
Java Card 3 Platform
Programming Notes

Classic Edition,Version 3.0.5
E59598-02
April 2020

Java Card 3 Platform Programming Notes, Classic Edition,Version 3.0.5

E59598-02

Copyright © 1998, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Before You Read This Book vi

How This Document Is Organized vi

Documentation Accessibility vii

Related Documents vii

Conventions vii

1 Object, Package and Applet Deletion

Object Deletion Mechanism 1-1

Requesting the Object Deletion Mechanism 1-1

Object Deletion Mechanism Usage Guidelines 1-2

Package and Applet Deletion 1-2

Developing Removable Packages 1-2

Writing Removable Applets 1-3

The AppletEvent.uninstall Method 1-3

2 Working with Logical Channels

Dual Interface Cards 2-1

Applets and Logical Channels 2-1

Non-MultiSelectable Applets 2-1

The MultiSelectable Interface 2-2

Selection for MultiSelectable Applets 2-2

Deselection for MultiSelectable Applets 2-3

Writing Applets for Concurrent Logical Channels 2-3

MultiSelectable Applet Example 2-4

Handling Channel Information on APDU Commands 2-6

Interindustry Space 2-7

Proprietary Java Card Technology Space 2-7

Logical Channels 2-8

APDU Command Type Identification 2-8

iii

Writing ISO/IEC 7816-4:2013 Compliant Applets 2-9

ISO/IEC 7816-4:2013 Compliant Applet Example 2-9

Non-MultiSelectable Applets and Shareable Objects 2-10

ISO/IEC 7816-4:2013 Specific APDU Commands for Logical Channel
Management 2-11

MANAGE CHANNEL OPEN 2-11

MANAGE CHANNEL CLOSE 2-12

SELECT FILE 2-13

3 Developing RMI Applications for the Java Card Platform

Steps to Develop an RMI Applet for the Java Card 3 Platform 3-1

Generating Stubs 3-1

Running a Java Card RMI Applet 3-2

RMI Program Example 3-2

Main Program 3-2

Implement a Remote Interface 3-3

Define the Constructor for the Remote Object 3-4

Provide an Implementation for Each Remote Method 3-4

Sample Applet 3-6

Preparing and Registering the Remote Object 3-7

Processing the Incoming Commands 3-7

Client Example 3-7

Initializing and Shutting Down the Card Connection 3-9

Creating and Using a CardAccessor Object 3-9

Selecting the Java Card Applet and Obtaining the Initial Reference 3-10

Using Remote Objects in Remote Method Invocations 3-10

Generate the Stubs 3-10

Card Terminal Interaction 3-11

Add Security Support 3-12

Initialize a Security Service 3-13

Use the Service to Check the Current Security Status 3-14

Security Service Example 3-14

More Secure Applet 3-16

Client Changes to Support Security 3-17

CustomCardAccessor Class for Authentication and Signing 3-18

4 Using Extended APDU

Extended APDU Nominal Cases 4-1

Extended APDU Format 4-1

Extended APDU Limits 4-2

iv

javacardx.framework.ExtendedLength Interface 4-3

APDU Parsing with the javacard.framework.APDU Class 4-3

Creating an Applet That Can Send and Receive Extended Length APDUs 4-3

Glossary

v

Preface

This book contains tips and guidelines for developers of Java Card applets and for
developers of vendor-specific frameworks. This book covers several topics that are
substantially different from programming models found in earlier versions of the Java
Card platform and is not meant to comprehensively introduce or cover general
programming topics.

Java Card technology combines a subset of the Java programming language with a
runtime environment optimized for smart cards and similar small-memory embedded
devices. The goal of Java Card technology is to bring many of the benefits of the Java
programming language to the resource-constrained world of smart cards.

The Java Card API is compatible with international standards such as ISO7816 and
industry-specific standards such as Europay, Master Card, Visa (EMV).

Audience
This book is for applet developers using the Application Programming Interface for the
Java Card Platform, Version 3.0.5, Classic Edition to implement applet management,
multiselectable applets, logical channels, Remote Method Invocation (RMI), and
extended APDUs for the Java Card platform.

This book is also for developers who are considering creating a vendor-specific
framework based on version 3.0.5 of the Java Card technology specifications.

Before You Read This Book
Before reading this guide, become familiar with the Java programming language,
object-oriented design, the Java Card technology specifications, and smart card
technology.

You must also be familiar with the development tools released with version 3.0.5 of the
Java Card platform. For information on these tools, see the Java Card 3 Platform
Development Kit User’s Guide, Classic Edition Version 3.0.5.

How This Document Is Organized
The chapters and appendices in this guide are described in the following list:

• Object_ Package and Applet Deletion describes how to perform object deletion,
applet deletion, and package deletion on the Java Card 3 platform.

• Working with Logical Channels describes how to create and use applets that can
be selected for use on multiple channels on the Java Card 3 platform.

• Developing RMI Applications for the Java Card Platform describes how to develop
applications that use the optional RMI APIs on the Java Card 3 platform.

Preface

vi

• Using Extended APDU describes how to handle extended APDU functionality on
the Java Card 3 platform.

• Glossary defines terms used in the Java Card 3 Platform.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
References to various documents or products are made in this manual. Have the
following documents available:

• Java Card 3 Platform Development Kit User's Guide Classic Edition, Version 3.0.5

• Java Card 3 Platform Runtime Specification, Classic Edition Version 3.0.5

• Java Card 3 Platform Virtual Machine Specification, Classic Edition Version 3.0.5

• Java Card Technology for Smart Cards by Zhiqun Chen (Addison-Wesley, 2000).

• Off-Card Verifier for the Java Card™ Platform, Version 2.2.1, White Paper (Sun
Microsystems, Inc., 2003) , Sun Microsystems, Inc.

• The Java Programming Language (Java Series), Second Edition by Ken Arnold
and James Gosling (Addison-Wesley, 1998).

• The Java Virtual Machine Specification (Java Series), Second Edition by Tim
Lindholm and Frank Yellin (Addison-Wesley, 1999).

• The Java Class Libraries: An Annotated Reference, Second Edition (Java Series)
by Patrick Chan, Rosanna Lee and Doug Kramer (Addison-Wesley, 1999).

• ISO/IEC 7816 Specification Parts 1-6.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with
an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Object, Package and Applet Deletion

This chapter describes how to use the object deletion mechanism and the package
and applet deletion features of the Java Card 3 Platform.
This chapter includes the following topics:

• Object Deletion Mechanism

• Package and Applet Deletion

Object Deletion Mechanism
The object deletion mechanism on the Java Card 3 Platform reclaims memory that is
being used by "unreachable" objects. Objects become unreachable for a number of
reasons such as static or instance fields having missing pointers, missing variable
references (not only fields), or when the object is orphaned in an island of isolation. An
applet object is reachable until it is successfully deleted.

The object deletion mechanism is not like garbage collection in standard Java
technology applications due to space and time constraints. The amount of available
RAM on the card is limited. In addition, because the object deletion mechanism is
applied to objects stored in persistent memory, it must be used sparingly. EEPROM
writes are very time-consuming operations and only a limited number of writes can be
performed on a card.

Due to these limitations, the object deletion mechanism in Java Card technology is not
automatic: it is performed only when an applet requests it. Use the object deletion
mechanism sparingly and only when other Java Card technology-based facilities are
cumbersome or inadequate.

Requesting the Object Deletion Mechanism
Although any applet on the card can request it, only the Java Card Runtime
Environment (Java Card RE) can start the object deletion mechanism. The applet
requests the object deletion mechanism with a call to the
JCSystem.requestObjectDeletion() method.

In the following code example, the method updates the buffer capacity to the given
value. If it is not empty, the method creates a new buffer and removes the old one by
requesting the object deletion mechanism.

/**
* The following method updates the buffer size by removing
* the old buffer object from the memory by requesting
* object deletion and creates a new one with the
* required size.
*/
 void updateBuffer(byte requiredSize){
 try{

1-1

 if(buffer != null && buffer.length == requiredSize){
 //we already have a buffer of required size
 return;
 }
 JCSystem.beginTransaction();
 byte[] oldBuffer = buffer;
 buffer = new byte[requiredSize];
 if (oldBuffer != null)
 JCSystem.requestObjectDeletion();
 JCSystem.commitTransaction();
 }catch(Exception e){
 JCSystem.abortTransaction();
 }
 }

Object Deletion Mechanism Usage Guidelines
The following guidelines describe possible scenarios when the object deletion
mechanism might or might not be used:

• When throwing exceptions, avoid creating new exception objects and relying on
the object deletion mechanism to perform cleanup. Try to use existing exception
objects.

• Try not to create objects in method or block scope. This is acceptable in standard
Java technology applications, but is an incorrect use of the object deletion
mechanism in Java Card technology-based applications.

• Use the object deletion mechanism when a large object, such as a certificate or
key, must be replaced with a new one. In this case, instead of updating the old
object in a transaction, create a new object and update its pointer within the
transaction. Then, use the object deletion mechanism to remove the old object.

• Use the object deletion mechanism when object resizing is required, as shown in
the example in Requesting the Object Deletion Mechanism.

Package and Applet Deletion
In the Java Card 3 platform, the installer deletes packages and applets from the card's
memory. Once the installer is selected, it can receive requests from the terminal, in the
form of an APDU, to delete packages and applets. Requests to delete an applet or
package cannot be sent from an applet on the card.

The following sections describe programming guidelines that will help you create
packages and applets that are more easily removed:

• Developing Removable Packages

• Writing Removable Applets

Developing Removable Packages
When a package is deleted, all of its code is removed from the card's memory. A
package is eligible for deletion only if there are no dependencies on it, including:

• Packages that are dependent on the package to be deleted

Chapter 1
Package and Applet Deletion

1-2

• Applet instances or objects that either belong to the package, or that belong to a
package that depends on the package to be deleted

Package deletion will not succeed if any of the following conditions exist:

• A reachable instance of a class belonging to the package exists on the card.

• Another package on the card depends on the package.

• A reset or power failure occurs after the deletion process begins, but before it
completes.

To ensure that a package can be easily removed from the card, avoid writing and
downloading other packages that might be dependent on it. If other packages on the
card depend on it, you must remove all dependent packages before you can remove
this package from the card memory.

Writing Removable Applets
Deleting an applet means that the applet and all of its child objects are deleted. Applet
deletion fails if any of the following conditions exist:

• Any object owned by the applet instance is referenced by an object owned by
another applet instance on the card.

• Any object owned by the applet instance is referenced from a static field in any
package on the card.

• The applet is active on the card.

If you are writing an applet that is deemed to be short lived and is to be removed from
the card after performing some operation, follow these guidelines to ensure that the
applet can be easily removed:

• Write cooperating applets if shareable objects are required. To reduce coupling
between applets, try to obtain shareable objects on a per-use basis.

• If interdependent applets are required, make sure that these applets can be
deleted simultaneously.

• Follow one of the following guidelines when static reference type fields exist:

– Ensure there is a mechanism available in the applet to disassociate itself from
these fields before applet deletion is attempted.

– Ensure that the applet instance and code can be removed from the card
simultaneously (that is, by using applet and package deletion).

The AppletEvent.uninstall Method
When an applet needs to perform some important actions prior to deletion, it might
implement the uninstall method of the AppletEvent interface. An applet might find
it useful to implement this method for the following types of functions:

• Release resources such as shared keys and static objects

• Backup data into another applet's space

• Notify other dependent applets

Calling uninstall does not guarantee that the applet will be deleted. The applet might
not be deleted after the completion of the uninstall method in some of these cases:

Chapter 1
Package and Applet Deletion

1-3

• Other applets or packages are still dependent on this applet.

• Another applet that needs to be deleted simultaneously cannot currently be
deleted.

• The package that needs to be deleted simultaneously cannot currently be deleted.

• A tear occurs before the deletion elements are processed.

To ensure that the applets are deleted, implement the uninstall method defensively.
Write your applet with these guidelines in mind:

• The applet continues to function consistently and securely if deletion fails.

• The applet can withstand a possible tear during the execution.

• The uninstall method can be called again if deletion is reattempted.

The following example shows such an implementation:

public class TestApp1 extends Applet implements AppletEvent{
 // field set to true after uninstall
 private boolean disableApp = false;
 ...
 public void uninstall(){
 if (!disableApp){
 JCSystem.beginTransaction(); //to protect against tear
 disableApp = true; //mark as uninstalled
 TestApp2SIO.removeDependency();
 JCSystem.commitTransaction();
 }
 }
 public boolean select(boolean appInstAlreadyActive) {
 // refuse selection if in uninstalled state
 if (disableApp) return false;
 return true;
 }
 ...
}

Chapter 1
Package and Applet Deletion

1-4

2
Working with Logical Channels

The Java Card 3 Platform can support up to twenty logical channels per active
interface. Logical channels allow the concurrent execution of multiple applications on
the card, allowing a terminal to handle different tasks at the same time.
This chapter includes the following topics:

• Dual Interface Cards

• Applets and Logical Channels

• The MultiSelectable Interface

• Writing Applets For Concurrent Logical Channels

Dual Interface Cards
On dual interface cards, each interface can handle up to twenty independent logical
channels. Channel management commands only affect the logical channels in the
interface where the commands are issued.

For more information on logical channels, their implementation and logical channel
terminology, see the Java Card 3 Platform Runtime Environment Specification, Classic
Edition Version 3.0.5.

Applets and Logical Channels
If you design your applets to take advantage of multi-session functionality, they can
interoperate from different channels and can be selected multiple times in different
channels. For example, the card might handle security information on one channel,
while data is accessed on a second channel, while the third channel takes care of data
encoding operations.

By following this design, it is possible to access information owned by a different
applet without having to deselect the currently selected applet that is handling session
information. Thus, you avoid losing your session-specific security data, which is
usually stored in CLEAR_ON_DESELECT RAM memory.

Non-MultiSelectable Applets
An error is returned to the terminal when an applet that is not designed to be aware of
multiple channels is either selected more than once on different channels or is
selected concurrently with other applets in the same package.

You can have several non-multiselectable applets operating simultaneously on
different channels, as long as they do not interfere with each other's data while they
are active. For example, you can open up to 4 channels and run a distinct applet on
each as long as they do not interoperate. You can control their operation by
multiplexing commands into the APDU communications channel. If the applets are

2-1

independent of each other, then the results will be the same as if each of these applets
were running one at a time, each in a separate session.

The MultiSelectable Interface
For an applet to be selectable on multiple channels at the same time, or to have
another applet belonging to the same package selected simultaneously, it must
implement the javacard.framework.MultiSelectable interface. Implementing this
interface allows the applet to be informed when it has been selected more than once
or when applets in the same package are already selected during applet activation.

Note:

If an applet in any package implements the MultiSelectable interface,
then all applets in the package must also implement the MultiSelectable
interface. It is not possible to have multiselectable and non-multiselectable
applets in the same package.

The MultiSelectable interface contains a select and a deselect method to
manage multiselectable applets. These methods are described in the following topics:

• Selection for MultiSelectable Applets

• Deselection for MultiSelectable Applets

Selection for MultiSelectable Applets
The MultiSelectable interface defines one method to be invoked instead of
Applet.select() when the applet being selected, or any other applet in its package, is
already selected on another logical channel:

public boolean MultiSelectable.select(boolean appInstAlreadySelected)

The MultiSelectable.select(boolean) method informs the applet instance if it is
selected more than once on different channels, or if another applet in the same
package is selected on another channel on any interface. The parameter
appInstAlreadySelected is true if the applet is selected on a different channel. It is
false if it is not selected. The method can return either true or false to accept or
reject applet selection.

This method can be called as a result of issuing a SELECT FILE or a MANAGE
CHANNEL OPEN APDU command used to select an applet. If the applet is not
selected, then the appInstAlreadySelected parameter is passed as false to signal
an applet activation event. If the applet is subsequently selected on another channel,
MultiSelectable.select(boolean) is called again, but this time, the
appInstAlreadySelected parameter is passed as true, to indicate that the applet is
already active.

Chapter 2
The MultiSelectable Interface

2-2

Deselection for MultiSelectable Applets
The MultiSelectable interface defines one method to be invoked instead of
Applet.deselect() when the applet being deselected, or any other applet in its
package, is already selected on another logical channel:

public void MultiSelectable.deselect(boolean appInstStillSelected)

The MultiSelectable.deselect(boolean) method informs the applet instance if it is
being deselected on the logical channel while the same applet instance or another
applet in the same package is still active on another channel on any interface. The
parameter appInstStillSelected is true if the applet remains active on a different
channel. It is false if it is not active on another channel, indicating that this is the last
remaining active instance of the applet.

This method can be called as the result of a MANAGE CHANNEL CLOSE or a SELECT
FILE APDU command. If the applet remains active on a different channel, the
appInstStillSelected parameter is passed as true.

If the MultiSelectable.deselect(boolean) method is called, it means that either an
instance of this applet or another applet from the same package remains active on
another channel, so CLEAR_ON_DESELECT transients are not cleared.

Only when the last applet instance from the entire package is deselected does a call to
Applet.deselect() occur, resulting in the erasure of CLEAR_ON_DESELECT transients.

Writing Applets for Concurrent Logical Channels
This section describes how to write a multiselectable applet that will perform various
tasks based on whether it is selected. The code samples in this section show how to
extend the applet to implement the MultiSelectable interface and how to
implement the MultiSelectable.select(boolean) and deselect(boolean) methods.
The code samples also show how to use the Applet.select() and deselect()
methods to work with multiselectable applets.

To take advantage of multiple channel operation, an applet must implement the
javacard.framework.MultiSelectable interface. For example:

public class SampleApplet extends Applet
 implements MultiSelectable {
 ...
 }

The new applet needs to provide implementation for the
MultiSelectable.select(boolean) and MultiSelectable.deselect(boolean)
methods. These methods are responsible for encoding the behavior that the applet
needs during a selection event if either of the following situations occurs:

• The applet is already selected on a different channel.

• One or more applets from the same package are also selected on different
channels.

Chapter 2
Writing Applets for Concurrent Logical Channels

2-3

The behavior to be encoded might include initializing applet state, accepting or
rejecting the selection request, or clearing data structures in case of deselection:

public boolean select(boolean appInstAlreadySelected) {
 // Implement the logic to control applet selection
 // during a multiselection situation
 ...
}
public void deselect(boolean appInstStillSelected) {
 // Implement the logic to control applet deselection
 // during a multiselection situation
 ...
}

Note:

The applet is still required to implement the Applet.select() and the
Applet.deselect() methods in addition to the MultiSelectable
interface. These methods handle applet selection and deselection behavior
when a multiselection situation does not happen.

Related Topics

• MultiSelectable Applet Example

• Handling Channel Information on APDU Commands

• Writing ISO 7816-4:2005 Compliant Applets

• Non-MultiSelectable Applets and Shareable Objects

• ISO 7816-4:2005 Specific APDU Commands for Logical Channel Management

MultiSelectable Applet Example
In this example, the multiselectable applet, SampleApplet, must initialize the following
two arrays of data when it is selected:

• An array of package data to be initialized when the first applet in the package
becomes active

• An array of private applet data to be initialized upon applet instance activation

You can make these distinctions in your code because the MultiSelectable
interface allows the applet to recognize the circumstances under which it is selected.

Also, the applet has the following requirements:

• Clear the package data once no applet in the package is active

• Clear the applet private data when the applet instance is deselected

Chapter 2
Writing Applets for Concurrent Logical Channels

2-4

The following methods are responsible for clearing and setting the data:

//dataType parameter as above
final static byte DATA_PRIVATE = (byte)01;
final static byte DATA_PACKAGE = (byte)02;
...
public void initData(byte[] dataArray, byte dataType) {
 ...
}
public void clearData(byte[] dataArray) {
 ...
}

To achieve the behavior specified above, you must modify the selection and
deselection methods in your sample applet.

The code for Applet.select(), which is invoked when this applet is the first to
become active in the package, can be implemented like this:

public boolean select() {

 // First applet to be selected in package, so
 // initialize package data and applet data
 initData(packageData, DATA_PACKAGE);
 initData(privateData, DATA_PRIVATE);
 return true;
}

Likewise, the implementation of the method MultiSelectable.select(boolean) must
determine whether the applet is already active. According to its definition, this method
is called when another applet within this package is active.
MultiSelectable.select(boolean) can be implemented so that if
appInstAlreadySelected is false, the applet private data can be initialized. For
example:

public boolean select(boolean appInstAlreadySelected) {
 // If boolean parameter is false,
 // then we have applet activation
 // Otherwise, no applet activation occurs.
 if (appInstAlreadySelected == false) {
 // Initialize applet private data, upon activation
 initData(privateData, DATA_PRIVATE);
 }
 return true;
}

Chapter 2
Writing Applets for Concurrent Logical Channels

2-5

In the case of deselection, the applet data must be cleared. The method
MultiSelectable.deselect(boolean) can be implemented so that it clears applet
data only if the applet is no longer active. For example:

public void deselect(boolean appInstStillSelected) {

 // If boolean parameter is false, then applet is no longer
 // active. It is O.K. to clear applet private data.
 if (appInstStillSelected == false) {
 clearData(privateData);
 }
}

If this applet is the last one to be deactivated from the package, it also must clear
package data. This situation results in a call to Applet.deselect(). This method can
be implemented like this:

public void deselect() {
 // This call means that the applet is no longer active and
 // that no other applet in the package is. Data for both
 // applet and package must be cleared.
 clearData(packageData);
 clearData(privateData);
}

Handling Channel Information on APDU Commands
APDU commands follow the ISO/IEC 7816-4:2013 specifications to encode logical
channel information in the CLA byte. The CLA byte encoding is divided into two
spaces:

• Interindustry —Used by all ISO/IEC 7816-4:2013- defined commands

• Proprietary — Used by Java Card technology to encode application- specific
commands

The CLA byte encoding is divided into two classes:

• Type 4 commands — Encode legacy ISO/IEC 7816-4 logical channel information

• Type 16 commands — Defined by the ISO/IEC 7816-4:2013 specification to
encode information for additional 16 logical channels in the card.

Type 4 logical channels occupy the range of [0...3], while Type 16 logical channels go
in the range of [4...19], that is, the value encoded in the CLA byte plus four, as it is
used in SELECT, MANAGE CHANNEL and other proprietary or ISO commands.

However, a note of caution: while the MANAGE CHANNEL command CLA byte follows
the encoding as described below, its P2 parameter does not. The logical channel
numbers in its P2 parameter are correctly encoded in the range of [0...19].

The CLA byte encoding follows the following rules:

• Interindustry Space

Chapter 2
Writing Applets for Concurrent Logical Channels

2-6

• Proprietary Java Card Technology Space

• Logical Channels

• APDU Command Type Identification

Interindustry Space
CLA Remarks

0x0X Type 4, last or only command in chain

0x1X Type 4, not last command in chain (paired with 0x0X)

0x2X Reserved for Future Use

0x3X Reserved for Future Use

0x4X Type 16, no SM, last or only command in chain

0x5X Type 16, no SM, not last command in chain (paired with 0x4X)

0x6X Type 16, SM, last or only command in chain

0x7X Type 16, SM, not last command in chain (paired with 0x06X)

The encoding details are as follows.

Type 4:

b8 b7 b6 b5 b4 b3 b2 b1
0 0 0 x y y z z

Type 16:

b8 b7 b6 b5 b4 b3 b2 b1
0 1 y x z z z z

Notation:

x = Command Chaining bit

• 0 = last or only command

• 1 = command chaining

y = Secure Messaging indicator, see ISO7816-4:2003 section 6 for further information.

z = Logical channel indicator

Type 4 supports logical channels [0..3]

Type 16 supports logical channels [0..15], which are mapped to logical channels
[4..19]

Proprietary Java Card Technology Space
CLA Remarks

0x8X Type 4, last or only command in chain

0x9X Type 4, not last command in chain (paired with 0x8X)

Chapter 2
Writing Applets for Concurrent Logical Channels

2-7

0xAX Type 4, last or only command in chain

0xBX Type 4, not last command in chain (paired with 0xAX)

0xCX Type 16, no SM, last or only command in chain

0xDX Type 16, no SM, not last command in chain (paired with 0xCX)

0xEX Type 16, SM, last or only command in chain

0xFX Type 16, SM, not last command in chain (paired with 0xEX)

The encoding details are as follows.

Type 4:

b8 b7 b6 b5 b4 b3 b2 b1
1 0 N/A x y y z z

Type 16:

b8 b7 b6 b5 b4 b3 b2 b1
1 1 y x z z z z

Logical Channels
When an APDU command is received, the card processes it and determines whether
the command has logical channel information encoding. If logical channel information
is encoded, then the card sends the APDU command to the respective channel. All
other APDU commands are forwarded to the card's basic channel (0).

The X nibble is responsible for logical channels and secure message encoding. Only
the two least significant bits of the nibble are used for channel encoding, which ranges
from 0 to 3. For example, the command 0x21 forwards the command to the card's
basic channel (0), because the CLA byte with the nibble 0x2X does not contain logical
channel information.

Just as the deselection and selection mechanisms must be written to take into
consideration a multiple-channel environment, it is important to write the
Applet.process() method so that it handles channel information correctly. Due to the
fact that some APDUs can be digitally signed, the APDU command is passed to the
applet's process method as it is sent by the terminal. That means any logical channel
information is not cleared and is passed intact to the applet. The applet must deal with
this situation.

APDU Command Type Identification
To identify proprietary and interindustry commands, use the isISOInterindustryCLA
method. This call returns true if the CLA byte encoding corresponds to the
interindustry space, or false if it corresponds to the proprietary space.

...
//Applet's process method
public void process(APDU apdu) {
 byte[] buffer = apdu.getBuffer();

 // check SELECT APDU command

Chapter 2
Writing Applets for Concurrent Logical Channels

2-8

 if (apdu.isISOInterindustryCLA()) {
 if (Applet.selectingApplet()) {
 return;
 } else {
 ISOException.throwIt (ISO7816.SW_CLA_NOT_SUPPORTED);
 }
 }
 ...

Writing ISO/IEC 7816-4:2013 Compliant Applets
If your applets must be compliant with the ISO/IEC 7816-4:2013 specification, then
you must track the applet security state on each channel where it is active.
Additionally, in the case of multiselectable applets, you must copy the state (including
its security configuration) when you perform MANAGE CHANNEL commands from a
channel other than the basic channel.

For example, applets might need to perform some sort of initialization upon activation,
as well as cleanup procedures during deactivation. To do these tasks, a
multiselectable applet might need to keep track of the channels on which it is being
selected during a card session.

To track this information, you need to know the channel on which the task is being
performed. Tracking is done by two methods in the Java Card API:

• APDU class: public static byte getCLAChannel();

This method returns the origin channel where the command was issued. In case of
MANAGE CHANNEL or SELECT FILE commands, if this method is called within the
Applet.select(), MultiSelectable.select(boolean), Applet.deselect(), or
MultiSelectable.deselect(boolean) methods, it returns the APDU command
logical channel specified in the CLA byte.

• JCSystem class: public static byte getAssignedChannel();

This method returns the channel of the currently selected applet. In case of a
MANAGE CHANNEL command, if this method is invoked inside the
Applet.select(), MultiSelectable.select(boolean), Applet.deselect(), or
MultiSelectable.deselect(boolean) methods, it returns the channel where the
applet to be selected or deselected is assigned to run.

ISO/IEC 7816-4:2013 Compliant Applet Example
This example demonstrates how to copy the security state from the applet selected in
the origin channel into the new channel.

In this example, the state information is stored in the array appState inside the applet:

StateObj appState[MAX_CHANNELS]; // Holds the security state
 // for each logical channel

You can use the APDU.getCLAChannel() and the JCSystem.getAssignedChannel()
methods to identify if the applet selection case corresponds to an ISO/IEC 7816-4
case where the security state needs to be copied.

Chapter 2
Writing Applets for Concurrent Logical Channels

2-9

Note:

If such an event occurs, it will also be a multiselection situation, where the
applet is also selected on the newly opened channel.

In this example, the code to identify the applet selection case is included in the
implementation of the MultiSelectable.select(boolean) method:

 public boolean select(boolean appInstAlreadySelected) {
 ...
 // Obtain logical channels information
 // This call returns the channel where
 // the command was issued
 byte origChannel = APDU.getCLAChannel();
 // This call returns the channel where the applet is being
 // selected
 byte targetChannel = JCSystem.getAssignedChannel();
 if (origChannel == targetChannel) {
 // This is a SELECT FILE command.
 // Do processing here.
 ...
 }
 if (origChannel == 0) {
 // This is a MANAGE CHANNEL command from channel 0.
 // ISO 7816-4 state sharing case does not
 // apply here.
 // Do processing here.
 ...
 } else {
 // Since origChannel != 0, the special
 // ISO 7816-4 case applies.
 // Copy security state from origin channel
 // to assigned logical channel.
 appState[targetChannel] = appState[origChannel];
 // Do further processing here
 ...
 }
 ...
 }

Refer to the API documentation in the in JC_CLASSIC_HOME\docs for more
information about the APIs.

Non-MultiSelectable Applets and Shareable Objects
Applets that implement MultiSelectable are designed to handle calls to Shareable
objects across packages when several applets are active on different logical channels.
In contrast, an applet that does not implement MultiSelectable assumes that it is
uniquely selected and its owned objects will not be modified via Shareable interface
objects while it is selected. Only when the non-multiselectable applet is in a deselected
state can other applets modify its internal data structures.

Chapter 2
Writing Applets for Concurrent Logical Channels

2-10

When you interact with applets that do not implement MultiSelectable:

• It is not possible to select more than one applet simultaneously from a package if
any of the applets you want to select does not implement the MultiSelectable
interface.

• It is not possible to invoke methods of a Shareable object belonging to a non-
multiselectable applet when an applet, belonging to the same group context, is
active.

ISO/IEC 7816-4:2013 Specific APDU Commands for Logical Channel
Management

There are two ISO-specific APDU commands that you can use to work with logical
channels in a smart card:

• SELECT FILE — This command selects the specified applet on the specified
channel number. The channel number can be from 0 to 3 and is specified in the
lower two bits of the CLA byte. If the channel is closed, it is opened and the
specified applet is selected on the channel. SELECT FILE commands are
forwarded to the newly selected applet.

• MANAGE CHANNEL — This command can be used to open a new channel from
another channel or close it. It allows you to specify the channel to be used or to
allow the smart card to select the channel. Like SELECT FILE, this command
uses the lower two bits of the CLA byte to specify the channel number. MANAGE
CHANNEL commands are not forwarded to the applet.

When you work with these commands, keep the following guidelines in mind:

• Origin logical channel values are encoded in the two least significant bits of the
CLA byte.

• Logical channel values have a valid range of [0..19] only.

• Logical channel 0 is known as the basic channel, and it cannot be closed.

• At card reset, the basic channel (channel 0) is open. All other channels (1, 2, ...19)
are closed.

The MANAGE CHANNEL and SELECT FILE commands are read by the Java Card RE
dispatcher, which performs the functions specified by the commands, including the
following:

• Managing logical channels

• Deselecting applets

• Selecting applets

MANAGE CHANNEL OPEN
In response to the MANAGE CHANNEL OPEN command, the dispatcher follows this
procedure:

1. If the origin channel is not open, an error is returned.

2. Determines whether the channel is open or closed. If the channel is open, an error
is returned.

Chapter 2
Writing Applets for Concurrent Logical Channels

2-11

3. Opens the channel.

4. If the origin channel is 0, the default applet (if there is one) is selected in the new
channel.

5. If the origin channel is not 0, the selected applet on the origin channel becomes
the selected applet in new channel.

This MANAGE CHANNEL OPEN command opens a new channel from channel encoded
in Q:

CLA INS P1 P2 Lc Data Le Data SW1 SW2

0xQ 0x70 00 00 0 - 1 0x0R 0x90 00

:

CLA INS P1 P2 Lc Data Le SW1 SW2 SW2

0xQ 0x70 00 0xR 0 - 0 0x90 00 00

This command produces the following results:

• If channel encoded in Q is the basic channel (channel 0), the card's default applet
is selected on channel encoded in R. No applet is selected if no default applet is
defined.

• If channel encoded in Q is other than the basic channel (channels 1, 2, ...19), the
selected applet on channel encoded in Q becomes the current applet selected on
channel R.

• The applet on channel encoded in R can either accept or reject selection.

This command returns an error under the following circumstances:

• The applet does not implement the javacard.framework.MultiSelectable
interface, when an attempt to select the applet in more than one channel takes
place.

• The applet rejects selection or throws exception.

• No channel is available.

• Channel encoded in Q is not open.

MANAGE CHANNEL CLOSE
In response to the MANAGE CHANNEL CLOSE command, the dispatcher follows this
procedure:

1. If the origin channel is not open, an error is returned.

2. If the channel to be closed is 0, an error is returned.

3. If the channel to be closed is not open or not available, a warning is thrown.

4. Deselects the applet in the channel to be closed.

5. Closes the logical channel.

This MANAGE CHANNEL CLOSE command closes channel R from channel Q:

Chapter 2
Writing Applets for Concurrent Logical Channels

2-12

CLA INS P1 P2 Lc Data Le SW1 SW2 SW2

0xQ 0x70 0x80 0xR 0 - 0 0x90 00 00

This command closes channel R. Channel R must not be the basic channel (it can be
channel 1, 2, ...19 only).

This command returns an error in the following circumstances:

• Channel encoded in R is the basic channel.

• Channel encoded in Q is not open.

It returns a warning if channel R is not open.

SELECT FILE
In response to the SELECT FILE command, the dispatcher follows this procedure:

1. If the specified channel is closed, open the channel.

2. Deselect currently selected applet in channel if needed.

3. Select specified applet in the channel.

This SELECT FILE command selects an applet on channel R:

CLA INS P1 P2 Lc Data Le SW1 SW2

0x0R 0xA4 0x04 0x00 (AID len) (AID) 0 0x90 00

This command produces the following results:

• Channel encoded in R can be any channel (opened or unopened), including the
basic channel.

• The applet identified in the Data section becomes the selected applet on channel
R.

• If channel encoded in R is not open, this command opens channel R.

• If channel encoded in R is open, this command changes the selected applet in the
channel to the one specified.

This command returns an error in the following circumstances:

• The applet cannot be found or is not available. The current applet is left selected
and an error is returned.

• An active applet belonging to the same package does not implement the
javacard.framework.MultiSelectable interface, or if the applet to be selected
does not implement this interface.

• Channel encoded in R is not available.

Chapter 2
Writing Applets for Concurrent Logical Channels

2-13

3
Developing RMI Applications for the Java
Card Platform

This chapter describes how to write remote method invocation (RMI) applications for
the Java Card 3 Platform. Because the Java Card specifications state that Java Card
RMI is optional, verify that your targeted card supports Java Card RMI before using
these APIs.
This chapter includes the following topics:

• Steps to Develop an RMI Applet for the Java Card 3 Platform

• RMI Program Example

• Add Security Support

Steps to Develop an RMI Applet for the Java Card 3
Platform

There are three main steps to develop an RMI applet:

1. Define remote interfaces.

2. Develop classes implementing the remote interfaces.

3. Develop the main class for the applet. For a simple applet, the main class of the
applet can also be the class implementing the remote interface.

This section includes the following topics:

• Generating Stubs

• Running a Java Card RMI Applet

Generating Stubs
The Java Card RMI Client framework requires stubs only when the
remote_ref_with_class format is used for passing remote references. These stubs of
remote classes of applets must be pre-generated and available on the client. When
the remote_ref_with_interfaces format is used, stubs are not necessary.

In this example, the Java RMI Compiler (rmic) is used to generate these stubs.

Following is the command to run the rmic:

rmic -v1.2 -classpath path -d output_dir class_name

In the command:

• path includes the path to the remote class of your sample applet and to the file
tools.jar

• output_dir is the directory in which to place the resulting stubs

3-1

• class_name is the name of the remote class

• The -v1.2 flag is required by the RMI client framework for the Java Card 3
platform

The rmic must be called for each remote class in your applet.

Note:

You need to generate stubs only for remote classes that list a remote
interface in their implements clause.

The file tools.jar, provided in the Java Card Development Kit contains compiled
implementations of packages javacard.framework, javacard.security,
javacardx.biometry, javacardx.external and javacardx.framework.tlv. Classes
in these packages might be referenced by Java Card RMI applets and thus might be
needed by the rmic to generate stubs.

Running a Java Card RMI Applet
The server part (the Java Card RMI-enabled applet) can be run on the C-language
Java Card RE, for which the following standard procedures apply:

• The applet must be installed first by using the installer applet.

• After the applet is installed, the EEPROM state can be saved and used to run the
Java Card RE against the Java Card RMI client.

RMI Program Example
The RMI program example is the Java Card platform equivalent of "Hello World." It is a
program that manages a counter remotely, and is able to decrement, increment, and
return the value of the counter.

This section includes the following topics:

• Main Program

• Sample Applet

• Client Example

• Card Terminal Interaction

Main Program
As for any Java Card RMI program, the first step is to define the interface to be used
as contract between the server (the Java Card technology-based application) and its
clients (the terminal applications):

package examples.purse;
import java.rmi.*;
import javacard.framework.*;
public interface Purse extends Remote {
 public static final short MAX_AMOUNT = 400;

Chapter 3
RMI Program Example

3-2

 public static final short REQUEST_FAILED = 0x0102;
 public short debit(short amount) throws RemoteException,
UserException;
 public short credit(short amount) throws RemoteException,
 UserException;
 public short getBalance() throws RemoteException, UserException;
}

This is a typical Java Card RMI interface in the following ways:

• The interface type extends the java.rmi.Remote interface. This interface is a
tagging interface that identifies the interface as defining a remotely accessible
object.

• Every method in the interface must be declared as throwing a RemoteException or
one of its superclasses (IOException or Exception). This exception is required to
encapsulate all the communication problems that might occur during a remote
invocation of the method. In addition, the credit, debit, and getBalance methods
also throw the UserException to indicate application-specific errors.

• The interface can also define values for constants that might be used in
communication between the client and the server. The Purse interface defines a
constant MAX_AMOUNT that represents the maximum allowed value for the
transaction amount parameter. It also defines a reason code REQUEST_FAILED for
the UserException qualifier.

Related Topics

• Implement a Remote Interface

• Define the Constructor for the Remote Object

• Provide an Implementation for Each Remote Method

Implement a Remote Interface
This code sample provides an implementation for the remote interface. The
implementation runs on a Java Card 3 platform, so it can use only features that are
supported by a Java Card 3 platform.

package examples.purse;

import javacard.framework.*;
import javacard.framework.service.*;
import java.rmi.*;

public class PurseImpl extends CardRemoteObject implements Purse {
 private short balance;

 PurseImpl() {
 super();
 balance = 0;
 }

 public short debit(short amount) throws RemoteException,
UserException {
 if ((amount < 0) || (amount > MAX_AMOUNT))

Chapter 3
RMI Program Example

3-3

 UserException.throwIt(REQUEST_FAILED);
 balance -= amount;
 return balance;
 }

 public short credit(short amount) throws RemoteException,
UserException {
 if ((amount < 0) || (balance < amount))
 UserException.throwIt(REQUEST_FAILED);
 balance += amount;
 return balance;
 }

 public short getBalance() throws RemoteException, UserException {
 return balance;
 }
}

Here, the remote interface is the Purse interface, which declares the remotely
accessible methods. By implementing this interface, the class establishes a contract
between itself and the compiler, by which the class promises that it will provide method
bodies for all the methods declared in the interface:

public class PurseImpl extends CardRemoteObject implements Purse

The class also extends the javacard.framework.service.CardRemoteObject class.
This class provides basic support for remote objects, and in particular the ability to
export or unexport an object.

Define the Constructor for the Remote Object
The constructor for a remote class provides the same functionality as the constructor
of a non-remote class; it initializes the variables of each newly created instance of the
class.

In addition, the remote object instance needs to be exported to make it available to
accept incoming remote method requests. By extending CardRemoteObject, a class
guarantees that its instances are exported automatically upon creation on the card.

If a remote object does not extend CardRemoteObject (directly or indirectly), you must
explicitly export the remote object by calling the CardRemoteObject.export method in
the constructor of your class (or in any appropriate initialization method). Of course,
this class must still implement a remote interface.

To review, the implementation class for a remote object needs to do the following:

• Implement a remote interface

• Export the object so that it can accept incoming remote method calls

Provide an Implementation for Each Remote Method
The implementation class for a remote object contains the code that implements each
of the remote methods specified in the remote interface. For example, the following
code is the implementation of the method that debits the purse:

Chapter 3
RMI Program Example

3-4

 public short debit(short amount) throws RemoteException, UserException
 if ((amount < 0)||(balance < amount)
 UserException.throwIt(REQUEST_FAILED);
 balance -= amount;
 return balance;
 }

An operation is only allowed if the value of its parameter is compatible with the current
state of the purse object. In this particular case, the application only checks that the
amounts handled are positive and that the balance of the purse always remains
positive.

In Java Card RMI, the arguments to and return values from remote methods are
restricted. The main reason for this limitation is that the Java Card 3 platform does not
support object serialization. The following are the rules for the Java Card 3 platform:

• The arguments to remote methods can be of any supported integral type (such
as boolean, byte, short and int), or any single-dimensional arrays of these
integral types.

Note:

The int type is optionally supported on the Java Card 3 platform, so
applications that use this type might not run on all platforms.

• The return value from a remote method can be any type supported as arguments,
as well as any remote interface type. The method can also return void.

On the other hand, object passing in Java Card RMI follows the normal RMI rules:

• By default, non-remote objects are passed by copy, which means that all data
members of an object are copied, except those marked static or transient. In
the case of the Java Card 3 platform, this rule is trivial to apply, because the only
objects concerned are arrays of integral types.

• Remote objects are passed by reference. In the case of the Java Card 3 platform,
remote objects can only be passed as return values. A reference to a remote
object is actually a reference to a stub, which is a client-side proxy for the remote
objects. Stubs are needed only when the format remote_ref_with_class is used
for passing remote references. When another format, such as
remote_ref_with_interfaces, is used, stubs are not necessary. Stubs are
described in Generate the Stubs.

Note:

Even though the semantics of the Java Card 3 platform transient arrays
are somewhat similar to transient fields in the Java programming
language, different rules apply. The Java Card 3 platform contents are
copied in Java Card RMI and passed by value when they are returned
from a remote method.

Chapter 3
RMI Program Example

3-5

A class can define methods not specified in a remote interface, but they can only be
invoked on-card within the Java Card VM and cannot be invoked remotely.

Sample Applet
In the Java Card 3 platform, all applications must include a class that inherits from
javacard.framework.Applet, which will provide an interface with the outside world.

This also applies to applications that are based on remote objects, for two main
reasons:

• The remote objects must be instantiated and initialized, which can be done in an
applet's install method.

• The remote objects must communicate with the outside world, which can be done
in an applet's process method.

For conversion, an applet should be assigned with an AID known on the client side,
0x00;0x01:0x02:0x03:0x04:0x05:0x06:0x07:0x08, since this AID is used in the client
program.

The following is the basic code for such an applet:

package examples.purse;

import javacard.framework.*;
import javacard.framework.service.*;
import java.rmi.*;

public class PurseApplet extends Applet {
 private Dispatcher dispatcher;

 private PurseApplet() {
 // Allocates an RMI service and sets for the Java Card platform
 // the initial reference
 RemoteService rmi = new RMIService(new PurseImpl());
 // Allocates a dispatcher for the remote service
 dispatcher = new Dispatcher((short) 1);
 dispatcher.addService(rmi, Dispatcher.PROCESS_COMMAND);
 }

 public static void install(byte[] buffer, short offset, byte length) {
 // Allocates and registers the applet
 (new PurseApplet()).register();
 }

 public void process(APDU apdu) {
 dispatcher.process(apdu);
 }
}

Related Topics

• Preparing and Registering the Remote Object

• Processing the Incoming Commands

Chapter 3
RMI Program Example

3-6

Preparing and Registering the Remote Object
The PurseApplet constructor contains the initialization code for the remote object.

First, a javacard.framework.service.RMIService object must be allocated. This
service is an object that knows how to handle all the incoming APDU commands related
to the Java Card RMI protocol. The service must be initialized to allow remote
methods on an instance of the PurseImpl class. A new instance of PurseImpl is
created, and is specified as the initial reference parameter to the RMIService
constructor as shown in the following code snippet. The initial reference is the
reference that is made public by an applet to all its clients. It is used as a bootstrap for
a client session, and is similar to that registered by a Java RMI server to the Java Card
RMI registry.

RemoteService rmi = new RMIService(new PurseImpl());

Then, a dispatcher is created and initialized. A dispatcher is the glue among several
services. In this example, the initialization is quite simple, because there is a single
service to initialize:

dispatcher = new Dispatcher((short)1);
dispatcher.addService(rmi, Dispatcher.PROCESS_COMMAND);

Finally, the applet must register itself to the Java Card RE to be made selectable. This
is done in the install method, where the applet constructor is invoked and
immediately registered:

(new PurseApplet()).register();

Processing the Incoming Commands
Processing incoming commands is entirely delegated to the Java Card RMI service,
which knows how to handle all the incoming requests. The service also implements a
default behavior for the handling of any request that it does not recognize. In Java
Card RMI, the following kinds of requests can be handled:

• Selection request — The service responds by sending its initial remote reference

• Method invocation request — The service responds by performing the actual
method invocation and returning the result

To perform these actions, the service needs privileged access to some resources that
are owned by the Java Card RE (in particular, privileged access is needed to perform
the method invocation). The applet delegates processing to the Java Card RMI service
from its process method as follows:

dispatcher.process(apdu);

Client Example
Client applications run on a terminal supporting a Java Virtual Machine environment
such as Java Platform, Standard Edition or Java Platform, Micro Edition (Java ME).

The PurseClient application interacts with the remote stub classes generated by a
stub generation tool and the Java Card platform-specific information managed by the

Chapter 3
RMI Program Example

3-7

Java Card platform client-side framework located in packages
com.sun.javacard.clientlib and com.sun.javacard.rmiclientlib.

The client example below uses standard Java RMIC compiler-generated client-side
stubs. The client application as well as the Java Card client-side framework rely on the
APDU I/O library for managing and communicating with the card reader and the card
on which the Java Card applet PurseApplet resides. This makes the client application
very portable on Java SE platforms. See the Java Card 3 Platform Development Kit
User Guide, Classic Edition Version 3.0.5 for information on the APDU I/O library.

The following example shows a very simple PurseClient application that is the client
application of the Java Card technology-based program PurseApplet:

import examples.purse.*;
import javacard.framework.UserException;

public class PurseClient extends java.lang.Object {
 public static void main(java.lang.String[] argv) {
 // arg[0] contains the debit amount
 short debitAmount = (short) Integer.parseInt(argv[0]);
 CardAccessor ca = null;
 try {
 // open and powerup the card
 ca = new ApduIOCardAccessor();
 // create an RMI connector instance for the Java Card platform
 JCRMIConnect jcRMI = new JCRMIConnect(ca);
 byte[] appAID = new byte[]
{0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08};
 // select the Java Card applet
 jcRMI.selectApplet(RMI_DEMO_AID,
JCRMIConnect.REF_WITH_CLASS_NAME);
 or
 jcRMI.selectApplet(RMI_DEMO_AID,
JCRMIConnect.REF_WITH_INTERFACE_NAMES);
 // obtain the initial reference to the Purse interface
 Purse myPurse = (Purse) jcRMI.getInitialReference();
 // debit the requested amount
 try {
 short balance = myPurse.debit (debitAmount);
 }catch (UserException jce) {
 short reasonCode = jce.getReason();

 // process UserException reason information
 }
 // display the balance to user
 }catch (Exception e) {
 e.printStackTrace();
 }finally {
 try {
 if(ca!=null){
 ca.closeCard();
 }
 }catch (Exception e) {
 e.printStackTrace();
 }

Chapter 3
RMI Program Example

3-8

 }
 }
}

Related Topics

• Initializing and Shutting Down the Card Connection

• Creating and Using a CardAccessor Object

• Selecting the Java Card Applet and Obtaining the Initial Reference

• Using Remote Objects in Remote Method Invocations

• Generate the Stubs

Initializing and Shutting Down the Card Connection
The client application must open the connection to the card and close it at the end.

Note:

ApduIOCardAccessor takes its settings from the file jcclient.properties.
For example. when the RMIPurse sample demo client application runs, the
JC_CLASSIC_HOME/samples/classic_applets/RMIPurse/client
directory containing the properties file is included in the CLASSPATH. The
directory in which you installed the developer's kit is indicated as
JC_CLASSIC_HOME.

On Microsoft Windows platforms, use backslashes in directory paths, instead
of forward slashes.

The following code shows opening and closing the connection using the RMI client
framework:

 CardAccessor ca = null;
 // The following line initializes card connection according to
 // parameters listed in the jcclient.properties file:
 ca = new ApduIOCardAccessor();
 ...
 // The following line powers down the card and closes the
connection:
 ca.closeCard();

Creating and Using a CardAccessor Object
To access the Java Card applet using remote methods, the client application must
obtain an instance of the CardAccessor interface. The ApduIO class implements the
CardAccessor interface and is included in the framework.

The CardAccessor interface is a platform-independent and framework-independent
interface used by the RMI framework for the Java Card platform to communicate with

Chapter 3
RMI Program Example

3-9

the card. The CardAccessor object is then provided as a parameter during construction
of the JavaCardRMIConnect class to initiate an RMI dialog for the Java Card platform
as shown in the following code:

 // create an RMI connection object for the Java Card platform
 JavaCardRMIConnect jcRMI = new JavaCardRMIConnect(myCS);

Selecting the Java Card Applet and Obtaining the Initial Reference
To invoke methods on the remote objects of PurseApplet on the card, it must first be
selected by using the AID as shown in the following code:

 // select the Java Card applet
 byte[] appAID = new byte[] {0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08};
 jcRMI.selectApplet(appAID);

Then, the client must obtain the initial reference remote object for PurseApplet.
JavaCardRMIConnect returns an instance of a stub class corresponding to the
PurseImpl class on the card, which implements the Purse interface. The client
application knows beforehand that the PurseApplet's initial remote reference
implements the Purse interface and therefore casts it appropriately as shown in the
following code:

// obtain the initial reference to the Purse interface
Purse myPurse = (Purse) jcRMI.getInitialReference();

Using Remote Objects in Remote Method Invocations
The client can now invoke remote methods on the initial reference object. The remote
methods are declared in the Purse interface. The following code shows the client
invoking the debit method.

Note:

A UserException exception thrown by the remote method is caught by the
client code in normal Java programming language style.

 // debit the requested amount
 try {
 short balance = myPurse.debit (debitAmount);
 }catch (UserException jce) {
 short reasonCode = jce.getReason();
 // process on card exception reason information
 }

Generate the Stubs
The client-side scenario uses rmic generated stubs for the remote classes. For the
client application PurseClient to execute correctly on the terminal, it needs these

Chapter 3
RMI Program Example

3-10

remote stub classes and the remote interface class files it uses to be accessible in its
classpath.

The stub class PurseImpl_Stub.class for the PurseImpl class is produced by running
the standard JDK compiler. The directory where you installed the developer's kit is
indicated by JC_CLASSIC_HOME. For example, from the examples/purse directory, enter
the following command:

rmic -classpath ../..;%JC_CLASSIC_HOME%/lib/tools.jar -d ../..
-v1.2 examples.purse.PurseImpl

This produces a stub class called examples.purse.PurseImpl_Stub.

For PurseClient to run correctly on the terminal, the following files must be present in
the examples/purse directory and accessible either from its classpath or from class
loaders:

• PurseImpl_Stub.class

• Purse.class

Card Terminal Interaction
When a Java Card technology-enabled smart card is powered up, the card sends an
ATR (Answer to Reset) to the terminal. The Card Accessor returns the value of the
ATR to the client program (shown in Figure 3-1).

Figure 3-1 Smart Card Sends an ATR to the Terminal

When the PurseClient application calls the selectApplet method of
JavaCardRMIConnect, it sends a SELECT APDU command to the card via the
CardAccessor object. This results in a File Control Information (FCI) APDU response
from the RMIService instance of PurseApplet on the card in a TLV (Tag Length Value)
format that includes the initial reference remote object information (shown in
Figure 3-2).

Figure 3-2 Terminal Sends a SELECT Command to the Smart Card, Which
Returns FCI

Later, when the PurseClient application calls the debit method of the remote
interface Purse, the PurseImpl_Stub object sends an INVOKE command to the card
via the CardAccessor object, identifying the remote object reference, interface,

Chapter 3
RMI Program Example

3-11

method, and parameter data for method invocation. The RMIService instance of
PurseApplet unmarshalls this information and invokes the debit method of the
PurseImpl instance, and returns the return value in the response RETURN APDU
(shown in Figure 3-3).

Figure 3-3 Terminal Sends an INVOKE Command to the Smart Card, Which
Returns a Value

Add Security Support
The previous Sample Applet example is extremely simple and is not realistic. In
particular, it does not include any form of security. Users are not authenticated and no
transport security is provided. Of course, every smart card that implements the Java
Card platform includes such security mechanisms, because they are central to Java
Card technology.

The following section describes how to add security support to the Purse example.

The Purse interface in the package examples.securepurse is similar to the Purse
interface used in the Sample Applet example. In addition, it might include reason
codes for exceptions to report security violations to the terminal. This example
replaces the Purse interface used in theSample Applet example with the following
examples.securepurse code. ThePurse interface in the examples.securepurse does
not include an implementation, which means that, in particular, it does not include any
support for security.

The applet keeps its original organization but it also includes additional code that is
dedicated to the management of security.

package examples.securepurse;

import javacard.framework.*;
import javacard.framework.service.*;
import java.rmi.*;

public class SecurePurseImpl implements Purse {
 private short balance;
 private SecurityService security;

 SecurePurseImpl(SecurityService security) {
 this.security = security;
 }

 public short debit(short amount) throws RemoteException,
UserException {
 if ((!security
 .isCommandSecure(SecurityService.PROPERTY_INPUT_INTEGRITY)

Chapter 3
Add Security Support

3-12

)
 || (!security
 .isAuthenticated(SecurityService.PRINCIPAL_CARDHO
LDER)))
 UserException.throwIt(REQUEST_FAILED);
 if ((amount < 0)|| (balance < amount))
 UserException.throwIt(REQUEST_FAILED);
 balance -= amount;
 return balance;
 }

 public short credit(short amount) throws RemoteException,
UserException {
 if ((!security
 .isCommandSecure(SecurityService.PROPERTY_INPUT_INTEGRITY)
)
 || (!security
 .isAuthenticated(SecurityService.PRINCIPAL_APP_PRO
VIDER)))
 UserException.throwIt(REQUEST_FAILED);
 if ((amount < 0)||(amount > MAX_AMOUNT))
 UserException.throwIt(REQUEST_FAILED);
 balance += amount;
 return balance;
 }

 public short getBalance() throws RemoteException, UserException {
 if ((!
security.isAuthenticated(SecurityService.PRINCIPAL_CARDHOLDER))
 && (!security
 .isAuthenticated(SecurityService.PRINCIPAL_APP_PRO
VIDER)))
 UserException.throwIt(REQUEST_FAILED);
 return balance;
 }
}

Related Topics

• Initialize a Security Service

• Use the Service to Check the Current Security Status

• Security Service Example

• More Secure Applet

• Client Changes to Support Security

• CustomCardAccessor Class for Authentication and Signing

Initialize a Security Service
In this example, basic security services (principal identification and authentication,
secure communication channel) are provided by an object that implements the
SecurityService interface. Because a generic remote object must not be dependent
on a particular kind of security service, it must take a reference to this object as a

Chapter 3
Add Security Support

3-13

parameter to its constructor. This is exactly what happens here, where the reference to
the object is stored in a dedicated private field:

private SecurityService security ;

The SecurityService interface is part of the extended application development
framework and offers an API that can then be used to check on the current security
status.

Use the Service to Check the Current Security Status
In the example, the following are required security behaviors for the applet:

• The debit method is authorized only if it is sent through a secure channel that
ensures at least the integrity of input data, and if the cardholder is successfully
authenticated.

• The credit method is authorized only if it is sent through a secure channel that
ensures at least the integrity of input data, and if the application issuer is
successfully authenticated.

• The getBalance method is authorized only if the cardholder or the application
issuer is successfully authenticated.

The SecurityService provides methods and constants that allow the implementation
to perform such checks. For instance, following is the code for the checks on the debit
method:

 if ((!security
 .isCommandSecure(SecurityService.PROPERTY_INPUT_INTEGRITY)
)
 || (!security
 .isAuthenticated(SecurityService.ID_CARDHOLDER)))
 UserException.throwIt(REQUEST_FAILED);

If one of the two conditions is not satisfied, the remote object throws an exception.
This exception is caught by the dispatcher and forwarded to the client.

Security Service Example
The following example demonstrates how to implement a security service.

package com.sun.javacard.samples.SecureRMIDemo;

import javacard.framework.*;
import javacard.framework.service.*;

public class MySecurityService extends BasicService implements
SecurityService {
 // list IDs of known parties...
 private static final byte[] PRINCIPAL_APP_PROVIDER_ID = {0x12, 0x34};
 private static final byte[] PRINCIPAL_CARDHOLDER_ID = {0x43, 0x21};
 private OwnerPIN provider_pin, cardholder_pin = null;
 // and the security-related session flags

Chapter 3
Add Security Support

3-14

 ...
 public MySecurityService() {
 // initialize the PINs
 ...
 }
 public boolean processDataIn(APDU apdu) {
 if(selectingApplet()) {
 // reset all flags
 ...
 }
 else {
 return preprocessCommandAPDU(apdu);
 }
 }
 public boolean isCommandSecure(byte properties) throws
ServiceException {
 // return the value of appropriate flag

 }
 public boolean isAuthenticated(short principal) throws
ServiceException {
 // return the value of appropriate flag

 }
 private byte authenticated;
 private boolean preprocessCommandAPDU(APDU apdu) {
 receiveInData(apdu);
 if(checkAndRemoveChecksum(apdu)) {

 // set DATA_INTEGRITY flag
 }
 else {
 // reset DATA_INTEGRITY flag
 }
 return false; // other services may also preprocess the data
 }
 private boolean checkAndRemoveChecksum(APDU apdu) {
 // remove the checksum
 // return true if checksum OK, false otherwise
 }
 public boolean processCommand(APDU apdu) {
 if(isAuthenticate(apdu)) {
 receiveInData(apdu);
 // check PIN
 // set AUTHENTICATED flags
 return true; // processing of the command is finished
 }
 else {
 return false; // this command was addressed to another
 // service - no processing is done
 }
 }
 public boolean processDataOut(APDU apdu) {
 // add checksum to outgoing data
 return false; // other services may also postprocess outgoing

Chapter 3
Add Security Support

3-15

data
 }
 private boolean isAuthenticate(APDU command) {
 // check values of CLA and INS bytes
 }
}

More Secure Applet
The supporting applet also must undergo some significant changes, in particular
regarding the initialization of the remote object:

package examples.securepurse;

import javacard.framework.*;
import javacard.framework.service.*;
import java.rmi.*;
import com.sun.javacard.samples.SecureRMIDemo.MySecurityService;

public class SecurePurseApplet extends Applet {
 Dispatcher dispatcher;

 private SecurePurseApplet() {
 SecurityService sec;
 // First get a security service
 sec = new MySecurityService();
 // Allocates an RMI service for the Java Card platform and
 // sets the initial reference
 RemoteService rmi = new RMIService(new SecurePurseImpl(sec));
 // Allocates and initializes a dispatcher for the remote object
 dispatcher = new Dispatcher((short) 2);
 dispatcher.addService(rmi, Dispatcher.PROCESS_COMMAND);
 dispatcher.addService(sec, Dispatcher.PROCESS_INPUT_DATA);
 }

 public static void install(byte[] buffer, short offset, byte length) {
 // Allocates and registers the applet
 (new SecurePurseApplet()).register();
 }

 public void process(APDU apdu) {
 dispatcher.process(apdu);
 }
}

The security service that is used by the remote object must be initialized at some
point. Here, this is done in the constructor for the SecurePurseApplet:

sec = new MySecurityService();

The initialization then goes on with the initialization of the Java Card RMI service. The
only new thing here is that the remote object being allocated and set as the initial
reference is now a SecurePurseImpl:

Chapter 3
Add Security Support

3-16

RemoteService rmi = new RMIService(new SecurePurseImpl(sec));

Next, the dispatcher must be initialized. Here, it must dispatch simple Java Card RMI
requests and security-related requests (such as EXTERNAL AUTHENTICATE). In fact, the
security service handles these requests directly. First, allocate a dispatcher and inform
it that it will delegate commands to two different services:

dispatcher = new Dispatcher((short)2);

Then, register services with the dispatcher. The security service is registered as a
service that performs preprocessing operations on incoming commands, and the Java
Card RMI service is registered as a service that processes the command requested:

dispatcher.addService(rmi, Dispatcher.PROCESS_COMMAND);
dispatcher.addService(sec, Dispatcher.PROCESS_INPUT_DATA);

The rest of the class (install and process methods) remain unchanged.

Client Changes to Support Security
The driver client application itself only changes minimally to account for the
authentication and integrity needs of SecurePurseApplet. It must also interact with the
user for identification. Hence, a subclass of ApduIO_Card_Accessor must be developed
to provide these additional interactions and the transport filtering required.

The following code is the new SecurePurseClient application:

import examples.purse.*;
import javacard.framework.UserException;

public class PurseClient extends java.lang.Object {
 public static void main(java.lang.String[] argv) {
 // arg[0] contains the debit amount
 short debitAmount = (short) Integer.parseInt(argv[0]);
 CustomCardAccessor cca = null;
 try {
 // open and powerup the card - using CustomCardAccessor
 cca = new CustomCardAccessor();
 // create an RMI connector instance for the Java Card platform
 JCRMIConnect jcRMI = new JCRMIConnect(cca);
 byte[] appAID = new byte[]
{0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08};
 // select the Java Card applet
 jcRMI.selectApplet(RMI_DEMO_AID,
JCRMIConnect.REF_WITH_CLASS_NAME);
 or
 jcRMI.selectApplet(RMI_DEMO_AID,
JCRMIConnect.REF_WITH_INTERFACE_NAMES);

 // give your PIN
 if (! cca.authenticateUser(PRINCIPAL_CARDHOLDER_ID)){
 throw new RemoteException(msg.getString("msg04"));
 }
 // obtain the initial reference to the Purse interface
 Purse myPurse = (Purse) jcRMI.getInitialReference();

Chapter 3
Add Security Support

3-17

 // debit the requested amount
 try {
 short balance = myPurse.debit (debitAmount);
 }catch (UserException jce) {
 short reasonCode = jce.getReason();
 // process UserException reason information
 }
 // display the balance to user
 }catch (Exception e) {
 e.printStackTrace();
 }finally {
 try {
 if(cca!=null){
 cca.closeCard();
 }
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

Note that the CustomCardAccessor instance is now obtained instead of
ApduIOCardAccessor:

 cca = new CustomCardAccessor(new ApduIOCardAccessor());

An extra step to authenticate with the SecurePurseApplet after selectApplet is
added. This invokes a new method in CustomCardAccessor to interact with the card
using the user's credentials:

 if (! cca.authenticateUser(PRINCIPAL_CARDHOLDER_ID)) {
 // handle error
 }

The rest of SecurePurseClient is the same as PurseClient.

CustomCardAccessor Class for Authentication and Signing
The SecurePurseClient application uses a subclass of CardAccessor called
CustomCardAccessor to perform user authentication functions and to sign every
message sent thereafter for integrity purposes:

package examples.securepurseclient;

public class CustomCardAccessor extends ApduIOCardAccessor {
 /** Creates new CustomCardAccessor */
 public CustomCardAccessor() {
 }

 public byte[] exchangeAPDU(byte[] sendData) throws
java.io.IOException {

Chapter 3
Add Security Support

3-18

 byte[] macSignature = null;
 byte[] dataWithMAC = new byte[sendData.length + 4];

 // sign the sendData data using session key
 // sign the data in commandBuffer using the user's session key
 // add generated MAC signature to data in buffer before sending

 return super.exchangeAPDU(dataWithMAC);
 }

 boolean authenticateUser(short userKey) {
 byte[] externalAuthCommand = null;

 // build and send the appropriate commands to the
 // applet to authenticate the user using the user Key
 // and additional info provided
 try {
 byte[] response = super.exchangeAPDU(externalAuthCommand);
 // ...
 } catch (Exception e) {
 // analyze
 return false;
 }
 // Then compute the session key for later use
 return true; // successful authentication
 }
}

The CustomCardAccessor class introduces the authenticateUser method to send
APDU commands to the SecurePurseApplet on the card to authenticate the user
described by the userKey parameter and other parameters and to compute a transport
key. It invokes super.sendCommandAPDU method to send the command without
modification.

This CustomCardAccessor class also reimplements the exchangeAPDU method declared
in a superclass CardAccessor to sign each message before it is sent out by
super.exchangeAPDU.

Chapter 3
Add Security Support

3-19

4
Using Extended APDU

This chapter describes the Extended APDU and how it can be used to allow large
amounts of data to be sent to the card, processed appropriately, and sent back to the
terminal.
The Extended APDU feature is especially beneficial to applications that deal with large
amounts of information, such as signature verification, biometrics verification and
image storage and retrieval. These are more easily implemented if the underlying
transport protocol is T=1. Applets developed for T=0 cards need special logic and care
to work correctly.

This chapter includes the following topics:

• Extended APDU Nominal Cases

• Extended APDU Format

• Extended APDU Limits

• Creating an Applet That Can Send and Receive Extended Length APDUs

Extended APDU Nominal Cases
The ISO/IEC 7816-4:2013 specification defines an extended APDU as any APDU
whose payload data, response data or expected data length exceeds the 256 byte
limit. Therefore, the four traditional cases are redefined as follows:

• Case 1. As in short length, this case is not affected.

• Case 2S. The legacy Case 2 from previous Java Card technology releases. LE
has a value of 1 to 255.

• Case 2E. The extended version of Case 2S, where LE is greater than 255.

• Case 3S. The legacy Case 3. LC is less than 256 bytes of data, and LE is zero.

• Case 3E. The extended version of Case 3, where LC is greater than 255, and LE
is zero.

• Case 4S. The legacy Case 4. LC and LE are less than 256 bytes of data.

• Case 4E. The extended version of Case 4. LC or LE are greater than 256 bytes of
data.

Extended APDU Format
Any APDU classified as extended must follow the format defined by ISO/IEC
7816-4:2013 for extended length APDU and summarized in Table 4-1.

4-1

Table 4-1 Extended APDU Format

Field Description Number of Bytes

Command Header Class byte CLA 1

Command Header Instruction byte INS 1

Command Header Parameter bytes P1- P2 2

LC Field Absent for Nc = 0. Present for Nc > 0 0, 1, or 3

Data Field Absent if Nc = 0, present if Nc >0 Nc

LE Field Absent for Ne = 0, present for Ne > 0 0, 1, 2 or 3

Response Data Absent if Nr = 0, present if Nr >0 Nr (max. Ne)

Response Status Status bytes SW1 SW2 2

Notation

Nc = command data length

Ne = expected response data length

Nr = actual response data length

The encoding rules are defined as:

For LC:

• If LC field is absent, Nc = 0.

• If LC is present as one byte with values between 01 and FF, then Nc = 1..255
accordingly, and it will be a short field.

• If LC is present as an extended field, then it will be three bytes in length: byte one
will be 00, bytes two and three will contain a 16-bit value representing the length of
the data Nc with values between 1 and 65535.

For LE:

• If LE is absent, Ne = 0.

• If LE is one byte:

– A value between 01 and FF will indicate Ne = 1..255.

– A value of 00 will indicate Ne = 256.

If LE is an extended field:

• LC and LE must be in the same format.

• An LE field value between 0001 and FFFF will indicate Ne = 1..65535.

• An LE field value of 0000 will indicate Ne= 65536.

Extended APDU Limits
The Java Card 3 platform supports extended APDUs with some limitations. Because
the platform defines all of its mandatory API in terms of short data length, the values of
LC and LE are limited to short positive values. That is, LC and LE have a range of

Chapter 4
Extended APDU Limits

4-2

0..32,767. Lengths of 32,768 and beyond are not supported by the Java Card 3
platform at this time.

This section includes the following topics:

• javacardx.framework.ExtendedLength Interface

• APDU Parsing with the javacard.framework.APDU Class

javacardx.framework.ExtendedLength Interface
By implementing the javacardx.apdu.ExtendedLength interface, applets indicate that
they are capable of processing, receiving, and replying to extended APDU commands.
The Java Card RE does not deliver extended APDU commands to applets that do not
implement this interface (it would throw an ISOException with reason code
ISO7816.SW_WRONG_LENGTH). In addition, the Java Card RE does not allow applets to
send reply data lengths greater than 256, if the interface is not implemented by the
applet.

The APDU buffer in Java Card applications reflects the structure of the extended
APDU as defined in the ISO/IEC 7816-3 specification. In T=1, this representation is
straightforward and precise; however, in T=0, adaptations are needed for some cases.

Specifically, a case 2E APDU sent over T=0 transport will not show its extended LE
value in the APDU buffer. Instead, a P3 value of '00' will always be transmitted and
interpreted as 32,767 if the applet implements ExtendedLength, or interpreted as 256 if
it does not.

The Java Card RE analyzes the APDU type coming into the card and determines its
type based on the rules defined in the ISO/IEC 7816-3 specification. Because case 2E
commands look like case 2S commands in T=0, the Java Card RE is not able to
distinguish this particular case.

APDU Parsing with the javacard.framework.APDU Class
Because LC in cases 3E and 4E can take a large value, the parameter is sent to the
card as a three-byte quantity, in the format of 00 LCh LCl starting at
ISO7816.OFFSET_LC.

To get the value of LC and the data offset inside the APDU buffer use these two APIs
in javacard.framework.APDU:

• public short getIncomingLength()

This API call returns the value of LC as expressed in the APDU, whether it is
extended or not.

• public short getOffsetCdata()

This API call returns the offset where the first byte of the APDU data segment is
found.

Creating an Applet That Can Send and Receive Extended
Length APDUs

To create an applet that can send and receive extended length APDUs:

Chapter 4
Creating an Applet That Can Send and Receive Extended Length APDUs

4-3

1. Implement the javacardx.apdu.ExtendedLength interface in your applet:

...
import javacard.framework.*;
import javacardx.apdu.ExtendedLength;
...
public MyApplet extends Applet implements
ExtendedLength {
...
}

2. Write your applet and Applet.process(..) method as you would with any other
applets. For consistency, it is advisable that your process(..) code begin like the
one below:

public void process(APDU apdu) {
 byte[] buffer = apdu.getBuffer();

 if (apdu.isISOInterindustryCLA()) {
 if (this.selectingApplet()) {
 return;
 } else {
 ISOException.throwIt (ISO7816.SW_CLA_NOT_SUPPORTED);
 }
 }

 switch (buffer[ISO7816.OFFSET_INS]) {
 case CHOICE_1:
 ...
 return;
 case CHOICE_2:
 ...
 ...
 default:
 ISOException.throwIt (ISO7816.SW_INS_NOT_SUPPORTED);
 }
}

3. For cases 3S, 4S, 3E and 4E, write the method to handle incoming data. Use the
API so that your applet properly handles extended, as well as non-extended,
cases.

void receiveData(APDU apdu) {
 byte[] buffer = apdu.getBuffer();
 short LC = apdu.getIncomingLength();

 short recvLen = apdu.setIncomingAndReceive();
 short dataOffset = apdu.getOffsetCdata();

 while (recvLen > 0) {
 ...
 [process data in buffer[dataOffset]...]
 ...

Chapter 4
Creating an Applet That Can Send and Receive Extended Length APDUs

4-4

 recvLen = apdu.receiveBytes(dataOffset);
 }
 // Done
}

4. For case 2S, 2E, write the method handling data output. A method could look
something like this:

void sendData(APDU apdu) {
 byte[] buffer = apdu.getBuffer();

 short LE = apdu.setOutgoing();
 short toSend = ...

 if (LE != toSend) {
 apdu.setOutgoingLength(toSend);
 }

 while (toSend > 0) {
 ...
 [prepare data to send in APDU buffer]
 ...
 apdu.sendBytes(dataOffset, sentLen);
 toSend -= sentLen;
 }
 // Done
}

Chapter 4
Creating an Applet That Can Send and Receive Extended Length APDUs

4-5

Glossary

active applet instance
an applet instance that is selected on at least one of the logical channels.

AID (application identifier)
defined by ISO 7816, a string used to uniquely identify card applications and certain
types of files in card file systems. An AID consists of two distinct pieces: a 5-byte RID
(resource identifier) and a 0 to 11-byte PIX (proprietary identifier extension). The RID
is a resource identifier assigned to companies by ISO. The PIX identifiers are assigned
by companies.

A unique AID is assigned for each package. In addition, a unique AID is assigned for
each applet in the package. The package AID and the default AID for each applet
defined in the package are specified in the CAP file. They are supplied to the converter
when the CAP file is generated.

APDU
an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

applet
within the context of this document, a Java Card applet, which is the basic unit of
selection, context, functionality, and security in Java Card technology.

applet developer
a person creating an applet using Java Card technology.

applet execution context
context of a package that contains currently active applet.

applet firewall
the mechanism that prevents unauthorized accesses to objects in contexts other than
currently active context.

applet package
see library package.

assigned logical channel
the logical channel on which the applet instance is either the active applet instance or
will become the active applet instance.

Glossary-1

atomic operation
an operation that either completes in its entirety or no part of the operation completes
at all.

atomicity
property in which a particular operation is atomic. Atomicity of data updates
guarantees that data are not corrupted in case of power loss or card removal.

ATR
an acronym for Answer to Reset. An ATR is a string of bytes sent by the Java Card
platform after a reset condition.

basic logical channel
logical channel 0, the only channel that is active at card reset. This channel is
permanent and can never be closed.

binary compatibility
in a Java Card system, a change in a Java programming language package results in
a new CAP file. A new CAP file is binary compatible with (equivalently, does not break
compatibility with) a preexisting CAP file if another CAP file converted using the export
file of the preexisting CAP file can link with the new CAP file without errors.

CAD
an acronym for Card Acceptance Device. A CAD can integrate a card reader and is
the device in which the card is inserted. Sometimes the CAD is called the card reader.

CAP file
the CAP file is produced by the Converter and is the standard file format for the binary
compatibility of the Java Card platform. A CAP file contains an executable binary
representation of the classes of a Java programming language package. The CAP file
also contains the CAP file components (see also CAP file component). The CAP files
produced by the converter are contained in Java Archive (JAR) files.

CAP file component
a Java Card platform CAP file consists of a set of components which represent a Java
programming language package. Each component describes a set of elements in the
Java programming language package, or an aspect of the CAP file. A complete CAP file
must contain all of the required components: Header, Directory, Import, Constant Pool,
Method, Static Field, and Reference Location.

The following components are optional: the Applet, Export, and Debug. The Applet
component is included only if one or more Applets are defined in the package. The
Export component is included only if classes in other packages may import elements
in the package defined. The Debug component is optional. It contains all of the data
necessary for debugging a package.

Glossary

Glossary-2

card session
a card session begins with the insertion of the card into the CAD. The card is then able
to exchange streams of APDUs with the CAD. The card session ends when the card is
removed from the CAD.

constant pool
the constant pool contains variable-length structures representing various string
constants, class names, field names, and other constants referred to within the CAP file
and the Export File structure. Each of the constant pool entries, including entry zero, is
a variable-length structure whose format is indicated by its first tag byte. There are no
ordering constraints on entries in the constant pool. One constant pool is associated
with each package.

There are differences between the Java platform constant pool and the Java Card
technology-based constant pool. For example, in the Java platform constant pool there
is one constant type for method references, while in the Java Card constant pool,
there are three constant types for method references. The additional information
provided by a constant type in Java Card technologies simplifies resolution of
references.

context
protected object space associated with each applet package and Java Card RE. All
objects owned by an applet belong to context of the applet's package.

Converter
a piece of software that preprocesses all of the Java programming language class files
that make up a package, and converts the package to a CAP file. The Converter also
produces an export file.

currently selected applet
the Java Card RE keeps track of the currently selected Java Card applet. Upon
receiving a SELECT FILE command with this applet's AID, the Java Card RE makes
this applet the currently selected applet. The Java Card RE sends all APDU
commands to the currently selected applet.

custom CAP file component
a new component added to the CAP file. The new component must conform to the
general component format. It is silently ignored by a Java Card virtual machine that
does not recognize the component. The identifiers associated with the new component
are recorded in the custom_component item of the CAP file's Directory component.

default applet
an applet that is selected by default on a logical channel when it is opened. If an applet
is designated the default applet on a particular logical channel on the Java Card
platform, it becomes the active applet by default when that logical channel is opened
using the basic channel.

Glossary

Glossary-3

EEPROM
an acronym for Electrically Erasable, Programmable Read Only Memory.

entry point objects
see Java Card RE entry point objects.

Export file
a file produced by the Converter that represents the fields and methods of a package
that can be imported by classes in other packages.

finalization
the process by which a Java virtual machine (VM) allows an unreferenced object
instance to release non-memory resources (for example, close and open files) prior to
reclaiming the object's memory. Finalization is only performed on an object when that
object is ready to be garbage collected (meaning, there are no references to the
object).

Finalization is not supported by the Java Card virtual machine. There is no finalize()
method to be called automatically by the Java Card virtual machine.

firewall
see applet firewall.

flash memory
a type of persistent mutable memory. It is more efficient in space and power than
EEPROM. Flash memory can be read bit by bit but can be updated only as a block.
Thus, flash memory is typically used for storing additional programs or large chunks of
data that are updated as a whole.

framework
the set of classes that implement the API. This includes core and extension packages.
Responsibilities include applet selection, sending APDU bytes, and managing
atomicity.

garbage collection
the process by which dynamically allocated storage is automatically reclaimed during
the execution of a program.

heap
a common pool of free memory usable by a program. A part of the computer's memory
used for dynamic memory allocation, in which blocks of memory are used in an
arbitrary order. The Java Card virtual machine's heap is not required to be garbage
collected. Objects allocated from the heap are not necessarily reclaimed.

installer
the on-card mechanism to download and install CAP files. The installer receives
executable binary from the off-card installation program, writes the binary into the

Glossary

Glossary-4

smart card memory, links it with the other classes on the card, and creates and
initializes any data structures used internally by the Java Card Runtime Environment.

installation program
the off-card mechanism that employs a card acceptance device (CAD) to transmit the
executable binary in a CAP file to the installer running on the card.

Java Card Platform Remote Method Invocation
a subset of the Java Platform Remote Method Invocation (RMI) system. It provides a
mechanism for a client application running on the CAD platform to invoke a method on
a remote object on the card.

Java Card Runtime Environment (Java Card RE)
consists of the Java Card virtual machine, the framework, and the associated native
methods.

Java Card Virtual Machine (Java Card VM)
a subset of the Java virtual machine, which is designed to be run on smart cards and
other resource-constrained devices. The Java Card VM acts as an engine that loads
Java class files and executes them with a particular set of semantics.

Java Card RE entry point objects
objects owned by the Java Card RE context that contain entry point methods. These
methods can be invoked from any context and allow non-privileged users (applets) to
request privileged Java Card RE system services. Java Card RE entry point objects
can be either temporary or permanent:

temporary - references to temporary Java Card RE entry point objects cannot be
stored in class variables, instance variables or array components. The Java Card RE
detects and restricts attempts to store references to these objects as part of the
firewall functionality to prevent unauthorized reuse. Examples of these objects are
APDU objects and all Java Card RE-owned exception objects.

permanent - references to permanent Java Card RE entry point objects can be stored
and freely reused. Examples of these objects are Java Card RE-owned AID instances.

library package
a Java programming language package that does not contain any non-abstract
classes that extend the class javacard.framework.Applet. An applet package
contains one or more non-abstract classes that extend the
javacard.framework.Applet class.

logical channel
as seen at the card edge, works as a logical link to an application on the card. A
logical channel establishes a communications session between a card applet and the
terminal. Commands issued on a specific logical channel are forwarded to the active

Glossary

Glossary-5

applet on that logical channel. For more information, see the ISO/IEC 7816
Specification, Part 4. (http://www.iso.org).

mask production (masking)
refers to embedding the Java Card virtual machine, runtime environment, and applets
in the read-only memory of a smart card during manufacture.

multiselectable applets
implements the javacard.framework.MultiSelectable interface. Multiselectable
applets can be selected on multiple logical channels at the same time. They can also
accept other applets belonging to the same package being selected simultaneously.

multiselected applet
an applet instance that is selected and, therefore, active on more than one logical
channel simultaneously.

namespace
a set of names in which all names are unique.

native method
a method that is not implemented in the Java programming language, but in another
language. The CAP file format does not support native methods.

nibble
four bits.

normalization (classic applet)
the process of transforming and repackaging a Java application packaged for the Java
Card Platform, Version 2.2.2, for deployment on the Java Card 3 Platform.

normalization (URI)
the process of removing unnecessary "." and ".." segments from the path component
of a hierarchical URI.

Normalizer
a software tool that allows Java applications programmed for the Java Card Platform,
Version 2.2.2, to be deployed on both the Java Card 3 Platform, Connected Edition
and on the Java Card 3 Platform, Classic Edition. It also allows Java applications
packaged for Version 2.2.2 to be transformed through the normalization process and
then repackaged for deployment on both the Connected and Classic Editions.

object owner
the applet instance within the currently active context when the object is instantiated.
An object can be owned by an applet instance, or by the Java Card RE.

origin logical channel
the logical channel on which an APDU command is issued.

Glossary

Glossary-6

http://www.iso.org

PCD
an acronym for Proximity Coupling Device. The PCD is a contactless card reader
device.

persistent object
persistent objects and their values persist from one CAD session to the next,
indefinitely. Objects are persistent by default. Persistent object values are updated
atomically using transactions. The term persistent does not mean there is an object-
oriented database on the card or that objects are serialized and deserialized, just that
the objects are not lost when the card loses power.

PIX
see AID (application identifier).

RAM (random access memory)
temporary working space for storing and modifying data. RAM is non-persistent
memory; that is, the information content is not preserved when power is removed from
the memory cell. RAM can be accessed an unlimited number of times and none of the
restrictions of EEPROM apply.

reference implementation
a fully functional and compatible implementation of a given technology. It enables
developers to build prototypes of applications based on the technology.

remote interface
an interface which extends, directly or indirectly, the interface java.rmi.Remote.

Each method declaration in the remote interface or its super-interfaces includes the
exception java.rmi.RemoteException (or one of its superclasses) in its throws clause.

In a remote method declaration, if a remote object is declared as a return type, it is
declared as the remote interface, not the implementation class of that interface.

In addition, Java Card RMI imposes additional constraints on the definition of remote
methods. These constraints are as a result of the Java Card platform language subset
and other feature limitations.

remote methods
the methods of a remote interface.

remote object
an object whose remote methods can be invoked remotely from the CAD client. A
remote object is described by one or more remote interfaces.

RID
see AID (application identifier).

Glossary

Glossary-7

RMI
an acronym for Remote Method Invocation. RMI is a mechanism for invoking instance
methods on objects located on remote virtual machines (meaning, a virtual machine
other than that of the invoker).

ROM
memory used for storing the fixed program of the card. A smart card's ROM contains
operating system routines as well as permanent data and user applications. No power
is needed to hold data in this kind of memory. ROM cannot be written to after the card
is manufactured. Writing a binary image to the ROM is called masking and occurs
during the chip manufacturing process.

runtime environment
see Java Card Runtime Environment (Java Card RE).

shareable interface
an interface that defines a set of shared methods. These interface methods can be
invoked from an applet in one context when the object implementing them is owned by
an applet in another context.

shareable interface object (SIO)
an object that implements the shareable interface.

smart card
a card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Unlike magnetic stripe cards, smart cards carry
both processing power and information. They do not require access to remote
databases at the time of a transaction.

terminal
a Card Acceptance Device that is typically a computer in its own right and can
integrate a card reader as one of its components. In addition to being a smart card
reader, a terminal can process data exchanged between itself and the smart card.

thread
the basic unit of program execution. A process can have several threads running
concurrently each performing a different job, such as waiting for events or performing
a time consuming job that the program doesn't need to complete before going on.
When a thread has finished its job, it is suspended or destroyed.

The Java Card virtual machine can support only a single thread of execution. Java
Card technology programs cannot use class Thread or any of the thread-related
keywords in the Java programming language.

transaction
an atomic operation in which the developer defines the extent of the operation by
indicating in the program code the beginning and end of the transaction.

Glossary

Glossary-8

transient object
the state of transient objects do not persist from one CAD session to the next, and are
reset to a default state at specified intervals. Updates to the values of transient objects
are not atomic and are not affected by transactions.

verification
a process performed on a CAP file that ensures that the binary representation of the
package is structurally correct.

Glossary

Glossary-9

	Contents
	Preface
	Audience
	Before You Read This Book
	How This Document Is Organized
	Documentation Accessibility
	Related Documents
	Conventions

	1 Object, Package and Applet Deletion
	Object Deletion Mechanism
	Requesting the Object Deletion Mechanism
	Object Deletion Mechanism Usage Guidelines

	Package and Applet Deletion
	Developing Removable Packages
	Writing Removable Applets
	The AppletEvent.uninstall Method

	2 Working with Logical Channels
	Dual Interface Cards
	Applets and Logical Channels
	Non-MultiSelectable Applets

	The MultiSelectable Interface
	Selection for MultiSelectable Applets
	Deselection for MultiSelectable Applets

	Writing Applets for Concurrent Logical Channels
	MultiSelectable Applet Example
	Handling Channel Information on APDU Commands
	Interindustry Space
	Proprietary Java Card Technology Space
	Logical Channels
	APDU Command Type Identification

	Writing ISO/IEC 7816-4:2013 Compliant Applets
	ISO/IEC 7816-4:2013 Compliant Applet Example

	Non-MultiSelectable Applets and Shareable Objects
	ISO/IEC 7816-4:2013 Specific APDU Commands for Logical Channel Management
	MANAGE CHANNEL OPEN
	MANAGE CHANNEL CLOSE
	SELECT FILE

	3 Developing RMI Applications for the Java Card Platform
	Steps to Develop an RMI Applet for the Java Card 3 Platform
	Generating Stubs
	Running a Java Card RMI Applet

	RMI Program Example
	Main Program
	Implement a Remote Interface
	Define the Constructor for the Remote Object
	Provide an Implementation for Each Remote Method

	Sample Applet
	Preparing and Registering the Remote Object
	Processing the Incoming Commands

	Client Example
	Initializing and Shutting Down the Card Connection
	Creating and Using a CardAccessor Object
	Selecting the Java Card Applet and Obtaining the Initial Reference
	Using Remote Objects in Remote Method Invocations
	Generate the Stubs

	Card Terminal Interaction

	Add Security Support
	Initialize a Security Service
	Use the Service to Check the Current Security Status
	Security Service Example
	More Secure Applet
	Client Changes to Support Security
	CustomCardAccessor Class for Authentication and Signing

	4 Using Extended APDU
	Extended APDU Nominal Cases
	Extended APDU Format
	Extended APDU Limits
	javacardx.framework.ExtendedLength Interface
	APDU Parsing with the javacard.framework.APDU Class

	Creating an Applet That Can Send and Receive Extended Length APDUs

	Glossary
	active applet instance
	AID (application identifier)
	APDU
	applet
	applet developer
	applet execution context
	applet firewall
	applet package
	assigned logical channel
	atomic operation
	atomicity
	ATR
	basic logical channel
	binary compatibility
	CAD
	CAP file
	CAP file component
	card session
	constant pool
	context
	Converter
	currently selected applet
	custom CAP file component
	default applet
	EEPROM
	entry point objects
	Export file
	finalization
	firewall
	flash memory
	framework
	garbage collection
	heap
	installer
	installation program
	Java Card Platform Remote Method Invocation
	Java Card Runtime Environment (Java Card RE)
	Java Card Virtual Machine (Java Card VM)
	Java Card RE entry point objects
	library package
	logical channel
	mask production (masking)
	multiselectable applets
	multiselected applet
	namespace
	native method
	nibble
	normalization (classic applet)
	normalization (URI)
	Normalizer
	object owner
	origin logical channel
	PCD
	persistent object
	PIX
	RAM (random access memory)
	reference implementation
	remote interface
	remote methods
	remote object
	RID
	RMI
	ROM
	runtime environment
	shareable interface
	shareable interface object (SIO)
	smart card
	terminal
	thread
	transaction
	transient object
	verification

