:
oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471aaa1210c
706e (org_id : Org1MSP, user_id : user2)"}

Custom Methods

You can use the token SDK methods to write custom methods for your business application.

Make sure to track the return value when you use the token SDK methods. Also, to avoid
double-spending, do not combine multiple async functions that operate on the same key-
value pairs in the state database. Instead, use the BulkTransferTokens method, to make
multiple transfers in one method.

The following example shows how to use token SDK methods in custom methods. When the
BuyTicket method is called, it transfers 20 tokens from the caller's account to the seller's
account, and returns the transaction message of the transfer.

func (t *Controller) BuyTicket(TokenId string, SellerOrgId string,
SellerUserId string) (interface{}, error){
 token, err := t.Ctx.Token.Get(TokenId)
 if err != nil {
 return nil, err
 }

 /**
 * The following method t.Ctx.Account.GenerateAccountId(TokenId,
SellerOrgId, SellerUserId) generates account id of the seller
 */

Chapter 7
Tokenization Support Using Blockchain App Builder

7-339

 sellerAccountId, err := t.Ctx.Account.GenerateAccountId(TokenId,
SellerOrgId, SellerUserId)
 if err != nil {
 return nil, err
 }

 /**
 * The following method t.Ctx.Token.Transfer(sellerAccountId, 20,
token) transfers the quantity 20 from caller's
 * account & to seller's account.
 */
 transaction, err := t.Ctx.Token.Transfer(sellerAccountId, 20,
token)
 if err != nil {
 return nil, err
 }
 return transaction, nil
}

Token SDK Methods

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Holdable Behavior

– Burnable Behavior

Methods for Access Control Management

The token SDK provides an access control function. Some methods can be called only
by a Token Admin, Org Admin or AccountOwner of the token. You can use this feature
to ensure that operations are carried out only by the intended users. Any unauthorized
access results in an error. To use the access control function, import the
Authorization class from the ../lib/auth module.

import { Authorization } from '../lib/auth';

AddAdmin
This method adds a user as a Token Admin of the token chaincode.

Ctx.AddAdmin(org_id string, user_id string) (interface{}, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-340

• user_id – The user name or email ID of the user.

• org_id – The membership service provider (MSP) ID of the user in the current network
organization.

Returns:

• On success, a success message and details for the Token Admin user that was added.
On error, a non-nil error object containing an error message.

Return Value Example:

{"msg":"Successfully added Admin (Org_Id: Org1MSP, User_Id: user2)"}

RemoveAdmin
This method removes a user as a Token Admin of the token chaincode.

Ctx.RemoveAdmin(org_id string, user_id string) (interface{}, error)

Parameters:

• user_id – The user name or email ID of the user.

• org_id – The membership service provider (MSP) ID of the user in the current network
organization.

Returns:

• On success, a success message and details for the Token Admin user that was
removed. On error, a non-nil error object containing an error message.

Return Value Example:

{"msg":"Successfuly removed Admin (Org_Id Org1MSP User_Id user1)"}

GetAllAdmins
This method returns a list of all users who are a Token Admin of the token chaincode.

Ctx.GetAllAdmins() (interface{}, error)

Parameters:

• none

Returns:

• On success, a list of all users who are a Token Admin of the token chaincode. On error, a
non-nil error object containing an error message.

Return Value Example:

[{"OrgId":"Org1MSP","UserId":"admin"},{"OrgId":"Org1MSP","UserId":"user1"}]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-341

GetAllAdminUsers
This method returns a list of all users who are a Token Admin of the token chaincode.

Ctx.Admin.GetAllAdminUsers() (interface{}, error)

Parameters:

• none

Returns:

• On success, a list of all users who are a Token Admin of the token chaincode in
map[string]interface{} form. On error, a non-nil error object containing an error
message.

Return Value Example:

{"admins":[{"OrgId":"Org1MSP","UserId":"admin"},
{"OrgId":"Org1MSP","UserId":"user1"}]}

CheckAuthorization
Use this method to add access control to your chaincode. Many of the automatically
generated token methods use access control. The mapping between the SDK
receiver and the methods which have access control is described in the
oChainUtil.go file. To use your own access control or to disable access control,
remove the access control code from the automatically generated controller methods
and custom methods.

var t TokenAccess
 var r RoleAccess
 var a AccountAccess
 var as AccountStatusAccess
 var h HoldAccess
 var ad AdminAccess
 var trx TransactionAccess
 var tc TokenConversionAccess
 var auth AuthAccess

 auth.IsTokenAdmin = []string{"Admin", "MultipleAccountOwner"}

 trx.DeleteHistoricalTransactions = []string{"Admin"}
 ad.AddAdmin = []string{"Admin"}
 ad.RemoveAdmin = []string{"Admin"}
 ad.GetAllAdmins = []string{"Admin", "OrgAdmin"}
 ad.AddOrgAdmin = []string{"Admin", "OrgAdminOrgIdCheck"}
 ad.RemoveOrgAdmin = []string{"Admin", "OrgAdminOrgIdCheck"}
 ad.GetOrgAdmins = []string{"Admin", "OrgAdmin"}
 ad.IsTokenAdmin = []string{"Admin", "MultipleAccountOwner",
"OrgAdmin"}
 t.Save = []string{"Admin"}
 t.GetAllTokens = []string{"Admin", "OrgAdmin"}
 t.Update = []string{"Admin"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-342

 t.GetTokenDecimals = []string{"Admin", "OrgAdmin"}
 t.GetTokensByName = []string{"Admin", "OrgAdmin"}
 t.AddRoleMember = []string{"Admin", "OrgAdminRoleCheck"}
 t.RemoveRoleMember = []string{"Admin", "OrgAdminRoleCheck"}
 t.IsInRole = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 t.GetTotalMintedTokens = []string{"Admin", "OrgAdmin"}
 t.GetNetTokens = []string{"Admin", "OrgAdmin"}
 t.Get = []string{"Admin", "OrgAdmin"}
 t.GetTokenHistory = []string{"Admin", "OrgAdmin"}
 a.CreateAccount = []string{"Admin", "OrgAdminOrgIdCheck"}
 a.AssociateToken = []string{"Admin", "OrgAdminAccountIdCheck"}
 a.GetAllAccounts = []string{"Admin"}
 a.GetAllOrgAccounts = []string{"Admin", "OrgAdminOrgIdCheck"}
 a.GetAccount = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 a.History = []string{"Admin", "AccountOwner"}
 a.GetAccountTransactionHistory = []string{"Admin",
"OrgAdminAccountIdCheck", "AccountOwner"}
 a.GetAccountTransactionHistoryWithFilters = []string{"Admin",
"OrgAdminAccountIdCheck", "AccountOwner"}
 a.GetSubTransactionsById = []string{"Admin", "TransactionInvoker"}
 a.GetSubTransactionsByIdWithFilters = []string{"Admin",
"TransactionInvoker"}
 a.GetAccountBalance = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 a.GetAccountOnHoldBalance = []string{"Admin",
"OrgAdminAccountIdCheck", "AccountOwner"}
 a.GetOnHoldIds = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 a.GetAccountsByUser = []string{"Admin", "OrgAdminOrgIdCheck",
"MultipleAccountOwner"}

 as.Get = []string{"Admin", "OrgAdminAccountIdCheck", "AccountOwner"}
 as.ActivateAccount = []string{"Admin", "OrgAdminOrgIdCheck"}
 as.SuspendAccount = []string{"Admin", "OrgAdminOrgIdCheck"}
 as.DeleteAccount = []string{"Admin", "OrgAdminOrgIdCheck"}

 r.GetAccountsByRole = []string{"Admin"}
 r.GetUsersByRole = []string{"Admin"}
 r.GetOrgAccountsByRole = []string{"Admin", "OrgAdminOrgIdCheck"}
 r.GetOrgUsersByRole = []string{"Admin", "OrgAdminOrgIdCheck"}

 tc.InitializeExchangePoolUser = []string{"Admin"}
 tc.AddConversionRate = []string{"Admin"}
 tc.UpdateConversionRate = []string{"Admin"}
 tc.GetConversionRate = []string{"Admin", "OrgAdmin", "AnyAccountOwner"}
 tc.GetConversionRateHistory = []string{"Admin", "OrgAdmin",
"AnyAccountOwner"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-343

 tc.TokenConversion = []string{"Admin", "AnyAccountOwner"}
 tc.GetExchangePoolUser = []string{"Admin"}

Ctx.Auth.CheckAuthorization(classFuncName string, args ...string)
(bool, error)

Parameters:

• classFuncName string – The map value between the receivers and methods as
described in the oChainUtil.go file.

• args – A variable argument, where args[0] is the constant TOKEN and args[1] is
the account_id argument, if required.

Returns:

• A Boolean response and an error message if an error is encountered.

IsUserTokenAdmin
This method returns the Boolean value true if the caller of the function is a Token
Admin. Otherwise the method returns false.

Ctx.Auth.IsUserTokenAdmin() (bool, error)

Parameters:

• user_id – The user name or email ID of the user.

• org_id – The membership service provider (MSP) ID of the user in the current
network organization.

Returns:

• A Boolean response and an error message if an error is encountered.

Return Value Example:

{"result":false}

AddOrgAdmin
This method adds a user as an Org Admin of the organization.

Ctx.Admin.AddOrgAdmin(org_id, user_id) (interface{}, error)

Parameters:

• org_id string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id string – The user name or email ID of the user.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-344

• On success, a message that includes details of the user who was added as an Org
Admin of the organization.

Return Value Example:

{
 "msg": "Successfully added Org Admin (Org_Id: Org1MSP, User_Id:
orgAdmin)"
}

RemoveOrgAdmin
This method removes a user as an Org Admin of an organization.

Ctx.Admin.RemoveOrgAdmin(org_id, user_id) (interface{}, error)

Parameters:

• org_id string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was removed as an Org
Admin of the organization.

Return Value Example:

{
 "msg": "Successfully removed Org Admin (Org_Id Org1MSP User_Id orgAdmin)"
}

GetOrgAdmins
This method returns a list of all users who are an Org Admin of an organization.

Ctx.Admin.GetAllOrgAdmins() (interface{}, error)

Parameters:

• none

Returns:

• On success, a JSON list that includes OrgId and UserId objects.

Return Value Example:

{
 "admins": [
 {
 "OrgId": "Org1MSP",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-345

 "UserId": "orgadmin"
 },
 {
 "OrgId": "Org1MSP",
 "UserId": "orgadmin1"
 },
 {
 "OrgId": "Org1MSP",
 "UserId": "orgadmin2"
 }
]
}

Methods for Token Configuration Management

GetTokenDecimals
This method returns the number of decimal places available for a fractional token. If
the divisible behavior is not specified, then the default value is 0.

Ctx.Token.GetTokenDecimals(token_id string) (int, error)

Parameters:

• none

Returns:

• On success, the decimal places of the token, in the number data type. On error, a
non-nil error object containing an error message.

Return Value Example:

1

GetAllTokens
This method returns all of the token assets that are saved in the state database. This
method uses Berkeley DB SQL rich queries and can only be called when connected
to the remote Oracle Blockchain Platform network.

Ctx.Token.GetAllTokens() (interface{}, error)

Parameters:

• none

Returns:

• On success, an array of a map of all token assets. On error, a non-nil error object
containing an error message.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-346

Return Value Example:

"payload": [
 {
 "key": "t1",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "holdable",
 "burnable",
 "roles"
],
 "Currency_name": "Currency_name value",
 "Divisible": {
 "Decimal": 8
 },
 "Mintable": {
 "Max_mint_quantity": 10000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter",
 "notary_role_name": "notary"
 },
 "Token_desc": "Token_desc value",
 "Token_id": "t1",
 "Token_name": "obptok",
 "Token_to_currency_ratio": 999,
 "Token_type": "fungible",
 "Token_unit": "fractional"
 }
 }
]

GetTokensByName
This method returns all of the token assets with the specified name. This method uses
Berkeley DB SQL rich queries and can only be called when connected to the remote Oracle
Blockchain Platform network.

Ctx.Token.GetTokensByName(token_name string) (interface{}, error)

Parameters:

• token_name string – The name of the token, which corresponds to the Token_name
property of the model. The value is the class name of the token.

Returns:

• It returns an array of a map of all of the token assets of the specified name.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-347

Return Value Example:

"payload": [
 {
 "key": "t1",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "holdable",
 "burnable",
 "roles"
],
 "Currency_name": "Currency_name value",
 "Divisible": {
 "Decimal": 8
 },
 "Mintable": {
 "Max_mint_quantity": 10000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter",
 "notary_role_name": "notary"
 },
 "Token_desc": "Token_desc value",
 "Token_id": "t1",
 "Token_name": "obptok",
 "Token_to_currency_ratio": 999,
 "Token_type": "fungible",
 "Token_unit": "fractional"
 }
 },
 {
 "key": "obp2",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "holdable",
 "burnable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 8
 },
 "Mintable": {
 "Max_mint_quantity": 10000

Chapter 7
Tokenization Support Using Blockchain App Builder

7-348

 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter",
 "notary_role_name": "notary"
 },
 "Token_desc": "",
 "Token_id": "obp2",
 "Token_name": "obptok",
 "Token_to_currency_ratio": 0,
 "Token_type": "fungible",
 "Token_unit": "fractional"
 }
 }
]

Get
This method returns a token object if it is present in the state database. This method can be
called only by a Token Admin of the token chaincode.

Ctx.Get(Id string, result ...interface{}) (interface{}, error)

Parameters:

• token_id: string – The ID of the token to return.

• result – A variable argument, where the first argument result[0] is a reference of an
empty Token object of the required type.

Returns:

• On success, a map with the token asset data. The variable argument result[0]
contains the token data. On error, a non-nil error object containing an error message.

Return Value Example:

{
 "AssetType": "otoken",
 "Token_id": "digiCurr101",
 "Token_name": "digicur",
 "Token_desc": "Digital Currency equiv of dollar",
 "Token_type": "fungible",
 "Behavior": ["divisible", "mintable", "transferable", "burnable",
"holdable", "roles"],
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter",
 "notary_role_name": "notary"
 },
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "Divisible": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-349

 "Decimal": 1
 },
 "Token_to_currency_ratio": 1,
 "Currency_representation": "DOLLAR"
}

IsTokenType
This method tests whether a token asset exists for a specified token ID.

Ctx.Model.IsTokenType(token_id: string) error

Parameters:

• token_id: string – The ID of the token to check.

Returns:

• If a token asset exists with the specified ID, a nil error. Otherwise, a non-nil error
object containing an error message.

Return Value Example:

nil

Save
This method creates a token and saves its properties in the state database.

Ctx.Token.Save(args ...interface{}) (interface{}, error)

Parameters:

• token_id: string – The ID of the token to return.

• args – A variable argument, where the first argument args[0] is a reference of
the token struct data of the required type to add to the ledger.

Returns:

• On success, an interface{} object with details about the token that was saved to
the state database. On error, a non-nil error object containing an error message.

Return Value Example:

{
 "AssetType": "otoken",
 "Token_id": "digiCurr101",
 "Token_name": "digicur",
 "Token_desc": "",
 "Token_type": "fungible",
 "Behavior": ["divisible", "mintable", "transferable", "burnable",
"roles"],
 "Roles": {
 "minter_role_name": "minter"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-350

 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Divisible": {
 "Decimal": 2
 },
 "Currency_name": "",
 "Token_to_currency_ratio": 1
}

Update
This method updates token properties. After a token asset is created, you can update only
the token_desc value and its custom properties.

Ctx.Token.Update(args ...interface{}) (interface{}, error)

Parameters:

• An asset that contains a reference to the token struct data of required type to update in
the ledger.

Returns:

• On success, a promise message with token details. On error, a rejection with an error
message.

Return Value Example:

{
 "AssetType": "otoken",
 "Token_id": "digiCurr101",
 "Token_name": "digicur",
 "Token_desc": "Digital Currency equiv of dollar",
 "Token_type": "fungible",
 "Behavior": ["divisible", "mintable", "transferable", "burnable",
"roles"],
 "Roles": {
 "minter_role_name": "minter"
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Divisible": {
 "Decimal": 2
 },
 "Currency_name": "",
 "Token_to_currency_ratio": 1
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-351

GetByRange
This method calls the fabric getStateByRange method internally. Even though any
asset with the given ID is returned from the ledger, this method casts the asset into
the caller Asset type.

Ctx.Token.GetByRange(startId string, endId string,
asset ...interface{}) ([]map[string]interface{}, error)

Parameters:

• startId: string – The starting key of the range. This key is included in the
range.

• endId: string – The end key of the range. This key is excluded from the range.

• asset[0] – An empty slice of the token of the required type. If the method runs
successfully, this contains the requested result.

Returns:

• On success, a slice of maps containing the token asset details for tokens where
the token_id value is in the specified range. On error, a non-nil error object
containing an error message.

Return Value Example:

[{
 "Key":
"oaccount~loyaltok123~a4bd3d8abfb1708198971311df77bb527233bcf9121ff95b0
526bc056c4b8974",
 "Record": {
 "AccountId":
"oaccount~loyaltok123~a4bd3d8abfb1708198971311df77bb527233bcf9121ff95b0
526bc056c4b8974",
 "AssetType": "oaccount",
 "Balance": 99,
 "BalanceOnHold": 1,
 "BapAccountVersion": 0,
 "OrgId": "Org1MSP",
 "TokenId": "t1",
 "TokenName": "loyaltok123",
 "UserId": "u1"
 }
}, {
 "Key":
"oaccount~loyaltok123~ac30c5ca924a2c7def61acf596d91e0cca70bc8cd233179df
4efb2791b56336b",
 "Record": {
 "AccountId":
"oaccount~loyaltok123~ac30c5ca924a2c7def61acf596d91e0cca70bc8cd233179df
4efb2791b56336b",
 "AssetType": "oaccount",
 "Balance": 0,
 "BalanceOnHold": 0,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-352

 "BapAccountVersion": 0,
 "OrgId": "Org1MSP",
 "TokenId": "t1",
 "TokenName": "loyaltok123",
 "UserId": "u2"
 }
}, {
 "Key":
"oaccount~loyaltok123~aef96c40d99e09ef17f9bdda7038e8fbe829a327bae2b4d8d9fcf75
2190f3ff0",
 "Record": {
 "AccountId":
"oaccount~loyaltok123~aef96c40d99e09ef17f9bdda7038e8fbe829a327bae2b4d8d9fcf75
2190f3ff0",
 "AssetType": "oaccount",
 "Balance": 0,
 "BapAccountVersion": 0,
 "BalanceOnHold": 0,
 "OrgId": "Org1MSP",
 "TokenId": "t1",
 "TokenName": "loyaltok123",
 "UserId": "admin"
 }
}, {
 "Key": "oadmin~Org1MSP~admin",
 "Record": {
 "AssetType": "oadmin",
 "Key": "oadmin~Org1MSP~admin",
 "OrgId": "Org1MSP",
 "UserId": "admin"
 }
}, {
 "Key": "ohold~loyaltok123~t1~op1",
 "Record": {
 "AssetType": "ohold",
 "FromAccountId":
"oaccount~loyaltok123~a4bd3d8abfb1708198971311df77bb527233bcf9121ff95b0526bc0
56c4b8974",
 "HoldingId": "ohold~loyaltok123~t1~op1",
 "NotaryAccountId":
"oaccount~loyaltok123~ac30c5ca924a2c7def61acf596d91e0cca70bc8cd233179df4efb27
91b56336b",
 "OperationId": "op1",
 "Quantity": 1,
 "TimeToExpiration": "0",
 "ToAccountId":
"oaccount~loyaltok123~aef96c40d99e09ef17f9bdda7038e8fbe829a327bae2b4d8d9fcf75
2190f3ff0",
 "TokenId": "t1",
 "TokenName": "loyaltok123"
 }
}, {
 "Key": "ometadata~loyaltok123~t1",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-353

 "Record": {
 "AssetType": "ometadata",
 "Metadata_id": "ometadata~loyaltok123~t1",
 "Token_id": "t1",
 "Token_name": "loyaltok123",
 "Total_minted_amount": 100,
 "Total_supply": 100
 }
}, {
 "Key":
"orole~t1~minter~oaccount~loyaltok123~a4bd3d8abfb1708198971311df77bb527
233bcf9121ff95b0526bc056c4b8974",
 "Record": {
 "AccountID":
"oaccount~loyaltok123~a4bd3d8abfb1708198971311df77bb527233bcf9121ff95b0
526bc056c4b8974",
 "AssetType": "orole",
 "Key":
"orole~t1~minter~oaccount~loyaltok123~a4bd3d8abfb1708198971311df77bb527
233bcf9121ff95b0526bc056c4b8974",
 "RoleName": "minter",
 "TokenId": "t1"
 }
}, {
 "Key":
"otransaction~4a774f6493f6521cab9eda96822cb3bb4103c0738ee2dbb9a193b868a
ce36fa5",
 "Record": {
 "Amount": 100,
 "AssetType": "otransaction",
 "FromAccountId": "",
 "HoldingId": "",
 "NumberOfSubTransactions": 0,
 "Timestamp": "2021-08-25T23:04:42+05:30",
 "ToAccountId":
"oaccount~loyaltok123~a4bd3d8abfb1708198971311df77bb527233bcf9121ff95b0
526bc056c4b8974",
 "TokenId": "t1",
 "TransactionId":
"otransaction~4a774f6493f6521cab9eda96822cb3bb4103c0738ee2dbb9a193b868a
ce36fa5",
 "TransactionType": "MINT"
 }
}, {
 "Key":
"otransaction~69f3cefbcb64b73f01a0eadff87169f456873ccebe61ca8da3eef3f46
5f0c129",
 "Record": {
 "Amount": 1,
 "AssetType": "otransaction",
 "FromAccountId":
"oaccount~loyaltok123~a4bd3d8abfb1708198971311df77bb527233bcf9121ff95b0
526bc056c4b8974",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-354

 "HoldingId": "ohold~loyaltok123~t1~op1",
 "NumberOfSubTransactions": 0,
 "Timestamp": "2021-08-25T23:06:13+05:30",
 "ToAccountId":
"oaccount~loyaltok123~aef96c40d99e09ef17f9bdda7038e8fbe829a327bae2b4d8d9fcf75
2190f3ff0",
 "TokenId": "t1",
 "TransactionId":
"otransaction~69f3cefbcb64b73f01a0eadff87169f456873ccebe61ca8da3eef3f465f0c12
9",
 "TransactionType": "ONHOLD"
 }
}, {
 "Key": "t1",
 "Record": {
 "AssetType": "otoken",
 "Behavior": ["divisible", "mintable", "transferable", "burnable",
"holdable", "roles"],
 "Currency_Name": "a",
 "Divisible": {
 "Decimal": 2
 },
 "Effective_From_Date": "2020-09-09T00:00:00Z",
 "Mintable": {
 "Max_mint_quantity": 10000
 },
 "Roles": {
 "minter_role_name": "minter"
 },
 "Token_To_Currency_Ratio": 1,
 "Token_desc": "",
 "Token_id": "t1",
 "Token_name": "loyaltok123",
 "Token_type": "fungible"
 }
}]

History
This method returns the token history for a specified token ID.

Ctx.Token.History(tokenId string) (interface{}, error)

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a JSON array that represents the token history.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-355

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2023-09-01T16:46:33Z",
 "TxId":
"12333b8a4f63aa9b3a34072efcbd7df546c6d1e7d82a7a9596e899383656d6f7",
 "Value": {
 "AssetType": "otoken",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "Currency_name1": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "minter_role_name": "minter"
 },
 "Token_desc": "updated description",
 "Token_id": "token",
 "Token_name": "fiatmoneytok",
 "Token_to_currency_ratio": 0,
 "Token_type": "fungible",
 "Token_unit": "fractional"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-09-01T16:04:25Z",
 "TxId":
"99702e2dad7554a5ee4716a0d01d3e394cbce39bea8bade265d8911f30ebad0b",
 "Value": {
 "AssetType": "otoken",
 "Behavior": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "Currency_name1": "",
 "Divisible": {
 "Decimal": 2
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-356

 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "minter_role_name": "minter"
 },
 "Token_desc": "",
 "Token_id": "token",
 "Token_name": "fiatmoneytok",
 "Token_to_currency_ratio": 0,
 "Token_type": "fungible",
 "Token_unit": "fractional"
 }
 }
]

Methods for Account Management

GenerateAccountId
This method returns an account ID, which is an alphanumeric set of characters, prefixed with
oaccount~<token asset name>~ and followed by a hash of the user name or email ID
(user_id) of the instance owner or the user who is logged in to the instance, the membership
service provider ID (org_id) of the user in the current network organization and the unique
token ID (token_id).

Ctx.Account.GenerateAccountId(token_id string, org_id string, user_id
string) (string, error)

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, the generated account ID. On error, a rejection with an error message.

Return Value Example:

oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642f
622f

CreateAccount
This method creates an account for a specified user and token. Every user who has tokens
at any point must have an account. Accounts track a user's balance, on-hold balance, and
transaction history. An account ID is an alphanumeric set of characters, prefixed with
oaccount~<token asset name>~ and followed by a hash of the user name or email ID
(user_id) of the instance owner or the user who is logged in to the instance, the membership

Chapter 7
Tokenization Support Using Blockchain App Builder

7-357

service provider ID (org_id) of the user in the current network organization. This
method can be called only by the Token Admin of the chaincode.

t.Ctx.Account.CreateAccount(org_id string, user_id string, token_type
string)

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

• token_type: string – The type of the token, which must be fungible.

Returns:

• On success, the account object that was created. On error, a rejection with an
error message.

Return Value Example:

{
 "AssetType":"oaccount",
"AccountId":"oaccount~a73085a385bc96c4a45aa2dff032e7dede82c0664dee5f396
b7c5854eeafd4bd",
 "UserId":"user1",
 "OrgId":"Org1MSP",
 "BapAccountVersion": 0,
 "AccountType":"fungible",
 "TokenId":"",
 "TokenName":"",
 "Balance":0,
 "BalanceOnHold":0
}

AssociateToken
This method associates a fungible token with an account. This method can be called
only by a Token Admin of the chaincode.

t.Ctx.Account.AssociateToken(account_id, token_id)

Parameters:

• account_id string – The ID of the account.

• token_id string – The ID of the token.

Returns:

• On success, a JSON object of the updated account.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-358

Return Value Example:

{
"AssetType":"oaccount",
"AccountId":"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54b
dbebf48eb",
"BapAccountVersion": 0,
"UserId":"admin",
"OrgId":"Org1MSP",
"AccountType":"fungible",
"TokenId":"token1",
"TokenName":"loyaltok",
"Balance":0,
"BalanceOnHold":0
}

GetAccountWithStatus
This method returns account details for a specified account, including account status.

Ctx.Account.GetAccountWithStatus(account_id string) (interface{}, error)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, the requested account details. On error, a rejection with an error message.

Return Value Example:

{
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "AssetType": "oaccount",
 "Balance": 95,
 "BalanceOnHold": 0,
 "BapAccountVersion": 8,
 "OrgId": "appdev",
 "Status": "active",
 "TokenId": "obp1",
 "TokenName": "obptok",
 "TokenType": "fungible",
 "UserId": "idcqa"
}

GetAccount
This method returns account details for a specified account.

Ctx.Account.GetAccount(account_id string) (Account, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-359

• account_id: string – The ID of the account.

Returns:

• On success, the requested account details. On error, a rejection with an error
message.

Return Value Example:

{
 "AssetType": "oaccount",
 "BapAccountVersion": 0,
 "AccountId":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "UserId": "user1",
 "OrgId": "Org1MSP",
 "TokenId": "digiCurr101",
 "TokenName": "digicur",
 "Balance": 0,
 "BalanceOnHold": 0
}

GetAccountHistory
This method returns an array of the account history details for a specified account.

Ctx.Account.History(account_id string) ([]interface{}, error)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, a map[string]interface{} array that contains the account history
details. The account data is shown under the Value key in the map. On error, a
non-nil error object containing an error message. The return value is the same as
the GetAccountHistory method.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2023-08-28T19:31:15Z",
 "TxId":
"adde470a63860ec1013bd5c5987e8a506a48942a91b0f39fc8e561374042bd27",
 "Value": {
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "AssetType": "oaccount",
 "Balance": 100,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-360

 "BalanceOnHold": 0,
 "BapAccountVersion": 1,
 "OrgId": "Org1MSP",
 "TokenId": "t1",
 "TokenName": "obptok",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-08-28T19:30:23Z",
 "TxId":
"8fbeda2ba60ba175091faae5ae369247775f2cba45c4d6d1ead6f0b05be84743",
 "Value": {
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "AssetType": "oaccount",
 "Balance": 0,
 "BalanceOnHold": 0,
 "BapAccountVersion": 0,
 "OrgId": "Org1MSP",
 "TokenId": "t1",
 "TokenName": "obptok",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-08-28T19:29:54Z",
 "TxId":
"19bb296ae71709e91b097ba5d9ebd7f7522095880382fbf5913334a46a6026aa",
 "Value": {
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "AssetType": "oaccount",
 "Balance": 0,
 "BalanceOnHold": 0,
 "BapAccountVersion": 0,
 "OrgId": "Org1MSP",
 "TokenId": "",
 "TokenName": "",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-361

GetAccountOnHoldBalance
This method returns the on-hold balance for a specified account.

Ctx.Account.getAccountOnHoldBalance(account_id: string)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, a promise object with the current on-hold balance and a success
message. On error, a non-nil error object containing an error message.

Return Value Example:

{
 "holding_balance":0,
 "msg":"Total Holding Balance of Account Id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (org_id: Org1MSP, user_id: user1) is 0"
}

GetAllAccounts
This method returns a list of all accounts. This method uses Berkeley DB SQL rich
queries and can only be called when connected to the remote Oracle Blockchain
Platform network.

Ctx.func (t *Controller) GetAllAccounts() (interface{}, error)

Parameters:

• none

Returns:

• On success, a JSON array that lists all accounts.

Return Value Example:

"payload": [
 {
 "key":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "valueJson": {
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "AssetType": "oaccount",
 "Balance": 100,
 "BalanceOnHold": 0,
 "BapAccountVersion": 1,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-362

 "OrgId": "appdev",
 "TokenId": "t1",
 "TokenName": "obptok",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 }
]

GetUserByAccountId
This method returns the user details for a specified account.

Ctx.Account.GetUserByAccountById(account_id string) (interface{}, error)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, a promise with a JSON object that includes three properties:

– user_id – The user name or email ID of the user.

– org_id – The membership service provider (MSP) ID of the user in the current
network organization.

– token_id – The ID of the token.

• On error, a non-nil error object containing an error message.

Return Value Example:

{
 "org_id":"Org1MSP",
 "token_id":"digiCurr101",
 "user_id":"user1"
}

GetAccountBalance
This method returns the account balance for a specified account.

Ctx.GetAccountBalance(token_id string, org_id string, user_id string)
(interface{}, error)

Parameters:

• account_id: string – The ID of the account.

Returns:

• On success, an interface with a message string and the current balance. On error, a
non-nil error object containing an error message.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-363

Return Value Example:

{
 "msg": "Current Balance of +p2uaMTsU9D74l9XpHQ2c55ic/
2gbO4NZITC4Zq4P8E= is: 200",
 "user_balance": 200
}

GetAllOrgAccounts
This method returns a list of all token accounts that belong to a specified organization.

Ctx.Account.GetAllOrgAccounts(org_id string) (interface{}, error)

Parameters:

• org_id: string – The membership service provider (MSP) ID of the
organization.

Returns:

• On success, a list of all accounts for the specified organization.

Return Value Example:

[
 {
 "key":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "valueJson": {
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "AssetType": "oaccount",
 "Balance": 0,
 "BalanceOnHold": 0,
 "BapAccountVersion": 0,
 "OrgId": "appdev",
 "TokenId": "token",
 "TokenName": "fiatmoneytok",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 },
 {
 "key":
"oaccount~9c650574af9025a6106c8d12a801b079eda9ae2e3399fc2fbd5bd683d738a
850",
 "valueJson": {
 "AccountId":
"oaccount~9c650574af9025a6106c8d12a801b079eda9ae2e3399fc2fbd5bd683d738a
850",
 "AssetType": "oaccount",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-364

 "Balance": 0,
 "BalanceOnHold": 0,
 "BapAccountVersion": 0,
 "OrgId": "appdev",
 "TokenId": "token",
 "TokenName": "fiatmoneytok",
 "TokenType": "fungible",
 "UserId": "example_minter"
 }
 }
]

Methods for Role Management

AddRoleMember
This method adds a role to a specified user and token.

Ctx.Token.AddRoleMember(role string, account_id string, tokenAsset
interface{}) (interface{}, error)

Parameters:

• role: string – The name of the role to add to the specified user. The mintable and
burnable behaviors correspond to the minter_role_name and burner_role_name
properties of the specification file. Similarly, the notary role corresponds to the
notary_role_name property of the specification file.

• account_id: number – The account ID to add the role to.

• tokenAsset – The tokenAsset argument contains the reference of the token data to
operate on.

Returns:

• On success, it returns a map with a success message indicating the addition of the role
to the account.. On error, a non-nil error object containing an error message.

Return Value Example:

{
 "msg":"Successfully added role minter to
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642f
622f (org_id : Org1MSP, user_id : user1)"
}

RemoveRoleMember
This method removes a role from a specified user and token.

Ctx.Token.RemoveRoleMember(role string, account_id string, tokenAsset
interface{}) (interface{}, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-365

• role: string – The name of the role to remove from to the specified user. The
mintable and burnable behaviors correspond to the minter_role_name and
burner_role_name properties of the specification file. Similarly, the notary role
corresponds to the notary_role_name property of the specification file.

• account_id: number – The account ID to remove the role from.

• tokenAsset – The tokenAsset argument contains the reference of the token data
to operate on.

Returns:

• On success, it returns a map with a success message indicating the removal of
the role from the account.. On error, a non-nil error object containing an error
message.

Return Value Example:

{
 "msg":"successfully removed member_id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (org_id : Org1MSP, user_id : user1) from role minter"
}

GetAccountsByRole
This method returns a list of all accounts for a specified role and token.

Ctx.Role.GetAccountsByRole(token_id string, user_role string)
(interface{}, error)

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to search for.

Returns:

• On success, a JSON array of account IDs. On error, a non-nil error object
containing an error message.

Return Value Example:

{"accounts":
["oaccount~obptok~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f"]}

GetUsersByRole
This method returns a list of all users for a specified role and token.

Ctx.Role.GetUsersByRole(token_id string, user_role string)
(interface{}, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-366

• token_id: string – The ID of the token.

• role: string – The name of the role to search for.

Returns:

• On success, a JSON array of user objects. On error, a non-nil error object containing an
error message.

Return Value Example:

{
 "Users": [
 {
 "token_id":"digiCurr101",
 "user_id": "user1",
 "org_id": "Org1MSP"
 }
]
}

IsInRole
This method indicates whether a user and token has a specified role.

Ctx.Token.IsInRole(role string, account_id string, tokenAsset interface{})
(bool, error)

Parameters:

• role: string – The name of the role to check.

• account_id: number – The account ID to check.

• tokenAsset – The tokenAsset argument contains the reference of the token data to
operate on.

Returns:

• On success, it returns a map with a success message indicating the removal of the role
from the account.. On error, a non-nil error object containing an error message.

Return Value Example:

{
 "result": false
}

RoleCheck
This method checks if the provided account ID is a member of any role.

Ctx.Token.RoleCheck(account_id string, tokenAsset interface{}) (bool, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-367

• account_id: string – The account ID to check.

• tokenAsset – The tokenAsset argument contains the reference of the token data
to operate on.

Returns:

• If the specified account has any role, a success message and the Boolean value
true. Otherwise, the Boolean value false. On error, a non-nil error object
containing an error message.

Return Value Example:

{ result: true }

GetOrgUsersByRole
This method returns information about all users that have a specified role in a
specified organization.

Ctx.Role.GetOrgUsersByRole(token_id string, user_role string, org_id
string) (interface{}, error)

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to check for.

• org_id: string – The membership service provider (MSP) ID of the
organization.

Returns:

• On success, a list of all users with the specified role in the specified organization.

Return Value Example:

{
 "Users": [
 {
 "org_id": "Org1MSP",
 "token_id": "token",
 "user_id": "admin"
 },
 {
 "org_id": "Org1MSP",
 "token_id": "token",
 "user_id": "orgAdmin"
 }
]
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-368

GetOrgAccountsByRole
This method returns information about all accounts that have a specified role in a specified
organization.

Ctx.Role.GetOrgAccountsByRole(token_id string, user_role string, org_id
string) (interface{}, error)

Parameters:

• token_id: string – The ID of the token.

• role: string – The name of the role to check for.

• org_id: string – The membership service provider (MSP) ID of the organization.

Returns:

• On success, a list of all accounts with the specified role in the specified organization.

Return Value Example:

{
 "accounts": [

"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf48eb",

"oaccount~9c650574af9025a6106c8d12a801b079eda9ae2e3399fc2fbd5bd683d738a850"
]
}

Methods for Transaction History Management

GetAccountTransactionHistory
This method returns an array of the transaction history details for a specified account.

Ctx.Account.GetAccountTransactionHistory(account_id string) (interface{},
error)

Parameters:

• account_id: string – The ID of the account.

Returns:

• The return value is the same as the GetAccountTransactionHistory method.

• On success, an array of JSON account transaction objects.

• On error, a non-nil error object containing an error message.

Return Value Example:

[
 {
 "NumberOfSubTransactions": 2,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-369

 "balance": 160,
 "onhold_balance": 0,
 "timestamp": "2023-09-06T06:51:48Z",
 "token_id": "t1",
 "transacted_amount": 20,
 "transaction_id":
"otransaction~bd3e8d7d0bcdbed0469a2fccfe95f7ebbeb1987d8385bccf5c84bf802
51e748c",
 "transaction_type": "BULKTRANSFER"
 },
 {
 "balance": 180,
 "onhold_balance": 0,
 "timestamp": "2023-09-06T06:47:14Z",
 "token_id": "t1",
 "transacted_account":
"oaccount~692a7465c01e36b694cb8ae86e6c6584240aa1f865fde54f95f32429eadd4
097",
 "transacted_amount": 10,
 "transaction_id":
"otransaction~250996f1df6a36a1b647f522efcaaf48fd70452d711c247fc4cd475b8
e752b08",
 "transaction_type": "DEBIT"
 },
 {
 "balance": 190,
 "onhold_balance": 0,
 "timestamp": "2023-09-06T06:47:08Z",
 "token_id": "t1",
 "transacted_account":
"oaccount~bb5a0b57d895327c8a8cd1f267310cbf3ae542bc854fab8188b5083a969d7
2fb",
 "transacted_amount": 10,
 "transaction_id":
"otransaction~664325a25ae6b19b23693c66f83811184e0a78fabb49122359a2dbf20
9f32976",
 "transaction_type": "DEBIT"
 },
 {
 "balance": 200,
 "onhold_balance": 0,
 "timestamp": "2023-09-06T06:46:46Z",
 "token_id": "t1",
 "transacted_account":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "transacted_amount": 100,
 "transaction_id":
"otransaction~7f49564b1eb61d4c8be0ef61cd5e635b533ca533907944e4ec500f390
237fd6b",
 "transaction_type": "MINT"
 },
 {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-370

 "balance": 100,
 "onhold_balance": 0,
 "timestamp": "2023-08-28T19:31:15Z",
 "token_id": "t1",
 "transacted_account":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "transacted_amount": 100,
 "transaction_id":
"otransaction~adde470a63860ec1013bd5c5987e8a506a48942a91b0f39fc8e561374042bd2
7",
 "transaction_type": "MINT"
 }
]

GetAccountTransactionHistoryWithFilters
This method returns an array of the transaction history details for a specified transaction.
This method can only be called when connected to the remote Oracle Blockchain Platform
network.

t.Ctx.Account.GetAccountTransactionHistoryWithFilters (transaction_id:
string, filters?: SubTransactionFilters)

Parameters:

• Transaction_id: string – The ID of the transaction.

• filters: string – An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the
default page size is 20. The Bookmark property determines the starting index of the
records to return. For more information, see the Hyperledger Fabric documentation. The
StartTime and EndTime properties must be specified in RFC-3339 format.

Example:
ochain invoke GetAccountTransactionHistoryWithFilters 'token1' 'appbuilder12'
'user_minter'
'{"PageSize":10,"Bookmark":"1","StartTime":"2022-01-25T17:41:42Z","EndTime":"20
22-01-25T17:59:10Z"}'

[
 {
 "balance": 90,
 "onhold_balance": 0,
 "timestamp": "2022-04-20T19:43:36Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~7a4d67118e623a876b77c67e76b819269a8d4a509aece5d2263fb274a9beb3b8",
 "transacted_amount": 5,
 "transaction_id":
"otransaction~dd9986d3686e52264935558e42026fbf8a9af48b06a3256a58b453f5ada4e63
6",
 "transaction_type": "DEBIT"
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-371

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

 {
 "balance": 95,
 "onhold_balance": 0,
 "timestamp": "2022-04-20T19:43:22Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~0642308fc4c514c257ebf04326c63f990e2531bfd59d0b952056094da61e0
4ab",
 "transacted_amount": 5,
 "transaction_id":
"otransaction~5e53424de3d691cf6b2a55ea3dc478c555d8784111c11847e594194d6
c2e7755",
 "transaction_type": "DEBIT"
 },
 {
 "balance": 100,
 "onhold_balance": 0,
 "timestamp": "2022-04-20T19:42:54Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~b63935592a702d30bedb87ae97b9b1ba7d0f346716adc4f5a4192220bf410
d4e",
 "transacted_amount": 100,
 "transaction_id":
"otransaction~94c467825ce9f66cc69958d38b169022a69eebc66b75b7d6e0b0585af
2c3c228",
 "transaction_type": "MINT"
 }
]

GetSubTransactionsById
This method returns an array of the transaction history details for a specified
transaction.

t.Ctx.Account.GetSubTransactionsById(transaction_id string)

Parameters:

• transaction_id: string – The ID of the transaction.

Example:
ochain invoke GetSubTransactionsById
'otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6f8
64b9b'

[
 {
 "balance": 80,
 "onhold_balance": 0,
 "timestamp": "2022-04-21T05:02:33Z",
 "token_id": "tokenId",
 "transacted_account":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-372

"oaccount~7a4d67118e623a876b77c67e76b819269a8d4a509aece5d2263fb274a9beb3b8",
 "transacted_amount": 5,
 "transaction_id":
"otransaction~33de5d63058d5e9abc011bc850878dfb7ac3080495729aed345c45b2f21735f
a~c81e728d9d4c2f636f067f89cc14862c",
 "transaction_type": "DEBIT"
 },
 {
 "balance": 85,
 "onhold_balance": 0,
 "timestamp": "2022-04-21T05:02:33Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~0642308fc4c514c257ebf04326c63f990e2531bfd59d0b952056094da61e04ab",
 "transacted_amount": 5,
 "transaction_id":
"otransaction~33de5d63058d5e9abc011bc850878dfb7ac3080495729aed345c45b2f21735f
a~c4ca4238a0b923820dcc509a6f75849b",
 "transaction_type": "DEBIT"
 }
]

GetSubTransactionsByIdWithFilters
This method returns an array of the transaction history details for a specified transaction.

t.Ctx.Account.GetSubTransactionsByIdWithFilters(transaction_id string,
filters ...SubTransactionFilters)

Parameters:

• transaction_id: string – The ID of the transaction.

• filters: string – An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the
default page size is 20. The Bookmark property determines the starting index of the
records to return. For more information, see the Hyperledger Fabric documentation. The
StartTime and EndTime properties must be specified in RFC-3339 format.

Example:
ochain invoke GetSubTransactionsByIdWithFilters
'otransaction~21972b4d206bd52ea77924efb259c67217edb23b4386580d1bee696f6f864b9b'
'{"PageSize":10,"Bookmark":"1"}'

[
 {
 "balance": 80,
 "onhold_balance": 0,
 "timestamp": "2022-04-21T05:02:33Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~7a4d67118e623a876b77c67e76b819269a8d4a509aece5d2263fb274a9beb3b8",
 "transacted_amount": 5,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-373

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

 "transaction_id":
"otransaction~33de5d63058d5e9abc011bc850878dfb7ac3080495729aed345c45b2f
21735fa~c81e728d9d4c2f636f067f89cc14862c",
 "transaction_type": "DEBIT"
 },
 {
 "balance": 85,
 "onhold_balance": 0,
 "timestamp": "2022-04-21T05:02:33Z",
 "token_id": "tokenId",
 "transacted_account":
"oaccount~0642308fc4c514c257ebf04326c63f990e2531bfd59d0b952056094da61e0
4ab",
 "transacted_amount": 5,
 "transaction_id":
"otransaction~33de5d63058d5e9abc011bc850878dfb7ac3080495729aed345c45b2f
21735fa~c4ca4238a0b923820dcc509a6f75849b",
 "transaction_type": "DEBIT"
 }
]

GetTransactionById
This method returns the history of a Transaction asset.

t.Ctx.Transaction.GetTransactionById(transaction_id string)

Parameters:

• transaction_id string – The ID of the transaction asset.

Return Value Example:

{
 "history": [
 {
 "IsDelete": "false",
 "Timestamp": "2021-08-16 20:19:05.028 +0530 IST",
 "TxId":
"67042154a6853011d111b13f73943f06d2a6ae3cfb9a84cb104482c359eb2220",
 "Value": {
 "Amount": 3,
 "AssetType": "otransaction",
 "FromAccountId":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "HoldingId": "ohold~digicur~digiCurr101~op2",
 "NumberOfSubTransactions": 0,
 "Timestamp": "2021-08-16T20:19:05+05:30",
 "ToAccountId":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "TokenId": "digiCurr101",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-374

 "TransactionId":
"otransaction~67042154a6853011d111b13f73943f06d2a6ae3cfb9a84cb104482c359eb222
0",
 "TransactionType": "RELEASEHOLD"
 }
 }
],
 "transaction_id":
"otransaction~67042154a6853011d111b13f73943f06d2a6ae3cfb9a84cb104482c359eb222
0"
}

DeleteHistoricalTransactions
This method deletes older transactions from the state database.

func (t *Controller) DeleteHistoricalTransactions(timestamp string)
(interface{}, error)

Parameters:

• time_to_expiration: Date – A time stamp that indicates when to delete transactions.
Transaction assets that are older than the specified time will be deleted..

Return Value Example:

"payload": {
 "msg": "Successfuly deleted transaction older than
date:2021-08-18T05:43:30Z",
 "transactions": [

"otransaction~57d81f681aa215bb73d6c017d16be8b283d3fcb50051c85891a97d1d407fc34
2"
]
}

Methods for Token Behavior Management - Mintable Behavior

Mint
This method mints tokens, which are then owned by the caller of the method. The caller
must have an account and the minter role. The number of tokens that can be minted is
limited by the max_mint_quantity property of mintable behavior in the specification file. If
the max_mint_quantity property is not specified, an unlimited number of tokens can be
minted. The quantity must be within the decimal values specified by the decimal parameter
of the divisible behavior in the specification file. This method can be called only by the
AccountOwner of the account with the minter role.

Ctx.Token.Mint(quantity float64, tokenAsset interface{}) (interface{}, error)

Parameters:

• quantity: number – The number of tokens to mint.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-375

• tokenAsset – The reference to the token asset to mint.

Returns:

• On success, a success message. On error, a non-nil error object containing an
error message.

Return Value Example:

{
 "msg":"Successfully minted 1000 tokens to Account Id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85
f0376152df (Org-Id: Org1MSP, User-Id: admin)"
}

GetTotalMintedTokens
This method returns the total number of tokens minted.

Ctx.Token.GetTotalMintedTokens(tokenAsset interface{})
(map[string]interface{}, error)

Parameters:

• tokenAsset – The tokenAsset argument contains the reference of the token data
to operate on.

Returns:

• On success, a success message and a map of total minted tokens in the number
data type. On error, a non-nil error object containing an error message.

Return Value Example:

{"msg":"total minted amount for token with id digiCurr101 is
0","quantity":0}

GetNetTokens
This method returns the net quantity of tokens that are available in the system for a
specified token. The net tokens are the amount of tokens remaining after tokens are
burned. In equation form: net tokens = total minted tokens - total burned tokens. If no
tokens are burned, then the number of net tokens is equal to the total minted tokens.

Ctx.Token.GetNetTokens(tokenAsset interface{})
(map[string]interface{}, error)

Parameters:

• tokenAsset – The tokenAsset argument contains the reference of the token data
to operate on.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-376

• On success, a success message and a map of the net quantity of tokens in the number
data type. On error, an error message.

Return Value Example:

{"msg":"net minted amount for token with id digiCurr101 is 0","quantity":0}

GetMaxMintQuantity
This method returns the maximum mintable quantity for a token. If the max_mint_quantity
behavior is not specified, then the default value is 0, which allows any number of tokens to
be minted.

Ctx.Token.GetMaxMintQuantity(token_id string) (float64, error)

Parameters:

• token_id: string – The token ID to check.

Returns:

• On success, the maximum mintable quantity of the token, in the number data type. On
error, a non-nil error object containing an error message.

Return Value Example:

20000

Methods for Token Behavior Management - Transferable Behavior

Transfer
This method transfers tokens from the caller to a specified account. The caller of the method
must have an account. The quantity must be within the decimal values specified by the
decimal parameter of the divisible behavior in the specification file. This method can be
called only by the AccountOwner of the account.

Ctx.Token.Transfer(to_account_id string, quantity float64, tokenAsset
interface{}) (interface{}, error)

Parameters:

• to_account_id: string – The account ID to receive the tokens.

• quantity: number – The total number of tokens to transfer.

• tokenAsset – The tokenAsset argument contains the reference of the token data to
operate on.

Returns:

• On success, a success message. On error, a non-nil error object containing an error
message. The return value is the same as the TransferTokens method.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-377

Return Value Example:

{ "msg":"Successfully transferred 50 tokens from account id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85
f0376152df (Org-Id: Org1MSP, User-Id: admin) to account id:
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (Org-Id: Org1MSP, User-Id: user1)"
}

BulkTransfer
This method is used to perform bulk transfer of tokens from the caller account to the
accounts that are specified in the flow object. The caller of this method must have an
account already created.

Ctx.Token.BulkTransfer(flow []map[string]interface{}, tokenAsset
interface{}) (interface{}, error)

Parameters:

• flow: object[] – An array of JSON objects specifying the receiver details and
quantity. The transfer quantity must be within the decimal values specified by the
decimal parameter of the divisible behavior in the specification file. For
example:

[{
 "to_org_id": "Org1MSP",
 "to_user_id": "user1",
 "quantity": 10
}, {
 "to_org_id": "Org1MSP",
 "to_user_id": "user2",
 "quantity": 10
}]

• tokenAsset – The tokenAsset argument contains the reference of the token data
to operate on.

Returns:

• On success, a success message that includes the number of tokens transferred.
On error, a non-nil error object containing an error message.

Return Value Example:

{
 "from_account_id":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "msg": "Successfully transferred 2 tokens from Account Id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (Org-Id: Org1MSP, User-Id: user1)",
 "sub_transactions": [

Chapter 7
Tokenization Support Using Blockchain App Builder

7-378

 {
 "amount": 1,
 "to_account_id":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471aaa1210
c706e"
 },
 {
 "amount": 1,
 "to_account_id":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f0376
152df"
 }
]
}

Methods for Token Behavior Management - Holdable Behavior

Hold
This method creates a hold on behalf of the owner of the tokens with the to_account_id
account. A notary account is specified, which is responsible to either complete or release the
hold. When the hold is created, the specified token balance from the payer is put on hold. A
held balance cannot be transferred until the hold is either completed or released. The caller
of this method must have an account already created.

Ctx.Token.Hold(operation_id string, to_account_id string, notary_account_id
string, quantity float64, TimeToExpiration string, tokenAsset))
(interface{}, error)

Parameters:

• operation_id: string – A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

• to_account_id: string – The ID of the account to receive the tokens.

• notary__account_id: string – The ID of the notary account.

• quantity: number – The total number of tokens to put on hold.

• time_to_expiration: date – The duration until the hold expires. Specify 0 for a
permanent hold. Otherwise use the RFC-3339 format. For example, 2021-06-02T12.

• tokenAsset – The tokenAsset argument contains the reference of the token data to
operate on.

Returns:

• On success, a success message. On error, a non-nil error object containing an error
message.

Return Value Example:

{
 "msg": "account id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f03761

Chapter 7
Tokenization Support Using Blockchain App Builder

7-379

52df (org_id : Org1MSP, user_id : user1) is successfully holding 10
tokens",
}

ExecuteHold
This method completes a hold on tokens, transferring the specified quantity of tokens
previously on hold to the receiver. If the quantity value is less than the actual hold
value, then the remaining amount is available again to the original owner of the
tokens. This method can be called only by the AccountOwner ID with the notary role.

Ctx.Token.ExecuteHold(operation_id string, quantity float64,
tokenAsset interface{}) (interface{}, error)

Parameters:

• operation_id: string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

• quantity: number – The total number of tokens to put on hold.

• tokenAsset – The tokenAsset argument contains the reference of the token data
to operate on.

Returns:

• On success, a success message. On error, a non-nil error object containing an
error message.

Return Value Example:

{"msg":"Account Id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f3
68642f622f (org_id : Org1MSP, user_id : user1) has successfully
executed '1' tokens(digiCurr101) from the hold with Operation Id
'op1'"}

ReleaseHold
This method releases a hold on tokens. The transfer is not completed and all held
tokens are available again to the original owner. This method can be called by the
Account Owner ID with the notary role within the specified time limit or by the payer,
payee, or notary after the specified time limit.

Ctx.Token.ReleaseHold(operation_id string, tokenAsset interface{})
(interface{}, error)

Parameters:

• operation_id: string – A unique ID to identify the hold operation. Typically this
ID is passed by the client application.

• tokenAsset – The tokenAsset argument contains the reference of the token data
to operate on.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-380

• On success, a success message. On error, a non-nil error object containing an error
message.

Return Value Example:

{"msg":"Successfully released '3' tokens from Operation Id 'op2' to Account
Id
oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f368642f
622f (org_id : Org1MSP, user_id : user1)"}

GetOnHoldIds
This method returns a list of all the holding IDs for a specified user and token.

Ctx.Account.GetOnHoldIDs(account_id string) (map[string]interface{}, error)

Parameters:

• token_id – The ID of the token.

• org_id – The membership service provider (MSP) ID of the user in the current network
organization.

• user_id – The user name or email ID of the user.

Returns:

• On success, a JSON object with the list of holding IDs. A holding ID is formed by
concatenating the asset type (ohold), the token name, the token ID, and the operation
ID.

Return Value Example:

{"holding_ids":["ohold~loyaltok123~t1~op1"],"msg":"Holding Ids are:
[ohold~loyaltok123~t1~op1]"}

GetOnHoldDetailsWithOperationID
This method returns the on-hold transaction details for a specified operation ID and token..

Ctx.Hold.GetOnHoldDetailsWithOperationID(token_id string, operation_id
string) (Hold, error)

Parameters:

• token_id: string – The ID of the token.

• operation_id: string – A unique ID that identifies the hold operation. Typically this ID
is passed by the client application.

Returns:

• The return value is the same as the GetOnHoldDetailsWithOperationId method.

• On success, a promise object that includes the on-hold transaction details for the
specified operation ID and token. The hold object includes the following properties:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-381

– holding_id – The holding ID of the transaction.

– operation_id: string – A unique ID to identify the hold operation. Typically
this ID is passed by the client application.

– from_account_id – The account ID of the current owner of the on-hold
tokens.

– to_account_id – The account ID of the receiver.

– notary_account_id – The account ID of the notary.

– token_id: string – The ID of the saved token.

– quantity – The amount of tokens that are on hold for the holding ID.

– time_to_expiration – The duration until the hold expires.

• On error, a non-nil error object containing an error message.

Return Value Example:

{
 "AssetType": "ohold",
 "HoldingId": "ohold~digicur~digiCurr101~op1",
 "OperationId": "op1",
 "TokenName": "digicur",
 "FromAccountId":
"oaccount~digicur~b4f45440aa2a7942db64443d047027e9d714d62cba5c3d546d64f
368642f622f",
 "ToAccountId":
"oaccount~digicur~38848e87296d67c8a90918f78cf55f9c9baab2cdc8c928535471a
aa1210c706e",
 "NotaryAccountId":
"oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d8
5f0376152df",
 "TokenId": "digiCurr101",
 "Quantity": 2,
 "TimeToExpiration": "0"
}

GetOnHoldBalanceWithOperationID
This method returns the on-hold balance for a specified operation ID and token..

Ctx.Hold.GetOnHoldBalanceWithOperationID(token_id string, operation_id
string) (map[string]interface{}, error)

Parameters:

• token_id: string – The ID of the token.

• operation_id: string – A unique ID that identifies the hold operation. Typically
this ID is passed by the client application.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-382

• On success, the on-hold balance of the specified operation ID and token. On error, a
non-nil error object containing an error message.

Return Value Example:

{
 "holding_balance": 10,
 "msg": "Current Holding Balance of OperationId opr_121 for token
digiCurr101 is : 10"
}

Methods for Token Behavior Management - Burnable Behavior

Burn
This method deactivates, or burns, tokens from the transaction caller's account. The caller of
this method must have an account and the burner role. The quantity must be within the
decimal values specified by the decimal parameter of the divisible behavior in the
specification file.

Ctx.Token.Burn(quantity float64 , tokenAsset interface{}) (interface{},
error)

Parameters:

• quantity: number – The total number of tokens to burn.

• tokenAsset – The tokenAsset argument contains the reference of the token data to
operate on.

Returns:

• On success, a success message. On error, a non-nil error object containing an error
message.

Return Value Example:

{
 "msg":"Successfully burned 10 tokens from account id:
oaccount~digicur~682bb71de419602af74e3f226345ae308445ca51010737900c1d85f03761
52df (Org-Id: Org1MSP, User-Id: admin)"
}

Go Methods for Token Conversion
Blockchain App Builder automatically generates methods that you can use to convert fungible
tokens that use the Token Taxonomy Framework standard.

The token conversion methods include the concept of the exchange pool. The exchange
pool account is funded by other token accounts. When you mint tokens, you can specify that
a percentage of the minted tokens are transferred to the exchange pool account.

• Token Conversion Process

• Automatically Generated Token Conversion Methods

• Token Conversion SDK Methods

Chapter 7
Tokenization Support Using Blockchain App Builder

7-383

Token Conversion Process

A typical flow for converting tokens follows these steps:

1. Call the InitializeExchangePoolUser method to initialize the exchange pool user.

2. Call the CreateExchangePoolAccounts method to create exchange pool accounts.
Create an exchange pool account for every type of fungible token that you want to
convert from or convert to.

3. Call the AddConversionRate method to set the conversion rate for each pair of
tokens that you want to convert between.

4. Fund the exchange pool token accounts in one of the following ways:

• Transfer tokens to the exchange pool token accounts using the standard
transfer methods.

• Call the MintWithFundingExchangePoolToken method when minting tokens,
which can transfer a percentage of minted tokens to an exchange pool
account.

5. Call the TokenConversion method to convert between two fungible tokens. A
single user can convert tokens between two of their token accounts, or a pair of
users can directly convert tokens from one account to another.

6. The exchange pool user can view the exchange pool account balances and
account transactions.

• Call the GetAccount method to view the balances of each of the exchange
pool token accounts.

• Call the GetAccountTransactionHistory and
GetAccountTransactionHistoryWithFilters methods to view account
transactions for each of the exchange pool token accounts.

Automatically Generated Token Conversion Methods

Blockchain App Builder automatically generates methods to convert between different
types of fungible tokens. Controller methods must be public to be invokable. Public
method names begin with an upper case character. Method names that begin with a
lower case character are private.

InitializeExchangePoolUser
This method initializes the exchange pool user, which is a one-time activity. This
method can be called only by a Token Admin of the chaincode.

func (t *Controller) InitializeExchangePoolUser(org_id string, user_id
string) (interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("TokenConversion.InitializeExchangePoolUs
er", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.TokenConvertor.InitializeExchangePoolUser(org_id,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-384

user_id)
}

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the exchange pool user.

Return Value Example:

{
 "AssetType": "oconversion",
 "ConvertorId":
"bcb1f3b1442c625d3ce205660c5e717c5858a1fe1e12c325df799a851ceaa09b",
 "OrgId": "Org1MSP",
 "UserId": "exchangepooluser"
}

CreateExchangePoolAccounts
This method creates exchange pool token accounts for a given array of token IDs. This
method can be called only by a Token Admin of the chaincode.

func (t *Controller) CreateExchangePoolAccounts(token_ids []string)
(interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("TokenConversion.InitializeExchangePoolUser",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 var tokens []interface{}
 for _, tokenId := range token_ids {
 token, err := t.getTokenObject(tokenId)
 if err != nil {
 return nil, fmt.Errorf("error in getting from_token asset
details. Error: %s", err)
 }
 tokens = append(tokens, token.Interface())
 }
 return t.Ctx.TokenConvertor.CreateExchangePoolAccounts(tokens)
}

Parameters:

• token_ids: string [] – An array of token IDs. You can specify up to ten token IDs.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-385

• On success, a list of objects that includes details of the exchange pool accounts
that were created.

Return Value Example:

[
 {
 "AccountId":
"oaccount~cc9d84f6d4a5976532493ef5200c9603e138adc35166ffd5fd1aad9c1647f
034",
 "Status": "created",
 "TokenId": "USD"
 },
 {
 "AccountId":
"oaccount~3d4933111ec8bd6cc1ebb43f2b2c390deb929cfa534f9c6ada8e63bac04a1
3c0",
 "Status": "created",
 "TokenId": "INR"
 }
]

AddConversionRate
This method adds a conversion rate for a pair of tokens. The token conversion rate
can be specified up to eight decimal places. This method can be called only by a
Token Admin of the chaincode.

func (t *Controller) AddConversionRate(from_token_id string,
to_token_id string, token_conversion_rate float64) (interface{},
error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("TokenConversion.AddConversionRate",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.TokenConvertor.AddConversionToken(from_token_id,
to_token_id, token_conversion_rate)
}

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

• token_conversion_rate: float64 – The rate at which to convert from_token_id
token to the to_token_id token.

Returns:

• On success, a JSON representation of the conversion rate object.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-386

Return Value Example:

{
 "AssetType": "oconversionRate",
 "ConvertorRateId":
"oconversionRate~79eacc670928bbc4c9ba4ebee135c8b4d6411af3110f8a9b782c383d5e18
b150",
 "FromTokenId": "USD",
 "ToTokenId": "INR",
 "ConversionRate": 10
}

GetConversionRate
This method gets the current conversion rate for a pair of tokens. This method can be called
by the Token Admin of the chaincode, any Org Admin, and by any token account owner.

func (t *Controller) GetConversionRate(from_token_id string, to_token_id
string) (interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("TokenConversion.GetConversionRate", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 conversionRateId, err :=
t.Ctx.TokenConversionRate.GetConversionRateId(from_token_id, to_token_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting conversationRateId. Error:
%s", err)
 }
 return t.Ctx.TokenConversionRate.Get(conversionRateId)
}

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

Returns:

• On success, a JSON representation of the conversion rate object.

Return Value Example:

{
 "AssetType": "oconversionRate",
 "ConvertorRateId":
"oconversionRate~79eacc670928bbc4c9ba4ebee135c8b4d6411af3110f8a9b782c383d5e18
b150",
 "FromTokenId": "USD",
 "ToTokenId": "INR",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-387

 "ConversionRate": 10
}

UpdateConversionRate
This method updates the current conversion rate for a pair of tokens. The token
conversion rate can be specified up to eight decimal places. This method can be
called only by a Token Admin of the chaincode.

func (t *Controller) UpdateConversionRate(from_token_id string,
to_token_id string, token_conversion_rate float64) (interface{},
error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("TokenConversion.UpdateConversionRate",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return
t.Ctx.TokenConvertor.UpdateTokenConversionRate(from_token_id,
to_token_id, token_conversion_rate)
}

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

• token_conversion_rate: float64 – The rate at which to convert from_token_id
token to the to_token_id token.

Returns:

• On success, a JSON representation of the updated conversion rate object.

Return Value Example:

{
 "AssetType": "oconversionRate",
 "ConvertorRateId":
"oconversionRate~79eacc670928bbc4c9ba4ebee135c8b4d6411af3110f8a9b782c38
3d5e18b150",
 "FromTokenId": "USD",
 "ToTokenId": "INR",
 "ConversionRate": 15
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-388

MintWithFundingExchangePool
This method mints tokens in the caller's account based on the specified token ID and
quantity. A percentage of tokens from the minted quantity is then transferred to the exchange
pool token account.

func (t *Controller) MintWithFundingExchangePool(token_id string,
token_quantity float64, percentage_token_to_exchangePool float64)
(interface{}, error) {
 token, err := t.getTokenObject(token_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting from_token asset details.
Error: %s", err)
 }
 return
t.Ctx.TokenConvertor.MintWithFundingExchangePool(token.Interface(),
token_quantity, percentage_token_to_exchangePool)
}

Parameters:

• token_id: string – The ID of the token to mint.

• token_quantity: float64 – The total number of tokens to mint.

• percentage_token_to_exchange_pool: float64 – The percentage of minted tokens to
transfer to the exchange pool token account.

Returns:

• On success, a message that indicates that minting and funding the exchange pool were
successful.

Return Value Example:

{
 "msg": "successfully minted 100 tokens to AccountId:
'oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1'
(OrgId: Org1MSP, User-Id: admin) and Successfully transfered 80 tokens to
exchange pool account with AccountId:
'oaccount~3d4933111ec8bd6cc1ebb43f2b2c390deb929cfa534f9c6ada8e63bac04a13c0'
(OrgId: Org1MSP, UserId: exchangepooluser) "
}

TokenConversion
This method converts tokens from the caller's account to the account specified by the
to_token_id, to_org_id, and to_user_id values. This method can be called by the Token
Admin of the chaincode and by any token account owner. An exchange pool user cannot call
this method.

func (t *Controller) TokenConversion(from_token_id string, to_token_id
string, to_org_id string, to_user_id string, token_quantity float64)
(interface{}, error) {
 auth, err :=

Chapter 7
Tokenization Support Using Blockchain App Builder

7-389

t.Ctx.Auth.CheckAuthorization("TokenConversion.TokenConversion",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 from_token, err := t.getTokenObject(from_token_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting from_token asset
details. Error: %s", err)
 }
 to_token, err := t.getTokenObject(to_token_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting to_token asset
details. error: %s", err)
 }
 return
t.Ctx.TokenConvertor.TokenConversion(from_token.Interface(),
to_token.Interface(), to_org_id, to_user_id, token_quantity)
}

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

• to_org_id: string – The membership service provider (MSP) ID of the user in
the current organization to receive the tokens.

• to_user_id: string – The user name or email ID of the user to receive the
tokens.

• token_quantity: float64 – The total number of tokens to transfer.

Returns:

• On success, a message that indicates the token conversion was successful.

Return Value Example:

{
 "msg": "succesfully converted 5 of tokens with tokenId: [USD] from
AccountId:
'oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf4
8eb' (OrgId: Org1MSP, UserId: admin) to 75 of tokens with tokenId:
[INR] to AccountId:
'oaccount~25e2e66718b6dbb59aea9c32acebec60e09d912b2578d4933d377ae5d0628
f1e' (OrgId: Org1MSP, UserId: user) as per the conversion rate of 15"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-390

GetConversionHistory
This method returns the token conversion history for a specified token account. This method
can be called by the Token Admin of the chaincode, an Org Admin of the specified
organization, and by the token account owner.

func (t *Controller) GetConversionHistory(token_id string, org_id string,
user_id string) (interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("TokenConversion.GetConversionHistory",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id, org_id,
user_id)
 if err != nil {
 return nil, fmt.Errorf("error in generating the accoint_id. Error:
%s", err)
 }
 return t.Ctx.Account.GetTokenConversionHistory(account_id, org_id,
user_id)
}

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON object with conversion history details.

Return Value Example:

[
 {
 "balance": 95,
 "conversion_rate": 15,
 "converted_amount": 75,
 "from_account_id":
"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf48eb",
 "from_token_id": "USD",
 "onhold_balance": 0,
 "timestamp": "2022-12-01T00:54:33+05:30",
 "to_account_id":
"oaccount~25e2e66718b6dbb59aea9c32acebec60e09d912b2578d4933d377ae5d0628f1e",
 "to_token_id": "INR",
 "transacted_amount": 5,
 "transaction_id":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-391

"otransaction~e1f5c32ab3cdc17a51ff0edda6bcc71b5acec3320a69f68a4ae455ed4
16657fa",
 "transaction_type": "TOKEN_CONVERSION_DEBIT"
 }
]

GetConversionRateHistory
This method returns the token conversion rate history for a pair of tokens. This
method can be called by the Token Admin of the chaincode, any Org Admin, and by
any token account owner.

func (t *Controller) GetConversionRateHistory(from_token_id string,
to_token_id string) (interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("TokenConversion.GetConversionRateHistory
", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 conversion_rate_id, err :=
t.Ctx.TokenConversionRate.GetConversionRateId(from_token_id,
to_token_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting conversionRateId.
Error: %s", err)
 }
 return t.Ctx.TokenConversionRate.History(conversion_rate_id)
}

Parameters:

• from_token_id: string – The ID of the token to convert from, for the purpose of
calculating the conversion rate.

• to_token_id: string – The ID of the token to convert to, for the purpose of
calculating the conversion rate.

Returns:

• On success, a JSON object with conversion rate history details.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-01T00:48:58+05:30",
 "TxId":
"d6c5332278d33beddbc48e535029af424fef2129bf49f4906f9b527e101d95f1",
 "Value": {
 "AssetType": "oconversionRate",
 "ConversionRate": 15,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-392

 "ConvertorRateId":
"oconversionRate~79eacc670928bbc4c9ba4ebee135c8b4d6411af3110f8a9b782c383d5e18
b150",
 "FromTokenId": "USD",
 "ToTokenId": "INR"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-01T00:47:15+05:30",
 "TxId":
"e8796578351e948827d5dfe242ab4be59019ae67d69d3bfd6db255a268d57017",
 "Value": {
 "AssetType": "oconversionRate",
 "ConversionRate": 10,
 "ConvertorRateId":
"oconversionRate~79eacc670928bbc4c9ba4ebee135c8b4d6411af3110f8a9b782c383d5e18
b150",
 "FromTokenId": "USD",
 "ToTokenId": "INR"
 }
 }
]

GetExchangePoolUser
This method returns the org_id and user_id values for the exchange pool user. This method
can be called only by a Token Admin of the chaincode.

func (t *Controller) GetExchangePoolUser() (interface{}, error) {
 auth, err :=
t.Ctx.Auth.CheckAuthorization("TokenConversion.GetExchangePoolUser", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.TokenConvertor.GetExchangePoolUser()
}

Parameters:

• none

Returns:

• On success, a message with information about the exchange pool user.

Return Value Example:

{
 "AssetType": "oconversion",
 "ConvertorId":
"bcb1f3b1442c625d3ce205660c5e717c5858a1fe1e12c325df799a851ceaa09b",
 "OrgId": "Org1MSP",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-393

 "UserId": "exchangepooluser"
}

Token Conversion SDK Methods

InitializeExchangePoolUser
This method initializes the exchange pool user, which is a one-time activity. This
method can be called only by a Token Admin of the chaincode.

Ctx.TokenConvertor.InitializeExchangePoolUser(org_id string, user_id
string) (interface{}, error)

Parameters:

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the exchange pool user.

Return Value Example:

{
 "AssetType": "oconversion",
 "ConvertorId":
"bcb1f3b1442c625d3ce205660c5e717c5858a1fe1e12c325df799a851ceaa09b",
 "OrgId": "Org1MSP",
 "UserId": "exchangepooluser"
}

CreateExchangePoolAccounts
This method creates exchange pool token accounts for a given array of token IDs.
This method can be called only by a Token Admin of the chaincode.

Ctx.TokenConvertor.CreateExchangePoolAccounts(tokens []interface{})
(interface{}, error)

Parameters:

• token_ids: string [] – An array of token IDs.

Returns:

• On success, a list of objects that includes details of the exchange pool accounts
that were created.

Return Value Example:

[
 {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-394

 "AccountId":
"oaccount~cc9d84f6d4a5976532493ef5200c9603e138adc35166ffd5fd1aad9c1647f034",
 "Status": "created",
 "TokenId": "USD"
 },
 {
 "AccountId":
"oaccount~3d4933111ec8bd6cc1ebb43f2b2c390deb929cfa534f9c6ada8e63bac04a13c0",
 "Status": "created",
 "TokenId": "INR"
 }
]

AddConversionToken
This method adds tokens with a new conversion rate for a specified token. The token
conversion rate can be specified up to eight decimal places. This method can be called only
by a Token Admin of the chaincode.

Ctx.TokenConvertor.AddConversionToken(from_token_id string, to_token_id
string, token_conversion_rate float64) (interface{}, error)

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

• token_conversion_rate: float64 – The rate at which to convert from_token_id token
to the to_token_id token.

Returns:

• On success, a JSON representation of the conversion rate object.

Return Value Example:

{
 "AssetType": "oconversionRate",
 "ConvertorRateId":
"oconversionRate~79eacc670928bbc4c9ba4ebee135c8b4d6411af3110f8a9b782c383d5e18
b150",
 "FromTokenId": "USD",
 "ToTokenId": "INR",
 "ConversionRate": 10
}

Get
This method gets the current conversion rate for a pair of tokens. This method can be called
by the Token Admin of the chaincode and by any token account owner.

Ctx.TokenConversionRate.Get(id string) (ConversionRate, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-395

• id: string – The ID of the token conversion rate object.

Returns:

• On success, a JSON representation of the conversion rate object.

Return Value Example:

{
 "AssetType": "oconversionRate",
 "ConvertorRateId":
"oconversionRate~79eacc670928bbc4c9ba4ebee135c8b4d6411af3110f8a9b782c38
3d5e18b150",
 "FromTokenId": "USD",
 "ToTokenId": "INR",
 "ConversionRate": 10
}

UpdateTokenConversionRate
This method updates the current conversion rate for a pair of tokens. The token
conversion rate can be specified up to eight decimal places. This method can be
called only by a Token Admin of the chaincode.

Ctx.TokenConvertor.UpdateTokenConversionRate(from_token_id string,
to_token_id string, token_conversion_rate float64) (interface{}, error)

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

• token_conversion_rate: float64 – The rate at which to convert from_token_id
token to the to_token_id token.

Returns:

• On success, a JSON representation of the updated conversion rate object.

Return Value Example:

{
 "AssetType": "oconversionRate",
 "ConvertorRateId":
"oconversionRate~79eacc670928bbc4c9ba4ebee135c8b4d6411af3110f8a9b782c38
3d5e18b150",
 "FromTokenId": "USD",
 "ToTokenId": "INR",
 "ConversionRate": 15
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-396

MintWithFundingExchangePool
This method mints tokens in the caller's account based on the specified token ID and
quantity. A percentage of tokens from the minted quantity is then transferred to the exchange
pool token account.

Ctx.TokenConvertor.MintWithFundingExchangePool(token interface{},
token_quantity float64, percentage_token_to_exchangePool float64)
(interface{}, error)

Parameters:

• token_id: string – The ID of the token to mint.

• token_quantity: float64 – The total number of tokens to mint.

• percentage_token_to_exchange_pool: float64 – The percentage of minted tokens to
transfer to the exchange pool token account.

Returns:

• On success, a message that indicates that minting and funding the exchange pool were
successful.

Return Value Example:

{
 "msg": "successfully minted 100 tokens to AccountId:
'oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1'
(OrgId: Org1MSP, User-Id: admin) and Successfully transfered 80 tokens to
exchange pool account with AccountId:
'oaccount~3d4933111ec8bd6cc1ebb43f2b2c390deb929cfa534f9c6ada8e63bac04a13c0'
(OrgId: Org1MSP, UserId: exchangepooluser) "
}

TokenConversion
This method converts tokens from the caller's account to the account specified by the
to_token_id, to_org_id, and to_user_id values. This method can be called by the Token
Admin of the chaincode and by any token account owner. An exchange pool user cannot call
this method.

Ctx.TokenConvertor.TokenConversion(from_token interface{}, to_token
interface{}, to_org_id string, to_user_id string, token_quantity float64)
(interface{}, error)

Parameters:

• from_token_id: string – The ID of the token to convert from.

• to_token_id: string – The ID of the token to convert to.

• to_org_id: string – The membership service provider (MSP) ID of the user in the
current organization to receive the tokens.

• to_user_id: string – The user name or email ID of the user to receive the tokens.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-397

Returns:

• On success, a message that indicates the token conversion was successful.

Return Value Example:

{
 "msg": "succesfully converted 5 of tokens with tokenId: [USD] from
AccountId:
'oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf4
8eb' (OrgId: Org1MSP, UserId: admin) to 75 of tokens with tokenId:
[INR] to AccountId:
'oaccount~25e2e66718b6dbb59aea9c32acebec60e09d912b2578d4933d377ae5d0628
f1e' (OrgId: Org1MSP, UserId: user) as per the conversion rate of 15"
}

GetTokenConversionHistory
This method returns the token conversion history for a specified token account. This
method can be called by the Token Admin of the chaincode and by the token account
owner.

Ctx.Account.GetTokenConversionHistory(account_id string, org_id
string, user_id string) (interface{}, error)

Parameters:

• account_id: string – The ID of the fungible token account.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON object with conversion history details.

Return Value Example:

[
 {
 "balance": 95,
 "conversion_rate": 15,
 "converted_amount": 75,
 "from_account_id":
"oaccount~abc74791148b761352b98df58035601b6f5480448ac2b4a3a7eb54bdbebf4
8eb",
 "from_token_id": "USD",
 "onhold_balance": 0,
 "timestamp": "2022-12-01T00:54:33+05:30",
 "to_account_id":
"oaccount~25e2e66718b6dbb59aea9c32acebec60e09d912b2578d4933d377ae5d0628
f1e",
 "to_token_id": "INR",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-398

 "transacted_amount": 5,
 "transaction_id":
"otransaction~e1f5c32ab3cdc17a51ff0edda6bcc71b5acec3320a69f68a4ae455ed416657f
a",
 "transaction_type": "TOKEN_CONVERSION_DEBIT"
 }
]

history
This method returns the token conversion rate history for a pair of tokens. This method can
be called by the Token Admin of the chaincode, any Org Admin, and by any token account
owner.

Ctx.TokenConversionRate.History(conversion_rate_id string) (interface{},
error)

Parameters:

• conversion_rate_id: string – The ID of the conversion rate object.

Returns:

• On success, a JSON object with conversion rate history details.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-01T00:48:58+05:30",
 "TxId":
"d6c5332278d33beddbc48e535029af424fef2129bf49f4906f9b527e101d95f1",
 "Value": {
 "AssetType": "oconversionRate",
 "ConversionRate": 15,
 "ConvertorRateId":
"oconversionRate~79eacc670928bbc4c9ba4ebee135c8b4d6411af3110f8a9b782c383d5e18
b150",
 "FromTokenId": "USD",
 "ToTokenId": "INR"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-01T00:47:15+05:30",
 "TxId":
"e8796578351e948827d5dfe242ab4be59019ae67d69d3bfd6db255a268d57017",
 "Value": {
 "AssetType": "oconversionRate",
 "ConversionRate": 10,
 "ConvertorRateId":
"oconversionRate~79eacc670928bbc4c9ba4ebee135c8b4d6411af3110f8a9b782c383d5e18
b150",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-399

 "FromTokenId": "USD",
 "ToTokenId": "INR"
 }
 }
]

GetExchangePoolUser
This method returns the org_id and user_id values for the exchange pool user. This
method can be called only by a Token Admin of the chaincode.

Ctx.TokenConvertor.GetExchangePoolUser()

Parameters:

• none

Returns:

• On success, a message with information about the exchange pool user.

Return Value Example:

{
 "AssetType": "oconversion",
 "ConvertorId":
"bcb1f3b1442c625d3ce205660c5e717c5858a1fe1e12c325df799a851ceaa09b",
 "OrgId": "Org1MSP",
 "UserId": "exchangepooluser"
}

Go Methods for Token Account Status
Blockchain App Builder automatically generates methods that you can use to manage
account status for fungible tokens that use the Token Taxonomy Framework standard.

You can use the following methods to put token user accounts in the active,
suspended, or deleted states.

When an account is suspended, the account user cannot complete any write
operations, which include minting, burning, transferring, and holding tokens.
Additionally, other users cannot transfer tokens to or hold tokens in a suspended
account. A suspended account can still complete read operations.

An account with a non-zero token balance cannot be deleted. You must transfer or
burn all tokens in an account before you can delete the account. After an account is in
the deleted state, the account state cannot be changed back to active or suspended.

• Automatically Generated Account Status Methods

• Account Status SDK Methods

Automatically Generated Account Status Methods

Blockchain App Builder automatically generates methods to manage token account
status. Controller methods must be public to be invokable. Public method names begin

Chapter 7
Tokenization Support Using Blockchain App Builder

7-400

with an upper case character. Method names that begin with a lower case character are
private.

GetAccountStatus
This method gets the current status of the token account. This method can be called by the
Token Admin of the chaincode, an Org Admin of the specified organization, or by the token
account owner. This method also supports data migration for existing chaincode that is
upgraded to a newer version.

func (t *Controller) GetAccountStatus(token_id string, org_id string,
user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id, org_id,
user_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
account_id of (Org-Id: %s, User-Id: %s)", org_id, user_id)
 }
 auth, err := t.Ctx.Auth.CheckAuthorization("AccountStatus.Get",
"TOKEN", map[string]string{"account_id": account_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 accountStatus, err := t.Ctx.AccountStatus.GetAccountStatus(account_id)
 if err != nil {
 return t.Ctx.AccountStatus.GetDefaultAccountStatus(account_id)
 }
 return accountStatus, nil
}

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the token account status.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "active"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-401

GetAccountStatusHistory
This method gets the history of the account status. This method can be called by the
Token Admin of the chaincode, an Org Admin of the specified organization, or by the
token account owner.

func (t *Controller) GetAccountStatusHistory(token_id string, org_id
string, user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
org_id, user_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
account_id of (Org-Id: %s, User-Id: %s)", org_id, user_id)
 }
 _, err = t.Ctx.Account.GetAccount(account_id)
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountStatusHistory:
%s", err)
 }
 auth, err := t.Ctx.Auth.CheckAuthorization("AccountStatus.Get",
"TOKEN", map[string]string{"account_id": account_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 status_id, err :=
t.Ctx.AccountStatus.GenerateAccountStatusId(account_id)
 if err != nil {
 return nil, err
 }
 account_status_history, err :=
t.Ctx.AccountStatus.History(status_id)
 if err != nil {
 return []map[string]interface{}{}, nil
 }
 return account_status_history, nil
}

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the account status history.

Return Value Example:

[
 {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-402

 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:20:34+05:30",
 "TxId":
"af1601c7a14b4becf4bb3b285d85553b39bf234caaf1cd488a284a31a2d9df78",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "AssetType": "oaccountStatus",
 "Status": "suspended",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:19:15+05:30",
 "TxId":
"4b307b989063e43add5357ab110e19174d586b9746cc8a30c9aa3a2b0b48a34e",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "AssetType": "oaccountStatus",
 "Status": "active",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7"
 }
 }
]

ActivateAccount
This method activates a token account. This method can be called only by a Token Admin of
the chaincode or by an Org Admin of the specified organization. Deleted accounts cannot be
activated.

func (t *Controller) ActivateAccount(token_id string, org_id string, user_id
string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id, org_id,
user_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
account_id of (Org-Id: %s, User-Id: %s)", org_id, user_id)
 }
 auth, err :=
t.Ctx.Auth.CheckAuthorization("AccountStatus.ActivateAccount", "TOKEN",
map[string]string{"org_id": org_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-403

 return t.Ctx.Account.ActivateAccount(account_id)
}

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "active"
}

SuspendAccount
This method suspends a token account. Suspended accounts can still complete read
operations. Users with suspended accounts cannot send, receive, mint, or burn
tokens. This method can be called only by a Token Admin of the chaincode or by an
Org Admin of the specified organization. After an account is suspended, you cannot
complete any operations that update the account. A deleted account cannot be
suspended.

func (t *Controller) SuspendAccount(token_id string, org_id string,
user_id string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id,
org_id, user_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
account_id of (Org-Id: %s, User-Id: %s)", org_id, user_id)
 }
 auth, err :=
t.Ctx.Auth.CheckAuthorization("AccountStatus.SuspendAccount", "TOKEN",
map[string]string{"org_id": org_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-404

 return t.Ctx.Account.SuspendAccount(account_id)
}

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the current
organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "suspended"
}

DeleteAccount
This method deletes a token account. This method can be called only by a Token Admin of
the chaincode or by an Org Admin of the specified organization. After an account is deleted,
you cannot complete any operations that update the account. The deleted account is in a
final state and cannot be changed to any other state. To delete an account, the account
balance and the on-hold balance must be zero.

func (t *Controller) DeleteAccount(token_id string, org_id string, user_id
string) (interface{}, error) {
 account_id, err := t.Ctx.Account.GenerateAccountId(token_id, org_id,
user_id)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
account_id of (Org-Id: %s, User-Id: %s)", org_id, user_id)
 }
 auth, err :=
t.Ctx.Auth.CheckAuthorization("AccountStatus.DeleteAccount", "TOKEN",
map[string]string{"org_id": org_id})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.Account.DeleteAccount(account_id)
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-405

Parameters:

• token_id: string – The ID of the token.

• org_id: string – The membership service provider (MSP) ID of the user in the
current organization.

• user_id: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "deleted"
}

Account Status SDK Methods

GetDefaultAccountStatus
This method gets the current status of a token account, with the status as active for
any account that does not have account status stored in the ledger (because the
account was created prior to the account status functionality).

Ctx.AccountStatus.GetDefaultAccountStatus(account_id string)
(FungibleAccountStatus, error)

Parameters:

• account_id: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-406

 "Status": "active"
}

GetAccountStatus
This method gets the current status of the token account.

Ctx.AccountStatus.GetAccountStatus(account_id string)
(FungibleAccountStatus, error)

Parameters:

• account_id: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "active"
}

SaveAccountStatus
This method saves the status object (if a status object is not present) for the token account,
and sets the status to the specified value.

Ctx.AccountStatus.SaveAccountStatus(account_id string, status string)

Parameters:

• account_id: string – The ID of the token account.

• status: string – The status to set for the specified account. Only three values are
supported: active, suspended, or deleted.

Returns:

• On success, a JSON representation of the account status object.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-407

 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "active"
}

GetAccountStatusHistory
This method gets the history of the account status.

Ctx.AccountStatus.History(status_id string) (interface{}, error)

Parameters:

• status_id: string – The ID of the account status object.

Returns:

• On success, a JSON representation of the account status history.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:20:34+05:30",
 "TxId":
"af1601c7a14b4becf4bb3b285d85553b39bf234caaf1cd488a284a31a2d9df78",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "AssetType": "oaccountStatus",
 "Status": "suspended",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:19:15+05:30",
 "TxId":
"4b307b989063e43add5357ab110e19174d586b9746cc8a30c9aa3a2b0b48a34e",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "AssetType": "oaccountStatus",
 "Status": "active",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7"
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-408

 }
]

ActivateAccount
This method activates a token account.

Ctx.Account.ActivateAccount(account_id: string) (interface{}, error)

Parameters:

• account_id: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "active"
}

SuspendAccount
This method suspends a token account.

Ctx.Account.SuspendAccount(account_id string) (interface{}, error)

Parameters:

• account_id: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-409

 "Status": "suspended"
}

DeleteAccount
This method deletes a token account.

Ctx.Account.DeleteAccount(account_id string) (interface{}, error)

Parameters:

• account_id: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "deleted"
}

ERC-721
Blockchain App Builder supports an extended version of the ERC-721 standard to
work with non-fungible tokens.

• Input Specification File for ERC-721

• Scaffolded TypeScript NFT Project for ERC-721

• Scaffolded Go NFT Project for ERC-721

Input Specification File for ERC-721
The Blockchain App Builder initialization command reads the input specification file
and generates the scaffolded project with several tools to assist in the chaincode
development process.

You can define standard assets and token assets that are based on the ERC-721
standard in the same specification file. The following restrictions apply to a
specification file that includes an ERC-721 token asset definition:

• You cannot define token assets based on more than one standard in the same
specification file.

• You cannot define multiple non-fungible token assets in a single specification file.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-410

Custom attribute values for non-fungible token assets can be updated by the token owner.

For information on including standard assets in the specification file, see Input Specification
File.

The following sample specification file for an ERC-721 token asset is available in the
Blockchain App Builder package:

• NFTArtCollectionMarketPlace with ERC-721-Typescript.yml
In addition to the standard properties and sections, non-fungible token assets support the
behavior, anatomy and metadata sections in the specification file. Non-fungible token assets
also support the standard and symbol properties. The following example shows the structure
of a specification file for an ERC-721 token asset:

assets:
 - name: ArtCollection #Asset name
 type: token #Asset type
 symbol: ART # Token symbol
 standard: erc721+ # Token standard

 anatomy:
 type: nonfungible # Token type
 unit: whole #Token unit

 behavior:
 - indivisible
 - singleton
 - mintable:
 max_mint_quantity: 20000
 - transferable
 - burnable
 - lockable
 - roles:
 minter_role_name: minter

 properties: # Custom asset attributes for non-fungible tokens

 - name: price # Custom asset attribute to set the price of a non-
fungible token in the marketplace
 type: number

 - name: on_sale_flag # Custom asset attribute maintains non-
fungible token selling status in the marketplace
 type: boolean

 metadata: # Use this section to maintain the metadata on the
blockchain. Only the user creating the non-fungible token can assign
metadata attribute values, which cannot be updated later.

 - name: painting_name
 type: string

 - name: description
 type: string

Chapter 7
Tokenization Support Using Blockchain App Builder

7-411

 - name: image
 type: string

 - name: painter_name
 type: string

Table 7-6 Parameter Descriptions and Examples for an ERC-721 Token Specification File

Entry Description Examples

type: You must specify
type: token in the
assets section.

assets:
 - name: ArtCollection #Asset name
 type: token #Asset type

symbol: The symbol property
represents the
symbol that identifies
the token contract, for
example ART.
Typically the symbol
is 3 to 4 characters
long.

symbol: ART # Token symbol

standard: The standard
property is
mandatory for non-
fungible tokens. It
represents the token
standard to follow
during chaincode
generation. In
Blockchain App
Builder, non-fungible
tokens follow a partial
version of the
ERC-721 standard.
For more information,
see Limitations.

standard: erc721+ # Token standard

anatomy: The anatomy section
has two mandatory
parameters for non-
fungible tokens:
• type:

nonfungible
A non-fungible
token is unique.

• unit: whole
A whole token
cannot be
subdivided into
smaller fractional
units.

anatomy:
 type: nonfungible # Token type
 unit: whole #Token unit

Chapter 7
Tokenization Support Using Blockchain App Builder

7-412

Table 7-6 (Cont.) Parameter Descriptions and Examples for an ERC-721 Token Specification File

Entry Description Examples

behavior: This section
describes the
capabilities and
restrictions of the
token. The
mintable,
transferable,
singleton, and
indivisible
behaviors are
mandatory for non-
fungible tokens.
• singleton: This

mandatory
behavior
supports a
restriction so that
there can be only
one whole token
in the class,
which cannot be
divided.

• indivisible:
This mandatory
behavior
supports a
restriction so that
whole tokens
cannot be
subdivided into
fractions.

• mintable: This
mandatory
behavior
supports minting
new token
instances. The
optional
max_mint_quan
tity parameter
specifies the
total number of
tokens that can
be minted. If you
do not specify
the
max_mint_quan
tity parameter,
any number of
tokens can be
minted.

• transferable:
This mandatory
behavior

behavior:
 - indivisible
 - singleton
 - mintable:
 max_mint_quantity: 20000
 - transferable
 - burnable
 - lockable
 - roles:
 minter_role_name: minter

Chapter 7
Tokenization Support Using Blockchain App Builder

7-413

Table 7-6 (Cont.) Parameter Descriptions and Examples for an ERC-721 Token Specification File

Entry Description Examples

supports
transferring
ownership of
tokens.

• burnable: This
optional behavior
supports
deactivating, or
burning, tokens.
Burning does not
delete a token
but instead
places it in a
permanent state
where it cannot
be used. Burning
is not reversible.

• lockable: This
behavior is
optional and is
supported only
by non-fungible
tokens. This
behavior allows
the token owner
to lock a non-
fungible token. A
locked token
cannot be
transferred to or
burned by any
other users.

• roles: This
optional behavior
restricts token
behaviors to
users with
specific roles.
Currently two
roles are
available:
minter_role_n
ame and
burner_role_n
ame. If you do
not specify roles,
then any user
can act as a
minter or burner.
For example, if
the burner role is
not specified,
any account user
implicitly has the

Chapter 7
Tokenization Support Using Blockchain App Builder

7-414

Table 7-6 (Cont.) Parameter Descriptions and Examples for an ERC-721 Token Specification File

Entry Description Examples

burner role. If the
burner role is
specified, then
during the token
setup process,
the Token
Admin user must
assign the
burner role to
other users
explicitly.

metadata: The metadata
property is optional
and is supported only
by non-fungible
tokens. This property
specifies metadata
information, which is
stored on the
blockchain, for a non-
fungible token.
Metadata attribute
values can be
assigned only by the
token owner who
mints the token, and
cannot be updated
after the token is
minted.

In the example, name
is the name of the
metadata attribute
and type is the type
of value that the
attribute has.

metadata:

 - name:
painting_name
 type: string

 - name:
description
 type: string

 - name: image
 type: string

 - name:
painter_name
 type: string

Limitations

Blockchain App Builder provides partial support for the ERC-721 standard. Currently, the
following ERC-721 events and methods are not supported.

Events:

• event Transfer
• event Approval
• event ApprovalForAll
Methods:

• approve
• getApproved
• setApprovalForAll

Chapter 7
Tokenization Support Using Blockchain App Builder

7-415

• isApprovedForAll

Scaffolded TypeScript NFT Project for ERC-721
Blockchain App Builder takes the input from your NFT specification file and generates
a fully-functional scaffolded chaincode project.

The project automatically generates NFT lifecycle classes and functions, including
CRUD and non-CRUD methods, as well as a tokenization SDK. Validation of
arguments, marshalling/unmarshalling, and transparent persistence capability are all
supported automatically.

For information on the scaffolded project and methods that are not directly related to
NFTs, see Scaffolded TypeScript Chaincode Project.

Reference:

• Model

• Controller

– Automatically Generated NFT Methods

– Custom Methods

• NFT SDK Methods

Model

Every tokenized model class extends the OchainModel class. Transparent Persistence
Capability, or simplified ORM, is captured in the OchainModel class.

import * as yup from 'yup';
import { Id, Mandatory, Validate, Default, Embedded, Derived,
ReadOnly } from '../../lib/decorators';
import { OchainModel } from '../../lib/ochain-model';
import { STRATEGY } from '../../lib/utils';
import { EmbeddedModel } from '../../lib/ochain-embedded-model';

export class ArtCollectionMetadata extends
EmbeddedModel<ArtCollectionMetadata> {
 @Validate(yup.string())
 public painting_name: string;

 @Validate(yup.string())
 public description: string;

 @Validate(yup.string())
 public image: string;

 @Validate(yup.string())
 public painter_name: string;

}

@Id('tokenId')
export class ArtCollection extends OchainModel<ArtCollection> {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-416

 public readonly assetType = 'otoken';

 @Mandatory()
 @Validate(yup.string().required().matches(/^[A-Za-z0-9][A-Za-
z0-9_-]*$/).max(16))
 public tokenId: string;

 @ReadOnly('artcollection')
 public tokenName: string;

 @Validate(yup.string().trim().max(256))
 public tokenDesc: string;

 @ReadOnly('ART')
 public symbol: string;

 @ReadOnly('erc721+')
 public tokenStandard: string;

 @ReadOnly('nonfungible')
 public tokenType: string;

 @ReadOnly('whole')
 public tokenUnit: string;

@ReadOnly(["indivisible","singleton","mintable","transferable","burnable","ro
les"])
 public behaviors: string[];

 @ReadOnly({minter_role_name: "minter"})
 public roles: object;

 @ReadOnly({max_mint_quantity: 20000})
 public mintable: object;

 @Validate(yup.string())
 public owner: string;

 @Validate(yup.string())
 public createdBy: string;

 @Validate(yup.string())
 public transferredBy: string;

 @Validate(yup.string())
 public creationDate: string;

 @Validate(yup.string())
 public transferredDate: string;

 @Validate(yup.bool())
 public isBurned: boolean;

 @Validate(yup.string())

Chapter 7
Tokenization Support Using Blockchain App Builder

7-417

 public burnedBy: string;

 @Validate(yup.string())
 public burnedDate: string;

 @Validate(yup.string().max(2000))
 public tokenUri: string;

 @Embedded(ArtCollectionMetadata)
 public metadata: ArtCollectionMetadata;

 @Validate(yup.number())
 public price: number;

 @Validate(yup.boolean())
 public on_sale_flag: boolean;

}

Controller

The main controller class extends the OchainController class. There is only one main
controller.

export class DigiCurrCCController extends OchainController{

You can create any number of classes, functions, or files, but only those methods that
are defined within the main controller class are invokable. The other methods are
hidden.

You can use the token SDK methods to write custom methods for your business
application.

Automatically Generated NFT Methods

Blockchain App Builder automatically generates methods to support NFTs and NFT life
cycles. You can use these methods to initialize NFTs, manage roles and accounts, and
complete other NFT lifecycle tasks without any additional coding. Controller methods
must have a @Validator(...params) decorator to be invokable.

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Burnable Behavior

Methods for Access Control Management

Chapter 7
Tokenization Support Using Blockchain App Builder

7-418

addTokenAdmin
This method adds a user as a Token Admin of the chaincode. This method can be called only
by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string())
public async addTokenAdmin(orgId: string, userId: string) {
 await this.Ctx.ERC721Auth.checkAuthorization('ERC721ADMIN.addAdmin',
'TOKEN');
 return await this.Ctx.ERC721Admin.addAdmin(orgId, userId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was added as a Token
Admin of the chaincode.

Return Value Example:

{"msg":"Successfully added Admin (orgId: Org1MSP, userId: User1)"}

removeTokenAdmin
This method removes a user as a Token Admin of the chaincode. This method can be called
only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string())
public async removeTokenAdmin(orgId: string, userId: string) {
 await this.Ctx.ERC721Auth.checkAuthorization('ERC721ADMIN.removeAdmin',
'TOKEN');
 return await this.Ctx.ERC721Admin.removeAdmin(orgId, userId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was removed as a Token
Admin of the chaincode.

Return Value Example:

{"msg": "Successfully removed Admin (orgId: Org1MSP, userId: User1)"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-419

isTokenAdmin
This method returns the Boolean value true if the caller of the function is a Token
Admin, otherwise it returns false. A Token Admin can call this function on any other
user in the blockchain network. Other users can call this method only on their own
accounts.

@GetMethod()
@Validator(yup.string(), yup.string())
public async isTokenAdmin(orgId: string, userId: string) {
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721ADMIN.isUserTokenAdmin',
'TOKEN');
 return await this.Ctx.ERC721Auth.isUserTokenAdmin(orgId, userId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• The method returns true if the caller is a Token Admin, otherwise it returns false.

Return Value Example:

{"result": true}

getAllTokenAdmins
This method returns a list of all users who are a Token Admin of the chaincode. This
method can be called only by the Token Admin of the chaincode.

@GetMethod()
@Validator()
public async getAllTokenAdmins() {
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721ADMIN.getAllAdmins',
'TOKEN');
 return await this.Ctx.ERC721Admin.getAllAdmins();
}

Parameters:

• none

Returns:

• On success, an admins array in JSON format that contains orgId and userId
objects.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-420

Return Value Example:

{"admins":[{"orgId":"Org1MSP","userId":"admin"}]}

Methods for Token Configuration Management

init
This method is called when the chaincode is instantiated. Every Token Admin is identified by
the userId and orgId information in the adminList parameter. The userId is the user name
or email ID of the instance owner or the user who is logged in to the instance. The orgId is
the membership service provider (MSP) ID of the user in the current network organization.
The adminList parameter is mandatory the first time you deploy the chaincode. If you are
upgrading the chaincode, pass an empty list ([]). Any other information in the adminList
parameter is ignored during upgrades.

@Validator(yup.array().of(yup.object()).nullable())
public async init(adminList: ERC721TokenAdminAsset[]) {
 await this.Ctx.ERC721Admin.initAdmin(adminList);
 await this.Ctx.ERC721Token.saveClassInfo(<NFT_NAME>);
 await this.Ctx.ERC721Token.saveDeleteTransactionInfo();
 return;
}

Parameters:

• adminList array – An array of {orgId, userId} information that specifies the list of
token admins. The adminList array is a mandatory parameter.

getAllTokens
This method returns all of the token assets that are saved in the state database. This method
can be called only by a Token Admin of the chaincode. This method uses Berkeley DB SQL
rich queries and can only be called when connected to the remote Oracle Blockchain
Platform network.

@GetMethod()
@Validator()
public async getAllTokens() {
 await this.Ctx.ERC721Auth.checkAuthorization('ERC721TOKEN.getAllTokens',
'TOKEN');
 return await this.Ctx.ERC721Token.getAllTokens();
}

Parameters:

• none

Returns:

• A list of all token assets in JSON format.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-421

Return Value Example:

[
 {
 "key": "monalisa",
 "valueJson": {
 "metadata": {
 "PaintingName": "Mona_Lisa",
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",
 "tokenName": "ravinft",
 "tokenDesc": "token Description",
 "symbol": "PNT",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "createdBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "creationDate": "2022-04-07T21:17:48.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 "NftBasePrice": 100
 }
 },
 {
 "key": "monalisa1",
 "valueJson": {
 "metadata": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-422

 "PaintingName": "Mona_Lisa",
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa1",
 "tokenName": "ravinft",
 "tokenDesc": "token Description",
 "symbol": "PNT",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "createdBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "creationDate": "2022-04-07T21:17:59.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 "NftBasePrice": 100
 }
 }
]

getAllTokensByUser
This method returns all of the token assets that are owned by a specified user. This method
uses Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network. This method can be called only by a Token Admin of the
chaincode or by the account owner.

@GetMethod()
@Validator(yup.string(), yup.string())
public async getAllTokensByUser(orgId: string, userId: string) {
 const accountId = await this.Ctx.ERC721Account.generateAccountId(orgId,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-423

userId);
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721TOKEN.getAllTokensByUser'
, 'TOKEN', { accountId });
 return await this.Ctx.ERC721Token.getAllTokensByUser(accountId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• A list of token assets in JSON format.

Return Value Example:

[
 {
 "key": "monalisa",
 "valueJson": {
 "metadata": {
 "PaintingName": "Mona_Lisa",
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",
 "tokenName": "ravinft",
 "tokenDesc": "token Description",
 "symbol": "PNT",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-424

"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "createdBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "creationDate": "2022-04-07T21:17:48.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 "NftBasePrice": 100
 }
 },
 {
 "key": "monalisa1",
 "valueJson": {
 "metadata": {
 "PaintingName": "Mona_Lisa",
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa1",
 "tokenName": "ravinft",
 "tokenDesc": "token Description",
 "symbol": "PNT",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "createdBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "creationDate": "2022-04-07T21:17:59.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 "NftBasePrice": 100

Chapter 7
Tokenization Support Using Blockchain App Builder

7-425

 }
 }
]

getTokenById
This method returns a token object if the token is present in the state database. This
method can be called only by a Token Admin of the chaincode or the token owner.

@GetMethod()
@Validator(yup.string())
public async getTokenById(tokenId: string) {
 await this.Ctx.ERC721Auth.checkAuthorization('ERC721TOKEN.get',
'TOKEN', { tokenId });
 let token = await this.getTokenObject(tokenId);
 return token;
}

Parameters:

• tokenId: string – The ID of the token to get.

Returns:

• The token asset in JSON format.

Return Value Example:

{
 "metadata": {
 "painting_name": "Mona_Lisa",
 "description": "Mona Lisa Painting",
 "image": "monalisa.jpeg",
 "painter_name": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",
 "tokenName": "artcollection",
 "tokenDesc": "token description",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-426

 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "transferredBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2022-04-05T08:30:42.000Z",
 "transferredDate": "2022-04-05T09:28:30.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 "price": 100,
 "on_sale_flag": true
}

getTokenHistory
This method returns the history for a specified token ID. This is an asynchronous method.
This method can only be called when connected to the remote Oracle Blockchain Platform
network. Anyone can call this method.

@GetMethod()
@Validator(yup.string())
public async getTokenHistory(tokenId: string) {
 // await this.Ctx.ERC721Auth.checkAuthorization('ERC721TOKEN.history',
'TOKEN');
 return await this.Ctx.ERC721Token.history(tokenId);
}

Parameters:

• tokenId: string – The ID of the token.

Return Value Example:

[
 {
 "trxId":
"ca4c07bf04240345de918cbf1f4f3da4b4d0ab044c5b8bea94343e427d9ed4e7",
 "timeStamp": 1649150910,
 "value": {
 "metadata": {
 "painting_name": "Mona_Lisa",
 "description": "Mona Lisa Painting",
 "image": "monalisa.jpeg",
 "painter_name": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-427

 "tokenName": "artcollection",
 "tokenDesc": "token description",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "transferredBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "creationDate": "2022-04-05T08:30:42.000Z",
 "transferredDate": "2022-04-05T09:28:30.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 "price": 100,
 "on_sale_flag": true
 }
 },
 {
 "trxId":
"cfb52ffc8c34c7fd86210fcf8c5f53d9f92a056c45ed3a33671d638020c1f9cb",
 "timeStamp": 1649149545,
 "value": {
 "metadata": {
 "painting_name": "Mona_Lisa",
 "description": "Mona Lisa Painting",
 "image": "monalisa.jpeg",
 "painter_name": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",
 "tokenName": "artcollection",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-428

 "tokenDesc": "token description",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "transferredBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2022-04-05T08:30:42.000Z",
 "transferredDate": "2022-04-05T09:05:45.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 "price": 100,
 "on_sale_flag": true
 }
 },
 {
 "trxId":
"702e61cc8d6d2982521023d0d5f3195900f35e146d6a90ef66daae551e6075d2",
 "timeStamp": 1649147729,
 "value": {
 "metadata": {
 "painting_name": "Mona_Lisa",
 "description": "Mona Lisa Painting",
 "image": "monalisa.jpeg",
 "painter_name": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",
 "tokenName": "artcollection",
 "tokenDesc": "token description",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-429

 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "creationDate": "2022-04-05T08:30:42.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 "price": 100,
 "on_sale_flag": true
 }
 },
 {
 "trxId":
"e7747b3001a170f88688620956320e9402e1dd8edad8afb4818a08a34647337c",
 "timeStamp": 1649147442,
 "value": {
 "metadata": {
 "painting_name": "Mona_Lisa",
 "description": "Mona Lisa Painting",
 "image": "monalisa.jpeg",
 "painter_name": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",
 "tokenName": "artcollection",
 "tokenDesc": "token description",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-430

 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2022-04-05T08:30:42.000Z",
 "isBurned": false,
 "tokenUri": "\"https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg\"",
 "price": 100,
 "on_sale_flag": false
 }
 }
]

getTokenObject
This is a utility method that returns an instance of the token for a specified token ID. This
method is used by many of the automatically generated methods to fetch token objects. You
can call this method as needed from your custom methods. When you create a tokenized
asset or class, update the switch case with the corresponding Token class to return the
correct token object. The ochain sync command in Blockchain App Builder automatically
creates a switch case when a tokenized asset is created in the specification file. This method
has no @Validator() method decorator, which means this method is not directly invokable
and can only be called from other methods.

public async getTokenObject<T extends OchainModel<any>>(tokenId: string):
Promise<T> {
 if (!tokenId) {
 throw Error('TokenID cannot be null/empty.');
 }
 const token = await this.Ctx.ERC721Token.get(tokenId);
 if (token.tokenName && token.assetType && token.assetType === 'otoken') {
 let tokenAsset;
 switch (token.tokenName) {
 case '<NFT_NAME in lowercase>':
 tokenAsset = new <NFT_NAME>(token, false, true);
 return tokenAsset;
 default:
 throw new Error(`No token exists with ID [${tokenId}]`);
 }
 } else {
 throw new Error(`No token exists with ID [${tokenId}]`);

Chapter 7
Tokenization Support Using Blockchain App Builder

7-431

 }
}

Parameters:

• tokenId: string – The ID of the token.

ownerOf
This method returns the account ID of the owner of the specified token ID. Anyone
can call this method.

@GetMethod()
@Validator(yup.string())
public async ownerOf(tokenId: string) {
 return await this.Ctx.ERC721Token.ownerOf(tokenId);
}

Parameters:

• tokenId: string – The ID of the token.

Returns:

• A JSON object of the owner's account ID.

Return Value Example:

{"owner":
"oaccount~d6d22c3167e3c6ab9ee5653e1a008c37c20cc47ebb0229ca0aedfafe64c67
5b8"}

name
This method returns the name of the token class. Anyone can call this method.

@GetMethod()
@Validator()
public async name() {
 return await this.Ctx.ERC721Token.name();
}

Parameters:

• none

Returns:

• A JSON object of the token name.

Return Value Example:

{"tokenName": "artcollection"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-432

symbol
This method returns the symbol of the token class. Anyone can call this method.

@GetMethod()
@Validator()
public async symbol() {
 return await this.Ctx.ERC721Token.symbol();
}

Parameters:

• none

Returns:

• A JSON object of the token symbol.

Return Value Example:

{"symbol": "PNT"}

tokenURI
This method returns the URI of a specified token. Anyone can call this method.

@GetMethod()
@Validator(yup.string())
public async tokenURI(tokenId: string) {
 return await this.Ctx.ERC721Token.tokenURI(tokenId);
}

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a JSON object of the token URI.

Return Value Example:

{"tokenURI": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
.ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg"}

totalSupply
This method returns the total number of minted tokens. This method can be called only by a
Token Admin of the chaincode.

@GetMethod()
@Validator()
public async totalSupply() {
 await this.Ctx.ERC721Auth.checkAuthorization('ERC721TOKEN.totalSupply',

Chapter 7
Tokenization Support Using Blockchain App Builder

7-433

'TOKEN');
 return await this.Ctx.ERC721Token.totalSupply();
}

Parameters:

• none

Returns:

• On success, a JSON object of the token count.

Return Value Example:

{"totalSupply": 3}

totalNetSupply
This method returns the total number of minted tokens minus the number of burned
tokens. This method can be called only by a Token Admin of the chaincode.

@GetMethod()
@Validator()
public async totalNetSupply() {
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721TOKEN.totalNetSupply',
'TOKEN');
 return await this.Ctx.ERC721Token.getTotalMintedTokens();
}

Parameters:

• none

Returns:

• On success, a JSON object of the token count.

Return Value Example:

{"totalNetSupply": 1}

Methods for Account Management

createAccount
This method creates an account for a specified user and token. An account must be
created for any user who will have tokens at any point. Accounts track the number of
NFTs a user has. Users must have accounts in the network to complete token-related
operations. You can create only one NFT account per user.
An account ID is an alphanumeric set of characters, prefixed with oaccount~ and
followed by an SHA-256 hash of the membership service provider ID (orgId) of the
user in the current network organization, the user name or email ID (userId) of the

Chapter 7
Tokenization Support Using Blockchain App Builder

7-434

instance owner or the user who is logged in to the instance, and the constant string nft. This
method can be called only by the Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string())
public async createAccount(org_id: string, user_id: string, token_type:
string) {
 await this.Ctx.Auth.checkAuthorization("ACCOUNT.createAccount", "TOKEN",
{ org_id });
 return await this.Ctx.Account.createAccount(org_id, user_id, token_type);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• tokenType: string – The only supported token type is nonfungible.

Returns:

• On success, a JSON object of the account that was created. The bapAccountVersion
parameter is defined in the account object for internal use.

Return Value Example:

{
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "bapAccountVersion": 0,
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 0
}

balanceOf
This method returns the total number of NFTs that a specified user holds. This method can
be called only by a Token Admin of the chaincode or by the account owner.

@GetMethod()
@Validator(yup.string(), yup.string())
 public async balanceOf(orgId: string, userId: string) {
 await this.Ctx.ERC721Auth.checkAuthorization('ERC721ACCOUNT.balanceOf',
'TOKEN', { orgId, userId });
 const accountId = await this.Ctx.ERC721Account.generateAccountId(orgId,
userId);
 return await this.Ctx.ERC721Account.balanceOf(accountId);
 }

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-435

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• A JSON object of the current NFT count.

Return Value Example:

{"totalNfts": 0}

getAllAccounts
This method returns a list of all accounts. This method can be called only by a Token
Admin of the chaincode. This method uses Berkeley DB SQL rich queries and can
only be called when connected to the remote Oracle Blockchain Platform network.

@GetMethod()
@Validator()
public async getAllAccounts() {
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721ACCOUNT.getAllAccounts',
'TOKEN');
 return await this.Ctx.ERC721Account.getAllAccounts();
}

Parameters:

• none

Returns:

• On success, a JSON array of all accounts.

Return Value Example:

[
 {
 "key":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "valueJson": {
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 1
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-436

 }
]

getAccountByUser
This method returns account details for a specified user. This method can be called only by a
Token Admin of the chaincode or the Account Owner of the account.

@GetMethod()
@Validator(yup.string(), yup.string())
public async getAccountByUser(orgId: string, userId: string) {
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721ACCOUNT.getAccountByUser',
'TOKEN', { orgId, userId });
 return await this.Ctx.ERC721Account.getAccountWithStatusByUser(orgId,
userId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON account object that includes the following properties:

• bapAccountVersion – An account object parameter for internal use.

• status – The current status of the user account.

• accountId – The ID of the user account.

• userId – The user name or email ID of the user.

• orgId – The membership service provider (MSP) ID of the user in the current
organization.

• tokenType – The type of token that the account holds.

• noOfNfts – The total number of NFTs held by the account.

Return Value Example:

{
 "bapAccountVersion": 0,
 "assetType": "oaccount",
 "status": "active",
 "accountId":
"oaccount~cc301bee057f14236a97d434909ec1084970921b008f6baab09c2a0f5f419a9a",
 "userId": "idcqa",
 "orgId": "appdev",
 "tokenType": "nonfungible",
 "noOfNfts": 0
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-437

getUserByAccountId
This method returns the user details of a specified account. This method can be
called by any user.

@GetMethod()
@Validator(yup.string())
public async getUserByAccountId(accountId: string) {
 return await this.Ctx.ERC721Account.getUserByAccountId(accountId);
}

Parameters:

• accountId: string – The ID of the account.

Returns:

• On success, a JSON object of the user details (orgId and userId).

Return Value Example:

{
 "userId": "admin",
 "orgId": "Org1MSP"
}

getAccountHistory
This method returns account history for a specified user. This is an asynchronous
method. This method can be called only by the Token Admin of the chaincode or by
the account owner.

@GetMethod()
@Validator(yup.string(), yup.string())
public async getAccountHistory(orgId: string, userId: string) {
 const accountId = await
this.Ctx.ERC721Account.generateAccountId(orgId, userId);
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721ACCOUNT.history',
'TOKEN', { accountId });
 return await this.Ctx.ERC721Account.history(accountId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON object of the account history. The bapAccountVersion
parameter is defined in the account object for internal use.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-438

Return Value Example:

[
 {
 "trxId":
"6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632bdaf5d4",
 "timeStamp": 1649151044,
 "value": {
 "assetType": "oaccount",
 "bapAccountVersion" : 5,
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 1
 }
 },
 {
 "trxId":
"a605f1fa62e511c2945fce5437f983a5e70ec814b82520d3ecd2d81e3ecf53a3",
 "timeStamp": 1649151022,
 "value": {
 "assetType": "oaccount",
 "bapAccountVersion" : 4,
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 2
 }
 },
 {
 "trxId":
"ca4c07bf04240345de918cbf1f4f3da4b4d0ab044c5b8bea94343e427d9ed4e7",
 "timeStamp": 1649150910,
 "value": {
 "assetType": "oaccount",
 "bapAccountVersion" : 3,
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 1
 }
 },
 {
 "trxId":
"cfb52ffc8c34c7fd86210fcf8c5f53d9f92a056c45ed3a33671d638020c1f9cb",
 "timeStamp": 1649149545,
 "value": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-439

 "assetType": "oaccount",
 "bapAccountVersion" : 2,
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 0
 }
 },
 {
 "trxId":
"e7747b3001a170f88688620956320e9402e1dd8edad8afb4818a08a34647337c",
 "timeStamp": 1649147442,
 "value": {
 "assetType": "oaccount",
 "bapAccountVersion" : 1,
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 1
 }
 },
 {
 "trxId":
"d2d1f9c898707ae831e9361bc25da6369eac37b10c87dc04d18d6f3808222f08",
 "timeStamp": 1649137534,
 "value": {
 "assetType": "oaccount",
 "bapAccountVersion" : 0,
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 0
 }
 }
]

Methods for Role Management

Chapter 7
Tokenization Support Using Blockchain App Builder

7-440

addRole
This method adds a role to a specified user. This method can be called only by a Token
Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string())
public async addRole(role: string, orgId: string, userId: string) {
 const accountId = await this.Ctx.ERC721Account.generateAccountId(orgId,
userId);
 await this.Ctx.ERC721Auth.checkAuthorization('ERC721TOKEN.addRoleMember',
'TOKEN');
 return await this.Ctx.ERC721Token.addRoleMember(role, accountId);
}

Parameters:

• role: string – The name of the role to add to the specified user. The mintable and
burnable behaviors correspond to the minter_role_name and burner_role_name
properties of the specification file.

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message with account details.

Return Value Example:

{"msg": "Successfully added role 'minter' to Account Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d
(Org-Id: Org1MSP, User-Id: admin)"}

removeRole
This method removes a role from a specified user. This method can be called only by a
Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string())
public async removeRole(role: string, orgId: string, userId: string) {
 const accountId = await this.Ctx.ERC721Account.generateAccountId(orgId,
userId);
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721TOKEN.removeRoleMember',
'TOKEN');
 return await this.Ctx.ERC721Token.removeRoleMember(role, accountId);
}

Parameters:

• role: string – The name of the role to remove from the specified user. The mintable
and burnable behaviors correspond to the minter_role_name and burner_role_name
properties of the specification file.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-441

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message with account details.

Return Value Example:

{"msg": "Successfully removed role 'minter' from Account Id:
oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729d
ba (Org-Id: Org1MSP, User-Id: user1)"}

getAccountsByRole
This method returns a list of all account IDs for a specified role. This method can be
called only by a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string())
public async getAccountsByRole(role: string) {
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721ROLE.getAccountsByRole',
'TOKEN');
 return await this.Ctx.ERC721Role.getAccountsByRole(role);
}

Parameters:

• role: string – The name of the role to search for.

Returns:

• On success, a JSON array of account IDs.

Return Value Example:

{
 "accounts": [

"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d"
]
}

getUsersByRole
This method returns a list of all users for a specified role. This method can be called
only by a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string())
public async getUsersByRole(role: string) {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-442

 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721ROLE.getUsersByRole', 'TOKEN');
 return await this.Ctx.ERC721Role.getUsersByRole(role);
}

Parameters:

• role: string – The name of the role to search for.

Returns:

• On success, a JSON array of the user objects (orgId and userId).

Return Value Example:

{
 "users": [
 {
 "userId": "admin",
 "orgId": "Org1MSP"
 }
]
}

isInRole
This method returns a Boolean value to indicate if a user has a specified role. This method
can be called only by a Token Admin of the chaincode or the Account Owner of the account.

@GetMethod()
@Validator(yup.string(), yup.string(), yup.string())
public async isInRole(orgId: string, userId: string, role: string) {
 const accountId = await this.Ctx.ERC721Account.generateAccountId(orgId,
userId);
 await this.Ctx.ERC721Auth.checkAuthorization('ERC721TOKEN.isInRole',
'TOKEN',{ accountId });
 return { result: await this.Ctx.ERC721Token.isInRole(role, accountId) };
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• role: string – The name of the role to search for.

Returns:

• On success, a JSON string of the Boolean result.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-443

Return Value Example:

{"result":"true"}

Methods for Transaction History Management

getAccountTransactionHistory
This method returns account transaction history for a specified user. This is an
asynchronous method. This method can be called only by the Token Admin of the
chaincode or by the account owner.

@GetMethod()
@Validator(yup.string(), yup.string())
public async getAccountTransactionHistory(orgId: string, userId:
string) {
 const accountId = await
this.Ctx.ERC721Account.generateAccountId(orgId, userId);
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721ACCOUNT.getAccountTransac
tionHistory', 'TOKEN', { accountId });
 return await
this.Ctx.ERC721Account.getAccountTransactionHistory(accountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Return Value Example:

[
 {
 "transactionId":
"otransaction~6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632
bdaf5d4",
 "timestamp": "2022-04-05T09:30:44.000Z",
 "tokenId": "monalisa1",
 "noOfNfts": 1,
 "transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "transactionType": "BURN"
 },
 {
 "transactionId":
"otransaction~a605f1fa62e511c2945fce5437f983a5e70ec814b82520d3ecd2d81e3
ecf53a3",
 "timestamp": "2022-04-05T09:30:22.000Z",
 "tokenId": "monalisa1",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-444

 "transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "transactionType": "MINT"
 },
 {
 "transactionId":
"otransaction~ca4c07bf04240345de918cbf1f4f3da4b4d0ab044c5b8bea94343e427d9ed4e
7",
 "timestamp": "2022-04-05T09:28:30.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba",
 "transactionType": "CREDIT"
 },
 {
 "transactionId":
"otransaction~cfb52ffc8c34c7fd86210fcf8c5f53d9f92a056c45ed3a33671d638020c1f9c
b",
 "timestamp": "2022-04-05T09:05:45.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba",
 "transactionType": "DEBIT"
 },
 {
 "transactionId":
"otransaction~e7747b3001a170f88688620956320e9402e1dd8edad8afb4818a08a34647337
c",
 "timestamp": "2022-04-05T08:30:42.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "transactionType": "MINT"
 }
]

getAccountTransactionHistoryWithFilters
This method returns account transaction history for a specified user, filtered by PageSize,
Bookmark, startTime and endTime. This is an asynchronous method. This method can only
be called when connected to the remote Oracle Blockchain Platform network. This method
can be called only by the Token Admin of the chaincode or by the account owner.

@GetMethod()
@Validator(yup.string(), yup.string(), yup.object().nullable())
public async getAccountTransactionHistoryWithFilters(orgId: string, userId:
string, filters ?: Filters) {
 const accountId = await this.Ctx.ERC721Account.generateAccountId(orgId,
userId);
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721ACCOUNT.getAccountTransactionHi
storyWithFilters', 'TOKEN', { accountId });
 return await

Chapter 7
Tokenization Support Using Blockchain App Builder

7-445

this.Ctx.ERC721Account.getAccountTransactionHistoryWithFilters(accountI
d, filters)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• filters: object – An object of the Filter class that contains four attributes:
pageSize, bookmark, startTime and endTime.

Return Value Example:

[
 {
 "transactionId":
"otransaction~6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632
bdaf5d4",
 "timestamp": "2022-04-05T09:30:44.000Z",
 "tokenId": "monalisa1",
 "transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "transactionType": "BURN"
 },
 {
 "transactionId":
"otransaction~a605f1fa62e511c2945fce5437f983a5e70ec814b82520d3ecd2d81e3
ecf53a3",
 "timestamp": "2022-04-05T09:30:22.000Z",
 "tokenId": "monalisa1",
 "transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "transactionType": "MINT"
 },
 {
 "transactionId":
"otransaction~ca4c07bf04240345de918cbf1f4f3da4b4d0ab044c5b8bea94343e427
d9ed4e7",
 "timestamp": "2022-04-05T09:28:30.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729
dba",
 "transactionType": "CREDIT"
 },
 {
 "transactionId":
"otransaction~cfb52ffc8c34c7fd86210fcf8c5f53d9f92a056c45ed3a33671d63802
0c1f9cb",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-446

 "timestamp": "2022-04-05T09:05:45.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba",
 "transactionType": "DEBIT"
 },
 {
 "transactionId":
"otransaction~e7747b3001a170f88688620956320e9402e1dd8edad8afb4818a08a34647337
c",
 "timestamp": "2022-04-05T08:30:42.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "transactionType": "MINT"
 }
]

getTransactionById
This method returns transaction history for a specified transaction ID. This is an
asynchronous method. This method can be called only by a Token Admin of the chaincode or
by the account owner.

@GetMethod()
@Validator(yup.string())
public async getTransactionById(transactionId: string) {
 return await
this.Ctx.ERC721Transaction.getTransactionById(transactionId);
}

Parameters:

• transactionId: string – The id of the transaction, which is the prefix otransaction~
followed by the 64-bit hash in hexadecimal format.

Return Value Example:

{
 "transactionId":
"otransaction~6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632bdaf5d
4",
 "history": [
 {
 "trxId":
"6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632bdaf5d4",
 "timeStamp": 1649151044,
 "value": {
 "assetType": "otransaction",
 "transactionId":
"otransaction~6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632bdaf5d
4",
 "tokenId": "monalisa1",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-447

 "fromAccountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "toAccountId": "",
 "triggeredByAccountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "transactionType": "BURN",
 "timestamp": "2022-04-05T09:30:44.000Z",
 }
 }
]
}

deleteHistoricalTransactions
This method deletes transactions older than a specified time stamp in the state
database. This is an asynchronous method. This method can be called only by a
Token Admin of the chaincode.

@Validator(yup.date())
public async deleteHistoricalTransactions(timeToExpiration: Date) {
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721TRANSACTION.deleteTransac
tions', 'TOKEN');
 return await
this.Ctx.ERC721Transaction.deleteTransactions(timeToExpiration);
}

Parameters:

• timestamp: string – A time stamp. All transactions before the time stamp will be
deleted.

Return Value Example:

{
 "msg": "Successfuly deleted transaction older than date: Thu Apr
07 2022 21:18:59 GMT+0000 (Coordinated Universal Time).",
 "transactions": [

"otransaction~30513757d8b647fffaafac440d743635f5c1b2e41b25ebd6b70b5bbf7
8a2643f",

"otransaction~ac0e908c735297941ba58bb208ee61ff4816a1e54c090d68024f82adf
743892b"
]
}

Methods for Token Behavior Management - Mintable Behavior

create<Token Name>Token
This method creates (mints) an NFT. The asset and associated properties are saved
in the state database. The caller of this transaction must have a token account. The

Chapter 7
Tokenization Support Using Blockchain App Builder

7-448

caller of this transaction becomes the owner of the NFT. If the token specification file
includes the roles section for behaviors and the minter_role_name property for roles, then
the caller of the transaction must have the minter role. Otherwise, any caller can mint NFTs.

@Validator(< Token Class >)
public async create< Token Name >Token(tokenAsset: <Token Class>) {
 return await this.Ctx.ERC721Token.createToken(tokenAsset);
}

Parameters:

• tokenAsset: <Token Class> – The token asset to mint. For more information about the
properties of the token asset, see the input specification file.

Returns:

• On success, a JSON token asset object that includes the following properties:

• metadata – JSON information that describes the token.

• createdBy – The account ID of the user who called the transaction to mint the token.

• creationDate – The time stamp of the transaction.

• isBurned – A Boolean value that indicates if the NFT identified by tokenId is burned.

• tokenName – The name of the token.

• tokenDesc – The description of the token.

• symbol – The symbol of the token.

• tokenStandard – The standard of the token.

• tokenType – The type of token held by this account.

• tokenUnit – The unit of the token.

• behaviors – A description of all token behaviors.

• mintable – A description of the properties of mintable behavior. The max_mint_quantity
property specifies the maximum number of NFTs of this token class that can be created.

• owner – The account ID of the current owner of the token. During the minting process,
the caller of this method becomes the owner of the token.

• tokenUri – The URI of the token.

Return Value Example:

{
 "metadata": {
 "painting_name": "Mona_Lisa",
 "description": "Mona Lisa Painting",
 "image": "monalisa.jpeg",
 "painter_name": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-449

 "tokenName": "artcollection",
 "tokenDesc": "token description",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "creationDate": "2022-04-05T08:30:42.000Z",
 "isBurned": false,
 "tokenUri": "\"https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg\"",
 "price": 100,
 "on_sale_flag": false
}

update<Token Name>Token
This method updates token properties. This method can be called only by the user
who is the owner or creator of the token. After a token asset is created, only the token
owner can update the token custom properties. If the user is both token owner and
creator of a token, they can also update the TokenDesc property. Token metadata
cannot be updated. You must pass all token properties to this method, even if you
want to update only certain properties.

@Validator(<Token Class>)
public async update<Token name>Token(tokenAsset: <Token Class>) {
 return await this.Ctx.ERC721Token.updateToken(tokenAsset);
}

Parameters:

• tokenAsset: <Token Class> – The token asset to update. For more information
about the properties of the token asset, see the input specification file.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-450

Returns:

• On success, an updated JSON token asset object

Return Value Example:

{
 "metadata": {
 "painting_name": "Mona_Lisa",
 "description": "Mona Lisa Painting",
 "image": "monalisa.jpeg",
 "painter_name": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",
 "tokenName": "artcollection",
 "tokenDesc": "token description",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2022-04-05T08:30:42.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 "price": 100,
 "on_sale_flag": true
}

Methods for Token Behavior Management - Transferable Behavior

safeTransferFrom
This is an asynchronous function. This method transfers ownership of the specified NFT
from the caller to another account. This method includes the following validations:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-451

• The token exists and is not burned.

• The sender account and receiver account exist and are not the same account.

• The sender account owns the token.

• The caller of the function is the sender.

@Validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.string(), yup.string().max(2000))
public async safeTransferFrom(fromOrgId: string, fromUserId: string,
toOrgId: string, toUserId: string, tokenId: string, data?: string) {
 const tokenAsset = await this.getTokenObject(tokenId);
 const fromAccountId = await
this.Ctx.ERC721Account.generateAccountId(fromOrgId, fromUserId);
 const toAccountId = await
this.Ctx.ERC721Account.generateAccountId(toOrgId, toUserId);
 return await this.Ctx.ERC721Token.safeTransferFrom(fromAccountId,
toAccountId, tokenAsset, data);
}

Parameters:

• fromOrgId: string – The membership service provider (MSP) ID of the sender
and token owner in the current organization.

• fromUserId: string – The user name or email ID of the sender and token owner.

• toOrgId: string – The membership service provider (MSP) ID of the receiver in
the current organization.

• toUserId: string – The user name or email ID of the receiver.

• tokenId: string – The ID of the token to transfer.

• data: string – Optional additional information to store in the transaction record.

Returns:

• On success, a message with the sender and receiver account details.

Return Value Example:

{"msg": "Successfully transferred NFT token: 'monalisa' from Account-
Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad128
8d (Org-Id: Org1MSP, User-Id: admin) to Account-Id:
oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729d
ba (Org-Id: Org1MSP, User-Id: user1)"}

transferFrom
This is an asynchronous function. This method transfers ownership of the specified
NFT from a sender account to a receiver account. It is the responsibility of the caller
to pass the correct parameters. This method can be called by any user, not only the
token owner. This method includes the following validations:

• The token exists and is not burned.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-452

• The sender account and receiver account exist and are not the same account.

• The sender account owns the token.

@Validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.string())
public async transferFrom(fromOrgId: string, fromUserId: string, toOrgId:
string, toUserId: string, tokenId: string) {
 const tokenAsset = await this.getTokenObject(tokenId);
 const fromAccountId = await
this.Ctx.ERC721Account.generateAccountId(fromOrgId, fromUserId);
 const toAccountId = await
this.Ctx.ERC721Account.generateAccountId(toOrgId, toUserId);
 return await this.Ctx.ERC721Token.transferFrom(fromAccountId,
toAccountId, tokenAsset);
}

Parameters:

• fromOrgId: string – The membership service provider (MSP) ID of the sender in the
current organization.

• fromUserId: string – The user name or email ID of the sender.

• toOrgId: string – The membership service provider (MSP) ID of the receiver in the
current organization.

• toUserId: string – The user name or email ID of the receiver.

• tokenId: string – The ID of the token to transfer.

Returns:

• On success, a message with the sender and receiver account details.

Return Value Example:

{"msg": "Successfully transferred NFT token: 'monalisa' from Account-Id:
oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba
(Org-Id: Org1MSP, User-Id: user1) to Account-Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d
(Org-Id: Org1MSP, User-Id: admin)"}

Methods for Token Behavior Management - Burnable Behavior

burn
This method deactivates, or burns, the specified NFT from the caller's account. The caller of
this method must have an account. A token cannot be burned unless the token specification
file includes the burnable behavior. If no burner_role_name property is specified in the
roles section of the specification file, then the owner of the token can burn the token. If a

Chapter 7
Tokenization Support Using Blockchain App Builder

7-453

burner_role_name property is specified in the roles section, then the user assigned
the burner role who is also the minter (creator) or owner of the token can burn the
token.

@Validator(yup.string())
public async burn(tokenId: string) {
 const tokenAsset = await this.getTokenObject(tokenId);
 return await this.Ctx.ERC721Token.burn(tokenAsset);
}

Parameters:

• tokenId: string – The ID of the token to burn.

Returns:

• On success, a message with the account details.

Return Value Example:

{"msg": "Successfully burned NFT token: 'monalisa1' from Account-Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad128
8d (Org-Id: Org1MSP, User-Id: admin)"}

burnNFT
This method deactivates, or burns, the specified NFT from the caller's account, and
returns a token object and token history. The caller of this method must have an
account. A token cannot be burned unless the token specification file includes the
burnable behavior. If no burner_role_name property is specified in the roles section
of the specification file, then the owner of the token can burn the token. If a
burner_role_name property is specified in the roles section, then the user assigned
the burner role who is also the minter (creator) or owner of the token can burn the
token.

@Validator(yup.string())
public async burnNFT(tokenId: string) {
 const token = await this.Ctx.ERC721Token.get(tokenId)
 if (token.isBurned === true) {
 throw new Error(`token with tokenId ${tokenId} is already
burned`);
 }
 const tokenHistory = await this.Ctx.ERC721Token.history(tokenId);
 await this.burn(tokenId);
 token.tokenId = parseInt(token.tokenId);
 if(Number.isNaN(token.tokenId)) {
 throw new Error(`tokenId is expected to be integer but found $
{tokenId}`)
 }
 token.isBurned = true;
 return {...token, tokenHistory: JSON.stringify(tokenHistory)};
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-454

• tokenId: string – The ID of the token to burn.

Returns:

• On success, a token object that includes token history information.

Return Value Example:

{
 "assetType": "otoken",
 "tokenId": 1,
 "tokenName": "artcollection",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2023-08-22T07:36:50.000Z",
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "isBurned": true,
 "tokenUri": "example.com",
 "price": 120,
 "on_sale_flag": false,
 "tokenHistory":
"[{\"trxId\":\"732438a85b5e8fc76c5254e54602b29d583543b103fafb5a28c0df384428bb
50\",\"timeStamp\":\"2023-08-22T07:36:50.000Z\",\"value\":
{\"assetType\":\"otoken\",\"tokenId\":\"1\",\"tokenName\":\"artcollection\",\
"symbol\":\"ART\",\"tokenStandard\":\"erc721+
\",\"tokenType\":\"nonfungible\",\"tokenUnit\":\"whole\",\"behaviors\":
[\"indivisible\",\"singleton\",\"mintable\",\"transferable\",\"burnable\",\"r
oles\"],\"roles\":{\"minter_role_name\":\"minter\"},\"mintable\":
{\"max_mint_quantity\":20000},\"createdBy\":\"oaccount~42e89f4c72dfde95028148
76423c6da630d466e87436dd1aae201d347ad1288d\",\"creationDate\":\"2023-08-22T07
:36:50.000Z\",\"owner\":\"oaccount~42e89f4c72dfde9502814876423c6da630d466e874
36dd1aae201d347ad1288d\",\"isBurned\":false,\"tokenUri\":\"example.com\",\"pr
ice\":120,\"on_sale_flag\":false}}]"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-455

Custom Methods

You can use the token SDK methods to write custom methods for your business
application.

The following example shows how to use token SDK methods in custom methods.
When the sell method is called, it posts a token for sale for a specified price.

@Validator(yup.string(), yup.number())
public async sell(token_id: string, selling_price: number) {
 try {
 const token = await this.Ctx.ERC721Token.get(token_id);
 const t = new ArtCollection(token)
 /** * price is a custom asset
 attribute to set the price of a non-fungible token in the
 marketplace */
 t.price = selling_price;
 /** * on_sale_flag is a
 custom asset attribute that maintains non-fungible token selling
status in the
 marketplace */
 t.on_sale_flag = true;
 await this.Ctx.ERC721Token.updateToken(t);
 let msg = `Token ID : '${token_id}' has been posted for
selling in the marketplace'`;
 return {msg}
 } catch(error) {
 throw new Error(error.message);
 }
}

NFT SDK Methods

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Burnable Behavior

Methods for Access Control Management

The NFT SDK provides an access control function. Some methods can be called only
by a Token Admin or Account Owner of the token. You can use this feature to ensure
that operations are carried out only by the intended users. Any unauthorized access

Chapter 7
Tokenization Support Using Blockchain App Builder

7-456

results in an error. To use the access control function, import the Authorization class from
the ../lib/erc721-auth module.

import { ERC721Authorization } from '../lib/erc721-auth';

checkAuthorization
Use this method to add an access control check to an operation. This is an asynchronous
function. Most automatically generated methods include access control. Certain token
methods can be run only by the ERC721Admin or Account Owner of the token or by the
MultipleAccountOwner for users with multiple accounts. The checkAuthorization method is
part of the Authorization class, which you access via the Ctx object. The access control
mapping is described in the ../lib/constant.ts file, as shown in the following text. You
can modify access control by editing the ../lib/constant.ts file. To use your own
access control or to disable access control, remove the access control code from the
automatically generated controller methods and custom methods.

export const TOKENACCESS = {
 ADMIN: {
 isUserTokenAdmin: ['Admin', 'MultipleAccountOwner'],
 addAdmin: ['Admin'],
 removeAdmin: ['Admin'],
 getAllAdmins: ['Admin'],
 },
 TOKEN: {
 save: ['Admin'],
 getAllTokens: ['Admin'],
 get: ['Admin'],
 update: ['Admin'],
 getDecimals: ['Admin'],
 getTokensByName: ['Admin'],
 addRoleMember: ['Admin'],
 removeRoleMember: ['Admin'],
 isInRole: ['Admin', 'AccountOwner'],
 getTotalMintedTokens: ['Admin'],
 getNetTokens: ['Admin'],
 },
 ROLE: {
 getAccountsByRole: ['Admin'],
 getUsersByRole: ['Admin'],
 },
 TRANSACTION: {
 deleteTransactions: ['Admin'],
 },
 ACCOUNT: {
 createAccount: ['Admin'],
 getAllAccounts: ['Admin'],
 getAccountsByUser: ['Admin', 'MultipleAccountOwner'],
 getAccount: ['Admin', 'AccountOwner'],
 history: ['Admin', 'AccountOwner'],
 getAccountTransactionHistory: ['Admin', 'AccountOwner'],
 getAccountBalance: ['Admin', 'AccountOwner'],
 getAccountOnHoldBalance: ['Admin', 'AccountOwner'],

Chapter 7
Tokenization Support Using Blockchain App Builder

7-457

 getOnHoldIds: ['Admin', 'AccountOwner'],
 },
 ERC721ADMIN: {
 isUserTokenAdmin: ['Admin'],
 addAdmin: ['Admin'],
 removeAdmin: ['Admin'],
 getAllAdmins: ['Admin'],
 },
 ERC721TOKEN: {
 getAllTokens: ['Admin'],
 getAllTokensByUser: ['Admin', 'AccountOwner'],
 get: ['Admin', TOKEN_OWNER],
 getTokensByName: ['Admin'],
 addRoleMember: ['Admin'],
 removeRoleMember: ['Admin'],
 isInRole: ['Admin', 'AccountOwner'],
 totalSupply: ['Admin'],
 totalNetSupply: ['Admin'],
 history: ['Admin'],
 },
 ERC721ROLE: {
 getAccountsByRole: ['Admin'],
 getUsersByRole: ['Admin'],
 },
 ERC721TRANSACTION: {
 deleteTransactions: ['Admin'],
 },
 ERC721ACCOUNT: {
 createAccount: ['Admin'],
 getAllAccounts: ['Admin'],
 getAccountsByUser: ['Admin', 'MultipleAccountOwner'],
 history: ['Admin', 'AccountOwner'],
 getAccountTransactionHistory: ['Admin', 'AccountOwner'],
 getAccountTransactionHistoryWithFilters: ['Admin', 'AccountOwner'],
 balanceOf: ['Admin', 'MultipleAccountOwner'],
 }
}

Ctx.ERC721Auth.checkAuthorization(classFuncName: string, ...args)

Parameters:

• classFuncName: string – The map value between the class and methods as
described in the ../lib/constant.ts file.

• ...args – A variable argument where args[0] takes the constant 'TOKEN' and
args[1] takes the accountId parameter to add an access control check for an
AccountOwner. To add an access control check for a MultipleAccountOwner,
args[1] takes the orgId parameter and args[2] takes the userId parameter.

Returns:

• On success, a promise. On error, a rejection with an error message.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-458

Examples:
Admin access

await this.Ctx.ERC721Auth.checkAuthorization('ADMIN.addAdmin', 'TOKEN');

AccountOwner access

await this.Ctx.ERC721Auth.checkAuthorization('ACCOUNT.getAccountBalance',
'TOKEN', accountId);

MultipleAccountOwner access

await this.Ctx.ERC721Auth.checkAuthorization('ADMIN.isUserTokenAdmin',
'TOKEN', orgId, userId);

isUserTokenAdmin
This method returns the Boolean value true if the caller of the function is a Token Admin.
Otherwise the method returns false. This is an asynchronous static function.

Ctx.ERC721Auth.isUserTokenAdmin(orgId: string, userId: string)

Parameters:

• orgId – The membership service provider (MSP) ID of the user in the current network
organization.

• userId – The user name or email ID of the user.

Returns:

• A Boolean response and an error message if an error is encountered.

Example:
await this.Ctx.Auth.isUserTokenAdmin('Org1MSP', 'user1');

{"result":false}

addAdmin
This method adds a user as a Token Admin of the token chaincode.

Ctx.ERC721Admin.addAdmin(orgId: string, userId: string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-459

• On success, a message that lists details for the user added as a Token Admin of
the token chaincode. On error, a non-nil error object that contains an error
message.

Example:
await this.Ctx.ERC721Admin.addAdmin(orgId, userId)

{"msg": "Successfully added Admin (orgId: Org1MSP, userId: user1)"}

removeAdmin
This method removes a user as a Token Admin of the token chaincode.

Ctx.ERC721Admin.removeAdmin(orgId: string, userId: string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that lists details for the user removed as a Token Admin
of the token chaincode. On error, a non-nil error object that contains an error
message.

Example:
await this.Ctx.ERC721Admin.RemoveAdmin(orgId, userId)

{"msg": "Successfully removed Admin (orgId: Org1MSP, userId: user1)"}

getAllAdmins
This method returns a list of all Token Admin users.

Ctx.ERC721Admin.getAllAdmins()

Parameters:

• none

Returns:

• On success, a list of all Token Admin users. On error, a non-nil error object that
contains an error message.

Example:
await this.Ctx.ERC721Admin.getAllAdmins()

{
 "admins": [
 {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-460

 "orgId": "Org1MSP",
 "userId": "admin"
 }
]
}

Methods for Token Configuration Management

The token configuration management methods are based on the ERC-721 standard. To use
the token configuration management methods, import the Token class from the ../lib/
erc721-token module.

totalSupply
This method returns the total number of minted NFTs. This is an asynchronous function.

Ctx.ERC721Token.totalSupply()

Parameters:

• none

Returns:

• On success, the total net tokens, in the number data type. On error, it returns with an
error message.

Example:
await this.Ctx.ERC721Token.totalSupply(tokenAsset);

2000

get
This method returns the specified token object if it is present in the state database. This is an
asynchronous static function.

Ctx.ERC721Token.get(tokenId: string)

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a promise that includes a JSON object of the token asset. On error, a
rejection with an error message

Example:
await this.Ctx.ERC721Token.get(tokenId);

{
 "metadata": {
 "painting_name": "Mona_Lisa",
 "description": "Mona Lisa Painting",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-461

 "image": "monalisa.jpeg",
 "painter_name": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",
 "tokenName": "artcollection",
 "tokenDesc": "token description",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "transferredBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "creationDate": "2022-04-05T08:30:42.000Z",
 "transferredDate": "2022-04-05T09:28:30.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 "price": 100,
 "on_sale_flag": true
}

isTokenType
This method indicates whether a token asset exists with the specified ID. This is an
asynchronous static function.

Ctx.ERC721Token.isTokenType(tokenId: string)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-462

• tokenId: string – The ID of the token.

Returns:

• On success, a promise with true if a token asset exists with the specified ID. On error,
a rejection with an error message.

Example:
await this.Ctx.ERC721Token.isTokenType(tokenId);

true

createToken
This method creates a token and saves its properties in the state database. This method can
be called only by users with the minter role. This is an asynchronous function.

Ctx.ERC721Token.createToken(token: <Instance of Token Class>)

Parameters:

• token: <Instance of Token Class> – The token asset to create.

Returns:

• On success, a promise message with token details. On error, a rejection with an error
message.

Example:
await this.Ctx.ERC721Token.createToken(tokenAsset);

{
 "metadata": {
 "painting_name": "Mona_Lisa",
 "description": "Mona Lisa Painting",
 "image": "monalisa.jpeg",
 "painter_name": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",
 "tokenName": "artcollection",
 "tokenDesc": "token description",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],

Chapter 7
Tokenization Support Using Blockchain App Builder

7-463

 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "creationDate": "2022-04-05T08:30:42.000Z",
 "isBurned": false,
 "tokenUri": "\"https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg\"",
 "price": 100,
 "on_sale_flag": false
}

updateToken
This method updates token properties. This method can be called only by the owner
or creator of the token. After a token asset is created, only the token owner can
update the token custom properties. If the user is both token owner and creator of a
token, they can also update the TokenDesc property. Token metadata cannot be
updated. You must pass all token properties to this method, even if you want to
update only certain properties. This is an asynchronous function.

Ctx.ERC721Token.updateToken(token: <Instance of Token Class>)

Parameters:

• token: <Instance of Token Class> – The token asset to update.

Returns:

• On success, a promise message with token details. On error, a rejection with an
error message.

Example:
await this.Ctx.ERC721Token.updateToken(tokenAsset)

{
 "metadata": {
 "painting_name": "Mona_Lisa",
 "description": "Mona Lisa Painting",
 "image": "monalisa.jpeg",
 "painter_name": "Leonardo_da_Vinci"
 },
 "assetType": "otoken",
 "tokenId": "monalisa",
 "tokenName": "artcollection",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-464

 "tokenDesc": "token description",
 "symbol": "ART",
 "tokenStandard": "erc721+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2022-04-05T08:30:42.000Z",
 "isBurned": false,
 "tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 "price": 100,
 "on_sale_flag": true
}

getByRange
This method calls the fabric getStateByRange method internally. Even though any asset with
the given ID is returned from the ledger, this method casts the asset into the caller Asset
type. This is an asynchronous static function.

@validator(yup.string(), yup.string())
public async getDigiCurrGetByRange(startId: string, endId: string) {
 return await this.Ctx.ERC721TOken.getByRange(startId, endId, PaintingNft);
}

Ctx.ERC721Token.getByRange(startId: string, endId: string,
tokenClassReference?: <Instance of Token Class>)

Parameters:

• startId: string – The starting key of the range. This key is included in the range.

• endId: string – The end key of the range. This key is excluded from the range.

• tokenClassReference: <Instance of Token Class> – The token asset to operate on.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-465

Returns:

• On success, a promise with an array of <Token Class>. On error, a rejection with
an error message.

Return Value Example:

[
 {
 "metadata":{
 "painting_name":"Mona_Lisa",
 "description":"Mona Lisa Painting",
 "image":"monalisa.jpeg",
 "painter_name":"Leonardo_da_Vinci"
 },
 "assetType":"otoken",
 "tokenId":"monalisa",
 "tokenName":"artcollection",
 "tokenDesc":"token description",
 "symbol":"ART",
 "tokenStandard":"erc721+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":20000
 },

"owner":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201
d347ad1288d",

"createdBy":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aa
e201d347ad1288d",

"transferredBy":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436d
d1aae201d347ad1288d",
 "creationDate":"2022-04-05T08:30:42.000Z",
 "transferredDate":"2022-04-05T09:28:30.000Z",
 "isBurned":false,
 "tokenUri":"https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 "price":100,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-466

 "on_sale_flag":true
 }
]

history
This method returns history for the specified token. This is an asynchronous static function.

Ctx.ERC721Token.history(tokenId: string)

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a promise history query iterator for the specified token. On error, a rejection
with an error message.

Return Value Example:

[
 {

"trxId":"e17a3154d5271be0492cbc7c12390b3480fec5a792d1cb1083e5335de56ebbd9",
 "timeStamp":1622614032,
 "isDelete":false,
 "value":{
 "metadata":{
 "painting_name":"Mona_Lisa",
 "description":"Mona Lisa Painting",
 "image":"monalisa.jpeg",
 "painter_name":"Leonardo_da_Vinci"
 },
 "assetType":"otoken",
 "tokenId":"monalisa",
 "tokenName":"artcollection",
 "tokenDesc":"token description",
 "symbol":"ART",
 "tokenStandard":"erc721+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{

Chapter 7
Tokenization Support Using Blockchain App Builder

7-467

 "max_mint_quantity":20000
 },

"owner":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201
d347ad1288d",

"createdBy":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aa
e201d347ad1288d",
 "creationDate":"2022-04-05T08:30:42.000Z",
 "isBurned":false,
 "tokenUri":"https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 "price":100,
 "on_sale_flag":"true"
 }
 },
 {

"trxId":"dbcc4da410ad4d4a80996f090b313240f3f3d08aa2b5086afa8d0921f7b4c1
e5",
 "timeStamp":1622643853,
 "isDelete":false,
 "value":{
 "metadata":{
 "painting_name":"Mona_Lisa",
 "description":"Mona Lisa Painting",
 "image":"monalisa.jpeg",
 "painter_name":"Leonardo_da_Vinci"
 },
 "assetType":"otoken",
 "tokenId":"monalisa",
 "tokenName":"artcollection",
 "tokenDesc":"token description",
 "symbol":"ART",
 "tokenStandard":"erc721+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":20000
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-468

"owner":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad
1288d",

"createdBy":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d3
47ad1288d",

"transferredBy":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae2
01d347ad1288d",
 "creationDate":"2022-04-05T08:30:42.000Z",
 "transferredDate":"2022-04-05T09:28:30.000Z",
 "isBurned":false,
 "tokenUri":"https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 "price":100,
 "on_sale_flag":true
 }
 }
]

getAllTokens
This method returns all of the token assets that are saved in the state database. This method
uses Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network. This is an asynchronous static function.

Ctx.ERC721Token.getAllTokens()

Parameters:

• none

Returns:

• On success, a promise with all of the token assets. On error, a rejection with an error
message.

Example:
await this.Ctx.ERC721Token.getAllTokens();

{
 "returnCode":"Success",
 "error":"",
 "result":{

"txid":"98e0a0a115803d25b843d630e6b23c435a192a03eb0a301fc9375f05da49a8b2",
 "payload":[
 " "{
 "metadata":{
 "painting_name":"Mona_Lisa",
 "description":"Mona Lisa Painting",
 "image":"monalisa.jpeg",
 "painter_name":"Leonardo_da_Vinci"
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-469

 "assetType":"otoken",
 "tokenId":"monalisa",
 "tokenName":"artcollection",
 "tokenDesc":"token description",
 "symbol":"ART",
 "tokenStandard":"erc721+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":20000
 },

"owner":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201
d347ad1288d",

"createdBy":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aa
e201d347ad1288d",
 "creationDate":"2022-04-05T08:30:42.000Z",
 "isBurned":false,
 "tokenUri":"\"https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg\"",
 "price":100,
 "on_sale_flag":false
 }" "
],
 "encode":"JSON"
 }
}

getAllTokensByUser
This method returns all tokens that are owned by a specified account ID. This is an
asynchronous static function.

Ctx.ERC721Token.getAllTokensByUser(accountId: string)

Parameters:

• accountId: string – The ID of the account.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-470

• On success, a promise history query iterator for the specified account. On error, a
rejection with an error message.

Return Value Example:

{
 "returnCode":"Success",
 "error":"",
 "result":{

"txid":"98e0a0a115803d25b843d630e6b23c435a192a03eb0a301fc9375f05da49a8b2",
 "payload":[
 " "{
 "metadata":{
 "painting_name":"Mona_Lisa",
 "description":"Mona Lisa Painting",
 "image":"monalisa.jpeg",
 "painter_name":"Leonardo_da_Vinci"
 },
 "assetType":"otoken",
 "tokenId":"monalisa",
 "tokenName":"artcollection",
 "tokenDesc":"token description",
 "symbol":"ART",
 "tokenStandard":"erc721+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":20000
 },

"owner":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad
1288d",

"createdBy":"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d3
47ad1288d",
 "creationDate":"2022-04-05T08:30:42.000Z",
 "isBurned":false,
 "tokenUri":"\"https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg\"",
 "price":100,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-471

 "on_sale_flag":false
 }" "
],
 "encode":"JSON"
 }

ownerOf
This method returns the account ID of the owner of a specified token. This is an
asynchronous static function.

Ctx.ERC721Token.ownerOf(tokenId: string)

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, it returns a promise history query iterator for the specified token ID.
On error, it rejects with an error message

Return Value Example:

{"owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d"}

tokenUri
This method returns the URI for a specified token. This is an asynchronous static
function.

Ctx.ERC721Token.tokenUri(tokenId: string)

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, it returns a promise history query iterator for the specified token ID.
On error, it rejects with an error message

Return Value Example:

{"uri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-472

getTokenUri
This method returns the URI for a specified token. This is an asynchronous static function.

Ctx.ERC721Token.getTokenUri(tokenId: string)

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, it returns a promise history query iterator for the specified token ID. On
error, it rejects with an error message

Return Value Example:

{"tokenUri": https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg"}

symbol
This method returns the symbol of the token class.

Ctx.ERC721Token.symbol()

Parameters:

• none

Returns:

• On success, a JSON object with the token symbol.

Return Value Example:

{"symbol": "PNT"}

Methods for Account Management

generateAccountId
This method returns an account ID, which is formed by concatenating the membership
service provider ID (orgId) and the user name or email ID (userId) and then creating a
SHA-256 hash.

Ctx.ERC721Account.generateAccountId(orgId: string, userId: string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-473

Returns:

• On success, a promise with the generated account ID. On error, a rejection with
an error message.

Example:
await this.Ctx.ERC721Account.generateAccountId(orgId, userId)

oaccount~a0a60d54ba9e2ff349737d292ea10ebd9cc8f1991c11443c19d20aea299a95
07

createAccount
This method creates an account for a specified user and token. An account must be
created for any user who will have tokens at any point. Accounts track the number of
NFTs a user has. Users must have accounts in the network to complete token-related
operations. You can create only one NFT account per user.
An account ID is an alphanumeric set of characters, prefixed with oaccount~ and
followed by an SHA-256 hash of the membership service provider ID (orgId) of the
user in the current network organization, the user name or email ID (userId) of the
instance owner or the user who is logged in to the instance, and the constant string
nft. This method can be called only by the Token Admin of the chaincode.

Ctx.ERC721Account.createAccount(orgId: string, userId: string,
tokenType: string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• tokenType: string – The only supported token type is nonfungible.

Returns:

• On success, a promise with the new account object. On error, a rejection with an
error message

Example:
await this.Ctx.ERC721Account.CreateAccount(orgId, userId, tokenType)

{
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 0
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-474

getAllAccounts
This method returns a list of all accounts. This method uses Berkeley DB SQL rich queries
and can only be called when connected to the remote Oracle Blockchain Platform network.

Ctx.ERC721Account.getAllAccounts()

Parameters:

• none

Returns:

• On success, a promise with a JSON object that lists all accounts. On error, a rejection
with an error message.

Return Value Example:

[
 {
 "key":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "valueJson": {
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 1
 }
 }
]

history
This method returns an array of the account history details for a specified account.

Ctx.ERC721Account.history(accountId: string)

Parameters:

• accountId: string – The ID of the account.

Returns:

• On success, a map[string]interface{} array that contains the account history details
for the specified account. The account data is shown under the value key in the map.
On error, a non-nil error object containing an error message.

Example:
await this.Ctx.ERC721Account.history(accountId)

[
 {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-475

 "trxId":
"6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632bdaf5d4",
 "timeStamp": 1649151044,
 "value": {
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 1
 }
 },
 {
 "trxId":
"a605f1fa62e511c2945fce5437f983a5e70ec814b82520d3ecd2d81e3ecf53a3",
 "timeStamp": 1649151022,
 "value": {
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 2
 }
 },
 {
 "trxId":
"ca4c07bf04240345de918cbf1f4f3da4b4d0ab044c5b8bea94343e427d9ed4e7",
 "timeStamp": 1649150910,
 "value": {
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 1
 }
 },
 {
 "trxId":
"cfb52ffc8c34c7fd86210fcf8c5f53d9f92a056c45ed3a33671d638020c1f9cb",
 "timeStamp": 1649149545,
 "value": {
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-476

 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 0
 }
 },
 {
 "trxId":
"e7747b3001a170f88688620956320e9402e1dd8edad8afb4818a08a34647337c",
 "timeStamp": 1649147442,
 "value": {
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 1
 }
 },
 {
 "trxId":
"d2d1f9c898707ae831e9361bc25da6369eac37b10c87dc04d18d6f3808222f08",
 "timeStamp": 1649137534,
 "value": {
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 0
 }
 }
]

getUserByAccountId
This method returns the user details for a specified account.

Ctx.ERC721Account.getUserByAccountId(accountId: string)

Parameters:

• accountId: string – The ID of the account.

Returns:

• On success, a JSON object that includes user details in the following properties:

– orgId – The membership service provider (MSP) ID of the user in the current
network organization.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-477

– userId – The user name or email ID of the user.

• On error, a rejection with an error message.

Example:
await this.Ctx.ERC721Account.getUserByAccountById(accountId)

{
 "userId": "admin",
 "orgId": "Org1MSP"
}

getAccountWithStatusByUser
This method returns user details for a specified account, including account status.
This method can be called only by a Token Admin of the chaincode or the Account
Owner of the account.

Ctx.ERC721Account.getAccountWithStatusByUser(orgId, userId)

Parameters:

• orgId – The membership service provider (MSP) ID of the user in the current
organization.

• userId – The user name or email ID of the user.

Returns:

• On success, a JSON account object that includes the following properties:

• accountId – The ID of the user account.

• userId – The user name or email ID of the user.

• orgId – The membership service provider (MSP) ID of the user in the current
organization.

• tokenType – The type of token that the account holds.

• noOfNfts – The total number of NFTs held by the account.

• bapAccountVersion – An account object parameter for internal use.

• status – The current status of the user account.

• On error, a non-nil object that contains an error message.

Example:
await this.Ctx.ERC721Account.getAccountWithStatusByUser(orgId, userId)

{
 "bapAccountVersion": 0,
 "assetType": "oaccount",
 "status": "active",
 "accountId":
"oaccount~cc301bee057f14236a97d434909ec1084970921b008f6baab09c2a0f5f419
a9a",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-478

 "userId": "idcqa",
 "orgId": "appdev",
 "tokenType": "nonfungible",
 "noOfNfts": 0
}

getAccountByUser
This method returns user details for a specified account. This method can be called only by a
Token Admin of the chaincode or the Account Owner of the account.

Ctx.ERC721Account.getAccountByUser(orgId, userId)

Parameters:

• orgId – The membership service provider (MSP) ID of the user in the current
organization.

• userId – The user name or email ID of the user.

Returns:

• On success, a JSON account object that includes the following properties:

• accountId – The ID of the user account.

• userId – The user name or email ID of the user.

• orgId – The membership service provider (MSP) ID of the user in the current
organization.

• tokenType – The type of token that the account holds.

• noOfNfts – The total number of NFTs held by the account.

• On error, a non-nil object that contains an error message.

Example:
await this.Ctx.ERC721Account.getUserByAccountById(orgId, userId)

{
 "assetType": "oaccount",
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "userId": "admin",
 "orgId": "Org1MSP",
 "tokenType": "nonfungible",
 "noOfNfts": 0
}

balanceOf
This method returns the total number of NFTs the specified user holds.

Ctx.ERC721Account.balanceOf(accountId: string)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-479

• accountId: string – The account ID of the user.

Returns:

• On success, a JSON object of the current NFT count. On error, a non-nil error
object that contains an error message.

Example:
await this.Ctx.ERC721Account.balanceOf(accountId)

{"totalNfts": 0}

Methods for Role Management

addRoleMember
This method adds a role to a specified user and token. An account ID is formed by
creating an SHA-256 hash of the concatenated membership service provider ID
(orgId) and the user name or email ID (userId). This is an asynchronous function.

Ctx.ERC721Token.addRoleMember(role: string, accountId: string)

Parameters:

• role: string – The name of the role to add to the specified user. The mintable
and burnable behaviors correspond to the minter_role_name and
burner_role_name properties of the specification file.

• accountId: string – The account ID to operate on.

Returns:

• On success, a promise with a message including the added role and account ID.
On error, a rejection with an error message

Example:
await this.Ctx.ERC721Token.addRoleMember(role, accountId);

{"msg": "Successfully added role 'minter' to Account Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad128
8d (Org-Id: Org1MSP, User-Id: admin)"}

removeRoleMember
This method removes a role from a specified user and token. An account ID is formed
by creating an SHA-256 hash of the concatenated membership service provider ID
(orgId) and the user name or email ID (userId). This is an asynchronous function.

Ctx.ERC721Token.removeRoleMember(role: string, accountId: string)

Parameters:

• role: string – The name of the role to remove from the specified user. The
mintable and burnable behaviors correspond to the minter_role_name and
burner_role_name properties of the specification file.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-480

• accountId: string – The account ID to operate on.

Returns:

• On success, a promise with a message including the removed role and account ID. On
error, a rejection with an error message

Example:
await this.Ctx.ERC721Token.removeRoleMember(role, accountId);

{"msg": "Successfully removed role 'minter' from Account Id:
oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba
(Org-Id: Org1MSP, User-Id: user1)"}

isInRole
This method returns a Boolean value to indicate if a user and token has a specified role. An
account ID is formed by creating an SHA-256 hash of the concatenated membership service
provider ID (orgId) and the user name or email ID (userId). This is an asynchronous
function.

Ctx.ERC721Token.isInRole(role: string, accountId: string)

Parameters:

• role: string – The name of the role to check for the specified user. The mintable and
burnable behaviors correspond to the minter_role_name and burner_role_name
properties of the specification file.

• accountId: string – The account ID to operate on.

Returns:

• On success, a promise that is true if the role is present for the specified account ID,
otherwise false. On error, a rejection with an error message

Example:
await this.Ctx.ERC721Token.isInRole(role, accountId, tokenAsset)

{"result": "true"}

getAccountsByRole
This method returns a list of all account IDs for a specified role.

Ctx.ERC721Role.getAccountsByRole(roleName: string)

Parameters:

• roleName: string – The name of the role to search for.

Returns:

• On success, a JSON array of account IDs. On error, a non-nil error object that contains
an error message.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-481

Example:
await this.Ctx.ERC721Role.getAccountsByRole(userRole)

{
 "accounts": [

"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d"
]
}

getUsersByRole
This method returns a list of all users for a specified role.

Ctx.ERC721Role.getUsersByRole(userRole: string)

Parameters:

• role: string – The name of the role to search for.

Returns:

• On success, a JSON array of user objects. Each object contains the user ID and
organization ID. On error, a non-nil error object that contains an error message.

Example:
await this.Ctx.ERC721Role.getUsersByRole(userRole)

{
 "users": [
 {
 "userId": "admin",
 "orgId": "Org1MSP"
 }
]
}

Methods for Transaction History Management

getAccountTransactionHistory
This method returns an array of the transaction history details for a specified account.

Ctx.ERC721Account.getAccountTransactionHistory(accountId: string)

Parameters:

• accountId: string – The ID of the account.

Returns:

• On success, an array of account transaction objects in JSON format:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-482

– transactionId – The ID of the transaction.

– transactedAccount – The account with which the transaction took place.

– transactionType – The type of transaction.

– timestamp – The time of the transaction.

– noOfNfts – The balance of the caller account.

– On error, a non-nil error object that contains an error message.

Example:
await this.Ctx.ERC721Account.GetAccountTransactionHistory(accountId)

[
 {
 "transactionId":
"otransaction~6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632bdaf5d
4",
 "timestamp": "2022-04-05T09:30:44.000Z",
 "tokenId": "monalisa1",
 "transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "transactionType": "BURN"
 },
 {
 "transactionId":
"otransaction~a605f1fa62e511c2945fce5437f983a5e70ec814b82520d3ecd2d81e3ecf53a
3",
 "timestamp": "2022-04-05T09:30:22.000Z",
 "tokenId": "monalisa1",
 "transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "transactionType": "MINT"
 },
 {
 "transactionId":
"otransaction~ca4c07bf04240345de918cbf1f4f3da4b4d0ab044c5b8bea94343e427d9ed4e
7",
 "timestamp": "2022-04-05T09:28:30.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba",
 "transactionType": "CREDIT"
 },
 {
 "transactionId":
"otransaction~cfb52ffc8c34c7fd86210fcf8c5f53d9f92a056c45ed3a33671d638020c1f9c
b",
 "timestamp": "2022-04-05T09:05:45.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba",
 "transactionType": "DEBIT"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-483

 },
 {
 "transactionId":
"otransaction~e7747b3001a170f88688620956320e9402e1dd8edad8afb4818a08a34
647337c",
 "timestamp": "2022-04-05T08:30:42.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "transactionType": "MINT"
 }
]

getAccountTransactionHistoryWithFilters
This method returns account transaction history for a specified user, filtered by
PageSize, Bookmark, startTime and endTime. This method can only be called when
connected to the remote Oracle Blockchain Platform network.

async getAccountTransactionHistoryWithFilters(orgId: string, userId:
string, filters?: Filters)

Parameters:

• accountId: string – The ID of the account.

• filters: object – An object of the Filter class that contains four attributes:
pageSize, bookmark, startTime and endTime. If empty, all records are returned.
The PageSize property determines the number of records to return. If PageSize is
0, the default page size is 20. The Bookmark property determines the starting
index of the records to return. For more information, see the Hyperledger Fabric
documentation. The StartTime and EndTime properties must be specified in
RFC-3339 format.

Returns:

• On success, an array of account transaction objects in JSON format:

– transactionId – The ID of the transaction.

– transactedAccount – The account with which the transaction took place.

– transactionType – The type of transaction.

– timestamp – The time of the transaction.

– noOfNfts – The balance of the caller account.

– On error, a non-nil error object that contains an error message.

Example:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-484

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

await this.Ctx.ERC721Account.getAccountTransactionHistoryWithFilters(accountId,
filters)

[
 {
 "transactionId":
"otransaction~ca4c07bf04240345de918cbf1f4f3da4b4d0ab044c5b8bea94343e427d9ed4e
7",
 "timestamp": "2022-04-05T09:28:30.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba",
 "transactionType": "CREDIT"
 },
 {
 "transactionId":
"otransaction~cfb52ffc8c34c7fd86210fcf8c5f53d9f92a056c45ed3a33671d638020c1f9c
b",
 "timestamp": "2022-04-05T09:05:45.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba",
 "transactionType": "DEBIT"
 },
 {
 "transactionId":
"otransaction~e7747b3001a170f88688620956320e9402e1dd8edad8afb4818a08a34647337
c",
 "timestamp": "2022-04-05T08:30:42.000Z",
 "tokenId": "monalisa",
 "transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "transactionType": "MINT"
 }
]

getTransactionById
This method returns the history of a Transaction asset.

Ctx.ERC721Transaction.getTransactionById(transactionId: string)

Parameters:

• transactionId: string – The ID of the transaction asset.

Example:
await this.Ctx.ERC721Transaction.getTransactionById(transactionId)

{
 "transactionId":
"otransaction~6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632bdaf5d
4",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-485

 "history": [
 {
 "trxId":
"6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632bdaf5d4",
 "timeStamp": 1649151044,
 "value": {
 "assetType": "otransaction",
 "transactionId":
"otransaction~6ffd0d94f234c12444a5d5aa559563b59dff4d2280b573fea956dc632
bdaf5d4",
 "tokenId": "monalisa1",
 "fromAccountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "toAccountId": "",
 "triggeredByAccountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "transactionType": "BURN",
 "timestamp": "2022-04-05T09:30:44.000Z",
 }
 }
]
}

deleteHistoricalTransactions
This method deletes transactions that are older than a specified date from the state
database.

Ctx.ERC721Transaction.deleteTransactions(timeToExpiration: Date)

Parameters:

• timeToExpiration: Date – The date and time. Transactions older than the
specified time will be deleted.

Example:
await this.Ctx.ERC721Transaction.deleteTransactions(timeToExpiration)

{
 "returnCode": "Success",
 "error": "",
 "result": {
 "txid":
"62ad6753cf2bfa54816b4c2f0ea325478b1cb1b84f8e13e6742c00f277310081",
 "payload": {
 "msg": "Successfuly deleted transaction older than date:
Fri Apr 08 2022 00:00:00 GMT+0000 (Coordinated Universal Time).",
 "transactions": [

"otransaction~e687531b71d943da2fb129638784fb93a96e7698013dfc51c8c6bf4f5
f797059",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-486

"otransaction~18446adf59b669e12990a1cf3ea0a7a15764f967fa694cf263aee0cd5a21d95
2",

"otransaction~5560d4b5e0b0d0b9a6e97dcd7f81241a5daf56497a7b6819c6a55cebacc106f
2",

"otransaction~f0a0a64ec1a0c92ac732706dd75ffbd3feecd9c48fc79e42c551485edf0542c
b"
]
 },
 "encode": "JSON"
 }
}

Token Behavior Management - Mintable Behavior

getMaxMintQuantity
This method returns the maximum mintable quantity of a token. If the max_mint_quantity
behavior is not configured in the specification file, then the default value is 0 and an infinite
number of tokens can be minted.

Ctx.ERC721Token.getMaxMintQuantity(token: <Instance of Token Class>)

Parameters:

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, the maximum mintable quantity of the token, in the number data type. On
error, it returns with an error message.

Example:
await this.Ctx.ERC721Token.getMaxMintQuantity(tokenAsset);

20000

getTotalMintedTokens
This method returns the total minted number of tokens available in the system for the
specified token. The net number of tokens available is the total number of minted tokens
minus the number of burned tokens. This is an asynchronous function.

Ctx.ERC721Token.getTotalMintedTokens()

Parameters:

• token: <Instance of Token Class> – The token asset to operate on.

Returns:

• On success, the total minted tokens, in the number data type. On error, it returns with an
error message.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-487

Example:
await this.Ctx.ERC721Token.getTotalMintedTokens(tokenAsset);

4000

Token Behavior Management - Transferable Behavior

safeTransferFrom
This is an asynchronous function. This method transfers ownership of the specified
NFT from the caller to another account. This method includes the following
validations:

• The token exists and is not burned.

• The sender account and receiver account exist and are not the same account.

• The sender account owns the token.

• The caller of the function is the sender.

Ctx.ERC721Token.safeTransferFrom(fromAccountId: string, toAccountId:
string, token: <Instance of Token Class>, data?: string)

Parameters:

• fromAccountId: string – The account ID of the sender in the current
organization.

• toAccountId: string – The account ID of the receiver in the current
organization.

• token: <Instance of Token Class> – The token asset to transfer.

• data: string – Optional additional information to store in the transaction.

Returns:

• On success, a promise with a success message that includes account details.
Account IDs have the prefix oaccount~. On error, a rejection with an error
message.

Example:
await this.Ctx.ERC721Token.safeTransferFrom(fromAccountId, toAccountId,
tokenAsset, data);

{"msg": "Successfully transferred NFT token: 'monalisa' from Account-
Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad128
8d (Org-Id: Org1MSP, User-Id: admin) to Account-Id:
oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729d
ba (Org-Id: Org1MSP, User-Id: user1)"}

transferFrom
This is an asynchronous function. This method transfers ownership of the specified
NFT from a sender account to a receiver account. It is the responsibility of the caller

Chapter 7
Tokenization Support Using Blockchain App Builder

7-488

to pass the correct parameters. This method can be called by any user, not only the token
owner. This method includes the following validations:

• The token exists and is not burned.

• The sender account and receiver account exist and are not the same account.

• The sender account owns the token.

Ctx.ERC721Token.transferFrom(fromAccountId: string, toAccountId: string,
token: <Instance of Token Class>)

Parameters:

• fromAccountId: string – The account ID of the sender in the current organization.

• toAccountId: string – The account ID of the receiver in the current organization.

• token: <Instance of Token Class> – The token asset to transfer.

Returns:

• On success, a promise with a success message that includes account details. Account
IDs have the prefix oaccount~. On error, a rejection with an error message.

\Example:
await this.Ctx.ERC721Token.transferFrom(fromAccountId, toAccountId, tokeAsset,
data);

{"msg": "Successfully transferred NFT token: 'monalisa' from Account-Id:
oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba
(Org-Id: Org1MSP, User-Id: user1) to Account-Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d
(Org-Id: Org1MSP, User-Id: admin)"}

Token Behavior Management - Burnable Behavior

burn
This method deactivates, or burns, the specified NFT from the caller's account. The caller of
this method must have an account. A token cannot be burned unless the token specification
file includes the burnable behavior. If no burner_role_name property is specified in the
roles section of the specification file, then the owner of the token can burn the token. If a
burner_role_name property is specified in the roles section, then the user assigned the
burner role who is also the minter (creator) of the token can burn the token. This is an
asynchronous function.

Ctx.ERC721Token.burn(token: <Instance of Token Class>)

Parameters:

• token: <Instance of Token Class> – The token asset to burn.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-489

• On success, a promise with a success message that includes account details. On
error, a rejection with an error message.

Example:
await this.Ctx.ERC721Token.burn(tokenAsset);

{msg": "Successfully burned NFT token: 'monalisa1' from Account-Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad128
8d (Org-Id: Org1MSP, User-Id: admin)"}

TypeScript Methods for ERC-721 NFT Locking
Blockchain App Builder automatically generates methods that you can use to lock non-
fungible tokens that use the extended ERC-721 standard.

A locked token cannot be burned or transferred to other users. All other properties,
such as the token's state, owner, and history are preserved. You can use the NFT
locking functionality when transferring a token to another blockchain network, such as
Ethereum or Polygon.

Before you can lock NFTs, you must assign the vault manager role to a user. The vault
manager is a special type of role, a TokenSys role. TokenSys roles are different from
asset-based roles such as burner, minter, and notary, and from administrative roles
such as Token Admin and Org Admin. Currently Blockchain App Builder supports the
vault TokenSys role. The single user who has the vault role for a chaincode is the
vault manager of the chaincode, and can manage locked NFTs.

The typical flow for using the NFT locking functionality follows these steps.

• Create a non-fungible token that has the lockable behavior.

• Use the addTokenSysRole method to give the vault role to a user, the vault
manager.

• Call the lockNFT method to lock a non-fungible token, specified by the token ID.

TokenSys Role Management Methods

addTokenSysRole
This method adds a TokenSys role to a specified user. This method can be called only
by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string())
public async addTokenSysRole(role: string, orgId: string, userId:
string) {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721TOKEN.addTokenSysRoleMemb
er", "TOKEN");
 await
this.Ctx.ERC721Auth.checkAuthorization('ERC721TOKEN.addRoleMember',
'TOKEN');
 const accountId = await
this.Ctx.ERC721Account.generateAccountId(orgId, userId);
 return await this.Ctx.ERC721Token.addTokenSysRoleMember(role,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-490

accountId);
}

Parameters:

• role: string – The name of the TokenSys role to give to the user.

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully added role 'vault' to Account Id:
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03eba
(Org-Id: Org1MSP, User-Id: user1)"
}

isInTokenSysRole
This method returns a Boolean value to indicate if a user has a specified TokenSys role. This
method can be called only by a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string(), yup.string(), yup.string())
public async isInTokenSysRole(orgId: string, userId: string, role: string) {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721TOKEN.isInTokenSysRole",
"TOKEN", {orgId: orgId, userId: userId });
 const accountId = await this.Ctx.ERC721Account.generateAccountId(orgId,
userId);
 return await this.Ctx.ERC721Token.isInTokenSysRole(role, accountId);
}

Parameters:

• role: string – The name of the TokenSys role to check.

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that contains relevant details of the operation.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-491

Return Value Example:

{
 "result": true,
 "msg": "Account Id
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03e
ba (Org-Id: Org1MSP, User-Id: user1) has vault role"
}

removeTokenSysRole
This method removes a TokenSys role from a specified user. This method can be
called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string())
public async removeTokenSysRole(role: string, orgId: string, userId:
string) {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721TOKEN.removeTokenSysRoleM
ember", "TOKEN");
 const accountId = await
this.Ctx.ERC721Account.generateAccountId(orgId, userId);
 return await this.Ctx.ERC721Token.removeTokenSysRoleMember(role,
accountId);
}

Parameters:

• role: string – The name of the TokenSys role to remove.

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully removed role 'vault' from Account Id:
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03e
ba (Org-Id: Org1MSP, User-Id: user1)"
}

transferTokenSysRole
This method transfers a TokenSys role from a user to another user. This method can
be called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.string())

Chapter 7
Tokenization Support Using Blockchain App Builder

7-492

public async transferTokenSysRole(role: string, fromOrgId: string,
fromUserId: string, toOrgId: string, toUserId: string) {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721TOKEN.transferTokenSysRole",
"TOKEN");
 const fromAccountId = await
this.Ctx.ERC721Account.generateAccountId(fromOrgId, fromUserId);
 const toAccountId = await
this.Ctx.ERC721Account.generateAccountId(toOrgId, toUserId);
 return await this.Ctx.ERC721Token.transferTokenSysRole(role,
fromAccountId, toAccountId);
}

Parameters:

• role: string – The name of the TokenSys role to transfer.

• fromOrgId: string – The membership service provider (MSP) ID of the user to transfer
the TokenSys role from.

• fromUserId: string – The user name or email ID of the user to transfer the TokenSys
role from.

• toOrgId: string – The membership service provider (MSP) ID of the user to transfer
the TokenSys role to.

• toUserId: string – The user name or email ID of the user to transfer the TokenSys role
to.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully transfered role 'vault' from Account Id:
ouaccount~f4e311528f03fffa7810753d643f66289ff6c9080fcf839902f28a1d3aff1789
(Org-Id: Org1MSP, User-Id: user1) to Account Id:
ouaccount~ae5be2ae8f98d6d32f5d02b43877d987114e7937c7bacbc30390dcce09996a19
(Org-Id: Org1MSP, User-Id: user2)"
}

getAccountsByTokenSysRole
This method returns a list of all account IDs for a specified TokenSys role. This method can
be called only by a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string())
public async getAccountsByTokenSysRole(role: string) {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721TOKEN.getAccountsByTokenSysRole
", "TOKEN");

Chapter 7
Tokenization Support Using Blockchain App Builder

7-493

 return await this.Ctx.ERC721Token.getAccountsByTokenSysRole(role);
}

Parameters:

• role: string – The name of the TokenSys role.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "accountIds": [

"oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03
eba"
]
}

getUsersByTokenSysRole
This method returns user information for all users with a specified TokenSys role. This
method can be called only by a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string())
public async getUsersByTokenSysRole(role: string) {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721TOKEN.getUsersByTokenSysR
ole", "TOKEN");
 return await this.Ctx.ERC721Token.getUsersByTokenSysRole(role);
}

Parameters:

• role: string – The name of the TokenSys role.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

 "users":[
 {

"accountId":"oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb8
3c874c2caf03eba",
 "orgId":"Org1MSP",
 "userId":"user1"
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-494

]
}

NFT Locking Methods

lockNFT
This method locks a specified non-fungible token. To lock a token, there must be a user with
the TokenSys vault role, who acts as the vault manager. This method can be called only by
the owner of the token.

@Validator(yup.string())
public async lockNFT(tokenId: string) {
 return await this.Ctx.ERC721Token.lockNFT(tokenId);
}

Parameters:

• tokenID: string – The ID of the token to lock.

Returns:

• On success, a JSON representation of the token object.

Return Value Example:

{
 "assetType":"otoken",
 "tokenId":"token1",
 "tokenName":"artcollection",
 "symbol":"ART",
 "tokenStandard":"erc721+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "lockable",
 "burnable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":20000
 },

"createdBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b
6a7733463",
 "creationDate":"2023-10-20T10:26:29.000Z",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-495

"owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff
1b6a7733463",
 "isBurned":false,
 "isLocked":true,
 "tokenUri":"token1.example.com",
 "price":120,
 "on_sale_flag":false
}

isNFTLocked
This method returns a Boolean value to indicate if a specified token is locked. This
method can be called only by the token owner, the vault manager (the user with the
TokenSys vault role), or a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string())
public async isNFTLocked(tokenId: string) {
 try {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721TOKEN.isNFTLocked",
"TOKEN", { tokenId });
 } catch(err) {
 const isCallerTokenSysRoleHolder = await
this.Ctx.ERC721Token.isCallerTokenSysRoleHolder(TOKEN_SYS_ROLE_TYPE.VAU
LT);
 if(!isCallerTokenSysRoleHolder)
 throw err;
 }
 const isLocked = await this.Ctx.ERC721Token.isNFTLocked(tokenId);
 return {isLocked: isLocked}
}

Parameters:

• tokenID: string – The ID of the token.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "isNFTLocked":true
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-496

getAllLockedNFTs
This method returns a list of all locked non-fungible tokens. This method can be called only
by the vault manager (the user with the TokenSys vault role) or a Token Admin of the
chaincode.

@GetMethod()
@Validator()
public async getAllLockedNFTs() {
 try {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721TOKEN.getAllLockedNFTs",
"TOKEN");
 } catch(err) {
 const isCallerTokenSysRoleHolder = await
this.Ctx.ERC721Token.isCallerTokenSysRoleHolder(TOKEN_SYS_ROLE_TYPE.VAULT);
 if(!isCallerTokenSysRoleHolder)
 throw err;
 }
 return this.Ctx.ERC721Token.getAllLockedNFTs();
}

Parameters:

• None

Returns:

• On success, an array of the locked non-fungible token objects.

Return Value Example:

[
 {
 "key":"token1",
 "valueJson":{
 "assetType":"otoken",
 "tokenId":"token1",
 "tokenName":"artcollection",
 "symbol":"ART",
 "tokenStandard":"erc721+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "lockable",
 "burnable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-497

 },
 "mintable":{
 "max_mint_quantity":20000
 },

"createdBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304
ebff1b6a7733463",
 "creationDate":"2023-10-20T10:26:29.000Z",

"owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff
1b6a7733463",
 "isBurned":false,
 "isLocked":true,
 "tokenUri":"token1.example.com",
 "price":120,
 "on_sale_flag":false
 }
 }
]

getAllLockedNFTsByOrg
This method returns a list of all locked non-fungible tokens for a specified organization
and optionally a specified user. This method can be called only by the vault manager
(the user with the TokenSys vault role) or a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string(), yup.string())
public async getLockedNFTsByOrg(orgId: string, userId?: string) {
 try {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721TOKEN.getLockedNFTsByOrg"
, "TOKEN");
 } catch(err) {
 const isCallerTokenSysRoleHolder = await
this.Ctx.ERC721Token.isCallerTokenSysRoleHolder(TOKEN_SYS_ROLE_TYPE.VAU
LT);
 if(!isCallerTokenSysRoleHolder)
 throw err;
 }
 return await this.Ctx.ERC721Token.getLockedNFTsByOrg(orgId, userId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user (optional).

Returns:

• On success, an array of the locked non-fungible token objects.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-498

Return Value Example:

[
 {
 "key":"token1",
 "valueJson":{
 "assetType":"otoken",
 "tokenId":"token1",
 "tokenName":"artcollection",
 "symbol":"ART",
 "tokenStandard":"erc721+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "lockable",
 "burnable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":20000
 },

"createdBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b
6a7733463",
 "creationDate":"2023-10-20T10:26:29.000Z",

"owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b6a77
33463",
 "isBurned":false,
 "isLocked":true,
 "tokenUri":"token1.examplecom",
 "price":120,
 "on_sale_flag":false
 }
 }
]

TypeScript Methods for ERC-721 Token Account Status
Blockchain App Builder automatically generates methods that you can use to manage
account status for tokens that use the extended ERC-721 standard.

You can use the following methods to put token user accounts in the active, suspended, or
deleted states.

When an account is suspended, the account user cannot complete any write operations,
which include minting, burning, and transferring tokens. Additionally, other users cannot

Chapter 7
Tokenization Support Using Blockchain App Builder

7-499

transfer tokens to a suspended account. A suspended account can still complete read
operations.

An account with a non-zero token balance cannot be deleted. You must transfer or
burn all tokens in an account before you can delete the account. After an account is in
the deleted state, the account state cannot be changed back to active or suspended.

• Automatically Generated Account Status Methods

• Account Status SDK Methods

Automatically Generated Account Status Methods

getAccountStatus
This method gets the current status of the token account. This method can be called
by the Token Admin of the chaincode or by the token account owner.

@Validator(yup.string(), yup.string())
 public async getAccountStatus(orgId: string, userId: string) {
 const accountId = await
this.Ctx.ERC721Account.generateAccountId(orgId, userId);
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721ACCOUNT_STATUS.get",
"TOKEN", { accountId });
 try {
 return await
this.Ctx.ERC721AccountStatus.getAccountStatus(accountId);
 } catch (err) {
 return await
this.Ctx.ERC721AccountStatus.getDefaultAccountStatus(accountId);
 }
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the token account status. If no status is
found in the ledger for the account because the account was created before the
account status functionality was available, the status is listed as active in the
response.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-500

"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
}

getAccountStatusHistory
This method gets the history of the account status. This method can be called by the Token
Admin of the chaincode or by the token account owner.

public async getAccountStatusHistory(orgId: string, userId: string) {
 const accountId = await
this.Ctx.ERC721Account.generateAccountId(orgId, userId);
 await this.Ctx.ERC721Account.getAccount(accountId);
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721ACCOUNT_STATUS.history",
"TOKEN", { accountId });
 const status_id = await
this.Ctx.ERC721AccountStatus.generateAccountStatusId(accountId);
 let accountStatusHistory: any;
 try {
 accountStatusHistory = await
this.Ctx.ERC721AccountStatus.history(status_id);
 } catch (err) {
 return [];
 }
 return accountStatusHistory;
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, the account status history in JSON format.

Return Value Example:

[
 {
 "trxId":
"d5c6d6f601257ba9b6edaf5b7660f00adc13c37d5321b8f7d3a35afab2e93e63",
 "timeStamp": "2022-12-02T10:39:14.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "suspended"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-501

 }
 },
 {
 "trxId":
"e6c850cfa084dc20ad95fb2bb8165eef3a3bd62a0ac867cccee57c2003125183",
 "timeStamp": "2022-12-02T10:37:50.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "active"
 }
 }
]

activateAccount
This method activates a token account. This method can be called only by a Token
Admin of the chaincode. Deleted accounts cannot be activated. For any accounts
created prior to the account status functionality being available, you must call this
method to set the account status as active.

@Validator(yup.string(), yup.string())
 public async activateAccount(orgId: string, userId: string) {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721ACCOUNT_STATUS.activateAc
count", "TOKEN");
 const accountId = await
this.Ctx.ERC721Account.generateAccountId(orgId, userId);
 return await this.Ctx.ERC721Account.activateAccount(accountId);
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-502

 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
}

suspendAccount
This method suspends a token account. This method can be called only by a Token Admin of
the chaincode. After an account is suspended, you cannot complete any operations that
update the account. A deleted account cannot be suspended.

@Validator(yup.string(), yup.string())
 public async suspendAccount(orgId: string, userId: string) {
 await
this.Ctx.ERC721Auth.checkAuthorization("ERC721ACCOUNT_STATUS.suspendAccount",
 "TOKEN");
 const accountId = await this.Ctx.ERC721Account.generateAccountId(orgId,
userId);
 return await this.Ctx.ERC721Account.suspendAccount(accountId);
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "suspended"
}

deleteAccount
This method deletes a token account. This method can be called only by a Token Admin of
the chaincode. After an account is deleted, you cannot complete any operations that update
the account. The deleted account is in a final state and cannot be changed to any other
state. To delete an account, the account balance must be zero.

@Validator(yup.string(), yup.string())
 public async deleteAccount(orgId: string, userId: string) {
 await

Chapter 7
Tokenization Support Using Blockchain App Builder

7-503

this.Ctx.ERC721Auth.checkAuthorization("ERC721ACCOUNT_STATUS.deleteAcco
unt", "TOKEN");
 const accountId = await
this.Ctx.ERC721Account.generateAccountId(orgId, userId);
 return await this.Ctx.ERC721Account.deleteAccount(accountId);
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "deleted"
}

Account Status SDK Methods

getAccountStatus
This method gets the current status of the token account.

Ctx.ERC721AccountStatus.getAccountStatus(accountId: string)

Parameters:

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the token account status. If no status is
found in the ledger for the account because the account was created before the
account status functionality was available, the status is listed as active in the
response.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-504

"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
}

getAccountStatusHistory
This method gets the history of the account status.

Ctx.ERC721AccountStatus.history(statusId: string)

Parameters:

• statusId: string – The ID of the account status object.

Returns:

• On success, a JSON representation of the account status history.

Return Value Example:

[
 {
 "trxId":
"d5c6d6f601257ba9b6edaf5b7660f00adc13c37d5321b8f7d3a35afab2e93e63",
 "timeStamp": "2022-12-02T10:39:14.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "suspended"
 }
 },
 {
 "trxId":
"e6c850cfa084dc20ad95fb2bb8165eef3a3bd62a0ac867cccee57c2003125183",
 "timeStamp": "2022-12-02T10:37:50.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-505

activateAccount
This method activates a token account. For any accounts created prior to the account
status functionality being available, you must call this method to set the account
status as active.

Ctx.ERC721Account.activateAccount(accountId: string)

Parameters:

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "active"
}

suspendAccount
This method suspends a token account.

Ctx.ERC721AccountStatus.suspendAccount(accountId: string)

Parameters:

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-506

 "status": "suspended"
}

deleteAccount
This method deletes a token account.

Ctx.ERC721Account.deleteAccount(accountId: string)

Parameters:

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "deleted"
}

Scaffolded Go NFT Project for ERC-721
Blockchain App Builder takes the input from your NFT specification file and generates a fully-
functional scaffolded chaincode project.

The project automatically generates NFT lifecycle classes and functions, including CRUD and
non-CRUD methods. Validation of arguments, marshalling/unmarshalling, and transparent
persistence capability are all supported automatically.

For information on the scaffolded project and methods that are not directly related to NFTs,
see Scaffolded Go Chaincode Project.

Reference:

• Model

• Controller

– Automatically Generated NFT Methods

– Custom Methods

• NFT SDK Methods

Chapter 7
Tokenization Support Using Blockchain App Builder

7-507

Model

Transparent Persistence Capability, or simplified ORM, is captured in the OchainModel
class.

package model

type ArtCollection struct {
 AssetType string `json:"AssetType" final:"otoken"`
 TokenId string `json:"TokenId" id:"true" mandatory:"true"
validate:"regexp=^[A-Za-z0-9][A-Za-z0-9_-]*$,max=16"`
 TokenName string `json:"TokenName" final:"artcollection"`
 TokenDesc string `json:"TokenDesc" validate:"max=256"`
 Symbol string `json:"Symbol" final:"ART"`
 TokenStandard string `json:"TokenStandard" final:"erc721+"`
 TokenType string `json:"TokenType" final:"nonfungible"
validate:"regexp=^nonfungible$"`
 TokenUnit string `json:"TokenUnit" final:"whole"
validate:"regexp=^whole$"`

 Behavior []string `json:"Behavior"
final:"[\"indivisible\",\"singleton\",\"mintable\",\"transferable\",\"b
urnable\",\"roles\"]"`

 Roles map[string]interface{} `json:"Roles"
final:"{\"minter_role_name\":\"minter\"}"`

 Mintable map[string]interface{} `json:"Mintable"
final:"{\"Max_mint_quantity\":20000}"`

 Owner string `json:"Owner,omitempty" validate:"string"`
 CreatedBy string `json:"CreatedBy,omitempty"
validate:"string"`
 TransferredBy string `json:"TransferredBy,omitempty"
validate:"string"`
 CreationDate string `json:"CreationDate,omitempty"
validate:"string"`
 TransferredDate string `json:"TransferredDate,omitempty"
validate:"string"`
 IsBurned bool `json:"IsBurned" validate:"bool"`
 BurnedBy string `json:"BurnedBy,omitempty"
validate:"string"`
 BurnedDate string `json:"BurnedDate,omitempty"
validate:"string"`
 TokenUri string `json:"TokenUri" validate:"string,max=2000"`

 TokenMetadata ArtCollectionMetadata `json:"TokenMetadata"`

 Price int `json:"Price" validate:"int"`
 On_sale_flag bool `json:"On_sale_flag" validate:"bool"`
}

type ArtCollectionMetadata struct {
 Painting_name string `json:"Painting_name" validate:"string"`

Chapter 7
Tokenization Support Using Blockchain App Builder

7-508

 Description string `json:"Description" validate:"string"`
 Image string `json:"Image" validate:"string"`
 Painter_name string `json:"Painter_name" validate:"string"`
}

Controller

There is only one main controller.

type Controller struct {
 Ctx trxcontext.TrxContext
}

You can create any number of classes, functions, or files, but only those methods that are
defined within the main controller class are invokable. The other methods are hidden.

You can use the token SDK methods to write custom methods for your business application.

Automatically Generated NFT Methods

Blockchain App Builder automatically generates methods to support NFTs and NFT life
cycles. You can use these methods to initialize NFTs, manage roles and accounts, and
complete other NFT lifecycle tasks without any additional coding.

Blockchain App Builder automatically generates methods to support NFTs and NFT life
cycles. You can use these methods to initialize NFTs, manage roles and accounts, and
complete other NFT lifecycle tasks without any additional coding. Controller methods must be
public to be invokable. Public method names begin with an upper case character. Method
names that begin with a lower case character are private.

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Burnable Behavior

Methods for Access Control Management

AddTokenAdmin
This method adds a user as a Token Admin of the chaincode. This method can be called only
by a Token Admin of the chaincode.

func (t *Controller) AddTokenAdmin(orgId string, userId string)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ADMIN.AddAdmin", "TOKEN")

Chapter 7
Tokenization Support Using Blockchain App Builder

7-509

 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC721Admin.AddAdmin(orgId, userId)
}

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

• userId string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was added as a
Token Admin of the chaincode.

Return Value Example:

{"msg":"Successfully added Admin (OrgId: Org1MSP, UserId: user1)"}

RemoveTokenAdmin
This method removes a user as a Token Admin of the chaincode. This method can be
called only by a Token Admin of the chaincode. You cannot use this method to remove
yourself as a Token Admin.

func (t *Controller) RemoveTokenAdmin(orgId string, userId string)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ADMIN.RemoveAdmin", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC721Admin.RemoveAdmin(orgId, userId)
}

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

• userId string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was removed as a
Token Admin of the chaincode.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-510

Return Value Example:

{"msg":"Successfully removed Admin (OrgId Org1MSP UserId user1)"}

IsTokenAdmin
This method returns the Boolean value true if the caller of the function is a Token Admin,
otherwise it returns false. A Token Admin can call this function on any other user in the
blockchain network. Other users can call this method only on their own accounts.

func (t *Controller) IsTokenAdmin(orgId string, userId string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ADMIN.IsTokenAdmin", "TOKEN",
map[string]string{"orgId": orgId, "userId": userId})
 if err != nil || !auth {
 return false, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Auth.IsUserTokenAdmin(orgId, userId)
}

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the current
organization.

• userId string – The user name or email ID of the user.

Returns:

• The method returns true if the caller is a Token Admin, otherwise it returns false.

Return Value Example:

{"result":true}

GetAllTokenAdmins
This method returns a list of all users who are a Token Admin of the chaincode. This method
can be called only by the Token Admin of the chaincode.

func (t *Controller) GetAllTokenAdmins() (interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ADMIN.GetAllAdmins", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Admin.GetAllAdminUsers()
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-511

• none

Returns:

• On success, a JSON list of admins that includes OrgId and UserId objects.

Return Value Example:

{
 "admins": [
 {
 "OrgId":"Org1MSP",
 "UserId":"admin"
 }
]
}

Methods for Token Configuration Management

Init
This method is called when the chaincode is instantiated. Every Token Admin is
identified by the UserId and OrgId information in the adminList parameter. The
UserId is the user name or email ID of the instance owner or the user who is logged
in to the instance. The OrgId is the membership service provider (MSP) ID of the user
in the current network organization. The adminList parameter is mandatory the first
time you deploy the chaincode. If you are upgrading the chaincode, pass an empty list
([]). Any other information in the adminList parameter is ignored during upgrades.

func (t *Controller) Init(adminList
[]erc721Admin.ERC721TokenAdminAsset) (interface{}, error) {
 list, err := t.Ctx.ERC721Admin.InitAdmin(adminList)
 if err != nil {
 return nil, fmt.Errorf("initialising admin list failed
%s", err.Error())
 }
 <Token Name> := <Token Class>{}
 _, err = t.Ctx.ERC721Token.SaveClassInfo(&<Token Name>)
 if err != nil {
 return nil, err
 }
 _, err = t.Ctx.ERC721Token.SaveDeleteTransactionInfo()
 if err != nil {
 fmt.Println("error: ", err)
 }
 return list, nil
}

Parameters:

• adminList array – An array of {OrgId, UserId} information that specifies the list
of token admins. The adminList array is a mandatory parameter.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-512

GetAllTokens
This method returns all of the token assets that are saved in the state database. This method
can be called only by a Token Admin of the chaincode. This method uses Berkeley DB SQL
rich queries and can only be called when connected to the remote Oracle Blockchain
Platform network.

func (t *Controller) GetAllTokens() (interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.GetAllTokens", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Token.GetAllTokens()
}

Parameters:

• none

Returns:

• A list of all token assets in JSON format.

Return Value Example:

[
 {
 "key": "monalisa",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "CreationDate": "2022-04-10T11:01:42Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 0,
 "Owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-513

 "Symbol": "PNT",
 "TokenDesc": "token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 }
 },
 {
 "key": "monalisa2",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "CreationDate": "2022-04-10T11:04:44Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 100,
 "Owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "",
 "TokenId": "monalisa1",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-514

 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 }
 }
 }
]

GetAllTokensByUser
This method returns all of the token assets that are owned by a specified user. This method
uses Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network. This method can be called only by a Token Admin of the
chaincode or by the account owner.

func (t *Controller) GetAllTokensByUser(orgId string, userId string)
(interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.GetAllTokensByUser",
"TOKEN", map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Token.GetAllTokensByUser(accountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• A list of token assets in JSON format.

Return Value Example:

[
 {
 "key": "monalisa",
 "valueJson": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-515

 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "CreationDate": "2022-04-10T11:01:42Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 0,
 "Owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 }
 },
 {
 "key": "monalisa2",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-516

 "roles"
],
 "CreatedBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "CreationDate": "2022-04-10T11:04:44Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 100,
 "Owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "",
 "TokenId": "monalisa1",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 }
 }
 }
]

GetTokenById
This method returns a token object if the token is present in the state database. This method
can be called only by a Token Admin of the chaincode or the token owner.

func (t *Controller) GetTokenById(tokenId string) (interface{}, error) {
 auth, err := t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.Get",
"TOKEN", map[string]string{"tokenId": tokenId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 tokenAsset, err := t.getTokenObject(tokenId)
 if err != nil {
 return nil, err
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-517

 return tokenAsset.Interface(), nil
}

Parameters:

• tokenId: string – The ID of the token to get.

Returns:

• The token asset in JSON format.

Return Value Example:

{
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2022-04-06T00:35:42Z",
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 200,
 "Owner":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729
dba",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "Token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-518

 "TransferredBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "TransferredDate": "2022-04-06T00:51:56Z"
}

GetTokenHistory
This method returns the history for a specified token ID. This method can only be called
when connected to the remote Oracle Blockchain Platform network. Anyone can call this
method.

func (t *Controller) GetTokenHistory(tokenId string) (interface{}, error) {
 /*
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.GetTokenHistory", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 */
 return t.Ctx.ERC721Token.History(tokenId)
}

Parameters:

• tokenId: string – The ID of the token.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-04-06T19:22:52z",
 "TxId":
"6b7989be322956164a8d1cd7bf2a7187d59eba73ce756e6bf946ab48b349bbc0",
 "Value": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "CreationDate": "2022-04-06T19:22:23z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 100,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-519

 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg""
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-04-06T19:22:23z",
 "TxId":
"e61bcb3cb61c8920f7e6d8f0d19726c7c88d876e0ad6cfb052cfb92d49985c3f",
 "Value": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2022-04-06T19:22:23z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 100,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "Roles": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-520

 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "",
 ""TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg"
 }
 }
]

getTokenObject
This is a utility method that returns an instance of the token for a specified token ID. This
method is used by many of the automatically generated methods to fetch token objects. You
can call this method as needed from your custom methods. When you create a tokenized
asset or class, update the switch case with the corresponding Token class to return the
correct token object. The ochain sync command in Blockchain App Builder automatically
creates a switch case when a tokenized asset is created in the specification file. Because
this method is private, it is not directly invokable and can only be called from other methods.

func (t *Controller) getTokenObject(tokenId string) (reflect.Value, error) {
 if tokenId == "" {
 return reflect.Value{}, fmt.Errorf("error in retrieving token,
token_id cannot be empty")
 }
 tokenAsset, err := t.Ctx.ERC721Token.Get(tokenId)
 if err != nil {
 return reflect.Value{}, fmt.Errorf("no token exists with id %s
%s", tokenId, err.Error())
 }
 tokenName := tokenAsset.(map[string]interface{})["TokenName"].(string)
 switch tokenName {
 case "<Token Name>":
 var asset <Token Class>
 _, err := t.Ctx.ERC721Token.Get(tokenId, &asset)
 if err != nil {
 return reflect.Value{}, err
 }
 return reflect.ValueOf(&asset), nil
 default:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-521

 return reflect.Value{}, fmt.Errorf("no token exists with
token name %s", tokenName)
 }
}

Parameters:

• tokenId: string – The ID of the token.

OwnerOf
This method returns the account ID of the owner of the specified token ID. Anyone
can call this method.

func (t *Controller) Ownerof(tokenId string) (interface{}, error) {
 return t.Ctx.ERC721Token.OwnerOf(tokenId)
}

Parameters:

• tokenId: string – The ID of the token.

Returns:

• A JSON object of the owner's account ID.

Return Value Example:

{"Owner":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729
dba"}

Name
This method returns the name of the token class. Anyone can call this method.

func (t *Controller) Name() (interface{}, error) {
 return t.Ctx.ERC721Token.Name()
}

Parameters:

• none

Returns:

• A JSON object of the token name.

Return Value Example:

{"TokenName": "paintingnft"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-522

Symbol
This method returns the symbol of the token class. Anyone can call this method.

func (t *Controller) Symbol() (interface{}, error) {
 return t.Ctx.ERC721Token.Symbol()
}

Parameters:

• none

Returns:

• A JSON object of the token symbol.

Return Value Example:

{"Symbol": "PNT"}

TokenURI
This method returns the URI of a specified token. Anyone can call this method.

func (t *Controller) TokenURI(tokenId string) (interface{}, error) {
 return t.Ctx.ERC721Token.TokenURI(tokenId)
}

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a JSON object of the token URI.

Return Value Example:

{"TokenURI": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg"}

TotalSupply
This method returns the total number of minted tokens. This method can be called only by a
Token Admin of the chaincode.

func (t *Controller) TotalSupply() (interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.TotalSupply", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-523

 return t.Ctx.ERC721Token.TotalSupply()
}

Parameters:

• none

Returns:

• On success, a JSON object of the token count.

Return Value Example:

{"TotalSupply": 3}

TotalNetSupply
This method returns the total number of minted tokens minus the number of burned
tokens. This method can be called only by a Token Admin of the chaincode.

func (t *Controller) TotalNetSupply() (interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.TotalNetSupply",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC721Token.GetTotalMintedTokens()
}

Parameters:

• none

Returns:

• On success, a JSON object of the token count.

Return Value Example:

{"TotalNetSupply": 2}

Methods for Account Management

CreateAccount
This method creates an account for a specified user and token. An account must be
created for any user who will have tokens at any point. Accounts track the number of
NFTs a user has. Users must have accounts in the network to complete token-related
operations. You can create only one NFT account per user.
An account ID is an alphanumeric set of characters, prefixed with oaccount~ and
followed by an SHA-256 hash of the membership service provider ID (OrgId) of the
user in the current network organization, the user name or email ID (UserId) of the

Chapter 7
Tokenization Support Using Blockchain App Builder

7-524

instance owner or the user who is logged in to the instance, and the constant string nft. This
method can be called only by the Token Admin of the chaincode.

func (t *Controller) CreateAccount(orgId string, userId string, tokenType
string) (interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ACCOUNT.CreateAccount", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Account.CreateAccount(orgId, userId, tokenType)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• tokenType: string – The only supported token type is nonfungible.

Returns:

• On success, a JSON object of the account that was created.

Return Value Example:

{
 "AssetType": "oaccount",
 "BapAccountVersion" : 0,
 "AccountId":
"oaccount~a0a60d54ba9e2ff349737d292ea10ebd9cc8f1991c11443c19d20aea299a9507",
 "UserId": "admin",
 "OrgId": "Org1MSP",
 "TokenType": "nonfungible",
 "NoOfNfts": 0
}

BalanceOf
This method returns the total number of NFTs that a specified user holds. This method can
be called only by a Token Admin of the chaincode or by the account owner.

func (t *Controller) BalanceOf(orgId string, userId string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ACCOUNT.BalanceOf", "TOKEN",
map[string]string{"orgId": orgId, "userId": userId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-525

 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId,
userId)
 if err != nil{
 return nil,err
 }
 return t.Ctx.ERC721Account.BalanceOf(accountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• A JSON object of the current NFT count.

Return Value Example:

{"totalNfts": 0}

GetAllAccounts
This method returns a list of all accounts. This method can be called only by a Token
Admin of the chaincode. This method uses Berkeley DB SQL rich queries and can
only be called when connected to the remote Oracle Blockchain Platform network.

func (t *Controller) GetAllAccounts() (interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ACCOUNT.GetAllAccounts",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC721Account.GetAllAccounts()
}

Parameters:

• none

Returns:

• On success, a JSON array of all accounts.

Return Value Example:

[
 {
 "key":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d

Chapter 7
Tokenization Support Using Blockchain App Builder

7-526

fd1",
 "valueJson": {
 "AccountId":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "AssetType": "oaccount",
 "BapAccountVersion" : 0,
 "NoOfNfts": 5,
 "OrgId": "apPart",
 "TokenType": "nonfungible",
 "UserId": "user1"
 }
 },
 {
 "key":
"oaccount~0829f0996744ca9dc8b4e9165a7a8f5db3fdffdc46c96b94f5d625041502cec4",
 "valueJson": {
 "AccountId":
"oaccount~0829f0996744ca9dc8b4e9165a7a8f5db3fdffdc46c96b94f5d625041502cec4",
 "AssetType": "oaccount",
 "BapAccountVersion" : 0,
 "NoOfNfts": 0,
 "OrgId": "apPart",
 "TokenType": "nonfungible",
 "UserId": "user_minter"
 }
 },
 {
 "key":
"oaccount~5541fb520058d83664b844e7a55fe98d574ddeda765d0e795d4779e9ccc271ce",
 "valueJson": {
 "AccountId":
"oaccount~5541fb520058d83664b844e7a55fe98d574ddeda765d0e795d4779e9ccc271ce",
 "AssetType": "oaccount",
 "BapAccountVersion" : 0,
 "NoOfNfts": 0,
 "OrgId": "apPart",
 "TokenType": "nonfungible",
 "UserId": "user_burner"
 }
 }
]

GetAccountByUser
This method returns account details for a specified user. This method can be called only by a
Token Admin of the chaincode or the Account Owner of the account.

func (t *Controller) GetAccountByUser(orgId string, userId string)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ACCOUNT.GetAccountByUser",
"TOKEN", map[string]string{"orgId": orgId, "userId": userId})
 if err != nil && !auth {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-527

 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC721Account.GetAccountWithStatusByUser(orgId,
userId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON account object that includes the following properties:

• AccountId – The ID of the user account.

• UserId – The user name or email ID of the user.

• OrgId – The membership service provider (MSP) ID of the user in the current
organization.

• TokenType – The type of token that the account holds.

• NoOfNfts – The total number of NFTs held by the account.

• BapAccountVersion – An account object parameter for internal use.

• Status – The current status of the user account.

Return Value Example:

{
 "AccountId":
"oaccount~cc301bee057f14236a97d434909ec1084970921b008f6baab09c2a0f5f419
a9a",
 "AssetType": "oaccount",
 "BapAccountVersion": 0,
 "NoOfNfts": 0,
 "OrgId": "appdev",
 "Status": "active",
 "TokenType": "nonfungible",
 "UserId": "idcqa"
}

GetUserByAccountId
This method returns the user details of a specified account. This method can be
called by any user.

func (t *Controller) GetUserByAccountId(accountId string)
(interface{}, error) {
 return t.Ctx.ERC721Account.GetUserByAccountById(accountId)
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-528

Parameters:

• accountId: string – The ID of the account.

Returns:

• On success, a JSON object of the user details (OrgId and UserId).

Return Value Example:

{
 "OrgId": "Org1MSP",
 "UserId": "admin"
}

GetAccountHistory
This method returns account history for a specified user. This method can be called only by a
Token Admin of the chaincode or by the account owner.

func (t *Controller) GetAccountHistory(orgId string, userId string)
(interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ACCOUNT.History", "TOKEN",
map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Account.History(accountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a list of objects.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-04-06T08:16:53Z",
 "TxId":
"750f68538451847f57948f7d5261dcb81570cd9e429f928a4cb7bfa76392ecf7",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-529

 "Value": {
 "AccountId":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "AssetType": "oaccount",
 "BapAccountVersion" : 1,
 "NoOfNfts": 1,
 "OrgId": "apPart",
 "TokenType": "nonfungible",
 "UserId": "user1"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-04-06T08:15:19Z",
 "TxId":
"49eb84c42d452e5ba0028d8ebb4190454cf9013a11c0bad3e96594af452d4982",
 "Value": {
 "AccountId":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "AssetType": "oaccount",
 "BapAccountVersion" : 0,
 "NoOfNfts": 0,
 "OrgId": "apPart",
 "TokenType": "nonfungible",
 "UserId": "user1"
 }
 }
]

Methods for Role Management

AddRole
This method adds a role to a specified user. This method can be called only by a
Token Admin of the chaincode.

func (t *Controller) AddRole(role string, orgId string, userId string)
(interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId,
userId)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.AddRoleMember",
"TOKEN", map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-530

 return t.Ctx.ERC721Token.AddRoleMember(role, accountId)
}

Parameters:

• userRole: string – The name of the role to add to the specified user. The mintable
and burnable behaviors correspond to the minter_role_name and burner_role_name
properties of the specification file.

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message with user details.

Return Value Example:

{"msg": "Successfully added role minter to
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d
(orgId : Org1MSP, userId : admin)"}

RemoveRole
This method removes a role from a specified user. This method can be called only by a
Token Admin of the chaincode.

func (t *Controller) RemoveRole(userRole string, orgId string, userId
string) (interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.RemoveRoleMember", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Token.RemoveRoleMember(userRole, accountId)
}

Parameters:

• userRole: string – The name of the role to remove from the specified user. The
mintable and burnable behaviors correspond to the minter_role_name and
burner_role_name properties of the specification file.

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-531

• On success, a message with user details.

Return Value Example:

{"msg": "successfully removed memberId
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad128
8d (orgId : Org1MSP, userId : admin) from role minter"}

GetAccountsByRole
This method returns a list of all account IDs for a specified role. This method can be
called only by a Token Admin of the chaincode.

func (t *Controller) GetAccountsByRole(userRole string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ROLE.GetAccountsByRole",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC721Role.GetAccountsByRole(userRole)
}

Parameters:

• userRole: string – The name of the role to search for.

Returns:

• On success, a JSON array of account IDs.

Return Value Example:

{
 "accounts": [

"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d"
]
}

GetUsersByRole
This method returns a list of all users for a specified role. This method can be called
only by a Token Admin of the chaincode.

func (t *Controller) GetUsersByRole(userRole string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ROLE.GetUsersByRole",
"TOKEN")
 if err != nil && !auth {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-532

 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Role.GetUsersByRole(userRole)
}

Parameters:

• userRole: string – The name of the role to search for.

Returns:

• On success, a JSON array of the user objects (orgId and userId).

Return Value Example:

{
 "Users": [
 {
 "OrgId": "Org1MSP",
 "UserId": "admin"
 }
]
}

IsInRole
This method returns a Boolean value to indicate if a user has a specified role. This method
can be called only by a Token Admin of the chaincode or the Account Owner of the account.

func (t *Controller) IsInRole(orgId string, userId string, role string)
(interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.IsInRole", "TOKEN",
map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 result, err := t.Ctx.ERC721Token.IsInRole(role, accountId)
 if err != nil {
 return nil, fmt.Errorf("error in IsInRole %s", err.Error())
 }
 response := make(map[string]interface{})
 response["result"] = result
 return response, nil
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-533

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• userRole: string – The name of the role to search for.

Returns:

• On success, a JSON string of the Boolean result.

Return Value Example:

{"result":"true"}

Methods for Transaction History Management

GetAccountTransactionHistory
This method returns account transaction history for a specified user. This method can
be called by the Token Admin of the chaincode or the owner of the account.

func (t *Controller) GetAccountTransactionHistory(orgId string, userId
string) (interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId,
userId)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ACCOUNT.GetAccountTransactio
nHistory", "TOKEN", map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }

 transactionArray, err :=
t.Ctx.ERC721Account.GetAccountTransactionHistory(accountId)
 return transactionArray, err
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a list of objects.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-534

Return Value Example:

[
 {
 "Timestamp": "2022-04-06T08:31:39Z",
 "TokenId": "monalisa",
 "TransactedAccount":
"oaccount~0829f0996744ca9dc8b4e9165a7a8f5db3fdffdc46c96b94f5d625041502cec4",
 "TransactionId":
"otransaction~5a353e02e657c2c8fddce41dd4e7260025fe7beef634ca3351fc366a440e8ac
7",
 "TransactionType": "DEBIT"
 }
 {
 "Timestamp": "2022-04-06T08:16:53Z",
 "TokenId": "monalisa",
 "TransactedAccount":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "TransactionId":
"otransaction~750f68538451847f57948f7d5261dcb81570cd9e429f928a4cb7bfa76392ecf
7",
 "TransactionType": "MINT"
 }
]

GetAccountTransactionHistoryWithFilters
This method returns account transaction history for a specified user, filtered by PageSize,
Bookmark, StartTime and EndTime. This method can only be called when connected to the
remote Oracle Blockchain Platform network. This method can be called only by a Token
Admin of the chaincode or by the account owner.

func (t *Controller) GetAccountTransactionHistoryWithFilters(orgId string,
userId string, filters ...erc721Account.AccountHistoryFilters) (interface{},
error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721ACCOUNT.GetAccountTransactionHisto
ryWithFilters", "TOKEN", map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }

 transactionArray, err :=
t.Ctx.ERC721Account.GetAccountTransactionHistoryWithFilters(accountId,
filters...)
 return transactionArray, err
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-535

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• filters: string – An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0,
the default page size is 20. The Bookmark property determines the starting index
of the records to return. For more information, see the Hyperledger Fabric
documentation. The StartTime and EndTime properties must be specified in
RFC-3339 format.

Returns:

• On success, a list of objects.

Return Value Example:

[
 {
 "Timestamp": "2022-04-06T08:31:39Z",
 "TokenId": "monalisa",
 "TransactedAccount":
"oaccount~0829f0996744ca9dc8b4e9165a7a8f5db3fdffdc46c96b94f5d625041502c
ec4",
 "TransactionId":
"otransaction~5a353e02e657c2c8fddce41dd4e7260025fe7beef634ca3351fc366a4
40e8ac7",
 "TransactionType": "DEBIT"
 }
 {
 "Timestamp": "2022-04-06T08:16:53Z",
 "TokenId": "monalisa",
 "TransactedAccount":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "TransactionId":
"otransaction~750f68538451847f57948f7d5261dcb81570cd9e429f928a4cb7bfa76
392ecf7",
 "TransactionType": "MINT"
 }
]

GetTransactionById
This method returns transaction history for a specified transaction ID. This method
can be called only by a Token Admin of the chaincode or by the account owner.

func (t *Controller) GetTransactionById(transactionId string)
(interface{}, error) {
 return t.Ctx.ERC721Transaction.GetTransactionById(transactionId)
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-536

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

Parameters:

• transactionId: string – The id of the transaction asset.

Returns:

• On success, a list of objects.

Return Value Example:

{
 "History": [
 {
 "IsDelete": "false",
 "Timestamp": "2022-04-06T08:31:39Z",
 "TxId":
"5a353e02e657c2c8fddce41dd4e7260025fe7beef634ca3351fc366a440e8ac7",
 "Value": {
 "AssetType": "otransaction",
 "Data": "",
 "FromAccountId":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "Timestamp": "2022-04-06T08:31:39Z",
 "ToAccountId":
"oaccount~0829f0996744ca9dc8b4e9165a7a8f5db3fdffdc46c96b94f5d625041502cec4",
 "TokenId": "monalisa",
 "TransactionId":
"otransaction~5a353e02e657c2c8fddce41dd4e7260025fe7beef634ca3351fc366a440e8ac
7",
 "TransactionType": "TRANSFER",
 "TriggeredByAccountId":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1"
 }
 }
],
 "TransactionId":
"otransaction~5a353e02e657c2c8fddce41dd4e7260025fe7beef634ca3351fc366a440e8ac
7"
}

DeleteHistoricalTransactions
This method deletes transactions older than a specified time stamp in the state database.
This method can be called only by the Token Admin of the chaincode.

func (t *Controller) DeleteHistoricalTransactions(timestamp string)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TRANSACTION.DeleteHistoricalTransa
ctions", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-537

 return
t.Ctx.ERC721Transaction.DeleteHistoricalTransactions(timestamp)
}

Parameters:

• timestamp: Date – A time stamp. All transactions before the time stamp will be
deleted.

Returns:

• On success, a list of objects.

Return Value Example:

{
 "Transactions": [

"otransaction~750f68538451847f57948f7d5261dcb81570cd9e429f928a4cb7bfa76
392ecf7"
],
 "msg": "Successfuly deleted transaction older than
date:2022-04-06T08:17:53Z"
}

Methods for Token Behavior Management - Mintable Behavior

Create<Token Name>Token
This method creates (mints) an NFT. The asset and associated properties are saved
in the state database. The caller of this transaction must have a token account. The
caller of this transaction becomes the owner of the NFT. If the token specification file
includes the roles section for behaviors and the minter_role_name property for
roles, then the caller of the transaction must have the minter role. Otherwise, any
caller can mint NFTs.

func (t *Controller) Create<Token Name>Token(tokenAsset <Token Class>)
(interface{}, error) {
 return t.Ctx.ERC721Token.CreateToken(&tokenAsset)
}

Parameters:

• tokenAsset: <Token Class> – The token asset to mint. For more information
about the properties of the token asset, see the input specification file.

Returns:

• On success, a JSON token asset object that includes the following properties:

• Behavior – A description of all token behaviors.

• CreatedBy – The account ID of the user who called the transaction to mint the
token.

• CreationDate – The time stamp of the transaction.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-538

• IsBurned – A Boolean value that indicates if the NFT identified by tokenId is burned.

• Mintable – A description of the properties of mintable behavior. The max_mint_quantity
property specifies the maximum number of NFTs of this token class that can be created.

• Owner – The account ID of the current owner of the token. During the minting process,
the caller of this method becomes the owner of the token.

• Symbol – The symbol of the token.

• TokenDesc – The description of the token.

• TokenMetadata – JSON information that describes the token.

• TokenName – The name of the token.

• TokenStandard – The standard of the token.

• TokenType – The type of token held by this account.

• TokenUnit – The unit of the token.

• TokenUri – The URI of the token.

Return Value Example:

{
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",

 "CreationDate": "2022-04-06T08:16:53Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 100,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-539

 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg"
}

Update<Token Name>Token
This method updates token properties. This method can be called only by the user
who is the owner or creator of the token. After a token asset is created, only the token
owner can update the token custom properties. If the user is both token owner and
creator of a token, they can also update the TokenDesc property. Token metadata
cannot be updated. You must pass all token properties to this method, even if you
want to update only certain properties.

func (t *Controller) Update<Token Name>Token(tokenAsset <Token Class>)
(interface{}, error) {
 return t.Ctx.ERC721Token.UpdateToken(&tokenAsset)
}

Parameters:

• tokenAsset: <Token Class> – The token asset to update. For more information
about the the properties of the token asset, see the input specification file.

Returns:

• On success, an updated JSON token asset object

Return Value Example:

{
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2022-04-06T08:16:53Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000

Chapter 7
Tokenization Support Using Blockchain App Builder

7-540

 },
 "NftBasePrice": 200,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "Token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
}

Methods for Token Behavior Management - Transferable Behavior

SafeTransferFrom
This method transfers ownership of the specified NFT from the caller to another account.
This method includes the following validations:

• The token exists and is not burned.

• The sender account and receiver account exist and are not the same account.

• The sender account owns the token.

• The caller of the function is the sender.

func (t *Controller) SafeTransferFrom(fromOrgId string, fromUserId string,
toOrgId string, toUserId string, tokenId string, data ...string)
(interface{}, error) {
 tokenAssetValue, err := t.getTokenObject(tokenId)
 if err != nil {
 return nil, err
 }
 fromAccountId, err := t.Ctx.ERC721Account.GenerateAccountId(fromOrgId,
fromUserId)
 if err != nil {
 return nil, err
 }
 toAccountId, err := t.Ctx.ERC721Account.GenerateAccountId(toOrgId,
toUserId)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-541

 if err != nil {
 return nil, err
 }
 return t.Ctx.ERC721Token.SafeTransferFrom(fromAccountId,
toAccountId, tokenAssetValue.Interface(), data...)
}

Parameters:

• fromOrgId: string – The membership service provider (MSP) ID of the sender in
the current organization.

• fromUserId: string – The user name or email ID of the sender.

• toOrgId: string – The membership service provider (MSP) ID of the receiver in
the current organization.

• toUserId: string – The user name or email ID of the receiver.

• tokenId: string – The ID of the token to transfer.

• data: string – Optional additional information to store in the transaction record.

Returns:

• On success, a message with the sender and receiver account details.

Return Value Example:

{"msg": "Successfully transferred NFT token: 'monalisa' from Account-
Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad128
8d (Org-Id: Org1MSP, User-Id: admin) to Account-Id:
oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729d
ba (Org-Id: Org1MSP, User-Id: user1)"}

TransferFrom
This method transfers ownership of the specified NFT from a sender account to a
receiver account. It is the responsibility of the caller to pass the correct parameters.
This method can be called by any user, not only the token owner. This method
includes the following validations:

• The token exists and is not burned.

• The sender account and receiver account exist and are not the same account.

• The sender account owns the token.

func (t *Controller) TransferFrom(fromOrgId string, fromUserId string,
toOrgId string, toUserId string, tokenId string) (interface{}, error) {
 tokenAssetValue, err := t.getTokenObject(tokenId)
 if err != nil {
 return nil, err
 }
 fromAccountId, err :=
t.Ctx.ERC721Account.GenerateAccountId(fromOrgId, fromUserId)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-542

 if err != nil {
 return nil, err
 }
 toAccountId, err := t.Ctx.ERC721Account.GenerateAccountId(toOrgId,
toUserId)
 if err != nil {
 return nil, err
 }
 return t.Ctx.ERC721Token.TransferFrom(fromAccountId, toAccountId,
tokenAssetValue.Interface())
}

Parameters:

• fromOrgId: string – The membership service provider (MSP) ID of the sender in the
current organization.

• fromUserId: string – The user name or email ID of the sender.

• toOrgId: string – The membership service provider (MSP) ID of the receiver in the
current organization.

• toUserId: string – The user name or email ID of the receiver.

• tokenId: string – The ID of the token to transfer.

Returns:

• On success, a message with the sender and receiver account details.

Return Value Example:

{"msg": "Successfully transferred NFT token: 'monalisa' from Account-Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d
(Org-Id: Org1MSP, User-Id: admin) to Account-Id:
oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba
(Org-Id: Org1MSP, User-Id: user1)"}

Methods for Token Behavior Management - Burnable Behavior

Burn
This method deactivates, or burns, the specified NFT from the caller's account. The caller of
this method must have an account. A token cannot be burned unless the token specification
file includes the burnable behavior. If no burner_role_name property is specified in the
roles section of the specification file, then the owner of the token can burn the token. If a
burner_role_name property is specified in the roles section, then the user assigned the
burner role who is also the minter (creator) of the token can burn the token.

func (t *Controller) Burn(tokenId string) (interface{}, error) {
 tokenAssetValue, err := t.getTokenObject(tokenId)
 if err != nil {
 return nil, err
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-543

 return t.Ctx.ERC721Token.Burn(tokenAssetValue.Interface())
}

Parameters:

• tokenId: string – The ID of the token to burn.

Returns:

• On success, a message with the account details.

Return Value Example:

{"msg": "Successfully burned NFT token: 'monalisa' from Account-Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad128
8d (Org-Id: Org1MSP, User-Id: admin"}

BurnNFT
This method deactivates, or burns, the specified NFT from the caller's account, and
returns a token object and token history. The caller of this method must have an
account. A token cannot be burned unless the token specification file includes the
burnable behavior. If no burner_role_name property is specified in the roles section
of the specification file, then the owner of the token can burn the token. If a
burner_role_name property is specified in the roles section, then the user assigned
the burner role who is also the minter (creator) or owner of the token can burn the
token.

func (t *Controller) BurnNFT(tokenId string) (interface{}, error) {
 tokenAsset, err := t.Ctx.ERC721Token.Get(tokenId)
 if err != nil {
 return nil, err
 }
 tokenHistory, err := t.Ctx.ERC721Token.History(tokenId)
 if err != nil {
 return nil, err
 }
 token := tokenAsset.(map[string]interface{})
 if token[constants.IsBurned] == true {
 return nil, fmt.Errorf("token with tokenId %s is already
burned", tokenId)
 }
 token[constants.TokenId], err =
strconv.Atoi(token[constants.TokenId].(string))
 if err != nil {
 return nil, fmt.Errorf("tokenId is expected to be integer
but found %s", tokenId)
 }
 tokenHistoryBytes, err := json.Marshal(tokenHistory)
 if err != nil {
 return nil, err
 }
 var tokenHistoryAsRawJson json.RawMessage
 err = json.Unmarshal(tokenHistoryBytes, &tokenHistoryAsRawJson)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-544

 if err != nil {
 return nil, err
 }
 token[constants.TokenHistory] = string(tokenHistoryAsRawJson)
 token[constants.IsBurned] = true
 _, err = t.Burn(tokenId)
 if err != nil {
 return nil, err
 }
 return token, nil
}

Parameters:

• tokenId: string – The ID of the token to burn.

Returns:

• On success, a token object that includes token history information.

Return Value Example:

{
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "CreationDate": "2023-08-22T13:19:33+05:30",
 "IsBurned": true,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": false,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "Price": 120,
 "Roles": {
 "minter_role_name": "minter"
 },
 "Symbol": "ART",
 "TokenDesc": "",
 "TokenHistory":
"[{\"IsDelete\":\"false\",\"Timestamp\":\"2023-08-22T13:19:33+05:30\",\"TxId\
":\"0219099bcaaecd5f76f7f08d719384fd5ed34103a55bd8d3754eca0bfc691594\",\"Valu
e\":{\"AssetType\":\"otoken\",\"Behavior\":
[\"indivisible\",\"singleton\",\"mintable\",\"transferable\",\"burnable\",\"r
oles\"],\"CreatedBy\":\"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436

Chapter 7
Tokenization Support Using Blockchain App Builder

7-545

dd1aae201d347ad1288d\",\"CreationDate\":\"2023-08-22T13:19:33+05:30\",\
"IsBurned\":false,\"Mintable\":
{\"Max_mint_quantity\":20000},\"On_sale_flag\":false,\"Owner\":\"oaccou
nt~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d\",\
"Price\":120,\"Roles\":
{\"minter_role_name\":\"minter\"},\"Symbol\":\"ART\",\"TokenDesc\":\"\"
,\"TokenId\":\"1\",\"TokenMetadata\":
{\"Description\":\"\",\"Image\":\"\",\"Painter_name\":\"\",\"Painting_n
ame\":\"\"},\"TokenName\":\"artcollection\",\"TokenStandard\":\"erc721+
\",\"TokenType\":\"nonfungible\",\"TokenUnit\":\"whole\",\"TokenUri\":\
"example.com\"}}]",
 "TokenId": 1,
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "example.com"
}

Custom Methods

You can use the token SDK methods to write custom methods for your business
application.

The following example shows how to use token SDK methods in custom methods.
When the Sell method is called, it posts a token for sale for a specified price.

func (t *Controller) Sell(tokenId string, sellingPrice int)
(interface{}, error) {
 var tokenAsset ArtCollection
 _, err := t.Ctx.ERC721Token.Get(tokenId, &tokenAsset)
 if err != nil {
 return nil, err
 }

 /** * price is a custom asset
 attribute to set the price of a non-fungible token in the
 marketplace */
 tokenAsset.Price = sellingPrice
 /** * on_sale_flag is a
 custom asset attribute that maintains non-fungible token selling
status in the
 marketplace */
 tokenAsset.On_sale_flag = true

 _, err = t.Ctx.ERC721Token.UpdateToken(tokenAsset)
 if err != nil {
 return nil, err
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-546

 msg := fmt.Sprintf("Token ID : %s has been posted for selling in the
marketplace", tokenId)
 return msg, nil
}

NFT SDK Methods

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Burnable Behavior

Methods for Access Control Management

The NFT SDK provides an access control function. Some methods can be called only by a
Token Admin or Account Owner of the token. You can use this feature to ensure that
operations are carried out only by the intended users. Any unauthorized access results in an
error. To use the access control function, import the Authorization class from the ../lib/
auth module.

import { ERC721Authorization } from '../lib/erc721-auth';

CheckAuthorization
Use this method to add an access control check to an operation. Most automatically
generated methods include access control. Certain token methods can be run only by an
ERC721Admin or the Account Owner of the token or by the MultipleAccountOwner for users
with multiple accounts. The CheckAuthorization method is part of the erc721Auth package,
which you access via the Ctx struct (receiver). The access control mapping is described in
the oChainUtil.go file, as shown in the following text. You can modify access control by
editing the oChainUtil.go file. To use your own access control or to disable access
control, remove the access control code from the automatically generated controller methods
and custom methods.

 var t TokenAccess
 var r RoleAccess
 var a AccountAccess
 var as AccountStatusAccess
 var h HoldAccess
 var ad AdminAccess
 var trx TransactionAccess
 var tc TokenConversionAccess
 var auth AuthAccess

Chapter 7
Tokenization Support Using Blockchain App Builder

7-547

 var erc721ad ERC721AdminAccess
 var erc721t ERC721TokenAccess
 var erc721r ERC721RoleAccess
 var erc721a ERC721AccountAccess
 var erc721as ERC721AccountStatusAccess
 var erc721trx ERC721TransactionAccess
 auth.IsTokenAdmin = []string{"Admin", "MultipleAccountOwner"}

 trx.DeleteHistoricalTransactions = []string{"Admin"}
 ad.AddAdmin = []string{"Admin"}
 ad.RemoveAdmin = []string{"Admin"}
 ad.GetAllAdmins = []string{"Admin", "OrgAdmin"}
 ad.AddOrgAdmin = []string{"Admin", "OrgAdminOrgIdCheck"}
 ad.RemoveOrgAdmin = []string{"Admin", "OrgAdminOrgIdCheck"}
 ad.GetOrgAdmins = []string{"Admin", "OrgAdmin"}
 ad.IsTokenAdmin = []string{"Admin", "MultipleAccountOwner",
"OrgAdmin"}
 t.Save = []string{"Admin"}
 t.GetAllTokens = []string{"Admin", "OrgAdmin"}
 t.Update = []string{"Admin"}
 t.GetTokenDecimals = []string{"Admin", "OrgAdmin"}
 t.GetTokensByName = []string{"Admin", "OrgAdmin"}
 t.AddRoleMember = []string{"Admin", "OrgAdminRoleCheck"}
 t.RemoveRoleMember = []string{"Admin", "OrgAdminRoleCheck"}
 t.IsInRole = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 t.GetTotalMintedTokens = []string{"Admin", "OrgAdmin"}
 t.GetNetTokens = []string{"Admin", "OrgAdmin"}
 t.Get = []string{"Admin", "OrgAdmin"}
 t.GetTokenHistory = []string{"Admin", "OrgAdmin"}
 a.CreateAccount = []string{"Admin", "OrgAdminOrgIdCheck"}
 a.AssociateToken = []string{"Admin", "OrgAdminAccountIdCheck"}
 a.GetAllAccounts = []string{"Admin"}
 a.GetAllOrgAccounts = []string{"Admin", "OrgAdminOrgIdCheck"}
 a.GetAccount = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 a.History = []string{"Admin", "AccountOwner"}
 a.GetAccountTransactionHistory = []string{"Admin",
"OrgAdminAccountIdCheck", "AccountOwner"}
 a.GetAccountTransactionHistoryWithFilters = []string{"Admin",
"OrgAdminAccountIdCheck", "AccountOwner"}
 a.GetSubTransactionsById = []string{"Admin",
"TransactionInvoker"}
 a.GetSubTransactionsByIdWithFilters = []string{"Admin",
"TransactionInvoker"}
 a.GetAccountBalance = []string{"Admin",
"OrgAdminAccountIdCheck", "AccountOwner"}
 a.GetAccountOnHoldBalance = []string{"Admin",
"OrgAdminAccountIdCheck", "AccountOwner"}
 a.GetOnHoldIds = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 a.GetAccountsByUser = []string{"Admin", "OrgAdminOrgIdCheck",
"MultipleAccountOwner"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-548

 as.Get = []string{"Admin", "OrgAdminAccountIdCheck", "AccountOwner"}
 as.ActivateAccount = []string{"Admin", "OrgAdminOrgIdCheck"}
 as.SuspendAccount = []string{"Admin", "OrgAdminOrgIdCheck"}
 as.DeleteAccount = []string{"Admin", "OrgAdminOrgIdCheck"}
 r.GetAccountsByRole = []string{"Admin"}
 r.GetUsersByRole = []string{"Admin"}
 r.GetOrgAccountsByRole = []string{"Admin", "OrgAdminOrgIdCheck"}
 r.GetOrgUsersByRole = []string{"Admin", "OrgAdminOrgIdCheck"}

 tc.InitializeExchangePoolUser = []string{"Admin"}
 tc.AddConversionRate = []string{"Admin"}
 tc.UpdateConversionRate = []string{"Admin"}
 tc.GetConversionRate = []string{"Admin", "OrgAdmin", "AnyAccountOwner"}
 tc.GetConversionRateHistory = []string{"Admin", "OrgAdmin",
"AnyAccountOwner"}
 tc.TokenConversion = []string{"Admin", "AnyAccountOwner"}
 tc.GetExchangePoolUser = []string{"Admin"}
 erc721ad.AddAdmin = []string{"Admin"}
 erc721ad.GetAllAdmins = []string{"Admin"}
 erc721ad.IsTokenAdmin = []string{"Admin"}
 erc721ad.RemoveAdmin = []string{"Admin"}
 erc721trx.DeleteHistoricalTransactions = []string{"Admin"}
 erc721t.Save = []string{"Admin"}
 erc721t.GetAllTokens = []string{"Admin"}
 erc721t.Update = []string{"Admin"}
 erc721t.GetTokensByName = []string{"Admin"}
 erc721t.AddRoleMember = []string{"Admin"}
 erc721t.RemoveRoleMember = []string{"Admin"}
 erc721t.IsInRole = []string{"Admin", "AccountOwner"}
 erc721t.Get = []string{"Admin", "TokenOwner"}
 erc721t.GetAllTokensByUser = []string{"Admin", "AccountOwner"}
 erc721t.TotalSupply = []string{"Admin"}
 erc721t.TotalNetSupply = []string{"Admin"}
 erc721t.History = []string{"Admin"}

 erc721a.CreateAccount = []string{"Admin"}
 erc721a.CreateUserAccount = []string{"Admin"}
 erc721a.CreateTokenAccount = []string{"Admin"}
 erc721a.AssociateFungibleTokenToAccount = []string{"Admin",
"AccountOwner"}
 erc721a.GetAllAccounts = []string{"Admin"}
 erc721a.History = []string{"Admin", "AccountOwner"}
 erc721a.GetAccountTransactionHistory = []string{"Admin",
"AccountOwner"}
 erc721a.GetAccountTransactionHistoryWithFilters = []string{"Admin",
"AccountOwner"}
 erc721a.GetAccountByUser = []string{"Admin", "MultipleAccountOwner"}
 erc721a.BalanceOf = []string{"Admin", "MultipleAccountOwner"}
 erc721as.Get = []string{"Admin", "AccountOwner"}
 erc721as.ActivateAccount = []string{"Admin"}
 erc721as.SuspendAccount = []string{"Admin"}
 erc721as.DeleteAccount = []string{"Admin"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-549

 erc721r.GetAccountsByRole = []string{"Admin"}
 erc721r.GetUsersByRole = []string{"Admin"}

 var accessMap TokenAccessControl
 accessMap.Token = t
 accessMap.Account = a
 accessMap.AccountStatus = as
 accessMap.Hold = h
 accessMap.Role = r
 accessMap.Admin = ad
 accessMap.Auth = auth
 accessMap.TokenConversion = tc
 accessMap.ERC721ADMIN = erc721ad
 accessMap.ERC721TOKEN = erc721t
 accessMap.ERC721ACCOUNT = erc721a
 accessMap.ERC721AccountStatus = erc721as
 accessMap.ERC721ROLE = erc721r
 accessMap.ERC721TRANSACTION = erc721trx

Ctx.ERC721Auth.CheckAuthorization(funcName string, args []string)
(bool, error)

Parameters:

• funcName: string – The map value between the receivers and methods as
described in the oChainUtil.go file.

• ...args – A variable argument where args[0] takes the constant 'TOKEN' and
args[1] takes the accountId parameter to add an access control check for an
AccountOwner. To add an access control check for a MultipleAccountOwner,
args[1] takes the orgId parameter and args[2] takes the userId parameter. To
add an access control check for a TokenOwner, args[1] takes the tokenId
parameter.

Returns:

• A Boolean response and, if required, an error.

Examples:

t.Ctx.ERC721Auth.CheckAuthorization(<parameters>)

Admin access

t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.GetAllTokens",
"TOKEN")

Chapter 7
Tokenization Support Using Blockchain App Builder

7-550

AccountOwner access

t.Ctx.ERC721Auth.CheckAuthorization("ERC721ACCOUNT.History", "TOKEN",
accountId)

MultipleAccountOwner access

t.Ctx.ERC721Auth.CheckAuthorization("ERC721ACCOUNT.BalanceOf", "TOKEN",
orgId, userId)

TokenOwner access

t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.Get", "TOKEN", tokenId)

IsUserTokenAdmin
This method returns a map with the Boolean value true if the caller of the function is a Token
Admin. Otherwise the method returns false.

Ctx.ERC721Auth.IsUserTokenAdmin(orgId string, userId string) (interface{},
error)

Parameters:

• orgId – The membership service provider (MSP) ID of the user in the current network
organization.

• userId – The user name or email ID of the user.

Returns:

• A Boolean response.

Example:
t.Ctx.ERC721Auth.IsUserTokenAdmin(orgId, userId)

{"result":true}

AddAdmin
This method adds a user as a Token Admin of the token chaincode.

Ctx.ERC721Admin.AddAdmin(orgId string, userId string) (interface{}, error)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-551

• On success, a message that lists details for the user added as a Token Admin of
the token chaincode. On error, a non-nil error object that contains an error
message.

Example:
t.Ctx.ERC721Admin.AddAdmin(orgId, userId)

{"msg":"Successfully added Admin (OrgId: Org1MSP, UserId: user1)"}

RemoveAdmin
This method removes a user as a Token Admin of the token chaincode.

Ctx.ERC721Admin.RemoveAdmin(orgId string, userId string) (interface{},
error)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that lists details for the user removed as a Token Admin
of the token chaincode. On error, a non-nil error object that contains an error
message.

Example:
t.Ctx.ERC721Admin.RemoveAdmin(orgId, userId)

{"msg":"Successfuly removed Admin (OrgId Org1MSP UserId user1)"}

GetAllAdmins
This method returns a list of all Token Admin users.

Ctx.ERC721Admin.GetAllAdmins() (Admin[], error)

Parameters:

• none

Returns:

• On success, a list of all Token Admin users. On error, a non-nil error object that
contains an error message.

Example:
t.Ctx.ERC721Admin.GetAllAdmins()

{
 "admins": [

Chapter 7
Tokenization Support Using Blockchain App Builder

7-552

 {
 "OrgId":"Org1MSP",
 "UserId":"admin"
 }
]
}

GetAllAdminUsers
This method returns a list of all Token Admin users.

Ctx.ERC721Admin.GetAllAdminUsers() (interface{}, error)

Parameters:

• none

Returns:

• On success, a list of all Token Admin users in map[string]interface{} format. On error,
a non-nil error object that contains an error message.

Example:
t.Ctx.ERC721Admin.GetAllAdminUsers()

{
 "admins": [
 {
 "OrgId":"Org1MSP",
 "UserId":"admin"
 }
]
}

Methods for Token Configuration Management

CreateToken
This method creates a token and saves its properties in the state database. This method can
be called only by users with the minter role.

Ctx.ERC721Token.CreateToken(args ...interface{})

Parameters:

• A variable argument where args[0] contains a reference to the token struct of the
required type.

Returns:

• On success, an interface[] with token details. On error, a non-nil object with an error
message.

Example:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-553

t.Ctx.ERC721Token.CreateToken(&tokenAsset)

{
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2022-04-06T08:16:53Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 100,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg"
}

GetTokenUri
This method returns the token URI for a specified token.

Ctx.ERC721Token.GetTokenURI(tokenId string) (interface{}, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-554

• tokenId: string – The ID of the token.

Returns:

• On success, it returns a map of the new token URI in the string data type. On error, a
non-nil object with an error message.

Example:
t.Ctx.ERC721Token.GetTokenURI(tokenId)

{"TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg"}

TokenUri
This method returns the token URI for a specified token.

Ctx.ERC721Token.TokenURI(tokenId string) (interface{}, error)

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, it returns a map of the new token URI in the string data type. On error, a
non-nil object with an error message.

Return Value Example:
t.Ctx.ERC721Token.TokenURI(tokenId)

{"TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg"}

Symbol
This method returns the symbol of the token class.

Ctx.ERC721Token.Symbol() (interface{}, error)

Parameters:

• none

Returns:

• On success, a map of the symbol in the string data type. On error, a non-nil object
containing an error message.

Example:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-555

t.Ctx.ERC721Token.Symbol()

{"Symbol": "PNT"}

Name
This method returns the name of the token class.

Ctx.ERC721Token.Name() (interface{}, error)

Parameters:

• none

Returns:

• On success, a map of the token name in the string data type. On error, a non-nil
object containing an error message.

Example:
t.Ctx.ERC721Token.Name()

{"TokenName": "paintingnft"}

OwnerOf
This method returns the account ID of the owner of a specified token.

Ctx.ERC721Token.OwnerOf(tokenId string) (interface{}, error)

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a map of the account ID of the owner in the string data type. On
error, a non-nil object containing an error message.

Example:
t.Ctx.ERC721Token.OwnerOf(tokenId)

{"Owner":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729
dba"}

TotalSupply
This method returns the total number of minted NFTs.

Ctx.ERC721Token.TotalSupply() (map[string]interface{}, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-556

• tokenId: string – The ID of the token.

Returns:

• On success, a map of the total supply of tokens in the number data type. On error, a
rejection with an error message.

Example:
t.Ctx.ERC721Token.TotalSupply();

{"TotalSupply": 3}

GetAllTokens
This method returns all of the token assets that are saved in the state database. This method
uses Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network.

Ctx.ERC721Token.GetAllTokens() (interface{}, error)

Parameters:

• none

Returns:

• On success, a map of all of the token assets. On error, a non-nil object containing an
error message.

Example:
t.Ctx.ERC721Token.GetAllTokens()

[
 {
 "key": "monalisa",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintab

le",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "CreationDate": "2022-04-10T11:01:42Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-557

 "NftBasePrice": 0,
 "Owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 }
 },
 {
 "key": "monalisa2",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "CreationDate": "2022-04-10T11:04:44Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 100,
 "Owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-558

 },
 "Symbol": "PNT",
 "TokenDesc": "",
 "TokenId": "monalisa1",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 }
 }
 }
]

GetAllTokensByUser
This method returns all tokens that are owned by a specified account ID. This method uses
Berkeley DB SQL rich queries and can only be called when connected to the remote Oracle
Blockchain Platform network.

Ctx.ERC721Token.GetAllTokensByUser(accountId string) (interface{}, error)

Parameters:

• accountId: string – The ID of the account.

Returns:

• On success, a map of token assets for the specified account. On error, a non-nil object
containing an error message.

Example:
t.Ctx.ERC721Token.GetAllTokensByUser(accountId)

[
 {
 "key": "monalisa",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-559

],
 "CreatedBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "CreationDate": "2022-04-10T11:01:42Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 0,
 "Owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 }
 },
 {
 "key": "monalisa2",
 "valueJson": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "CreationDate": "2022-04-10T11:04:44Z",
 "IsBurned": false,
 "Mintable": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-560

 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 100,
 "Owner":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "",
 "TokenId": "monalisa1",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg",
 }
 }
 }
]

Get
This method returns the specified token object if it is present in the state database.

Ctx.Get(Id string, result ...interface{}) (interface{}, error)

Parameters:

• tokenId: string – The ID of the token.

• result – A variable argument, where the first argument result[0] is a reference to an
empty Token object of the correct type, which will contain the token data after a
successful call of the method.

Returns:

• On success, a map with the token asset data. Also, if result[0] is passed then the data
is assigned to result[0]. On error, a non-nil object containing an error message.

Example:
t.Ctx.ERC721Token.Get(tokenId, &asset)

{
 "AssetType": "otoken",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-561

 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2022-04-06T00:35:42z",
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 200,
 "Owner":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729
dba",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "Token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
 "TransferredBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "TransferredDate": "2022-04-06T00:51:56z"
}

UpdateToken
This method updates token properties. This method can be called only by the owner
or creator of the token. After a token asset is created, only the token owner can
update the token custom properties. If the user is both token owner and creator of a
token, they can also update the TokenDesc property. Token metadata cannot be

Chapter 7
Tokenization Support Using Blockchain App Builder

7-562

updated. You must pass all token properties to this method, even if you want to update only
certain properties.

Ctx.ERC721Token.UpdateToken(asset interface{}) (interface{}, error)

Parameters:

• A reference to the token struct data of the required type

Returns:

• On success, a promise message with token details. On error, a rejection with an error
message.

Example:
t.Ctx.ERC721Token.UpdateToken(&asset)

{
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",

 "CreationDate": "2022-04-06T08:16:53Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 200,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "Token Description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-563

 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg",
}

History
This method returns history for the specified token.

Ctx.ERC721Token.History(tokenId: string) (interface{}, error)

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, an array of maps. On error, a rejection with an error message.

Example:
t.Ctx.ERC721Token.History(tokenId)

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-04-06T11:34:06z",
 "TxId":
"3184eac8738c73ef45501fe23c9e14517892e04e4eb03ec9be834b89c29ea17b",
 "Value": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "BurnedBy": null,
 "BurnedDate": null,
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2022-04-06T11:33:40+05:30",
 "IsBurned": null,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 0,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-564

 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "",
 "TokenId": "t1",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "PainterName": "",
 "PaintingName": ""
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "",
 "TransferredBy": null,
 "TransferredDate": null
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-04-06T11:33:40z",
 "TxId":
"d37dba907a849c308b2a38d47cf8a68cdcb4e3d93fa74050774379fccfcd43be",
 "Value": {
 "AssetType": "otoken",
 "Behavior": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "CreationDate": "2022-04-06T11:33:40+05:30",
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "NftBasePrice": 0,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "Symbol": "PNT",
 "TokenDesc": "",
 "TokenId": "t1",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-565

 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "PainterName": "",
 "PaintingName": ""
 },
 "TokenName": "paintingnft",
 "TokenStandard": "erc721+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": ""
 }
 }
]

GetNewCtx
This method returns a new TrxContext object. The trxcontext struct holds
references to all of the SDK libraries. Access the sdk methods by using only this
object. The trxcontext object maintains the mutual exclusivity of transaction stubs in
SDK libraries when concurrent transactions are running.

GetNewCtx(stub shim.ChaincodeStubInterface) TrxContext

Parameters:

• stub – The transaction stub.

Returns:

• A trxcontext struct.

Example:
trxcontext.GetNewCtx(stub)

trxcontext object.

Methods for Account Management

GenerateAccountId
This method returns an account ID, which is formed by concatenating the
membership service provider ID (orgId) and the user name or email ID (userId) and
then creating a SHA-256 hash.

Ctx.ERC721Account.GenerateAccountId(orgId string, userId string)
(string, error)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-566

Returns:

• On success, the generated account ID. On error, a non-nil object containing an error
message.

Example:
t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)

oaccount~a0a60d54ba9e2ff349737d292ea10ebd9cc8f1991c11443c19d20aea299a9507

CreateAccount
This method creates an account for a specified user. An account must be created for any
user who will have tokens at any point. Accounts track the number of NFTs a user has.
Users must have accounts in the network to complete token-related operations. You can
create only one NFT account per user.
An account ID is an alphanumeric set of characters, prefixed with oaccount~ and followed by
an SHA-256 hash of the membership service provider ID (org_id) of the user in the current
network organization, the user name or email ID (userId) of the instance owner or the user
who is logged in to the instance, and the constant string nft.

Ctx.ERC721Account.CreateAccount(orgId string, userId string, tokenType
string) (ERC721Account, error)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• tokenType: string – The only supported token type is nonfungible.

Returns:

• On success, the new account object. On error, a non-nil object containing an error
message

Example:
t.Ctx.ERC721Account.CreateAccount(orgId, userId, tokenType)

{
 "AssetType": "oaccount",
 "AccountId":
"oaccount~a0a60d54ba9e2ff349737d292ea10ebd9cc8f1991c11443c19d20aea299a9507",
 "UserId": "admin",
 "BapAccountVersion" : 0,
 "OrgId": "Org1MSP",
 "TokenType": "nonfungible",
 "NoOfNfts": 0
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-567

GetAllAccounts
This method returns a list of all accounts. This method uses Berkeley DB SQL rich
queries and can only be called when connected to the remote Oracle Blockchain
Platform network.

Ctx.ERC721Account.GetAllAccounts() (interface{}, error)

Parameters:

• none

Returns:

• A JSON array of all accounts.

Example:
t.Ctx.ERC721Account.GetAllAccounts()

[
 {
 "key":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "valueJson": {
 "AccountId":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "BapAccountVersion" : 0,
 "AssetType": "oaccount",
 "NoOfNfts": 5,
 "OrgId": "apPart",
 "TokenType": "nonfungible",
 "UserId": "user1"
 }
 },
 {
 "key":
"oaccount~0829f0996744ca9dc8b4e9165a7a8f5db3fdffdc46c96b94f5d625041502c
ec4",
 "valueJson": {
 "AccountId":
"oaccount~0829f0996744ca9dc8b4e9165a7a8f5db3fdffdc46c96b94f5d625041502c
ec4",
 "AssetType": "oaccount",
 "BapAccountVersion" : 0,
 "NoOfNfts": 0,
 "OrgId": "apPart",
 "TokenType": "nonfungible",
 "UserId": "user_minter"
 }
 },
 {
 "key":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-568

"oaccount~5541fb520058d83664b844e7a55fe98d574ddeda765d0e795d4779e9ccc271ce",
 "valueJson": {
 "AccountId":
"oaccount~5541fb520058d83664b844e7a55fe98d574ddeda765d0e795d4779e9ccc271ce",
 "AssetType": "oaccount",
 "BapAccountVersion" : 0,
 "NoOfNfts": 0,
 "OrgId": "apPart",
 "TokenType": "nonfungible",
 "UserId": "user_burner"
 }
 }
]

History
This method returns an array of the account history details for a specified account.

Ctx.ERC721Account.History(accountId string) (interface{}, error)

Parameters:

• accountId: string – The ID of the account.

Returns:

• On success, a map[string]interface{} array that contains the account history details
for the specified account. The account data is shown under the value key in the map.
On error, a non-nil error object containing an error message.

Example:
t.Ctx.ERC721Account.History(accountId)

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-04-06T08:16:53Z",
 "TxId":
"750f68538451847f57948f7d5261dcb81570cd9e429f928a4cb7bfa76392ecf7",
 "Value": {
 "AccountId":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "AssetType": "oaccount",
 "BapAccountVersion" : 1,
 "NoOfNfts": 1,
 "OrgId": "apPart",
 "TokenType": "nonfungible",
 "UserId": "user1"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-04-06T08:15:19Z",
 "TxId":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-569

"49eb84c42d452e5ba0028d8ebb4190454cf9013a11c0bad3e96594af452d4982",
 "Value": {
 "AccountId":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "AssetType": "oaccount",
 "NoOfNfts": 0,
 "BapAccountVersion" : 0,
 "OrgId": "apPart",
 "TokenType": "nonfungible",
 "UserId": "user1"
 }
 }
]

GetUserByAccountId
This method returns the user details for a specified account.

Ctx.ERC721Account.GetUserByAccountId(accountId string) (interface{},
error)

Parameters:

• accountId: string – The ID of the account.

Returns:

• On success, a JSON object that includes user details in the following properties:

– OrgId – The membership service provider (MSP) ID of the user in the current
network organization.

– UserId – The user name or email ID of the user.

• On error, a non-nil object containing an error message.

Example:
t.Ctx.ERC721Account.GetUserByAccountById(accountId)

{
 "OrgId": "Org1MSP",
 "UserId": "admin"
}

GetAccountWithStatusByUser
This method returns account details for a specified user, including account status.
This method can be called only by a Token Admin of the chaincode or the Account
Owner of the account.

Ctx.ERC721Account.GetAccountWithStatusByUser(orgId, userId)
(interface{}, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-570

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON account object that includes the following properties:

• AccountId – The ID of the user account.

• UserId – The user name or email ID of the user.

• OrgId – The membership service provider (MSP) ID of the user in the current
organization.

• TokenType – The type of token that the account holds.

• NoOfNfts – The total number of NFTs held by the account.

• BapAccountVersion – An account object parameter for internal use.

• Status – The current status of the user account.

• On error, a non-nil object that contains an error message.

Example:

{
 "AccountId":
"oaccount~cc301bee057f14236a97d434909ec1084970921b008f6baab09c2a0f5f419a9a",
 "AssetType": "oaccount",
 "BapAccountVersion": 0,
 "NoOfNfts": 0,
 "OrgId": "appdev",
 "Status": "active",
 "TokenType": "nonfungible",
 "UserId": "idcqa"
}

GetAccountByUser
This method returns account details for a specified user. This method can be called only by a
Token Admin of the chaincode or the Account Owner of the account.

Ctx.ERC721Account.GetAccountByUser(orgId, userId) (ERC721Account, error)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON account object that includes the following properties:

• AccountId – The ID of the user account.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-571

• UserId – The user name or email ID of the user.

• OrgId – The membership service provider (MSP) ID of the user in the current
organization.

• TokenType – The type of token that the account holds.

• NoOfNfts – The total number of NFTs held by the account.

• On error, a non-nil object that contains an error message.

Example:

{
 "AssetType": "oaccount",
 "AccountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "BapAccountVersion" : 0,
 "UserId": "admin",
 "OrgId": "Org1MSP",
 "TokenType": "nonfungible",
 "NoOfNfts": 0
}

BalanceOf
This method returns the total number of NFTs the specified user holds.

Ctx.ERC721Account.BalanceOf(accountId string) (interface{}, error)

Parameters:

• accountId: string – The account ID of the user.

Returns:

• On success, an interface with a message and the total number of NFTs. On error,
a non-nil error object that contains an error message.

Example:
t.Ctx.ERC721Account.BalanceOf(accountId)

{"TotalNfts": 0}

Methods for Role Management

AddRoleMember
This method adds a role to a specified user.

Ctx.ERC721Token.AddRoleMember(role string, accountId string)
(interface{}, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-572

• role: string – The name of the role to add to the specified user. The mintable and
burnable behaviors correspond to the minter_role_name and burner_role_name
properties of the specification file.

• accountId: number – The account ID to operate on.

Returns:

• On success, a map with a success message. On error, a non-nil object containing an
error message.

Example:
t.Ctx.ERC721Token.AddRoleMember(userRole, accountId)

{"msg": "Successfully added role minter to
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d
(orgId : Org1MSP, userId : admin)"}

RemoveRoleMember
This method removes a role from a specified user and token. An account ID is formed by
creating an SHA-256 hash of the concatenated membership service provider ID (orgId) and
the user name or email ID (userId).

Ctx.Token.RemoveRoleMember(role string, accountId string) (interface{},
error)

Parameters:

• role: string – The name of the role to remove from the specified user. The mintable
and burnable behaviors correspond to the minter_role_name and burner_role_name
properties of the specification file.

• accountId: number – The account ID to operate on.

Returns:

• On success, a map with a success message. On error, a non-nil object containing an
error message.

Example:
t.Ctx.ERC721Token.RemoveRoleMember(userRole, accountId)

{"msg": "successfully removed memberId
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d
(orgId : Org1MSP, userId : admin) from role minter"}

IsInRole
This method returns a Boolean value to indicate if a user and token has a specified role. An
account ID is formed by creating an SHA-256 hash of the concatenated membership service
provider ID (orgId) and the user name or email ID (userId).

Ctx.ERC721Token.IsInRole(role string, accountId string) (bool, error)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-573

Parameters:

• role: string – The name of the role to check for the specified user. The
mintable and burnable behaviors correspond to the minter_role_name and
burner_role_name properties of the specification file.

• accountId: number – The account ID to operate on.

Returns:

• On success, a Boolean value that is true if the role is present for the specified
account ID, otherwise false. On error, a non-nil object containing an error
message

Example:
t.Ctx.ERC721Token.IsInRole(userRole, accountId)

{"result": false}

GetAccountsByRole
This method returns a list of all account IDs for a specified role.

Ctx.ERC721Role.GetAccountsByRole(roleName string) (interface{}, error)

Parameters:

• roleName: string – The name of the role to search for.

Returns:

• On success, a JSON array of account IDs. On error, a non-nil error object that
contains an error message.

Example:
t.Ctx.ERC721Role.GetAccountsByRole(userRole)

{
 "accounts": [

"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d"
]
}

GetUsersByRole
This method returns a list of all users for a specified role.

Ctx.ERC721Role.GetUsersByRole(roleName string) (interface{}, error)

Parameters:

• roleName: string – The name of the role to search for.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-574

• On success, a JSON array of user objects. Each object contains the user ID and
organization ID. On error, a non-nil error object that contains an error message.

Example:
t.Ctx.ERC721Role.GetUsersByRole(userRole)

{
 "Users": [
 {
 "OrgId": "Org1MSP",
 "UserId": "admin"
 }
]
}

Methods for Transaction History Management

GetAccountTransactionHistory
This method returns an array of the transaction history details for a specified account.

Ctx.ERC721Account.GetAccountTransactionHistory(accountId string)
(interface{}, error)

Parameters:

• accountId: string – The ID of the account.

Returns:

• On success, an array of account transaction objects in JSON format:

– TransactionId – The ID of the transaction.

– TransactedAccount – The account with which the transaction took place.

– TransactionType – The type of transaction.

– Timestamp – The time of the transaction.

– On error, a non-nil error object that contains an error message.

Example:
t.Ctx.ERC721Account.GetAccountTransactionHistory(accountId)

[
 {
 "Timestamp": "2022-04-06T08:31:39Z",
 "TokenId": "monalisa",
 "TransactedAccount":
"oaccount~0829f0996744ca9dc8b4e9165a7a8f5db3fdffdc46c96b94f5d625041502cec4",
 "TransactionId":
"otransaction~5a353e02e657c2c8fddce41dd4e7260025fe7beef634ca3351fc366a440e8ac
7",
 "TransactionType": "DEBIT"
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-575

 {
 "Timestamp": "2022-04-06T08:16:53Z",
 "TokenId": "monalisa",
 "TransactedAccount":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1",
 "TransactionId":
"otransaction~750f68538451847f57948f7d5261dcb81570cd9e429f928a4cb7bfa76
392ecf7",
 "TransactionType": "MINT"
 }
]

GetAccountTransactionHistoryWithFilters
This method returns account transaction history for a specified user, filtered by
PageSize, Bookmark, startTime and endTime. This method can only be called when
connected to the remote Oracle Blockchain Platform network.

Ctx.ERC721Account.GetAccountTransactionHistoryWithFilters(accountId
string, filters ...erc721Account.AccountHistoryFilters)

Parameters:

• accountId: string – ID of the account.

• filters: string – An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0,
the default page size is 20. The Bookmark property determines the starting index
of the records to return. For more information, see the Hyperledger Fabric
documentation. The StartTime and EndTime properties must be specified in
RFC-3339 format.

Returns:

• On success, an array of account transaction objects in JSON format:

– TransactionId – The ID of the transaction.

– TransactedAccount – The account with which the transaction took place.

– TransactionType – The type of transaction.

– Timestamp – The time of the transaction.

– On error, a non-nil error object that contains an error message.

Example:
t.Ctx.ERC721Account.GetAccountTransactionHistoryWithFilters(accountId,
filters...)

[
 {
 "Timestamp": "2022-04-06T08:31:39Z",
 "TokenId": "monalisa",
 "TransactedAccount":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-576

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

"oaccount~0829f0996744ca9dc8b4e9165a7a8f5db3fdffdc46c96b94f5d625041502cec4",
 "TransactionId":
"otransaction~5a353e02e657c2c8fddce41dd4e7260025fe7beef634ca3351fc366a440e8ac
7",
 "TransactionType": "DEBIT"
 }
 {
 "Timestamp": "2022-04-06T08:16:53Z",
 "TokenId": "monalisa",
 "TransactedAccount":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "TransactionId":
"otransaction~750f68538451847f57948f7d5261dcb81570cd9e429f928a4cb7bfa76392ecf
7",
 "TransactionType": "MINT"
 }
]

GetTransactionById
This method returns the history of a Transaction asset.

Ctx.ERC721Transaction.GetTransactionById(trxId string) (interface{}, error)

Parameters:

• trxId: string – The ID of the transaction asset.

Returns:

• On success, an array of maps of transaction assets. On error, a non-nil error object that
contains an error message.

Example:
t.Ctx.ERC721Transaction.GetTransactionById(transactionId)

{
 "History": [
 {
 "IsDelete": "false",
 "Timestamp": "2022-04-06T08:31:39Z",
 "TxId":
"5a353e02e657c2c8fddce41dd4e7260025fe7beef634ca3351fc366a440e8ac7",
 "Value": {
 "AssetType": "otransaction",
 "Data": "",
 "FromAccountId":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",
 "Timestamp": "2022-04-06T08:31:39Z",
 "ToAccountId":
"oaccount~0829f0996744ca9dc8b4e9165a7a8f5db3fdffdc46c96b94f5d625041502cec4",
 "TokenId": "monalisa",
 "TransactionId":
"otransaction~5a353e02e657c2c8fddce41dd4e7260025fe7beef634ca3351fc366a440e8ac

Chapter 7
Tokenization Support Using Blockchain App Builder

7-577

7",
 "TransactionType": "TRANSFER",
 "TriggeredByAccountId":
"oaccount~543c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0d
fd1"
 }
 }
],
 "TransactionId":
"otransaction~5a353e02e657c2c8fddce41dd4e7260025fe7beef634ca3351fc366a4
40e8ac7"
}

DeleteHistoricalTransactions
This method deletes transactions that are older than a specified date from the state
database.

func (t *Controller) DeleteHistoricalTransactions(referenceTime
string) (interface{}, error)

Parameters:

• referenceTime: string – Transactions older than the specified time will be
deleted.

Returns:

• On success, an array of the deleted transaction IDs and a success message. On
error, a non-nil error object that contains an error message.

Example:
t.Ctx.ERC721Transaction.DeleteHistoricalTransactions(timestamp)

{
 "Transactions": [

"otransaction~750f68538451847f57948f7d5261dcb81570cd9e429f928a4cb7bfa76
392ecf7"
],
 "msg": "Successfuly deleted transaction older than
date:2022-04-06T08:17:53Z"
}

Token Behavior Management - Mintable Behavior

GetMaxMintQuantity
This method returns the maximum mintable quantity of a token. If the
max_mint_quantity behavior is not configured in the specification file, then the default
value is 0 and an infinite number of tokens can be minted.

Ctx.ERC721Token.GetMaxMintQuantity(id string) (float64, error)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-578

Parameters:

• id – The ID of the token to operate on.

Returns:

• On success, the maximum mintable quantity of the token, in the number data type. On
error, a non-nil object with an error message.

Example:
t.Ctx.ERC721Token.GetMaxMintQuantity(tokenId);

20000

GetTotalMintedTokens
This method returns the total net number of tokens available in the system for the specified
token. The net number of tokens available is the total number of minted tokens minus the
number of burned tokens.

Ctx.ERC721Token.GetTotalMintedTokens() (map[string]interface{}, error)

Parameters:

• none

Returns:

• On success, a map of the total minted tokens, in the number data type, and a success
message. On error, a non-nil object with an error message.

Example:
t.Ctx.ERC721Token.GetTotalMintedTokens()

{"TotalNetSupply": 5}

Token Behavior Management - Transferable Behavior

SafeTransferFrom
This method transfers ownership of the specified NFT from the caller to another account.
This method includes the following validations:

• The token exists and is not burned.

• The sender account and receiver account exist and are not the same account.

• The sender account owns the token.

• The caller of the function is the sender.

Ctx.ERC721Token.SafeTransferFrom(fromAccountId string, toAccountId string,
tokenAsset interface{}, data ...string) (interface{}, error)

Parameters:

• fromAccountId: string – The account ID of the sender in the current organization.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-579

• toAccountId: string – The account ID of the receiver in the current
organization.

• tokenAsset – The reference to the token asset to operate on.

• data: string – Optional additional information to store in the transaction.

Returns:

• On success, a promise with a success message that includes account details. On
error, a non-nil object with an error message.

Example:
t.Ctx.ERC721Token.SafeTransferFrom(fromAccountId, toAccountId,
tokenAssetValue.Interface(), data...)

{"msg": "Successfully transferred NFT token: 'monalisa' from Account-
Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad128
8d (Org-Id: Org1MSP, User-Id: admin) to Account-Id:
oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729d
ba (Org-Id: Org1MSP, User-Id: user1"}

TransferFrom
This method transfers ownership of the specified NFT from a sender account to a
receiver account. It is the responsibility of the caller to pass the correct parameters.
This method can be called by any user, not only the token owner. This method
includes the following validations:

• The token exists and is not burned.

• The sender account and receiver account exist and are not the same account.

• The sender account owns the token.

Ctx.ERC721Token.TransferFrom(fromAccountId string, toAccountId string,
tokenAsset interface{}) (interface{}, error)

Parameters:

• fromAccountId: string – The account ID of the sender in the current
organization.

• toAccountId: string – The account ID of the receiver in the current
organization.

• tokenAsset – The reference to the token asset to operate on.

Returns:

• On success, a promise with a success message that includes account details.
Account IDs have the prefix oaccount~. On error, a non-nil object with an error
message.

\Example:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-580

t.Ctx.ERC721Token.TransferFrom(fromAccountId, toAccountId,
tokenAssetValue.Interface())

{"msg": "Successfully transferred NFT token: 'monalisa' from Account-Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d
(Org-Id: Org1MSP, User-Id: admin) to Account-Id:
oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6a170c4a95fd008181f729dba
(Org-Id: Org1MSP, User-Id: user1"}

Token Behavior Management - Burnable Behavior

Burn
This method deactivates, or burns, the specified NFT from the caller's account. The caller of
this method must have an account. A token cannot be burned unless the token specification
file includes the burnable behavior. If no burner_role_name property is specified in the
roles section of the specification file, then the owner of the token can burn the token. If a
burner_role_name property is specified in the roles section, then the user assigned the
burner role who is also the minter (creator) of the token can burn the token. The burn
method is part of the ERC721Token package, which you access via the receiver of the Ctx
struct.

Ctx.Token.Burn(tokenAsset interface{}) (interface{}, error)

Parameters:

• tokenAsset – The reference to the token asset to operate on.

Returns:

• On success, a promise with a success message that includes account details. On error,
a non-nil object with an error message.

Example:
t.Ctx.ERC721Token.Burn(tokenAssetValue.Interface())

{"msg": "Successfully burned NFT token: 'monalisa' from Account-Id:
oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d
(Org-Id: Org1MSP, User-Id: admin"}

Go Methods for ERC-721 NFT Locking
Blockchain App Builder automatically generates methods that you can use to lock non-
fungible tokens that use the extended ERC-721 standard.

A locked token cannot be burned or transferred to other users. All other properties, such as
the token's state, owner, and history are preserved. You can use the NFT locking functionality
when transferring a token to another blockchain network, such as Ethereum or Polygon.

Before you can lock NFTs, you must assign the vault manager role to a user. The vault
manager is a special type of role, a TokenSys role. TokenSys roles are different from asset-
based roles such as burner, minter, and notary, and from administrative roles such as Token
Admin and Org Admin. Currently Blockchain App Builder supports the vault TokenSys role.
The single user who has the vault role for a chaincode is the vault manager of the
chaincode, and can manage locked NFTs.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-581

The typical flow for using the NFT locking functionality follows these steps.

• Create a non-fungible token that has the lockable behavior.

• Use the AddTokenSysRole method to give the vault role to a user, the vault
manager.

• Call the LockNFT method to lock a non-fungible token, specified by the token ID.

TokenSys Role Management Methods

AddTokenSysRole
This method adds a TokenSys role to a specified user. This method can be called only
by a Token Admin of the chaincode.

func (t *Controller) AddTokenSysRole(role string, orgId string, userId
string) (interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId,
userId)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.AddTokenSysRole",
"TOKEN", map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Token.AddTokenSysRoleMember(role, accountId)
}

Parameters:

• role: string – The name of the TokenSys role to give to the user.

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully added role 'vault' to Account Id:
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03e
ba (Org-Id: Org1MSP, User-Id: user1)"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-582

IsInTokenSysRole
This method returns a Boolean value to indicate if a user has a specified TokenSys role. This
method can be called only by a Token Admin of the chaincode.

func (t *Controller) IsInTokenSysRole(orgId string, userId string, role
string) (interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.IsInTokenSysRole", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Token.IsInTokenSysRoleMember(role, accountId)
}

Parameters:

• role: string – The name of the TokenSys role to check.

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "result": true,
 "msg": "Account Id
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03eba
(Org-Id: Org1MSP, User-Id: user1) has vault role"
}

RemoveTokenSysRole
This method removes a TokenSys role from a specified user. This method can be called only
by a Token Admin of the chaincode.

func (t *Controller) RemoveTokenSysRole(role string, orgId string, userId
string) (interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.RemoveTokenSysRole",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-583

"TOKEN", map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Token.RemoveTokenSysRoleMember(role, accountId)
}

Parameters:

• role: string – The name of the TokenSys role to remove.

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully removed role 'vault' from Account Id:
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03e
ba (Org-Id: Org1MSP, User-Id: user1)"
}

TransferTokenSysRole
This method transfers a TokenSys role from a user to another user. This method can
be called only by a Token Admin of the chaincode.

func (t *Controller) TransferTokenSysRole(role string, fromOrgId
string, fromUserId string, toOrgId string, toUserId string)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.TransferTokenSysRole",
 "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 fromAccountId, err :=
t.Ctx.ERC721Account.GenerateAccountId(fromOrgId, fromUserId)
 if err != nil {
 return nil, fmt.Errorf("error in TransferTokenSysRole. Error:
%s", err)
 }
 toAccountId, err := t.Ctx.ERC721Account.GenerateAccountId(toOrgId,
toUserId)
 if err != nil {
 return nil, fmt.Errorf("error in TransferTokenSysRole. Error:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-584

%s", err)
 }
 return t.Ctx.ERC721Token.TransferTokenSysRole(role, fromAccountId,
toAccountId)
}

Parameters:

• role: string – The name of the TokenSys role to transfer.

• fromOrgId: string – The membership service provider (MSP) ID of the user to transfer
the TokenSys role from.

• fromUserId: string – The user name or email ID of the user to transfer the TokenSys
role from.

• toOrgId: string – The membership service provider (MSP) ID of the user to transfer
the TokenSys role to.

• toUserId: string – The user name or email ID of the user to transfer the TokenSys role
to.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully transfered role 'vault' from Account Id:
ouaccount~f4e311528f03fffa7810753d643f66289ff6c9080fcf839902f28a1d3aff1789
(Org-Id: Org1MSP, User-Id: user1) to Account Id:
ouaccount~ae5be2ae8f98d6d32f5d02b43877d987114e7937c7bacbc30390dcce09996a19
(Org-Id: Org1MSP, User-Id: user2)"
}

GetAccountsByTokenSysRole
This method returns a list of all account IDs for a specified TokenSys role. This method can
be called only by a Token Admin of the chaincode.

func (t *Controller) GetAccountsByTokenSysRole(role string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.GetAccountsByTokenSysRole",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Token.GetAccountsByTokenSysRole(role)
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-585

• role: string – The name of the TokenSys role.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "accountIds": [

"oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03
eba"
]
}

GetUsersByTokenSysRole
This method returns user information for all users with a specified TokenSys role. This
method can be called only by a Token Admin of the chaincode.

func (t *Controller) GetUsersByTokenSysRole(role string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.GetUsersByTokenSysRole
", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Token.GetUsersByTokenSysRole(role)
}

Parameters:

• role: string – The name of the TokenSys role.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "Users":[
 {

"accountId":"oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb8
3c874c2caf03eba",
 "orgId":"Org1MSP",
 "userId":"user1"
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-586

]
}

NFT Locking Methods

LockNFT
This method locks a specified non-fungible token. To lock a token, there must be a user with
the TokenSys vault role, who acts as the vault manager. This method can be called only by
the owner of the token.

func (t *Controller) LockNFT(tokenId string) (interface{}, error) {
 return t.Ctx.ERC721Token.LockNFT(tokenId)
}

Parameters:

• tokenID: string – The ID of the token to lock.

Returns:

• On success, a JSON representation of the token object.

Return Value Example:

{
 "AssetType":"otoken",
 "Behavior":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "lockable",
 "burnable",
 "roles"
],

"CreatedBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b
6a7733463",
 "CreationDate":"2023-10-20T12:39:50Z",
 "IsBurned":false,
 "IsLocked":true,
 "Mintable":{
 "Max_mint_quantity":20000
 },
 "On_sale_flag":false,

"Owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b6a77
33463",
 "Price":120,
 "Roles":{
 "minter_role_name":"minter"
 },
 "Symbol":"ART",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-587

 "TokenDesc":"",
 "TokenId":"token1",
 "TokenMetadata":{
 "Description":"",
 "Image":"",
 "Painter_name":"",
 "Painting_name":""
 },
 "TokenName":"artcollection",
 "TokenStandard":"erc721+",
 "TokenType":"nonfungible",
 "TokenUnit":"whole",
 "TokenUri":"token1.example.com"
}

IsNFTLocked
This method returns a Boolean value to indicate if a specified token is locked. This
method can be called only by the token owner, the vault manager (the user with the
TokenSys vault role), or a Token Admin of the chaincode.

func (t *Controller) IsNFTLocked(tokenId string) (interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.IsNFTLocked",
"TOKEN", map[string]string{"tokenId": tokenId})
 if err != nil && !auth {
 isCallerTokenSysRoleHolder, error :=
t.Ctx.ERC721Token.IsCallerTokenSysRoleHolder(constants.Vault)
 if error != nil {
 return nil, error
 }
 if !isCallerTokenSysRoleHolder {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 }
 return t.Ctx.ERC721Token.IsNFTLocked(tokenId)
}

Parameters:

• tokenID: string – The ID of the token.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "isNFTLocked":true
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-588

GetAllLockedNFTs
This method returns a list of all locked non-fungible tokens. This method can be called only
by the vault manager (the user with the TokenSys vault role) or a Token Admin of the
chaincode.

func (t *Controller) GetAllLockedNFTs() (interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.GetAllLockedNFTs", "TOKEN")
 if err != nil && !auth {
 isCallerTokenSysRoleHolder, error :=
t.Ctx.ERC721Token.IsCallerTokenSysRoleHolder(constants.Vault)
 if error != nil {
 return nil, error
 }
 if !isCallerTokenSysRoleHolder {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 }
 return t.Ctx.ERC721Token.GetAllLockedNFTs()
}

Parameters:

• None

Returns:

• On success, an array of the locked non-fungible token objects.

Return Value Example:

[
 {
 "key":"token1",
 "valueJson":{
 "AssetType":"otoken",
 "Behavior":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "lockable",
 "burnable",
 "roles"
],

"CreatedBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b
6a7733463",
 "CreationDate":"2023-10-20T12:39:50Z",
 "IsBurned":false,
 "IsLocked":true,
 "Mintable":{

Chapter 7
Tokenization Support Using Blockchain App Builder

7-589

 "Max_mint_quantity":20000
 },
 "On_sale_flag":false,

"Owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff
1b6a7733463",
 "Price":120,
 "Roles":{
 "minter_role_name":"minter"
 },
 "Symbol":"ART",
 "TokenDesc":"",
 "TokenId":"token1",
 "TokenMetadata":{
 "Description":"",
 "Image":"",
 "Painter_name":"",
 "Painting_name":""
 },
 "TokenName":"artcollection",
 "TokenStandard":"erc721+",
 "TokenType":"nonfungible",
 "TokenUnit":"whole",
 "TokenUri":"token1.example.com"
 }
 }
]

GetAllLockedNFTsByOrg
This method returns a list of all locked non-fungible tokens for a specified organization
and optionally a specified user. This method can be called only by the vault manager
(the user with the TokenSys vault role) or a Token Admin of the chaincode.

func (t *Controller) GetLockedNFTsByOrg(orgId string,
userId ...string) (interface{}, error) {
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721TOKEN.GetLockedNFTsByOrg",
"TOKEN")
 if err != nil && !auth {
 isCallerTokenSysRoleHolder, error :=
t.Ctx.ERC721Token.IsCallerTokenSysRoleHolder(constants.Vault)
 if error != nil {
 return nil, error
 }
 if !isCallerTokenSysRoleHolder {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 }
 return t.Ctx.ERC721Token.GetLockedNFTsByOrg(orgId, userId...)
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-590

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user (optional).

Returns:

• On success, an array of the locked non-fungible token objects.

Return Value Example:

[
 {
 "key":"token1",
 "valueJson":{
 "AssetType":"otoken",
 "Behavior":[
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "lockable",
 "burnable",
 "roles"
],

"CreatedBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b
6a7733463",
 "CreationDate":"2023-10-20T12:39:50Z",
 "IsBurned":false,
 "IsLocked":true,
 "Mintable":{
 "Max_mint_quantity":20000
 },
 "On_sale_flag":false,

"Owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b6a77
33463",
 "Price":120,
 "Roles":{
 "minter_role_name":"minter"
 },
 "Symbol":"ART",
 "TokenDesc":"",
 "TokenId":"token1",
 "TokenMetadata":{
 "Description":"",
 "Image":"",
 "Painter_name":"",
 "Painting_name":""
 },
 "TokenName":"artcollection",
 "TokenStandard":"erc721+",
 "TokenType":"nonfungible",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-591

 "TokenUnit":"whole",
 "TokenUri":"token1.example.com"
 }
 }
]

Go Methods for ERC-721 Token Account Status
Blockchain App Builder automatically generates methods that you can use to manage
account status for tokens that use the extended ERC-721 standard.

You can use the following methods to put token user accounts in the active,
suspended, or deleted states.

When an account is suspended, the account user cannot complete any write
operations, which include minting, burning, and transferring tokens. Additionally, other
users cannot transfer tokens to a suspended account. A suspended account can still
complete read operations.

An account with a non-zero token balance cannot be deleted. You must transfer or
burn all tokens in an account before you can delete the account. After an account is in
the deleted state, the account state cannot be changed back to active or suspended.

• Automatically Generated Account Status Methods

• Account Status SDK Methods

Automatically Generated Account Status Methods

GetAccountStatus
This method gets the current status of the token account. This method can be called
by the Token Admin of the chaincode or by the token account owner.

func (t *Controller) GetAccountStatus(orgId string, userId string)
(interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId,
userId)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
accountId of (Org-Id: %s, User-Id: %s)", orgId, userId)
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721AccountStatus.Get",
"TOKEN", map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 accountStatus, err :=
t.Ctx.ERC721AccountStatus.GetAccountStatus(accountId)
 if err != nil {
 return
t.Ctx.ERC721AccountStatus.GetDefaultAccountStatus(accountId)
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-592

 return accountStatus, nil
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the token account status. If no status is found in
the ledger for the account because the account was created before the account status
functionality was available, the status is listed as active in the response.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "active"
}

GetAccountStatusHistory
This method gets the history of the account status. This method can be called by the Token
Admin of the chaincode or by the token account owner.

func (t *Controller) GetAccountStatusHistory(orgId string, userId string)
(interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
accountId of (Org-Id: %s, User-Id: %s)", orgId, userId)
 }
 _, err = t.Ctx.ERC721Account.GetAccount(accountId)
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountStatusHistory: %s",
err)
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721AccountStatus.Get", "TOKEN",
map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 statusId, err :=
t.Ctx.ERC721AccountStatus.GenerateAccountStatusId(accountId)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-593

 if err != nil {
 return nil, err
 }
 accountStatusHistory, err :=
t.Ctx.ERC721AccountStatus.History(statusId)
 if err != nil {
 return []map[string]interface{}{}, nil
 }
 return accountStatusHistory, nil
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, the account status history in JSON format.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:20:34+05:30",
 "TxId":
"af1601c7a14b4becf4bb3b285d85553b39bf234caaf1cd488a284a31a2d9df78",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "AssetType": "oaccountStatus",
 "Status": "suspended",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:19:15+05:30",
 "TxId":
"4b307b989063e43add5357ab110e19174d586b9746cc8a30c9aa3a2b0b48a34e",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "AssetType": "oaccountStatus",
 "Status": "active",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f

Chapter 7
Tokenization Support Using Blockchain App Builder

7-594

79d5e96d7"
 }
 }
]

ActivateAccount
This method activates a token account. This method can be called only by a Token Admin of
the chaincode. Deleted accounts cannot be activated. For any accounts created prior to the
account status functionality being available, you must call this method to set the account
status as active.

func (t *Controller) ActivateAccount(orgId string, userId string)
(interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating accountId of
(Org-Id: %s, User-Id: %s)", orgId, userId)
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721AccountStatus.ActivateAccount",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Account.ActivateAccount(accountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "active"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-595

SuspendAccount
This method suspends a token account. This method can be called only by a Token
Admin of the chaincode. After an account is suspended, you cannot complete any
operations that update the account. A deleted account cannot be suspended.

func (t *Controller) SuspendAccount(orgId string, userId string)
(interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId,
userId)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
accountId of (Org-Id: %s, User-Id: %s)", orgId, userId)
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721AccountStatus.SuspendAccount
", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Account.SuspendAccount(accountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "suspended"
}

DeleteAccount
This method deletes a token account. This method can be called only by a Token
Admin of the chaincode. After an account is deleted, you cannot complete any
operations that update the account. The deleted account is in a final state and cannot

Chapter 7
Tokenization Support Using Blockchain App Builder

7-596

be changed to any other state. To delete an account, the account balance must be zero.

func (t *Controller) DeleteAccount(orgId string, userId string)
(interface{}, error) {
 accountId, err := t.Ctx.ERC721Account.GenerateAccountId(orgId, userId)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating accountId of
(Org-Id: %s, User-Id: %s)", orgId, userId)
 }
 auth, err :=
t.Ctx.ERC721Auth.CheckAuthorization("ERC721AccountStatus.DeleteAccount",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC721Account.DeleteAccount(accountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "deleted"
}

Account Status SDK Methods

GetDefaultAccountStatus
This method gets the current status of a token account, with the status as active for any
account that does not have account status stored in the ledger (because the account was
created prior to the account status functionality).

Ctx.ERC721AccountStatus.GetDefaultAccountStatus(accountId string)
(NFTAccountStatus, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-597

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "active"
}

GetAccountStatus
This method gets the current status of the token account.

Ctx.ERC721AccountStatus.GetAccountStatus(accountId string)
(NFTAccountStatus, error)

Parameters:

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the token account status. If no status is
found in the ledger for the account because the account was created before the
account status functionality was available, the status is listed as active in the
response.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "active"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-598

GetAccountStatusHistory
This method gets the history of the account status.

Ctx.ERC721AccountStatus.History(statusId string) (interface{}, error)

Parameters:

• statusId: string – The ID of the account status object.

Returns:

• On success, a JSON representation of the account status history.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:20:34+05:30",
 "TxId":
"af1601c7a14b4becf4bb3b285d85553b39bf234caaf1cd488a284a31a2d9df78",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "AssetType": "oaccountStatus",
 "Status": "suspended",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:19:15+05:30",
 "TxId":
"4b307b989063e43add5357ab110e19174d586b9746cc8a30c9aa3a2b0b48a34e",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "AssetType": "oaccountStatus",
 "Status": "active",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7"
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-599

ActivateAccount
This method activates a token account. For any accounts created prior to the account
status functionality being available, you must call this method to set the account
status as active.

Ctx.ERC721Account.ActivateAccount(accountId string) (interface{},
error)

Parameters:

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "active"
}

SuspendAccount
This method suspends a token account.

Ctx.ERC721Account.SuspendAccount(accountId string) (interface{}, error)

Parameters:

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f

Chapter 7
Tokenization Support Using Blockchain App Builder

7-600

9c1",
 "Status": "suspended"
}

DeleteAccount
This method deletes a token account.

Ctx.ERC721Account.DeleteAccount(accountId string) (interface{}, error)

Parameters:

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "deleted"
}

ERC-1155
Blockchain App Builder supports an extended version of the ERC-1155 standard to work with
fungible and non-fungible tokens.

• Input Specification File for ERC-1155

• ERC-1155 Tokenization Flow

• Scaffolded TypeScript Token Project for ERC-1155

• Scaffolded Go Token Project for ERC-1155

Input Specification File for ERC-1155
The Blockchain App Builder initialization command reads the input specification file and
generates the scaffolded project with several tools to assist in the chaincode development
process.

You can define standard assets and both fungible and non-fungible token assets that are
based on the ERC-1155 standard in the same specification file. You cannot define token
assets based on more than one standard in the same specification file.

For information on including standard assets in the specification file, see Input Specification
File.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-601

The following sample specification files for ERC-1155 token assets are available in the
Blockchain App Builder package:

• NFTArtCollectionMarketplacewithERC1155-TypeScript.yml
• FractionalNFTinRealEstate-TypeScript.yml
In addition to the standard properties and sections, token assets support the behavior
and anatomy sections in the specification file. In addition, non-fungible token assets
support the metadata section. The following example shows the structure of a
specification file for two ERC-1155 token assets, a whole non-fungible token and a
fractional fungible token:

assets:
 - name: ArtCollection #Asset name
 type: token #Asset type
 standard: erc1155+ # Token standard

 anatomy:
 type: nonfungible # Token type
 unit: whole #Token unit

 behavior:
 - indivisible
 - mintable:
 max_mint_quantity: 20000
 - transferable
 - burnable
 - lockable
 - roles:
 minter_role_name: minter

 properties: # Custom asset attributes for non-fungible token

 - name: price # Custom asset attribute to set the price of a
non-fungible token in the marketplace
 type: number

 - name: on_sale_flag # Custom asset attribute maintains non-
fungible token selling status in the marketplace
 type: boolean

 metadata: # Use this section to maintain the metadata on the
blockchain. Only the user creating the non-fungible token can assign
metadata attribute values, which cannot be updated later.

 - name: painting_name
 type: string

 - name: description
 type: string

 - name: image
 type: string

 - name: painter_name

Chapter 7
Tokenization Support Using Blockchain App Builder

7-602

 type: string

 - name: Loyalty # Asset name
 type: token # Asset type
 standard: erc1155+ # Token standard

 anatomy:
 type: fungible # Token type
 unit: fractional # Token unit

 behavior: # Token behaviors
 - divisible:
 decimal: 2
 - mintable:
 max_mint_quantity: 10000
 - transferable
 - burnable
 - roles:
 minter_role_name: minter

 properties:
 - name: currency_name # Custom attribute to represent the token in
a specific currency.
 type: string

 - name: token_to_currency_ratio # Custom attribute to specify the
token to currency ratio.
 type: number

The following example shows the structure of a specification file for a fractional non-fungible
token:

- name: RealEstateProperty #Asset name
 type: token #Asset type
 standard: erc1155+ # Token standard

 anatomy:
 type: nonfungible # Token type
 unit: fractional #Token unit

 behavior:
 - divisible:
 - mintable:
 - transferable
 - roles:
 minter_role_name: minter

 properties: # Custom asset attributes for non-fungible token.

 - name: propertySellingPrice # Custom asset attribute to set the
real estate property selling price
 type: number

 - name: propertyRentingPrice # Custom asset attribute maintains

Chapter 7
Tokenization Support Using Blockchain App Builder

7-603

the renting amount for the real estate property
 type: number

 metadata: # To maintain the metadata on-chain, this tag will be
used. Users won't be able to update the metadata attribute values.

 - name: propertyType
 type: string

 - name: propertyName
 type: string

 - name: propertyAddress
 type: string

 - name: propertyImage
 type: string

Table 7-7 Parameter Descriptions and Examples for an ERC-1155 Token Specification File

Entry Description Examples

type: You must specify
type: token in the
assets section.

assets:
 - name: ArtCollection #Asset name
 type: token #Asset type

standard: The standard
property is
mandatory for
ERC-1155 tokens. It
represents the token
standard to follow
during chaincode
generation.

standard: erc1155+ # Token standard

Chapter 7
Tokenization Support Using Blockchain App Builder

7-604

Table 7-7 (Cont.) Parameter Descriptions and Examples for an ERC-1155 Token Specification
File

Entry Description Examples

anatomy: The anatomy section
has two mandatory
parameters:
• type:

nonfungible or
type:
fungible
A non-fungible
token is unique.

• unit: whole or
unit:
fractional
A whole token
cannot be
subdivided into
smaller fractional
units. A fractional
token can be
subdivided into
smaller units, or
shares, based on
a specified
number of
decimal places.

anatomy:
 type: nonfungible # Token type
 unit: whole #Token unit

Chapter 7
Tokenization Support Using Blockchain App Builder

7-605

Table 7-7 (Cont.) Parameter Descriptions and Examples for an ERC-1155 Token Specification
File

Entry Description Examples

behavior: This section
describes the
capabilities and
restrictions of the
token. The
mintable,
transferable
behaviors are
mandatory for all
tokens. The
indivisible
behavior is
mandatory for whole
non-fungible tokens.
• indivisible:

This behavior
supports a
restriction so that
whole tokens
cannot be
subdivided into
fractions.

• divisible: This
behavior
describes how
tokens can be
subdivided. The
decimal
parameter
specifies the
number of
decimal places
that can be used.
The smallest
fraction possible
with the number
of decimal
places is the
smallest unit of
the token that
can be owned. If
the decimal
parameter is not
specified, the
default is zero
decimal places.

• mintable: This
mandatory
behavior
supports minting
new token
instances. The
optional

behavior:
 - indivisible
 - mintable:
 max_mint_quantity: 20000
 - transferable
 - burnable
 - lockable
 - roles:
 minter_role_name: minter

Chapter 7
Tokenization Support Using Blockchain App Builder

7-606

Table 7-7 (Cont.) Parameter Descriptions and Examples for an ERC-1155 Token Specification
File

Entry Description Examples

max_mint_quan
tity parameter
specifies the
total number of
tokens that can
be minted. If you
do not specify
the
max_mint_quan
tity parameter,
any number of
tokens can be
minted.

• transferable:
This mandatory
behavior
supports
transferring
ownership of
tokens.

• burnable: This
behavior
supports
deactivating, or
burning, tokens.
Burning does not
delete a token
but instead
places it in a
permanent state
where it cannot
be used. Burning
is not reversible.

• lockable: This
behavior is
optional and is
supported only
by non-fungible
tokens. This
behavior allows
the token owner
to lock a non-
fungible token. A
locked token
cannot be
transferred to or
burned by any
other users.

• roles: This
behavior restricts
token behaviors
to users with
specific roles.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-607

Table 7-7 (Cont.) Parameter Descriptions and Examples for an ERC-1155 Token Specification
File

Entry Description Examples

Currently two
roles are
available:
minter_role_n
ame and
burner_role_n
ame. If you do
not specify roles,
then any user
can act as a
minter or burner.
For example, if
the burner role is
not specified,
any account user
implicitly has the
burner role. If the
burner role is
specified, then
during the token
setup process,
the Token
Admin user must
assign the
burner role to
other users
explicitly.

metadata: The metadata
property is optional
and is supported only
by non-fungible
tokens. This property
specifies metadata
information, which is
stored on the
blockchain, for a non-
fungible token.
Metadata attribute
values can be
assigned only by the
token owner who
mints the token, and
cannot be updated
after the token is
minted.

In the example, name
is the name of the
metadata attribute
and type is the type
of value that the
attribute has.

metadata:

 - name:
painting_name
 type: string

 - name:
description
 type: string

 - name: image
 type: string

 - name:
painter_name
 type: string

Chapter 7
Tokenization Support Using Blockchain App Builder

7-608

Limitations

Blockchain App Builder provides partial support for the ERC-1155 standard. Currently, the
following ERC-1155 events and methods are not supported.

Events:

• TransferSingle
• TransferBatch
• ApprovalForAll
• URI
Methods:

• safeTransferFrom
• balanceOf
• setApprovalForAll
• isApprovedForAll

ERC-1155 Tokenization Flow
After you deploy an ERC-1155 token project, token administrators and token owners follow a
typical flow for creating tokens and completing lifecycle operations.

When you deploy a token project, the users in the list passed to the initialization method
become token administrators of the chaincode. After deployment, the typical flow for creating
tokens and completing lifecycle operations follows these steps:

Token administrator operations:

• Create user accounts for anyone who will possess tokens or complete token-related
operations.

• For each user account, create token accounts. Users can have multiple fungible token
accounts, but only one non-fungible token (NFT) account. Token administrators can use
the createAccount method to create user and token accounts simultaneously instead of
separately.

• Create fungible tokens, as needed. When you initialize a fungible token, you can assign
the associated metadata and behaviors to the token.

• For fungible tokens, associate the fungible token accounts of users to specific fungible
tokens.

• Add minter and burner roles to the token accounts of users as needed.

Token owner operations:

• Users who have the minter role for a specific token can create (mint) NFTs or fungible
tokens.

• Users can transfer tokens between accounts, and check account balances.

• Users who have the burner role for a specific token can destroy (burn) NFTs or fungible
tokens.

Vault manager operations:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-609

• The user who has the vault role can lock NFTs. A locked NFT cannot be burned or
transferred to other users.

The following diagram shows the overall process flow for an ERC-1155 tokenization
scenario.

The following table summarizes the methods that are automatically generated when
you scaffold an ERC-1155 token project.

Method
Category

Auto-generated
Method
(TypeScript)

Auto-generated
Method (Go)

Called By Description

Admin
Management

init Init Admin Initializes the
token chaincode

isTokenAdmin IsTokenAdmin Admin Returns true if
the caller is an
Admin

addTokenAdmin AddTokenAdmin Admin Adds an Admin

removeTokenAd
min

RemoveTokenAd
min

Admin Removes an
Admin

getAllTokenAd
mins

GetAllTokenAd
mins

Admin Returns all
Admins

Account
Management

createAccount CreateAccount Admin Creates a user
account and
token accounts

Chapter 7
Tokenization Support Using Blockchain App Builder

7-610

Method
Category

Auto-generated
Method
(TypeScript)

Auto-generated
Method (Go)

Called By Description

createUserAcc
ount

CreateUserAcc
ount

Admin Creates a user
account

createTokenAc
count

CreateTokenAc
count

Admin Creates a token
account

associateFung
ibleTokenAcco
unt

AssociateFung
ibleTokenAcco
unt

Admin Associates a
fungible token
account with a
fungible token

getAccountHis
tory

GetAccountHis
tory

Admin / Account
Owner

Returns history
for a token
account

getAccountTra
nsactionHisto
ry

GetAccountTra
nsactionHisto
ry

Admin / Account
Owner

Returns
transaction
history for an
account

getAccount GetAccount Admin / Account
Owner

Returns details
for a token
account

getAllAccount
s

GetAllAccount
s

Admin Returns details
for all user
accounts

getAccountDet
ailsByUser

GetAccountDet
ailsByUser

Admin / Account
Owner

Returns details
for a user account
and all
associated
tokens

getUserByAcco
untId

GetUserByAcco
untId

Any user Returns user
details for an
account ID

Role
Management

addRole AddRole Admin Adds a role to a
user and token

isInRole IsInRole Admin / Account
Owner

Returns whether
a user has a
specified role for
a token

removeRole RemoveRole Admin Removes a role
from a user and
token

getAccountsBy
Role

GetAccountsBy
Role

Admin Returns account
IDs for a specified
role and token

getUsersByRol
e

GetUsersByRol
e

Admin Returns a list of
users for a
specified role and
token

Mintable Behavior mintBatch MintBatch Users with the
minter role

Mints multiple
tokens

Transferable
Behavior

batchTransfer
From

BatchTransfer
From

Any user Transfers tokens
between users

Chapter 7
Tokenization Support Using Blockchain App Builder

7-611

Method
Category

Auto-generated
Method
(TypeScript)

Auto-generated
Method (Go)

Called By Description

safeBatchTran
sferFrom

SafeBatchTran
sferFrom

Any user Transfers tokens
between the
method caller and
another user

balanceOfBatc
h

BalanceOfBatc
h

Admin / Account
Owner

Returns token
account balances
for multiple users
and tokens

exchangeToken ExchangeToken Account Owner Exchanges
tokens between
token accounts

Burnable
Behavior

burnBatch BurnBatch Users with the
burner role

Burns tokens

Token
Management

create<Token
Name>Token

Create<Token
Name>Token

Admin (fungible
tokens) / Users
with the minter
role (NFTs)

Creates tokens

update<Token
Name>Token

Update<Token
Name>Token

Admin (fungible
tokens) / Token
Owner (NFTs)

Updates tokens

getTokenHisto
ry

GetTokenHisto
ry

Any user Returns the
history of a token

getTransactio
nById

GetTransactio
nById

Any user Returns the
details of a
specified
transaction

deleteHistori
calTransactio
ns

DeleteHistori
calTransactio
ns

Admin Deletes
transactions
before a specified
time

getAllTokens GetAllTokens Admin Returns all token
assets

getTokenById GetTokenById Admin / Token
Owner

Returns a token

getAllTokensB
yUser

GetAllTokensB
yUser

Admin / Account
Owner

Returns all
tokens owned by
a specified user

ownerOf OwnerOf Any user Returns the user
details of the
owner of a
specified token

URI URI Any user Returns the URI
of a specified
token

name Name Any user Returns the name
of a specified
token

totalSupply TotalSupply Admin Returns the
number of minted
tokens for a
specified token

Chapter 7
Tokenization Support Using Blockchain App Builder

7-612

Method
Category

Auto-generated
Method
(TypeScript)

Auto-generated
Method (Go)

Called By Description

totalNetSuppl
y

TotalNetSuppl
y

Admin Returns the
number of minted
tokens minus the
number of burned
tokens for a
specified token

getTokensByNa
me

getTokensByNa
me

Admin Returns all token
assets for a
specified token
name

getTokenDecim
al

getTokenDecim
al

Admin Returns the
number of
decimal places
for a specified
token

Scaffolded TypeScript Token Project for ERC-1155
Blockchain App Builder takes the input from your token specification file and generates a
fully-functional scaffolded chaincode project.

The project automatically generates token lifecycle classes and functions, including CRUD
and non-CRUD methods. Validation of arguments, marshalling/unmarshalling, and
transparent persistence capability are all supported automatically.

For information on the scaffolded project and methods that are not directly related to tokens,
see Scaffolded TypeScript Chaincode Project.

Reference:

• Model

• Controller

– Automatically Generated Token Methods

• SDK Methods

Model

Every tokenized model class extends the OchainModel class. Transparent Persistence
Capability, or simplified ORM, is captured in the OchainModel class. The following model
shows a whole non-fungible token.

import * as yup from "yup";
import { Id, Mandatory, Validate, Default, Embedded, Derived, ReadOnly }
from "../../lib/decorators";
import { OchainModel } from "../../lib/ochain-model";
import { STRATEGY } from "../../lib/utils";
import { EmbeddedModel } from "../../lib/ochain-embedded-model";

export class ArtCollectionMetadata extends
EmbeddedModel<ArtCollectionMetadata> {
 @Validate(yup.string())

Chapter 7
Tokenization Support Using Blockchain App Builder

7-613

 public painting_name: string;

 @Validate(yup.string())
 public description: string;

 @Validate(yup.string())
 public image: string;

 @Validate(yup.string())
 public painter_name: string;

}

@Id("tokenId")
export class ArtCollection extends OchainModel<ArtCollection> {
 public readonly assetType = "otoken";

 @Mandatory()
 @Validate(
 yup
 .string()
 .required()
 .matches(/^[A-Za-z0-9][A-Za-z0-9_-]*$/)
 .max(16)
)
 public tokenId: string;

 @ReadOnly("artcollection")
 public tokenName: string;

 @Validate(yup.string().trim().max(256))
 public tokenDesc: string;

 @ReadOnly("erc1155+")
 public tokenStandard: string;

 @ReadOnly("nonfungible")
 public tokenType: string;

 @ReadOnly("whole")
 public tokenUnit: string;

@ReadOnly(["indivisible","singleton","mintable","transferable","burnabl
e","roles"])
 public behaviors: string[];

 @ReadOnly({ minter_role_name: "minter" })
 public roles: object;

 @ReadOnly({ max_mint_quantity: 20000 })
 public mintable: object;

 @Validate(yup.string())

Chapter 7
Tokenization Support Using Blockchain App Builder

7-614

 public owner: string;

 @Validate(yup.string())
 public createdBy: string;

 @Validate(yup.string())
 public transferredBy: string;

 @Validate(yup.string())
 public creationDate: string;

 @Validate(yup.string())
 public transferredDate: string;

 @Validate(yup.bool())
 public isBurned: boolean;

 @Validate(yup.string())
 public burnedBy: string;

 @Validate(yup.string())
 public burnedDate: string;

 @Mandatory()
 @Validate(yup.string().required().max(2000))
 public tokenUri: string;

 @Embedded(ArtCollectionMetadata)
 public tokenMetadata: ArtCollectionMetadata;

 @Validate(yup.number())
 public price: number;

 @Validate(yup.boolean())
 public on_sale_flag: boolean;

}

@Id("tokenId")
export class Loyalty extends OchainModel<Loyalty> {
 public readonly assetType = "otoken";

 @Mandatory()
 @Validate(
 yup
 .string()
 .required()
 .matches(/^[A-Za-z0-9][A-Za-z0-9_-]*$/)
 .max(16)
)
 public tokenId: string;

 @ReadOnly("loyalty")
 public tokenName: string;

Chapter 7
Tokenization Support Using Blockchain App Builder

7-615

 @Validate(yup.string().trim().max(256))
 public tokenDesc: string;

 @ReadOnly("erc1155+")
 public tokenStandard: string;

 @ReadOnly("fungible")
 public tokenType: string;

 @ReadOnly("fractional")
 public tokenUnit: string;

 @ReadOnly(["divisible","mintable","transferable","burnable","roles"])
 public behaviors: string[];

 @ReadOnly({ minter_role_name: "minter" })
 public roles: object;

 @ReadOnly({ max_mint_quantity: 10000 })
 public mintable: object;

 @ReadOnly({ decimal: 2 })
 public divisible: object;

 @Validate(yup.string())
 public currency_name: string;

 @Validate(yup.number())
 public token_to_currency_ratio: number;

}

The following model shows a fractional non-fungible token.

export class RealEstatePropertyMetadata extends
EmbeddedModel<RealEstatePropertyMetadata> {
 @Validate(yup.string())
 public propertyType: string;

 @Validate(yup.string())
 public propertyName: string;

 @Validate(yup.string())
 public propertyAddress: string;

 @Validate(yup.string())
 public propertyImage: string;

}

@Id("tokenId")
export class RealEstateProperty extends
OchainModel<RealEstateProperty> {
 public readonly assetType = "otoken";

Chapter 7
Tokenization Support Using Blockchain App Builder

7-616

 @Mandatory()
 @Validate(
 yup
 .string()
 .required()
 .matches(/^[A-Za-z0-9][A-Za-z0-9_-]*$/)
 .max(16)
)
 public tokenId: string;

 @ReadOnly("realestateproperty")
 public tokenName: string;

 @Validate(yup.string().trim().max(256))
 public tokenDesc: string;

 @ReadOnly("erc1155+")
 public tokenStandard: string;

 @ReadOnly("nonfungible")
 public tokenType: string;

 @ReadOnly("fractional")
 public tokenUnit: string;

 @ReadOnly(["divisible","mintable","transferable","roles"])
 public behaviors: string[];

 @ReadOnly({ minter_role_name: "minter" })
 public roles: object;

 @ReadOnly({ max_mint_quantity: 0 })
 public mintable: object;

 @Validate(yup.number().positive())
 public quantity: number;

 @Validate(yup.string())
 public createdBy: string;

 @Validate(yup.string())
 public creationDate: string;

 @ReadOnly({ decimal: 0 })
 public divisible: object;

 @Validate(yup.bool())
 public isBurned: boolean;

 @Mandatory()
 @Validate(yup.string().required().max(2000))
 public tokenUri: string;

 @Embedded(RealEstatePropertyMetadata)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-617

 public tokenMetadata: RealEstatePropertyMetadata;

 @Validate(yup.number())
 public propertySellingPrice: number;

 @Validate(yup.number())
 public propertyRentingPrice: number;

}

Controller

The main controller class extends the OchainController class. There is only one main
controller.

export class DigiCurrCCController extends OchainController{

You can create any number of classes, functions, or files, but only those methods that
are defined within the main controller class are invokable. The other methods are
hidden.

You can use the token SDK methods to write custom methods for your business
application.

Automatically Generated Token Methods

Blockchain App Builder automatically generates methods to support tokens and token
life cycles. You can use these methods to initialize tokens, manage roles and
accounts, and complete other token lifecycle tasks without any additional coding.
Controller methods must have a @Validator(...params) decorator to be invokable.

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Burnable Behavior

Methods for Access Control Management

Chapter 7
Tokenization Support Using Blockchain App Builder

7-618

isTokenAdmin
This method returns the Boolean value true if the caller of the function is a Token Admin,
otherwise it returns false. This method can be called only by a Token Admin of the
chaincode.

@GetMethod()
@Validator(yup.string(), yup.string())
public async getAccountDetailsByUser(orgId: string, userId: string) {
 const userAccountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId, ACCOUNT_TYPE.USER_ACCOUNT);
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.getAccountDetailsByUs
er", "TOKEN", {
 accountId: userAccountId,
 });
 return await this.Ctx.ERC1155Account.getAccountDetailsByUser(orgId,
userId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• The method returns true if the caller is a Token Admin, otherwise it returns false.

Return Value Example:

{"result": true}

addTokenAdmin
This method adds a user as a Token Admin of the chaincode. This method can be called only
by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string())
public async addTokenAdmin(orgId: string, userId: string) {
 await this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ADMIN.addAdmin",
"TOKEN");
 return await this.Ctx.ERC1155Admin.addAdmin(orgId, userId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-619

• On success, a message that includes details of the user who was added as a
Token Admin of the chaincode.

Return Value Example:

{"msg":"Successfully added Admin (OrgId: appDev, UserId: user1)"}

removeTokenAdmin
This method removes a user as a Token Admin of the chaincode. This method can be
called only by a Token Admin of the chaincode. You cannot remove yourself as a
Token Admin.

@Validator(yup.string(), yup.string())
public async removeTokenAdmin(orgId: string, userId: string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ADMIN.removeAdmin",
"TOKEN");
 return await this.Ctx.ERC1155Admin.removeAdmin(orgId, userId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was removed as a
Token Admin of the chaincode.

Return Value Example:

{"msg": "Successfully removed Admin (OrgId: appDev, UserId: user1)"}

getAllTokenAdmins
This method returns a list of all users who are a Token Admin of the chaincode. This
method can be called only by a Token Admin of the chaincode.

@GetMethod()
@Validator()
public async getAllTokenAdmins() {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ADMIN.getAllAdmins",
"TOKEN");
 return await this.Ctx.ERC1155Admin.getAllAdmins();
}

Parameters:

• none

Chapter 7
Tokenization Support Using Blockchain App Builder

7-620

Returns:

• On success, an admins array in JSON format that contains orgId and userId objects.

Return Value Example:

{
 "admins": [
 {
 "orgId": "appdev",
 "userId": "user2"
 },
 {
 "orgId": "appdev",
 "userId": "user1"
 }
]
}

Methods for Token Configuration Management

init
This method is called when the chaincode is instantiated. Every Token Admin is identified by
the userId and orgId information in the adminList parameter. The userId is the user name
or email ID of the instance owner or the user who is logged in to the instance. The orgId is
the membership service provider (MSP) ID of the user in the current network organization.
The adminList parameter is mandatory the first time you deploy the chaincode. If you are
upgrading the chaincode, pass an empty list ([]). If you are the user who initially deployed
the chaincode, you can also specify new admins in the adminList parameter when you are
upgrading the chaincode. Any other information in the adminList parameter is ignored
during upgrades.

@Validator(yup.array().of(yup.object()).nullable())
public async init(adminList: ERC1155TokenAdminAsset[]) {
 await this.Ctx.ERC1155Admin.initAdmin(adminList);
 await this.Ctx.ERC1155Token.saveClassInfo(<1st NFT Token Name>);
 await this.Ctx.ERC1155Token.saveClassInfo(<2nd NFT Token Name>);
 .
 .
 await this.Ctx.ERC1155Token.saveClassInfo(<nth NFT Token Name>);
 // await this.Ctx.ERC1155Token.saveDeleteTransactionInfo();
 return;
}

Parameters:

• adminList array – An array of {orgId, userId} information that specifies the list of
token admins. The adminList array is a mandatory parameter.

create<Token Name>Token
This method creates tokens. Every token that is defined has its own create method. For
fungible tokens, this method can be called only by a Token Admin of the chaincode. For non-
fungible tokens, if the minter role is defined in the specification file, any user with the minter

Chapter 7
Tokenization Support Using Blockchain App Builder

7-621

role can call this method to create an NFT. If the minter role is not defined, any user
can use this method to create (mint) NFTs. The user who calls this method becomes
the owner of the NFT.

Fungible Tokens:

@Validator(<Token Class>)
public async create<Token Name>Token(tokenAsset: <Token Class>) {
 await this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.save",
"TOKEN");
 return await this.Ctx.ERC1155Token.save(tokenAsset);
}

Non-Fungible Tokens:

@Validator(<Token Class>, yup.number())
public async create<Token Name>Token(tokenAsset: <Token Class>,
quantity: number) {
 return await this.Ctx.ERC1155Token.save(tokenAsset, quantity);
}

Parameters:

• tokenAsset: <Token Class> – The token asset. The properties of the asset are
defined in the model file.

• quantity: number – For non-fungible tokens only, the number of tokens to mint.
The only supported value for this parameter is 1.

Returns:

• On success, the token asset in JSON format, which includes the following
information, depending on the token type.

• tokenMetadata – JSON information that describes the token.

• createdBy – The account ID of the caller, who is the user minting the token. This
property cannot be edited.

• creationDate – The time stamp of the minting transaction. This property cannot
be edited.

• isBurned – This property indicates whether the token is burned. This property
cannot be edited.

• tokenName – The name of the token. This property cannot be edited.

• tokenDesc – The description of the token.

• symbol – The symbol of the token. This property cannot be edited.

• tokenStandard – The standard of the token. This property cannot be edited.

• tokenType – The type of the token (fungible or non-fungible). This property cannot
be edited.

• tokenUnit – The unit of the token (whole or fractional). This property cannot be
edited.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-622

• behaviors – A list of token behaviors. This property cannot be edited.

• mintable – The properties related to minting. The max_mint_quantity value defines the
maximum number of tokens that can be created for the token class.

• owner – The account ID of the current owner, who is the caller of the method.

• tokenUri – The URI of the token.

• quantity – The quantity of the token.

Return Value Example (Whole NFT):

{
 "tokenMetadata": {
 "paintingName": "monalisa",
 "description": "monalisa painting",
 "image": "image link",
 "painterName": "Leonardo da Vinci"
 },
 "assetType": "otoken",
 "quantity": 1,
 "tokenId": "artnft",
 "tokenName": "artcollection",
 "tokenDesc": "artcollection nft",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 500
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2022-12-29T04:08:35.000Z",
 "isBurned": false,
 "tokenUri": "tu",
 "price": 10000,
 "onSaleFlag": false
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-623

Return Value Example (Fungible Token):

{
 "assetType": "otoken",
 "tokenId": "Loyalty",
 "tokenName": "loyalty",
 "tokenDesc": "Token Description",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 10000
 },
 "divisible": {
 "decimal": 2
 },
 "currency_name": "Dollar"
}

Return Value Example (Fractional NFT):

{
 "tokenMetadata": {
 "painting_name": "paint",
 "description": "Painting Description"
 },
 "assetType": "otoken",
 "tokenId": "realEstate",
 "tokenName": "realestate",
 "tokenDesc": "Token Description",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-624

 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 100,
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2023-06-14T04:20:14.000Z",
 "divisible": {
 "decimal": 2
 },
 "isBurned": false,
 "tokenUri": "www.realestate.example.com",
 "price": 1000,
 "on_sale_flag": true
}

update<Token Name>Token
This method updates tokens. Every token that is defined has its own update method. You
cannot update token metadata or the token URI of non-fungible tokens. For fungible tokens,
this method can be called only by a Token Admin of the chaincode. For non-fungible tokens,
this method can be called only by the token owner.

Fungible Tokens:

@Validator(<Token Class>)
public async update<Token Name>Token(tokenAsset: <Token Class>) {
 await this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.update",
"TOKEN");
 return await this.Ctx.ERC1155Token.update(tokenAsset);
}

Non-Fungible Tokens:

@Validator(<Token Class>)
public async update<Token Name>Token(tokenAsset: <Token Class>) {
 return await this.Ctx.ERC1155Token.update(tokenAsset);
}

Parameters:

• tokenAsset: <Token Class> – The token asset. The properties of the asset are defined
in the model file.

Returns:

• On success, the updated token asset in JSON format.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-625

Return Value Example (Whole NFT):

{
 "tokenMetadata": {
 "paintingName": "monalisa",
 "description": "monalisa painting",
 "image": "image link",
 "painterName": "Leonardo da Vinci"
 },
 "assetType": "otoken",
 "quantity": 1,
 "tokenId": "artnft",
 "tokenName": "artcollection",
 "tokenDesc": "artcollection nft",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 500
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "creationDate": "2022-12-29T04:08:35.000Z",
 "isBurned": false,
 "tokenUri": "tu",
 "price": 10000,
 "onSaleFlag": false
}

getTokenHistory
This method returns the history for a specified token ID. Anyone can call this method.

@GetMethod()
@Validator(yup.string())
public async getTokenHistory(tokenId: string) {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-626

 return await this.Ctx.ERC1155Token.getTokenHistory(tokenId);
}

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a JSON array that contains the token history.

Return Value Example (Fungible Token):

[
 {
 "trxId":
"ef4af760c3d7ee5e273196231d59fb91cafe6ca0f78c64747e87bc9bcbb3334b",
 "timeStamp": "2023-09-04T02:36:20.000Z",
 "value": {
 "assetType": "otoken",
 "tokenId": "LoyaltyToken",
 "tokenName": "loyalty",
 "tokenDesc": "Updated Fungible Whole",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 10000
 },
 "divisible": {
 "decimal": 2
 },
 "currency_name": "Rupees"
 }
 },
 {
 "trxId":
"4fb391a8903633a12a545cd2ecfb57f5575241325abf59995e2a4ed96572bb09",
 "timeStamp": "2023-09-04T02:35:07.000Z",
 "value": {
 "assetType": "otoken",
 "tokenId": "LoyaltyToken",
 "tokenName": "loyalty",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-627

 "tokenDesc": "Fungible Whole",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 10000
 },
 "divisible": {
 "decimal": 2
 },
 "currency_name": "Dollar"
 }
 }
]

Return Value Example (Fractional NFT):

[
 {
 "txId":
"99bca74f401465206da7499cbf704dd443b3c3d94e348b1d6682ab5ee1864a08",
 "timestamp": "2023-06-20T01:09:18.000Z",
 "value": {
 "assetType": "otoken",
 "tokenId": "FNFT",
 "tokenName": "realestate",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-628

 "max_mint_quantity": 20000
 },
 "quantity": 100,
 "createdBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "creationDate": "2023-06-20T00:53:13.000Z",
 "divisible": {
 "decimal": 2
 },
 "isBurned": false,
 "tokenUri": "www.FNFT.example.com",
 "price": 2000,
 "on_sale_flag": true,
 "owners": [
 {
 "accountId":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "tokenShare": 90
 },
 {
 "accountId":
"oaccount~3cddfdaa855900579d963aa6f755a4aed1f3a474a2462c1b45bd7f36df673224",
 "tokenShare": 10
 }
]
 }
 },
 {
 "txId":
"d517c61f40e7d6af2f04fe6d337b3e5108eb57030c9dc823793498fd4fed671b",
 "timestamp": "2023-06-20T00:53:13.000Z",
 "value": {
 "assetType": "otoken",
 "tokenId": "FNFT",
 "tokenName": "realestate",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 100,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-629

 "createdBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "creationDate": "2023-06-20T00:53:13.000Z",
 "divisible": {
 "decimal": 2
 },
 "isBurned": false,
 "tokenUri": "www.FNFT.example.com",
 "price": 2000,
 "on_sale_flag": true,
 "owners": [
 {
 "accountId":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "tokenShare": 100
 }
]
 }
 }
]

Return Value Example (Whole NFT):

[
 {
 "trxId":
"92ac6b56112acdba724dd49924d2420a7899c013c61aa40d272e8ab391a65e0f",
 "timeStamp": "2023-09-04T02:28:48.000Z",
 "value": {
 "tokenMetadata": {
 "painting_name": "monalisa",
 "description": "monalisa painting",
 "image": "image link",
 "painter_name": "Leonardo da Vinci"
 },
 "assetType": "otoken",
 "tokenId": "artnft",
 "tokenName": "artcollection",
 "tokenDesc": "Updated Token Description",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-630

 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 1,
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2023-09-04T02:27:19.000Z",
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "isBurned": false,
 "tokenUri": "www.FNFT.example.com",
 "price": 10000,
 "on_sale_flag": true
 }
 },
 {
 "trxId":
"27697dd4a8dba53bad073aa95587cd1ef173b02fd95d771a60273d301fd3bcbe",
 "timeStamp": "2023-09-04T02:27:19.000Z",
 "value": {
 "tokenMetadata": {
 "painting_name": "monalisa",
 "description": "monalisa painting",
 "image": "image link",
 "painter_name": "Leonardo da Vinci"
 },
 "assetType": "otoken",
 "tokenId": "artnft",
 "tokenName": "artcollection",
 "tokenDesc": "artcollection nft",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 1,
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-631

 "creationDate": "2023-09-04T02:27:19.000Z",
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "isBurned": false,
 "tokenUri": "www.FNFT.example.com",
 "price": 10000,
 "on_sale_flag": true
 }
 }
]

[
 {
 "trxId":
"ebda1f31543f8906b7ec50a631afff6b8318a3d63c84f3e73be6785cc2ff31ff",
 "timeStamp": "2023-06-20T01:14:08.000Z",
 "value": {
 "assetType": "otoken",
 "tokenId": "NFT",
 "tokenName": "artcollection",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 1,
 "createdBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "creationDate": "2023-06-20T01:14:08.000Z",
 "owner":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "isBurned": false,
 "tokenUri": "www.NFT.example.com",
 "price": 2000,
 "on_sale_flag": true
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-632

 }
]

getAllTokens
This method returns all of the token assets that are saved in the state database. This method
can be called only by a Token Admin of the chaincode. This method uses Berkeley DB SQL
rich queries and can only be called when connected to the remote Oracle Blockchain
Platform network.

@GetMethod()
@Validator(yup.string())
public async getTokenHistory(tokenId: string) {
 return await this.Ctx.ERC1155Token.getTokenHistory(tokenId);
}

Parameters:

• none

Returns:

• A list of all token assets in JSON format.

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "tokenOne",
 "tokenName": "moneytok",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-633

 {
 "key": "tokenTwo",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "tokenTwo",
 "tokenName": "moneytok",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 },
 {
 "key": "art",
 "valueJson": {
 "assetType": "otoken",
 "quantity": 1,
 "tokenId": "art",
 "tokenName": "artcollection",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428

Chapter 7
Tokenization Support Using Blockchain App Builder

7-634

2c6",
 "createdBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "creationDate": "2022-12-08T08:52:57.000Z",
 "isBurned": true,
 "tokenUri": "art.example.com",
 "transferredBy":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec2937cc",
 "transferredDate": "2022-12-08T08:59:17.000Z",
 "burnedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "burnedDate": "2022-12-08T09:01:28.000Z"
 }
 },
 {
 "key": "FNFT",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "FNFT",
 "tokenName": "realestate",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 100,
 "createdBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "creationDate": "2023-06-20T00:53:13.000Z",
 "divisible": {
 "decimal": 2
 },
 "isBurned": false,
 "tokenUri": "www.FNFT.example.com",
 "price": 2000,
 "on_sale_flag": true
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-635

getTokenById
This method returns a token object if the token is present in the state database. For
fractional NFTs, the list of owners is also returned. This method can be called only by
a Token Admin of the chaincode or the token owner.

@GetMethod()
@Validator(yup.string())
public async getTokenById(tokenId: string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.getTokenById",
"TOKEN", { tokenId });
 return await this.Ctx.ERC1155Token.getTokenById(tokenId);
}

Parameters:

• tokenId: string – The ID of the token to get.

Return Value Example (Whole NFT):

{
 "assetType": "otoken",
 "quantity": 1,
 "tokenId": "art",
 "tokenName": "artcollection",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "createdBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "creationDate": "2022-12-08T08:52:57.000Z",
 "isBurned": true,
 "tokenUri": "art.example.com",
 "transferredBy":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-636

"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec2937cc",
 "transferredDate": "2022-12-08T08:59:17.000Z",
 "burnedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "burnedDate": "2022-12-08T09:01:28.000Z"
}

Return Value Example (Fungible Token):

{
 "assetType": "otoken",
 "tokenId": "Loyalty",
 "tokenName": "loyalty",
 "tokenDesc": "Token Description",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 10000
 },
 "divisible": {
 "decimal": 2
 },
 "currency_name": "Dollar"
}

Return Value Example (Fractional NFT):

{
 "tokenMetadata": {
 "painting_name": "paint",
 "description": "Painting Description"
 },
 "assetType": "otoken",
 "tokenId": "realEstate",
 "tokenName": "realestate",
 "tokenDesc": "Token Description",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "fractional",
 "behaviors": [

Chapter 7
Tokenization Support Using Blockchain App Builder

7-637

 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 100,
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "creationDate": "2023-06-14T04:20:14.000Z",
 "divisible": {
 "decimal": 2
 },
 "isBurned": false,
 "tokenUri": "www.realestate.example.com",
 "price": 1000,
 "on_sale_flag": true,
 "owners": [
 {
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "tokenShare": 100
 }
]
}

getAllTokensByUser
This method returns all of the token assets that are owned by a specified user. This
method uses Berkeley DB SQL rich queries and can only be called when connected
to the remote Oracle Blockchain Platform network. This method can be called only by
a Token Admin of the chaincode or by the account owner.

@GetMethod()
@Validator(yup.string(), yup.string())
public async getAllTokensByUser(orgId: string, userId: string) {
 const accountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId, ACCOUNT_TYPE.USER_ACCOUNT);
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.getAllTokensByUse
r", "TOKEN", { accountId });
 return await this.Ctx.ERC1155Token.getAllTokensByUser(accountId);
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-638

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "tokenOne",
 "tokenName": "moneytok",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 },
 {
 "key": "nftToken",
 "valueJson": {
 "assetType": "otoken",
 "quantity": 1,
 "tokenId": "nftToken",
 "tokenName": "artcollection",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],

Chapter 7
Tokenization Support Using Blockchain App Builder

7-639

 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "createdBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "creationDate": "2022-12-08T09:10:21.000Z",
 "isBurned": false,
 "tokenUri": "example.com"
 }
 }
]

ownerOf
This method returns the account ID, organization ID, and user ID of the owner of the
specified token ID. Anyone can call this method.

@GetMethod()
@Validator(yup.string())
public async ownerOf(tokenId: string) {
 return await this.Ctx.ERC1155Token.ownerOf(tokenId);
}

Parameters:

• tokenId: string – The ID of the token.

Return Value Example (Whole NFT):

{
 "accountId":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "orgId": "appdev",
 "userId": "idcqa"
}

Return Value Example (Fractional NFT):

[
 {
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "orgId": "Org1MSP",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-640

 "userId": "admin"
 },
 {
 "accountId":
"oaccount~74108eca702bab6d8548e740254f2cc7955d886885251d52d065042172a59db0",
 "orgId": "Org1MSP",
 "userId": "user"
 }
]

URI
This method returns the URI of a specified token. Anyone can call this method.

@GetMethod()
@Validator(yup.string())
public async URI(tokenId: string) {
 return await this.Ctx.ERC1155Token.tokenURI(tokenId);
}

Parameters:

• tokenId: string – The ID of the token.

Return Value Example:

{
 "tokenUri": "example.com"
}

name
This method returns the name of the token class. Anyone can call this method.

@GetMethod()
@Validator(yup.string())
public async name(tokenId: string) {
 return await this.Ctx.ERC1155Token.name(tokenId);
}

Parameters:

• tokenId: string – The ID of the token.

Return Value Example:

{"tokenName": "artcollection"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-641

totalSupply
This method returns the total number of minted tokens. Fungible tokens are specified
by the token ID. Non-fungible tokens are specified by the token name. This method
can be called only by a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.object())
public async totalSupply(tokenDetail: TokenDetail) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.totalSupply",
"TOKEN");
 const token = await
this.Ctx.ERC1155Token.getTokenByIdOrName(tokenDetail);
 return await this.Ctx.ERC1155Token.totalSupply(token);
}

Parameters:

• tokenDetails: TokenDetail – The details that specify the token. For fungible
tokens, use the following format:

{"tokenId":"token1"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Return Value Example:

{"totalSupply": 110}

totalNetSupply
This method returns the total number of minted tokens minus the number of burned
tokens. Fungible tokens are specified by the token ID. Non-fungible tokens are
specified by the token name. This method can be called only by a Token Admin of the
chaincode.

@GetMethod()
@Validator(yup.object())
public async totalNetSupply(tokenDetail: TokenDetail) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.totalNetSupply",
"TOKEN");
 const token = await
this.Ctx.ERC1155Token.getTokenByIdOrName(tokenDetail);
 return await this.Ctx.ERC1155Token.totalNetSupply(token);
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-642

• tokenDetails: TokenDetail – The details that specify the token. For fungible tokens,
use the following format:

{"tokenId":"token1"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Return Value Example:

{"totalNetSupply": 105}

getTokensByName
This method returns all of the token assets for a specified token name. This method uses
Berkeley DB SQL rich queries and can only be called when connected to the remote Oracle
Blockchain Platform network. This method can be called only by a Token Admin of the
chaincode.

@GetMethod()
@Validator(yup.string())
public async getTokensByName(tokenName: string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.getTokensByName",
"TOKEN");
 return await this.Ctx.ERC1155Token.getTokensByName(tokenName);
}

Parameters:

• tokenName: string – The name of the token.

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "tokenOne",
 "tokenName": "moneytok",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "roles": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-643

 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 },
 {
 "key": "tokenTwo",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "tokenTwo",
 "tokenName": "moneytok",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 }
]

getTokenDecimal
This method returns the number of decimal places for a specified token. This method
can be called only by a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string())
public async getTokenDecimal(tokenId: string) {
 const token = await this.Ctx.ERC1155Token.get(tokenId);
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.getDecimals",
"TOKEN");
 return {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-644

 msg: `Token Id: ${tokenId} has $
{this.Ctx.ERC1155Token.getDecimals(token)} decimal places.`,
 };
}

Parameters:

• tokenId: string – The ID of the token.

Return Value Example:

{
 "msg": "Token Id: tokenOne has 2 decimal places."
}

Methods for Account Management

createAccount
This method creates an account for a specified user and associated token accounts for
fungible or non-fungible tokens. An account must be created for any user who will have
tokens at any point. The user account tracks the NFT account and the fungible token
accounts that a user holds. Users must have accounts in the network to complete token-
related operations. This method can be called only by a Token Admin of the chaincode.
A user account has a unique ID, which is formed by an SHA-256 hash of the orgId
parameter and the userId parameter.
A user can have multiple fungible token accounts with unique account IDs. Fungible token
account IDs are formed by an SHA-256 hash of the orgId parameter, the userId parameter,
the constant string ft separated by the tilde symbol (~), and a counter number that signifies
the index of the fungible account that is being created separated by the tilde symbol (~).
A user can have only one non-fungible token account. Non-fungible token account IDs are
unique and are formed by an SHA-256 hash of the orgId parameter, the userId parameter,
and the constant string nft separated by the tilde symbol (~). All non-fungible tokens that a
user owns, whether whole or fractional, are linked to this account.
User account IDs start with with ouaccount~. Token account IDs start with oaccount~.

@Validator(yup.string(), yup.string(), yup.boolean(), yup.boolean())
public async createAccount(orgId: string, userId: string, ftAccount:
boolean, nftAccount: boolean) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.createAccount",
"TOKEN");
 return await this.Ctx.ERC1155Account.createAccount(orgId, userId,
ftAccount, nftAccount);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-645

• ftAccount: boolean – If true, a fungible token account is created and associated
with the user account.

• nftAccount: boolean – If true, a non-fungible token account is created and
associated with the user account.

Returns:

• On success, a JSON object of the account that was created.

Return Value Example:

{
 "assetType": "ouaccount",
 "accountId":
"ouaccount~cf20877546f52687f387e7c91d88b9722c97e1a456cc0484f40c747f7804
feae",
 "userId": "user1",
 "orgId": "appdev",
 "totalAccounts": 2,
 "totalFtAccounts": 1,
 "associatedFtAccounts": [
 {
 "accountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc5
04b",
 "tokenId": ""
 }
],
 "associatedNftAccount":
"oaccount~73c3e835dac6d0a56ca9d8def08269f83cefd59b9d297fe2cdc5a9083828f
a58"
}

createUserAccount
This method creates an account for a specified user. An account must be created for
any user who will have tokens at any point. The user account tracks the NFT account
and the fungible token accounts that a user has. Users must have accounts in the
network to complete token-related operations.
An account ID is an SHA-256 hash of the orgId parameter and the userId parameter.
This method can be called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string())
 public async createUserAccount(orgId: string, userId: string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.createUserAccou
nt", "TOKEN");
 return await this.Ctx.ERC1155Account.createUserAccount(orgId,
userId);
 }

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-646

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON object of the user account that was created.

Return Value Example:

{
 "assetType": "ouaccount",
 "accountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec2937cc",
 "userId": "user2",
 "orgId": "appdev",
 "totalAccounts": 0,
 "totalFtAccounts": 0,
 "associatedFtAccounts": [],
 "associatedNftAccount": ""
}

createTokenAccount
This method creates a fungible or non-fungible token account to associate with a user
account.
A user can have multiple fungible token accounts with unique account IDs. Fungible token
account IDs are formed by an SHA-256 hash of the orgId parameter, the userId parameter,
the constant string ft separated by the tilde symbol (~), and a counter number that signifies
the index of the fungible account that is being created separated by the tilde symbol (~).
A user can have only one non-fungible token account. Non-fungible token account IDs are
unique and are formed by an SHA-256 hash of the orgId parameter, the userId parameter,
and the constant string nft separated by the tilde symbol (~). All non-fungible tokens that a
user owns, whether whole or fractional, are linked to this account.
This method can be called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string())
 public async createTokenAccount(orgId: string, userId: string, tokenType:
TokenType) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.createTokenAccount",
"TOKEN");
 return await this.Ctx.ERC1155Account.createTokenAccount(orgId, userId,
tokenType);
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-647

• tokenType: TokenType – The type of token account to create. The only supported
token types are nonfungible and fungible.

Returns:

• On success, a JSON object of the token account that was created.

Return Value Example:

{
 "assetType": "ouaccount",
 "accountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc",
 "userId": "user2",
 "orgId": "appdev",
 "totalAccounts": 1,
 "totalFtAccounts": 1,
 "associatedFtAccounts": [
 {
 "accountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",
 "tokenId": ""
 }
],
 "associatedNftAccount": ""
}

associateFungibleTokenAccount
This method associates a user's fungible token account to a particular fungible token.
This method can be called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string())
public async associateFungibleTokenToAccount(orgId: string, userId:
string, tokenId: string) {
 const accountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId, ACCOUNT_TYPE.USER_ACCOUNT);
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.associateFungib
leTokenToAccount", "TOKEN", { accountId });
 return await
this.Ctx.ERC1155Account.associateTokenToToken(accountId, tokenId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• tokenId: string – The ID of the token.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-648

Returns:

• On success, a JSON object of the user account, which shows that the fungible token
was associated to the token account. For example, in the following example, the first
object in the associatedFtAccounts array shows that the fungible token account ID and
the token ID are associated.

Return Value Example:

{
 "assetType": "ouaccount",
 "accountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec2937cc",
 "userId": "user2",
 "orgId": "appdev",
 "totalAccounts": 1,
 "totalFtAccounts": 1,
 "associatedFtAccounts": [
 {
 "accountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",
 "tokenId": "tokenOne"
 }
],
 "associatedNftAccount": ""
}

getAccountHistory
This method returns history for a specified token account. This is an asynchronous method.
This method can be called only by a Token Admin of the chaincode or by the account owner.

@GetMethod()
@Validator(yup.string(), yup.string(), yup.string())
public async getAccountHistory(orgId: string, userId: string, tokenId?:
string) {
 const userAccountId = await
this.Ctx.ERC1155Account.generateAccountId(orgId, userId,
ACCOUNT_TYPE.USER_ACCOUNT);
 const userAccount = await
this.Ctx.ERC1155Account.getAccount(userAccountId, tokenId);
 await this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.history",
"TOKEN", { accountId: userAccountId });
 return await
this.Ctx.ERC1155Account.getAccountHistory(userAccount.accountId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-649

• tokenId?: string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Returns:

• On success, an array of JSON objects that describes the account history.

Return Value Example:

[
 {
 "trxId":
"89f462697f3c988024b2c248cbda21f9eb7e96567e56dd8db64ada96a4845a7f",
 "timeStamp": "2022-12-08T07:15:10.000Z",
 "value": {
 "assetType": "oaccount",
 "bapAccountVersion": 1,
 "accountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",
 "userId": "user2",
 "orgId": "appdev",
 "tokenType": "fungible",
 "tokenId": "tokenOne",
 "tokenName": "moneytok",
 "balance": 110
 }
 },
 {
 "trxId":
"30dd4fe0746350c85a5000996974487010a0a8fee73d6b2e480c3ca330a6d31f",
 "timeStamp": "2022-12-08T06:43:10.000Z",
 "value": {
 "assetType": "oaccount",
 "bapAccountVersion": 0,
 "accountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",
 "userId": "user2",
 "orgId": "appdev",
 "tokenType": "fungible",
 "tokenId": "tokenOne",
 "tokenName": "moneytok",
 "balance": 0
 }
 },
 {
 "trxId":
"6226c0455cc3a4f99c3fd7ed8b1d36b8e93f863e42ab61a9b0d399f2d69d2f3d",
 "timeStamp": "2022-12-08T06:41:51.000Z",
 "value": {
 "assetType": "oaccount",
 "bapAccountVersion": 0,
 "accountId":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-650

"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",
 "userId": "user2",
 "orgId": "appdev",
 "tokenType": "fungible",
 "tokenId": "",
 "balance": 0
 }
 }
]

getAccount
This method returns token account details for a specified user. This method can be called
only by a Token Admin of the chaincode or the Account Owner of the account.

@GetMethod()
@Validator(yup.string(), yup.string(), yup.string())
public async getAccount(orgId: string, userId: string, tokenId?: string) {
 const userAccountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId, ACCOUNT_TYPE.USER_ACCOUNT);
 await this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.getAccount",
"TOKEN", { accountId: userAccountId });
 return await this.Ctx.ERC1155Account.getAccountWithStatus(userAccountId,
tokenId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• tokenId?: string – For a non-fungible token account, an empty string. For a fungible
token account, the token ID.

Returns:

• On success, a JSON object that includes token account details. The bapAccountVersion
parameter is defined in the account object for internal use.

Return Value Example (Non-Fungible Token Account):

{
 "assetType": "oaccount",
 "bapAccountVersion": 1,
 "status": "active",
 "accountId":
"oaccount~cc301bee057f14236a97d434909ec1084970921b008f6baab09c2a0f5f419a9a",
 "userId": "idcqa",
 "orgId": "appdev",
 "tokenType": "nonfungible",
 "noOfNfts": 1
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-651

Return Value Example (Fungible Token Account):

{
 "bapAccountVersion": 0,
 "assetType": "oaccount",
 "status": "active",
 "accountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "userId": "idcqa",
 "orgId": "appdev",
 "tokenType": "fungible",
 "tokenId": "t1",
 "tokenName": "loyalty",
 "balance": 100
}

getAllAccounts
This method returns details of all user accounts. This method can be called only by a
Token Admin of the chaincode.

@GetMethod()
@Validator()
public async getAllAccounts() {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.getAllAccounts"
, "TOKEN");
 return await this.Ctx.ERC1155Account.getAllAccounts();
}

Parameters:

• none

Returns:

• On success, a JSON array of all accounts.

Return Value Example:

[
 {
 "assetType": "ouaccount",
 "accountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "userId": "idcqa",
 "orgId": "appdev",
 "totalAccounts": 2,
 "totalFtAccounts": 1,
 "associatedFtAccounts": [
 {
 "accountId":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-652

"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
 "tokenId": "loy1"
 }
],
 "associatedNftAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371"
 },
 {
 "assetType": "ouaccount",
 "accountId":
"ouaccount~9501bb774c156eb8354dfe489250ea91f757523d70f08ee494bda98bb352003b",
 "userId": "user1_minter",
 "orgId": "appdev",
 "totalAccounts": 2,
 "totalFtAccounts": 1,
 "associatedFtAccounts": [
 {
 "accountId":
"oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f628237974c",
 "tokenId": "loy1"
 }
],
 "associatedNftAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446"
 },
]

getAccountDetailsByUser
This method returns an account summary for a specified user and details of fungible and
non-fungible tokens that are associated with the user. This method can be called only by a
Token Admin of the chaincode or the Account Owner of the account.

@GetMethod()
@Validator(yup.string(), yup.string())
public async getAccountDetailsByUser(orgId: string, userId: string) {
 const userAccountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId, ACCOUNT_TYPE.USER_ACCOUNT);
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.getAccountDetailsByUs
er", "TOKEN", {
 accountId: userAccountId,
 });
 return await this.Ctx.ERC1155Account.getAccountDetailsByUser(orgId,
userId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-653

• On success, a JSON account object that includes and account summary for the
specified user and details of fungible and non-fungible tokens that are associated
with the user. For fractional non-fungible tokens, the tokenShare property in the
associatedNFTs section shows the share that the user owns.

Return Value Example:

{
 "userAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "associatedFTAccounts": [
 {
 "accountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "tokenId": "FT",
 "balance": 50
 }
],
 "associatedNFTAccount": {
 "accountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097
371",
 "associatedNFTs": [
 {
 "nftTokenId": "FNFT",
 "tokenShare": 100
 },
 {
 "nftTokenId": "FNFT2",
 "tokenShare": 110
 },
 {
 "nftTokenId": "NFT"
 }
]
 }
}

getUserByAccountId
This method returns the user details of a specified account ID. This method can be
called by any user.

@GetMethod()
@Validator(yup.string())
public async getUserByAccountId(accountId: string) {
 return await this.Ctx.ERC1155Account.getUserByAccountId(accountId);
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-654

• accountId: string – The ID of the account.

Returns:

• On success, a JSON object of the user details (orgId and userId).

Return Value Example:

{
 "orgId": "appdev"
 "userId": "user2",
}

Methods for Role Management

addRole
This method adds a role to a specified user and token. This method can be called only by a
Token Admin of the chaincode. Fungible tokens are specified by the token ID. Non-fungible
tokens are specified by the token name. The specified user must have a token account that
is associated with the fungible token, or a non-fungible token account for NFT roles. The
specified role must exist in the specification file for the token.

@Validator(yup.string(), yup.string(), yup.string(), yup.object())
public async addRole(orgId: string, userId: string, role: string,
tokenDetail: TokenDetail) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.addRoleMember",
"TOKEN");
 const userAccountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId, ACCOUNT_TYPE.USER_ACCOUNT);
 const token = await this.Ctx.ERC1155Token.getTokenByIdOrName(tokenDetail);
 return await this.Ctx.ERC1155Token.addRoleMember(role, userAccountId,
token);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• role: string – The name of the role to add to the specified user.

• tokenDetails: TokenDetail – The details that specify the token. For fungible tokens,
use the following format:

{"tokenId":"token1"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-655

• On success, a message with account details.

Return Value Example:

{
 "msg": "Successfully added role 'minter' to Account Id:
oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d2
2a (Org-Id: appdev, User-Id: idcqa)"
}

isInRole
This method returns a Boolean value to indicate if a user has a specified role.
Fungible tokens are specified by the token ID. Non-fungible tokens are specified by
the token name. This method can be called only by a Token Admin of the chaincode
or the Account Owner of the account. The specified user must have a token account
that is associated with the fungible token, or a non-fungible token account for NFT
roles. The specified role must exist in the specification file for the token.

@GetMethod()
@Validator(yup.string(), yup.string(), yup.string(), yup.object())
public async isInRole(orgId: string, userId: string, role: string,
tokenDetail: TokenDetail) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.removeRoleMember"
, "TOKEN");
 const userAccountId =
this.Ctx.ERC1155Account.generateAccountId(orgId, userId,
ACCOUNT_TYPE.USER_ACCOUNT);
 const token = await
this.Ctx.ERC1155Token.getTokenByIdOrName(tokenDetail);
 return await this.Ctx.ERC1155Token.isInRole(role, userAccountId,
token);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• role: string – The name of the role to search for.

• tokenDetails: TokenDetail – The details that specify the token. For fungible
tokens, use the following format:

{"tokenId":"token1"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-656

Return Value Example:

{
 "result": true,
 "msg": "Account Id
oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a
(Org-Id: appdev, User-Id: idcqa) has minter role"
}

removeRole
This method removes a role from a specified user and token. Fungible tokens are specified
by the token ID. Non-fungible tokens are specified by the token name. This method can be
called only by a Token Admin of the chaincode. The specified user must have a token
account that is associated with the fungible token, or a non-fungible token account for NFT
roles. The specified role must exist in the specification file for the token.

@Validator(yup.string(), yup.string(), yup.string(), yup.object())
public async removeRole(orgId: string, userId: string, role: string,
tokenDetail: TokenDetail) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.removeRoleMember",
"TOKEN");
 const userAccountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId, ACCOUNT_TYPE.USER_ACCOUNT);
 const token = await this.Ctx.ERC1155Token.getTokenByIdOrName(tokenDetail);
 return await this.Ctx.ERC1155Token.removeRoleMember(role, userAccountId,
token);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• role: string – The name of the role to remove from the specified user.

• tokenDetails: TokenDetail – The details that specify the token. For fungible tokens,
use the following format:

{"tokenId":"token1"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Return Value Example:

{
 "msg": "Successfully removed role 'minter' from Account Id:
oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc504b

Chapter 7
Tokenization Support Using Blockchain App Builder

7-657

(Org-Id: appdev, User-Id: user1)"
}

getAccountsByRole
This method returns a list of all account IDs for a specified role and token. Fungible
tokens are specified by the token ID. Non-fungible tokens are specified by the token
name. This method can be called only by a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string(), yup.object())
public async getAccountsByRole(role: string, tokenDetail: TokenDetail)
{
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ROLE.getAccountsByRole"
, "TOKEN");
 const token = await
this.Ctx.ERC1155Token.getTokenByIdOrName(tokenDetail);
 return await this.Ctx.ERC1155Token.getAccountsByRole(role, token);
}

Parameters:

• role: string – The name of the role to search for.

• tokenDetails: TokenDetail – The details that specify the token. For fungible
tokens, use the following format:

{"tokenId":"token1"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Return Value Example:

{
 "accounts": [

"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",

"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc5
04b"
]
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-658

getUsersByRole
This method returns a list of all users for a specified role and token. Fungible tokens are
specified by the token ID. Non-fungible tokens are specified by the token name. This method
can be called only by a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string(), yup.object())
public async getUsersByRole(role: string, tokenDetail: TokenDetail) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ROLE.getUsersByRole",
"TOKEN");
 const token = await this.Ctx.ERC1155Token.getTokenByIdOrName(tokenDetail);
 return await this.Ctx.ERC1155Token.getUsersByRole(role, token);
}

Parameters:

• role: string – The name of the role to search for.

• tokenDetails: TokenDetail – The details that specify the token. For fungible tokens,
use the following format:

{"tokenId":"token1"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Return Value Example:

{
 "users": [
 {
 "accountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",
 "orgId": "appdev",
 "userId": "user2"
 },
 {
 "accountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc504b",
 "orgId": "appdev",
 "userId": "user1"
 }
]
}

Methods for Transaction History Management

Chapter 7
Tokenization Support Using Blockchain App Builder

7-659

getAccountTransactionHistory
This method returns account transaction history. This method can be called only by a
Token Admin of the chaincode or by the account owner. For non-fungible tokens, this
method can only be called when connected to the remote Oracle Blockchain Platform
network.

@GetMethod()
@Validator(yup.string(), yup.string(), yup.string())
public async getAccountTransactionHistory(orgId: string, userId:
string, tokenId?: string) {
 const userAccountId = await
this.Ctx.ERC1155Account.generateAccountId(orgId, userId,
ACCOUNT_TYPE.USER_ACCOUNT);
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.getAccountTrans
actionHistory", "TOKEN", {
 accountId: userAccountId,
 });
 const account = await
this.Ctx.ERC1155Account.getAccount(userAccountId, tokenId);
 return await
this.Ctx.ERC1155Account.getAccountTransactionHistory(account.accountId)
;
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• tokenId?: string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Return Value Example:

[
 {
 "transactionId":
"otransaction~3a6b23c3003626f3947e990eddbd7ac23398d2200e2eb3eac745e6ddf
ae140bc~7c88c736df38d5622512f1e8dcdd50710eb47c953f1ecb24ac44790a9e2f475
b",
 "timestamp": "2023-06-06T14:48:08.000Z",
 "tokenId": "FNFT",
 "transactedAmount": 10,
 "triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "transactedAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903
446",
 "transactionType": "DEBIT",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-660

 "balance": 90
 },
 {
 "transactionId":
"otransaction~3a6b23c3003626f3947e990eddbd7ac23398d2200e2eb3eac745e6ddfae140b
c~178e3730bc5bee50d02f1464a4eebf733a051905f651e5789039adb4a3edc114",
 "timestamp": "2023-06-06T14:48:08.000Z",
 "tokenId": "NFT",
 "triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "transactedAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446",
 "transactionType": "DEBIT"
 },
 {
 "transactionId":
"otransaction~c369929e28e78de06c72d020f1418c9a154a7dd280b2e22ebb4ea4485e24912
4~a7cefb22ff39ee7e36967be71de27da6798548c872061a62dabc56d88d50b930",
 "timestamp": "2023-06-06T14:47:08.000Z",
 "tokenId": "NFT",
 "triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "transactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371",
 "transactionType": "MINT"
 },
 {
 "transactionId":
"otransaction~114a1bc78d04be48ee6dc140c32c042ee9481cb118959626f090eec74452242
2~e4eb15d9354f694230df8835ade012100d82aa43672896a2c7125a86e3048f9f",
 "timestamp": "2023-06-05T17:17:57.000Z",
 "tokenId": "FNFT",
 "transactedAmount": 100,
 "triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "transactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371",
 "transactionType": "MINT",
 "balance": 100
 }
]

getTransactionById
This method returns the transaction details for a specified transaction ID. Anyone can call
this method.

@GetMethod()
@Validator(yup.string())
public async getTransactionById(transactionId: string) {
 return await this.Ctx.ERC1155Transaction.getTransactionById(transactionId);
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-661

• transactionId: string – The ID of the transaction.

Return Value Example:

{
 "transactionId":
"otransaction~9ea7b05ab099f7ff4db8342b8c3609031f1d54f11205906e7f1fe8866
1fe3cbe~33b59ce0c89e96c1e16449f24301581e8e71954f38ad977c7eb6f065e87f2a5
3",
 "history": [
 {
 "trxId":
"9ea7b05ab099f7ff4db8342b8c3609031f1d54f11205906e7f1fe88661fe3cbe",
 "timeStamp": "2022-12-08T09:01:28.000Z",
 "value": {
 "assetType": "otransaction",
 "transactionId":
"otransaction~9ea7b05ab099f7ff4db8342b8c3609031f1d54f11205906e7f1fe8866
1fe3cbe~33b59ce0c89e96c1e16449f24301581e8e71954f38ad977c7eb6f065e87f2a5
3",
 "tokenId": "tokenOne",
 "fromAccountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",
 "toAccountId": "",
 "transactionType": "BURN",
 "amount": 5,
 "timestamp": "2022-12-08T09:01:28.000Z",
 "triggeredByUserAccountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc"
 }
 }
]
}

deleteHistoricalTransactions
This method deletes transactions before a specified time stamp from the state
database. This method can be called only by a Token Admin of the chaincode.

@Validator(yup.date())
public async deleteHistoricalTransactions(time_to_expiration: Date) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("TRANSACTION.deleteTransactions
", "TOKEN");
 return await
this.Ctx.ERC1155Transaction.deleteTransactions(time_to_expiration);
}

Parameters:

• timestamp: string – All transactions before this time stamp will be deleted.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-662

Return Value Example:

{
 "msg": "Successfuly deleted transaction older than date: Thu Apr 07 2022
21:18:59 GMT+0000 (Coordinated Universal Time).",
 "transactions": [

"otransaction~30513757d8b647fffaafac440d743635f5c1b2e41b25ebd6b70b5bbf78a2643
f",

"otransaction~ac0e908c735297941ba58bb208ee61ff4816a1e54c090d68024f82adf743892
b"
]
}

Methods for Token Behavior Management - Mintable Behavior

mintBatch
This method creates (mints) multiple tokens in a batch operation. This method creates only
fungible tokens or fractional non-fungible tokens.
For fungible tokens, if the minter role is defined in the specification file, then any user with
the minter role can call this method. If not, any user can use this method to mint tokens. You
cannot mint more than the max_mint_quantity property of the token, if that property was
specified when the token was created or updated.
For non-fungible tokens, if the minter role is defined in the specification file, then any user
with the minter role can call this method. If not, any user can use this method to mint tokens.
Additionally, the caller must also be the creator of the token. There is no upper limit to the
quantity of fractional non-fungible tokens that can be minted.
You cannot use this method to mint a whole non-fungible token.

@Validator(yup.string(), yup.string(), yup.array().of(yup.string()),
yup.array().of(yup.number()))
public async mintBatch(orgId: string, userId: string, tokenIds: string[],
quantity: number[]) {
 const accountId = this.Ctx.ERC1155Account.generateAccountId(orgId, userId,
ACCOUNT_TYPE.USER_ACCOUNT);
 return await this.Ctx.ERC1155Token.mintBatch(accountId, tokenIds,
quantity);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• tokenIds: string[] – The list of token IDs to mint tokens for.

• quantity: number[] – The list of quantities of tokens to mint, corresponding to the
token ID array.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-663

• On success, a JSON object that includes details on the minted tokens.

Return Value Example:

{
 "msg": "Successfully minted batch of tokens for User-Account-Id
ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51
f38 (Org-Id: appdev, User-Id: idcqa).",
 "details": [
 {
 "msg": "Successfully minted 100 tokens of fractional
tokenId: plot55 to Org-Id: appdev, User-Id: idcqa"
 },
 {
 "msg": "Successfully minted 100 tokens of tokenId: loyalty
to Token-Account-Id
oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d41
0e"
 }
]
}

Methods for Token Behavior Management - Transferable Behavior

batchTransferFrom
This method completes a batch operation that transfers tokens specified in a list of
token IDs from one user to another user.
For NFTs, because the method transfers ownership of the NFT, the sender of the NFT
must own the token.
For fractional NFTs, if a user (including the creator of the token) transfers all of the
shares that they own, then they lose ownership of the token. If any share of a token is
transferred to a user, that user automatically becomes one of the owners of the
fractional NFT.
This method does not validate that the caller of the method is the specified sender.
This method can be called by any user.

@Validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.array().of(yup.string()), yup.array().of(yup.number()))
public async batchTransferFrom(
 fromOrgId: string,
 fromUserId: string,
 toOrgId: string,
 toUserId: string,
 tokenIds: string[],
 quantity: number[]
) {
 const fromAccountId =
this.Ctx.ERC1155Account.generateAccountId(fromOrgId, fromUserId,
ACCOUNT_TYPE.USER_ACCOUNT);
 const toAccountId =
this.Ctx.ERC1155Account.generateAccountId(toOrgId, toUserId,
ACCOUNT_TYPE.USER_ACCOUNT);

Chapter 7
Tokenization Support Using Blockchain App Builder

7-664

 return await this.Ctx.ERC1155Token.batchTransferFrom(fromAccountId,
toAccountId, tokenIds, quantity);
}

Parameters:

• fromOrgId: string – The membership service provider (MSP) ID of the sender and
token owner in the current organization.

• fromUserId: string – The user name or email ID of the sender and token owner.

• toOrgId: string – The membership service provider (MSP) ID of the receiver in the
current organization.

• toUserId: string – The user name or email ID of the receiver.

• tokenIds: string[] – A list of token IDs for the tokens to transfer.

• quantity: number[] – The list of quantities of tokens to transfer, corresponding to the
token ID array.

Returns:

• On success, a message with details for each token transfer.

Return Value Example:

[
 {
 "msg": "Successfully transferred NFT token: 'FNFT' of '10' quantity
from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred 10 FT token: 'FT' from Account-Id:
oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f628237974c
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred NFT token: 'NFT' from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 }
]

safeBatchTransferFrom
This method completes a batch operation that transfers tokens specified in a list of token IDs
from one user to another user.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-665

For NFTs, because the method transfers ownership of the NFT, the sender of the NFT
must own the token.
For fractional NFTs, if a user (including the creator of the token) transfers all of the
shares that they own, then they lose ownership of the token. If any share of a token is
transferred to a user, that user automatically becomes one of the owners of the
fractional NFT.
The caller of the method must be the specified sender. This method can be called by
any user.

@Validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.array().of(yup.string()), yup.array().of(yup.number()))
public async safeBatchTransferFrom(
 fromOrgId: string,
 fromUserId: string,
 toOrgId: string,
 toUserId: string,
 tokenIds: string[],
 quantity: number[]
) {
 const fromAccountId =
this.Ctx.ERC1155Account.generateAccountId(fromOrgId, fromUserId,
ACCOUNT_TYPE.USER_ACCOUNT);
 const toAccountId =
this.Ctx.ERC1155Account.generateAccountId(toOrgId, toUserId,
ACCOUNT_TYPE.USER_ACCOUNT);
 return await
this.Ctx.ERC1155Token.safeBatchTransferFrom(fromAccountId,
toAccountId, tokenIds, quantity);
}

Parameters:

• fromOrgId: string – The membership service provider (MSP) ID of the sender
and token owner in the current organization.

• fromUserId: string – The user name or email ID of the sender and token owner.

• toOrgId: string – The membership service provider (MSP) ID of the receiver in
the current organization.

• toUserId: string – The user name or email ID of the receiver.

• tokenIds: string[] – A list of token IDs for the tokens to transfer.

• quantity: number[] – The list of quantities of tokens to transfer, corresponding
to the token ID array.

Returns:

• On success, a message with details for each token transfer.

Return Value Example:

[
 {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-666

 "msg": "Successfully transferred NFT token: 'FNFT' of '10' quantity
from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred 10 FT token: 'FT' from Account-Id:
oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f628237974c
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred NFT token: 'NFT' from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 }
]

balanceOfBatch
This method completes a batch operation that gets the balance of token accounts. The
account details are specified in three separate lists of organization IDs, user IDs, and token
IDs. This method can be called only by a Token Admin of the chaincode or by account
owners. Account owners can see balance details only for accounts that they own.

@GetMethod()
@Validator(yup.array().of(yup.string()), yup.array().of(yup.string()),
yup.array().of(yup.string()))
public async balanceOfBatch(orgIds: string[], userIds: string[], tokenIds:
string[]) {
 let callerAccountCheck = false;
 try {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.balanceOfBatch",
"TOKEN");
 } catch (err) {
 callerAccountCheck = true;
 }
 const accountIds = await
this.Ctx.ERC1155Account.generateAccountIds(orgIds, userIds,
callerAccountCheck);
 return await this.Ctx.ERC1155Account.balanceOfBatch(accountIds, tokenIds);
}

Parameters:

• orgIds: string[] – A list of the membership service provider (MSP) IDs in the current
organization.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-667

• userIds: string[] – A list of the user name or email IDs.

• tokenIds: string[] – A list of the token IDs.

Return Value Example:
In the following example, the token ID FNFT represents a fractional non-fungible token
and the token ID FT represents a fungible token.

[
 {
 "orgId": "appdev",
 "userId": "idcqa",
 "userAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "tokenAccountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097
371",
 "tokenId": "FNFT",
 "balance": 100
 },
 {
 "orgId": "appdev",
 "userId": "idcqa",
 "userAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "tokenAccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "tokenId": "FT",
 "balance": 50
 },
 {
 "orgId": "appdev",
 "userId": "user1_minter",
 "userAccountId":
"ouaccount~9501bb774c156eb8354dfe489250ea91f757523d70f08ee494bda98bb352
003b",
 "tokenAccountId":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903
446",
 "tokenId": "FNFT",
 "balance": 10
 }
]

exchangeToken
This method exchanges tokens between specified accounts. This method only
supports exchanging between an NFT and a fungible token or a fungible token and an

Chapter 7
Tokenization Support Using Blockchain App Builder

7-668

NFT. The NFT can be whole or fractional. This method can be called only by the account
owner.

@Validator(yup.string(), yup.string(), yup.string(), yup.number(),
yup.string(), yup.string(), yup.string(), yup.number())
 public async exchangeToken(
 fromTokenId: string,
 fromOrgId: string,
 fromUserId: string,
 fromTokenQuantity: number,
 toTokenId: string,
 toOrgId: string,
 toUserId: string,
 toTokenQuantity: number
) {
 const fromUserAccountId =
this.Ctx.ERC1155Account.generateAccountId(fromOrgId, fromUserId,
ACCOUNT_TYPE.USER_ACCOUNT);
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT.exchangeToken",
"TOKEN", { accountId: fromUserAccountId });
 const toUserAccountId =
this.Ctx.ERC1155Account.generateAccountId(toOrgId, toUserId,
ACCOUNT_TYPE.USER_ACCOUNT);
 return await this.Ctx.ERC1155Token.exchangeToken(
 fromTokenId,
 fromUserAccountId,
 fromTokenQuantity,
 toTokenId,
 toUserAccountId,
 toTokenQuantity
);
 }

Parameters:

• fromTokenId: string – The ID of the token that the sender owns.

• fromOrgId: string – The membership service provider (MSP) ID of the sender in the
current organization.

• fromUserId: string – The user name or email ID of the sender.

• fromTokenQuantity: number – The quantity of tokens from the sender to exchange with
the receiver.

• toTokenId: string – The ID of the token that the receiver owns.

• toOrgId: string – The membership service provider (MSP) ID of the receiver in the
current organization.

• toUserId: string – The user name or email ID of the receiver.

• toTokenQuantity: number – The quantity of tokens from the receiver to exchange with
the sender.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-669

• On success, a message with token exchange details.

Return Value Example:

{
 "msg": "Succesfully exchanged 10 tokens of type nonfungible with
tokenId: [r1] from Account
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a100973
71 (OrgId: appdev, UserId: idcqa) to 10 tokens of type fungible with
tokenId: [loy1] from Account
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f62823797
4c (OrgId: appdev, UserId: user1_minter)"
}

Methods for Token Behavior Management - Burnable Behavior

burnBatch
This method deactivates, or burns, the specified fungible and non-fungible tokens.
Any user with the burner role can call this method.

@Validator(yup.string(), yup.string(), yup.array().of(yup.string()),
yup.array().of(yup.number()))
public async burnBatch(orgId: string, userId: string, tokenIds:
string[], quantity: number[]) {
 const accountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId, ACCOUNT_TYPE.USER_ACCOUNT);
 return await this.Ctx.ERC1155Token.burn(accountId, tokenIds,
quantity);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID in the current
organization.

• userId: string – The user name or email ID.

• tokenIds: string[] – The list of the token IDs to burn

• quantity: number[] – The list of quantities of tokens to burn, corresponding to
the token ID array..

Returns:

• On success, a message with details about the burn operations.

Return Value Example:

[
 {
 "msg": "Successfully burned NFT token: 'art' from Account-Id:
oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282
c6 (Org-Id: appdev, User-Id: idcqa)"
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-670

 {
 "msg": "Successfully burned 5 tokens of tokenId: tokenOne from Account-
ID oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a
(Org-Id: appdev, User-Id: idcqa)"
 },
 {
 "msg": "Successfully burned 2 token share of tokenId: FNFT from Account-
ID oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a
(Org-Id: AutoF1377358917, User-Id: idcqa)"
 }
]

burnNFT
This method deactivates, or burns, the specified non-fungible token, and returns a token
object and token history. Any user with the burner role can call this method.

@Validator(yup.string(), yup.string(), yup.string())
public async burnNFT(orgId: string, userId: string, tokenId: string):
Promise<any> {
 const userAccountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId);
 const token = await this.Ctx.ERC1155Token.get(tokenId);
 if (token.tokenType !== TOKEN_TYPE.NON_FUNGIBLE) {

 throw new Error(`The Token with id ${tokenId} is not a nonfungible
token`);
 }
 if (token.isBurned === true) {
 throw new Error(`token with tokenId ${tokenId} is already burned`);
 }
 let tokenBurnQuantity = 1;
 const tokenUnit = token.tokenUnit;
 if (tokenUnit === TOKEN_UNIT.FRACTIONAL) {
 const owners = await
this.Ctx.ERC1155Token.getFractionalNFTOwners(tokenId);
 if (owners.length !== 1) {
 throw new Error(`Token with tokenId ${tokenId} has multiple
owners`);
 }
 tokenBurnQuantity = token.quantity;
 }
 const tokenHistory = await
this.Ctx.ERC1155Token.getTokenHistory(tokenId);
 await this.Ctx.ERC1155Token.burn(userAccountId, [tokenId],
[tokenBurnQuantity]);
 token.tokenId = parseInt(token.tokenId);
 if(Number.isNaN(token.tokenId)) {
 throw new Error(`tokenId is expected to be integer but found $
{tokenId}`)
 }
 token.isBurned = true;

Chapter 7
Tokenization Support Using Blockchain App Builder

7-671

 return {...token, tokenHistory: JSON.stringify(tokenHistory)};
}

Parameters:

• orgId: string – The membership service provider (MSP) ID in the current
organization.

• userId: string – The user name or email ID.

• tokenId: string – The ID of the non-fungible token to burn

Returns:

• On success, a token object in JSON format that includes token history
information.

Return Value Example:

{
 "assetType": "otoken",
 "tokenId": 1,
 "tokenName": "artcollection",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 1,
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "creationDate": "2023-08-22T07:32:40.000Z",
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "isBurned": true,
 "tokenUri": "example.com",
 "price": 120,
 "onSaleFlag": false,
 "tokenHistory":
"[{\"trxId\":\"21a932750f2d4ccffd62eda5678a577cadde0513ed7c7a307f24cd77

Chapter 7
Tokenization Support Using Blockchain App Builder

7-672

13a1818b\",\"timeStamp\":\"2023-08-22T07:32:40.000Z\",\"value\":
{\"assetType\":\"otoken\",\"tokenId\":\"1\",\"tokenName\":\"artcollection\",\
"tokenStandard\":\"erc1155+
\",\"tokenType\":\"nonfungible\",\"tokenUnit\":\"whole\",\"behaviors\":
[\"indivisible\",\"singleton\",\"mintable\",\"transferable\",\"burnable\",\"r
oles\"],\"roles\":{\"minter_role_name\":\"minter\"},\"mintable\":
{\"max_mint_quantity\":20000},\"quantity\":1,\"createdBy\":\"oaccount~42e89f4
c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d\",\"creationDate\":
\"2023-08-22T07:32:40.000Z\",\"owner\":\"oaccount~42e89f4c72dfde9502814876423
c6da630d466e87436dd1aae201d347ad1288d\",\"isBurned\":false,\"tokenUri\":\"exa
mple.com\",\"price\":120,\"onSaleFlag\":false}}]"
}

SDK Methods

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Burnable Behavior

Methods for Access Control Management

checkAuthorization
Use this method to add an access control check to an operation. This is an asynchronous
function. Certain token methods can be run only by the Token Admin or AccountOwner of the
token or by the MultipleAccountOwner for users with multiple accounts. The access control
mapping is described in the ../lib/constant.ts file. You can modify access control by
editing the ../lib/constant.ts file. To use your own access control or to disable access
control, remove the access control code from the automatically generated controller methods
and custom methods.

ADMIN: {
 isUserTokenAdmin: ["Admin"],
 addAdmin: ["Admin"],
 removeAdmin: ["Admin"],
 getAllAdmins: ["Admin"],
 },
 TOKEN: {
 save: ["Admin"],
 getAllTokens: ["Admin"],
 get: ["Admin"],
 update: ["Admin"],
 getDecimals: ["Admin"],
 getTokensByName: ["Admin"],

Chapter 7
Tokenization Support Using Blockchain App Builder

7-673

 addRoleMember: ["Admin"],
 removeRoleMember: ["Admin"],
 isInRole: ["Admin", "AccountOwner"],
 getTotalMintedTokens: ["Admin"],
 getNetTokens: ["Admin"],
 getTokenHistory: ["Admin"],
 },
 ROLE: {
 getAccountsByRole: ["Admin"],
 getUsersByRole: ["Admin"],
 },
 TRANSACTION: {
 deleteTransactions: ["Admin"],
 },
 ACCOUNT: {
 createAccount: ["Admin"],
 associateToken: ["Admin"],
 getAllAccounts: ["Admin"],
 getAccountsByUser: ["Admin", "MultipleAccountOwner"],
 getAccount: ["Admin", "AccountOwner"],
 history: ["Admin", "AccountOwner"],
 getAccountTransactionHistory: ["Admin", "AccountOwner"],
 getAccountTransactionHistoryWithFilters: ["Admin", "AccountOwner"],
 getSubTransactionsById: ["Admin", TRANSACTION_INVOKER],
 getSubTransactionsByIdWithFilters: ["Admin", TRANSACTION_INVOKER],
 getAccountBalance: ["Admin", "AccountOwner"],
 getAccountOnHoldBalance: ["Admin", "AccountOwner"],
 getOnHoldIds: ["Admin", "AccountOwner"],
 getConversionHistory: ["Admin", "AccountOwner"],
 },
 ACCOUNT_STATUS: {
 get: ["Admin", "AccountOwner"],
 history: ["Admin", "AccountOwner"],
 activateAccount: ["Admin"],
 suspendAccount: ["Admin"],
 deleteAccount: ["Admin"],
 },
 TOKEN_CONVERSION: {
 initializeExchangePoolUser: ["Admin"],
 addConversionRate: ["Admin"],
 updateConversionRate: ["Admin"],
 getConversionRate: ["Admin", "AnyAccountOwner"],
 getConversionRateHistory: ["Admin", "AnyAccountOwner"],
 tokenConversion: ["Admin", "AnyAccountOwner"],
 getExchangePoolUser: ["Admin"],
 },
 ERC721ADMIN: {
 isUserTokenAdmin: ["Admin"],
 addAdmin: ["Admin"],
 removeAdmin: ["Admin"],
 getAllAdmins: ["Admin"],
 },
 ERC721TOKEN: {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-674

 getAllTokens: ["Admin"],
 getAllTokensByUser: ["Admin", "AccountOwner"],
 get: ["Admin", TOKEN_OWNER],
 getTokensByName: ["Admin"],
 addRoleMember: ["Admin"],
 removeRoleMember: ["Admin"],
 isInRole: ["Admin", "AccountOwner"],
 totalSupply: ["Admin"],
 totalNetSupply: ["Admin"],
 history: ["Admin"],
 },
 ERC721ROLE: {
 getAccountsByRole: ["Admin"],
 getUsersByRole: ["Admin"],
 },
 ERC721TRANSACTION: {
 deleteTransactions: ["Admin"],
 },
 ERC721ACCOUNT: {
 createAccount: ["Admin"],
 getAllAccounts: ["Admin"],
 getAccountByUser: ["Admin", "MultipleAccountOwner"],
 history: ["Admin", "AccountOwner"],
 getAccountTransactionHistory: ["Admin", "AccountOwner"],
 getAccountTransactionHistoryWithFilters: ["Admin", "AccountOwner"],
 balanceOf: ["Admin", "MultipleAccountOwner"],
 },
 ERC1155ADMIN: {
 isUserTokenAdmin: ["Admin"],
 addAdmin: ["Admin"],
 removeAdmin: ["Admin"],
 getAllAdmins: ["Admin"],
 },
 ERC1155TOKEN: {
 getAllTokens: ["Admin"],
 get: ["Admin", TOKEN_OWNER],
 getAllTokensByUser: ["Admin", "AccountOwner"],
 totalSupply: ["Admin"],
 totalNetSupply: ["Admin"],
 getTokensByName: ["Admin"],
 getDecimals: ["Admin"],
 addRoleMember: ["Admin"],
 removeRoleMember: ["Admin"],
 isInRole: ["Admin", "AccountOwner"],
 save: ["Admin"],
 update: ["Admin"],
 },
 ERC1155ACCOUNT: {
 createAccount: ["Admin"],
 createUserAccount: ["Admin"],
 createTokenAccount: ["Admin"],
 associateFungibleTokenToAccount: ["Admin", "AccountOwner"],
 getAccountsByUser: ["Admin", "AccountOwner"],

Chapter 7
Tokenization Support Using Blockchain App Builder

7-675

 getAccount: ["Admin", "AccountOwner"],
 history: ["Admin", "AccountOwner"],
 getAllAccounts: ["Admin"],
 balanceOfBatch: ["Admin"],
 getAccountTransactionHistory: ["Admin", "AccountOwner"],
 getAccountTransactionHistoryWithFilters: ["Admin", "AccountOwner"],
 exchangeToken: ["AccountOwner"],
 getAccountDetailsByUser: ["Admin", "AccountOwner"],
 },
 ERC1155ROLE: {
 getAccountsByRole: ["Admin"],
 getUsersByRole: ["Admin"],
 },

Ctx.ERC1155Auth.checkAuthorization(classFuncName: string, ...args)

Parameters:

• classFuncName: string – The map value between the class and methods as
described in the ../lib/constant.ts file.

• ...args – A variable argument where args[0] takes the constant 'TOKEN' and
args[1] takes the account_id to add an access control check for an
AccountOwner. To add an access control check for a MultipleAccountOwner,
args[1] takes the org_id and args[2] takes the user_id.

Returns:

• On success, a promise. On error, a rejection with an error message.

isUserTokenAdmin
This method returns the Boolean value true if the specified user is a Token Admin,
and false otherwise. The method can be called only by a Token Admin of the token
chaincode.

Ctx.ERC1155Auth.isUserTokenAdmin(orgId: string, userId: string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Return Value Example:

{
 "result": true
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-676

addAdmin
This method adds a user as a Token Admin of the token chaincode. The method can be
called only by a Token Admin of the token chaincode.

Ctx.ERC1155Admin.addAdmin(orgId: string, userId: string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that lists details for the user added as a Token Admin of the
token chaincode.

Return Value Example:

{
 "msg": "Successfully added Admin (OrgId: appDev, UserId: user1)"
}

removeAdmin
This method removes a user as a Token Admin of the token chaincode. The method can be
called only by a Token Admin of the token chaincode. You cannot remove yourself as a
Token Admin.

Ctx.ERC1155Admin.removeAdmin(orgId: string, userId: string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that lists details for the user removed as a Token Admin of the
token chaincode.

Return Value Example:

{
 "msg": "Successfully removed Admin (OrgId: appDev, UserId: user1)"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-677

getAllAdmins
This method returns a list of all Token Admin users.

Ctx.ERC1155Admin.getAllAdmins()

Parameters:

• none

Returns:

• On success, a list of all Token Admin users, identifed by organization ID and user
ID.

Return Value Example:

{
 "admins": [
 {
 "orgId": "appdev",
 "userId": "idcqa"
 },
 {
 "orgId": "appdev",
 "userId": "user1"
 }
]
}

Methods for Token Configuration Management

save
This method creates tokens. Every token that is defined has its own create method.
For non-fungible tokens, if the minter role is defined in the specification file, then any
user with the minter role can call this method to create an NFT. If not, any user can
use this method to create (mint) NFTs. The user who calls this method becomes the
owner of the NFT (whole or fractional).

Ctx.ERC1155Token.save(tokenAsset: <Token Class>, quantity?: number);

Parameters:

• tokenAsset: <Token Class> – The token asset. The properties of the asset are
defined in the model file.

• quantity: number – For non-fungible tokens only, the number of tokens to mint.
The only supported value for this parameter is 1.

Returns:

• On success, the token asset in JSON format, which can include the following
information.

• tokenMetadata – JSON information that describes the token.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-678

• createdBy – The account ID of the caller, who is the user minting the token. This
property cannot be edited.

• creationDate – The time stamp of the minting transaction. This property cannot be
edited.

• isBurned – This property indicates whether the token is burned. This property cannot be
edited.

• tokenName – The name of the token. This property cannot be edited.

• tokenDesc – The description of the token.

• symbol – The symbol of the token. This property cannot be edited.

• tokenStandard – The standard of the token. This property cannot be edited.

• tokenType – The type of the token (fungible or non-fungible). This property cannot be
edited.

• tokenUnit – The unit of the token (whole or fractional). This property cannot be edited.

• behaviors – A list of token behaviors. This property cannot be edited.

• mintable – The properties related to minting. The max_mint_quantity value defines the
maximum number of tokens that can be created for the token class.

• owner – The account ID of the current owner, who is the caller of the method.

• tokenUri – The URI of the token.

• quantity – The quantity of the token.

Return Value Example (Whole NFT):

{
 "tokenMetadata": {
 "paintingName": "monalisa",
 "description": "monalisa painting",
 "image": "image link",
 "painterName": "Leonardo da Vinci"
 },
 "assetType": "otoken",
 "quantity": 1,
 "tokenId": "artnft",
 "tokenName": "artcollection",
 "tokenDesc": "artcollection nft",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-679

 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 500
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "creationDate": "2022-12-29T04:08:35.000Z",
 "isBurned": false,
 "tokenUri": "tu",
 "price": 10000,
 "onSaleFlag": false
}

Return Value Example (Fungible Token):

{
 "assetType": "otoken",
 "tokenId": "Loyalty",
 "tokenName": "loyalty",
 "tokenDesc": "Token Description",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 10000
 },
 "divisible": {
 "decimal": 2
 },
 "currency_name": "Dollar"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-680

Return Value Example (Fractional NFT):

{
 "tokenMetadata": {
 "painting_name": "paint",
 "description": "Painting Description"
 },
 "assetType": "otoken",
 "tokenId": "realEstate",
 "tokenName": "realestate",
 "tokenDesc": "Token Description",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 100,
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2023-06-14T04:20:14.000Z",
 "divisible": {
 "decimal": 2
 },
 "isBurned": false,
 "tokenUri": "www.realestate.example.com",
 "price": 1000,
 "on_sale_flag": true
}

update
This method updates tokens. You cannot update token metadata or the token URI of non-
fungible tokens.

Ctx.ERC1155Token.update(tokenAsset: any);

Parameters:

• tokenAsset: <Token Class> – The token asset. The properties of the asset are defined
in the model file.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-681

• On success, the updated token asset in JSON format.

Return Value Example (Whole NFT):

{
 "tokenMetadata": {
 "paintingName": "monalisa",
 "description": "monalisa painting",
 "image": "image link",
 "painterName": "Leonardo da Vinci"
 },
 "assetType": "otoken",
 "quantity": 1,
 "tokenId": "artnft",
 "tokenName": "artcollection",
 "tokenDesc": "artcollection nft",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 500
 },
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "creationDate": "2022-12-29T04:08:35.000Z",
 "isBurned": false,
 "tokenUri": "tu",
 "price": 10000,
 "onSaleFlag": false
}

history (Token)
This method returns the history for a specified token ID.

Ctx.ERC1155Token.history(tokenId: string)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-682

• tokenId: string – The ID of the token.

Returns:

• On success, a JSON array that contains the token history.

Return Value Example (Fungible Token):

[
 {
 "trxId":
"ef4af760c3d7ee5e273196231d59fb91cafe6ca0f78c64747e87bc9bcbb3334b",
 "timeStamp": "2023-09-04T02:36:20.000Z",
 "value": {
 "assetType": "otoken",
 "tokenId": "LoyaltyToken",
 "tokenName": "loyalty",
 "tokenDesc": "Updated Fungible Whole",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 10000
 },
 "divisible": {
 "decimal": 2
 },
 "currency_name": "Rupees"
 }
 },
 {
 "trxId":
"4fb391a8903633a12a545cd2ecfb57f5575241325abf59995e2a4ed96572bb09",
 "timeStamp": "2023-09-04T02:35:07.000Z",
 "value": {
 "assetType": "otoken",
 "tokenId": "LoyaltyToken",
 "tokenName": "loyalty",
 "tokenDesc": "Fungible Whole",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [

Chapter 7
Tokenization Support Using Blockchain App Builder

7-683

 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 10000
 },
 "divisible": {
 "decimal": 2
 },
 "currency_name": "Dollar"
 }
 }
]

Return Value Example (Fractional NFT):

[
 {
 "txId":
"99bca74f401465206da7499cbf704dd443b3c3d94e348b1d6682ab5ee1864a08",
 "timestamp": "2023-06-20T01:09:18.000Z",
 "value": {
 "assetType": "otoken",
 "tokenId": "FNFT",
 "tokenName": "realestate",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 100,
 "createdBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5

Chapter 7
Tokenization Support Using Blockchain App Builder

7-684

04a",
 "creationDate": "2023-06-20T00:53:13.000Z",
 "divisible": {
 "decimal": 2
 },
 "isBurned": false,
 "tokenUri": "www.FNFT.example.com",
 "price": 2000,
 "on_sale_flag": true,
 "owners": [
 {
 "accountId":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "tokenShare": 90
 },
 {
 "accountId":
"oaccount~3cddfdaa855900579d963aa6f755a4aed1f3a474a2462c1b45bd7f36df673224",
 "tokenShare": 10
 }
]
 }
 },
 {
 "txId":
"d517c61f40e7d6af2f04fe6d337b3e5108eb57030c9dc823793498fd4fed671b",
 "timestamp": "2023-06-20T00:53:13.000Z",
 "value": {
 "assetType": "otoken",
 "tokenId": "FNFT",
 "tokenName": "realestate",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 100,
 "createdBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "creationDate": "2023-06-20T00:53:13.000Z",
 "divisible": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-685

 "decimal": 2
 },
 "isBurned": false,
 "tokenUri": "www.FNFT.example.com",
 "price": 2000,
 "on_sale_flag": true,
 "owners": [
 {
 "accountId":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "tokenShare": 100
 }
]
 }
 }
]

Return Value Example (Whole NFT):

[
 {
 "trxId":
"92ac6b56112acdba724dd49924d2420a7899c013c61aa40d272e8ab391a65e0f",
 "timeStamp": "2023-09-04T02:28:48.000Z",
 "value": {
 "tokenMetadata": {
 "painting_name": "monalisa",
 "description": "monalisa painting",
 "image": "image link",
 "painter_name": "Leonardo da Vinci"
 },
 "assetType": "otoken",
 "tokenId": "artnft",
 "tokenName": "artcollection",
 "tokenDesc": "Updated Token Description",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000

Chapter 7
Tokenization Support Using Blockchain App Builder

7-686

 },
 "quantity": 1,
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2023-09-04T02:27:19.000Z",
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "isBurned": false,
 "tokenUri": "www.FNFT.example.com",
 "price": 10000,
 "on_sale_flag": true
 }
 },
 {
 "trxId":
"27697dd4a8dba53bad073aa95587cd1ef173b02fd95d771a60273d301fd3bcbe",
 "timeStamp": "2023-09-04T02:27:19.000Z",
 "value": {
 "tokenMetadata": {
 "painting_name": "monalisa",
 "description": "monalisa painting",
 "image": "image link",
 "painter_name": "Leonardo da Vinci"
 },
 "assetType": "otoken",
 "tokenId": "artnft",
 "tokenName": "artcollection",
 "tokenDesc": "artcollection nft",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 1,
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2023-09-04T02:27:19.000Z",
 "owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "isBurned": false,
 "tokenUri": "www.FNFT.example.com",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-687

 "price": 10000,
 "on_sale_flag": true
 }
 }
]

getAllTokens
This method returns all of the token assets that are saved in the state database. This
method can be called only by a Token Admin of the chaincode. This method uses
Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network.

Ctx.ERC1155Token.getAllTokens()

Parameters:

• none

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "tokenOne",
 "tokenName": "moneytok",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 },
 {
 "key": "tokenTwo",
 "valueJson": {
 "assetType": "otoken",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-688

 "tokenId": "tokenTwo",
 "tokenName": "moneytok",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 },
 {
 "key": "art",
 "valueJson": {
 "assetType": "otoken",
 "quantity": 1,
 "tokenId": "art",
 "tokenName": "artcollection",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "createdBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "creationDate": "2022-12-08T08:52:57.000Z",
 "isBurned": true,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-689

 "tokenUri": "art.example.com",
 "transferredBy":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc",
 "transferredDate": "2022-12-08T08:59:17.000Z",
 "burnedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "burnedDate": "2022-12-08T09:01:28.000Z"
 }
 },
 {
 "key": "FNFT",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "FNFT",
 "tokenName": "realestate",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 100,
 "createdBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "creationDate": "2023-06-20T00:53:13.000Z",
 "divisible": {
 "decimal": 2
 },
 "isBurned": false,
 "tokenUri": "www.FNFT.example.com",
 "price": 2000,
 "on_sale_flag": true
 }
 },
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-690

get (Token)
This method returns a token object if the token is present in the state database. This method
can be called only by a Token Admin of the chaincode or the token owner.

this.Ctx.ERC1155Token.get(tokenId: string)

Parameters:

• tokenId: string – The ID of the token to get.

Return Value Example (Whole NFT):

{
 "assetType": "otoken",
 "quantity": 1,
 "tokenId": "art",
 "tokenName": "artcollection",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "createdBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "creationDate": "2022-12-08T08:52:57.000Z",
 "isBurned": true,
 "tokenUri": "example.com",
 "transferredBy":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec2937cc",
 "transferredDate": "2022-12-08T08:59:17.000Z",
 "burnedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "burnedDate": "2022-12-08T09:01:28.000Z"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-691

Return Value Example (Fungible Token):

{
 "assetType": "otoken",
 "tokenId": "Loyalty",
 "tokenName": "loyalty",
 "tokenDesc": "Token Description",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 10000
 },
 "divisible": {
 "decimal": 2
 },
 "currency_name": "Dollar"
}

Return Value Example (Fractional NFT):

{
 "tokenMetadata": {
 "painting_name": "paint",
 "description": "Painting Description"
 },
 "assetType": "otoken",
 "tokenId": "realEstate",
 "tokenName": "realestate",
 "tokenDesc": "Token Description",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-692

 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "quantity": 100,
 "createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "creationDate": "2023-06-14T04:20:14.000Z",
 "divisible": {
 "decimal": 2
 },
 "isBurned": false,
 "tokenUri": "www.realestate.example.com",
 "price": 1000,
 "on_sale_flag": true,
 "owners": [
 {
 "accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "tokenShare": 100
 }
]
}

getAllTokensByUser
This method returns all of the token assets that are owned by a specified user. This method
uses Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network.

Ctx.ERC1155Token.getAllTokensByUser(accountId: string)

Parameters:

• accountId: string – The account ID of the user.

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "tokenOne",
 "tokenName": "moneytok",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-693

 "transferable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 },
 {
 "key": "nftToken",
 "valueJson": {
 "assetType": "otoken",
 "quantity": 1,
 "tokenId": "nftToken",
 "tokenName": "artcollection",
 "tokenStandard": "erc1155+",
 "tokenType": "nonfungible",
 "tokenUnit": "whole",
 "behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter"
 },
 "mintable": {
 "max_mint_quantity": 20000
 },
 "owner":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "createdBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "creationDate": "2022-12-08T09:10:21.000Z",
 "isBurned": false,
 "tokenUri": "example.com"
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-694

ownerOf
This method returns the account ID, organization ID, and user ID of the owner of the
specified token ID.

Ctx.ERC1155Token.ownerOf(tokenId: string)

Parameters:

• tokenId: string – The ID of the token.

Return Value Example:

{
 "accountId":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "orgId": "appdev",
 "userId": "idcqa"
}

tokenURI
This method returns the URI of a specified token. Anyone can call this method.

Ctx.ERC1155Token.tokenURI(tokenId: string)

Parameters:

• tokenId: string – The ID of the token.

Return Value Example:

{
 "tokenUri": "example.com"
}

name
This method returns the name of the token class. Anyone can call this method.

Ctx.ERC1155Token.name(tokenId: string)

Parameters:

• tokenId: string – The ID of the token.

Return Value Example:

{"tokenName": "artcollection"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-695

totalSupply
This method returns the total number of minted tokens. Fungible tokens are specified
by the token ID. Non-fungible tokens are specified by the token name.

Ctx.ERC1155Token.totalSupply(token: any)

Parameters:

• token: any – The token asset.

Return Value Example:

{"totalSupply": 110}

totalNetSupply
This method returns the total number of minted tokens minus the number of burned
tokens. Fungible tokens are specified by the token ID. Non-fungible tokens are
specified by the token name.

Ctx.ERC1155Token.totalNetSupply(token: any)

Parameters:

• token: any – The token asset.

Return Value Example:

{"totalNetSupply": 105}

getTokensByName
This method returns all of the token assets for a specified token name. This method
uses Berkeley DB SQL rich queries and can only be called when connected to the
remote Oracle Blockchain Platform network.

Ctx.ERC1155Token.getTokensByName(tokenName: string)

Parameters:

• tokenName: string – The name of the token.

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "tokenOne",
 "tokenName": "moneytok",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-696

 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 },
 {
 "key": "tokenTwo",
 "valueJson": {
 "assetType": "otoken",
 "tokenId": "tokenTwo",
 "tokenName": "moneytok",
 "tokenStandard": "erc1155+",
 "tokenType": "fungible",
 "tokenUnit": "fractional",
 "behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "roles": {
 "minter_role_name": "minter",
 "burner_role_name": "burner"
 },
 "mintable": {
 "max_mint_quantity": 1000
 },
 "divisible": {
 "decimal": 2
 }
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-697

getDecimals
This method returns the number of decimal places for a specified token. If the divisible
behavior is not specified for the token, then the default value of zero decimal places is
returned.

Ctx.ERC1155Token.getDecimals(token)

Parameters:

• token: any – The token asset.

Return Value Example:

2

Methods for Account Management

createAccount
This method creates an account for a specified user and associated token accounts
for fungible or non-fungible tokens. An account must be created for any user who will
have tokens at any point. The user account tracks the NFT account and the fungible
token accounts that a user has. Users must have accounts in the network to complete
token-related operations. This method can be called only by a Token Admin of the
chaincode.
A user account has a unique ID, which is formed by an SHA-256 hash of the orgId
parameter and the userId parameter.
A user can have multiple fungible token accounts with unique account IDs. Fungible
token account IDs are formed by an SHA-256 hash of the orgId parameter, the
userId parameter, the constant string ft separated by the tilde symbol (~), and a
counter number that signifies the index of the fungible account that is being created
separated by the tilde symbol (~).
A user can have only one non-fungible token account. Non-fungible token account IDs
are unique and are formed by an SHA-256 hash of the orgId parameter, the userId
parameter, and the constant string nft separated by the tilde symbol (~). All non-
fungible tokens that a user owns, whether whole or fractional, are linked to this single
non-fungible token account.

Ctx.ERC1155Account.createAccount(orgId: string, userId: string,
ftAccount: boolean, nftAccount: boolean)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• ftAccount: boolean – If true, a fungible token account is created and associated
with the user account.

• nftAccount: boolean – If true, a non-fungible token account is created and
associated with the user account.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-698

• On success, a JSON object of the account that was created.

Return Value Example:

{
 "assetType": "ouaccount",
 "accountId":
"ouaccount~cf20877546f52687f387e7c91d88b9722c97e1a456cc0484f40c747f7804feae",
 "userId": "user1",
 "orgId": "appdev",
 "totalAccounts": 2,
 "totalFtAccounts": 1,
 "associatedFtAccounts": [
 {
 "accountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc504b",
 "tokenId": ""
 }
],
 "associatedNftAccount":
"oaccount~73c3e835dac6d0a56ca9d8def08269f83cefd59b9d297fe2cdc5a9083828fa58"
}

createUserAccount
This method creates an account for a specified user. An account must be created for any
user who will have tokens at any point. The user account tracks the NFT account and the
fungible token accounts that a user has. Users must have accounts in the network to
complete token-related operations.
An account ID is an SHA-256 hash of the orgId parameter and the userIdparameter. This
method can be called only by a Token Admin of the chaincode.

Ctx.ERC1155Account.createUserAccount(orgId: string, userId: string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON object of the user account that was created.

Return Value Example:

{
 "assetType": "ouaccount",
 "accountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec2937cc",
 "userId": "idcqa",
 "orgId": "appdev",
 "totalAccounts": 0,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-699

 "totalFtAccounts": 0,
 "associatedFtAccounts": [],
 "associatedNftAccount": ""
}

createTokenAccount
This method creates a fungible or non-fungible token account to associate with a user
account.
A user can have multiple fungible token accounts with unique account IDs. Fungible
token account IDs are formed by an SHA-256 hash of the orgId parameter, the
userId parameter, the constant string ft separated by the tilde symbol (~), and a
counter number that signifies the index of the fungible account that is being created
separated by the tilde symbol (~).
A user can have only one non-fungible token account. Non-fungible token account IDs
are unique and are formed by an SHA-256 hash of the orgId parameter, the userId
parameter, and the constant string nft separated by the tilde symbol (~). All non-
fungible tokens that a user owns, whether whole or fractional, are linked to this single
non-fungible token account.
This method can be called only by a Token Admin of the chaincode.

Ctx.ERC1155Account.createTokenAccount(orgId: string, userId: string,
tokenType: string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• tokenType: TokenType – The type of token account to create. The only supported
token types are nonfungible and fungible.

Returns:

• On success, a JSON object of the token account that was created.

Return Value Example:

{
 "assetType": "ouaccount",
 "accountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc",
 "userId": "idcqa",
 "orgId": "appdev",
 "totalAccounts": 1,
 "totalFtAccounts": 1,
 "associatedFtAccounts": [
 {
 "accountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-700

 "tokenId": ""
 }
],
 "associatedNftAccount": ""
}

associateTokenToToken
This method associates a user's fungible token account to a particular fungible token.

Ctx.ERC1155Account.associateTokenToToken(accountId: string, tokenId: string)

Parameters:

• accountId: string – The user account ID.

• tokenId: string – The ID of the token.

Returns:

• On success, a JSON object of the user account, which shows that the fungible token
was associated to the token account. For example, in the following example, the first
object in the associatedFtAccounts array shows that the fungible token account ID and
the token ID are associated.

Return Value Example:

{
 "assetType": "ouaccount",
 "accountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec2937cc",
 "userId": "idcqa",
 "orgId": "appdev",
 "totalAccounts": 1,
 "totalFtAccounts": 1,
 "associatedFtAccounts": [
 {
 "accountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",
 "tokenId": "tokenOne"
 }
],
 "associatedNftAccount": ""
}

getAccountHistory
This method returns history for a specified token account.

Ctx.ERC1155Account.getAccountHistory(accountId: string)

Parameters:

• accountId: string – The user account ID.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-701

Returns:

• On success, an array of JSON objects that describes the account history.

Return Value Example:

[
 {
 "trxId":
"a2cfc6fc064334d6b9931cdf67193711ec2ff5c50a4714f11855fe7384f00e35",
 "timeStamp": "2023-06-06T14:44:31.000Z",
 "value": {
 "accountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "assetType": "oaccount",
 "bapAccountVersion": 1,
 "balance": 100,
 "orgId": "appdev",
 "tokenId": "loy1",
 "tokenName": "loyalty",
 "tokenType": "fungible",
 "userId": "idcqa"
 }
 },
 {
 "trxId":
"de483cf7505ae4e7018c4b604c3ab9327c2fb1f802d9408e22735667c1d6997f",
 "timeStamp": "2023-06-06T14:43:23.000Z",
 "value": {
 "assetType": "oaccount",
 "bapAccountVersion": 0,
 "accountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "userId": "idcqa",
 "orgId": "appdev",
 "tokenType": "fungible",
 "tokenId": "loy1",
 "tokenName": "loyalty",
 "balance": 0
 }
 },
 {
 "trxId":
"db053e653d3ad9aa5b7b6e04b7cd51aacfbb413272d857a155b60d2a6a12bf4d",
 "timeStamp": "2023-06-05T16:59:08.000Z",
 "value": {
 "assetType": "oaccount",
 "bapAccountVersion": 0,
 "accountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "userId": "idcqa",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-702

 "orgId": "appdev",
 "tokenType": "fungible",
 "tokenId": "",
 "balance": 0
 }
 }
]

getAccountWithStatus
This method returns token account details, including account status, for a specified user.
This method can be called only by a Token Admin of the chaincode or the Account Owner of
the account.

Ctx.ERC1155Account.GetAccountWithStatus(accountId, tokenId...)

Parameters:

• userAccountId: string – The account ID of the user.

• tokenId?: string – For a non-fungible token account, an empty string. For a fungible
token account, the token ID.

Returns:

• On success, a JSON object that includes token account details, including the account
status.

Return Value Example (Non-Fungible Token Account):

{
 "assetType": "oaccount",
 "bapAccountVersion": 1,
 "status": "active",
 "accountId":
"oaccount~cc301bee057f14236a97d434909ec1084970921b008f6baab09c2a0f5f419a9a",
 "userId": "idcqa",
 "orgId": "appdev",
 "tokenType": "nonfungible",
 "noOfNfts": 1
 }

Return Value Example (Fungible Token Account):

{
 "bapAccountVersion": 0,
 "assetType": "oaccount",
 "status": "active",
 "accountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479ed4",
 "userId": "idcqa",
 "orgId": "appdev",
 "tokenType": "fungible",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-703

 "tokenId": "t1",
 "tokenName": "loyalty",
 "balance": 0
}

getAccount
This method returns token account details for a specified user. This method can be
called only by a Token Admin of the chaincode or the Account Owner of the account.

Ctx.ERC1155Account.getAccount(userAccountId: string, tokenId: string)

Parameters:

• userAccountId: string – The account ID of the user.

• tokenId?: string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Returns:

• On success, a JSON object that includes token account details. The
bapAccountVersion parameter is defined in the account object for internal use.

Return Value Example (Non-Fungible Token Account):

{
 "assetType": "oaccount",
 "bapAccountVersion": 0,
 "accountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097
371",
 "userId": "idcqa",
 "orgId": "appdev",
 "tokenType": "nonfungible",
 "noOfNfts": 3
}

Return Value Example (Fungible Token Account):

{
 "assetType": "oaccount",
 "bapAccountVersion": 0,
 "accountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "userId": "idcqa",
 "orgId": "appdev",
 "tokenType": "fungible",
 "tokenId": "loy1",
 "tokenName": "loyalty",
 "balance": 50
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-704

getAllAccounts
This method returns details of all user accounts.

Ctx.ERC1155Account.getAllAccounts()

Parameters:

• none

Return Value Example:

[
 {
 "assetType": "ouaccount",
 "accountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "userId": "idcqa",
 "orgId": "appdev",
 "totalAccounts": 2,
 "totalFtAccounts": 1,
 "associatedFtAccounts": [
 {
 "accountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
 "tokenId": "loy1"
 }
],
 "associatedNftAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371"
 },
 {
 "assetType": "ouaccount",
 "accountId":
"ouaccount~9501bb774c156eb8354dfe489250ea91f757523d70f08ee494bda98bb352003b",
 "userId": "user1_minter",
 "orgId": "appdev",
 "totalAccounts": 2,
 "totalFtAccounts": 1,
 "associatedFtAccounts": [
 {
 "accountId":
"oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f628237974c",
 "tokenId": "loy1"
 }
],
 "associatedNftAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446"
 },
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-705

getAccountDetailsByUser
This method returns an account summary for a specified user and details of fungible
and non-fungible tokens that are associated with the user..

Ctx.ERC1155Account.getAccountDetailsByUser(orgId: string, userId:
string)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a JSON account object that includes and account summary for the
specified user and details of fungible and non-fungible tokens that are associated
with the user. For fractional non-fungible tokens, the tokenShare property in the
associatedNFTs section shows the share that the user owns

Return Value Example:

{
 "userAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "associatedFTAccounts": [
 {
 "accountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "tokenId": "FT",
 "balance": 50
 }
],
 "associatedNFTAccount": {
 "accountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097
371",
 "associatedNFTs": [
 {
 "nftTokenId": "FNFT",
 "tokenShare": 100
 },
 {
 "nftTokenId": "FNFT2",
 "tokenShare": 110
 },
 {
 "nftTokenId": "NFT"
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-706

 }
}

getUserByAccountId
This method returns the user details of a specified account ID.

Ctx.ERC1155Account.getUserByAccountId(accountId: string)

Parameters:

• accountId: string – The ID of the account.

Returns:

• On success, a JSON object of the user details (orgId and userId).

Return Value Example:

{
 "orgId": "appdev",
 "userId": "idcqa"
}

Methods for Role Management

AddRoleMember
This method adds a role to a specified user and token. Fungible tokens are specified by the
token ID. Non-fungible tokens are specified by the token name.

Ctx.ERC1155Token.addRoleMember(role: string, userAccountId: string, token:
any)

Parameters:

• userAccountId: string – The account ID of the user.

• role: string – The name of the role to add to the specified user.

• token: any – The token asset.

Returns:

• On success, a message with account details.

Return Value Example:

{
 "msg": "Successfully added role 'minter' to Account Id:
oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a
(Org-Id: appdev, User-Id: idcqa)"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-707

isInRole
This method returns a Boolean value to indicate if a user has a specified role.
Fungible tokens are specified by the token ID. Non-fungible tokens are specified by
the token name.

Ctx.ERC1155Token.isInRole(role: string, userAccountId: string, token:
any)

Parameters:

• userAccountId: string – The account ID of the user.

• role: string – The name of the role to search for.

• token: any – The token asset.

Return Value Example:

{
 "result": true,
 "msg": "Account Id
oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d2
2a (Org-Id: appdev, User-Id: idcqa) has minter role"
}

removeRoleMember
This method removes a role from a specified user and token. Fungible tokens are
specified by the token ID. Non-fungible tokens are specified by the token name.

Ctx.ERC1155Token.removeRoleMember(role: string, userAccountId: string,
token: any)

Parameters:

• userAccountId: string – The account ID of the user.

• role: string – The name of the role to remove from the specified user.

• token: any – The token asset.

Return Value Example:

{
 "msg": "Successfully removed role 'minter' from Account Id:
oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc50
4b (Org-Id: appdev, User-Id: user1)"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-708

getAccountsByRole
This method returns a list of all account IDs for a specified role and token. Fungible tokens
are specified by the token ID. Non-fungible tokens are specified by the token name.

Ctx.ERC1155Token.getAccountsByRole(role: string, token: any)

Parameters:

• role: string – The name of the role to search for.

• token: any – The token asset.

Return Value Example:

{
 "accounts": [

"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",

"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc504b"
]
}

getUsersByRole
This method returns a list of all users for a specified role and token. Fungible tokens are
specified by the token ID. Non-fungible tokens are specified by the token name.

Ctx.ERC1155Token.getUsersByRole(role: string, token: any)

Parameters:

• role: string – The name of the role to search for.

• token: any – The token asset.

Return Value Example:

{
 "users": [
 {
 "accountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",
 "orgId": "appdev",
 "userId": "idcqa"
 },
 {
 "accountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc504b",
 "orgId": "appdev",
 "userId": "user1"
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-709

]
}

Methods for Transaction History Management

getAccountTransactionHistory
This method returns account transaction history. This method can be called only by a
Token Admin of the chaincode or by the account owner. For non-fungible tokens, this
method can only be called when connected to the remote Oracle Blockchain Platform
network.

Ctx.ERC1155Account.getAccountTransactionHistory(accountId: string)

Parameters:

• accountId: string – The token account ID.

Return Value Example:

[
 {
 "transactionId":
"otransaction~3a6b23c3003626f3947e990eddbd7ac23398d2200e2eb3eac745e6ddf
ae140bc~7c88c736df38d5622512f1e8dcdd50710eb47c953f1ecb24ac44790a9e2f475
b",
 "timestamp": "2023-06-06T14:48:08.000Z",
 "tokenId": "FNFT",
 "transactedAmount": 10,
 "triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "transactedAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903
446",
 "transactionType": "DEBIT",
 "balance": 90
 },
 {
 "transactionId":
"otransaction~3a6b23c3003626f3947e990eddbd7ac23398d2200e2eb3eac745e6ddf
ae140bc~178e3730bc5bee50d02f1464a4eebf733a051905f651e5789039adb4a3edc11
4",
 "timestamp": "2023-06-06T14:48:08.000Z",
 "tokenId": "NFT",
 "triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "transactedAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903
446",
 "transactionType": "DEBIT"
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-710

 {
 "transactionId":
"otransaction~c369929e28e78de06c72d020f1418c9a154a7dd280b2e22ebb4ea4485e24912
4~a7cefb22ff39ee7e36967be71de27da6798548c872061a62dabc56d88d50b930",
 "timestamp": "2023-06-06T14:47:08.000Z",
 "tokenId": "NFT",
 "triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "transactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371",
 "transactionType": "MINT"
 },
 {
 "transactionId":
"otransaction~114a1bc78d04be48ee6dc140c32c042ee9481cb118959626f090eec74452242
2~e4eb15d9354f694230df8835ade012100d82aa43672896a2c7125a86e3048f9f",
 "timestamp": "2023-06-05T17:17:57.000Z",
 "tokenId": "FNFT",
 "transactedAmount": 100,
 "triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "transactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371",
 "transactionType": "MINT",
 "balance": 100
 }
]

getTransactionById
This method returns the transaction details for a specified transaction ID.

Ctx.ERC1155Transaction.getTransactionById(transactionId: string)

Parameters:

• transactionId: string – The ID of the transaction.

Return Value Example:

{
 "transactionId":
"otransaction~9ea7b05ab099f7ff4db8342b8c3609031f1d54f11205906e7f1fe88661fe3cb
e~33b59ce0c89e96c1e16449f24301581e8e71954f38ad977c7eb6f065e87f2a53",
 "history": [
 {
 "trxId":
"9ea7b05ab099f7ff4db8342b8c3609031f1d54f11205906e7f1fe88661fe3cbe",
 "timeStamp": "2022-12-08T09:01:28.000Z",
 "value": {
 "assetType": "otransaction",
 "transactionId":
"otransaction~9ea7b05ab099f7ff4db8342b8c3609031f1d54f11205906e7f1fe88661fe3cb

Chapter 7
Tokenization Support Using Blockchain App Builder

7-711

e~33b59ce0c89e96c1e16449f24301581e8e71954f38ad977c7eb6f065e87f2a53",
 "tokenId": "tokenOne",
 "fromAccountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",
 "toAccountId": "",
 "transactionType": "BURN",
 "amount": 5,
 "timestamp": "2022-12-08T09:01:28.000Z",
 "triggeredByUserAccountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc"
 }
 }
]
}

deleteTransactions
This method deletes transactions before a specified time stamp from the state
database.

Ctx.ERC1155Transaction.deleteTransactions(referenceTime: Date)

Parameters:

• referenceTime: Date – All transactions before this time stamp will be deleted.

Return Value Example:

{
 "msg": "Successfuly deleted transaction older than date: Thu Apr 07
2022 21:18:59 GMT+0000 (Coordinated Universal Time).",
 "transactions": [

"otransaction~30513757d8b647fffaafac440d743635f5c1b2e41b25ebd6b70b5bbf7
8a2643f",

"otransaction~ac0e908c735297941ba58bb208ee61ff4816a1e54c090d68024f82adf
743892b"
]
}

Methods for Token Behavior Management - Mintable Behavior

mintBatch
This method creates (mints) multiple tokens in a batch operation. This method creates
only fungible tokens or fractional non-fungible tokens.
For fungible tokens, if the minter role is defined in the specification file, then any user
with the minter role can call this method. If not, any user can use this method to mint
tokens. You cannot mint more than the max_mint_quantity property of the token, if
that property was specified when the token was created or updated.
For non-fungible tokens, if the minter role is defined in the specification file, then any
user with the minter role can call this method. If not, any user can use this method to

Chapter 7
Tokenization Support Using Blockchain App Builder

7-712

mint tokens. Additionally, the caller must also be the creator of the token. There is no upper
limit to the quantity of fractional non-fungible tokens that can be minted.
You cannot use this method to mint a whole non-fungible token.

Ctx.ERC1155Token.mintBatch(accountId: string, tokenIds: string[],
quantities: number[])

Parameters:

• accountId: string – The account ID of the user.

• tokenIds: string[] – The list of token IDs to mint tokens for.

• quantity: number[] – The list of quantities of tokens to mint, corresponding to the
token ID array.

Returns:

• On success, a JSON object that includes details on the minted tokens.

Return Value Example:

{
 "msg": "Successfully minted batch of tokens for User-Account-Id
ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38
(Org-Id: appdev, User-Id: idcqa).",
 "details": [
 {
 "msg": "Successfully minted 100 tokens of fractional tokenId:
plot55 to Org-Id: appdev, User-Id: idcqa"
 },
 {
 "msg": "Successfully minted 100 tokens of tokenId: loyalty to
Token-Account-Id
oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e"
 }
]
}

Methods for Token Behavior Management - Transferable Behavior

batchTransferFrom
This method completes a batch operation that transfers tokens specified in a list of token IDs
from one user to another user.
For NFTs, because the method transfers ownership of the NFT, the sender of the NFT must
own the token.
For fractional NFTs, if a user (including the creator of the token) transfers all of the shares
that they own, then they lose ownership of the token. If any share of a token is transferred to
a user, that user automatically becomes one of the owners of the fractional NFT.
This method does not validate that the caller of the method is the specified sender.

Ctx.ERC1155Token.batchTransferFrom(fromUserAccountId: string,
toUserAccountId: string, tokenIds: string[], quantities: number[])

Chapter 7
Tokenization Support Using Blockchain App Builder

7-713

Parameters:

• fromUserAccountId: string – The account ID of the sender and token owner in
the current organization.

• toUserAccountId: string – The account ID of the receiver.

• tokenIds: string[] – A list of token IDs for the tokens to transfer.

• quantity: number[] – The list of quantities of tokens to transfer, corresponding
to the token ID array.

Returns:

• On success, a message with details for each token transfer.

Return Value Example:

[
 {
 "msg": "Successfully transferred NFT token: 'FNFT' of '10'
quantity from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a100973
71 (Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f59034
46 (Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred 10 FT token: 'FT' from
Account-Id:
oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d41
0e (Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f62823797
4c (Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred NFT token: 'NFT' from Account-
Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a100973
71 (Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f59034
46 (Org-Id: appdev, User-Id: user1_minter)"
 }
]

safeBatchtransferFrom
This method completes a batch operation that transfers tokens specified in a list of
token IDs from one user to another user.
For NFTs, because the method transfers ownership of the NFT, the sender of the NFT
must own the token.
For fractional NFTs, if a user (including the creator of the token) transfers all of the
shares that they own, then they lose ownership of the token. If any share of a token is
transferred to a user, that user automatically becomes one of the owners of the
fractional NFT.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-714

The caller of the method must be the specified sender.

Ctx.ERC1155Token.safeBatchTransferFrom(fromUserAccountId: string,
toUserAccountId: string, tokenIds: string[], quantities: number[])

Parameters:

• fromUserAccountId: string – The account ID of the sender and token owner in the
current organization.

• toUserAccountId: string – The account ID of the receiver.

• tokenIds: string[] – A list of token IDs for the tokens to transfer.

• quantity: number[] – The list of quantities of tokens to transfer, corresponding to the
token ID array.

Returns:

• On success, a message with details for each token transfer.

Return Value Example:

[
 {
 "msg": "Successfully transferred NFT token: 'FNFT' of '10' quantity
from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred 10 FT token: 'FT' from Account-Id:
oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f628237974c
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred NFT token: 'NFT' from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 }
]

balanceOfBatch
This method completes a batch operation that gets the balance of token accounts. The
account details are specified in three separate lists of organization IDs, user IDs, and token

Chapter 7
Tokenization Support Using Blockchain App Builder

7-715

IDs. This method can be called only by a Token Admin of the chaincode or by account
owners. Account owners can see balance details only for accounts that they own.

Ctx.ERC1155Account.balanceOfBatch(accountIds: string[], tokenIds:
string[])

Parameters:

• accountIds: string[] – A list of the user account IDs.

• tokenIds: string[] – A list of the token IDs.

Return Value Example:

[
 {
 "orgId": "appdev",
 "userId": "idcqa",
 "userAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "tokenAccountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097
371",
 "tokenId": "FNFT",
 "balance": 100
 },
 {
 "orgId": "appdev",
 "userId": "idcqa",
 "userAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "tokenAccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "tokenId": "FT",
 "balance": 50
 },
 {
 "orgId": "appdev",
 "userId": "user1_minter",
 "userAccountId":
"ouaccount~9501bb774c156eb8354dfe489250ea91f757523d70f08ee494bda98bb352
003b",
 "tokenAccountId":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903
446",
 "tokenId": "FNFT",
 "balance": 10
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-716

exchangeToken
This method exchanges tokens between specified accounts. This method only supports
exchanging between an NFT (whole or fractional) and a fungible token or a fungible token
and an NFT (whole or fractional). This method can be called only by the account owner.

Ctx.ERC1155Token.exchangeToken(fromTokenId: string, fromUserAccountId:
string, fromTokenQuantity: number, toTokenId: string, toUserAccountId:
string, toTokenQuantity: number)

Parameters:

• fromTokenId: string – The ID of the token that the sender owns.

• fromUserAccountId: string – The account ID of the sender.

• fromTokenQuantity: number – The quantity of tokens from the sender to exchange with
the receiver.

• toTokenId: string – The ID of the token that the receiver owns.

• toUserAccountId: string – The account ID of the receiver.

• toTokenQuantity: number – The quantity of tokens from the receiver to exchange with
the sender.

Returns:

• On success, a message with token exchange details.

Return Value Example:

{
 "msg": "Succesfully exchanged 10 tokens of type nonfungible with
tokenId: [r1] from Account
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(OrgId: appdev, UserId: idcqa) to 10 tokens of type fungible with tokenId:
[loy1] from Account
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f628237974c
(OrgId: appdev, UserId: user1_minter)"
}

Methods for Token Behavior Management - Burnable Behavior

burn
This method deactivates, or burns, the specified fungible and non-fungible tokens.

Ctx.ERC1155Token.burn(accountId: string, tokenIds: string[], quantities:
number[])

Parameters:

• accountId: string – The account ID of the user.

• tokenIds: string[] – The list of token IDs to burn.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-717

• quantity: number[] – The list of quantities of tokens to burn, corresponding to
the token ID array.

Returns:

• On success, a message with details about the burn operations.

Return Value Example:

[
 {
 "msg": "Successfully burned NFT token: 'art' from Account-Id:
oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282
c6 (Org-Id: appdev, User-Id: idcqa)"
 },
 {
 "msg": "Successfully burned 5 tokens of tokenId: tokenOne from
Account-ID
oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d2
2a (Org-Id: appdev, User-Id: idcqa)"
 },
 {
 "msg": "Successfully burned 2 token share of tokenId: FNFT from
Account-ID
oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac50
4a (Org-Id: AutoF1377358917, User-Id: idcqa)"
 }
]

TypeScript Methods for ERC-1155 NFT Locking
Blockchain App Builder automatically generates methods that you can use to lock non-
fungible tokens that use the extended ERC-1155 standard.

A locked token cannot be burned or transferred to other users. All other properties,
such as the token's state, owner, and history are preserved. You can use the NFT
locking functionality when transferring a token to another blockchain network, such as
Ethereum or Polygon.

Before you can lock NFTs, you must assign the vault manager role to a user. The vault
manager is a special type of role, a TokenSys role. TokenSys roles are different from
asset-based roles such as burner, minter, and notary, and from administrative roles
such as Token Admin and Org Admin. Currently Blockchain App Builder supports the
vault TokenSys role. The single user who has the vault role for a chaincode is the
vault manager of the chaincode, and can manage locked NFTs.

The typical flow for using the NFT locking functionality follows these steps.

• Create a non-fungible token that has the lockable behavior.

• Use the addTokenSysRole method to give the vault role to a user, the vault
manager.

• Call the lockNFT method to lock a non-fungible token, specified by the token ID.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-718

TokenSys Role Management Methods

addTokenSysRole
This method adds a TokenSys role to a specified user. This method can be called only by a
Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string())
public async addTokenSysRole(orgId: string, userId: string, role: string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.addTokenSysRoleMember",
 "TOKEN");
 const userAccountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId);
 return await this.Ctx.ERC1155Token.addTokenSysRoleMember(role,
userAccountId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• role: string – The name of the TokenSys role to give to the user.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully added role 'vault' to Account Id:
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03eba
(Org-Id: Org1MSP, User-Id: user1)"
}

isInTokenSysRole
This method returns a Boolean value to indicate if a user has a specified TokenSys role. This
method can be called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string())
public async isInTokenSysRole(orgId: string, userId: string, role: string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.isInTokenSysRole",
"TOKEN", {orgId: orgId, userId: userId });
 const userAccountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId);
 return await this.Ctx.ERC1155Token.isInTokenSysRole(role, userAccountId);
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-719

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• role: string – The name of the TokenSys role to check.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "result": true,
 "msg": "Account Id
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03e
ba (Org-Id: Org1MSP, User-Id: user1) has vault role"
}

removeTokenSysRole
This method removes a TokenSys role from a specified user. This method can be
called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string())
public async removeTokenSysRole(orgId: string, userId: string, role:
string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.removeTokenSysRol
eMember", "TOKEN");
 const userAccountId =
this.Ctx.ERC1155Account.generateAccountId(orgId, userId);
 return await this.Ctx.ERC1155Token.removeTokenSysRoleMember(role,
userAccountId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• role: string – The name of the TokenSys role to remove.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully removed role 'vault' from Account Id:
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03e

Chapter 7
Tokenization Support Using Blockchain App Builder

7-720

ba (Org-Id: Org1MSP, User-Id: user1)"
}

transferTokenSysRole
This method transfers a TokenSys role from a user to another user. This method can be
called only by a Token Admin of the chaincode.

@Validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.string())
public async transferTokenSysRole(fromOrgId: string, fromUserId: string,
toOrgId: string, toUserId: string, role: string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.transferTokenSysRole",
"TOKEN");
 const fromUserAccountId = await
this.Ctx.ERC1155Account.generateAccountId(fromOrgId, fromUserId);
 const toUserAccountId = await
this.Ctx.ERC1155Account.generateAccountId(toOrgId, toUserId);
 return await this.Ctx.ERC1155Token.transferTokenSysRole(role,
fromUserAccountId, toUserAccountId);
}

Parameters:

• fromOrgId: string – The membership service provider (MSP) ID of the user to transfer
the TokenSys role from.

• fromUserId: string – The user name or email ID of the user to transfer the TokenSys
role from.

• toOrgId: string – The membership service provider (MSP) ID of the user to transfer
the TokenSys role to.

• toUserId: string – The user name or email ID of the user to transfer the TokenSys role
to.

• role: string – The name of the TokenSys role to transfer.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully transfered role 'vault' from Account Id:
ouaccount~f4e311528f03fffa7810753d643f66289ff6c9080fcf839902f28a1d3aff1789
(Org-Id: Org1MSP, User-Id: user1) to Account Id:
ouaccount~ae5be2ae8f98d6d32f5d02b43877d987114e7937c7bacbc30390dcce09996a19
(Org-Id: Org1MSP, User-Id: user2)"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-721

getAccountsByTokenSysRole
This method returns a list of all account IDs for a specified TokenSys role. This method
can be called only by a Token Admin of the chaincode.

@Validator(yup.string())
public async getAccountsByTokenSysRole(role: string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.getAccountsByToke
nSysRole", "TOKEN");
 return await this.Ctx.ERC1155Token.getAccountsByTokenSysRole(role);
}

Parameters:

• role: string – The name of the TokenSys role.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "accountIds": [

"oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03
eba"
]
}

getUsersByTokenSysRole
This method returns user information for all users with a specified TokenSys role. This
method can be called only by a Token Admin of the chaincode.

@Validator(yup.string())
public async getUsersByTokenSysRole(role: string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.getUsersByTokenSy
sRole", "TOKEN");
 return await this.Ctx.ERC1155Token.getUsersByTokenSysRole(role);
}

Parameters:

• role: string – The name of the TokenSys role.

Returns:

• On success, a message that contains relevant details of the operation.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-722

Return Value Example:

{
 "users":[
 {

"accountId":"oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c
2caf03eba",
 "orgId":"Org1MSP",
 "userId":"user1"
 }
]
}

NFT Locking Methods

lockNFT
This method locks a specified non-fungible token. To lock a token, there must be a user with
the TokenSys vault role, who acts as the vault manager. This method can be called only by
the owner of the token.

@Validator(yup.string())
public async lockNFT(orgId: string, userId: string, tokenId: string) {
 return await this.Ctx.ERC1155Token.lockNFT(orgId, userId, tokenId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user (optional).

• tokenID: string – The ID of the token to lock.

Returns:

• On success, a JSON representation of the token object.

Return Value Example:

{
 "assetType":"otoken",
 "tokenId":"token1",
 "tokenName":"artcollection",
 "tokenStandard":"erc1155+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "mintable",
 "transferable",
 "burnable",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-723

 "lockable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":20000
 },
 "quantity":1,

"createdBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304
ebff1b6a7733463",
 "creationDate":"2023-10-20T09:16:29.000Z",

"owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff
1b6a7733463",
 "isBurned":false,
 "isLocked":true,
 "tokenUri":"token1.example.com",
 "price":120,
 "on_sale_flag":false
}

isNFTLocked
This method returns a Boolean value to indicate if a specified token is locked. This
method can be called only by the token owner, the vault manager (the user with the
TokenSys vault role), or a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string())
public async isNFTLocked(tokenId: string) {
 try {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.isNFTLocked",
"TOKEN", { tokenId });
 } catch(err) {
 const isCallerTokenSysRoleHolder = await
this.Ctx.ERC1155Token.isCallerTokenSysRoleHolder(TOKEN_SYS_ROLE_TYPE.VA
ULT);
 if(!isCallerTokenSysRoleHolder)
 throw err;
 }
 const isNFTLocked = await this.Ctx.ERC1155Token.isNFTLocked(tokenId);
 return {isNFTLocked};
}

Parameters:

• tokenID: string – The ID of the token.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-724

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "isNFTLocked":true
}

getAllLockedNFTs
This method returns a list of all locked non-fungible tokens. This method can be called only
by the vault manager (the user with the TokenSys vault role) or a Token Admin of the
chaincode.

@GetMethod()
@Validator()
public async getAllLockedNFTs() {
 try {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.getAllLockedNFTs",
"TOKEN");
 } catch(err) {
 const isCallerTokenSysRoleHolder = await
this.Ctx.ERC1155Token.isCallerTokenSysRoleHolder(TOKEN_SYS_ROLE_TYPE.VAULT);
 if(!isCallerTokenSysRoleHolder)
 throw err;
 }
 return this.Ctx.ERC1155Token.getAllLockedNFTs();
}

Parameters:

• None

Returns:

• On success, an array of the locked non-fungible token objects.

Return Value Example:

[
 {
 "key":"token1",
 "valueJson":{
 "assetType":"otoken",
 "tokenId":"token1",
 "tokenName":"artcollection",
 "tokenStandard":"erc1155+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "mintable",
 "transferable",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-725

 "burnable",
 "lockable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":20000
 },
 "quantity":1,

"createdBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304
ebff1b6a7733463",
 "creationDate":"2023-10-20T09:16:29.000Z",

"owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff
1b6a7733463",
 "isBurned":false,
 "isLocked":true,
 "tokenUri":"token1.example.com",
 "price":120,
 "on_sale_flag":false
 }
 }
]

getAllLockedNFTsByOrg
This method returns a list of all locked non-fungible tokens for a specified organization
and optionally a specified user. This method can be called only by the vault manager
(the user with the TokenSys vault role) or a Token Admin of the chaincode.

@GetMethod()
@Validator(yup.string(), yup.string())
public async getLockedNFTsByOrg(orgId: string, userId?: string) {
 try {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155TOKEN.getLockedNFTsByOr
g", "TOKEN");
 } catch(err) {
 const isCallerTokenSysRoleHolder = await
this.Ctx.ERC1155Token.isCallerTokenSysRoleHolder(TOKEN_SYS_ROLE_TYPE.VA
ULT);
 if(!isCallerTokenSysRoleHolder)
 throw err;
 }
 return await this.Ctx.ERC1155Token.getLockedNFTsByOrg(orgId, userId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-726

• userId: string – The user name or email ID of the user (optional).

Returns:

• On success, an array of the locked non-fungible token objects.

Return Value Example:

[
 {
 "key":"token1",
 "valueJson":{
 "assetType":"otoken",
 "tokenId":"token1",
 "tokenName":"artcollection",
 "tokenStandard":"erc1155+",
 "tokenType":"nonfungible",
 "tokenUnit":"whole",
 "behaviors":[
 "indivisible",
 "mintable",
 "transferable",
 "burnable",
 "lockable",
 "roles"
],
 "roles":{
 "minter_role_name":"minter"
 },
 "mintable":{
 "max_mint_quantity":20000
 },
 "quantity":1,

"createdBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b
6a7733463",
 "creationDate":"2023-10-20T09:16:29.000Z",

"owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b6a77
33463",
 "isBurned":false,
 "isLocked":true,
 "tokenUri":"token1.example.com",
 "price":120,
 "on_sale_flag":false
 }
 }
]

TypeScript Methods for ERC-1155 Token Account Status
Blockchain App Builder automatically generates methods that you can use to manage
account status for tokens that use the extended ERC-1155 standard.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-727

You can use the following methods to put token user accounts in the active,
suspended, or deleted states.

When an account is suspended, the account user cannot complete any write
operations, which include minting, burning, and transferring tokens. Additionally, other
users cannot transfer tokens to a suspended account. A suspended account can still
complete read operations.

An account with a non-zero token balance cannot be deleted. You must transfer or
burn all tokens in an account before you can delete the account. After an account is in
the deleted state, the account state cannot be changed back to active or suspended.

• Automatically Generated Account Status Methods

• Account Status SDK Methods

Automatically Generated Account Status Methods

getAccountStatus
This method gets the current status of the token account. This method can be called
by the Token Admin of the chaincode or by the token account owner.

@Validator(yup.string(), yup.string(), yup.string())
 public async getAccountStatus(orgId: string, userId: string,
tokenId ?: string) {
 const userAccountId =
this.Ctx.ERC1155Account.generateAccountId(orgId, userId,
ACCOUNT_TYPE.USER_ACCOUNT);
 let tokenAccount = await
this.Ctx.ERC1155Account.getAccount(userAccountId, tokenId);
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT_STATUS.get",
"TOKEN", { accountId: tokenAccount.accountId });
 try {
 return await
this.Ctx.ERC1155AccountStatus.getAccountStatus(tokenAccount.accountId);
 } catch (err) {
 return await
this.Ctx.ERC1155AccountStatus.getDefaultAccountStatus(tokenAccount.acco
untId);
 }
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• tokenId ?: string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-728

• On success, a JSON representation of the token account status. If no status is found in
the ledger for the account because the account was created before the account status
functionality was available, the status is listed as active in the response.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
}

getAccountStatusHistory
This method gets the history of the account status. This method can be called by the Token
Admin of the chaincode or by the token account owner.

public async getAccountStatusHistory(orgId: string, userId: string,
tokenId ?: string) {
 const userAccountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId, ACCOUNT_TYPE.USER_ACCOUNT);
 let tokenAccount = await
this.Ctx.ERC1155Account.getAccount(userAccountId, tokenId);
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT_STATUS.history",
"TOKEN", { accountId: tokenAccount.accountId });
 const status_id = await
this.Ctx.ERC1155AccountStatus.generateAccountStatusId(tokenAccount.accountId)
;
 let accountStatusHistory: any;
 try {
 accountStatusHistory = await
this.Ctx.ERC1155AccountStatus.history(status_id);
 } catch (err) {
 return [];
 }
 return accountStatusHistory;
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• tokenId ?: string – For a non-fungible token account, an empty string. For a fungible
token account, the token ID.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-729

• On success, the account status history in JSON format.

Return Value Example:

[
 {
 "trxId":
"d5c6d6f601257ba9b6edaf5b7660f00adc13c37d5321b8f7d3a35afab2e93e63",
 "timeStamp": "2022-12-02T10:39:14.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "suspended"
 }
 },
 {
 "trxId":
"e6c850cfa084dc20ad95fb2bb8165eef3a3bd62a0ac867cccee57c2003125183",
 "timeStamp": "2022-12-02T10:37:50.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "active"
 }
 }
]

activateAccount
This method activates a token account. This method can be called only by a Token
Admin of the chaincode. Deleted accounts cannot be activated. For any accounts
created prior to the account status functionality being available, you must call this
method to set the account status as active.

@Validator(yup.string(), yup.string(), yup.string())
public async activateAccount(orgId: string, userId: string, tokenId ?:
string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT_STATUS.activate
Account", "TOKEN");
 const userAccountId =
this.Ctx.ERC1155Account.generateAccountId(orgId, userId,
ACCOUNT_TYPE.USER_ACCOUNT);

Chapter 7
Tokenization Support Using Blockchain App Builder

7-730

 let tokenAccount = await this.Ctx.ERC1155Account.getAccount(userAccountId,
tokenId);
 return await
this.Ctx.ERC1155Account.activateAccount(tokenAccount.accountId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• tokenId ?: string – For a non-fungible token account, an empty string. For a fungible
token account, the token ID.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
}

suspendAccount
This method suspends a token account. This method can be called only by a Token Admin of
the chaincode. After an account is suspended, you cannot complete any operations that
update the account. A deleted account cannot be suspended.

@Validator(yup.string(), yup.string(), yup.string())
public async suspendAccount(orgId: string, userId: string, tokenId ?:
string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT_STATUS.suspendAccount
", "TOKEN");
 const userAccountId = this.Ctx.ERC1155Account.generateAccountId(orgId,
userId, ACCOUNT_TYPE.USER_ACCOUNT);
 let tokenAccount = await this.Ctx.ERC1155Account.getAccount(userAccountId,
tokenId);
 return await
this.Ctx.ERC1155Account.suspendAccount(tokenAccount.accountId);
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-731

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• tokenId ?: string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "suspended"
}

deleteAccount
This method deletes a token account. This method can be called only by a Token
Admin of the chaincode. After an account is deleted, you cannot complete any
operations that update the account. The deleted account is in a final state and cannot
be changed to any other state. To delete an account, the account balance must be
zero.

@Validator(yup.string(), yup.string(), yup.string())
public async deleteAccount(orgId: string, userId: string, tokenId ?:
string) {
 await
this.Ctx.ERC1155Auth.checkAuthorization("ERC1155ACCOUNT_STATUS.deleteAc
count", "TOKEN");
 const userAccountId =
this.Ctx.ERC1155Account.generateAccountId(orgId, userId,
ACCOUNT_TYPE.USER_ACCOUNT);
 let tokenAccount = await
this.Ctx.ERC1155Account.getAccount(userAccountId, tokenId);
 return await
this.Ctx.ERC1155Account.deleteAccount(tokenAccount.accountId);
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-732

• tokenId ?: string – For a non-fungible token account, an empty string. For a fungible
token account, the token ID.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "deleted"
}

Account Status SDK Methods

getAccountStatus
This method gets the current status of the token account.

Ctx.ERC1155AccountStatus.getAccountStatus(accountId: string)

Parameters:

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the token account status. If no status is found in
the ledger for the account because the account was created before the account status
functionality was available, the status is listed as active in the response.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
}

getAccountStatusHistory
This method gets the history of the account status.

Ctx.ERC1155AccountStatus.history(statusId: string)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-733

Parameters:

• statusId: string – The ID of the account status object.

Returns:

• On success, a JSON representation of the account status history.

Return Value Example:

[
 {
 "trxId":
"d5c6d6f601257ba9b6edaf5b7660f00adc13c37d5321b8f7d3a35afab2e93e63",
 "timeStamp": "2022-12-02T10:39:14.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "suspended"
 }
 },
 {
 "trxId":
"e6c850cfa084dc20ad95fb2bb8165eef3a3bd62a0ac867cccee57c2003125183",
 "timeStamp": "2022-12-02T10:37:50.000Z",
 "value": {
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "active"
 }
 }
]

activateAccount
This method activates a token account. For any accounts created prior to the account
status functionality being available, you must call this method to set the account
status as active.

Ctx.ERC1155Account.activateAccount(tokenAccountId: string)

Parameters:

• tokenAccountId: string – The ID of the token account.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-734

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "active"
}

suspendAccount
This method suspends a token account.

Ctx.ERC1155Account.suspendAccount(tokenAccountId: string)

Parameters:

• tokenAccountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "status": "suspended"
}

deleteAccount
This method deletes a token account.

Ctx.ERC1155Account.deleteAccount(tokenAccountId: string)

Parameters:

• tokenAccountId: string – The ID of the token account.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-735

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "assetType": "oaccountStatus",
 "statusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "accountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "status": "deleted"
}

Scaffolded Go Token Project for ERC-1155
Blockchain App Builder takes the input from your token specification file and generates
a fully-functional scaffolded chaincode project.

The project automatically generates token lifecycle classes and functions, including
CRUD and non-CRUD methods. Validation of arguments, marshalling/unmarshalling,
and transparent persistence capability are all supported automatically.

For information on the scaffolded project and methods that are not directly related to
tokens, see Scaffolded Go Chaincode Project.

Reference:

• Model

• Controller

– Automatically Generated Token Methods

• SDK Methods

Model

Transparent Persistence Capability, or simplified ORM, is captured in the OchainModel
class. The following model shows a whole non-fungible token.

package model

type ArtCollection struct {
 AssetType string `json:"AssetType" final:"otoken"`
 TokenId string `json:"TokenId" id:"true" mandatory:"true"
validate:"regexp=^[A-Za-z0-9][A-Za-z0-9_-]*$,max=16"`
 TokenName string `json:"TokenName" final:"artcollection"`
 TokenDesc string `json:"TokenDesc" validate:"max=256"`
 TokenStandard string `json:"TokenStandard" final:"erc1155+"`
 TokenType string `json:"TokenType" final:"nonfungible"
validate:"regexp=^nonfungible$"`
 TokenUnit string `json:"TokenUnit" final:"whole"
validate:"regexp=^whole$"`

Chapter 7
Tokenization Support Using Blockchain App Builder

7-736

 Mintable map[string]interface{} `json:"Mintable"
final:"{\"Max_mint_quantity\":20000}"`

 Behaviors []string `json:"Behaviors"
final:"[\"indivisible\",\"singleton\",\"mintable\",\"transferable\",\"burnabl
e\",\"roles\"]"`

 Roles map[string]interface{} `json:"Roles"
final:"{\"minter_role_name\":\"minter\"}"`

 Owner string `json:"Owner,omitempty" validate:"string"`
 CreatedBy string `json:"CreatedBy,omitempty" validate:"string"`
 TransferredBy string `json:"TransferredBy,omitempty" validate:"string"`
 CreationDate string `json:"CreationDate,omitempty" validate:"string"`
 TransferredDate string `json:"TransferredDate,omitempty"
validate:"string"`
 IsBurned bool `json:"IsBurned" validate:"bool"`
 BurnedBy string `json:"BurnedBy,omitempty" validate:"string"`
 BurnedDate string `json:"BurnedDate,omitempty" validate:"string"`
 TokenUri string `json:"TokenUri" mandatory:"true"
validate:"string,max=2000"`

 TokenMetadata ArtCollectionMetadata `json:"TokenMetadata"`

 Price int `json:"Price" validate:"int"`
 On_sale_flag bool `json:"On_sale_flag" validate:"bool"`
}

type ArtCollectionMetadata struct {
 Painting_name string `json:"Painting_name" validate:"string"`
 Description string `json:"Description" validate:"string"`
 Image string `json:"Image" validate:"string"`
 Painter_name string `json:"Painter_name" validate:"string"`
}

type Loyalty struct {
 AssetType string `json:"AssetType" final:"otoken"`
 TokenId string `json:"TokenId" id:"true" mandatory:"true"
validate:"regexp=^[A-Za-z0-9][A-Za-z0-9_-]*$,max=16"`
 TokenName string `json:"TokenName" final:"loyalty"`
 TokenDesc string `json:"TokenDesc" validate:"max=256"`
 TokenStandard string `json:"TokenStandard" final:"erc1155+"`
 TokenType string `json:"TokenType" final:"fungible"
validate:"regexp=^fungible$"`
 TokenUnit string `json:"TokenUnit" final:"fractional"
validate:"regexp=^fractional$"`

 Mintable map[string]interface{} `json:"Mintable"
final:"{\"Max_mint_quantity\":10000}"`

 Divisible map[string]interface{} `json:"Divisible"
final:"{\"Decimal\":2}"`

 Behaviors []string `json:"Behaviors"
final:"[\"divisible\",\"mintable\",\"transferable\",\"burnable\",\"roles\"]"`

Chapter 7
Tokenization Support Using Blockchain App Builder

7-737

 Roles map[string]interface{} `json:"Roles"
final:"{\"minter_role_name\":\"minter\"}"`

 Currency_name string `json:"Currency_name"
validate:"string"`
 Token_to_currency_ratio int
`json:"Token_to_currency_ratio" validate:"int"`
 Metadata interface{} `json:"Metadata,omitempty"`
}

The following model shows a fractional non-fungible token.

type RealEstateProperty struct {
 AssetType string `json:"AssetType" final:"otoken"`
 TokenId string `json:"TokenId" id:"true" mandatory:"true"
validate:"regexp=^[A-Za-z0-9][A-Za-z0-9_-]*$,max=16"`
 TokenName string `json:"TokenName" final:"realestateproperty"`
 TokenDesc string `json:"TokenDesc" validate:"max=256"`
 TokenStandard string `json:"TokenStandard" final:"erc1155+"`
 TokenType string `json:"TokenType" final:"nonfungible"
validate:"regexp=^nonfungible$"`
 TokenUnit string `json:"TokenUnit" final:"fractional"
validate:"regexp=^fractional$"`

 Mintable map[string]interface{} `json:"Mintable"
final:"{\"Max_mint_quantity\":0}"`
 Behaviors []string `json:"Behaviors"
final:"[\"divisible\",\"mintable\",\"transferable\",\"roles\"]"`

 Divisible map[string]interface{} `json:"Divisible"
final:"{\"Decimal\":0}"`

 Roles map[string]interface{} `json:"Roles"
final:"{\"minter_role_name\":\"minter\"}"`

 CreatedBy string `json:"CreatedBy,omitempty" validate:"string"`
 CreationDate string `json:"CreationDate,omitempty"
validate:"string"`
 IsBurned bool `json:"IsBurned" validate:"bool"`
 TokenUri string `json:"TokenUri" mandatory:"true"
validate:"string,max=2000"`
 Quantity float64 `json:"Quantity,omitempty"`
 TokenMetadata RealEstatePropertyMetadata `json:"TokenMetadata"`

 PropertySellingPrice int `json:"PropertySellingPrice"
validate:"int"`
 PropertyRentingPrice int `json:"PropertyRentingPrice"
validate:"int"`
}

type RealEstatePropertyMetadata struct {
 PropertyType string `json:"PropertyType" validate:"string"`
 PropertyName string `json:"PropertyName" validate:"string"`

Chapter 7
Tokenization Support Using Blockchain App Builder

7-738

 PropertyAddress string `json:"PropertyAddress" validate:"string"`
 PropertyImage string `json:"PropertyImage" validate:"string"`
}

Controller

There is only one main controller.

type Controller struct {
 Ctx trxcontext.TrxContext
}

You can create any number of classes, functions, or files, but only those methods that are
defined within the main controller class are invokable. The other methods are hidden.

You can use the token SDK methods to write custom methods for your business application.

Automatically Generated Token Methods

Blockchain App Builder automatically generates methods to support tokens and token life
cycles. You can use these methods to initialize tokens, manage roles and accounts, and
complete other token lifecycle tasks without any additional coding. Controller methods must
be public to be invokable. Public method names begin with an upper case character. Method
names that begin with a lower case character are private.

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Burnable Behavior

Methods for Access Control Management

IsTokenAdmin
This method returns the Boolean value true if the caller of the function is a Token Admin,
otherwise it returns false.This method can be called only by the Token Admin of the
chaincode.

func (t *Controller) IsTokenAdmin(orgId string, userId string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Admin.IsUserTokenAdmin",
"TOKEN", map[string]string{"orgId": orgId, "userId": userId})
 if err != nil || !auth {
 return false, fmt.Errorf("error in authorizing the caller

Chapter 7
Tokenization Support Using Blockchain App Builder

7-739

%s", err.Error())
 }
 return t.Ctx.ERC1155Auth.IsUserTokenAdmin(orgId, userId)
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• The method returns true if the caller is a Token Admin, otherwise it returns false.

Return Value Example:

{"result": true}

AddTokenAdmin
This method adds a user as a Token Admin of the chaincode. This method can be
called only by a Token Admin of the chaincode.

func (t *Controller) AddTokenAdmin(orgId string, userId string)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Admin.AddAdmin", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return t.Ctx.ERC1155Admin.AddAdmin(orgId, userId)
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was added as a
Token Admin of the chaincode.

Return Value Example:

{"msg":"Successfully added Admin (orgId: appDev, userId: user1)"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-740

RemoveTokenAdmin
This method removes a user as a Token Admin of the chaincode. This method can be called
only by a Token Admin of the chaincode. You cannot remove yourself as a Token Admin.

func (t *Controller) RemoveTokenAdmin(orgId string, userId string)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Admin.RemoveAdmin", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC1155Admin.RemoveAdmin(orgId, userId)
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that includes details of the user who was removed as a Token
Admin of the chaincode.

Return Value Example:

{
 "msg": "Successfully removed Admin (orgId appdev userId user1)"
}

GetAllTokenAdmins
This method returns a list of all users who are a Token Admin of the chaincode. This method
can be called only by the Token Admin of the chaincode.

func (t *Controller) GetAllTokenAdmins() (interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Admin.GetAllAdmins", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC1155Admin.GetAllAdminUsers()
 }

Parameters:

• none

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-741

• On success, an admins array in JSON format.

Return Value Example:

{
 "admins": [
 {
 "OrgId": "appdev",
 "UserId": "idcqa"
 },
 {
 "OrgId": "appdev",
 "UserId": "user1"
 }
]
}

Methods for Token Configuration Management

Init
This method is called when the chaincode is instantiated. Every Token Admin is
identified by the userId and orgId information in the adminList parameter. The
userId is the user name or email ID of the instance owner or the user who is logged
in to the instance. The orgId is the membership service provider (MSP) ID of the user
in the current network organization. The adminList parameter is mandatory the first
time you deploy the chaincode. If you are upgrading the chaincode, pass an empty list
([]). If you are the user who initially deployed the chaincode, you can also specify
new admins in the adminList parameter when you are upgrading the chaincode. Any
other information in the adminList parameter is ignored during upgrades.

func (t *Controller) Init(adminList
[]erc1155Admin.ERC1155TokenAdminAsset) (interface{}, error) {
 list, err := t.Ctx.ERC1155Admin.InitAdmin(adminList)
 if err != nil {
 return nil, fmt.Errorf("initialising admin list failed
%s", err.Error())
 }
 <1st Token Name> := <1st TokenClassName>{}
 _, err = t.Ctx.ERC1155Token.SaveClassInfo(&<1st Token Name>)
 if err != nil {
 return nil, err
 }
 .
 .
 <nth Token Name> := <nth TokenClassName>{}
 _, err = t.Ctx.ERC1155Token.SaveClassInfo(&<nth Token Name>)
 if err != nil {
 return nil, err
 }
 _, err = t.Ctx.ERC1155Token.SaveDeleteTransactionInfo()
 if err != nil {
 fmt.Println("error: ", err)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-742

 }
 return list, err
}

Parameters:

• adminList array – An array of {OrgId, UserId} information that specifies the list of
token admins. The adminList array is a mandatory parameter.

Create<Token Name>Token
This method creates tokens. Every token that is defined has its own create method. For
fungible tokens, this method can be called only by a Token Admin of the chaincode. For non-
fungible tokens, if the minter role is defined in the specification file, any user with the minter
role can call this method to create an NFT. If the minter role is not defined, any user can use
this method to create (mint) NFTs. The user who calls this method becomes the owner of the
NFT.

Fungible Tokens:

func (t *Controller) Create<Token Name>Token(tokenAsset <Token Class>)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.Save", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC1155Token.Save(&tokenAsset)
 }

Non-Fungible Tokens:

func (t *Controller) Create<Token Name>Token(tokenAsset <Token Class>,
quantity float64) (interface{}, error) {
 quantityToPass := []float64{quantity}
 return t.Ctx.ERC1155Token.Save(&tokenAsset, quantityToPass...)
 }

Parameters:

• tokenAsset: <Token Class> – The token asset. The properties of the asset are defined
in the model file.

• quantity: number – For non-fungible tokens only, the number of tokens to mint. The
only supported value for this parameter is 1.

Returns:

• On success, the token asset in JSON format, which includes the following information,
depending on the token type.

• Behaviors – A list of token behaviors. This property cannot be edited.

• CreatedBy – The account ID of the caller, who is the user minting the token. This
property cannot be edited.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-743

• CreationDate – The time stamp of the minting transaction. This property cannot
be edited.

• IsBurned – This property indicates whether the token is burned. This property
cannot be edited.

• Mintable – The properties related to minting. The max_mint_quantity value
defines the maximum number of tokens that can be created for the token class.

• Owner – The account ID of the current owner, who is the caller of the method.

• Symbol – The symbol of the token. This property cannot be edited.

• TokenDesc – The description of the token.

• TokenMetadata – JSON information that describes the token.

• TokenName – The name of the token. This property cannot be edited.

• TokenStandard – The standard of the token. This property cannot be edited.

• TokenType – The type of the token (fungible or non-fungible). This property cannot
be edited.

• TokenUnit – The unit of the token (whole or fractional). This property cannot be
edited.

• TokenUri – The URI of the token.

• Quantity – The quantity of the token.

Return Value Example (Whole NFT):

{
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2022-12-29T09:57:03+05:30",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 500
 },
 "OnSaleFlag": false,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "Price": 100,
 "Quantity": 1,
 "Roles": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-744

 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "token description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg"
}

Return Value Example (Fungible Token):

{
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "Currency_name": "Dollar",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 10000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Token Description",
 "TokenId": "Loyalty",
 "TokenName": "loyalty",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-745

Return Value Example (Fractional NFT):

{
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2023-06-14T09:53:53+05:30",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": false,
 "Price": 1000,
 "Quantity": 100,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Token Description",
 "TokenId": "realEstate",
 "TokenMetadata": {
 "Description": "Painting Description",
 "Image": "",
 "Painter_name": "",
 "Painting_name": "Paint"
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.realestate.example.com"
}

Update<Token Name>Token
This method updates tokens. Every token that is defined has its own update method.
You cannot update token metadata or the token URI of non-fungible tokens. For
fungible tokens, this method can be called only by a Token Admin of the chaincode.
For non-fungible tokens, this method can be called only by the token owner.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-746

Fungible Tokens:

func (t *Controller) Update<%=tokenModelName%>Token(tokenAsset
<%=tokenModelName%>) (interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.Update", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC1155Token.Update(&tokenAsset)
 }

Non-Fungible Tokens:

func (t *Controller) Update<%=tokenModelName%>Token(tokenAsset
<%=tokenModelName%>) (interface{}, error) {
 return t.Ctx.ERC1155Token.Update(&tokenAsset)
 }

Parameters:

• tokenAsset: <Token Class> – The token asset. The properties of the asset are defined
in the model file.

Returns:

• On success, the updated token asset in JSON format.

Return Value Example (Whole NFT):

{
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "CreationDate": "2022-12-29T09:57:03+05:30",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 500
 },
 "OnSaleFlag": false,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "Price": 100,
 "Quantity": 1,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-747

 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "token description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg"
}

GetTokenHistory
This method returns the history for a specified token ID. Anyone can call this method.

func (t *Controller) GetTokenHistory(tokenId string) (interface{},
error) {
 return t.Ctx.ERC1155Token.GetTokenHistory(tokenId)
 }

Parameters:

• tokenId: string – The ID of the token.

Returns:

• On success, a JSON array that contains the token history.

Return Value Example (Fungible Token):

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-08T09:54:11Z",
 "TxId":
"823sa7c7a00941c62285c86f922bc4d3f5326a20f4bf2f82daa5bc661e4682e8",
 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],

Chapter 7
Tokenization Support Using Blockchain App Builder

7-748

 "Currency_name": "Rupees",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Updated Token Description",
 "TokenId": "tokenOne",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-08T09:54:11Z",
 "TxId":
"711bb7c7a00941c62285c86f922bc3b3f5326a20f4bf2f82daa5bc661e4682e8",
 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "Dollar",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenOne",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-749

 }
]

Return Value Example (Fractional NFT):

[
 {
 "Timestamp": "2023-06-20T01:06:33Z",
 "TrxId":
"16e53db4f8107f9634b7c3a0a2a81a00f69b634f2a52902b809e544d07f272b1",
 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "CreationDate": "2023-06-20T01:02:27Z",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Owners": [
 {
 "AccountId":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "TokenShare": 10
 },
 {
 "AccountId":
"oaccount~3cddfdaa855900579d963aa6f755a4aed1f3a474a2462c1b45bd7f36df673
224",
 "TokenShare": 10
 }
],
 "Price": 2000,
 "Quantity": 20,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-750

 "TokenId": "FNFT",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.FNFT.example.com"
 }
 },
 {
 "Timestamp": "2023-06-20T01:02:27Z",
 "TrxId":
"cec80910d087682554048f911d2cf98b66382bbcf1615483fa1c96c7ea08077c",
 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "CreationDate": "2023-06-20T01:02:27Z",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Owners": [
 {
 "AccountId":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "TokenShare": 20
 }
],
 "Price": 2000,
 "Quantity": 20,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "FNFT",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-751

 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.FNFT.example.com"
 }
 }
]

Return Value Example (Whole NFT):

[
 {
 "IsDelete": "false",
 "Timestamp": "2023-06-20T01:15:56Z",
 "TxId":
"89a3df3ebbe6dca2bcfbd51fc7dca9aab818a2af746b79a92dc8155b729ab22d",
 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "CreationDate": "2023-06-20T01:15:56Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Owner":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "Price": 2000,
 "Quantity": 1,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Updated Token Description",
 "TokenId": "NFT",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-752

 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "www.NFT.example.com"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-06-20T01:15:56Z",
 "TxId":
"90d6af3ebbe6dca2bcfbd51fc7dca9aab818a2af746b79a92dc8155b729ab22d",
 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "CreationDate": "2023-06-20T01:15:56Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Owner":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "Price": 2000,
 "Quantity": 1,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "NFT",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-753

 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "www.NFT.example.com"
 }
 }
]

GetAllTokens
This method returns all of the token assets that are saved in the state database. This
method can be called only by a Token Admin of the chaincode. This method uses
Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network.

func (t *Controller) GetAllTokens() (interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.GetAllTokens",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return t.Ctx.ERC1155Token.GetAllTokens()
 }

Parameters:

• none

Returns:

• A list of all token assets in JSON format.

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-754

 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenOne",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 },
 {
 "key": "tokenTwo",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenTwo",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 },
 {
 "key": "art",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-755

],
 "BurnedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "BurnedDate": "2022-12-08T10:49:37Z",
 "CreatedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "CreationDate": "2022-12-08T10:45:10Z",
 "IsBurned": true,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "OnSaleFlag": false,
 "Owner": "",
 "Price": 0,
 "Roles": {
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "art",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "PainterName": "",
 "PaintingName": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "art.example.com",
 "TransferredBy":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc",
 "TransferredDate": "2022-12-08T10:47:04Z"
 }
 },
 {
 "key": "FNFT",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "CreationDate": "2023-06-20T01:02:27Z",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-756

 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Price": 2000,
 "Quantity": 20,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "FNFT",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.FNFT.example.com"
 }
 },
 {
 "key": "FNFT",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "CreationDate": "2023-06-20T01:02:27Z",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Price": 2000,
 "Quantity": 20,

Chapter 7
Tokenization Support Using Blockchain App Builder

7-757

 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "FNFT",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.FNFT.example.com"
 }
 }
]

GetTokenById
This method returns a token object if the token is present in the state database. For
fractional NFTs, the list of owners is also returned. This method can be called only by
a Token Admin of the chaincode or the token owner.

func (t *Controller) GetTokenById(tokenId string) (interface{}, error)
{
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.Get", "TOKEN",
map[string]string{"tokenId": tokenId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return t.Ctx.ERC1155Token.GetTokenById(tokenId)
 }

Parameters:

• tokenId string – The ID of the token to get.

Return Value Example (Whole NFT):

{
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-758

 "roles"
],
 "CreatedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "CreationDate": "2022-12-08T10:55:29Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "OnSaleFlag": false,
 "Owner":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "Price": 0,
 "Quantity": 1,
 "Roles": {
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "nftToken",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "PainterName": "",
 "PaintingName": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "nftToken.example.com"
}

Return Value Example (Fungible Token):

{
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "Currency_name": "Dollar",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 10000
 },
 "Roles": {
 "burner_role_name": "burner",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-759

 "minter_role_name": "minter"
 },
 "TokenDesc": "Token Description",
 "TokenId": "Loyalty",
 "TokenName": "loyalty",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
}

Return Value Example (Fractional NFT):

{
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2023-06-14T09:53:53+05:30",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": false,
 "Owners": [
 {
 "AccountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "TokenShare": 100
 }
],
 "Price": 1000,
 "Quantity": 100,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Token Description",
 "TokenId": "realEstate",
 "TokenMetadata": {
 "Description": "Painting Description",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-760

 "Image": "",
 "Painter_name": "",
 "Painting_name": "Paint"
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.realestate.example.com"
}

GetAllTokensByUser
This method returns all of the token assets that are owned by a specified user. This method
uses Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network. This method can be called only by a Token Admin of the
chaincode or by the account owner.

func (t *Controller) GetAllTokensByUser(orgId string, userId string)
(interface{}, error) {
 accountId, err := t.Ctx.ERC1155Account.GenerateAccountId(orgId,
userId, constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in GetAllTokensByUser.
Error: %s", err)
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.GetAllTokensByUser",
"TOKEN", map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC1155Token.GetAllTokensByUser(accountId)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the current
organization.

• userId string – The user name or email ID of the user.

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-761

 "transferable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenOne",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 },
 {
 "key": "nftToken",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "CreationDate": "2022-12-08T10:55:29Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "OnSaleFlag": false,
 "Owner":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "Price": 0,
 "Quantity": 1,
 "Roles": {
 "minter_role_name": "minter"
 },
 "TokenDesc": "",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-762

 "TokenId": "nftToken",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "PainterName": "",
 "PaintingName": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "example.com"
 }
 }
]

OwnerOf
This method returns the account ID, organization ID, and user ID of the owner of the
specified token ID. Anyone can call this method.

func (t *Controller) OwnerOf(tokenId string) (interface{}, error) {
 return t.Ctx.ERC1155Token.OwnerOf(tokenId)
 }

Parameters:

• tokenId string – The ID of the token.

Return Value Example (Whole NFT):

{
 "AccountId":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "OrgId": "appdev",
 "UserId": "idcqa"
}

Return Value Example (Fractional NFT):

[
 {
 "AccountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "OrgId": "Org1MSP",
 "UserId": "admin"
 },
 {
 "AccountId":
"oaccount~74108eca702bab6d8548e740254f2cc7955d886885251d52d065042172a59db0",
 "OrgId": "Org1MSP",
 "UserId": "user"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-763

 }
]

URI
This method returns the URI of a specified token. Anyone can call this method.

func (t *Controller) URI(tokenId string) (interface{}, error) {
 return t.Ctx.ERC1155Token.TokenURI(tokenId)
 }

Parameters:

• tokenId string – The ID of the token.

Return Value Example:

{
 "TokenUri": "example.com"
}

Name
This method returns the name of the token class. Anyone can call this method.

func (t *Controller) Name(tokenId string) (interface{}, error) {
 return t.Ctx.ERC1155Token.Name(tokenId)
 }

Parameters:

• tokenId string – The ID of the token.

Return Value Example:

{"TokenName": "artcollection"}

TotalSupply
This method returns the total number of minted tokens. Fungible tokens are specified
by the token ID. Non-fungible tokens are specified by the token name. This method
can be called only by a Token Admin of the chaincode.

func (t *Controller) TotalSupply(tokenDetail erc1155Role.TokenDetail)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.TotalSupply",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 token, err :=

Chapter 7
Tokenization Support Using Blockchain App Builder

7-764

t.Ctx.ERC1155Token.GetTokenByIdOrName(tokenDetail)
 if err != nil {
 return nil, err
 }
 return t.Ctx.ERC1155Token.TotalSupply(token)
 }

Parameters:

• tokenDetails erc1155Role.TokenDetail – The details that specify the token. For
fungible tokens, use the following format:

{"TokenId":"token1"}

For non-fungible tokens, use the following format:

{"TokenName":"artCollection"}

Return Value Example:

{
 "TotalSupply": 100
}

TotalNetSupply
This method returns the total number of minted tokens minus the number of burned tokens.
Fungible tokens are specified by the token ID. Non-fungible tokens are specified by the
token name. This method can be called only by a Token Admin of the chaincode.

func (t *Controller) TotalNetSupply(tokenDetail erc1155Role.TokenDetail)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.TotalNetSupply", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 token, err := t.Ctx.ERC1155Token.GetTokenByIdOrName(tokenDetail)
 if err != nil {
 return nil, err
 }
 return t.Ctx.ERC1155Token.TotalNetSupply(token)
 }

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-765

• tokenDetails erc1155Role.TokenDetail – The details that specify the token.
For fungible tokens, use the following format:

{"TokenId":"token1"}

For non-fungible tokens, use the following format:

{"TokenName":"artCollection"}

Return Value Example:

{
 "TotalNetSupply": 900
}

GetTokensByName
This method returns all of the token assets for a specified token name. This method
uses Berkeley DB SQL rich queries and can only be called when connected to the
remote Oracle Blockchain Platform network. This method can be called only by a
Token Admin of the chaincode.

func (t *Controller) GetTokensByName(tokenName string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.GetTokensByName",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return t.Ctx.ERC1155Token.GetTokensByName(tokenName)
 }

Parameters:

• tokenName: string – The name of the token.

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-766

 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenOne",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 },
 {
 "key": "tokenTwo",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenTwo",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-767

GetTokenDecimal
This method returns the number of decimal places for a specified token. This method
can be called only by a Token Admin of the chaincode.

func (t *Controller) GetTokenDecimal(tokenId string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.GetTokenDecimal",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 tokenDecimal, err :=
t.Ctx.ERC1155Token.GetDecimals(tokenId)
 if err != nil {
 return nil, fmt.Errorf("error in GetTokenDecimal:
%s", err.Error())
 }
 response := make(map[string]interface{})
 response["msg"] = fmt.Sprintf("Token Id: %s has %d decimal
places.", tokenId, tokenDecimal)
 return response, nil
 }

Parameters:

• tokenId string – The ID of the token.

Return Value Example:

{
 "msg": "Token Id: tokenOne has 2 decimal places."
}

Methods for Account Management

CreateAccount
This method creates an account for a specified user and associated token accounts
for fungible or non-fungible tokens. An account must be created for any user who will
have tokens at any point. The user account tracks the NFT account and the fungible
token accounts that a user has. Users must have accounts in the network to complete
token-related operations. This method can be called only by a Token Admin of the
chaincode.
A user account has a unique ID, which is formed by an SHA-256 hash of the orgId
parameter and the userId parameter.
A user can have multiple fungible token accounts with unique account IDs. Fungible
token account IDs are formed by an SHA-256 hash of the orgId parameter, the
userId parameter, the constant string ft separated by the tilde symbol (~), and a
counter number that signifies the index of the fungible account that is being created
separated by the tilde symbol (~).
A user can have only one non-fungible token account. Non-fungible token account IDs
are unique and are formed by an SHA-256 hash of the orgId parameter, the userId

Chapter 7
Tokenization Support Using Blockchain App Builder

7-768

parameter, and the constant string nft separated by the tilde symbol (~). All non-fungible
tokens that a user owns, whether whole or fractional, are linked to this account.
User account IDs start with with ouaccount~. Token account IDs start with oaccount~.

func (t *Controller) CreateAccount(orgId string, userId string, ftAccount
bool, nftAccount bool) (interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.CreateAccount", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC1155Account.CreateAccount(orgId, userId,
ftAccount, nftAccount)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the current
organization.

• userId string – The user name or email ID of the user.

• ftAccount bool – If true, a fungible token account is created and associated with the
user account.

• nftAccount bool – If true, a non-fungible token account is created and associated with
the user account.

Returns:

• On success, a JSON object of the account that was created.

Return Value Example:

{
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~cf20877546f52687f387e7c91d88b9722c97e1a456cc0484f40c747f7804feae",
 "UserId": "user1",
 "OrgId": "appdev",
 "TotalAccounts": 2,
 "TotalFtAccounts": 1,
 "AssociatedFtAccounts": [
 {
 "AccountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc504b",
 "TokenId": ""
 }
],
 "AssociatedNftAccount":
"oaccount~73c3e835dac6d0a56ca9d8def08269f83cefd59b9d297fe2cdc5a9083828fa58"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-769

CreateUserAccount
This method creates an account for a specified user. An account must be created for
any user who will have tokens at any point. The user account tracks the NFT account
and the fungible token accounts that a user has. Users must have accounts in the
network to complete token-related operations.
An account ID is an SHA-256 hash of the orgId parameter and the userId parameter.
This method can be called only by a Token Admin of the chaincode.

func (t *Controller) CreateUserAccount(orgId string, userId string)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.CreateUserAccount"
, "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return t.Ctx.ERC1155Account.CreateUserAccount(orgId,
userId)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

• userId string – The user name or email ID of the user.

Returns:

• On success, a JSON object of the user account that was created.

Return Value Example:

{
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc",
 "UserId": "idcqa",
 "OrgId": "appdev",
 "TotalAccounts": 0,
 "TotalFtAccounts": 0,
 "AssociatedFtAccounts": [],
 "AssociatedNftAccount": ""
}

CreateTokenAccount
This method creates a fungible or non-fungible token account to associate with a user
account.
A user can have multiple fungible token accounts with unique account IDs. Fungible
token account IDs are formed by an SHA-256 hash of the orgId parameter, the
userId parameter, the constant string ft separated by the tilde symbol (~), and a

Chapter 7
Tokenization Support Using Blockchain App Builder

7-770

counter number that signifies the index of the fungible account that is being created
separated by the tilde symbol (~).
A user can have only one non-fungible token account. Non-fungible token account IDs are
unique and are formed by an SHA-256 hash of the orgId parameter, the userId parameter,
and the constant string nft separated by the tilde symbol (~). All non-fungible tokens that a
user owns, whether whole or fractional, are linked to this account.
This method can be called only by a Token Admin of the chaincode.

func (t *Controller) CreateTokenAccount(orgId string, userId string,
tokenType erc1155Token.TokenType) (interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.CreateTokenAccount",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 typeOfToken, err := tokenType.GetTokenType()
 if err != nil {
 return nil, err
 }
 return t.Ctx.ERC1155Account.CreateTokenAccount(orgId, userId,
typeOfToken)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the current
organization.

• userId string – The user name or email ID of the user.

• tokenType erc1155Token.TokenType – The type of token account to create. The only
supported token types are nonfungible and fungible.

Returns:

• On success, a JSON object of the token account that was created.

Return Value Example:

{
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec2937cc",
 "UserId": "idcqa",
 "OrgId": "appdev",
 "TotalAccounts": 1,
 "TotalFtAccounts": 1,
 "AssociatedFtAccounts": [
 {
 "AccountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",
 "TokenId": ""

Chapter 7
Tokenization Support Using Blockchain App Builder

7-771

 }
],
 "AssociatedNftAccount": ""
}

AssociateFungibleTokenAccount
This method associates a user's fungible token account to a particular fungible token.
This method can be called only by the Token Admin of the chaincode.

func (t *Controller) AssociateFungibleTokenToAccount(orgId string,
userId string, tokenId string) (interface{}, error) {
 accountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in generating
accountId. Error: %s", err)
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.AssociateFungibleT
okenToAccount", "TOKEN", map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return
t.Ctx.ERC1155Account.AssociateTokenToToken(accountId, tokenId)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

• userId string – The user name or email ID of the user.

• tokenId string – The ID of the token.

Returns:

• On success, a JSON object of the user account, which shows that the fungible
token was associated to the token account. For example, in the following
example, the first object in the associatedFtAccounts array shows that the
fungible token account ID and the token ID are associated.

Return Value Example:

{
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc",
 "UserId": "idcqa",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-772

 "OrgId": "appdev",
 "TotalAccounts": 1,
 "TotalFtAccounts": 1,
 "AssociatedFtAccounts": [
 {
 "AccountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",
 "TokenId": "tokenOne"
 }
],
 "AssociatedNftAccount": ""
}

GetAccountHistory
This method returns history for a specified token account. This is an asynchronous method.
This method can be called only by the Token Admin of the chaincode or by the account
owner.

func (t *Controller) GetAccountHistory(orgId string, userId string,
tokenId ...string) (interface{}, error) {
 userAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId, constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountHistory. Error:
%s", err)
 }
 _, err =
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.History", "TOKEN",
map[string]string{"accountId": userAccountId})
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountHistory. Error:
%s", err)
 }
 tokenAccount, err := t.Ctx.ERC1155Account.Get(userAccountId,
tokenId...)
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountHistory. Error:
%s", err)
 }
 tokenAccountId, err := util.GetAccountProperty(tokenAccount,
constants.AccountId)
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountHistory. Error:
%s", err)
 }
 return t.Ctx.ERC1155Account.GetAccountHistory(tokenAccountId)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the current
organization.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-773

• userId string – The user name or email ID of the user.

• tokenId ...string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Returns:

• On success, an array of JSON objects that describes the account history.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2023-06-06T11:03:48Z",
 "TxId":
"c5180f3be3d9130f25a4b4e866f38a4283117dcbfbffb4f55e2c5b03dba0dd29",
 "Value": {
 "AccountCategory": "",
 "AccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "AssetType": "oaccount",
 "Balance": 100,
 "BapAccountVersion": 1
 "OrgId": "appdev",
 "TokenId": "loy1",
 "TokenName": "loyalty",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-06-06T11:02:39Z",
 "TxId":
"6f81b0c94b451d375a3892446aefbdf78d9fd1ac43699daa89f0dff10db5fd22",
 "Value": {
 "AccountCategory": "",
 "AccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "AssetType": "oaccount",
 "Balance": 0,
 "BapAccountVersion": 0
 "OrgId": "appdev",
 "TokenId": "loy1",
 "TokenName": "loyalty",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 },
 {
 "IsDelete": "false",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-774

 "Timestamp": "2023-06-05T16:28:46Z",
 "TxId":
"8185af648546e909488e72149be497b210f74f95ada252c42da9c35cb9d98691",
 "Value": {
 "AccountCategory": "",
 "AccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
 "AssetType": "oaccount",
 "Balance": 0,
 "BapAccountVersion": 0
 "OrgId": "appdev",
 "TokenId": "",
 "TokenName": "",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 }
]

GetAccount
This method returns token account details for a specified user. This method can be called
only by a Token Admin of the chaincode or the Account Owner of the account.

func (t *Controller) GetAccount(orgId string, userId string,
tokenId ...string) (interface{}, error) {
 accountId, err := t.Ctx.ERC1155Account.GenerateAccountId(orgId,
userId, constants.UserAccount)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.GetAccount", "TOKEN",
map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 return t.Ctx.ERC1155Account.GetAccountWithStatus(accountId,
tokenId...)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the current
organization.

• userId string – The user name or email ID of the user.

• tokenId ...string – For a non-fungible token account, an empty string. For a fungible
token account, the token ID.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-775

• On success, a JSON object that includes token account details. The
BapAccountVersion and AccountCategory parameters are defined in the account
object for internal use.

Return Value Example (Non-Fungible Token Account):

{
 "AccountId":
"oaccount~cc301bee057f14236a97d434909ec1084970921b008f6baab09c2a0f5f419
a9a",
 "AssetType": "oaccount",
 "BapAccountVersion": 1,
 "NoOfNfts": 1,
 "OrgId": "appdev",
 "Status": "active",
 "TokenType": "nonfungible",
 "UserId": "idcqa"
}

Return Value Example (Fungible Token Account):

{
 "AccountCategory": "",
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "AssetType": "oaccount",
 "Balance": 0,
 "BapAccountVersion": 0,
 "OrgId": "appdev",
 "Status": "active",
 "TokenId": "t1",
 "TokenName": "loyalty",
 "TokenType": "fungible",
 "UserId": "idcqa"
}

GetAllAccounts
This method returns details of all user accounts. This method can be called only by a
Token Admin of the chaincode.

func (t *Controller) GetAllAccounts() (interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.GetAllAccounts",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return t.Ctx.ERC1155Account.GetAllAccounts()
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-776

Parameters:

• none

Returns:

• On success, a JSON array of all accounts.

Return Value Example:

[
 {
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "UserId": "idcqa",
 "OrgId": "appdev",
 "TotalAccounts": 3,
 "TotalFtAccounts": 2,
 "AssociatedFtAccounts": [
 {
 "AccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
 "TokenId": "loy1"
 },
 {
 "AccountId":
"oaccount~58c5a6b09a41befca2a9ea2550439838c4dcf4d8a2a4f7c98e9319cf8479bfc4",
 "TokenId": ""
 }
],
 "AssociatedNftAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371"
 },
 {
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~9501bb774c156eb8354dfe489250ea91f757523d70f08ee494bda98bb352003b",
 "UserId": "user1_minter",
 "OrgId": "appdev",
 "TotalAccounts": 2,
 "TotalFtAccounts": 1,
 "AssociatedFtAccounts": [
 {
 "AccountId":
"oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f628237974c",
 "TokenId": "loy1"
 }
],
 "AssociatedNftAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446"
 },
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-777

GetAccountDetailsByUser
This method returns an account summary for a specified user and details of fungible
and non-fungible tokens that are associated with the user. This method can be called
only by a Token Admin of the chaincode or the Account Owner of the account.

func (t *Controller) GetAccountDetailsByUser(orgId string, userId
string) (interface{}, error) {
 accountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId,
constants.UserAccount)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.GetAccountDetailsB
yUser", "TOKEN", map[string]string{"accountId": accountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return t.Ctx.ERC1155Account.GetAccountDetailsByUser(orgId,
userId)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

• userId string – The user name or email ID of the user.

Returns:

• On success, a JSON account object that includes and account summary for the
specified user and details of fungible and non-fungible tokens that are associated
with the user. For fractional non-fungible tokens, the TokenShare property in the
AssociatedNFTs section shows the share that the user owns.

Return Value Example:

{
 "AssociatedFTAccounts": [
 {
 "AccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "Balance": 90,
 "TokenId": "FT"
 },
],
 "AssociatedNFTAccount": {
 "AccountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097

Chapter 7
Tokenization Support Using Blockchain App Builder

7-778

371",
 "AssociatedNFTs": [
 {
 "NFTTokenId": "FNFT",
 "TokenShare": 230
 },
 {
 "NFTTokenId": "NFT"
 },
 {
 "NFTTokenId": "NFT2"
 }
]
 },
 "UserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38"
}

GetUserByAccountId
This method returns the user details of a specified account ID. This method can be called by
any user.

func (t *Controller) GetUserByAccountId(accountId string) (interface{},
error) {
 return t.Ctx.ERC1155Account.GetUserByAccountById(accountId)
 }

Parameters:

• accountId string – The ID of the account.

Returns:

• On success, a JSON object of the user details (orgId and userId).

Return Value Example:

{
 "OrgId": "appdev",
 "UserId": "user2"
}

Methods for Role Management

AddRole
This method adds a role to a specified user and token. This method can be called only by a
Token Admin of the chaincode. Fungible tokens are specified by the token ID. Non-fungible
tokens are specified by the token name. The specified user must have a token account that

Chapter 7
Tokenization Support Using Blockchain App Builder

7-779

is associated with the fungible token, or a non-fungible token account for NFT roles.
The specified role must exist in the specification file for the token.

func (t *Controller) AddRole(orgId string, userId string, role string,
tokenDetail erc1155Role.TokenDetail) (interface{}, error) {
 userAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId,
constants.UserAccount)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.AddRoleMember",
"TOKEN", map[string]string{"accountId": userAccountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 token, err :=
t.Ctx.ERC1155Token.GetTokenByIdOrName(tokenDetail)
 if err != nil {
 return nil, err
 }
 return t.Ctx.ERC1155Token.AddRoleMember(role,
userAccountId, token)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

• userId string – The user name or email ID of the user.

• role: string – The name of the role to add to the specified user.

• tokenDetails erc1155Role.TokenDetail – The details that specify the token.
For fungible tokens, use the following format:

{"TokenId":"token1"}

For non-fungible tokens, use the following format:

{"TokenName":"artCollection"}

Returns:

• On success, a message with account details.

Return Value Example:

{
 "msg": "Successfully added role minter to

Chapter 7
Tokenization Support Using Blockchain App Builder

7-780

oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a
(orgId : appdev, userId : idcqa)"
}

IsInRole
This method returns a Boolean value to indicate if a user has a specified role. Fungible
tokens are specified by the token ID. Non-fungible tokens are specified by the token name.
This method can be called only by the Token Admin of the chaincode or the Account Owner
of the account. The specified user must have a token account that is associated with the
fungible token, or a non-fungible token account for NFT roles. The specified role must exist
in the specification file for the token.

func (t *Controller) IsInRole(orgId string, userId string, role string,
tokenDetail erc1155Role.TokenDetail) (interface{}, error) {
 userAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId, constants.UserAccount)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.IsInRole", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 token, err := t.Ctx.ERC1155Token.GetTokenByIdOrName(tokenDetail)
 if err != nil {
 return nil, err
 }
 var result bool
 result, err = t.Ctx.ERC1155Token.IsInRole(role, userAccountId,
token)
 if err != nil {
 return nil, fmt.Errorf("error in IsInRole %s", err.Error())
 }
 response := make(map[string]interface{})
 response["result"] = result
 return response, nil
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the current
organization.

• userId string – The user name or email ID of the user.

• role: string – The name of the role to search for.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-781

• tokenDetails erc1155Role.TokenDetail – The details that specify the token.
For fungible tokens, use the following format:

{"TokenId":"token1"}

For non-fungible tokens, use the following format:

{"TokenName":"artCollection"}

Return Value Example:

{
 "result": true
}

RemoveRole
This method removes a role from a specified user and token. Fungible tokens are
specified by the token ID. Non-fungible tokens are specified by the token name. This
method can be called only by the Token Admin of the chaincode. The specified user
must have a token account that is associated with the fungible token, or a non-
fungible token account for NFT roles. The specified role must exist in the specification
file for the token.

func (t *Controller) RemoveRole(orgId string, userId string, role
string, tokenDetail erc1155Role.TokenDetail) (interface{}, error) {
 userAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId,
constants.UserAccount)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.RemoveRoleMember",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 token, err :=
t.Ctx.ERC1155Token.GetTokenByIdOrName(tokenDetail)
 if err != nil {
 return nil, err
 }
 return t.Ctx.ERC1155Token.RemoveRoleMember(role,
userAccountId, token)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-782

• userId string – The user name or email ID of the user.

• role: string – The name of the role to remove from the specified user.

• tokenDetails erc1155Role.TokenDetail – The details that specify the token. For
fungible tokens, use the following format:

{"TokenId":"token1"}

For non-fungible tokens, use the following format:

{"TokenName":"artCollection"}

Return Value Example:

{
 "msg": "Successfully removed role 'minter' from Account Id:
oaccount~ec7e4de2f81e3ea071710e07b6ff7d9346e84ef665ca4650885dbe8c3e2bd4c0
(Org-Id: appdev, User-Id: idcqa)"
}

GetAccountsByRole
This method returns a list of all account IDs for a specified role and token. Fungible tokens
are specified by the token ID. Non-fungible tokens are specified by the token name. This
method can be called only by the Token Admin of the chaincode.

func (t *Controller) GetAccountsByRole(role string, tokenDetail
erc1155Role.TokenDetail) (interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Role.GetAccountsByRole",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 token, err := t.Ctx.ERC1155Token.GetTokenByIdOrName(tokenDetail)
 if err != nil {
 return nil, err
 }
 return t.Ctx.ERC1155Role.GetAccountsByRole(role, token)
 }

Parameters:

• role: string – The name of the role to search for.

• tokenDetails erc1155Role.TokenDetail – The details that specify the token. For
fungible tokens, use the following format:

{"TokenId":"token1"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-783

For non-fungible tokens, use the following format:

{"TokenName":"artCollection"}

Return Value Example:

{
 "accounts": [

"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",

"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc5
04b"
]
}

GetUsersByRole
This method returns a list of all users for a specified role and token. Fungible tokens
are specified by the token ID. Non-fungible tokens are specified by the token name.
This method can be called only by the Token Admin of the chaincode.

func (t *Controller) GetUsersByRole(role string, tokenDetail
erc1155Role.TokenDetail) (interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Role.GetUsersByRole",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 token, err :=
t.Ctx.ERC1155Token.GetTokenByIdOrName(tokenDetail)
 if err != nil {
 return nil, err
 }
 return t.Ctx.ERC1155Role.GetUsersByRole(role, token)
 }

Parameters:

• role: string – The name of the role to search for.

• tokenDetails erc1155Role.TokenDetail – The details that specify the token.
For fungible tokens, use the following format:

{"TokenId":"token1"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-784

For non-fungible tokens, use the following format:

{"TokenName":"artCollection"}

Return Value Example:

{
 "Users": [
 {
 "AccountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",
 "OrgId": "appdev",
 "UserId": "idcqa"
 },
 {
 "AccountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc504b",
 "OrgId": "appdev",
 "UserId": "user1"
 }
]
}

Methods for Transaction History Management

GetAccountTransactionHistory
This method returns account transaction history. This method can be called only by a Token
Admin of the chaincode or by the account owner. For non-fungible tokens, this method can
only be called when connected to the remote Oracle Blockchain Platform network.

func (t *Controller) GetAccountTransactionHistory(orgId string, userId
string, tokenId ...string) (interface{}, error) {
 userAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId, constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in
GetAccountTransactionHistory. Error: %s", err)
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.GetAccountTransactionHis
tory", "TOKEN", map[string]string{"accountId": userAccountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 tokenAccount, err := t.Ctx.ERC1155Account.Get(userAccountId,
tokenId...)
 if err != nil {
 return nil, fmt.Errorf("error in
GetAccountTransactionHistory. Error: %s", err)
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-785

 tokenAccountId, err :=
util.GetAccountProperty(tokenAccount, constants.AccountId)
 if err != nil {
 return nil, fmt.Errorf("error in
GetAccountTransactionHistory. Error: %s", err)
 }
 return
t.Ctx.ERC1155Account.GetAccountTransactionHistory(tokenAccountId)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

• userId string – The user name or email ID of the user.

• tokenId ...string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Return Value Example:

[
 {
 "Balance": 90,
 "Timestamp": "2023-06-06T11:11:09Z",
 "TokenId": "FNFT",
 "TransactedAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903
446",
 "TransactedAmount": 10,
 "TransactionId":
"otransaction~0f4d96fbf8fed88ea8a3133428977721091467c701848d595ebc3fffa
88b3657~7c88c736df38d5622512f1e8dcdd50710eb47c953f1ecb24ac44790a9e2f475
b",
 "TransactionType": "DEBIT",
 "TriggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38"
 },
 {
 "Timestamp": "2023-06-06T11:11:09Z",
 "TokenId": "NFT",
 "TransactedAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903
446",
 "TransactionId":
"otransaction~0f4d96fbf8fed88ea8a3133428977721091467c701848d595ebc3fffa
88b3657~178e3730bc5bee50d02f1464a4eebf733a051905f651e5789039adb4a3edc11
4",
 "TransactionType": "DEBIT",
 "TriggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-786

 },
 {
 "Timestamp": "2023-06-06T11:06:54Z",
 "TokenId": "NFT",
 "TransactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371",
 "TransactionId":
"otransaction~6a13667ea3f6edc4c854e85b127526eccb58783f653c348b42a3869f0f29a4f
b~a7cefb22ff39ee7e36967be71de27da6798548c872061a62dabc56d88d50b930",
 "TransactionType": "MINT",
 "TriggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38"
 },
 {
 "Balance": 100,
 "Timestamp": "2023-06-05T16:34:33Z",
 "TokenId": "FNFT",
 "TransactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371",
 "TransactedAmount": 100,
 "TransactionId":
"otransaction~2bc15de1766d582d821bd8d61756bca02837dc683c0aa61f69657ccd1d95e33
5~e4eb15d9354f694230df8835ade012100d82aa43672896a2c7125a86e3048f9f",
 "TransactionType": "MINT",
 "TriggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38"
 }
]

GetTransactionById
This method returns the transaction details for a specified transaction ID. Anyone can call
this method.

func (t *Controller) GetTransactionById(transactionId string) (interface{},
error) {
 return t.Ctx.ERC1155Transaction.GetTransactionById(transactionId)
 }

Parameters:

• transactionId: string – The ID of the transaction.

Return Value Example:

{
 "history": [
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-08T10:45:56Z",
 "TxId":
"2da02a53aa1032602df6c68c5628a4ab8b22ba107c0201520ce495948901aa98",
 "Value": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-787

 "Amount": 5,
 "AssetType": "otransaction",
 "FromAccountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc5
04b",
 "Timestamp": "2022-12-08T10:45:56Z",
 "ToAccountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",
 "TokenId": "tokenOne",
 "TransactionId":
"otransaction~2da02a53aa1032602df6c68c5628a4ab8b22ba107c0201520ce495948
901aa98~9c3ce5f21abd98ca018c196086d73a812f2f49dba323f1de4f6867eecfeec8f
f",
 "TransactionType": "TRANSFER",
 "TriggeredByUserAccountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc"
 }
 }
],
 "transactionId":
"otransaction~2da02a53aa1032602df6c68c5628a4ab8b22ba107c0201520ce495948
901aa98~9c3ce5f21abd98ca018c196086d73a812f2f49dba323f1de4f6867eecfeec8f
f"
}

DeleteHistoricalTransactions
This method deletes transactions before a specified time stamp from the state
database. This method can be called only by a Token Admin of the chaincode.

func (t *Controller) DeleteHistoricalTransactions(timestamp string)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Transaction.DeleteHistoric
alTransactions", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 return
t.Ctx.ERC1155Transaction.DeleteHistoricalTransactions(timestamp)
 }

Parameters:

• timestamp: string – All transactions before this time stamp will be deleted.

Return Value Example:

{
 "Transactions": [

Chapter 7
Tokenization Support Using Blockchain App Builder

7-788

"otransaction~750f68538451847f57948f7d5261dcb81570cd9e429f928a4cb7bfa76392ecf
7"
],
 "msg": "Successfuly deleted transaction older than
date:2022-04-06T08:17:53Z"
}

Methods for Token Behavior Management - Mintable Behavior

MintBatch
This method creates (mints) multiple tokens in a batch operation. This method creates only
fungible tokens or fractional non-fungible tokens.
For fungible tokens, if the minter role is defined in the specification file, then any user with
the minter role can call this method. If not, any user can use this method to mint tokens. You
cannot mint more than the max_mint_quantity property of the token, if that property was
specified when the token was created or updated.
For non-fungible tokens, if the minter role is defined in the specification file, then any user
with the minter role can call this method. If not, any user can use this method to mint tokens.
Additionally, the caller must also be the creator of the token. There is no upper limit to the
quantity of fractional non-fungible tokens that can be minted.
You cannot use this method to mint a whole non-fungible token.

func (t *Controller) MintBatch(orgId string, userId string, tokenIds
[]string, quantity []float64) (interface{}, error) {
 accountId, err := t.Ctx.ERC1155Account.GenerateAccountId(orgId,
userId, constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in generating the accountId.
Error: %s", err)
 }
 var tokens []interface{}
 for _, tokenId := range tokenIds {
 tokenAssetValue, err := t.getTokenObject(tokenId)
 if err != nil {
 return nil, err
 }
 tokens = append(tokens, tokenAssetValue.Interface())
 }
 return t.Ctx.ERC1155Token.MintBatch(accountId, tokens, quantity)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the current
organization.

• userId string – The user name or email ID of the user.

• tokenIds []string – The list of token IDs to mint tokens for.

• quantity []float64 – The list of quantities of tokens to mint, corresponding to the
token ID array.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-789

• On success, a JSON object that includes details on the minted tokens.

Return Value Example:

{
 "details": [
 {
 "msg": "Successfully minted 100 tokens of fractional
tokenId: plot55 to Org-Id: appdev, User-Id: idcqa"
 },
 {
 "msg": "Successfully minted 100 tokens of tokenId:
'loyalty' to Token-Account-Id
'oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e'"
 }
],
 "msg": "Successfully minted batch of tokens for User-Account-Id
'ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38' (Org-Id: 'appdev', User-Id: 'idcqa')"
}

Methods for Token Behavior Management - Transferable Behavior

BatchTransferFrom
This method completes a batch operation that transfers tokens specified in a list of
token IDs from one user to another user.
For NFTs, because the method transfers ownership of the NFT, the sender of the NFT
must own the token.
For fractional NFTs, if a user (including the creator of the token) transfers all of the
shares that they own, then they lose ownership of the token. If any share of a token is
transferred to a user, that user automatically becomes one of the owners of the
fractional NFT.
This method does not validate that the caller of the method is the specified sender.
This method can be called by any user.

func (t *Controller) BatchTransferFrom(fromOrgId string, fromUserId
string, toOrgId string, toUserId string, tokenIds []string, quantity
[]float64) (interface{}, error) {
 fromAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(fromOrgId, fromUserId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in BatachTransferFrom.
Error: %s", err)
 }
 toAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(toOrgId, toUserId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in BatachTransferFrom.
Error: %s", err)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-790

 }
 var tokens []interface{}
 for _, tokenId := range tokenIds {
 tokenAssetValue, err := t.getTokenObject(tokenId)
 if err != nil {
 return nil, err
 }
 tokens = append(tokens, tokenAssetValue.Interface())
 }
 return t.Ctx.ERC1155Token.BatchTransferFrom(fromAccountId,
toAccountId, tokens, quantity)
 }

Parameters:

• fromOrgId string – The membership service provider (MSP) ID of the sender and
token owner in the current organization.

• fromUserId string – The user name or email ID of the sender and token owner.

• toOrgId string – The membership service provider (MSP) ID of the receiver in the
current organization.

• toUserId string – The user name or email ID of the receiver.

• tokenIds string[] – A list of token IDs for the tokens to transfer.

• quantity float64[] – The list of quantities of tokens to transfer, corresponding to the
token ID array.

Returns:

• On success, a message with details for each token transfer.

Return Value Example:

[
 {
 "msg": "Successfully transferred NFT token: 'FNFT' of '10' quantity
from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred 10 FT token: 'FT' from Account-Id:
oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f628237974c
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred NFT token: 'NFT' from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-791

oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f59034
46 (Org-Id: appdev, User-Id: user1_minter)"
 }
]

SafeBatchTransferFrom
This method completes a batch operation that transfers tokens specified in a list of
token IDs from one user to another user.
For NFTs, because the method transfers ownership of the NFT, the sender of the NFT
must own the token.
For fractional NFTs, if a user (including the creator of the token) transfers all of the
shares that they own, then they lose ownership of the token. If any share of a token is
transferred to a user, that user automatically becomes one of the owners of the
fractional NFT.
The caller of the method must be the specified sender. This method can be called by
any user.

func (t *Controller) SafeBatchTransferFrom(fromOrgId string,
fromUserId string, toOrgId string, toUserId string, tokenIds []string,
quantity []float64) (interface{}, error) {
 fromAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(fromOrgId, fromUserId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in BatachTransferFrom.
Error: %s", err)
 }
 toAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(toOrgId, toUserId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in BatachTransferFrom.
Error: %s", err)
 }
 var tokens []interface{}
 for _, tokenId := range tokenIds {
 tokenAssetValue, err := t.getTokenObject(tokenId)
 if err != nil {
 return nil, err
 }
 tokens = append(tokens, tokenAssetValue.Interface())
 }
 return
t.Ctx.ERC1155Token.SafeBatchTransferFrom(fromAccountId, toAccountId,
tokens, quantity)
 }

Parameters:

• fromOrgId string – The membership service provider (MSP) ID of the sender
and token owner in the current organization.

• fromUserId string – The user name or email ID of the sender and token owner.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-792

• toOrgId string – The membership service provider (MSP) ID of the receiver in the
current organization.

• toUserId string – The user name or email ID of the receiver.

• tokenIds string[] – A list of token IDs for the tokens to transfer.

• quantity float64[] – The list of quantities of tokens to transfer, corresponding to the
token ID array.

Returns:

• On success, a message with details for each token transfer.

Return Value Example:

[
 {
 "msg": "Successfully transferred NFT token: 'FNFT' of '10' quantity
from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred 10 FT token: 'FT' from Account-Id:
oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f628237974c
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred NFT token: 'NFT' from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 }
]

BalanceOfBatch
This method completes a batch operation that gets the balance of token accounts. The
account details are specified in three separate lists of organization IDs, user IDs, and token
IDs. This method can be called only by a Token Admin of the chaincode or by account
owners. Account owners can see balance details only for accounts that they own.

func (t *Controller) BalanceOfBatch(orgIds []string, userIds []string,
tokenIds []string) (interface{}, error) {
 callerAccountCheck := false
 _, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.BalanceOfBatch",
"TOKEN")
 if err != nil {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-793

 callerAccountCheck = true
 }
 accountIds, err :=
t.Ctx.ERC1155Account.GenerateAccountIds(orgIds, userIds,
callerAccountCheck)
 if err != nil {
 return nil, fmt.Errorf("error in BalanceOfBatch.
Error: %s", err)
 }
 var tokens []interface{}
 for _, tokenId := range tokenIds {
 tokenAssetValue, err := t.getTokenObject(tokenId)
 if err != nil {
 tokens = append(tokens, map[string]interface{}
{"TokenId": tokenId})
 } else {
 tokens = append(tokens,
tokenAssetValue.Interface())
 }
 }
 return t.Ctx.ERC1155Account.BalanceOfBatch(accountIds,
tokens)
 }

Parameters:

• orgIds []string – A list of the membership service provider (MSP) IDs in the
current organization.

• userIds []string – A list of the user name or email IDs.

• tokenIds []string – A list of the token IDs.

Return Value Example:
In the following example, the token ID FNFT represents a fractional non-fungible token
and the token ID FT represents a fungible token.

[
 {
 "OrgId": "appdev",
 "UserId": "idcqa",
 "UserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38",
 "TokenAccountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097
371",
 "TokenId": "FNFT",
 "Balance": 100
 },
 {
 "OrgId": "appdev",
 "UserId": "idcqa",
 "UserAccountId":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-794

"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "TokenAccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
 "TokenId": "FT",
 "Balance": 50
 },
 {
 "OrgId": "appdev",
 "UserId": "user1_minter",
 "UserAccountId":
"ouaccount~9501bb774c156eb8354dfe489250ea91f757523d70f08ee494bda98bb352003b",
 "TokenAccountId":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446",
 "TokenId": "FNFT",
 "Balance": 10
 }
]

ExchangeToken
This method exchanges tokens between specified accounts. This method only supports
exchanging between an NFT and a fungible token or a fungible token and an NFT. This
method can be called only by the account owner.

func (t *Controller) ExchangeToken(fromTokenId string, fromOrgId string,
fromUserId string, fromTokenQuantity float64, toTokenId string, toOrgId
string, toUserId string, toTokenQuantity float64) (interface{}, error) {
 fromUserAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(fromOrgId, fromUserId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in BatachTransferFrom.
Error: %s", err)
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Account.ExchangeToken",
"TOKEN", map[string]string{"accountId": fromUserAccountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 toUserAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(toOrgId, toUserId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in BatachTransferFrom.
Error: %s", err)
 }
 return t.Ctx.ERC1155Token.ExchangeToken(fromTokenId,
fromUserAccountId, fromTokenQuantity, toTokenId, toUserAccountId,
toTokenQuantity)
 }

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-795

• fromTokenId string – The ID of the token that the sender owns.

• fromOrgId string – The membership service provider (MSP) ID of the sender in
the current organization.

• fromUserId string – The user name or email ID of the sender.

• fromTokenQuantity float64 – The quantity of tokens from the sender to
exchange with the receiver.

• toTokenId string – The ID of the token that the receiver owns.

• toOrgId string – The membership service provider (MSP) ID of the receiver in
the current organization.

• toUserId string – The user name or email ID of the receiver.

• toTokenQuantity float64 – The quantity of tokens from the receiver to
exchange with the sender.

Returns:

• On success, a message with token exchange details.

Return Value Example:

{
 "msg": "Succesfully exchanged 10 tokens of type 'nonfungible' with
tokenId: [r1] from Account
'oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097
371' (OrgId: appdev, UserId: idcqa) to 10 tokens of type 'fungible'
with tokenId: [loy1] from Account
'oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f6282379
74c' (OrgId: 'appdev', UserId: 'user1_minter')"
}

Methods for Token Behavior Management - Burnable Behavior

BurnBatch
This method deactivates, or burns, the specified fungible and non-fungible tokens.
Any user can call this method.

func (t *Controller) BurnBatch(orgId string, userId string, tokenIds
[]string, quantity []float64) (interface{}, error) {
 accountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in BatachTransferFrom.
Error: %s", err)
 }
 var tokens []interface{}
 for _, tokenId := range tokenIds {
 tokenAssetValue, err := t.getTokenObject(tokenId)
 if err != nil {
 return nil, err

Chapter 7
Tokenization Support Using Blockchain App Builder

7-796

 }
 tokens = append(tokens, tokenAssetValue.Interface())
 }
 return t.Ctx.ERC1155Token.Burn(accountId, tokens, quantity)
 }

Parameters:

• orgId string – The membership service provider (MSP) ID in the current organization.

• userId string – The user name or email ID.

• tokenIds []string – The list of the token IDs to burn

• quantity []float64 – The list of quantities of tokens to burn, corresponding to the
token ID array..

Returns:

• On success, a message with details about the burn operations.

Return Value Example:

[
 {
 "msg": "Successfully burned NFT token: 'art' from Account-Id:
oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6
(Org-Id: appdev, User-Id: idcqa)"
 },
 {
 "msg": "Successfully burned 2 tokens of tokenId: FT from Account-ID
oaccount~9a940587fd322ccc8400233244cd3b13f3aa2a52e418e4c71fb819a2217bc49e
(Org-Id: AutoF1377358917, User-Id: idcqa)"
 },
 {
 "msg": "Successfully burned 2 token share of tokenId: FNFT from
Account-ID
oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a
(Org-Id: AutoF1377358917, User-Id: idcqa)"
 }
]

BurnNFT
This method deactivates, or burns, the specified non-fungible token, and returns a token
object and token history. Any user with the burner role can call this method.

func (t *Controller) BurnNFT(orgId string, userId string, tokenId string)
(interface{}, error) {
 tokenAsset, err := t.Ctx.ERC1155Token.Get(tokenId)
 if err != nil {
 return nil, err
 }
 token := tokenAsset.(map[string]interface{})
 if token[constants.TokenType] != constants.NonFungible {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-797

 return nil, fmt.Errorf("only nonfungible tokens are
allowed")
 }
 if token[constants.IsBurned] == true {
 return nil, fmt.Errorf("token with tokenId %s is
already burned", tokenId)
 }
 tokenQuantity := float64(1)
 tokenUnit := token[constants.TokenUnit]
 tokenHistory, err := t.Ctx.ERC1155Token.History(tokenId)
 if err != nil {
 return nil, err
 }
 if tokenUnit == constants.Fractional {
 owners, err := t.Ctx.ERC1155Token.OwnerOf(tokenId)
 if err != nil {
 return nil, err
 }
 ownersList := owners.([]map[string]interface{})
 if len(ownersList) != 1 {
 return nil, fmt.Errorf("NFT has multiple
owners, to completely burn this NFT it should have only one owner")
 }
 tokenQuantity = token[constants.Quantity].(float64)
 }
 token[constants.TokenId], err =
strconv.Atoi(token[constants.TokenId].(string))
 if err != nil {
 return nil, fmt.Errorf("tokenId is expected to be
integer but found %s", tokenId)
 }
 tokenHistoryBytes, err := json.Marshal(tokenHistory)
 if err != nil {
 return nil, err
 }
 var tokenHistoryAsRawJson json.RawMessage
 err = json.Unmarshal(tokenHistoryBytes,
&tokenHistoryAsRawJson)
 if err != nil {
 return nil, err
 }
 token[constants.TokenHistory] =
string(tokenHistoryAsRawJson)
 tokenIds := []string{tokenId}
 tokenQuantities := []float64{tokenQuantity}
 token[constants.IsBurned] = true
 _, err = t.BurnBatch(orgId, userId, tokenIds,
tokenQuantities)
 if err != nil {
 return nil, err
 }
 return token, nil
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-798

Parameters:

• orgId: string – The membership service provider (MSP) ID in the current organization.

• userId: string – The user name or email ID.

• tokenId: string – The ID of the non-fungible token to burn

Returns:

• On success, a token object in JSON format that includes token history information.

Return Value Example:

{
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "CreationDate": "2023-08-22T13:14:46+05:30",
 "IsBurned": true,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": false,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "Price": 120,
 "Quantity": 1,
 "Roles": {
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenHistory":
"[{\"IsDelete\":\"false\",\"Timestamp\":\"2023-08-22T13:14:46+05:30\",\"TxId\
":\"c0ea212f19197c5b86323bfca11c6ca545aa0af5d40cd04f9e955b5371fd40ae\",\"Valu
e\":{\"AssetType\":\"otoken\",\"Behaviors\":
[\"indivisible\",\"singleton\",\"mintable\",\"transferable\",\"burnable\",\"r
oles\"],\"CreatedBy\":\"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436
dd1aae201d347ad1288d\",\"CreationDate\":\"2023-08-22T13:14:46+05:30\",\"IsBur
ned\":false,\"Mintable\":
{\"Max_mint_quantity\":20000},\"On_sale_flag\":false,\"Owner\":\"oaccount~42e
89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d\",\"Price\":120
,\"Quantity\":1,\"Roles\":
{\"minter_role_name\":\"minter\"},\"TokenDesc\":\"\",\"TokenId\":\"1\",\"Toke
nMetadata\":
{\"Description\":\"\",\"Image\":\"\",\"Painter_name\":\"\",\"Painting_name\":
\"\"},\"TokenName\":\"artcollection\",\"TokenStandard\":\"erc1155+

Chapter 7
Tokenization Support Using Blockchain App Builder

7-799

\",\"TokenType\":\"nonfungible\",\"TokenUnit\":\"whole\",\"TokenUri\":\
"example.com\"}}]",
 "TokenId": 1,
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "example.com"
}

SDK Methods

• Access Control Management

• Token Configuration Management

• Account Management

• Role Management

• Transaction History Management

• Token Behavior Management

– Mintable Behavior

– Transferable Behavior

– Burnable Behavior

Methods for Access Control Management

CheckAuthorization
Use this method to add an access control check to an operation. This is an
asynchronous function. Most automatically generated methods include access
control. Certain token methods can be run only by the ERC721Admin or Account Owner
of the token or by a MultipleAccountOwner for users with multiple accounts. The
CheckAuthorization method is part of the erc721Auth class, which you access via
the Ctx object. The access control mapping is described in the oChainUtil.go file,
as shown in the following text. You can modify access control by editing the
oChainUtil.go file.

 var t TokenAccess
 var r RoleAccess
 var a AccountAccess
 var as AccountStatusAccess
 var h HoldAccess
 var ad AdminAccess
 var trx TransactionAccess
 var tc TokenConversionAccess
 var auth AuthAccess

Chapter 7
Tokenization Support Using Blockchain App Builder

7-800

 var erc721ad ERC721AdminAccess
 var erc721t ERC721TokenAccess
 var erc721r ERC721RoleAccess
 var erc721a ERC721AccountAccess
 var erc721as ERC721AccountStatusAccess
 var erc721trx ERC721TransactionAccess

 var erc1155ad ERC1155AdminAccess
 var erc1155t ERC1155TokenAccess
 var erc1155a ERC1155AccountAccess
 var erc1155as ERC1155AccountStatusAccess
 var erc1155trx ERC1155TransactionAccess
 var erc1155role ERC1155RoleAccess
 trx.DeleteHistoricalTransactions = []string{"Admin"}
 ad.AddAdmin = []string{"Admin"}
 ad.RemoveAdmin = []string{"Admin"}
 ad.GetAllAdmins = []string{"Admin", "OrgAdmin"}
 ad.AddOrgAdmin = []string{"Admin", "OrgAdminOrgIdCheck"}
 ad.RemoveOrgAdmin = []string{"Admin", "OrgAdminOrgIdCheck"}
 ad.GetOrgAdmins = []string{"Admin", "OrgAdmin"}
 ad.IsTokenAdmin = []string{"Admin", "MultipleAccountOwner", "OrgAdmin"}
 t.Save = []string{"Admin"}
 t.GetAllTokens = []string{"Admin", "OrgAdmin"}
 t.Update = []string{"Admin"}
 t.GetTokenDecimals = []string{"Admin", "OrgAdmin"}
 t.GetTokensByName = []string{"Admin", "OrgAdmin"}
 t.AddRoleMember = []string{"Admin", "OrgAdminRoleCheck"}
 t.RemoveRoleMember = []string{"Admin", "OrgAdminRoleCheck"}
 t.IsInRole = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 t.GetTotalMintedTokens = []string{"Admin", "OrgAdmin"}
 t.GetNetTokens = []string{"Admin", "OrgAdmin"}
 t.Get = []string{"Admin", "OrgAdmin"}
 t.GetTokenHistory = []string{"Admin", "OrgAdmin"}
 a.CreateAccount = []string{"Admin", "OrgAdminOrgIdCheck"}
 a.AssociateToken = []string{"Admin", "OrgAdminAccountIdCheck"}
 a.GetAllAccounts = []string{"Admin"}
 a.GetAllOrgAccounts = []string{"Admin", "OrgAdminOrgIdCheck"}
 a.GetAccount = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 a.History = []string{"Admin", "AccountOwner"}
 a.GetAccountTransactionHistory = []string{"Admin",
"OrgAdminAccountIdCheck", "AccountOwner"}
 a.GetAccountTransactionHistoryWithFilters = []string{"Admin",
"OrgAdminAccountIdCheck", "AccountOwner"}
 a.GetSubTransactionsById = []string{"Admin", "TransactionInvoker"}
 a.GetSubTransactionsByIdWithFilters = []string{"Admin",
"TransactionInvoker"}
 a.GetAccountBalance = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 a.GetAccountOnHoldBalance = []string{"Admin",
"OrgAdminAccountIdCheck", "AccountOwner"}
 a.GetOnHoldIds = []string{"Admin", "OrgAdminAccountIdCheck",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-801

"AccountOwner"}
 a.GetAccountsByUser = []string{"Admin", "OrgAdminOrgIdCheck",
"MultipleAccountOwner"}

 as.Get = []string{"Admin", "OrgAdminAccountIdCheck",
"AccountOwner"}
 as.ActivateAccount = []string{"Admin", "OrgAdminOrgIdCheck"}
 as.SuspendAccount = []string{"Admin", "OrgAdminOrgIdCheck"}
 as.DeleteAccount = []string{"Admin", "OrgAdminOrgIdCheck"}

 r.GetAccountsByRole = []string{"Admin"}
 r.GetUsersByRole = []string{"Admin"}
 r.GetOrgAccountsByRole = []string{"Admin", "OrgAdminOrgIdCheck"}
 r.GetOrgUsersByRole = []string{"Admin", "OrgAdminOrgIdCheck"}
 tc.InitializeExchangePoolUser = []string{"Admin"}
 tc.AddConversionRate = []string{"Admin"}
 tc.UpdateConversionRate = []string{"Admin"}
 tc.GetConversionRate = []string{"Admin", "OrgAdmin",
"AnyAccountOwner"}
 tc.GetConversionRateHistory = []string{"Admin", "OrgAdmin",
"AnyAccountOwner"}
 tc.TokenConversion = []string{"Admin", "AnyAccountOwner"}
 tc.GetExchangePoolUser = []string{"Admin"}

 erc721ad.AddAdmin = []string{"Admin"}
 erc721ad.GetAllAdmins = []string{"Admin"}
 erc721ad.IsTokenAdmin = []string{"Admin"}
 erc721ad.RemoveAdmin = []string{"Admin"}
 erc721trx.DeleteHistoricalTransactions = []string{"Admin"}
 erc721t.Save = []string{"Admin"}
 erc721t.GetAllTokens = []string{"Admin"}
 erc721t.Update = []string{"Admin"}
 erc721t.GetTokensByName = []string{"Admin"}
 erc721t.AddRoleMember = []string{"Admin"}
 erc721t.RemoveRoleMember = []string{"Admin"}
 erc721t.IsInRole = []string{"Admin", "AccountOwner"}
 erc721t.Get = []string{"Admin", "TokenOwner"}
 erc721t.GetAllTokensByUser = []string{"Admin", "AccountOwner"}
 erc721t.TotalSupply = []string{"Admin"}
 erc721t.TotalNetSupply = []string{"Admin"}
 erc721t.History = []string{"Admin"}
 erc721a.CreateAccount = []string{"Admin"}
 erc721a.CreateUserAccount = []string{"Admin"}
 erc721a.CreateTokenAccount = []string{"Admin"}
 erc721a.AssociateFungibleTokenToAccount = []string{"Admin",
"AccountOwner"}
 erc721a.GetAllAccounts = []string{"Admin"}
 erc721a.History = []string{"Admin", "AccountOwner"}
 erc721a.GetAccountTransactionHistory = []string{"Admin",
"AccountOwner"}
 erc721a.GetAccountTransactionHistoryWithFilters =
[]string{"Admin", "AccountOwner"}
 erc721a.GetAccountByUser = []string{"Admin",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-802

"MultipleAccountOwner"}
 erc721a.BalanceOf = []string{"Admin", "MultipleAccountOwner"}

 erc721as.Get = []string{"Admin", "AccountOwner"}
 erc721as.ActivateAccount = []string{"Admin"}
 erc721as.SuspendAccount = []string{"Admin"}
 erc721as.DeleteAccount = []string{"Admin"}

 erc721r.GetAccountsByRole = []string{"Admin"}
 erc721r.GetUsersByRole = []string{"Admin"}

 erc1155ad.AddAdmin = []string{"Admin"}
 erc1155ad.GetAllAdmins = []string{"Admin"}
 erc1155ad.IsUserTokenAdmin = []string{"Admin"}
 erc1155ad.RemoveAdmin = []string{"Admin"}
 erc1155t.AddRoleMember = []string{"Admin"}
 erc1155t.IsInRole = []string{"Admin"}
 erc1155t.GetAllTokens = []string{"Admin"}
 erc1155t.GetAllTokensByUser = []string{"Admin", "AccountOwner"}
 erc1155t.Get = []string{"Admin", "TokenOwner"}
 erc1155t.RemoveRoleMember = []string{"Admin"}
 erc1155t.TotalNetSupply = []string{"Admin"}
 erc1155t.TotalSupply = []string{"Admin"}
 erc1155t.GetTokenDecimal = []string{"Admin"}
 erc1155t.GetTokensByName = []string{"Admin"}
 erc1155t.GetTotalMintedTokens = []string{"Admin"}
 erc1155t.GetNetTokens = []string{"Admin"}
 erc1155t.Save = []string{"Admin"}
 erc1155t.Update = []string{"Admin"}

 erc1155trx.DeleteHistoricalTransactions = []string{"Admin"}

 erc1155role.GetAccountsByRole = []string{"Admin"}
 erc1155role.GetUsersByRole = []string{"Admin"}
 erc1155a.AssociateFungibleTokenToAccount = []string{"Admin",
"AccountOwner"}
 erc1155a.BalanceOfBatch = []string{"Admin"}
 erc1155a.CreateAccount = []string{"Admin"}
 erc1155a.CreateTokenAccount = []string{"Admin"}
 erc1155a.CreateUserAccount = []string{"Admin"}
 erc1155a.GetAccountTransactionHistory = []string{"Admin",
"AccountOwner"}
 erc1155a.GetAccountTransactionHistoryWithFilters = []string{"Admin",
"AccountOwner"}
 erc1155a.GetAccountsByUser = []string{"Admin", "AccountOwner"}
 erc1155a.GetAccount = []string{"Admin", "AccountOwner"}
 erc1155a.History = []string{"Admin", "AccountOwner"}
 erc1155a.GetAllAccounts = []string{"Admin"}
 erc1155a.ExchangeToken = []string{"AccountOwner"}
 erc1155a.GetAccountDetailsByUser = []string{"Admin", "AccountOwner"}

 erc1155as.Get = []string{"Admin", "AccountOwner"}
 erc1155as.ActivateAccount = []string{"Admin"}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-803

 erc1155as.SuspendAccount = []string{"Admin"}
 erc1155as.DeleteAccount = []string{"Admin"}
 var accessMap TokenAccessControl
 accessMap.Token = t
 accessMap.Account = a
 accessMap.AccountStatus = as
 accessMap.Hold = h
 accessMap.Role = r
 accessMap.Admin = ad
 accessMap.Auth = auth
 accessMap.TokenConversion = tc
 accessMap.ERC721ADMIN = erc721ad
 accessMap.ERC721TOKEN = erc721t
 accessMap.ERC721ACCOUNT = erc721a
 accessMap.ERC721AccountStatus = erc721as
 accessMap.ERC721ROLE = erc721r
 accessMap.ERC721TRANSACTION = erc721trx
 accessMap.ERC1155Account = erc1155a
 accessMap.ERC1155AccountStatus = erc1155as
 accessMap.ERC1155Admin = erc1155ad
 accessMap.ERC1155Token = erc1155t
 accessMap.ERC1155Transaction = erc1155trx
 accessMap.ERC1155Role = erc1155role

Ctx.ERC1155Auth.CheckAuthorization(funcName string, args []string)
(bool, error)

Parameters:

• funcName string – The map value between the receivers and methods as
described in the oChainUtil.go file.

• args – A variable argument where args[0] takes the constant 'TOKEN' and
args[1] takes the accountId parameter to add an access control check for an
AccountOwner. To add an access control check for a MultipleAccountOwner,
args[1] takes the orgId parameter and args[2] takes the userId parameter. To
add an access control check for a TokenOwner, args[1] takes the token ID
parameter.

Returns:

• A bool response of error as required.

IsUserTokenAdmin
This method returns the Boolean value true if the specified user is a Token Admin,
and false otherwise. The method can be called only by a Token Admin of the token
chaincode.

Ctx.ERC1155Auth.IsUserTokenAdmin(orgId string, userId string)
(interface{}, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-804

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Return Value Example:

{
 "result": true
}

AddAdmin
This method adds a user as a Token Admin of the token chaincode. The method can be
called only by a Token Admin of the token chaincode.

Ctx.ERC1155Admin.AddAdmin(orgId string, userId string) (interface{}, error)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that lists details for the user added as a Token Admin of the
token chaincode.

Return Value Example:

{
 "msg": "Successfully added Admin (orgId: appdev, userId: user1)"
}

RemoveAdmin
This method removes a user as a Token Admin of the token chaincode. The method can be
called only by a Token Admin of the token chaincode. You cannot remove yourself as a
Token Admin.

Ctx.ERC1155Admin.RemoveAdmin(orgId string, userId string) (interface{},
error)

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

Returns:

• On success, a message that lists details for the user removed as a Token Admin of the
token chaincode.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-805

Return Value Example:

{
 "msg": "Successfully removed Admin (orgId appdev userId user1)"
}

GetAllAdminUsers
This method returns a list of all Token Admin users.

Ctx.ERC1155Admin.GetAllAdminUsers() (interface{}, error)

Parameters:

• none

Returns:

• On success, a list of all Token Admin users, identifed by organization ID and user
ID.

Return Value Example:

{
 "admins": [
 {
 "OrgId": "appdev",
 "UserId": "idcqa"
 },
 {
 "OrgId": "appdev",
 "UserId": "user1"
 }
]
}

Methods for Token Configuration Management

Save
This method creates tokens. Every token that is defined has its own create method.
For non-fungible tokens, if the minter role is defined in the specification file, then any
user with the minter role can call this method to create an NFT. If not, any user can
use this method to create (mint) NFTs. The user who calls this method becomes the
owner of the NFT (whole or fractional).

Ctx.ERC1155Token.Save(token interface{}, quantity ...float64)
(interface{}, error)

Parameters:

• tokenAsset: interface{} – The token asset. The properties of the asset are
defined in the model file.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-806

• quantity: number – For non-fungible tokens only, the number of tokens to mint. The
only supported value for this parameter is 1.

Returns:

• On success, the token asset in JSON format, which includes the following information.

• Behavior or Behaviors – A list of token behaviors. This property cannot be edited.

• CreatedBy – The account ID of the caller, who is the user minting the token. This
property cannot be edited.

• CreationDate – The time stamp of the minting transaction. This property cannot be
edited.

• IsBurned – This property indicates whether the token is burned. This property cannot be
edited.

• Mintable – The properties related to minting. The max_mint_quantity value defines the
maximum number of tokens that can be created for the token class.

• Owner – The account ID of the current owner, who is the caller of the method.

• Symbol – The symbol of the token. This property cannot be edited.

• TokenDesc – The description of the token.

• TokenMetadata – JSON information that describes the token.

• TokenName – The name of the token. This property cannot be edited.

• TokenStandard – The standard of the token. This property cannot be edited.

• TokenType – The type of the token (fungible or non-fungible). This property cannot be
edited.

• TokenUnit – The unit of the token (whole or fractional). This property cannot be edited.

• TokenUri – The URI of the token.

• Quantity – The quantity of the token.

Return Value Example (Whole NFT):

{
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "CreationDate": "2022-12-29T09:57:03+05:30",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 500

Chapter 7
Tokenization Support Using Blockchain App Builder

7-807

 },
 "OnSaleFlag": false,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "Price": 100,
 "Quantity": 1,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "token description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\\
\ .ipfs.infura-ipfs.io/?filename=MonaLisa.jpeg"
}

Return Value Example (Fungible Token):

{
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "Currency_name": "Dollar",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 10000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Token Description",
 "TokenId": "Loyalty",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-808

 "TokenName": "loyalty",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
}

Return Value Example (Fractional NFT):

{
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
 "CreationDate": "2023-06-14T09:53:53+05:30",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": false,
 "Price": 1000,
 "Quantity": 100,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Token Description",
 "TokenId": "realEstate",
 "TokenMetadata": {
 "Description": "Painting Description",
 "Image": "",
 "Painter_name": "",
 "Painting_name": "Paint"
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.realestate.example.com"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-809

Update
This method updates tokens. You cannot update token metadata or the token URI of
non-fungible tokens.

Ctx.ERC1155Token.Update(tokenAsset interface{}) (interface{}, error)

Parameters:

• tokenAsset: interface{} – The token asset. The properties of the asset are
defined in the model file.

Returns:

• On success, the updated token asset in JSON format.

Return Value Example (Whole NFT):

{
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2022-12-29T09:57:03+05:30",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 500
 },
 "OnSaleFlag": false,
 "Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "Price": 100,
 "Quantity": 1,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "token description",
 "TokenId": "monalisa",
 "TokenMetadata": {
 "Description": "Mona Lisa Painting",
 "Image": "monalisa.jpeg",
 "PainterName": "Leonardo_da_Vinci",
 "PaintingName": "Mona_Lisa"
 },

Chapter 7
Tokenization Support Using Blockchain App Builder

7-810

 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3gr7r2e35x3ctvawjco6ddmsq\\\\ .ipfs.infura-
ipfs.io/?filename=MonaLisa.jpeg"
}

History (Token)
This method returns the history for a specified token ID.

Ctx.ERC1155Token.History(tokenId string) (interface{}, error)

Parameters:

• tokenId string – The ID of the token.

Returns:

• On success, a JSON array that contains the token history.

Return Value Example (Fungible Token):

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-08T09:54:11Z",
 "TxId":
"823sa7c7a00941c62285c86f922bc4d3f5326a20f4bf2f82daa5bc661e4682e8",
 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "Rupees",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Updated Token Description",
 "TokenId": "tokenOne",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-811

 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-08T09:54:11Z",
 "TxId":
"711bb7c7a00941c62285c86f922bc3b3f5326a20f4bf2f82daa5bc661e4682e8",
 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "Dollar",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenOne",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 }
]

Return Value Example (Fractional NFT):

[
 {
 "Timestamp": "2023-06-20T01:06:33Z",
 "TrxId":
"16e53db4f8107f9634b7c3a0a2a81a00f69b634f2a52902b809e544d07f272b1",
 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-812

 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "CreationDate": "2023-06-20T01:02:27Z",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Owners": [
 {
 "AccountId":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "TokenShare": 10
 },
 {
 "AccountId":
"oaccount~3cddfdaa855900579d963aa6f755a4aed1f3a474a2462c1b45bd7f36df673224",
 "TokenShare": 10
 }
],
 "Price": 2000,
 "Quantity": 20,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "FNFT",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.FNFT.example.com"
 }
 },
 {
 "Timestamp": "2023-06-20T01:02:27Z",
 "TrxId":
"cec80910d087682554048f911d2cf98b66382bbcf1615483fa1c96c7ea08077c",
 "Value": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-813

 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "CreationDate": "2023-06-20T01:02:27Z",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Owners": [
 {
 "AccountId":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "TokenShare": 20
 }
],
 "Price": 2000,
 "Quantity": 20,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "FNFT",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.FNFT.example.com"
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-814

Return Value Example (Whole NFT):

[
 {
 "IsDelete": "false",
 "Timestamp": "2023-06-20T01:15:56Z",
 "TxId":
"89a3df3ebbe6dca2bcfbd51fc7dca9aab818a2af746b79a92dc8155b729ab22d",
 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "CreationDate": "2023-06-20T01:15:56Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Owner":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "Price": 2000,
 "Quantity": 1,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Updated Token Description",
 "TokenId": "NFT",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "www.NFT.example.com"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-06-20T01:15:56Z",
 "TxId":
"90d6af3ebbe6dca2bcfbd51fc7dca9aab818a2af746b79a92dc8155b729ab22d",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-815

 "Value": {
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "CreationDate": "2023-06-20T01:15:56Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Owner":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "Price": 2000,
 "Quantity": 1,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "NFT",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "www.NFT.example.com"
 }
 }
]

GetAllTokens
This method returns all of the token assets that are saved in the state database. This
method can be called only by a Token Admin of the chaincode. This method uses
Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network.

Ctx.ERC1155Token.GetAllTokens()() (interface{}, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-816

• none

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenOne",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 },
 {
 "key": "tokenTwo",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-817

 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenTwo",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 },
 {
 "key": "art",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "BurnedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "BurnedDate": "2022-12-08T10:49:37Z",
 "CreatedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "CreationDate": "2022-12-08T10:45:10Z",
 "IsBurned": true,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "OnSaleFlag": false,
 "Owner": "",
 "Price": 0,
 "Roles": {
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "art",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "PainterName": "",
 "PaintingName": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-818

 "TokenUnit": "whole",
 "TokenUri": "art.example.com",
 "TransferredBy":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec2937cc",
 "TransferredDate": "2022-12-08T10:47:04Z"
 }
 },
 {
 "key": "FNFT",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a",
 "CreationDate": "2023-06-20T01:02:27Z",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Price": 2000,
 "Quantity": 20,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "FNFT",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.FNFT.example.com"
 }
 },
 {
 "key": "FNFT",
 "valueJson": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-819

 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac5
04a",
 "CreationDate": "2023-06-20T01:02:27Z",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": true,
 "Price": 2000,
 "Quantity": 20,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "FNFT",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "Painter_name": "",
 "Painting_name": ""
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.FNFT.example.com"
 }
 }
]

Get (Token)
This method returns a token object if the token is present in the state database. This
method can be called only by a Token Admin of the chaincode or the token owner. For
fractional NFTs, the list of owners is also returned.

Ctx.ERC1155Token.Get(id string, result ...interface{}) (interface{},
error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-820

• id string – The ID of the token to get.

Return Value Example (Whole NFT):

{
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "CreationDate": "2022-12-08T10:55:29Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "OnSaleFlag": false,
 "Owner":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "Price": 0,
 "Quantity": 1,
 "Roles": {
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "nftToken",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "PainterName": "",
 "PaintingName": ""
 },
 "TokenName": "artcollection",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "example.com"
}

Return Value Example (Fungible Token):

{
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-821

 "burnable",
 "roles"
],
 "Currency_name": "Dollar",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 10000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Token Description",
 "TokenId": "Loyalty",
 "TokenName": "loyalty",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
}

Return Value Example (Fractional NFT):

{
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "CreationDate": "2023-06-14T09:53:53+05:30",
 "Divisible": {
 "Decimal": 2
 },
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "On_sale_flag": false,
 "Owners": [
 {
 "AccountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12
88d",
 "TokenShare": 100

Chapter 7
Tokenization Support Using Blockchain App Builder

7-822

 }
],
 "Price": 1000,
 "Quantity": 100,
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "Token Description",
 "TokenId": "realEstate",
 "TokenMetadata": {
 "Description": "Painting Description",
 "Image": "",
 "Painter_name": "",
 "Painting_name": "Paint"
 },
 "TokenName": "realestate",
 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "fractional",
 "TokenUri": "www.realestate.example.com"
}

GetAllTokensByUser
This method returns all of the token assets that are owned by a specified user. This method
uses Berkeley DB SQL rich queries and can only be called when connected to the remote
Oracle Blockchain Platform network.

Ctx.ERC1155Token.GetAllTokensByUser(accountId string) (interface{}, error)

Parameters:

• accountId string – The account ID of the user.

Return Value Example:

[
 {
 "key": "tokenOne",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {

Chapter 7
Tokenization Support Using Blockchain App Builder

7-823

 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenOne",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 },
 {
 "key": "nftToken",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "indivisible",
 "singleton",
 "mintable",
 "transferable",
 "burnable",
 "roles"
],
 "CreatedBy":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "CreationDate": "2022-12-08T10:55:29Z",
 "IsBurned": false,
 "Mintable": {
 "Max_mint_quantity": 20000
 },
 "OnSaleFlag": false,
 "Owner":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a428
2c6",
 "Price": 0,
 "Quantity": 1,
 "Roles": {
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "nftToken",
 "TokenMetadata": {
 "Description": "",
 "Image": "",
 "PainterName": "",
 "PaintingName": ""
 },
 "TokenName": "artcollection",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-824

 "TokenStandard": "erc1155+",
 "TokenType": "nonfungible",
 "TokenUnit": "whole",
 "TokenUri": "example.com"
 }
 }
]

OwnerOf
This method returns the account ID, organization ID, and user ID of the owner of the
specified token ID.

Ctx.ERC1155Token.OwnerOf(tokenId string) (interface{}, error)

Parameters:

• tokenId string – The ID of the token.

Return Value Example:

{
 "AccountId":
"oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282c6",
 "OrgId": "appdev",
 "UserId": "idcqa"
}

TokenURI
This method returns the URI of a specified token. Anyone can call this method.

Ctx.ERC1155Token.TokenURI(tokenId string) (interface{}, error)

Parameters:

• tokenId string – The ID of the token.

Return Value Example:

{
 "TokenUri": "example.com"
}

Name
This method returns the name of the token class. Anyone can call this method.

Ctx.ERC1155Token.Name(tokenId string) (interface{}, error)

Parameters:

• tokenId string – The ID of the token.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-825

Return Value Example:

{"TokenName": "artcollection"}

TotalSupply
This method returns the total number of minted tokens. Fungible tokens are specified
by the token ID. Non-fungible tokens are specified by the token name.

Ctx.ERC1155Token.TotalSupply(tokenAsset interface{})
(map[string]interface{}, error)

Parameters:

• tokenAsset interface{} – The token asset.

Return Value Example:

{"TotalSupply": 100}

TotalNetSupply
This method returns the total number of minted tokens minus the number of burned
tokens. Fungible tokens are specified by the token ID. Non-fungible tokens are
specified by the token name.

Ctx.ERC1155Token.TotalNetSupply(token interface{}) (interface{}, error)

Parameters:

• token interface{} – The token asset.

Return Value Example:

{"TotalNetSupply": 100}

GetTokensByName
This method returns all of the token assets for a specified token name. This method
uses Berkeley DB SQL rich queries and can only be called when connected to the
remote Oracle Blockchain Platform network.

Ctx.ERC1155Token.GetTokensByName(tokenName string) (interface{}, error)

Parameters:

• tokenName: string – The name of the token.

Return Value Example:

[
 {
 "key": "tokenOne",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-826

 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenOne",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",
 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 },
 {
 "key": "tokenTwo",
 "valueJson": {
 "AssetType": "otoken",
 "Behaviors": [
 "divisible",
 "mintable",
 "transferable",
 "roles"
],
 "Currency_name": "",
 "Divisible": {
 "Decimal": 2
 },
 "Mintable": {
 "Max_mint_quantity": 1000
 },
 "Roles": {
 "burner_role_name": "burner",
 "minter_role_name": "minter"
 },
 "TokenDesc": "",
 "TokenId": "tokenTwo",
 "TokenName": "moneytok",
 "TokenStandard": "erc1155+",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-827

 "TokenType": "fungible",
 "TokenUnit": "fractional",
 "Token_to_currency_ratio": 0
 }
 }
]

GetDecimals
This method returns the number of decimal places for a specified token. If the divisible
behavior is not specified for the token, then the default value of zero decimal places is
returned.

Ctx.ERC1155Token.GetDecimals(tokenId string) (int, error)

Parameters:

• tokenId: string – The ID of the token.

Return Value Example:

2

Methods for Account Management

CreateAccount
This method creates an account for a specified user and associated token accounts
for fungible or non-fungible tokens. An account must be created for any user who will
have tokens at any point. The user account tracks the NFT account and the fungible
token accounts that a user has. Users must have accounts in the network to complete
token-related operations. This method can be called only by a Token Admin of the
chaincode.
A user account has a unique ID, which is formed by an SHA-256 hash of the orgId
parameter and the userId parameter.
A user can have multiple fungible token accounts with unique account IDs. Fungible
token account IDs are formed by an SHA-256 hash of the orgId parameter, the
userId parameter, the constant string ft separated by the tilde symbol (~), and a
counter number that signifies the index of the fungible account that is being created
separated by the tilde symbol (~).
A user can have only one non-fungible token account. Non-fungible token account IDs
are unique and are formed by an SHA-256 hash of the orgId parameter, the userId
parameter, and the constant string nft separated by the tilde symbol (~). All non-
fungible tokens that a user owns, whether whole or fractional, are linked to this single
non-fungible token account.

Ctx.ERC1155Account.CreateAccount(orgId string, userId string,
ftAccount bool, nftAccount bool) (ERC1155UserAccount, error)

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-828

• userId string – The user name or email ID of the user.

• ftAccount bool – If true, a fungible token account is created and associated with the
user account.

• nftAccount bool – If true, a non-fungible token account is created and associated with
the user account.

Returns:

• On success, a JSON object of the account that was created.

Return Value Example:

{
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~cf20877546f52687f387e7c91d88b9722c97e1a456cc0484f40c747f7804feae",
 "UserId": "user1",
 "OrgId": "appdev",
 "TotalAccounts": 2,
 "TotalFtAccounts": 1,
 "AssociatedFtAccounts": [
 {
 "AccountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc504b",
 "TokenId": ""
 }
],
 "AssociatedNftAccount":
"oaccount~73c3e835dac6d0a56ca9d8def08269f83cefd59b9d297fe2cdc5a9083828fa58"
}

CreateUserAccount
This method creates an account for a specified user. An account must be created for any
user who will have tokens at any point. The user account tracks the NFT account and the
fungible token accounts that a user has. Users must have accounts in the network to
complete token-related operations.
An account ID is an SHA-256 hash of the orgId parameter and the userId parameter. This
method can be called only by a Token Admin of the chaincode.

Ctx.ERC1155Account.CreateUserAccount(orgId string, userId string)
(interface{}, error)

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the current
organization.

• userId string – The user name or email ID of the user.

Returns:

• On success, a JSON object of the user account that was created.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-829

Return Value Example:

{
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc",
 "UserId": "idcqa",
 "OrgId": "appdev",
 "TotalAccounts": 0,
 "TotalFtAccounts": 0,
 "AssociatedFtAccounts": [],
 "AssociatedNftAccount": ""
}

CreateTokenAccount
This method creates a fungible or non-fungible token account to associate with a user
account.
A user can have multiple fungible token accounts with unique account IDs. Fungible
token account IDs are formed by an SHA-256 hash of the orgId parameter, the
userId parameter, the constant string ft separated by the tilde symbol (~), and a
counter number that signifies the index of the fungible account that is being created
separated by the tilde symbol (~).
A user can have only one non-fungible token account. Non-fungible token account IDs
are unique and are formed by an SHA-256 hash of the orgId parameter, the userId
parameter, and the constant string nft separated by the tilde symbol (~). All non-
fungible tokens that a user owns, whether whole or fractional, are linked to this single
non-fungible token account.
This method can be called only by a Token Admin of the chaincode.

Ctx.ERC1155Account.CreateTokenAccount(orgId string, userId string,
tokenType string) (ERC1155UserAccount, error)

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

• userId string – The user name or email ID of the user.

• tokenType erc1155Token.TokenType – The type of token account to create. The
only supported token types are nonfungible and fungible.

Returns:

• On success, a JSON object of the token account that was created.

Return Value Example:

{
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29

Chapter 7
Tokenization Support Using Blockchain App Builder

7-830

37cc",
 "UserId": "idcqa",
 "OrgId": "appdev",
 "TotalAccounts": 1,
 "TotalFtAccounts": 1,
 "AssociatedFtAccounts": [
 {
 "AccountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",
 "TokenId": ""
 }
],
 "AssociatedNftAccount": ""
}

AssociateTokenToToken
This method associates a user's fungible token account to a particular fungible token.

Ctx.ERC1155Account.AssociateTokenToToken(accountId string, tokenId string)
(interface{}, error)

Parameters:

• accountId string – The user account ID.

• tokenId string – The ID of the token.

Returns:

• On success, a JSON object of the user account, which shows that the fungible token
was associated to the token account. For example, in the following example, the first
object in the AssociatedFtAccounts array shows that the fungible token account ID and
the token ID are associated.

Return Value Example:

{
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec2937cc",
 "UserId": "idcqa",
 "OrgId": "appdev",
 "TotalAccounts": 1,
 "TotalFtAccounts": 1,
 "AssociatedFtAccounts": [
 {
 "AccountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",
 "TokenId": "tokenOne"
 }
],
 "AssociatedNftAccount": ""
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-831

GetAccountHistory
This method returns history for a specified token account.

Ctx.ERC1155Account.GetAccountHistory(accountId string)

Parameters:

• accountId string – The token account ID.

Returns:

• On success, an array of JSON objects that describes the account history.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2023-06-06T11:03:48Z",
 "TxId":
"c5180f3be3d9130f25a4b4e866f38a4283117dcbfbffb4f55e2c5b03dba0dd29",
 "Value": {
 "AccountCategory": "",
 "AccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "AssetType": "oaccount",
 "Balance": 100,
 "BapAccountVersion": 1
 "OrgId": "appdev",
 "TokenId": "loy1",
 "TokenName": "loyalty",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-06-06T11:02:39Z",
 "TxId":
"6f81b0c94b451d375a3892446aefbdf78d9fd1ac43699daa89f0dff10db5fd22",
 "Value": {
 "AccountCategory": "",
 "AccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e",
 "AssetType": "oaccount",
 "Balance": 0,
 "BapAccountVersion": 0
 "OrgId": "appdev",
 "TokenId": "loy1",
 "TokenName": "loyalty",
 "TokenType": "fungible",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-832

 "UserId": "idcqa"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2023-06-05T16:28:46Z",
 "TxId":
"8185af648546e909488e72149be497b210f74f95ada252c42da9c35cb9d98691",
 "Value": {
 "AccountCategory": "",
 "AccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
 "AssetType": "oaccount",
 "Balance": 0,
 "BapAccountVersion": 0
 "OrgId": "appdev",
 "TokenId": "",
 "TokenName": "",
 "TokenType": "fungible",
 "UserId": "idcqa"
 }
 }
]

GetAccountWithStatus
This method returns token account details for a specified user, including account status. This
method can be called only by a Token Admin of the chaincode or the Account Owner of the
account.

Ctx.ERC1155Account.GetAccountWithStatus(userAccountId string,
tokenId ...string) (interface{}, error)

Parameters:

• userAccountId string – The account ID of the user.

• tokenId ...string – For a non-fungible token account, an empty string. For a fungible
token account, the token ID.

Returns:

• On success, a JSON object that includes token account details, including account status.

Return Value Example (Non-Fungible Token Account):

{
 "AccountId":
"oaccount~cc301bee057f14236a97d434909ec1084970921b008f6baab09c2a0f5f419a9a",
 "AssetType": "oaccount",
 "BapAccountVersion": 1,
 "NoOfNfts": 1,
 "OrgId": "appdev",
 "Status": "active",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-833

 "TokenType": "nonfungible",
 "UserId": "idcqa"
}

Return Value Example (Fungible Token Account):

{
 "AccountCategory": "",
 "AccountId":
"oaccount~2de8db6b91964f8c9009136831126d3cfa94e1d00c4285c1ea3e6d1f36479
ed4",
 "AssetType": "oaccount",
 "Balance": 0,
 "BapAccountVersion": 0,
 "OrgId": "appdev",
 "Status": "active",
 "TokenId": "t1",
 "TokenName": "loyalty",
 "TokenType": "fungible",
 "UserId": "idcqa"
}

GetAccount
This method returns token account details for a specified user. This method can be
called only by a Token Admin of the chaincode or the Account Owner of the account.

Ctx.ERC1155Account.Get(accountId string, tokenId ...string)
(interface{}, error)

Parameters:

• userAccountId string – The account ID of the user.

• tokenId ...string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Returns:

• On success, a JSON object that includes token account details.

Return Value Example (Non-Fungible Token Account):

{
 "AccountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097
371",
 "BapAccountVersion": 0,
 "AssetType": "oaccount",
 "NoOfNfts": 4,
 "OrgId": "appdev",
 "TokenType": "nonfungible",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-834

 "UserId": "idcqa"
}

Return Value Example (Fungible Token Account):

{
 "AssetType": "oaccount",
 "AccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
 "UserId": "idcqa",
 "OrgId": "appdev",
 "BapAccountVersion": 0,
 "TokenType": "fungible",
 "TokenId": "loy1",
 "TokenName": "loyalty",
 "Balance": 90,
 "AccountCategory": ""
}

GetAllAccounts
This method returns details of all user accounts.

Ctx.ERC1155Account.GetAllAccounts() (interface{}, error)

Parameters:

• none

Return Value Example:

[
 {
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "UserId": "idcqa",
 "OrgId": "appdev",
 "TotalAccounts": 3,
 "TotalFtAccounts": 2,
 "AssociatedFtAccounts": [
 {
 "AccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
 "TokenId": "loy1"
 },
 {
 "AccountId":
"oaccount~58c5a6b09a41befca2a9ea2550439838c4dcf4d8a2a4f7c98e9319cf8479bfc4",
 "TokenId": ""
 }
],
 "AssociatedNftAccount":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-835

"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097
371"
 },
 {
 "AssetType": "ouaccount",
 "AccountId":
"ouaccount~9501bb774c156eb8354dfe489250ea91f757523d70f08ee494bda98bb352
003b",
 "UserId": "user1_minter",
 "OrgId": "appdev",
 "TotalAccounts": 2,
 "TotalFtAccounts": 1,
 "AssociatedFtAccounts": [
 {
 "AccountId":
"oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f6282379
74c",
 "TokenId": "loy1"
 }
],
 "AssociatedNftAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903
446"
 },
]

GetAccountDetailsByUser
This method returns an account summary for a specified user and details of fungible
and non-fungible tokens that are associated with the user.

Ctx.ERC1155Account.GetAccountDetailsByUser(orgId string, userId
string) (interface{}, error)

Parameters:

• orgId string – The membership service provider (MSP) ID of the user in the
current organization.

• userId string – The user name or email ID of the user.

Returns:

• On success, a JSON account object that includes and account summary for the
specified user and details of fungible and non-fungible tokens that are associated
with the user. For fractional non-fungible tokens, the tokenShare property in the
associatedNFTs section shows the share that the user owns.

Return Value Example:

{
 "AssociatedFTAccounts": [
 {
 "AccountId":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-836

"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
 "Balance": 90,
 "TokenId": "FT"
 },
],
 "AssociatedNFTAccount": {
 "AccountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371",
 "AssociatedNFTs": [
 {
 "NFTTokenId": "FNFT",
 "TokenShare": 230
 },
 {
 "NFTTokenId": "NFT"
 },
 {
 "NFTTokenId": "NFT2"
 }
]
 },
 "UserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38"
}

GetUserByAccountId
This method returns the user details of a specified account ID.

Ctx.ERC1155Account.GetUserByAccountById(accountId string)
(map[string]interface{}, error)

Parameters:

• accountId string – The ID of the account.

Returns:

• On success, a JSON object of the user details (orgId and userId).

Return Value Example:

{
 "OrgId": "appdev",
 "UserId": "idcqa"
}

Methods for Role Management

Chapter 7
Tokenization Support Using Blockchain App Builder

7-837

AddRoleMember
This method adds a role to a specified user and token. Fungible tokens are specified
by the token ID. Non-fungible tokens are specified by the token name.

Ctx.ERC1155Token.AddRoleMember(userRole string, userAccountId string,
asset interface{}) (interface{}, error)

Parameters:

• userRole: string – The name of the role to add to the specified user.

• userAccountId: string – The account ID of the user.

• asset: interface{} – The token asset.

Returns:

• On success, a message with account details.

Return Value Example:

{
 "msg": "Successfully added role minter to
oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d2
2a (orgId : appdev, userId : idcqa)"
}

IsInRole
This method returns a Boolean value to indicate if a user has a specified role.
Fungible tokens are specified by the token ID. Non-fungible tokens are specified by
the token name.

Ctx.ERC1155Token.IsInRole(userRole string, userAccountId string, asset
interface{}) (bool, error)

Parameters:

• userRole: string – The name of the role to search for.

• userAccountId: string – The account ID of the user.

• asset: interface{} – The token asset.

Return Value Example:

{
 "result": true
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-838

RemoveRoleMember
This method removes a role from a specified user and token. Fungible tokens are specified
by the token ID. Non-fungible tokens are specified by the token name.

Ctx.ERC1155Token.RemoveRoleMember(userRole string, userAccountId string,
asset interface{}) (interface{}, error)

Parameters:

• userRole: string – The name of the role to remove.

• userAccountId: string – The account ID of the user.

• asset: interface{} – The token asset.

Return Value Example:

{
 "msg": "Successfully removed role 'minter' from Account Id:
oaccount~ec7e4de2f81e3ea071710e07b6ff7d9346e84ef665ca4650885dbe8c3e2bd4c0
(Org-Id: appdev, User-Id: idcqa)"
}

GetAccountsByRole
This method returns a list of all account IDs for a specified role and token. Fungible tokens
are specified by the token ID. Non-fungible tokens are specified by the token name.

Ctx.ERC1155Role.GetAccountsByRole(roleName string, token interface{})
(interface{}, error)

Parameters:

• roleName: string – The name of the role to search for.

• token: interface{} – The token asset.

Return Value Example:

{
 "accounts": [

"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d22a",

"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc504b"
]
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-839

GetUsersByRole
This method returns a list of all users for a specified role and token. Fungible tokens
are specified by the token ID. Non-fungible tokens are specified by the token name.

Ctx.ERC1155Role.GetUsersByRole(roleName string, token interface{})
(interface{}, error)

Parameters:

• roleName: string – The name of the role to search for.

• token: interface{} – The token asset.

Return Value Example:

{
 "Users": [
 {
 "AccountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",
 "OrgId": "appdev",
 "UserId": "idcqa"
 },
 {
 "AccountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc5
04b",
 "OrgId": "appdev",
 "UserId": "user1"
 }
]
}

Methods for Transaction History Management

GetAccountTransactionHistory
This method returns account transaction history. This method can be called only by a
Token Admin of the chaincode or by the account owner. For non-fungible tokens, this
method can only be called when connected to the remote Oracle Blockchain Platform
network.

Ctx.ERC1155Account.GetAccountTransactionHistory(tokenAccountId string)
(interface{}, error)

Parameters:

• accountId string – The user account ID.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-840

Return Value Example:

[
 {
 "Balance": 90,
 "Timestamp": "2023-06-06T11:11:09Z",
 "TokenId": "FNFT",
 "TransactedAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446",
 "TransactedAmount": 10,
 "TransactionId":
"otransaction~0f4d96fbf8fed88ea8a3133428977721091467c701848d595ebc3fffa88b365
7~7c88c736df38d5622512f1e8dcdd50710eb47c953f1ecb24ac44790a9e2f475b",
 "TransactionType": "DEBIT",
 "TriggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38"
 },
 {
 "Timestamp": "2023-06-06T11:11:09Z",
 "TokenId": "NFT",
 "TransactedAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446",
 "TransactionId":
"otransaction~0f4d96fbf8fed88ea8a3133428977721091467c701848d595ebc3fffa88b365
7~178e3730bc5bee50d02f1464a4eebf733a051905f651e5789039adb4a3edc114",
 "TransactionType": "DEBIT",
 "TriggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38"
 },
 {
 "Timestamp": "2023-06-06T11:06:54Z",
 "TokenId": "NFT",
 "TransactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371",
 "TransactionId":
"otransaction~6a13667ea3f6edc4c854e85b127526eccb58783f653c348b42a3869f0f29a4f
b~a7cefb22ff39ee7e36967be71de27da6798548c872061a62dabc56d88d50b930",
 "TransactionType": "MINT",
 "TriggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38"
 },
 {
 "Balance": 100,
 "Timestamp": "2023-06-05T16:34:33Z",
 "TokenId": "FNFT",
 "TransactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371",
 "TransactedAmount": 100,
 "TransactionId":
"otransaction~2bc15de1766d582d821bd8d61756bca02837dc683c0aa61f69657ccd1d95e33
5~e4eb15d9354f694230df8835ade012100d82aa43672896a2c7125a86e3048f9f",
 "TransactionType": "MINT",
 "TriggeredByUserAccountId":

Chapter 7
Tokenization Support Using Blockchain App Builder

7-841

"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38"
 }
]

GetTransactionById
This method returns the transaction details for a specified transaction ID.

Ctx.ERC1155Transaction.GetTransactionById(trxId string) (interface{},
error)

Parameters:

• trxId string – The ID of the transaction.

Return Value Example:

{
 "history": [
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-08T10:45:56Z",
 "TxId":
"2da02a53aa1032602df6c68c5628a4ab8b22ba107c0201520ce495948901aa98",
 "Value": {
 "Amount": 5,
 "AssetType": "otransaction",
 "FromAccountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891e1c6477dfd7ad18b73acac5d80bc5
04b",
 "Timestamp": "2022-12-08T10:45:56Z",
 "ToAccountId":
"oaccount~1422a74d262a3a55a37cd9023ef8836f765d0be7b49d397696b9961d7434d
22a",
 "TokenId": "tokenOne",
 "TransactionId":
"otransaction~2da02a53aa1032602df6c68c5628a4ab8b22ba107c0201520ce495948
901aa98~9c3ce5f21abd98ca018c196086d73a812f2f49dba323f1de4f6867eecfeec8f
f",
 "TransactionType": "TRANSFER",
 "TriggeredByUserAccountId":
"ouaccount~24ffd4d32a028a85b4b960f5d55536c837b5429bc7f346150adfa904ec29
37cc"
 }
 }
],
 "transactionId":
"otransaction~2da02a53aa1032602df6c68c5628a4ab8b22ba107c0201520ce495948
901aa98~9c3ce5f21abd98ca018c196086d73a812f2f49dba323f1de4f6867eecfeec8f
f"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-842

DeleteHistoricalTransactions
This method deletes transactions before a specified time stamp from the state database.

Ctx.ERC1155Transaction.DeleteHistoricalTransactions(referenceTime string)
(interface{}, error)

Parameters:

• referenceTime string – All transactions before this time stamp will be deleted.

Return Value Example:

{
 "Transactions": [

"otransaction~750f68538451847f57948f7d5261dcb81570cd9e429f928a4cb7bfa76392ecf
7"
],
 "msg": "Successfuly deleted transaction older than
date:2022-04-06T08:17:53Z"
}

Methods for Token Behavior Management - Mintable Behavior

MintBatch
This method creates (mints) multiple tokens in a batch operation. This method creates only
fungible tokens or fractional non-fungible tokens.
For fungible tokens, if the minter role is defined in the specification file, then any user with
the minter role can call this method. If not, any user can use this method to mint tokens. You
cannot mint more than the max_mint_quantity property of the token, if that property was
specified when the token was created or updated.
For non-fungible tokens, if the minter role is defined in the specification file, then any user
with the minter role can call this method. If not, any user can use this method to mint tokens.
Additionally, the caller must also be the creator of the token. There is no upper limit to the
quantity of fractional non-fungible tokens that can be minted.
You cannot use this method to mint a whole non-fungible token.

Ctx.ERC1155Token.MintBatch(accountId string, tokens []interface{},
quantities []float64) (interface{}, error)

Parameters:

• accountId string – The account ID of the user.

• tokenIds []string – The list of token IDs to mint tokens for.

• quantity []float64 – The list of quantities of tokens to mint, corresponding to the
token ID array.

Returns:

• On success, a JSON object that includes details on the minted tokens.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-843

Return Value Example:

{
 "details": [
 {
 "msg": "Successfully minted 100 tokens of fractional
tokenId: plot55 to Org-Id: appdev, User-Id: idcqa"
 },
 {
 "msg": "Successfully minted 100 tokens of tokenId:
'loyalty' to Token-Account-Id
'oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d4
10e'"
 }
],
 "msg": "Successfully minted batch of tokens for User-Account-Id
'ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c5
1f38' (Org-Id: 'appdev', User-Id: 'idcqa')"
}

Methods for Token Behavior Management - Transferable Behavior

BatchTransferFrom
This method completes a batch operation that transfers tokens specified in a list of
token IDs from one user to another user.
For NFTs, because the method transfers ownership of the NFT, the sender of the NFT
must own the token.
For fractional NFTs, if a user (including the creator of the token) transfers all of the
shares that they own, then they lose ownership of the token. If any share of a token is
transferred to a user, that user automatically becomes one of the owners of the
fractional NFT.
This method does not validate that the caller of the method is the specified sender.

Ctx.ERC1155Token.BatchTransferFrom(fromAccountId string, toAccountId
string, tokens []interface{}, quantities []float64) (interface{},
error)

Parameters:

• fromUserAccountId string – The account ID of the sender and token owner in
the current organization.

• toUserAccountId string – The account ID of the receiver.

• tokenIds string[] – A list of token IDs for the tokens to transfer.

• quantity float64[] – The list of quantities of tokens to transfer, corresponding
to the token ID array.

Returns:

• On success, a message with details for each token transfer.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-844

Return Value Example:

[
 {
 "msg": "Successfully transferred NFT token: 'FNFT' of '10' quantity
from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred 10 FT token: 'FT' from Account-Id:
oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f628237974c
(Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred NFT token: 'NFT' from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371
(Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446
(Org-Id: appdev, User-Id: user1_minter)"
 }
]

SafeBatchTransferFrom
This method completes a batch operation that transfers tokens specified in a list of token IDs
from one user to another user.
For NFTs, because the method transfers ownership of the NFT, the sender of the NFT must
own the token.
For fractional NFTs, if a user (including the creator of the token) transfers all of the shares
that they own, then they lose ownership of the token. If any share of a token is transferred to
a user, that user automatically becomes one of the owners of the fractional NFT.
The caller of the method must be the specified sender.

Ctx.ERC1155Token.SafeBatchTransferFrom(fromAccountId string, toAccountId
string, tokens []interface{}, quantities []float64) (interface{}, error)

Parameters:

• fromUserAccountId string – The account ID of the sender and token owner in the
current organization.

• toUserAccountId string – The account ID of the receiver.

• tokenIds string[] – A list of token IDs for the tokens to transfer.

• quantity float64[] – The list of quantities of tokens to transfer, corresponding to the
token ID array.

Returns:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-845

• On success, a message with details for each token transfer.

Return Value Example:

[
 {
 "msg": "Successfully transferred NFT token: 'FNFT' of '10'
quantity from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a100973
71 (Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f59034
46 (Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred 10 FT token: 'FT' from
Account-Id:
oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d41
0e (Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f62823797
4c (Org-Id: appdev, User-Id: user1_minter)"
 },
 {
 "msg": "Successfully transferred NFT token: 'NFT' from Account-
Id:
oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a100973
71 (Org-Id: appdev, User-Id: idcqa) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f59034
46 (Org-Id: appdev, User-Id: user1_minter)"
 }
]

BalanceOfBatch
This method completes a batch operation that gets the balance of token accounts.
The account details are specified in three separate lists of organization IDs, user IDs,
and token IDs. This method can be called only by a Token Admin of the chaincode or
by account owners. Account owners can see balance details only for accounts that
they own.

Ctx.ERC1155Account.BalanceOfBatch(accountIds []string, tokens
[]interface{}) (interface{}, error)

Parameters:

• accountIds []string – A list of the user account IDs.

• tokenIds []string – A list of the token IDs.

Return Value Example:

[
 {
 "OrgId": "appdev",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-846

 "UserId": "idcqa",
 "UserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "TokenAccountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097371",
 "TokenId": "FNFT",
 "Balance": 100
 },
 {
 "OrgId": "appdev",
 "UserId": "idcqa",
 "UserAccountId":
"ouaccount~412de5e3998dcd100973e1bad6e8729fddc1c7ff610beab8376d733a35c51f38",
 "TokenAccountId":
"oaccount~21206f309941a2a23c4f158a0fe1b8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
 "TokenId": "FT",
 "Balance": 50
 },
 {
 "OrgId": "appdev",
 "UserId": "user1_minter",
 "UserAccountId":
"ouaccount~9501bb774c156eb8354dfe489250ea91f757523d70f08ee494bda98bb352003b",
 "TokenAccountId":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890f5903446",
 "TokenId": "FNFT",
 "Balance": 10
 }
]

ExchangeToken
This method exchanges tokens between specified accounts. This method only supports
exchanging between an NFT (whole or fractional) and a fungible token or a fungible token
and an NFT (whole or fractional). This method can be called only by the account owner.

Ctx.ERC1155Token.ExchangeToken(fromTokenId string, fromUserAccountId string,
fromTokenQuantity float64, toTokenId string, toUserAccountId string,
toTokenQuantity float64) (interface{}, error)

Parameters:

• fromTokenId string – The ID of the token that the sender owns.

• fromUserAccountId string – The account ID of the sender.

• fromTokenQuantity float64 – The quantity of tokens from the sender to exchange with
the receiver.

• toTokenId string – The ID of the token that the receiver owns.

• toUserAccountId string – The account ID of the receiver.

• toTokenQuantity float64 – The quantity of tokens from the receiver to exchange with
the sender.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-847

Returns:

• On success, a message with token exchange details.

Return Value Example:

{
 "msg": "Succesfully exchanged 10 tokens of type 'nonfungible' with
tokenId: [r1] from Account
'oaccount~e88276a3be547e31b567346bdddde52d37734da4d5fae83ab2e5c98a10097
371' (OrgId: appdev, UserId: idcqa) to 10 tokens of type 'fungible'
with tokenId: [loy1] from Account
'oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67f3691c0f6282379
74c' (OrgId: 'appdev', UserId: 'user1_minter')"
}

Methods for Token Behavior Management - Burnable Behavior

Burn
This method deactivates, or burns, the specified fungible and non-fungible tokens.

Ctx.ERC1155Token.Burn(accountId string, tokens []interface{},
quantities []float64) (interface{}, error)

Parameters:

• accountId string – The account ID of the user.

• tokenIds []string – The list of token IDs to burn.

• quantity []float64 – The list of quantities of tokens to burn, corresponding to
the token ID array.

Returns:

• On success, a message with details about the burn operations.

Return Value Example:

[
 {
 "msg": "Successfully burned NFT token: 'art' from Account-Id:
oaccount~76cb672eeb1bd535899562a840d0c15a356db89e24bc8b43ac1dba845a4282
c6 (Org-Id: appdev, User-Id: idcqa)"
 },
 {
 "msg": "Successfully burned 2 tokens of tokenId: FT from
Account-ID
oaccount~9a940587fd322ccc8400233244cd3b13f3aa2a52e418e4c71fb819a2217bc4
9e (Org-Id: AutoF1377358917, User-Id: idcqa)"
 },
 {
 "msg": "Successfully burned 2 token share of tokenId: FNFT
from Account-ID

Chapter 7
Tokenization Support Using Blockchain App Builder

7-848

oaccount~87bcb699d507368ee3966cd03ee6d7736ffc55dde8c0f0e16b14866334ac504a
(Org-Id: AutoF1377358917, User-Id: idcqa)"
 }
]

Go Methods for ERC-1155 NFT Locking
Blockchain App Builder automatically generates methods that you can use to lock non-
fungible tokens that use the extended ERC-1155 standard.

A locked token cannot be burned or transferred to other users. All other properties, such as
the token's state, owner, and history are preserved. You can use the NFT locking functionality
when transferring a token to another blockchain network, such as Ethereum or Polygon.

Before you can lock NFTs, you must assign the vault manager role to a user. The vault
manager is a special type of role, a TokenSys role. TokenSys roles are different from asset-
based roles such as burner, minter, and notary, and from administrative roles such as Token
Admin and Org Admin. Currently Blockchain App Builder supports the vault TokenSys role.
The single user who has the vault role for a chaincode is the vault manager of the
chaincode, and can manage locked NFTs.

The typical flow for using the NFT locking functionality follows these steps.

• Create a non-fungible token that has the lockable behavior.

• Use the AddTokenSysRole method to give the vault role to a user, the vault manager.

• Call the LockNFT method to lock a non-fungible token, specified by the token ID.

TokenSys Role Management Methods

AddTokenSysRole
This method adds a TokenSys role to a specified user. This method can be called only by a
Token Admin of the chaincode.

func (t *Controller) AddTokenSysRole(orgId string, userId string, role
string) (interface{}, error) {
 userAccountId, err := t.Ctx.ERC1155Account.GenerateAccountId(orgId,
userId, constants.UserAccount)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.AddTokenSysRole",
"TOKEN", map[string]string{"accountId": userAccountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC1155Token.AddTokenSysRoleMember(role, userAccountId)
}

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-849

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• role: string – The name of the TokenSys role to give to the user.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully added role 'vault' to Account Id:
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03e
ba (Org-Id: Org1MSP, User-Id: user1)"
}

IsInTokenSysRole
This method returns a Boolean value to indicate if a user has a specified TokenSys
role. This method can be called only by a Token Admin of the chaincode.

func (t *Controller) IsInTokenSysRole(orgId string, userId string,
role string) (interface{}, error) {
 userAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId,
constants.UserAccount)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.IsInTokenSysRole",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC1155Token.IsInTokenSysRoleMember(role,
userAccountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• role: string – The name of the TokenSys role to check.

Returns:

• On success, a message that contains relevant details of the operation.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-850

Return Value Example:

{
 "result": true,
 "msg": "Account Id
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03eba
(Org-Id: Org1MSP, User-Id: user1) has vault role"
}

RemoveTokenSysRole
This method removes a TokenSys role from a specified user. This method can be called only
by a Token Admin of the chaincode.

func (t *Controller) RemoveTokenSysRole(orgId string, userId string, role
string) (interface{}, error) {
 userAccountId, err := t.Ctx.ERC1155Account.GenerateAccountId(orgId,
userId, constants.UserAccount)
 if err != nil {
 return nil, err
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.RemoveTokenSysRole",
"TOKEN", map[string]string{"accountId": userAccountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC1155Token.RemoveTokenSysRoleMember(role, userAccountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• role: string – The name of the TokenSys role to remove.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "msg": "Successfully removed role 'vault' from Account Id:
oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03eba
(Org-Id: Org1MSP, User-Id: user1)"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-851

TransferTokenSysRole
This method transfers a TokenSys role from a user to another user. This method can
be called only by a Token Admin of the chaincode.

func (t *Controller) TransferTokenSysRole(role string, fromOrgId
string, fromUserId string, toOrgId string, toUserId string)
(interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.TransferTokenSysRole
", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 fromUserAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(fromOrgId, fromUserId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in TransferTokenSysRole. Error:
%s", err)
 }
 toUserAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(toOrgId, toUserId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in TransferTokenSysRole. Error:
%s", err)
 }
 return t.Ctx.ERC1155Token.TransferTokenSysRole(role,
fromUserAccountId, toUserAccountId)
}

Parameters:

• fromOrgId: string – The membership service provider (MSP) ID of the user to
transfer the TokenSys role from.

• fromUserId: string – The user name or email ID of the user to transfer the
TokenSys role from.

• toOrgId: string – The membership service provider (MSP) ID of the user to
transfer the TokenSys role to.

• toUserId: string – The user name or email ID of the user to transfer the
TokenSys role to.

• role: string – The name of the TokenSys role to transfer.

Returns:

• On success, a message that contains relevant details of the operation.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-852

Return Value Example:

{
 "msg": "Successfully transfered role 'vault' from Account Id:
ouaccount~f4e311528f03fffa7810753d643f66289ff6c9080fcf839902f28a1d3aff1789
(Org-Id: Org1MSP, User-Id: user1) to Account Id:
ouaccount~ae5be2ae8f98d6d32f5d02b43877d987114e7937c7bacbc30390dcce09996a19
(Org-Id: Org1MSP, User-Id: user2)"
}

GetAccountsByTokenSysRole
This method returns a list of all account IDs for a specified TokenSys role. This method can
be called only by a Token Admin of the chaincode.

func (t *Controller) GetAccountsByTokenSysRole(role string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Role.GetAccountsByTokenSysRole",
 "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC1155Token.GetAccountsByTokenSysRole(role)
}

Parameters:

• role: string – The name of the TokenSys role.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "accountIds": [

"oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03eba"
]
}

GetUsersByTokenSysRole
This method returns user information for all users with a specified TokenSys role. This
method can be called only by a Token Admin of the chaincode.

func (t *Controller) GetUsersByTokenSysRole(role string) (interface{},
error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Role.GetUsersByTokenSysRole",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-853

"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 return t.Ctx.ERC1155Token.GetUsersByTokenSysRole(role)
}

Parameters:

• role: string – The name of the TokenSys role.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "Users":[
 {

"accountId":"oaccount~bf07f584a94be44781e49d9101bfaf58c6fbbe77a4dfebdb8
3c874c2caf03eba",
 "orgId":"Org1MSP",
 "userId":"user1"
 }
]
}

NFT Locking Methods

LockNFT
This method locks a specified non-fungible token. To lock a token, there must be a
user with the TokenSys vault role, who acts as the vault manager. This method can
be called only by the owner of the token.

func (t *Controller) LockNFT(orgId string, userId string, tokenId
string) (interface{}, error) {
 return t.Ctx.ERC1155Token.LockNFT(orgId, userId, tokenId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user (optional).

• tokenID: string – The ID of the token to lock.

Returns:

• On success, a JSON representation of the token object.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-854

Return Value Example:

{
 "AssetType":"otoken",
 "Behaviors":[
 "indivisible",
 "mintable",
 "transferable",
 "burnable",
 "lockable",
 "roles"
],

"CreatedBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b
6a7733463",
 "CreationDate":"2023-10-20T12:22:47Z",
 "IsBurned":false,
 "IsLocked":true,
 "Mintable":{
 "Max_mint_quantity":20000
 },
 "On_sale_flag":false,

"Owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b6a77
33463",
 "Price":120,
 "Quantity":1,
 "Roles":{
 "minter_role_name":"minter"
 },
 "TokenDesc":"",
 "TokenId":"token1",
 "TokenMetadata":{
 "Description":"",
 "Image":"",
 "Painter_name":"",
 "Painting_name":""
 },
 "TokenName":"artcollection",
 "TokenStandard":"erc1155+",
 "TokenType":"nonfungible",
 "TokenUnit":"whole",
 "TokenUri":"token1.example.com"
}

IsNFTLocked
This method returns a Boolean value to indicate if a specified token is locked. This method
can be called only by the token owner, the vault manager (the user with the TokenSys vault
role), or a Token Admin of the chaincode.

func (t *Controller) IsNFTLocked(tokenId string) (interface{}, error) {
 auth, err :=

Chapter 7
Tokenization Support Using Blockchain App Builder

7-855

t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.IsNFTLocked",
"TOKEN", map[string]string{"tokenId": tokenId})
 if err != nil && !auth {
 isCallerTokenSysRoleHolder, error :=
t.Ctx.ERC1155Token.IsCallerTokenSysRoleHolder(constants.Vault)
 if error != nil {
 return nil, error
 }
 if !isCallerTokenSysRoleHolder {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 }
 return t.Ctx.ERC1155Token.IsNFTLocked(tokenId)
 }

Parameters:

• tokenID: string – The ID of the token.

Returns:

• On success, a message that contains relevant details of the operation.

Return Value Example:

{
 "isNFTLocked":true
}

GetAllLockedNFTs
This method returns a list of all locked non-fungible tokens. This method can be called
only by the vault manager (the user with the TokenSys vault role) or a Token Admin of
the chaincode.

func (t *Controller) GetAllLockedNFTs() (interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.GetAllLockedNFTs",
"TOKEN")
 if err != nil && !auth {
 isCallerTokenSysRoleHolder, error :=
t.Ctx.ERC1155Token.IsCallerTokenSysRoleHolder(constants.Vault)
 if error != nil {
 return nil, error
 }
 if !isCallerTokenSysRoleHolder {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 }
 return t.Ctx.ERC1155Token.GetAllLockedNFTs()
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-856

Parameters:

• None

Returns:

• On success, an array of the locked non-fungible token objects.

Return Value Example:

[
 {
 "key":"token1",
 "valueJson":{
 "AssetType":"otoken",
 "Behaviors":[
 "indivisible",
 "mintable",
 "transferable",
 "burnable",
 "lockable",
 "roles"
],

"CreatedBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b
6a7733463",
 "CreationDate":"2023-10-20T12:22:47Z",
 "IsBurned":false,
 "IsLocked":true,
 "Mintable":{
 "Max_mint_quantity":20000
 },
 "On_sale_flag":false,

"Owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b6a77
33463",
 "Price":120,
 "Quantity":1,
 "Roles":{
 "minter_role_name":"minter"
 },
 "TokenDesc":"",
 "TokenId":"token1",
 "TokenMetadata":{
 "Description":"",
 "Image":"",
 "Painter_name":"",
 "Painting_name":""
 },
 "TokenName":"artcollection",
 "TokenStandard":"erc1155+",
 "TokenType":"nonfungible",
 "TokenUnit":"whole",
 "TokenUri":"token1.example.com"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-857

 }
 }
]

GetAllLockedNFTsByOrg
This method returns a list of all locked non-fungible tokens for a specified organization
and optionally a specified user. This method can be called only by the vault manager
(the user with the TokenSys vault role) or a Token Admin of the chaincode.

func (t *Controller) GetLockedNFTsByOrg(orgId string,
userId ...string) (interface{}, error) {
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155Token.GetLockedNFTsByOrg",
 "TOKEN")
 if err != nil && !auth {
 isCallerTokenSysRoleHolder, error :=
t.Ctx.ERC1155Token.IsCallerTokenSysRoleHolder(constants.Vault)
 if error != nil {
 return nil, error
 }
 if !isCallerTokenSysRoleHolder {
 return nil, fmt.Errorf("error in authorizing the
caller %s", err.Error())
 }
 }
 return t.Ctx.ERC1155Token.GetLockedNFTsByOrg(orgId, userId...)
 }

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user (optional).

Returns:

• On success, an array of the locked non-fungible token objects.

Return Value Example:

[
 {
 "key":"token1",
 "valueJson":{
 "AssetType":"otoken",
 "Behaviors":[
 "indivisible",
 "mintable",
 "transferable",
 "burnable",
 "lockable",
 "roles"

Chapter 7
Tokenization Support Using Blockchain App Builder

7-858

],

"CreatedBy":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b
6a7733463",
 "CreationDate":"2023-10-20T12:22:47Z",
 "IsBurned":false,
 "IsLocked":true,
 "Mintable":{
 "Max_mint_quantity":20000
 },
 "On_sale_flag":false,

"Owner":"oaccount~208e3345ac84b4849f0d2648b2f2f018019886a1230f99304ebff1b6a77
33463",
 "Price":120,
 "Quantity":1,
 "Roles":{
 "minter_role_name":"minter"
 },
 "TokenDesc":"",
 "TokenId":"token1",
 "TokenMetadata":{
 "Description":"",
 "Image":"",
 "Painter_name":"",
 "Painting_name":""
 },
 "TokenName":"artcollection",
 "TokenStandard":"erc1155+",
 "TokenType":"nonfungible",
 "TokenUnit":"whole",
 "TokenUri":"token1.example.com"
 }
 }
]

Go Methods for ERC-1155 Token Account Status
Blockchain App Builder automatically generates methods that you can use to manage
account status for tokens that use the extended ERC-1155 standard.

You can use the following methods to put token user accounts in the active, suspended, or
deleted states.

When an account is suspended, the account user cannot complete any write operations,
which include minting, burning, and transferring tokens. Additionally, other users cannot
transfer tokens to a suspended account. A suspended account can still complete read
operations.

An account with a non-zero token balance cannot be deleted. You must transfer or burn all
tokens in an account before you can delete the account. After an account is in the deleted
state, the account state cannot be changed back to active or suspended.

• Automatically Generated Account Status Methods

• Account Status SDK Methods

Chapter 7
Tokenization Support Using Blockchain App Builder

7-859

Automatically Generated Account Status Methods

GetAccountStatus
This method gets the current status of the token account. This method can be called
by the Token Admin of the chaincode or by the token account owner.

func (t *Controller) GetAccountStatus(orgId string, userId string,
tokenId ...string) (interface{}, error) {
 userAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
accountId of (Org-Id: %s, User-Id: %s)", orgId, userId)
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155AccountStatus.Get",
"TOKEN", map[string]string{"accountId": userAccountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller
%s", err.Error())
 }
 tokenAccount, err := t.Ctx.ERC1155Account.Get(userAccountId,
tokenId...)
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountStatus. Error:
%s", err)
 }
 tokenAccountId, err := util.GetAccountProperty(tokenAccount,
constants.AccountId)
 accountStatus, err :=
t.Ctx.ERC1155AccountStatus.GetAccountStatus(tokenAccountId)
 if err != nil {
 return
t.Ctx.ERC1155AccountStatus.GetDefaultAccountStatus(tokenAccountId)
 }
 return accountStatus, nil
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• tokenId ...string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Returns:

• On success, a JSON representation of the token account status. If no status is
found in the ledger for the account because the account was created before the

Chapter 7
Tokenization Support Using Blockchain App Builder

7-860

account status functionality was available, the status is listed as active in the response.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "active"
}

GetAccountStatusHistory
This method gets the history of the account status. This method can be called by the Token
Admin of the chaincode or by the token account owner.

func (t *Controller) GetAccountStatusHistory(orgId string, userId string,
tokenId ...string) (interface{}, error) {
 userAccountId, err := t.Ctx.ERC1155Account.GenerateAccountId(orgId,
userId, constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
accountId of (Org-Id: %s, User-Id: %s)", orgId, userId)
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155AccountStatus.Get", "TOKEN",
map[string]string{"accountId": userAccountId})
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 tokenAccount, err := t.Ctx.ERC1155Account.Get(userAccountId,
tokenId...)
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountStatusHistory. Error:
%s", err)
 }
 tokenAccountId, err := util.GetAccountProperty(tokenAccount,
constants.AccountId)
 statusId, err :=
t.Ctx.ERC1155AccountStatus.GenerateAccountStatusId(tokenAccountId)
 if err != nil {
 return nil, err
 }
 accountStatusHistory, err :=
t.Ctx.ERC1155AccountStatus.History(statusId)
 if err != nil {
 return []map[string]interface{}{}, nil
 }

Chapter 7
Tokenization Support Using Blockchain App Builder

7-861

 return accountStatusHistory, nil
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• tokenId ...string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Returns:

• On success, the account status history in JSON format.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:20:34+05:30",
 "TxId":
"af1601c7a14b4becf4bb3b285d85553b39bf234caaf1cd488a284a31a2d9df78",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "AssetType": "oaccountStatus",
 "Status": "suspended",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7"
 }
 },
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:19:15+05:30",
 "TxId":
"4b307b989063e43add5357ab110e19174d586b9746cc8a30c9aa3a2b0b48a34e",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "AssetType": "oaccountStatus",
 "Status": "active",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7"
 }
 }
]

Chapter 7
Tokenization Support Using Blockchain App Builder

7-862

ActivateAccount
This method activates a token account. This method can be called only by a Token Admin of
the chaincode. Deleted accounts cannot be activated. For any accounts created prior to the
account status functionality being available, you must call this method to set the account
status as active.

func (t *Controller) ActivateAccount(orgId string, userId string,
tokenId ...string) (interface{}, error) {
 userAccountId, err := t.Ctx.ERC1155Account.GenerateAccountId(orgId,
userId, constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating accountId of
(Org-Id: %s, User-Id: %s)", orgId, userId)
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155AccountStatus.ActivateAccount",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 tokenAccount, err := t.Ctx.ERC1155Account.Get(userAccountId, tokenId...)
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountTransactionHistory.
Error: %s", err)
 }
 tokenAccountId, err := util.GetAccountProperty(tokenAccount,
constants.AccountId)
 return t.Ctx.ERC1155Account.ActivateAccount(tokenAccountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• tokenId ...string – For a non-fungible token account, an empty string. For a fungible
token account, the token ID.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-863

 "Status": "active"
}

SuspendAccount
This method suspends a token account. This method can be called only by a Token
Admin of the chaincode. After an account is suspended, you cannot complete any
operations that update the account. A deleted account cannot be suspended.

func (t *Controller) SuspendAccount(orgId string, userId string,
tokenId ...string) (interface{}, error) {
 userAccountId, err :=
t.Ctx.ERC1155Account.GenerateAccountId(orgId, userId,
constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating
accountId of (Org-Id: %s, User-Id: %s)", orgId, userId)
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155AccountStatus.SuspendAccou
nt", "TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 tokenAccount, err := t.Ctx.ERC1155Account.Get(userAccountId,
tokenId...)
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountTransactionHistory.
Error: %s", err)
 }
 tokenAccountId, err := util.GetAccountProperty(tokenAccount,
constants.AccountId)
 return t.Ctx.ERC1155Account.SuspendAccount(tokenAccountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the
current organization.

• userId: string – The user name or email ID of the user.

• tokenId ...string – For a non-fungible token account, an empty string. For a
fungible token account, the token ID.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "AssetType": "oaccountStatus",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-864

 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "suspended"
}

DeleteAccount
This method deletes a token account. This method can be called only by a Token Admin of
the chaincode. After an account is deleted, you cannot complete any operations that update
the account. The deleted account is in a final state and cannot be changed to any other
state. To delete an account, the account balance must be zero.

func (t *Controller) DeleteAccount(orgId string, userId string,
tokenId ...string) (interface{}, error) {
 userAccountId, err := t.Ctx.ERC1155Account.GenerateAccountId(orgId,
userId, constants.UserAccount)
 if err != nil {
 return nil, fmt.Errorf("error in getting the generating accountId of
(Org-Id: %s, User-Id: %s)", orgId, userId)
 }
 auth, err :=
t.Ctx.ERC1155Auth.CheckAuthorization("ERC1155AccountStatus.DeleteAccount",
"TOKEN")
 if err != nil && !auth {
 return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
 }
 tokenAccount, err := t.Ctx.ERC1155Account.Get(userAccountId, tokenId...)
 if err != nil {
 return nil, fmt.Errorf("error in GetAccountTransactionHistory.
Error: %s", err)
 }
 tokenAccountId, err := util.GetAccountProperty(tokenAccount,
constants.AccountId)
 return t.Ctx.ERC1155Account.DeleteAccount(tokenAccountId)
}

Parameters:

• orgId: string – The membership service provider (MSP) ID of the user in the current
organization.

• userId: string – The user name or email ID of the user.

• tokenId ...string – For a non-fungible token account, an empty string. For a fungible
token account, the token ID.

Returns:

• On success, a JSON representation of the token account status.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-865

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "deleted"
}

Account Status SDK Methods

GetDefaultAccountStatus
This method gets the current status of a token account, with the status as active for
any account that does not have account status stored in the ledger (because the
account was created prior to the account status functionality).

Ctx.GetDefaultAccountStatus(accountId string) (ERC1155AccountStatus,
error)

Parameters:

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the token account status.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "active"
}

GetAccountStatus
This method gets the current status of the token account.

Ctx.ERC1155AccountStatus.GetAccountStatus(accountId string)
(NFTAccountStatus, error)

Parameters:

Chapter 7
Tokenization Support Using Blockchain App Builder

7-866

• accountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the token account status. If no status is found in
the ledger for the account because the account was created before the account status
functionality was available, the status is listed as active in the response.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "active"
}

GetAccountStatusHistory
This method gets the history of the account status.

Ctx.ERC1155AccountStatus.History(statusId string) (interface{}, error)

Parameters:

• statusId: string – The ID of the account status object.

Returns:

• On success, a JSON representation of the account status history.

Return Value Example:

[
 {
 "IsDelete": "false",
 "Timestamp": "2022-12-02T16:20:34+05:30",
 "TxId":
"af1601c7a14b4becf4bb3b285d85553b39bf234caaf1cd488a284a31a2d9df78",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "AssetType": "oaccountStatus",
 "Status": "suspended",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7"
 }
 },
 {
 "IsDelete": "false",

Chapter 7
Tokenization Support Using Blockchain App Builder

7-867

 "Timestamp": "2022-12-02T16:19:15+05:30",
 "TxId":
"4b307b989063e43add5357ab110e19174d586b9746cc8a30c9aa3a2b0b48a34e",
 "Value": {
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "AssetType": "oaccountStatus",
 "Status": "active",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7"
 }
 }
]

ActivateAccount
This method activates a token account. For any accounts created prior to the account
status functionality being available, you must call this method to set the account
status as active.

Ctx.ERC1155Account.ActivateAccount(tokenAccountId string)
(interface{}, error)

Parameters:

• tokenAccountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified
token account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f
79d5e96d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f
9c1",
 "Status": "active"
}

SuspendAccount
This method suspends a token account.

Ctx.ERC1155Account.SuspendAccount(tokenAccountId string) (interface{},
error)

Chapter 7
Tokenization Support Using Blockchain App Builder

7-868

Parameters:

• tokenAccountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "suspended"
}

DeleteAccount
This method deletes a token account.

Ctx.ERC1155Account.DeleteAccount(tokenAccountId string) (interface{}, error)

Parameters:

• tokenAccountId: string – The ID of the token account.

Returns:

• On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

{
 "AssetType": "oaccountStatus",
 "StatusId":
"oaccountStatus~5a0b0d8b1c6433af9fedfe0d9e6580e7cf6b6bb62a0de6267aaf79f79d5e9
6d7",
 "AccountId":
"oaccount~1c568151c4acbcd1bd265c766c677145760a61c47fc8a3ba681a4cfbe287f9c1",
 "Status": "deleted"
}

Deploying and Testing Token Chaincode
You deploy token chaincode projects by following the same steps as other chaincode
projects, but there are some special issues to consider.

You can deploy chaincode to only one organization or instance when you use the standard
deployment steps with Blockchain App Builder. When a token chaincode is deployed, the list

Chapter 7
Tokenization Support Using Blockchain App Builder

7-869

of Token Admin users is specified. The Token Admin user can add or remove other
users by calling the addAdmin and removeAdmin methods.

To deploy to multiple organizations or instances, package the chaincode and then
manually deploy it to all the instances. For more information, see the applicable
following topic:

• CLI: Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network

• Visual Studio Code: Deploy Your Chaincode to a Remote Oracle Blockchain
Platform Network

To test token projects locally with multiple users, see the applicable following topic:

• CLI: Testing Multiple Token Users Locally

• Visual Studio Code: Testing Multiple Token Users Locally

To test token projects on a remote Oracle Blockchain Platform network, see the
applicable following topic:

• CLI: Testing Token Projects on a Remote Oracle Blockchain Platform Network

• Visual Studio Code: Testing Token Projects on a Remote Oracle Blockchain
Platform Network

Adding Enrollments for Token Use Cases

Oracle Blockchain Platform supports enrollments to the REST proxy. You use
enrollments with token chaincodes to ensure the identities of the users completing
token transactions. To do this, when you add enrollments for token use cases, specify
a user ID for each enrollment, and specify one and only one user for each enrollment.
For more information about adding enrollments, see Add Enrollments to the REST
Proxy.

Working With the Sample Token Specification Files
You can use the sample token specification files that come with Blockchain App
Builder to investigate the complete life cycle of a token.

To get the Blockchain App Builder samples, in the service console open the
Developer Tools tab and then select the Blockchain App Builder pane. Click
Download Specification Samples and Related Code and then extract the
downloaded archive file (obp-app-builder-samples.zip). The archive file
includes token specification files for the Fiat Money Token, Loyalty Token, NFT Art
Collection Marketplace, and Fractional NFT in Real Estate samples.

For the Fiat Money Token and Loyalty Token samples, the archive file also includes
scaffolded token chaincode in Go and a corresponding Postman collection file (specific
to Go), which you can use to test token life cycle operations on an Oracle Blockchain
Platform network.

The NFT Art Collection Marketplace and Fractional NFT in Real Estate samples
includes specification files that are designed for development in TypeScript. The NFT
Art Collection Marketplace sample includes scaffolded token chaincode in Typescript
and a corresponding Postman collection file (specific to Typescript), which you can use
to test token life cycle operations for a non-fungible token on an Oracle Blockchain
Platform network. There are two NFT Art Collection Marketplace samples: one for the
ERC-721 standard and one for the ERC-1155 standard.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-870

The token asset name is specified in the sample specification file. A token is defined by
behaviors, which are also in the specification file. The sample token assets also include
custom properties.

For more information about using the token samples, see the readme.md file in the sample
archive file.

For more information about creating specification files in Blockchain App Builder, see the
following topics:

• Input Specification File

• Input Specification File for Token Taxonomy Framework

• Input Specification File for ERC-721

• Input Specification File for ERC-1155

For more information about deploying and testing chaincode projects, see Deploying and
Testing Token Chaincode.

Disaster Recovery Support for Tokenization
You can configure Oracle Blockchain Platform for disaster recovery support in tokenization
scenarios.

Before you can set up disaster recovery support in a tokenization scenario, the blockchain
network must be configured for disaster recovery, using the following guidelines. For more
information, see Add Oracle Blockchain Platform Participant Organizations to the Network.

• In addition to the founder instance of Oracle Blockchain Platform, create at least two
more participant instances and join them to the blockchain network.

• Add at least two orderers from each participant instance to the blockchain network.
Typically you add at least three orderers from each participant instance.

• Join the participant organizations to the same channels and install chaincodes on the
participant instances.

• Ensure that the orderers from the participant instances are joined to the channels on the
founder instance.

You can then prepare for disaster recovery in a tokenization scenario by designating a
second instance of Oracle Blockchain Platform as a disaster recovery organization. When a
primary Oracle Blockchain Platform instance is down and unable to send transactions to the
chaincode, a secondary Oracle Blockchain Platform instance set up as a disaster recovery
organization can be used to send the transaction to the chaincode on behalf of the primary
instance.

In the following example, the founder organization on the primary instance is Org1MSP and
the participant organization on the disaster recovery instance is Org2MSP.

To set up a second instance for disaster recovery in tokenization scenarios, complete the
following steps.

1. Create custom enrollments on the disaster recovery organization and add a custom
attribute for primaryOrgMSPId that is the ID of the founder organization (Org1MSP). You
can use a tool such as Postman to create the custom enrollment. This enrollment
indicates that Org2MSP is a disaster recovery organization for the primary organization,
Org1MSP.

Chapter 7
Tokenization Support Using Blockchain App Builder

7-871

The following example shows an example request body for the REST endpoint
{{bc-url}}/console/admin/api/v2/nodes/restproxies/{{bc-restproxy-id}}/
enrollments. You can get the bc-restproxy-id value in the response from a GET
request for the REST endpoint {{bc-url}}/console/admin/api/v2/nodes.

{
 "enrollmentId": "<enrollmentId>",
 "attributes":{
 "primaryOrgMSPId": "<primaryOrgId>"
 }
 }

The following example is the expected response.

{
"respMesg": "SUCCESS"
}

2. Add users to the custom enrollment. You can use Postman or the Oracle
Blockchain Platform console to add users. The enrollment IDs and user names in
the disaster recovery organization (Org2MSP) must match the enrollment IDs and
user names in the primary organization (Org1MSP). The only difference is the
custom attribute, primaryOrgMSPId, which points to the primary organization
(Org1MSP).
The following example shows an example request body for the REST endpoint
{{bc-url}}/console/admin/api/v2/nodes/restproxies/{{bc-restproxy-id}}/
enrollments/{{bc-enrolment-id}}/users .

{
 "userName": "<userId>"
 }

The following example is the expected response.

{
"respMesg": "SUCCESS"
}

Chapter 7
Tokenization Support Using Blockchain App Builder

7-872

8
Deploy and Manage Chaincodes

To learn more about deploying, monitoring, and upgrading chaincodes, select the section
based on the platform version of Hyperledger Fabric that your instance is running on.

• Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

• Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

Deploy and Manage Chaincodes on Hyperledger Fabric v2.x
This topic contains information to help you deploy, monitor, and find information about the
chaincodes on the network.

Topics

• Typical Workflow to Deploy Chaincodes

• Use Quick Deployment

• Use Advanced Deployment

• Deploy a Chaincode

• Chaincode Life Cycle

• Specify an Endorsement Policy

• View an Endorsement Policy

• Find Information About Chaincodes

• Delete a Chaincode

• Manage Chaincode Versions

• Upgrade a Chaincode

• What Are Private Data Collections?

• Add Private Data Collections

• View Private Data Collections

Typical Workflow to Deploy Chaincodes
(Hyperledger Fabric v2.x) Here are the common tasks for deploying chaincodes.

You must be an administrator to complete these tasks.

8-1

Task Description More Information

Use the wizard to fully or
partially deploy a chaincode

For testing, use Quick
Deployment to perform the
deployment in one step, using
default settings.
For production, use Advanced
Deployment to specify the
deployment settings such as
which peers to install the
chaincode on and the
endorsement policy you want
to use.

Use Quick Deployment

Use Advanced Deployment

Deploy a chaincode Deploying a chaincode
consists of approving and
committing the chaincode
definition.

Deploy a Chaincode

Chaincode Life Cycle

Upgrade a chaincode Upload a newer version of a
chaincode package, or update
a chaincode definition.

Upgrade a Chaincode

Use Quick Deployment
(Hyperledger Fabric v2.x) Use the quick deployment option to complete a one-step
chaincode deployment. This option is recommended for chaincode testing.

The quick deployment uses default settings, installs the chaincode on all peers in the
channel, deploys the chaincode using the default endorsement policy, and enables the
chaincode in the REST proxy.

Note the following information:

• The process to deploy sample chaincodes is different than the process described
in this topic. See Explore Oracle Blockchain Platform Using Samples (Hyperledger
Fabric v2.x).

• You can use the advanced deployment option to put your chaincode into
production on the network. See Use Advanced Deployment.

You must be an administrator to complete this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click Deploy a New Chaincode.

The Deploy Chaincode page is displayed.

3. Click Quick Deployment.

The Deploy Chaincode (Quick) page is displayed.

4. In the Package Label field, enter a description of the chaincode package.

Use the following guidelines when labeling the chaincode:

• Use ASCII alphanumeric characters, dashes (-), and underscores (_).

• The label must start and end only with ASCII alphanumeric characters. For
example, you can't use labels such as _mychaincode or mychaincode_.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-2

• Dashes (-) and underscores (_) must be followed by ASCII alphanumeric characters.
For example, you can't use names like my--chaincode or my-_chaincode.

• The package label can be up to 50 characters long.

5. In the Chaincode Name field, enter a unique name for the chaincode. In the Version
field enter a string value to specify the chaincode’s version number.

Use these guidelines when naming the chaincode:

• Use ASCII alphanumeric characters, dashes (-), and underscores (_).

• The name must start and end only with ASCII alphanumeric characters.

• Dashes (-) and underscores (_) must be followed with ASCII alphanumeric
characters.

• The name and version can each be up to 64 characters long.

• The chaincode version can also contain periods (.) and plus signs (+).

6. If the chaincode requires initialization, select Init-required.

If Init-required is selected, the client application must invoke the Init function explicitly,
by specifying the isInit flag, before calling any other function.

7. Review the other default settings and modify them as needed.

8. If you are deploying chaincode source in a .zip file, leave Is Packaged Chaincode
deselected. If you are deploying a chaincode package in a .tar.gz file, select Is
Packaged Chaincode.

9. Click Upload Chaincode File and browse for the chaincode file to upload and deploy.

10. Click Submit.

The chaincode is installed on the channel’s peers and deployed.

On the Channels tab, click the name of the channel that you deployed the chaincode to, and
then click Deployed Chaincodes. The deployed chaincode's name, version, sequence
number, and package ID are displayed in the summary table, as well as the approved and
committed statuses.

Use Advanced Deployment
(Hyperledger Fabric v2.x) Use the advanced deployment option to specify the parameters
required to deploy a chaincode into a production environment. For example, you’ll specify
which peers to install the chaincode on and the endorsement policy to use.

Note the following information:

• The process to deploy sample chaincodes is different than the process described in this
topic. See Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v2.x).

• You can use the quick deployment option for chaincode testing. Quick deployment is a
one-step deployment that uses default settings, installs the chaincode on all peers in the
channel, and deploys the chaincode using a default endorsement policy. See Use Quick
Deployment.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click Deploy a New Chaincode.

The Deploy Chaincode page is displayed.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-3

3. Click Advanced Deployment.

The Deploy Chaincode (Advanced) Step 1 of 2: Install page is displayed.

4. In the Package Label field, enter a description of the chaincode package.

Use the following guidelines when labeling the chaincode:

• Use ASCII alphanumeric characters, dashes (-), and underscores (_).

• The label must start and end only with ASCII alphanumeric characters. For
example, you can't use labels such as _mychaincode or mychaincode_.

• Dashes (-) and underscores (_) must be followed by ASCII alphanumeric
characters. For example, you can't use names like my--chaincode or my-
_chaincode.

• The package label can be up to 50 characters long.

5. Select the languange that the chaincode is written in, and select one or more
network peers to install the chaincode onto. To provide high availability, choose the
appropriate number of peers from each partition. The peers you choose must be
joined to the channel that you’ll instantiate the chaincode on.

6. If you are deploying chaincode source in a .zip file, leave Is Packaged
Chaincode deselected. If you are deploying a chaincode package in a .tar.gz
file, select Is Packaged Chaincode.

7. Click Upload Chaincode File and browse for the chaincode file to upload and
deploy. Click Next.

The chaincode is installed and the Deploy Chaincode (Advanced) Step 2 of 2:
Deploy page is displayed.

8. Decide if you want to deploy the chaincode now or later.

• Click Close to close the wizard and deploy later.

• To deploy now, select the channel to deploy the chaincode on.

9. In the Chaincode Name field, enter a unique name for the chaincode. In the
Version field enter a string value to specify the chaincode’s version number.

Use these guidelines when naming the chaincode:

• Use ASCII alphanumeric characters, dashes (-), and underscores (_).

• The name must start and end only with ASCII alphanumeric characters.

• Dashes (-) and underscores (_) must be followed with ASCII alphanumeric
characters.

• The name and version can each be up to 64 characters long.

• The chaincode version can also contain periods (.) and plus signs (+).

10. If the chaincode requires initialization, select Init-required.

If Init-required is selected, the client application must invoke the Init function
explicitly, by specifying the isInit flag, before calling any other function.

11. If required, enter an endorsement policy and private data collections, and then
click Next. For more information about endorsement policies, see Specify an
Endorsement Policy. For more information about private data collections, see Add
Private Data Collections.

Note the following information:

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-4

• Deployment approves, commits, and initializes the chaincode on the channel.

• If you do not change the endorsement policy, Oracle Blockchain Platform uses the
default endorsement policy. The default endorsement policy is defined in the /
Channel/Application/Endorsement policy of the channel where you are deploying the
chaincode. The default endorsement policy gets an endorsement from any peer from
any organization on the network.

• When deployment is complete, the peers are able to accept chaincode invocations
and can endorse transactions.

The chaincode is deployed.

Deploy a Chaincode
(Hyperledger Fabric v2.x) To deploy a chaincode, it must be approved by organizations and
then committed to a channel. After a chaincode is deployed, peers are able to accept
chaincode invocations and can endorse transactions.

Note the following information:

• You must install the chaincode on the required peers before you can deploy it.

• You can deploy more than one chaincode on a channel.

• The process to deploy the sample chaincodes is different than the deployment process
described in this topic. See Explore Oracle Blockchain Platform Using Samples
(Hyperledger Fabric v2.x).

You must be an administrator to complete this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, locate the chaincode package and click its More Actions menu,
and select Deploy.

The Deploy Chaincode dialog is displayed.

3. Enter information about where and how to deploy the chaincode.

Field Description

Channel Select the channel for the chaincode to run on.

Chaincode
Name

Enter a unique name, up to 64 characters long, for the deployed chaincode.
• Use ASCII alphanumeric characters, dashes (-), and underscores (_).
• The name must start and end only with ASCII alphanumeric characters.
• Dashes (-) and underscores (_) must be followed with ASCII alphanumeric

characters.

Version Enter a string value, up to 64 characters long, to specify the chaincode’s version
number.
• Use ASCII alphanumeric characters, dashes (-), underscores (_), periods (.)

and plus signs (+).

Init-required Select if the chaincode requires initialization. If selected, the client application
must invoke the Init function explicitly, by specifying the isInit flag, before
calling any other function.

Endorsement
Policy

In this section, specify the policy required to endorse the chaincode.
If you don’t specify an endorsement policy, then the default endorsement policy
is used. The default endorsement policy gets an endorsement from any peer on
the network.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-5

Field Description

Private Data
Collection

In this section, add one or more private data collections. Private data collections
specify subsets of organizations that endorse, commit, or query private data on
the channel you deploy the chaincode on.

4. Click Deploy.

The chaincode is deployed.

5. To confirm that the chaincode was deployed, go to the Channels tab and click the
name of the channel that you deployed the chaincode on. Go to the Deployed
Chaincodes tab and confirm that the chaincode is listed in the summary table.

Chaincode Life Cycle
(Hyperledger Fabric v2.x) The chaincode life cycle describes the process of installing
chaincode on peers and deploying it on a channel.

The chaincode life cycle is based on the capabilities of the Hyperledger Fabric v2.x
platform, which allows for the decentralized governance of chaincodes. Multiple
organizations can agree on chaincode parameters, including the chaincode
endorsement policy, before a chaincode can interact with the ledger. These functions
are implemented in the new quick deployment and advanced deployment options, as
well as in the REST API. For more information about the new life cycle, see Fabric
chaincode lifecycle in the Hyperledger Fabric v2.2.4 documentation.

Typically, to deploy an installed chaincode, you use quick deployment or advanced
deployment in the console. The deployment process includes packaging and installing
the chaincode as well as approving and committing the chaincode definition. You can
also use the REST API to complete the approval and commitment operations
separately.

Package and Install a Chaincode

When you install chaincode in Oracle Blockchain Platform, the chaincode is packaged,
installed, and a package ID is generated automatically. The package ID is displayed on
the Chaincodes tab of the console.

Approve a Chaincode Definition

Before a chaincode can be deployed to a channel, the chaincode definition must be
approved by enough organizations to satisfy the LifecycleEndorsement policy of the
channel. The default LifecycleEndorsement policy in Oracle Blockchain Platform lets
any organization approve the chaincode definition (as opposed to a majority of
organizations). The chaincode definition includes the following parameters, which must
be the same for all organizations: Chaincode Name, Version, Sequence,
Endorsement Policy, Private Data Collection, and Init-required. A
chaincode definition can also include a Package ID, which does not have to be the
same for all organizations.

After a chaincode definition is approved, one organization can collect endorsements
from peers of the approving organizations and then commit the chaincode definition to
the channel.

To approve a chaincode definition by using the REST API, see Approve a Chaincode
Definition in a Channel.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-6

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2-lifecycle
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2-lifecycle
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-approve
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-approve

In the console, when you use quick deployment or advanced deployment the approval and
commitment steps are both attempted.

Commit a Chaincode Definition

To commit an approved chaincode definition by using the REST API, see Commit a
Chaincode Definition in a Channel.

In the console, you can see chaincode definitions that are approved but not committed on the
Deployed Chaincodes page for the channel. You can use the More Actions menu to commit
the approved chaincode.

Chaincode Life Cycle Scenarios

Scenario Description

Join a channel Typically in the console you do not approve a
chaincode definition without then committing it. If
you join a shared channel where a chaincode
definition was committed by another organization,
you will see the chaincode definition listed as
committed but not approved on the Deployed
Chaincodes page for the channel. You can use the
More Actions menu to approve the chaincode
definition and also to associate a package ID. You
do not need to commit the package definition
again.

Update an endorsement policy You can update the endorsement policy in the
chaincode definition without reinstalling the
chaincode. On the Deployed Chaincodes page for
the channel, use the More Actions menu to
upgrade the chaincode definition. Expand
Endorsement Policy and specify a new policy,
then click Upgrade.

Approve a definition without installing In a multiple organization scenario, to approve a
chaincode definition without installing the
chaincode package, do not specify a package ID.
You endorse the definition of the chaincode that is
committed to the channel, but the chaincode is not
installed on peers in your organization. You will not
be able to use the chaincode to endorse
transactions or query the ledger.

Disagreement on definitions In a multiple organization scenario, an
organization that doesn't approve a chaincode
definition or approves a different chaincode
definition is not able to run the chaincode on their
peers. If other organizations get enough
endorsements to commit the definition to the
channel, those organizations can use the
chaincode. Transactions are still added to the
ledger on the peers of all organizations.

If organizations do not agree on a chaincode
definition and no organizations get enough
endorsements to commit the definition to the
channel, the definition cannot be committed and
therefore the chaincode cannot run.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-7

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-commit
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-commit

Scenario Description

Multiple organizations install different packages You can specify a different package ID when you
approve a chaincode definition for a channel with
multiple organizations. If the definition name and
endorsement policy are the same, then channel
members can install chaincode that is specific to
their organization, but which reads and writes data
to the same chaincode namespace.

Create multiple chaincodes from one package Similarly, you can approve and commit the same
chaincode package multiple times, specifying a
different name for each definition. Multiple
instances of the chaincode run on the channel. If
you also specify a different endorsement policy for
each definition, then each chaincode instance is
subject to a different endorsement policy.

Specify an Endorsement Policy
(Hyperledger Fabric v2.x) You can add an endorsement policy when you deploy a
chaincode. An endorsement policy specifies the members with peers that must
approve, or properly endorse, a chaincode transaction before it’s added to a block and
submitted to the ledger.

Endorsement guarantees the legitimacy of a transaction. When you deploy a
chaincode on a channel, you can specify an endorsement policy. If you don’t specify
an endorsement policy, then the default endorsement policy is used. The default
endorsement policy gets an endorsement from any peer on the network.

A member’s endorsing peers must have ReaderWriter permissions on the channel.
When a transaction is processed, each endorsing peer returns a signed read-write set.
After the client has enough endorsements to meet the endorsement policy
requirements, then the client bundles the common read-write set with the signature
from the endorsing peers and sends everything to the ordering service, which orders
and commits the transactions into blocks and then to the ledger.

You can go to the Channels tab to view a deployed chaincode’s endorsement policy.
See View an Endorsement Policy. You can’t modify a deployed chaincode's
endorsement policy. If you need to change an endorsement policy, then you must
redeploy the chaincode or upgrade it to another version and specify a different
endorsement policy.

You must be an administrator to complete this task.

1. Go to the console and select the Chaincodes tab.

2. Locate the chaincode package that you want to deploy and use the More Actions
menu to begin the deployment process.

3. On the Deploy Chaincode window, expand Endorsement Policy.

4. Select Default, Signature Policy or Channel Config Policy, and then specify an
expression for the endorsement policy.

For more information about endorsement policies, see Endorsement policies in the
Hyperledger Fabric documentation.

5. Complete the other fields on the Deploy Chaincode page as needed.

6. Click Deploy.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-8

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2-endorse-policy

View an Endorsement Policy
(Hyperledger Fabric v2.x) You can view a deployed chaincode's endorsement policy.

You might need to view a deployed chaincode's endorsement policy to see how it was set up,
how you need to choose transaction endorsers based on the policy, or to help resolve an
endorsement failure.

You can’t modify the endorsement policy for a deployed chaincode. If you need to change an
endorsement policy, then you must redeploy the chaincode or upgrade it to another version
and specify a different endorsement policy.

1. Go to the console and select the Channels tab.

2. Click the name of the channel where the chaincode is deployed, and then click Deployed
Chaincodes.

3. In the table, click the More Actions menu icon for the chaincode, and then click View
Chaincode Definition.

The Chaincode Definition window is displayed.

4. Expand Endorsement Policy.

The chaincode endorsement policy is displayed.

Find Information About Chaincodes
(Hyperledger Fabric v2.x) You can find information about the chaincodes in your network,
including how many peers the chaincode is installed on and if the chaincode has been
deployed. You can view information about chaincode packages and chaincode definitions.

1. Go to the console and select the Chaincodes tab.

The Chaincodes page is displayed and the chaincode table lists the chaincode packages
that are available on the network, with information about how many peers a package is
installed on and how many channels a package is deployed on.

2. In the table, click a chaincode package to see more information about which peers it's
installed on, and its names and versions for the channels it's deployed on.

• When you stop a peer node, Oracle Blockchain Platform removes the peer’s listing
on the Chaincodes tab.

• If you stop all peers that have the chaincode installed, then the Chaincodes tab
doesn’t list the chaincode. To list the chaincode, start at least one peer node that has
the chaincode installed on it.

• Use the More Actions menu icon to deploy the chaincode package to a different
channel, or to the same channel but with a different chaincode definition. You can
also download the chaincode package and delete the chaincode package. You might
delete a chaincode package to free up space for installing other chaincodes. When
you delete a chaincode package, it is not recoverable.

3. To see the definitions of deployed chaincodes, select the Channels tab.

4. Click the name of the channel where the chaincode is deployed, and then click Deployed
Chaincodes.

In the table, you can use the More Actions menu to get information about a chaincode
definition or to upgrade a chaincode.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-9

Delete a Chaincode
You can delete obsolete or unused chaincode packages to free up disk space.

You might delete a chaincode package to free up space for installing other chaincodes.
When you delete a chaincode package, it is not recoverable.

1. Go to the console and select the Chaincodes tab.

The Chaincodes page is displayed. The chaincode table lists the chaincode
packages that are available on the network, with information about how many
peers a package is installed on and how many channels a package is deployed
on.

2. In the table, click the More Actions menu item for the chaincode to delete, and
then click Delete.

3. Click Yes to confirm the chaincode deletion.

Manage Chaincode Versions
(Hyperledger Fabric v2.x) Each chaincode that you deploy or upgrade consists of a
chaincode package and a chaincode definition.

1. Go to the console and select the Channels tab.

2. Select the channel that you want to inspect and then click Deployed Chaincodes.

The deployed chaincodes summary table lists the names and versions of the
chaincodes deployed to the channel.

3. Click the More Actions menu icon for a chaincode and then click View
Chaincode Definition to see the chaincode definition, including the endorsement
policy and private data collections.

4. Click a package ID. The Installed Peers Summary page is displayed, showing
which peers the package is installed on. You can click the peer to view more
information about it.

5. Click the Deployed on Channels pane to see all of the channels the chaincode is
deployed on. You can click a channel to view more information about it.

From this pane, you can click Deploy on a New Channel to deploy the chaincode
package to a different channel, or to the same channel using a different chaincode
definition.

Upgrade a Chaincode
(Hyperledger Fabric v2.x) If a developer modifies a chaincode’s source, then you’ll
need to deploy it to a new version of the chaincode.

You can deploy different versions of the same chaincode on different channels.

You must be an administrator to perform this task. If you use the console, the upgrade
process includes both approving and committing the upgraded chaincode. You can
also use the REST API to upgrade a deployed chaincode by using the same calls that
you use to install, approve, and commit a chaincode. For more information, see REST
API for Oracle Blockchain Platform on Oracle Cloud Infrastructure (Gen 2).

1. Go to the console and select the Channels tab.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-10

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-cloud-rest-api
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-cloud-rest-api

The Channels tab is displayed and the table lists all of the channels on the network.

2. Click the channel where the chaincode that you want to upgrade is deployed, and then
click Deployed Chaincodes.

3. Locate the chaincode that you want to upgrade, click More Actions, and select
Upgrade.

The Upgrade Chaincode page is displayed.

4. Specify a Chaincode Version and select a Package ID to use in the chaincode
definition.

5. If the chaincode requires initialization, select Init-required.

If Init-required is selected, the client application must invoke the Init function explicitly,
by specifying the isInit flag, before calling any other function.

6. If required, enter an endorsement policy and private data collections, and then click
Upgrade.

The chaincode is upgraded and deployed.

What Are Private Data Collections?
(Hyperledger Fabric v2.x) Private data collections specify subsets of organizations that
endorse, commit, or query private data on the channel.

Use private data collections in cases where you want a group of organizations on the channel
to share data and to prevent the other organizations on the channel from seeing the data.
Private data is distributed peer to peer and not by blocks, so the transaction data is kept
confidential from the ordering service. Collections help you reduce the number of channels
and their required maintenance on your network.

The primary components in a private data collection are:

• The private data that you specify in your private data collection definition. Private data is
sent with the gossip protocol from peer to peer within the organizations that you specify in
your policy. Private data is stored in a private database on the peer. The ordering service
isn't used and can't see the private data.

• A hash of the data, which is endorsed, ordered, and written to each peer on the channel.
This hash is evidence of the transaction and can be used for audit purposes.

When you deploy a chaincode, you can associate it with one or more private data collections.

Add Private Data Collections
(Hyperledger Fabric v2.x) You can add private data collections to channels. Private data
collections specify subsets of organizations that endorse, commit, or query private data on
the channel.

Use private data collections in cases where you want a group of organizations on the channel
to share data within a transaction and to prevent the other organizations on the channel from
seeing the data.

If you're going to use private data collections across the organizations in your network, then
you need to configure anchor peers. Anchor peers facilitate private data gossip among the
organizations. See Add an Anchor Peer.

You specify the private data collections when you deploy the chaincode.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-11

1. Go to the console and select the Chaincodes tab.

2. Locate the chaincode that you want to deploy and begin the deployment process.

3. Expand the Private Data Collections section and add the collection definition as
needed.

Field Description

Collection Name Enter the collection's name. You'll reference
this name in the chaincode.

Policy Create the policy to specify which
organizations are included in the collection
and which peers can store the private data.

Each member listed in the policy must be
included in an OR signature policy list.

To support read/write transactions, the
private data distribution policy must contain
more organizations than the chaincode
endorsement policy because peers must
have the private data to endorse
transactions. For example, in a channel with
ten organizations, five of the organizations
are included in a private data collection
policy, but the endorsement policy requires
three organizations to endorse a transaction.

Peers Required Enter the number of peers that each
endorsing peer must distribute private data
to before the peer signs the endorsement
and returns the proposal response.

Set this value to 1 or more peers to ensure
the following:
• Redundancy of the private data on

multiple peers in the network.
• Availability of the private data if the

endorsing peers become unavailable.

Note that setting this value to 0 means that
distribution isn't required. However, if the
Max Peer Count field is set to greater than
0, private data distribution might still occur.

Max Peer Count Enter the maximum number of peers that
the current endorsing peer attempts to
distribute the data to. This is to ensure
redundancy so that peers are available
between endorsement time and commit time
to pull the private data if an endorsing peer
isn't available.

If you set this value to 0, the private data
isn't distributed at the time of endorsement.
This causes private data pulls against the
endorsing peers on all authorized peers at
commit time.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-12

Field Description

Block to Live Enter the length in number of blocks that you
want data to reside on the private database.
The data is purged when the number of
blocks is reached.

Set this value to 0 if you never want to purge
the data.

Note that a peer can fail to pull private data
from another peer if a private data
collection's blocktolive value is less
than 10, and its requiredPeerCount
and maxPeerCount values are less than
the total number of peers in the channel.
This is a known Hyperledger Fabric issue.

Endorsement Policy Optionally, specify an endorsement policy for
the collection that overrides the chaincode's
endorsement policy.

Choose a Policy Type of either Signature
Policy or Channel Config policy to use a
signature policy or an existing channel
configuration policy.

For Policy, specify an expression that
represents the endorsement policy. For
more information, see Endorsement policies
in the Hyperledger Fabric documentation.

Member Only Read Select to automatically prevent members of
organizations that are not part of the
collection from reading private data.

Member Only Write Select to automatically prevent members of
organizations that are not part of the
collection from writing private data.

4. Click Add New Collection and your collection's information is displayed in the private
data collection table.

5. If needed, specify other collections.

6. Complete the other fields on the Deploy Chaincode page as needed.

7. Click Deploy.

View Private Data Collections
(Hyperledger Fabric v2.x) You can view information about a chaincode's private data
collections.

After you deploy a chaincode, you might need to view its private data collections to see how
they were defined.

You can’t modify the private data collections for a deployed chaincode. To change the private
data collections, upgrade the chaincode and specify new private data collections.

1. Go to the console and select the Channels tab.

2. Click the name of the channel where the chaincode is deployed, and then click Deployed
Chaincodes to open the Deployed Chaincodes Summary page.

3. Click the More Actions menu icon for the desired deployed chaincode.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v2.x

8-13

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2-endorse-policy

4. Click View Chaincode Definition.

5. On the Chaincode Definition window, expand Private Data Collection, and then
locate the collection that you want to view.

Deploy and Manage Chaincodes on Hyperledger Fabric
v1.4.7

This topic contains information to help you deploy (install, instantiate, upgrade, and
enable in the REST proxy), monitor, and find information about the chaincodes on the
network.

Topics

• Typical Workflow to Deploy Chaincodes

• Use Quick Deployment

• Use Advanced Deployment

• Instantiate a Chaincode

• Specify an Endorsement Policy

• View an Endorsement Policy

• Find Information About Chaincodes

• Manage Chaincode Versions

• Upgrade a Chaincode

• What Are Private Data Collections?

• Add Private Data Collections

• View Private Data Collections

Typical Workflow to Deploy Chaincodes
(Hyperledger Fabric v1.4.7) Here are the common tasks for deploying chaincodes.

You must be an administrator to perform these tasks.

Task Description More Information

Use the wizard to fully or
partially deploy a chaincode

For testing, use Quick
Deployment to perform the
deployment in one step, using
default settings.
For production, use Advanced
Deployment to specify the
deployment settings such as
which peers to install the
chaincode on and the
endorsement policy you want
to use. With Advanced
Deployment you can
instantiate the chaincode and
enable it in the REST proxy
now or later.

Use Quick Deployment

Use Advanced Deployment

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-14

Task Description More Information

Instantiate a chaincode Instantiate the chaincode after
you’ve installed it.

Instantiate a Chaincode

Upgrade the chaincode Upload and instantiate a
newer version of a chaincode,
or pick an older version of the
chaincode to use.

Upgrade a Chaincode

Use Quick Deployment
(Hyperledger Fabric v1.4.7) Use the quick deployment option to perform a one-step
chaincode deployment. This option is recommended for chaincode testing.

The quick deployment uses default settings, installs the chaincode on all peers in the
channel, instantiates the chaincode using the default endorsement policy, and enables the
chaincode in the REST proxy.

Note the following information:

• The process to deploy sample chaincodes is different than the process described in this
topic. See Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric
v1.4.7).

• You can use the advanced deployment option to put your chaincode into production on
the network. See Use Advanced Deployment.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click Deploy a New Chaincode.

The Deploy Chaincode page is displayed.

3. Click Quick Deployment.

The Deploy Chaincode (Quick) page is displayed.

4. In the Chaincode Name field, enter a unique name for the chaincode. In the Version
field enter a string value to specify the chaincode’s version number.

The Oracle Blockchain Platform chaincode name and version requirements are different
than the Hyperledger Fabric requirements. You must use the Oracle Blockchain Platform
naming requirements. Use these guidelines when naming the chaincode:

• Use ASCII alphanumeric characters, ('') quotes, dashes (-), and underscores (_).

• The name must start and end only with ASCII alphanumeric characters. For example,
you can't use names like _mychaincode or mychaincode_.

• Dashes (-) and underscores (_) must be followed with ASCII alphanumeric
characters. For example, you can't use names like my--chaincode or my-_chaincode.

• The name must be 1 to 64 characters long.

• A chaincode version can contain a period (.).

5. Review the other default settings and modify them as needed.

6. Click the Chaincode Source field and browse for the chaincode ZIP file to upload and
deploy.

7. Click Submit.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-15

The chaincode is installed on the channel’s peers, instantiated, and enabled in the
REST proxy. The deployed chaincode’s name is displayed in the Chaincode tab’s
table.

Use Advanced Deployment
(Hyperledger Fabric v1.4.7) Use the advanced deployment option to specify the
parameters required to deploy a chaincode into a production environment. For
example, you’ll specify which peers to install the chaincode on and the endorsement
policy to use.

With the advanced deployment wizard, you’ll install the chaincode on the peers you
select.

Note the following information:

• The process to deploy sample chaincodes is different than the process described
in this topic. See Explore Oracle Blockchain Platform Using Samples (Hyperledger
Fabric v1.4.7).

• You can use the quick deployment option for chaincode testing. Quick deployment
is a one-step deployment that uses default settings, installs the chaincode on all
peers in the channel, and instantiates the chaincode using a default endorsement
policy. See Use Quick Deployment.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click Deploy a New Chaincode.

The Deploy Chaincode page is displayed.

3. Click Advanced Deployment.

The Deploy Chaincode (Advanced) Step 1 of 3: Install page is displayed.

4. In the Chaincode Name field, enter a unique name for the chaincode. In the
Version field, enter the chaincode’s version number.

The Oracle Blockchain Platform chaincode name and version requirements are
different than the Hyperledger Fabric requirements. You must use the Oracle
Blockchain Platform naming requirements. Use these guidelines when naming the
chaincode:

• Use ASCII alphanumeric characters, ('') quotes, dashes (-), and underscores
(_).

• The name must start and end only with ASCII alphanumeric characters. For
example, you can't use names like _mychaincode or mychaincode_.

• Dashes (-) and underscores (_) must be followed with ASCII alphanumeric
characters. For example, you can't use names like my--chaincode or my-
_chaincode.

• The name must be 1 to 64 characters long.

• A chaincode version can contain a period (.).

5. Select one or more network peers to install the chaincode onto. To provide high
availability, Oracle suggests that you choose the appropriate number of peers from
each partition. Also, the peers you choose must be joined to the channel that you’ll
instantiate the chaincode on.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-16

6. Click the Chaincode Source field and browse for the chaincode ZIP file to upload and
deploy. Click Next.

The chaincode is installed and the Deploy Chaincode (Advanced) Step 2 of 3: Instantiate
page is displayed.

7. Decide if you want to instantiate the chaincode now or later.

• Click Close to close the wizard and instantiate later.

• To instantiate now, select the channel to instantiate the chaincode on and the peers
to instantiate the chaincode to. If required, enter initial parameters, an endorsement
policy, transient map, and private data collections. Note the following information:

– Instantiation compiles, builds, and initializes the chaincode on the peers.

– If you leave the endorsement policy blank, then Oracle Blockchain Platform uses
the default endorsement policy. The default endorsement policy gets an
endorsement from any peer on the network.

– When instantiation is complete, the peers are able to accept chaincode
invocations and can endorse transactions.

Click Next.

The chaincode is instantiated.

Instantiate a Chaincode
(Hyperledger Fabric v1.4.7) Instantiating a chaincode compiles, builds, and initializes the
chaincode on the peers where the chaincode is installed. When instantiation is complete, the
peers are able to accept chaincode invocations and can endorse transactions.

Note the following information:

• You must install the chaincode on the required peers before you can instantiate it.

• If you're working on a channel that contains multiple members and have instantiated the
chaincode on one member, then you don’t have to instantiate the chaincode on the other
members where you installed the same chaincode. In such cases, the chaincode is
already instantiated and running on all members on the channel.

• You can instantiate more than one chaincode on a channel.

• The process to instantiate the sample chaincodes is different than the instantiation
process described in this topic. See Explore Oracle Blockchain Platform Using Samples
(Hyperledger Fabric v1.4.7).

• After you instantiate the chaincode, then you can optionally enable it in the REST proxy.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click the arrow to expand the chaincode’s version list.

3. Locate the chaincode version and click its More Actions menu, and select Instantiate.

The Instantiate Chaincode dialog is displayed.

4. Enter information about where and how to instantiate the chaincode.

Field Description

Channel Select the channel for the chaincode to run on.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-17

Field Description

Peers Select the peer or peers you want to use the chaincode. This list shows the
peers that you installed the chaincode onto.

Initial
Parameter

Enter the input parameters that you want to pass to the chaincode. Go to the
chaincode to find the initial parameters values.

Endorsement
Policy

In this section, specify the number and role of members required to endorse the
chaincode.
If you don’t specify an endorsement policy, then the default endorsement policy
is used. The default endorsement policy gets an endorsement from any peer on
the network.

Transient Map The data that is passed into the chaincode is the transaction payload and the
transient map. The transaction payload is recorded in the ledger and is visible to
anyone who can access the ledger through the query system chaincode. Use a
transient map to pass private data such as keys that you don't want stored in the
ledger.

In this section, provide the required keys and values. The information you
provide is maintained on the peer node and is sent to the chaincode when a
transaction is executed.

If you're adding private data collections, then specify a transient map to pass the
private data from the client to the peers for endorsement.

Private Data
Collections

In this section, add one or more private data collections. Private data collections
specify subsets of organizations that endorse, commit, or query private data on
the channel you instantiate the chaincode on.

5. Click Instantiate.

The chaincode is instantiated.

6. To confirm that the chaincode was instantiated, go to the Channels tab and click
the name of the channel that you instantiated the chaincode on. Go to the
Instantiated Chaincodes tab and confirm that the chaincode is listed in the
summary table.

Specify an Endorsement Policy
(Hyperledger Fabric v1.4.7) You can add an endorsement policy when you instantiate
a chaincode. An endorsement policy specifies the members with peers that must
approve, or properly endorse, a chaincode transaction before it’s added to a block and
submitted to the ledger.

Endorsement guarantees the legitimacy of a transaction. When you instantiate a
chaincode on a channel, you can specify an endorsement policy. If you don’t specify
an endorsement policy, then the default endorsement policy is used. The default
endorsement policy gets an endorsement from any peer on the network.

A member’s endorsing peers must have ReaderWriter permissions on the channel.
When a transaction is processed, each endorsing peer returns a signed read-write set.
After the client has enough endorsements to meet the endorsement policy
requirements, then the client bundles the common read-write set with the signature
from the endorsing peers and sends everything to the ordering service, which orders
and commits the transactions into blocks and then to the ledger.

You can go to the Channels tab to view an instantiated chaincode’s endorsement
policy. See View an Endorsement Policy. You can’t modify an instantiated chaincode's
endorsement policy. If you need to change an endorsement policy, then you must
reinstantiate the chaincode or upgrade it to another version and specify a different
endorsement policy.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-18

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. Locate the chaincode that you want to instantiate and begin the instantiation process.

3. Expand the Endorsement Policy section. Click Add Identity to add members to the policy
as needed.

Field Description

MSP ID From the dropdown menu, select the endorser peer’s organization.

Role Select the corresponding peer role required by the endorsement policy. Usually
this will be member. You can find a peer’s role by viewing its configuration
information. If Node OU is enabled, there are three options: admin, member,
and peer. The peer option is for use with Node OU.

Policy
Expression
Mode

In most cases, you’ll use Basic. Select Advanced to provide an expression
string. See the Hyperledger Fabric documentation for information about how to
write a valid expression string.

Signed By Select how many members with endorsing peers (peers with ReaderWriter
permissions) on the channel must endorse the chaincode transactions to make
them valid.

4. Complete the other fields on the Instantiate Chaincode page as needed.

5. Click Instantiate.

View an Endorsement Policy
(Hyperledger Fabric v1.4.7) You can view an instantiated chaincode's endorsement policy.

You might need to view an instantiated chaincode's endorsement policy to see how it was set
up, how you need to choose transaction endorsers based on the policy, or to help resolve an
endorsement failure.

You can’t modify the endorsement policy for an instantiated chaincode. If you need to change
an endorsement policy, then you must reinstantiate the chaincode or upgrade it to another
version and specify a different endorsement policy.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the table lists the chaincodes installed on the
network.

2. Locate the chaincode that you want to view endorsement policy information for and
expand it in the table.

3. Click the chaincode version that you want.

The Chaincode Version Information page is displayed.

4. In the Instantiated on Channels tab, locate the channel that you want, click More
Actions, and select View Endorsement Policy.

The Chaincode Endorsement Policy page is displayed.

Find Information About Chaincodes
(Hyperledger Fabric v1.4.7) You can find information about the chaincodes in your network.
For example, how many peers the chaincode is installed on and if the chaincode has been
instantiated.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-19

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the chaincode table lists the chaincodes and
versions installed on the network.

2. In the chaincode table, locate the chaincode that you want information for and
expand it to see information about its versions, path, how many peers it’s installed
on, and how many channels it’s instantiated on.

Note the following information:

• When you stop a peer node, Oracle Blockchain Platform removes the peer’s
listing on the Chaincodes tab.

• If you stop all peers that have the chaincode installed, then the Chaincodes
tab doesn’t list the chaincode. To list the chaincode, start at least one peer
node that has the chaincode installed on it.

3. Use the chaincode table as a starting point to perform chaincode-related tasks,
such as instantiate, enable it in the REST proxy, upgrade to a new version, and
delete the chaincode.

Manage Chaincode Versions
(Hyperledger Fabric v1.4.7) Each chaincode that you install or upgrade has a version
number.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the chaincode table lists the chaincodes
installed on the network.

2. Locate the chaincode that you want version information for and expand it to see a
list of versions.

3. Click a version number. The Chaincode Version Information page is displayed.

4. Click the Installed on Peers pane to see which peers the chaincode is installed on.
You can click the peer to view more information about it.

5. Click the Instantiated on Channels pane to see which channels the chaincode is
instantiated on. You can click a channel to view more information about it.

From this pane, you can also instantiate a specific version of the chaincode
version. If the chaincode was instantiated on a channel, then you can view its
endorsement policy.

Note that you can instantiate different versions of a chaincode on different
channels.

6. Click the Private Data Collections pane to view the private data collections that
were added when the chaincode was instantiated.

Upgrade a Chaincode
(Hyperledger Fabric v1.4.7) If a developer modifies a chaincode’s source, then you’ll
need to deploy it to a new version of the chaincode. If needed, you can revert back to
an older version of a chaincode.

You can instantiate different versions of the same chaincode on different channels.

You must be an administrator to perform this task.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-20

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the table lists all of the chaincodes installed on the
network.

2. Locate the chaincode that you want to upgrade, click More Actions, and select
Upgrade. The More Actions button only displays for chaincodes that have been
instantiated.

The Upgrade Chaincode Step 1 of 2: Select a version page is displayed.

3. Select a version source. Note the following information:

• Click Select from existing versions if you want to upgrade to a version that is
already on the network. You might choose this option because the most current
chaincode version contains errors and you need to temporarily use an older version
until the chaincode can be fixed. Because the older version is on your system, the
chaincode is already installed on the peers.

• Choose Install a new version to upload the chaincode file. In the Version field enter
a version number and in the Target Peers field, select the peers to install the
chaincode on. In the Chaincode Source field, click Upload Chaincode File and
browse for the chaincode ZIP file to upload.

4. Click Next.

The Upgrade Chaincode Step 2 of 2: Upgrade page is displayed.

5. Decide if you want to instantiate the chaincode version now or later.

• Click Close to close the wizard and upgrade later.

• To upgrade now, select the channel to upgrade the chaincode on and the peers to
instantiate the chaincode to. If required, enter initialize parameters, an endorsement
policy, and transient map. See Specify an Endorsement Policy. Click Next.

The chaincode is upgraded.

What Are Private Data Collections?
(Hyperledger Fabric v1.4.7) Private data collections specify subsets of organizations that
endorse, commit, or query private data on the channel.

Use private data collections in cases where you want a group of organizations on the channel
to share data and to prevent the other organizations on the channel from seeing the data.
Private data is distributed peer to peer and not by blocks, so the transaction data is kept
confidential from the ordering service. Collections help you reduce the number of channels
and their required maintenance on your network.

The primary components in a private data collection are:

• The private data that you specify in your private data collection definition. Private data is
sent with the gossip protocol from peer to peer within the organizations that you specify in
your policy. Private data is stored in a private database on the peer. The ordering service
isn't used and can't see the private data.

• A hash of the data, which is endorsed, ordered, and written to each peer on the channel.
This hash is evidence of the transaction and can be used for audit purposes.

When you instantiate a chaincode, you can associate it with one or more private data
collections. Also when you instantiate a chaincode, you should specify a transient map to
pass the private data from the client to the peers for endorsement. The collection definition
specifies who can persist data, how many peers the data is distributed to, how many peers

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-21

are required to disseminate the private data, and how long the private data is persisted
in the private database.

Add Private Data Collections
(Hyperledger Fabric v1.4.7) You can add private data collections to channels. Private
data collections specify subsets of organizations that endorse, commit, or query
private data on the channel.

Use private data collections in cases where you want a group of organizations on the
channel to share data within a transaction and to prevent the other organizations on
the channel from seeing the data.

If you're going to use private data collections across the organizations in your network,
then you need to configure anchor peers. Anchor peers facilitate private data gossip
among the organizations. See Add an Anchor Peer.

You specify the private data collections when you instantiate the chaincode.

1. Go to the console and select the Chaincodes tab.

2. Locate the chaincode that you want to instantiate and begin the instantiation
process.

3. Expand the Private Data Collections section and add the collection definition as
needed.

Field Description

Collection Name Enter the collection's name. You'll reference
this name in the chaincode.

Policy Create the policy to specify which
organizations are included in the collection
and which peers can store the private data.

Each member listed in the policy must be
included in an OR signature policy list.

To support read/write transactions, the
private data distribution policy must contain
more organizations than the chaincode
endorsement policy because peers must
have the private data to endorse
transactions. For example, in a channel with
ten organizations, five of the organizations
are included in a private data collection
policy, but the endorsement policy requires
three organizations to endorse a transaction.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-22

Field Description

Peers Required Enter the number of peers that each
endorsing peer must distribute private data
to before the peer signs the endorsement
and returns the proposal response.

Oracle recommends that you set this value
to 1 or more peers to:
• Ensure redundancy of the private data

on multiple peers in the network.
• Ensure that private data is available if

the endorsing peers become
unavailable.

Note that setting this value to 0 means that
distribution isn't required. However, if the
Max Peer Count field is set to greater than
0, then private data distribution might still
occur.

Max Peer Count Enter the maximum number of peers that
the current endorsing peer attempts to
distribute the data to. This is to ensure
redundancy so that peers are available
between endorsement time and commit time
to pull the private data if an endorsing peer
isn't available.

If you set this value to 0, then the private
data isn't distributes at the time of
endorsement. This causes private data pulls
against the endorsing peers on all
authorized peers at commit time.

Block to Live Enter the length in number of blocks that you
want data to reside on the private database.
The data is purged when the number of
blocks is reached.

Set this value to 0 if you never want to purge
the data.

Note that a peer can fail to pull private data
from another peer if a private data
collection's blocktolive value is less
than 10, and its requiredPeerCount
and maxPeerCount values are less than
the total number of peers in the channel.
This is a known Hyperledger Fabric issue.

4. Click Add New Collection and your collection's information is displayed in the private
data collection table.

5. If needed, specify other collections.

6. Complete the other fields on the Instantiate Chaincode page as needed.

7. Click Instantiate.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-23

View Private Data Collections
(Hyperledger Fabric v1.4.7) You can view information about a chaincode's private data
collections.

After you instantiate a chaincode, you might need to view its private data collections to
see how they were defined.

You can’t modify the private data collections for an instantiated chaincode. To change
the private data collections, upgrade the chaincode and specify new private data
collections.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the table lists the chaincodes installed on the
network.

2. Locate the chaincode that you want to view private data collections for and expand
it in the table.

3. Click the chaincode version that you want.

The Chaincode Version Information page is displayed.

4. In the Private Data Collections tab, locate the collection that you want to view.

Chapter 8
Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7

8-24

9
Develop Blockchain Applications

Blockchains require smart contracts (chaincode) to update the ledger. In addition, you will
also require a client application that utilizes either the Oracle Blockchain Platform REST API
or native Hyperledger Fabric SDK to interact with the blockchain directly. There are other
operational and administrative tasks to consider, namely the creation of peers and channels
and installation of chaincode.

Topics

• Before You Develop an Application

• Use the Hyperledger Fabric SDKs to Develop Applications

• Use the REST APIs to Develop Applications

• Make Atomic Updates Across Chaincodes and Channels

• Include Oracle Blockchain Platform in Global Distributed Transactions

Before You Develop an Application
Before you write an application, download and use the sample applications, and ensure that
you've the correct certificates and privileges to run an application.

Oracle Blockchain Platform provides downloadable samples that help you understand how to
write chaincodes and applications. See:

• What Are Chaincode Samples?

• Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v2.x)

• Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v1.4.7)

Oracle Blockchain Platform uses Hyperledger Fabric as its foundation. Use the Hyperledger
Fabric documentation to help you write applications. Read the Key Concepts and Tutorials
sections before you write your own application: Hyperledger Fabric documentation.

Prerequisites for Application Development

A user ID and password for the application user must exist in Oracle Identity Cloud Service.
Depending on the functions in the application, this user must have the following prerequisites:

• To install and deploy chaincode:

– You must have administrative access in order to install or deploy chaincode.

– You must export the admincerts, cacerts, and tlscacerts certificates as described in
Export Certificates so that they can be placed in your application in the peer and
orderer nodes crypto folders.

– You must export the admin credentials similarly to how you exported the certificates
(from the action menu, select Export Admin Credential). This will download a ZIP
file containing the signed certificate and keystore files that need to be placed in your
application in the peer and orderer nodes crypto folders.

9-1

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-latest

• To run operations against an installed and deployed chaincode:

– You must export the admincerts, cacerts, and tlscacerts certificates as
described in Export Certificates so that they can be placed in your application
in the peer node crypto folders.

– You must export the tlscacerts certificate for the orderer node as described in
Join the Participant or Scaled-Out OSNs to the Founder's Ordering Service so
that it can be placed in your application.

– The chaincode you’re invoking must be installed and deployed to a channel
and node that your user ID has access to.

– A REST proxy node must be configured and the chaincode enabled for REST
proxy access. The user ID and password for the node must be provided.

• To run functions against a REST API endpoint:

– The chaincode you’re invoking must be installed and deployed to a channel
and node that your user ID has access to.

– A REST proxy node must be configured and the chaincode enabled for REST
proxy access. The user ID and password for the node must be provided.

Use the Hyperledger Fabric SDKs to Develop Applications
Applications use a software development kit (SDK) to access the APIs that permit
queries and updates to the ledger. You can install and use the Hyperledger Fabric
SDKs to develop applications for Oracle Blockchain Platform.

The REST APIs provided by Oracle Blockchain Platform have been created with
maximum flexibility in mind; you can invoke a transaction, invoke a query, or view the
status of a transaction. See REST API for Oracle Blockchain Platform.

However this means that you'll likely want to wrap the existing API endpoints in an
application to provide object-level control. Applications can contain much more fine-
grained operations.

SDK Versions

Multiple versions of the Hyperledger Fabric SDKs are available. Use the version of the
SDK that matches the version of Hyperledger Fabric that your instance is based on.

Installing the Hyperledger Fabric SDK for Node.js

Information about how to use the Fabric SDK for Node.js can be found here:
Hyperledger Fabric SDK for Node.js documentation

On the Developer Tools tab, open the Application Development pane.

• You can install the Hyperledger Fabric Node.js SDK by using the link on this tab.

• (Hyperledger Fabric v1.4.7) If you've previously installed it you must modify it to
work with Oracle Blockchain Platform following the instructions in Update the
Hyperledger Fabric v1.4.7 SDKs to Work with Oracle Blockchain Platform.

Installing the Hyperledger Fabric SDK for Java

Information about how to use the Fabric SDK for Java can be found here: Hyperledger
Fabric SDK for Java documentation

On the Developer Tools tab, open the Application Development pane.

Chapter 9
Use the Hyperledger Fabric SDKs to Develop Applications

9-2

https://hyperledger.github.io/fabric-sdk-node/
https://github.com/hyperledger/fabric-sdk-java
https://github.com/hyperledger/fabric-sdk-java

• You can install the Hyperledger Fabric Java SDK by using the link on this tab.

• (Hyperledger Fabric v2.x) If you've previously installed it you must modify it to work with
Oracle Blockchain Platform following the instructions in Update the Hyperledger Fabric
v2.x SDKs to Work with Oracle Blockchain Platform.

• (Hyperledger Fabric v1.4.7) If you've previously installed it you must modify it to work with
Oracle Blockchain Platform following the instructions in Update the Hyperledger Fabric
v1.4.7 SDKs to Work with Oracle Blockchain Platform.

Install a build tool such as Apache Maven.

Structuring your Application

Your Java application should be structured similar to the following:

/Application
 /artifacts
 /cypto
 /orderer
 Contains the certificates required for the application to act on the
orderer node
 In participant instances only contains TLS certificates
 /peer
 Contains the certificates required for the application to act on the
peer node
 /src
 chaincode.go if installing and deploying chaincode to the blockchain
 /java
 pom.xml or other build configuration files
 /resources
 Any resources used by the Java code, including artifacts such as the
endorsement policy yaml file and blockchain configuration properties
 /src
 Java source files

Your Node.js application should be structured similar to the following:

/Application
 /artifacts
 /cypto
 /orderer
 Contains the certificates required for the application to act on the
orderer node
 In participant instances only contains TLS certificates
 /peer
 Contains the certificates required for the application to act on the
peer node
 /src
 chaincode.go if installing and deploying chaincode to the blockchain
 /node
 package.json file
 application.js
 /app
 Any javascript files called by the application
 /tools

Chapter 9
Use the Hyperledger Fabric SDKs to Develop Applications

9-3

Running the application

You’re now ready to run and test the application. In addition to any status messages
returned by your application, you can check the ledger in the Oracle Blockchain
Platform console to see your changes:

1. Go to the Channels tab in the console and locate and click the name of the
channel running the blockchain.

2. In the channel’s Ledger pane, view the chaincode’s ledger summary.

Update the Hyperledger Fabric v2.x SDKs to Work with Oracle
Blockchain Platform

There's an incompatibility between an OCI infrastructure component and the Java
SDK provided with Hyperledger Fabric v2.x. Follow the steps in this topic to correct
this problem.

Methods of updating the Hyperledger Fabric SDK

There are two ways of updating the SDK:

• Download the modified package from the console. We’ve created an updated
grpc-netty-shaded-1.38.0.jar file, which is the module referenced by the Java
SDK that requires modifications.

• Build the package manually, as described in this topic.

To download the grpc-netty-shaded-1.38.0.jar file, click the console’s Developer
Tools tab, and then select the Application Development pane.

Manually building the package

For the fabric-sdk-java project, complete the following steps to rebuild the grpc-
netty-shaded package to connect the peers and orderers with the grpcs client (via
TLS). The grpc-netty-shaded package is a sub-project of grpc-java.

1. Install project dependencies:

mvn install

2. Download the grpc-java source code:

git clone https://github.com/grpc/grpc-java.git

3. Find the grpc version that your fabric-sdk-java uses, and check out the code.
In the grpc-java directory, check out the version of grpc that fabric-sdk-java
uses:

cd grpc-java && git checkout v1.38.0

4. Change the code to avoid an alpn error from the server side. Create a grpc-
java-patch patch file with the following contents:

diff --git a/netty/src/main/java/io/grpc/netty/
ProtocolNegotiators.java b/netty/src/main/java/io/grpc/netty/
ProtocolNegotiators.java

Chapter 9
Use the Hyperledger Fabric SDKs to Develop Applications

9-4

index 19d3e01b7..ebc4786a3 100644
— a/netty/src/main/java/io/grpc/netty/ProtocolNegotiators.java
+++ b/netty/src/main/java/io/grpc/netty/ProtocolNegotiators.java
@@ -611,7 +611,8 @@ final class ProtocolNegotiators {
SslHandshakeCompletionEvent handshakeEvent =
(SslHandshakeCompletionEvent) evt;
if (handshakeEvent.isSuccess()) {
SslHandler handler = ctx.pipeline().get(SslHandler.class);

 if (sslContext.applicationProtocolNegotiator().protocols()
 + if (handler.applicationProtocol() == null
 + || sslContext.applicationProtocolNegotiator().protocols()
 .contains(handler.applicationProtocol())) {
 // Successfully negotiated the protocol.
 logSslEngineDetails(Level.FINER, ctx, "TLS negotiation succeeded.",
null);

5. Apply the patch:

git apply grpc-java.patch

6. Build the project to generate the target patched package. Use gradle to build the grpc-
java-shaded project:

cd netty/shaded
gradle build -PskipAndroid=true -PskipCodegen=true

After the build completes, the target patched .jar package is available at grpc-java/
netty/build/libs/grpc-netty-shaded-1.38.0.jar.

7. Add the patched package into your Maven local repository.

Replace the original grpc-netty-shaded .jar package with the patched package in
either of the following two ways:

• Use Maven to install the package by local file:

mvn install:install-file -Dfile=grpc-netty-shaded-build/grpc-netty-
shaded-1.38.0.jar -DgroupId=io.grpc -DartifactId=grpc-netty-shaded -
Dversion=1.38.0 -Dpackaging=jar

You must keep the target groupid, artifactid, and version the same as the
package you want to replace.

• Manually replace your package. Go to the local Maven repository, find the directory
where the target package is located, and replace the package with patched package.

8. Run the project.

Chapter 9
Use the Hyperledger Fabric SDKs to Develop Applications

9-5

Update the Hyperledger Fabric v1.4.7 SDKs to Work with Oracle
Blockchain Platform

There's an incompatibility between an OCI infrastructure component and the Node.js
and Java SDKs provided with Hyperledger Fabric v1.4.7. Follow the steps in this topic
to correct this problem.

Methods of updating the Hyperledger Fabric SDKs

There are two ways of updating the SDK:

• Using Oracle scripts to download and install the Node.js SDK or Java SDK which
will patch the code as it installs.

• Manually as described in this topic.

To use the scripts, on the console’s Developer Tools tab, select the Application
Development pane. The links to download both the Node.js SDK and Java SDK have
updates built in which will patch the code as it installs.

• Fabric Java SDK: We’ve created an updated grpc-netty-1.23.0.jar file, which is
the module referenced by the Java SDK which requires modifications.

• Fabric Node.js SDK: We have created the npm_bcs_client.sh script to replace
the standard Fabric npm install operations that users would perform to download
and install the Node.js Fabric client package. The script runs the same npm
command, but it also patched the needed component and rebuilds it.

Manually updating the Fabric Node.js SDK

Do the following to rebuild the grpc-node module to connect the peers and orderers
with grpcs client (via TLS).

1. Install fabric-client without executing the grpc module's build script:

npm install --ignore-scripts fabric-client

2. On Windows, you need to disable ALPN explicitly

• Update node_modules/grpc/binding.gyp by changing:

'_WIN32_WINNT=0x0600'

to

'_WIN32_WINNT=0x0600','TSI_OPENSSL_ALPN_SUPPORT=0'

• Due to the issue outlined in https://github.com/nodejs/node/issues/4932, to
build grpc-node on Windows, you must first remove <node_root_dir>/
include/node/openssl/. Run the following to find your
<node_root_dir>:

node-gyp configure

Chapter 9
Use the Hyperledger Fabric SDKs to Develop Applications

9-6

https://github.com/nodejs/node/issues/4932

3. Rebuild grpc

npm rebuild --unsafe-perm --build-from-source

You can now install any other modules you need and run the project.

Manually updating the Fabric Java SDK

For fabric-sdk-java, do the following steps to rebuild the grpc-netty package to connect
the peers and orderers with grpcs client (via tls). grpc-netty is a sub-project of grpc-java.

1. Install project dependencies:

mvn install

2. Download grpc-java source code:

git clone https://github.com/grpc/grpc-java.git

3. Find the grpc version that your fabric-sdk-java uses, and checkout the code.
Different versions of fabric-sdk-java may use different version of grpc. Check
pom.xml to find out what grpc version your fabric-sdk-java uses. For example,
fabric-sdk-java 1.4.11 uses grpc-java 1.23.0 as found in its pom.xml: https://
github.com/hyperledger/fabric-sdk-java/blob/v1.4.11/pom.xml.

In the grpc-java directory, checkout the version of grpc that fabric-sdk-java uses:

git checkout -b v1.23.0

4. Change the code to avoid an alpn error from the server side.

• Change the target code of grpc-java_root/netty/src/main/java/io/grpc/netty/
ProtocolNegotiators.java

• In the function userEventTriggered0 change:

if (NEXT_PROTOCOL_VERSIONS.contains(handler.applicationProtocol())) {

to

if (handler.applicationProtocol() == null ||
NEXT_PROTOCOL_VERSIONS.contains(handler.applicationProtocol())) {

The code will look similar to:

 @Override
 protected void userEventTriggered0(ChannelHandlerContext ctx,
Object evt) throws Exception {
 ...
 if (handler.applicationProtocol() == null ||
NEXT_PROTOCOL_VERSIONS.contains(handler.applicationProtocol())) {
 // Successfully negotiated the protocol.
 logSslEngineDetails(Level.FINER, ctx, "TLS negotiation
succeeded.", null);

Chapter 9
Use the Hyperledger Fabric SDKs to Develop Applications

9-7

https://github.com/hyperledger/fabric-sdk-java/blob/v1.4.11/pom.xml#L31
https://github.com/hyperledger/fabric-sdk-java/blob/v1.4.11/pom.xml#L31

 ...
 }

5. Build the project to generate the target patched package. Use gradle to build the
grpc-java project. Or you can just rebuild the grpc-netty sub-project in the grpc
netty directory gradle build.

After the build is done, you can get the target patched jar package in the directory
grpc-java\netty\build\libs\grpc-netty-1.23.0.jar.

6. Add the patched package into your Maven local repository.

Replace official grpc-netty jar package with the patched package in either of the
following two ways:

• Use Maven to install the package by local file:

mvn install:install-file -
Dfile=local_patched_grpc_netty_package_root/grpc-
netty-1.23.0.jar -DgroupId=io.grpc -DartifactId=grpc-netty -
Dversion=1.23.0 -Dpackaging=jar

You must keep the target groupid, artifactid, and version the same as the
package you want to replace.

• Manually replace your package. Go to the local Maven repository, find the
directory where the target package is located, and replace the package with
patched package.

7. Run the project.

Use the REST APIs to Develop Applications
The REST APIs provided by Oracle Blockchain Platform have been created with
maximum flexibility in mind; you can invoke a transaction, invoke a query, or view the
status of a transaction. However this means that you'll likely want to wrap the existing
API endpoints in an application to provide object-level control. Applications can contain
much more fine-grained operations.

Any application using the REST APIs requires the following:

• The chaincode name and version.

• The REST server URL and port, and the user ID and password for the REST
node.

• Functions to invoke transactions against or query the ledger.

See REST API for Oracle Blockchain Platform for information on the existing
operations, including examples and usage syntax.

Structuring your Application

Your REST API application should be structured similar to the following:

/Application
 /artifacts
 /crypto
 /orderer

Chapter 9
Use the REST APIs to Develop Applications

9-8

 Contains the certificates required for the application to act on the
orderer node
 In participant instances only contains TLS certificates
 /peer
 Contains the certificates required for the application to act on the
peer node
 /src
 /REST
 Application script containing REST API calls

Make Atomic Updates Across Chaincodes and Channels
You can use atomic transactions to complete multiple transactions across channels and
chaincodes in an atomic manner.

An atomic transaction is an indivisible series of data operations that either all succeed, or
none succeed.

Atomic transactions can be useful in complex situations where multiple chaincodes are
deployed to separate channels. You can use atomic transactions to maintain data
consistency while running multiple blockchain transactions, even if a network or system
failure occurs. Oracle Blockchain Platform supports atomic transactions by using the two-
phase commit protocol, where an initial phase where each data operation is prepared is
followed by a phase where each data operation is actually committed.

Atomic transactions work at the application level. Typically you do not need to change
existing chaincode logic to support atomic transactions. Because one or more additional
arguments are added by the atomic transactions framework, make sure that any existing
chaincode does not perform strict checks on the number of arguments passed in the
chaincode method. Atomic transactions are supported by the following REST API endpoint:

• restproxy/api/v2/atomicTransactions
The REST API endpoint prepares the transactions as defined by your chaincode, and then
uses built-in chaincode functions to either to commit all of the transactions, or to roll back all
of the transactions if there are any errors during the prepare phase. For more information
about the REST endpoints to use to implement atomic transactions, see Atomic Transactions
REST Endpoints.

Each atomic transaction is composed of two or more blockchain transactions. The result (the
returnCode value) of the atomic transaction is either Success or Failure. In an atomic
transaction, each requested blockchain transaction is split into two distinct operations: a
prepare phase and then either a commit or a rollback phase.

• In the prepare phase, each transaction is endorsed as usual, but instead of being
finalized, the changes are staged and the values are locked to prevent other transactions
from modifying the staged values.

• If the prepare phase is successful for each blockchain transaction, then the transactions
are endorsed and committed by using built-in chaincode. The previously locked values
are unlocked, and the result of the atomic transaction is Success.

• If the prepare phase fails for any blockchain transaction, then all other transactions where
the prepare phase succeeded are rolled back, again by using built-in chaincode. The
staged changes are removed and the previously locked values are unlocked. The result
of the atomic transaction is Failure.

Chapter 9
Make Atomic Updates Across Chaincodes and Channels

9-9

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-atomic
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-atomic

Because the atomic transactions works by locking keys, you might receive a
Two_Phase_Commit_Lock error if a different transactions attempts to modify a key
that is locked by a currently active atomic transaction that is prepared. This can occur
in one of the following two scenarios:

• An atomic transaction is still in the prepared phase, and a different transaction
attempts to modify a key that was locked by the prepared transaction. In this case,
the system is working as designed. If you encounter this error, retry the second
transaction. This is analogous to how applications handle phantom read errors or
multi-version concurrency control (MVCC) errors.

• The GlobalStatus value returned by the atomic transaction is HeuristicOutcome.
In this case, an atomic transaction operation was canceled because one of the
commit operations failed. This is a rare occurrence and might need to be resolved
manually. One side effect of a heuristic outcome is that some keys may be left
locked by transactions which failed to be committed or rolled back. In this case,
use the following REST API endpoint to unlock the atomic transaction:

– restproxy/api/v2/atomicTransactions/{globalTransactionId}
For more information about the REST endpoint to use to unlock atomic
transactions, see Unlock Atomic Transaction.

Scenario: Explore Atomic Transactions Using Samples

Consider the following example, which uses two of the sample chaincodes that are
included with Oracle Blockchain Platform, Balance Transfer and Marbles. The Balance
Transfer sample represents two parties with the ability to transfer funds between
account balances. The Marbles sample lets you create marbles and exchange them
between owners. You could use individual (non-atomic) transactions to buy a marble
by exchanging funds in the Balance Transfer chaincode and changing the ownership
of the marble in the Marbles chaincode. However, if an error occurs with one of those
transactions, the ledger might be left in an inconsistent state: either the funds were
transferred but not the marble or the marble is transferred but not paid for.

In this scenario, you can use the existing chaincode with the REST API endpoints that
support atomic transactions. The exchange of funds and the transfer of ownership of
the marble must both succeed or both fail. If either transaction encounters an error,
then neither transaction is committed. To explore this scenario, complete the following
steps:

1. Install the Balance Transfer and Marbles samples on different channels. For more
information on installing the samples, see Explore Oracle Blockchain Platform
Using Samples.

2. In the Marbles sample, invoke the Create a new marble action to create a
number of marbles for various marble owners.

3. Use the Invoke Atomic Transaction REST endpoint to complete atomic
transactions that invoke both the Marbles and the Balance Transfer samples.

For example, the following transaction transfers a marble named marble1 to Tom, and
sends 50 coins from account a to account b.

{
 "transactions": [
 {"chaincode":"obcs-marbles","args":["transferMarble", "marble1",
"tom"],"timeout":0, "channel":"goods"},
 {"chaincode":"obcs-example02","args":["invoke", "a", "b",

Chapter 9
Make Atomic Updates Across Chaincodes and Channels

9-10

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-atomic-unlock

"50"],"timeout":0, "channel":"wallet"}
],
 "isolationLevel": "serializable",
 "prepareTimeout": 10000,
 "sync": true
}

In the previous transaction, if both transactions succeed in the prepare phase, then both
transactions are committed to the ledger. If there is an error with either transaction, then
neither transaction is committed during the second phase. Instead, both transactions are
rolled back. For example, if there are less than 50 coins in account a, then no money is taken
from the account and no marble is transferred to Tom.

There is a known issue with the Marbles sample and the default value of the Marble Owner
field. For more information, see: Known Issues for Oracle Blockchain Platform.

Ethereum Interoperability
You can include Ethereum-based transactions in an atomic transaction workflow.

Growing use of public blockchains and tokenization capabilities across both public and
permissioned blockchains drives the need for their interoperability. Common scenarios
include asset exchange across different ledgers, business transactions on permissioned
blockchains that are linked to cryptocurrency payments on public chains, publishing proof of a
permissioned blockchain transaction on a public blockchain, and so on. To enable
interoperability for these and other scenarios, Oracle Blockchain Platform provides
interoperability with Ethereum and with any EVM-based networks that support standard web3
protocols. The interoperability function works by incorporating the Geth Ethereum client in the
REST proxy and enabling it to orchestrate an optimized two-phase commit protocol that
includes both Oracle Blockchain Platform and Ethereum/EVM transactions through a single
REST API called atomicTransactions. You can use the atomicTransactions API to send
multiple chaincode transactions for multiple Oracle Blockchain Platform channels, and can
optionally add an Ethereum transaction that will run atomically with the Oracle Blockchain
Platform transactions.

Unlike Oracle Blockchain Platform transactions, Ethereum transactions cannot be broken
down into the prepare and commit phases of the two-phase commit protocol. To include
Ethereum transactions as part of an atomic workflow, Oracle Blockchain Platform uses a last
resource commit (LRC) optimization. After all of the Oracle Blockchain Platform transactions
are in the prepared state, the Ethereum transaction is started. If the Ethereum transaction
succeeds, then the Oracle Blockchain Platform transactions are committed. If the Ethereum
transaction fails, then the Oracle Blockchain Platform transactions are rolled back.

Ethereum transactions have a concept of finality. An Ethereum transaction can run
successfully but it does not achieve finality until it's part of a block that can't change. You can
use the finalityParams parameters to control whether to check for finality and how long to
wait for it, either in blocks or in seconds. Typically, if you wait for six blocks to be generated
on the public Ethereum blockchain network (Mainnet), you can assume that transaction
finality was achieved. In private Ethereum networks, typically you do not need to wait as long
for finality.

Transferring an NFT to an Ethereum network

The atomicTransactions API also supports interactions with smart contracts that are
deployed on Ethereum networks. You can use this functionality to transfer non-fungible

Chapter 9
Ethereum Interoperability

9-11

tokens (NFTs) that were minted in Hyperledger Fabric chaincode on Oracle Blockchain
Platform to an Ethereum or Polygon network, by invoking two transactions atomically.
NFT attributes such as the token ID, price, and token history can also be passed from
Oracle Blockchain Platform to Ethereum atomically. After you transfer an NFT from
Oracle Blockchain Platform to Ethereum, the NFT can be listed on a public NFT
marketplace.

To transfer an NFT from Oracle Blockchain Platform to Ethereum, you use two basic
steps in one atomic transaction:

1. Burn the NFT on Oracle Blockchain Platform. Call the burnNFT method, to burn
(delete) the NFT from the Hyperledger Fabric chaincode on Oracle Blockchain
Platform. Oracle Blockchain Platform supports NFTs in enhanced versions of two
standards, ERC-721 and ERC-1155, with the Blockchain App Builder tool. For
more information on the burnNFT method, see the relevant topic for your
environment:

• burnNFT (ERC-721, TypeScript)

• BurnNFT (ERC-721, Go)

• burnNFT (ERC-1155, TypeScript)

• BurnNFT (ERC-1155, Go)

2. Mint the NFT on Ethereum. Call a smart contract on the Ethereum or Polygon
network to mint the NFT on that network, using the parameters returned by the
burnNFT method. Sample versions of smart contracts written in the Solidity
language for NFTs are available in the following archive file: solidity-
smartcontracts-fab253.zip. The smart contracts, one for each of the enhanced
token standards ERC-721 and ERC-1155, include a mintNFT method, which
creates NFTs with custom properties such as price and token history, which can be
fetched from the output of the burnNFT method in the previous step.
For unsigned requests, if the custom properties are in the ParamKeys parameter
and corresponding dynamic parameters are passed in the params parameter, the
atomic transactions API can fetch the parameters from the burnNFT method and
send them to the Ethereum smart contract. The mintNFT method takes the
following arguments:

• to – The Ethereum address for the account where the NFT will be minted.

• id – The token ID of the NFT.

• price – The price of the NFT.

• tokenHistory – The history of the NFT from the Oracle Blockchain Platform
chaincode.

The smart contract requires that the token ID of the NFT must be a numeric string
(a string that can be converted to an integer). For example a token ID can be 2 but
not token2.

The token URI of the NFT in the chaincode deployed on Oracle Blockchain
Platform must follow a certain format to make it compatible with Solidity smart
contracts:

• ERC-1155: A URI for all token types that relies on ID substitution, such as
https://token-cdn-domain/{id}.json.

Chapter 9
Ethereum Interoperability

9-12

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=sample-solidity-smart-contracts
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=sample-solidity-smart-contracts

• ERC-721: A URI where all tokens share a prefix (a base URI) followed by a token
URI, such as http://api.myproject.example.com/token/<tokenURI>.

You can use the Remix IDE to generate an application binary interface (ABI) for the smart
contract. The ABI can then be used with the atomicTransactions API. If you change any
method in the smart contract, you must recompile the contract and generate the ABI
again.

For more information about the parameters to use for Ethereum transactions in an atomic
workflow, including an example of transferring an NFT to an Ethereum network, see Atomic
Transactions REST Endpoints.

Include Oracle Blockchain Platform in Global Distributed
Transactions

Your application might need to make updates across the Oracle Blockchain Platform ledger
and other repositories such as databases or other blockchain ledgers in an atomic fashion,
where either all updates succeed or none do.

To enable atomic updates across multiple databases, developers use global transactions that
are coordinated by distributed transaction coordinators such as Oracle WebLogic Server,
Oracle Tuxedo, Oracle Transaction Manager for Microservices, JBoss Enterprise Application
Platform, IBM WebSphere, and other systems. All of these systems rely on the X/Open XA
protocol to orchestrate a two-phase commit process by using standard APIs that are provided
by XA Resource Managers (RMs) for each database or other resource. Oracle Blockchain
Platform supports two-phase commits and provides its own XA RM library, which external
transaction coordinators can use to invoke XA-compliant APIs. These global transactions can
also include a single non-XA resource (for example, a non-Oracle blockchain ledger or non-
XA compliant database) by using a last resource commit optimization.

The XA specification is part of the X/Open Distributed Transaction Processing architecture,
which defines a standard architecture that enables multiple application programs to share
resources provided by multiple resource managers. The Java XA interface itself is defined as
part of the Java platform. For more information on the Java XA interface, see Interface
XAResource in the Java documentation.

Oracle Blockchain Platform provides a library that conforms to the XA specification and
implements the standard Java interface for an XA resource manager. The library enables a
client-side transaction manager to coordinate global transactions. A global transaction is a
single unit of work that might include operations such as database updates and blockchain
transactions, all of which must be committed atomically. In other words, all of the operations
must succeed to be committed. If any operation that is part of the global transaction fails,
then all operations are rolled back. The XA interface relies on the two-phase commit protocol,
similar to the protocol supported by the atomic transactions REST endpoints. For more
information about atomic transactions in Oracle Blockchain Platform, see Make Atomic
Updates Across Chaincodes and Channels.

The XA implementation for Oracle Blockchain Platform is supplied as a Java library,
downloadable from the Developer Tools tab on the Application Development pane of the
Oracle Blockchain Platform console.

Full details on the library are included in the Javadoc information supplied in the
downloadable file. The three key objects supported by the library are OBPXAResource,
OBPXADataSource, and OBPXAConnection.

Chapter 9
Include Oracle Blockchain Platform in Global Distributed Transactions

9-13

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-atomic
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-atomic
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=xopen-docs-xa
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=xopen-docs-xa

Object Purpose

OBPXAResource This class implements the required APIs for a
transaction manager to coordinate with Oracle
Blockchain Platform as a resource manager
for XA transactions.

OBPXADataSource Use this object to get an instance of the
OBPXAConnection and to specify the
authentication and authorization credentials.

OBPXAConnection Use this object to get an instance of the
OBPXAResource object and to define the
blockchain transactions to run as part of an XA
transaction.

To use the XA library with Oracle Blockchain Platform, the application must provide
credentials for authentication and authorization of the requested operations. The
library supports both basic authentication (user/password) and OAuth 2.0 access
tokens, which you can configure when you create the OBPXADataSource instance. The
two authentication methods are consistent with the authentication methods that you
use with the Oracle Blockchain Platform REST proxy. For more information, see
Authentication in the REST API documentation.

After you create an OBPXADataSource instance, you can use the
obpxaDataSource.getXAConnection() method to get the xaConnection instance. To
update authentication when using OAuth 2.0 access tokens, you can use the
getXAConnection method, as shown in the following code:

OBPXAConnection xaConnection =
obpxaDataSource.getXAConnection(accessToken); // get an XA
connection using an OAuth 2.0 access token

You can also use the getXAConnection method to update basic authentication.

OBPXAConnection xaConnection = obpxaDataSource.getXAConnection(user,
password); // get an XA connection using username and password for
basic authentication

To define a blockchain transaction to be run as part of a global XA transaction, you use
the following method:

public void createXAInvokeTransaction(Xid xid, OBPXAInvokeTxRequest
invokeTxRequest)

In this method, xid is a global transaction identifier and invokeTxRequest is the
blockchain transaction to be run as part of the global XA transaction. To create an XA
invoke transaction request, you use the following constructor method:

OBPXAInvokeTxRequest invokeTxRequest = new
OBPXAInvokeTxRequest(channel, chaincode, args);

Chapter 9
Include Oracle Blockchain Platform in Global Distributed Transactions

9-14

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-authenticate

In this constructor method, channel is the channel where the blockchain transaction will run,
chaincode is the chaincode to use, and args includes the chaincode function and any
arguments to use for the transaction.

The following snippet of code demonstrates creating an OBPXADataSource object, getting the
OBPXAConnection instance, and then creating the transaction request and calling the
createXAInvokeTransaction method.

OBPXADataSource obpxaDataSource = OBPXADataSource.builder()
 .withHost(host)
 .withPort(port)
 .withBasicAuth(username, password)
 .withRole(role)
 .build();
.
.
.
OBPXAConnection obpxaConnection = obpxaDataSource.getXAConnection();

OBPXAInvokeTxRequest invokeTxRequest = new OBPXAInvokeTxRequest(channel,
chaincode, args);
invokeTxRequest.setEndorsers(endorsersArray); // optional blockchain
transaction request attributes
invokeTxRequest.setTransientMap(transientMap); // optional blockchain
transaction request attributes
invokeTxRequest.setTimeout(60000); // optional blockchain transaction
request attributes

obpxaConnection.createXAInvokeTransaction(xid, invokeTxRequest);

Scenario: Explore XA Transactions Using Samples

The following scenario is similar to the one described for atomic transactions: Scenario:
Explore Atomic Transactions Using Samples, which uses the Balance Transfer and Marbles
samples that are included with Oracle Blockchain Platform.

In this scenario, you install the Balance Transfer and Marbles samples on two different
instances of Oracle Blockchain Platform. Each instance then corresponds to an XA data
source:

• XA resource OBP-1, with the Marbles chaincode installed on the goods channel

• XA resource OBP-2, with the Balance Transfer chaincode installed on the wallet
channel

In this scenario, you can use an XA transaction that spans multiple data sources to ensure
that the exchange of funds and the marble transfer occur in an atomic manner, where either
all operations succeed or none succeed. The following code illustrates this scenario:

OBPXADataSource obpxaDS1 = ... // create an XA data source, supplying
details about the OBP-1 instance
OBPXADataSource obpxaDS2 = ... // create an XA data source, supplying
details about the OBP-2 instance

// start a global transaction in the client application
// invoke marble transfer on OBP-1

Chapter 9
Include Oracle Blockchain Platform in Global Distributed Transactions

9-15

OBPXAConnection obpxaConn1 = (OBPXAConnection)
obpxaDS1.getXAConnection();
OBPXAInvokeTxRequest invokeMarbleTransferReq = new
OBPXAInvokeTxRequest("goods", "obcs-marbles", new String[]
{"transferMarble", "marble1", "tom"});
obpxaConn1.createXAInvokeTransaction(xid1, invokeMarbleTransferReq);
.
.
.
// invoke fund transfer on OBP-2
OBPXAConnection obpxaConn2 = (OBPXAConnection)
obpxaDS2.getXAConnection();
OBPXAInvokeTxRequest invokeBalanceTransferReq = new
OBPXAInvokeTxRequest("wallet", "obcs-example02", new String[]
{"invoke", "a", "b", "50"});
obpxaConn2.createXAInvokeTransaction(xid2, invokeBalanceTransferReq);
.
.
.
// end the global transaction in the client application

There is a known issue with the Marbles sample and the default value of the Marble
Owner field. For more information, see: Known Issues for Oracle Blockchain Platform.

Chapter 9
Include Oracle Blockchain Platform in Global Distributed Transactions

9-16

10
Work With Databases

This topic contains information to help you understand how to query the state database and
how to create and configure a rich history database.

Topics:

• Query the State Database

• Create the Rich History Database

Query the State Database
This topic contains information to help you understand how to query the state database
where the blockchain ledger’s current state data is stored.

What's the State Database?
The blockchain ledger’s current state data is stored in the state database.

When you develop Oracle Blockchain Platform chaincodes, you can extract data from the
state database by executing rich queries. Oracle Blockchain Platform supports rich queries
by using the SQL rich query syntax and the CouchDB find expressions. See SQL Rich Query
Syntax and CouchDB Rich Query Syntax.

Hyperledger Fabric doesn’t support SQL rich queries. If your Oracle Blockchain Platform
network contains Hyperledger Fabric participants, then you need to make sure to do the
following:

• If your chaincodes contain SQL rich query syntax, then those chaincodes are installed
only on member peers using Oracle Blockchain Platform.

• If a chaincode needs to be installed on Oracle Blockchain Platform and Hyperledger
Fabric peers, then use CouchDB syntax in the chaincodes and confirm that the
Hyperledger Fabric peers are set up to use CouchDB as their state database repository.
Oracle Blockchain Platform can process CouchDB.

How Does Oracle Blockchain Platform Work with Berkeley DB?

Oracle Blockchain Platform uses Oracle Berkeley DB as the state database. Oracle
Blockchain Platform creates relational tables in Berkeley DB based on the SQLite extension.
This architecture provides a robust and performant way to validate SQL rich queries.

For each channel chaincode, Oracle Blockchain Platform creates a Berkeley DB table. This
table stores state information data, and contains at least a key column named key, and a
value column named value or valueJson, depending on whether you’re using JSON format
data.

Column Name Type Description

key TEXT Key column of the state table.

10-1

Column Name Type Description

value TEXT Value column of the state table.

valueJson TEXT JSON format value column of the state
table.

Note that the valueJson and value columns are mutually-exclusive. So, if the
chaincode assigns a JSON value to a key, then the valueJson column will hold that
value, and the value column will be set to null. If the chaincode assigns a non-JSON
value to a key, then the valueJson column will be set to null, and the value column will
hold the value.

Example of a State Database

These are examples of keys and their values from the Car Dealer sample’s state
database:

key value valueJson

abg1234 null {"docType": "vehiclePart", "serialNumber":
"abg1234", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name": "airbag
2020", "owner": "Detroit Auto", "recall": false,
"recallDate": 1502688979}

abg1235 null {"docType": "vehiclePart", "serialNumber":
"abg1235", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name": "airbag
4050", "owner": "Detroit Auto", "recall": false,
"recallDate": 1502688979}

ser1236 null {"docType": "vehiclePart", "serialNumber":
"ser1236", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name":
"seatbelt 10020", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

bra1238 null {"docType": "vehiclePart", "serialNumber":
"bra1238", "assembler": "bobs-bits",
"assemblyDate": 1502688979, "name":
"brakepad 4200", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

dtrt10001 null {"docType": "vehicle", "chassisNumber":
"dtrt10001", "manufacturer": "Detroit Auto",
"model": "a coupe", "assemblyDate":
1502688979, "airbagSerialNumber":
"abg1235", "owner": "Sam Dealer", "recall":
false, "recallDate": 1502688979

Rich Queries in the Console
Administrators can run and analyze rich queries from the console.

1. Go to the console and select the Channels tab.

2. In the channels table, locate the channel where you want to run a query, click the
channels More Actions button, and then click Analyze Rich Queries. The
Analyze Rich Queries dialog box is displayed.

3. To run a rich query against the state database, select Query Execution.

Chapter 10
Query the State Database

10-2

a. For Chaincode, select the chaincode that is deployed to the channel that you want to
query.

b. For Peer, select the peer to query.

Only peers in the current organization that are running the selected chaincode are
available.

c. For Rich Query, enter the rich query to run and analyze.

The query format must follow the rich query syntax. For more information about rich
query syntax, see Supported Rich Query Syntax.

d. For Result Rows Limit, move the slider to the maximum number of result rows to
fetch. You can fetch up to 50 rows of results.

4. To get the execution plan for a query, select Query Plan Explain. A query execution plan
is the sequence of operations that was performed to run the query.

a. For Chaincode, select the chaincode that is deployed to the channel that you want to
query.

b. For Peer, select the peer to query.

c. For Collection, select the state database or private data collection.

d. For Rich Query, enter the rich query.

The explain keyword is not needed for this query.

For example: select * from <state>
5. Click Execute. The Results field shows the query result table or the execution plan. To

export the results table as a .csv file, click Export.

The results table size is limited to 1 MB. You might need to refine your query to avoid
exceeding this limit.

Supported Rich Query Syntax
Oracle Blockchain Platform supports two types of rich query syntax that you can use to query
the state database: SQL rich query and CouchDB rich query.

SQL Rich Query Syntax
The Berkeley DB JSON extensions are in the form of SQL functions.

Before You Begin

Note the following information:

• You can only access the channel chaincode (<STATE>) that you’re executing your query
from.

• Only the SELECT statement is supported.

• You can’t modify the state database table.

• A rich query expression can have only one SELECT statement.

• The examples in this topic are just a few ways that you can write your rich query. You've
access to the usual full SQL syntax to query a SQL database.

• You've access to the JSON1 Extension (SQLite extension). See JSON1 Extension and
SQL As Understood by SQLite.

Chapter 10
Query the State Database

10-3

https://www.sqlite.org/json1.html
https://www.sqlite.org/lang_select.html

If you need more information about writing and testing chaincodes, see Develop
Chaincodes.

How to Refer to the State Database in Queries

The state database table name is internally managed by Oracle Blockchain Platform,
so you don't need to know the state database’s physical name when you write a
chaincode.

Instead, you must use the <STATE> alias to refer to the table name. For example:
select key, value from <STATE>.

Note that the <STATE> alias is not case-sensitive, so you can use either <state>,
<STATE>, or something like <StAtE>.

Retrieve All Keys

Use this syntax:

SELECT key FROM <STATE>

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following list of keys:

key

abg1234

abg1235

ser1236

bra1238

dtrt10001

Retrieve All Keys and Values Ordered Alphabetically by Key

Use this syntax:

SELECT key AS serialNumber, valueJson AS details FROM <state> ORDER
BY key

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following results:

serialNu
mber

details

abg1234 {"docType": "vehiclePart", "serialNumber": "abg1234", "assembler": "panama-
parts", "assemblyDate": 1502688979, "name": "airbag 2020", "owner": "Detroit
Auto", "recall": false, "recallDate": 1502688979}

abg1235 {"docType": "vehiclePart", "serialNumber": "abg1235", "assembler": "panama-
parts", "assemblyDate": 1502688979, "name": "airbag 4050", "owner": "Detroit
Auto", "recall": false, "recallDate": 1502688979}

bra1238 {"docType": "vehiclePart", "serialNumber": "bra1238", "assembler": "bobs-bits",
"assemblyDate": 1502688979, "name": "brakepad 4200", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

Chapter 10
Query the State Database

10-4

serialNu
mber

details

dtrt10001 {"docType": "vehicle", "chassisNumber": "dtrt10001", "manufacturer": "Detroit Auto",
"model": "a coupe", "assemblyDate": 1502688979, "airbagSerialNumber":
"abg1235", "owner": "Sam Dealer", "recall": false, "recallDate": 1502688979

ser1236 {"docType": "vehiclePart", "serialNumber": "ser1236", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name": "seatbelt 10020", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

Retrieve All Keys and Values Starting with “abg”

Use this syntax:

SELECT key AS serialNumber, valueJson AS details FROM <state> WHERE key LIKE
'abg%'SELECT key, value FROM <STATE>

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following results:

serialNum
ber

details

abg1234 {"docType": "vehiclePart", "serialNumber": "abg1234", "assembler": "panama-parts",
"assemblyDate": "1502688979", "name": "airbag 2020", "owner": "Detroit Auto", "recall":
"false", "recallDate": "1502688979"}

abg1235 {"docType": "vehiclePart", "serialNumber": "abg1235", "assembler": "panama-parts",
"assemblyDate": "1502688979", "name": "airbag 4050", "owner": "Detroit Auto", "recall":
"false", "recallDate": "1502688979"}

Retrieve All Keys with Values Containing a Vehicle Part Owned by "Detroit Auto"

Use this syntax:

SELECT key FROM <state> WHERE json_extract(valueJson, '$.docType') =
'vehiclePart' AND json_extract(valueJson, '$.owner') = 'Detroit Auto'
For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following list of keys:

key

abg1234

abg1235

ser1236

bra1238

Retrieve Model and Manufacturer for all Cars Owned by "Sam Dealer"

Use this syntax:

SELECT json_extract(valueJson, '$.model') AS model, json_extract(valueJson,
'$.manufacturer') AS manufacturer FROM <state> WHERE json_extract(valueJson,
'$.docType') = 'vehicle' AND json_extract(valueJson, '$.owner') = 'Sam Dealer'

Chapter 10
Query the State Database

10-5

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following results:

model manufacturer

a coupe Detroit Auto

If the state value is JSON array, you may use this syntax to retrieve model and
manufacturer for all cars owned by "Sam Dealer":

SELECT json_extract(j.value, '$.model') AS model, json_extract(j.value,
'$.manufacturer') AS manufacturer FROM <state> s,
json_each(json_extract(s.valueJson,'$')) j WHERE json_valid(j.value) AND
json_extract(j.value, '$.owner') = 'Sam Dealer'

CouchDB Rich Query Syntax
Use the information in this topic if you’re migrating your chaincodes containing
CouchDB syntax to Oracle Blockchain Platform, or if you need to write chaincodes to
install on Hyperledger Fabric peers participating in an Oracle Blockchain Platform
network.

If you’re writing a new chaincode, then Oracle recommends that you use SQL rich
queries to take advantage of the performance benefits that Oracle Blockchain Platform
with Berkeley DB provides.

If you need more information about writing and testing chaincodes, see Develop
Chaincodes.

Unsupported Query Parameters and Selector Syntax

Oracle Blockchain Platform doesn’t support the use_index parameter. If used, Oracle
Blockchain Platform ignores this parameter, and it will automatically pick the indexes
defined on the StateDB in question.

Parameter Type Description

use_index json Instructs a query to use a specific
index.

Retrieve All Models, Manufacturers, and Owners of Cars, and Order Them by
Owner

Use this expression:

{
 "fields": ["model", "manufacturer", "owner"],
 "sort": [
 "owner"
]
}

Chapter 10
Query the State Database

10-6

Retrieve Model and Manufacturer for All Cars Owned by “Sam Dealer”

Use this expression:

{
 "fields": ["model", "manufacturer"],
 "selector": {
 "docType" : "vehicle",
 "owner" : "Sam Dealer"
 }
}

State Database Indexes
The state database can contain a large amount of data. In such cases Oracle Blockchain
Platform uses indexes to improve data access.

Default Indexes

When a chaincode is deployed, Oracle Blockchain Platform creates two indexes.

• Key index — Created on the key column.

• Value index — Created on the value column.

Custom Indexes

In some cases, you might need to create custom indexes. You define these indexes using
any expression that can be resolved in the context of the state table. Custom indexes created
against Berkeley DB rely on the SQLite syntax, but they otherwise follow the same CouchDB
implementation provided by Hyperledger Fabric.

Note that you can use custom indexes to dramatically improve the performance of WHERE
and ORDER BY statements on large data sets. Because using custom indexes slows down
data insertions, you should use them judiciously.

Each custom index is defined as an array of expressions, which support compound indexes,
expressed as a JSON document inside one file (note that there's one index per file). You
must package this file with the chaincode in a folder named “indexes” in the following
directory structure: statedb/relationaldb/indexes. See How to add CouchDB indexes
during chaincode installation.

Example Custom Indexes

The custom index examples in this section use the Car Dealer sample.

Example 1 —This example indexes the use of the json_extract expression in the context of
WHERE and ORDER BY expressions.

{"indexExpressions": ["json_extract(valueJson, '$.owner')"]}
For example:

SELECT … FROM … ORDER BY json_extract(valueJson, '$.owner')
Example 2 — This example indexes the compound use of the two json_extract expressions
in the context of WHERE and ORDER BY expressions.

Chapter 10
Query the State Database

10-7

https://hyperledger.github.io/fabric-sdk-node/release-1.4/tutorial-metadata-chaincode.html
https://hyperledger.github.io/fabric-sdk-node/release-1.4/tutorial-metadata-chaincode.html

{"indexExpressions": ["json_extract(valueJson, '$.docType')",
"json_extract(valueJson, '$.owner')"]}
For example:

SELECT … FROM … WHERE json_extract(valueJson, '$.docType') = 'vehiclePart'
AND json_extract(valueJson, '$.owner') = 'Detroit Auto'
Example 3 — This example creates two indexes: the index described in Example 1
and the index described in Example 2. Note that each JSON structure needs to be
included in a separate file. Each file describes a single index: a simple index like
Example 1, or a compound index like Example 2.

Index 1: {"indexExpressions": ["json_extract(valueJson, '$.owner')"]}
Index 2: {"indexExpressions": ["json_extract(valueJson, '$owner')",
"json_extract(valueJson, '$.docType')"]}
In the following example, Index 2 is applied to the AND expression in the WHERE portion
of the query, while Index 1 is applied to the ORDER BY expression:

SELECT … FROM … WHERE json_extract(valueJson, '$.docType') = 'vehiclePart'
AND json_extract(valueJson, '$.owner') = 'Detroit Auto' ORDER BY
json_extract(valueJson, '$.owner')
JSON Document Format

The JSON document must be in the following format:

{"indexExpressions": [expr1, ..., exprN]}
For example:

{"indexExpressions": ["json_extract(valueJson, '$.owner')"]}

Differences in the Validation of Rich Queries
In some cases, the standard Hyperledger Fabric with CouchDB rich query and the
Oracle Berkeley DB rich query behave differently.

In standard Hyperledger Fabric with CouchDB, each key and value pair returned by
the query is added to the transaction's read-set and is validated at validation time and
without re-executing the query. In Berkeley DB, the returned key and value pair isn’t
added to the read-set, but the rich query's result is hashed in a Merkle tree and
validated against the re-execution of the query at validation time.

Native Hyperledger Fabric doesn’t provide data protection for rich query. However,
Berkeley DB contains functionality that protects and validates the rich query by adding
the Merkle tree hash value into the read-set, re-executing the rich query, and at the
validation stage re-calculating the Merkle tree value. Note that because validation is
more accurate in Oracle Blockchain Platform with Berkeley DB, chaincode invocations
are sometimes flagged for more frequent phantom reads.

Create the Rich History Database
This topic contains information to help you specify an Oracle database connection and
choose channels to create the rich history database. You’ll use this database to make
analytics reports and visualizations of your ledger’s activities.

Chapter 10
Create the Rich History Database

10-8

What's the Rich History Database?
The rich history database is external to Oracle Blockchain Platform and contains data about
the blockchain ledger’s transactions on the channels you select. You use this database to
create analytics reports and visualization about your ledger’s activities.

For example, using the rich history database, you could create analytics to learn the average
balance of all of the customers in your bank over some time interval, or how long it took to
ship merchandise from a wholesaler to a retailer.

Internally, Oracle Blockchain Platform uses the Hyperledger Fabric history database to
manage the ledger and present ledger transaction information to you in the console. Only the
chaincodes can access this history database, and you can’t expose the Hyperledger Fabric
history database as a data source for analytical queries. The rich history database uses an
external Oracle database and contains many details about every transaction committed on a
channel. This level of data collection makes the rich history database an excellent data
source for analytics. For information about the data that the rich history database collects,
see Rich History Database Tables and Columns.

You can only use an Oracle database such as Oracle Autonomous Data Warehouse or
Oracle Database Classic Cloud Service with Oracle Cloud Infrastructure to create your rich
history database. You use the Oracle Blockchain Platform console to provide the connection
string and credentials to access and write to the Oracle database. Note that the credentials
you provide are the database’s credentials and Oracle Blockchain Platform doesn’t manage
them. After you create the connection, you’ll select the channels that contain the ledger data
that you want to include in the rich history database. See Enable and Configure the Rich
History Database.

You can use standard tables or blockchain tables to store the rich history database.
Blockchain tables are tamperproof append-only tables, which can be used as a secure ledger
while also being available for transactions and queries with other tables. For more
information, see Oracle Blockchain Table.

You can use any analytics tool, such as Oracle Analytics Cloud or Oracle Data Visualization
Cloud Service, to access the rich history database and create analytics reports or data
visualizations.

Create the Oracle Database Classic Cloud Service Connection String
You must collect information from the Oracle Database Classic Cloud Service deployed on
Oracle Cloud Infrastructure to build the connection string required by the rich history
database. You must also enable access to the database through port 1521.

Find and Record Oracle Database Classic Cloud Service Information

The information you need to create a connection to the Oracle Database Classic Cloud
Service is available in the Oracle Cloud Infrastructure Console.

1. From the Infrastructure Console, click the navigation menu in the top left corner, and then
click Database.

2. Locate the database that you want to connect to and record the Public IP address.

3. Click the name of the database that you want to connect to and record the values in
these fields:

• Database Unique Name

Chapter 10
Create the Rich History Database

10-9

• Host Domain Name

• Port

4. Find a user name and password of a database user with permissions to read from
this database, and make a note of these. For example, the user SYSTEM.

Enable Database Access Through Port 1521

Add an ingress rule that enables the rich history database to access the database
through port 1521.

1. In the Oracle Cloud Infrastructure home page, click the navigation icon and then
under Databases click DB Systems.

2. Click the database that you want to connect to.

3. Click the Virtual Cloud Network link.

4. Navigate to the appropriate subnet, and then under Security Lists, click Default
Security List For <Target Database>.

The Security List page is displayed.

5. Click Edit All Rules.

6. Add an ingress rule to allow any incoming traffic from the public internet to reach
port 1521 on this database node, with the following settings:

• SOURCE CIDR: 0.0.0.0/0

• IP PROTOCOL: TCP

• SOURCE PORT RANGE: All

• DESTINATION PORT RANGE: 1521

• Allows: TCP traffic for ports: 1521

Build the Connection String

After enabling access to the Oracle database, use the information you collected to
build the connection string in the Configure Rich History dialog.

Construct the connection string using the following syntax: <publicIP>:<portNumber>/
<database unique name>.<host domain name>

For example, 192.0.2.0:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.example.com

Ensure the Database User has Correct Privileges

In order for the rich history functionality to be able to manage its database sessions
and to recover from temporary database or network downtime, ensure the database
user registered with Oracle Blockchain Platform has the following two privileges:

grant select on v_$session to <user>;
grant alter system to <user>;

Additionally, if the rich history database uses Oracle Autonomous Data Warehouse,
the database user must have the following privilege:

grant unlimited tablespace to <user>;

Chapter 10
Create the Rich History Database

10-10

If the database user doesn't have those privileges already, they must be granted by the
system database administrator.

Without these privileges Oracle Blockchain Platform can replicate to the database but it
cannot recover from situations leading to a damaged database session, which prevents the
rich history from catching up with recent transactions for an extended period. Without these
privileges on Oracle Autonomous Data Warehouse, no rich history data is saved.

Enable and Configure the Rich History Database
Use the console to provide database connection information and select the channels with the
chaincode ledger data that you want to write to the rich history database. By default channels
aren’t enabled to write data to the rich history database.

Note the following information:

• Each blockchain network member configures its own rich history database.

• You must use an Oracle database. No other database types are supported.

• Each channel that writes to the rich history database must contain at least one peer
node.

1. Enter connection and credential information for the Oracle database that you want to use
to store rich history information.

a. Go to the console and click the Options button and click Configure Rich History.
This button is located above the bar that contains the tabs that you use to navigate to
nodes, channels, and chaincodes.

The Configure Rich History dialog box is displayed.

b. Enter the user name and password required to access the Oracle database.

c. In the Connection String field, enter the connection string for the database that
you’ll use to store rich history data. What you enter here depends on the Oracle
database you’re using.

• If you’re using Oracle Autonomous Data Warehouse, then you’ll enter something
similar to <username>adw_high. To find Oracle Autonomous Data Warehouse’s
connection information, go to its credential wallet ZIP file and open its TNS file.

• If you’re using Oracle Database Classic Cloud Service with Oracle Cloud
Infrastructure, see Create the Oracle Database Classic Cloud Service
Connection String.

• If you're using a non-autonomous Oracle database (a database that doesn't use
a credential wallet) and want to use the sys user to connect to the database, then
you must append ?as=sys[dba|asm|oper] to the connection string. For example,
123.123.123.123:1521/example.oraclevcn.com?as=sysdba

d. If you’re using an Oracle Cloud autonomous database instance (for example, Oracle
Autonomous Data Warehouse or Oracle Autonomous Transaction Processing), then
use the Wallet Package File field to upload the required credential wallet ZIP file.
This file contains client credentials and is generated from the Oracle autonomous
database.

Chapter 10
Create the Rich History Database

10-11

Note:

When you open the Configure Rich History dialog box again after
you configure rich history, the wallet file name is not displayed. If you
update other settings, you must upload the wallet ZIP file again
before clicking Save. If you click Save while no wallet file name is
displayed, the configuration is updated not to use a wallet file.

e. To use blockchain tables to store the rich history database, select Use
Database Blockchain Table.

The underlying database must support blockchain tables. For more
information, see Oracle Blockchain Table.

• To specify the number of days to retain tables and rows, select Basic
Configuration, and then enter the number of days to retain tables and
rows. Enter 0 to retain tables or rows permanently. To prevent further
changes to the retention values, select Locked.

• To specify table and row retention by using a data definition language
(DDL) statement, select Advanced Configuration Query and then enter
the DDL statement.

f. Click Save.

2. Enable rich history on the channels that contain the chaincode data that you want
to write to the rich history database.

a. Go to the console and select the Channels tab.

b. Locate the channel that contains the chaincode data that you want to write to
the rich history database. Click its More Options button and select Configure
Rich History.

The Configure Rich History dialog is displayed.

c. Click the Enable Rich History check box. To store private data collections in
the rich history database, enter a list of private data collection names,
separated by commas. For more information about private data collections,
see What Are Private Data Collections?. To add transaction details to the rich
history database, select the details that you want added. Click Save.

The rich history database is configured, but tables are not created in the database
immediately. When the next relevant transaction or ledger change happens, the tables
are created in the rich history database.

Modify the Connection to the Rich History Database
You can change the rich history database’s connection information.

After tables are created in the database for a channel, modifying the rich history
configuration for the channel has no effect, even after you click Save, unless you
change the user name and password or the connection string. If you change the user
name and password, tables are created in the same database. If you change the
connection string and credentials, a different database is configured, and tables are
created after the next relevant transaction or ledger change. You cannot change a rich
history database from standard tables to blockchain tables, and you cannot change
retention times, unless you also change the credentials or connection string.

Chapter 10
Create the Rich History Database

10-12

1. Go to the console and click the Options button and click Configure Rich History. This
button is located above the bar that contains the tabs that you use to navigate to nodes,
channels, and chaincodes.

2. If needed, update the user name and password required to access the Oracle database.

3. If needed, in the Connection String field, modify the connection string for the database
that you’ll use to store rich history data. What you enter here depends on the Oracle
database you’re using.

• If you’re using Oracle Autonomous Data Warehouse, then you’ll enter something
similar to <username>adw_high. To find Oracle Autonomous Data Warehouse’s
connection information, go to its credential wallet ZIP file and open its TNS file.

• If you’re using Oracle Database Classic Cloud Service with Oracle Cloud
Infrastructure, see Create the Oracle Database Classic Cloud Service Connection
String.

• If you're using a non-autonomous Oracle database (a database that doesn't use a
credential wallet) and want to use the sys user to connect to the database, then you
must append ?as=sys[dba|asm|oper] to the connection string. For example,
123.123.123.123:1521/example.oraclevcn.com?as=sysdba

4. If you’re using an Oracle Cloud autonomous database instance (for example, Oracle
Autonomous Data Warehouse or Oracle Autonomous Transaction Processing), then use
the Wallet Package File field to upload or re-upload the required credential wallet file.
This file contains client credentials and is generated from the Oracle autonomous
database.

Note:

When you open the Configure Rich History dialog box again after you configure
rich history, the wallet file name is not displayed. If you update other settings,
you must upload the wallet ZIP file again before clicking Save. If you click Save
while no wallet file name is displayed, the configuration is updated not to use a
wallet file.

5. To use blockchain tables to store the rich history database, select Use Database
Blockchain Table.

The underlying database must support blockchain tables.

• To specify the number of days to retain tables and rows, select Basic Configuration,
and then enter the number of days to retain tables and rows. Enter 0 to retain tables
or rows permanently. To prevent further changes to the retention values, select
Locked.

• To specify table and row retention by using a data definition language (DDL)
statement, select Advanced Configuration Query and then enter the DDL
statement.

6. Click Save.

Configure the Channels that Write Data to the Rich History Database
You can enable channels to write chaincode ledger data to the rich history database, and you
can stop channels from writing data to the rich history database. You can also configure an

Chapter 10
Create the Rich History Database

10-13

individual channel to use a different rich history database configuration than the global
setting.

You must specify the global information to connect to the rich history database before
you can select channels that write to the rich history database. See Enable and
Configure the Rich History Database.
After tables are created in the database for a channel, modifying the rich history
configuration for the channel has no effect, even after you click Save, unless you
change the user name and password or the connection string. If you change the user
name and password, tables are created in the same database. If you change the
connection string and credentials, a different database is configured, and tables are
created after the next relevant transaction or ledger change. You cannot change a rich
history database from standard tables to blockchain tables, and you cannot change
retention times, unless you also change the credentials or connection string.

1. Go to the console and select the Channels tab.

2. Locate the channel that you want to modify access for. Click its More Options
button and select Configure Rich History.

The Configure Rich History dialog is displayed.

3. To enable collection of rich history data for the channel, select the Enable Rich
History check box. To disable collection of rich history data for the channel, clear
the Enable Rich History check box.

4. To configure the channel to collect rich history data using a different database or
different settings, select Use channel level configuration, and then specify the
settings to use.

For more information about the rich history settings, see Enable and Configure the
Rich History Database.

5. Click Save.

Monitor the Rich History Status
After configuring the rich history database, you can use the console to monitor the rich
history replication status.

1. Go to the console and select the Channels tab.

2. In the channels table, click the More Actions button for the channel that you want
to monitor, and then click Rich History Status.

The Rich History Status dialog box is displayed, which includes details about
replication and configuration status.

3. Click Refresh to display the latest status.

Limit Access to Rich History
You can use channel policies and access control lists (ACLs) to limit the organizations
that can configure the rich history database and retrieve rich history status or
configuration information.

By default, all organizations that have administrative access to a channel can
configure rich history collection and can retrieve rich history status and configuration
details. To limit this access to, for example, the founder organization, you create a
channel policy and apply the policy to the resources that control access.

Chapter 10
Create the Rich History Database

10-14

1. Go to the console and select the Channels tab.

The Channels tab is displayed. The channel table contains a list of all of the channels on
your network.

2. In the channel table, click the name of the channel where you want to limit access.

3. Click Channel Policies, and then create a signature policy that includes the organization
members that will access the rich history functions.

For more information about channel policies, see Work With Channel Policies and ACLs.

For example, create a policy that includes only the identity of the founder organization,
not the identity of any participant organizations.

4. Click ACLs.

5. In the Resources table, locate the resource that you want to update to use the new policy.
Click Expand for the resource and then select the policy to assign to the resource

The following table shows the resources that control access to rich history.

Resource Access control

obpadmin/
ConfigureRichHistoryChannel

Controls configuring, enabling, and disabling
rich history for a channel.

obpadmin/
GetRichHistoryChannelStatus

Controls retrieving rich history replication status
for a channel.

obpadmin/
GetRichHistoryChannelConfig

Controls retrieving the current rich history
configuration for a channel.

6. Click Update ACLs.

The rich history access is now controlled by the new policy. Organization members that are
not included in the new policy will receive an error message when they attempt to access a
resource that is controlled by the policy.

Rich History Database Tables and Columns
The rich history database contains three tables for each channel: history, state, and latest
height. You’ll query the history and state tables when you create analytics about your
chaincodes’ ledger transactions. If you've chosen to select any of the transaction details
when enabling the rich history, an additional table will be created with the transaction details.

History Table

The <instanceName><channelName>_hist table contains ledger history. The data in this
table tells you the chaincode ID, key used, if the transaction was valid, the value assigned to
the key, and so on.

Note that the value and valueJson columns are used in a mutually exclusive way. That is
when a key value is valid json, then the value is set into the valueJson column. Otherwise
the value is set in the value column. The valueJson column is set up as a json column in the
database, which means users can query that column using the usual Oracle JSON specific
extensions.

If configured, private data is also stored in this table. For private data, the chaincode ID uses
the following format: <chaincodeName>$$<collectionName>.

Chapter 10
Create the Rich History Database

10-15

Column Datatype

chaincodeId VARCHAR2 (256)

key VARCHAR2 (1024)

txnIsValid NUMBER (1)

value VARCHAR2 (4000)

valueJson CLOB

blockNo NUMBER NOT NULL

txnNo NUMBER NOT NULL

txnId VARCHAR2 (128)

txnTimestamp TIMESTAMP

txnIsDelete NUMBER (1)

State Table

The <instanceName><channelName>_state table contains data values replicated from
the state database. You’ll query the state table when you create analytics about the
state of the ledger.

Note that the value and valueJson columns are used in a mutually exclusive way.
That is when a key value is valid json, then the value is set into the valueJson
column. Otherwise the value is set in the value column. The valueJson column is set
up as a json column in the database, which means users can query that column using
the usual Oracle JSON specific extensions.

Column Datatype

chaincodeId VARCHAR2 (256)

key VARCHAR2 (1024)

value VARCHAR2 (4000)

valueJson CLOB

blockNo NUMBER

txnNo NUMBER

Latest Height Table

The <instanceName><channelName>_last table is used internally by Oracle
Blockchain Platform to track the block height recorded in the rich history database. It
determines how current the rich history database is and if all of the chaincode
transactions were recorded in the rich history database. You can’t query this database
for analytics.

Transaction Details Table

The <instanceName><channelName>_more table contains attributes related to
committed transactions. When enabling the rich history database, you can select
which of these attributes you want to record in this table. The transaction details table
only captures information about endorser transactions - not configuration transactions
or any other kind of Hyperledger Fabric transactions.

Column Datatype

CHAINCODEID VARCHAR2 (256)

Chapter 10
Create the Rich History Database

10-16

Column Datatype

BLOCKNO NUMBER

TXNNO NUMBER

TXNID VARCHAR2(128)

TXNTIMESTAMP TIMESTAMP

SUBMITTERCN VARCHAR2(512)

SUBMITTERORG VARCHAR2(512)

SUBMITTEROU VARCHAR2(512)

CHAINCODETYPE VARCHAR2(32)

VALIDATIONCODENAME VARCHAR2(32)

ENDORSEMENTS CLOB

INPUTS CLOB

EVENTS CLOB

RESPONSESTATUS NUMBER(0)

RESPONSEPAYLOAD VARCHAR2(1024)

RWSET CLOB

BLOCKCREATORCN VARCHAR2(512)

BLOCKCREATORORG VARCHAR2(512)

BLOCKCREATOROU VARCHAR2(512)

CONFIGBLOCKNUMBER NUMBER(0)

CONFIGBLOCKCREATORCN VARCHAR2(512)

CONFIGBLOCKCREATORORG VARCHAR2(512)

CONFIGBLOCKCREATOROU VARCHAR2(512)

Note:

• Organization (ORG) and organization unit (OU) are driven by identity
certificates, which implies that they may be assigned to multiple values. They
are captured as a comma separated list in the table's values.

• For identities, the table includes information only about the "Subject" portion of
the certificates, not the "Issuer" one.

• The RWSET column contains operations on all chaincodes (in the same ledger)
performed during endorsement. As such, you will typically see both lscc read
operations and the actual chaincode namespace operations.

Chapter 10
Create the Rich History Database

10-17

A
Node Configuration

This topic contains information to help you understand and configure your nodes. Each node
type has different configuration options.

Topics:

• CA Node Attributes

• Console Node Attributes

• Orderer Node Attributes

• Peer Node Attributes

• REST Proxy Node Attributes

CA Node Attributes
A certificate authority (CA) node keeps track of identities and certificates on the blockchain
network.

Only Administrators can change a node’s attributes. If you've got User privileges, then you
can view a node’s attributes.

Table A-1 CA Node Attributes

Attribute Description Default Value

Fabric CA ID This is the identifier or name that
Oracle Blockchain Platform
assigned the node when it
created it. You can’t modify this
ID.

ca

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You can’t
change the port number.

Specific to your organization.

Max Enrollments Use this field to determine how
many times the CA server allows
a password to be used for
enrollment on the network.
Consider the following options:
• -1 — The server allows a

password to be used an
unlimited number of times
for enrollment.

-1

Log Level Specify the log level that you
want to use for the node. Oracle
suggests that for development or
testing, you use DEBUG. And
that for production, you use
INFO.

INFO

A-1

Console Node Attributes
The console node manages the performance of the console.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-2 Console Node Attributes

Attribute Description Default Value

Console ID This is the identifier or name
that Oracle Blockchain
Platform assigned the node
when it created it.

console

Local MSP ID This is the assigned MSP ID
for your organization. You can’t
modify this ID.

NA

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

Log Level Specify the log level that you
want to use for the node.
Oracle suggests that for
development or testing, you
use DEBUG. And that for
production, you use ERROR.

INFO

Request Timeout (s) Specify the maximum amount
of time in seconds that you
want the console to attempt to
contact the nodes before
timing out.

600

Orderer Node Attributes
An orderer node collects transactions from peer nodes, bundles them, and submits
them to the blockchain ledger. The node’s attributes determine how the node performs
and behaves on the network.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-3 Orderer Node — General Attributes

Attribute Description Default Value

Orderer ID This is the identifier or name
that Oracle Blockchain
Platform assigned the node
when it created it.

orderer<number-partition>

Local MSP ID This is the assigned MSP ID
for your organization. You can’t
modify this ID.

NA

Appendix A
Console Node Attributes

A-2

Table A-3 (Cont.) Orderer Node — General Attributes

Attribute Description Default Value

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

Log Level Specify the log level that you
want to use for the node.
Oracle suggests that for
development or testing, you
use DEBUG. And that for
production, you use ERROR.

INFO

Table A-4 Orderer Node — Advanced Attributes — Raft/Cluster tab

Attribute Description Default Value

SendBufferSize The maximum number of
messages in the egress buffer.
Consensus messages are
dropped if the buffer is full, and
the transaction messages are
waiting for space to be freed.

10

DialTimeout in seconds The maximum duration of time
after which connection attempts
are considered as failed.

5

RPCTimeout in seconds The maximum duration of time
after which RPC attempts are
considered as failed.

7

Replication/BufferSize in bytes The maximum number of bytes
that can be allocated for each in-
memory buffer used for block
replication from other cluster
nodes.

20971520

Replication/
BackgroundRefreshInterval in
minutes

The time between two
consecutive attempts to replicate
existing channels that this node
was added to, or channels that
this node failed to replicate in the
past.

5

Replication/RetryTimeout in
seconds

The maximum duration the
ordering node will wait between
two consecutive attempts.

5

Replication/PullTimeout in
seconds

The maximum duration the
ordering node will wait for a block
to be received before it aborts.

5

Consensus/EvictionSuspicion in
minutes

The threshold that a node will
start suspecting its own eviction
if it has been leaderless for this
period of time.

2

Appendix A
Orderer Node Attributes

A-3

Peer Node Attributes
A peer node reads, endorses, and writes transactions to the blockchain ledger. The
node’s attributes determine how the node performs and behaves on the network.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-5 Peer Node — General Attributes

Attribute Description Default Value

Peer ID This is the identifier or name
that Oracle Blockchain
Platform assigned the node
when it created it.

peer0

Local MSP ID This is the assigned MSP ID
for your organization. You can’t
modify this ID.

Specific to your organization.

Role Specifies if the peer’s role is
Member or Admin. In most
cases this field displays
Member.
This role is used by the
chaincode’s endorsement
policy. The endorsement
policy specifies the MSP that
must validate the identity of
the signer peer and the signer
peer’s role. The Admin role is
normally assigned in situations
where you want to further
protect sensitive operations
and make sure that those
operations are endorsed by
specific peers.

The peers created with your
instance were assigned the
Member role.

Member

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

Log Level Specify the log level that you
want to use for the node.
Oracle suggests that for
development or testing, you
use DEBUG. And that for
production, you use ERROR.

INFO

Alias Optionally, enter text to further
identify the peer beyond the
peer ID.

NA

Appendix A
Peer Node Attributes

A-4

Table A-6 Peer Node — Advanced Attributes — Gossip tab

Attribute Description Default Value

Bootstrap Peers Provide the service name
address and port that the peer
uses to contact other peers
during startup. This endpoint
must match the endpoints of the
peers in the same organization.

NA

Max Block Count to Store Enter the maximum number of
blocks to store in memory.

10

Max Propagation Burst Latency
in milliseconds

Enter how many milliseconds
between message pushes.

10

Max Propagation Burst Size Enter the number of messages to
be stored until a push remote
peer is triggered.

10

Propagate Iterations Enter the number of times a
message is pushed to the peers.

1

Max Connection Attempts Enter the maximum number of
attempts to make when
connecting to a peer.

120

Message Expiration Factor Enter the message expiration
factor for alive messages.

20

Propagate Peer Number Enter how many peers to send
messages to.

3

Pull Interval in seconds Enter how many seconds
between pull phases.

4

Pull Peer Number Enter the number of peers to pull
from.

3

Request State Info Interval in
seconds

Enter how often to pull state
information messages from the
peers.

4

Publish State Info Interval in
seconds

Enter how often to send state
information messages to the
peers.

4

Publish Cert Period in seconds Enter how many seconds from
startup that certificates are
included in alive messages.

10

Dial Timeout in seconds Enter how many seconds before
dial times out.

3

Connect Timeout in seconds Enter how many seconds until
the connection times out.

2

Receive Buffer Size Enter the size of the buffer for
received messages.

20

Send Buffer Size Enter the size of the buffer for
sending messages.

200

Digest Wait Time in seconds Enter how many seconds to wait
before the pull engine processes
incoming digests.

1

Request Wait Time in seconds Enter how many seconds to wait
before the pull engine removes
incoming nonce.

1,500

Appendix A
Peer Node Attributes

A-5

Table A-6 (Cont.) Peer Node — Advanced Attributes — Gossip tab

Attribute Description Default Value

Response Wait Time in seconds Enter how many seconds that
the pull engine waits before it
terminates the pull.

2

Alive Time Interval in seconds Enter how often to check alive
time.

5

Alive Expiration Timeout in
seconds

Enter how many seconds to wait
before the alive expiration times
out.

25

Reconnect Interval in seconds Enter how many seconds to wait
before reconnecting.

25

Skip Block Verification Click to skip block verification. Not selected

Table A-7 Peer Node — Advanced Attributes — Gossip/Election tab

Attribute Description Default Value

Membership Sample Interval
in seconds

How often in seconds the peer
checks its stability on the
network.

1

Leader Alive Threshold in
seconds

The number of seconds to
elapse before the last
declaration message is sent
and before the peer
determines leader election.

10

Leader Election Duration in
seconds

The number of seconds to
elapse after the peer sends
the propose message and
declares itself leader.

5

Appendix A
Peer Node Attributes

A-6

Table A-7 (Cont.) Peer Node — Advanced Attributes — Gossip/Election tab

Attribute Description Default Value

Leader A channel’s leader peer
receives blocks and distributes
them to the other peers within
the cluster. Specify the mode
that you want the peer to use
to determine a leader.
• OrgLeader — Select this

option to use static leader
mode and make the peer
the organization leader. If
you select this option and
then add more peers to
the channel, then you
must set all peers to
OrgLeader.

• UseLeaderElection —
Select this option to use
dynamic leader election
on the channel. Before an
active leader is selected
for the organization, the
system must run the
configuration transaction
to add the organization to
the channel, and then the
system updates the new
peers with the
configuration transaction.

OrgLeader

Table A-8 Peer Node — Advanced Attributes — Event Service tab

Attribute Description Default Value

Buffer Size Enter the maximum number of
events that the buffer can
contain. The system won’t send
the events that exceed this
number.

100

Timeout in milliseconds Enter in milliseconds the
maximum time allowed for the
business network to send an
event.

10

Table A-9 Peer Node — Advanced Attributes — Chaincode tab

Attribute Description Default Value

Startup timeout in seconds Enter in seconds the maximum
time to wait between when the
container starts and the registry
responds.

300

Appendix A
Peer Node Attributes

A-7

Table A-9 (Cont.) Peer Node — Advanced Attributes — Chaincode tab

Attribute Description Default Value

Execute timeout in seconds Enter in seconds the maximum
time that a chaincode attempts to
execute before timing out.

30

Mode Displays how the system runs
the chaincode. This value is
always net.

net

Keepalive in seconds If you're using a proxy for
communication, then enter in
seconds the maximum amount of
time to keep the connection
between a peer and the
chaincode alive.

0

Log Level Specify the log level that you
want to use for all loggers in the
chaincode container. Oracle
suggests that for development or
testing, you use DEBUG. And
that for production, you use
ERROR.

INFO

Shim Level Specify the log level that you
want to use for the shim logger.

WARNING

REST Proxy Node Attributes
A REST proxy node allows you to query or invoke a chaincode through the RESTful
protocol. The node’s attributes determine how the node performs on the network and
which channel, chaincode, and peers are used in the transactions performed by the
node.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-10 REST Proxy Node Attributes

Attribute Description Default Value

REST Proxy Name This is the identifier or name
that Oracle Blockchain
Platform assigned the node
when it created it. You can’t
modify this ID.

restproxy

Proposal Wait Time (ms) Enter the number of
milliseconds that the node
waits for completion of the
proposal process. If this
number is exceeded, then the
transaction times out.

60,000

Appendix A
REST Proxy Node Attributes

A-8

Table A-10 (Cont.) REST Proxy Node Attributes

Attribute Description Default Value

Transaction Wait Time (ms) Enter the number of
milliseconds that the node
waits for execution after the
transaction is submitted. If this
number is exceeded, then the
transaction times out.

300,000

Log Level Specify the log level that you
want to use for the node.
Oracle suggests that for
development or testing, you
use DEBUG. And that for
production, you use
WARNING or ERROR.

INFO

Transaction Event Logging If you specify a log level of
INFO, you can also enable or
disable transactional event
logging. Transaction events
are not logged when the log
level is WARNING or ERROR,
and they are always logged
when the log level is DEBUG.

Disabled

Appendix A
REST Proxy Node Attributes

A-9

B
Using the Fine-Grained Access Control
Library Included in the Marbles Sample

Starting in v1.2, Hyperledger Fabric provided fine-grained access control to many of the
management functions. Oracle Blockchain Platform provides a marbles sample package on
the Developer Tools tab of the console, implementing a library of functions that chaincode
developers can use to create access control lists for chaincode functions. It currently only
supports the Go language.

Background

The goal of this sample access control library is to provide the following:

• Provides a mechanism to allow you to control which users can access particular
chaincode functions.

• The list of users and their entitlements should be dynamic and shared across
chaincodes.

• Provides access control checks so that a chaincode can check the access control list
easily.

• At chaincode deployment time, allows you to populate the list of resources and access
control lists with your initial members.

• An access control list must be provided to authorize users to perform access control list
operations.

Download the Sample

On the Developer Tools tab, open the Samples pane. Click the download link under
Marbles with Fine-Grained ACLs. This package contains three sub-packages:

• Fine-GrainedAccessControlLibrary.zip:
The fine-grained access control library. It contains functions in Go which can be used by
chaincode developers to create access control lists for chaincode functions.

• fgACL_MarbleSampleCC.zip:
The marbles sample with access control lists implemented. It includes a variety of
functions to let you examine how to work with fine-grained access control lists, groups
and resources to restrict functions to certain users/identities.

• fgACL-NodeJSCode.zip:
Node.js scripts which use the Node.js SDK to run the sample.
registerEnrollUser.js can be used to register new users with the Blockchain
Platform. invokeQueryCC.js can be used to run transactions against a Blockchain
Platform instance.

B-1

Terminology and Acronyms

Term Description

Identity An X509 certificate representing the identity of
either the caller or the specific identity the
chaincode wants to check.

Identity Pattern A pattern that matches one or more identities.
The following patterns are suggested:

• X.509 Subject Common Name – CN
• X.509 Subject Organizational Unit – OU
• X.509 Subject Organization – O
• Group as defined in this library – GRP
• Attribute – ATTR
The format for a pattern is essentially just a
string with a prefix. For example, to define a
pattern that matches any identity in
organization "example.com", the pattern would
be "%O%example.com".

Resource The name of anything the chaincode wants to
control access to. To this library it is just a
named arbitrary string contained in a flat
namespace. The semantics of the name are
completely up to the chaincode.

Group A group of identity patterns.

ACL Access Control List: a named entity that has a
list of identity patterns, a list of types of access
such as "READ", "CREATE", "INVOKE",
"FORWARD", or anything the chaincode wants
to use. This library will use access types of
CREATE, READ, UPDATE, and DELETE
(standard CRUD operations) to maintain its
information. Other than those four as they
relate to the items in this library, they are just
strings with no implied semantics. An
application may decide to use accesses of "A",
"B", and "CUSTOM".

Appendix B

B-2

Fine-Grained Access Control Library Functions
The library package provides the following functions for Resources, Groups and ACLs as well
as global functions.

Global Functions

Function Description

Initialization(identity *x509.Certificate, stub
shim.ChaincodeStubInterface) (error) (error)

When the chaincode is instantiated, the
Initialization function is called. That function will
initialize the world state with some built in access
control lists. These built in lists are used to
bootstrap the environment. So there needs to be
access control on who can create resources,
groups, and ACLs. If the identify is nil, then use
the caller's identify.

After the bootstrap is done, the following entities
are created:

• A resource named ".Resources". A
corresponding ACL named ".Resources.ACL"
will be created with a single identity pattern in
it of the form "%CN%bob.smith@oracle.com",
using the actual common name, and the
access will be CREATE, READ, UPDATE, and
DELETE access.

• A group named ".Groups". A corresponding
ACL named ".Groups.ACL" will be created
with a single identity pattern in it of the form
"%CN%bob.smith@oracle.com", using the
actual common name, and the access will be
CREATE, READ, UPDATE, and DELETE
access.

• An ACL named ".ACLs". A corresponding
ACL control list named ".ACLs.ACL" will be
created with a single identity pattern in it of
the form "%CN%bob.smith@oracle.com",
using the actual common name, and the
access will be CREATE, READ, UPDATE, and
DELETE access.

NewGroupManager(identity *x509.Certificate, stub
shim.ChaincodeStubInterface) (*GroupManager,
error)

Get the group manager that's used for all group
related operations.

Identity: the default identity for related operation. If
it's nil, then use caller's identity.

NewACLManager(identity *x509.Certificate, stub
shim.ChaincodeStubInterface) (*ACLManager,
error)

Get the ACL manager that's used for all ACL
related operations.

Identity: the default identity for related operation. If
it's nil, then use caller's identity.

NewResourceManager(identity *x509.Certificate,
stub shim.ChaincodeStubInterface)
(*ResourceManager, error)

Get the resource manager that's used for all
resource related operations.

Identity: the default identity for related operation. If
it's nil, then use caller's identity.

Appendix B
Fine-Grained Access Control Library Functions

B-3

Access Control List (ACL) Functions

Definition of ACL structure:

type ACL struct {
 Name string
 Description string
 Accesses []string // CREATE, READ, UPDATE, and DELETE, or whatever
the end-user defined
 Patterns []string // identities
 Allowed bool // true means allows access.
 BindACLs []string // The list of ACL , control who can call the
APIs of this struct
}

• Accesses: The Accesses string is a list of comma-separated arbitrary access
names and completely up to the application except for four: CREATE, READ,
UPDATE, and DELETE. These access values are used in maintaining the fine
grained access control. Applications can use their own access strings such as
"register", "invoke", or "query", or even such things as access to field names
such as "owner", "quantity", and so on.

• Allowed: Allowed determines whether identities that match a pattern are allowed
access (true) or prohibited access (false). You could have an access control list
that indicates Bob has access to "CREATE", and another one that indicates group
Oracle (of which Bob is a member) is prohibited from "CREATE". Whether Bob has
access or not depends upon the order of the access control lists associated with
the entity in question.

• BindACLs: The BindACLs parameter will form the initial access control list.

ACL functions:

Function Description

Create(acl ACL, identity *x509.Certificate)
(error)

Creates a new ACL. Duplicate named ACL are
not allowed.

To create a new ACL, the identity needs to
have CREATE access to the bootstrap
resource named ".ACLs". If identity is nil, the
default identity specified in newACLManager()
is used.

Get(aclName string, identity *x509.Certificate)
(ACL, error)

Get a named ACL.

The identity must have READ access to the
named ACL. If identity is nil, the default identity
specified in newACLManager() is used.

Delete(aclName string, identity
*x509.Certificate) (error)

Delete a specified ACL.

The identity must have DELETE access to the
named ACL. If identity is nil, the default identity
specified in newACLManager() is used.

Appendix B
Fine-Grained Access Control Library Functions

B-4

Function Description

Update(acl ACL, identity *x509.Certificate)
(error)

Update an ACL.

The identity must have UPDATE access to the
named resource, and the named ACL must
exist. If identity is nil, the default identity
specified in NewACLManager() is used.

AddPattern(aclName string, pattern string,
identity *x509.Certificate) (error)

Adds a new identity pattern to the named ACL.
The identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

RemovePattern(aclName string, pattern string,
identity *X509Certificate) (error)

Removes the identity pattern from the ACL.
The identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

AddAccess(aclname string, access string,
identity *X509Certificate) (error)

Adds a new access to the named ACL. The
identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

RemoveAccess(aclName string, access string,
identity *X509Certificate) (error)

Removes the access from the ACL. The
identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

UpdateDescription(aclName string,
newDescription string, identity
*X509Certificate) (error)

Update the description.

The identity must have UPDATE access to the
named ACL. If identity is nil, the default identity
specified in newACLManager() is used.

AddBeforeACL(aclName string, beforeName
string, newBindACL string, identity
*X509Certificate) (error)

Adds a bind ACL before the existing named
ACL. If the named ACL is empty or not found,
the ACL is added to the beginning of the bind
ACL list.

The identity must have UPDATE access to the
named ACL. If the identity is nil, the default
identity specified in newACLManager() is
used.

AddAfterACL(aclName string, afterName
string, newBindACL string, identity
*X509Certificate) (error)

Adds a bind ACL after the existing named
ACL. If the named ACL is empty or not found,
the ACL is added to the end of the bind ACL
list.

The identity must have UPDATE access to the
named ACL. If the identity is nil, the default
identity specified in newACLManager() is
used.

RemoveBindACL(aclName string,
removeName string, identity *X509Certificate)
(error)

Removes the removeName ACL from the bind
ACL list.

The identity must have UPDATE access to the
named ACL. If the identity is nil, the default
identity specified in newACLManager() is
used.

Appendix B
Fine-Grained Access Control Library Functions

B-5

Function Description

GetAll(identity *x509.Certificate) ([]ACL, error) Get all the ACLs.

The identity must have READ access to the
named ACL. If the identity is nil, the default
identity specified in newACLManager() is
used.

Group Functions

Definition of Group structure:

type Group struct {
 Name string
 Description string
 Members []string // identity patterns, except GRP.
 BindACLs []string // The list of ACLs, controls who can access
this group.
}

Definition of GroupManager functions:

Function Description

Create(group Group, identity *x509.Certificate)
(error)

Create a new group.

The identity must have CREATE access to
bootstrap group ".Group". If identity is nil, the
default identity specified in
NewGroupManager() is used.

Get(groupName string, identity
*x509.Certificate) (Group, error)

Get a specified group.

The identity must have READ access to this
group. If identity is nil, the default identity
specified in NewGroupManager() is used.

Delete(groupName string, identity
*x509.Certificate) (error)

Delete a specified group.

The identity must have DELETE access to this
group. If identity is nil, the default identity
specified in NewGroupManager () is used.

AddMembers(groupName string, member
[]string, identity *x509.Certificate) (error)

Add one or more members into the group.

The identity must have UPDATE access to this
group. If identity is nil, the default identity
specified in NewGroupManager () is used.

RemoveMembers(groupName string, member
[]string, identity *x509.Certificate) (error)

Remove one or more member from a group.

The identity must have UPDATE access to this
group. If identity is nil, the default identity
specified in NewGroupManager () is used.

UpdateDescription(groupName string, newDes
string, identity *x509.Certificate) (error)

Update the description.

The identity must have UPDATE access to this
group. If identity is nil, the default identity
specified in NewGroupManager () is used.

Appendix B
Fine-Grained Access Control Library Functions

B-6

Function Description

AddBeforeACL(groupName string,
beforeName string, aclName string, identity
*x509.Certificate) (error)

Adds an bind ACL to the group before the
existing named ACL. If the named ACL is
empty or not found, the ACL is added to the
beginning of the list of bind ACL for the
resource.

The identity must have UPDATE access to the
named group. If identity is nil, the default
identity specified in NewGroupManager () is
used.

AddAfterACL(groupName string, afterName
string, aclName string, identity
*x509.Certificate) (error)

Adds a bind ACL to the group after the existing
named ACL. If the named ACL is empty or not
found, the ACL is added to the end of the list
of bind ACL for the group.

The identity must have UPDATE access to the
named group. If the identity is nil, the default
identity specified in NewGroupManager () is
used.

RemoveBindACL(groupName string, aclName
string, identity *x509.Certificate) (error)

Removes the named ACL from the bind ACL
list of the named group.

The identity must have UPDATE access to the
named group. If the identity is nil, the default
identity specified in NewGroupManager () is
used.

GetAll(identity *x509.Certificate) ([]Group,
error)

Get all groups.

The identity must have READ access to these
groups. If identity is nil, the default identity
specified in NewGroupManager () is used.

Resource Functions

Definition of Resource structure:

type Resource struct {
 Name string
 Description string
 BindACLs []string // The name list of ACL, controls who can access
this resource
}

Resource Functions:

Fuction Description

Create(resource Resource, identity
*x509.Certificate) (error)

Create a new resource. Duplicate named
resources are not allowed.

The identity needs to have CREATE access to the
bootstrap resource named ".Resources" If identity
is null, the default identity specified in
NewResourceManager() is used.

Appendix B
Fine-Grained Access Control Library Functions

B-7

Fuction Description

Get(resName string, identity *x509.Certificate)
(Resource, error)

Get a specified resource.

The identity must have READ access to the
resource. If identity is null, the default identity
specified in NewResourceManager() is used.

Delete(resName string, identity *x509.Certificate)
(error)

Delete a named resource.

The identity must have DELETE access to the
named resource. If identity is null, the default
identity specified in NewResourceManager() is
used.

UpdateDescription(resourceName string, newDes
string, identity *x509.Certificate) (error)

Update the description.

The identity must have UPDATE access to this
resource. If identity is nil, the default identity
specified in NewResourceManager() is used.

AddBeforeACL(resourceName string, beforeName
string, aclName string, identity *x509.Certificate)
(error)

Adds a bind ACL to the resource before the
existing named ACL. If the named ACL is empty or
not found, the ACL is added to the beginning of
the list of bind ACL for the resource.

The identity must have UPDATE access to the
named resource. If identity is nil, the default
identity specified in NewResourceManager() is
used.

AddAfterACL(resourceName string, afterName
string, aclName string, identity *x509.Certificate)
(error)

Adds a bind ACL to the resource after the existing
named ACL. If the named ACL is empty or not
found, the ACL is added to the end of the list of
bind ACL for the resource.

The identity must have UPDATE access to the
named resource. If the identity is nil, the default
identity specified in NewResourceManager() is
used.

RemoveBindACL(resourceName string, aclName
string, identity *x509.Certificate) (error)

Removes the named ACL from the bind ACL list of
the named resource.

The identity must have UPDATE access to the
named resource. If the identity is nil, the default
identity specified in NewResourceManager() is
used.

CheckAccess(resName string, access string,
identity *x509.Certificate) (bool, error)

Check whether the current user has the specified
access to the named resource.

If the identity is nil, the default identity specified in
NewResourceManager() is used.

GetAll(identity *x509.Certificate) ([]Resource,
error)

Get all resources.

The identity must have READ access to these
resources. If identity is nil, the default identity
specified in NewResourceManager() is used.

Example Walkthough Using the Fine-Grained Access
Control Library

This topic provides some examples of how this library and chaincode can be used.
These all assuming Init() has been called to create the bootstrap entities and the

Appendix B
Example Walkthough Using the Fine-Grained Access Control Library

B-8

caller of Init() and invoke() is "%CN%frank.thomas@example.com". The normal flow in an
application will be to create some initial access control lists that will be used to grant or deny
access to the other entities.

Initialization

Call Initialization() to create bootstrap entities when instantiating chaincode. For
example:

import "chaincodeACL"
func (t *SimpleChaincode) Init(nil, stub shim.ChaincodeStubInterface)
pb.Response
{
 err := chaincodeACL.Initialization(stub)
}

Create a new ACL

import "chaincodeACL"
...
{

ACLMgr := chaincodeACL.NewACLManager(nil, stub) // Not specify
identity, use caller's identity as default.

// Define a new ACL
newACL := chaincodeACL.ACL{

 "AllowAdmins", // ACL name
 "Allow admins full access", // Description
 []string{"CREATE","READ","UPDATE","DELETE"}, // Accesses allowed or
not
 true, // Allowed
 []string{"%CN%bob.dole@example.com","%OU%example.com,"%GRP%admins"}, //
Initial identity patterns
 ".ACLs.acl", // Start with bootstrap ACL

}

// Add this ACL with default identity (caller's identify here)
err := **ACLMgr**.Create(**newACL** , nil)

}

Now that we have a new ACL, we can use that to modify who can perform certain operations.
So we’ll first add this new ACL to the bootstrap group .Groups to allow any admin to create a
group.

Add an ACL to a group

import "chaincodeACL"
…
{

Appendix B
Example Walkthough Using the Fine-Grained Access Control Library

B-9

 groupMgr := chaincodeACL.NewGroupManager(nil, stub) // Not
specify identity, use caller's identity as default.
 err := **groupMgr**.AddAfterACL(

 ".Groups", // Bootstrap group name
 ".Groups.ACL", // Which ACL to add after
 "AllowAdmins", // The new ACL to add
 nil // with default identity that's frank.thomas

)

}

This adds the AllowAdmins ACL to the bootstrap group .Groups after the initial
bootstrap ACL. Thus this ensures that Frank Thomas can still perform operations
on .Groups as the ACL granting him permission is first in the list. But now anyone that
matches the AllowAdmins ACL can perform CREATE, READ, UPDATE, or DELETE
operations (they can now create new groups).

Create a new group

Admins can now create a new group:

import "chaincodeACL"
...
{

...
 // Define a new group.
 newGroup := chaincodeACL.Group{

 "AdminGrp", // Name of the group
 "Administrators of the app", // Description of the group

{"%CN%jill.muller@example.com","%CN%ivan.novak@example.com","%ATTR%role
=admin"},
 []string{"AllowAdmins"}, // The ACL for the group

 }

 groupMgr := chaincodeACL.NewGroupManager(nil, stub) // Not
specify identity, use caller's identity as default.
 err := **groupMgr**.Create(**newGroup** ,
bob_garcia_certificate) // Using a specific certificate

...
}

This call is using an explicit identity - that of Bob Garcia (using his certificate) - to try
and create a new group. Since Bob Garcia matches a pattern in the AllowAdmins ACL
and members of that ACL can perform CREATE operations on the bootstrap
group .Groups, this call will succeed. Had Jim Silva - who was not in organization unit
example.com nor in the group AdminGrp (which still doesn’t exist) - had his certificate
passed as the last argument, the call would fail as he doesn’t have the appropriate

Appendix B
Example Walkthough Using the Fine-Grained Access Control Library

B-10

permissions. This call will create a new group called "AdminGrp" with initial members of the
group being jill.muller@example.com and ivan.novak@example.com or anyone with the
attribute (ABAC) role=admin.

Create a new resource

import "chaincodeACL"
...
{

 ...
 newResource := **chaincodeACL**.Resource{

 "transferMarble", // Name of resource to create

 "The transferMarble chaincode function", // Description of the resource

 []string{"AllowAdmins"}, // Single ACL for now allowing admins

 }

 resourceMgr := **chaincodeACL**.NewResourceManager(nil, stub) //
Not specify identity, use caller's identity as default.
 err := **resourceMgr**.Create(resourceMgr, nil) // Using caller's
certificate

 ...
}

This would create a new resource named transferMarble that the application might use to
control access to the transferMarble chaincode function. The access is currently limited by
the AllowAdmins access control list.

Check access for a resource

We can use this new resource in our chaincode to only allow admins to transfer a marble by
modifying the invoke() method of the Marbles chaincode as follows:

import "chaincodeACL"
…
func (t *SimpleChaincode) Invoke(stub shim.ChaincodeStubInterface)
pb.Response {

 resourceMgr := **chaincodeACL**.NewResourceManager(nil, stub) //
Not specify identity, use caller's identity as default.

 function, args := stub.GetFunctionAndParameters()

 fmt.Println("invoke is running " + function) // Handle different
functions

 if function == "initMarble" { //create a new marble

 return t.initMarble(stub, args)}

Appendix B
Example Walkthough Using the Fine-Grained Access Control Library

B-11

 else if function == " **transferMarble**" { //change owner of a
specific marble

 allowed , err : = **resourceMgr**. **CheckAccess**
("transferMarble", "UPDATE", nil)
 if **allowed** == true {

 return t.transferMarble(stub, args)

 else {

 return NOACCESS

 }

 } else if function == "transferMarblesBasedOnColor" { //transfer
all marbles of a certain color
 …

 }

}

Fine-Grained Access Control Marbles Sample
The marbles chaincode application lets you create assets (marbles) with unique
attributes (name, size, color and owner) and trade these assets with fellow participants
in a blockchain network.

This sample application includes a variety of functions to let you examine how to work
with access control lists and groups to restrict functions to certain users.

• Overview of the Sample

• Pre-requisites and Setup

• Implement the Fine-Grained Access Control Marble Sample

• Testing the Access Control

• Sample Files Reference

Overview of the Sample

The test scenario included in the sample contains the following restrictions in order to
manage assets:

• Bulk transfer of red marbles is only allowed by identities having the
"redMarblesTransferPermission" Fabric attribute.

• Bulk transfer of blue marbles is only allowed by identities having the
"blueMarblesTransferPermission" Fabric attribute.

• Deletion of marbles is only allowed to identities with "deleteMarblePermission"
Fabric attribute.

Appendix B
Fine-Grained Access Control Marbles Sample

B-12

These restrictions are enforced by implementing the following library methods in the
fgMarbles_chaincode.go chaincode:

• Create a fine-grained ACL group named bulkMarblesTransferGroup. This group will
define all the identities which can transfer marbles based on color (bulk transfers):

createGroup(stub, []string{" bulkMarblesTransferGroup",
"List of Identities allowed to Transfer Marbles in Bulk",
"%ATTR%redMarblesTransferPermission=true,
%ATTR%blueMarblesTransferPermission=true", ".ACLs"})

• Create a fine-grained ACL named redMarblesAcl which provides bulk transfer of red
marbles access to bulkMarblesTransferGroup:

createACL(stub, []string{"redMarblesAcl",
"ACL to control who can transfer red marbles in bulk",
"redMarblesTransferPermission", "%GRP%bulkMarblesTransferGroup", "true",
".ACLs"})

• Create a fine-grained ACL named blueMarblesAcl which provides bulk transfer of blue
marbles access to bulkMarblesTransferGroup:

createACL(stub, []string{"blueMarblesAcl",
"ACL to control who can transfer blue marbles in bulk",
"blueMarblesTransferPermission", "%GRP%bulkMarblesTransferGroup", "true",
".ACLs"})

• Create a fine-grained ACL named deleteMarbleAcl to restrict marble deletion based on
"canDeleteMarble=true" Fabric attribute:

createACL(stub, []string{"deleteMarbleAcl",
"ACL to control who can Delete a Marble",
"deleteMarblePermission", "%ATTR%deleteMarblePermission=true", "true",
".ACLs"})

• Create a fine-grained ACL resource named marble, operations on which are controlled
using the various ACLs we created:

createResource(stub, []string{"marble",
"System marble resource",
"deleteMarbleAcl,blueMarblesAcl,redMarblesAcl,.ACLs"})

Pre-requisites and Setup

In order to run the fine-grained access control version of the marbles sample, complete these
steps:

1. Download the fine-grained access control version of the marbles sample. On the
Developer Tools tab, open the Samples pane, and then click the download link under
Marbles with Fine-Grained ACLs. Extract this package - it contains ZIP files of the
marbles sample (fgACL_MarbleSampleCC.zip), Node.js files to run the sample
(fgACL-NodeJSCode.zip), and the fine-grained access control library (Fine-
GrainedAccessControlLibrary.zip).

Appendix B
Fine-Grained Access Control Marbles Sample

B-13

2. Hyperledger Fabric v2.x only: Generate the chaincode package that will be
deployed to Blockchain Platform:

• Extract the contents of the fgACL_MarbleSampleCC.zip file to the
fgACL_MarbleSampleCC directory. The contents of the
fgACL_MarbleSampleCC directory will be the fgACL_Operations.go,
fgGroups_Operations.go,
fgMarbles_chaincode.go ,fgResource_Operations.go, and go.mod
files and the oracle.com directory.

• From the command line, go to the fgACL_MarbleSampleCC directory, and
run GO111MODULE=on go mod vendor. This command downloads the required
dependencies and adds them to the vendor directory.

• Compress all the contents (the four Go files, the go.mod file, and the vendor
and oracle.com directories) of the fgACL_MarbleSampleCC directory in
ZIP format. Your chaincode is ready to be deployed to Blockchain Platform.

3. Hyperledger Fabric v1.4.7 only: Generate the chaincode package that will be
deployed to Blockchain Platform:

• Install govendor:

go get -u github.com/kardianos/govendor

• Extract the contents of fgACL_MarbleSampleCC.zip to the
fgACL_MarbleSampleCC directory. The contents of the
fgACL_MarbleSampleCC directory would be: fgACL_Operations.go,
fgGroups_Operations.go, fgMarbles_chaincode.go,
fgResource_Operations.go and the vendor directory.

• From a command line, go to the fgACL_MarbleSampleCC directory, and run
govendor sync. This will download the required dependency
(github.com/op/go-logging) and add it to the vendor directory.

• Compress all the contents (the four Go files and the vendor directory) of the
fgACL_MarbleSampleCC directory in ZIP format. Your chaincode is ready to
be deployed to Blockchain Platform.

4. Install and deploy the updated sample chaincode package
(fgACL_MarbleSampleCC.zip) as described in Use Quick Deployment.

5. On the Developer Tools tab, open the Application Development pane, and then
follow the instructions to download the Node.js SDK.

6. On the Developer Tools tab, open the Application Development pane, and then
click Download the development package.

a. Extract the development package into the same folder with the Node.js files
downloaded with the sample.

b. In the network.yaml file, look for the certificateAuthorities entry and its
registrar entry. The administrator's password is masked (converted to ***) in
the network.yaml when downloaded. It should be replaced with the
administrator's clear text password when running this sample.

7. Register a new identity with your Blockchain Platform instance:

a. Create a new user in IDCS (referred to as <NewIdentity> in the following
steps) in the IDCS mapped to your tenancy.

Appendix B
Fine-Grained Access Control Marbles Sample

B-14

b. Give this user the CA_User application role for your instance.

Implement the Fine-Grained Access Control Marble Sample

The following steps will enroll your new user and implement the ACL restrictions using the
provided Node.js scripts.

1. Enroll the new user:

node registerEnrollUser.js <NewIdentity> <Password>

2. Initialization: Initialize the access control lists.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> ACLInitialization

3. Create the access control lists, groups, and resources: This creates the ACL
resources described in the overview.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> createFineGrainedAclSampleResources

4. Create your test marble resources: This creates several test marble assets - blue1 and
blue2 owned by tom, red1 and red2 owned by jerry, and green1 and green2 owned by
spike.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> createTestMarbles

Testing the Access Control

In order to test that our access control lists are only allowing the correct users to perform
each function, we'll run through some sample scenarios.

1. Transfer a marble: We're transferring marble blue1 from tom to jerry. Since there are no
restrictions on who can transfer a single marble, this should complete successfully.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> transferMarble blue1 jerry

2. Transfer a marble as the administrative user: We're transferring marble blue1 from
jerry to spike. Since there are no restrictions on who can transfer a single marble, this
should also complete successfully.

node invokeQueryCC.js <AdminIdentity> <Password> <ChannelName>
<ChaincodeName> transferMarble blue1 spike

3. Get history: Now we'll query the history of the marble named blue1. It should return that
it was transferred first to jerry then to spike.

node invokeQueryCC.js <AdminIdentity> <Password> <ChannelName>
<ChaincodeName> getHistoryForMarble blue1

Appendix B
Fine-Grained Access Control Marbles Sample

B-15

4. Transfer all red marbles: The redMarblesAcl ACL should allow this transfer
because the newly registered identity has the required
"redMarblesTransferPermission=true" Fabric attribute, so the two red marbles
should be transferred to tom.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> transferMarblesBasedOnColor red tom

5. Transfer all red marbles as the administrative user: The administrative identity
doesn't have the "redMarblesTransferPermission=true" Fabric attribute, so the
redMarblesAcl ACL should block this transfer.

node invokeQueryCC.js <AdminIdentity> <Password> <ChannelName>
<ChaincodeName> transferMarblesBasedOnColor red jerry

6. Transfer all green marbles: By default, only explicitly defined access is allowed.
Because there isn't an ACL which allows for bulk transfer of green marbles, this
should fail.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> transferMarblesBasedOnColor green tom

7. Delete a marble: The deleteMarbleAcl ACL allows this deletion because the
newly registered identity has the required "deleteMarblePermission=true" Fabric
attribute.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName>
<ChaincodeName> delete green1

8. Delete a marble as the administrative user: The deleteMarbleAcl ACL should
prevent this deletion because the administrative identity doesn't have the required
"deleteMarblePermission=true" Fabric attribute.

node invokeQueryCC.js < AdminIdentity > <Password> <ChannelName>
<ChaincodeName> delete green2

Sample Files Reference

These tables list the methods available in the chaincode and application files included
with the sample.

fgMarbles_chaincode.go

Function Description

initMarble Create a new marble

transferMarble Transfer a marble from one owner to another
based on name

createTestMarbles Calls initMarble to create new sample
marbles for testing purposes

createFineGrainedAclSampleResources Creates the fine-grained access control list
(ACL), groups, and resources required by our
test scenario

Appendix B
Fine-Grained Access Control Marbles Sample

B-16

Function Description

transferMarblesBasedOnColor Transfers multiple marbles of a certain color to
another owner

delete Delete a marble

readMarble Returns all attributes of a marble based on
name

getHistoryForMarble Returns a history of values for a marble

fgACL_Operations.go

Methods Parameters Description

getACL • name Get a named ACL or read all
ACLs. The user invoking the
method must have READ access
to the named ACL.

createACL • name
• description
• accesses
• patterns
• allowed
• BindACLs
• Identity_Certificate

To create a new ACL, the user
invoking the method needs to
have CREATE access to the
bootstrap resource named ".
ACLs". Duplicate named ACLs
are not allowed

deleteACL • name The user invoking the method
must have DELETE access to
the named ACL.

updateACL • name
• description
• accesses
• patterns
• allowed
• BindACLs

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addAfterACL • aclName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addBeforeACL • aclName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addPatternToACL • aclName
• BindPattern

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

removePatternFromACL • aclName
• BindPattern

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

updateDescription • aclName
• newDesc

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

Appendix B
Fine-Grained Access Control Marbles Sample

B-17

Methods Parameters Description

removeBindACL • aclName
• bindAclNameToRemove

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addAccess • aclName
• accessName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

removeAccess • aclName
• accessName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

ACLInitialization • none This function is used to initialize
the fine-grained ACL support.

fgGroups_Operations.go

Methods Parameters Description

getGroup • name If name="GetAll", it returns
all the groups the identity has
access to. Otherwise, it
returns the individual group
details (if accessible) based on
name.

The user invoking the method
must have READ access to
this group.

createGroup • name
• description
• patterns
• bindACLs

Returns success or error.

The user invoking the method
must have CREATE access to
bootstrap group ". Group"

deleteGroup • name The user invoking the method
must have DELETE access to
this group.

addAfterGroup • groupName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this group.

addBeforeGroup • groupName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this group.

updateDescriptionForGro
up

• groupName
• newDesc

The user invoking the method
must have UPDATE access to
this group.

removeBindAclFromGroup • groupName
• bindAclNameToRemove

The user invoking the method
must have UPDATE access to
this group.

addMembersToGroup • groupName
• pattern

The user invoking the method
must have UPDATE access to
this group.

Appendix B
Fine-Grained Access Control Marbles Sample

B-18

Methods Parameters Description

removeMembersFromGroup • groupName
• pattern

The user invoking the method
must have UPDATE access to
this group.

fgResource_Operations.go

Methods Parameters Description

createResource • name
• description
• bindACLs

The user invoking the method
needs to have CREATE access
to the bootstrap resource named
". Resources". Duplicate
named resources are not
allowed.

getResource • name The user invoking the method
must have READ access to the
resource

deleteResource • name The user invoking the method
must have DELETE access to
the named resource

addAfterACLInResource • ResourceName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this resource

addBeforeACLInResource • ResourceName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this resource

updateDescriptionInResour
ce

• ResourceName
• newDesc

The user invoking the method
must have UPDATE access to
this resource

removeBindACLInResource • ResourceName
• bindAclNameToRemove

The user invoking the method
must have UPDATE access to
this resource

checkResourceAccess • ResourceName
• access

Checks whether the current user
invoking the method has the
specified access to the named
resource.

Appendix B
Fine-Grained Access Control Marbles Sample

B-19

C
Run Solidity Smart Contracts with EVM on
Oracle Blockchain Platform

You can run Solidity smart contracts with an Ethereum Virtual Machine (EVM) deployed as a
chaincode on Oracle Blockchain Platform.

The EVM runs Solidity smart contracts in Ethereum networks. The EVM was created through
the Hyperledger Burrow project and integrated into Hyperledger Fabric. This project enables
you to use a Hyperledger Fabric permissioned blockchain platform to interact with Ethereum
smart contracts written in an EVM-compatible language such as Solidity.

The following steps outline the process of running a Solidity smart contract on a provisioned
Oracle Blockchain Platform:

1. Download the EVM chaincode package from the Oracle Blockchain Platform console.

2. Deploy the EVM chaincode on a channel.

3. Generate bytecode for a Solidity smart contract by using the Remix IDE.

4. Deploy the smart contract bytecode into the deployed EVM chaincode. Use the address
returned from the deployment to send transactions.

Steps in this topic have been tested with the EVM chaincode package that is available from
the Oracle Blockchain Platform console, and might not work with other releases.

Note:

If your chaincode was previously installed on a Hyperledger Fabric v1.4.7 instance,
it should continue to work as expected when your instance is upgraded to
Hyperledger Fabric v2.x.

Download the EVM Chaincode and Fab3 Package

On the Developer Tools tab of the Oracle Blockchain Platform console, open the
Application Development pane and then click Download the EVM chaincode package.
You must be an admin user to download the file.

Deploy EVM Chaincode on Oracle Blockchain Platform

After you download the EVM chaincode package, you deploy it on Oracle Blockchain
Platform.

1. Log into the Oracle Blockchain Platform console.

2. On the Chaincodes tab, click Deploy a New Chaincode.

3. Select Quick Deployment, and enter the following information:

• Package Label: enter a description of the chaincode package.

• Chaincode Language: GoLang.

C-1

• Chaincode Name: enter the name of the chaincode. For example, enter
soliditycc.

• Version: v1.

• Init-required: leave this unselected.

• Channel: select the channels where you want to install the chaincode.

• Is Packaged Chaincode: leave this unselected.

• Chaincode source: upload the evmcc.zip package that you downloaded
previously.

For more details on the Quick Deployment wizard and restrictions on fields such
as Package Label and Chaincode Name, see: Use Quick Deployment.

After you submit your information, the EVM chaincode is visible in the Chaincodes tab
and is listed as a deployed chaincode on each channel that you selected to install it
on.

Create and Compile Your Solidity Smart Contract

1. Open the browser-based Remix IDE: https://remix.ethereum.org/.

2. If you already have a Solidity smart contract written, import it into Remix.

3. If you don't have a Solidity smart contract written, create a Solidity file (.sol) in
Remix and do one of the following:

• If you're familiar with Solidity you can create your own smart contract file.

• You can use the Simple Storage sample code provided in the Solidity
documentation: Solidity: Introduction to Smart Contracts

• You can use the sample code being used for this example, which takes string
name as an input and prints the same as output string using set(name) and
get():

pragma solidity ^0.4.0;
contract Myname {
 string public yourName;

 function set(string name) public {
 yourName = name;
 }
 function get() public view returns (string) {
 return yourName;
 }
}

You might see an error message about the default compiler version not matching
the version that you've specified in your smart contract.

4. Compile your smart contract. Open the Solidity Compiler panel in Remix, ensure
that your smart contract tab is open to select it as the file being compiled, set the
compiler version to the most recent 4.X version, and click Compile.

Appendix C

C-2

https://remix.ethereum.org/
https://docs.soliditylang.org/en/v0.4.24/introduction-to-smart-contracts.html

5. After the file is compiled, click the Bytecode icon to copy the bytecode as a JSON
document to your clipboard.

6. Paste the copied bytecode into a text editor and save it.

Deploy the Smart Contract

In the copied bytecode, the section you need is the "object" field. This is the EVM bytecode
of a sample smart contract.

"object": "608060405234801561001057600080fd5b50610410806100206000396000f30060
8060405260043610610057576000357c01000
0000000000000900463
ffffffff1680634ed3885e1461005c5780636d4ce63c146100c5578063d97d663014610155575
b600080fd5b34801561
006857600080fd5b506100c360048036038101908080359060200190820180359060200190808
0601f01602080910402
60200160405190810160405280939291908181526020018383808284378201915050505050509
1929192905050506101
e5565b005b3480156100d157600080fd5b506100da6101ff565b6040518080602001828103825
2838181518152602001
91508051906020019080838360005b8381101561011a578082015181840152602081019050610
0ff565b505050509050
90810190601f1680156101475780820380516001836020036101000a031916815260200191505
b509250505060405180
910390f35b34801561016157600080fd5b5061016a6102a1565b6040518080602001828103825
2838181518152602001
91508051906020019080838360005b838110156101aa578082015181840152602081019050610
18f565b505050509050
90810190601f1680156101d75780820380516001836020036101000a031916815260200191505
b509250505060405180
910390f35b80600090805190602001906101fb92919061033f565b5050565b606060008054600
1816001161561010002
03166002900480601f01602080910402602001604051908101604052809291908181526020018
2805460018160011615
6101000203166002900480156102975780601f1061026c5761010080835404028352916020019
1610297565b82019190
6000526020600020905b81548152906001019060200180831161027a57829003601f168201915
b505050505090509056
5b60008054600181600116156101000203166002900480601f016020809104026020016040519
0810160405280929190
818152602001828054600181600116156101000203166002900480156103375780601f1061030
c576101008083540402
83529160200191610337565b820191906000526020600020905b8154815290600101906020018

Appendix C

C-3

0831161031a57829003
601f168201915b505050505081565b82805460018160011615610100020316600290049
0600052602060002090601f01
6020900481019282601f1061038057805160ff19168380011785556103ae565b8280016
00101855582156103ae579182
015b828111156103ad578251825591602001919060010190610392565b5b5090506103b
b91906103bf565b5090565b61
03e191905b808211156103dd5760008160009055506001016103c5565b5090565b90560
0a165627a7a72305820a990d4
0b57c66329a32a18e847b3c18d6c911487ffadfed2098e71e8cafa0c980029",

In general, the EVM expects two arguments:

• The to address.

• The input that's necessary in Ethereum transactions.

To deploy smart contracts, the to field is the zero address, and the input is the
compiled EVM bytecode of the contract. Thus, there are two arguments provided to
the invoke command. The first one, which was traditionally supposed to be a function
name inside the chaincode, is now 00,
and the second argument is the Solidity smart contract bytecode.

1. To deploy the Solidity smart contract on Oracle Blockchain Platform, you can make
the following REST proxy call to send the two arguments to the EVM.

{
 "chaincode": "<evmcc-ccid>",
 "args": [
 "00",
 "<bytecode-of-the-smart-contract>"
],
 "timeout": 0,
 "sync": true
}

The following example uses cURL to deploy the Solidity smart contract to Oracle
Blockchain Platform with the name soliditycc:

curl -L -X POST 'https://<hostname>:7443/restproxy/api/v2/channels/
<channelname>/transactions' \
-H 'Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=' \
-H 'Content-Type: application/json' \
--data-raw '{"chaincode":"<evmcc-ccid>","args":
["00","<bytecode-of-the-smart-
contract>"],"timeout":0,"sync":true}'

2. The response payload of the transaction is the contract address for your deployed
contract. Copy this address and save it. The contract address is used when you
run smart contract functions.

Appendix C

C-4

In this example, the smart contract address is
66b92979bb66d645371b3247177e4b2513cb9834.

There are two ways to interact with a deployed smart contract:

1. By using a hash value of the method and input parameters.

2. By using the method name and input parameters directly.

Interacting With the Smart Contract by Using Hash Values

After you have the smart contract address, you can use the following calls to interact with the
deployed smart contract via the REST proxy.

To execute functions, you use invoke and query transactions but with different parameters.
The sample contract contains two functions: get and set.

In these transactions, the to field is the contract address and the input field is the function
execution hash concatenated with any of the required arguments.

You need to acquire the hash of the function execution to run a transaction. A simple way to
do this is to execute the functions in the Remix IDE and to then copy the hash from the
transaction logs:

1. In the Remix IDE, open the Deploy and Run Transactions panel. Ensure that your
contract is selected in the Contract field, and click Deploy.

After the deployment completes, the contract should be listed in the Deployed Contracts
list.

2. Expand the contract in the Deployed Contracts list. The smart contract functions are
listed.

3. Run a transaction. For the provided example, enter oracle and then click set.

4. The Terminal window shows the transaction logs. If the transaction logs are minimized,
expand them by clicking the log. Copy the value of the input field (which is the function
execution hash) by clicking the icon next to it. Save this value to the same location as
your contract address, removing the leading 0x.

Appendix C

C-5

5. After you have the function execution hash and the contract address, you can run
the set transaction on Oracle Blockchain Platform using the hash and address as
the raw data arguments.

--data-raw '{"chaincode":"<chaincodename>","args":
["<contractaddress>","<setfunctionexecutionhash>"]}'

For example, using cURL:

curl -L -X POST 'https://<hostname>:7443/restproxy/api/v2/channels/
<channelname>/transactions' \
-H 'Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=' \
-H 'Content-Type: application/json' \
--data-raw '{"chaincode":"soliditycc","args":
["66b92979bb66d645371b3247177e4b2513cb9834","4ed3885e000000000000000
000200000000000000000000
0066f7261636c6500000000000
000"]}'

6. Open the Oracle Blockchain Platform console and check that the transaction is
listed in the ledger.

To run another transaction such as a query by using the smart contract's get function,
you can generate the function execution hash in Remix and then combine it with the
contract address:

1. In Remix on the Deploy and Run Transactions panel, ensure that your contract
is still listed under Deployed Contracts. If not, redeploy it.

2. Click get. Retrieve and save the input from the transaction as you did with the set
transaction, removing the leading 0x.

Appendix C

C-6

3. You can use this transaction hash and the contract address to run a query transaction
against the chaincode deployed on Oracle Blockchain Platform.

--data-raw '{"chaincode":"<chaincodename>","args":
["<contractaddress>","<getfunctionexecutionhash>"]}'

For example in cURL:

curl -L -X POST 'https://<hostname>:7443/restproxy/api/v2/channels/
<channelname>/chaincode-queries' \
-H 'Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=' \
-H 'Content-Type: application/json' \
--data-raw '{"chaincode":"soliditycc","args":
["66b92979bb66d645371b3247177e4b2513cb9834","6d4ce63c"]}'

The returned payload will contain the asset being queried - in the example case the string
oracle.

The following sample payload illustrates another way to send a transaction using input
encoded in hexadecimal format.

{
 "chaincode": "<evmcc-ccid>",
 "args": [
 "<smart-contract-address>",
 "<hexadecimal-encoded-method-and-input-parameters>"
],
 "sync": true
}

Interacting With the Smart Contract by Using Method Names

Use the optional setAbi method to set an Application Binary Interface (ABI) specification,
which allows you to send input and get output in readable (not hexadecimal-encoded) format
instead of bytecode. Click the ABI icon (next to the Bytecode icon) on the Solidity Compiler
panel in the Remix IDE to get the ABI specification. The following input types are supported
for the readable input format: uint, string, address, bool, uint[], string[], and
address[]. Running transactions on smart contracts that implement method overriding and
method overloading is not supported from the fab3 proxy, only from the REST proxy. The
following sample payload uses the setAbi method to set an ABI specification.

{
 "chaincode": "<evmcc-ccid>",
 "args": [
 "setABI",
 "<smart-contract-address>",
 "<abi-spec-of-smart-contract>" --> use the string format of the abi
specification
],
 "sync": true
}

Appendix C

C-7

You can also make calls using the method name and input parameters directly, as
shown in the following sample payload.

{
 "chaincode": "<evmcc-ccid>",
 "args": [
 "<smart-contract-address>",
 "<smart-contract-method-name>",
 "[<array-of-input-parameters>]", --> empty array if there are
no input parameters.
 "[<string-array-of-input-types>]" --> this is optional and is
needed when there is method overriding in the smart contract.
],
 "sync": true
}

Configuring Gas Amounts

You can configure the gas amount by using the setGasAmount and getGasAmount
methods, as shown in the following sample payloads.

{
 "chaincode": "<evmcc-ccid>",
 "args": [
 "setGasAmount",
 "<gas-amount>"
],
 "sync": true
}

{
 "chaincode": "<evmcc-ccid>",
 "args": [
 "getGasAmount"
],
 "sync": true
}

Configuring the Fab3 Proxy
In the Ethereum/EVM development world, many clients and wallets use the web3
library to deploy and manage smart contracts in Ethereum networks.

The web3 library invokes the Ethereum JSON RPC API, which must be available
through a web3 provider.
The fab3 proxy is a web3 provider, which exposes a set of the Ethereum JSON RPC
APIs and facilitates the use of a web3-based client with the EVM chaincode. The fab3
proxy uses the Hyperledger Fabric Go SDK to connect and interact with the Oracle
Blockchain Platform evmcc chaincode.

Appendix C
Configuring the Fab3 Proxy

C-8

The following steps guide you through setting up the environment to use the web3 library and
the fab3 proxy to deploy and interact with smart contracts in Ethereum Virtual Machine (EVM)
chaincode.

• Before you configure the fab3 proxy, you must follow all of the steps to set up the EVM
chaincode. See Run Solidity Smart Contracts with EVM on Oracle Blockchain Platform.
The EVM chaincode and fab3 package contains the connection profile, including the
network.yaml file and artifacts.

• The following steps apply only to Oracle Blockchain Platform instances running on
Hyperledger Fabric v2.x.

1. On the Developer Tools tab of the service console, open the Application Development
pane, and then click Download Fab3 configuration including connection profile. You
must be an admin user to download the file.

2. Extract the files from the package that you downloaded.

3. Export the admin credentials from the service console.

a. On the Network tab, click the More Actions button for your organization in the
Organizations table.

b. Click Export Admin Credential.

c. Click OK to save the credentials archive file.

d. Extract the downloaded file.

4. Copy the admin certificate (.pem file) that you extracted in the previous step to the
following locations, substituting the actual organization and user IDs in the paths:

./artifacts/crypto/peerOrganizations/<organization-id>/users/<user-
id>/msp/signcerts/
./artifacts/crypto/peerOrganizations/<organization-id>/users/<user-
id>/msp/keystore/

5. Set up the environment variables that are required for the fab3 proxy. For more
information about the required environment variables, see Setting up the Fab Proxy at
EVM Smart Contracts.

export FAB3_CONFIG= # Path to the network.yaml in the extracted EVM
chaincode and fab3 package
export FAB3_USER= # User identity being used for the proxy (Matches the
users names in the crypto-config directory specified in the config)
export FAB3_ORG= # Organization of the specified user
export FAB3_CHANNEL= # Channel to be used for the transactions
export FAB3_CCID= # ID of the EVM Chaincode deployed in your fabric
network
export FAB3_PORT=5000 # Port the proxy will listen on. If not provided,
the default is 5000.

6. Open a terminal window in the folder where you extracted the fab3 package. In the
Hyperledger EVM Smart Contracts documentation, follow the steps in the Building the
Fab Proxy section to build the fab proxy and in the Connecting to the Proxy section to
install web3 and connect to the proxy.

Appendix C
Configuring the Fab3 Proxy

C-9

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-evmcc
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-evmcc

You can now follow the steps in the Deploying a Contract and Interacting with a
Deployed Contract sections of the Hyperledger EVM Smart Contracts documentation
to deploy and interact with smart contracts using the web3 library.

Appendix C
Configuring the Fab3 Proxy

C-10

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-evmcc

D
Updating Applications for Hyperledger Fabric
v2.x

When you upgrade the platform version, you might need to make changes to your existing
applications so that they work with the new version of Hyperledger Fabric.

Multiple versions of the Hyperledger Fabric SDKs are available. Use a version of the SDK
that is compatible with the version of Hyperledger Fabric that your instance is based on. For
instances based on Hyperledger Fabric v2.x, use versions that are compatible with the
Hyperledger Fabric v2.2 long-term support (LTS) release. Oracle Blockchain Platform was
verified to work with the following versions for Hyperledger Fabric v2.x:

• Hyperledger Fabric client SDK for Node.js version 2.2.9

• Hyperledger Fabric client SDK for Java version 2.2.2

• Hyperledger Fabric client SDK for Go version 1.0.0

Hyperledger Fabric v2.x requires Go version 1.20 or later, so you might need to upgrade the
version of Go that you use.

Note:

You might encounter timeout errors on queries if you deploy an existing
chaincode .zip file again and the indexes are stored in the root directory of the
chaincode package, instead of under the META-INF directory. To avoid timeout
errors, ensure that indexes in existing chaincode that you deploy to a Hyperledger
Fabric v2.x instance are in the following directory:

META-INF/statedb/relationaldb/indexes

For more information, see State Database Indexes.

You might need to update your application if it uses a client SDK to complete more complex
operations such as managing chaincode life cycles, listening for events, or managing digital
wallets, as discussed in the following sections.

Hyperledger Fabric SDK for Node.js

The following table summarizes the differences between versions 1.4 and 2.x of the
Hyperledger Fabric SDK for Node.js. For more information, see Migrating client applications
from v1.4 to v2.0 in the Hyperledger Fabric documentation.

Change in version 2.x Customer action

The fabric-client module was removed. Refactor applications to use the fabric-network
module.

D-1

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2-migrate
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2-migrate

Change in version 2.x Customer action

Wallets, used for storing and accessing identity
information, were redesigned.

See the Hyperledger Fabric documentation for
guidelines and utilities to migrate wallets.

The event listener API and behavior were
redesigned.

Rewrite the event listeners to use the new API.

The SDK no longer provides administrative and
management capabilities, include the ability to
create channels and manage chaincode life
cycles.

Use the command-line interface for these
operations. Existing clients that use version 1.4
functions for life cycle management will not work
with a Hyperledger Fabric v2.x instance.

The following table lists the classes that are available in the Hyperledger Fabric v2.x
fabric-network module versus the Hyperledger Fabric v1.4.7 fabric-network
module.

Version 2.x fabric-network module classes Version 1.4 fabric-network module classes

DefaultCheckpointers
Gateway
HsmX509Provider
IdentityProviderRegistry
Transaction
Wallet

AbstractEventHubSelectionStrategy
AbstractEventListener
BaseCheckpointer
BaseWallet
CommitEventListener
Contract
ContractEventListener
CouchDBWallet
EventHubManager
FileSystemCheckpointer
FileSystemWallet
Gateway
HSMWalletMixin
InMemoryWallet
Network
Query
RoundRobinEventHubSelectionStrategy
Transaction
X509WalletMixin

Hyperledger Fabric SDK for Java

If your application uses lifecycle APIs that are now deprecated in the Java SDK for
Hyperledger Fabric 2.0 (InstallProposalRequest, InstantiateProposalRequest, and
UpgradeProposalRequest), rewrite your application to use the APIs in the newer
version of the SDK. For more information, see Java SDK for Hyperledger Fabric 2.0
release notes.

Oracle Blockchain Platform REST API (REST Proxy)

No changes are needed to invoke existing chaincodes.

To support the initialization function for newer chaincodes that require it, an optional
isInit parameter was added to the existing transaction API. For more information,
see Send a Transaction in the REST API documentation.

Appendix D

D-2

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-java-sdk-2.0
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-java-sdk-2.0
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-rest-send-transactions

Oracle Blockchain Platform REST API (Console)

Update the version used in all API calls. For Hyperledger Fabric v1.4.7, the API version
number is 1.1. For Hyperledger Fabric v2.x, the API version number is 2.

For example, to get the list of installed chaincodes for Hyperledger Fabric v1.4.7, use the
following REST endpoint:

/console/admin/api/v1.1/chaincodes

To get the list of installed chaincodes for Hyperledger Fabric v2.x, use the following REST
endpoint:

/console/admin/api/v2/chaincodes

Note:

Although most of the existing APIs have a new Hyperledger Fabric v2.x equivalent,
there is not a 1:1 match. Some APIs are unique to each version of Hyperledger
Fabric, and some have different parameters for each release. For example, on
Hyperledger Fabric v2.x the deployment functions have moved from the
chaincode subpath to the channel subpath. For more information, see New,
Changed and Deprecated APIs in the REST API documentation.

Because Hyperledger Fabric v2.x includes a new chaincode life cycle with new procedures
for installing chaincode on peers and starting it on a channel, you might need to update any
related API calls. To learn more, see Chaincode Life Cycle.

Appendix D

D-3

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-cloud-restoci-deprecated
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=blockchain-cloud-restoci-deprecated

	Contents
	Preface
	Documentation Accessibility
	Related Topics
	Conventions

	1 What's Oracle Blockchain Platform?
	What's a Blockchain?
	Why Should I Use Blockchain?
	What Are the Advantages of Oracle Blockchain Platform?
	What Do I Get with Oracle Blockchain Platform?

	2 Get Started Using Samples
	What Are Chaincode Samples?
	Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v2.x)
	Explore Oracle Blockchain Platform Using Samples (Hyperledger Fabric v1.4.7)

	3 Manage the Organization and Network
	What's the Console?
	Modify the Console Timeout Setting
	Find and Understand Your Oracle Blockchain Platform Version Number
	Monitor the Network
	How Can I Monitor the Blockchain Network?
	What Type of Information Is on the Dashboard?
	View Network Activity

	Manage Nodes
	What Types of Nodes Are in a Network?
	Find Information About Nodes
	View General Information About Nodes
	Access Information About a Specific Node
	View a Diagram of the Peers and Channels in the Network
	Find Node Configuration Settings

	Start and Stop Nodes
	Restart a Node
	Set the Log Level for a Node

	Manage Channels
	What Are Channels?
	View Channels
	Create a Channel
	View a Channel’s Ledger Activity
	View or Update a Channel’s Organizations List
	Join a Peer to a Channel
	Add an Anchor Peer
	Change or Remove an Anchor Peer
	View Information About Deployed Chaincodes
	Work With Channel Policies and ACLs
	What Are Channel Policies? (Hyperledger Fabric v2.x)
	What Are Channel Policies? (Hyperledger Fabric v1.4.7)
	Add or Modify a Channel's Policies
	Delete a Channel's Policies
	What Are Channel ACLs?
	Update Channel ACLs

	Add or Remove Orderers To or From a Channel
	Set the Orderer Administrator Organization
	Edit Ordering Service Settings for a Channel

	Manage Certificates
	Typical Workflows to Manage Certificates
	Export Certificates
	Import Certificates to Add Organizations to the Network
	What's a Certificate Revocation List?
	View and Manage Certificates
	Revoke Certificates
	Apply the CRL

	Manage Ordering Service
	What is the Ordering Service?
	Join the Participant or Scaled-Out OSNs to the Founder's Ordering Service
	Edit Ordering Service Settings for the Network
	View Ordering Service Settings

	4 Understand and Manage Nodes by Type
	Manage CA Nodes
	View and Edit the CA Node Configuration
	View Health Information for a CA Node

	Manage the Console Node
	View and Edit the Console Node Configuration
	View Health Information for the Console Node

	Manage Orderer Nodes
	View and Edit the Orderer Node Configuration
	View Health Information for an Orderer Node
	Add an Orderer Node

	Manage Peer Nodes
	View and Edit the Peer Node Configuration
	List Chaincodes Installed on a Peer Node
	View Health Information for a Peer Node

	Manage REST Proxy Nodes
	How's the REST Proxy Used?
	Add Enrollments to the REST Proxy
	View and Edit the REST Proxy Node Configuration
	View Health Information for a REST Proxy Node

	5 Extend the Network
	Add Oracle Blockchain Platform Participant Organizations to the Network
	Typical Workflow to Join a Participant Organization to an Oracle Blockchain Platform Network

	Add Fabric Organizations to the Network
	Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform Network
	Create a Fabric Organization's Certificates File
	Prepare the Fabric Environment to Use the Oracle Blockchain Platform Network

	Add Organizations with Third-Party Certificates to the Network
	Typical Workflow to Join an Organization With Third-Party Certificates to an Oracle Blockchain Platform Network
	Third-Party Certificate Requirements
	Create an Organization's Third-Party Certificates File
	Prepare the Third-Party Environment to Use the Oracle Blockchain Platform Network

	6 Develop Chaincodes
	Write a Chaincode
	Use a Mock Shim to Test a Chaincode
	Deploy a Chaincode on a Peer to Test the Chaincode

	7 Build Chaincodes with Low-Code Blockchain App Builder
	Using the Blockchain App Builder Command Line Interface
	Install and Configure Blockchain App Builder CLI
	Upgrade Blockchain App Builder CLI
	Create a Chaincode Project with the Blockchain App Builder CLI
	Input Specification File
	Scaffolded TypeScript Chaincode Project
	Scaffolded Go Chaincode Project

	Deploy Your Chaincode Using the CLI
	Deploy Your Chaincode to a Local Hyperledger Fabric Network
	Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network
	Package Your Chaincode Project for Manual Deployment to Oracle Blockchain Platform

	Test Your Chaincode Using the CLI
	Test Your Chaincode on a Local Hyperledger Fabric Network
	Test Your Chaincode on a Remote Oracle Blockchain Platform Network
	Execute Berkeley DB SQL Rich Queries

	Upgrading Chaincode Projects in the CLI
	Synchronize Specification File Changes With Generated Source Code
	Apply a Patch to the Blockchain App Builder CLI
	Writing Unit Test Cases and Coverage Reports for the Chaincode Project
	Generate a Postman Collection Using the CLI
	Troubleshoot Blockchain App Builder CLI

	Using the Blockchain App Builder Extension for Visual Studio Code
	Install and Configure the Blockchain App Builder Extension for Visual Studio Code
	Upgrade the Blockchain App Builder Extension for Visual Studio Code
	Create a Chaincode Project with the Blockchain App Builder VS Code Extension
	Input Specification File
	Scaffolded TypeScript Chaincode Project
	Scaffolded Go Chaincode Project

	Deploy Your Chaincode Using Visual Studio Code
	Deploy the Chaincode to a Local Hyperledger Fabric Network
	Deploy Your Chaincode to a Remote Oracle Blockchain Platform Network
	Package Your Chaincode Project for Manual Deployment to Oracle Blockchain Platform

	Test Your Chaincode Using Visual Studio Code
	Test Your Chaincode on a Local Hyperledger Fabric Network
	Testing Lifecycle Operations on a Remote Oracle Blockchain Platform Network
	Execute Berkeley DB SQL Rich Queries
	Generate CLI Commands from Queries

	Upgrading Chaincode Projects in Visual Studio Code
	Synchronize Specification File Changes With Generated Source Code
	Debugging from Visual Studio Code
	Generate a Postman Collection Using Visual Studio Code
	Troubleshoot Blockchain App Builder Visual Studio Code Extension

	Tokenization Support Using Blockchain App Builder
	Token Taxonomy Framework
	Input Specification File for Token Taxonomy Framework
	Scaffolded TypeScript Project for Token Taxonomy Framework
	TypeScript Methods for Token Conversion
	TypeScript Methods for Token Account Status

	Scaffolded Go Project for Token Taxonomy Framework
	Go Methods for Token Conversion
	Go Methods for Token Account Status

	ERC-721
	Input Specification File for ERC-721
	Scaffolded TypeScript NFT Project for ERC-721
	TypeScript Methods for ERC-721 NFT Locking
	TypeScript Methods for ERC-721 Token Account Status

	Scaffolded Go NFT Project for ERC-721
	Go Methods for ERC-721 NFT Locking
	Go Methods for ERC-721 Token Account Status

	ERC-1155
	Input Specification File for ERC-1155
	ERC-1155 Tokenization Flow
	Scaffolded TypeScript Token Project for ERC-1155
	TypeScript Methods for ERC-1155 NFT Locking
	TypeScript Methods for ERC-1155 Token Account Status

	Scaffolded Go Token Project for ERC-1155
	Go Methods for ERC-1155 NFT Locking
	Go Methods for ERC-1155 Token Account Status

	Deploying and Testing Token Chaincode
	Working With the Sample Token Specification Files
	Disaster Recovery Support for Tokenization

	8 Deploy and Manage Chaincodes
	Deploy and Manage Chaincodes on Hyperledger Fabric v2.x
	Typical Workflow to Deploy Chaincodes
	Use Quick Deployment
	Use Advanced Deployment
	Deploy a Chaincode
	Chaincode Life Cycle
	Specify an Endorsement Policy
	View an Endorsement Policy
	Find Information About Chaincodes
	Delete a Chaincode
	Manage Chaincode Versions
	Upgrade a Chaincode
	What Are Private Data Collections?
	Add Private Data Collections
	View Private Data Collections

	Deploy and Manage Chaincodes on Hyperledger Fabric v1.4.7
	Typical Workflow to Deploy Chaincodes
	Use Quick Deployment
	Use Advanced Deployment
	Instantiate a Chaincode
	Specify an Endorsement Policy
	View an Endorsement Policy
	Find Information About Chaincodes
	Manage Chaincode Versions
	Upgrade a Chaincode
	What Are Private Data Collections?
	Add Private Data Collections
	View Private Data Collections

	9 Develop Blockchain Applications
	Before You Develop an Application
	Use the Hyperledger Fabric SDKs to Develop Applications
	Update the Hyperledger Fabric v2.x SDKs to Work with Oracle Blockchain Platform
	Update the Hyperledger Fabric v1.4.7 SDKs to Work with Oracle Blockchain Platform

	Use the REST APIs to Develop Applications
	Make Atomic Updates Across Chaincodes and Channels
	Ethereum Interoperability
	Include Oracle Blockchain Platform in Global Distributed Transactions

	10 Work With Databases
	Query the State Database
	What's the State Database?
	Rich Queries in the Console
	Supported Rich Query Syntax
	SQL Rich Query Syntax
	CouchDB Rich Query Syntax

	State Database Indexes
	Differences in the Validation of Rich Queries

	Create the Rich History Database
	What's the Rich History Database?
	Create the Oracle Database Classic Cloud Service Connection String
	Enable and Configure the Rich History Database
	Modify the Connection to the Rich History Database
	Configure the Channels that Write Data to the Rich History Database
	Monitor the Rich History Status
	Limit Access to Rich History
	Rich History Database Tables and Columns

	A Node Configuration
	CA Node Attributes
	Console Node Attributes
	Orderer Node Attributes
	Peer Node Attributes
	REST Proxy Node Attributes

	B Using the Fine-Grained Access Control Library Included in the Marbles Sample
	Fine-Grained Access Control Library Functions
	Example Walkthough Using the Fine-Grained Access Control Library
	Fine-Grained Access Control Marbles Sample

	C Run Solidity Smart Contracts with EVM on Oracle Blockchain Platform
	Configuring the Fab3 Proxy

	D Updating Applications for Hyperledger Fabric v2.x

