Java Cand Platform

Virtual Machine Specification, Classic Edition

Version 3.1

February 2021

Java Car Platform Virtual Machin&pecification, Classic Edition Verskh
Copyright © 19982021, Oracle and/or itgffiliates. All rightseserved.

The Specification provided herein is provided to you only under the Oracle Technology Network Developer License
included herein ag\nnex A OracleTechnology Network Developer License Term

License Bstrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement contasirigtions on use

and disclosure and are protected by intellectual property laws. Except as expressly pdiimigour license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, odecompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained hein is subject to change without notice and is not warranted to be efinex. If you
find any errors, pleaseeport them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Governmeamtyane licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMERMD USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentatiorligered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federalusitipn Regulation and agensypecific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of treams,09
including any operating system, integrated software, any programs installed on the hardware, and/or
docunentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Governme

Hazardous Applications Notice

This software or hardware is developed for general use in a variety ofafmn management applications. It is

not developed or intended for use in any inherently dangerous applications, including applications theteate

a risk of personal injury. If you use this software or hardware in dangerous applications, therajldaesh

responsible to take all appropriate fahfe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and itsféiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applations.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SRd&®@atrks are used

under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD
logo, and the AMIDpteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademarlof The Open Group.

Java Card Platform Virtual Machine Specification, vB. Page2

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide accessitdarmation about content, products, and
services from third parties. Oracle Corporation and its affiliatesyateesponsible for and expressly disclaim all
warranties of any kind with respect to thiphrty content, products, and servicesalass otherwse set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates vi# regponsible for any
loss, costs, or damages incurred due to your access to or use optnitgl content, products, or services, except
as sefforth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about @cle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Orde Support

Oracle cusimers that have purchased support have access to electronic support through My Oracle Support. For
information, visithttp://www.oracle.com/pls/topic/lookup?ctx=ac&id=infoor visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=tri§ you are hearing impaired.

Java Card Platform Virtual Machine Specification, vB. Page3

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Java Card Platform Virtual Machine Specification, vB. Paged

Contents

[(=] = (ol OO PP PPPPPPPPPI 19
Who Should Use This SPeCifiCatiQ...........ceuiiiiiiiiiiiiiieeiiiiiie e 19
Before You Read This SPECIfICALION.cuuviiiiie i 19
Y L= 11 2 o] 101 o PP P PP 19
LI/ oJo e g=Tol ol (o @] a1V L=T o1 o] o 1 20
Related DOCUMENTALIONL.viiiiiiiie ittt e e s e e e e e s nneees 20
TRIFGPANYWED SIES....eviiiiiiiiiiiiieee eeas 20
Documentation ACCESSIDIIILY..........uuiiiiiiiiiiii et e e e e e e eeeeas 21
ACCESS 10 OraCIE SUPPOLL.....eiiieiiiiiiiie e e et e e s e e e s e e e e e e e s s nnnn e e e e e e s annreees 21
Oracle VICOMES YOUr COMMEINES........uuuiiiieiiiiiiiiieeee s sttt et e e e s st r e e e s s s ssnbe e e e e e e s s annbnneeeeeeeanne 21

R 11 (o T 0T 1 o] o FO TP PP PPPPP PP 22
00 Y (o 111V L1 o TP PPPRP 22
1.2The Jav&ard Virtual MaChine...........ccuiiiiiiii e 23
1.3 JaVA LANQUAGE SECUIILY.ceeiii ittt e ettt e e e e ettt e e e e e s e e e e e e senbbneeeeeeeans 25
1.4 Java Card Runtime ENVIroONMENt SECUIILY........cuiiiiiiiiiiiieeeiieiiiee e e e e 25

2 A Subset of the Java VIrtUBCNINE............ooooiii s 27
2.1 Why a SUDSEL IS NEEAEMA.........co e e e e e e e e e e e e e e e e e 27
2.2 Java Card Platform LQAIBGE SUDSEL.........uuiiiiiiiiiiieiiieeeee et 27

P RO [W] o] oo (=Y | (=T o0 PRSP 27
2.2.1.1 UBUPPOIEA FEATUIES.ccii ittt ettt e e et e e e e eas 27
2.2.1.1.1 Dynamic Class LOAAING...........uuuriieieiiiiiieiee et 27
N N Y=o [1V /=T g =T = 28
2.2.11.3 FINALZALIONceiiieiiiiieiiee et e e e e e e s e e e e e 28

2.2. 0.1 4 TRMEAUS. ..cee e ettt 28
P 5 B3 @4 (o] o 1] o PP PP PPPPPRP 28
2.2.1.1.6 Access Control in Java Packages............cooooiiccicciiiiiiiiiiiiieeeee e 28
2.2.1.1.7 TypeSafe ENUMIS......cuviiiiiiiiiiiei ettt e e e 28
2.2.1.1.8 ENNANCEA fOr LOQP. .. etiiiiiiiiieiie ettt e e e e 29

Java Card Platform Virtual Machine Specification, vB. Pageb

A N I £ 1= o PSS 29

2.2.1.1.10 Runtime Visible Metadata (ANNOLAtIONS).......cc.cvvvviiiieiieiiiee e, 29
2.2.0.0. 00 ASSEITIONS. ...eeeeeeeeieieiteee e e e e e ettt e e e e e st e e e s e s e e e e e e e e e e e e e n e e e e e e a e 29
2.2.1.2 UNSUPPIIEA KEYWOITUS.eeiiiieeiiiiiie e ettt e e e s e e e e e e e e e e eanes 29
2.21.3 UNSUPPOITEA TYPES...ciiiiiiiiiteeeeeeiiie et e e e et e e e e s e e e e e s r e e e e e e e annbrneeeeeeeaannes 29
2.2.1.4 UNSUPPOEA ClaSSES.......coiiiiie e a e e e aaaaaa e 29
A O V£ = 1 ¢ PSSR 30
2.2.2SUPPONEA [TBIMS. . ..o e e e e e e e e e e e eaaaaeaeaaaee e e e e e s e s e anaaaaanes 30
2.2.2.1 SUPPOIEA FEALUIES.......uiiiiieiiiiiiiei e ettt e e e e e e e e r e e e e e e e ennees 30
2.2.2.1.0 PACKAGES eieietieeiiaiiie e e e e e ettt e e e e et e e e e e e e e e e e e e e e e e s e ae s 30
2.2.2.1.2 DynamicC ODJECT Cre@atiON..........uuuiieiiiiiiiireeeeee et ie e e e e e e e e e e eeee s 30
2.2.2.1.3 Virtual MethOUS.cc.uiiiiiiiiiie et 30
2.2.2. 1.4 INTEITACES. .. ee ittt 30
2.2.2.0.5 EXCEPLIONS.uiiieiiieeeeeitt et e ettt e e et e e e e e e et e e e e e r e e e e e e s 30
2.2.2.0.6 GBINEIICS. ..ttt e e ettt ettt e e e e e e e e e e e e e e e e e b n e e e e e e e e aee s 31
2.2.2.1.7 SEALIC IMPOLL....eeeiiieeiiiiti et e e e e e e e e e e e e e aan 31
2.2.2.1.8 Runtime Invisible Metadata (ANNOtatiQNS)..........cccoeviiiiieieieeiii e, 31
2.2.2.2 SUpported KEYWOIS.........oooiiiiiiie e e e e e e e e e e e 31
2.2.2.3 SUPPOIEA TYPES... oo i i ei i et e e e e e e ee e e e e e e e e aaaaaaaaaaaaeeaesaeeaasaaaaaananns 32
2.2.2.4 SPPOIEA ClASSES.......uuiiiiiiieiiiit ittt e e e e e e e e e a e e e e e nnneees 32
2.2.2.8.1 OBJECL.....oeeeeeeeeeeeeee ettt 32
2.2.2.4.2 TRIOWADIE. ...t e e e e e 32
2.2.30ptionally SUPPOIEd ITIMSottt e s ea e e eae e 32
2.2.3.1 INtEYEDALA TY PR ettt e e e e e e e e et e e aeaeeeanaree 33
2.2.3.2 Object Deletion MECNANISIL. ... e e e e e e e e e e e e e e e ea e 33
2.2.4 Limitations of the Java Caratual Machine.............cccuviiiiiiiiiiiii e 33
2.2.4.1 LimItations Of PACKAGES.uuviiiiiiiiiiiiiiie et 33
2.2.4.1.1 Packages in a Java Card CAR.fIle.........ccccoiiiiiiiiiie e 33
2.2.4.1.2 Package REBEICES.........oooiiiiiiiiiiii et 33
2.24.1.3 PACKAGE NAIME.......oeiiiiiiiiiiiiiei e e e e e s s e e e e e e e 33
2.2.4.2 LIMItatioNS Of CIASSESuiiiiiiiiiiiiiiii et e e 34
2.24.2.1 ClasSes iN @ PACKAQE.........uuuiiiiiiiiiiiiieiirieet ittt et e e e e eanes 34

Java Card Platform Virtual Machine Specification, vB. Page6

W A | | (<Y o = [<= T 34

2.2.4.2.3 StALIC FIEIAS.eeiiiiiiiii e 34
2.2.4.2.4 StatiC MEENOASceiiiiiiiiei et 34
2.2.4.3 LIMItations Of ODJECLS........eeiiiiiiiiiiii e 34
A Tt /1= i g oo U 34
2.2.4.3.2 ClaSS INSTANCES.......uvtiiiiiiie ettt e e s e e 34
G B AN ¢ - N/ USRS 34
2.2.4.4 LimitadnNs Of MENOGS........cuviiiiiiiiieeiee e 34
2.2.4.5 Limitations of SWitCh StatemMEeNtS..........cooiiiiiiiiiiiiii e 35
2.2.4.6 Limitations of Class INitialiZatiOn..............coeeiiiiimiiieeee e 35
2.2.5 Multiseéctable Applets RESIICHONS.uuiiie it 35
2.2.6 Java Card Platform Remote Method Invocation (RMI) Restrictions..............ccocceunnnes 35
2.2.6.1 Remote Classes and REENINIEITACES..........c.eviiiiiiiiiiiiiee e 36
2.2.6.2 Access Control of REMMEEITACES.ueviiiiiiiiiiiiiee e 36
2.2.6.3 Parameters and Return VAIUBS...........coouiiiiiiiiie et 36
2.3JaVA Card VM SUDSEL......coiiiiiiiiiii e e e e e e 36
2.3.1 Class File SUDSEL........c.uiiiiiiiie et 37
2.3.1.1 NoSupported in Class FIlES........ccoooi oo 37
2.3.1.1.1 Class ACCESS FlagS......ccccciuiiiiiiiiiiiiiiieeeee e e 37
2.3.1.1.2 Field DESCIIPLOLS. .. .eeiiieiiiiiitiiiee e e ettt e et e e e e a e e e e s 37
2.3.1.1.3 CONSTAMPOOL.ceeiiiiiiiiiiee e e e e e e e e e e 37

2.3 L1 A FEIUS. ... 37

P2 B0t O I /1= g oo U 37
2.3.1.2 SUppOrted iN @3S FIlES.. ... 37
2.3.1.2. 1 ClASSFILE ... 37
2.3.1.2.2 Field DESCIIPLOLS. .. .eeiiieiiiititetie e e ettt e et e et e e e e e e e e e e nanneees 37
2.3.12.3 MethOd DESCIIPIOIS.uuiiiiieiiiiiiie it e e e ettt s s e e e et e e e e e e aanes 38
2.31.2.4 CONSLANT POQL......ci it 38

2.3 0.2 5 FIBIUS. .ttt ettt a e e e e e e e e e e e 38

P2 Tt 0 Y/ 1= i o oo U 38
2.3.0.2.7 ALNIDULES. ...t e e e e e e e aaaaaaaaas 38
2.3.2 BYLECOOE SUDSEL.. ..o eeaae 38

Java Card Platform Virtual Machine Specification, vB. Page7

3

ARG I R U1 g ST U o] oTo] £ 1=To I 232 (=Tol 0 o (=3 38

2.3.2.2 Supported BYtECOUES..........cooeii ittt err e neneenaa e e e e e e e A0
2.3.2.3 Static Restrictions 0N BYtECOAES...........oeviiiiiiiiiieiiieeee e 42
2.3.2.3. 2 I0OKUPSWILCH.....ceiiieeiee e e e 42
2.3.2.3.3ADIESWITCR ... 42
2.3.2.3 4 Wit 42

G TG B b (oL =] o] {0 L= 43
2.3.3.1Uncaught and Uncatchable EXCEPLIONS.cccuviiiiieeiiiiiiiee e 43
2.3.3.2 CheCKed EXCEPLIONS.uviiiieeiiiiiieiiiee e ettt e e s e e e e e r e e e e e e ennees 43
2.3.3.3 RUNEIME EXCEPLIONS.uveiiiieeiiiiiieit et ettt e et e e e e e e e e e e e e a4
2.3.3 4 EITOIS ittt 44
Structure of the Java Card Virtual Machine..............ccvvioiiiiiiiiii e 46
3.1 Data Types and VAIUES.........cccuviiiieeeriiiiiiie et e e snirnee e e ssnnnneeeeeennnnnnn e A0
G T2 T« 10 LSS 46
3.3 RUNUIME DABIEAS.........eieiiiieeiiiiieei ettt e e e e e e e e e e e e e e e e nb b e e e e e e e enneees a7
BT O 0] g1 =P a7
BT = 10 [T SO a7
3.6 Representation Of ODJECIS......c.ooiiiiiii e 48
3.7 Special Initialization MethOdS...........cooiiiiiiiiiiiiii e A8
L8 EXCEPILIDS. ..ttt ettt e e e e e e e e e e e e e e e e e e anne 48
3.9 BiINAry File FOIMMALS. ...ttt e e e e e e e et eeaeeens 48
3.10 INSIUCLION S SUMIMAIY. .. uuii it iieeeeeeeeecrer ee it reeeeeeeeeeeesenann s 48
3.10.1 Ypes and the Java Card Virtual Machinge............ccccoee i 49
= T YA =T o (=T Y= 1 r= Ao PSP 51
4.1 Java Card Platform File FOIMALS...........ouuriiiiieiiriiiiiiee et 51
4. 1.1 EXPOIt File FOMMAL......iiiiiiiii ettt e e e e et r e e e e e s s nenaneeeas 51
4.1.2 CAP File FOMMAL.....ccciiiiiiiiiiie ettt e e e e s e e e e e e s neabneeeeas 52
4.1.3 JAR File CONTAINEL........uiiiiiiiee ettt e e e e e e e e e e e e e eeas 52
4.2 AIDDASEA NAMING......ceteeeeieeeeiite et e e e e e e e e e r e e e e e s s b r e e e e e e e nnr e e e e e e e e annrenees 53
4.2.1 ThE AID FOIMAL......ceiiiiiiiiiiii ettt e e e e e e e e s e e e e e e s eeeas 53
AN | I S Vo[- USSPt 53

Java Card Platform Virtual Machine Specification, vB. Page8

4.2.2.1 CAIFIIE AID NAMESPACE.uuuuuriiiriiiiriiriirerrrrrerrrrrtteataaaaaaaaaaaaeaaaaaeeasaaassaaaaansnnranne 53

4.2.2.2 APPIEL AID NAMESPACE .. . uttiieiieiieeieeiieerettteteetaeaaaaeaaa e et e ettt saasaaaaaarsanearerrrrerrsraaneees 53
4.2.2.3 Package AID NAMESPACEcciiiurtirieeeeeeiiiieeeee e e s s e e e e s s s s e e e e s s anbrereeeeesaanes 54
4.2.2.3 Custom Component AID NAMESPACE............oooviiiiieeirrrre e e e 54

4.3 TOKEADASEA LINKING ... cteeeiieeiiiiee ettt e e e e e e e e e e e e e e e e e ennneees b4
4.3.1 Externally Visible HEMS ... a e e e e e e e e e e e 54
4.3.2 PrIVALE TOKEIS.uieiiiiiiit ettt ettt e e e et e e s e e e e e e e e s nne e s 55
4.3.3 The Bport File and CONVEISIQN..........coviiiiiiiiiie e 55
4.3.4 References External and INtErNaL..........ooooviiiiiiiii e e e e e e K5
4.3.5 Installation and LinKiNg..........cuuriiiieoiiiiie e rr e 56
4.3.6 TOKEN ASSIONMIEIIE.....iiiieieeee ettt e et e e e e e st e e e e e e s e e e e e s anbbrn e e e e e e e annnneeeeas 56
4.3.7 TOKEN DELAIS.ceeieiitiie ittt ettt e e e e 56
A.3.7. L PACKAGE........oi i 56
4.3.7.2 Classes and INTEITACES........cuuii et 56
4.3.7.3 STALIC FIEIASeeeiieiiiiiee e e e 57
4.3.7.4 Static Methods and CONSITUCTIOLSccieiiiiiiiiiiiiee e et e e 57
4.3.7.5 NSLANCE FIEIAS........eeiiiiiiii e 57
4.3.7.6 MItUAl MEENOTS........eeiiiiiiiie e 58
4.3.7.7 INterfaCe MELNOUS.eeiiiiiiiie e 58

4.4 Binary COmMPAtiDIlItY...........veeeeeeeeiie e e e e r e e e e e e e e 59
4.5CAP and Package VEISIQNS......c.ccuiiuuuiiiiieeeeiiiiieiee e e e sttt e e e e s s e e e e et e e e e e s annnnneeeees 60
T T T [1T PP PPPR PP 60
T I 1 1 T SRR 60

5 The EXPOrt File FOMMAL.........ueiiieieeieeie e 62
LN o o Lo 1 =N N = T = PPPPPPRP 62
5.2 Containment in @ JAR Rloooiieee e 62
RS O T 01T £ T o OO PPTPPPPPPPPPPN 62
5.4 HierarchieS RePIESENTEM.........oiiuiiiiiiie ettt e e e e e 63
5.5 EXPOIT FlE .ttt e s e e e e e e 63
5.6 CONSEANT POQL.......ooiiieee et 65
5.6.1 CONSTANT _PaCKAGE.cco ettt e aaeaaaaan 65
5.6.2 CONSTANT _ClasSSIE .. ueiiiiiiiiiiiiiei et ee e e 67

Java Card Platform Virtual Machine Specification, vB. Page9

5.6.3CONSTANT INIEOEL....eitiiiiii et e et e e e e e e e e e e b e e e e s e eeeeeannrnnnnnsd 67

5.6.4 CONSTANT _ULTB...eeiiii ittt e e s e e e e e e eaneeees 68
5.7 ClasSeS aNd INTEITACESciiiiiiiiiiiii et e e e e e e e e e e e e e e e e e 68
5.8 FHEIAS. ...t e e e e e e e e eas 71
5.9 MELNOUS. ..ot e e e e a e e s e e e e e s s nnnnnrreeee s e e d O
S.LOALDULES ...ttt 75

5.10.1 ConstantValue AMDULE...........cciiiiiiii e 75

6 THE CAP FlE FOIMAL.....ccoiiiiiiiiiiiie et e e e 77
6.1 CAP FilE OVEIVIEWIL......utiiiiie ettt et e e e e e e e e st e e e e s st r e e e e e e annreees 7
6.2 COMPONENIMOUEL.......eiiiieiiiiii e e e e e e s s e e e e e s nnr e eeeeeas 78

6.2.1 ContainMment iN & JAR Fl@......oooi i 79

6.2.2 Defining NeW COMPONENLIS.......ccoiiiiie e e e e e e e e e e e e e aaaaaaaaaaaaas 80
6.3 INSTAIIALION. ...t 81
6.4 Header COMPONEIL. ... ittt e e e s e e e e s s s e e e e e e e e b e e e e e e e e sannbrneeeeeeans 81
6.5 DIreCtOrY COMPONENL.......uiiiiiie ittt e e e ettt e e e e e e e e e e e e e e e e e e bbb e e e e e e s easbbeneeeeeeaanne 85
6.6 APPIET COMPONENT.....eiiiiiiiiiie e e e e e e e e e e e e s b e e e e e e e e aennneeeeeeas a0
(O 0] 0T @01 4 o0 =] o S 92
6.8 Constant POOI COMPONENL........coiiiiiiiiiiee e e e e e e e e e e e e aaaaaaaaeas 93

6.8.1 CONSTANT _CIASSIEL.....eeiiiieeiiiiiiie e e e e e e e e e e e s nnnrreeeeeeas 95

6.8.2 CONSTANT _InstanceFieldref, CONSTANT _VirtualMethod&IT AT _SuperMethodref6

6.8.3 CONSTANT_StaticFieldref and CONSTANT_StaticMethadref............cccovveriiennnn. 98
6.9 ClasSS COMPONEIL. ..ottt e e e e et e e e e e e e s bbb e e e e e e e s ssbbb e reaeeeeannbbsneeeeeeaannes 100

LR IRt 1Y/ o T : 1o] 0] (o SR EUEEERR 102

6.9.2 interface_info, class_info_compact and class_info_extended...........c.cccccceevenineen.n. 104

6.9.2.1 interface_info, class_info_compact and class_info_extended Shared.ltems....... 105
6.9.2.2 Interface_iNfO ILEIMS.........oiiiiii e e 106
6.9.2.3 class_infacompact and class_info_extended ltems..........cccvveeeiiiiiiiieeee e, 107
6.9.2.4mMethod_DIOCK_INfO oo 111
6.9.2.5 implemented_interface iNfO.........cvvviiiiiie 112
6.9.2.6 remote_interface INfO........oovvviiiiiiiii 113
6.9.2.7 public_virtual_method_token_mapping..............ccooooi i ieeiicccc e 115
6.10 MEthOd GMPONENT........eiiiiiiieeiit ettt e e e e e e e e s e e e e e e e e e nanrrreeeeeeans 116

Java Card Platform Virtual Machine Specification, vB. Pagel0

6.10.1 method_component_bIOCK............oooieiiii e 117

6.10.2 Exception Handler EXampPle...........oooooiii it 118
6.10.3 exception_handler_iNfO..........oooii i 119
LS00 I o 0T o oo o T U 121
6.11 Static Field COMPONENL........coiiiiiie e e e e e e s e e e e e e aaas 123
6.12 Reference Location COMPONENL..........cooeiiiiiiiii e e e e e e e e e eeeeees 127
6.12.1 reference_location_component_bloCK..............ooo oo 128

O R RS b d o T] O 01 0] o Lo 1= o | S SN 130
6.14 DEeSCIIPIOCOMPONENLutiieieeeiiitte it e e e e s ettt e e e s e s b e e e e e e e asasnb e e e e e e e s asnbr e e e e e e s sasbenneeeeeans 133
6.14.1 package_deSCrPLOr_INFO........couiiiiiiiee e e e e 135
6.142 class_descriptor_info_compact and class_descriptor_info_extended..................... 135
6.14.3 field_desCriptor INO........uuuiiiieiiieeeeee 137
6.14.4 method_descriptor_infocompact and method_descriptor_info_extended................ 139
6.14.5 type_deSCrPLOr_INTQ.....ciiiiiiiiiiii et 142
6.15 DEDUQG COMPONENL.......iiiiiiieiiiite et e ettt e e e e s et e e e e e e e b et e e e e e e anbrereeeeseanes 143
6.15.1 package_debug_info_compact and package_debug_info_extended Structures.....145
6.15.2 The class_debug_info_compact and class_debug_info_extended Structures........ 145
6.15.2.1 The field_debug_INfO SIrUCIUIE..........uuiiiiiiiiiiiiiiieeeeee e 148
6.15.2.2 Thenethod_debug_info_compact and method_debug_info_extended Structur&s0
6.16 Static RESOUICE COMPONEIL.......uuiiiiiiiiiiieiiee e et e e e et r e e e e s e e e e e e aebe e e e aeeeaaaa 154
7 Java Card Virtual Maching INStruCtioN Set.........ccuuuviiiiiiiiiiiiie e 157
TOM ! dadzyYLdiAzyay 4.KS.aSLyAy.3d..2F..dadzdd:... 157
A 2 =11 V7= To IO o Tt o Lo = SRS 157
7.3 Virtual MaChINE EFTOUS......oci oot e e e e e e e e e e 157
Y ULV = (el 1 0] = RSP 158
7.5 The Java Card Virtual Machine INStruCtioN.SeL..........cuuviiiiiiiiiiiiiicee e 159
4T - T= [- T RO P PP P PP PPPPP TP 160
7.5, 2 BASTONE. ...t a e e e e e e e e e e e e e e 161
A TG 2= Voo 1= o 11 163
T.5.4 AI0AMA ... e e e aeean 163
TR 1 (o 7= To I o IS 164
75,06 @NEWAITAY. . .uuuiei et e e e ettt eeeet it ir e s e e e e et e et e eeae b e s e e eaeeeeeeeeassaaa s reeeeeaeeeanesenssnaneaeeeeaeeeennnes 165

Java Card Platform Virtual Machine Specification, vB. Pagell

QA T A= 1 (=1 (1 T 165

7.5.8 ArTAYIENGI....cvveiieeeeeeeee e e e 166
AT =1 (o PRSP P PP PPPRTRPR 166
ARSI R0 - 1o (o] (S o TSP PP PPTPUPTPTT 167
7510 AENTOW. ..ttt e e e e e e e e e e e s e e e e e e e e e e e e e ne 168
7.5.12 DAI0AM.eeieiiiiie e 169
7.5, 13 DASTOE. ...ttt 169
T 5. dA DIPUSHL e 170
7515 DSPUSKI. .. e e e e e e e e e e e e ann 171
7.5.16 CRECKCAST ittt e e e s e e e e e e e e e e e e e e nnnneees 171
7428 200 0 o o SRR, 173
75,18 UP Xttt e a e e e e e e e e e e e e 174
A T R o 11 o 2 PRSP PPPRT P 175
A I 0 1] 1= [N 175
7.5.21 getfield_<t> thiS....ooiiiiie e e 176
7.5.22 getfield_St> Wi e e e e e e e e e e e e 178
7.5.23 QOtSIAtiC Ui e e e e e e e e e e e e e e e 179
485302 3 o T 1 o RPN 180
48 T2 3o T (o T RPN 181
A 2 o S 181
A A V2SR 182
A2 < 1 = Lo [USRNSSR 182
7.5.29 1A10AM ... e 183
48 705 1 - T R 184
RS TR X R = T (] (PP PPPPPPRRPRR 184
RS TR A (o111 o PP PP PPPPPRPTP 185
RS TS 1 I (oo 1 AN PSPPSR PPPPPPPPI 186
A8 0 T o L S 186
7.5.35 If_BCMPKCONAR. ... e e e e e e e e e e e e e e e e e e 187
TGN | = Tex 4o e oo o b SR 188
7.5.37 I _SCMPSCONAR. ...ttt e annes 189
AR | =Tl 1] o R0 o D S 189

Java Card Platform Virtual Machine Specification, vB. Pagel2

RSG5 o7 (o DT 190

7.5.40 IfCONAS Wittt e e e e e e e e et e e e e e e e aaaaaaeaeeeeeeaeesesassaaaaasasnnnnnane 191
T.5. 40 INONNUIL....eiii e e e r e e e e e s e e e e e e s a b rn e e e e e e e anes 192
A o] 11]| P 193
48 0 1 SO 193
AT 1 L PP 194
48 T 3 1T o PP PPPP PRI 194
T.5.4B lINC Wi e e e e e e e e e e e e e 195
A A o £ PSSR 195
T.5.48 Hl0AG........co oottt e et e a e 196
AL I (o T To HE £ > OO U OO POUSPR 197
7.5.50 Il0OKUPSWILCHL.......uiiiiiiiiiiiiiiiie ettt e s e e aaa e ar e rrerrseseeeeees 197
4578 X 1 01 RO PRRRT 198
ST | 1= o OO PP TP PP PP PPPRPPRPPN 199
7.5.53 INSTANCEOT.eiiiiiei ittt a e e e e e e e e e e et e e e e e e e nnnnreeeas 200
7.5.54 INVOKEINTEITACE......eiiiiiiiiiie it e e e e e e e e e e e anees 202

7.5.54.1 Inerface Method RESOIULION.........coccuiiiiiiiiiieeiee e 203
7.5.55 INVOKESPECIAL.......ccco i e s e e e e aaaans 204
7.5, 56INVOKESTALICeeieieie ettt e et e e ek e e e e e e a e e e 205

7.5.56.1 Super Method RESOIULION...........cooiiiiiiiiiiei e 206
7.5.57 INVOKEVIFTUAL ...ttt e e r e e e e e e n e e e e e e ann 206

7.5.57.1 Virtual Method ReSOIULIQN........ccoiiiiiiiiiiie e 207
48 T = (o PSPPSR 208
RS TR N1 (=10 PP PP PPPPRRPT P 208
7560 ITETUIML. ...ttt e e e e e e e e e e et e e e e s mnn et e e e e s annr e e e e e e e e annns 209
A28 0 20 1= o S 210
7582 TSN s 210
ST 1 I (o] = PP PPPP T PPTPPPI 211
RSN ST 1 (o] (=T > 211
T 5.8 ISUDL. . e 212
7.5.66 IHADIESWILCIL. ..o e 213
T.5. 87 TUSIIE. ..ttt 214

Java Card Platform Virtual Machine Specification, vB. Pagel3

QRSN 0) (] 214

A1 N 1= U SUPUURRRRRRR 215
T 5. 70 MBWV. ..ottt e et et ettt e e e e e e et e et b b e e e e e e et e et an b b e aaas 216
7.5, 7L NMEWAITAY. ..ttt eee e e e e ettt et e eeeeeeeaeeaaaaaeaasaassaasaaa s s s s s nn s e ne s nnnsrnesneeeeeeees 216
A 72 £ o o TR 217
BT 42 T o1] o T OSSR 218
AT € o T] o R PRSRPPRRN 218
AT AT 1011121 (o TS T 219
7.5.76 putfield_<t> thiS.....oooiiiiie e 220
T.5.77 PULFIEIA US> Wiiiiiiiiiieicec e 222
7.5.78 PULSTALIC SRttt e s e s anbrnreeeeeeanns 223
R T £ (=1 PO UPPPPPPPPRTPTTPTN 224
AT <101 11 | o TR 225
A0 = 1 <74 o 225
AT - 7 < S PUPPSPRS 226
AT = 3 57 Uo [USSR 226
T.5.84 SAIOAM. ... 227
T.5.85 SANM....eeieiitiii et e e e e e e e e 228
R T < =1: 11 (o] PRI 228
AR TR Y Ao o] S > SRS 229
7588 SV, e e e e e e e e e aa s 229
7.5.89 SIMC..ciiieiiiiite ettt r e e e e e e e e e et e e b e e e e e e e e aaae s 230
T8 10 I 1 o2 231
75,90 SIPUSKL. ..ttt e e e e e e e e e e e e e e e e aaaeas 231
7.5.92 SI0AM.....ceeieiiiieee et a e e 232
7.5.93 SI0AA_B.... .. a e e s 232
7.5.94SI00KUPSWITCIcoiiiiiiiieeii et e et e e e e e e as 233
7.5.95 SIMUL ...t e ettt e nanees 234
AT L] 01T o T PTPUPRTPPTRRR 234
AT <o OO PP PPPP PP 235
TS =] (= o o PRSP PPPPPPRTPPRT 235
ARSI 1] (=] (U 1 PP PTPPUPRTTT 236

Java Card Platform Virtual Machine Specification, vB. Pagel4d

S 70 00 T o TR 236

7.5 001 SNt 237
7.5.102 SSPUSK. ...t e s 238
AT L0 31 (o] =T PP 238

ARSI N7 oY (o] £ o > PP URPPPPPP 239
75005 SSURL.....eeiiiitii e 239
7.5.106 STADIESWILCKL......ceeiiiiiieiei e 240

7.5, 007 SUSKI....ciiitiete ettt e ekt e e et e e e e e e e e e s 241
75,008 SWAP Xuuiiieieiiiiiieiititee e e ettt e e e e e e e et bbb e e e e e e e eeerbr b 241
75,009 SXOK...ceiiittiuie et e ettt ettt e ettt bbb e e e e et e e e ettt e e e e e e et e ettt b b e e e e e e e aeanrrees 242

8 TabIES Of INSITUCTIONSeiiiiiieiii it e e e e e s r e e e e s 244
8.1 Instructions by OPCOAE VAlLIE. ...t e e e 244
8.2 Irstructions by Opcode MNEMONIC........uiiiiiiiiiiiiei e 248
(€1 (0L ET= T TP PP TP PP PPPPPTP PPN 254
Annex A Oracle Technology Network Developer LiCeNSe TEMMS...........evveeiviiiniiiieeeeiiiiieeeeennn 269

Java Card Platform Virtual Machine Specification, vB. Pagel5

Figures

Figure 11: Java Card Application or Library CONVEISION..........cciiiiiiiiiierieeeiiiiieeee e 23
Figure 12: Java Card Application or Library Installation...................ccoee i 24
Figure 41: Mapping Package Identifiers to AIDS..........uuuiiiiiiiiiiiiiiiiieiieeeeeee e 54
Figure 42: Binary Compatibility EXamIe..........ooeiiiiiiiiee e 59

Java Card Platform Virtual Machine Specification, vB. Pagel6

Tables

Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 31:
Table 32:
Table 41:
Table 42:
Table 43:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:

Table 610:
Table 611:
Table 612:
Table 613:
Table 614:
Table 615:
Table 616:
Table 617:
Table 618:
Table 619:
Table 620:
Table 621.:
Table 622:
Table 623:

Unsupported Java Constant POOI TAGS........cooiiuiiiiiiieiiiiiiiee e 37
Supported Java CONSTAMIAP TAQGS......c..uuuurrrriiiiiriiiiirrrrerrerrrrrrrrrrrrreaeeeaeeaaaeeaaeeseeaseaasaanans 38
Support of Java Checked EXCEPLIONS..........oooiiii i e e e e e e e e 43
Support of Java RUNtIME EXCEPLIOMNS......ccciiiiiiiiiieeeeeeiiieee e 44
SUPPOIt Of JAVA EFTOIS.. ..o r e e e e e e e e e e e e e e e e ee s s e enanns 44
Type Support in the Java Card Virtual Machine Instruction.Set.........cccccccvvvvveeveeeeenn.n. 49
Storage Types and Computational TYPES.......c.uuvviieeiiiiiiiiiee e 50
AID FOIMAL. ...t e e et e e ettt e e e e e e e e e et ee s bb e e e e e e aeeeeeennbbnnaas 53
Token Range, TYPE @0 SCOPE.ccoiiiiiiieee ettt e et r e e e e e e nnnes 56
Tokens FOor INStanCe FIelAS. ... 57
Export File Constant POOl TAGS......ccoociiiiiiree e e 65
EXpOrt File PAckage FIAgS.......ccooiiiiiiiiiiii ettt 66
Export File Class Access and Modifier Elags ... 69
Export Filéield Access and Modifier Flags...........cccccoiiiiiiiiiiiiiiiiieeeeeeeeeeree e, 72
Export File Method Access and Modifier FIags..........cccccooviiiiiiiiii e 74
CAHRFIlE COMPONENT TAGS. - tteteieeiiiiieiiiie e e e sttt e e e e et e e e s st e e e e e s s b e e e e e e e sannreees 79
CAP File Component File NAMES.........ccooooiiiiiii i e e e e e e e 79
(7 e | [= Vo L OO OPPPPPPPPPNT 33
CAP File Constant POOI TagSccuiruuurriieieeianiiieiie et e e 94
TYPE DESCHPION VAIUBS......uvtiiiiiiiiiieiieeeeee ettt e e 102
Encoded Reference TYPE PL.CL. ...ttt 103
ENCOAEd BYLE AITAY TV .. eeeiiiieeiiiiiie it e e ettt e ettt e e e e e e e e e e e snbbrnee e e e e e annne 103
Encoded Reference Array TYPE PL.CL.....uuiuiiiiiiiiiiiiieiiee et 103
Encoded Method SigNature (JV........oooo i 104
Encoded Metho@ignature (LPL.CI)S. .. it 104
CAP File Interface @ICIass Flags...........ooooi oot 106
CAP File Method FIAgS......ccoiiiiiiiiiiiiie ettt e e 122
Segments of &tatic Field IMage..........oooo i 124
StAtIC Field SIZES ... it 124
E =\ Y/ =T T PP PPSRPPPPPPPRPN 126
Onebyte Reference LOCatiOBXamMPIEcc.uuuuiiiiiiiiiiiieiiiieiiee et 129
CAP File Class Descriptor FlagS......cooviiiiiiiiii e 136
CAP File Field DeSCriptor FIAgSuuuiiiie et 138
Primitive Typ®escCriptor VAIUES...........couiiiiiiiiiieeeee e 139
CAP File Method DescCriptor FLags..........ooo oot e e 140
Class Access and Modifier Flags...........uuviiiiiiiiiiiiiiiieiieeccee e 146
FieldAccess and MoOdIfier FIagS. i 149
Method MOAIfier FIAgS........uuuueeiiiiiieeiee e 151

Java Card

Platform Virtual Machine Specification, vB.

Table 71: EXample INStrUCHON ENLLY......uuiiiiiiiiiieiiieieeeeeee e e e s s esaeeneees 159

Table 72: AITAY VAlUES........co oot e s e e e e e eeaeeas 172
TabE 7-3: AITAY VAIUES......coe it e e e s e e e e e e e e an 200
=T o] (SR N g o VA £ 10T 217
Table 81: Instructions by OpCOde ValUE.............ooooiiiiiiiiiiieee e 244
Table 82: Instructions by Opcode MNEMOIUC.uvviiiiieiiiieie e 248

Java Card Platform Virtual Machine Specification, vB. Pagel8

Preface

Java Card technology combines a subset of the Java programming language with a runtime environment
optimized for secure elements, such as smart cards and other tangsestant security chipsiava Card
technology offers a secure and interoperal@xecutio platform that can store and update multiple
applications on a single resourcenstrained device, while retaining the highest certification levels and
compatibility with standards. Java Card developers can build, test, and deploy applicatioseraics

rapidly and securely. This accelerated process reduces development costs, increases product
differentiation, and enhances value to customers

The Classic Edition of the Java Gatform is defined by three specifications:

1 Virtual MachineSpeification, Java Card Platform, Version 3.1, Classic Edition
1 Runtime Environment Specification, Java Card Platform, Version 3.1, Classi¢ Edition
9 Application Programming Interface, Java Card Platform, Version 3.1, Classic Edition

This document is specification of the Classic Edition of the Java Card Platfoensjdn3.1, Virtual
Machine (Java Card JM

In this book, Java Card Platform refers to ver&8idrto distinguish it from all earlier versions. A vendor

of a Java Card technologyabled deice provides an iplementation of the Java Card R

implementation within the context of this specification refers to a vendor's implementation of the Java
CardVirtual Machine(or Java Card VM), the Java Card Application Programming Interface (ABigro
component, based on the Java Card technology specifications. A "reference implementation” is an
implementation produced by Oracle. Application software written for the Java Card platform is referred
to as a Java Card technoleggsed applet (Javaa@ applet or card applet).

Who Should Use This Specification

This specification is intended to assist implementers of the Java Card RE in creating an implementation,
developing a specification to extend the Java Card technology specifications, atingces extension

to the runtime environment for the Java Card platform. This specification is also intended for Java Card
applet developers who want a greater understanding of the Java Card technology specifications.

Before You Read This Specification
Before reading this guide, you should be familiar with the Java programming language, the other Java
Card technology specifications, and smart card technology. A good resource for becoming familiar with

Java technology and Java Card technology located at
http://www.oracle.com/technetwork/java/javacard/overview/

Shell Prompts

Shell Prompt

C shell machinename
C shell superuser machinename#
Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Java Card Platform Virtual Machine Specification, vB. Pagel9

http://www.oracle.com/technetwork/java/javacard/overview/

Typographic Conventions
The settings on your browser might differ from these settings.

Typeface Meaning Examples

AaBbCc123 The names of commands,

files, and directories; on-
screen computer output

Edityour.lo gin file.
Usels - ato list all files.
% You have mail

AaBbCcl23 What you type, when

contrasted with on -
screen computer output

Ysu
Password:

AaBbCcl123 Book titles, new words or

terms, words to be
emphasized. Replace
command-line variables

Read Chapter 6 in thdser's Guide
These are calledassoptions.
Youmustbe superuser to do this.
To delete a file, typem filename

with r eal names or
values.

Related Documentation
References to various documents or products are made in this gaodgu might want to have them
available:

1 Application Programming Interface, Java Card Platform, VegsipiClassic Edition

1 Runtime Environmerpecification, Java Card Platform, Verdidn Classic Edition

1 The Java Language Specificafibtips://docs.oracle.com/javase/spegs/

1 I1SO 7816 Specification Part§.Xhttps://www.iS0.0rg)

Third -Party Web Sites

Oracle is not responsible for the availability of thpdrty web sites mentioned in this document. Oracle
does not endorse and is not responsible or liable for any content, advertising, products, or other
materials that are available on or through sudesior resources. Oracle will not be responsible doldia

for any actual or alleged damage or loss caused by or in connection with the use of or reliance on any
such content, goods, or services that are available on or through such sites or resources.

Java Card Platform Virtual Machine Specification, vB. Page20

https://docs.oracle.com/javase/specs/
https://www.iso.org/

Documentation Accessibility
For information about Orde's commitment to accessibility, visit the Oracle Accessibility Program
website at

http://www.oracle.com/pls/topic/lookup?ctx =acc&id=docacc

Access to Oracle Support
Oracle custmersthat have purchased suppoiave access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info

Or, if youare hearing impairedyisit

http://www.oracle.co m/pls/topic/lookup?ctx=acc&id=trs

Oracle Welcomes Your Comments
Oracle is interested in improving its documentation and welcomes goomments and suggestions.

Please include the title of your document with your feedback:

Virtual MachineSpecificationJava Card Platform,3:1, Classic Edition

Java Card Platform Virtual Machine Specification, vB. Page21

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

~ ~ N as " s ~

)T 00T AOGAOQET 1T

Thisdocument specifiethe Java Carirtual Machine featuresequired by he Classic Edition of
JavaCard technology

9 It defines thesubset of theJava Virtual Machine used ftire JavaCardVirtual Machineandlist
the supported and unsupported features.

9 It defines he binary representation of thapplicationcode, therole ard structure of the Export
and CAPRile formats andtheir usein the verification andinking process

1 It specifies theJava Car®irtual Machine bytecode set andts detailed behavior

1.1 Motivation

Java Card technology enables programs written inJéag programming language to be run eawsge
elements such agwart cardsand othertamper-resistant security chipdDevelopers can build and test
programs using standard software development tools and environments, then convert them into a form
that canbe installed onto a Java Card technol@yabled device. Application software for tlava Card
platform is called an applet, or more specifically, a Java Card applet (to distinguish it from browser
applets).

While Java Card technology enables progranittemrin the Java programming language to runsomall
devices such asmart cardsthoseare far too undespowered to support the full functionality of the

Java platform. Therefore, the Java Card platform supports only a carefully chosen, customizedfsubse
the features of the Java platforrithis subset provides features that are waeiited for writing programs

for small devices and preserves the objedented capabilities of the Java programming language.

A simple approach to specifying a Java @atdal machine would be to describe the subset of the

features of the Java virtualachine that must be supported to allow for portability of source code

across all Java Card technology enabled devices. Combining that subset specification and the

information inJava Virtual Machine Specificati@mart cardand secure elementsanufactures could

construct their own Java Card technolegyy 8 SR A Y LI SYSy Gl GA2ya o6awWk @ /I N
that approach is feasible, it has a serious drawback. Thétaasyplatform would be missing the

important feature of binary portability of Javad applets.

The standards that define the Java platform allow for binary portability of Java programs across all Java
LI F GF2NY AYLIE SYSYy (Il GA BRKENBEKAjaz & ANTRG 2 F2 yWO DT NBsy 3N
most significant feature of the platfm. Part of the motivation for the creation of the Java Card

Java Card Platform Virtual Machine Specification, vB. Page22

platform was to bring just this kind of binary portability to tambedded security angdmart card
industry. h a world with billions ofecure elementsvith varying processors and configuratiotise
costs of supporting multiple binary formats for software distribution could be overwhelming.

ThisVirtual Machine Specification, Java Card Platfoi3ul,\Classic dition is the key to providing binary
portability. One way of understanding what this specification does is to compare it to its counterpart in

the Java platform. The Java virtual machine specification defines a Java virtual machine as an engine that
loadsJaveclass files and executes them with a particular set of semantics. The class file is a central piece
of the Java architecture, and it is the standard for the binary compatibility of the Java platform. The

Virtual Machine Specification, Java Card Blatf, \8.1, Classic Editioalso defines a file format that is

the standard for binary compatibility for the Java Card platform: the CAP file format is the form in which
software isdeployed to bdoaded onto devices which implement a Java Card virtual mach

1.2 The Java Card Virtual Machine

The role of the Java Card virtual machine is best understood in the context of the process for production
and deployment of software for the Java Card platform. There are several components that make up a

Java Cardystem including the Java Card virtual machine, the Converter for the Java Card platform

OAWF @ [/ I NR /2y@SNISNEOVLI | GSNXAYLE Ayadlfttlrirzy
as shown irFigurel-1 and Figurel-2.

Figurel-1: Java Cardpplication or LibraryConversion

B

class files

export files

ET ____________ |

4

Java Card Platform Virtual Machine Specification, vB. Page23

Figurel-2: JavaCardApplication or Librarylinstallation

Terminal Device

Java Card

Installer components

Installation
.................. > ||
tool

CAP file

Development of a Java Card applet begins as with any other Javamragdeveloper writes one or

more Java classes, and compiles the source code with a Java compiler, producing one or more class files.
The apptt is run, tested and debugged on a workstation using simulation tools to emulate the device
environment. Then, Wwen an applet is ready to be downloaded to a device, the class files comprising the
applet are converted to a CAP (converted applet) file ugidgva Card Converter.

The Java Card Converter takes as input all of the class files in one or more Javaspabkagmake up
a Java Car@AP fileA Java package that contains one or more-abstract subclasses, direct or
indirect, of the javacard.fr amework.Applet class is referred to as applet package.
Otherwise the package is referred to as a library pgek# Java Caf@AP filenay contain onlapplet
packages, only library packages or a combinaticappfet and library packageAdditionally, both
applet andlibrary packages in a Java Ca#P fileean be public or private.

A private library package inJava Car@€AP filas not listed in the Export Compone{®. 13 Export
Componen}of the CAP filerad is therefore not isible outside thelava Car@AP fileSimilarly a private
applet package in dava Car€AP filas not listed in the Export Componef@. 13 Export Componenof
the CAP file, however, neaibstract direct or indirect subclasses of the

javacard.framework.Applet class are listed in the Applet Componésit Applet Componeint
of the CAP fileFor a publi@pplet package in a Java C&AP fileonly publt interfaces extending
javacard.framework.Shareable are listed in the Export Compone{tt.13 Export Componeht

of the CAP file and are therefore visible outside the Java CaRIfileFor further details sedhe CR
File Format

The Java Card Converter also takes as input one or more export files. An export file contains name and
link information for the contents of other packages tlzaie imported by the classes being cened.
The converter can also produce export files for the public applet and library packagE&m file.

After conversion, the CAP file is copied to a terminal, such as a desktop computer with a card reader
peripheral. Then an installation tool on thherminal loads the CAP file and transmits it to the Java Card
technologyenabled device. An installation program on the device receives the contents of the CAP file

Java Card Platform Virtual Machine Specification, vB. Page24

and prepares the applet to be run by the Java Catdalimachine. The virtual machineéié needs not
load or manipulate CAP files; it omigeds toexecute the applet code found in the CAP file that was
loaded onto the device by the installation program.

The division of functionality between the Javadartual machine and the installatioprogram keeps

both the virtual machine and the installation program small. The installation program may be

implemented as a Java program and executed on top of the Java Card virtual machine. Since instructions
forthS W @I /I NR LX | dDFANIE y&é& W GINE/ RSN aBWA @K y G&LRAOL
reduce the size of the installer. The modularity may enable different installers to be used with a single

Java Card virtual machine implementation.

1.3 Java Larguage Security
One of the fundamentdeatures of the Java virtual machine is the strong security provided in part by
the class file verifier.

The Java Candrtual machinespecificatiormandatesCAP fileverification The dataneeded for
verification ispackaged separatefyom the data neded for the actual execution of the codsee6.14
Descriptor ComponentThisenablesthe followingtwo options forthe implementation othe
verification depending on device capabilities, resources and deploymeaiet

1 Perform CAP file verification sidethe device(on-device verification)
1 Perform CAP fileverificationoutside the device (offlevice verification)

The CAP file verificatianust beperformed at least once, before loading, before installatiortbefore
execution of the codgn order toensure that eaclbytecode is valid at execution tim®ffdevice
verification can also be systematically used to detect any issue before initiating deployment.

Whenoff-device verificatioroption is usedthe dedoyment processnust alscensure that

1 \Verificationusesexport filesthat arebinary compatible wittAPIpackagesnstalledonthe
device(seeb The Export File Fornjat

9 After verification, he CAP fileo be executed on the devidenot alteredin a way that does not
satisfythe constraints checked kihis verification

1.4 Java Card Runtime Environment Security

The standard runtime environment for the Java Cardfptat is the Java Card Runtime Environment

(Java Card RE). Tlawd Card RE consists of an implementation of the Java Card virtual machine along
with the Java Card API classes. While the Java Card virtual machine has responsibility for ensuring Java
langua@-level security, the Java Card RE imposes additional rungémeis/ requirements on devices

that implement the Java Card RE, which results in a need for additional features on the Java Card virtual
machine. Throughout this document, these additionaltfeas are designated as Java Carespé&cific.

Java Card Platform Virtual Machine Specification, vB. Page25

The basic runthe security feature imposed by the Java Card RE enforces isolation of applets using what
is called an applet firewall. The applet firewall prevents the objects that were created by one applet
from being used by another applet. This prevents unauthorizedszcto both the fields and methods of
class instances, as well as the length and contents of arrays.

Isolation of applets is an important security feature, but it requires a mechanism te afiplets to

share objects in situations where there is a né@dhteroperate. The Java Card RE allows such sharing
using the concept of shareable interface objects. These objects provide the only way an applet can make
its objects available for use bytwr applets. For more information about using shareable intarfa

objects, see the description of the interfajgvacard.framework.Shareable in the Application
Programming Interface, Java Card Platfor@,lyClassic EditiorSome descriptions of firewatlated

features make reference to th8hareable interface.

The applet firewall also protects from unauthorized use the objects owned by the Java Card RE itself.
The Java Card RE can use mechanisms not reflected in the Java Card API to make itsaolajelet $cav
use by applets. A full description of the Java GRecelated isolation and sharing features can be found
in the Runtime Environment Specification, Java Card Platf@rh, @lassic Edition

Java Card Platform Virtual Machine Specification, vB. Page26

P ~ Ve ~ ~

I 30A0A0 1T &£# OEA *AOA 6EOOODOAI

This chater describes the subset of the Java virtual machine and language that is supported in the
JavaCard platform.

2.1 Why a Subset is Needed

It would be ideal if programs faecure elements such amart cards could be written using all of the
Jawa progranming language, but a full implementation of the Java virtual machine is far too large to fit
on even the most advanced resourcenstrained devices available today.

A typical resourceonstrained device has on the order of 1.2K of RAM, 16K ofalatile memory
(EEPROM or flash) and 328K of ROM. The code for implementing string manipulation, single and
doubleprecision floating point arithmetic, and thread management would be larger than the ROM
space on such a device. Even if it could be madi, there would be no space left over for class
libraries or application code. RAM resources are also very limited. The only workable option is to
implement Java Card technology as a subset of the Java platform.

2.2 Java Card Platform Language Subset

Appletswritten for the Java Card platform are written in the Java programming language. They are
compiled using Java compilers. Java Card technology uses a subset of the Java language, and familiarity
with the Java platform is required to understand theva Cal platform.

The items discussed in this section are not described to the level of a language specification. For
complete documentation on the Java programming languageTheeelava Language Specification

2.2.1 Unsupported Items
The items ligéd in ths section are elements of the Java programming language and platform that are
not supported by the Java Card platform.

2.2.1.1 Unsupported Features
The following features are not supported.

2.2.1.1.1 Dynamic Class Loading

Dynamic class loading is matpported in the Java Card platform. An implementation of the Java Card
platform is not able to load classes dynamically. Classes are either masked idevibeduring
manufacturing or downloaded through an installation pees aftelit has been issuedRrograms

Java Card Platform Virtual Machine Specification, vB. Page27

executing on thalevicemay only refer to classes that already exist ondeeice since there is no way
to download classes during the normal execution of application code.

2.2.1.1.2 Security Manager

Security maagement in the Java Card gdlatm differs significantly from that of the Java platform. In the
Java platform, there is a Security Manager clgs&(lang.SecurityManager) responsible for
implementing security features. In the Java Card platform, langsagérity policies are implennéed

by the virtual machine. There is no Security Manager class that makes policy decisions on whether to
allow operations.

2.2.1.1.3 Finalization
Finalization is also not supportefihalize() will not be called automatichl by the Java Card virtual
machine.

2.2.1.1.4 Threads

The Java Card virtual machine does not support multiple threads of control. Programs for the Java Card

LX F GF2NY 6aWF @ /I NR ThéN@® arlddy wfdhe threa@dlayed eywordsitbe Of | 4 a
Java programming langge.

2.2.1.1.5 Cloning
The Java Card platform does not support cloning of objects. Java Card ABbjgass does not
implement a clone method, and there is doneable interface provided.

2.2.1.1.6 Access Control idava Packages
The Java Card pfatm language subset supports the package access control defined in the Java
language. However, the cases that are not supported are as follows.

1 If aclass implements a method with package access visibility, a subciass aaerride the
method and chang the access visibility of the method to protected or public.

1 A public class cannot contain a public or protected field of type reference to a pacisige
class.

1 A public class cannot contain a public or protectedhnd with a return type of type rerence
to a packageisible class.

1 A public or protected method in a public class cannot contain a formal parameter of type
reference to a packageisible class.

1 A packagevisible class that is extended by a public €leannot define any public or peatted
methods or fields.

1 A packagevisible interface that is implemented by a public class cannot define any fields.

1 A packagevisible interface cannot be extended by an interface with public access visibility.

2.2.1.17 Typesafe Enums
The Java Cardgiform language subset does not support the enumerated type facility and the keyword
enum.

Java Card Platform Virtual Machine Specification, vB. Page28

2.2.1.1.8 Enhanced for Loop

The Java Card platform language subset does not support the enhanced for loop language construct.
Qupport for the enhanced for loopomstruct requires support for array indexing using the integer data
type. The Java Card platform only supports array indexing using the short data type.

2.2.1.1.9 Varargs

The Java Card platform language subset does not support valedgth argumentists. The variable

length argument construct requires the compiler to generate code that creates a new array object each
time a variabldength argument array method is inved, thereby causing implicit memory allocations

in Java Card runtime memory heap.

2.2.1.1.10 Runtime Visible Metadata (Annotations)

The Java Card platform does not support this language feature which lets you introducdateeta
information into the runtime environment to be accessed reflectively. The Java Card platform does not
suppat reflection.

2.2.1.1.11 Assertions
The Java Card runtime does not provide runtime support for statements in the Java programming
language called assertions that are usedest assumptions about program functionality.

2.2.1.2 Unsupported Keywords
The following keywords indicate unsupported options related to native methods, threads, floating point,
memory management, and debuggi

1 native

9 strictfp

1 synchronized
1 enum

9 transient

1 assert

1 volatile

2.2.1.3 Unsupported Types
The Java Card platform d®eot support types

char

double

float

long

9 arrays of more than one dimension.

=A =4 =4 =4

2.2.1.4 Unsupported Classes
In general, none of the Java programming language core API classes are supported in the Java Card
platform. Some classes from theva.lang packageare supported (se&ection2.2.2.4 Supported

Java Card Platform Virtual Machine Specification, vB. Page29

Classeg but none of the rest are. For example, classes that are not supportesiiding , Thread
(and all hreadrelated clases), wrapper classes suchBaolean andinteger , and clas€lass .

2.2.1.4.1 System
Clasgava.lang.System is not supported. Java Card technology supplies a class
javacard.framework.JCSystem , Which provides an interface to system behavior.

2.2.2 Supported Items
If a language feature is not explicitly described as unsupported, it is part of the supported subset.
Notable supported features are described in this section.

2.2.2.1 Supported Fedures
The following features are the more important supporteatures.

2.2.2.1.1 Packages

Software written for the Java Card platform follows the standard rules for the Java platform packages.
Java Card API classes are written as Java source filel,imdlude package designations. Package
mechanisms are usdd identify and control access to classes, static fields and static methods. Except as
Yy20SR Ay a! O0Saa [/ 21 NBshppokted FaaurggackagestfielJa&Cadd 6
platform are used exactly the way they are in the Java platform.

2.2.2.1.2 Dynamic Object Creation
The Java Card platform programs supports dynamically created objects, both class instances and arrays.
This is done, as usydiy using thenew operator. Objects are allocated out of the heap.

A Java Card virtual machine will not necessarily garbage collect objects. Any object allocated by a virtual
machine may continue to exist and consume resources even after it becomeshabdaSee2.2.3.2

Object Deletion Mechanistior more information regarding support for an optional object deletion
mechanism.

2.2.2.1.3 Virtual Methods

Since Java Card technoldggsS R 2062S0iGa oaWFH@F /I NR 2062S80iGaé¢v |
invoking virtual methods on objects in a gram written for the Java Card platform is exactly the same

as in a program written for the Java platform. Inheritance is supported, imgute use of the super
keyword.

2.2.2.1.4 Interfaces

Java Card API classes may define or implement interfagegtes Java programming language. Invoking
methods on interface types works as expected. Type checking andstamceof operator also

work correctly with interfaces.

2.2.2.1.5 Exceptions
Java Card programs may define, throw and catch exceptions, as in Java progranT$rG\eesisle
and its relevant subclasses are supported. S&xeeption andError subclasses are omitted, since

Java Card Platform Virtual Machine Specification, vB. Page30

NI

those excetions cannot occur in the Java Card platfoBee2.3.3 Exceptionfor specification of errors
andexceptions.

2.2.2.1.6 Generics
This Java language facility allows petypr method to operate on objects of various types while
providing compiletime type safety. It adds compitime type safety and eliminates the need for casting.

2.2.2.1.7 Statidmport
This Java language facility lets you avoid importing an enéss simply to access its static members or
qualifying static members with class hames each time it is used.

2.2.2.1.8 Runtime Invisible Metadata (Annotations)

This language feature lets you avoid writing boilerplate code under many circumstances bggnab
tools to generate it from annotations in the source code. The Java Card platform language subset
supports the use of annotations which are not visible atime. These annotations do not themselves
use the runtime visible metdata annotation@Retent ion(RetentionPolicy.RUNTIME)

2.2.2.2 Supported Keywords
The following keywords are supported. Their use is the same as in the Java programming language.

abstr act
boolean
break
byte

case
catch
class
continue
default

do

else
extends
final
finally

for

got o

if
implements
import
instanceof
int
interface
new
package
private

E BB B S R R I B I I B |

Java Card Platform Virtual Machine Specification, vB. Page31

protected
public
return
short
static
super
switch
this
throw
throws
try
void
while

=4 =4 =4 -8 -8 - a8 o8 g

=

2.2.2.3 Supported Types
Java programming language typagpported:

boolean

byte

short

int

Objects (clasmstances and singldimensianal arrays)

Arrays can contain the supported primitive data types, objects, and other arrays.

= =4 =4 -4 -8 -4

Some Java Card implemeritais might not support use of that data type. (Refer t2.2.3.1 Integer
Data Typg

2.2.2.4 Supported Classes
Most of the classes in thHava.lang package are not supported on the Java Card platform. The

following classes frorjava.lang are supported on the card in a litad form.

2.2.2.4.1 Object
Java Card API classes descend feva.lang.Object , just as in the Java programming language.

Most of the methods oDbject are not available in the Java Card API, but the class itself exists to
provide a root for the cladsierarchy.

2.2.2.4.2 Throwable
ClassThrowable and its subclasses are supported. Most of the methodBhobwable are not

available in the Java Card API, but the class itself exists to provide a common ancestor for all exceptions.

2.2.3 Optionally Suppor ted Items

This section describes the optional features of the Java Card platform. An optional feature is not
required to be supported in a Java Card platfarompatible implementation. However, if an
implementation does include supportifan optional feture, it must be supported fully, and exactly as
specified in this document.

Java Card Platform Virtual Machine Specification, vB. Page32

2.2.3.1 Integer Data Type

Theint keyword and 32bit integer data type need not be supported in a Java Card implementation. A
Java Card virtual machine that doeot support thant data type will reject programs which use the

int data type or 32it intermediate values.

The result of an arithmetic expression produced by a Java Card virtual machine must be equal to the
result produced by a Java virtual machine, regardless o values. A Java Card virtual machine
that does not support thént data type must rejectxpressions that could produce a different result.

2.2.3.2 Object Deletion Mechanism

The Java Card platform offers an optional, object deletion mechanismicAiiphs designed to run on
these implementations can use the facility by invoking the approgrdPl. Sedpplication
Programming Interface, Java Card Platfor@,lyClassic EditioBut, the facility is best suited for
updating large objects such asrtificates and keys atomically. Therefore, application programmers
should conserve on the alloian of objects.

2.2.4 Limitations of the Java Card Virtual Machine

The limitations of resourceonstrained hardware prevent Java Card virtual machines ftmparting

the full range of functionality of certain Java platform features. The features istigumeare supported,

but a particular virtual machine may limit the range of operation to less than that of the Java platform.

To ensure a level of portabilitgr application code, this section establishes a minimum required level
for partial support othese language features.

¢KS fAYAGlIGA2ya KSNB INB tAaGSR & YIEAYdzYa TNRY
packagesncluded in a Java Ca@RP ife that do not violate these maximum values can be converted

into Java Card technologpased CRT A £ S& 6 & WI @ land will déBortdble acroFs alf J&va €abd

AYLE SYSYy (Gl dA2yad CNBY (KS W@ /I NR &l lgted YI OKA
indicates a minimum level of support that will allow portability of applets.

2.2.4.1 Limitations of Packages
The following are limitations of packages.

2.2.4.1.1 Packages in a Java C&AP file
A Java Car@AP fileean contain at most 25packages.

2.2.4.12 Package References
A package can reference at most 128 other packagésnal to the Java Cai@dAP filecontaining the
package.

2.2.4.13 Package Name

The fully qualified name of a package may contain a maximum of 255 characeaddage name
size is further limited if it contains one or more characters which, when represented irBUdifmat,
requires multiple bytes.

Java Card Platform Virtual Machine Specification, vB. Page33

2.2.4.2 Limitations of Classes
The following are limitations of classes.

2.2.4.2.1 Classes in a Package
A pakage can contain at most 255 classes and interfaces.

2.2.4.2.2 Interfaces
A class can implement at most 15 interfaces, including interfaces implementagoby classes

An interface can inherit from at most Bper interfaces

2.2.4.2.3 Static Fiels

A class in an applet package can have at most 256 public or protected stafioadields. A class in a
library package can have at most 255 public or protected statiefimahfields. There is no limit on the
number of static final fields (coremts)declared in a class.

2.2.4.2.4 Static Methods
A class in an applet package can have at most 256 public or protected static methods. A class in a library
package can have at most 255 public or protected static methods.

2.2.4.3 Limitations of Objects
The following are limitations of objects.

2.2.4.3.1 Methods
A class can implement a maximum of 128 public or protected instance methods, and a maximum of 128
instance methods with package visibility. These limits include inherited methods.

2.2.4.32 Class Instances
Class instances can contain a maximum of 255 fields, whard adata type is counted as occupying
two fields. These limits include inherited fields.

2.2.4.3.3 Arrays
Arrays can hold a maximum of 32767 components.

2.2.4.4 Limitatio ns of Methods

The maximum number of variables that can be used in a method is 255. This limit includes local
variables, method parameters, and, in the case of an instance method invocation, a reference to the
object on which the instance method is beingoked (meaningthis). Anint data type is counted as
occupying two local variables.

A method can have at most 32767 Java Card virtual machine bytecodes. The number of Java Card

technologyo 8 SR 608G S0O2RSa 64wl @l /I NR pDoRiadOyeeo8esin 0 Y & |
the Java virtual machine implementation of that method.

The maimum depth of an operand stack associated with a method is 255itldells.

Java Card Platform Virtual Machine Specification, vB. Page34

2.2.4.5 Limitations of Switch Statements

The format of the Java Card virtual machine swittstructions limits switch statements to a maximum
of 656536 cases. This limit is faeater than the limit imposed by the maximum size of meth@i2.4.4
Limitations ofMethods).

2.2.4.6 Limitations of Class Initialization

The Java Card virtual machine contains limited support for class initialization because there is no general
mechanism for executingclinit> methods. Support foxclinit> methods is limited to the

initialization of static field values with the following constraints:

9 Static fields of appleEAP filesnay only be initialized to primitive compitame constant values,
or arrays of primitive compilime constants.

9 Static fields in interfaces must only trétialized to primitive compil¢ime constant

9 Static fields oCAP filegontaining onlyuser libraries may only be initialized to primitive
compiletime constant values.

1 Only static fields declared the current class may be initialized in thelin it> method.

Primitive constant data types includ@olean, byte, short , andint .

Given Java technology source files that adhere to these langeagkconstraints on static field
initialization, it is &pected that reasonable Java compilers will:

1 Inline constants in the bytecodes that reference static final primitive fields that are initialized in
the declaration statement.
1 Produce only the following bytecodes:
o load a value on the staclkconst_[m1,0 - 5], [b|s]ipush, Idc, Idc_w,
aconst_null
create anarray:newarray([byte|short|booleanl|int])
duplicate items on the stacktup
store values in arrays or static fieldlsfi|s]astore, putstatic
return from method:return

O O O O

2.2.5 Multiselectable Applets Restrictions
Applets that implement thgavacard.fr amework.Multiselectable interface are called

multiselectable applets. For more details on multiselection, please seRuh&me Environment
Specification, Java Card Platforr,ly Classic Edition

All applets withira CAP fileshall be multiselectabler none shall be.

2.2.6 Java Card Platform Remote Method Invocation (RMI) Restrictions

CKAd a800A2y RSFAYSA (KS a4doadSi 2F GKS wal &aé
/' NR waLéoo

QX
=N

Java Card Platform Virtual Machine Specification, vB. Page35

w

2.2.6.1 RemoteClasses and Remote Interfaces
A classs remote if it or any of its superclasses implements a remote interface. A remote interface is an
interface which satisfies the following requirements:

1 The interface name iava.rmi.Remote or the interface extenddirectly or indirectly, the
interfacejava.rmi.Remote

1 Each method declaration in the remote interface or its suipéerfaces includes the exception
java.rmi.RemoteException (or one of its superclasses) intklsows clause.

1 Inaremote method declarain, if a remote object is declared ageturn type, it is declared as
the remote interface, not the implementation class of that interface.

In addition, Java Card RMI imposes additional constraints on the definition of remote methods. These
constraintsare as a result of the Java Card platfi language subset and other feature limitations. For
more information, se@.2.6.2 Access Control of Remote Interfagrd2.2.6.3 Parameters and Return
Values

2.2.6.2 Access Control of Remote Interfaces
The Java RMI system supports the package aazmdrol defined in the Java language. However, Java
Card RMI does not support packageable remoteinterfaces.

2.2.6.3 Parameters and Return Values
The parameters of a remote method must only include parameters of the following types:

1 Any primitivetype supported by Java Card technololggdlean, byte, short, int)
1 Any sngledimension aray type of gorimitive type supported by Java Card technology
(boolean[] , byte[], short[], intf|)

The return type of a remote method must only be one of the following types:

1 Any primitive type supported by Java Card technoldgplean, byte, short, int)

1 Any singledimension array type of a primitive type supported by Java Card technology
(boolean(], byte[], short(], int]]|)

1 Any remote interface type

1 Typevoid

2.3 Java Card VM Subset
Java Card technology uses a subset of the Java virtual machirfanaifidrity with the Java platform is
required to understand the Java Card virtual machine.

The iems discussed in this section are not described to the level of a virtual machine specification. For
complete documentation on the Java virtual machineerdd The Java Virtual Machine Specification

Java Card Platform Virtual Machine Specification, vB. Page36

2.3.1 Class File Subset

The operation of the Java @avirtual machine can be defined in terms of standard Java platform class
files. Since the Java Card virtual machine supports only a subset of the betiakimdava virtual
machine, it also supports only a subset of the standard class file format.

2.3.1.1 Not Supported in Class Files
The following items are not supported in class files.

2.3.1.1.1 Class Access Flags
Inclass_info andinterface_info structures, the access flagCC_ENUN4 not supported.

2.3.1.1.2 Field Descriptors
Field descriptors may not contaBaseType charactersC, D, For J. ArrayType descriptors for
arrays of more than one dimension may not be used.

2.3.1.1.3 Constant Pool
Constant pool table entries with the following tag values are not supported.

Table2-1: Unsupported Java Constant Pool Tags

Constant Type Value \
CONSTANT_String 8
CONSTANT _Float 4
CONSTANT_Long 5
CONSTANTDouble 6
2.3.1.1.4 Fields

Infield_info structures, the access flageCC_VQATILE, ACC_TRANSIENTandACC_ENUM
are not supported.

2.3.1.1.5 Methods
Inmethod_info structures, the access flag&CC_SYNCHRONIZED, ACC_STRICT,
ACC_NATIVE andACC_VARARG&e not supported.

2.3.1.2 Supported in Class Files
The following items are supported in class files.

2.3.1.2.1 ClassFile
All items in theClassFile structure are supported.

2.3.1.2.2 Field Descriptors
Field descriptors may contaBaseType charactesB, | ,SandZ, as well a anyObjectType
ArrayType descriptors for arrays of a single dimension may also be used.

Java Card Platform Virtual Machine Specification, vB. Page37

2.3.1.2.3 Method Descriptors
All forms of method descriptors are supported.

2.3.1.2.4 Constant Pool
Constant pool table entry with thisllowing tag values areupported.

Table2-2: Supported Java Constant Pool Tags

Constant Type \ Value \
CONSTANT _Class 7

CONSTANT _Fieldref 9

CONSTANT_Methodref 10

CONSTANT _InterfaceMethodref 11

CONSTANT _Irteger 3

CONSTANT_NameAndType 12

CONSTANT_Utf8 1

2.3.1.2.5 Fields

Infield_info structures, the supported access flags A€C_PUBLIC ACC_PRIVATE
ACC_PROTECTEBCC_STATICandACC_FINAL.

The remaining components &éld_info structures are fully gpported.

2.3.1.2.6 Methods
Inmethod_info structures, the supported access flags &@C_PUBLIC, ACC_PRIVATE,
ACC_PROTECTED, ACC_STATIC, ACC_FINALand ACC_ABSTRACT

The remaining components afethod_info structures are fully spported.

2.3.1.2.7 Attibutes

Theattribute_info structure is supported. Th€ode, ConstantvVal ue, Exceptions
LocalVariableTable , Synthetic , InnerClasses , RuntimelnvisibleAnnotations ,
RuntimelnvisibleParameterAnnotations andDeprecated attributes are supported.

2.3.2 Bytecode Subset
The following sections detail the bytecodes that are either supported or unsupported in the Java Card
platform. For more details, refer tGhapter 7Java Card Virtual Machine Instruction.Set

2.3.2.1 Unsupported Bytecodes
The unsupported ytecodesare:

caload
castore
d2f

d2i

=A =4 =4 A

Java Card Platform Virtual Machine Specification, vB. Page38

d2l

dadd
daload
dastore
dempg
dcmpl
dconst_<d>
ddiv

dload
dload_<n>
dmul

dneg
drem
dreturn
dstore
dstore_<n>
dsub

f2d

f2i

fadd
faload
fastore
fcmpg
fcmpl
fconst_<f>
fdiv

fload
fload_<n>
fmul

fneg

frem
freturn
fstore
fstore_<n>
fsub
goto_w
i2c

i2d

i2f

i2l

jsr_w

R N T I B I I I R B I I B - |

Java Card Platform Virtual Machine Specification, vB. Page39

= =4 =8 =4 - -4 -8 -8 _-f —f a8 a8 —f of o Ao o oA o e

=

2.3.2.2 Supported Bytecodes
The supported bytecodes are:

= =4 =4 =4 -8 -4 -8 -4 -9 9

12d
12f

12i
ladd

laload
land
lastore
lcmp
Iconst_<I>
ldc2_w2
Idiv

lload

lload_<n>
Imul

Ineg
lor

| rem
Ireturn

Ishl
Ishr
Istore

Istore_<n>

Isub
lushr

Ixor

monitorenter

monitorexit

multianewarray

aaload
aastore
aconst_null
aload
aload_<n>
anewarray
areturn
arraylength
astore
astore_<n>

Java Card Platform Virtual Machine Specification, vB.

Page40

athr ow
baload
bastore
bipush
checkcast
dup

dup_x1
dup_x2
dup2
dup2_x1
dup2_x2
getfield
getstatic
goto

i2b

i2s

iadd

iaload

iand

iastore
iconst_<i>
idiv

if<cond>
ifacmp_<cond>
ificmp_<cond>
ifnonnull
ifnull

iinc

iload
iload_<n>
imul

ineg
instanceof
invokeinterfa ce
invokespecial
invokestatic
invokevirtual
ior

irem

ireturn

ishl

ishr

istore
istore_<n>
isub

e B B I I R L I R R B R I B T R B B B B I B R B |

Java Card Platform Virtual Machine Specification, vB. Paged1

iushr
ixor

jsr

Idc

ldc_w
lookupswitch
new
newarray
nop

pop

pop2
putfield
putstatic
ret

return
saload
sastore
sipush
swap
tableswitch
wide

=4 =4 =4 =8 =8 8 -f f o of o oa oS oA e oa

2.3.2.3 Static Restrictions on Bytecodes
A class file must conform to the following restrictions on the static form of bytecodes.

2.3.2.3.11dc, Idc_w

Theldc andldc_w bytecodes can only be used to load integer constants. The constant pool entry at
index must be £ZONSTANT _hteger entry. If a program contains ddc orldc_w instruction that

is used to load an integer value less tha@768 or greater than 32767, that program will require the
optionalint instructions 2.2.3.1 Integer Data Tyjpe

2.3.2.3.2 lookupswitch

The value of thapairs operand must be less than 65536.i§ limit is far greater than the limit
imposed by the maximum size of metho@s2(4.4 Limitatios ofMethods). If a program contains a
lookupswitch instruction that uses keys of typet , that program will require the optionaht
instructions 2.2.3.1 Integer Data TypeOtherwise, key values must be in the rang2768 to 32767.

2.32.3.3 tableswitch

The bytecode can contain at most 65536 cases. This limit is far greater than the limit imposed by the
maximum size of method2(2.4.4 Limitations ofMethods). If a program does not use the optiorai
instruction (2.2.3.1 Integer Data Tyjpethe values of thdigh andlow operands must both be at least
-32768 and at most 3276

2.3.2.3.4 wide
Thewide bytecode can only be used with @nc instruction.

Java Card Platform Virtual Machine Specification, vB. Page42

2.3.3 Exceptions

The Java Card plaffdy’ LINR GA RS & FdzZ f adzLILBR2 NI F2N 0KS Wk @F LXK I
define, throw and catch exceptions just as in the Java platform. The Java Card platform also makes use

of the exceptions and errors definedTime Java Langge SpecificatiarAn updated list of the Java

LX FGF2NY¥Qa SEOSLIiA2ya A&a LINPGARSR Ay (GKS W5Y &az2¥i

b2d Ittt 2F GKS WFHGF LXFGIF2NYy¥Qa SEOSLIiA2y&a | NB & dz)
unsupported features are naturglhot supported. Cks loader exceptions (the bulk of the checked
exceptions) are not supported.

Note that some exceptions may be supported to the extent that their error conditions are detected
correctly, but classes for those exceptions will not necelyslae present intie API.

The supported subset is described in the tables below.

2.3.3.1 Uncaught and Uncatchable Exceptions

Ly GKS W@ LI FGF2NYs dzy Ol dAK(G SEOSLIiA2ya | yR SNN
exit. As the Java Cavittual machine isinglethreaded, uncaught exceptions or errors will cause the

virtual machine to halt. Further response to uncaught exceptions or errors after halting the virtual

machine is an implementatiegpecific policy, and is not mandated in tHzcument.

Some eror conditions are known to be unrecoverable at the time they are thrown. Throwing a runtime
exception or error that cannot be caught will also cause the virtual machine to halt. As with uncaught
exceptions, implementations may take foer responses aftenalting the virtual machine. Uncatchable
exceptions and errors which are supported by the Java Card platform may not be reflected in the Java
Card API, though the Java Card platform will correctly detect the error condition.

2.3.3.2 Chrecked Exceptions
Syport of Java checkedkeeptions

Table2-3: Support of Java Checked Exceptions

Exception Supported or Not Supported

ClassNotFoundException Not Supported
CloneNotSupportedException Not Supported
lllegalAcc essException Not Supported
InstantiationException Not Supported
InterruptedException Not Supported
NoSuchFieldException Not Supported
NoSuchMethodException Not Supported

Java Card Platform Virtual Machine Specification, vB. Page43

2.3.3.3 Runtime Exceptions
Support of Java Runtime Exceptions

Table2-4: Support of Java Runtime Exceptions

Runtime Exception

Supported or Not Supported

ArithmeticException Supported
ArrayStoreException Supported
ClassCastException Supported
lllegalArgumentException Not Supported
lllegalThreadStateException Not Supported
NumberFormatException Not Supported
lllegalMonitorStateException Not Supported
lllegalStateException Not Supported
IndexOutOfBoundsException Supported
ArraylndexOutOfBoundsException Supported
StringlndexOutOf BoundsException Not Supported
NegativeArraySizeException Supported
NullPointerException Supported
SecurityException Supported

2.3.3.4 Errors
Support of Java errors:

Table2-5: Support of Java Errors

Error Supported or Not Supported \
AssertionError Not Supported
LinkageError Supported
ClassCircularityError Supported
ClassFormatError Supported
ExceptionInlnitializerError Supported
IncompatibleClassChangeError Supported
AbstractMethodError Supported

| llegalAccessError Supported
InstantiationError Supported
NoSuchFieldError Supported
NoSuchMethodError Supported
NoClassDefFoundError Supported
UnsatisfiedLinkError Supported
VerifyError Supported
ThreadDeath Not Supported
VirtualMachineError Suppoted
InternalError Supported
OutOfMemoryError Supported

Java Card Platform Virtual Machine Specification, vB.

Paged4

Error Supported or Not Supported

StackOverflowError Supported
UnknownError Supported
UnsupportedClassVersionError Supported

Java Card Platform Virtual Machine Specification, vB.

Page45

3000A000A 1T &£#/ OEA *AOA #AOA 6EC
The specification of the Java Card virtual machinensany ways quite similar to that of the Java virtual
machine. This similarity is of course intentional, as the design of the Java Card virtual machine was based
on that of the Java virtual machine.tRer than reiterate all the details of this specificatiaich are
shared with that of the Java virtual machine, this chapter will mainly refer to its counterp@ieidava
Virtual Machine Specification, Second Editjmoviding new information only vére the Java Card
virtual machine differs.

3.1 Data Types and Values

The Java Card virtual machine supports the same two kinds of data types as the Java virtual machine:
primitive typesandreference typesLikewise, the same two kinds of values are upeithitive values
andreference values

The primitive @ta types supported by the Java Card virtual machine aratingeric typesthe boolean
type, and thereturnAddress type. The numeric types consist only of these types:

f byte ,whosevaluesareBita A 3y SR (62Qa O2YLX SYSyid AydS3aSNE
 short ,whosevaluesar#60 A G aA3IYySR (6204 O2YLI SYSyd AydsS3as

Some Java Card virtual machine implementations may also support an additional integral type:
 int ,whosevaluesare3@A (i aA3JYySR (G662Qa O2YLX SYSyid AyidS3aSN

Support for theboolean type is identical to that in thdava virtual machine. The value 1 is ued
represent true and the value of 0 is used to represent false.

Support forreference types is identical to that in the Java virtual machine.

3.2 Words

The Java Card virtual machine is defined in terms of atradi storage unit calledwaord. This
specification does not mandate the actual size in bits of a word on a specific platform. A word is large
enough to hold a value of tygeyte , short ,reference orreturnAddress . Two words are

large enough to hold a We of typeint .

The actual storage usddr values in an implementation is platforapecific. There is enough
information present in the descriptor component ofZ&Pfile to allow an implementation to optimize
the storage used for values in variableslam the stack.

Java Card Platform Virtual Machine Specification, vB. Page46

3.3 Runtime Data Areas

The Java Card virtual machine can support only a single thread of execution. Any runtime data area in
the Java virtual machine which is duplicated on athegad basis will have only one global copy in the
Java Cal virtual machine.

The Java Card virtuadachine's heap is not required to be garbage collected. Objects allocated from the
heap will not necessarily be reclaimed.

This specification does not include support for native methods, so there are no natihedsthcks.

Otherwise, the runtime dataraas are as documented for the Java virtual machine.

3.4 Contexts

Each applet running on a Java Card virtual machine is associated with an execnotéxt The Java
Card virtual machine uses the context of therent frame to enforce security policiésr inter-applet
operations.

There is a on¢o-one mapping between contexts aBAP filesn which applets are defined. An easy
way to think of a context is as the runtime equivalent @AP fileAs a consequer, all applet
instances from the samE€AP filewill share the same context.

The Java Card Runtime Environment also has its ownxtoR@amework objects execute in thiava
Card RE context

The context of the currently executing method is known asdineent context Every object in a Java
Card virtual machine is owned by a particular context. Glring contexis the context thatvas
current when the object was created.

When a method in one context successfully invokes a method on an object imeairointext, the Java
Card virtual machine performscantext switch Afterwards the invoked method's context becomes the
current conext. When the invoked method returns, the current context is switched back to the previous
context.

Context isolation islescribed in detail in th&untime Environment Specification, Java Card Platform,
v3.1, Classic Edition

3.5 Frames

Java Card virtual machifimmesare very similar to those defined for the Java virtual machine. Each
frame has a set of local variablesdean operand stack. Frames also contain a reference to a constant
pool, but since all constant pools for all clasisea package are merged, the reference is to the constant
L22f F2NJ GKS Odz2NNByid OflFaaQ LI O1F3ASo

Each frame also includes a reference te tontext in which the current method is executing.

Java Card Platform Virtual Machine Specification, vB. Paged7

3.6 Representation of Objects

The Java Card virtual machine does mandate a particular internal structure for objects or a particular
layout of their contents. However, the core components in a @ARre defined assuming a default
structure for certain runtime structures (such as descriptions of classes), agfd@tdayout for the
contents of dynamically allocated objects. Information from the descriptor component of the CAP file
can be used téormat objects in whatever way an implementation requires.

3.7 Special Initialization Methods
The Java Card virtuadachine supportinstance initialization methodsxactly as does the Java virtual
machine.

The Java Card virtual machine includes omiitdid support forclassor interface

initialization methods. There is no general mechanism for executcimit> methods on a

Java Card virtual machine. Instead, a CAP file includes information for initializing class data as defined in
2.2.4.6 Limitations of Class Initialization

3.8 Exceptions
Exception support in the Java Card virtual machine is identical to support for exceptions in the Java
virtual machine.

3.9 Binary File Formats
This specification definesvb binary file formats which enable platformdependent development,
distribution and execution of Java Card programs.

TheCAPfile format describes files that contain executable code and can be downloadedstatidd
onto a Java Card technologyabled device. ACAPfile is produced by a Java C&tatformConverter
tool, and contains a converted form ofhe or moreentire packagsof Java classes. This file format's
relationship to the Java Card virtual mawohis analogous to the relationship of thkass file format
to the Java virtual machine.

The export file format describes files that contain the public linking information of Java Card API
LI O1 I 3 S & & exportLJfiledq used S converting cliepackages of that package.

3.10 Instruction Set Summary

The Java Card virtual machine instruction set is quite similar to the Java virtual machine instruction set.
Individual instructions consist of a oiyte opcodeand zero or mor@perands The pseudeaode for

the Java Card virtual machine'struction fetchdecodeexecute loop is the same. Muliyte operand

data is also encoded lrig-endian order

There are a number of ways in which the Java Card virtual machine instruction set diverges from that o
the Java virtual machine. Most of the differences are due to the Java Card virtual machine's more limited
support for data types. Another source of digence is that the Java Card virtual machine is intended to
run on 8bit and 16bit architectures, wheeas the Java virtual machine was designed for-aiB82

architecture. The rest of the differences are all oriented in one way or another toward optirtigng

Java Card Platform Virtual Machine Specification, vB. Page48

size or performance of either the Java Card virtual machine or Java Card programs. These changes
include inlining constant pool data directly in instruction opcodes or operands, adding multiple versions
of a particular instruction to deal with diffen¢ datatypes, and creating composite instructions for
operations on the current object.

3.10.1 Types and the Java Card Virtual Machine

The Java Card virtual machine supports only a subset of the types supported by the Java virtual machine.
This subset idescribed inChapter 2 Type support is reflected in the instructisat, as instructions

encode the data types on which they operate.

Given that the Java Card virtual machine supports fewer types than the Java virtthepdicere is an
opportunity for better support for smaller data types. Lack of support for largearimdata types frees

up space in the instruction set. This extra instruction space has been used to directly support arithmetic
operations on the shortata type.

Some of the extra instruction space has also been used to optimize common operations. Type
information is directly encoded in field access instructions, rather than being obtained from an entry in
the constant pool.

Table3-1 summarizes the type support in the instruction set of the Java Cetivinachine. Only
instructions that exist for multiple types are listed. Wide and composite forms of instruction®are n
listed either. A specific instruction, with type information, is built by replacing the T in the instruction
template in the opcodeolumn by the letter representing the type in the type column. If the type
column for some instruction MONE then no nstruction exists supporting that operation on that type.
For instance, there is a load instruction for tygleort |, sload , but there isno loadinstruction for type
byte .

Table3-1: Type Support in thddava Card Virtual Machine Instruction Set

opcode byte short int reference \
Tspush bspush sspush NONE NONE
Tipush bipush sipush iipush NONE
Tconst NONE sconst iconst aconst
Tload NONE sload iload aload
Tstore NONE sstore istore astore
Tinc NONE sinc iinc NONE
Taload baload saload iaload aaload
Tastore bastore sastore iastore aastore
Tadd NONE sadd iadd NONE
Tsub NONE ssub isub NONE
Tmd NONE smul imul NONE
Tdiv NONE sdiv idiv NONE
Trem NONE srem irem NONE
Tneg NONE sneg ineg NONE
Tshl NONE sshl ishl NONE
Tshr NONE sshr ishr NONE
Tushr NONE sushr iushr NONE

Java Card Platform Virtual Machine Specification, vB.

Page49

opcode byte short int reference
Tand NONE sand iand NONE

Tor NONE sor ior NONE
Txor NONE sxor ixor NONE

s2T s2b NONE s2i NONE

i2T i2b i2s NONE NONE
Tcmp NONE NONE icmp NONE

if_ TcmpOP NONE if_scmpOP NONE if_acmpOP
Tlookupswitch NONE slookupswitch ilookupswitch NONE
Ttableswitch NONE stableswitch itableswitch NONE
Treturn NONE sreturn ireturn areturn
getstatic_ T getstatic_b getstatic_s getstatic_i getstatic_a
putstatic_T putstatic_b putstatic_s putstatic_i putstatic_a
getfield_T getfield_b getfield_s getfield_i getfield_a
putfield_T putfield_b putfield_s putfield_i putfield_a

The mapping between Ja storage types and Java Card virtual macbormaputational types is
summarized inrable3-2.

Table3-2: Storage Types and Computational Types

Java (Storagg Type Size in Bits Computational Type
byte 8 short

short 16 short

int 32 int

Chapter Mescribes the Java Card virtual machine instruction set in detalil.

Java Card Platform Virtual Machine Specification, vB.

Pageb0

"ET AOU 2ADPOAOGAT OAOQET I
This chapter presents informian about the binary representation of Java Card programs. Java Card
technologyd 8 SR O0AYlF NASa o60aWFH@F /FNR 0AYIFINAS&E0D | NB dza
addresses binary representation in terms of this common c@eeeral topics relaig to binary
representation are covered. The first section descritbesbasic organization of program representation
in export and CAP files, as well as the use of the Java Archive (JAR) file containers. The second section
covers how Java Card applets grattkages are named using unique identifiers. The third section
presents the scheme used for naming and linking items within Java Card API packages. The fourth and
fifth sections describe the constraints for upward compatibility between different versibaslava
Cardtechnologp 8 SR 0 A Yl NB 0 & WI Qile, ahdlvéisions@adsighed\diseduponiia 3 NI Y
compatibility.

4.1 Java Card Platform File Formats

Java programs are represented in compiled, binary form as class files. Java classuded arg only to
execute programs on a Java virtual machine, but also to provide type and name information to a Java
compiler. In the latter role, a class file issentially used to document the API of its class to client code.
That client code is compill into its own class file, including symbolic references used to dynamically link
to the API class at runtime.

Java Card technology uses a different strategy iiaaudy representation of programs. Executable
binaries and interface binaries are represethia two separate files. These files are respectively called
CAP files (for converted applet) and export files.

4.1.1 Export File Format

Export files are not usedirectly on a device that implements a Java Card virtual machine. However, the
informationin an export file is critical to the operation of the virtual machine on a device. An export file

can be produced by a Java Card converter when a package is céhdertet KA & LJ O1F 3S8Qa SEL
used later to convert another package that importssskes from the first package. Information in the

export file is included in the CAP file of the second package, then is used on the device to link the

contents of thesecond package to items imported from the first package.

A Java Card technologpased exg NI FAE S o6aWk @k / FNR SELRNI FAESE0
information for an entire package of classes. This means that an export file only contains irdarmati

about the public API of a package, and does not include information used to link cléttses

package.

Java Card Platform Virtual Machine Specification, vB. Pageb1

The name of an export file is the last portion of the package specification followed by the extension

Uexp Q® C2NJ SEI YLI S3 fllefoRhejavacard.fratngwork K S paSkagelthisiibe

framework.exp . Operating systems that impedimitations on file name lengths may transform an
SELRNI FAESQ& ylIYS | O02NRAYy3 (2 GKSANI 246y O2y @Syl

For a complete description of the Java Card exportdilmét, see Chapter 3,he Export File Format

4.1.2 CAP File Format

A Java Card CAP file contains a binary representatiadava Card application or libramyboth,
consisting of one or more packages of classes that can be éustalla device and used taecute the
WI @/ F NR | LILXclasSds anfadava CGamdJirtudl machind® Q a

A CAP file is produced by a Java Card converter whameaCard application or librasyconverted. A
CAP file consists of a set of compats each of which describesdifferent aspect of the contents. The
set of components in a CAP file can vary, depending on whether the file contains a library or applet
definition(s). A CAP file can be in Compact or Extended format where a CAP filgpacCiommat can
only containa single Java package and a CAP fl&tanded format may contain one or more packages.

For a complete description of the Java Card CAP file format, see Chapter R File Format

4.1.3 JAR File Container
¢CKS Ww FAES F2NNIG A& dzaSR Fa GKS O2yGF Ay SN F2NY
is just a JAR file that contains the required seE&P components (see Chaptefee CR File Format

CAP file components are stored as files in a JAR file. Each CAP file component is located in a directory
calledjavacard . In CAP files in Compact formjavacard subdirectory is in a directory

representing the package. For example, the CAP file components of the package
com.oracle.framework are located in the directorgom/oracle/framework/javacard .In

CAP files in Extended formgdyacard subdirectory is in a dictoryrepresenting theCAP fileFor
example for aCAP filecalledcom.oracle.h ello world that may contain multiple packages, the

CAP file components of theAP fileare located in directory

com/oracle/ helloworld/javacard

Export filesmay also be contaid in aJAR file, whether that JAR file contains CAP file components or
not. If an export component is included in the CAP fil@mpact format, it must be located in the same
directory as the components for that package would be. If expor dite included h the CAP file in
Extended formatthey must be located in the directofavacard which is a subdirectory representing
eachpackage which is represented bgchexport file For example, the export file for package
com.oracle.framework is located in direary com/oracle/framework/javacard

The name of a JAR file containing CAP file components is not defined as part of this specification. Other
files, including CAP file compents for another package, may also reside in a JAR file that contains CAP
file commnents.

Java Card Platform Virtual Machine Specification, vB. Pageb2

4.2 AlID-based Naming

This section describes the mechanism used for naming applets and packages in Java Card CAP files and
export files, and custom components ewva Card CAP files. Java class files use Unicode strings to name
Java packages. At Java Card platform does not include support for strings, an alternative mechanism
for naming is provided.

ISO 7816 is a multipart standard that describes a broad rahggehnology for building smart card

systems. ISO 781Bdefines the AID (applicati identifier) data format to be used for unique

identification of card applications (and certain kinds of files in card file systems). The Java Card platform
uses the AlBlata format to identify appletspackagesand CAP filesAlDs are administered byeh
International Standards Organization (ISO), so they can be used as unique identifiers.

4.2.1 The AID Format
This section presents a minimal description of the AID flataat used in Java Card technology. For
complete details, refer to ISO 7856 AIDWS A A G NI GA 2y /I GSA2NE W5Q F2NXI

The AID format used by the Java Card platform is an array of bytes that can be interpreted as two
distinct pieces, as shown Trable4-1. The first piece is aByte valie known as a RID (resource

identifier). The second piece is a variable length value known as a PIX (proprietary identifier extension).
A PIX can be from 0 fidl bytes in lengthThus,an AID can be from 5 to 16 bytes in total length.

Table4-1: AID Format

Resource ldentifier ‘ Proprietary Identifier Extension
RID (5 bytes) PIX (611 bytes)

ISO controls the assignment of RIDs to companies, with each company obtaining its own unique RID
from the 1SO. Compani@esanage assignment of PIXs for AlDs using their own RIDs.

4.2.2 AID Usage

In the Java platform, packages are uniquely identified udinigode strings and a naming scheme based
on internet domain names. In the Java Card platfd@AP filespackages andpplets are identified

using AlDs.

4.2.2.1 CAP File AID namespace
All CAP files must be assigned an AID such that no two CAP filebdénaaene AID. The AID for a CAP
FAES A4 02yaiNHzOG0SR FNRY GKS O2y OICASIg GA2y 2F (KS

4.2.2.2 Applet AID nhamespace

Each appleloadedon a Java Card technology enabled device must have an AID. This AID is constructed
AAYATINX e G2 | /1t FAES 1L5d LG Aa | O2yOFdSylidAz
applet AID mst not have he same value as the AID of any other applet of the s@#e file. The RID of

each applet in a CAP file must be the same as the RID of the CAP.file AID

Java Card Platform Virtual Machine Specification, vB. Pageb3

4.2.2.3 Package AID namespace

Anypackagehat is represented in an export file must besigned a AID such that no two packages

have the same AlDThe AIDF NJ | LJ- O1F3S Aa O2yaiaNHzOGSR FTNRY (G(KS
and a PIX for that package. This AID corresponds to the string name for the package, as &iguva in

4-1.

Figure4-1: Mapping Package Identifiers to AIDs

Oracle’s RID com.oracle.javacard.sample PIX

v
F 3
v

5 bytes up to 11 bytes

4.2.2.3 Custom Component AID namespace
Custom components defined in a CAP file are also identified usinglA®#\IDs for applets, packages
and CAP files, custom component AIDs are formed by concateraéifyD and a PIX.

4.3 Token-based Linking

This section describes a scheme that al@lewnloaded software to be linked against APIs on a Java
Card technolgy enabled device. The scheme represents referenced items as opaque tokens, instead of
Unicode strings as are used in Java class files. The two basic requirements of this linkincaselteate

it allows linking on the device, and that it does not requiternal implementation details of APIs to be
revealed to clients of those APIs. Secondary requirements are that the scheme be efficient in terms of
resource use on the device, and leaacceptable performance for linking. And of course, it must

preserve he semantics of the Java language.

4.3.1 Externally Visible Items

/| traasSa oAyOfdzRAY3I LYGSNFIFOSaov Ay WFHGF LI O1F3ASE Y
methodsand fields may be declared with public, protected, package or privsigility. For purposes of

this document, we define public classes, public or protected fields, and public or protected methods to

be externally visible from the package.

Each externdy visible item must have a token associated with it to enable referefiom other
packages to the item to be resolved on a device. There are six kinds of items in a packagguinat r
external identification.

Classes (including Interfaces)
Static Fitds

Static Methods

Instance Fields

=A =4 =4 =

Java Card Platform Virtual Machine Specification, vB. Pageb4

M Virtual Methods
9 Interface Method

4.3.2 Private Tokens

Items that are not externally visible are internally visible. Internally visible items are not described in a

LI O1 1 38Qa SELRNI TAf Sale tokeatmito rapedest interdadriferenceS Bdernalzd S LIN.
references areepresented by public tokens. There are three kinds of items that can be assigned private

tokens.

I Instance Fields
M Virtual Methods
1 Packages

4.3.3 The Export File and Conversion

An exort file contains entries for externally visible items in the pack@ge.OK Sy G NB K2f Ra (K¢
name and its token. Some entries may include additional information as well. For detailed information

on the export file format, see ChapterBhe Export File Format

The export file is used to map names for imported items to tokens during package conversion. The Java
Card converter uses these tokens to represent references to items in an imported packag

For example, during the conversiontbé class files of applet A, the export file of

javacard.framework is used to find tokens for items in the API that are used by the applet.

AppletA creates a new instance of framework cl@ssnerPIN . The frameworlexport file contains an

entry forjavacar d.framework.OwnerPIN that holds the token for this class. The converter

LI I 0Sa (GKAa G218y Ay (GKS /1t FAtSQa Oz2yadlyid LR2f
token value is later used to resolttee reference on a device.

4.3.4 References z External and Internal

In the context of a CAP file, references to items are made indirectly throligh ac@natant pool.
References to items in oth€@AP filesre called external, and are represented in terms of tokens.
References to items in theame CAP file are called internal, and are represented either in terms of
tokens, or in a different internal format.

An external reference to a class is composed pdekage token and a class token. Together those
tokens specify a certain class in a e@rtpackage. An internal reference to a class is-bitlgalue that is
' LR2AYGSNI G2 GKS Oflaa adaNuHzOGdz2NBEQa t20F0A2y SgAGKA

An external reference to a dia class member, either a field or method, consists of a package token, a
class tokenand a token for the static field or static method. An internal reference to a static class
memberisal® A G @I fdzS GKFdG Aa I+ LRAYMSNI 62 GKS AdSyQa f

References to instance fields, virtual methods and interface methods consistagsareference and a
token of the appropriate type. The class reference determines whether the reference is external or
internal.

Java Card Platform Virtual Machine Specification, vB. Pageb5

4.3.5 Installation and Linking
Exernal references in a CAP file can be resolved on a device from token form into ttmainte
representation used by the virtual machine.

A token can only be resolved in the context of the package that defines it. Just as the export file maps
fromapacka§ Q&4 SEGSNYy Il ftftée @GAarotsS ylIyYSa (2 (2@pgeyazr GKSI
on the device that maps from tokens to resolved references.

4.3.6 Token Assignment

¢c21Sya F2NJ Iy !'tL NS FaaAraySR o0 eexporig(s)forthaQa 2 gy SN.
API. Since the name-token mappings are published, an APl owngy choose any order for tokens

(subject to the constraints listed below).

A particular device platform can resolve tokens into whatever internal representationssuseful for

that implementation of a Java Card virtual machine. Some tokens maysbkved to indices. For
SEFYLX SE |y AyadlyOS F¥AStR G218y YIre 0SS NBaz2ft oSSR
the token value is distinct from anthrelated to the value of the resolved index.

4.3.7 Token Details
Each kind of item ia package has its own independent scope for tokens of that kind. The token range
and assignment rules for each kind are listedatle4-2.

Table4-2: Token Range, Type and Scope

Token Type Range \ Type Scope \
Package 0-127 Private Package

Class 0-254 Public Package

Static Field 0- 255 Public Class

Static Method 0- 255 Public Class

Instance Field 0- 255 Public or Private Class

Virtual Method 0-127 Public or Private Class Hierarchy
Interface Method 0-127 Public Class

4.3.7.1 Package

All package references from within a CAP file are assigned private package tokens. Package token values
must be in the range from 0 to 127, inclusive. The tokensill the packages referenced from classes in

a CAP file areumbered consecutively starting at zero. The ordering of package tokens is not specified.

4.3.7.2 Classes and Interfaces

All externally visible classes and interfaces in a package are abpigiiéc class tokens. Class token

values must be in the randgeom 0 to 254, inclusive. The tokens for all the public classes and interfaces
in a package are numbered consecutively starting at zero. The ordering of class tokens is not specified.

Packagerisible classes and interfaces are not assigned tokens.

Java Card Platform Virtual Machine Specification, vB. Pageb6

4.3.7.3 Static Fields

All externally visible static fields in a package are assigned public static field tokens. The tokens for all
externally visible static fields in a class are numbered consetyttarting at zero. Static fields token
values must bén the range from 0 to 255, inclusive. The ordering of static field tokens is not specified.

Packagerisible and private static fields are not assigned tokens. In addition, no tokens are assigned f
final static fields that are initialized to primitivepmpiletime constants, as these fields are never
represented as fields in CAP files.

4.3.7.4 Static Methods and Constructors

All externally visible static methods and constructors in a packagassigned public static method
tokens. Constructors are included in this category because they are statically bound. Static method
token values must be in the range from 0 to 255, iasla. The tokens for all the externally visible static
methods and costructors in a class are numbered consecutively starting at zero. The ordering of static
method tokens is not specified.

Packagerisible and private static methods as well as packagigle and private constructors are not
assigned tokens.

4.3.7.5 Instance Fields

All instance fields defined in a package are assigned either public or private instance field tokens. The
scope of a set of instance field tokens is limited to the classdébelares the instance fields, not

including the fields declared by perclasses of that class.

Instance field token values must be in the range from 0 to 255, inclusive. Public and private tokens for
instance fields are assigned from the same namespHue tokens for all the instance fields in a class

are numbered consetively starting at zero, except that the token afterian field is skipped and the
token for the following field is numbered two greater than the token ofitite field.

Within a clas, tokens for externally visible fields must be numbered less thatottens for package

and private fields. For public tokens, the tokens for reference type fields must be numbered greater
than the tokens for primitive type fields. For private tokens tbkens for reference type fields must be
numbered less than the tokes for primitive type fields. Beyond that, the ordering of instance field
tokens in a class is not specified.

Table4-3: Tokens For Instaze Fields

Visibility Category Type Token Value

public and protecteddlds (public tokens) primitive boolean

public and protected fields (public tokens) primitive byte 1
public and protected fields (public tokens) primitive short 2
public andprotected fields (public tokens) reference byte(] 3
public and protected fids (public tokens) reference Applet 4
package and private fields (private tokens) reference short[] 5
package and private fields (private tokens) | reference Object 6

Java Card Platform Virtual Machine Specification, vB. Pageb7

Visibility \ Category Type \ Token Value
package and private fields (private tokens) | primitive int 7
package and private fieddprivate tokens) primitive short 9

4.3.7.6 Virtual Methods

Virtual methods are instance methods that are resolved dynamically. The set includes all public,
protectedand packageisible instance methods. Private instance methods and all construatersoa
virtual methods, but instead are resolved statically during compilation.

All virtual methods defined in a package are assigned either public or private virttladartekens.

Virtual method token values must be in the range from 0 to 127, incluBiwbBlic and private tokens for
virtual methods are assigned from different namespaces. The high bit of the byte containing a virtual
method token is set to one if the ken is a private token.

If a method overridesn externally visible (public or protee) Y SG K2 R A YL SYSYGdSR Ay G
superclass, that method is assigned the same token number as the method in the superclass. The high

bit of the byte containing a public virtual method token is always set to zero, to indicate it is a public

token. Theordering of public virtual method tokens in a class is not specified.

Private virtual method tokens are assigned to packagible virtual methods. They are assigned

differently from public virtual method tokens. If a class and its superclass are ddfittee same

package, the tokens for the packagisible introduced virtual methods in that class are numbered
consecutively starting at one greater than the highest numbered private virtual method token of the

Of F aaQa &dzLISNDf | Z&lss areHefited i§ differert gadkagksytihe tokeinsifor thelzlJ
packagevisible introduced virtual methods in that class are numbered consecutively starting at zero. If a
YSGK2R 20SNNARSa | YSGK2R AYLX SYSy i SRamewgkeni KS Of | &
number as the method in the superclass. The definition of the Java programming language specifies that
overriding a packageisible virtual method is only possible if both the class and its superclass are

defined in the same package. The highdbithe byte containing a virtual method token is always set to

one, to indicate it is a private token. The ordering of private virtual method tokens in a class is not
specified.

4.3.7.7 Interface Methods

All interface methods defined in a package arsigisal public interface method tokens, as interface

methods are always public. Interface method token values must be in the range from 0 to 127, inclusive.

The tokens for all the interface methods defined in or inherited by an interface are numbered

consedaitively starting at zero. The token value for an interface method in a given interface is unrelated

G2 GKS (G21S8Sy @OltdsSa 2F GKIFIG alyYS YSGK2R Ay lFye 27F
includes its own token values for all the methods inhatiteom superinterfaces as well as its defined

methods. The high bit of the byte containing an interface method token is always set to zero, to indicate

it is a public token. The ordering of interface method tokens is not specified.

Java Card Platform Virtual Machine Specification, vB. Pageb8

4.4 Binary Compatibili ty

In the Java programmirlgnguagethe granularity of binary compatibility can be between classes since
binaries are stored in individual class files. In Java Card systems, Java classes are grouped by package
into a CAP file, therefore thegnularity d binary compatibility is between packages. The binary
representation of classes is represented by the components in a CAP file, and the API of every single
package is represented in an export file.

In a Java Card system, a change to a typelava packge in alJava Car@AP fileesults in a new CAP
file. A new CAP file is binary compatible with (equivalently, does not break compatibility with) a
preexisting CAP file if another CAP file converted using the exparbfilgackages included tihe
preexiging CAP file can link with the new CAP file without errors.

Figure4d-2d K2ga +y SEFYLXS 2F o6AYyLFENE O2YLI GA6ES /1t FAf
example are: the package p1l is convertedteate the pl CAP file and p1 export file, and package pl is
Y2ZRATASR YR O2y@SNISR (G2 ONBFIGIS (GKS LWmMQ /!t FAES
the p2 CAP file is created the export file of pl is used. In the example, p2 is convergethasiniginal

Liv SELRNI FTAf So . SAdwitaps, p2ivapbedinked dith githeddae pd APk dr A

0KS LmQ /'t FTAfSo

Figure4-2: Binary Compatibility Example

binary

export file compatible

link with (either)

-
Lt

convert with

g

Any modification that cases binary incompatibility in the Java programming language also causes
binary incompatibility in Java Card systems. These modifications are described as causing a potential
error in The Java Language Specification. Any modifictiet does not cause bamy incompatibility in

the Java programming language does not cause binary incompatibility in a Java Card system, except
under the following conditions:

1 The value of a token assigned to an element in the API of a package is@&hange
1 The value of an exteally visible final static field (compiténe constant) is changed.

Java Card Platform Virtual Machine Specification, vB. Pageb9

Tokens are used to resolve references to imed elements of a packagTokens assigned to public and
protected virtual methods are scoped to a cldés token value is modified, a linker on a device is
unable to associate the new token value with the previous token value of the element, andottecie
unable to resolvehe reference correctly.

Compiletime constants are not stored as fields in CAP files. Instead their values are recorded in export
files and placed inline in the bytecodes in CAP files. These values are said tdiblkepré aCAP file of

a package tat imports those constants. During execution, information is not available to determine
whether the value of an inlined constant is the same as the value defined by the binary of the imported
package.

4.5 CAP andPackage Versions

Each CAP file in thevdaCard system is assigned a unique CAP file version number. Furtherautre, e
implementation of a package in a Java Card system is assigned a pair of major and minor version
numbers.Version numbers for a packagee used to indiate binary compatibilityor incompatibility
between successive implementations of a package.

4.5.1 Assigning

The major and minor versions ofGAP file and containgehckagsare assigned by th€AP file and

package provider. It is recommended that tin@ial implementation ofa CAP file and package be

assigned a major version of 1 and a minor version of 0. However, any values may be chosen. It is also
recommended that when either a major or a minor version is incremented, it is incremented exactly by
1.

For a packagenajorversion must be changed when a new implementation is not binary compatible
with the previous implementation. The value of the new major version must be greater than the major
version of the previous implementation. When a majorsien is changed, the assated minor version
must be assigned the value of 0.

When a new implementation of a package is binary compatible with the previous implementation, it
must be assigned a major version equal to the major version of the previolsnmaptation. The minor
version assigned to the new implementation must be greater than the minor version of the previous
implementation.

Rules for specifying the version numbers for the CAP file in Extended Fohmat R File Formatare
beyond the scpe of this specification. For the CAP file in Compact Foriet CR File Formatthe CAP
file version number must be the same as the version number of the single package that it contains.

4.5.2 Linking

Both an export file and &AP file contain the major and minor versnumbers of the packages
described. When a CAP file is installed on a Java Card techieslaghed deviceresident images of the
packagest contains are creatednd the major and minor version numbers are ns=l as part of that

Java Card Platform Virtual Machine Specification, vB. Page60

images. When an expdfite is used during preparation of a CAP file, the version numbers indicated in
the export file are recorded in the CAP file.

During installation, references from the packagéthe CAP file being installed &m imported package

can be resolved only when the version numbers indicated in the export file used during preparation of
the CAP file are compatible with the version numbers of the resident image. They are compaghle wh

the major version numbers arqqual, and the minor version of the export file is less than or equal to the
minor version of the resident image.

Java Card Platform Virtual Machine Specification, vB. Page6l

4EA %Dl OO &EI A &I Ol AO
This chapter describes the export file format. Compliant Java Card Convertdrearaagpable of
producing and consumg all export files that conform to the specification provided in this chapter.

An export file consists of a stream ob& bytes. All 1ébit and 32bit quantities are constructed by
reading in two and four consecué\8-bit bytes, respectively. Multitig data items are always stored in
big-endian order, where the highrder bytes come first.

This chapter defines its own set of data types representing Java Card export file data: theltyp2s
andu4 represent an nsigned ong two-, and fourbyte guantities, respectively.

The Java Card export file format is presented using pseudo structures writtenlikeas@ucture

notation. To avoid confusion with the fields of Java Card virtual machine classes and tdasg#she
contents of the structues describing the Java Card export file format are referred teas. Unlike the
fields of a C structure, successive items are stored in the Java Card platform file sequentially, without
padding or alignment.

Variablesizedtables consisting of varidb-sized items, are used in several export file structures.
Although wewill use Glike array syntax to refer to table items, the fact that tables are streams of
varyingsized structures means that it is not possible to directly translate a table indexa inyte offset
into the table.

In a data structure that is referredtas ararray, the elements are equal in size.

5.1 Export File Name

As described iAd.1.1 Export File Formate name of a export file must be the last portion of the

LI O1F 38 ALISOATFAOL (A 2 ¥xp RED éxampls, khe dame of tHeSxpbrifie 6fha A 2y W
javacard.framework package must bdéamework.exp . Operating systems that impose

imA G dAz2ya 2y FAES yIYS SyadkKa Yre GNIya¥tz2NyY |y S

5.2 Containment in a JAR File

As described i4.1.3 JAR File Containdaa Card CAP files are contained in a JARffde.dxport file is
also stored in a JAR file, it must also be located in a directory ¢allacard that is a subdirectory of
the correspondind.J- O1 F 35Q& RA NB O (franheivatk.exp? Nile §dtilbibé lafat®din thiek S
subdirectoryjavacard/framewo rk/javacard

5.3 Ownership
An export file is owned by the entity that owns the package it represents. The owner of a package
defines the API of that packaged may or may not provide all implementationstiofit package. All

Java Card Platform Virtual Machine Specification, vB. Page62

implementations, however, must conform to the definition provided in the export file provided by the
owner.

A particular example of export file ownership is the Java Card AP| packsaels. d@fines these
packages. Oracle also providbs export files for these packages. All implementations of the Java Card
API packages must conform to the definitions provide®bgcle anccomply with the token

assignments provided in these export $ile

5.4 Hierarchies Represented

Classes and inteates represented in an export file include public elements defined within their

respective hierarchies. For example, instead of indicating the immediate superclass or superinterface, all
public superclasseor superinterfaces are listed. This design cohteppplied not only to superclasses

or superinterfaces, but also to virtual methods and implemented interfaces.

5.5 Export File
An export file is defined by the following structure:

ExportFile {
u4 magic
ul minor_version
ul major_version
u2 consta nt_pool_count
cp_info constant_pool[constant_pool_count]
u2 this_package
ul referenced_package count (since Export File format 2.3)
u2 referenced_packages|referenced_package_count] (since Export
File format 2.3)
ul export_class_count
class_info classes| export_class_count]

}
The items in théxportFile structure are as follows:
magic

Themagic item contains thanagic number identifyirg theExportFile format; it has the value
OXOOFACADE

minor_version, major_version

Theminor_version andmajor_versio nitems are the minor and major version numbers of this
export file. Together, a major and a minor version number determine the version of the export file
format. If an export file has the major version numbeMyand minor version number oh, the versim
2F (GKS SELRNmMFALSQa F2N¥VIFG Aa

Java Card Platform Virtual Machine Specification, vB. Page63

A change in the major version number indicates a major incompatibility change, one that requires a
fundamentally different Java Card virtual machine. A Java Card virtual machine is not required to
support export filesvith different major version numbers. A Java Card virtual machine is required to
support export files having a given major version number and all valid minor version numbers in the
range O through some particulaninor_version where a valid minor versionumber is a minor
version number that has been defined in a version of the Java Card virtual machine specification.

In this specification, the major version of the export file format has the value 2 and the minor version
has the valug. Only Oracle mayefine the meaning and values of new export file format versions.

constant_pool_count

Theconstant_pool_count item is a norzero, positive value that indicates the number of
constants in the constant pool.

constant_pool[]

Theconstant_pool is a table ofvariablelength structures representing various string constants,
class names, field names and other constants referred to withircstportFile structure.

Each of theconstant_pool table entries, including entry zero, is a varialdagth structure whos
F2NXYIFG A& AYRAOFGSR o6& A0a FANRG a0l 3¢ oedSo
There are no ordering constrains on entries in to@stant_pool table.

this_package

The value ofhis_package must be a valid index into theonstant_pool table. The
constant_pool entry at that index musbe aCONSTANT _Package_info (5.6.1
CONSTANT_Packageucture representing the package defined by tigportFile

referenced_package_count

Thereferenced_package _count item is a value that indicates the number of entries in the
referenced_packages array.

referenced_packages][]

Thereferenced_packages array is a table representing plhckageseferencedin this export file
Each entry in the theeferenced_packages arrayisan index into theconstant_pool table.

The corresponding entry in theonstant_pool array must be CONSTANT_Package X

CONSTANT _Packagtucture representing referencedpackageA package is a referenced package if

9 any ofits classesre subclassed in thexport file
9 any of its interfaces are implementeaxt extendedin this export file,
9 any of its classes or interfaces are used in field or mettextriptors in this export file.

Java Card Platform Virtual Machine Specification, vB. Page64

export_class_count
The value of thexpor t_class_count item gives the number of elements in the classes table.
classes]]

Each value of thelasses table is a variabkdengthclass_info structure 6.7 Classes and

Interface$ giving the description of a publicly acsiése class or interface declared in this package. If the
ACC_LIBRARYflag item in theCONSTANT_Package_info (5.6.1 CONSTANT_PacKesfeucture
indicated by thehis_package item is set, theclasses table has an entry fioeach public class and
interface declared in this package. If tA€C_LIBRARYflag item is not set, thelasses table has an
entry for each public share&binterface declared in this package.

5.6 Constant Pool
All constant_pool table entries have théollowing general format:

cp_info {
ul tag
ul infol]
}

Each item in theonstant_pool must begin with a dyte tag indicating the kind alp_info entry.
The content of the info array varies with the valugag . The valid tags and their values are listed in
Table5-1. Eachtag byte must be followed by two or more bytes giving information about thectjc
constant. The format of the additional information varies with tag value.

Table5-1: Export File Constant Pool Tags

Constant Type Value \
CONSTANT_Package 13

CONSTANT_Classref 7

CONSTANT_Integer 3

CONSTANT_Utf8 1

5.6.1 CONSTANT_Package
TheCONSTANT_Package_info structure is used to represent a package:

CONSTANT_Package_info {
ul tag
ul flags
u2 name_index
ul minor_version
ul major_version

1 This restrictiorof exporting only shareable interfaces in niflorary packages is imposed by the firewall defined in
the Runtime Environment Specification, Java Card Platfd3r, €lassi&dition

Java Card Platform Virtual Machine Specification, vB. Page65

ul aid_length
ul aid[aid_length]

The itemsf the CONSTANT _Package_info structure are the following:
tag

Thetag item has the value cCONSTANT_Packag€13).

flags

Theflags item is a mask of modifiers that apply to this package.fldgs modifiers are shown in
the following table.

Table5-2: Export File Package Flags

Flags Value

ACC_LIBRARY 0x01

TheACC_LIBRARYflag has the value of one if this package does not define and declare any applets. In
this case it is called a library package. OtheeMiCC LIBRARY has the value of zero.

If the package is not a library packats export file can only contain shareable interfaéésshareable
interface is either thgavacard.framework.Shareable interface or an interface that extends
the javacard.fr amework.Shareable interface.

All otherflag values are reserved. Their valuesist be zero.
name_index

The value of th@mame_index item must be a valid index into theonstant_pool table. The
constant_pool entry at that index must be EONSTANT_Utf8_inf o (5.6.1 CONSTANT_Package
structure representing a valid Java package name.

l'a Ay WF@F Oflraa FA{Saz ! {/LL LISNA2RAamé&#ePQO G KI 0
replaced by ASCII forward slaslie’k Q0 ® C2 NJ SE I Y jaka&d.framédork LI @1 1 23S y I Y.
represented in &ONSTANT_Utf8 info structure agavacard/framework

minor_version, major_version

Theminor_version andmajor_version items are the minr and major version numbers of this
package These values uniquely identify the particular implementation of this package and indicate the

2 This restriction is imposed by the firewall definedtie Runtime Environment Specification, Java Card Platform,
v3.1, Classic Edition

Java Card Platform Virtual Machine Specification, vB. Page66

binary compatibility between packages. SEBCAP andPackage Versiorier a description of assigning
and using package version numbers.

aid_length

The value of thaid_length item gives the number of bytes in the aid array. Valid values are
between 5 and 16, inclusive.

aid[]
Theaid array contains the ISO AID of this packag2 AlDbased Naminy

5.6.2 CONSTANT _Classref
TheCONSTANT _Classref _info structure is used to represent a class or interface:

CONSTANT _Classref _info {
ul tag
u2 name_index

}

The items of thaCONSTANT _Classref info structure are the following:
tag

Thetag item has the value cEONSTANT_Classref (7).

name_index

The valie of thename_index item must be a valid index intihe constant_pool table. The
constant_pool entry at that index must be @ONSTANT_Utf8_info (5.6.4 CONSTANT _8)tf
structure representing a valid fully qualified Java clasaterface name. This name fully qualified

since it may represent a class or interface defined in a package other than the one described in the
export file.

la Ay WF@l Oflaa FAfSaz ! {/LL LISNX2dRiaterfacedatmé G K|
arerepldd SR o0& ! {/LL F2NBIFINR &afl aKSa o0WkQod C2NJ SEF YLIX
javacard.framework.Shareable is represented in €ONSTANT_Utf8 info structure as
javacard/framework/Shareable

5.6.3 CONSTANT _Integer
TheCONSTANT _Integer_info structure is used to repsent fourbyte numeric (int) constants:

CONSTANT _Integer_info {
ul tag
u4 bytes

}

The items of the&CONSTANT _Integer_info structure are the following:

Java Card Platform Virtual Machine Specification, vB. Page67

tag
Thetag item has the value cCONSTANT _Integer (3).
bytes

Thebyt es item of theCONSTANT _Integer_info structure contains the value of thent
constant. The bytes of the value are stored indnglian (high byte first) order. The value db@olean
type isl to represent true and to represent false.

5.6.4 CONSTANT_US§
TheCONSTANT _Utf8 info structure is used to represent constant string values.-BEFings are
encoded in the same way as described e Java Virtual Machine Specificat{§m.4.7).

TheCONSTANT _Utf8 info structure is:

CONSTANT _Utf8 info {
ul tag
u2 length
ul bytes[length]

}

The items of theCONSTANT _Utf8 info structure are the following:
tag

Thetag item has the value cEONSTANT _Utf8(1).

length

The value of théength item gives the number of bytes in the bytes array (not the length ef th
resulting string). The strings in tONSTANT_Utf8_info structure are not nulterminated.

bytes[]

Thebytes array contains the bytes of the string. No byte may have the @yie)0 or
(byte)OXFO - (byte)OxFF

5.7 Classes and Interfaces
Each classral interface is described by a varialbdmgthclass_info structure. The format of this
structure is:

class_info {
ul token
u2 access_flags
u2 name_index
u2 export_supers_count
u2 sup ers[export_supers_count]

Java Card Platform Virtual Machine Specification, vB. Page68

ul export_interfaces_count

u2 interfaces [export_interfaces_count]

u2 export_fields_count

field_info fields[export_fields_count]

u2 export_methods_count

method_info methods[export_methods_count]

ul CAP22 i nheritable_public_method_token_count (since Export File
format 2.3)

}
The items of theclass_info structure are as follows:

token

The value of théoken item is the class tokert(3.7.2 Classes and Interfay@ssigned to this class or
interface.

access_flag s

The value of thecc ess_flags item is a mask of modifiers used with class and interface declarations.
Theaccess_flags madifiers are shown in the following table.

Table5-3: Export File Class Access anddifier Flags

Name \ Value Meaning Used By \
ACC_PUBLIC 0x0001 | Is public; may be accessed from outside its packé Class,
interface
ACC_FINAL 0x0010 | Is final; no subclasses allowed. Class
ACC_INTERFACE 0x0200 | Is an interface Interface
ACC_ABSTRACT | 0x0400 | Isabstract; may not be instantiated Class,
interface
ACC_SHAREABLE 0x0800 | Is shareable; may be shared between Java Card| Class,
applets. interface
ACC_REMOTE | 0x1000 | Is remote; may be accessed by Java Card RMI | Class,
interface

TheACC_SHAREABL#fag indiates whether this class or interface is sharealleclass is shareable if

it implements (directly or indirectly) thmvacard.framework.Shareable interface. An interface
is shareable if it is or extends (directly or indirecthg javacard.framework.Sha reable
interface.

3The ACC_SHAREABLE flag is defined to enable Java Card virtual machines to implement the firewall
restrictions definedoy theRuntime Environment Specification, Java Card Platf@rh, @lassic Edition

Java Card Platform Virtual Machine Specification, vB. Page69

TheACC_REMOTHag indicates whether this class or interface is remote. The value of this flag must be
one if and only if the class or interface satisfies the requirements defin2®if.1 Remoté&lasses and
Remote Interfaces

All other class access and modifier flags are defined in the same way and withrheesdrictions as
described inThe Java Virtual Machine Specification

Since all classes airterfaces represented in an export file are public, &€C_PUBLICflag must
always be set.

All other flag values are reserved. Their values must be zero.
name_index

The value of th@mame_index item must be a valid index into theonstant_pool table. The
constant_pool entry at that index must be @ONSTANT_Classref_info (5.6.2
CONSTANT_Clas3rstiructure representing a valid, fully qualified Java class or interface.name

export_ supers_count
The value of thexport_supers_count item indicates the number of entries in tlseipers array.
supers|[]

Thesupers array contains an entry for each public superclass of this class or interface. It does not
include package visibBuperclasses.

For a class, each value in thgpers array must be a valid index into tleenstant_pool table. The
constant_pool entry at eah value must be @ONSTANT _Classref _info structure 6.6.2
CONSTANT _Clas3nefpresenting a valid, fulgualified Java class name. Entries inghpers array
can occur in any order.

For an interface, theupers array contains a single value representing a valid index into the
constant _pool table. Theconstant_pool entry must be &SONSTANT _Classref_info
structure 6.6.2 CONSTANT _Clasgrepresenting the fulhgualified name of the

java.lang.Object class
export_interface S_count
The value of thexport_interfaces_count item indicates the number of entries in the

interfaces array.
interfaces]]

If thisclass_info structure describes a class, theerfaces array contains an entry for each
public interface implemented by this class. It does not include packagible interfaces. It does include
all public superinterfaces in the hierarchies of public interfaces implemented by this class.

Java Card Platform Virtual Machine Specification, vB. Page70

If thisclass_info structure describes an interface, tlirterfaces array contains an entry for
each public interface extended by this interface. It does not include package visible interfaces. It does
include all public superinterfaces in the hierarchies of public inted@&stended by this interface.

Each value in thimterfaces array must be a valid index into tleenstant_pool table. The
constant_pool entry at each value must beGONSTANT _Classref_infostructure (5.6.2
CONSTANT_Clas3nefpresenting a valid, fulgualified Java interface name. Entries in the interfaces
array can occur in any order.

export_fields_count
The value of thexport_fields_count item gives the omber of entries in thdields table.
fields][]

Each value ithefields table is a variabléengthfield_info (5.8 Fieldy structure. The

field_info contains an entry for each publicly accessible field, both class variables anadt@stan
variables, declared by this class or interface. It does not include items representing fields that are
inherited from superclasses or superinterfaces.

export_methods_ count
The value of thexport_methods_count item gives the number of entries in thethods table.
methods]

Each value in thmethods table is anethod_info (5.9 Method$ structure. Thanethod_info

structure contains an entry for each publicly accessildss (static or constructor) method defined by
this class, and each publicly accessible instance method defined by this class or its superclasses, or
defined by this interface or its supérterfaces.

CAP22_i nheritable_public_method_token_count

TheCAP22 i nheritable_public_method_token_count item represents the number of
public or protected virtual methods inheritable by a subclass defined in a CAP file of format version 2.2
or earlier.

5.8 Fields
Each field is described by a variatdagthfield_info structure. The format of this structure is:

field_info {
ul token
u2 access_flags
u2 name_index
u2 descriptor_index
u2 attributes_count
attribute_info attributes[attributes_count]

Java Card Platform Virtual Machine Specification, vB. Page71

}
The items of thdield_info structure are as follows:

token

Thetoken item is the token assigned to this field. There are three scopes for field tokeals:
static fields of primitive types (compiigme constants), all othestatic fields, andnstanc e
fields.

If this field is a compildime constant, the vale of the token item is OxFF. Compgil@e constants are
represented in export files, but are not assigrielen values suitable for late binding. Instead Java
Card Converters must replace byteesdhat reference final static fields with bytecodes thatddhe
constant value of the field.

If this field isstatic , but is not a compilktime constant, theoken item represents a static field
token @.3.7.3 Static Fieldls

If this field is an instance field, theken item represents an instance field tokeh.8.7.5 Instace
Fields.

access_flags

The value of theccess flags item is a mask afodifiers used with fields. Thaccess_flags
modifiers are shown in the following table.

Table5-4: Export File Field Access and Modifier Flags

Name \ Value Meaning Used By \
ACC_PUBLIC 0x0001 | |s public; may baccessed from outside its package Any field
ACC_PROTECTE| 0x0004 | |s protected; may be accessed within subclasses. | Class field
Instance
field
ACC_STATIC 0x0008 | |s static. Class field
Interface
field
ACC_FINAL 0x0010 | Is final; ndfurther overriding or asignment after Any field
initialization.

Field access and modifier flags are defined in the same way and with the same restrictions as described
in The Java Virtual Machine Specification

4 Although Java compilers ordinarily replace references to final static fields of primitivewjibgsrimitive
constants, this functionality is not requite

Java Card Platform Virtual Machine Specification, vB. Page72

Since all fields represented in an export file are either pulligrotected, exactly one of the
ACC_PUBLICor ACC_PROTECTEIag must be set.

The Java Card virtual machine reserves all other flag values. Their values must be zero.

name_index

The value of th@mame_index item must be a valid index into theonstant_ pool table. The
constant_pool entry at that index must be @ONSTANT_Utf8 info (5.6.4 CONSTANT _8)tf
structure representing a valid Java field name stored as a simpleulhogtialified) name, that is, as a
Java identifier.

descriptor_index

The value of thelescriptor_index item must be a valid index into theonstant_pool table.
Theconstant_pool entry at that index must be @ONSTANT_Utf8_info (5.6.4 CONSTANT _8)tf
structure representing a valid Java field descriptor.

Representation of a field desgptor in an export file is the same as in a Java class file. See the
specification descrileein The Java Virtual Machine Specificat{§4.3.2).

If this field is a referencgype, the class referenced must be a public class.
attributes_count

The value of thattributes_count item indicates the number of additional attributes of this field.
The onlyfield_info attribute currently defined is th€onstantValue attribute (5.10.1
ConstantValuéttribute). For static final fields of primitive types, the value must be 1; that is, when
both the ACC_STATICandACC_FINAL bits in theflags item are set an attribute must be present.

For all other field the value of thattributes_count item must be 0.

attributes|[]

The only attribute defined for thattributes table of afield_info structure by this specification
is theConstantValue attribute (5.10.1 ConstantValuéttribute). This must be defined for static final
fields of primitive typeshioolean, byte, short , andint).

5.9 Methods

Each method is described by a var@aladngth method_info structure. The format of this structure is:

method_info {
ul token
u2 access_flags
u2 name_index
u2 descriptor_index

Java Card Platform Virtual Machine Specification, vB. Page73

The items of thenethod_info structure are as follows:

token

Thetoken item is the token assigned to thisatihod. If this method is atatic method or
constructor, thetoken item represents atatic method token 4.3.7.4 Static Methods and
Constructor$. If this method is a vireal method, thetoken item represents a virtual method token
(4.3.7.6 Virtual Methods If this method is aimterface method, thetoken item represents an
interface method token @.3.7.7 Interface Methods

access_flags

Thevalue of theaccess flags item is a mask of modifiers used with methods. The
access_flags modifiers are shown in the flowing table.

Table5-5: Export File Method Access and Modifier Flags

Name \ Value Meaning Used By ‘

ACC_PUBLIC 0x0001 | Is public; may be accessed from outside its | Any method
package.

ACC_PROTECTEI 0x0004 | |s prdected; may be accessed within Class/instance
subclasses. method

ACC_STATIC 0x0008 | Is static. Class/instance

method

ACC_FINAL 0x0010 | Is final; no further overriding or assignment | Class/instance
after initialization. method

ACC_ABSTRACT | 0x0400 | |s abstrat no implementation is provided | Any method

Method access and modifier flags are defined in the same way and with the same restrictions as
described inThe Java Virtual Machine Specification

Since all methods represented in an export file are eithddipwor protected, exactly one of the
ACC_PUBIC or ACC_PROTECTEIAg must be set.

Unlike in Java class files, tA€C_NATIVEflag is not supported in export files. Whether a method is
native is an implementation detail that is not relevant to importparkages. The Java Card virtual
machine reseres all other flag values. Their values must be zero.

name_index

The value of th@ame_index item must be a valid index into thenstant_pool table. The
constant_pool entry at that index must be EONSTANT_UB_info (5.6.4 CONSTANT_8)tf
structure representing either the special intelrmethod name for constructorsjnit>, or a valid
Java method name stored as a simple (ndiyyfgualified) name.

Java Card Platform Virtual Machine Specification, vB. Page74

descriptor_index

The value of thelescriptor_index item must be a valid index into theonstant_pool table.
Theconstant_pool entry at tha index must be £ONSTANT_Utf8 info (5.6.4 CONSTANT _8)tf
structure representing a valid Java method descriptor.

Representation of a method descriptor in export file is the same as in a Jaslass file. See the
specification described ihhe Jaa Virtual Machinespecificatior{4.3.3 The Export File and Convergion

All classes referenced in a descriptor must be public classes.

5.10 Attributes
Attributes are used in théeld_info (5.8 Fieldy structure of the export file format. All attributes
have the following general format:

attribute_info {
u2 attribute_name_index
u4 attribute_length
ulinfo [attribute length]

}

5.10.1 ConstantValue Attribute

TheConstantValue attribute is a fixedength attribute used in the attributes table of the
field_info structures. AConstantValue attribute represents the value of a final static field
(compiletime constant); that is, both thACC_STATICandACC_FINAL bits in theflags item of
the field_info structure must be set. There can be no more than GoaistantValue attribute
in the attributes table of a givefield_info structure.

TheConstantValue _ attribute has the format:

ConstantValue_attribute {
u2 attribute_name_index
u4 attribute_length
u2 constantvalue_index

}
The items of theConstantValue_attribute structure are as follows:

attribute_name_index

The value of thattribute_name_index item mustbe a valid index into theonstant_pool
table. Theconstant_pool entry at that index must be @ONSTANT_Utf8_info (5.6.4
CONSTANT Btf & G NHzO G dzZNB NI LondStanS/glieA w3 GKS adiNAy 3 «

attribute_length

Java Card Platform Virtual Machine Specification, vB. Page75

The value of thattribute_length item of aConstantValue_attribute structure must be
2.

constantvalue_index

The value of theonstantvalue_index item must be a valid index into trednstant_pool
table. Theconstant_pool entry at that index must give the constant value represented by this
attribute.

Theconstant_pool entry must be of a typ€ONSTANT _Integer (5.6.3 CONSTANT _Inteer

Java Card Platform Virtual Machine Specification, vB. Page76

AEAO#&EI A &1 Ol AO
This chapter describes the Java Card converted applet (CAP) file format. A CAP file represents a Java
Cardapplication or a librargomprising one or more Java packagkdava Car@AP filenay contain
only applet packages, only library geages or a conibation ofapplet and library packages.
Additionally, both applet andlibrary packages in a Java C&#P fileean be public or privatdcach CAP
file contains all of the classes and interfaces defined in a Javaa@glidation or libraryJava Card
Conveters must be capable of producing CAP files that conform to the specification provided in this
chapter.

6.1 CAP File Overview
A CAP file consists of a stream diiBbytes. All 1ébit and 32bit quantities are constructed by reading
in two and four cosecutive 8bit bytes, respectively. Multibyte data items are always stored in big

endian order, where the highrder bytes come first. The first bit read of a8 quantity is considered
the high bit

This chapter defines its own set dadtd types representing Java Card CAP file data: the typgags2
andu4 represent an unsigned orgtwo and fourbyte quantities, respectively. Somé types are
represented aditfield structures, consisting of arrag$ bits. Thezerothbit in each bit aray represents
the most significant bit, or high bit.

The Java Card CAP file format is presented using pseudo structures writtefike at€licture notation.
To avoid confusion with the fields of Java Card vintathine classes and class instandes,contents

of the structures describing the Java Card CAP file format are referredtéares Unlike the fields of a C
structure, successive items are stored in the Java Card platform file sequentially, withoingadd
alignment.

Variablesized taltes, consisting of variablgzed items, are used in several CAP file data structures.
Although we will use -Tke array syntax to refer to table items, the fact that tables are streams of
variablesized structures meanthat it is not possible to directtyanslate a table index into a byte offset
into the table.

A data structure referred to as an array consists of items equal in size.

Some items in the structures of the CAP file format are described usitig@ion notation. The
bytes contained ira union structure have one of the two formats. Selection of the two formats is based
on the value of the high bit of the structure.

A CAP file may be in Compact or Extended Format where the Compact Format CAP filet cargiin
information for more tha one application or library packagk.CAP file in Compact format may only

Java Card Platform Virtual Machine Specification, vB. Page77

contain 64KB of bytecode information. A CAP filExtended format may contain Bblocks containing
bytecode information where each block mag of 64KB. Se&10 Method Component

Java Card virtual machine implementations must support Compact Format CAP files. Support for
Extendedrormat CAP files is optional

6.2 Component Model

A Java Card CAP file consists of a set of componentsc&aponent describes a set of elements in the
application or library defined, or an aspect of the CAP file. A complete CAP file must containeall of
required components specified in this chapter. Four components are optional: the Applet Component
(6.6 Applet Componet Export Component(13 Export ComponejtDebug Componen6(15 Debug
Componen} and Static Resources Componéhtl6 Static Resource Compongrithe Applet

Commnent is included only if one or moepplets are defined in one or more of the packages in the
CAP file. The Export Component is included only if classes in other paeidaighsare not part of the

CAP file, may import elements in any of the packageimelef The Debug Component contains all of the
data necessary for debugging packages in the CAP file. The Static Resources Component contains all the
static resources for th€AP fileand must be included if 2ava Card application dbiary contairs static
resources AJava Card CAP fiteay not have a Static Resources Componehgifapplication or library

it represents doesiot have any static resources.

The content of edt component defined in a CAP file must conform to the corresponding format
specifed in this chapter. Components have one of the following general formats (Compact and
Extended) as specified in the Header Componént Header ComponentA CAP file in @Ggact format
must only contain components in Compact format except Debug component and Static Resources
Component. The Header Component is alway®impact format.

component_compact {
ul tag
u2 size
ul info[]

}

component_extended { (since CAP format 2.3)
ul tag
u4 size
ul info[]

}

Each component begins with abyte tag indicating the kind of component. Valid tags and their values
are listed inTable6-1. Thesize item indicates the number of bygein the info array of the component,
not including thetag andsize items.

The content and format of thinfo array varies with the type of component.

Java Card Platform Virtual Machine Specification, vB. Page78

Table6-1: CAP File Component Tags

Component Type Value
COMPONENT _Header 1

COMPONENT_Directory
COMPONENT_Applet

COMPONENT _Import
COMPONENT_ConstantPool

COMPONENT _Class

COMPONENT_Method
COMPONENT_StaticField

COMPONENT _ReferencelLocation
COMPONENT_Export
COMPONENT_Descriptor
COMPNENT_Debug (since CAP format 2.2)
COMPONENT_Static_Resources (since CAP format 2.3)

OO (N O~ WIN

=
o

[En
-

[Eny
N

-
w

Oracle may define additional components in future versions of this Java Card virtual machine
specification. It is guaranteed that additional components will Haag values betweeri4and 127,
inclusive.

6.2.1 Containment in a JAR File

Each CAP file component is represented as a single file. The component file names are enumerated in
Table6-2. These names are noaise sensitive. Note that components with extended length have
SEGSyarzy aoOlLEEéEéP b2GS (KIG aSikK2R /2YLRyYySyidis wS$s
with extendedlength may only be present in the CAP file in Extended format. In Compact format all
components, except Debug componeftatic Resources componerid custom components, must

KIS O02YLI OG tSy3idkK FyR YdaAad KI @S SEGSyairzy aoOl L

Table6-2: CAP File Component File Names

Component Type \ File Name \
COMPONENT_Header Header.cap
COMPONENT_Directory Directory.cap
COMPONENT_Applet Applet.cap
COMPONENT _Import Import.cap
COMPONENT_ConstantPool ConstantPool.cap
COMPONENT_Class Class.cap
COMPONENT_Method Method.cap [X]
COMPONENT _StaticField StaticFie Id.cap
COMPONENT _ReferencelLocation RefLocation.cap [X]
COMPONENT_Export Export.cap
COMPONENT _Descriptor Descriptor.cap [X]
COMPONENT_Debugsince CAP format 2.2) Debug.cap [X]
COMPONENT_Static_Resources (since CAP format 2.3) StaticResources.capx

Java Card Platform Virtual Machine Specification, vB. Page79

All GAP file components are stored in a JAR file. As described.BiJAR File Containéne path to the
CAP file component files in a JAR file consists of a directory zalezird.

bFrYS 2F (KS 5S8S06dza /2YLRYSYyd Ay [/ 2YLI OG F2NXI G Ydza
less thar65535bytes.Size item oDebug Component in Compact fornsdtall always be of type u2. The

Debug Component in Compact formmaay alsccontain655350r morebytes in which case the size item

shall have value of OXFFFF and the name of the Debug comporibatjar file must have extension

POl LIEEDP blYS 2F (KS 5S86dA 0O02YLRYSyild Ay 9EGSYRSR

ForJARAE Sa Ay [/ 2YLI OG F2NXIGX GKS RANBOG2NER a2l @ OF
directory. For examplghe CAP file component files of the package javacard.framework are located in
the subdirectory javacard/framework/javacard.

ForJARAf Sa Ay 9EGSYRSR C2NXI(G3Z GKS RANBOG2NE a2t gt O
F LILIX A OF G A2y 2yNdorfetampld; theECAR file ROmMNAB D ifi2 N\GF the application
HelloWorld are located in the subdirectoigom/oracle/ HelloWorld/javac ard .

Other files, including other CAP files, may also reside in a JAR file that contains CAP file component files.

The JR file format provides a vehicle suitable for the distribution of CAP file components. It is not
intended or required that the JARdiformat be used as the load file format for loading CAP file
components onto a Java Card technolemabled device. Se&3 Installatia for more information.

The name o& JAR file containing CAP file components is not defined as part of this specification. The
naming convention used by the Oracle Java Card Converter Tool is to apgpndb the application or
library name. For examplthe CAP file produced for the libgaJavalLoyalty would be named
Javaloyalty.cap

6.2.2 Defining New Components

Java Card CAP files are permitted to contain new, or custom, components. All new components not
defined as part of this specification musttradfect the semantics of the speigfl components, and Java
Card virtual machines must be able to accept CAP files that do not contain new components. Java Card
virtual machine implementations are required to silently ignore components they do not reeogni

New components are identified itwo ways: they are assigned both an ISO 78X6D 4.2 AlBbased
Naming and atag value. Validag values are between 128 and 255, inclusive. Both of these
identifiers ae recorded in theeustom_component item of the Directory Componen6(5 Directory
Componeny.

The new component must conform tme ofthe generakcomponent formas defined in this chapter,
either compactor extendedas defined in the Header Componewith atag value, asize value
indicating the number of bytes in the component (excludingtdge andsize items), and arnnfo
item containing the content of the new comporten

Java Card Platform Virtual Machine Specification, vB. Page80

A new component file is stored in a JAR, following the same restrictions as those specified.ih3
JAR File Contain€eFhat is, the file containing the new compan must be located in the
<application_or_library_directory >/javacard or

<package_directory >/javacard subdirectory of the JAR file and must have the extension
.capx or.cap based on Extended or Compact format of the CAP file respectively

6.3 Installatio n

Installing CAP file components onto a Java Card techneloglyled device entails communication
between a Java Card technoleggabled terminal and that device. While it is beyond the scope of this
specification to define a load file format or instaitat protocol between a terminal and a device, the
CAP file cmponent order shown belous a referencedad order suitable for an implementation with a
simple memory management model on a limited memory device.

Rderence Component Install Order

COMPONENHeader
COMPONENT_Directory
COMPONENT _Import
COMPONENT_Applet
COMPONENT_Class
COMPONENT_Method
COMPONENT _StaticField
COMPONENT_Export
COMPONENT _ConstantPool
COMPONENT _ReferenceLocation
COMPONENT _Static_Resources
COMPONENT_Descriptor (optional)

=4 =4 =4 =4 -4 -4 -4 -4 -4 -4 -8 4

Thecomponent typeCOMPONENT_Debug not intended for download to the device. It is intended to
be used offcard in conjunction with a suitably instrumented Java Card virtual machine.

6.4 Header Component
The Header Component contains general informatioawdtthis CAP file and theublic packages it
defines. It is described by one of the following varidblegth structures:

header_component_compact {
ul tag
u2 size
u4 magic
ul CAP_Format_minor_version

5Both the Java Card Forum and Global Platform specification have adopted this component load order as a
standard to enhance interoperability. In both cases, loading the Descriptor Component is optional. Furthermore,
the Global Platform specification flees the brmat of packets (APDUSs) used during installation.

Java Card Platform Virtual Machine Specification, vB. Page81

ul CAP_Format_ major_version

ul flags

package_inf o package

package_name_info package_name (since CAP format 2.2)

}

header_component_extended { (since CAP format 2.3)
ul tag
u2 size
u4 magic
ul CAP_Format_ minor_version
ul CAP_Format_ major_version
ul flags
ul CAP_minor_version
ul CAP_major_version
ul CAP_AID length
ul CAP_AID[CAP_AID_length]
ul package_count
package_info packages]
package _name_info package names]]

}

The items in thdneader_component structure are as follows:
tag

Thetag item has the valu€OMPONENT_Headel).

size

Thesize item indicates the numbeof bytes in theheader_component structure, excluding the
tag andsize items. The value of theize item must be greater than zero.

magic

Themagic item supplies thenagic number identifying the Java Card CAP file format; itthas/alue
OXDECAFFED

CAP_Format_ minor_version, CAP_Format_ major_version

TheCAP_Format_ minor_version andCAP_Format_ major_version items are the minor
and major version numbers ttie format used fothis CAP file. If a CAP file has the major version
number ofM and minor version numberehx G KS @SNEA2Y 2 FMmKS /!t

A change in the major version number indicademajor incompatibility change, one that requires a
fundamentally different Java Card virtual machine. A Java Card viragine is not required to
support CAP files with different major version numbers. A Java Card virtual machine is required to

Java Card Platform Virtual Machine Specification, vB. Page82

FTAL SQ3

supportCAP files having a given major version number and all valid minor version numbers in the range
0 through some particularinor_version where a valid minor version number is a minor version
number that has been defined in a version of the Java Card virtaetine specification.

In this specification, the major version of the CAP file format has the value 2 and the mirionVeis
the value3. A Java Card Virtual Machine must support minor version values between 1 @ntj/3.
Oracle Corpmay define the meaning and values of new CAP file format versions.

flags

Theflags item is a mask of modifiers that apply to tiGg\P fe. Theflags modifiers are shown in
the following table.

Table6-3: CAP File Flags

Flags Value
ACC_INT 0x01
ACC_EXPORT 0x02
ACC_APPLET 0x04
ACC_EXTENDED 0x08

TheACC_INT flag has the value of one iféghJavant type is used by at least one of the packages in
this CAP file. That type is used if one or more of the following is present:

A parameter to a method of typat

A parameter to a method of typat array
A local variable of typmt

A loca variable of typent array

A field of typeint

A field of typeint array

An instruction of typent , or

An instruction of typent array

= =4 =4 -4 -4 -4 A A

Otherwise theACC_INT flag has the value dj.

TheACC_EXPORTag has the value of one if an Export Componeértg Export Componehts
included in this CAP file. Otherwise it has the value of 0.

TheACC_APPLETIag has the value of oriéan Applet Componen6(6 Applet Componets included
in this CAP file. Otherwise it has the value of 0.

All other bits in theflags item not defined inTable6-3 are reserved for future use. Their values must
be zero .

Java Card Platform Virtual Machine Specification, vB. Page83

TheACC_EXTENDE#Rag has the value of one if the CAP file is in Extended format. In this case the
Method Component.10 Method Componeit Reference Location componeBt12 Reference
Location Componeit DescriptoiComponent §.14 Descriptor ComponentDebug 6Gmponent 6.15
Debug Componeitand allcustom components in the CAP file must be in the Extended Format.
Otherwsse it has the value of 0.

package

Thepackage item inheader_component_compact describes the package defined in this CAP file.
It is represented as package _info structure:

package_ info {
ul minor_version
ul major_version
ul AID_length
ul AID[AID_length]

}
The items in thgpackage_info structure are as follows:
minor_version, major_version

Theminor_version andmajor_version items are the minor and major version numbers of this
package. These values uniquely identify the particular implementatiohi@fpickage and indicate the

binary compatibility between packages. SEBCAP andPackage Versiorier a description of assigning
and using package version numbers.

AID_| ength

TheAlD_length item represents the number of bytes in t#dD item. Valid values are between 5
and 16, inclusive

AID[]

TheAlD item represents the Java Card platform name of the package. See ISG #@1t6e definition
of an AID (also see2 AlDbased Naminyg

package_name

Thepackage_name item inheader_component_compact, describes the name of the package
defined in this CAP file. It is represented gmekage _name_info[] structure:

package_name_info { (since CAP format 2.2)
ul name_length
ul name[name_length]

Java Card Platform Virtual Machine Specification, vB. Page84

The items in thgpackage_name_info[] structure are as follows:
name_length

Thename_length item is the number of bytes used in the name item ¢épresent the name of this
package in UF8 format. The value of this item may be zero if and only if the package does not define
any remote intefaces or remote classes.

namel[]

Thename[] item is a variable length representation of the fully qualifiednesof this package in U3
format. The fully qualified name is represented in internal form as described idatree Virtual Machine
Specificatn.

CAP_minor_version, CAP_major_version

The CAPminor_version and CAPmajor_version itemsin header_component_ extended
are the minor and major version numbers of this CAP file. These values uniquely itesi@AP file.
Seed.5CAP andPackage Versiorier a description of assigmg and using version numbers.

CAP_AID_length

The CAPAID length item inheader_component_extended, represents the number of bytes
in the CAPAID item. Valid values are between 5 and 16, inclusive.

CAP_AID][]

The CAPAID item inheader_component_extende d, represents the Java Card platform name of
the CAP file. See ISO 78 6or the definition of an AID (also sd& AlDbased Naming

package_count

The package_count iteim the header_component_extended structure represents the number of
entries in thepackages table. The value of thpackage count item must be greater than O.

packages

Thepackages item inheader_component_extended, is an array representing all public
packagesn this CAP file. Each entry in the array is representedpaslkage_info structure.

package_nhames

Thepackage _names item inheader_component_extended, describes the names of all the
packages defined in this CAP file. Each name is represenggubhakage name_info[] structure.

6.5 Directory Component
The Directory Component lists the size of each of the components defined in this CAP file. When an
optional component is not included, such as the Applet Compor&6tApplet Componet Export

Java Card Platform Virtual Machine Specification, vB. Page85

Component .13 Export Component Debug Componen6(15 Debug Componentor for Extended
format, the Static Resource Component (Static Resource Componsngiresented in the Directory
Component withsize equal to zero. The Directory Component also incluetgsies for new (or
custom) components.

The Directory Component for CAP file in Compact and Extended format is described by the following
variablelengh structures:

directory_component_compact {
ul tag
u2 size
component_size_info_compact component_size s (since CAP format 2.3)
static_field_size_info static_field_size
ul import_count
ul applet_count
ul custom_count
custom_component_info_compact custom_components[custom_count]

}
di ectory_component_extended { (since CAP format 2.3)
ul tag
u2 size
component _size_info_extended component_sizes
static_field_size_info static_field_size
ul import_count
ul applet_count
ul method_component block count
ul custom_count
custom_component_info_extended custom_components[custom_count]
}

The items in these structusare as follows:

tag

Thetag item has the valu€OMPONENT_Directory (2).
size

Thesize item indicates the number of bytes in tlirectory _component structure, excluding
thetag andsize items. The value of theize item must be greater than zero.

component_sizes

Thecomponent_sizes item is a structure of typeomponent_size_info_compact or
component_size_info_extended based on the Compact or Extended format of the CAP file. It
represents the number of bytes in each of the components in this CAP file.

Java Card Platform Virtual Machine Specification, vB. Page86

component_size_info_compact {
u2 Header_Component_Size
u2 Directory_Component_Size
u2 Ap plet_Component_Size
u2 Import_Component_Size
u2 Constant_Pool_Component_Size
u2 Class_Comonent_Size
u2 Method_Component_Size
u2 Static_Field_Component_Size
u2 Reference_Lo cation_Component_Size
u2 Export_Component_Size
u2 Descriptor_Component_Size
u2 Debug_ Component_Size (since CAP format 2.2)
u4 Static_Resource_Component_Size (since CAP format 2.3)

}

component_size info_extended { (since CAP format 2.3)
u2 Header_Component _Size
u2 Directory_Component_Size
u2 Applet_Component_Size
u2 Import_Component_Size
u2 Constant_Pool_Component_Size
u2 Class_Component_Size
u4 Method_Component_Size
u2 Static_Field_Component_Size
u4 Reference_Location_Component_Size
u2 Export_Component_Siz e
u4 Descriptor_Component_Size
u4 Debug_Component_Size
u4 Static_Resource_Component_Size

}
The value of an entry in theomponent_size_info_compact or
component_size_info_extended structures is zero for components not included in this CAP file.

Componentghat may not be included are thepplet Componentg.6 Applet Componeintthe Export

Component .13 Export Componeptthe Bebug Componentf;15 Debug Componentand theStatic

Resource Component (6.15 Static Resource Component). For all other componentsi¢his geeater
than zero.

Value forDebug_Component_Size incomponent_size_info_compact must be OxFFFF if
size of thenfo item of the Debug Componen®.(15 Debug Componenis greater tharor equal to
65535

static_field_size

Java Card Platform Virtual Machine Specification, vB. Page87

Thestatic_field_size item is astatic_field_size info structure. The structure is
defined as:

static_field_size_info {
u2 image_size
u2 array_init_count
u2 array_init_size

}
The items in thestatic_field_size_info structure are the following:
image_si ze

Theimage_size item has the same value as thmage_size item in the Static Field Component
(6.11 Static Field Compongntt represents the total number of bytes in thtatic fields defined in all
packages in this CAP file, excluding final static fields of primitive types.

array_init_count

Thearray_init_count item has the same value as theray_init_count item in the Static
Field Componentg(11 Static Field Compongntt represents the number of arrays initialized in all of
the <clinit> methods in all the packages in this CAP file.

array_init_size

Thearray_init_size item represens the sum of the count items in therray_init table item
of the Static Field Componer8.(1 Static Field Compondntt is the total number of bytes in all of the
arrays nitialized in all of the<clinit> methods in all the packages in this CAP file.

import_count

Theimport_count item indicates the number of packages imported by classes and interfaces in this
CAP file. This item has the same value as the count item iimjbert Component§.7 Import
Componeny.

applet_count

Theapplet_count item indicates the number of applets defined in packages in this CAP file. If an
Applet Componentq.6 Applet Componefis not included in this CAP file, the value of the
applet_count item is zero. Otherwise the value of tApplet_count item is the same as the
value ofthe count item in the Applet Componer@.6 Applet Componet

method_component_block count

Themethod_component_block_count item indicates the number of method componerbbks
in the Extended Method Component(10 Method Componeit The value of the

Java Card Platform Virtual Machine Specification, vB. Page88

method_component_block count item is the same as the value of the
method_component_block count item in the Method Componen6(10 Method Component

custom_count

Thecustom_count item indicates the number of entries in tloeistom_components table. Valid
values are between nd 127, inclusive.

custom_components]]

Thecustom_components item isa table of variabldength

custom_component_info_compact or custom_component_info_extended structures
based on Compact or Extended length format of the CAP file. Each new comporieat diefthis CAP
file must be represented in the table. These composeste not defined in this standard.

Thecustom_component_info_compact andcustom_component_info _extended
structures are defined as:

custom_component_info_compact {
ul component_tag
u2 size
ul AID_length
ul AID[AID_length]

}

custom_component_info_extende d{ (since CAP format 2.3)
ul component_tag
u4 size
ul AID_length
ul AID[AID_length]

The items in entries of thesstructures are:
component_tag

Thecomponent_tag item represents théag of the component. Valid values are between 128 and
255, inclusie.

size
Thesize item represents the number of bytes in the component, excluding#ige andsize items.

AID_length

Java Card Platform Virtual Machine Specification, vB. Page89

TheAlD_length item represents the number of bytes in ti#dD item. Valid values are between 5
and 16, inclusive.

AID[]

TheAlD item represents the Java Card platform name of the component. See ISCG5T80éhe
definition of an AID4.1 Java Card Platform File Formats

Each component is assigned abAgbnforming to the ISO 788standard. Beyond thathere are no
constraints on the value of an AID of a custom component.

6.6 Applet Component

The Applet Component contains an entry for each of the applets defined i€ARsfile Applets are
definedby implementing a nombstract subclass, direct ardirect, of the

javacard.framework.Applet clasS$. If no applets are definetly any of the packages in this CAP
file, this component must not be present in this CAP file.

The Applet Component is describby one of the following variablength structures based on
Compact or Extended format of CAP file:

applet_component_compact {
ul tag
u2 size
ul count
{ ul AID_length
ul AID[AID_length]
u2 install_method_offset
}ap plets[count]

}

applet_componen t_extended { (since CAP format 2.3)
ul tag
u2 size
ul count
{ ul AID_length
ul AID[AID_length]
ul install_method_component_block_index
u2 install_method_offset
} applets[count]

}

The items in the@pplet_component structure are as follows:

6 Restrictions placed on an applet definition are imposed byRhbatime Environment Specification, Java Card
Platform, \8.1, Classic Edition

Java Card Platform Virtual Machine Specification, vB. Page90

tag
Thetag item has the valu€OMPONENT_Applet(3).
size

Thesize item indicates the number of bytes in tla@plet_component structure, excluding the
tag andsize items. The value of theize item must be greater than zero.

count

Thecount item indicates tle number of appletsiefined by all the packages in this CAR Tilee value
of thecount item must be greater than zero.

applets[]

Theapplets item represens a table of variabldength structures each describing an applet defined in
this CAP file

Theitems in each entry of thapplets table are defined as follows:

AID_length

TheAlD _length item represents the number of bytes in t#dD item. Valid values are between 5
and 16, inclusive.

AID[]
TheAlID item represents the Java Card platform namelaf applet.

Each applet is assigned an AID conforming to the 1ISOY8fihdard 4.2 AlBbased Naming The RID
(first 5 bytes) of all of the applet AIDs must have the saaige. In adition, the RID of each applet AlDs
must have the same value as the RID of the package defined in this CAP file.

install_method_component_block_index

Theinstall_method_component_block_index item inapplet_component_extended
structure represents the index into the blocks array of Method Componért@ Method Componeit
The method_component_block at that index contains the install method for this applet.

ins tall_method_offset

The value of thénstall_method_offset item inapplet_component_compact structure,
must be al6-bit offset into the info item of the Method Componer@.(0 Method Componeit

The value of thénstall_method_offset item inapplet_component_extended structure
must be a 16bit offset into the method_component_block in the blocks array of Method Component

Java Card Platform Virtual Machine Specification, vB. Page9l

(6.10 Method Componentat index represented by
install_method_component_block_index

The item at that offset must beraethod_info structure that represents thetatic

install(byte[],short,byte) method of the applet. The

inst all(byte[],short,byte) method must be defined in a class that extends the
javacard.framework. Applet class, directly or indirectly. The
install(byte[],short,byte) method is called to initialize the applet.

6.7 Import Component

The Import Component listhé set of packages imported by the classes in@#A® filelt does not
includeentriesfor package defined in this CAP file. The Import Component is represkhyethe
following structure:

import_component {
ul tag
u2 size
ul count
package_info pac kages[count]

}

The items in thémport_component structure are as follows:
tag

Thetag item has the valu€OMPONENT _Import(4).

size

Thesize item indicates the number of bytes in tli@port_component structure, excluding the
tag andsize items. Thevalue of thesize item must be greater than zero.

count

Thecount item indicates the number of items in the packages table. The value afoilvet item
must be between 0 and 128, inclusive.

packages|]

Thepackages item represents a table of variablength package_info structures as defined for
package unde6.4 Header ComponenThe table contains an entry for each of the packages referenced
in the CAP file, not includlj the packagedefinedin this CAP file

" Restrictions placed on the install(byte[],shosttb) methodof an applet are imposed by tHeuntime
Environment Specification, Java Card Platforrl, \Classic Edition

Java Card Platform Virtual Machine Specification, vB. Page92

The major and minor version numbers specified inghekage _info structure are equal to the
YI22NJ F YR YAY2N) GSNBA2ya alLISOA T AMERAPRayPackagE A YLI2 NI S
Versiondor a description of assigning and using package version numbers.

Components of this CAP file refer to an imported package by usimglex in thispackages table.
The index is calledpackage toker{4.3.7.1 Package

6.8 Constant Pool Component

The Constant Pool Component contains an entry for each of the classes, methods, and fields referenced
by eements in the Method Componen®.(10 Method Componentof this CAP file. The referencing

elements in the Method Component may be instructions in the methods or exceptiatidrazatch

types in the exception handler table.

Entries in the ConstafPool Component reference elements in the Class CompoBehQlass
Componen}, Method Component§.10 Method Componeftand Static Field Componet11 Static
Field Component The Impar Component 6.7 Import Componentis also accessed using a package
token @.3.7.1 Packageo describe references to classes, methods and fields defined in imported
packages. Entries in the Constant Pool Component do not reference other entries internal to itself.

The Constant R Component is described by the following structure:

constant_ pool_component {

ul tag

u2 size

u2 count

cp_info constant_pool[count]
}
The items in theonstant_pool_component structure are as follows:
tag

Thetag item has the valu€OMPONENT_ConstantPool (5).
size

Thesize item indicates the number of bytes the constant_pool_component structure,
excluding thedag andsize items. The value of theize item must be greater than zero.

count

Thecount item represents the number énes in theconstant_pool[] array. Valid values are
between 0 and 65535, inclvs.

constant_pool[]

Theconstant_pool[] item represents an array @p_info structures:

Java Card Platform Virtual Machine Specification, vB. Page93

cp_info {

ul tag
ul info[3]
}
Each item in theonstant_pool[] array is a 4yte structure. Each structure must begin with-a 1

byte tag indicating the kind afp_info entry. The content and format of the{3yte info array varies
with the value of thaag . The valid tags and their values are listed in the followintetab

Table6-4: CAP File Constant Pool Tags

Constat Type Tag \
CONSTANT _Classref
CONSTANT _InstanceFieldref
CONSTANT _VirtualMethodref
CONSTANT_SuperMethodref
CONSTANT _StaticFieldref
CONSTANT _StaticMethodref

OO WIN|F

WE @ /FNR LIXIGF2NY O2yaidl yid Ge& LIS athanthvee i@lavaclass R O2 y
files. The categories indicate not only the type of the item referenced, but also the mamwéidh it is
referenced.

For example, in the Java constant pool there is one constant type for method references, while in the
JavaC&®k LJ I 0 F2N)Y O2yaidlyd L2t o0aWF@F [/ FNR O2yail yi
references: one for vital method invocations using thievokevirtual bytecode, one for super

method invocations using thevokespecia | bytecode and one for &tic method invocations using

either theinvokestatic or invokespecial bytecode® The additional information provided by a

constant type in Java Card technologies simplifies resolution of references.

There are no ordering constraints on constant pookiest It is recommended, however, that

CONSTANT _InstanceFieldref (6.8.2 CONSTANT _InstanceFieldref, CONSTANT _VirtualMethodref,
CONSTANT_SuperMettref) constants occur earin the array to permit usingetfield_T and

putfield_T bytecodes instead dajetfield T_w andputfield T_w bytecodes. The former

have tbyte constant pool index parameters while the latter haviey?e constant pool index

parameters.

The firstentry in theconstant pool canot be an exception handler class that is referenced by a
catch_type_index of anexcepti on_handler_info structure. In such a case the value of the

8 The constant pool index parameter of mvokespeciabytecode is to a CONSTANT _ StaticMethodref when the
method referenced is a catructor or a private instancmethod. In these cases the method invoked is fully known
when the CAHRile is created. In the cases of virtual method and super method referetfvesnethod invoked is
dependent upon an instance of a class and its hierarsbth) of which may be partially unknown when the CAP
file is created.

Java Card Platform Virtual Machine Specification, vB. Page94

catch_type_index would be equal to 0, but the value of O icatch_type_index is reserved
to indicate arexception_handler_info structure that describes finally block.

6.8.1 CONSTANT _Classref
TheCONSTANT _Classref _info structure is used to represent a reference to a class or an interface.
The class or interface may be defined in this packagde an imported package.

CONSTANT_Classref_info {
ul tag
union {
u2 internal_class_ref
{ ul package_token
ul class_token
} external_class_ref
} class_ref
ul padding
}

The items in theONSTANT_Classref_info structure are the following:
tag
Thetag item has the valu€ONSTANT_Classref (1).

class_ref

Theclass_re f item represents a reference to a class or interface. If the class or interface is defined in
this CAP filethe structure represents aimternal_class_ref and the high bit of thestructure is

zero. If the class or interface is definedrimported packagehe structure represents an

external_class_ref and the high bit of the structure is one.

internal_class_ref

Theinternal_class_ref structure represents a 1bit offset into theinfo item of the Class
Component 6.9 Class Componérb aninterface_info orclass_info structure. The
interface_info orclass_info structure must represent the referencesiass or interface.

The value of thénternal_class_ref item must be between 0 and 32767, inclusive, making the
high bit equal to zero.

external_class_ref

Theexternal_class_ref structure represents reference to a class or interface defined in an
imported package. The high bit of this structure is one.

package_token

Java Card Platform Virtual Machine Specification, vB. Page95

Thepackage token item represents a package toke#.8.7.1 Packageadefined in the Import
Component 6.7 Import Componentof this CAP file. The value of this token must be a valid index into
the packa ges table item of theimport_component structure. The package representetthat

index must be the imported package.

The value of the package token must be between 0 and 127, inclusive.
The high bit of thepackage token item is equal to one.
class_token

Theclass_token item represents the token of the class or interfade3(7.2 Classes and Interfages
of the referenced class or interface. It has the value of the class token of the class as defined in the
Exportfile of the imported package.

padding

Thepadding item has the value zero. It is present to make siee of aCONSTANT _
Classref_info structure the same as all other constants in ttenstant_pool[] array.

6.8.2 CONSTANT _InstanceFieldref, CONSTANT _VirtualMethodref,
CONSTANT_SuperMethdref
References to instance fields, and virtual methods are represented by similar structures:

CONSTANT _InstanceFieldref_info {

ul tag
class_ref class
ul token
}
CONSTANT _VirtualMethodref_info {
ul tag
class_ref class
ul token
}
CONSTANT_SuperMthodref_info {
ul tag
class_ref class
ul token
}

The items in these structures are as follows:

tag

Java Card Platform Virtual Machine Specification, vB. Page96

Thetag item of aCONSTANT _InstanceFieldref _info structure has the value
CONSTANT _InstanceFieldref (2).

Thetag item of aCONSTAN_VirtualMethodref_ info structure has the value
CONSTANT _VirtualMethodref 3).

Thetag item of aCONSTANT_SuperMethodref_info structure has the value
CONSTANT_SuperMethodref (4).

class

Theclass item represents the class associated with the referenced instance fieldalvirtethod, or
super method invocation. It isdass_ref structure 6.8.1 CONSTANT _Claskgréfthe referenced
class is defined in thiSAP filethe high bit is equal taero. If the reference class is defined in an
imported package the high bit of this structure is equal to one.

The class referenced in tl@ONSTANT _InstanceField_info structure must be the class that
contains the declaration of the instance field.

The cass referenced in th€EONSTANT _VirtualMethodref _info structure must be a class that
contains a declaration or definition of the virtual method.

The class referenced in tl@ONSTANT_SuperMethodref_info structure must be the class that
defines the method tht contains the Javathguageevel super invocation.

token

Thetoken item in the CONSTANT _InstanceFieldref_info structure represents an instance
field token @.3.7.5 Instace Fieldsof the referenced field. The value of the instance field token is
defined within the scope of the class indicated by thess item.

Thetoken item of theCONSTANT _VirtualMethodref _info structure represents the virtual
method token 4.3.7.6 Virtual Methodsof the referenced method. The virtual method token is defined
within the scope of the hierarchy of the class indicated by the class item. If the referemtbddris
public or potected the high bit of the token item is zero. If the referenced method is packsgde the
high bit of the token item is one. In this case ttlass item must represent a reference to a class
defined in this package.

Thetoken item of theCONSTANT_SperMethodref_info structure represents the virtual
method token 4.3.7.6 Virtual Methodsof the referenced method. Unlike in the

CONSTANT VirtualMethod ref info structure, the virtual method token is defined within the
scope of the hierarchy of the superclass of the class irelichy theclass item. If the referenced
method is public or protected the high bit of theken item is zero. If the referenceahethod is
packagevisible the high bit of the token item is one. In the latter casedlass item must represent a

Java Card Platform Virtual Machine Specification, vB. Page97

reference toa class defined in this package and at least one superclass of the class that contains a
definition of the virtual method musalso be defined in this package.

6.8.3 CONSTANT _StaticFieldref and CONSTANT _StaticMethodref
References to static fields and theds are represented by similar structures:

CONSTANT_StaticFieldref_info {
ul tag
union {
{ ul padding
u2 offset
}inter nal_ref
{ ul package_token
ul class_token
ul token
} external_ref
} static_field_ref

}
CONSTANT _StaticMethodref_info {
ul tag
union {
{ul method_info_block index (since CAP format 2.3)
u2 offset
}internal_ref
{ ul package_token
ulclass _token
ul token
} external_ref
} static_method_ref
}
The items in these structures are as follows:
tag
Thetag item of aCONSTANT_StaticFieldref_info structure has the value

CONSTANT _StaticFieldref (5).

Thetag item of aCONSTANT _StaticMethodref _info structure has the value
CONSTANT_StaticMethodref (6).

static_field_ref

Thestatic_field_ref item represent a reference to a static field.

Java Card Platform Virtual Machine Specification, vB. Page98

If the referenced item is defined in this CAP file the structure represenistemal_ref and the
high bitof the structure is zero. If the referenced item is define@nother CAP file the structure
represents arexternal_ref and the high bit of the structure is one.

internal_ref

Theinternal_ref item represents a reference tosatic field defined in thiSCAP file. The items
in the structure are:

padding
Thepadding item of aCONSTANT _StaticFieldref_info structure is equal to O.
method_info_block _index

Themethod_info_block _index item of aCONSTANT _StaticMethodref_info structure
represents the index ithe blocks array of Method Component(10 Method Componeftcontaining
the referenced method.

The value of thenethod_info_block_index token must be between 0 and 127, insive.
offset
Theoffset item of aCONSTANT _StaticFieldref_info structure represents a 1Bit offset into

the Static Field Image defined by the Static Field compor@ehi (Static Field Compongnb this static
field.

Theoffset item of aCONSTANT _StaticMethodref _info structure represents a 1bit offset
into the method_component_block in the blocks array of Method Componet10 Method
Componen} at index represented byethod _info_block_index. Themethod_info structure
atoffset must represent the referenced method.

external_ref

Theexternal_ref item represents a reference to a stafield or method defined in an imported
package. The items in the structure are:

package_token

Thepackage_token item represents gpackage token @4.3.7.1 Packagealefined n the Import
Component 6.7 Import Componentof this CAP file. The value of this token must be a valid index into
the packages tableitem of theimport_component structure.The package represented at that
index must be the imported package.

The value of th@package token must be between 0 and 127, inclusive.

The high bit of thepackage token item is equal to one.

Java Card Platform Virtual Machine Specification, vB. Page99

class_token

Theclass_token item represents the token4.3.7.2 Classes and Interfage$ the class of the
referenced class. It has the value of ttlass token of the class as defined in the Export file of the
imported package.

The class indicated by thidass_token item must define the referencefield or method.

token

Thetoken item of aCONSTANT _StaticFieldref_info structure represents a static field token
(4.3.7.3 Static Field)ss defined in the Export file of the imported package. It has the value of the token
of the referenced field.

Thetoken item of aCONSTANT _StaticMethodref _info structure represents a static method
token @.3.7.4 Static Methods and Constructpes defined in the Export file of the imported package. It
has the value of the token of the referenced method.

6.9 Class Component

The Clas€onponent describes each of the classes and interfaces defined iGA&#sfilelt does not
contain complete access information and content details for each class and interface. Instead, the
information included is limited to that required to execute opeoais associated with a particular class
or interface, without performing velication. Complete details regarding the classes and interfaces
defined in thisCAP filare included in the Descriptor Compone6iti4 Descriptor Component

The information included in the Class Component for each interface is sufficient to uniquely identify the
interface and to test whether or nat cast to that interface is valid.

The informatia included in the Class Component for each class is sufficient to resolve operations
associated with instances of a class. The operations include creating an instance, testing whether or not
a cast of thanstance is valid, dispatching virtual method inatians, and dispatching interface method
invocations. Also included is sufficient information to locate instance fields ofrgfpeence

including arrays.

The classes represented in the Class Comporedetence other entries in the Class Componentia t
form of superclass, superinterface and implemented interface references. When a superclass,
superinterface or implemented interface is defined in an imported package the Import Component is
used in therepresentation of the reference.

The classes repsented in the Class Component also contain references to virtual methods defined in
the Method Componentd.10 Method Componeitof this CAP file. References to virtual noeth

defined in imported packages are not explicitly described. Instead such methods are located through a
superclass within the hierarchy of the class, where the superclass is defined in the same imported
packae as the virtual method.

Java Card Platform Virtual Machine Specification, vB. Pagel00

The Constant Poolothponent 6.8 Constant Pool CompongnExport Component(13 Export
Componeny}, Descrippr Component.14 Descriptor Componenand Debug Componers.(5 Debug
Componen} reference classes and interfaces defined in the Class Component. No other CAP file
components reference the Class Component.

The Class Component is represented by the following structures based on Compact or Extended format
of the CAP file:

class_component_com pact {

ul tag

u2 size

u2 signature_pool_length (since CAP format 2.2)
type_descriptor signature_pool[] (since CAP format 2.2)

interface_info interfaces]]
class_info_compact classes]]

}
class_component_extended { (since CAP format 2.3)
ul tag
u2 size
u2 signature_pool_length
type_descriptor signature_pool[]
interfac e_info interfaces]]
class_info_extended classes]]
}
The items in thelass_component_compact andclass_component_extended structures

are as follows:

tag

Thetag item has the alue COMPONENT_Clasg6).
size

Thesize item indicates the number of bytes in tlsbass_component structure, excluding théag
andsize items. The value of theize item must be greater than zero.

signature_pool_length

Thesignature_pool_length item indicates the number of bytes in tregnat ure_pool[]
item. The value of theignature_pool_length item must be zero ihone of the packages in this
CAP filadefine any remote interfaces or remote classes.

signature_pool[]

Java Card Platform Virtual Machine Specification, vB. Pagel0l1

Thesignature_pooll] item represeants a list of variabléengthtype descri ptor structures.
These descriptors represent the signatures of the remote methods.

interfaces]]

Theinterfaces item represents an array dfiterface_info structures. Each interface defined
in thisCAP filas repesented in the array. The entries are ordered based on hierarchy such that a
superinterface has a lower index than any of its subinterfaces.

classes]]
Theclasses item represents a table of variablengthclass_info_compact or
class_info_extended structures based on Compact or Extended format of CAP file. Each class

defined in this CAP file is represented in the array. The entries are ordered based on hierarchy such that
a superclass has a lower index than any of its subclasses.

6.9.1 type_descriptor
The type_descriptor structure represents the type of a field or the signature of a method.

type_descriptor { (since CAP format 2.2)
ul nibble_count;
ul type[(nibble_count+1) / 2];

}

Thetype_descriptor structure contains the following elements:
nibble count

Thenibble_count value represents the number of nibbles required to describe the type encoded in
the type array.

typef]

Thetype array contains an encoded description of the type, composed of individual nibbles. If the
nibble_count item isan oddnumber, the last nibble in the typgrray must be 0x0. The values of
the type descriptor nibbles are defined in the following table.

Table6-5: Type Descriptor Values

Type \ Value \
Void Ox1
Boolean 0x2
Byte 0x3
Short 0x4
I nt 0x5
Reference 0x6
arrayof boolean OxA

Java Card Platform Virtual Machine Specification, vB. Pagel02

Type \ Value

arrayof byte 0xB
arrayof short 0xC
arrayof int 0xD
arrayof reference OxE

Classeference types are described using the reference nibble 0x6, followed bipwe (4nibble)
class_ref structure. Theclass_ref structure is defined as part of the

CONSTANT _Classref _info structure £.8.1 CONSTANT _Classrebr example, a field of type
reference topl.cl in a CAP f defining packagpO is described as:

Table6-6: Encoded Reference Type pl.cl

Nibble Value Description

0 0x6 Reference

1 <pl> package token (high bit on)
2 N/A N/A

3 <cl> class token

4 N/A N/A

5 0x0 Padding

The following are examples of the array types:

Table6-7: Encoded Byte Array Type

Nibble \ Value \ Description

0 0xB array of byte
1 0x0 Padding

Table6-8: Encoded Reference Array Type pl.cl

Nibble \ Value \ Description

0 OXE array ofreference

1 <pl> package token (high bit on)
2 N/A N/A

3 <cl> class token

4 N/A N/A

5 0x0 Padding

Method signatures are encoded in the same way, with the return typad@htethod encoded at the
end of the sequence of nibbles. The return type is encoded in as many nibbles as required to represent
it. For example:

Java Card Platform Virtual Machine Specification, vB. Pagel03

Table6-9: Encoded Method Signature ()V

Nibble Value Description

0

0x1 Void

1

0x0 Padding

Table6-10: Encoded Method Signature (Lpl.ci;)S

Nibble \ Value \ Description \
0 0x6 Reference

1 <pl> package token (high bit on)

2 N/A N/A

3 <c1> class token

4 N/A N/A

5 0x4 Short

6.9.2 interface_info , class_info_compactand class_info_extended
Theinterface_info andclass_info structures represent interfaces and classes, respectively.
The two are differentiated by the value of the high bit in the structures. They are dediméallows:

Note: Below, forinterface_name_info interface name theinterface_name]]

item is requiredfithe value ofACC_REMOTIE one. This item must be omitted otherwise. See
the description of this field for more information. F@mote_interface_info remote_
interfaces the remote_interfaces item is required if the value ACC_REMOTE

one. This itenmust be omitted otherwise. See the description of this field for more information.

interface_info {

—

ul bitfield {

bit[4] flags

bit[4] interface_coun t
}

class_ref superinterfaces|interface_count]
interface_name_info interface_name

class_info _compact {

ul bitfield {

bit[4] flags

bit[4] interface_count
}
class_ref super_class_ref
ul declared_instance_size
ul first_reference_token
ul refere nce_count

Java Card Platform Virtual Machine Specification, vB. Pagel04

ul public_method_table base
ul public_method_table count
ul package_method_table base
ul package_method_table_count
u2 public_virtual_method_table[public_method_table_count]
u2 package_virtual_method_table[package_method_table_ count]
implem ented_interface_info interfaces|interface_count]
remote_interface_info remote_interfaces (since CAP format 2.2)
ul public_virtual_method_token_mapping[public_method_count]
(since CAP format 2.3)
ul CAP22_ i nheritable_public_method_token_count
(since CAP for mat 2.3)

}

class_info_extended { (since CAP format 2.3)

ul bitfield {
bit[4] flags
bit[4] interface_count

}

class_ref super_class_ref

ul declared_instance_size

ul first_reference_token

ul reference_count

ul public_method_table base

ul public_meth od_table_count

ul package_method_table base

ul package _method_table count

method_Dblock_info
public_virtual_method_table[public_method_table count]

method_block_info
package_virtual_method_table[package_method_table_count]

implemented_interface_info int erfaces[interfac e_count]

remote_interface_info remote_interfaces

ul public_virtual_method_token_mapping[public_method_count]

ul CAP22_ i nheritable_public_method_token_count

}

6.9.2.1 interface_info, class_info_compactand class_info_extendedShared Items

flags

Theflags item is a mask of modifiers used to describe this interface or class. Valid values are shown in
the following table:

Java Card Platform Virtual Machine Specification, vB. Pagel05

Table6-11: CAP File Interface and Class Flags

Name Value

ACC_INTERFACE 0x8
ACC_SHAREABLE 0x4
ACC_REMOTE 0x2

TheACC_INTERFACEHlag indicates whether this structure represents an interface or a class. The value
must be one if it represents adnterface_info structure and zero if it represents a
class_info_compact orclass_ info_ extended structure.

TheACC_SHAREABL#Hag in aninterface_info structure indicates whether this interface is
shareable. The value of this flag must be one if and only if the interface is
javacard.framework.Shareable interface or extends that interfze drectly or indirectly.

TheACC_SHAREABLHag in aclass_info_compact or class_info_extended structure
indicates whether this class is shareablhe value of this flag must be one if and only if this class or
any of its superclasses implements ateiface that is shareable.

TheACC_REMOTHaAg indicates whether this class or interface is remote. The value of this flag must be
one if and only ithe class or interface satisfies the requirements defined.h6.1 Remoté€lasses and
Remote Interfaces

All other flag values are reserved. Their values must be zero.

interface_count

Theinterface_count item of theinterface_info structure indicates the number of entriés
the superinterfaces]] table item. The value represents the number of direct and indirect
superinterfaces of this interface. Indirect superinterfaces are the set of superinterfaces of the direct
superinterfaces. Valid values are between 0 and 14, inaus

Theinterface_count item of theclass_info_compact andclass_info_extended

structures indicates the number of entries in the interfaces table item. The value represents the number
of interfaces implemented by this class, including superinterfacésosk interfaces and potdially

interfaces implemented by superclasses of this class. Valid values are between 0 and 15, inclusive.

6.9.2.2 interface_info Items

superinterfaces]

9 A Java Card virtual machine uses the ACC_SHAREABLE flag to implement the firewall restrictions thefined by
Runtime Environment Specification, Java Card Platform 6yE@ssic Etion.

Java Card Platform Virtual Machine Specification, vB. Pagel06

Thesuperinterfaces] item of theinterface_info structure is an arragf class_ref

structures epresenting the superinterfaces of this interface. Thass_ref structure is defined as

part of the CONSTANT_Classref_info structure 6.8.1 CONSTANT_Claspsrehis array is empty if
this interface has no superinterfaces. Both direct and indirect superinterfaces are represented in the
array. Class Object is not included.

interface_name]

Theint erface_name[] item represents interface hame informati required if the interface is

remote. Thenterface_name[] item is defined by a table of variablength
interface_name_info structures. If the value of thACC_REMOTH#ag is zero, the structure is
defined as:

interface_name_info {

}
If the value of he ACC_REMOTHag is one, the structure is defined as:

interface_name_info {
ul interface_name_length
ul interface_nameJinterface_name_length]

}
The values in thinterface_name_info structure are defined as follows:
interface_name_length
Theinterfac e_name_length item is the number of bytes imterface_name][] item.
interface_name
The item is a variable length representation of the name of this interface irBUdiat.

6.9.2.3class_info_compact and class_info_extendedtems

super_class_ref

The super_class_ref item of theclass_info _compact andclass_info_extended
structuresis aclass_ref structure representing the superclass of this class.class_ref
structure is defined as part of tHeONSTANT _Classref_info structure 6.8.1 CONSTANT_Claspref

Thesuper_class_ref item has the value ddxFFFF only if this class does not have a superclass.
Otherwise the value of theuper_class_ref item is limited only by theonstraints of the
class ref structure.

declared_instance_size

Java Card Platform Virtual Machine Specification, vB. Pagel07

Thedeclared_instance_size item of theclass_info_compact and
class_info_extended structuresrepresents the number of 1bit cells required to represent the

instance fields declared by thitass. It does not include instance fields declared by superclasses of this

class.

Instance fields of typat are represented in two 18it cells, while albther field types are
represented in one 1it cell.

first_reference_token

Thefirst_reference _token item of theclass_info_compact and
class_info_extended structuresrepresents the instance field toked.8.7.5 Instace Fieldsvalue

of the first reference type insince field defined by this class. It does not include instance fields defined

by superclasses of this class.

If this class does not define any refererngpe instance fields, the value of the
first_reference_token isOXFF. Otherwise the value of thiirst _reference_token item
must be within the range of the set of instance field tokens of this class.

reference_count

Thereference count item of theclas s_info_compact andclass_info_extended
structures represents the number of reference type instance figddined by this class. It does not
include reference type instance fields defined by superclasses of this class.

Valid values of theeference_count item are between 0 and the maximum number of instance
fields defined by this class.

public_method_table base

Thepublic_method_table base item of theclass_info_compact and
class_info_extended structures is equal to the virtual method token valu¢.8.7.6 Virtual
Methods) of the first method inthe public_virtual_method_table[] array. If the
public_virtual_method_ table[]] array is empty, the value of the

public_method_table_ base item is equal to theublic_method_table_base item of the
class_info_compact andclass_info_extended structures2 ¥ G KA & Of I 4aQ
public_method_table count item of theclass_info & 4 NHzOG dzNB 2 F (KA &
class has no superclass and hublic_virtual_method_table[] array is empty, the value of
the public_method_table base item iszero.

public_method_table_ count

Thepublic_method_table_count item of theclass_info_compact and
class_info_extended structuresindicates the number of entries in the
public_virtual_method_table[] array.

Java Card Platform Virtual Machine Specification, vB. Pagel08

If this class does not define anylpie or proected override methods, the minimum valid value of
public_method_table_count item is the number of publiand protected virtual methods
declared by this class. If this class defines one or more pubtiotected override methods, the
minimumyvalid valueof public_method_table_count item is the value of the largest pubbc
protectedvirtual method token, minus the value of the smallest publiprotected virtual override
method token, plus one.

The maximum valid value of thmublic_method_t able_count item is the value of the largest
publicor protected virtual method token, plus one.

Any value for theublic_method_table_count item between the minimum and maximum
specified here is valid. However, the value must correspond to the numberttié®in the
public_virtual_method_table[] array.

package_method_table_base

Thepackage_method_table_base item of theclass_info_compact and
class_info_extended structuresis equal to the virtual method token valu4.8.7.6 Virtual
Methods) of the first entry in thepackage_virtual_method_table]] array. If the
package_virtual_method_table[] array is empty, the value of the
package_method_table_base item is equal to thgpac kage_method_table base item of

theclass_inffo & G NUzOG dzZNB 2 F (KA & pddkageandetdod dtabieJSoNIDf 1 & &

LJ dza

itemoftheclass_inffo & 0 NJzOG dzNB 2F (GKAA&A OflaaQ adzZJSNOtlFaad L

from a class defined in anothpackage and thpackage virtual method_table[] array is
empty, the value of thpackage_method_table base item is zero.

package_method_table count

Thepackage_method_table count item of theclass_info_compact and
class_info_extended structuresindicates the number of entries in the
package_virtual_method_table[] array.

If this class does not define any override methods, the minimum valid value of
package_method_table_count item is the number of package visible virtual methods declared

by this class. this class defines one or more package visible override methods, the minimum valid value

of package_method_table_count item is the value of the largest package visible virtual method
token, minus the value of the smallest package visible virtual ovemietbod token, plus one.

The maximum valid value of tlgackage_method_table_count item is the value of the largest
package visible method token, plus one.

Any value for thgpackage_method_table count item between the minimum and maximum

specified here ar valid. However, the value must correspond to the number of entries in the
package_virtual_method_table[].

Java Card Platform Virtual Machine Specification, vB. Pagel09

public_virtual_method_table[]

Thepublic_virtual_method_table]] item of theclass_info_compact and
class_info_extended structuresrepresents an arragf public and protected virtual methods.
These methods can be invoked on an instance of this class. The

public_virtual_method_table[] array includes methods declared or defined by this class. It
may also include methods declared or @efil by any or allfats superclasses. The value of an index into
this table must be equal to the value of the virtual method token of the indicated method, minus the
value of thepublic_method_table base item.

Inclass_info_compact structure, the entriesn the public_virt ual_method_table[]

array that represent methods defined or declared in this package contain offsets into the info item of
the Method Componentd.10 Method Componeitto themethod_info structure representing the
method. Entries that represent methods defined or declared in an imported package contain the value
OXFFFF.

Inclass_info_extended structure, the entries in theublic_virtual_method_table]]

array are of typenethod _block info structure that represent methods defined or declared in the
package containing this class. Entries that represent methods defined or declared in an imported
package contain the vall@FFFF for the method_offset item of method_block_info

structure and the value OxFF fonethod_component_block_index item of

method_Dblock_info structure.

Entries for methods that are declared abstract are represented in the
public_virtual_method_table[] array in the same way as nabstractmethods.

package_virtua |_method_table]]

Thepackage _virtual_method_table[] item of theclass_info structure represents an

array of packageisible virtual methods. These methods can be invoked on an instance of this class. The
package _virtual_method_tab le[] array includes methds declared or defined by this class. It

may also include methods declared or defined by any or all of its superclasses that are defined in the
package containing this class. The value of an index into this table must be echabiue of the

virtual method token of the indicated method & Ox7F, minus the value of the
package_method_table_base item.

All entries in thepackage_virtual_method_table[] array represent methods defined or
declared in this package.

Inclass_info_compa ct structure, the entriesn package_virtual_method_table[] array
contain offsets into the info item of the Method Compone6tl0 Method Componento the
method_info structure representing the metid.

Java Card Platform Virtual Machine Specification, vB. Pagell0

Inclass_info_extended structure, the entries irpackage_virtual_method_table[]
array are of typemethod_block_info structure that represent methods defined or declared in the
package containing this class.

Entries for methods that are declared absttanot including those defined bygterfaces, are
represented in thgpackage_virtual_method_table[] array in the same way as nabstract
methods.

6.9.2.4method_block_info
This structure is defined as:

method_block_info { (since CAP format 2.3)
ul mehod_component_block_index
u2 method_offset

}

Themethod_block_info structure is defined as:

method_component_block_index

Themethod_component_block_index item represents the index into the blocks array of Method
Component .10 Method Component Themethod_component_block at that index contains the
referenced method.

method_offset

The value of thenethod_offset item must be a 1@it offset into the

method_component_blo ck in the blocks array of Method Componeit 10 Method Componet
at index represented bgnethod_component_block_index . Themethod_info structure at
offset must represent e referenced method.

interfaces]]
Theinterfaces item of the class_info_compact andclass_info_extended structures
represents a table of variablengthimplemented_interface_info structures. The table must

contain an entry for each of the directly impiented interfaces indicated in the declaration of this class
and each of the interfaces in the hierarchies of those interfaces. Interfaces that occur more than once
are represented Y a single entry.

Given the declarations below, the number of entriesdtass c0 is 1 and the entry in the interfacesay
isi0 . The number of entries for class c1 is 3 and the entries in the interfagareil ,i2 , andi3 .
The entries for classl must not include interfac@® , which is implemented only by the superss$ of
cl.

interface i0 {}
interface i1 {}
interface i2 extends il {}

Java Card Platform Virtual Machine Specification, vB. Pagelll

interface i3 {}
class cO implements i0 {}
class cl1 extends cO implements i2, i3 {}

remote_interfaces

Theremote_interfaces item represents information required if this class oweof its super
classes implements a remote interface. This item must be omitted iA(D€ _REMOTHag has a value
of zero. Theemote_interfaces item is defined by aemote_interface_info structure.

6.9.25 implemented_interface_info
Theimplemented_in terface_info structure is defined as follows:

implemented_interface_info {
class_ref interface
ul count
ul index[c ount]

}
The items in themplemented_interface_info structure are defined as follows:

interface

Theinterface item has the form of &lass_ref structure. Theclass ref structure is defined

as part of theCONSTANT_Classref_info structure 6.8.1 CONSTANT_Classréhe

interface_info structure referenced byhe interface item represents an interface implemented by
this class.

count
Thecount item indicates the number of entries in thvedex[] array.
index(]

Theindex[] item is an array that maps declarations of interface methods to implementations oé thos
methods in this class. It is a representation of the set of methods declared by the interface and its
superinterfaces.

Entries in the index aay must be ordered such that the interface method token vatu8.7.7 Interface
Methods) of the interface method is equal to the index into the array. The interface method token value
is assigned to the method within the scope of the interface definition, not within the scotgsatlass.

The values in thendex(] array represent the virtual method token4.8.7.6 Virtual Methodsof the
implementations of the interface methods. The virtual mettiollen values are defined within the
scope of the hierarchy of this class.

For information on runtime resolution of anterface method se&.5.54.1 Iterface MethodResolution

Java Card Platform Virtual Machine Specification, vB. Pagell2

6.9.2.6 remote_interface_info
If the value of theACC_REMOTHag is zero, this structure is defined as:

r emote_interface_info { (since CAP format 2.2)

}
If the value of theACC_REMOTHAg is one, this structure is defined as:

remote_interface_info { (since CAP format 2.2)
ul remote_methods_count
remote_method_info remote_methods[remote_methods_count]
ul hash_maodifier_length
ul hash_modifier[hash_maodifier_length]
ul class_name_length
ul class_name[class_name_length]
ul remote_interfaces_count
class_ref remote_interfaces[remote_interfaces cou nt]

}
Theremote_interface_info structure is defined as:

remote_methods_count

Theremote_methods_count item indicates the number of entries in themote_methods
array.

remote_methods]]

Theremote_methods item of theclass_info structure is an arragf r emote_method_info
structures that maps each remote method available in the class to its hash code and its type definition in
the signature_pool][]. The methods are listed in numerically ascending order of hash values.

Theremote_method_info structure s ddined as follows:

remote_method_info { (since CAP format 2.2)
u2 remote_method_hash
u2 signature_offset
ul virtual_method_token

}

The items in theemote_method_info structure are defined as follows:

remote_method_hash

Theremote_method_hash item contains a twebyte hash value for the method. The hash value is
computed from the simple (not fully qualified) name of the method concatenated with its method

Java Card Platform Virtual Machine Specification, vB. Pagell3

descriptor. The representation of the method descriptor is the sama aslava class file. See the
specification described ifihe Java Virtual Machine Specificat{§4.3.3).

The hash value uniquely identifies the method within the class.

The hash code is defined as the first two bytes of the-Siffessage digest functigrerformed on the
hash_modifi er[] item described below followed by the name of the method followed by the
method descriptor representation in UBHormat. Rare hash collisions are averted automatically during
package conversion by adjusting the agtilison string.

signature_offse t

Thesignature_offset item contains an offset from thsignature_pool item of theinfo
item of the Class Component to the varialdagth type descriptor structure inside the
signature_pool[] item. This structure represents éhsignature of the remote nmbod.

virtual _method_token
Thevirtual_method_token item is the virtual method token of the remote method in this class.
hash_maodifier_length

Thehash_modifier_length item is the number of bytes in the followirash_modifier item.
The value of this@m must be zero if an antiollision string is not required.

hash_modifier(]

Thehash_modifier[] item is a variable length representation of the aatillision string in UTB
format.

class_name_length

Theclass_ name_length item is the number of bytegsed in theclass_name[] item.
class_name][]

Theclass_name[] item is a variable length representation of the name of this class ir8Udfnat.
remote_interfaces_count

Theremote_interfaces_count item is the nunier of interfaces listed in the followgn
r emote_interfaces]] item.

remote_interfaces]]

Theremote_interfaces]] item is a variable length array ofass_ref items. It represents the
remote interfaces implemented by this class. The remote interfacedllistéhis array, together with

Java Card Platform Virtual Machine Specification, vB. Pagellsd

their superinterfaces must be the complete set of remote interfaces implemented by this class and all its
superclasses.

Each entry has the form ofcdass_ref structure. Eaclelass_ref structure must reference an
interface_i nfo structure representing a remote intiace implemented by this class.

The entries in theemote_interfaces] array must be ordered such that all remote interfaces
from the same package are listed consecutively.

6.9.2.7 public_virtual_method_token_mapping

Thepublic _virtual_method_token_mapp ing[] item of theclass_info structure
represents an array mapping public and protected virtual method tokens of methods overridden or
declared in this class to the corresponding token value in the super Tlessalue of an index into this
table must beequal to the value of theistual method token of the indicated method in this class. The
number of entriesn this array ipublic_method_count wherepublic_method_count equals
public_method_table base plus public_method_table_count

The entries in th@ublic_virtual_method_token_m apping[] array that represent methods
declared by this class must contain the valx&F . The entries in the
public_virtual_method_token_mapping]] array that represent methods declared by any
one of the super classes of thissdanust contain the value die token in the direct super class at the
time of conversion of this class.

The same virtual method can have different tokens in different classes. Given aztaxsits direct
superclass €, the token R in class €denotes the same method as tokdi in class Cwhen
T1=C2.public_virtual_method_token_mapping[T 2] and TLis notOxFF. This relation can
be extended by reflexivity, symmetry, and transitivity to any classes C1 and C2.

The content of the tablgublic_virtual_met hod_token_mapping for a clas2defined in a
CAP file of format 2.2 or earlier is implicitly defined as:

1 ForT < inherited_public_method_count,

public_virtual_method_token_mapping[T] =T
9 Forinherited_public_method_count <= T < public_me thod_count,
public _virtual_method_token_mapping[T] = OxFF
whereinherited_public_method_count is defined by using the immediate supdass € of @

and depends on the format of the CAP file definidg C

91 If CAP file defining Qias format 2.2 or earlier,

inherited_public_m ethod_count = Cl.public_method_count
91 If CAP file definin@1 has format 2.3,

inherited_public_method_count =

C1.CAP22_i nheritable_public_method_token_count

Java Card Platform Virtual Machine Specification, vB. Pagell5

For information on runtime resolution of a virtual method s&&.57.1 Virtual Methd Resolution

CAP22_i nheritable_public_method_token_count

TheCAP22_i nheritable_public_method_token_count item represents the nonber of
public or protected virtual methods inheritable by a subclass defined in a CAP file of farsian 2.2
or earlier.

6.10 Method Component

The Method Component describes each of the methods declared i€##sfileexcluding<clinit>
methodsand interface method declarations. Abstract methods defined by classes (not interfaces) are
included.The exception handlers associated with each method are also described.

The Method Component does not contain complete access information and descdptaiés for each
method. Instead, the information is optimized for size and therefore limited to tbqtired to execute
each method without performing verification. Complete details regarding the methods defined in this
package are included in the Degtar Component§.14 Descriptor ComponentAmong other
information, the Descriptor Component contains the location and numbéytidcodes for each

method in the Method Component. This information can be used to parse the methods in the Method
Component.

Instructions and rception handler catch types in the Method Component reference entries in the
Constant Pool Componera.8 Constant Pool CompongniNo other CAP file compents, includinghe
Method Component, are referenced by the elements in the Method Component.

The Applet Componen6(6 Applet Componeit Constant Pool Componer@.8 Constant Pool
Componeny}, Class Componernt.9 Class ComponénExport Component(13 Export Componet
Descriptor Componen6(14 Descriptor Componentand Debug Componer.(5 Debug Component
reference methods defined in the Method Component. The Reference Location Comp6rient (
Reference Location Componégmeferences all constant pool indices contained in the Method
Component. No other CAP file components reference tle¢hgd Component.

The Method Component is represented by one of the following structures based on Compact or
Extended format of the CAP file:

method_component _compact {
ul tag
u2 size
ul handler_count
exception_handler_info exception_handlers[handler_ count]
method_info methods][]

}

method_component_extended { (since CAP format 2.3)

Java Card Platform Virtual Machine Specification, vB. Pagell6

ul tag

u4 size

ul meth od_component_block_count

u4 method_component_block_offsetsmethod_component_block_count]
method_component_block blocks[method_component_block_count]

}

The items in theestructures are as follows:

tag

Thetag item has the valu€OMPONENT_Metho(7).
size

Thesize item indcates the number of bytes in thmethod_component structure, excluding the
tag andsize items. The value of theize item must be greater than zero.

method_component_block count

Themethod_component_block count item inmethod_co mponent_extended structure
indicates the number aihethod_component_block entries in theblocks array. The value of
method_component_block _count item must bebetween 0 and 127, inclusive.

method_component_block_offsets

Themethod_component_block _offsets[] item of themethod _component_extended
structure represents an array of offsatgo theinfo item ofthe method component for each

method_component_block . The number of entries in this array must be the same as the value of
method_component _bloc k count .

blocks|[]

Theblocks[] item of themethod_component_extended structure represents an array of
method_component_block items. The number of entries in this array must be the same as the
value ofmethod_component_block_count

6.10.1 method_component_block

Anmethod _component _extended may contain between 1 and 12iiethod_component_block
items. Each block can have a maximum size of 65535 biteck must contain all the information
needed to execute any method contained in that blotkis means that every gjle method_info
structure and all its corresponding exception handlers must be contained in one
method_component_block . If adding a method to method_component_block would exceed
the maximum size for the block, the CAP file Coveool must create a ne
method_component_block and add this method and all its corresponding exception handlers to
that new block

Java Card Platform Virtual Machine Specification, vB. Pagell?

Themethod_component_block structure is defined as follows:

method_component_block { (since CAP format 2.3)
ul handler_count
exception_handler_ info exception_handlers[handler_count]

method_info methods]]

}

handler_count

Thehandler_count item represents the number of entries in thexception_handlers array.
Valid values are between 0 and 255, inclusive.

ex ception_handlers]]

Theexception_han dlers item represents an array oflByte exception_handler_info
structures. Eaclkxception_handler_info structure represents a catch or finally block defined in
a method of thisCAP file

Entries in theexception_handlers array are sorted in ascending @ndby the offset to the handler
of the exception handler. Smaller offset values occur first in the aiifig ordering constraint ensures
that the first match found when searching for an exception handler is the correct match.

There are two consequences$this ordering constraint. First, a handler that is nested with the active
range (try block) of anothréhandler occurs first in the array. Second, when multiple handlers are
associated with the same active range, they are ordered as they occur in adn@this is consistent
with the ordering constraints defined for Java class files. An example is shéwl) Exception
Handler Example

6.10.2 Exception Handler Example

Themethods item represents a table ofariablelengthmethod_info structures. Eeh entry
represents a method declared in a class of this packegjmit> methods and interface method
declaration are not included; all other methods, including fiaterface abstract methods, are.

try {

ty o

.}. .catch (NullPointerException e) { // first
} catch .(.I.Exception e){ /I second

} finally { /1 third

Java Card Platform Virtual Machine Specification, vB. Pagell8

}
try {
} catch (SecurityException e) { // fourth

}
methods]]

6.10.3 exception_handler_info
Theexception_h andler_info structure is defined as follows:

exception_handler_info {
u2 start_offset
u2 bitfield {
bit[1] stop_bit
bit[15] active_length
}

u2 handler_offset
u2 catch_type_index

}

The items in thexception_handler_info structure are as follows
start_of fset, active_length

Thestart_offset andactive_length pair indicate the active range (try blodk)an exception
handler. Thestart_offset item indicates the beginning of the active range while the
active_length item indicates the number of ligs contained in the active range.

end_offset is defined astart_offset plusactive_length

Inmethod_component_compact structure, thestart_offset item andend_offset are byte
offsets into theinfo item of the Method Component

Inmethod_component_exten ded structure, thestart_offset item andend_offset are
byte offsets into thanethod_component_block containing thisexcep tion_handler_info
structure in the Method Component.

The value of thetart_offset must be a valid offset into lytecodes array of amethod_info
structure to an opcode of an instruction. The value of éimel_offset either must be a valid offset
into abyt ecodes array of the samenethod_info structure to an opcode of an instruction, or must
68 Sliddt G2 GKS YS$(KgtR®the bytécddbshaai 6 théethodyinfos 1 K S
structure. The value of thstart_offset must beless than the value of thend_ offset

Java Card Platform Virtual Machine Specification, vB. Pagell9

Thestart_offset is irclusive and thend_offset is exclusive; that is, the exception handler must
be active while the xecution address is within the interv@tart_offset, end_offset).

stop_bit

Thestop_bit item indicates whether the active range (try block) of this eximephandler is

contained within or is equal to the active range of any succeegkiegption_handle r_info

structures in thisexception_handlers array. At the Java source level, this indicates whether an
active range is nested within another, or has at leawt succeeding exception handler associated with
the same range. The latter occurs when theratifeast one succeeding catch block or a finally block.

Thestop_bit item is equal to 1 if the active range does not intersect with a succeeding exception

hay Rt SNR& | OGABS NIy3aSs FyR GKAA SEOSLIIA 2yitiskl yRE SN
equal to 0 if the active range is contained within the active range of another exception handler, or there

is at least one succeeding handler apgiiesto the same active range.

Thestop_bit provides an optimization to be used during the intextation of theathrow bytecode.
As the interpreter searches for an appropriate exception handler, it may terminate the search of the
exception handlers in thiMethod Component under the following conditions:

9 the location of the current program counterless than theend_offset of this exception
handler, and
1 thestop_bit of this exception handler is equal to 1.

When these conditions are satisfied it is garteed that none of the succeeding exception handlers in
this Method Component will contain antae range appropriate for the current exception.

In6.102 Exception Handler Exam@ld 02 , thestop_bit item is set for both the third and fourth
handlers.

handler_off set
Thehandler_offset indicates the start of the exception handler.

In method_component_compact , thehandler_offset item represents a byte offset into the
info item of the Method Component.

In method_component_extended , the handler_offset item represens a byte offset into
the method_component_block containing thisexception_handler_info structure in the
Method Component.

At the Java source level, this is equivalent to the beginning of a catch or finally block. The value of the
item must be a valid offdénto a bytecodes array ofmethod_info structure to an opcode of an
instruction, and must be less thanthe value of V& 1 K2 RQ&a 08 GSO2RS 02dzy i o

catch_type_index

Java Card Platform Virtual Machine Specification, vB. Pagel20

If the value of thecatch_type_index item is nonzero, it must be a valid index into the
constant_pool[] array of the Constant Pool Compone6t§ Constant Pool Componénihe
constant_pool[] entry at that index must be @ONSTANT_Classref_info structure,
representing the class of the exception caught by thiseption_handlers array entry.

If the exception_handlers table entry represents a finally block, the value of the
catch_type_index item is zero. In this case the exception handler is called for all exosphat
are thrown within thestart_offset andend_offset range.

The order of constants in the constant pool is constrained such that all entries referenced by
catch_type_index items that represent catch block (not finally blocks) are located atzemm
entries.

6.10.4 method_info
Themethod_info structure is defined as follows:

method_info {
method_header_info method header
ul bytecodes]]

}

The items in thenethod_info structure are as follows:
method_header

Themethod_header item representsither amethod_header_info oran
extended_method_header _info structure:

method_header_info {
ul bitfield {
bit[4] flags
bit[4] max_stack
}
ul bitfield {
bit[4] nargs
bit[4] max_locals
}
}

extended_method_header_info {

ul bitfield {
bit[4] flag S
bit[4] padding

}

ul max_stack

ul nargs

ul max_locals

Java Card Platform Virtual Machine Specification, vB. Pagel2l

}

The items of thanethod_header _info andextended_method_header_info structures are
as follows:

flags

Theflags item is a mask of modifiers defined for this method. Valid flag values are sihaive
following table.

Table6-12: CAP File Method Flags

Flags Values

ACC_EXTENDED 0x8
ACC_ABSTRACT 0x4

The value of théACC_EXTENDEBDag must be one if thenethod_header is represented by an
extended_ method_header_info structure. Otherwise the value must be zero.

The value of thACC_ABSTRACTIag must be one if this method is defined as abstract. In this case the
bytecodes array must be empty. If this method is not abstract the value ch@@ ABSTRCTflag
must be zero.

All other flag values are reserved. Their values must be zero.
paddin g

Thepadding item has the value of zero. This item is only defined for the
extended_ method_header_info structure.

max_stack

Themax_stack item indicates the mximum number of words required on the operand stack during
execution of this method.

Stack atries of typeint are represented in two words, while all others are represented in one word.
See3.2 Words

nargs

Thenargs item indicates the number of words required to represent the parameters passed to this
method, including thehis pointer if this method is a virtual method.

Parameters of typ@nt are represented in two wals, while all others are represented in one wor
See3.2 Words

max_locals

Java Card Platform Virtual Machine Specification, vB. Pagel22

Themax_locals item indicates the number of words required to represent the local variables
dedared by this method, not including the parameters passed to this method on invocétion.

Local variables of typat are represented in two words, while all otheage represented in one word
(3.2 Words. If anentry in the local variables array of the stack frame is reused to store more than one
local variable (for example, local variables from separate scopes), the number of words required for
storage is two if one or moref the local variables is of type int

bytecodes]]

Thebytecodes item represents an array of Java Card bytecodes that implement this method. Valid
instructions are defined in Chapter Java Card Virtual Machine Instruction .Séteimpdepl and
impdep2 bytecodes cannot be present in the bytecodes array item.

If this method is abstract the bytecodes item must cantzero elements.

6.11 Static Field Component

The Statid=ield Component contains all of the information required to create and initialize an image of
all of the static fields defined in thiSAP filereferred to as the static field image. Offsets totmalar

static fields are offsets into the static fieldage, not the Static Field Component.

Final static fields of primitive types are not represented in the static field image. Instead these eompile
time constants must be placed in line in Java @actnologyd 8 SR Ay ad NHzOU A2y & oO0a Wl @
AYaiuNHzOGA2yaé oo

The Static Field Component includes all information required to initialize classes. In the Java virtual
machine a class is initialized by executing dnit> method. In the Java Card virtual machine the
functionality of<clinit> methods is representedhithe Static Field Component as array initialization
data and nordefault values of primitive types data.2.4.6 Limitations of Class Initializatioontains a
descriptionof the subset okclinit> functionality supported in the Java Card virtual machine.

The Static Field Component does not reference any other component in this CAP file. The Constant Pool
Component 6.8 Constant Pool CompongnExport Component(13 Export ComponejjtDescriptor
Component .14 Descriptor Componentand Debug Componert.(5 Debug Componenteference

fields in the static field image defined by the Static Fieloh@ment.

Theordering constraints, or segments, associated with a statid firage are shown ihable6-13.
Reference types occur first in the image. Arrays initialized through<ziat> methods ocur first
within the set of reference types. Primitive types occur last in the image, and pentyipes initialized
to non-default values occur last within the set of primitive types.

P Unlike in Java Card CAP files, in Java class files the max_locals item includes both the local variables declared by
the method and the parameters passed to the method.

Java Card Platform Virtual Machine Specification, vB. Pagel23

Table6-13: Segments ba Static Field Image

Category Segment Content

reference types | 1 arrays ofprimitive types initialized byclinit> methods
reference types | 2 reference types initialized towll, including arrays
primitve types | 3 primitive types initialized to defaultalues

primitive types | 4 primitive types initialized to nowlefault values

The number of bytes used to represent each field type in the static field image is shown in the following
table.

Table6-14: Static Field Sizes

Type Bytes
Boolean 1
Byte 1
Short 2
I nt 4
reference , including arrays 2

Thestatic_field_component structure is defined as:

static_field_component {
ul tag
u2 size
u2 image_size
u2 reference_count
u2 array_init_count
array_in it_info array_init[array_init_count]
u2 default_value_count
u2 non_default_value_count
ul non_default_values[non_default_values_count]

—

The items in thestatic_field_component structure are as follows:
tag

Thetag item has the valu€OMPONENT _StaticField (8).

size

Thesize item indicates the number of bytes in tisgatic_field_component structure,
excluding theag andsize items. The value of theize item must be greater than zero.

image_size

Java Card Platform Virtual Machine Specification, vB. Pagel24

Theimage_size item indicates the number of bytegquired to represent the static fields defined in
this CAP fileexcluding final static fields of primitive types. This value is the number of bytes in the static
field image. The number of bytes required to representhefield type is shown iffable6-14.

The value of thémage_size item does not include the number of bytes requdr® represent the
initial values of array instances enumerated in the Static Field Component.

The value of thémage_size is defined as:

image_size =

reference count* 2 +
default_value count +
non_default value_count.

reference_count

Thereference_cou nt item indicates the number of reference type static fields defined in@A®
file. This is the number of fields repreged in segments 1 and 2 of the static field image as described in
Table6-13.

The value of theeference_count item may be 0 if no reference type fields are defined in @A
file. Otherwise it must & equal to the number of reference type fields aefil.

array_init_count

Thearray_init_count item indicates the number of elements in theray_init array. This is
the number of fields represented in segment 1 of the static field image as describetle6-13. It
represents the number of arrays initialized in all of #atinit> methods in thiSCAP file

If this CAP file defines a library package the valu@rafy_init_count must be zero.
array_in it[]

Thearray_init item represents an array array_init_info structures that specify the initial
array values of static fields of arrays of primitive typEsese initial values are indicated in Java
<clinit> methods. Tharray_init_info structure is @fined as:

array_init_info {

ul type
u2 count
ul values[count]
}
The items in tharray_init_info structure are defined as follows:
type

The type item indicates the type of the primitive array. Valid values are shown in the following table.

Java Card Platform Virtual Machine Specification, vB. Pagel25

Table6-15: Array Types

Type Value

Boolean 2

Byte 3

short 4

int 5
count

Thecount item indicates the number of bytes in the values array. It does not represent the number of
elements in the static field arrgyeferred to adengthin the Java programming language), since the
values array is an array bytes and the static field array may be a Aayte type. The Java programming
language length of the static field array is equal to the count item dividedéwpdimber of bytes

required to represent the static field typd@#ble6-14) indicated by the type item.

values

Thevalues item represents a byte array containing the initial values of the static fiek/alhe
number of entries in the values array is equal to the size in bytes of the type indicated by thetgpe
The size in bytes of each type is showiable6-14.

default_value_count

Thedefaul t value_count item indicates the number of bytes required to initialize the set of static
fields represented in segment 3 of the static field image as destiibTable6-13. These static fields

are prinitive types initialized to default values. The number of bytes required to initialize each static
field type is equal to the size in bytes of the type as showralrie6-14.

non_default value count

Thenon_default_value_count item represents the number bytes in the

non_ default_values array. This value is equal to the number of bytes in segment 4 of the static
field image as described Trable6-13. These static fields are primitive types initialized to rdefault
values.

non_default_values][]

Thenon_default_values item represents an array of bytes of ndefault initial values. This the
exact image of segment 4 of the static field image as de=stiibTable6-13. The number of entries in
the non_default_values array for each static field type is equal to the size in bytes of the type as

shown inTable6-14.

The value of doolean type is 1 to represent true and O to represent false.

Java Card Platform Virtual Machine Specification, vB. Pagel26

6.12 Reference Location Component

The Reference Location Component represents lists of offsets intafilne item of the Method
Component .10 Method Componeitto items that contain indices into theonstant_pool][]

array of the Constant Pool Compone6t§ Constant Pool Componégnt his includes all constant pool

index operands of instructions, and all neerocatch_type_index items of the
exception_ handlers array. Thecatch_type index items that have the value of 0 are not

included since they represéfinally blocks instead of particular exception classes.

Some of the constant pool indices are representedrig-byte values while others are represented in
two-byte values. Operands gktfield T andputfield T instructions are onéyte constant pool
indices. All other indices in a Method Component are-twte values.

The Reference Location Component is ndérenced by any other component in this CAP file.

The Reference Location Component structure is defined as one of the following structueesopas
Compact or Extended format of the CAP file:

reference_location_component_compact {
ul tag
u2 size
u2 byt e_index_count
ul offsets_to_byte indices[byte_index_count]
u2 byte2 index_count
ul offsets_to_byte2 indices[byte2_index_count]

}
referenc e_location_component_extended { (since CAP format 2.3)
ul tag
ud size
ul reference_location_component_block count
reference_location_component_block blocks][]
}
The items of theeference_location_component structure are as follows:
tag

Thetag item has the valueCOMPONENT _ReferencelLocation (9).

size

Java Card Platform Virtual Machine Specification, vB. Pagel27

Thesize item indicates the number of bytes in tmef erence_location component structure,
excluding theag andsize items. The value of theize item must be greater than zero.

reference_location_comp onent_block count
Thereference_location_component_block_count item in
reference_location_component_extended structure indicates the number of
reference_location_component_block entries in theblocks array. The value of
reference_location_component_block c ount item must be equhkto the
method_component_block count item in Method Component.

blocks([]

Theblocks[] item of thereference_location_component_extended structure represents
an array ofreference_location_component_block items. The number of entries this

array must beéhe same as the value ofference_location_component_block_count

6.12.1 reference_location_component_block

Areference_location_component_extended may contain between 1 and 127
reference_location_component_block items. Each block aghave a maximum size of 65535
bytes. Each block correspondsrt@thod_component_block items in theblocks array in the
Method Component i.e. offsets inraference_location_component_block at indexi in the
blocks array in the Referere Location Componembust be for themethod _component_block

item in theblocks array at the same index in the Method Component.

The reference_location_component_block structure is defined as follows:

reference_location_component_block {
u2 byte_index_ count
ul offsets_to_ byte indices[byte index_count]
u2 byte2_index_count
ul offsets_to_byte2_indices[byte2_index_count]

}

byte_index_count

Thebyte_index_count item represents the number of elements in the
offsets_ to_byte indices array.

offsets_to_byte indices]

Inrefe rence_location_component_compact structure, theoffsets_to_byte_indices
item represents an array ofliyte jump offsets into thénfo item of the Method Component to each
1-byte constant_pool[] array index.

Java Card Platform Virtual Machine Specification, vB. Pagel28

Inreference_location_component_block in

referen ce_location_component_compact structure, theoffsets_to_byte_indices
item represents an array ofllyte jump offsets into the correspondimgethod_component_block
Ay GKS aSiK2dbcks 2axfdyio Edeh-iiy@ donstant_pool[] array index.

Each enty represents the number of bytes (or distance) between the current index to the next. If the
distance is greater than or equal to 255 then there mentries equal to 255 in the array, whends

equal to the dstance divided by 255. Tmth entry of 255is followed by an entry containing the value of
the distance modulo 255.

An example of the jump offsets in affsets_to_byte indices array is shown in the following
table.

Table6-16: Onebyte Reference Lation Example

Instruction Offset to Operand Jump Offset
getfield_a 0 10 10
putfield_b 2 65 55
getfield_s 1 580 255,255, 5
putfield_a 0 835 255,0
getfield_i 3 843 8
All 1-byte constant_pool]] array indices in the Method Component must be represerite
offsets_to_byte indices array.

byte2 index_count

Thebyte2_index_count item represents the number of elements in the
offsets_ to_byte2 indices array.

offsets_to_byte2 indices[]

Inreference_location_component_compact structure, the

offsets_to_byte2 _indices item represents an array ofliyte jump offsets into thénfo item
of the Method Component to eachl2yte constant_pool[] array index.
Inreference_location_component_block in

reference_location_component_compact structure, theoffsets to_byte2 i ndices

item represents an array ofliyte jump offsets into the correspondimgethod_component_block
Ay GKS aSiKz2udbcks 2arfdyiio Easly Ay donstant_pool[] array index.

Each entry represents the number of bytes (or distance) between thewruindex to the next. If the
distance is greater than or equal to 255 then there mentries equal to 255 in the array, whends

equal to the distance divided by 255. Titil entry of 255 is followed by an entry containing the value of
the distance mdulo 55.

Java Card Platform Virtual Machine Specification, vB. Pagel29

An example of the jump offsets in affsets_to_byte indices array is shown ifTable6-16. The
same example applies to tludfsets_to_byte2 indices array if the instructions are changed to
those with 2byte constant_pool]] array indices.

All 2byte constant_pool[] array indicesri the Method Component must be represented in
offsets_to_byte2 indices array, including those representeddatch_type_index items
of the exception_handler_info array.

6.13 Export Component

The Export Component lists all static elements in@A$ fildhat may be imported by classes in other
packages. Instance fields and virtual methods are not represented in the Export Compgéasrent.
Extended format of CAP filesCAP file may contain peate packages. Export component must not
contain any information from these packag@ackages in the Extended format CAP files must be in the
same order as they are in the Header Componént Header Componeht

For package represented by Compact format CAP, if the CABrftiins the export componenthe
package is considered a public package.

For public packages that include applets, the Ex@ornponent includes entries only fot plblic
interfaces that are shareabfé For public packages that do not include any applets, the Export
Component contains an entry for each public class and public inteiffacdermore, for each public
class theréas an entry for each public or protexd static field defined in that class, for each public or
protected static method defined in that class, and for each public or protected constructor defined in
that class. Final static fields of primitive types (cdeypme constants) are not included.

An interface is shareable if and only if it is jagacard.framework.Shareable interface or
implements (directly or indirectly) that interface.

Elements in the Export Component reference elements in the Class ContéreeClass Componéent
Method Component&.10 Method Component and Static Field Componet11 Static Field
Componen}. No other component in this CAP file references the Export Component.

The Export Component is represented by one of the following structures based on Compact or Extended
format of the CAP file:

export_component_compact {
ul tag
u2 size
ul class_count
class_export_info {
u2 class_offset

1 The restriction on shareable functionality is imposed by the firewall asetbfin theRuntime
Environment Specification, Java Card Platfoidrl,\Classic Edition

Java Card Platform Virtual Machine Specification, vB. Pagel30

ul static_field_count

ul static_method_count

u2 static_field_offsets[static_field_count]

u2 static_method_offsets[static_metho d_cou nt]
} class_exports[class_count]

export_component_extended { (since CAP format 2.3)
ul tag
u2 size
ul package_count
package_export_info{
ul class_count
class_export_info {
u2 class_offset
ul static_field_count
ul static_method_count
u2 static _field_offsets[static_field_count]
method_block_info static_methods[static_method_count]
} class_exports[class_count]
}package_exports[package_count]

}

The items of theestructures are as follows:

tag

Thetag item has the valueCOMPONENT _Export(10).
size

Thesize item indicates the number of bytes in tlexport_component structure, excluding the
tag andsize items. The value of theize item must be greater than zero.

package_count

Thepackage_count item inexport_component_extended structure repesents the number of
entries in thepackage_exports table. The value of thpackage_count item must be greater
than 0.

package_exports|]

Thepackage_exports item inexport_component_extended structure repregnts a variable
length table ofpackage_export_i nfo structures for all public packages in this CAP file.

Java Card Platform Virtual Machine Specification, vB. Pagel3l

The items irpackage_export_info structure are:
class_count

Theclass_count item inpackage_export_info structure and in
export_component_compact structure represents the number of entries in the
class_exports table. The value of thelass_count item must be greater than zero.

class_exports[]

Theclass_exports item represents a variablength table ofclass_export_info structures.
Forlibrary CAP filesthe table contains an entry for each diet public classes and public interfaces
defined in thisCAP fileFor application CAP filee table contains an entry for each of the public
shareable interfaces defined in tHBAP file

An hdex into the table to a particular class or interface igado the token value of that class or
interface ¢.3.7.2 Classes and InterfapeEhe token value is published in the Export 6l& (Classes and
Interfaceg of the packagecontaining the class

The items in thelass_export_info structure are:
class_offset

Theclass_offset item represents a byte offset into the info item of the Class @onert (6.9 Class
Componen}. Forlibrary CAP filesthe item at that offset must be either anterface_info ora
class_info structure. Thanterface_info orclass_info structure at that offset must
represent the expded class or interface.

Forapplication CAP fileshe item at theclass_offset in theinfo item of the Class Component
must be aninterface_info structure. Thenterface_info structure at that offset must
represent the exported, shareable interface. larficular, theACC_SHAREABLHag of the
interface_info structure must be equal to 1.

static_field_count

Thestatic_field_count item represents the number of elements in the
static_field_offsets array. This &lue indicates the number of public and protected static fields
defined in this class, excluding final static fields of primitive types.

If the class_offset item represents an offset to anterface_info structure, the value of the
static_fi eld_count item must be zero.

static_method_count

Java Card Platform Virtual Machine Specification, vB. Pagel32

Thestatic_method_count item represents the number of elements in the
static_ method_offsets array. This value indicates the number of public and protected static
methods and constructors defined in thigss.

If the class_offset item represents an offset to anterface_info structure, the value of the
static_method_count item must be zero.

static_field_offsets[]

Thestatic_field_offsets item represents an array ofRyte offsets into the static fieldriage
defined ty the Static Field Componer@.{1 Static Field CompongnEach offset must be to the
beginning of the representation of the exported static field.

An index into thestati c_field_offsets array must be equal to thoken value of the field
represened by that entry. Theoken value is published in the Export file9 Method$ of this
package.

static_method_offsets]]

Thestatic_method_offsets item represents a table of-Byte offsets into thanfo item of the
Method Component&.10 Method Component Each offsemust be to the beginning of a

method_info structure. Themeth od_info structure must represent the exported static method or
constructor.

An index into thestatic_method_offsets array must be equal to the token value of the method
represented by that eny.

static_methods []

Thestatic_methods item is an arrayf method_block_info (6.9.2.4method_block_info)
structures. Thenethod_info structure pointed to by thenethod_block_info structure must
represent the exported static method or constructor.

An index into thestatic_methods array must be equal to the token value of the method
represented by that entry.

6.14 Descriptor Component

The Descriptor Component provides sufficient inforroatto parse and verify all elements of the CAP
file. It references, and therefore describeterments in the Constant Pool Compone@i Constant Pool
Componeny}, Class Goponent 6.9 Class CompongniMethod Component§.10 Method Componeit
and Static Fiel€omponent .11 Static Field CompongniNo components in the CAP file reference the
Descriptor Component.

Descriptor component in thExtended format contains informatioabout all public and private
packages contained in the BAPublic packages in the CAP file must be described first and must be in

Java Card Platform Virtual Machine Specification, vB. Pagel33

the same order as they are in the Header Componért Header Componenfollowedby private
packages.

The Descriptor Component is represented by one of the following structures based on Compact or
Extended format of the CAP file:

descriptor_component_compact {

ul tag
u2 size
ul class_count
class_descriptor_info_compact classes [class_count] (since CAP
format 2.3)
type_descriptor_info types
}
descriptor_component_extended { (since CAP format 2.3)
ul tag
u4 size
ul package_count
package_descriptor_info packages[package_count]
type_descrip tor_info types
}

The items of thesstructures are as follows:

The items of thedescriptor_component structure are as follows:
tag

Thetag item has the valu€OMPONENT _Descriptor (11).

size

Thesize item indicates the number of bytes in tlidescriptor_component structure, excluding
thetag andsize items. The value of theize item must be greater than zero.

package_count

Thepackage_count item indescriptor_component_extended structure representshe
number of entries in thgpackages table.

packages|]

Thepackages item represents dable of variabldengthpackage _descriptor_info
structures. Each package defined in this CAP file is represented in the table.

Java Card Platform Virtual Machine Specification, vB. Pagel34

6.14.1 package_descriptor_info
Thepackage_descriptor_info structure describes a package defined in this CAP file.

package_des criptor_info { (since CAP format 2.3)
ulclass co unt
class_descriptor_info_extended classes|class_count]

}
The items of these structures are as follows:

class_count

Theclass_count item represents the number of entries in tlbasses tablein
descript or_component_compact andpackage_descriptor_info structures

classes]]

Theclasses item represents a table of variablengthclass_descriptor_info_compact

table indescriptor_component_compact structuresor

class_descriptor_info_extended in package_desc riptor_info structure. Eah class
and interface defined in this package is represented in the table.

types

Thetypes item represents dype_descriptor_info structure. This structure lists the set of field
types and method signatures of the fields and haads defined or referenced in thiSAP fileThose
referenced are enumerated in the Constant Pool Component.

6.14.2 class_descriptor_info _compact and class descriptor_info_extended
Theclass_descriptor_info_compact andclass_descriptor_info_extended
structures are used to describe a class or interface defined in this package:

class_descriptor_info_compact { (since CAP format 2.3)
ul token
ul access_flags
class_ref this_class_ref
ul interface_count
u2 field_count
u2 method_count
class_ref interface s [interface_count]
field_descriptor_info fields[field_count]
method_descriptor_info_compact methods[method_count]

}

class_descriptor_info _extended { (since CAP format 2.3)
ul token
ul access flags

Java Card Platform Virtual Machine Specification, vB. Pagel35

class_ref this_class_ref

ul interface_count

u2 fiel d_count

u2 method_count

class_ref interfaces [interface_count]

field_descriptor_info fields[field_count]
method_descriptor_info_extended methods[method_count]

The items of these structures are as follows:

token

Thetoken item represents the clageken @.3.7.2 Classes and Interfages this class or interface. If
this class or interface is packageible it does not have a token assigned. In this case the vathe o
token item must beédxFF.

access_flags

Theaccess_flags item is a mask of modifiers used to describe the accesmigsion to and
properties of this class or interface. Thecess_flags modifiers for classes and interfaces are shown
in the followingtable.

Table6-17: CAP File Class Descriptor Flags

NET [Value \
ACC_PUBLIC 0x01
ACC_FINAL 0x10
ACC_INTERFACE 0x40
ACC_ABSTRACT 0x80

The class access and modifier flags defined in the table above abset sfithose defined for classes
and interfaces in a Java class file. They have the same meaning, and are set under the same conditions,
as the corresponding flags in a Java class file

All other flag values are reserved. Their values must be zero.
this _class_ref

Thethis_class_ref item is aclass_ref structureindicating the location of thelass_info
structure in the Class Componeitg Class ComponeniTheclass_ref structure is defined as
part of the CONSTANT_Classref_info structure 6.8.1 CONSTANT_Claspsref

interface_count

Java Card Platform Virtual Machine Specification, vB. Pagel36

Theinterface_count item represents the number of entries the interfaces array.df an
interface,interface_count is always set to zero.

field_count

Thefield_count item represents the number of entries in the fields array. If this
class_descriptor_info structure represents an interface, the value of fird d_count item
is equal tazero.

Static final fields of primitive types are not represented as fields in a CAP file, but instead these-compile
time constants are placed inline in bytecode sequencesfi€ht count item does not include
static final field & primitive types definedy this class.

method_count

Themethod_count item represents the number of entries in tineethods array.

interfaces]]

Theinterfaces item represents an array of interfaces implemented by this class. The elements in
the array ae class_ref structures ndicating the location of thénterface_info structure in the
Class Componenb© Class ComponéniTheclass_ref structure is defined as part ofi¢

CONSTANT Classref _info structure £.8.1 CONSTANT _Claskref

fields[]

Thefields item represents an array dield_descriptor_info structures. Each field declared
by this class is represented in the array, except static final fields of primitive types. Inherited fields are
not included in the array.

methods]

Themethods item represents an array ohethod_descriptor_info structures. Each method
declared or defined by ik class or interface is represented in the array. For a class, inherited methods
are not included in the array. For an interface, inherited methods are includge array.

6.14.3 field_descriptor_info
Thefield_descriptor_info structure is used to deeribe a field defined in this package:

field_descriptor_info {
ul token
ul access_flags
union {
static_field_ref static_field
{
class_ref class
ul token

Java Card Platform Virtual Machine Specification, vB. Pagel37

}i nstance_field
} field_ref
union {
u2 primitive_type
u2 reference_type
} type
}

The items bthe field_descriptor_info structure are as follows:

token

Thetoken item represents the token of this field. If this field is private or packagible staic field it
does not have a token assigned. In this case the value of the token item misHbe

access_flags

Theaccess_flags item is a mask of modifiers used to describe the access permission to and
properties of this field. Thaccess flags modifiers for fields are shown in the following table.

Table6-18: CAP File Field DescriptFlags

Name Value \
ACC_PUBLIC 0x01
ACC_PRIVATE 0x02
ACC_PROTECTED 0x04
ACC_STATIC 0x08
ACC_FINAL 0x10

The field access and modifier flags defined in the table above are a subset of those defined for fields in a
Java class file. They have the same meaning, and are set under the same conditions, as the
corresponding flags in a Java class file.

All other flag values are reserved. Their values must be zero.

field_ref

Thefield_ref item represents a reference to thild. If theACC_STATICflag is equal to 1, this
item represents atatic_field_ref as defined in th&€€ ONSTANT _StaticFieldref structure
(6.8.3 CONSTANT_StaticFieldref and CONSTANT _StaticMgthodref

If the ACC_STATICflag is equal to 0O, this item represents a reference to an instance field. It contains a
class_ref itemand an instance fieltbken item. These items are defined in tharse manner as in

the CONSTANT _InstanceFi eldref structure 6.8.2 CONSTANT _InstanceFieldref,
CONSTANT_VirtualMethodr€ONSTANT_SuperMethef).

Java Card Platform Virtual Machine Specification, vB. Pagel38

type

Thetype item indicates the type of this fieldlirectly or irdirectly. If this field is a primitive type
(boolean, byte, short , orint) the high bit of this item is equal to 1, otherwise the high bit of
this item is equal to 0.

primitive_type

Theprimitive_type item represents the type of this fieldsing the valas in the table below. As
noted above, the high bit of thprimitive_type item is equal to 1.

Table6-19: Primitive Type Descriptor Values

Data Type \ Value \
Boolean 0x0002
Byte 0x0003
Short 0x0004
I nt 0x000 5

reference_type

Thereference_type item represents a 1bit offset into thetype descriptor_info
structure. The item at the offset must represent treference type of this field. As noted above, the
high bit of thereference_type item is equal to O.

6.14.4 method_descriptor_info _compact and method_descriptor_info_extended
Themethod_descriptor_info_compact andmethod_descriptor_info_extended

structures are use to describe a method defined in this CAP file. This structure contains sufficient
information to locate and parse the methods in the Method Component, while the Method Component
does not.

method_descriptor_info_compact {
ul token
ul access_flags
u2 method_offset
u2 type_offset
u2 bytecode_count
u2 exception_handler_count
u2 except ion_handler_index

Java Card Platform Virtual Machine Specification, vB. Pagel39

method_descriptor_info_extended { (since CAP format 2.3)
ul token
ul access_flags
ul method_component_block_index
u2 method_offset
u2 type_offset
u2 bytecode_count
u2 exception_handler_count
u2 exception_handler_index

}

The items of theestructure are as follows:

The items of themethod_descriptor_info structure are as flows:

token

Thetoken item represents the static method tokeA.8.7.4 Static Methods and Constructpes virtual
method token 4.3.7.6 Virtual Methodsor interface method token4(3.7.7 Interface Methodsof this
method. If this method is a private or packagsible static method, a private or packagsible
constructor, or a private virtual method it does not have a token assigned. In this casaldieeof the
token item must beOxFF.

access_flags

Theaccess_flags item is a mask of modifiers used to describe the access permission to and
properties of this method. Thaccess _flags modifiers for methods are shown in the following
table.

Table6-20: CAP K& Method Descriptor Flags

NETE Value

ACC_PUBLIC 0x01
ACC_PRIVATE 0x02
ACC_PROTECTED 0x04
ACC_STATIC 0x08
ACC_FINAL 0x10
ACC_ABSTRACT 0x40
ACC_INIT 0x80

The method access and modifier flagsided in the table above, except teCC_INIT flag, are a
subset of those defined for methods in a Java classfile. They have the same meaning, and are set under
the same conditions, as the corresponding flags in a dass file.

TheACC_INIT flag is setf the method descriptor identifies a constructor method. In Java a
constructor method is recognized by its nam@i t> , but in Java Card systems, the name is replaced

Java Card Platform Virtual Machine Specification, vB. Pagel40

by a token. As in the Java verifier, these methods require special checks by the farifie Java Card
LEX F GF2NY 6aWF @ / FNR OSNAFASNEO @

All other flag values are reserved. Their values must be zero.
nmethod_component_block_index

Themethod_component_block_index item inmethod_descriptor_info_extended ,
represents the index into the blis array of Method Componené.(LO Method Componeit The
method_component_block at that index contains the referenced method. If the

class_descriptor_info structure that cantains thismethod_component_block_index
structure represents an interface, the value of tmethod_component_block_index item must
be zero.

method_offset

Fordes criptor_component_compact , if theclass_descriptor_info structure that
contains thianethod_d escriptor_info structure represents a class, theethod_offset item
represents a byte offset into thiafo item of the Method Componen®(10 Method Componet The
elementat that offset must be the beginningf a method_info structure. Thanethod_info
structure must represent this method.

Fordescriptor_component_extended , If theclass_descriptor_info structure that
contains thianethod_descriptor_info structure represents class thenethod_offset item
represents a byte offset into theethod_component_block in the blocks array of Method
Component .10 Method Componeitat index representedly

method_component_block_index . The element at that offset must be the beginning of a
method_info structure. Themethod_info structure must represent this method.

If the class_descriptor_info_compact or class_descriptor_info_extended
structure that contans thismethod_descriptor_info_compact or
method_descriptor_info_extended structure represents an interfag¢he value of the

method_offset item must be zero.
type_offset

Thetype_offset item must be a valid offset into thigpe_descriptor_info structure.The
type described at that offset represents the signature of this method.

bytecode_count

Thebytecode_count item represents the number of bytecodes in this method. The value is equal to
the length of the bytecodes array item in theethod_in fo structure in the method componen©(10
Method Componentof this method.

exception_handler_count

Java Card Platform Virtual Machine Specification, vB. Pagel4dl

Theexception_handler_count item represents the number of exception handlers iepented
by this method.

exception_handler_index

Fordescriptor_component_compact , the exception_handler_index item represents the
index to the firstexception_handlers table entry in the method componen6(10 Method
Componen} implemented by this method. Succeedimgxception_handlers table entries, up to
the value of theexception_handler_count item, are also exception handlers implented by
this method.

Fordescriptor_co mponent_extended , theexception_handler_index item represents
the index to the firsexception_handlers table entry in themethod_component_block at
indexmethod_component_block_index in theblocks array in method componen6(10
Method Componentimplemented by this method. Succeedirxception_handlers table
entries, up to the value of thexception_handler_count item, are also exception handlers

implemented by this method.

The value of thexception_handler_index item is O if the value of &
exception_handler_count item is O.

6.14.5 type_descriptor_info
Thetype_descriptor_info structure represents the types of fields and signatures of methods
defined in this package:

type_descriptor_info {
u2 constant_pool_count
u2 constant_pool_types[constant_pool_count]
type_descriptor type_desc|]

}
Thetype_descriptor_info structure contains the following elements:

constant_pool_count

Theconstant_pool_count item represens the number of entries in the
constant_pool_types array. This value is equal to the number of entries indbestant_pool
array of the Constant Pool Compong6i8 Constant Pool Compongnt

constant_pool_types[]

Theconstant_pool_types item is an array that describes the types of the fields and methods
referenced in the Constant Pool Component. This item has the same nahéetries as the
constant_pool[] array of the ©nstant Pool Component, and each entry describes the type of the
corresponding entry in theonstant_pool[] array.

Java Card Platform Virtual Machine Specification, vB. Pagel42

If the correspondingonstant_pool[] array entry represents a class or interface referericépes
not have an associated type. In this edlse value of the entry in theonstant_pool_types array
item iSOXFFFF.

If the correspondingonstant_pool[] array entry represents a field or method, the value of the
entry in theconstant_pool_types array is an offset into théype descriptor_info
structure. The element at that offset must describe the type of the field or the signature of the method.

type_desc]]

Thetype_desc item represents a table of variablengthtype descriptor structures. These
descriptors represent the types of fields andrstures of methods. For a description of the
type_descriptor structure, seeb.9.1 type_descpitor.

6.15 Debug Component

This section specifies the format for the Debugnponent. TheDebug Component contains all the
metadata necessary for debugging packages contained in a CAR élsuitably instrumented Java Card
virtual machine. It is not required for executing Java Card programs in-delmg environment.

The Debugcomponent réerences the Class Compone6tq Class ComponeéniMethod Component
(6.10 Method Componentand Static Field Componei@. {1 Static Field CompongniNo components
reference the Debug Component.

Debug component in thBxtended format contains delguinformation about all public and private
packages contained in the CAP. Theeo in which the packages are listed in the Debug Component
must be the same as the order in the extended Descriptor Compoiettt Descriptor Component

The Debug Component is represented by one of the following structures based on Extended or Compact
format of the CAP file:

debug_component_compact { (since CAP format 2.2)
ul tag
u2 size
u2 string_count
utf8_info strings_table[str ing_count]

package_debug_info_compact package

Java Card Platform Virtual Machine Specification, vB. Pagel43

debug_component_extended { (since CAP format 2.3)
ul tag
u4 size
u2 string_count
utf8_info strings_table[string_count]
ul package_count
package_ debug_info_extended packages[package count]

The items in these structures are defined as follows:
tag

Thetag item has the valu€OMPONENT_Debud?2).
size

The number of bytes in the component, excluding thg andsize items. The value ofize must be
greater than zero.

string_count
The number obtrings in thestrings_table|] table.
strings_table([]

A table of all the strings used in this component.idas items that occur through this component
represent unsigned twdyte indices into this table.

Each entry in the table iswtf8_info structure. Autf8 _info structure is represented by the
following structure:

utf8_info {

u2 length

ul bytes[length]
}

The items in theutf8_info structure are defined as follows:
length

The number of bytes in the string.

bytes

The bytes of the string in UBFormat.

Java Card Platform Virtual Machine Specification, vB. Pagel44

package_count

Thepackage_count item indebug_component_extended structure represents the number of
entries in thepackages array. The value of thpackage count item must be greater than 0.

6.15.1 package_debug_info_compact and package_debug_info extended Structures
The package_debug_info_compact and package_debug_info_extended structures contains debug
information for a single package. These structures are represented in the following formats:

pack age_debug_info_compact{
u2 package_name_index
u2 class_count
class_debug_info_compact classes|class_count]

}

package_debug_info_extended{ (since CAP format 2.3)
u2 package_name_index
u2 class_count
class_debug_info_extended classes|class_count]

}

pac kage_name_index

Contains an index into th&trin - gs_table][] item. Thestrings_table]] item entry referenced
by this index must contain the fullyualified name of the package in this CAP file represented by this
package_debug_info_compact or package_debug_ info_extended structure.

class_count

The numbeof classes in thelasses table.

classes]]
Contains a singlelass_debug_info_compact or class_debug_info_extended structure
in package_debug_info_compact or package_debug_info_extended structures

respectivelyfor each class in this package.

6.15.2 The class_debug_info_compact and class_debug_info_extended Structures
Theclass_debug_info_compact andclass_debug_info_extended structures are for CAP

files in @mpact and Extended formats respectively and contain all of the debugging information for a

clldad 2N AYGSNFIFOS® ¢KSe faz2z O2yalAy (GFLoftSa 2F RSO
methods.

Java Card Platform Virtual Machine Specification, vB. Pagel45

class_debug_info_compact {
u2 name_index
u2 access_flags
u2 location
u2 superclass_name_index
u2 source_file_index
ul interface_count
u2 f ield_count
u2 method_count
u2 interface_names_indexes[interface _count]
field_debug_info fields[field_count]
method_debug_info_compact m ethods[method_count]

—

class_debug_info_extended { (since CAP format 2.3)
u2 name_index
u2 access_flags
u2 locatio n
u2 superclass_name_index
u2 source_file_index
ul interface_count
u2 field_count
u2 method_count
u2 interface_names_indexes[interface count]
field_debug_info fields[field_count]
method_debug_info_extended methods[method_count]

——

The items in thee structures are defined as follows:

name_index
Contains an index into th&trings_table([] item of the debug_component structure. The
strings_table[] entry at the indexed location must be the fulipalified name of this class.

access_flags

A two-byte mask of modifiers that apply to this class. The modifiers are:

Table6-21: Class Access and Modifier §a

Modifier Value

ACC_PUBLIC 0x0001
ACC_FINAL 0x0010

Java Card Platform Virtual Machine Specification, vB. Pagel46

Modifier Value |

ACC_REMOTE 0x0020
ACC_INTERFACE 0x0200
ACC_MBSTRACT 0x0400
ACC_SHAREABLE 0x0800

TheACC_SHAREABL#Hag indicates whether this class or interface is sharefeclass is shareable if
it implements (directly or indirectly) thevacard.framework.Shareable interface. An interface
is shareable itiis or extends (directly or indirectly) thavacard.f ramework.Shareable

interface.

TheACC_REMOTHaAg indicates whether this class or interface is remote. The value of this flag must be

one if and only if the class or interface satisfies the requiremdefined in2.2.6.1 Remot&€lasses and
Remote Interfaces

All other class access and modifier flags are defined in the same way and with the same restrictions as

describel inThe Java Virtual Machine Specification

location

The byte offset of thelass_info or interface_info record for this class or interfaceto the
info item of the Class Componer@.9 Class Componégnt

superclass_name_index

Contains an index into thetrings_table([] item of thedebug_ component structure. The
strings_table([] entry at the indexed location must be the fullpalified name of the superclass
ofthisclas@ NJ 4G KS &A0GNARYy3a aydzZ ¢ AF GKS Ofldaa KlFa y?2

source_file_index

Contains the index into thstrings_table]] item of thedebug_component structure. The
strings_table([] entry at the indexed location must be the name of the source file in which this
class is defined.

interface_count

The number of indexes in thieterface_names_indexes|] table.
field_count
The number ofield_debug_info structures in thefields]] table.

2The ACC_SHAREABLE flag is defined to enable Java Card virtual machines to inm@ldirewalt restrictions
defined by theRuntime Environment Specification, J&ad Platform, 3.1, Classic Edition

Java Card Platform Virtual Machine Specification, vB. Pagel4d?

a dzLJ

method_count
The number omethod_debug_info structures in themethods[] table.
interface_names_indexes]]

Contains the indexes into tharings_table[] item of the debug_comgnert structure. The
strings_table]] entry at each indexed location must be the name of an interface implemented by
this class. There must be an index vahnesent for every interface implemented by this class, including
interfaces implemented by supeedses of this class and superinterfaces of the implemented interfaces.

If ACC_INTERFACEHS set, thestrings_table]] entry at each indexed location must bget name
of a super interface directly or indirectly extended by this interface. There must belax #alue
present for every super interface directly or indirectly extended by this interface.

fields[]

Containdield_debug_info structures for all the &lds declared by this class, including static final
fields of primitive types. Inherited fields an®t included in this array.

methods]
Containamethod_debug_info_compact or method_debug_info_extended structures in
class_debug_info_compact or class_deb ug_info_extended structures respectively, for

all the methods declared or defined in this class. Inherited methods are not included in this array.

6.15.2.1 The field_debug_info Structure

Thefield_debug_info structure describes a field in a class. Iih ckescribe eithean instance field,
a static field, or a constant (primitive final static) field. The contents union will have the form of a
token_var if the field is aninstancefield, alocation_var if it is a static field, or aonst_value

if it is a onstant.

Thefi eld_debug_info structure is defined as follows:

field_debug_info {
u2 name_index
u2 descriptor_index
u2 access_flags

union {
{
ul padl
ul pad2
ul pad3
ul token
} token_var

Java Card Platform Virtual Machine Specification, vB. Pagel48

u2 pad
u2 location
} location_var
u4 const_value
} contents

}
The items in thdield_debug_info structure are defined as follows:

name_index

Contains an index into thetrings_table[] item of thedebug_component structure. The
strings_table]] entry at the indexed location must be the simple (meanma}, fully-qualified)
VIEYS 2F (GKS TrabHhet®R ¢ NI SEF YLX S 4

descriptor_index

Contains an index into th&trings_table([] item of thedebug_component structure. The
strings_table]] entry at the indexed location must be the type of the field. Clapsgyare fully
j dzl £ A TA SR [hjavachid/fGuBewdiXpSeE & £ 0 @

access_flags

A two-byte mask of modifiers that apply to this field.

Table6-22: Field Access and Modifier Flags

Modifier Value |
ACC_PUBIC 0x0001
ACC_PRIVATE 0x0002
ACC_PROTECTED 0x0004
ACC_STATIC 0x0008
ACC_FINAL 0x0010

The above field access and modifier flags are defined in the same way and with the same restrictions as
described inThe Java Virtual Machine Specification

content s

Afield_debug_info structure can describe an instance field, a static field, or a static final field (a
constant). Constants can be either primitive data or arrays of primitive data. Depending on the kind of

field described, the contents item is integied in different wag. The kind and type of the field can be
RSGSNX¥AYSR 6& SEIYAYAY3T (GKS FASEtRQEa RSAONALIIZ2NI |y

token_var

Java Card Platform Virtual Machine Specification, vB. Pagel49

If the field is an instance field, this value is the instance field token of the fielghakiie, pad2 , and
pad3 items are padding onlyheir values should be ignored.

location_var

If the field is a no#final static field or a final static field with an array type (a constant array), this value is
the byte offset of the location for this field in the static field ireadefined by the Stat Field
Component§.11 Static Field Compongn®he pad item is padding only; its value should be ignored.

const_value

If the field is a final statifield of typebyte , boolean ,short , orint , this value is interpreted as a
signed 32bit constant.

6.15.2.2 The method_debug_info_compact and methoddebug_info_extended Structures
Themethod_debug_info_compact and method_debug_info_extended structures
describe a method of a class. They can describe methods that are either virtual-eirtuah (static or
initialization methods). The structures arefthed as follows:

method_debug_info_compact {
u2 name_index
u2 descriptor_index
u2 access_flags
u2 | ocation
ul header_size
u2 body_size
u2 variable_count
u2 line_count
variable_info variable_table[variable_count]
line_info line_table[line_count]

method_debug_info_extended { (since CAP format 2.3)
u2 name_index
u2 descriptor_index
u2 access_f lags
ul method_component_block_index
u2 location
ul header_size
u2 bod y_size
u2 variable_count
u2 line_count
variable_info variable_table[variable_count]
line_info line_table[line_count]

Java Card Platform Virtual Machine Specification, vB. Pagel50

The items in thesestructures are defined as follows:

name_index
Contains an index into th&trings_table[] item of thedebug_component structure. The
strings_table[] entry at the indexed location must be the simple (meaning, not-yliglified)

YyEYS 2F (GKS YSiléorupAld #8 M) SEIF YLIX S5 4
descriptor_index

Contains an index into th&trings_table([] item ofthe debug_component structure. The
strings_table([] entry at the indexed location must be the argument and return types of the
method (meaning, the signature without the method name). Class types ayajfidlified (for example,
&[BSB)Ljavacard/framework /IAID; € 0

access_flags

A two-byte mask of modifiers that apply to this method.

Table6-23: Method Modifier Flags

Modifier \ Value \
ACC_PUBLIC 0x0001
ACC_PRIVATE 0x0002
ACC_PROTECTED 0x0004
ACC_STATIC 0x0008
ACC_FINAL 0x0010
ACC_NATIVE 0x0100
ACC_ABSTRACT 0x0400

TheACC_NATIVEflag is only valid for methods of a package located in the card mask. It cannot be
used for methods contained in a CAP file.

Allother method access and modifilags are defined in the same way and with the same restrictions
as described iiThe Java Virtual Machine Specification

method_component_block_index

Themethod_component_block_index item inmethod_debug_info_extended represents
the index into the blocks array of Method ComponefitlQ Method Componeii The
method_component_block at that index contains the referenced methotbstract method may
have value zero famethod_component_block_index or have value representing the index into
the blocks array of the Methd Component@.10 Method Componenthat has the corresponding
method_info strucutre withACC_ABSTRACTIag set.

Java Card Platform Virtual Machine Specification, vB. Pagel51

Abstract methodsnay havezero as value for method_component_block_indehave a value
corresponding to the m&iod component block containing theethod_info structure with
ACC_ABSTRACTag set

location

Inmethod_debug_info_compact ,locatio nis a byte offset of thenethod_info structure for
this method into the info item of the Method Componeit {0 Method Componeit

Inmethod_debug_info_extended ,location is a byte offset into the
method_component_b lock in the blocks array of Method Componeit 10 Method Componet
at index represented bgnethod_component_block_index . Themeahod_info structure at

offset must represent the referenced method.

Abstract methods may have a location of zero or haveid wéfiset to the corresponding
method_info strucutre withACC_ABSTRACTIag set.

header_size
The size in bytes of the headertbe method. Abstract methods haveheader_size of zero.
body_size

The size in bytes of the body of the method, not inclgdine method header. Abstract methods have a
body size of zero.

variable_count

The number ofariable_info entries in thevariab le_table]] item. Abstract methods have a
variable_count of zero.

line_count

The number ofine_info entries in theline_tabl e[] item. Abstract methods have a
line_count of zero.

variable_table[]
Contains thevariable_info structures for all variablesithis method.

Thevariable_info structure describes a single local variable of a method. It indicates the index into
the local variables of the current frame at which the local variable can be found, as well as the name and
type of the variable. It alsimdicates the range of bytecodes within which the variable has a value.

variable_info {
ul index
u2 name_index
u2 descri ptor_index

Java Card Platform Virtual Machine Specification, vB. Pagel52

u2 start_pc
u2 length

}

The items in thevariable_info structure are defined as follows:

index

The index of the vaable in the local stack frame, as used in load and store bytecodes. If the variable at
index is of typent , it occupies both index and index + 1.

name_index

Contains an index into th&trings_table([] item of thedebug_component structure. The
strings_ta ble[]] entry at the indexed location must be the name of the local variable, (for
SELl YLlaIppRtE a0 @

descriptor_index

Contains an index into th&trings_table([] item of thedebug_component structure. The
strings_table[] entry a the indexed location mude the type of the local variable. Class types
are fullylj dzt £ A FA SR [ajdvachid/fuBdwdtiXpBeE & € 0 @

start_pc

The index of the first bytecode in which the variable isdanpe and valid.

length

Number of bytecods in which the variable inscope and valid. The valuestart pc +length will
be either the index of the next bytecode after the valid range, or the first index beyond the end of the
bytecode array.

line_table[]

Contains thdine_info structures that map bytecode instructios of this method to lines in the
Of aaQa az2dz2NOS FAfSo

EacHine_info item represents a mapping of a range of bytecode instructions to a particular line in
the source file that contains the method. The range of instruction®is tart pc to end_pc ,
incdusive.start_pc andend_pc represent a zerdoased byte offset within the method. The
source_line is the onebased line number in the source file. The structure is defined as follows:

line_info {
u2 start_pc
u2 end_pc
u2 source_line

}
Java Card Platform Virtual Machine Specification, vB. Pagel53

The items in thdi ne_info structure are defined as follows:

start_pc

The byte offset of the first bytecode in the range of instructions.

end_pc

The byte offset of the last operand of the last bytecode in the range of instructions.
source_line

Line number in the sourdide.

6.16 Static Resource Component

This section specifies the format for the Static Resource Compaftatic Resource Component must

be present if any package in this CAP file has any static resources. If none of the packages in this CAP file
has aly static resources, this component must not be present in this CAP file.

The Static Resource Component ncaytain any static resource that can be represented in a byte
format. Size of each static resource must be between 0 and 32767 bytes.

The Static Bsource Component does not reference any other component.

Static Resource Component must always be represkint the Extended Format as specified in these
specifications regardless of compacttended format of the CAP file. The Static Resource Coemion
is represented by the following structure:

static_resource_component {
ul tag
u4 size
u2 resource_count
resource_directory_info resource_directory[resource_count]
static_resource_info static_resources[resource_count]

The items in this structe are defined as follows:

tag

Thetag item has the valu€OMPONENT_Static_resource (13).
size

The number of bytes in the component, excluding thg andsize items. The value dfize must be
greater than zero.

Java Card Platform Virtual Machine Specification, vB. Pagel54

resource_count

The number of resourceepresented in this component. Value f@source_count cannot be O.
This number representhie number of entries in the directory and static_resources arrays.

resource_directory]

Contains theesource_directory_info structures for all static resoursaepresented in this
component. The number of entries in this table must be equaktmurce _count .

Theresource_directory_info structure describes a single directory entry in the directory table.
It indicates the id and the size of each resource repnésetin this component.

resource_directory_info {
u2 resource_id
ud4 resource_size

}
The items in theesource_directory_info structure are described below.

resource_id

This item represents the id of a resource in this component. The valuedource _id must be
unique in aCAP file

resource_size

Theresource_size item represents the size in bytes of the resource represented by
resource_id . Value of this item must be between 0 and 32767 bytes.

static_resources]]

Contains thestatic_resource_info structures for all static resources represented irsth
component. The number of entries in this table must be equaktmurce_count

Thestatic_resource structure describes a single entry in thi@tic_resources table. This
structure is represented dsllows.

static_resource_info {
ul static_resource[re source_size]

}
Thestatic_resource item in thestatic_resource_info structure is described below.

static_resource

Java Card Platform Virtual Machine Specification, vB. Pagel55

This item is an array of bytes representing a static resource. The size of thenastlge equal to
resource_size entry in the correspodligresource_directory_info entry in the
resource_directory

Java Card Platform Virtual Machine Specification, vB. Pagel56

*AOA #AOA 6EOOOAIT - AAEETA)1 0C¢
A Java Card virtual machine instruction consists of an opcode specifying the operation toobeee;f
followed by zero or more operands embodyingues to be operated upon. This chapter gives details
about the format of each Java Card virtual machine instruction and the operation it performs.

x8p ! OOOI POEI T10q 4EA -AATETIC T £ O0-00066
The descriptiorof each instruction is always given in the context of Java Card virtual machine code that
satisfies the static and structural constraints of Chaptélrts CR File Format

In the description of individual Java Card virtual machine instructions, we fregusate that some

AAlGdzr GA2Yy aYdzadé 2N aYdzad y2iéntadd TKS OR2y %Y NG AKS &
Chapter 6,The CR File Formaguarantee that all such expectations will in fact be met. If some
O2yaidNIAYy(d oF avydzadé 2N aYdzad y2iGé 0 infeyhe befiavidry & i N1zO
of the Java Card vual machine is undefined.

7.2 Reserved Opcodes

In addition to the opcodes of the instructions specified later this chapter, which are used in Java Card
CAP files (see ChapterTde CR File Formaf two opcodes are reserved for internal use bjaaa Card
virtual machine implementation. If Oracle extends the instruction set of the Java Card virtual machine in
the future, these reserved opcodes are guaranteed not to be used

The two reserved opcodes, numbers 254 (0xfe) and 255 (0xff), have thmaniesimpdepl and
impdep2 > NBaLISOGAGSted ¢KSAS AyailiNdHzOlA2ya NB AyidiSyR
implementationspecific functionality implemented in software and hasate, respectively.

Although these opcodes have been reserved, they may loalused inside a Java Card virtual machine
implementation. They cannot appear in valid CAP files.

7.3 Virtual Machine Errors

A Java Card virtual machine may encounter inteenars or resource limitations that prevent it from
executing correctly wrien Java programs. While The Java Virtual Machine Specification allows reporting
and handling of virtual machine errors, it also states that they cannot ordinarily be handled by
application code. Thi¥irtual Machine Specification, Classic Editsomorerestrictive in that it does not

allow for any reporting or handling of unrecoverable virtual machine errors at the application code level.
A virtual machine error is considered ewopverable if further execution could compromise the security

or correct opeation of the virtual machine or underlying system software. When an unrecoverable error
occurs, the virtual machine will halt bytecode execution. Responses beyond halting tia wigichine

are implementationspecific policies and are not mandated instBpecification.

Java Card Platform Virtual Machine Specification, vB. Pagel57

In the case where the virtual machine encounters a recoverable error, such as insufficient memory to
allocate a new object, it will throw 8ystemException with an error code describing the error

condition. TheVirtual Machine Specificatn, Classic Editiazannot predict where resource limitations or
internal errors may be encountered and does not mandate precisely when they can be reported. Thus, a
SystemExceptio n may be thrown at any time during the operation of the Java Card virtuahine.

7.4 Security Exceptions

Instructions of the Java Card virtual machine throw an instance of theS¢mssityException

when a security violation has been detected. TheaJaard virtual machine does not mandate the
complete set of security violations that can or will result in an exception being thrown. However, there is
a minimum set that must be supported.

In the generhcase, any instruction that deferences an objeaeference must throw a
SecurityException if the context 8.4 Contextsin which the instruction is executing is difet
than the owning context3.4 Contextysof the referenced object. The list of instructions includes the
instance fieldget andput instructions, the arrayjoad andstore instructions, as well as the
arraylength , invokeinterf ace, i nvokespecial ,invokevirtual , checkcast
instanceof andathrow instructions

There are several exceptions to this general rule that allow arostext use of objects or arrays. These
exceptions are detailed in Chapter 6 of tRantime Environment 8pifiation, Java CardPlatform, \3.1,
Classic EditiarAn important detail to note is that any cressntext method invocation wiresult in a
context switch 8.4 Contexts

The Java Card virtual machine may also thr&eeurityException if an instruction iolates any of
the static constraints of Chapter Bhe CR File FormatTheVirtual Machine Specificatiodava Card
Platform, \8.1, Classic Editiotloes not mandate which instructions must implement these additional
security checks, or to what level. TherefoasSecurityException may be thrown at any time
during the operation of the JavCard virtual machine.

Java Card Platform Virtual Machine Specification, vB. Pagel58

7.5 The Java Card Virtual Machine Instruction Set
Java virtual machine instructions are represented in this chapter in alphabetical order by efitties o
form shown inTable7-1, an example instruction entry.

Table7-1: Example InstructiorEntry

Example Instruction Entry
mnemonic

Short description of thestruction.
Format

mnemonic

operandl

operand2

Forms

mnemonic = opcode
Stack

..., valuel, value2>
...l value3
Description

A longer description detailing constraints on operand stack contents or constant pool en
operation performed, the tyjpé the results, and so on.

Runtime Exception

If any runtime exceptions cdre thrown by the execution of an instruction, that instruction
not throw any runtime exceptions except for instanc&/stemException

Notes

Comments not strictly part dthe specification of an instruction are set aside as notes at th
of the description.

Java Card Platform Virtual Machine Specification, vB. Pagel59

Each cell in the instruction format diagram represents asingie’A8ii. 0@ G S® ¢ KS Ay a i NHzOG A
its name. Its opcode is its numeric representation and is given in both decimal and hexadecimal forms.
Only the numeric representatios actually preent in the Java Card virtual machine code in a CAP file.

YSSLI AY YAYR (KFd GKSNB FINB a2LISNFyRa¢d 3ISYSNI (SR
GANIidzl £ YIFIOKAYS AyadNHzOGA2yas I+ a ¢S forfthelogeradd2 LIS NI y R
stack. Although they are supplied from several different areas, all these operands represent the same

thing: values to be operated upon by the Java Card virtual machine instruction being executed. By

implicitly taking many of its operandsofn its operandstack, rather than representing them explicitly in

Ada O2YLAESR O2RS Fa FRRAGAZ2YIFE 2LISNIYR o08iSasx NB
code stays compact.

Some instructions are presented as members of a family of relagtdictions saring a single

description, format, and operand stack diagram. As such, a family of instructions includes several
opcodes and opcode mnemonics; only the family mnemonic appears in the instruction format diagram,
and a separate forms line tésall membemnemonics and opcodes. For example, the forms line for the
sconst_<s> family of instructions, giving mnemonic and opcode information for the two instructions
in that family 6const_ 0 andsconst_1), is

Forms sconst_0 = 3 (0x3), sconst_1 &xY

INthe SAONRLIIA2Y 2F (GKS WF@F [/ FNR @ANIdzZ t YIOKAYS Ay
on the operand stack3(5 Framepof the current frame3.5 Framegis represented textually, with the
stack growing from left to right and each word represented separately. Thus,

{41 01 XE OB d2Sa SNBA dztdiB H

shows an operabn that begins by having a oweord value2 on top of the operand stack with a ene

word valuel just beneath it. As a result of the execution of the instruction, valuel and value2 are

popped from the operand stack and replaced by a-amed result, which ha been calculated by the

instruction.¢ KS NBYI AYRSNI 2F (KS 2LISNIYyR adl 01z NBLNBaSy
AYyaiNHzOGA2yQa SESOdziAz2y o

The typeint takes two words on the operand stack. In the operand stack representation, each word is
represented separately using a dot nttm:

{GFO1 X2 @FftdSmMPg2NRMI G £ dzS vid DRINRNEA d | (it daSHNIRVEIN RS

TheVirtual Machine Specificatiodava CardPlatform, \8.1, Classic Editiotioes not mandate how the
two words areused to represent the 3Bit int value; it only requires that a particular implementation
be internally consistent.

7.5.1 aaload
Load reference from array

Java Card Platform Virtual Machine Specification, vB. Pagel60

Format

aaload

Forms

aaload = 36 (0x24)

Stack

X3 leiMdeRANI X3 @I f dzS
Description

Thearrayref must be of type reference and must refer to an amdnpse components are of type

reference. The index must be of type short. Both arrayref and index are popped from the operand stack.
The reference value ithe component of the arragt index isetrieved and pushed onto the top of the
operand stack.

Runtime Exceptions
If arrayref is null, aaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arfayre aaload instruction
throws an AraylndexOutOfBoundsException.

Otherwise if the arrayref references a writaly array viewthe aaload instruction throws a
SecurityException

Notes

In some circumstances, the aaload instruction may thrdseeurityException if the current conted.4
Contexts is not the owning contexB(4 Contextyof the arrayor array viewreferenced byarrayref. The
exact circumstances when the exceptiwill be thrown are specified in Chapter 6 of tRantime
Environment Specificatiodava CardPlatform, \8.1, Classic Edition

7.5.2 aastore
Store into reference arragr reference array view

Format

aastore

Forms

aastore = 55 (0x37)

Stack

Java Card Platform Virtual Machine Specification, vB. Pagel6l

XZ | NN} &@NBHI XAYRSEZ &It dzS
Description

The arrayref must be of type reference and must refer to an asragn array viewywhose components
are of type reference. The index must be of type short and theevaiust be of tpe reference. The
arrayref, index and value are popped from the operand stack. The reference value is stored as the
component of the arrawat index.

If the arrayreferenced by arrayref integritysensitive, its integrity is checked beéathe value is
stored. The integrity control element is updated when the value is stofée. whole operation (value
storage and the integrity control element update) is performed atomically.

At runtime the type of value must be confirmed to be assignnoamhpatible withthe type of the
components of the arrayeferenced by arrayref. Assignment of a value of reference type S (source) to a
variable of reference type T (target) is allowed only when the type S supports all of the operations
defined on type TThe detailed rds follow:

1 If Sis aclass type, then:
o |IfTis aclass type, then S must be the same class as T, or S must be a subclass of T;
o If Tis an interface type, then S must implement interface T.
1 If Sis an interface typg then:
o |IfTis adass typethen T must be ObjecR(2.1.4 Unsupported Clas3es
o If Tis an interface type, T must be the same interface as S or a superinterface of S.
1 If Sis an array typ@mamely the type SCJ], that is, an array of components of type SC, then:
o |IfTis aclasstype, then T must be Object.
o If T is an arrayype, namely the type TCJ], an array of components of type TC, then one
of the following must be true:
A TC and SC atke same primitive type3.1 Data Typeand Values
A TC and SC are reference tylj¢8.1 Data Typgand Valugswith type SC
assignable to TC, by these rules.
o If T is an interface type, T must be one of the interfaces implemented by arrays.

Runtime Exceptions

If arrayref is null, aastore throws a NullPointerException.

3 When bothSand T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namelsCandTC In the recursive cal§ which wasSOn the original call, may be an intedfa type. This
rule can only be reached in this manner. Bamnhy, in the recursive call, which wasTCin the original call, may be
an interface type.

1 This version of the Java Card virtual machine does not support-diénsional arrays. Thereforegither SCor
TCcan be an array type.

Java Card Platform Virtual Machine Specification, vB. Pagel62

Otherwise, if indexsi not within the bounds of the arragferenced by arrayref, the aastore instruction
throws an ArraylndexOutOfBoundsException.

Otherwise, if arrayref is not null and the aeat type of value is not assignment compatible with the
actual type of the compond of the array, aastore throws an ArrayStoreException.

Otherwise if the arrayeferenced by arrayref is integrityensitive andn inconsistency is detected
during the arrg integrity checkthe aastore instruction throws a SecurityException

Otherwiseif the arrayref references a reaahly array viewthe aastore instruction throws a
SecurityException

Notes

In some circumstances, the aastore instruction may throwa®gException if the current contex8 4
Context$ is not the owning contexB(4 Contextysof the array referenced by arrayref. The exact
circumstances when the excepti will be thravn are specified in Chapter 6 of tRuntime Environment
SpecificationJava CardPlatform, \8.1, Classic Edition

7.5.3 aconst_null
Push null

Format

aconst_null

Forms

aconst_null =1 (0x1)

Stack

X-Hp Xz ydz f

Description

Push the nll object reference onto the operand stack.

7.5.4 aload
Load reference from local variable

Format

aload
index

Java Card Platform Virtual Machine Specification, vB. Pagel63

Forms

aload = 21 (0x15)

Stack

X-hp XTI 202SOGNBTF
Description

The index is an unsigned byte that must be a valid index inttotted varables of the current frame3(5
Frame$. The local variable at index must contain a reference. The objectref in the local variable at index
is pushed onto the operand stack

Notes

The aload instruction cannot be used to loadaéue of type returnAddress from a local variable onto
the operand stack. This asymmetry with the astore instruction is intentional.

7.5.5 aload_<n>
Load reference from local variable

Format
aload_<n>
Forms

aload_0 =24 (0x18)
aload_1 =25 (0x19)
aload_2 = 26 (0Ox1a)
aload_3 =27 (0Ox1b)

Stack
X-Hp XI 202SOGNBT
Description

The <n> must be a valid index into the local variables of the current fra'ad-(amey The local
variable at <n> must contain a reference. The objectref in the local variable at <n> is pushed onto the
operand stack.

Notes

An aload_<n> instruction cannot be used to load a value of tghenmAddress from a local variable
onto the operand stack. This asymmetry with the corresponding astore_<n> instruction is intentional.

Java Card Platform Virtual Machine Specification, vB. Pagel64

Each of the aload_<n> instructions is the same aglalith an index of <n>, except that the operand
<n> is implicit.

7.5.6 anewarray
Create new array of reference

Format

anewarray
indexbytel
indexbyte&

Forms

anewarray = 145 (0x91)

Stack

X OBdzXHE | NN @NBTF
Description

The count must be of pe short. It is popped off the operand stack. The count represtrd number of
components of the array to be created. The unsigned indexbytel and indexbyte2 are used to construct
an index into the constant pool of the current packagé (Framel where the value of the index is
(indexbytel << 8) | indexbyte2. The item at that index in the constant pool must be of type
CONSTANT_Class@B(1 CONSTANT _Clasgrafreference to a class or interface type. The reference is
resolved. A new array with components of that type, of length count, is allocated from the heap, and a
reference arrayref to this new array object is pushed onto the operand stack. Allar@nts of the new
array are initialized to null, the default value for reference types.

Runtime Exception
If count is less than zero, the anewarray instruction throws a NegfarraySizeException.

7.5.7 areturn
Return reference from method

Format
areturn
Forms
areturn = 119 (0x77)

Stack

Java Card Platform Virtual Machine Specification, vB. Pagel65

X> 20 %OpmyB T
Description

The objectref must be of type reference. The objectref is popped from the operand stk @frrent
frame @.5 Framepand pushed ontéhe operand stack of the frame of the invoker. Any other values on
the operand stack of the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control tontlodker.

7.5.8 arraylength
Get length of aray

Format

arraylength

Forms

arraylength = 146 (0x92)

Stack

X FNRFERB&FSYyIdK
Description

The arrayref must be of type reference and must refer to an array. It is popped from the operand stack.
The length of the array it references is determined. That length is pushed onto the top of the operand
stack as a short.

Runtime Exception
If arrayrefis null, the arraylength instruction throws a NullPointerException.
Notes

In some circumstances, theraylength instruction may throw a SecurityException if the current context
(3.4 Contextyis not the owning contexB(4 Contextsof the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 &uhme Environment
SpecificationJava CardPlatform, \8.1, Classic Edition

7.5.9 astore
Store reference into local vabée

Format

Java Card Platform Virtual Machine Specification, vB. Pagel66

astore
index

Forms

astore = 40 (0x28)

Stack

XX 20HSXINBT
Description

The index is an unsigned byte that must be a valid index into the local variables of the current3¥fame (
Frame3. The objectref on the top of the operand stack must be of type returnAddress or of type
reference. The objectref is popped from the operand stack, and the value of the localeataide is

set to objectref.

Notes
¢CKS ad2NB AyadNHzOGA2Y A& dzaSR gAGK 'y 202SOGNBT
keyword. The aload instruction cannot be used to load a value of type returnAddress from a local

variable ontathe operand stack. This asymmetry with the astore instruction is intentional.

7.5.10 astore_<n>
Store reference into local variable

Format
astore_<n>
Forms

astore_0 =43 (0x2b)
astore_1 = 44 (0x2c)
astore_2 =45 (0x2d)
astore_3 =46 (0x2e)

Stack
X 20HSXINBT
Description

The <n> must be a valid index into the local variables of the current frarhd-(amel The objectref on
the top of the operand stack mubk of type returnAddress or of type reference. It is popped from the
operand stack, and the valud the local variable at <n> is set to objectref.

Java Card Platform Virtual Machine Specification, vB. Pagel67

Notes

'y FTaAd2NBYrsryh AyadNHzOGA2y Aa dzaSR gAGK Iy 2062S00N.
finally keyword. An aload_<n> instruction cannot be used to load a value of type returnAddress from

local variable onto the operand stack. This asymmetry with the corresponding astore_<n> instruction is
intentional.

Each of the astore_<n> instructiosstihe same as astore with an index of <n>, except that the operand
<n> is implicit.

7.5.11 athrow
Throw exception or error

Format

athrow

Forms

athrow = 147 (0x93)
Stack

XS 20 esleites T
Description

The objectref must be of type referena@d must refer to an object that is an instance of class
Throwable or of a subclass of Throwalilés popped from the operand stack. The objectref is then
thrown by searching the current fram8.6 Frame)lfor the most recent catch clause that catches the
class of objectref or one of its superclasses.

If a catch clause is found, it contains the location of the code intetaé&dndle this exception. The pc
register is rest to that location, the operand stack of the current frame is cleared, objectref is pushed
back onto the operand stack, and execution continues. If no appropriate clause is found in the current
frame, that fame is popped, the frame of its invoker is igited, and the objectref is rethrown.

If no catch clause is found that handles this exception, the virtual machine exits.
Runtime Exception

If objectref is null, athrow throws a NullPointerException iast®f objectref.

Notes

In some circumstancethe athrow instruction may throw a SecurityException if the current context (
Context$ is not the owning contexB(4 Contextsof the object referenced by objectref. The exact

Java Card Platform Virtual Machine Specification, vB. Pagel68

circumstances when the exception vkt thrown are specified in Chapter 6 of tReintime Environment
SpecificationJava CardPlatform, \8.1, Classic Edition

7.5.12 baload
Load byte or boolean from array

Format

baload

Forms

baload = 37 (0x25)

Stack

X3 | NNJ efNBEZ AlytRBE
Description

The arrayref must be of type reference and must refer to an amtagse components are of type byte
or of type booleanThe index must be of type short. Both arrayref and index are popped from the
operand stackThe byte value in the component of the arrayindex is retrieved, sigaxtended to a
short value, and pushed onto the top of the operand stack.

Runtime Exceptins
If arrayref is null, baload throws a NullPointerException.

Otherwise, if index is notithin the bounds of the arrageferenced by arrayref, the baload instruction
throws an ArraylndexOutOfBoundsException.

Otherwise if the arrayref references a veribnly array viewthe baload instruction throws a
SecurityExceptian

Notes

In some circumsinces, the baload instruction may throw a SecurityException if the current coBtdxt (
Context$ is not the owning contexB(4 Contextysof the arrayreferenced by arrayref. The exact
circumstances when the exception will be thrown are specified ap@hn 6 of theRuntime Environment
SpecificationJava CardPlatform, \8.1, Classic Editian

7.5.13 bastore
Store into byte or boolean array

Format

bastore

Java Card Platform Virtual Machine Specification, vB. Pagel69

Forms

bastore = 56 (0x38)

Stack

XZ | NN} &@NBHZI XAYRSES &It dzS
Description

The arrayref musbe of type reference and must refer to an arraiose components are of pe byte

or of type boolean. The index and value must both be of type short. The arrayref, index and value are
popped from the operand stack. The short value is truncated to adoytiestored as the component of

the arrayindexed by index.

If the arrayreferenced by arrayref integritysensitive, its integrity is checked before the value is
stored. The integrity control element is updated when the value is stdred.whole operabn (value
storage and the integrity control element update) is performednaically.

Runtime Exceptions
If arrayref is null, bastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the arraferenced by arrayref, the base instruction
throws an ArraylndexOutOfBoundsException.

Otherwise if the arrayeferenced by arrayref is integritsensitive andin inconsistency is detected
during the array integrity checkhe bastore instruction throws a SecurityException

Otherwise if the arrayref references a reaaly array viewthe bastore instruction throws a
SecurityException

Notes

In some circumstances, the bastore instruction may throw a SecurityException if the current c8mtext (
Context$ is not the owning contexB(4 Contextysof the arrayreferenced by arrayref. The exact
circumstances when the excepn will be thrown are specified in Chapter 6 of tRentime Environment
SpecificationJava CardPlatform, \8.1, Classic Editian

7.5.14 bipush
Push byte

Format

bipush
byte

Java Card Platform Virtual Machine Specification, vB. Pagel70

Forms

bipush = 18 (0x12)

Stack

X-H X3I Ol tdSPs2NRmMI G f dzZSPg2 NRH

Descrigion

The immediate byte is siggxtended to an int, and the resulting value is pushed onto the operand stack.
Note: If a virtual machine does not support the int data type, the bipush instruction will not be available.

7.5.15 bspush
Push byte

Format

bspush
byte

Forms

bspush = 16 (0x10)
Stack

X-§ XTI @It dzS
Description

The immediate byte is siggxtended to a short, and the resulting value is pushed onto the operand
stack.

7.5.16 checkcast
Check whether object is of given type

Format

checkcast
atype
indexbytel
indexbyte2

Forms

checkcast = 148 (0x94)

Java Card Platform Virtual Machine Specification, vB. Pagel7l

Stack
XT 20 HSXCENRO 2SO0 NBF
Description

The unsigned byte atype is a code that indicates if the type against which the object is being checked is
an array type or a class type. It stuake one of the following values orp:

Table7-2: Array Values

Array Type \ atype ‘
T_BOOLEAN 10
T_BYTE 11
T_SHORT 12
T_INT 13
T_REFERENCE 14

If the value of atype is 10, 11, 12, or 13, the valugb®fndexbytel and indexbyte2 must kero, and

the value of atype indicates the array type against which to check the object. Otherwise the unsigned
indexbytel and indexbyte2 are used to construct an index into the constant pool of the current package
(3.5 Frame} where the value of the index is (indexbytel << 8) | indexbyte2. Theatethat index in

the constant pool must be of type CONSTANT_Clags81 (CONSTANT _Claskrafreference to a class

or interface type. The reference is resolved. If the value of atype is 14, the object is checked against an
array type that is an array of ajt references of the type of the reseld class. If the value of atype is

zero, the object is checked against a class or interface type that is the resolved class.

The objectref must be of type reference. If objectref is null or can be cast to theispemifay type or
the resolved class dnterface type, the operand stack is unchanged; otherwise the checkcast instruction
throws a ClassCastException.

The following rules are used to determine whether an objectref that is not null can be cast to the
resolved type: if S is the class of the etj referred to by objectref and T is the resolved class, array or
interface type, checkcast determines whether objectref can be cast to type T as follows:

1 If Sis aclass type, then:
o If Tis aclass type, then Sishbe the same class as T, or S must be a subclass of T;
o If T is an interface type, then S must implement interface T.

1 If Sis an interface typg then:
o |IfTis aclass type, then T must be Obj2@.(.4 Unsupported Clasgges

S When bothSandTare arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely5Cand TC In the recursive cal§ which wasSAn the original call, may be an interfagype. This
rule can only be reached in this manner. $mhy, in the recursive calll, which wasTCin the original call, may be
an interface type.

Java Card Platform Virtual Machine Specification, vB. Pagel72

o If Tis an intdiace type, T must be the same interface as S or a superinterface of S.
1 If Sis an array type, namely the type SCJ], that is, an array of components of type SC, then:
o |IfTis adlss type, then T must be Object.
o |If T is an array type, namely the type [T@h array of components of type TC, then one
of the following must be true:
A TC and SC are the same primitive typd Qata Typeand Values
A TC and SC are reference typ¢8.1 Data Typeand Valugswith type SC
assignable to TC, by these rules.
o If Tis an intdiace type, T must be one of the interfaces implemented by arrays.

Runtime Exception

If objectref cannot be cast to the resolved class, array, or interface type, the checkcast instruction
throws a ClassCastException.

Notes

The checkcast instruction igrfdamentally very similar to the instanceof instruction. It differis
treatment of null, its behavior when its test fails (checkcast throws an exception, instanceof pushes a
result code), and its effect on the operand stack.

In some circumstances, elcheckcast instruction may throw a SecurityException if the cioemtext
(3.4 Contextyis not the owning comixt 3.4 Contextsof the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 &uhttme Environment
SpecificationJava CardPlatform, \8.1, Classic Edition

If a virtual machine does not support the int data type, the value of atype may not be 13 (array type =
T_INT).

7.5.17 dup
Duplicate top operand stack word

Format

dup

Forms

dup = 61 (0x3d)
Stack

XX ¢BNRI 62NRI 62NR

16 This version of the Java Card virtual machine specification does not suppordimetisional arraysTherefore,
neither SCor TCcan be an array type.

Java Card Platform Virtual Machine Specification, vB. Pagel73

Description

The top word onlie operand stack is duplicated and pushed onto the operand stack. The dup
instruction must not be used unless word contains ebit@lata type.

Notes

Except for restrictions preserving the integraty32-bit data types, the dup instruction operates on a
untyped word, ignoring the type of data it contains.

7.5.18 dup_x
Duplicate top operand stack words and insert below

Format

dup_x
mn

Forms

dup_x = 63 (0x3f)

Stack

XZ $2NRbI X3I H2NEaD2NRaF2MKEIM 62NRME g2NRbSE XTI 62NR
Degription

The unsigned byte mn is used to construct two parameter values. The high nibble, (mn & 0xf0) >> 4, is
used as the value m. The low nibble, (mn & 0xf), is usedeagalne n. Permissible values for m are 1
through 4. Permissible values for n &and m through m+4.

For positive values of n, the top m words on the operand stack are duplicated and the copied words are
inserted n words down in the operand stack. Whreaquals 0, the top m words are copied and placed
on top of the stack.

The dup_instruction must not be used unless the ranges of words 1 through m and words m+1 through
n each contain either a H6it data type, two 16bit data types, a 3dit data type,a 16bit data type and
a 32bit data type (in either order), or two 3Bit data types.

Notes

Except for restrictions preserving the integrity of8 data types, the dup_x instruction operates on
untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the permissible vétwas are 1 or 2, and
permissible values for n are 0 and m through m+2.

Java Card Platform Virtual Machine Specification, vB. Pagel74

7.5.19 dup2
Duplicate top two operand stack words

Format

dup2

Forms

dup2 = 62 (0x3e)

Stack

X3 g2NRHE X&2 NMRPWRHY g2NRMI 62NRHI 62NRM
Description

The top two words on th operand stack are duplicated and pushed onto the operand stack, in the
original order.

The dup2 instruction must not be used unless each afiv@nd word2 is a word that contains a-ti
data type or both together are the two words of a singlet8datum.

Notes

Except for restrictions preserving the integrity of3i2 data types, the dup2 instruction operates on
untyped words, ignoring #ntypes of data they contain.

7.5.20 getfield_<t>
Fetch field from object

Format

getfield_<t>
index

Forms

getfield_a = 131 (0x83)
getfield_b =132 (0x84)
getfield_s = 133 (0x85)
getfield_i = 134 (0x86)

Stack
XT 206 &S XENBW t dzS

OR

Java Card Platform Virtual Machine Specification, vB. Pagel75

XY 20 HSKENBA dz2SPs2NRMIEI G f dzSPg2 NRH
Description

The objectref, which must be of type reference, is poppedifthe operand stack. The unsigned index is
used as an index into the constant pool of the current packd8geRrames The constant pool item at

the index must be of typ€ ONSTANT _InstanceField@&8(2 CONSTANT_InstanceFieldref,

CONSTANT _VirtualMethodr€fODNSTANT _SuperMettref), a reference to a class and a field token.

The class of obfref must not be an array. If the field is protected, and it is a member of a superclass of
the current cass, and the field is not declared in the same package as the current class, then the class of
objectref must be either the current class or a subslaf the current class.

The item must resolve to a field with a type that matches t, as follows:

a fieldmust be of type reference

b field must be of type byte or type boolean
s field must be of type short

i field must be of type int

= =4 =4 =

The width of dield in a class instance is determined by the field type specified in the instruction. The
item isresolved, determining the field offs€t The value at that offset into the class instance referenced
by objectref is fetched. If the value is of type bytetype boolean, it is sigaxtended to a short. The

value is pushed onto the operand stack.

Runtime Exception
If objectref is null, the getfield_<t> instruction throws a NullPointerException.
Notes

In some circumstances, the getfield_<t> instructionyrttarow a SecurityException if the current context
(3.4 Contextsis not the owning contexB(4 Contextsof the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 &uhegme Environment
SpecificationJava CardPlatform, \8.1, Classic Edition

If a virtual machine does nsupport the int data type, the getfield i instruction will not be available.

7.5.21 getfield_<t>_this
Fetch field from current object

17 The offset may be computed by adding the field token value to the size of an instanceimitiediate
superclass. However, this method is not required by this specification. A Java Card virtual meshdefine any
mapping from token value to offset intan instance.

Java Card Platform Virtual Machine Specification, vB. Pagel76

Format
getfield_<t>_this
index

Forms

getfield_a_this = 173 (Oxad)
getfield_b_this = 174 (Oxae)
getfield_s_this 475 (Oxaf)

getfield_i_this = 176 (0xb0)

Stack

X-p X @I f dzS

OR

XHh XI Ol fdSPs2NRmMI G f dzSdPg 2 NRH
Description

The currently executing method must be an instance method. The local variable at indest Gomiain

a reference objectreftothe current§ ES Odzi A y3 YSGK2RQ& G(KAA& LI NI YSEHSNX
an index into the constant pool of the current packagé (Frameps The constant pool item at the index

must be of type CONSTANT _InstanceFiel@®& 2 CONSTANT _InstanceFieldref,

CONSTANT _VirtualMethodré€fONSTANT_SuperMettref), a reference to a class and a field token.

Theclass of objectref must not be an array. If the field is protected, and it is a member of a superclass of
the current class, and the field is not declared in the same paclateeaurrent class, then the class of
objectref must be either the current da or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

a field must be of type reference

b field must be of type byter type boolean
s field must be of type short

i field must be of type int

=A =4 =4 =

The width of a field in a class instance is determined by the field type specified in the instruction. The
item is resolved, determining the field offé&tThe value at that offset into the class instance referenced

8 The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Jal/ai@zal machine may define any
mapping from tokervalue to offset into an instance.

Java Card Platform Virtual Machine Specification, vB. Pagel77

by objectref is fetched. If the valued$étype byte or type boolean, it is sigaxtended to a short. The
value is pushed onto the operand stack.

Runtime Exception
If objectref is null, the gtfield_<t>_this instruction throws a NullPointerException.
Notes

In some circumstances, the getfiekt>_this instruction may throw a SecurityException if the current
context 3.4 Contextsis not the owning contexB(4 Contextsof the object referenced by objectref.
The exact circumstances when the exception will be thrown are specified in Chapter Rufrttime
Environment Specificatiodava CardPlatform, \8.1, Classic Edition

If avirtual machine does not support the int data type, the getfield_i_this instruction will not be
available.

7.5.22 getfield_<t> w
Fetch field from object (wide index)

Format

getfield_<t> w
indexbytel
indexbyte2

Forms

getfield_a_w = 169 (0xa9)
getfield_b_w =170 (Oxaa)
getfield_s w =171 (Oxab)
getfield_i_w = 172 (0xac)

Stack

X3 20 &S XENBA t dzS

OR

X 20 HSXENBA dzSPs2NRMIE G f dzSPg2 NRH

Description

The objectref, which must be of type referencepipped from the operand stack. Theasigned

indexbytel and indexbyte2 are used to construct an index into the constant pool of the current package
(3.5 Frame}l where the value of the index is (indexbyte18)< indexbyte2. The constant pool item at

the index must be of type CONSTANT _InstanceFidBlge2 CONSTANT _InstanceFieldref,

Java Card Platform Virtual Machine Specification, vB. Pagel78

CONSTANT _VirtualMethodr€fODNSTANT _SuperMettref), a reference to a class and a field token.
The item must resolve to a field of type reference.

The class of objectref must not be an array. If the field is protected, and it is a mendesupérclass of
the current class, and the field is nataared in the same package as the current class, then the class of
objectref must be either the current class or a subclass of the current class.

The item must resolve to a field with a type thaatohes t, as follows:

a field must be of type reference

b field must be of type byte or type boolean
s field must be of type short

i field must be of type int

= =4 =4 =4

The width of a field in a class instance is determined by the field type specified irstheetion. The

item is resolved, determining the fieldfsét'®. The value at that offset into the class instance referenced
by objectref is fetched. If the value is of type byte or type boolean, it isesitgnded to a short. The

value is pushed onto theperand stack.

Runtime Exception
If objectref is nullthe getfield_<t> w instruction throws a NullPointerException.
Notes

In some circumstances, the getfield_<t> w instruction may throw a SecurityException if the current
context B.4 Contextysis not the owning conteXB.4 Contextysof the object referenced by objectref.
The exact circumstances when the exception will bewm are specified i€hapter 6 of thdRuntime
Environment Specificatiodava CardPlatform, \8.1, Classic Edition

If a virtual machine does not support the int data type, the getfield_i_w instruction will not be available.

7.5.23 getstatic_<t>
Get static field from class

Format

getstatic_<t>
indexbytel
indexbyte2

Forms

19The offset may be computed by adding the field token value to the size of an instanceimitlediate
superclass. However, this method is not required by this spatifin. A Java Card virtual machine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, vB. Pagel79

getstatic_a = 123 (0x7b)
getstatic_b = 24 (0x7c)

getstatic_s = 125 (0x7d)
getstatic_i =126 (0x7e)

Stack

X-Hp X3 @It dzS

OR

XHp XI Ol fdSPg2NRmMI G f dzSdPg 2 NRH
Description

The unsigned indexbytednd indexbyte2 are used to construct an index into the constant pool of the
current package3.5 Framel where the value of the index is (indexbytel << 8) | indexbyte2. Th
constant pool iten at the index must be of type CONSTANT _StaticFie®iIB8(

CONSTANT _StaticFieldref and CONSTANT _StaticMe}hadef€rence to a static field.

The tem must resolve to a field with a type that matches t, as follows:

a field must be of type reference

b field must be of type byte or type boolean
s field must be of type short

i field must be of type int

=A =4 =4 =

The width of a class field is determined by tield type specified in the instruction. The item is
resolved, determining the field offset. The item is resolved, determining the class fieldalue of the
class field is fetched. If the value is of type byte or boolean, it isesitgpmded to a shd. The value is
pushed onto the operand stack.

Notes
If a virtual machine does not support the int data type, the getstatic_i instruction will not be available.

7.5.24 goto
Branch always

Format

goto
branch

Forms

goto =112 (0x70)

Java Card Platform Virtual Machine Specification, vB. Pagel80

Stack
No chane
Description

The value branch is used as a signddit ®ffset. Execution proceeds at that offset from the address of
the opcode of this goto instruction. The target address must be that of an opcode of an instruction
within the method that contains tisigoto instructn.

7.5.25 goto_w
Branch always (wide index)

Format

goto_w
branchbytel
branchbyte2

Forms

goto_w = 168 (0xa8)
Stack

No change
Description

The unsigned bytes branchbytel and branchbyte2 are used to construct a sighédifncloffset,
where branchoffset is (branchbytel << 8) | branchbyte2. Execution proceeds at that offset from the
address of the opcode of this goto instruction. The tamgdress must be that of an opcode of an
instruction within the method that contains thistp instruction.

7.5.26 i2b
Convert int to byte

Format

i2b

Forms

i2b = 93 (0x5d)
Stack

XZ O f dzS P2 NV X =0 INBdzdizd 2 NR H

Java Card Platform Virtual Machine Specification, vB. Pagel8l

Description

The value on tp of the operand stack must be of type int. It is popped from the operand stack and
convered to a byte result by taking the learder 16 bits of the int value, and discarding the hagder
16 bits. The lowrder word is truncated to a byte, then sigixtended to a short result. The result is
pushed onto the operand stack.

Notes

The i2b instaction performs a narrowing primitive conversion. It may lose information about the overall
magnitude of value. The result may also not have the same sign as value.

If a virtual machine does not support the int data type, the i2b instructidhnot be available.

7.5.27 i2s
Convert int to short

Format

i2s

Forms

i2s = 94 (0Ox5e)

Stack

X @It dzSds 2 NIEM X =0 INBSdzSizb di2 NR H
Description

The value on top of the operand stack must be of type int. It is popped from the operand stack and
converted toa short result by taking the lowrder 16 bits of the int value and discarding the hagder
16 bits. The result is pushed onto the operand stack.

Notes

The i2s instruction performs a narrowing primitive conversion. It may lose informatiouat the oveall
magnitude of value. The result may also not have the same sign as value.

If a virtual machine does not support the int data type, the i2s instruction will not be available.

7.5.28 iadd
Add int

Format

iadd

Java Card Platform Virtual Machine Specification, vB. Pagel82

Forms

iadd = 66 (0x42)

Stack

X3 @AlwérdlzSraluel.word2, value2.wordl, value2.worfig X = NB a dz G g2 NRmXZ NI a dz
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. The int
result is valuel + value2. The result is pusbetb the opeand stack.

If an iadd instruction overflows, then the result is the ovder bits of the true mathematical result in a
& dzf T A OA Sy conblendeit B@natiilfd@edaw occurs, then the sign of the result may not be
the same as the sigof the mathamatical sum of the two values.

Notes
If a virtual machine does not support the int data type, the iadd instruction will not be available.

7.5.29 iaload
Load int from array

Format

iaload

Forms

iaload = 39 (0x27)

Stack

XZ | NNI epNBFZ . waktht Re@de. word2
Description

The arrayref must be of type reference and must refer to an antayse components are of type int.
The index must be of type short. Both arrayref and index are popped from the opstarid The int
value in the componentf the arrayat index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions
If arrayref is null, iaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the arraferenced by arrayref, the ialoddstruction
throws an ArraylndexOutOfBoundsException.

Java Card Platform Virtual Machine Specification, vB. Pagel83

Otherwise if the arrayref references a writaly array viewthe iaload instruction throws a
SecurityException

Notes

In some circumstances, the iaload instruatimay throw a SecurityException iftlcurrent contex(3.4
Contexts is not the owning contexB(4 Contextsof the arrayreferenced by arrayref. The exact
circumstances when the exception wit#t thrown are specified in Chapter 6 of tReintime Environment
SpecificationJava CardPlatform, \8.1, Classic Edition

If a virtual machine does not support the int data type, theaal instruction will not be available.

7.5.30 iand
Boolean AND int

Format

iand

Forms

iand = 84 (0x54)

Stack

XZ @It dSMPg2NRMEI G f dzSmd g HNRKEZ NBIAfdezSiHdB @ NIRRINES NdS|-3 fdzz
Description

Both valuel and value2 must be gpe int. They are popped from the operand stack. An int result is
calculated by taking the bitwise AND (conjunction) of valuel and value2. The result is pushed onto the
operand stack.

Notes
If a virtual machine does nsupport the int data type, the iahinstruction will not be available.

7.5.31 iastore
Store into int array

Format
iastore
Forms
iastore = 58 (0x3a)

Stack

Java Card Platform Virtual Machine Specification, vB. Pagel84

XZ I NN}Y&@NBFZ AYRSE=H O f dzSdg2 NRmMI O f dzSds 2 NRH
Description

The arrayref must be of typeference and must refer to an arrashose components are of type int.
The index must be of type short and value must be of type int. The arrayref, index and value are popped
from the operand stack. The int value is stored as the component of the iadeyed by index.

If the arrayreferenced by arrayrefs integritysensitive, its integrity is checked before the value is
stored. The integrity control element is updated when the value is stdrkd.whole operation (value
storage and the integrity control element update) is performed at@ityc

Runtime Exception
If arrayref is null, iastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the arrajerenced by eayref, the iastore instruction
throws an ArraylndexOutOfBoundsException.

Otherwise if the arrgreferenced by arrayref is integrityensitive andn inconsistency is detected
during the array integrity checkye iastore instruction throws a SecurityEption.

Otherwise if the arrayref references a readly array viewthe iastore instruction thows a
SecurityException

Notes

In some circumstances, the iastore instruction may throw a SecurityException if the current c8mtext (
Context$ is not the owning contéX3.4 Contextysof the array referenced by arrayrehd exact
circumstances when the exception will be thrown are specified in Chapter 6 &uhttme Environment
Speciftation,Java CardPlatform, \8.1, Classic Edition

If a virtual machine does not support the int data type, the iastore instruction will not be available.

7.5.32 icmp
Compare int

Format

icmp

Forms

icmp = 95 (0x5f)

Stack

Java Card Platform Virtual Machine Specification, vB. Pagel85

X3 @t dzSwmog 2deRale2.vwoidT, dabe? ®WardBNIX = NI & dzf
Descrigion

Both valuel and value2 must be of type int. They are both popped from the operand stack, and a signed
integer comparison is performed. If valuel is greater than value2, the short value 1 is pusbede

operand stack. If valuel is equal to valugfs short value O is pushed onto the operand stack. If valuel

is less than value2, the short valge is pushed onto the operand stack.

Notes
If a virtual machine does not support the int data types tbmp instruction will not be available.

7.5.33 iconst_<i>
Push int constant

Format
iconst_<i>
Forms

iconst_m1 =10 (0x09)
iconst_ 0 =11 (0xa)
iconst_1 =12 (0xb)
iconst_2 =13 (0xc)
iconst_3 = 14 (0xd)
iconst_4 =15 (Oxe)
iconst_5 = 16 (0xf)

Stack

X-h XTI FAHBPE2NRME fAHDPSH2NRH

Description

Push the int constant <i>1(, 0, 1, 2, 3, 4, or 5) onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iconst_<i> instruction will not be available.

7.5.34 idiv
Divide int

Format

idiv

Java Card Platform Virtual Machine Specification, vB. Pagel86

Forms

idiv = 72 (0x48)

Stack

X @I tdsSMPg2NRMI G f dzSmdg HNIKETL NBIafdzzSiHdds @ NIRRINES NdS|-a fdziz
Description

Both valuel and value2 must be of type int. The values are popped from the operand staick. The
result is the value of the ya expression valuel / value2. The result is pushed onto the operand stack.

An int division rounds towards 0; that is, the quotient produced for int values in n/d is an int value q
whose magnitude is as large as possibhdevsatisfying | d - q | <= | h Moreover, g is a positive when
| n|>=]d]|andnand d have the same sign, but q is negative when |n | >=| d | and n and d have
opposite signs.

There is one special case that does not satisfy this rule: if theedidiis the negative integer dfi¢
largest possible magnitude for the int type, and the divisaplisthen overflow occurs, and the result is
equal to the dividend. Despite the overflow, no exception is thrown in this case.

Runtime Exception

If the valie of the divisor in an int diviten is 0, idiv throws an ArithmeticException.

Notes

If a virtual machine does not support the int data type, the idiv instruction will not be available.

7.5.35 if_acmp<cond>
Branch if reference comparison succeeds.

Fomat

if_acmp<cond>
branch

Forms

if_acmpeq = 104 (0x68)
if_acmpne = 105 (0x69)

Stack
X3 @t dzSpmIX @ f dzSH

Description

Java Card Platform Virtual Machine Specification, vB. Pagel87

Both valuel and value2 must be of type reference. They are both popped from the operand stack and
compared. The results of the mparisons are as follows:

1 eq succeeds if and only if valuel = value2
1 ne succeeds if and only if valuéd value?2

If the comparison succeeds, branch is used as sig#eidd#fset, and execution proceeds at that offset
from the address of the opcode tfis if acmp<cond> instruction. The target address must be that of an
opcode of an instruction within the method thabntains this if_acmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this if_ acmp<cond>
instruction.

7.5.36 if_acmp<cond>_w
Branch if reference comparison succeeds (wide index)

Format

if_acmp<cond>_w
branchbytel
branchbyte2

Forms

if acmpeqg_w = 160 (0Oxa0)
if_acmpne_w =161 (Oxal)

Stack
X3 @t dzSpmX @ f dzSH
Description

Both valueland value2 must be of type reference. They are both popped from the operand stack and
compared. The results of the mgarisons are as follows:

1 eq succeeds if and only if valuel = value2
9 ne succeeds if and only if valué value2

If the comparison sueeds, the unsigned bytes branchbytel and branchbyte2 are used to construct a
signed 1ébit branchoffset, where brandffset is (branchbytel << 8) | branchbyte2. Execution proceeds
at that offset from the address of the opcode of this if_acmp<cond>_w iotru The target address
must be that of an opcode of an instruction within the method that contains this if_acnmgkcav
instruction.

Otherwise, execution proceeds at the address of the instruction following this if acmp<cond> w
instruction.

Java Card Platform Virtual Machine Specification, vB. Pagel88

7.5.37 if_scmp<cond>
Branch if short comparison succeeds

Format

if scmp<cond>
branch

Forms

if scmpeqg = 106 (0x6a)
if_scmpne = 107 (0x6b)
if scmplt = 108 (0Ox6c¢)
if scmpge = 109 (0x6d)
if_scmpgt =110 (0x6e)
if scmple = 111 (0x6f)

Stack
X3 @It dzSpw X @I £ dzSH
Description

Both valuel and value2 must be of type short. They are both popped the operand stack and
compared. All comparisons are signed. The results of the comparisons are as follows:

eg succeeds if and only if valuel = value2
ne succeed# and only if valuel=value2

It succeeds if and only if valuel < value2
le succeeds if and only if valuex value2

gt succeeds if and only if valuel > value2
ge succeeds if and only if valuezvalue2

=A =4 =4 =4 -8 4

If the comparison succeeds, branch is usedigised 8bit offset, and executin proceeds at that offset
from the address of the opcode of this if_scmp<cond> instruction. The target address must be that of an
opcode of an instruction within the method that contains this if_scmp<cond> instruction.

Otherwise, execution proceeds atdtaddress of the instruction following this if _ scmp<cond>
instruction.

7.5.38 if_scmp<cond>_w
Branch if short comparison succeeds (wide index)

Format

Java Card Platform Virtual Machine Specification, vB. Pagel89

if scmp<cond>_ w
branchbytel
branchbyte2

Forms

if_scmpeq_w = 16@0xa2)
if scmpne_w = 163 (0xa3)
if_scmplt_w = 164 (0xa4)
if_scmpge_w = 165 (0xab)
if scmpgt w = 166 (0xab)
if_scmple_w =167 (0xa7)

Stack
X3 @t dzSpmX @I f dzSH
Description

Both valuel and value2 must be of type short. They are both popped freragarard stack and
compared. All comparisons are signed. The results of the comparisons are as follows:

eq succeeds if and only if valuel = value2
ne succeeds if and only if valukdvalue2

It succeeds if and only if valuel < value2
le succeeds if ahonly f valuel<=value2

gt succeeds if and only if valuel > value2
ge succeeds if and only if valuetvalue2

=A =4 =4 4 -4 4

If the comparison succeeds, the unsigned bytes branchbytel and branchbyte2 are used to construct a
signed 1ébit branchoffset, where brandffset is (branchbytel << 8) | branchbyte2. Execution proceeds
at that offset from the address of the opcode of this if_scmp<cond>_w instruction. The target address
must be that of an opcode of an instruction within the method that contains this if_scrnmokcav
instruction.

Otherwise, execution proceeds at the address of the instruction following this if_ scmp<cond>_w
instruction.

7.5.39 if<cond>
Branch if short comparison with zero succeeds

Format

if<cond>
branch

Java Card Platform Virtual Machine Specification, vB. Pagel90

Forms

ifeq = 96 (0x60)
ifne = 97 0x61)
iflt = 98 (0x62)
ifge = 99 (0x63)
ifgt = 100 (0x64)
ifle = 101 (Ox65)

Stack
X3 @Bt ¥zS
Description

The value must be of type short. It is popped from the operand stack and compared against zero. All
comparisons are signed. The resultstef tomparisons are as follows:

eq succeeds if and only if value =0
ne succeeds if and only if valteO

It suceeds if and only if value <0
le succeeds if and only if valge0

gt succeeds if and only if value > 0
ge succeeds if and only if value0

= =4 4 4 -8 4

If the comparison succeeds, branch is used as sig#didd#fset, and execution proceeds at that offset
from the address of the opcode of this if<cond> instruction. The target address must be that of an
opcode of an instruction within the method dh contains this if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction followiisgfthcond> instruction.

7.5.40 if<cond>_w
Branch if short comparison with zero succeeds (wide index)

Format

if<cond>_ w
branchbytel
branchbyte?2

Forms

ifeq_w = 152 (0x98)
ifne_w = 153 (0x99)
iflt_w = 154 (0Ox9a)

ifge_w = 155 (0x9b)

Java Card Platform Virtual Machine Specification, vB. Pagel91

ifgt w =156 Qx9c)
ifle_w = 157 (0x9d)

Stack
X3 @bt ¥zS
Description

The value must be of type short. It is popped from the operand stack andarechpgainst zero. All
comparisons are signed. The results of the comparisons are as follows:

eq succeeds if and only if value =0
ne succeeds if and only if valle0

It succeeds if and only if value <0
le succeeds if and only if valge0

gt suceeds if and only if value > 0
ge succeeds if and only if value0

= =4 =4 4 -4 4

If the comparison succeeds, the unsigned bytes branchbytel and branchbyte2 are used to construct a
signed 16bit branchoffset, where branchoffset is (branchbytel << 8) | branchbyteZ U@ proceeds

at that offset from the address of the opcode of this if<cond>_w instruction. The target address must be
that of an opcode of an instruction within the metti that contains this if<cond>_w instruction.

Otherwise, execution proceeds at thedress of the instruction following this if<cond>_w instruction.

7.5.41 ifnonnull
Branch if reference not null

Format

ifnonnull
branch

Forms

ifnonnull = 103 (0x67)
Stack

X3 @Bt ¥zS
Description

The value must be of type reference. It is pog@eom the operand stack. If the value is not null, branch
is used as signeddt offset, and execution proceeds at that offset from the address of the opcode of

Java Card Platform Virtual Machine Specification, vB. Pagel92

this ifnonnull instruction. The target address must be that of an opcode of an instructibimwie
method that contains this ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnonnull instruction.

7.5.42 ifnonnull_w
Branch if reference not null (wide index)

Format

ifnonnull_w
branchbytd
branchbyte2

Forms

ifnonnull_w = 159 (0x9f)
Stack

X3 OBt ¥zS
Description

The value must be of type reference. It is popped from the operand stack. If the value is not null, the
unsigned bytes branchbytel and branchbyte2 are used to construghad 16bit branchoffset, where
branchoffset is (branchbytel << 8) | branchbytefeé&ution proceeds at that offset from the address of
the opcode of this ifnonnull_w instruction. The target address must be that of an opcode of an
instruction within the nethod that contains this ifnonnull_w instruction.

Otherwise, execution proceeds thte address of the instruction following this ifnonnull_w instruction.

7.5.43 ifnull
Branch if reference is null

Format

ifnull
branch

Forms
ifnull = 102 (0x66)
Stak

X3 @bt ¥zS

Java Card Platform Virtual Machine Specification, vB. Pagel93

Description

The value must be of type reference. It is popped from the operand stack. If the value is null, branch is
used as signed-Bit offset, and execution proceeds at that offset from the address of the opcode of this
ifnull instruction. The target address muse that of an opcode of an instruction within the method that
contains this ifnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull instruction.

7.5.44 ifnull_w
Branch if eference is null (wide index)

Format

ifnull_w
branchbytel
branchbyte2

Forms

ifnull_w = 158 (0x9e)
Stack

X3 @bt ¥zS
Description

The value must be of type reference. It is popped from the operand stack. If the value is null, the
unsigned bytes tanchbytel and branchbyte2 atesed to construct a signed 48t branchoffset, where
branchoffset is (branchbytel << 8) | branchbyte2. Execution proceeds at that offset from the address of
the opcode of this ifnull_w instruction. The target address mudtla¢ of an opcode of an instation

within the method that contains this ifnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull_w instruction.

7.5.45iinc
Increment local int variable by constant

Famat
iinc
index
const

Forms

iinc = 90 (0x5a)

Java Card Platform Virtual Machine Specification, vB. Pagel94

Stack
No change
Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the local variables of
the current frame 8.5 Framel The local variables at index aindex + 1 together must contain an int.

The const is an immediate signed byte. The value const is firsesignded to an int, then the int

contained in the local variable$ mdex and index + 1 is incremented by that amount.

Notes
If a virtual machine does not support the int data type, the iinc instruction will not be available.

7.5.46 iinc_w
Increment local int variable by constant

Format
iinc_w
index

bytel
byte2

Forms

iinc_w = 151 (0x97)
Stack

No change
Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the local variables of
the current frame 8.5 Framel The local variables at index and index + 1 together must contain an int.
The immediate unsigned bytel and byte2 values are assembled into an intermediate short where the
value of the short is (bytel << 8) | byte2. The intermedizéue is then sigrextended to an int const.

The int contained in the local variables at index and index + 1 is incremented by const.

Notes
If a virtual machine does not support the int data type, the iinc_w instruction will not be available.

7.5.47 iip ush
Push int

Java Card Platform Virtual Machine Specification, vB. Pagel95

Format
iipush
bytel
byte2

byte3
byte4

Forms

iipush = 20 (0x14)

Stack

X-Hh X @l tdSmPg2NRME @ dz2Smdg2 NRH
Description

The immediate unsigned bytel, byte2, byte3, and byte4 values are assembled into a signed int where
the value of thant is (bytel << 24) | (byte2 << 16) | (byte3 << 8) | byte4. The resulting value is pushed
onto the operand stack.

Notes
If a virtual macime does not support the int data type, the iipush instruction will not be available.

7.5.48 iload
Load int fromdcal variable

Format

iload
index

Forms

iload = 23 (0x17)

Stack

X-H XI @l tdSmPg2NRME @ dz2Smdg2NRH
Description

The index is annsigned byte. Both index and index + 1 must be valid indices into the local variables of
the current frame 8.5 Framel The local variables at index and index + 1 together must contain an int.
The value of the local variables at index and index + 1 is pushed onto the operand stack.

Java Card Platform Virtual Machine Specification, vB. Pagel96

Notes
If a virtual machine does not support the int data type, the iload instruction will not be available.

7.5.49 iload_<n>
Load int from local variable

Format
iload_<n>
Forms

iload_0 = 32 (0x20)
iload_1 =33 (0x21)
iload_2 = 34 (0x22)
iload_3 =35 (0@

Stack
X-H XI @l tdSmPg2NRME D dz2Smdg2 NRH
Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current 3r&rfkeafmeps
The locavariables at <n> and <n> + 1 together must contain an int. The value lotdievariables at
<n> and <n> + 1 is pushed onto the operand stack.

Notes

Each of the iload_<n> instructions is the same as iload with an index of <n>, except that the cperand
is implicit.

If a virtual machine does not support the int data tygee iload_<n> instruction will not be available.

7.5.50 ilookupswitch
Access jump table by key match and jump

Format

ilookupswitch
defaultbytel
defaultbyte?2
npairsl

npairs2
match-offset pair&

Pair Format

Java Card Platform Virtual Machine Specification, vB. Pagel97

matchbytel
matchbyte2
matchbyte3
matchbyte4
offsetbytel
offsetbyte?

Forms

ilookupswitch = 118 (0x76)

Stack

XZ 1Sedg2NRmMEIX | Se&dg2NRH
Description

An ilookupswitch instruction is a variadkngth instruction Immediately after the ilookupswitch

opcode follow a signeti6-bit value default, an unsigned 46t value npairs, and then npairs pairs. Each
pair consists of an int match and a signedhlitoffset. Each match is constructed from four unsigned
bytes agmatchbytel << 24) | (matchbyte2 << 16) | (matchbyte3 <kr@atchbyte4. Each offset is
constructed from two unsigned bytes as (offsetbytel << 8) | offsetbyte2.

The table matchoffset pairs of the ilookupswitch instruction must be sorted in increasingerical
order by match.

The key must be of type int andpspped from the operand stack and compared against the match
values. If it is equal to one of them, then a target address is calculated by adding the corresponding
offset to the address of the opde of this ilookupswitch instruction. If the key does natah any of

the match values, the target address is calculated by adding default to the address of the opcode of this
ilookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offsetasffematchoffset pair, as well as the one
calculated from default, must be the address of an opcode of an instruction within the method that
contains this ilookupswitch instruction.

Notes
The mach-offset pairs are sorted to support lookup routines ttzaie quicker than linear search.

If a virtual machine does not support the int data type, the ilookupswitch instruction will not be
available.

7.5.51 imul
Multiply int

Format

Java Card Platform Virtual Machine Specification, vB. Pagel98

imul
Forms
imul= 70 (0x46)

Stack

X @FtdsSMPg2NRMI G f dzSmdg HNIKETL NBIafdzzSiHdds @ NIRRINES NS4 fdziz

Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. The int

result is valuel * value2. Thesult is pushed ontthe operand stack.

If an imul instruction overflows, then the result is the londer bits of the mathematical product as an

int. If overflow occurs, then the sign of the result may not be the same as the sign of the mathematical

product of the two values
Notes
If a virtual machine does not support the int data type, the imul instruction will not be available.

7.5.52 ineg
Negate int

Format

ineg

Forms

ineg = 76 (0x4c)

Stack

XT @t dzSdg 2 NIBM X =& INIS dzSIzbtdhv@pi2 INR M = NB & dz
Description

The value must be of type int. It is popped from the operand stack. The int result is the arithmetic
negation of valuesvalue. The result is pushed onto the operand stack.

For intvalues, negation is the same as subtraction fromozBecause the Java Card virtual machine
dza Sa -G22LF;aSYSy i NBLINBASY Gl GA2Yy -Eonpldmen/\ialSed S hak
symmetric, the negation of the maximum negative int resultshet same maximum negative number.
Despite the facthat overflow has occurred, no exception is thrown.

For all int values xx equals (~x) + 1.

Java Card Platform Virtual Machine Specification, vB. Pagel99

Iy R

i K

Notes
If a virtual machine does not support the int data type, the ineg instruction will not be available.

7.5.53 instanceof
Determine if object is of giverype

Format

instanceof
atype

indexbytel
indexbyte2

Forms

instanceof = 149 (0x95)

Stack

XZ 206 HS XENBBE & dz
Description

The unsigned byte atype is a code that indicates if the type against which the object is being checked is
an array type oa class type. It must take one of the following values or zero:

Table7-3: Array Vales

Array Type atype ‘
T _BOOLEAN 10
T_BYTE 11
T_SHORT 12
T_INT 13
T_REFERENCE 14

If the value of atype is 10, 11, 18, 13, the values of the indexbytel and indexbyte2 must be zero, and
the value of atype indicates the array type against whicbheck the object. Otherwise the unsigned
indexbytel and indexbyte2 are used to construct an index into the constant pdwet @iurrent package

(3.5 Frame} where the value of the index is (indexbytel << 8) | indexbyte2. The item at that inde

the constant pool must be of type CONSTANT_Cl&81 CONSTANT _Claskrafreference to a class

or interface type. The reference is resolved. If the value of atype is 14, the object is checked against an
array type that is an array of object references of the type of the resolved clage ifdlue of atype is

zero, the object is checked against a class or interface type that is the resolved class.

Java Card Platform Virtual Machine Specification, vB. Page200

The objectref must be of type reference. It is popped from the opestack. If objectref is not null and
is an instance of the resolved claasay or interface, the instanceof instruction pushes a short result of
1 on the operand stack. Otherwise it pushes a short result of 0.

The following rules are used to determindnether an objectref that is not null is an instance of the
resolved typeif S is the class of the object referred to by objectref and T is the resolved class, array or
interface type, instanceof determines whether objectref is an instance of T as follows

1 If Sis aclass type, then:
o |If Tis aclass type, then S must be thmsa&lass as T, or S must be a subclass of T;
o If T is an interface type, then S must implement interface T.
1 If Sis an interface typ® then:
o |IfTis aclass type, then T must@bject £.2.1.4 Unsupported Clasgges
o If Tis an interface type, T must be the same interface asaSoperinterface of S.
1 If Sis an array type, namely the type S®Bi is, an array of components of type SC, then:
o |IfTis aclass type, then T must be Object.
o |If T is an array type, namely the type TCJ[], an array of components of type TC, then one
of the following must be true:
A TC and SC are the same primitive typd Qata Typeand Values
A TC and SC are reference tyP€8.1 Data Typeand Valuéswith type SC
assignable to TC, by these rules.
o If Tis an interface type, T must be one of the interfaces implemented by arrays.

Notes

The instanceof instruction is fundamentally very similar to the checkcast instruction. It differs in its
treatment of nul, its behavior when its test fails (checktsows an exception, instanceof pushes a
result code), and its effect on the operand stack.

In some circumstances, the instanceof instruction may throw a SecurityException if the current context
(3.4 Contextpis not the owning contexB(4 Contextsof the object referenced by objectref. The eka
circumstances when the exception will be thrown are specified in Chapter 6 &uhegme Environment
SpecificationJava CardPlatform, \8.1, Classic Edition

If a virtual machine does not support the olata type, the value of atype may not be 13réy type =
T_INT).

20When bothSand T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namelsCand TC In the recursie call,§ which wasSOn the original call, may ban interface type. This
rule can only be reached in this manner. Similarly, in the recursivelcalhich wasTCin the original call, may be
an interface type.

21 This version of the Java Card vittazachine specification does not support multmensonal arrays. Therefore,
neither SCor TCcan be an array type.

Java Card Platform Virtual Machine Specification, vB. Page201

7.5.54 invokeinterface
Invoke interface method

Format

invokeinterface
nargs
indexbytel
indexbyte2
method

Forms

invokeinterface = 142 (0x8e)

Stack

XX 202SOGNBTH & NAmMXZ ol NHEH X868
Description

The unsigned indexbytel amidexbyte2 are used to construct an index into the constant pool of the
current package3.5 Framel where the value of the index is (indexbytel << 8) | indexbyte2. The
constant pool item at that index must be of type CONSTANT_Cla88ef CONSTANT _Clasgraf
reference to an interface clas$he specified interface is resolved.

The narg®perand is an unsigned byte that must not be zero.

The method operand is an unsigned byte that is the interface method token for the method to be
invoked. The interface method must not be <init> or andnse initialization method.

The objectref mustbe of type reference and must be followed on the operand stack by rgatgsords
of arguments. The number of words of arguments and the type and order of the values they represent
must be consistent with thse of the selected interface method.

The interice table of the class of the type of objectref is determined. If objectref is an array type, then
the interface table of class Obje@.2.1.4 Unsupported Clasgds usedThe interface table is searched

for the resolved interface. The result of the search is a table that is used to map the method token to a
index.

The index is an unsigned byte thatused as an index into the method table of the class of the type of
objectref. If the objectref is an array type, then the method table of class Object is used. The table entry
Fd GKFG AYRSE AyOfdzRSa F RANBOGinfBatioB. NSy OS (2 GKS

The nargg, 1 words of arguments and objectref are poppednfrthe operand stack. A new stack frame
is created for the method being invoked, and objectref and the arguments are made the values of its
first nargs words of local variables, witbjectref in local variable 0, argl in local variable 1, and so on.

Java Card Platform Virtual Machine Specification, vB. Page202

The rew stack frame is then made current, and the Java Card virtual machine pc is set to the opcode of
the first instruction of the method to be invoked. Execution continues with theifistruction of the
method.

Runtime Exception
If objectref is null, thenvokeinterface instruction throws a NullPointerException.
Notes

In some circumstances, the invokeinterface instruction may throw a SecurityException if the current

context (3.4 Contextyis not the context3.4 Contextsof the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Ch&pséthe Runtime Environment
SpecificationJava Car®latform, 8.1, Classic Bion® L F (G KS OdaNNByid O2y dSEG Aa
and the Java Card RE permits invocation of the method, the invokeinterface instruction will cause a

context switch8.4 Contexts (12 G(G(KS 2062800 Q4a O2yGSE(l o0ST2NB Aygd2]
context switch to the previous context when the invoked method returns.

7.5.54.1 Interface Method Resolution
The resolution of the interface method is defined by the following algorithm. The virtual machine is not
required to exactly perform the following steps provided the result is the same.

Verify access permission from current coritexobject O m the stack
Extract the interface | from the constant pool entry CONSTANT _Classref
Determine the dynamic type (class) C for object O on the stack
Search in the classes in the hierarchy of C fammtemented_interface_info structure
for the interface Ji.e., starting with C1=C:
a. Search the tablenterfaces of C1. If I is not found, then set C1 to the immediate
superclass of C1 and recursively continue at step
5. Extract the virtual token T1 of the method M in class C1 as T1=mdéxpd in the
implemente d_interface_info structure
6. Lookup the implementation of the method M in the hierarchy of C, i.e.:
a. Determine atoken T in class C that denotes the same method M as token T1 in class C1
b. If the token T does not exist or if T is less than Cipulttual_mettod_table_base or if
C.public_virtual_method_tablefT.public_virtual_method_table base] is OxFFFF, then
recursively continue the lookup at stepwith C being now set to the supelass of C
c. Otherwise,C.public_virtual_method_tablefT.pubic_virtual_method_table_base] is
the location in class C of the method M to be invoked
7. If noimplemented_interface_info structureis found at stept.aor if no method
implementation has been found in the hierascor if a method is found but has the
ACC_ABSTRACT fthgn the virtual machine must exit thaterfacemethod resolutionand
handle this as an errore$ section 2.3.3.1.

b

Java Card Platform Virtual Machine Specification, vB. Page203

7.5.55 invokespecial
Invoke instance method; special handling for superclasgate, and instance initialization method
invocations

Format

invokespecial
indexbytel
indexbyte2

Forms

invokespecial = 140 (0x8c)

Stack

XX 202SO0GNBTH &I NHEmMXI ol NHH X868
Description

The unsigned indexbytel and indexbyte2 are used to consamuadex into the constant pool of the
current package3.5 Framel where the value of the index is (indexbytel << 8) | indexbyte2. If the
invoked methods a private instace method or an instance initialization method, the constant pool

item at index must be of type CONSTANT _StaticMetho@r8fJ CONSTANT _StaticFieldref and
CONSTANT _StaticMethodred reference to a statically linked instance method. If the invoked method
is a superclass method, the constant pool item at index must be of type CONSTANT _SuperMethodref
(6.8.2 CONSTANT _InstanceFieldref, CONSTANT _VirtualMet@@INS,TANT _SuperMettref), a

reference to an instance method of a specified class. The reference is resolved. The resolved method
must not be <clinit>, a class or interface initializatethod. If the method is <init>, an instance
initialization method, thentie method must only be invoked once on an uninitialized object, and before
the first backward branch following the execution of the new instruction that allocated the object.
Finally if the resolved method is protected, and it is a member of a superofabe current class, and

the method is not declared in the same package as the current class, then the class of objectref must be
either the current class or a subclass of the cotréass.

The resolved method includes the code for the method, an uesidyte nargs that must not be zero,
FYR (GKS YSUK2RQa Y2RAFTASNIAYF2NNIGAZ2Y D

The objectref must be of type reference, and must be followed on the operand stack byriavgsrds
of arguments, where the number of words of arguments and the type and order of the values they
represent must be consistent with those of the selectedanse method.

The nargg 1 words of arguments and objectref are popped from the operand stack. A ek same

is created for the method being invoked, and objectref and the arguments are made the values of its
first nargs words of local variables, wibbjectref in local variable 0, argl in local variable 1, and so on.
The new stack frame is then madem@nt, and the Java Card virtual machine pc is set to the opcode of

Java Card Platform Virtual Machine Specification, vB. Page204

the first instruction of the method to be invoked. Execution continues with ths¢ iiirstruction of the
method.

Runtime Exception
If objectref is null, the invokespecial instructiondkrs a NullPointerException.

7.5.56 invokestatic
Invoke a class (static) method

Format

invokestatic
indexbytel
indexbyte2

Forms

invokestatic = 141 (0x8d)

Stack

XZ wl NBEmB XI NHH X886
Description

The unsigned indexbytel and indexbyte2 are usecbnstruct an index into the constant pool of the
current package3.5 Framel where the value of the index is (indexbytel << 8) | indexbyte2. The
constant pool item athat index must be of type CONSTANT _StaticMethodr&¥. 8

CONSTANT _StaticFieldref and CONSTANT _StaticMe}hadeference to a static method. The method
must not be <ini¢, an instance initialization method, or <clinit>, a class or interface initialization
method. It must be stadi, and therefore cannot be abstract.

The resolved method includes the code for the method, an unsigned byte nargs that may be zero, and
themet2 RQA Y2RAFASNI AYTF2NNI A2y D

The operand stack must contain nargs words of arguments, where the number of @efadgiments
and the type and order of the values they represent must be consistent with those of the resolved
method.

The nargs words of argumts are popped from the operand stack. A new stack frame is created for the
method being invoked, and the word$ arguments are made the values of its first nargs words of local
variables, with argl in local variable 0, arg2 in local variable 1, and. §hhemew stack frame is then
made current, and the Java Card virtual machine pc is set to the opcode afthiadiruction of the
method to be invoked. Execution continues with the first instruction of the method.

Java Card Platform Virtual Machine Specification, vB. Page205

7.5.56.1 Super Method Resolution
The esolution of the super method is defined by the following algorithm. The virtual machine is not
required to exatly perform the following steps provided the result is the same.

1. Verify access permission from current context to objecin the stack
2. Extrad the classC1and tokenT1 from the constant pool entry
CONSTANT _SuperMethodref
3. Lookup the method in the hierahy starting with C being the direct supdass of C1.:
a. Determine atoken T in class C that denotes the same method as token T1 in class C1
b. If Tis less tharC.public_virtual_method_table base or if
C.public_virtual_method_table[T -
C.public_virtual_method_ table_base] isOxFFFF, then recursively
continue the lookup at step, with C being now set to the supelass of C
c. Otherwise,C.public_virtual_m ethod_table[T -
C.public_virtual_method_table_base] is the location in class C of the
method to be invoked
4. if no method implementation has been found in the hierarchy, i.e., no token T exists ordteere
no more supeiclasses during the lookup, or if a methimplementation has been found but
has the ACC_ABSTRACT fieay the virtual machine must exit treper method resolution
and handle this as an error. See section 2.3.3.1.

7.5.57 invokevirtual
Invoke instance method; dispatch based on class

Format

invokevirtual
indexbytel
indexbyte2

Forms

invokevirtual = 139 (0x8b)

Stack

X 202SOUNBH-BX&8 NEMZ ol
Description

The unsigned indexbytel and indexbyte2 are used to construct an index into the constant pool of the
current package3.5 Framep where the value of the index is (indexbytel << 8) | indexbyte2. The
constant pool item at that index must be of type CONSTANT _VirtualMethdd@e2 (

CONSTANT _InstanceFieldref, CONSTANT _VirtualMetfoOMETANT _SuperMethef), a rekrence

Java Card Platform Virtual Machine Specification, vB. Page206

to a class and a virtual method token. The specified method is resolved. The method must mothe <i
an instance initialization method, or <clinit>, a class or interface initialization method. Finally, if the
resolved method is protected, andi# a member of a superclass of the current class, and the method is
not declared in the same package hs turrent class, then the class of objectref must be either the
current class or a subclass of the current class.

The resolved method reference indies an unsigned index into the method table of the resolved class
and an unsigned byte nargs that must he zero.

The objectref must be of type reference. The index is an unsigned byte that is used as an index into the
method table of the class of thgpe of objectref. If the objectref is an array type, then the method

table of class Objec2(2.1.4 Unsupported Clasgés used. The table entry at that index includes a direct
NEFSNBYyOS (G2 GKS YSGK2RQa O2RS YR Y2RAFTASNI Ay T2N.

The objectref must be followed ofé opeand stack by nargsl words of arguments, where the
number of words of arguments and the type and order of the values they represent must be consistent
with those of the selected instance method.

The nargg 1 words of arguments and objectref gpeppedfrom the operand stack. A new stack frame

is created for the method being invoked, and objectref and the arguments are made the values of its
first nargs words of local variables, with objectref in local variable 0, argl in local variable 1,camd so
Thenew stack frame is then made current, and the Java Card virtual machine pc is set to the opcode of
the first instruction of the method to be invoked. Execution continues with the first instruction of the
method.

Runtime Exception
If objectref isnull, the invokevirtual instruction throws a NullPointerException.

In some circumstances, the invokevirtual instruction may throw a SecurityException if the current

context B.4 Contextyis not the context3.4 Contextsof the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 &uhme Environment
Specificationjava CardPlatform, 8.1, Classic Bion® L ¥ G KS Odz2NNBy i O2y GSEG A&
and the Java Card RE permits invocation of the method, the invokevirtual instruction will cause a context
switch@4 Contexts (2 G(KS 202S00GQa 02y (SEl 06ST2NB Ayg@d21Ay3
switch to the previous context when the invoked method returns.

7.5.57.1 Virtual Metho d Resolution
The resolution of the virtual method is defined by the following algoritifhe virtual machine is not
required to exactly perform the following steps provided the result is the same.

1. Verify access permission from current context to objecin the stack
2. Extact the clas€1and tokenT1 from the constant pool entry
CONSTANT _VirtualMethodref
3. Get the dynamic typ€ of the objectOand lookup the method in the hierarchy of the class, i.e.:

Java Card Platform Virtual Machine Specification, vB. Page207

a. Determine a tokerT in classCthat denotes the same ethod as tokernT1 in classC1
b. If the tokenT does not exist or iT is less than

C.public_virtual_method_table_base orif
C.public_virtual_method_table[T -
C.public_virtual_method_table base] is OXFFFF, then recursively

continue the lookup at step a, wit@being now set to the supetlass ofC

c. Otherwise,
C.public_virtual_method_table[T -

C.public_virtual_method_table_ base] is the location in class of the methodM
to be invoked
4. If no method implementdabn has been found in the hierarchy or if a method iempéntation
has been found but has th®eCC_ABSTRACTag, then the virtual machine muskit the virtual
method resolutionand handle this as an errdgee sction 2.33.1.

7.5.58 ior
Boolean OR int

Format

ior

Forms

ior = 86 (0x56)

Stack

X3 @ wdhrdizSaluel.word2, value2.wordl, value2.wordg X > NB adzZ G Pg2 NRm> NI a dz
Description

Both valuel and value2 must be of type int. The values are popped from the operand stéawkreSult
is calculated by taking the bitwise inclusive OR of viahrad value2. The result is pushed onto the
operand stack.

Notes
If a virtual machine does not support the int data type, the ior instruction will not be available.

7.5.59 irem
Remanmnder int

Format
irem

Forms

Java Card Platform Virtual Machine Specification, vB. Page208

irem = 74 (0x4a)

Stack

X @t dzSaldlbvwdiR value2.wordl, value2.wordg X > NB adzZ G Pg2NRmZ NBa df
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. The i
result is the value of the Java expression valgédaluel / valug) * value2. The result is pushed onto
the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This identity holds even in
the special case that the dividend is the negative int of largest possible magnitutetigna and the

divisor is¢1 (the remainder is 0). It fals from this rule that the result of the remainder operation can

be negative only if the dividend is negative and can be positive only if the dividend is positive. Moreover,
the magnitude of theesult is always less than the magnitude of the divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, irem throws an ArithmeticException.
Notes

If a virtual machine does not support the int data type, the irem ingtton will not be available.

7.5.60 ireturn
Return int from method

Format

ireturn

Forms

ireturn = 121 (0x79)

Stack

Xz @t dSos2NRijeDptyPl t dzS ds2 NRH
Description

The value must be of type int. It is popped from the operand stack of therduineame 3.5 Framegsand
pushed onto the operand stack of the frame of the invoker. Any otléires on the operand stack of
the current method are discarded.

The virtualmachine then reinstates the frame of the invoker and returns control to the invoker.

Java Card Platform Virtual Machine Specification, vB. Page209

Notes
If a virtual machine does not support the int data type, the ireturn instructiohneil be available.

7.5.61 ishl
Shift left int

Format

ishl

Forms

ishl = B (Ox4e)

Stack

X @I fdsSmMPg2NRMI G f dzSmdg HNIKETL NBIATdzzSiHdds @ NIRRINES NdS|-a fdziz
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. An int result
is calculated by shifting vada left by s bipositions, where s is the value of the low five bits of value2.
The result is pushed onto the operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The shift distance
actually used is alays in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical
AND with the mask value 0x1f.

If a virtual mahine does not support the int data type, the ishl instruction will not be available.

7.5.62 ishr
Arithmetic shift rightint

Format

ishr

Forms

ishr = 80 (0x50)

Stack

XZ OlfdSMeg2NRME Ot dzSm o HNIKHES NBlafdriaSuepde NRRINE S NdbI-4 fdziz

Description

Java Card Platform Virtual Machine Specification, vB. Page210

Both valuel and value2 must be of type int. The values are popped from the operand stack. Amtint res
is calculated by shifting valuel right by s bit positions, with sign extension, where s is the value of the
low five bits of valug. The result is pushed onto the operand stack.

Notes

The resulting value &valuel) / 28, where s is value2 & OxFor nonnegative valuel, this is equivalent
(even if overflow occurs) to truncating int division by 2 to the power s. The shift deststually used is
always in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical AND wmittskhe
value Ox1f.

If a virtual machine does not support the int data type, the ishr instruction will not be available.

7.5.63 istore
Store int into local variable

Format

Istore
index

Forms

istore = 42 (0x2a)

Stack

XZ @FfdSPg2NI®MX DI f dzZSPg 2 NRH
Description

The index is an unsigned byte. Both index and index + 1 must be a valid index into the local variables of
the current frame 8.5 Framep The value on top dhe operand stack must be of type int. It is popped
from the operand stack, and the local variables at index and index + 1 are set to value.

Notes
If a virtual machine does not support the int data type, the istore instruction will not be available.

7.5.64 istore_<n>
Store int into local variable

Format
istore_<n>

Forms

Java Card Platform Virtual Machine Specification, vB. Page211

istore_0 =51 (0x33)
istore_1 =52 (0x34)
istore_2 =53 (0x35)
istore_3 = 54 (0x36)

Stack
XS @I fdSPs2NB®MX G dzSPg 2 NRH
Description

Both <n> and <n> + 1 must bealid indtes into the local variables of the current fran35 Frameps
The value on top of the operand stack must be of type int. It is popped from the operand stack, and the
localvariables at index and index + 1 are set to value.

Notes
If a virtual machine does not support the int data type, tstere_<n> instruction will not be available.

7.5.65 isub
Subtract int

Format

isub

Forms

isub = 68 (0x44)

Stack

X3 @ f dzSauelowdmiRvalue2.wordl, value2.wordg X3 NBadzZ G§Pg2NRm>E NBa d
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. The int
result is valuel value2. The result is pushed oritee operand stak.

For int subtraction, & b produces the same result as ach); For int values, subtraction from zeros is
the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may have a different
signthan the true mathematical result, execution of an isub instruction never throws a runtime
exception.

Notes

Java Card Platform Virtual Machine Specification, vB. Page212

If a virtual machine does not support the int data type, the isub instruction will not be available.

7.5.66 itableswitch
Access jump table bytimdex and junp

Format

itableswitch
defaultbytel
defaultbyte?2
lowbytel
lowbyte2
lowbyte3
lowbyte4
highbytel
highbyte2
highbyte3
highbyte4
jump offsetX

Offset Format

offsetbytel
offsetbyte2

Forms

itableswitch = 116 (0x74)
Stack

XX AFRSJE
Descrigion

An itableswitch instruction is a variaHiength instruction. Immediately after the itableswitch opcode
follow a signed 1it value default, a signed 33t value low, a signed 3it value hidn, and then higlt,
low + 1 further signed 16it offsets The value low must be less than or equal to high. Theqlgiv + 1
signed 1ébit offsets are treated as alfased jump table. Each of the signedUiBvalues is constructed
from two unsigned byte as (bytel << 8) | byte2. Each of the signedBXalues is constructed from
four unsigned bytes as (bytel << 24) | (byte2 << 16) | (byte3 << 8) | byte4.

The index must be of type int and is popped from the stack. If index is less than low or igoatés
than high, then a target address is calculatgoaldding default to the address of the opcode of this
itableswitch instruction. Otherwise, the offset at position indgew of the jump table is extracted. The

Java Card Platform Virtual Machine Specification, vB. Page213

target address is calculated by addihgt offset to the address of the opcode of this itaddtch
instruction. Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as the one calculated
from default, must be the adtess of an opcode of an instruction within the methdat contains this
itableswitch instruction.

Notes
If a virtual machine does not support the int data type, the itableswitch instruction will not be available.

7.5.67 iushr
Logical shift right int

Format

iushr

Forms

iushr = 82 (0x52)

Stack

XX @lwbérdk, valuel.word2, value2.wordl, value2.worlz2 X = NB adzf G Pg2 NRm> NI & dz
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. Antint resul
is calculated by shifting the result right by s bisjiimns, with zero extension, where s is the value of the
low five bits of value2. The result is pushed onto the operand stack.

Notes

If valuel is positive and s is value2 & Ox1f, the result iséinee as that of valuel >> s; if valuel is

negative, theresult is equal to the value of the expression (valuel >> s) + (2 << ~s). The addition of the
(2 << ~s) term cancels out the propagated sign bit. The shift distance actually used is always irethe rang
0 to 31, inclusive, as if value2 were subjected totaibe logical AND with the mask value Ox1f.

If a virtual machine does not support the int data type, the iushr instruction will not be available.

7.5.68 ixor
Boolean XOR int

Format

ixor

Java Card Platform Virtual Machine Specification, vB. Page214

Forms

ixor = 88 (0x58)

Stack

X3 @t dzSwmodg 2 NRauE2 Word1f, \dGe@ wosdHNIKHEY NB & dzf § @62 NRmX NXB a dz
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. An int result
is calculated ¥ taking the bitwise exclusive OR of valuel and value2. Thé# iepushed onto the
operand stack.

Notes
If a virtual machine does not support the int data type, the ixor instruction will not be available.

7.5.69 jsr
Jump subroutine

Format

jsr

branchbytel
branchbyte2
Forms

jsr =113 (0x71)
Stack

X-p a&ddress

Description

The address of the opcode of the instruction immediately following this jsr instruction is pushed onto
the operand stack as a value of type returnAddress. The unsignedhiygtel and branchbyte2 are

used to construct a signed 48t offset, where the offset is (branchbytel << 8) | branchbyte2. Execution
proceeds at that offset from the address of this jsr instruction. The target address must be that of an
opcode of an instction within the method that contains this jsr instruction.

Notes

The jsr instruction is used with the ret instruction in the implementation of the finally clause of the Java
language. Note that jsr pushes the address onto the stack and ret getsat adbcal variable. This
asymmetry is intentional.

Java Card Platform Virtual Machine Specification, vB. Page215

7.5.70 new
Create new object

Format

new
indexbytel
indexbyte2

Forms

new = 143 (Ox8f)

Stack

X-H Xz 202SO0GNBT
Description

The unsigned indexbytel and indexbyte2 are used to constructdix into the constant pool of the
current package3.5 Framel where the value of the index is (indexbytel << 8) | indexbyte2. The item
at that index in the constant pool must be of type CONSTANT_Cla&8téfCONSTANT _Clasgraf
reference to a class or interface type. The reference is resolved and must reagulass type (it must

not result in an interface type). Memory for a new instance of thatsciasllocated from the heap, and
the instance variables of the new object are initialized to their default initial values. The objectref, a
reference to the istance, is pushed onto the operand stack.

Notes

The new instruction does not completely crea@@ew instance; instance creation is not completed until
an instance initialization method has been invoked on the uninitialized instance.

7.5.71 newarray
Create new array

Format

newarray
atype

Forms
newarray = 144 (0x90)
Stack

XT OB dzX yref NNJ

Java Card Platform Virtual Machine Specification, vB. Page216

Description

The count must be of type short. It is popped off the operand stack. The count represents the number of
elements in the array to be created.

The unsigned byte atype is a code that indicates the type of array to create. It must takétbee
following vdues:

Table7-4: Array Values

Array Type atype

T_BOOLEAN 10
T BYTE 11
T_SHORT 12
T_INT 13

A new array whose components are of type atype, of length count, is allocated from thefeap
reference arrayref to this new array object is pushed onto the operand stack. All of the elements of the
new array are initialized to the default initial valus fts type.

Runtime Exception
If count is less than zero, the newarray instruction thsaavNegativeArraySizeException.
Notes

If a virtual machine does not support the int data type, the value of atype may not be 13 (array type =
T_INT).

7.5.72 nop
Do nothing

Format

nop

Forms

nop = 0 (0x0)
Stack

No change

Description

Java Card Platform Virtual Machine Specification, vB. Page217

Do nothing.

7.5.73 pop
Pop top operand stack word

Format

pop

Forms

pop = 59 (0x3h)
Stack

X3 &#BNR
Description

The top word is popped from the operand stack. The pop instruction must not be used unless the word
contains a 16éit data type.

Notes
The popinstruction operates on an untyped word, ignoring the type of data it contains.

7.5.74 pop2
Pop top two operand stack words

Format

pop2

Forms

pop2 = 60 (0x3c)

Stack

XZ 62NRHE X6 2 NRM

Description

The top two words are popped from the operandcka

The pop2 instruction must not be used unless each of word1 and word?2 is a word that contaibg a 16
data type or both together are the two words of a singlet82datum.

Notes

Java Card Platform Virtual Machine Specification, vB. Page218

Except for restrictions preserving the integrity of3i2 data typesthe pop?2 instruction operates on an
untyped word, ignoring the type of data it contains.

7.5.75 putfield_<t>
Set field in object

Format

putfield_<t>
index

Forms

putfield_a = 135 (0x87)
putfield_b = 136 (0x88)
putfield_s = 137 (0x89)
putfield_i =138(0x8a)

Stack

X 202SOHNETFZ QI f dzS

(@]

OR
X 202SOGNBTI O thdzSXPg 2 NRmX @I f dzSd g 2 NRH
Description

The unsigned index is used as an index into the constant pool of the current pa8kageaneys The
constant pool item at the index must be of type CONSTANT _InstanceFi6l8raf (

CONSTANT _InstanceFieldref, CONSTANT_VirtualMetfoOEETANT_SuperMettref), a reference
to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of
the current class, and the field is not declared in the same package asrteatcclass, then the class of
objectref must be either the currertlass or a subclass of the current class. If the field is final, it must be
declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

a fidd must be of type reference

b field must be of type byte or type btean
s field must be of type short

i field must be of type int

=A =4 =4 =

value must be of a type that is assignment compatible with the field descriptor (t) type.

Java Card Platform Virtual Machine Specification, vB. Page219

The width of a field in a &da instance is determined by the field type specified in the insgoacihe

item is resolved, determining the field off$&tThe objectref, which must be of type reference, and the
value are popped from the operand stack. If the field is of type bytgme boolean, the value is
truncated to a byte. The field at the s#t from the start of the object referenced by objectref is set to
the value.

Runtime Exception
If objectref is null, the putfield_<t> instruction throws a NullPointerException.
Notes

In some circumstances, the putfield_<t> instruction may throw a SecurityException if the current
context(3.4 Contextyis not the owning contexB(4 Contextsof the object referenced by objectref.
The exact circumstances when the exception will be thrown are specified in Chapter Rufrttime
Environment Specificatiodava CardPlatform,v3.1, Clasic Edition

If a virtual machine does not support the int data type, the putfield_i instruction will not be available.

7.5.76 putfield_<t>_this
Set field in current object

Format

putfield_<t>_this
index

Forms

putfield_a_this = 181 (0xB5
putfield_b_this = 182 (0xb6)
putfield_s_this = 183 (0xb7)
putfield_i_this = 184 (0xb8)

Stack

X3 @Bt ¥zS

OR

XZ @I fdSPs2NB®MX Gt dzSPg2 NRH

Description

22The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this methanot required by this specification. A Java Cardalimachine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, vB. Page220

The currently executing method must be an instance method e invoked using the invekirtual,
invokeinterface or invokespecial instruction. The local variable at index O must contain a reference
202S0OGNBT (2 (GKS OdzNNByiGte SESOdziAy3d YSiK2RQa
into the constantpool of the current packag(3.5 Frameps The constant pool item at the index must be

of type CONSTANT _InstanceField8e8.2 CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref,
CONSTANT_SuperMettref), a reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a mendesupérclass of

the currentclass, and the field is not declared in the same package as the current class, then the class of
objectref must be either the current class or a subclass of the current class. If the field is final, it must be
declared in the cuent class.

The item mustesolve to a field with a type that matches t, as follows:

a field must be of type reference

b field must be of type byte or type boolean
s field must be of type short

i field must be of type int

=A =4 =4 =4

value must be of a type thas assignment compatibleith the field descriptor (t) type.

The width of a field in a class instance is determined by the field type specified in the instruction. The
item is resolved, determining the field off$&tThe value is popped from the operhstack. If the field is

of type byte or type boolean, the value is truncated to a byte. The field at the offset from the start of the
object referenced by objectref is set to the value.

Runtime Exception
If objectref is null, the putfield_<t>_this instruction throws a NullPointedpxion.
Notes

In some circumstances, the putfield_<t>_this instruction may throw a SecurityException if the current
context B.4 Contextyis not the owning contexB(4 Contextsof the object referenced by objectref.

The exact circumstances when the exception will be thrown are specified in Chapter GRufrttime
Environment SpecificatipJava CardPlatform, \8.1, Classic Edition

If a virtual machine does not support the olata type, the putfield_i_this instruction will not be
available.

23The offset may be computed by adding the field token value to the size of an instance of theimmediate
superclass. Howevethis method is not required by this specificatignJava Card virtual machine may define any
mapping from token value to offset intn instance.

Java Card Platform Virtual Machine Specification, vB. Page221

0 KA

7.5.77 putfield_<t> w
Set field in object (wide index)

Format

putfield<t> w
indexbytel
indexbyte2

Forms

putfield_a_w =177 (Oxb1l)
putfield b _w = 178 (0xb2)
putfield_ s w =179 (13)

putfield_i_w = 180 (0xb4)

Stack

Xz 2

(@]

2SOHNKTFZ Ot dzS

OR

X 202SOGNBTI O thdzSXPg 2 NRmX @I f dzSd g 2 NRH
Description

The unsigned indexbytel and indexbyt2 used to construct an index into the constant pool of the
current package3 4 Contexts where the value of the index (fndexbytel << 8) | indexbyte2. The
constant pml item at the index must be of type CONSTANT _InstanceFiebd8ed (

CONSTANT _InstanceFieldref, CONSTANT_VirtualMetfoOEETANT_SuperMettref), a reference
to a classnd a field token.

The class of objectref must not be an array. If the fieldasgoted, and it is a member of a superclass of

the current class, and the field is not declared in the same package as the current class, then the class of
objectref must beeither the current class or a subclass of the current class. If the field lisiffimast be
declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

a field must be of type reference

b field must be ofype byte or type boolean
s field must be of type short

i field must be of type int

=A =4 =4 =

value must be of a type that is assignment compatible with the field descriptor (t) type.

Java Card Platform Virtual Machine Specification, vB. Page222

The width of a field in a class instance is determined by the field typefiggkiti the instruction. Té

item is resolved, determining the field offé&tThe objectref, which must be of type reference, and the
value are popped from the operand stack. If the field is of type byte or type boolean, the value is
truncated to a byte. fie field at the offset frmn the start of the object referenced by objectref is set to
the value.

Runtime Exception
If objectref is null, the putfield_<t>_w instruction throws a NullPointerException.
Notes

In some circumstances, the putfield_<t> w instion may throw a SecurityException if the current
context B.4 Contextyis not the owning contexB(4 Contextsof the object referenced by objectref.
The exact circumstances when the exception lwalthrown are specified in Chapter 6 of tReintime
Environment Specificatiodava CardPlatform, \8.1, Classic Edition

7.5.78 putstatic_<t>
Set static field in class

Format

putstatic_<t>
indexbytel
indexbyte2

Forms

putstatic_a = 127 (0x7f)
putstatic_b =128 (0x80)
putstatic_s = 129 (0x81)
putstatic_i = 130 (0x82)

Stack
X3 @bt ¥zS

OR

24 The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is metjuired by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance. If a virtual machine does not support the int data type, the
putfield_i_w instruction will not be available.

Java Card Platform Virtual Machine Specification, vB. Page223

XS @I fdSos2NB®MX G dzSPg 2 NRH
Descriptbn

The unsigned indexbytel and indexbyte2 are used to construct an index intemiséant pool of the
current package3.5 Framel where the value of the index is (indgxbl << 8) | indexbyte2. The
constant pool item at the index must be of type CONSTANT _StaticFiéld.8f (

CONSTANT _StaticFieldref and CONSTANT _StaticMejhadeferene to a static field. If the field is
final, itmust be declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

a field must be of type reference

b field must be of type byte or type boolean
sfield must ke of type short

i field must be of type int

= =4 =4 =

value must be of a type that is assignment compatible with the field descriptor (t) type.

The width of a class field is determined by the field type specified in the instruction. The item is
resolved, determiimg the class field. The value is popped frdma dperand stack. If the field is of type
byte or type boolean, the value is truncated to a byte. The field is set to the value.

Notes

In some circumstances, the putstatic_a instruction may throw a SecxcigyiEon if the current context
(3.4 Contextsis not the owning contexB(4 Contextsofthe object being stored in the field. The exact
circumstances when the exception will be thrown are specified in Chapter 6 &uhegme Environment
SpecificationJava CardPlatform, \8.1, Classic Edition

If a virtual machine does not support tivg data type, the putstatic_i instruction will not be available.

7.5.79 ret
Return from subroutine

Format

ret
index

Forms
ret = 114 (0x72)
Stack

No change

Java Card Platform Virtual Machine Specification, vB. Page224

Description

The index is an unsigned byte that must be a valid index into thevadablesof the current frame 3.5
Frame$. The local variable at index must contain a value of type returnAddress. The contents of the
local variable are written into the Java C&d NIi dzl £ YI OKAy SQ&a LJO ubsBhere.a 6 SNE |

Notes

The ret instruction is used with the jsr instruction in the implementation of the finally keyword of the
Java language. Note that jsr pushes the address onto the stack and ret getsfittdocal variable. This
asymmetry is intentionia

The ret instruction should not be confused with the return instruction. A return instruction returns
control from a Java method to its invoker, without passing any value back to the invoker.

7.5.80 return
Return void from method

Format

return

Forms

return = 122 (0Ox7a)
Stack

X -> [empty]
Description

Any values on the operand stack of the current method are discarded. The virtual machine then
reinstates the frame of the invoker and returns canitto the invoker.

7.5.81 s2b
Convert short to byte

Format

s2b

Forms

s2b = 91 (0x5h)
Stack

X5 OBt XA NB&dzd

Java Card Platform Virtual Machine Specification, vB. Page225

Description

The value on top of the operand stack must be of type short. It is popped from the top of the operand
stack, truncated t@ byte result, then sigextended to a short result. The result is pushed onto the
operand stack.

Notes

The s2b instruction performe narrowing primitive conversion. It may lose information about the overall
magnitude of value. The result may also hate the same sign as value.

7.5.82 s2i
Convert short to int

Format

S2i

Forms

s2i = 92 (0x5c¢)

Stack

X3 @bt X¥zE NB ardgtiltiverd22 NR
Description

The value on top of the operand stack must be of type short. It is popped from the opedeatcand
signextended to an int result. The result is pushed onto the operand stack.

Notes

The s2i instruction performs a wideningrpitive conversion. Because all values of type short are exactly
representable by type int, the conversion is exact.

If a virtual machine does not support the int data type, the s2i instruction will not be available.

7.5.83 sadd
Add short

Format
sadd
Forms

sadd = 65 (0x41)

Java Card Platform Virtual Machine Specification, vB. Page226

Stack
X3 @t dzShw IX 3 I NBdaSdat
Description

Both valuel and value2 must be of type ghd he values are popped from the operand stack. The short
result is valuel + value2. The result is pushed onto the operand stack.

If a sadd instruction overflows, then the result is the fowder bits of the tre mathematical result in a
sufficiently wR S (rebdplzénent format. If overflow occurs, then the sign of the result may not be
the same as the sign of the mathematical sum of the two values.

7.5.84 saload
Load short from array

Format

saload

Forms

sdoad = 38 (0x26)

Stack

XZ F NNIRRNBFS GlytRAS
Description

The arrayref must be of type reference and must refer to an amtagse components are of type short.
The index must be of type short. Both arrayref and index are popped from the opstacid The short
value in the componentfahe arrayat index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions
If arrayref is null, saload throws a NullPointerException.

Otherwise, if index is not within the bounds of theay referenced by arrayref, the saloadsinuction
throws an ArraylndexOutOfBoundsException.

Otherwise if the arrayref references a writaly array viewthe saload instruction throws a
SecurityException

Notes

In some circumstances, the saload instioie may throw a SecurityException if tbarrent context 8.4
Context$ is not the owning contexB(4 Contextysof the array refegnced by arrayref. The exact

Java Card Platform Virtual Machine Specification, vB. Page227

circumstances when the exception will be thno are specified in Chapter 6 of tRuntime Environment
SpecificationJava CardPlatform, \8.1, Classic Edition

7.5.85 sand
Boolean AND short

Format

sand

Forms

sand = 83 (B3)

Stack

X3 @t dzShw IX 30 I NBdaSdaft
Description

Both valuel and value2 are popped from the operand stack. A short result is calculated by taking the
bitwise AND (conjunction) of valuel and value2. The result is pushed onto the operand stack.

7.5.86 sastore
Store into short array

Format

sastore

Forms

sastore = 57 (0x39)

Stack

XZ NN &@NBHZ XAYRSES @It dzS
Description

The arrayref must be of type reference and must refer to an amtagse components are of type short.
The index and value nsuboth be of type short. The arrayref, index and valtee@pped from the
operand stack. The short value is stored as the component of the iadayed by index.

If the arrayreferenced by arrayreg integritysensitive, its integrity is checked beéathe value is
stored. The integrity contralement is updated when the value is storddhe whole operation (value
storage and the integrity control element update) is performed atomically.

Runtime Exception

Java Card Platform Virtual Machine Specification, vB. Page228

If arrayref is null, sastore throws a NullR@rException.

Otherwise, if index is not Wiin the bounds of the arrayeferenced by arrayref, the sastore instruction
throws an ArraylndexOutOfBoundsException.

Otherwise if the arrayeferenced by arrayref is integritsensitive andn inconsistencysidetected
during the array integrity checkhje sastore instruction throws a SecurityException

Otherwise if the arrayref references a readly array viewthe sastore instruction throws a
SecurityExceptiaon

Notes

In some circumstances, the sastonstruction may throw &ecurityException if the current conte@ 4
Context$ is not the owning contexB(4 Contextysof the array referenced by arrayref. The exact
circumstances when the exception will be thwo are specified in Chapter 6 of tRuntime Environment
SpecificationJava CardPlatform, \8.1, Classic Edition

7.5.87 sconst_<s>
Push short constant

Format
sconst_<s>
Forms

sconst_ml = 2 (0x2)
sconst_0 = 3 (0x3)
sconst_1 =4 (0x4)
sconst_2 =5 (0x5)
sconst_3 = 6 (0x6)
sconst_4=7 (0x7)
sconst_5 = 8 (0x8)

Stack

X-hp XI Fah

Description

Push the short constant <s1(0,1, 2, 3, 4, or 5) onto the operand stack.

7.5.88 sdiv
Divide short

Format

Java Card Platform Virtual Machine Specification, vB. Page229

sdiv

Forms

sdiv = 71 (0x47)

Stack

X3 @t dzShw IX 30 I NBdaSdat
Description

Both valuel and value2 must be of type short. The values are popped from the operand staskoith
result is the value of the Java expression valuel / value2. The result is pugbeti@operand stack.

A short division rounds towards 0; that is, the quotient produced for short values in n/d is a short value
g whose magnitude is as large asgpible while satisfying | d - g | <=| n |. Moreover, q is a positive
when | n|>=|d | and n and d have the same sign, but q is negative when |n|>=|d|and nandd
have opposite signs.

There is one special case that does not satisfy this rutee iflividend is the negative integer of the
largest possible magnitude for the short tyasd the divisor ig1, then overflow occurs, and the result
is equal to the dividend. Despite the overflow, no exception is thrown in this case.

Runtime Exception
If the value of the divisor in a short division is 0, sdiv throws an ArithmeticException.

7.5.89 sinc
Increment local short variable by constant

Format

sinc
index
const

Forms

sinc = 89 (0x59)
Stack

No change

Description

Java Card Platform Virtual Machine Specification, vB. Page230

