JavaTest Harness

Architect’s Guide,

JavaTest Harness 4.6 for the Java Platform
E20663-04

August 2014

This Architect’s Guide is intended for those who design
JavaTest harness test suites. You should be familiar with the
JavaTest harness.

ORACLE

JavaTest Architect's Guide, JavaTest Harness 4.6 for the Java Platform
E20663-04
Copyright © 2002, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PlOIACE ...t e et e s e e s et s e et sese s e s s s s ses s e ses s sas s s seseseses s s sesseesenaens Xi

1 Introduction

Installation and Runtime Security Guidelines ..., 1-1
EXQIMIPLES ... 1-2

2 JavaTest Tutorial

O VETVICW ...ttt ettt et e et e et e et e e be e beeesbeesseessseassa e steessaaassesssaessseasseeasseasseesseeassaenseessseasssenssennses 2-1
Running the Tutorial.............c.ccocoooiiiiii e 2-2
Start the JavaTest HATNESSc.coiiuiriiiiieieietee ettt a ettt et b e sae ettt be b eaens 2-2
Run the Quick Start WIzZard...........c.ooovioiieiiieecieceeeeeecteeeete ettt ettt re e s eaaas 2-3
Configure Test INfOrmationcccoceiiiiiiiiiiiccceceee e 2-4
RUDN TOSTES .eeneieeiiieciitee ettt ettt ettt ettt e st e st e s te e s bt e s sae e beessbeesseessseessaaassassseasssassseesssessseenseens 2-5
Browse the RESULEScocviiuiiiiciieiece ettt ettt ettt et et b et eas e beesbeeaeerseseennas 2-7
The FOLAET PANE.......ccuicviieieeieiieiiciecitettete ettt ettt e e st besbe b e sessessessesseseessesassansensens 2-7

Browse the RESULES........ccuiiiiiicieiccee ettt ettt e veennas 2-8

THE TESE PANE.......ooviceieiieieteceeeteeee ettt ettt e e e e te et e ebeentesbeenseebaenbeebsenseeteensenseenns 2-8

Browse the RESUILS.........cceviiriiieieieiieeceetteeeies ettt se st ste st be b e s essessessesaesaesens 2-9

Exclude the Failed TeSt.......cccuocuiiiiiiieiiiiceeseet ettt ettt st s e aeesaesreesaennnas 2-11
Generate @ REPOTt.......cciiiiiiiiiiic s 2-12
SUIMIMALY ..ottt s st ne 2-12

3 Overview

Test Suite COMPONENLS..........c.cooviiiiiiiiiiii s 3-1
Remote EXeCULION.........ccocooiiiiiiiiii s 3-3

4 Creating a Test Suite

Create a Test SUite ..o 4-1
Create a Test Suite DIireCtOry ... 4-2
Create the testsuite.jtt File ... 4-2
COPY JAVALEESET . JAT ittt 4-3
Set Up the classes DITeCOIY ... 4-3
Use a Simple Test Template.........ccccceiiiiiiiiiiiiiiiiiiccc s 4-3
Create and Compile a Simple Test Examplecccoouoiiiiiiiiiiic 4-4

RUIN @ TOSE SUILE ..ttt e ettt e e e e s eaae e e esbeeessaeeesaaeesstaeesssenessnseessnseeesnns 4-5

Odds aNd ENASoouiiiiiiiieeee ettt ettt b et e be b e bt e s be b e se et et et et e bt ebeebenaens 4-6
Top-Level Test Stite DIreCtOry.....c.cccoouiiiiiriririiirircrrrerrr e 4-6
The Test SUIte JAR FILE ..c.coiiuiiiiiiieiieeee ettt ettt sttt b e 4-7
C1aSS PathiS. ..ottt bttt ettt ettt ettt et et e he e b e ebesee st et et et eneebeebeeaea 4-7

JavaTEst Class Path......c.ccucieiriiiiieeieieietee ettt ettt esa e se et ssesb e b s s essessessessessasensanss 4-8
Agent Class Path ... 4-8
TSt Class Pathi......c.couiiuiiieeee ettt sttt ettt ae b eaeeaea 4-8

5 Writing Tests

The Test Exectution Model ... 5-1
The Test INterface ... 5-2
CLass Pathis........cciiiiiiiii e 5-3
TeSt SEAUS ... 5-3
Test DesScription ENEIIEsccoooiiiiiiiiiiiceccee ettt 5-4
K@YWOIAS ..o 5-5
Multiple Tests in a Single Test File............ccccccooiiiiiiiiiis 5-5
SUbLyPINEG MULHTESE ... 5-6
Organizing Tests Within Your Test Suite............cccocoiiiiiiiiii 5-7
SOUTCE FILES......oiiiiiiii e 5-7
CLASS FILES ...t 5-7
EXTOT IMLESSAEZESoveeivitceetctcn ettt 5-8

6 Creating a Configuration Interview

Designing Your Configuration ... 6-1
What is @ Configuration? ... 6-1
Test Script INfOrmationcccceiiiiiiiiiiiic e 6-1

Test Description ENtries ... 6-2

Which Tests t0 RUDNc.coiiiiiiiiiiic s 6-2
Designing Your INteIVIEWccccocoiiiiiiiiiiiiiiiiic e 6-2
ComMmMAN SEHINES ...oovviiiiiei e 6-3
EXQMIPLE T .o 6-3
EXQMIPIE 2 ..o 6-5

Test Environment Variables ... 6-5
WIiting Your INteIVIeW ... 6-5
Demo TCK INTEIVIEWcuoiiiiiiiiiiiiiic e 6-6
DemO INTEIVIEWeouiiiiiiiietct ettt 6-6
Start the Demo INtErVIEW ..ot 6-6
INETVIEW CLASSES.uvviiiiiiicicccte et 6-6
The Current Interview Path.........cccccooiiiiii 6-7
Determining the Next QUESHONcccccciiiiiiiiiiiiiiiic e 6-7
EXTOr CheCKINE.viiiiiic et 6-8
Exporting the Test ENVIronment............coooiiiiiiiiiiiic 6-8
QUESHION TYPES ..ottt e 6-8
Designing Your QUeSHIONS.........ccccciiviiiiiiiiiiiiiiii s 6-10
Landing Point QUESIONS ..ottt 6-11
SUD-TNEETVIEWS.....c.eiiiiiiiitcce ettt ettt 6-11

) Lo) v @ o = £ TR 6-12

Putting it All Together........cocooiiiiii s 6-12
Providing the Prolog ... 6-15
Providing the Environment GIOUPccccceuiiieieiiiiiiciiiccec s 6-15
Providing the Resource File for the Interview ..., 6-16
Providing the More Info Help for the INterviewcccccovvvvniinnnnnnrcnreeccne 6-16

Creating Question Text and More INfo ... 6-16

WIHNG STYLE . s 6-17

Creating Question Text and Keys..........cccoiiiiiiiccceeeeeeeeeeee s 6-18

Creating More INfO.......ouovii 6-18
Set Up the More INfo SyStem...........c.ooiiuiiiiiii 6-19
Create HTML Topics for All Interview QUeStions.........c.cccoecucueuecicecceceieeceieneenenens 6-19
Customizing Standard Question More INfo..........ccocoeiiiiii 6-20

Creating the JAR File ... 6-21

7 Compiling Test Suites
System Properties............cooiiiiiiiiii s 7-1

8 The TestSuite Object

The testsuite.jtt File...........cccooooiiiiiiiiiiiiiiiii s 8-1
Overriding Default Methodsccooiiiiiiies 8-4

9 Test Finder

Test FINder SUDLYPES ..o 9-1
Tag Test FINAT ... 9-1
HTML Test FINAET ... 9-2
Binary Test FINAErc.coiiiiiee e 9-4

BinaryTestWIIter......coiiiiiiiiiiii 9-4
BinaryTestFINderc.c.oviuiii s 9-5
EXQIMIPLES ..o 9-5

10 Test Scripts

Design DECISIONS. ...t 10-1
SIMPle TeSt SCIIPLS ...ouoviviviiiiiiiiiiiiicccc s 10-1
More Flexible Test SCIIPLSccciuiuiiiiiiiiiiiiiiiiicieieiict s 10-2
EXQMIPIE T oo 10-3
EXQMPLE 2 ..ot s 10-3
Writing Custom Commands..........cccoeviiiiiiniiiiiiiiii s 10-3

TeSt RESULL.......coovoiii s 10-4

11 Service Management

DIESCIIPLION ...ttt ettt ettt e et st e et aenen 11-1
Services-Related WOTK FIOWcccccoiiiiiiiiiiiiii s 11-2
IMPlementation ... 11-3

Implementations of ServiceReader Interface ... 11-4

PropertyServiceReader File FOrmatccccouoirieiiiiiiiiic 11-4

XMLServiceReader File FOrmatcccccooeiiiiniiiiiiiininiiiiiiiicincees 11-5
Implementation of Service INterface ... 11-6
S€IVICE PIOPEIIES....ovviviiiitit s 11-7

Service Management Architecture............ccoooiiiiiiiiiiiic e 11-8
Mechanism to Instantiate Service, Connector, and ServiceExecutor Interfaces.... 11-10
Separate Services Start UP ... 11-11

12 Running JUnit Tests

The Retrofit PrOCESScoiiiiiiiiiiiiiici s 12-1
Prerequisites for Converting Testsccoouoiiuiiiiiiiiii e 12-1
Procedure for Converting TeStSccccceiuriiiiiiiiriiiiicrreeeee s 12-2
Technical Detailsccooiiiiiiiii s 12-3
SUPPOTE CLASSES ...ttt 12-3
JUNIHSUPErTestFINder......c.c.ciuiiiiiiiiiccce e 12-4
JUNItANNOtatioNTEeSTFINAETcouiiiiiiiiiiiieeee e 12-5
JUNIBATEMUIETESE -ttt ettt sttt ettt be e sbe e 12-5
JUNIEANNOtAtiONIMUIEITESEoveeeieieeieeeeeeee ettt s a e snees 12-5
Implementation NOES..........cccuiiiiiiiiiiiiii s 12-5
Areas for IMProvementccccovvviviiiiiiiiiiiiii s 12-6
REFETEIICES. ...ttt 12-6

13 Customization

Customization AP ... 13-1
Internationalization ... 13-2
Customizing the Splash Screen ... 13-3
Example of splash.properties File ... 13-3
Notes About the Implementation ... 13-3
CUuStomMIZING MENUS.........cooiiiiiiiiiie et 13-3
Adding Menu Items to Test Manager MenuUS..........cccccvvvereririririnnnennrrsseeseee s 13-4
Adding Menu Items to the Tree POPup MenuU.........ccooveiiiiiiiiiciiiiiiiciiiicicccceeees 13-4
Customizing TOOIDATS............cocoiiiiiiiiii e 13-5

A Standard Commands

Active AgentCoOmMMANdccooviiiiiiiiiiiiiii s A-1
ExecStdTestSameJVIMICIMA..........cccooiieiieieieecie sttt ae e sse st sesneesaessensesnsensenns A-3
ExecStdTestOtherJVIMCIId ..ottt sttt sae e s enenes A-4
JavaCompileCommandccooiiiiiiiiiiiiniii e A-5
Passive AgentCommand ... A-6
ProcessCommand ... A-8
Serial AgentCommandcccoiiiiiiiiiiiii s A-8

B Formats and Specifications

Test URL SPecificationccccooiiiiiiiiiiiiiiiiiiiiiii s B-1
B S 211 o VTR B-2
| 2ol 0T P30 IS TST o 551 L0 20 s 1 L SRS B-2

vi

Test URL and TeSt CaSES......ccveeuieiiiriieiicieeie e eeeieeteseetesteetesseesesseeaesaeeaesseessessesssessesssessenns B-3
BUGIDS ..o B-4
K@YWOIAS ... B-4
SYMOPSIS ..ttt s B-4
Comments and Header INformationcoccceeerierierieiecieieeeiee et seeeseeseese e ssenns B-4

C What Technical Writers Should Know About Configuration Interviews

QUESTION TEXE ..c.voveieviciicieceectece ettt ettt ettt et e e te et e be e b e e te e s eeteeaseeseeaseessensesasesseesseseeasenseessenteens C-1
MOTE INFO ..o s C-2
FOrmatting StYlesc.ouoviuiiiice s C-3
Usage and CONVENTIONSccccciiuiuiiiiiiiiceeieeeietee et eeeaes C-3
Glossary
Index

Vii

List of Figures

viii

JavaTest Harness and Tests Running on Same System............c.cooooieiiiiiiieiiiiccncenen, 2-2
The JavaTest Harness with Quick Start Wizardccoeveieieiiniiiiieeeeeeeeeeceee 2-3
Expanded Test TIee ... e 2-6
The Folder Pane...........ccccoviiiiiiiiiiiiiiiiii s 2-7
The Test Pane.......ccccociiiiiiiiiiiiiiii s 2-9
TeSt MESSAZESovveiirctcetct s 2-10
Logged Error MeSSages.........couirueieiiuiucieieiiicie ittt 2-11
Test Suite COMPONENLScocvoviiiiiiiii s 3-2
Interview Question Group First/Next Question Methods............cccccccevvininiinnnnn 6-14
Skipping the Keywords Standard QuUestioncoooeoiiiiiiiiiic 6-15
The JavaTest Configuration Editor: Question and More Info Panes.............ccccceueuennenen 6-16
Question Without More Info Helpcccooiii 6-17
Question With More Info Help ..o 6-17
Service Management Architecture ..o 11-9
Separate Service Start-Up ... 11-11
The JavaTest Configuration Editor: Question and More Info Panes.............ccccoevvivinnnnnne C-2

List of Tables

3-1
4-1
5-1
5-2
61
62
6-3
6-4
7-1
7-2
81
9-1
9-2
10-1
11-1
121
12-2
B-1

Summary of JavaTest Harness Operation...........cccocoeviiiiiiiiiiiiniiiccceeeeeeeenens 3-3
Top-Level Test Suite Files and Directories..........occcoieueieiiiieiiiiicccce e, 4-6
EXit Status ValUes.........cociiiiiiiiiiii s 5-3
Default Test Description ENtries..........cccviiiiiiiiiiiiiiiiicee s 5-5
Commonly Used Test Commandscccooeeueieiiiiiiiiininiiiiiiiis 6-3
Test Environment Variables ... 6-5
QUESHION TYPES...oviiitiiiiiiict s 6-9
Interview QUESHION GIOUPS.......ccovviiiiiiiiiiiiiiiiicci e 6-13
System Properties Used in Compilation...........cccceveeiiiniiiciiiiiiiiniiicccccees 7-1
Compilation Command COmMPONENtS...........cccueviviviiiiiiiiiiiiiiiciie s 7-2
testsuite.jtt ProOperties. ... 8-1
Test Description Table..........coiiiiiiiiiic s 9-3
BinaryTestWriter Command COmpPONnentsc.coouvimmiiiiiiiiiiccccceceeneeeines 9-4
Test Result Object EIEMEeNtscccccoeviiiiiiiiiiiiiiiii e 10-4
Service Manager Features............oooovoviiiiiiiiicii 11-2
JUnitSuperTestFinder Test Description Values..........cccococoviviiiiiiininns 12-5
JUnitAnnotationTestFinder Test Description Values..........ccccccovviiiiiiiiiiiiiiiinnns 12-5
Exclude List Field DesCriptions ...ttt B-3

Preface

This manual is intended for test suite architects who design JavaTest harness test
suites. It assumes that you are familiar with the Java programming language and with
running Java programs on at least one platform implementation.

Before You Read This Book

It is highly recommended that you read the JavaTest online help, the Test Suite
Developer’s Guide, and TCK Project Planning and Development Guide, which are available
as part of the Java Compatibility Test Tools release. Note that for convenience, the
JavaTest online help is also available in PDF format.

This guide is divided into the following chapters and appendices:

Chapter 1 Introduction
Part I The Basics

Chapter 2 A tutorial that introduces the JavaTest GUI.

Chapter 3 Describes the test suite components for which architects are
responsible.

Chapter 4 Leads you through the process of creating a small working test
suite.

Chapter 5 Describes how to write tests that work well with .

Chapter 6 Describes how to create configuration interviews for test suites.

Part II Advanced Topics

Chapter 7 Describes how to use the to compile test suites.

Chapter 8 Describes how test finders work and how to create a customized
version for your test suite.

Chapter 9 Describes how test scripts work and how to create a customized
version for your test suite.

Chapter 10 Describes how the test suite object works and how to create a
customized version for your test suite.

Chapter 11 Describes the ServiceManager component provided by and how
test suite architects can use it to manage services.

Chapter 12 Describes how to retrofit existing JUnit 3.x or 4.x test suites to
enable them to run with the harness.

Chapter 13 Describes customizations that test suite architects can make in the

harness.

xi

Xii

Appendix A Describes the standard commands available from the JavaTest

command library.

Appendix B Describes the file formats and specifications used by .

Appendix C Tips for writing interviews.

Glossary Defines terms used in this book and other TCK documentation.

Typographic Conventions

Typeface Meaning

Examples

AaBbCcl123 The names of commands, files,
and directories; on-screen

computer output

Edit your .login file.
Use 1s -a tolist all files.

AaBbCcl23 What you type, when contrasted % su
with on-screen computer output Password:
AaBbCc123 Book titles, new words or terms, = Read Chapter 6 in the User’s Guide.

words to be emphasized

Command-line variable; replace
with a real name or value

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompts

Shell Prompt

Bourne shell and Korn shell %

MSDOS C:\>

Related Documentation

Technology Title

JavaTest harness

JavaTest online help (available both online and in PDF format)

TCK development process

TCK Project Planning and Development Guide

Java Compatibility Test Tools Test Suite Developer’s Guide

Accessing Java Platform Documentation Online
The Java Developer Connectionsm web site enables you to access Java platform

technical documentation on the Web:

http://download.oracle.com/javame/testing.html

Oracle Welcomes Your Comments

We are interested in improving our documentation and welcome your comments and

suggestions. You can email your comments to us at:

appserverdocs_us@oracle.com

http://download.oracle.com/javame/testing.html

1

Introduction

A Technology Compatibility Kit (TCK) is a test suite and a set of tools used to certify
that an implementation of a Java technology conforms both to the applicable Java
platform specifications and to the corresponding reference implementations — the end
result is a Java technology that is certified as compatible. The architect designs test
suites to exercise assertions described in the technology specifications. TCK test suites
may use the JavaTest harness for test execution and test suite management tools.

As the test suite architect, it is your job to design the framework for the test suite, and
if necessary, create custom plug-in components required to implement the design.

Each TCK that you design should be composed of the following;:

Test suite: A collection of tests that fit within a common framework. The framework is
typically designed by the architect — the individual tests are designed to work within
the framework and are usually written by a team of test suite developers.

JavaTest harness: The test harness used to run the tests in the test suite. You (the
architect) may have to provide plug-in components that know how to identify and
execute the tests.

Configuration interview: To run the tests in a test suite, the JavaTest harness requires
site-specific information about the computing environment, such as the location of the
Java launcher, and the Java technology being tested. The JavaTest harness provides the
means to collect this information based on an interview that you provide.

Documentation: A well documented TCK generally includes the following
information, provided by the architect:

n Test Suite User's Guide: Contains instructions about how to start and run the tests
and rules for certification. The Java Compatibility Test Tools (JCTT) release
contains a TCK User’s Guide Template that can serve as the basis for this document.

= Configuration editor "More Info" text: Provides explanation and examples for
each question in the configuration interview

Architects design test suites and the characteristics of the various tests, but are not
typically concerned with the specific details of individual tests. That is the task of test
suite developers (see the Test Suite Developer’s Guide). Architects design the framework
in which the individual tests fit.

This document describes the tasks associated with the TCK architect.

1.1 Installation and Runtime Security Guidelines

It is extremely important to note that the JavaTest installation and runtime system is
fundamentally a developer system that is not specifically designed to guard against

Introduction 1-1

Examples

any malicious attacks from outside intruders. If sample code or tests you author make
a network call, you can expose the JavaTest operating environment during execution.
For this reason, it is critically important to observe the precautions outlined in the
following security guidelines when installing and running JavaTest.

The harness itself is self-contained in javatest.jar. The only external dependency is
jh.jar, which should be placed either on the classpath or in the same directory as
javatest.jar. If desired, the following optional parts of the binary distribution can
be deleted:

s The directories 1inux, solaris, and win32 each contain a subdirectory named bin,
which contains a script named javatest. All of these directories and files are
provided for convenience and can be deleted without harm. (If the javatest
launch script is deleted you can start the harness by pointing a JVM at the
javatest.jar file.)

= Examples in the examples/ directory.
= Documentation in the doc/ directory.
s lib/jt-junit.jar which is an optional binary component.

To maintain optimum network security, JavaTest can be installed and run in a "closed"
network operating environment, meaning JavaTest is not connected directly to the
Internet, or to a company Intranet environment that could introduce unwanted
exposure to malicious intrusion. This is the ideal secure operating environment when
it is possible.

JavaTest does not require an Intranet connection that supports network connections to
systems outside the JavaTest architecture to intra-company resources, but, for example,
some Java ME applications in a test suite might use an HTTP connection. If JavaTest or
applications launched from JavaTest are open to any network access you must observe
the following precautions to protect valuable resources from malicious intrusion:

= Install JavaTest behind a secure firewall that strictly limits unauthorized network
access to the JavaTest file system and services. Limit access privileges to those that
are required for JavaTest usage while allowing all the I-directional local network
communications that are necessary for JavaTest functionality. The firewall
configuration must support these requirements to run JavaTest while also
addressing them from a security standpoint.

= Follow the principle of "least privilege" by assigning the minimum set of system
access permissions required for installation and execution of the JavaTest.

= Do not store any data sensitive information on the same file system that is hosting
JavaTest.

= To maintain the maximum level of security, make sure the operating system
patches are up-to-date on the JavaTest host machine.

1.2 Examples

The examples directory contains example test suites that are used throughout this
book in tutorials to illustrate how tests and test suites are constructed. This manual
uses these examples to supplement feature discussions.

The examples directory contains the following subdirectories and files:

1-2 JavaTest Architect's Guide

Examples

.\examples\
javatest\
demoapi\
api\
src
demoapi.jar
interviewDemo\
demotck)\
src
simpleHTML\
demotck\
src
simpleTags\
demotck)\
src
sampleFiles\

demoapi sample files. README.html explains the directory contents.
API classes tested by the Demo TCK test suite

demoapi source files

API classes tested by the Demo TCK test suite

A self-documenting configuration interview demo

The test suite used to run the interview demo

The interview demo source files

Demo test suite that uses HTML-based test
Demo TCK configuration interview source files

Demo test suite that uses HTML-based test
Demo TCK configuration interview source files
Miscellaneous sample source files in this manual.

Note: Unless otherwise indicated, all examples in this book use
Microsoft Windows style command prompts and file separators.

Introduction 1-3

Examples

1-4 JavaTest Architect's Guide

Part |

The Basics

The chapters in this part of the JavaTest Architect's Guide introduce the JavaTest GUI,
basic concepts, and provide enough information to create a basic test suite.

2

JavaTest Tutorial

This tutorial introduces you to the JavaTest version GUI and some basic underlying
concepts. The tutorial instructions have you run a very simple test suite called Demo
TCK that is included in the examples directory. Demo TCK contains 17 tests that test
the functionality of some very simple demo APIs.

2.1 Overview

The tutorial should be run using version 6.0 or later of the Java Platform, Standard
Edition (Java SE) on the Solaris Operating System (Solaris OS) , Linux, or Microsoft
Windows (WIN32) operating systems.

Note: Unless otherwise indicated, all examples in this book use
Microsoft Windows style command prompts and file separators.

To keep things simple, these instructions show you how to run both the JavaTest
harness and the tests on the same system in different! Java virtual machines (JVM
processes?). Figure 2-1 diagram illustrates this point.

! Ttis also possible to run the JavaTest harness and the tests on separate systems using the
JavaTest Agent.

2 The terms "Java virtual machine" and "JVM" are sometimes used to mean "a virtual machine
for the Java platform".

JavaTest Tutorial 2-1

Running the Tutorial

Figure 2-1 JavaTest Harness and Tests Running on Same System

The JavaTest harness and the tests run on separate
JVMs and each test runs in a fresh JVM.

Computer

JVM Process

) JavaTest Harness: DemaTCK 1.0 Test Suite (Tag Tests): D:\JTwork

File Configure RunTests Report View Tools Windows Help
View Filter: Status of [Last Test Run L2 r i [?
¥ £r TestSuite Root [Test Suite: DemoTCK 1.0 Test Suite (Tag Tests)

v A Bighum Passed P Failed B Error dot Run Filtered Out
AddTestjava Summary entatic 1
CompareTestjava
P EqualsTestjava " o
B LongConskTestjavd Selected Folder: Entire "“DemoTCK 1.0 Test Suite (Tag Tests)" test suite.

“f‘g lav Selected View Filter. Last Test Run
[stringConstTestjay Shows the results for tests executed in the last or current test run.
SubtraciTest
. mitsu - W Passed 16
Fail 1
¥ B DoublyLinkedList : Efr':'d i
%] AppendTestjava I NotR 0
B InsertTestjara W Filtered Out 0
B
» [LinkedList E
» [SortedList
< addl
- "y || There are some failed tests in this folder.
‘Work Directory. JTwork Configurafion: mydemotck jti
Finished test run. |Elapsed Time jm:com Q
—L DemoTCK 1.0 Test Suite (Tag Tests) J

JVM Process

T

Test Code

2.2 Running the Tutorial

The tutorial tasks are as follows

1. Start the JavaTest Harness
2. Run the Quick Start Wizard
3. Configure Test Information
4. Run Tests

5. Browse the Results

6. Exclude the Failed Test

7. Generate a Report

2.2.1 Start the JavaTest Harness
1. Verify that the Java SE platform (version 1.6 or later) is in your path.
At a command prompt, enter:

C:\> java -version

2-2 JavaTest Architect's Guide

Running the Tutorial

2. Make jt_install\examples\javatest\simpleTags\demotck the current directory.

The directory jt_install is the directory into which you installed the JavaTest
harness software.

3. Start the JavaTest harness.
At a command prompt enter:

C:\> java -jar lib\javatest.jar -newDesktop

Note: The -newDesktop option is used here to ensure that the JavaTest
harness starts up exactly as described in these instructions — under normal
circumstances you should not use this option because you will lose
information that the harness saved about your previous session. For
information about JavaTest options, see the JavaTest online help.

The JavaTest harness should start and display the Quick Start wizard window:

Figure 2-2 The JavaTest Harness with Quick Start Wizard

{7) JavaTest Harness Quick Start

Configuration

The JavaTest Harness harness uses a
“configuration” to determine which tests to run

—t and how to run them. You can either create a
o) -"r_' \ new configuration from scratch, or you can use
‘O a configuration template if you have one to use
W) with your test suite.

]AVAT E STM Which do you wantto do?

@ Create a new configuration

u Use a configuration template
Fie Browse..

[Back J [Mead J Finish Cancel

2.2.2 Run the Quick Start Wizard

The Quick Start wizard leads you through the basic steps required to start running the
test suite.

1. Panel 1: Welcome to the JavaTest Harness
Choose "Start a new test run", and click Next
2. DPanel 2: Test Suite
Click the Next button (accept the default).
3. Panel 3: Configuration

Choose "Create a new configuration”, and click Next

JavaTest Tutorial 2-3

Running the Tutorial

4. Panel 4: Work Directory

The JavaTest harness uses the work directory to store information and to write test
results. Click the Browse button to activate a file chooser. Use the file chooser to
create a work directory — be sure to create the work directory in a convenient
location outside of the test suite directory (demotck). Click Next.

5. Panel 5: Almost Done ...

Click the Finish button to complete the Quick Start process. For these options, the
configuration editor window is started automatically.

2.2.3 Configure Test Information

Because the "Start the configuration editor" checkbox was checked in the last panel of
the Quick Start wizard, the configuration editor starts automatically.

You use the configuration editor to configure the information required to run the test
suite. As shown below, the configuration editor consists of three panes and a menu
bar:

) Configuration Editor

File Bookmarks Search View Help
Welcome! 4|/ | The JavaTest L;
Configuration Mame Welcome! ™/ | Harness
More... Configuration Editor
; : interviews you about
Welcome to the Configuration Editor for the parameters
DemoTCK 1.0 Test Suite (Tag Tests)! used to run your Vi
tests. Test
The following questions ask you about how parameters are
to run the test suite. You can also enter and | values that
edit some of this information using the determine which
Standard Values view ofthis editor. tests in the test
; 5 : Suite are run and
The panel to the right contains information how they are run.
that should help you answer the interview ¥ The interview
- _ contains between
4 Back [Next & J [Last ¥ J | Done | 10 and 14
questions. F

The left pane lists the titles of the questions you have answered, are currently

answering, or that the editor deduces must be answered. The current question is
highlighted.

The center pane displays the interview questions. You answer the questions by using
controls such as text boxes, radio buttons, or combo boxes located below each
question. Whenever possible, the editor deduces answers from your system
configuration and includes them in text boxes, combo boxes, and radio buttons. You
can accept these answers or provide other answers.

The right pane displays important information about each question, such as:
= Background information
= Examples of answers

» Additional information about choosing an answer

2-4 JavaTest Architect's Guide

Running the Tutorial

Answer the questions in the configuration editor.

The following table presents the titles, answers, and information about each of the
thirteen questions in the Demo TCK interview.

Question Title Answer Description

Welcome! N/A Briefly describes the purpose and function of
the Demo TCK Configuration Editor.

Configuration Name Demo_TCK Names the interview file.

Description tutorial Describes the configuration.

How to Run Tests

On this computer

Runs both the JavaTest harness and the tests
on the same computer.

Java Virtual Machine

The absolute path to the java command
on a WIN32 system. For example:

jdk_inst_dir\bin\java.exe
or

jre_inst_dir\jre\java.exe

Click the Browse button to activate a file
chooser, or type the path directly in the text
box.

Test Verboseness Medium Causes all executing tests to emit standard
information messages.

Parameters... N/A Introduces the section of questions that
collect information about which tests to run
and how to run them.

Specify Tests to Run? No Runs all of the tests.

Specify an Exclude List? No Specifies that an exclude list is not used for
this test run.

Specify Status? No Specifies that prior run status is not used to
filter the test run. Feel free to try it on
subsequent runs.

Concurrency 1 Specifies the default concurrency setting (1).

Time Factor 1 Specifies the default standard time out value
for each test (1).

Congratulations! N/A The configuration editor has collected all of

the information it needs to run the tests.

Click the Done button to save the interview.

2.2.4 Run Tests
1.

Set the view filter to Last Test Run.

After you select Done, the Save Configuration File window opens. JavaTest
interviews are saved to files that end with the jti suffix. Use the file chooser to
specify a file in a convenient location.

Choose "Last Test Run" in the View Filter combo box located in the tool bar. This
changes your "view" of the test tree so that you only see the results of the current
test run. This is generally the view that most users prefer to begin with.

JavaTest Tutorial 2-5

Running the Tutorial

Note:

Note that when you change to the Last Run filter before you do a
test run, the folders and tests in the tree turn to gray, indicating that they
are filtered out. This occurs because there are currently no results from a
"last test run".

2. Choose Run Tests > Start to start the test run.

The test suite should begin to run. You will see activity in the test tree panel that
indicates which tests are running. You can also watch the progress of the test run
in the progress monitor on the bottom-right portion of the JavaTest harness
window and the pie chart in the Summary tab.

3. Expand the test tree folders to reveal the tests.

Click on different test folders to expand the test tree.

Figure 2-3 Expanded Test Tree

File Configure Run Tests Report View Tools Windows

View Filter: Status of

Last Test Run

ELS

¥ [DoublyLin

x LinkedList

v SortedList

Appendal| Tests
Equals|Custom

Current Configuration

View Filter Combo Box

E InserTestjava I\\.
RemoveTestjava

AppendTestjava
EqualsTestjava
InserTestjava
RemoveTestjava

EqualsTestjava

e: DemoTCK
ailed B
Bummary

Selected Folder

Selected View Filter

ELs

_l Passe
B Failed
W Error
1 Mot Ru

B Filtere

InserTestjava
RemoveTestjava | ¥
-

There are some faile

As tests complete, the tests and their folders change color to represent their state.
The following table briefly describes the colors and their meaning;:

Color Description

green Passed

red Failed

blue Error — The test could not run properly. Usually indicates a configuration problem.

gray Filtered out — Due to a parameter setting (for example, it is on an exclude list), the
test is not selected to be run.

white Not run

2-6 JavaTest Architect's Guide

Running the Tutorial

Folders reflect the state of the tests hierarchically beneath them. You know that the
entire test suite passed if the test suite root folder is green. See the JavaTest online

help for more information.

Note: The test lists\DoublyLinkedList\InsertTest.Jjava intentionally
contains errors and is supposed to fail as part of the tutorial. If any other
tests fail, check your answers to the configuration interview.

2.2.5 Browse the Results

Now that the test run is complete, you will use the Folder tabbed pane and Test tabbed
pane portion of the JavaTest harness to examine the results. You will also examine the

output of the test that failed.

Note: The Folder tabbed pane and the Test tabbed pane occupy the

same portion of the Test Manager window. The Folder tabbed pane is
displayed when you choose a folder entry in the test tree and the Test
tabbed pane is displayed when you choose a test entry in the test tree.

2.2.5.1 The Folder Pane
The Folder tabbed pane displays information about the tests in the selected folder.

Figure 2—-4 The Folder Pane

%) JavaTest Harness: DemoTCK 1.0 Test Suite (Tag Tests): D:\JTwork : E| r)__(|

File Configure RunTests Report VWiew Tools Windows Help
View Filter: Status of [Last Test Run) [EdiFiter |: = 3= b B ?
v [Test Suite Root k Test Suite: DemoTCK 1.0 Test Suite (Tag Tests)
¥ BigMurm | Failed [Error Mot Run Filtered Out
I Test Tree Pane Ia J Sumrmary ﬂ Documentation [Passed]
il Comparelest - Entira "amaTCK 1.0 Test Suite (Tag Tests)" test suite. |4
EqualsTestja Summary of test countsbystatush
LongConstrTe Shows the results for tests executed in the last or currer
StringConstrT M Passed 16
SubkraciTestiig iy W Failed | FolderPane | 1
v B lists & Error 0
¥ [DoublyLinked _| NotRun 0
AppendTes Sub-Tota
EqualsTes W Filtered Out 0
RemoveTe LS -
[LinkedLj
= Saal There are some failed tests in this folder.
Work Directory. JTwork Configuration: mydemotck jti
Finished test run. Progress Monitor | |Elapsed Time v |o0:00:4,

—[DemoTCK 1.0 Test Suite (Tag Tests) J

JavaTest Tutorial 2-7

Running the Tutorial

2.2.5.1.1 Browse the Results

1.
2.

Click on the top folder in the test tree (the test tree root).
Click on the Summary tab (shown by default).

Notice the statistics displayed in the Summary panel. It describes how many tests
in the test suite passed, failed, had errors, and were filtered out.

Click on any of the other folder icons in the test tree.

Notice that the Summary panel changes to reflect the statistics for tests
hierarchically beneath it.

Click on the test tree root folder again.

Click on the Passed tab.

This pane contains a list of the tests that passed during the test run.
Click on the Failed tab.

This pane contains a list of the tests that failed during the test run (only one test in
this case).

Double-click the 1ists\DoublyLinkedList\InsertTest.java test in the Failed tab.

This automatically selects the test in the test tree and changes the display from the
Folder pane to the Test pane.

Note: To read more information about any of the panes, click on a tab to
establish focus, and press F1 to activate online help about that pane.

2.2.5.2 The Test Pane

The Test tabbed pane displays information about the selected test. The five tabs
provide information about the test and information about the results of its execution.

2-8 JavaTest Architect's Guide

Running the Tutorial

Figure 2-5 The Test Pane

) JavaTest Harness: DemoTCK 1.0 Test Suite (Tag Tests): D:\JTwork |__ E|E|
File Configure RunTests Report View Tools Windows Help
View Filter: Status of | [Last Test Run l=) [EditFilter_| : =i b E?
¥ [Test Suite Root L*\ Test: lists/DoublyLinkedList/insertTest.java

¥ [Bighum Test Description [Eiles
AddTest java J Test Run Details T Configuration T Test Run Messages
CompareTey Detail properties about test run
EqualsTestj
LongConstr] e Value .
StringConstr description file:iD:/JavaTestArchiexamplesfjavatest/simpleTags/demo K
SubtractTest o tckitestsillists/DoublyLinkedListinserdTest java
v B lists end Fri Oct 07 08:56:26 PDT 2011
v [DoublyLinke: environment mydemotck I Test Pane |
AppendTe execStatus Failed. one or more test cases failed
EqualsTe javatestOS Windows XP 5.1 (x86)
javatestVersion 441
RemoveT script com.sun. javatestlib.StdTestScript -

» [LinkedList | ”
E1S RS, eieanesrmore estesses e
Work Directory. JTwork Configuration: mydemotck,jti
Finished test run. [Elapsed Time | vJ{}O:m@

—L DemoTCK 1.0 Test Suite (Tag Tests) J

2.2.5.21 Browse the Results Click on the different tabs and examine the information the
panes contain.

The following table briefly describes each tabbed pane:

Tab Description

Test Run Messages Displays messages generated during the selected test's execution

Test Run Details A table of values generated during the selected test's execution

Configuration A table of the configuration values used during the selected test's
execution

Files Displays the Java language source code and any other files related to the

selected test

Test Description A table of the test description values specified for the test

Note: To read more information about any of the panes, click on a tab to
establish focus, and press F1 to activate the online help about that pane.

1. Click on the Test Run Messages tab.

This pane provides access to any messages generated by the JavaTest harness or
the test during execution. Notice that the various red icons indicate that the test
failed.

2. Click on the Execute/Messages entry in the left hand column.

JavaTest Tutorial 2-9

Running the Tutorial

The display on the right shows the command line used to run the test. Problems
can often be debugged by examining how the test was invoked. In this case it was
invoked correctly.

Figure 2-6 Test Messages

%) JavaTest Harness: DemoTCK 1.0 Test Suite (Tag Tests): D:\JTwork

File Configure RunTests Report View Tools Windows Help
View Filter: Status of |Last Test Run jm) |EditFiter.|: = = b W @ ?
¥ [Test Suite Root k Test: BigNum/CompareTest.java

¥ [Bighum Test Description [Files |

AddTestjava TestRunDetals | Configuration | TestRunMessages

CompareTes :
Summary Seclion execute, stream messages

EqualsTest]

£ Script Messag
LongConstrT @ ; command: com.sun javatestlib. ExecStdTestOtherJVMC
StringConstr e md Cjdk1.6.0_23\bin\java exe -classpath D-\UavaTestAr
SubtraciTest ” chiexamplesijavatestisimpleTags\demotckiclasses; DI
E outt avaTestArchiexamples)javatestisimpleTags\demotoki L
¥ [lists = outz ||| demoapi jar com sun.demotck tests bignum.CompareT

¥ [DoublyLinke: est

Test Result

-
Waork Directory: JTwork Configuration: mydemotck jt
Finished test run. [[Elapsed Time | vjm;noc(%

| | DemoTCK 10 Test Suite (Tag Tests) |

3. (Click on the outl entry in the left-hand column.

The display on the right shows errors reported by the test. The messages indicate
that either the test or the API contain errors — in this case the test contains errors.

2-10 JavaTest Architect's Guide

Running the Tutorial

Figure 2-7 Logged Error Messages

%) JavaTest Harness: DemoTCK 1.0 Test Suite (Tag Tests): D:\JTwork : §| r)__(|
File Configure RunTests Report View Tools Windows Help
View Filter: Status of [Last Test Run) [EditFiter] j= i=: b B ? |
e v—— l{ Test: lists/DoublyLinkedListinsertTestjava '

v 2 Bighum Test Description | Files |

AddTestjava Test Run Details I Configuration T Test Run Messages

CompareTes
2 P . Summary Section execute, stream out
EqualsTest

£ Script Messag
LongConstrT mismatch: K

; | @ execute
StringConstr
messages

¥ [lists

out? expected: 2,1
¥ [#8 DoublyLinke: B TestResult found: DoublyLinkedList{1,2]

1 Raw output from selected output stream. |

i S |

(TR

AppendTe mismatch:
EqualsTe

expected: a,1

found: DoublyLinkedList{1,a]
mismatch:
expected: 1,a3,a v
Work Directory. JTwaork Configuration: mydemotck jti
Finished test run. lEIapsed Time | vJ{}D:{}D:(%

[| DemoTCK 1.0 Test Suite (Tag Tests) |

2.2.6 Exclude the Failed Test

The JavaTest harness allows you to "exclude" tests from a test suite by specifying an
exclude list file. This section shows you how to use the quick set mode of the
configuration editor window to specify an exclude list that includes
lists\DoublyLinkedList\InsertTest.java. Tests that are excluded are not executed
during test runs, and though they are still displayed in the test tree, their status is not
reflected in the pass/fail status of the test suite.

1. Choose Configure > Edit Quick Set from the test manager menu bar.

The configuration editor window opens directly to a panel that allows you to
specify an exclude list. This quick set mode allows you to quickly change values
that change frequently between test runs. These values are also referred to as
standard values. Note that standard values can also be changed using the
configuration editor window in question mode.

2. In the Exclude List pane, click Other.
This activates a tool with which you can specify a set of exclude lists.
3. Click the Add button on the upper right portion of the tool.

This invokes a file chooser with which you can specify an exclude list. The current
directory of the file chooser should be the directory in which you started the
JavaTest harness. If it is not, please navigate to that directory.

4. Double-click on the 1ib directory entry in the file chooser.

5. Choose the demo. jtx entry in the file chooser and click Select.

JavaTest Tutorial 2-11

Summary

Notice that the exclude list (demo. jtx) is added to the Exclude Lists text box.
6. Click Done in the configuration editor.
7. Change the view filter to "Current Configuration".

The Current Configuration filter shows which tests are selected and filtered out in
the configuration, in effect a filter that shows which tests will be run next, as
opposed to the Last Test Run filter which shows the tests that were run.

Notice that the icon for the for InsertTest. java entry in the Test tree changes
from red to gray. This indicates that the test has been filtered out and will not be
executed. Also notice that the Test Suite Root folder has changed from red to
green, indicating that all the currently selected tests have passed.

2.2.7 Generate a Report

You can use the JavaTest harness to generate an HTML report that describes the results
of the test run. All of the information contained in the report is available from the GUI;
however, the following steps describe how to generate and browse a report that
describes the test run done in the previous sections of this tutorial.

1. Choose Report > Create Report.
The Create a New Report dialog box opens.
2. Specify the directory in which you want the report files to be written.

If you wish to use a file chooser to specify the directory, click on the Browse
button.

3. Click the Create Report(s) button.
The reports are generated and you are asked whether you want to view the report.
4. Click Yes.

The reports are displayed in the JavaTest report browser window. Scroll through
the report and follow the various links to view data about the test run.

Note: If you wish to print the report, you can open the report in your favorite
web browser and print it from there.

2.3 Summary

This tutorial touches only on the core functionality of the JavaTest harness GUI. Please
continue to explore additional functionality on your own. Also, please consult the
online help for information about all of the JavaTest features.

2-12 JavaTest Architect's Guide

3

Overview

JavaTest test suites are comprised of a number of components, many of which you, as
the test suite architect, provide. This chapter introduces you to these components and
some underlying concepts that are discussed in much greater detail later in this
manual.

3.1 Test Suite Components

The most fundamental components of a test suite are the tests themselves. Tests are
typically Java programs that exercise aspects of an API or compiler. To work well with
the JavaTest harness, these files are organized in the file system hierarchically. The
JavaTest harness finds the tests and displays them in the JavaTest GUI test tree based
on this hierarchy.

Before the JavaTest harness can execute a test, it must know some fundamental things
about the test — for example, where to find the class file that implements the test and
what arguments the test takes. This information is contained in a test description. The
test description is a group of name/value pairs that can be embodied in different ways
— for example, as tag test descriptions and HTML test descriptions. Tag test descriptions
are inserted directly into the test source files using Javadoc style tags. HTML test
descriptions are HTML tables contained in HTML files separate from the test source
and class files. The examples included with the JavaTest Architect's release
demonstrate both types of test descriptions.

The JavaTest harness uses a specialized class called a test finder to locate tests, read test
descriptions, and pass test description values to the JavaTest harness. As the architect,
you specify a test finder that knows how to read the test descriptions you have
designed for your test suite. The JavaTest Architect's release includes test finders that
know how to read tag and HITML test descriptions; you can use the included test
finders as-is, modify them, or create your own.

Once the test finder locates the test and reads the test description, it is up to the test
script to actually run the test. The test script is a Java class whose job is to interpret the
test description values, run the tests, and report the results back to the JavaTest
harness. As the test suite architect, you are responsible for providing the test script that
JavaTest uses. Test scripts can be very simple or complex, depending on the
requirements of your test suite. A number of test script examples are included with the
JavaTest Architect's release that you can use as is, extend, or use as a template for your
test script.

In addition to the fundamental information about each test, the test script might also
require platform-specific information about each test to execute it. This information is
provided by the person running the tests, usually by completing a wizard-like
configuration interview designed by you. Platform-specific information includes

Overview 3-1

Test Suite Components

information such as the location of the JVM to be used when running the tests, the
names of remote computers, and other resources required to run the tests.

When test execution is complete, a test normally creates a Status object and passes it
back to the test script; the test script then stores the test results in the TestResult
object. Test status includes an integer that represents the status (pass, fail, error, not
run) and a short message that describes what happened — for example, an error
message. Test results include more detailed information about the results of the test's
execution — for example, any additional messages produced by the test.

When the JavaTest harness loads a test suite, the first thing it does is read a file named
testsuite.jtt located in the top-level directory of the test suite. The testsuite.jtt
file is a registry of information about the test suite that includes the paths to the
components described above and other static information about the test suite. The
JavaTest harness internalizes this information in a TestSuite object that acts as a
portal to all information about the test suite. Whenever the JavaTest harness requires
information about the test suite, it queries the TestSuite object. As test suite architect,
you create and maintain the testsuite.jtt file.

Figure 3-1 shows a graphical representation of the different test suite components:
Figure 3—-1 Test Suite Components

JavaTest Harness |

Components provided by
the test suite architect.

TestSuite
Test Test Configuration
Finder Script Interview

Components provided by

Test Descriptions ' test developers.

Tests I

The following table summarizes the sequence of steps the JavaTest harness uses to run
test suites and your responsibility for each step. These steps are described in more
detail in the following chapters.

3-2 JavaTest Architect's Guide

Remote Execution

Table 3—-1 Summary of JavaTest Harness Operation

Events Architect's Role

Notes

1 The user starts the JavaTest harness Optionally, create a wrapper command to start
the JavaTest harness in the right location and with
the correct arguments.

2 The JavaTest harness reads testsuite.jtt to gather = Determine what information is included in

information about the test suite including the names
and class paths for classes such as the finder, test
script, and configuration interview. The JavaTest
harness calls the TestSuite class, which in turn
creates the TestSuite object. The JavaTest harness
passes information from testsuite.jtt to the
TestSuite class when it is created.

testsuite.jtt and what information (if any) is
built directly into your test suite class. The
components you create, including your test suite
class are contained in a Java archive (JAR) file
installed in the test suite. The path to the JAR file
is specified in the testsuite.jtt file.

Provide your test suite class

3 The JavaTest harness queries the TestSuite object to
determine which test finder to use.

Provide your test finder class

4 The JavaTest harness starts the test finder. The test
finder reads test descriptions and creates
TestDescription objects. The JavaTest GUI displays
the test tree.

5 The user starts the test run. If the configuration
information is incomplete, the JavaTest harness
activates the configuration editor.

Provide the configuration interview

6 The JavaTest harness asks the TestSuite object to
create a fresh copy of the test script for each test. The
test script runs tests according to the information in
the test description and environment. When the test is
complete, the test script reports the test's exit status to
the JavaTest harness.

Design the test execution model and create the
test script

6 The test suite updates the TestResult object with the
results of the test execution and writes the test results
to a file in the work directory. Test results are
described in Section 10.3, "Test Result".

8 The JavaTest harness updates the GUI and/or
displays information at the command line.

3.2 Remote Execution

It is often convenient or necessary to run tests on a system other than the one running
the JavaTest harness. In this case, an agent must be used to run the tests on the test
platform and communicate with JavaTest harness. The JavaTest harness provides a
general purpose agent (JavaTest Agent), but test architects can also create custom

agents.

The JavaTest Agent is a lightweight program compatible with JDK 1.1 (does not
require the Java SE platform, or Swing). The JavaTest Agent uses a bidirectional
connection to communicate between the test platform and JavaTest—it supports both
the TCP/IP and RS-232 protocols. Other types of connections can be added through
the JavaTest API, for example, infrared, parallel, USB, firewire connections can be
added and modelled on the existing system. If a test platform meets the following
requirements the JavaTest Agent will probably work well:

s The device supports a communication layer that can last the duration of a test

(couple of minutes)

= The agent code can be loaded into the device

Overview 3-3

Remote Execution

If the test platform does not meet these requirements, the JavaTest API can be used to
create a custom agent. Agents have been created to run tests on devices such as cell
phones, PDAs, and pagers.

3-4 JavaTest Architect's Guide

4

Creating a Test Suite

This chapter leads you through the process of creating a very small working test suite
quickly and easily by following step-by-step instructions. To simplify the process,
conceptual information is generally not provided but is available in later chapters.

The test suite you create here can serve as the basis for your entire test suite. If your
tests have no special requirements that the Standard Test Finder and Standard Test
Script cannot accommodate, you may be able to create your product test suite by
simply adding additional tests and creating a configuration interview to gather the
information required to execute your tests.

Notes:

The instructions in this chapter assume that you have completed the tutorial in
Chapter 2 and that you have read Chapter 3.

The instructions also assume that you are familiar with basic operating system
commands on your system.

In the examples, path names are given using the "\" file separator. If your system
uses a different file separator, please substitute it where appropriate.

This chapter describes how to:

1.

2
3
4.
5
6

Create a test suite directory

Create a testsuite. jtt file

Copy javatest.jar to the test suite 1ib directory
Add appropriate classes to the classes directory
Create a test

Run the test suite

Other issues of interest regarding test suite creation are discussed at the end of the
chapter.

4.1 Create a Test Suite

To create a test suite, follow the steps in these simple tasks.

1.

2
3.
4

Section 4.1.1, "Create a Test Suite Directory"
Section 4.1.2, "Create the testsuite.jtt File"
Section 4.1.3, "Copy javatest.jar"

Section 4.1.4, "Set Up the classes Directory"

Creating a Test Suite 4-1

Create a Test Suite

5. Section 4.1.5, "Use a Simple Test Template"
6. Section 4.1.6, "Create and Compile a Simple Test Example"

4.1.1 Create a Test Suite Directory
Create the directory and sub-directories for your test suite.
1. Create the top-level test suite directory.

Create the directory somewhere convenient in your file system. This directory is
referred to as ts_dir for the remainder of this chapter.

2. Under ts_dir, create sub-directories named tests, 1ib, and classes.

4.1.2 Create the testsuite.jtt File

As described in Chapter 3, the JavaTest harness reads the testsuite.jtt file to find
out information about your test suite. The following steps describe how to create the
testsuite.jtt file for this test suite.

1. Make ts_dir the current directory.
2. Create the testsuite.jtt file.

Enter the following information into a text editor:

Test Suite properties file for DemoTCK test suite

with tag-style tests

name=My Test Suite

id=1.0

finder=com.sun.javatest.finder.TagTestFinder
script=com.sun.javatest.lib.StdTestScript
interview=com.sun.javatest.interview.SimpleInterviewParameters

You can substitute your own string values for the name and id properties.

Note: The classpath entry is not used here because the Standard
Test Finder, Standard Test Script, and Simple Interview classes are all
contained within javatest.jar which is automatically on the class
path. If you create your own components, you must include the
classpath entry to point to the JAR file that contains these classes. See
Chapter 8 for more information about the testsuite.jtt file.

Save the file as fs_dir\testsuite.jtt.

4-2 JavaTest Architect's Guide

Create a Test Suite

4.1.3 Copy javatest.jar

The test suite works best if there is a copy of the javatest.jar file in the 1ib directory
of the test suite; this enables the JavaTest harness to automatically locate the test suite.

1. Copy javatest.jar from jt_install\examples\javatest\simpleTags\demotck\1lib
to ts_dir\1lib.

Note: The javatest.jar file contains the SimpleInterview class that
is used with this test suite
(com.sun.javatest.SimpleInterview.Parameters). As your test suite
becomes more complicated and customized, you may need to create a
custom interview. See Chapter 6 for more information.

4.1.4 Set Up the classes Directory

In order to execute, tests must have access to some of the classes contained in
javatest.jar. Extracting these classes eliminates the need for each test to have
javatest.jar on its class path. The the most convenient location to place these classes
is the ts_dir\classes directory.

1. Make ts_dir\classes the current directory.
2. Verity that the Java SE platform (version 1.6 or later) is in your path.
At a command prompt, enter:

C:\> java -version
3. From javatest.jar, extract the classes required to run the tests.

Use the following command line:

jar -xvf ..\lib\javatest.jar com\sun\javatest\Test.class
com\sun\javatest\Status.class

Note: As your test suite become more complex, you may have to add
additional libraries to the classes directory.

4.1.5 Use a Simple Test Template

The following instructions describe how to create a very simple test to add to your test
suite. For more detailed instructions about writing TCK tests, see the Test Suite
Developers Guide.

1. Make ts_dir\tests the current directory.
2. Enter the test code into your favorite text editor.

The following template can be used as the basis for writing simple tests:

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;
/** @test

* @executeClass MyTest

* @sources MyTest.java

**/
public class MyTest implements Test({

public static void main(String[] args) {
PrintWriter err = new PrintWriter (System.err, true);

Creating a Test Suite 4-3

Create a Test Suite

Test t = new MyTest();
Status s = t.run(args, null, err);
s.exit();
}
public Status run(String[] args, PrintWriter logl, PrintWriterlog2) ({
Status result;
// your test code here ...
return result;

}

Note that the section delimited with the /** **/ characters is the test description
portion of the test. It must be present for the JavaTest harness to locate and
recognize the test. You will change all instances of MyTest, and replace the line //
your test code here... with your own code. The following table describes the
test description entries recognized by the Standard Test Script:

Test Description
Entry

Description

test Identifies the comment block as a test description and the containing file as a test

executeClass Specifies the name of the test's executable class file (assumed to be located in the classes
directory)

executeArgs Specifies arguments (if any) that the test accepts

sources Names the source files required to compile the test. This entry is required if you use the
JavaTest harness to compile your tests. See Chapter 7 for more information. This tag is also
used by the JavaTest harness to display a test's sources in the Files tab of the Test pane.

keywords Specifies user-defined keywords that direct the JavaTest harness to include or exclude tests

from a test run.

You can create simple tests by replacing the comment:

// your test code here ...
with code that tests your APIL. Note that the test must return a Status object as a
result.

Note: You can find examples of simple tests at:jt_
install\examples\javatest\simpleTags\demotck\tests

4.1.6 Create and Compile a Simple Test Example

The following sample is a very simple test you can use to get started.

1.

Save the following file as MyTest . java.

Be sure to copy the entire file, including the test description delimited with the /**
**/ characters

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;

/** @test
* @executeClass MyTest

* @sources MyTest.java
**/

4-4 JavaTest Architect's Guide

Create a Test Suite

public class MyTest implements Test {
public static void main(String[] args) ({
PrintWriter err = new PrintWriter (System.err, true);
Test t = new MyTest();
Status s = t.run(args, null, err);
s.exit();

public Status run(String[] args, PrintWriter logl, PrintWriter log2) ({
Status result;
if (1 +1 ==2)
result = Status.passed("OK");
else
result = Status.failed("Oops");
return result;

}

2. Compile MyTest. java.
Use the following command on WIN32 systems:

C:\> javac -d ..\classes -classpath ..\classes MyTest.java
Use the following command on Solaris or Linux systems:

% javac -d ../classes -classpath ../classes MyTest.java
MyTest.class is created in the ts_dir\classes directory. As you add more and
more tests you should organize them hierarchically in subdirectories.

Note: As you add more and more tests, you may want to use the
JavaTest harness to compile the tests. For more information, see
Chapter 7.

4.1.7 Run a Test Suite

You are now ready to run the test suite.
1. Make ts_dir the current directory.
2. Start the JavaTest harness.

At a command prompt enter:

c:\> java -jar lib\javatest.jar -newdesktop

Note: The -newdesktop option is used here to ensure that the
JavaTest harness starts up like it did in the tutorial — under normal
circumstances you should not use this option. For information about
JavaTest options, see the online help.

3. Run the tests the same way you ran the tests in Chapter 2.

The configuration interview for this test suite contains a question not included in
the tutorial configuration interview. Use the following information to answer the
question:

Creating a Test Suite 4-5

Odds and Ends

Question
Title Answer Description
Class Path ts_dir\classes The test uses library classes located in the classes directory.

Click the Add button to activate a file chooser. Select the
classes directory and click the Add File button.

4.2 Odds and Ends

This section takes a closer look at the components that make up a typical test suite and
how they are organized. In addition, the various class paths required to run the
JavaTest harness, the agent, and tests classes are discussed.

Note that much of the organization described here is optional; however, experience
has shown that it works well for most test suites.

4.2.1 Top-Level Test Suite Directory

The top-level test suite directory generally contains the following files and directories:

Table 4-1 Top-Level Test Suite Files and Directories

File/Directory

Description

testsuite.jtt

A text file that serves as a registry of information about the test suite. This files includes the
paths to plug-in components (for example, the test finder, test script, or configuration
interview) as well as other static information about the test suite. The presence of this file
defines the top-level directory of the test suite; therefore it must be located there. This file is
described in detail in Chapter 8.

lib\javatest.jar

Contains all of the classes required to execute the JavaTest harness and library classes. The
library classes can be used to simplify the creation of tests. If javatest.jar is located in the
same directory as the testsuite.jtt file, or in the ts_dir\1ib directory, the JavaTest
harness automatically locates the test suite and does not prompt the user for the path to
test suite directory.

Note that it is very important not to put javatest. jar on the test suite class path. It is very
large and scanning it for library classes at every test invocation impacts the performance of
your test suite. The best option is to extract any referenced classes into the classes
directory as shown in Step 3 in 4.1.4. Use of these library classes is described in Chapter 5.

tests\

Contains test source files and test descriptions. Tests should be organized hierarchically the
way you want them to be displayed in the test tree.

If you use the HTML test finder rather than the tag test finder, include the HTML test
description files along with the test sources in the tests directory. For a discussion of test
finders, see Chapter 9.

classes\

The directory that contains all of the compiled test classes and library classes required to
run your tests. This directory is automatically placed on the JavaTest harness class path.

1ib\

An optional directory that contains any other files required by your the test suite. These
files might include:

jttestsuite.jar — If you create a custom interview, or customize any of the JavaTest plug-in
classes, you package the classes and interview files in a custom JAR file. See "The Test Suite
JAR File" below for details.

test_suite_x.x.jtx — The exclude list is a mechanism used by test suites to identify tests
that should not be run.

doc\

An optional directory that contains documentation that describes how to run the test suite
and specifies the rules for certifying a product.

4-6 JavaTest Architect's Guide

Odds and Ends

4.2.2 The Test Suite JAR File

All of the components you create for the test suite should be delivered to the user in a
single JAR file installed in the 1ib directory of the test suite. The JAR file is added to
the class path in the testsuite. jtt file as described in Chapter 8. Experience has
shown that it is best to organized the JAR file with the following directory structure:

com\
your_company\
your_product\
Interview class files and resource files, More Info help

For example, the JAR file for the demo TCK test suite:

jt_install\examples\javatest\simpleTags\demotck\jtdemotck.jar
is organized like this:

com\
sun\
demotck\
Interview class files and resource files, More Info help

If you provide a large number of components, you can further organize them into
sub-packages:

com\
your_company\
your_product\
Interview class files and resource files, More Info help
1ib\
Everything else (TestSuite, Script, Finder, etc.)

4.2.3 Class Paths

When you create a test suite, it is important to keep in mind the three potential class
paths that are involved:

» JavaTest class path
= Agent class path
» Test class path

Two of the ways described in the following sections in which you can set a class path
are through a CLASSPATH environment setting or through a -classpath flag in the
command line. The CLASSPATH environment setting is generally a safe way to set the
classpath, although setting it as an environment variable is less explicit than using the
-classpath flag.

The -classpath flag to the particular software development kit tool (such as java and
javac) is generally the best way to set the class path if you know it explicitly. The main
disadvantage of using the -classpath flag is that it overrides the CLASSPATH
environment setting.

Creating a Test Suite 4-7

Odds and Ends

Note: If you have required classes that are set in the environment
variable and you also use the -classpath flag, you must make special
arrangements for the additional class paths to be set through the
-classpath parameter.

Shell example:

% CLASSPATH=otherclasses javac -classpath classes -d out foo/
In this example, only classes set by -classpath are on the classpath. The otherclasses set
by the CLASSPATH environment setting are dropped.

Shell example:

% CLASSPATH=otherclasses javac -classpath S$SCLASSPATH:classes d out foo/
In this example, the environment setting is added to the -classpath argument. The
resulting classpath is otherclasses: classes.

4.2.3.1 JavaTest Class Path

This is the class path that the JavaTest harness uses to access its classes, libraries, and
your plug-in classes. The JavaTest class path can be set by means of:

s The CLASSPATH environment variable
s The -classpath option to the Java runtime
» The -jar option to the Java runtime (this is the standard)

In addition, each test suite can use the classpath entry in the testsuite.jtt file to
extend the class path. The classpath entry is used to add custom plug-in components
and interviews that you create.

4.2.3.2 Agent Class Path

Often you must run tests on a system other than one on which the JavaTest harness
runs. In this case you use an agent (such as the JavaTest Agent) to run the tests on that
system. The agent class path is used by the agent to access its classes, libraries, and any
plug-in classes. The class path can be set by means of:

s The CLASSPATH environment variable
s The -classpath option to the Java runtime
s The -jar option to the Java runtime

= Some other platform-specific mechanism

4.2.3.3 Test Class Path

This is the class path used by the tests during execution. It is normally the
responsibility of the configuration interview and/or test script to set the class path for
each test in the test environment command entry (see Section 6.2.1, "Command
Strings"). Test classes are normally located in the ts_dir\classes directory, you
normally include this on the test class path. You can also put any classes that your tests
require in ts_dir\classes and they will be found.

Note: If your platform requires that tests run in the same JVM as the
agent, you must include the classes required by the tests on the agent
class path. In this case your interview need not put a test class path in
the test environment command entry.

4-8 JavaTest Architect's Guide

O

Writing Tests

This chapter describes how to write tests that work well with the JavaTest harness.
Special attention is paid to the test execution model implemented by the Standard Test
Script which is designed to work well with test suites that test the compatibility of Java
APIs and should work well with most Java SE technology-based TCK test suites.

Note that this discussion focuses on the mechanics of writing tests that work with the
JavaTest harness. For information about the "art" of writing compatibility tests, see the
Test Suite Developers Guide.

The example test suites included with the JavaTest Architect's release contain
numerous test examples. See the following directories:

jt_install\examples\javatest\simpleTags\tests
jt_install\examples\javatest\simpleHTML\tests

You might find it helpful to refer to those tests as you read this chapter.

5.1 The Test Execution Model

The design and invocation of a test is a reflection of the test execution model that you
design for your test suite. The test execution model describes the steps involved in
executing the tests in your test suite and is implemented by the test script.

As you design your test suite you should think about how your tests are going to be
executed. Some typical questions you might ask:

= Iseach test invoked by executing a single class?
= Do the tests require multiple steps, implemented by multiple class invocations?
= Must test classes be started on different machines and in a specific order?

Most TCK test suites test specific aspects of an API. These types of tests lend
themselves to an execution model in which tests are run by invoking a single class that
exercises a method or group of methods. The JavaTest Architect's release includes the
Standard Test Script (com.sun. javatest.lib.StdTestScript) that implements this
test execution model. The Standard Test Script is discussed in more detail in

Chapter 10.

If your test suite requires a more complex test execution model, you have to create a
test script to implement it. See Chapter 10 for information about creating a custom test
script.

Writing Tests 5-1

The Test Interface

Note: The test execution model implemented by the Standard Test
Script includes an optional compilation step. The Standard Test Script
can be used to:

m Execute precompiled tests
m Compile the tests
m Compile and execute the tests

See Chapter 7 for more information about compiling tests with the JavaTest
harness.

5.2 The Test Interface

If you plan to run your tests using the execution model embodied by the Standard Test
Script, the tests must implement the run method of the interface
com.sun.javatest.Test. The Test interface provides a very flexible mechanism that is
well suited for creating most tests. If the Test interface does not suite your needs, you
can write your own interface. You can find information about creating your own
interface in Chapter 10.

The Test interface run method takes an array of strings and two output streams and
returns a Status object. The array of strings is taken from the executeArgs entry in the
test description. The output streams are provided by the JavaTest harness; any output
written to the output streams is saved in the TestResult object and is displayed in the
Test Run Messages tab in the JavaTest GUL The end result of the test is a Status object
— a combination of an integer code and a message string (see Section 5.3, "Test
Status").

The following code example shows a template for tests written to work with the
Standard Test Script; the areas you change are in bold font:

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;

/** @test
* @executeClass MyTest

* @sources MyTest.java
**/

public class MyTest implements Test({
public static void main(String[] args) {
PrintWriter out = new PrintWriter (System.err, true);
Test t = new MyTest();
Status s = t.run(args, out, null);
s.exit();

}

public Status run(String[] args, PrintWriter outl, PrintWriter out2) {
Status result;
// your test code here ...
return result;

5-2 JavaTest Architect's Guide

Test Status

Note that the section delimited with the /** **/ characters is the test description
portion of the test which is described in more detail later in this chapter in Section 5.4,
"Test Description Entries". The Status object is described in Section 5.3, "Test Status".

5.2.1 Class Paths

The com. sun. javatest.Test interface is delivered in javatest.jar; however, you
should extract it into your test suite's classes directory so that it is easily available to
all of your test classes.

Note: To improve test performance, never add javatest.jar to test
paths anywhere in your test suite. If you use classes provided in
javatest.jar, extract them into your test suite's classes directory.

5.3 Test Status

The Status object is an integer /string pair that encodes the exit status of the test. The
JavaTest harness supports the following exit status values:

Table 5-1 Exit Status Values

Status Meaning

PASSED A test passes when the functionality being tested behaves as expected.

FAILED A test fails when the functionality being tested does not behave as expected.

ERROR A test is considered to be in error when something (usually a configuration
problem) prevents the test from executing as expected. Errors often indicate a
systemic problem — a single configuration problem can cause many tests to fail.
For example, if the path to the Java runtime is configured incorrectly, no tests can
run and all are in error.

NOT_RUN A specific test has not been run.

Note: NOT_RUN is a special case and is reserved for internal
JavaTest harness use only.

The integer portion of the Status object represents the exit status; the string portion is
a message that summarizes the outcome (for example, an error message). Only the
short integer portion is used by the JavaTest harness to determine the test status. The
message string provides information to the user running the test. The message is
passed to the test script which writes it into the test result file.

Note that the object is immutable once it is created — if the test script modifies the
message string it must take the Status object created by the test and recreate the
Status object including the new message string.

The JavaTest harness uses the information in the Status object in its GUI status
displays and reports.

There are two important methods in the Status API that your tests can use: passed ()
and failed(). Both methods take a string as an argument and return a Status object.
The JavaTest harness displays these strings in the Test Run Message tab in the JavaTest
GUI and they can be an important source of information to users running the tests.
The following example shows how these methods are used:

Writing Tests 5-3

Test Description Entries

public Status run(String[] args, PrintWriter outl, PrintWriterout2) ({
Status result;
if (1 + 1 ==2)
result = Status.passed("OK");
else
result = Status.failed("Simple addition performed incorrectly");
return result;
}
}

The test entries in the reports generated by the JavaTest harness are grouped based on
the string arguments you supply to Status.passed and Status.failed. It's generally a
good idea to keep all of the Status.passed messages short and consistent so that
similar tests are grouped together in reports.

Status.failed messages should generally be longer and more descriptive to help the
user determine why the test failed. Complete details should be written to the output
stream.

By default the Report function sorts passed and failed tests results alphabetically by
test location and name (plain view) , or by the final status (grouped view).

Results

Tests that passed | 16 | plain view | grouped view

Tests that failed 1 | plain view | grouped view

Total 17

See the API documentation (doc\javatest\api) for the Status class.

5.4 Test Description Entries

All tests must have an associated test description that contains entries that identify it
as a test and provide the information required to run it. Test descriptions are located
and read by a test finder; the two standard test finders included with the JavaTest
harness read two styles of test description: tag test descriptions and HTML test
descriptions. It is your decision as test suite architect which style to use (you can even
create a custom style). Test finders are discussed in detail in Chapter 9. For simplicity,
only the tag style is shown in this chapter.

Test finders read all entries listed in the test description and add them to the
TestDescription object. The Standard Test Script looks for and uses the values
specified in the executeClass, executeArgs, and sources entries; the script disregards
any other entries. You can create your own custom script that recognizes additional
test description entries and validate those entries. See Chapter 10 for more
information.

5-4 JavaTest Architect's Guide

Multiple Tests in a Single Test File

The following table describes the entries understood by the Standard Test Script:

Table 5-2 Default Test Description Entries

Test Description Entry Description

test Identifies the comment block as a test description. This entry is required. There is no
"test" entry in the TestDescription object.

executeClass Specifies the name of the test's executable class file (assumed to be located in the
classes directory). This entry is required.

executeArgs Specifies the arguments (if any) that the test accepts. This entry is a list of strings
separated by white space. This entry is optional.

sources Specifies the names of the source files required to compile the test. This entry is
required if you use the JavaTest harness to compile your tests. See Chapter 7 for more
information. This tag is also used by the JavaTest harness to display a test's sources in
the Files tab of the Test pane. This entry is optional.

keywords Specifies keywords that the user can specify to direct the JavaTest harness to include or

exclude tests from a test run. Keyword values consists of a list of words (letters and
numbers only) separated by white space. This entry is optional.

The following code snippet shows how a tag test description appears in a test source
file:

/** @test
* @executeClass MyTest
* @sources MyTest.java
* @executeArgs argl arg2
* @keywords keywordl keyword2

**/

5.4.1 Keywords

You can add keywords to test descriptions that provide a convenient means by which
users can choose to execute or exclude pre-selected groups of tests. The person who
runs the test suite can specify keyword expressions in the configuration editor. When
the test suite is run, the JavaTest harness evaluates the keyword expressions and
determines which tests to run based on the keywords specified in the test description.
See the JavaTest harness online help for information about specifying keyword
expressions.

5.5 Multiple Tests in a Single Test File

If you find that you are writing lots of very small tests to test similar aspects of your
API, you can group these similar tests together as fest cases in a single test file. Tests
that contain test cases should use the com.sun.javatest.lib.MultiTest class rather
than the com. sun. javatest.Test interface. MultiTest implements
com.sun.javatest.Test to add this functionality. One of the major benefits of using
MultiTest to implement test cases, is the test cases can be addressed individually in
the test suite's exclude list. Another advantage to using MultiTest is that the test cases
are run in the same JVM which is generally faster than starting a new JVM for each
test. The downside to using MultiTest is that tests are more susceptible to errors
introduced by memory leaks.

MultiTest is included with the JavaTest release as a standard library class. MultiTest
is a class that implements the com. sun. javatest.Test interface and allows you to

Writing Tests 5-5

Multiple Tests in a Single Test File

write individual test cases as methods with a specific signature. These methods cannot
take any parameters and must return a com. sun. javatest. Status object as a result.
Argument decoding must be done once by a test for its test case methods. MultiTest
uses reflection to determine the complete set of methods that match the specific
signature. MultiTest calls test case methods individually, omitting any tests cases that
are excluded. The individual Status results from those methods are combined by
MultiTest into an aggregate Status object. The test result is presented as a summary
of all the test cases in the test.

The following example shows a very simple test that uses MultiTest to implement test
cases:

import java.io.PrintWriter;

import com.sun.javatest.Status;

import com.sun.javatest.Test;

import com.sun.javatest.lib.MultiTest;

/** @test
* @executeClass MyTest

* @sources MyTest.java
**/

public class MyTest extends MultiTest({
public static void main(String[] args) {
PrintWriter err = new PrintWriter (System.err, true);
Test t = new MyTest();
Status s = t.run(args, null, err);
// Run calls the individual testXXX methods and
// returns an aggregate result.
s.exit();
}
public Status testCasel() {
if (1 +1 ==2)
return Status.passed("OK");
else
return Status.failed("l + 1 did not make 2");
}
public Status testCase2() {
if (2 + 2 == 4)
return Status.passed("OK");
else
return Status.failed("2 + 2 did not make 4");
}
public Status testCase3 () {
if (3 + 3 == 6)
return Status.passed("OK");
else
return Status.failed("3 + 3 did not make 6");

}

For more information about com. sun.javatest.lib.MultiTest, please refer to the API
documentation.

5.5.1 Subtyping MultiTest

If you create a number of tests that are similar you can create a super class to
implement functionality they have in common. You can also create this class as a
subtype of the MultiTest class rather than the Test interface so that you can take

5-6 JavaTest Architect's Guide

Organizing Tests Within Your Test Suite

advantage of the test case functionality it provides. Such subtypes are typically used to
perform common argument decoding and validation, or common set-up and
tear-down before each test or test case.

5.6 Organizing Tests Within Your Test Suite

This section describes some guidelines about how to organize your test source and
class files.

5.6.1 Source Files

It is very important to ship the source files for tests in your test suite. Test users must
be able to look at the sources to help debug their test runs.

Test sources should be located with the files that contain their test descriptions. If you
use tag test descriptions, the test description is included as part of the source file;
however, if you use HTML test descriptions, they are contained in separate HTML files
that should be included in the same directories as their test source files.

The JavaTest harness assumes that tests are organized hierarchically in a tree structure
under the ts_dir/tests directory. The test hierarchy contained in the tests directory is
reflected in the test tree panel in the JavaTest GUI (technically, it is a tree of the test
descriptions). When you organize your tests directory, think about how it will look in
the test tree panel. In test suites that test APIs, the upper part of the tree generally
reflects the package structure of the product you are testing. Farther down the tree,
you can organize the tests based on the sub-packages and classes being tested. The
leaves of the tree might contain one test per method of that class. In some cases it
might make sense to organize the tree hierarchy based on behavior; for example, you
could group all event handling tests in one directory.

5.6.2 Class Files

Experience has shown that it is a good idea to place all of your test class files in the ts_
dir\classes directory rather than locating them with the source files in the ts_
dir\tests directory. Placing class files in the classes directory has the following
benefits:

= It simplifies the specification of the test execution class path, especially on smaller
devices that can only specify a single class path for all the tests.

» The standard configuration interview automatically places ts_dir\classes on the
test class path

= It permits easier code sharing among tests

Note: In some cases the test platform may dictate where you can put
your classes. For example, if your test platform requires the use of an
application manager, it may require that your classes be placed in a
specific location.

Writing Tests 5-7

Error Messages

5.7 Error Messages

It is important that your tests provide error messages that test users can readily use to
debug problems in their test runs. One useful method is for your error messages to
compare expected behavior to the actual behavior. For example:

Addition test failed: expected a result of "2"; got "3"

Longer detailed messages should go to the test and/or test script diagnostic streams.
Use the Status object for shorter summary messages.

5-8 JavaTest Architect's Guide

6

Creating a Configuration Interview

As you design your test suite, you must decide how to provide the JavaTest harness
with all of the information required to execute your tests. Some of this information is
static — it is known prior to runtime through the test description mechanism.
However, some information cannot be determined ahead of time and differs based on
the context in which the tests are run. This information is called the configuration and is
obtained from the user through a configuration interview that you design. The
configuration interview is presented to the user in the JavaTest configuration editor
and consists of a series of simple questions that the user answers. The interview
exports the answers in a format called a fest environment that the JavaTest harness
understands.

This chapter describes how to create and package a configuration interview.

6.1 Designing Your Configuration

This section focuses on the design of the configuration information and how to
determine what information is necessary to run your tests suite.

6.1.1 What is a Configuration?

The configuration provides the JavaTest harness with the information it needs to
execute tests. This information falls in the following categories:

» Information required by the script to execute the tests

» Information required by tests. This information augments the test description and
usually consists of information that changes based on the test execution context
(for example, the platform or network).

s Information that determines which tests to include or exclude from a test run

These categories are discussed in the following sections.

6.1.1.1 Test Script Information

A test script is responsible for running your tests. The test script knows the series of
steps required to execute each test. It typically relies on test commands to perform each
step and you design your configuration to provide the test commands (and their
arguments) that the test script uses to execute each test. Test commands are Java
classes that the test script instantiates to run tests.

As an example, the Standard Test Script uses a single step to execute tests; that step is
defined in the configuration entry called command. execute. The configuration
interview is responsible for setting the value of command. execute so that the Standard
Test Script uses the appropriate command and arguments. For example, you can tell

Creating a Configuration Interview 6-1

Designing Your Interview

the Standard Test Script to use the ExecStdTestOtherJvMCmd command which executes
tests in a process on the same computer that runs the JavaTest harness:

command. execute=com. sun.javatest.lib.ExecStdTestOtherJVMCmd args

If you intend to execute the tests differently; for example, on a different computer, you
would define command. execute differently in your configuration. For a list of test
commands included with the JavaTest release, see Appendix A. For information about
creating custom test commands, see Chapter 10.

6.1.1.2 Test Description Entries

In the previous chapters of this manual, you have seen that most test descriptions are
static; these entries consist of values that are known ahead of time and can be specified
directly. In some cases these arguments cannot be determined ahead of time, especially
test arguments (executeArgs). For example, tests that test network APIs may require
the names of hosts on the network to exercise the APL If the test suite runs in different
locations and on different networks, these values cannot be known ahead of time by
the test developer. The configuration interview is expected to collect this information
and make it available to the test.

A script may allow the test developer to specify variables in some test description
entries that are defined in the configuration; these variables are prefixed with the "$
character. For example the Standard Test Script allows variables in the executeArg
entry; in the case of a network test, here is what the test description might look like:

"

/** @test
* @executeClass MyNetworkTest
* @sources MyNetworkTest.java

*@executeArgs -host $testHost -port $testPort
‘k*/

The arguments to the executeClass and sources entries are static — they are known
ahead of time and do not change based on the context in which the test runs. The host
names or [P addresses cannot be known ahead of time and are specified as variables to
which the JavaTest harness assigns values when the test is run. The test suite's
configuration interview asks the user to specify the values of the hosts and port
numbers required to run the test; the values of $testHost and $testPort are defined
from those answers. The configuration interview creates entries in the test
environment as name/value pairs. For example:

testHost=129.42.1.50
testPort=8080

6.1.1.3 Which Tests to Run

The JavaTest harness provides a number of ways that the user can specify which tests
in the test suite to run. These standard values can be specified by the user in the
configuration editor window question mode or quick set mode. You can easily include
interview questions that gather this information at the end of the interview for you
and require no extra work on your part.

6.2 Designing Your Interview

The goal of the configuration interview is to create (or export) a test environment. The
test environment consists of one or more command templates that the test script uses

6-2 JavaTest Architect's Guide

Designing Your Interview

to execute tests and the set of name/value pairs that define values required to run the
tests.

The previous section described how to think about the kinds of configuration values
your test suite needs; this section focuses on how you collect configuration values and
translate them into test environment entries.

6.2.1 Command Strings

The most complex test environment entries are almost always the command strings
the test script uses to execute the tests. A command string is a template that specifies
the command used by the test script to execute the test. A command string contains
symbolic values (variables) whose values are provided when the test is executed.

The complexity of these entries is determined by the versatility required by the test
suite. If the test suite is always run on the same computer, in the same network, the
command string is probably very easy to specify. In many cases the computing
environment varies considerably, in which case the command strings are built up
largely from answers that users provide in the configuration interview.

As previously described, test scripts depend on test commands to know how to
execute tests in specific ways. The JavaTlest release contains a set of standard library
test commands that you can use to execute tests. The following table describes the
most commonly used test commands. These test commands are described in more
detail in Appendix A.

Table 6-1 Commonly Used Test Commands

Test Command Description

ExecStdTestSameJVMCmd Executes a simple API test in the same JVM as the caller.
Typically used with the JavaTest Agent.

ActiveAgentCommand Execute a subcommand on a JavaTest Agent running in

PassiveAgentCommand active or passive mode

If your platform requires a custom agent in order to run tests, use the test command
designed for use with that agent.

Commands and command templates are described in more detail in Chapter 10.

The examples in this section show how to create command entries for the Standard
Test Script using two of these commands: ActiveAgentCommand and
ExecStdTestOtherJVMCmd.

6.2.1.1 Example 1

The Standard Test Script uses the value of the command entry command. execute to
execute tests. If the tests are executed on the same computer running the JavaTest
harness, a typical command entry for the Standard Test Script looks something like the
following:

command. execute=com. sun.javatest.lib.ExecStdTestOtherJVMCmd
C:\JDK\bin\java.exe -classpath $testSuiteRootDir\classes
StestExecuteClass $testExecuteArgs

The portion of the entry to the left of the "=" is the name of the test environment entry,
the portion to the right is the command string.

Creating a Configuration Interview 6-3

Designing Your Interview

Let's examine the command string in detail:
com.sun.javatest.lib.ExecStdTestOtherJVMCmd

The first part of the command string is the name of the test command class used to
execute the test classes. In this example the command executes tests in a process on the
same computer that runs the JavaTest harness.

Interview implications:

Your configuration interview specifies the command to use to execute the tests. If the
API you are testing always runs in a known computing environment, your interview
might create this part of the entry without input from the user. However, if the API
being tested can be run in different ways, you must ask the user which way they
choose to run it and provide the appropriate test command based on the user's input.

Imagine an API that can be tested on the same computer running the JavaTest harness,
or on a different computer on the same network. In this case the interview must
determine which way the user intends to run the tests and provide the appropriate
command — ActiveAgentCommand or ExecStdTestOtherJVMCmd.

-classpath ts_dir\classes

The class path required by the tests. Replace ts_dir with the path to your test suite. To
enhance performance, you should place all library classes required to run the test
classes in the classes directory.

See Section 6.2.2, "Test Environment Variables" for a list of available variables.
Interview implications:

You can determine the path to your test suite inside your interview. See Section 6.3.7,
"Exporting the Test Environment" for details. If the test classes require no additional
classes be on the class path other than the ones you provide in the test suite's classes
directory, your interview can insert the class path value directly into the entry without
asking the user for input. If additional class path entries may be required, your
interview may include questions that ask the user to provide additional entries that
your interview appends to the class path.

This environment entry that can get more complicated if the test suite may be run
using different versions of the Java runtime. Some Java runtime systems do not use the
-classpath option; for example, they might use a syntax such as -cp or /cp.

"non

Additionally, some systems use the ":" character as the class path separator and others

"non

use the "; " character. If this is the case, your interview must include additional
questions that determine the platform on which the tests are run so that you can create
the appropriate command entry.

C:\JDK\bin\java.exe
The path to the Java runtime command used to execute the test classes.
Interview implications:

This path almost certainly differs from user to user, so almost any interview must
obtain this path from the user. The interview libraries include a question type named
"file" that is very useful for obtaining path names.

Although no additional options or arguments are shown in this example, many Java
runtimes or test suites require additional options and arguments. If your tests require
any additional options, you include them in additional portions of the entry.

StestExecuteClass

6-4 JavaTest Architect's Guide

Writing Your Interview

A variable that represents the name of the test class. The test script obtains the class
name from the executeClass entry in the test description and provides it at runtime.

Interview implications:
The interview adds the variable to the environment entry.
StestExecuteArgs

A variable that represents the arguments specified in the test description. The test
script obtains this value from the test description and provides it at runtime.

Interview implications:

The interview adds the variable to the environment entry.

6.2.1.2 Example 2

For this example, imagine a test suite that runs in a limited environment — it always
runs on a remote system using the JavaTest Agent in passive mode. The command
entry looks like this:

command. execute=com. sun.javatest.lib.PassiveAgentCommand
-host myHost -port 501
com.sun.javatest.lib.ExecStdTestSameJVMCmd
StestExecuteClass $testExecuteArgs

Although this command is quite long, because of its limitations most of it is
boilerplate; the only values that your interview has to gather from the user are the
arguments to the -host and -port options.

6.2.2 Test Environment Variables

The following variables are available for use in test descriptions if you use the
Standard Test Script or a test script derived from it. If you create a custom test script, it
can provide additional values.

Table 6-2 Test Environment Variables

Variable Name Definition

StestExecuteArgs The value for the executeArgs parameter from the test
description of the test being run

$testExecuteClass The value of the executeClass parameter from the test
description of the test being run

StestSource The value of the source parameter defined in the test description
of the test being run. Valid only when using the JavaTest harness
to compile a test suite. See Chapter 7.

6.3 Writing Your Interview

The previous two sections focused on the design of your configuration and your
interview; this section focuses on writing the code to implement the interview.

This section takes a high-level view of the process of writing configuration interviews;
complete, working code examples are provided separately from this manual. These
examples are described in the following subsections.

Creating a Configuration Interview 6-5

Writing Your Interview

6.3.1 Demo TCK interview

The Demo TCK is a simple test suite created to demonstrate the basic principles of
writing and running test suites. The Demo TCK was featured in Chapter 7. The source
code and More Info files for the configuration interview used in the Demo TCK test
suite are included in the JavaTest Architect's release at the following location:

jt_install\examples\javatest\simpleTags\src

6.3.2 Demo Interview

The Demo Interview is a self-documenting JavaTest interview that demonstrates all of
the interview question types, and other important interview techniques. A special
viewer allows you to view the source of a question as you run it. Follow these
instructions to start the Demo Interview:

6.3.2.1 Start the Demo Interview
1. Inacommand window make the following your current directory:

jt_install\examples\javatest\interviewDemo\demotck
2. Start the Demo Interview test suite

At the command prompt enter:

C:\>java -jar lib\javatest.jar -newDesktop

The -newdesktop option is used here to ensure that the JavaTest harness loads the
correct test suite. For information about JavaTest options, see the online help.

3. Choose Configure > New Configuration to start the interview

Follow the directions in the interview. You can also browse the source for the
interview at:

jt_install\examples\javatest\interviewDemo\src

6.3.3 Interview Classes
Interviews are built from the following classes:

com.sun.javatest.InterviewParameters

The top-level class used to build JavaTest configuration interviews. This class is a
special subtype of com.sun.interview. Interviewthat provides the API required by
the JavaTest harness. You do not normally use this class directly, see
BasicInterviewParameters below.

com.sun.interview.Question (and its subtypes)
Questions are the primary constituent elements of interviews. Questions provide text
and appropriate controls and serve as a place to store the user's response.

com.sun.interview.Interview
The base interview class. This class is used directly to implement sub-interviews (if

any).

com.sun.javatest.interview.BasicInterviewParameters

A subtype of com.sun. javatest.InterviewParameters that provides standard
questions for all of the "standard" configuration values (for example, which tests to
execute). You usually subtype this interview and expand it to obtain your specific test
environment information. The BasicInterviewParameters class is flexible, see
Section 6.3.9, "Putting it All Together" for details.

6-6 JavaTest Architect's Guide

Writing Your Interview

For more information about these classes, please refer to the API documentation
available in doc\javatest\api.

To create a configuration interview, you normally provide a subclass of the
BasicInterviewParameters class and add questions to the interview. This class is
responsible for collecting all test environment and standard value information and
providing it to the JavaTest harness.

Interviews can contain nested sub-interviews. The choice of whether to break
interviews into smaller sub-interviews is a design decision based on manageability —
generally interviews over 20 questions are candidates for this kind of hierarchical
organization. Interviews often contain a number of branches, and these branches are
also often good candidates for becoming sub-interviews. Sub-interviews directly
extend com.sun. interview. Interview.

6.3.4 The Current Interview Path

As mentioned in the previous section, interviews are often composed from
sub-interviews that branch off of the main interview. During the interview process,
branches of the interview can become inactive because the user changes the answer to
a question; the branch can become reactivated if the user later changes the answer
back. When a user completes a configuration interview, the answers to all questions
the user has ever answered are stored on disk in an interview data file with the .jti
extension. Because active and inactive questions are present in the interview data file,
whenever the JavaTest harness needs configuration information (for example, to run
tests or to display the environment) the JavaTest harness must determine the current
interview path.

To determine the current interview path, the JavaTest harness starts at the first
question and queries each question for the next question on the path, attempting to
reach the Final question (see Table 6-3 for a description of different question types). If
it does not reach the Final question, the interview is considered incomplete; the test
configuration cannot be exported and the test suite cannot be run until the missing
questions are answered. If the user attempts to run the test suite with an incomplete
interview, they are asked whether they want to complete the interview at that time —
if they do, the configuration editor is activated.

6.3.5 Determining the Next Question

Every question except the Final question must provide a getNext () method that
determines the next (successor) question. The successor question can be fixed
(constant) or determined based on the answer of a current question or on the
cumulative answers of multiple preceding questions. Questions can also provide no
successor question (by returning null). Lack of a successor question usually means
that the current question is unanswered or contains an error; in that case the interview
is incomplete.

You may add questions to the interview that gather no configuration information, they
are only used to determine the next question in the interview. These are typically
Choice questions used to determine a branch point in the interview. For example, you
might include a question that asks the user whether they want to execute the tests
locally (on the computer running the JavaTest harness) or on a remote computer using
the JavaTest agent. Depending on the answer, you branch to the questions that gather
information about how to run the JavaTest Agent.

Creating a Configuration Interview 6-7

Writing Your Interview

6.3.6 Error Checking

If the user provides an invalid answer to a question, the interview cannot proceed. You
use the boolean isvValueValid () method to check the validity of an answer before you
proceed to the getNext() method. You can handle error conditions in two ways: by
returning null which causes the configuration editor to display the "Invalid response"
message in red at the bottom of the question pane, or by making the successor
question an Error question that causes the configuration editor to display a pop-up
window with an error message that you provide (see ErrorQuestionin).

Generally, an "Invalid response" message is sufficient if the error is a simple one; for
example, if the user answers an integer question with a letter. However, for more
subtle errors (for example, if an answer conflicts with a previous answer), it is
necessary to provide more information to the user in a pop-up window.

6.3.7 Exporting the Test Environment

As previously mentioned, one of the goals of the interview is to produce a test
environment. The JavaTest harness uses the InterviewParameters class's getEnv ()
method to obtain the test environment.

If you extend BasicInterviewParameters to create your interview, it provides an
implementation of the getEnv () method that uses the values you export.

If, however, you extend InterviewParameters directly, you must provide a getEnv ()
method that gathers answers from the main interview and any sub-interviews and
returns an TestEnvironment object. The best and simplest way to implement the
getEnv () method is to use the interview's export () method, which in turn calls the
export () method of each question on the current interview path that provides one.
Note that an interview does not normally override/provide export () — it is provided
automatically. When it is time to export the test environment, the getEnv () method
calls export () to gather their test environment information. These questions export
their values into a Map object from which you can construct a test environment. For
detailed examples see the source code examples in the jt_install\examples directory.

When exporting the test environment, you can use the getTestSuite () method to get
information about the test suite. This information (for example, the location of the test
suite) is often useful in building test environment entries.

Note: Itis generally a very good idea for the controlling question to
precede the questions that collect a given value, because the question
text can provide information to the user about the series of questions
coming up.

6.3.8 Question Types

The Question class is a base class that provides the different types of questions that
you use to build your interview. You need not concern yourself about the GUI layout
of a question; the configuration editor automatically determines the presentation of
each question based on the question's type.

The following table lists all of the question types and shows (when applicable) how
they are represented in the configuration editor.

6-8 JavaTest Architect's Guide

Writing Your Interview

Table 6-3 Question Types

Question
Type Description GUI
ChoiceArray A set of independent boolean choices Set of named checkboxes
[Brror [w failed
[“Tnot run [passed
Choice A set of alternative choices Combo box or radio buttons, depending on the number of
choices
) D 1.1, JOH 1.1
T JDH 1.2, JOK 1.2
® LJDK 1.3, JOK 1.3
Error A pseudo question used to present Pop-up dialog box
error messages
File A single file Type-in field with associated file chooser
e —
FileList A set of files A list box with an associated file chooser
Final 1. A pseudo question that marks Text only, no user input
successful completion of the interview
2. A pseudo question that marks the For internal use only; never displayed
end of a sub-interview
Float A floating point value (optional Either slider or type-in field depending on the range
min./max. values)
1143
InetAddress An IPv4 or IPv6 address Either four integer fields, each of value 0 - 255, or a type-in
field with a lookup button.
[12a [[144 [[252 [[17
|FFFF::1EI.5.32.15 | Lookup
Int An integer value Either slider or type-in field depending on the range
40 |
Interview A pseudo question used for For internal use only; never displayed

sub-interviews; see
interview.callInterview(...) in the
API

Creating a Configuration Interview 6-9

Writing Your Interview

Table 6-3 (Cont.) Question Types

Question
Type Description GUI
List A list of complex values built from a A list box that displays the current contents of the list. The
set of questions. following questions add or edit a selected value in the list.
This sequence is automatically terminated by a
corresponding marker question.
Null Expository text; generally used to Text only; no user input

introduce a set of questions

Properties Enables configuring multiple
key-value pairs in a single question.

String String information

Type-in field that optionally includes suggested answers

|- classpath o -

StringList A list of strings

A list box

Tree A tree selection

A tree selection GUI based on JTree

3 BigMum

3 lists

@] DoublyLinkedList
AppendTestjava
EqualsTestjava
InserdTestjava
RemoveTestjava

|
&
9

il

YesNo A convenience choice question for
Yes/No answers

Radio buttons

I Yes @ No

6.3.8.1 Designing Your Questions

Be sure to break down complex environment entries into simple values that can be
answered by a single question, then build up the entry from those values. For
example, if you are creating an environment entry that requires the name of a remote
host and its port address, it's best not to ask for both pieces of information in a single
question, but to ask for each piece of information in a separate question.

For example, the following entry (previously seen in Section 6.2.1.1, "Example 1")
could be built up from a number of interview answers:

command. execute=com. sun.javatest.lib.ExecStdTestOtherJVMCmd
C:\JDK\bin\java.exe -classpath StestSuiteRootDir\classes
StestExecuteClass StestExecuteArgs

6-10 JavaTest Architect's Guide

Writing Your Interview

= Questions to determine whether the user plans to run the test locally or on a
remote computer, and whether they plan to run the tests in the same JVM as the
JavaTest Agent

= A question to determine the path of the Java runtime command
= One or more questions to determine the class path

= Questions that determine the path separator on the test platform

6.3.8.2 Landing Point Questions

You might find it convenient and useful to include questions that do not gather any
information, but rather provide space between sections of the interview or provide a
frame of reference to the user about where they are in the interview. You can use the
Null question type for this type of interview question. In some cases you can use
landing points as bridges between the main interview and sub-interviews.

6.3.8.3 Sub-Interviews

If your interview contains a large number of questions, you can break it up into
sub-interviews. To create a sub interview, create a subtype of an Interview class. For
example:

class MySubInterview extends Interview {

}

The constructor should take a reference to the parent interview as an argument, and
this reference should be passed to the superclass constructor. This identifies this
interview as a sub-interview of the parent interview. For example:

MySubInterview (MyParentInterview parent) {
super (parent, "myTag");

}

In the constructor, use the setFirstQuestion method to specify the first question in
the sub-interview. Subsequent questions are found in the normal way using the
getNext method. For example:

MySubInterview(Interview parent) {
super (parent, "myTag");
setFirstQuestion (gIntro);

}

By default, a sub-interview shares a resource file and More Info help files (see

Section 6.4, "Creating Question Text and More Info") with its parent interview (another
reason to pass in that parent pointer). You can choose to use a different resource file
and HelpSet if you want, although that is not typical for simple or moderately
complex interviews. See the API specifications for setResourceBundle and setHelpSet
for details.

Creating a Configuration Interview 6-11

Writing Your Interview

At the end of the interview, have the last question return an instance of a
FinalQuestion. This FinalQuestion is only a marker and does not have any question
text, More Info, or a getNext method. For example:

Question gXXX = {
Question getNext () {
return gEnd;
}
}i
Question gEnd = new FinalQuestion(this);

For the parent interview to use a sub-interview, it must first create an instance of the
sub-interview. This should be created once and stored in a field of the interview. For
example:

Interview iMySubInterview = new SubInterview(this);

To call the sub-interview, use callInterviewin a getNext method. The callInterview
method takes two parameters — a reference to the interview to be called, and a
follow-on question to be called when all the questions in the sub-interview have been
asked. When the JavaTest harness sees the FinalQuestion at the end of a
sub-interview, it goes back to where the interview was called and automatically uses
the follow-on question that was specified there. For example:

Question getNext () {
return callInterview(iMySubInterview, gFollowOnQuestion)

}

6.3.8.3.1 Flow Charts Experience has shown that flow charting tools can be very
helpful if the interview becomes large and complicated. These tools can help you track
the logical flow of the interview and keep track of sub-interviews.

6.3.9 Putting it All Together

To write a configuration interview, you must provide a class that implements the
abstract class InterviewParameters. This class provides the JavaTest harness access to
both the environment values and to the standard values. Standard values are
configuration values used by the JavaTest harness to determine:

s Which tests in the test suite to run
s How to run them

To simplify this task, the JavaTest harness provides an implementation called
BasicInterviewParameters that does a lot of the work for you. This class provides a
standard prolog, questions for all the standard values, and a standard epilog. All you
have to do is to implement the methods and questions for your test environment.
However, you can also customize the other parts of the interview if you wish to.

6-12 JavaTest Architect's Guide

Writing Your Interview

The questions in BasicInterviewParameters are divided into the following groups:

Table 6—4 Interview Question Groups

Group Description

prolog Identifies the interview and provides helpful information to the user about the
interview such as how many questions the average interview consists of and
how to proceed. Optionally, provides questions about the environment name
and description.

environment The questions you write to gather information for the test environment

tests Allows users to specify sub-branches of test trees as a way of limiting which
tests are executed during a test run

keywords Allows uses to filter tests based on keyword values. Test suites can associate
keywords with tests so that the keywords can be used as a basis for including
and excluding tests from test runs.

prior status Allows users to include and exclude tests based on their outcome in a prior
test run. Test can be excluded and included based on the following status
values: passed, failed, not run, error (test could not be run).

concurrency Allows users to run tests concurrently on multi-processor computers

timeout factor A value that is multiplied against a test's default timeout if a larger timeout is
needed. The default timeout is 10 minutes.

epilog Informs the user that they have completed the interview. May also provide
information about how to run tests.

The groups of questions are presented in the order shown. Each group provides a
method that identifies the first question in its group. The last question in the group
uses another method to determine the next question. By default, the next question is
the first question of the following group.

Figure 6-1 shows the "first" and "next" questions for each group of questions.

Creating a Configuration Interview 6-13

Writing Your Interview

Figure 6—-1 Interview Question Group First/Next Question Methods

(Determined by setFirstQuestion (XXX))

Prolog e le .
getPrologSuccsessorQuestion())
getEnvFirstQuestion()
Environment LA
getEnvSuccessorQuestion())
getTestsFirstQuestion ()

Tests s s
getTestsSuccessorQuestion())
getKeywordsFirstQuestion()

Keywords oo
getKeywordsSuccessorQuestion())
getPriorStatusFirstQuestion()
Prior Status s
getPriorStatusSuccessorQuestion())
getConcurrencyFirstQuestion ()
Concurrency e e
)

getconcurrencySuccessorQuestion |

) getTimeoutFactorFirstQuestion()
Timeout Factor . s s

getTimeoutFactorSuccessorQuestion()

. getEpilogFirstQuestion()
Epilog

(End of Interview)

In most cases you only need to concern yourself with the environment group. For all
the other groups, BasicInterviewParameters provides standard questions. If you find
that you must customize the standard questions, you can replace the questions for a
group by redefining get XxxFirstQuestion() to get your custom questions. In this
case, you must also override the methods that provide access to these configuration
values. See the API for more details.

If you find that any of the standard questions do not apply to your test suite, you can
override the get XxxFirstQuestion() question of any group you wish to skip so that it
directly returns that group's get XxxSuccessorQuestion (). This circumvents the code
that executes the group's questions and jumps directly to the next group. For example,
if your test suite does not use keywords, you can override the
getKeywordsFirstQuestion () method and implement it so that it returns
getKeywordsSuccessorQuestion () as shown in Figure 6-2, "Skipping the Keywords
Standard Question".

6-14 JavaTest Architect's Guide

Writing Your Interview

Figure 6-2 Skipping the Keywords Standard Question

getTestsFirstQuestion()

Tests * e 0
getTestsSuccessorQuestion ()

getKeywordsFirstQuestion ()
Keywords * s)
)

getKeywordsSuccessorQuestion (

getPriorStatusFirstQuestion()
Prior Status R
getPriorStatusSuccessorQuestion()

6.3.9.1 Providing the Prolog

The standard prolog always contains a standard welcome question; it also contains
optional environment name and description questions. By default, the name and
description questions are not displayed. You can enable the name and description
questions by calling the setNameAndDescriptionInPrologEnabled method in your
interview.

If the standard prolog questions do not meet your needs, you can override the prolog
with one of your own. Specify your prolog by means of the standard
setFirstQuestion() method of the interview. At the end of your prolog you must call
the getPrologSuccessorQuestion () method to determine the first question of the next

group.

6.3.9.2 Providing the Environment Group

This section describes the basic tasks necessary to write the environment portion of the
interview. Unless your test suite requires you to make changes to the standard
questions (prolog, standard values, epilog), the steps in this section describe what is
required for you to produce your interview.

Put the group of questions that gather information for your test environment in your
interview class. Remember to implement the getEnvFirstQuestion method to identify
the first question of the group.

You must link the last question in the environment group to the rest of the interview
(the standard values and epilog). In the getNext () method of the last question of your
environment group, use getEnvSuccessorQuestion () to determine the next question
in the interview — BasicInterviewParameters provides the rest of the interview.

Finally, you must implement the getEnv () method. The getEnv () method returns a
TestEnvironment created from the responses to the questions. The easiest way is to call
the interview's export method. The interview's export method calls the export
methods for the questions on the current interview path. These questions export their
values into a Map object from which you can construct a test environment. For detailed
examples see the source code examples in the jt_install\examples directory.

Creating a Configuration Interview 6-15

Creating Question Text and More Info

6.3.9.3 Providing the Resource File for the Interview
In the constructor for your interview class, call:

setResourceBundle (bundle_name) ;

For example:
setResourceBundle("118n");
This uses a file called 118n.properties (or a localized variant) in the same directory as

the interview class. See Section 6.4, "Creating Question Text and More Info" below for
more information.

6.3.9.4 Providing the More Info Help for the Interview

In the constructor for your interview class, call:

setHelpSet (moreInfo_helpset_name) ;

For example:
setHelpSet ("moreInfo\demotck.hs");
This uses a HelpSet called demotck.hs (or a localized variant) in the moreInfo

directory located in the directory that contains the interview class. See Section 6.4,
"Creating Question Text and More Info" for more information.

6.4 Creating Question Text and More Info

As you saw when you ran the tutorial in Chapter 2, the configuration interview is
presented to the user in the configuration editor. The question text and answer
controls are presented in the Question pane, and information that helps the user
answer the question is presented in the More Info pane.

Figure 6-3 The JavaTest Configuration Editor: Question and More Info Panes

-al Configuration Editor: D:\javatest_test\DLPTestConfig,jti @
File Bookmarks Search View Help
Welcome!) i)) Click the Add button to activate a |"
Configuration Name Specify Known Failures List Files file chooser with which you B
Description select a known failures list file

How to Run Tests .)) you have created previously.
Iohva Vishual Machine Specify the files that make up the known failures you wish to Multiple files can be added.
TestVerboseness use. Known failure list files
Parameters... conventionally use the extension
Specify Tests to Run? Files: _E£L.
How to Specify Tests - - - -
Tasts ta Run D:\javatest_workilists\myKnownFailureList kil Add Remave Selectan item in
Specify an Exclude List? Remove the list and click
Specify a Known Failures List? U Remaove
Up
Specify Status? Down Up Selelc’[an |tem in
Concurrency the list and ;Ilck
Time Factor Up t‘_j move it up
Congratulations! the list
Dawn Select an itemin
the list and click
Configuration complete! [4 Back J [Mext & J [Last &1 J [Done J Down to move it L/

down the list [r

6-16 JavaTest Architect's Guide

Creating Question Text and More Info

The following sections focus on the text portions of the interview — the question text
and the More Info help.

6.4.1 Writing Style

The style that you use for writing question text is very important. Experience has
shown that it is very important to make the question text as clear, concise, and
unambiguous as you can. Always try to use imperative statements, direct questions,
and short explanations. If possible, have a proficient writer edit the questions to ensure
readability and consistency.

Only put question text in the question pane. Information that helps the user answer
the questions, including examples, should be provided in the More Info pane. The
following figure shows a question where examples and other helpful information are
included in the question pane with the question text:

Figure 6—4 Question Without More Info Help

Epecily Ine palh of e Java Vinue
echine you wish lo Use to sxecute the

Iesls.

Far example:

Jdk inscall ddoibindiava
Jjak install dirdre'dava

Tidpe i path in the lexd Box, of click
Brawss 1o woke a file choaser 1o make
your selection,

The following example shows how this question can be improved by reorganizing and
slightly rewriting the question text and moving the examples and extra information to
the More Info pane:

Figure 6-5 Question With More Info Help

Specify [path of the Jeva Virusl This s the gath of the Java runlime
Néaching you wish o use o sxecute e Sysiem you wish 1o rum your lesls. For
lesls, example:

Jax_ingtall

jdk_inetall g

&
bt]

Typar 1hee paliy in the leed Box, or elick
i b 1| Browse to bwake & fle chooses 1o make
| | Browse |1l youw selection,

There are a number of advantages to using the More Info pane to provide examples
and other explanatory information:

= Itallows you to keep the questions simpler. As users become familiar with the
interview, they may no longer need the additional information to answer the
questions. Displaying the extra information to the More Info pane moves it out of
the way.

s The HTML-based More Info pane offers richer formatting, including: images,
fonts, and tables

s The More Info pane can be scrolled to enable longer discussions and examples

Creating a Configuration Interview 6-17

Creating Question Text and More Info

6.4.2 Creating Question Text and Keys

Every interview question has its own unique key. The key is based on a name assigned
by you and should uniquely identify the question with the interview. Normally, keys
are of the form:

interview_class_name . question_name

You specify the question_name when you create the question, the interview_class_name is
automatically added for you.

Question keys are used to identify question titles and text in resource files. The title of
the interview and the title and text for every question in the interview is located in a
Java resource file. The file contains the following types of elements:

s The title of the full interview

= A title for each question of the form: question_key . smry

» The text for each question of the form: question_key . text
= Additional entries for choice items that must be localized

For every interview question you create you must add corresponding .smry and . text
entries into the resource file.

The following example shows a fragment of the Demo TCK configuration interview
resource file:

title=Demo Interview Configuration Editor

AgentInterview.mapArgs.smry=Agent Map File

AgentInterview.mapArgs.text=Will you use a map file when you run the JavaTest Agent?
DemoInterview.name.smry=Configuration Name

DemoInterview.name.text=Please provide a short identifier to name the configuration you are
creating here.

You can find the full Demo TCK configuration interview resource file in:
jt_install\examples\javatest\simpleTags\src\il8n.properties

The JavaTest harness uses the standard rules for accessing resource files. You can
provide alternate versions for other locales by creating additional files in the same
directory as 118n.properties with names of the form: 118n_locale. properties. See the
Java SE platform resource file specification for more details.

6.4.3 Creating More Info

The JavaTest configuration editor enables architects and technical writers to present
supplemental information for every question in the interview in the More Info pane.
This information may include background information about the question, and
examples and suggestions about how to answer them.

The More Info pane is implemented using an embedded JavaHelp window. The
JavaHelp viewer supports HTML 3.2 with some additional extensions. For information
about the JavaHelp technology, see: http://java.net/projects/javahelp

Note: The JavaHelp libraries required to display More Info help are
included in javatest.jar and should not be included separately.

The following procedures describe how to set up the More Info system for your
interview and how to add More Info topics as you add questions to the interview.

6-18 JavaTest Architect's Guide

http://java.net/projects/javahelp

Creating Question Text and More Info

6.4.3.1 Set Up the More Info System

Create the directories and files used by the More Info system:

1.

Create a top-level directory called moreInfo

The moreInfo directory should be located in the same directory as your interview
class file(s).

Create directories named default and images in the moreInfo directory

The default directory contains the default localization. If your test suite is ever
localized, the other locales can be added beside the default directory. The images
directory contains any images you may use in the More Info help.

Copy the Demo TCK HelpSet file to your moreInfo directory and rename it
appropriately (retaining the .hs extension)

The HelpSet file is the XML file that the JavaHelp libraries look for to find all of
the help information that defines the HelpSet. Rename it to reflect the name of
your test suite. When you write your interview you specify the path to your
HelpSet file.

The path to the Demo TCK HelpSet file is:

jt_install\examples\javatest\simpleTags\src\moreInfo\demotck.hs

Edit the HelpSet file
The Demo TCK HelpSet file looks like:

<?xml version='1.0' encoding='IS0-8859-1" ?>
<!DOCTYPE helpset

"http://java.sun.com/products/javahelp/helpset_1_0.dtd">
<helpset version="1.0">
<l-- title -->

<title>DemoTCK Configuration Interview - Help</title>
<!-- maps -->

<maps>

<mapref location="default/map.xml"/>

</maps>

</helpset>

Edit the contents of the <title> tag to reflect the name of your test suite.
Copy the Demo TCK map file to the default directory

The JavaHelp map file is an XML file that contains a <mapID> entry for every More
Info topic. The JavaHelp system uses it to assign an ID to every HTML file.

Copy the Demo TCK style sheet to the default directory

Use the CSS, level 1 style sheet from the Demo TCK example for your More Info
topics. Feel free to change it to suite your needs.

The path to the Demo TCK style sheet file is:

jt_install\examples\javatest\simpleTags\src\moreInfo\default\moreInfo.css

6.4.3.2 Create HTML Topics for All Interview Questions

For every question in your interview, you should create an HITML topic file and add
an entry for that topic in the map file. The following steps describe how to do both:

1.

Create a map entry for the More Info topic

Creating a Configuration Interview 6-19

Creating Question Text and More Info

Every More Info topic file must have a corresponding <mapID> entry in the

map . xml file. The JavaHelp system uses the IDs created in these files. The target
attribute defines the ID, and the url attribute defines the path to HTML topic file
(relative to the map file). The following example shows the map file for the Demo
TCK test suite that you copied to your interview in a previous step.

<?xml version='1.0"' encoding='IS0-8859-1' 2>
<!DOCTYPE map
PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 1.0//EN"

"http://java.sun.com/products/javahelp/map_1_0.dtd">

<map version="1.0">

<!-- More Info IDs -->
<mapID target="DemoTCKParameters.cmd Type" url="cmdType.html" />
<mapID target="DemoTCKParameters.testVerboseLevel"

url="testVerboseLevel .html" />

<mapID target="DemoTCKParameters.desc" url="desc.html" />

<mapID target="DemoTCKParameters.envEnd" url="envEnd.html" />

<mapID target="DemoTCKParameters.epilog" url="epilog.html" />

<mapID target="DemoTCKParameters.jvm" url="jvm.html" />

<mapID target="DemoTCKParameters.name" url="name.html" />

<mapID target="DemoTCKParameters.prolog" url="prolog.html" />
</map>

Replace the target and url attributes to match your More Info topics. Remove
any extra entries and add new entries as required.

2. Create an HTML More Info topic file in the default directory
Copy one of the Demo TCK More Info files from:

jt_install\examples\javatest\simpleTags\src\moreInfo\default
and use it as a template. Be sure to include the <1ink> tag that references the style
sheet.

Experience has shown that it is helpful for the architect to create "stub" files for
every question in the interview. These files are later completed by a technical
writer and can provide information that the writer can use.

6.4.3.3 Customizing Standard Question More Info

The JavaTest package includes default versions of the More Info HTML topics that
describe the standard interview questions in both Question mode and Quick Set mode.
However, should you wish to customize the content for some or all of these questions,
you can override the defaults with files of your own. The following steps describe how
to substitute your More Info topics for one of the standard interview questions:

1. Determine the More Info ID for the question

You will override the More Info ID in your interview HelpSet. To do so, you have
to determine the ID name of the standard question.

a. Open the configuration editor window to the question you wish to override
Make sure that you establish cursor focus in the question pane.
b. Press Alt-Shift-D

This opens the Configuration Editor Details Browser. The More Info ID is
listed in the "id" field.

2. Create a map entry in your map file as described in the previous section with the
same name as the More Info ID you found in step 1.

6-20 JavaTest Architect's Guide

Creating the JAR File

For example:

<mapID target="TestsInterview.needTests" url="my_needTests.html" />
Note that the URL must contain the path to a file you create and must be included
in your interview HelpSet.

3. Create your custom version of the HTML More Info topic

Be sure that you create it at the location you specified in the map file URL field.

6.5 Creating the JAR File

After you have created your interview, you must package it into a JAR file for
inclusion with your test suite. If you include other custom components with your test
suite, they can be packaged together with the interview. See Section 4.2.2, "The Test
Suite JAR File" for more information. You can also use the following file as an example:

jt_install\examples\javatest\simpleTags\demotck\1lib\jtdemotck.jar
After you create the JAR file, put it in the test suite's 11ib directory and add it to the
classpath entry in the testsuite. jtt file.

Creating a Configuration Interview 6-21

Creating the JAR File

6-22 JavaTest Architect's Guide

Part li

Advanced Topics

The chapters in this part of the JavaTest Architect's Guide describe advanced features
of the JavaTest harness that allow you to customize your test suite.

7

Compiling Test Suites

Depending on how you design your test suite, you may be able to use the JavaTest
harness to compile your tests when building your test suite. The instructions below
describe how to compile tests if your test suite uses the Simple Interview and Standard
Test Script (StdTestScript) as described in Chapter 12. To use the JavaTest harness to
compile your tests you must:

» Specify the source files required to compile them in the tests' test descriptions

= Set two system properties on the JavaTest command line

7.1 System Properties

The following table describes the system properties used in compilation:

Table 7-1 System Properties Used in Compilation

System Property Description

SimpleInterviewParameters.mode Specifies the operating mode used by this configuration. The valid
values are:

certify Executes test suite classes (assumes that tests are already compiled)

precompile Compiles the tests

developer Compiles the tests and runs them

command. compile.java Specifies the command that the JavaTest harness uses to compile the

tests.

These properties are set on the JavaTest command line using the -D option, usually
when running the JavaTest harness in batch mode in a shell script or batch command
(see the JavaTest online help for details about batch mode).

You can use the following command lines as templates for compiling the simple test
suite you created in Chapter 4:

Windows:

java -DSimplelInterviewParameters.mode=precompile
-Dcommand.compile.java='com.sun.javatest.lib.ProcessCommand

javac -d StestSuiteRootDir\classes -classpath StestSuiteRootDir\classes
StestSource -jar javatest.jar -batch -testsuite ts_dir
-workdir -overwrite work dir -report report_dir

UNIX:

Compiling Test Suites 7-1

System Properties

java -DSimplelInterviewParameters.mode=precompile
-Dcommand.compile.java="'com.sun.javatest.lib.ProcessCommand

javac -d S$testSuiteRootDir/classes -classpath $StestSuiteRootDir/classes
StestSource -jar javatest.jar -batch -testsuite ts_dir
-workdir -overwrite work_dir -report report_dir

Note: Line breaks are added here to improve readability; your
command line should be a single line that contains no line breaks.

Table 7-2 describes the parts of the command:

Table 7-2 Compilation Command Components

Component Description

com.sun.javatest.lib.ProcessCommand The library command used to run processes (in this case the Java
compiler) on the same machine as the one the JavaTest harness is
running. See for more information about this and other library
commands.

$testSuiteRootDir The JavaTest variable that represents the root directory of the test
suite. This value is provided by the JavaTest harness when the
command is executed. This value is taken from the path you
specify to the -testsuite option.

$testSource The JavaTest variable that represents the test source file to
compile. This value is provided by the JavaTest harness.

-batch Specifies that the JavaTest harness be executed in "batch" mode.
When run in batch mode the JavaTest GUI is not started. See the
JavaTest online help for more information.

-testsuite The fully qualified path name of the top-level test suite directory.

-workdir -overwrite work_dir Specifies the name of the work directory to use for the
compilation. The -overwrite option causes the JavaTest harness
to first delete (if it exists) and create the specified work directory.
It's generally a good idea to create fresh results each time you
recompile.

-report report_dir Specifies the name of the directory where reports are to be
written. It is best to specify report_dir as a simple file name (no "\"
or "/" characters; this causes the reports to be written in work_
dir\reports\report_dir.

7-2 JavaTest Architect's Guide

8

The TestSuite Object

The JavaTest harness uses the TestSuite object as a portal to information about the
test suite; whenever the JavaTest harness requires information about the test suite, it
queries the TestSuite object. JavaTest reads the testsuite.jtt file to determine the
class name and class path for the test suite; JavaTest then uses those properties to
instantiate the TestSuite object. By default, the TestSuite object also gets a number of
other standard properties from the testsuite.jtt file. As test suite architect, you
create and maintain your TestSuite class and the testsuite.jtt file.

8.1 The testsuite.jtt File

The testsuite.jtt file is located in the top-level directory of the test suite and is a
registry of information about the test suite that includes the paths to various JavaTest
components as well as other static information about the test suite. The testsuite.jtt
file generally contains at least two entries that tell the JavaTest harness how to start the
TestSuite class:

= A testsuite entry that specifies the name of the TestSuite class and any
arguments the class requires

= A classpath entry that specifies the class path on which the main TestSuite class
can be found (typically, a JAR file that contains test suite-specific components).
This entry is required if the TestSuite class or any other classes the TestSuite
refers to are not located within javatest.jar.

The testsuite.jtt file usually contains other entries that specify information about
the test suite; the JavaTest harness reads the file and passes the information to the
TestSuite class when it starts. Table 8-1, " testsuite.jtt Properties" describes the
standard properties used by the TestSuite and may be specified in the testsuite.jtt
file:

Table 8—1 testsuite.jit Properties

Property Description

additionalDocs An optional list of resource names that identify JavaHelp helpsets for
documents to be added to the JavaTest Help menu. The content of the
helpsets must be provided on the test suite classpath (see classpath above).

Example: additionalDocs=jck.hs releasenotes.hs

The TestSuite Object 8-1

The testsuite.jtt File

Table 8—1 (Cont.) testsuite.jtt Properties

Property

Description

classpath

Extends the class path beyond javatest.jar. The class path is used to
locate JavaTest plug-in classes (script, finder, interview) in JAR files, Zip
files, or directories. You must separate entries with white space; relative
paths are relative to the test suite root directory. If not given, classes must
be located on the main JavaTest class path (not recommended). Always
use "/" as the file separator.

Default: Nothing in addition to javatest.jar
Example: classpath=1ib/jtdemotck.jar

env.tsRoot

A specialized entry to allow a legacy (prior to JavaTest version 3.0) test
suite to override the values of $testSuiteRoot and $testSuiteRootDir
that get set in the environment used to run tests. Most test suites should
not need to set this property.

finder

The name of the test finder class and arguments (if any). This property is
used by the default implementation of TestSuite.createTestFinder to
determine the test finder to be used to locate tests. This property should be
of the form "classname args", where classname identifies the name of the test
finder class itself; any arguments are passed to the test finder's init
method.

Example: testsuite=com.sun.javatest.finder.TagTestFinder

The default implementation of TestSuite.createTestFinder uses the
following logic to determine the test finder:

= Ifatestsuite.jtd fileis found in the test suite tests/ directory, or
in the location specified in the testsuite.jtd entry of the testsuite.jtt
file, the test finder is assumed to be
com.sun.javatest.finder.BinaryTestFinder (which reads the
testsuite.jtd file)

= Ifafinder entry is found in the testsuite. jtt file, it is used to
determine the test finder

= If neither of the preceding are found, the default is to use
com.sun.javatest.lib.HTMLTestFinder

See the description of the testsuite.jtd entry below.

id

A unique identifier composed of letters, digits, underscore, minus, and
hyphen used to identify a specific version of a test suite. The JavaTest
harness uses this property to ensure that component versions are
compatible. By convention, the name is composed of the following parts:
technologyNameTCK _version.

Example: id=DemoTCK_tags_1.0

initial.jtx

The path to the exclude list shipped with the test suite. If the path is
relative, it is evaluated relative to test suite root directory. Always use "/"
as the file separator. The recommended location for this file is in the test
suite 1ib/ directory.

Example: initial.jtx=1ib/my_testsuite.jtx

interview

The name of the interview class and arguments (if any). The default
implementation of TestSuite.createInterview uses this property to
determine the interview to use to obtain configuration information
required to run the tests. The property should be of the form "classname
args", where classname identifies the name of the interview class itself; any
arguments are passed to the interview's init method.

Example: interview=com.sun.demotck.DemoInterview

8-2 JavaTest Architect's Guide

The testsuite.jtt File

Table 8—1 (Cont.) testsuite.jtt Properties

Property

Description

keywords

The list of valid keywords for this test suite.

If the entry is present and contains a list of keywords, the keywords are
added to the configuration editor keywords combo box.

If the entry is omitted, it is taken to mean "unspecified" — in which case
the user can use the configuration editor to specify keywords, but the
configuration editor keywords combo box is disabled.

If the entry is present but empty; it is taken to mean "none" — in which
case the configuration editor does not present the keyword questions and
tabs to the user.

latest.jtx

Specifies the location (as a URL) where the latest exclude list can be
obtained. The http: and file: protocols are supported; authentication
access is not yet supported.

Example: latest.jtx=http://my_company.com/support/exclude

logo

Specifies the location on the class path of an image to be used as the test
suite logo. The path is evaluated relative to the test suite root directory.
This logo is displayed in the JavaTest Quick Start wizard.

name

The name of the test suite. This property is a string of up to 80 characters.
By convention the name is composed of the following parts:

technology_name TCK version | Test Suite [(additional text)]
Example: name=DemoTCK 1.0 Test Suite (Tag Tests)

script

The name of the test script class and arguments (if any). This property is
used by the default implementation of TestSuite.createScript to
determine the script to run the tests. The value should be of the form
"classname args", where classname identifies the name of the Script class
itself; any arguments are passed to the Script's init method.

If this property is not specified, the default implementation of
TestSuite.createScript reverts to the behavior defined for the JavaTest
harness, version 2. Relying on this behavior is not recommended.

Example: script=com.sun.javatest.lib.StdTestScript

serviceReader

Enables service management for the test suite. See Chapter 13 for detailed
information about the service management feature.

testCount

The number of tests in the test suite. This property gives the JavaTest GUI
a hint as to how many tests are in the test suite.

Example: testCount=450

tests

By default, the JavaTest harness looks for test source files and test
descriptions in the tests/ directory in the test suite root directory. If you
locate your test sources and test descriptions in a different directory, you
must specify it using this property.

Example: tests=apitests

testsuite

Optional class name for a custom TestSuite class. The value should be of
the form "classname args", where classname identifies the name of the
TestSuite class itself; any arguments are passed to the TestSuite init
method. The TestSuite class is used to access virtually all information
about the test suite. Defaults to com.sun.javatest.TestSuite, which
provides default behavior in concert with the testsuite. jtt file.

Default: testsuite=com.sun.javatest.TestSuite

The TestSuite Object 8-3

Overriding Default Methods

Table 8—1 (Cont.) testsuite.jtt Properties

Property Description
testsuite.jtd Can be used to override the default location of the BinaryTestFinder data
file.

By default the TestSuite class looks for a file named testsuite.jtd in the
directory specified by the "tests" property in testsuite.jtt. To override
the default, specify the name and location of the BinaryTestFinder data file
relative to the top-level directory of the product (location of the
testsuite.jtt file).

Example: testsuite.jtd=tests/testsuite.jtd

tmcontext Optional class name for a custom ContextManager class. The value should
be of the form “classname”, where class name identifies the name of the
ContextManager class itself. The Test Manager (ExecTool) will query the
test suite for this value as it builds the GUI. Defaults to
com. sun.javatest.exec.ContextManager, which provides the default
behavior of the harness. See Chapter 13 for more information on
customization.

Default: tmcontext=com.sun.javatest.exec.ContextManager

Note: The testsuite.jtt fileis a Java property file and follows all
the standard rules for Java property files defined in
java.util.Properties.

The following example shows the testsuite.jtt file that is included with the tag
example test suite.

Test Suite properties file for DemoTCK test suite with
tag-style tests

name=DemoTCK 1.0 Test Suite (Tag Tests)
1d=DemoTCK_tags_1.0
classpath=1ib/jtdemotck.jar

finder=com.sun. javatest.finder.TagTestFinder
script=com.sun.javatest.lib.StdTestScript
interview=com.sun.demotck.DemoTCKParameters

8.2 Overriding Default Methods

Although by default these properties are obtained from the testsuite.jtt file, you
can override this behavior in your TestSuite class. By overriding the methods that get
these properties, you can specify your own properties directly in the TestSuite class
and/or manipulate the properties from testsuite.jtt as you wish. This is generally
not necessary, but it is an option. Some reasons why you might choose to do this:

= To hide or protect some of the properties
= To determine some of these properties programmatically at runtime

To customize the TestSuite class, you must extend the base
com.sun. javatest.TestSuite class. For details about which methods you may choose
to override, see the TestSuite API documentation.

8-4 JavaTest Architect's Guide

9

Test Finder

After the TestSuite object is created, the JavaTest harness starts the test finder for the
test suite. The TestFinder class creates the object responsible for finding and reading
test descriptions — information required to execute a test is provided in its test
description. At a basic level, the TestFinder class does the following:

1. Given an object (for example, a file) that contains a test description, the test finder
uses the read () method to read the object. The read () method in turn calls the
scan () method that must be provided by the test finder. The scan () method scans
the file object for a test description or any references to other files that must be
read (for example, if the file object is a directory).

2. The test finder creates one TestDescription object per test from the information it
reads from the test description.

3. The getTests () method returns any test description information that it finds, and
the getFiles () method returns a list of any other files that it must read to locate
other tests.

9.1 Test Finder Subtypes

Because test descriptions can be embodied in a wide variety of formats, you can
extend the base TestFinder class, customizing the read () method to meet the test
suite's needs. The JavaTest Architect's release provides library classes that you can use
directly; however, these classes do not provide much error checking. You can
conveniently subtype a library class to provide additional validity checking.

9.1.1 Tag Test Finder

The TagTestFinder extends the TestFinder class. This class is also provided so that
you can further extend and customize it to your own needs.

The TagTestFinder looks for test description information in specially commented tags
in Java programs and shell scripts. The TagTestFinder recursively scans test
directories looking for files with the . java extension and extracts test description
information embedded directly in the test source files using specialized tags. These
tags are located with Java language comments and begin with the @ character. The
following figure shows an example of a file that contains tag test description entries.

@test

@bug 4105080

@summary Activation retry during a remote method call

to an activatable object can cause infinite recursion in
some situations.

* * * * *

Test Finder 9-1

Test Finder Subtypes

* @author John Brown

* @bug 4164971

* @summary Allow non-public activatable class and/or
* constructor Main test class has a non-public

* constructor to ensure functionality is in

* place

* @library ../../../testlibrary

* @build TestLibrary RMID

* @build ActivateMe CheckActivateRef_Stub CheckActivateRef
* @run main/othervm/policy=security.policy/timeout=240

*/

import java.io.*;
import java.rmi.*;
import java.rmi.server.*;

public class CheckActivateRef
extends Activatable
implements ActivateMe, Runnable

private CheckActivateRef (ActivationID id, MarshalledObject obj)
throws ActivationException, RemoteException
{
super (id, 0);
}
[...]

This format has the advantage of being very convenient for the test developer.

Examples of tag test descriptions can be found in jt_
install\examples\javatest\simpleTags\demotck\tests.

9.1.2 HTML Test Finder

An example of a test finder that reads HTML test descriptions is the JCKTestFinder —
a subtype of the HIMLTestFinder class that provides additional error checking. The
JCKTestFinder is described in some detail here to demonstrate how a test finder
works. HTMLTestFinder is provided with the JavaTest harness so that you can further
extend it and customize it to your own needs.

Test suites that use the HTMLTestFinder class use HTML-based test descriptions to
provide the information required to execute their tests. Distributed throughout the
directories that contain the tests are HTML test description files that contain one or more
test description tables. Each HTML test description table contains information about a
single test (for example, its name in the class path). Every test must be represented by
its own unique test description table; however, test description files can contain
multiple test description tables. Test description tables are always assigned the HTML
class "TestDescription” using the class attribute:

<TABLE BORDER="1" class="TestDescription">

9-2 JavaTest Architect's Guide

Test Finder Subtypes

The following HTML source produces the test description table that follows:

<table border="1" class="TestDescription">
<tr>
<td>title</td>
<td>Checkbox Tests</td>
</tr>
<tr>
<td>source</td>
<td>CheckboxTest . java</td>
</tr>
<tr>
<td>executeClass</td>
<td>javasoft.sge.tests.api.java.awt.Checkbox.CheckboxTests</td>
</tr>
<tr>
<td>executeArgs</td>
<td>-TestCaseID ALL</td>
</tr>
<tr>
<td>keywords</td>
<td>runtime positive</td>
</tr>
</table>

Table 9-1 Test Description Table

Title Checkbox Tests

source CheckboxTest.java

executeClass javasoft.sge.tests.api.java.awt.Checkbox.CheckboxTest
executeArgs -TestCaseID ALL

keywords runtime positive

The JCKTestFinder test finder locates the HTML test description files by recursively
scanning directories to look for files with the .html suffix, ignoring any other types of
files. It reads the test description table, ignoring all information in the file except the
content of the basic table tags.

If you include multiple test description tables in a single test description file, each test
description table must be preceded by an <A NAME> HTML tag that provides a unique
identifier for each test description table.

Note: Test description files should also contain comments and text
that describe the test.

The HTMLTestFinder class can also check the validity of test description values. For
example, the HTMLTestFinder can be run with flags that cause error messages to be
printed if any of the test description fields are invalid. When you extend
HIMLTestFinder, you can add your own validity checks.

The benefit of this format is that it makes it easy and convenient for users to browse
test descriptions using the JavaTest harness GUI or a web browser. The trade-offs are
that more work is required of the test developers to create and maintain the HTML
files, and parsing these separate files has an impact on performance.

Test Finder 9-3

Test Finder Subtypes

Examples of HIML test descriptions can be found in jt_
install\examples\javatest\simpleHTML\demotck\tests.

9.1.3 Binary Test Finder

BinaryTestFinder was created to improve the startup performance of large test suites.
It is capable of reading test description information from a highly optimized format
created from any type of native test description.

The optimized format (filename. jtd) is created using a companion program called
BinaryTestWriter. BinaryTestWriter uses a native test finder such as HTMLTestFinder,
or TagTestFinder to find and read native test descriptions (for example, HITML files or
source tags) and then creates a single, optimized file that contains the test description
information for all the tests in the test suite. If one is available for the test suite, the test
suite uses the BinaryTestFinder to read test descriptions from that optimized file. Use
of the BinaryTestFinder is highly recommended for larger test suites — it greatly
reduces the time required to populate the JavaTest harness test tree.

9.1.3.1 BinaryTestWriter

BinaryTestWriter is a standalone utility that creates compressed file that contains a a
set of binary test descriptions. It uses a test finder that you specify to locate the test
descriptions for your test suite, and writes a compact representation of those test
descriptions to a file that can be read by BinaryTestFinder (described in the next
section).

BinaryTestWriter is run from the command line as follows:

java -cp javatest.jar com.sun.javatest.finder.BinaryTestWriter arguments
test-suite[tests]
The following table describes the parts of the command:

Table 9-2 BinaryTestWriter Command Components

Component Description
-cp javatest.jar Puts javatest.jar on the class path
arguments -finder finderClass [finderArgs] -end

Specifies the test finder to use to locate the test descriptions in the specified test suite.

finderClass: The name of the plug-in class for the desired test finder. The class must be on
the class path used to run BinaryTestWriter.

finderArgs: Any optional arguments passed to the test finder's init method.
-o output-file

Specifies where the set of compressed test descriptions is written. The output file always
contains the . jtd suffix and is typically named testsuite.jtd. The testsuite.jtd fileis
usually placed in the test suite tests/ directory.

-end

Defines the end of the finder specification

test-suite The path to the directory in the test suite that contains the test descriptions (typically, the
tests/ directory)

tests An optional list of directories in which to search for test descriptions (typically,
directories under tests/)

9-4 JavaTest Architect's Guide

Test Finder Subtypes

Note: The finderClass, finderArgs, test-suite arguments are specified
here exactly as they are when you run the JavaTest harness without
using BinaryTestWriter.

9.1.3.2 BinaryTestFinder

BinaryTestFinder is a standard JavaTest test finder that knows how to read test
descriptions stored in the file written by BinaryTestWriter. The full name of the class is:

com.sun.javatest.finder.BinaryTestFinder

The BinaryTestFinder class is provided in the standard javatest. jar file. You can
use it through the standard string interface, or directly via the API. For details about
the API, see the Javadoc documentation.

There are two ways you can use BinaryTestFinder:

= If you use the standard TestSuite class, you can place testsuite.jtd in the test
suite tests\ directory. If the file is found there it is used, otherwise the
uncompressed files in this directory are used.

= Specify the finder explicitly in the testsuite.jtt file:

finder=com.sun.javatest.finder.BinaryTestFinder -binary testsuite.jtd

This method requires that testsuite.jtdbe present when the test suite is run. If it
is not present, the tests are not run and an error condition exists. You can use the
testsuite.jtd property in the testsuite. jtt file to specify the location of the
testsuite.jtd file. You must remember to run BinaryTestWriter before running
the test suite.

» Override the createTestFinder method for the TestSuite class you provide for
your test suite. This method allows you to dynamically determine whether to use
BinaryTestFinder. The TestSuite class can check for the existence of the binary test
description file (testsuite.jtd) before running tests; if the . jtd file is not found, it
can choose to use an alternate finder.

9.1.3.21 Examples The following example shows the command line used to start the
basic non-customized TestFinder class:

java -cp lib/javatest.jar com.sun.javatest.finder.BinaryTestWriter
-finder com.sun.javatest.lib.HTMLTestFinder -dirWalk
-end top_level testsuite_dir/tests

This example shows the command line for starting a customized TestFinder class
(MyTestFinder). The finder class takes -dirWalk and -specialMode as arguments. Note
that the JAR file that contains the custom finder class (in this case 1ib/mytck.jar) is
added to the class path.

java -cp lib/javatest.jar:lib/mytck.jar com.sun.javatest.finder.BinaryTestWriter
-finder com.sun.mytck.lib.MyTestFinder -dirWalk
-specialMode 2 -end top_level_testsuite_dir/tests

Test Finder 9-5

Test Finder Subtypes

9-6 JavaTest Architect's Guide

10

Test Scripts

The test script is responsible for running a test, recording all the details in a
TestResult object, and returning the test's status (pass, fail, error) to the JavaTest
harness. The test script must understand how to interpret the test description
information returned to it by the test finder. The test script breaks down the execution
of the test into a series of logical steps based on information from the test description
and the test execution model. The test script can run the test itself or delegate all or
part of that responsibility to commands. A fresh, new copy of the test script is created
for each test. This design allows you to create test scripts for different test suites that
use the same commands, much like shell and batch scripts are composed from
different operating system commands.

10.1 Design Decisions

One of the most significant design decisions that you make is how the test script
executes tests. The mechanism that you design can be very simple but inflexible, or it
can be more complex and much more flexible.

10.1.1 Simple Test Scripts

Simple and less flexible test scripts construct test command lines directly from the test
description and the test environment.

At the most simplistic level, scripts can execute tests using Runtime.exec. For example
using the JDK:

Runtime r = Runtime.getRuntime();

String[] cmd = {"java", "MyTest"};

String[] env = {"-classpath", testsDir + "/classes"};
Process p = r.exec(cmd, env);

// read output from test using

// p.getInputStream() and p.getErrorStream()

// (best done with a separate thread for each stream)
int rc = p.waitFor();

Status s = (rc == 0 ? Status.passed("OK")
Status.failed("process exited with return code " + rc);
// s contains result status from executing command

In this case the test script is responsible for collecting the test's exit status.

The JavaTest harness provides a number of library commands that the script can use to
execute system commands in different execution environments; these are described in
Appendix A. One example is the library command named
com.sun.javatest.lib.ProcessCommand. ProcessCommand executes a system

Test Scripts 10-1

Design Decisions

command in a separate process on the same machine running the test script. For

example:
String[] args = {"-classpath" + testsDir + "/classes", "java", "MyTest"};
PrintWriter outl = ... // create error message stream
PrintWriter out2 = ... // create output message stream

Command cmd = new ProcessCommand() ;

Status s = cmd.run(args, outl, out2);

// output from command will be written automatically to
// the outl and out2 streams

// s contains result status from executing command

The result of the command is a Status object based upon the exit code of the process.
The exit code is analyzed by the test script and factored into the final test result. For
example, if a script is executing a test by means of a series of commands and one of
them fails unexpectedly, the execution may stop at that point.

10.1.2 More Flexible Test Scripts

More sophisticated and flexible test scripts use command templates to create custom
commands. Command templates are designed by you and are created by the
configuration interview from configuration information and test description
information (see Chapter 6). Command templates can be created with some
components of the template specified in the form of variables that the test script
resolves when it uses the command to run a test. A configuration interview may
provide several different templates; the script chooses among them as required for
each individual test.

For example, a configuration interview might create a custom command template
named command. testExecute that can be used to run all of the tests in a test suite.

command. testExecute=com. sun.javatest.lib.ProcessCommand
\bin\java.exe -classpath S$StestSuiteRootDir\classesJDKC:\
StestExecuteClass StestExecuteArgs

The test script sets the value of the variables ($testExecuteClass and $testExecuteArgs)
for each test. To review the parts of the template see Section 6.2.1.1, "Example 1".

The use of variables allows you to create flexible commands that can be used with all
of the tests in the test suite. The following test script fragment shows how a test script
invokes the testExecute command' whenever it runs a test. Note that the test script
uses its invokeCommand () method to execute commands:

import com.sun.javatest.*;

class MyScript extends Script {
public Status run(String[] args, TestDescription td, TestEnvironment env) {

// Extract values from the test description
String executeClass = td.getParameter ("executeClass");
String executeArgs = td.getParameter ("executeArgs");

1 When the command is invoked, the "command. " prefix is not used.

10-2 JavaTest Architect's Guide

Writing Custom Commands

// Set variables in the template

env.put ("testExecuteClass", executeClass);
env.put ("testExecuteArgs", executeArgs);
// Invoke the command

Status s = invokeCommand ("testExecute");

return s;
}
}

In this example, the test script executes a single command for each test — the test
scripts can also execute complex, multi-part tests that may involve multiple command
invocations. The following examples describes some common multi-part test
scenarios.

10.1.2.1 Example 1
Compiler tests generally require a multi-part test script. To test the Java compiler two
stages are required:

1. The compiler compiles test files

2. The output from that compilation is run to ensure that it executes as expected

10.1.2.2 Example 2

Distributed tests are required to start a process on a remote system with which the test
interacts. This requires a multi-part test that:

1. Sets up the remote system
2. Runs the primary test class that interacts with the remote system

The JavaTest harness is shipped with the source to a sample test script
(StdTestScript.java) that you can refer to in the jt_
install\examples\javatest\sampleFiles directory.

See the Script API documentation for information about the Script class.

10.2 Writing Custom Commands

Commands are the means by which the JavaTest harness invokes platform or test
components to perform a step of the test execution model embodied in a test script.
The JavaTest harness provides standard commands that are suitable for most uses,
including test systems that can execute programs in a separate address space, and test
systems that provide a single Java virtual machine.

If none of the standard commands are suitable, you can write a new one tailored to the
test suite's specific requirements. One scenario that requires a custom command is
when the test suite uses a single JVM, and the test invokes a program that does not
have a standard interface that can be used by one of the standard commands. In this
case, you can write a very simple converter command that connects the interface
expected by the JavaTest harness with the interface provided by the program.

The class for a command is similar (apart from the name) to the standard Test
interface. The full class name is com. sun.javatest.Command.

Test Scripts 10-3

Test Result

abstract class Command {
Status run(String[] args, PrintWriter outl, PrintWriter out2)

}

The args argument is constructed in and passed down from the script that invokes the
command. Output written to the out1 stream and out2 stream is recorded in the
appropriate test result file.

Example 10-1 is an example of a command that invokes a compiler in the same JVM as
the JavaTest harness, using an API for the compiler. The example uses the JDK
compiler which is usually invoked directly from the command line; however, in this
case an undocumented API is used. The details of how to create the PrintStream
outStream from the PrintWriter out are omitted here for simplicity; the main point is
to illustrate how easy it can be to write a wrapper class that passes arguments through
to a non-standard API, and converts the results into the format that the JavaTest
harness requires.

See the source code for JavaCompileCommand in the jf_
install\examples\javatest\sampleFiles directory for a complete, commented
example.

Example 10-1 JavaCompileCommand

public class JavaCompileCommand implements Command
{
public Status run (String[] args, PrintWriter outl,PrintWriter out2)
{
PrintStream outStream = ... // create stream from out
sun.tools.javac.Main compiler = ;
new sun.tools.javac.Main(outStream, "javac")
boolean ok = compiler.compile(args);
return (ok ? Status.passed("Compilation OK")
Status.failed("Compilation failed"));

}

For information on the standard commands provided with JavaTest. see Appendix A.

10.3 Test Result

To store test results, the JavaTest harness creates and maintains a TestResult object for
each test. The test script stores information in a TestResult object while it executes a
test. This information is presented to users in the JavaTest GUI and is useful when
troubleshooting test runs. The more information the test script provides, the easier it is
for the user to understand what occurred when the test was run.

The TestResult object contains elements:

Table 10-1 Test Result Object Elements

Test description ~ The test description used for the test.

Configuration The portions of the environment used to run the test. This information is
displayed to the user in the Configuration tab of the JavaTest GUL

10-4 JavaTest Architect's Guide

Test Result

Table 10-1 (Cont.) Test Result Object Elements

Test run details Information about the test run. For example, start time, end time, This
information is displayed to the user in the Test Run Details tab of the
JavaTest GULNote: The test script has access to this field and can write
additional information using the TestResult APL

Test run messages Test output messages. This section is written by the Script class's
invokeCommand() method. This section contains at least two subsections,
one for messages from the test script and one for each part of the test (if it is
a multi-part test). This information is displayed to the user in the Test Run
Message tab of the JavaTest GUL

When a test completes execution, the JavaTest harness writes the results to the file
testname . jtr in the work directory. Test result files are created in directory hierarchies
analogous to the hierarchies in which the tests are organized.

See the API documentation for the TestResult class.

Test Scripts 10-5

Test Result

10-6 JavaTest Architect's Guide

11

Service Management

This chapter describes the ServiceManager (com.sun.javatest.services) component
provided by the JavaTest harness and how test suite architects can use it to manage
services that a test suite might require for test execution.

This chapter contains the following sections:

= Section 11.1, "Description”

m Section 11.2, "Services-Related Work Flow"
= Section 11.3, "Implementation”

= Section 11.4, "Service Management Architecture"”

11.1 Description

A service is any unique component related to a test suite that is required for test
execution and must be started in separate process or thread (such as RMI daemon or
ORB service) before the test suite is run. Some TCKs might require many services. The
ServiceManager component enables users to configure the services required to run
tests.

Each test suite optionally specifies and describes a set of services that it requires to run
tests. During the test suite load process, the TestSuite instantiates objects that
implement the Service interface and uploads those objects to the ServiceManager
component.

The ServiceManager component manages all aspects of the service life cycle. From
information given by the test suite and the JavaTest harness, it determines which
services are required and when they should be started. From test execution events, it
also determines which services should be stopped.

The ServiceManager is available either when running the JavaTest harness or as a
separate service without running the JavaTest harness.

Service Management 11-1

Services-Related Work Flow

Table 11-1 Service Manager Features

Features

Description

Automatically start and stop services

Can start and stop services automatically.

Mapping services on tests or test suites

Mapping services on individual tests or a set of tests, not on
the whole test suite, enables the ServiceManager to start/stop
services for group of tests.

For example, if a user is not running CORBA tests, the Service
Manager will not try to start CORBA services. Consequently
the user should not have to configure CORBA services.

Manually start a service

In case of remote test execution, users need the ability to
determine (manually or automatically) if a service should be
started or not.

Services are thread safe

Services work safely in case of parallel test execution.

Process management - when to start services

Provides an ability to start services in two modes:

1. Asneeded - Start service only when the first test or group
of tests that needs the service is about to run.

2. Up front - Start all needed services up front so that any
errors starting services can be detected before the actual
test run.

Process management - when to stop services

Needed services stay up, once started, until the end of the run
or until it can be shown they are no longer be required. Test
execution finish, time out, and end of test run are points to
stop related services.

Performance

The test suite does not run noticeably slower with this
mechanism enabled.

Usability - configuration file

The user only provides or edits a single configuration file for
all the services, not a file for each service. The file is optional. If
the user doesn't provide a file, the test suite should assume
that any required services will be started manually.

Services dependencies

Dependencies between different services are supported.

For example, one service must be started or stopped before
other services.

11.2 Services-Related Work Flow

Services-related work flow of harness execution is supported in both GUI and batch
mode test execution. The work flow consists of the following;:

1. The ServiceManager and Service instances are instantiated after the test suite is

loaded inside harness.

2. When the JavaTest harness object (Harness) starts a test run, information that the
Harness has about the tests and groups of tests that should be run is provided to

the ServiceManager.

3. The ServiceManager filters out services that are unnecessary for the test run based
on information from the Harness and information from deployed services
regarding which test paths for which the service should be started.

11-2 JavaTest Architect's Guide

Implementation

The services-related workflow is performed before starting a test run in the main
Harness execution thread. During this process one of the following actions is taken
based on the information that the harness has about the tests and groups of tests
that should be run:

m Start services as needed.

After being notified by the Harness that a test has started, the ServiceManager
determines if a particular service should be started for running the next test.
This enables "lazy" service start up, which may be useful for performance
reasons.

= Start all required services now.
Before running any tests, the ServiceManager starts all required services.
= Start services manually.

Service management is turned off for the test run. The Harness assumes that
the user will manually start all required services.

Note: When running in GUI mode, the ServiceManager functionality
is enabled after the user presses the Run button which blocks the
Harness execution thread until it determines how services will be
started. In batch mode, the ServiceManager is functionality is enabled
by using an option in the command line.

4. The ServiceManager stops services either as it determines that a service is not
required (all tests that require this service are completed) or at the end of test run.

Stopping services after the test run finished is preferred.

11.3 Implementation

Because the ServiceManager component must serve different requirements, its service
support design is as flexible as possible.To achieve this flexibility, the design uses
abstract concepts of service, service description, service execution and service
parameters. Some functionality, such as remote service management when services are
instantiated and run on a remote host, has not been implemented. However the
capability to implement the functionality is supported in the architecture. Additional
functionality could be implemented by the test suite and set through the AP]I, as is
currently done in the JavaTest harness for other components.

Note: Services support is optional, so that test suites, which do not
need services support, are not required to implement additional
components.

The JavaTest harness provides useful default implementations of the following
interfaces:

» Service - Interface describing a service.

Service objects should be instantiated by ServiceReader. The particular
implementation class should be specified so that the ServiceReader can access it.
A default implementation, AntService (see Section 11.3.2, "Implementation of
Service Interface") is provided by the JavaTest harness. Such a service is the Ant

Service Management 11-3

Implementation

target in provided ant xml file. The benefit of such a service representation is that
the service can easily be started without running the JavaTest harness.

» ServiceReader - Interface responsible for reading service definitions and
parameters.

The implementation should be provided by the test suite. A default
implementation, PropertyServiceReader (see Section 11.3.1, "Implementations of
ServiceReader Interface"), is provided by the JavaTest harness. This
implementation reads Service type definitions and start parameters of each
particular instance, as well as maps test paths to service instances from a single
property file.

m ServiceConnector and ServiceExecutor - ServiceConnector is responsible for
the connection between harness representative (Service interface) and
ServiceExecutor is responsible for responsible for running service in case of
remote execution.

Each executor type is related to a respective service type, such as AntService and
AntServiceExecutor (see Section 11.3.2, "Implementation of Service Interface").
Connector doesn't depend on the Service and ServiceExecutor type. Connector
has a unified interface and any Connector implementation should work with any
Service - ServiceExecutor pair. The JavaTest harness only provides a pseudo
local connector that redirects requests to a ServiceExecutor working in the same
VM. The following are available types of ServiceExecutor:

= ThreadServiceExecutor - Executes any service described by Runnable object
in a separate thread.

ms ProcessServiceExecutor - Executes in a separate process by
Runnable.exec().

m AntServiceExecutor - Extends ProcessServiceExecutor to execute ant tasks
using Ant.

11.3.1 Implementations of ServiceReader Interface

To make the process of acquiring information about services and instantiating
components more flexible, a test suite should provide a special component that
implements the ServiceReader interface. The ServiceReader interface reads
information regarding service descriptions and tests-to-services mappings during test
suite load, instantiates Service objects, and pushes the collected information into
them.

The JavaTest harness provides two implementations of the ServiceReader interface:

m PropertyServiceReader is the default implementation. It looks for information in
a property file (see Section 11.3.1.1, "PropertyServiceReader File Format").

m XMLServiceReader looks for information in an XML file (see Section 11.3.1.2,
"XMLServiceReader File Format").

The getServiceReader () method of the TestSuite class defines which
implementation to use.

A test suite that uses PropertyServiceReader can be run by the test harness and the
lite harness. A test suite that uses XMLServiceReader cannot be run by the lite harness
because the lite harness does not support XML.

11.3.1.1 PropertyServiceReader File Format
The property file format is described below, an example follows.

11-4 JavaTest Architect's Guide

Implementation

service.id.class=...

service.id.description=...

service. id.arg.argname=. . .
property.general-property-name=. ..

testpath. tpid.path=...

testpath. tpid.ids=[space-separated list of service IDs]

Example property file:

property.port=8080
property.testuite=path to_testsuite

service.rmid_1.class=com.foo.bar.RMIDService

service.rmid_1.description=This is first variant of service to start rmid daemon
service.rmid_1.arg.argl=5000

service.rmid_l.arg.arg2=path_to_testsuite

service.rmid_2.class=com.foo.bar.RMIDService
service.rmid_2.description=This is second variant of service to start rmid daemon

service.msg_service.class=com. foo.bar2.MessagingService
service.msg_service.description=messaging service
service.msg_service.arg.timeout=1000

testpath.l.path=api/java_rmi
testpath.l.ids=ant rmid_1

testpath.2.path=api/foo_bar
testpath.2.ids=rmid_2 msg_service

11.3.1.2 XMLServiceReader File Format

The following sample provides a description of the contents and format of an XML
service description file.

<Services>

<property file="local.properties"/>

<property name="port" value="8080"/>

<property name="testsuite" value="${root}/tests"/>

<service id="rmid_1" class="com. foo.bar.RMIDService" description="This is first
variant of service to start rmid daemon">

<arg name="argl" value="5000"/>

<arg name="arg2" value="${testsuite}"/>

</service>

<service id="rmid_2" class="com. foo.bar.RMIDService" description="This is second
variant of service to start rmid daemon">

</service>

<service id="msg_service" class="com. foo.bar2.MessagingService"
description="messaging service">

<arg name="timeout" value="1000"/>

</service>

<testpath path="api/java_rmi">

<service refid="ant"/>

<service refid="rmid_1">

</testpath>

<testpath path="api/foo_bar">

<service refid="rmid_2"/>

Service Management 11-5

Implementation

<service refid="msg_service"/>
</testpath>

</Services>

The format of the XMLServicesReader file consists of three sections:

» Properties - The first section specifies options and shared values that are used later
in the service definition process.

You can load property values from a file or specify them separately. Properties that
do not have explicitly-set values are called parameters. Parameter values are
resolved later by Service or ParamResolver classes. In the code example, root and
testsuite properties are parameters. The Service interface should provide
operations to get and set parameters and arguments. Service properties are
described in Section 11.3.3, "Service Properties".

m Services - The second section of the file describes the services.

Services are described by using a tag. Each service specification tag contains a
unique string ID that enables the user to refer to this service in the test map
section, a Service interface implementation class, and description text.

» Test Map - The third section of the file provides a map from test paths to services.

Based on this information, ServiceManager determines, which services should be
started /stopped and when. It consists of a regular expression with path-to-tests
pattern and tags with references to services. One test path can refer to many
services. Different test paths can refer to the same services. In case both such test
paths are selected for test run, only one instance of a service will be started.

11.3.2 Implementation of Service Interface

The JavaTest harness provides a default implementation (AntService) of the Service
interface that not only provides a description but also provides a definition and
execution. The default implementation uses Ant. Each service is presented as an Ant
target in a valid Ant file. In the service description XML file, a special service class
(com.sun.javatest.services.AntService) describes the Ant-based service as follows:

<service id="any uniqg id _you_want"
class="com.sun.javatest.services.AntService"><arg name="ant.bin"
value="~/apache-ant/bin/ant"/>

<arg name="ant.targets" value="rmid-target run-tests"/>

<arg name="ant.workdir" value="directory to_start_ant_from"/>
<arg name="ant.env.JAVA_HOME" value="path to JDK"/>

<arg name="optionl" value="-buildfile ${lib}/build.xml"/>

<arg name="option2" value="-verbose"/>

</service>

= ant.bin - Specifies path to ANT execution script.

m ant.targets - Specifies targets to execute

= ant.workdir - Specifies the directory from which to start ant.

This is set to java.lang.ProcessBuilder using its directory () method.

» ant.env.JAVA_ HOME - The environment entry with which the process starts.

Set to ProcessBuilder through its environment () method.

11-6 JavaTest Architect's Guide

Implementation

= 'optionl"and "option2" - All other arguments inside the AntService are
interpreted as ant start options.

No special naming conventions are needed for them.

= Ant-based services are the only service implementations provided by JavaTest
harness. JavaTest harness provides AntService, which implements the Service
interface, and AntServiceExecutor, which implements the ServiceExecutor
interface.

11.3.3 Service Properties

All possible parameters, commands, and arguments, could be described as string
key-value pairs. Such pairs should be passed to the Service object by the
ServiceReader, who creates the Service objects. Each particular Service type may
interpret them and pass through a connector to the ServiceExecutor.

However, not all key-value pairs or values may be known when the test suite is
created. For example, some host names and port numbers may be known only when
answering an Interview question before a test run. To resolve this issue, values in
service descriptions are parametrized. That means, that some key-value pairs will have
variable values with references to other keys, and are resolved when additional
non-variable sets of properties are passed from somewhere outside (such as after
interview completion).

The ServiceManager has a public API used to access to each Service and its
ServiceProperties object. The non-variable set of properties may be passed at any
time. However, a more convenient approach is to resolve variable properties using
values obtained from the interview. These values are also key-value pairs and are
stored in a special object, TestEnvironment. Harness passes this object to resolve
service properties before every test run. Consequently, refer to interview question's
tags to resolve variable values by interview.

A special ServiceProperties class performs this behavior. Its instance is the main part
of each Service object. ServiceReader should instantiate a ServiceProperties object,
fill it with information available from the service description file and pass it to the
corresponding Service object. Should the test suite use the standard
XMLServiceReader, the test suite developer shouldn't care about this.

Each key-value pair from the ServiceReader must use the format:

string=[string | ${string}]*
If a key has no value, it becomes a variable.

${string} represents a reference to another key. If its value has at least one reference
inside it, it also becomes variable.

Service Management 11-7

Service Management Architecture

Example:

keyl=
key2=value2
key3=value3l_${keyl}_value32_s${key2}_value33

Later if we pass keyl=valuel, the expression is resolved as:

keyl=valuel
key2=value2
key3=value3l_valuel_value32_value2_value33

As described in Section 11.3.1, "Implementations of ServiceReader Interface", some
properties are common to several objects and some are individually specified for each
Service object. That is the reason why there are two namespaces for property names.
One namespace is a common namespace, and the other is an individual namespace.
The common namespace is shared between all Services. Consequently, a property,
specified inside each particular Service, may refer to common properties. If a name of
a property specified for an individual Service is contained in a common namespace,
the individual property overwrites the common property.

Individual namespaces are not shared between Service objects. A property from one
individual namespace cannot refer to a property from another individual namespace.
If a property attempts to do this, the reference is interpreted as unknown.

When it prepare a command, a Service objects asks its ServiceProperties object to
resolve its arguments. The ServiceProperties object returns a Map containing only
the resolved individual properties (not the common properties). Resolved common
properties may be achieved, using another method. Such division enables the Service
class implementation to be simplified. It treats its individual arguments by using its
own name conventions. Common properties are used to resolve individual properties
or for other goals.

11.4 Service Management Architecture

The architecture of the Service Management feature of the JavaTest harness consists of
five components:

m ServiceManager
m Service

m ServiceExecutor
n Connector

m ParamResolver

Figure 11-1 illustrates the relationship between these components.

11-8 JavaTest Architect's Guide

Service Management Architecture

Figure 11-1 Service Management Architecture

JavaTest Harness

ServiceManager l
Agent / \ \
Service #1 Service #2 Service #3
Connector
Service
L——p» Descri p@-

; —»= Connector
Service

Service‘
Executor Executor
¢ ? ¢ T Param
Service Service B Resolver
Process/ Process/ .
Thread Thread

Param
Resolver

1. ServiceManager - Instantiated for each test suite instance.

The same test suite, opened two times in different tabs, is interpreted as two
different test suites and will have different ServiceManager objects.
ServiceManager objects accomplish the following functions:

m Arenotified of all Harness events.
= Manage a set of services.

s Provide methods to achieve service's state, info and data to the JavaTest
harness and test suite.

= Provide methods for external configuration by JavaTest and test suite.
= Start and stop services
= Count which services and when should be started and stopped.
2. Service - Root service interface.
Service interface has two main goals:
= Contains service information, execution parameters, and test mapping.

= Provides start, stop, other operating methods, are invoked by ServiceManager,
and are delegated through Connector to ServiceExecutor.

Service Management 11-9

Service Management Architecture

3. ServiceExecutor - Root interface for the service executor.

Method invocations from Service go through Connector and are executed by
ServiceExecutor. The Service and ServiceExecutor implementation types have
a 1:n relationship. Consequently, each Service implementation can have different
ServiceExecutors for different situations (such as local and remote execution).
ServiceExecutor implementations can execute a service as separate process, as a
thread, or in any other required manner. Service and ServiceExecutor types
must be coordinated to perform message exchange correctly.

4. Connector - Interface that determines common connection methods between
Service and ServiceExecutor, such as sendMessage or getOutputStream
methods.

Particular implementation should not be related with concrete Service and
ServiceExecutor realizations. Connector is harness-side component, and we have
no any interface for agent side part, because on those side such component (and
it's incoming events) manages ServiceExecutor. Agent-side component is not
under any management, so there is no need for it to have APL

5. ParamResolver - Component, related with ServiceExecutor. Connector, that
sends commands to a service and provides the parameters for this command
execution.

The parameters are decoded by ParamResolver and passed to ServiceExecutor.
For example, if a connector sends "$host_name" param, it should be resolved by
the ParamResolver. Implementations of ParamResolver should be interoperable
with ServiceExecutor. How and what to resolve depends on the implementations
of both components.

Service execution is divided into 3 components (Service, Connector,
ServiceExecutor), because it must be able to implement remote services start-up and
execution by any test suite. It is not possible to implement this feature directly in the
JavaTest harness and its agent, as requirements from different customers vary.

11.4.1 Mechanism to Instantiate Service, Connector, and ServiceExecutor

Interfaces

The Connector and ServiceExecutor may differ because configuration settings (such
as local or remote execution) and the specific implementors are known only at the
beginning of a test run. The ServiceManager should have a public API to enable any
object (such as a test suite) to specify non-default Connectors for each service.

The Service interface has a method that returns an instance of the default
ServiceExecutor, which will be used should service be run in the same VM as the
JavaTest harness. This executor interoperates with the pseudo LocalConnector, which
directly delegates requests to this executor by invoking its methods. If a test suite
wants to execute a service in another way, before starting test run, it should set another
Connector for this Service (through the ServiceManager by using the Service's ID).
This Connector may be directly associated with a ServiceExecutor (as
LocalConnector does it), or it can be a network connector, and send messages to a
remote agent.

11-10 JavaTest Architect's Guide

Service Management Architecture

11.4.2 Separate Services Start Up

To simplify service start-up (in case there is no remote environment or you don't want
to use the JavaTest harness to run the Service management feature), a separate entry
point is available inside the JavaTest harness, such as ServicesMain, that performs the
following operations:

1. Takes the test suite path as input.
2. Instantiates all found Services, ServiceExecutors, and local Connectors.
3. Invokes the Service.start methods.

Services are unmanageable in this case and must be stopped by shutdown hook.
Figure 11-2 illustrates the sequence of performing a separate services start-up.

Figure 11-2 Separate Service Start-Up

ServiceshMain

TestSuite = —— g Eeruicesﬂealie/r)

-

Servical .slarw'

Senacel
LocalConnector

g

Servicel
E’E:'“Em“?t/

Service Management 11-11

Service Management Architecture

11-12 JavaTest Architect's Guide

12

Running JUnit Tests

This chapter explains how to retrofit existing JUnit 3.x or 4.x test suites to enable them
to run with JavaTest Harness. This information can also help you author new JUnit
tests that run under the harness.

JUnit is a simple framework for writing and running automated tests. Written by Erich
Gamma and Kent Beck in 1997, JUnit exposed test driven development practices from
the Smalltalk world into the Java programming community. JUnit is now an
open-source project at SourceForge.net (http://sourceforge.net/projects/junit).

The JUnit framework provides a fast, simple interface for creating a set of tests and
executing them by a common method (for example, using Ant or a shell script). The
framework places very few restrictions on what the tester must do to write a test class.
The core JUnit distribution has few facilities for GUI interaction or reporting, and it
has no robust interface for configuration.

The procedure described here enables JUnit tests to be run under the harness. The
harness provides a robust GUI interface, many reporting options, and an opportunity
to build a robust configuration system for the tests. The harness can be configured to
allow customization of the GUI, report types, result presentation, and more. These
services might be useful for users who want to wrap more powerful facilities around
their existing test infrastructure.

12.1 The Retrofit Process

This section describes the process of retrofitting JUnit tests so that they run on the
harness.

12.1.1 Prerequisites for Converting Tests

To undertake a conversion process, you must be familiar with some of the inner
workings of the JUnit test suite you are converting. Specifically, you need to know:

= How the JUnit tests can be distinguished from other tests.

» The version of JUnit that works with the test suite (3.x or 4.x).

= Where the tests are stored. For example, are they in a single directory tree?
» The libraries or supporting processes required to run the tests.

= The configuration settings or files necessary to run the tests.

Tests written to work with JUnit 3.x are typically identified as being a subclass of
junit.framework.TestCase. To find JUnit 3.x tests, use the
com.sun.javatest.junit.JUnitSuperTestFinder class (located in the jt-junit.jar

Running JUnit Tests 12-1

The Retrofit Process

archive) to scan the test classes. Each class that is a subclass of
junit.framework.TestCase is designated as a recognized test.

JUnit 4.x style tests do not use a specific superclass, rather, they tag classes with the
org.junit.Test annotation. The harness library jt-junit.jar provides the class
com.sun.javatest.junit.JUnitAnnotationTestFinder to find 4.x style tests. It
operates much like the JUnitSuperTestFinder class, but looks for different criteria.

See Section 12.2.1.1, "JUnitSuperTestFinder" and Section 12.2.1.2,
"TUnitAnnotationTestFinder" for more details.

12.1.1.1 Procedure for Converting Tests

This procedure describes how to set up files, property settings, and configuration
settings before running a JUnit test.

1. Create a testsuite.jtt file in root of the product directory.

For example, if the product unpacks into directory foo/, the testsuite.jtt file
should be in that directory. It does not necessarily need to be co-located with the
tests.

The . jtt file is a properties formatted file, with key=value pairs on each line.
Setting the name and id keys is mandatory. The name is a short descriptive name
for your test suite, the 1d is an internal key used identify this test suite.

2. Select your method for scanning for tests by specifying a TestFinder class.
The line for specifying the TestFinder class looks like this:

finder = com.sun.javatest.junit.JUnitSuperTestFinder
-superclass junit.framework.TestCase

See Section 12.2.1.2, "JUnitAnnotationTestFinder" and Section 12.2.1.2,
"TUnitAnnotationTestFinder" for further information.

3. Select your TestSuite class, using com.sun.javatest.junit.JUnitTestSuite if
you do not subclass it.

Use a fully qualified class name. This class must be available on the system class
path, preferably on the class path defined in your . jtt file. For example:

testsuite = com.sun.javatest.junit.JUnitTestSuite

4. Specify the interview.

If you don't have your own interview, use the line below as the default. This class
must be available on the system class path, preferably on the class path setting in
your . jtt file. For example:

interview = com.sun.javatest.junit.JUnitBaseInterview

5. Provide a tests setting.

The tests location is important because it is forwarded to the TestFinder class you
specified in Step 2. This location is often relative to the location of the
testsuite.jtt file as described in Step 2. Use forward slashes to make the path
platform independent. Do not use absolute paths or relative paths to places above
testsuite.jtt. One of the following lines might serve as an example:

= If you are scanning . java files, they might be located below the tests/
directory.

tests = tests

12-2 JavaTest Architect's Guide

Technical Details

= If you are scanning class files, they might be located below the classes/
directory:

tests = classes
See Section 12.2.1.1, "JUnitSuperTestFinder" and Section 12.2.1.2,
"TUnitAnnotationTestFinder" for further information.

Make sure that the paths to any classes you specify in the testsuite.jtt file are
assigned to the classpath key in the testsuite.jtt file.

This how the harness locates the classes. For example, if you specify:

interview = com.sun.javatest.junit.JUnitBaseInterview

be sure to add the path to the JAR file that contains that class to the classpath key
as shown here:

classpath = lib/jt-junit.jar lib/jt-myts.jar

Try running the harness to see if it finds your tests.

You have to decide how to arrange your (JAR) files and resolve paths. The general
form is:

> cd mytestsuite/
> java -jar lib/javatest.jar -ts .

This starts the harness and forces it to load the test suite located in the current

directory (represented by "."). The testsuite. jtt file must be located in the ".
directory.

When the main window comes up, you should see a tree populated with the tests
you intended. Check the counters on the main panel to view a summary of the
tests that were found. You can check the View > Properties menu item to verify
that the plug-in classes are loaded as you expect.

12.2 Technical Details

This section describes the two main sets of classes that provide JUnit support. The first
is the JUnitTestFinder (a subclass of com. sun. javatest.TestFinder). Variations of
the JUnitTestFinder, JUnitSuperTestFinder and JUnitAnnotationTestFinder
classes roughly correspond to JUnit 3.x and 4.x support. The difference is explained
below.

The second supporting component is the JUnitMultiTest class that is responsible for
executing the tests.

12.2.1 Support Classes

The following additional "glue" classes are provided to connect everything;:
JUnitTestSuite, JUnitBaseInterview, and JUnitTestRunner. Each supporting class is
explained below.

The JunitTestSuite class is a very simple class that instructs the harness to use
the JunitTestRunner to execute tests. If this method is not present, the
DefaultTestRunner is used. This is the traditional way to execute tests requiring a
Script class. Because the TestRunner class is present, there is full control over how
the tests are executed. For example, the harness can determine how many tests are
run simultaneously and how they are launched (for example, using exec). By
extending this class, you have access to override other aspects of the harness. See

Running JUnit Tests 12-3

Technical Details

the TestRunner API for more information. Note that many of the settings that this
document describes in the testsuite.jtt file can be hard coded into the
TestSuite subclass. The TestSuite base class provides the functionality to
instantiate the settings in the testsuite.jtt.

s The JUnitBaseInterview class is a skeleton interview class that does not require
any input from the user. If your JUnit tests do not require a setting from the user,
do not modify it. Try one of the following methods to get values from the user:

= Read a configuration file from a pre-determined location, perhaps a location
relative to the test suite root (TestSuite.getRootDir()).

s Ask the user for the values directly using the com.sun.interview APL This is
the primary means by which the harness is designed to get values from the
user. In either case, the value(s) must end up in the Map provided in
Interview.export (Map). The Map is the set of values that the other classes
must have access to, namely the JUnitTestRunner and classes it creates
(JunitMultiTest). Read Chapter 6 for more information.

s The JUnitTestRunner class is responsible for dispatching tests. It has access, via an
Iterator, to the entire list of tests to be executed during a test run. Because a test
is represented by a TestDescription, you must customize your test finder to add
any settings that you will want later (in this class). The default implementation
executes the test using JunitBareMultiTest if the TestDescription property
junit.finderscantype is set to superclass. If it is not set to superclass, it uses
the JUnitAnnotationMultiTestclass. You may want to change this behavior, use
your own JUnitMultiTest class, or a subclass of one of these.

12.2.1.1 JUnitSuperTestFinder

This class looks for a superclass that identifies the class as a JUnit test. By default it
searches the ancestors of each class for junit. framework.TestCase. Because a test
suite might require further derivations of junit.framework.TestCase to support its
particular needs, you can use the -superclass option to specify a more specific class.

For example, consider the following class structure:

java.lang.Object
junit.framework.TestCase
foo.BetterTestCase
product.Test0002a

Test0002a is a subclass of BetterTestCase, and so forth.

» If given Test0002a, JUnitSuperFinder ascends the inheritance chain until it
reaches either a matching superclass or java.lang.Object. It searches for the
TestCase class by default, so when given Test0002a, it ascends two levels, finds
java.lang.Object, and returns Test0002a to the harness as a test.

» If this test finder is given java.util.ArrayList, it ascends until it reaches
java.lang.Object, at which point it decides that the class is not a test and moves
on.

To change the superclass for which you are scanning, supply the -superclass
argument and specify a class name. You can supply this argument multiple times to
scan for multiple superclasses. For example, in the testsuite. jtt file you might
specify the following:

finder = com.sun.javatest.junit.JUnitSuperTestFinder -superclass
foo.BetterTestCase -superclass foo.CustomTestCase

12-4 JavaTest Architect's Guide

Technical Details

Although it does not execute tests, the test finder attempts to pick out test methods by
looking for public methods that begin with the string "test". It then lists these in a
space-separated list, without the parameters (just the method name). The list might
contain duplicates because the full signature is not evaluated. Semantics for this
TestDescription value are loosely defined at this point. Public comment is welcome
(submit your comments to the JT harness interest forum at
http://java.net/projects/jtharness).

This superclass finder generates the TestDescription
(com.sun.javatest.TestDescription) values shown in Table 12-1.

Table 12-1 JUnitSuperTestFinder Test Description Values

Key Value(s)

keywords junit, junit3
junit.finderscantype superclass
junit.testmethods (list of identified test methods)

12.2.1.2 JUnitAnnotationTestFinder

This annotation test finder scans classes for the org. junit.Test annotation. It uses the
same scanning strategy as JUnitSuperTestFinder.

This annotation finder generates the TestDescription
(com.sun.javatest.TestDescription) values shown in Table 12-2.

Table 12-2 JUnitAnnotationTestFinder Test Description Values

Key Value(s)

keywords junit, junit4
junit.finderscantype annotation

junit.testmethods (list of identified test methods)

12.2.1.3 JUnitBareMultiTest

This is the execution class for JUnit 3.x style tests. Execution is accomplished using the
class name supplied by the test finder (through the TestDescription) which is used to
execute that class's TestCase.runBare () method. This might not be sufficient for all
test suites. Output from stdout and stderr are captured. The test passes if no
exceptions are thrown and fails if there are any Throwable results.

12.2.1.4 JUnitAnnotationMultiTest

This is the execution class for JUnit 4.x style tests. It takes the class that was identified
by the test finder and executes it using the JUnit library TestResult.Section parts.
Also, because execution is turned over to JUnit, it does not report any of its own
debugging output during execution. (In the future, it would be useful to take more
advantage of the Result API and any observer APIs that are available.)

12.2.2 Implementation Notes

The use of the junit3 and junit4 keywords might be a generalization, since it really
represents how the class was found. A test suite might mix use of version 3 and 4
features, meaning it is not necessarily completely 4.x compliant. Nonetheless, perhaps
being able to run 3.x style tests out of a mixed set (see
com.sun.javatest.finder.ChameleonTestFinder) can be useful. Do not forget that

Running JUnit Tests 12-5

http://java.net/projects/jtharness

Areas for Improvement

the junit keyword is also added so that JUnit tests can be selected from among
non-JUnit tests.

Two of the most likely changes you should make is to modify the test finder or modify
how to execute the test. To change the test finder, simply subclass JUnitTestFinder,
provide it on the class path in testsuite.jtt and change the finder setting in
testsuite.jtt.

To change the method for executing a test, you must change how it is dispatched in
JUnitTestRunner. To change that, you must subclass JUnitTestRunner and provide it
on the testsuite.jtt class path. You must also subclass JUnitTestSuite and change
its setting in testsuite.jtt (see Section 8.1, "The testsuite.jtt File").

12.3 Areas for Improvement

This section lists implementation features that might benefit from user feedback and
further development. You can provide this on the JT harness web site
http://java.net/projects/jtharness.

The use of class path is currently not convenient. The general design of the harness
is that the setting in testsuite.jtt affects the tests, rather than the system class
path that the harness uses. This area can be more refined.

Some additional base implementations of the interview class would be useful. In
particular, providing one that reads a properties file and dumps it directly into the
Map of Interview.export (Map) would provide a "quick and dirty" way for people
to configure their test suites. Perhaps the location of the file can be written as a
setting in testsuite.jtt.

Note: Users should generally not be instructed to alter
testsuite.jtt. These settings are designed to be static. Information
the user provides should be gathered through the interview system.
As an architect, you should configure the testsuite.jtt file for
general use during the retrofit process. Once the conversion is
completed, the file should remain relatively untouched.

It might be useful to hard code the Interview class and accept an override in the
testsuite.jtt file, rather than forcing the developer to specify it in the file as
documented above. This also applies to the JUnitTestRunner (or just the
TestRunner class) in the implementation of JUnitTestSuite.

12.3.1 References

JT Harness project at http://java.net/projects/jtharness

JUnit project http://SourceForge.net/projects/junit

JUnit 3.X home page http://junit.sourceforge.net/junit3.8.1/index.html
JUnit 4.X home page http://junit.sourceforge.net

s API documentation http://junit.sourceforge.net/javadoc_40/index.html

= JUnit Cookbook
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

12-6 JavaTest Architect's Guide

http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

13

Customization

This chapter describes customizations that can be made in the JavaTest harness
appearance and function. Customizations not documented in this guide are described
in the appropriate Javadoc tool (API) documentation.

While most of this guide describes customization, this chapter describes advanced
customization beyond that usually required to configure and execute a test suite. In
this chapter, topics discussed include:

s Section 13.1, "Customization API"

s Section 13.2, "Internationalization"

= Section 13.3, "Customizing the Splash Screen"
= Section 13.4, "Customizing Menus"

= Section 13.5, "Customizing Toolbars"

For architects, this chapter is most useful either after you have developed a basic
version of a test suite and want to customize harness capabilities or as an overview to
see exactly how much of the harness can be customized.

13.1 Customization API

Several sections in this chapter refer to methods present in the ContextManager API
with many of the harness customization features described in this chapter controlled
by the ContextManager class (com.sun. javatest.exec.ContextManager). The harness
queries this class to determine if a particular feature is enabled and if it is necessary for
the supporting classes or objects to realize the customization.

An architect can create a single custom ContextManager implementation class for their
test suite and override any methods as needed. The only thing required inside a
custom implementation of MyContextManager is overriding the appropriate methods
for the customized features. No additional implementation is required beyond that
provided by the base class. The base class is not abstract and the default
implementation provides the default behavior intended for the harness.

Architects then provide the custom ContextManager class to the harness by adding a
value as part of the TestSuite properties (see

TestSuite.getTestSuiteInfo (String)). The property name that should be provided
is tmcontext. This can be done programmatically in the TestSuite class, but is more
easily accomplished by placing the value in the testsuite. jtt file (see Chapter 8) of
the test suite. For example:

tmcontext=com. yourdomain .Jjtharness.MyContextManager

Customization 13-1

Internationalization

That class should be available to the harness in the classpath value that is also
provided in the testsuite.jtt file. See Chapter 8 for more information about this file.

Note: The classpath value in testsuite.jtt is a space separated
value.

13.2 Internationalization

Many harness APIs refer to resource bundles (java.util.ResourceBundle) and String
keys instead of raw strings for presentation. For example, in the JavaTestToolBar API
the default implementation of getName () and getDescription() make it easier to
provide a resource bundle instead of overriding the methods. The APl documentation
for JavaTestToolBar.getDescription() states:

Get the long description of this toolbar's purpose.

May be multiple sentences if desired. This is automatically
retrieved from the supplied resource bundle by combining it with
the toolbar ID with getID(()), e.g. it will try to retrieve
getId().tb.desc from the resource bundle.

In the custom code that the test suite provides, there will be a line of code which
creates the toolbar, JavaTestToolBar. The constructors for that class require passing a
ResourceBundle and a String key.

public JavaTestToolBar (ResourceBundle bundle, String resourceID)

Assuming that the code creating the toolbar (provided by the test suite) is in package
foo.bar and is called MyContextManager, it is common in the harness to write code
similar to the following example:

package foo.bar;
import com.sun.javatest.util.I18NResourceBundle;
class MyContextManager extends ContextManager {
{
toolbar = new JavaTestToolBar (il8n, "mytoolbar");
}
private static I18NResourceBundle il8n =
I18NResourceBundle.getBundleForClass (MyContextManager.class) ;
}

This 118n object can then be reused throughout the lifetime of that custom context
manager for any necessary purpose. In this case it is passed to the toolbar being
customized.

Continuing with the code example and how JavaTestToolBar would use it, when
getDescription() on that toolbar object is called by the harness, it attempts to retrieve
getId().tb.desc from the resource bundle. In the example, the harness loads the
string named mytoolbar. tb.desc from the file (on the classpath)
foo/bar/i18n.properties. The content of foo/bar/i18n.properties might be:

118n file for package foo.bar
mytoolbar.tb.desc=This is my great toolbar for you to use.
mytoolbar.tb.name=My Tools

It is typical to provide each package with its own i18n.properties file and then use a
single instance of I18NResourceBundle object within that package, passing it around as
needed. See the java.util.ResourceBundle API documentation for more information

13-2 JavaTest Architect's Guide

Customizing Menus

about how it automatically resolves the name of the resource file to load and for the
format of the entries in the bundle.

13.3 Customizing the Splash Screen

Instead of using the default JavaTest harness splash screen, architects can insert a
custom test suite splash screen for users.

To use a custom splash screen, test suite architects must accomplish the following
actions:

s Inserta splash.properties file that specifies the custom splash image in the test
suite 1ib/ directory (below javatest.jtt).

"

Refer to Section 13.3.1, "Example of splash.properties File"" for the content and

format of a splash.properties file.
= Insert the splash image file in a location relative to the splash.properties file.
Acceptable image formats for the splash screen are GIF, JPEG and PNG.

Once the splash.properties and the splash image files are integrated in the test suite
1ib/ directory, the JavaTest harness will display the custom splash screen instead of
the default when starting.

In the current implementation, the JavaTest harness displays the custom splash screen
when users start the harness with -ts or -testsuite flags to specify the specific test
suite. In the future additional flags might be used to start the harness with the custom
splash screen.

13.3.1 Example of splash.properties File

The following is an example of the required format of the splash.properties file. In this
example, the custom image name is splashMyProduct.gif.

comment
splash.icon=splashMyProduct.gif

13.3.2 Notes About the Implementation

Because the splash screen must be capable of being internationalized, the
testsuite.jtt file is not used to directly specify the splash screen. This capability of
being internationalized requires that it should go through the standard
ResourceBundle searching. The standard ResourceBundle searching is facilitated by
using the splash.properties file. Other options for specifying the custom splash
screen were not utilized because they increase the startup overhead of the harness by
requiring it to perform additional file operations.

13.4 Customizing Menus

Test suite architects can customize the GUI menus in the Test Manager (ExecTool) by
using the API provided by the harness. Common uses of this customization are to turn
on and off frequently used test suite options or to trigger customized informational
dialogs. The API provides limited access to the menu structure of the Test Manager,
but relatively unlimited capabilities for the menu items themselves (such as the ability
to insert multi-level menus, enable or disable a menu item, or provide a checkbox

Customization 13-3

Customizing Menus

menu item). In addition, the popup menu available on the main test tree can also be
customized.

13.4.1 Adding Menu ltems to Test Manager Menus

Menu additions are managed by the JavaTestMenuManager
(com.sun.javatest.exec.JavaTestMenuManager) provided by the ContextManager
(com.sun.javatest.exec.ContextManager). The menu manager class provides an
abstract class for the architect to populate. The most important part of the class are the
set of constants that it defines. These constants define a set of logical positions within
the Test Manager's menu structure. Instead of allowing the architect to determine the
exact position of the menu items, which makes it virtually impossible to make future
harness menu changes, the API defines the logical positioning with which the harness
will determine the final position of a custom menu item.

The constants take the form of <logical menu>_<logical position>, such as HELP_
ABOUT. If the architect wanted to add a menu item labeled About My Test Suite, they
would use the HELP_ABOUT menu position. In the same manner, for the FILE_
OTHER position, the architect would use file related label or a related label that
logically belongs in a location on the File menu.

See the JavaTestMenuManager API documentation provided by the harness for
detailed implementation information.

13.4.2 Adding Menu Items to the Tree Popup Menu

Similar to customizing the main Test Manager menus, the ContextManager must
provide a class to manage the popup menu items. However, unlike the
JavaTestMenuManager, it does not manage the position of items or serve as a container
of multiple menus. Instead, JavaTestContextMenu represents a single menu item (in
the Swing sense) that is activated on demand. The class manages the underlying
JMenultem and the rules for displaying that item.

Note: This class assumes that the context menu is displayed in the
context of a test folder or single test (such as a folder in the test tree or
a test in the test tree). It cannot be used to insert context menus at
other locations within the harness GUI and the availability of the
custom menu items is limited to certain locations.

The most important considerations for this class are the rules for deciding whether or
not to display the tree popup menu:

1) Is this menu item applicable to test entities, folders, or both?

2) Is the item applicable for cases in which multiple items (multiple tests for example)
are selected?

For example, by using these rules, an architect can create popup menu items that
appear only on tests, such as a menu item that says Configure Test. An architect can
also create a menu item, such as Delete, that acts on homogeneous selection sets.

See the JavaTestContextMenu API documentation provided by the harness for more
details.

13-4 JavaTest Architect's Guide

Customizing Toolbars

13.5 Customizing Toolbars

The architect can add custom toolbars to the Test Manager, which are combined with
the toolbars provided by the harness. The harness provides a default toolbar manager
(com.sun.javatest.exec.ToolBarManager) which is suitable for most uses. Using
either the default context manager or preferably a custom ContextManager (see
Section 13.1, "Customization API"), the toolbar manager is retrieved through the
getToolBarManager () method. The API on this object allows the test suite to add and
remove toolbars of the type com.sun.javatest.exec.JavaTestToolBar, which is a
subclass of Swing's JToolBar.

On the JavaTestToolBar API, methods are provided that enable the harness to query
the toolbar for its name, description and optional behavior. These methods enable the
harness to automatically manage the toolbar, especially in the case of presenting
menus which control visibility. Architects should pay attention to the
internationalization practices that the harness enforces (see Section 13.2,
"Internationalization"). See the API documentation for JavaTestToolBar methods
getId(), getDescription(), and getName ().

Customization 13-5

Customizing Toolbars

13-6 JavaTest Architect's Guide

A

Standard Commands

The JavaTest harness provides a number of standard commands that you can use to
configure an environment to run a test suite on your test platform. These commands
all extend the standard JavaTest Command class.

With these standard commands, you can configure the JavaTest harness for a wide
variety of test platforms. If, however, you find that you cannot create an environment
for your test platform using these commands, you may need to write your own: see
Section 10.2, "Writing Custom Commands" for more details.

The standard commands are as follows:

s ActiveAgentCommand: A command to execute a subcommand on a JavaTest
Agent running in active mode

» ExecStdTestSame]VMCmd: A command to execute a simple API test in the same
JVM in which the JavaTest harness or the JavaTest Agent is running

s ExecStdTestOther]VMCmd: A command to execute a simple API test in a JVM that
is separate from the JVM in which the JavaTest harness or the JavaTest Agent is
running

s JavaCompileCommand: An example command that demonstrates how to invoke a
Java application via a wrapper class

= PassiveAgentCommand: A command to execute a subcommand on a JavaTest
Agent running in passive mode

s ProcessCommand: A command to execute a system command in a separate
process

= SerialAgentCommand: A command to execute a subcommand on a JavaTest
Agent, communicating via a serial line

Note: Examples in this appendix use Unix style commands and file
separators.

A.1 ActiveAgentCommand

A command to execute a command in a separate JVM, typically on a remote machine,
by delegating it to a JavaTest Agent which has been configured to run in active mode.
This means it contacts the JavaTest harness to determine what it should do.

The JavaTest active agent pool must be started before you start running tests that use
this command. The active agent pool holds the requests from the active agents until
they are required. You can start the active agent pool from the JavaTest GUI or
command line.

Standard Commands A-1

ActiveAgentCommand

Usage

com.sun.javatest.agent.ActiveAgentCommand [options] command-class
[command-arguments]

Arguments

-classpath path This option allows you to specify a classpath on the system running the
JavaTest harness from which to load the command class and any classes it
invokes. The classes are automatically loaded into the agent as needed.
If the class path is not specified, the classes are loaded from the agent's
class path. See Chapter 4 for additional information about using the
-classpath option.

—mapArgs The command to be executed might contain values that are specific to
the host running the JavaTest harness and that might not be appropriate
for the host that actually runs the command. If this option is given, the
agent uses a local mapping file to translate specified string values into
replacement values. This is typically used to map filenames from the
view on one host to the view on another. See the JavaTest online help for
more information.

—tag tag This option allows the user to specify a string that is used to identify the
request on the agent. If not specified, the default value, command-class, is
used. It is suggested that the URL of the test should be used as the value
for this option. A configuration can use the symbolic name $testURL,
which is substituted when the command is executed.

command class The name of a command class to be executed by the agent. If the
-classpath option is not used, the class should be on the classpath of the
agent, and should be appropriate for the agent, depending on the
security restrictions in effect. For example, an agent running as an
application might be able to run a ProcessCommand, but an agent
running as an applet might not. The class should implement the
interface com. sun. javatest.Command.

command arguments The arguments to be passed to the run method of an instance of the
command class running on the agent. The arguments can be translated
to agent-specific values if the -mapArgs option is given.

Description

ActiveAgentCommand is a facility to execute a command on a JavaTest Agent that has
been configured to run in active mode. A JavaTest Agent provides the ability to run
tests in a context that might not be able to support the JavaTest harness. This could be
because the tests are to be run on a machine with limited resources (such as memory),
or in a security-restricted environment (such as a browser), or on a newly developed
platform on which it is not possible to run the JDK.

Commands often contain host-specific arguments, such as filenames or directories.
Although the files and directories might be accessible from the agent host (and in
general, should be), the paths might be different. For example, /usr/local on a Solaris
platform might be mounted as a network drive like H: on a Windows platform. When
an agent is initialized, it may be given information on how to translate strings from
one domain to another. On a per-command basis, the agent can be instructed to
translate a command according to the translation tables it is given.

The command to be executed on an agent can be identified with a tag for tracing and
debugging purposes. If none is specified, a default identification is used.

Any output written by the command when it is executed by the agent appears as the
output of the ActiveAgentCommand command itself. If the command is successfully
executed by the agent (i.e. the Command object is successfully created and the run

A-2 JavaTest Architect's Guide

ExecStdTestSameJVMCmd

method invoked), the result of ActiveAgentCommand is the result of the command
executed by the agent. Otherwise, an appropriate error status is returned.

Example:
Using ActiveAgentCommand to Execute a ProcessCommand on an Active Agent
This example is based on the following sample code demonstrating ProcessCommand:

com.sun.javatest.lib.ProcessCommand /usr/local/jdkl.6/solaris/bin/javac
-classpath /home/juser/classes -d /home/juser/classes HelloTest.java

To make a command execute on another machine, prefix it with ActiveAgentCommand
and any arguments that ActiveAgentCommand requires:

compile.java=com.sun.javatest.agent.ActiveAgentCommand
com.sun. javatest.lib.ProcessCommand \
/usr/local/jdkl.6/solaris/bin/javac \
-classpath /home/juser/classes \
-d /home/juser/classes HelloTest.java

See Also:

All the other standard commands in this appendix. Subject to security restrictions on
the agent, they can all be executed remotely by means of ActiveAgentCommand.

A.2 ExecStdTestSameJVMCmd

A command that executes a standard test in the same JVM in which JavaTest Agent is
running.

Usage
com.sun.javatest.lib.ExecStdTestSameJVMCmd [options] test_class [test_args]

Arguments

—loadDir directory Creates a ClassLoader that loads any necessary classes from the specified
directory. The ClassLoader is garbage collected once
ExecStdTestSameJVMCmd has completed. If you do not specify -loadDir,
the system class loader is used. Using a separate ClassLoader for each test
reduces the chance that one test interferes with another. Also, using a
separate ClassLoader allows the command to unload test classes after the
test is executed, which could be critical in memory constrained
environments.

On some systems, the security manager restricts the ability to create a
ClassLoader. If you use this option and cannot create a ClassLoader, the
command throws a SecurityException.

test class Specifies the name of the test class to execute. This class must be a subtype
of com.sun. javatest.Test. To specify a class in the test description
currently being processed by the JavaTest harness, use the $executeClass
substitution variable.

test args Specifies a list of arguments to be passed to the run method of the class
being executed. To specify arguments in the test description currently
being processed by the JavaTest harness, use the $executeArgs substitution
variable

Standard Commands A-3

ExecStdTestOtherdVMCmd

Description

ExecStdTestSameJVMCmd is a JavaTest command that executes a standard test in the
same JVM in which the JavaTest Agent is running. The class must be a subtype of
com.sun.javatest.Test.

ExecStdTestSameJVMCmd creates a new instance of the class, calls its run method, and
passed the class args. If the class is successfully created and invoked, the result of
ExecStdTestSameJVMCnd is equal to the result of the run method of the object.

Examples:
Simple use of ExecStdTestSameJVMCmd:

command.execute=com. sun.javatest.lib.ExecStdTestSameJVMCmd \
StestExecuteClass StestExecuteArgs

Using ExecStdTestSame]VMCmd Inside an Environment:

com.sun.javatest.lib.ExecStdTestSameJVMCmd HelloTest

See Also:

ExecStdTestOtherJvVMCmd

A.3 ExecStdTestOtherJVMCmd

A variant of ProcessCommand that executes a standard test using a subcommand in a
separate process.

Usage

com.sun.javatest.lib.ExecStdTestOtherdVMCmd [options] [shell variables]
subcommand [args]

Arguments

-V Used for verbose mode. When ExecStdTestOtherJVMCmd is in verbose
mode, additional output information is sent to the TestResult object.

shell variables Specifies one or more shell environment values that are required by the
sub-command. Shell environment variables are written as:
name=value.

subcommands Specifies the name of a program that is executed.

args Specifies the arguments that are passed to the subcommand.

Description

ExecStdTestOtherJVMCmd is a JavaTest command that executes a test with a
subcommand in a separate process (using a separate runtime). You would normally
use this command to invoke a JVM to run the test class.Examples of subcommands are
the compiler for the Java programming language (javac) and the JVM (java). Normally,
a test exits by creating a Status object and then invoking its exit method. This
command also returns a Status object, which is equal to the object returned by the test.

Examples
Simple Use of ExecStdTestOtherJVMCmd

com.sun.javatest.lib.ExecStdTestOtherJVMCmd \
/usr/local/jdkl.6/solaris/bin/java \
-classpath /home/juser/classes

A-4 JavaTest Architect's Guide

JavaCompileCommand

HelloTest

Using ExecStdTestOtherJ]VMCmd Inside an Environment

command. execute=com.sun.javatest.lib.ExecStdTestOtherJVMCmd \
/usr/local/jdkl.6/solaris/bin/java \
-classpath /home/juser/classes
StestExecuteClass StestExecuteArgs

See Also:

ExecStdTestSameJVMCmd, ProcessCommand

A.4 JavaCompileCommand

Invokes a compiler in the same JVM in which the JavaTest harness or the JavaTest
Agent is running.

Usage
com.sun.javatest.lib.JavaCompileCommand [-compiler compiler-spec] [args]

Arguments

-compiler compiler-spec If the —compiler option is given, compiler-spec specifies the class
name for the compiler, optionally preceded by a name for the
compiler followed by a ":". If no compiler name is given before the
class name, the default name is "java" followed by a space and then
the class name. If the —compiler option is not given, the default
value for compiler-spec is javac:sun.tools.javac.Main.

args Specifies the arguments to the compiler's compile method. If you
use the default compiler, javac, the arguments are exactly the same
as those you would use for javac. In this case, you should refer to
documentation for the JDK for more details. Otherwise, refer to the
documentation for the compiler you specify.

Description

This command is primarily an example that shows how any application written in the
Java programming language can be interfaced to the JavaTest harness by writing a
wrapper command. By default, the application in this example is the JDK compiler,
javac, but any class implementing the same signature can be invoked. javac is
normally run from the command line, per its specification, but it does have an
undocumented interface AP, that is sufficiently typical to be used as the basis for this
example.

The compiler is assumed to have a constructor and compile method matching the
following signature:

public class COMPILER {
public COMPILER(java.io.OutputStream out, String name);
boolean compile(String[] args);

}

When JavaCompileCommand is used, an instance of the compiler is created. The
constructor is passed a stream to which to write any messages, and the name of the
compiler to be used in those messages. Then, the compile method is called with any
args passed to JavaCompileCommand. If the compile method returns true, the result is a
status of "passed"; if it returns false, the result is "failed". If any problems arise, the
result is "error".

Standard Commands A-5

PassiveAgentCommand

The source code for this example is provided in the examples directory. It is the file
JavaCompileCommand. java in the directory
src/share/classes/com/sun/javatest/1ib/ under the main JavaTest installation
directory.

Examples:
Simple use of JavaCompileCommand

com.sun.javatest.lib.JavaCompileCommand HelloWorld.java
Using JavaCompileCommand Inside an Environment

command.compile.java=com.sun.javatest.lib.JavaCompileCommand \
-d $testClassDir $testSource
Using JavaCompileCommand to Invoke the RMI compiler

command.compile.java=com.sun.javatest.lib.JavaCompileCommand \
-compiler rmic:sun.rmi.rmic.Main \
-d $testClassDir S$testSource
See Also:

ProcessCommand

A.5 PassiveAgentCommand

A command to execute a command on a remote machine by delegating it to a JavaTest
Agent that is configured to run in passive mode.

Usage

com.sun.javatest.agent.PassiveAgentCommand [options] command -class
[command-arquments]

Arguments

-classpath path This option lets you to specify a classpath on the system running the
JavaTest harness from which to load the command class and any
classes it invokes. The classes are automatically loaded into the agent
as needed. Otherwise, classes are loaded using the agent's class path.
See Chapter 4 for additional information about using the
-classpath option.

—host host-name Specifies the host on which to run the command. A passive JavaTest
Agent must be running on this host to execute the command. The
option must be given; there is no default.

-mapArgs The command to be executed might contain values that are specific to
the host running the JavaTest harness and that might not be
appropriate for the host that actually runs the command. If this option
is given, the agent uses a local mapping file to translate specified string
values into replacement values. This is typically used to map filenames
from the view on one host to the view on another. See the JavaTest
online help for more information.

—port port-number This option specifies the port to which to connect when requesting an
agent to run a command. The default value, 1908, is used if no value is
explicitly given.

—tag tag This option lets the user specify a string that identifies the request on
the agent. If not specified, the default value, command-class, is used. It
is suggested that the URL of the test be used as the value for this
option. A configuration can use the symbolic name $testURL, which is
substituted when the command is executed.

A-6 JavaTest Architect's Guide

PassiveAgentCommand

command class The name of a command class to be executed by the agent. The class
should be on the classpath of the agent and be appropriate for the
agent, depending on the security restrictions imposed on the agent. For
example, an agent running as an application might be able to run a
ProcessCommand, but an agent running as an applet might not. The
class should implement the standard interface
com.sun.javatest. Command.

command args The arguments to be passed to the run method of an instance of the
command class running on the agent. The arguments might be
translated to agent-specific values if the -mapArgs option is given.

Description

PassiveAgentCommand is a facility to execute a command on a JavaTest Agent that has
been configured to run in passive mode. A JavaTest Agent provides the ability to run
tests in a context that might not be able to support the entire JavaTest harness. Factors
that require use of the JavaTest Agent include limited resources (such as memory), or
in a security-restricted environment (such as a browser), or on a newly developed
platform on which is not possible to run the JDK.

The host and port options identify an agent to be used to execute the command. The
JavaTest harness attempts to contact an agent on that system that is running and
waiting for requests.

Commands often contain host-specific arguments, such as filenames or directories.
Although the files and directories might be accessible from the agent host (and in
general, should be), the paths might be different. For example, /usr/local on a Solaris
platform can be mounted as a network drive like H: on a Windows NT platform. When
an agent is initialized, it may be given information on how to translate strings from
one domain to another. On a per-command basis, the agent can be instructed to
translate a command according to the translation tables it is given.

The command to be executed on an agent can be identified with a tag for tracing and
debugging purposes. If none is specified, a default identification is used.

Any output written by the command when it is executed by the agent appears as the
output of the PassiveAgentCommand command itself. If the command is successfully
executed by the agent (i.e. the Command object is successfully created and the run
method invoked) then the result of PassiveAgentCommand is the result of the command
executed by the agent. Otherwise, an appropriate error status is returned.

Examples
Using ActiveAgentCommand to Execute a ProcessCommand on an Active Agent:

compile.java=\
com.sun.javatest.agent.PassiveAgentCommand -host calloway \
com.sun.javatest.lib.ProcessCommand \
/usr/local/jdkl.6/solaris/bin/javac \
-classpath /home/juser/classes \
-d /home/juser/classes HelloTest.java

See Also:

All the other standard commands in this appendix. Subject to security restrictions on
the agent, they can all be executed remotely by means of PassiveAgentCommand.

Standard Commands A-7

ProcessCommand

A.6 ProcessCommand
Usage

com.sun. javatest.lib.ProcessCommand
[options] [envvariables]command [command-arguments]

Arguments

-V Verbose mode: tracing information is output to the log.

env variables This is a list of named values to be passed as environment variables
to the command to be executed. Each named value should be written
as name=value.

command This is the name of the command to be executed in a separate
process.

command arguments This is a list of arguments to be passed to the command to be
executed.

Description

ProcessCommand executes a system command in a separate process with the specified
set of environment variables and arguments.

The result of the command is a Status object based upon the exit code of the process.
An exit code of zero is interpreted as Status.PASSED; all other exit codes are
interpreted as Status.FAILED. There are variants of ProcessCommand that provide
different interpretations of the exit code. These variants can be used in more
specialized circumstances, such as running tests that use exit codes like 95, 96, and 97.

ProcessCommand copies the standard output stream of the process to the out2
command stream, and the standard error stream of the process to the outl command
stream.

Examples
Simple use of ProcessCommand

com.sun.javatest.lib.ProcessCommand
/usr/local/jdkl.6/solaris/bin/javac
-classpath /home/juser/classes -d /home/juser/classes HelloTest.java

Using ProcessCommand in an Environment

compile.java=com.sun.javatest.lib.ProcessCommand \
/usr/local/jdkl.6/solaris/bin/javac \
-classpath /home/juser/classes \
-d /home/juser/classes StestSource

See Also:
ExecStdTestOther]VMCmd

A.7 SerialAgentCommand

A command to execute a command on a remote machine, by delegating it to a JavaTest
Agent that has been configured to communicate via a serial R5232 line.

Usage

com.sun.javatest.agent.Serial AgentCommand [options] command-class
[command-arguments]

A-8 JavaTest Architect's Guide

SerialAgentCommand

Arguments

-classpath path This option lets you specify a classpath on the system running the
JavaTest harness from which to load the command class and any
classes it invokes. The classes are automatically loaded into the agent as
needed. See Chapter 4 for additional information about using the
-classpath option.

-mapArgs The command to be executed might contain values that are specific to
the host running the JavaTest harness and that might not be
appropriate for the host that actually runs the command. If this option
is given, the agent uses a local mapping file to translate specified string
values into replacement values. This is typically used to map filenames
from the view on one host to the view on another. See the JavaTest
online help for more information.

—port port-name This option specifies the name of the serial port on the system running
the JavaTest harness to be used to communicate with a JavaTest Agent
that has also been configured to communicate via a serial line. The set
of possible names is determined dynamically, and is dependent on the
underlying implementation of the javax.comm API. On Solaris, the
names are typically ttya, ttyb; on a PC, the names are typically COM1,
COM2, COM3 and COM4.

—tag tag This option lets the user specify a string to be used to identify the
request on the agent. If not specified, the default value, command-class,
is used. It is suggested that the URL of the test be used as the value for
this option. In an environment file, this is available as the symbolic
name "$testURL".

command class The name of a command class to be executed by the agent. The class
should be on the class path of the agent, and should be appropriate for
the agent, depending on the security restrictions imposed on the agent.
For example, an agent running as an application might be able to run a
ProcessCommand, but an agent running as an applet might not.

command arguments The arguments to be passed to the run method of an instance of the
command class running on the agent. The arguments can be translated
to agent-specific values if the -mapArgs option is given.

Description

SerialAgentCommand is a facility to execute a command on a JavaTest Agent that has
been configured to communicate via a serial line. A JavaTest Agent lets you run tests
in a context that might not be able to support all of the JavaTest harness. This might be
because the tests are to be run on a machine with limited resources (such as memory),
or in a security-restricted environment (such as a browser), or on a newly developed
platform on which is not possible to run the JDK.

The port option identifies a serial port on the system running the JavaTest harness,
which should be connected to a serial port on the system running the JavaTest Agent.
The serial line is accessed via the javax.comm optional package. This is not part of the
standard JDK, and must be added to your class path when you start the JavaTest
harness.

Commands often contain host-specific arguments, such as filenames or directories.
Although the files and directories might be accessible from the agent host (and in
general, should be), the paths might be different. For example, /usr/local on a Solaris
platform could be mounted as a network drive like H: on a Windows NT platform.
When an agent is initialized, it may be given information on how to translate strings
from one domain to another. On a per-command basis, the agent can be instructed to
translate a command according to the translation tables it is given.

Standard Commands A-9

SerialAgentCommand

The command to be executed on an agent can be identified with a tag for tracing and
debugging purposes. If none is specified, a default identification is used.

Any output written by the command when it is executed by the agent appears as the
output of the SerialAgentCommand command itself. If the command is successfully
executed by the agent (i.e. the Command object is successfully created and the run
method invoked), then the result of SerialAgentCommand is the result of the command
executed by the agent. Otherwise, an appropriate error status is returned.

Examples
This example is based on the following sample code demonstrating ProcessCommand:

com.sun.javatest.lib.ProcessCommand
/usr/local/jdkl.6/solaris/bin/javac
-classpath /home/juser/classes -d /home/juser/classes HelloTest.java

A command can be made to execute on another machine simply by prefixing it with
SerialAgentCommand and any arguments that SerialAgentCommand requires.

compile.java=\
com.sun.javatest.agent.SerialAgentCommand -port ttya \
com.sun.javatest.lib.ProcessCommand \
/usr/local/jdkl.6/solaris/bin/javac -classpath /home/juser/classes
-d /home/juser/classes HelloTest.java

See Also:

All the other standard commands in this appendix. Subject to security restrictions on
the agent, they can all be executed remotely by means of SerialAgentCommand.

A-10 JavaTest Architect's Guide

B

Formats and Specifications

This appendix describes file formats and specifications that test architects should
know about.

B.1 Test URL Specification

This specification describes how test files must be named to work properly with the
JavaTest harness.

The JavaTest harness converts the native path names of tests to an internal format
called a test URL. When the JavaTest harness converts a path name to a test URL, it:

= Makes the path relative to the root of the test suite

= Converts the path separator to a forward slash

A test URL consists of three components:

» The folder/directory path name (relative to the test suite tests directory)
= The name of the file that contains the test description

= An optional test identifier can be appended to designate a test description table
within a test description file

For example:

api/javatest/TestSuite.html#getName

The JavaTest harness evaluates test URLs without regard to case; however, it does
preserve case when possible to increase readability for the user.

The path names you create can contain only the following characters:

s ISO Latin 1 characters A-Z and a-z

= Digits 0-9

T

s Underscore character "_

T

s Dash character "-

nn

» Period character "." (deprecated)
= Open and close parentheses (deprecated)
Test URLs must never contain whitespace characters.

Deprecated characters are included for backward compatibility; please do not use
them as they might become unsupported in future releases. Whenever possible, use
short names to make best use of screen real estate.

Formats and Specifications B-1

Exclude List File Format

Note: When the result file (. jtr) is created, the text after the last
period is omitted.

The test identifier may only contain the following characters:
= ISO Latin 1 characters A-Z and a-z
= Digits 0-9

"non

s Underscore character

B.1.1 Test Paths

An test path can be used by a user to specify a particular subset of tests in the test suite
hierarchy; for example, in the Tests tab of the JavaTest configuration editor (Standard
Values view).

Initial URLs specify a set of tests in the following ways:
= A folder that contains one or more tests

= A file that contains one or more tests

= Asingle, complete test URL

The test path conforms to the rules specified in the previous section, but is not
required to resolve the complete URL. If the test path is an incomplete test URL (for
example, a folder), the JavaTest harness generates a list of the tests' URLs contained
hierarchically beneath it.

B.2 Exclude List File Format

B.2.1 Syntax

Test suites use the exclude list mechanism to identify tests that should not be run. The
JavaTest harness consults the exclude list when it selects tests to run, and does not run
the tests on the list. Excluded tests normally appear as filtered out in the JavaTest test
tree.

When the JavaTest harness is used with TCK test suites, the exclude list mechanism is
used to determine the correct set of tests that must be executed for certification. The
exclude list mechanism is a mechanism for "removing" broken or invalid tests in the
field without having to ship a new test suite.

The exclude list is a four-column table that uses ISO Latin 1 (ISO 8859-1) character
encoding. Lines that are completely empty or contain only whitespace (space, tab,
newline) are allowed. Comment lines begin with the "#" character. Each line has the
following format:

Test_URL [Test_Cases] BuglID_List Keywords Synopsis
For example:

api/index.html#attributes|Char2067] 4758373 reference,test Bug is intermittent

B-2 JavaTest Architect's Guide

Exclude List File Format

Table B-1 Exclude List Field Descriptions

Field Description

Test_URL[Test_Cases] = The URL of the test to be excluded. This field can specify an entire
test or can use the Test_Cases parameter to specify a subset of its test
cases. The test cases field is optional and the brackets must not be
present if the field is empty.

BugID_List A comma-separated (no spaces) list of bug identifiers associated with
the excluded test.

Keywords A comma-separated (no spaces) list of keywords that can be used to
classify exclusions. The particular values are project specific.

Synopsis A short comment that describes the reason the test is excluded. This
optional field is recommended because it helps track entries on the
exclude list.

Each field is separated by spaces and/or tabs. A line break terminates the entry. There
is no way to indicate that the entry continues on the next line. Comments can appear
on any line of the file, see the rules below.

Although it is not recommended, you can omit the synopsis, keywords, or bugID_List
field; however, the entry is only valid if everything to the right of the omitted field is
also omitted. For example, you cannot omit a bugID and include a keyword; but you
can include a buglID and omit the keywords and synopsis.

B.2.1.1 Test URL and Test Cases

Entries must not specify overlapping test cases. For example, you cannot exclude an
entire test and then exclude a test case inside that test. These two entries can never
appear in the same file:

api/java_lang/Character/index.html#attributesFullRange
api/java_lang/Character/index.html#attributesFullRange[Character2067]

The URL must specify a specific test or test case. Entire subsections of the test suite
cannot be excluded with a single entry. Continuing with the API example, if a test
suite is rooted at the ts_dir\tests directory and the index.html file contains many test
descriptions, all of the following test URLs are invalid:

api

api/java_lang/

api/java_lang/Character

api/java_lang/Character/index.html

tests/api/java_lang/xyz

java_lang/xyz

You can exclude individual test cases within a test description by appending a list of
those tests cases at the end of the test URL. The list of test cases must be enclosed
within square brackets. The list of test cases is separated by commas with no internal
whitespace. There is no whitespace between the end of the test URL and the opening
square brackets. The following figure shows valid test URL entries:

vm/instr/ifnull/ifnull003/ifnull00303ml/ifnull00303ml.html
api/java_beans/beancontext/BeanContextMembershipEvent/index.html#Constructor
api/java_lang/Character/index.html#attributesFullRange [Character2067]
api/SystemFlavorMap/index.html#method[SystemFlavorMap0001, SystemFlavorMap0004]

For information about constructing valid test URLs, see Section B.1, "Test URL
Specification".

Formats and Specifications B-3

Exclude List File Format

B.2.1.2 BugIDs

The list of bug IDs is separated by commas, and contains no whitespace characters.
Items in the BuglID_List are entries that correspond to a bug in a bug tracking system.
Letters, integers, dashes and underscore characters are valid.

B.2.1.3 Keywords

It is recommended that keyword entries be no longer than 20 characters long.
Keyword entries must start with a letter and can contain letters, numbers, and the
underscore character. The list of keywords is separated by commas, without any
whitespace characters.

B.2.1.4 Synopsis

Any description or notes about a particular entry. There are no special restrictions on
the content of this field. It is recommended that the field contain no more than 100
characters.

B.2.1.5 Comments and Header Information

Comments always extend from column zero of a line to end of the line. To be a
comment line, the character in column zero must be "#"; two consecutive "#" characters
at the beginning of a line are allowed, but the use of three or more is reserved.

Optional (but recommended) header lines can be added to your exclude list file to
improve readability. Header lines always begin with "###" and can be used to
designate titles, and revision histories. The format is:

header_type headingcontent. ..

The case-sensitive header type specification is separated from the "###" prefix by white
space characters, the heading content is separated from the header type specification
by more whitespace characters. These values should appear only once in any exclude
list file, and it is recommended that they be placed at the top of the file. Currently, the
only supported header type is "title". The title describes the exclude list and must be
terminated with a newline.

The following is an example of a valid exclude list:

title My example exclude list

revised Mon Jul 23 18:15:04 PDT 2001

api/java_lang/runtimetest.java

this is a comment line

api/index.html#attributes[Char2067] 1234567 reference,test Invalid assumption
this is another comment line

api/mytest.java#l 1234568,987654321 spec

B-4 JavaTest Architect's Guide

What Technical Writers Should Know About
Configuration Interviews

Technical writers can greatly contribute to the quality of a JavaTest configuration
interview — think of the text in a configuration interview as being equivalent to an
application's user interface; the better the text, the easier the test suite is to run. There
are two areas where a writer's contribution is extremely important:

» The careful construction and phrasing of the question text

= Providing extra help and examples in the More Info pane

C.1 Question Text

Interview questions should be written as concisely, consistently, and clearly as
possible. Any amplification, clarification, or examples should be included in the More
Info pane.

Not all questions are really questions; some "questions" are written as statements that
instruct the user to specify, choose, or select an item of information.

To see an example interview, run the JavaTest tutorial in Chapter 2. The tutorial uses
the Demo TCK that is part of the JavaTest Architect's release.

Question text is kept in a Java properties file associated with the interview class files;
you get the path to the properties file from the interview developer. Every interview
question is identified by a unique key. The key is based on a name assigned by the
developer and should uniquely identify the question with the interview. Keys are of
the form:

interview_class_name . question_name

The following is a snippet from the Demo TCK interview properties file:

title=Demo Interview Configuration Editor

DemoTCKParameters.cmdType.smry=How to Run Tests

using a JavaTest Agent?computer (using a separate JVM), or to run them on another
computer DemoTCKParameters.cmdType.text=Do you wish to run the tests on this
DemoTCKParameters.cmdType.agent=Using a JavaTest Agent
DemoTCKParameters.cmdType.otherVM=0n this computer
DemoTCKParameters.data.smry=Test Configuration Values...

local settings of some parameters required by some of the
tests.DemoTCKParameters.data.text=The following questions determine the
DemoTCKParameters.desc.smry=Description

identify the configuration you are creating

What Technical Writers Should Know About Configuration Interviews C-1

More Info

here.DemoTCKParameters.desc.text=Please provide a short description to

The file contains the following types of elements:

n The title of the full interview

= A title for each question of the form: question_key . smry

» The text for each question of the form: question_key . text

s Additional entries for choice items that are localized

Note: Do not type carriage return or linefeed characters within
entries in a Java properties files. This causes an error when the
interview is built. Use the "\n" characters to specify line breaks in
question text.

C.2 More Info

As a technical writer, you can really add value to a test suite in the configuration
interview More Info pane.

Figure C-1 The JavaTest Configuration Editor: Question and More Info Panes

%) Configuration Editor

File Bookmarks Search View Help
 Welcome! \a|| | The JavaTest A
Configuration Name Welcome! ™[|| Harmess
More... Configuration Editor
: interviews you about
Welcome to the Configuration Editor for the parameters
DemoTCK 1.0 Test Suite (Tag Tests) used to run your
. . tests. Test
The following questions ask you about how parameters are
to run the test suite. You can also enter and 1 values that
edit some of this information using the determine which
Standard Values view of this editor. tests in the test
3 O : Suite are run and
The panel to the right contains information how they are run.
that should help you answer the interview v The interview
" ; contains between
€ Back | Mestd || Lastd | | Done | || 10and14 b
questions. v

The text displayed in the More Info pane is formatted using HTML 3.2 tags and
provides a reasonably rich environment for formatting text. Although the text can be
created using a WYSIWYG HTML editor, most More Info text is short and simple and
is easy to create manually using a text editor.

Typically, the developer who creates the configuration interview creates the basic More
Info system, seeding it with empty HTML files that you can fill in with text.

Experience has shown that it is best to create one HTML More Info file per interview
question. It is also a good idea to name the More Info HTML files after the property
names of the questions they describe. For example, in the snippet in the previous
section, you can see that the DemoTCKParameters interview contains a question named

C-2 JavaTest Architect's Guide

More Info

cmdType — you should expect to see a corresponding More Info file named
cmdType.html.

C.2.1 Formatting Styles

The following tips can be helpful when formatting your More Info topics:

Your More Info topics should link to the style sheet included in this package named
morelInfo.css.

Use only HTML 3.2 tags because of limitations in the HTML viewer
Section 508 accessibility rules may apply

Do not create hypertext links to other More Info topics or other external
documents

Do not add any <p> tags between the <body> tag and the initial paragraph
Use the <i> tag for variables in command lines — use the tag for emphasis

All file names and code examples should be formatted in the fixed-width font
using the <code> or <pre> tags

The style sheet (moreInfo.css) contains a "tight" class that you can use with <1i>
tags for lists in which you want less vertical space between list items. For example:

<li class="tight">This item is closer to the previous list item</1i>

Indent path names and code examples using the <p class="code"> tag. The code
class indents the lines 8 pixels and has no top margin. For example, the following
HTML:

<p class="code">
<i>jdk_install_dir</i><code>/bin/java</code>

</p>

<p class="code">
<i>jdk_install_dir</i><code>/jre/java</code>

</p>

Produces the following output:

jdk_install_dir/bin/java
jdk_install_dir/jre/java

C.2.2 Usage and Conventions

The following list describes some conventions that have proven useful for writing
More Info text:

Use the present tense when possible. For example, instead of:
"The following questions will gather..."

use:

"The following questions gather..."

When reasonable, provide examples in both Unix and Microsoft Windows format

What Technical Writers Should Know About Configuration Interviews C-3

More Info

C-4 JavaTest Architect's Guide

Glossary

active agent

A type of test agent that initiates a connection to the JavaTest harness. Active test
agents allow you to run tests in parallel using many agents at once and to specify the
test machines at the time you run the tests. Use the agent monitor to view the list of
registered active agents and synchronize active agents with the JavaTest harness before
running tests. See also test agent, passive agent, and JavaTest agent.

agent monitor

The JavaTest window that is used to synchronize active agents and to monitor agent
activity. The Agent Monitor window displays the agent pool and the agents currently
in use.

agents

See test agent, active agent, passive agent, and JavaTest agent.

Application Programming Interface (API)

An API defines calling conventions by which an application program accesses the
operating system and other services.

assertion

A statement contained in a structured Java technology API specification to specify
some necessary aspect of the APIL. Assertions are statements of required behavior,
either positive or negative, that are made within the Java technology specification.
assertion testing

Compeatibility testing based on testing assertions in a specification.

atomic operation

An operation that either completes in its entirety (if the operation succeeds) or no part
of the operation completes at all (if the operation fails).

behavior-based testing

A set of test development methodologies that are based on the description, behavior,
or requirements of the system under test, not the structure of that system. This is
commonly known as "black-box" testing.

class

The prototype for an object in an object-oriented language. A class may also be
considered a set of objects which share a common structure and behavior. The
structure of a class is determined by the class variables which represent the state of an

Glossary-1

classes

Glossary-2

object of that class and the behavior is given by a set of methods associated with the
class. See also classes.

classes

Classes are related in a class hierarchy. One class may be a specialization (a "subclass")
of another (one of its "superclasses”), it may be composed of other classes, or it may
use other classes in a client-server relationship. See also class.

compatibility rules

Compeatibility rules define the criteria a Java technology implementation must meet in
order to be certified as "compatible" with the technology specification. See also
compatibility testing.

compatibility testing

The process of testing an implementation to make sure it is compatible with the
corresponding Java technology specification. A suite of tests contained in a Technology
Compeatibility Kit (TCK) is typically used to test that the implementation meets and
passes all of the compatibility rules of that specification.

configuration

Information about your computing environment required to execute a Technology
Compatibility Kit (TCK) test suite. The JavaTest harness version 3.x uses a
configuration interview to collect and store configuration information. The JavaTest
harness version 2.x uses environment files and parameter files to obtain configuration
data.

configuration editor

The dialog box used JavaTest harness version 3.x to present the configuration
interview.

configuration interview

A series of questions displayed by JavaTest harness version 3.x to gather information
from the user about the computing environment in which the TCK is being run. This
information is used to produce a test environment that the JavaTest harness uses to
execute tests.

configuration value

Information about your computing environment required to execute a TCK test or
tests. The test environment version 3.x uses a configuration interview to collect
configuration values. The JavaTest harness version 2.x uses environment files and
parameter files to obtain configuration data.

equivalence class partitioning

A test case development technique which entails breaking a large number of test cases
into smaller subsets with each subset representing an equivalent category of test cases.

exclude list

A list of TCK tests that a technology implementation is not required to pass in order to
certify compatibility. The test environment uses exclude list files (* . jtx), to filter out of
a test run those tests that do not have to be passed. The exclude list provides a level
playing field for all implementors by ensuring that when a test is determined to be
invalid, then no implementation is required to pass it. Exclude lists are maintained by
the Maintenance Lead (ML) and are made available to all technology licensees. The

JavaTest harness

ML may add tests to the exclude list for the test suite as needed at any time. An
updated exclude list replaces any previous exclude lists for that test suite.

HTML test description

A test description that is embodied in an HTML table in a file separate from the test
source file.

implementation

See technology implementation.

instantiation

In object-oriented programming, means to produce a particular object from its class
template. This involves allocation of a data structure with the types specified by the
template, and initialization of instance variables with either default values or those

provided by the class's constructor function.

Java Platform, Standard Edition (Java SE)

The Java SE platform is a set of specifications that defines the desktop runtime
environment required for the deployment of Java applications. Java SE technology
implementations are available for a variety of platforms, but most notably Solaris and
Microsoft Windows.

Java Application Manager (JAM)

A native application used to download, store and execute Java applications.

Java Archive (JAR)

A JAR is a platform-independent file format that combines many files into one.

Java Platform Libraries

The class libraries that are defined for each particular version of a Java technology in
its Java technology specification.

Java technology

A Java technology is defined as a Java technology specification and its reference
implementation (RI). Examples of Java technologies are Java Platform, Standard
Edition (Java SE), the Connected Limited Device Configuration (CLDC), and the
Mobile Information Device Profile (MIDP).

Java technology specification

A written specification for some aspect of the Java technology.

JavaTest agent

A test agent supplied with the JavaTest harness to run TCK tests on a Java
implementation where it is not possible or desirable to run the main JavaTest harness.
See also test agent, active agent, and passive agent.

JavaTest harness

The JavaTest Harness is a test harness that has been developed to manage test
execution and result reporting for a Technology Compatibility Kit (TCK). The harness
configures, sequences, and runs test suites. The JavaTest harness is designed to
provide flexible and customizable test execution. It includes everything a test architect
needs to design and implement tests for Java technology specifications.

Glossary-3

keywords

Glossary-4

keywords

Keywords are defined for a test suite by the test suite architect. Keywords are used to
direct the JavaTest harness to include or exclude tests from a test run.

Maintenance Lead (ML)

The person responsible for maintaining an existing Java technology specification and
related reference implementation (RI) and Technology Compatibility Kit (TCK). The
ML manages the TCK appeals process, exclude list, and any revisions needed to the
specification, TCK, or RL

methods

Procedures or routines associated with one or more classes, in object-oriented
languages.

MultiTest

A JavaTest library class that enables tests to include multiple test cases. Each test case
can be addressed individually in a test suite exclude list.

namespace

A set of names in which all names are unique.

object-oriented

A category of programming languages and techniques based on the concept of objects
which are data structures encapsulated with a set of routines, called methods, which
operate on the data.

objects

In object-oriented programming, objects are unique instances of a data structure
defined according to the template provided by its class. Each object has its own values
for the variables belonging to its class and can respond to the messages (methods)
defined by its class.

packages

A namespace within the Java programming language. It can have classes and
interfaces. A package is the smallest unit within the Java programming language.

passive agent

A type of test agent that must wait for a request from the JavaTest harness before they
can run tests. The JavaTest harness initiates connections to passive agents as needed.
See also test agent, active agent, and JavaTest agent.

prior status

A JavaTest filter used to restrict the set of tests in a test run based on the last test result
information stored in the test result files (. jtr).

reference implementation (RI)

The prototype or proof of concept implementation of a Java technology specification.
All new or revised specifications must include an RI. A specification RI must pass all
of the TCK tests for that specification.

test

signature file

A text representation of the set of public features provided by an API that is part of a
finished TCK. It is used as a signature reference during the TCK signature test for
comparison to the technology implementation under test.

signature test

A TCK signature test for a Java technology implementation checks that all the
necessary API members are present and that there are no extra members which
illegally extend the API. It compares the API being tested with a reference API and
confirms if the API being tested and the reference API are mutually binary compatible.

specification
A plan or blueprint for structuring and delivering information.

See Java technology specification.

standard values

A configuration value used by the JavaTest harness to determine which tests in the test
suite to run and how to run them. The user can change standard values using either
the Question mode or Quick Set mode in the configuration editor.

system configuration

Refers to the combination of operating system platform, Java programming language,
and JavaTest harness tools and settings.

tag test description

A test description that is embedded in the Java language source file of each test.

Technology Compatibility Kit (TCK)

The suite of tests, tools, and documentation that allows an implementor of a Java
technology specification to determine if the implementation is compliant with the
specification.

technology implementation

Any binary representation of the form and function defined by a Java technology
specification.

technology specification

See Java technology specification.

test agent

A test agent is a Java application that receives tests from the test harness, runs them on
the implementation being tested, and reports the results back to the test harness. Test
agents are normally only used when the TCK and implementation being tested are
running on different platforms. See also test agent, passive agent, and JavaTest agent.

test

The source code and any accompanying information that exercise a particular feature,
or part of a feature, of a See also technology implementation to make sure that the
feature complies with the Java technology specification's compatibility rules. A single
test may contain multiple test cases. Accompanying information may include test
documentation, auxiliary data files, or other resources used by the source code. Tests
correspond to assertions of the specification.

Glossary-5

test cases

Glossary-6

test cases

A small test that is run as part of a set of similar tests. Test cases are implemented
using the JavaTest MultiTest library class. A test case tests a specification assertion, or a
particular feature, or part of a feature, of an assertion.

test command

A class that knows how to execute test classes in different environments. Test
commands are used by the test script to execute tests.

test command template

A generalized specification of a test command in a test environment. The test
command is specified in the test environment using variables so that it can execute any
test in the test suite regardless of its arguments.

test description

Machine readable information that describes a test to the test harness so that it can
correctly process and run the related test. The actual form and type of test description
depends on the attributes of the test suite. A test description exists for every test in the
test suite and is read by the test finder. When using the JavaTest harness, the test
description is a set of test-suite-specific name/values pairs in either HTML tables or
Javadoc-style tags.

test environment

A test environment consists of one or more test command template that the test script
uses to execute tests and set of name/value pairs that define test description entries or
other values required to run the tests.

test execution model
The steps involved in executing the tests in a test suite. The test execution model is
implemented by the test script.

test finder

When using the JavaTest harness, a nominated class, or set of classes, that read, verify,
and process the files that contain test description in a test suite. All test descriptions
that are located or found are handed off to the JavaTest harness for further processing.

test harness

The applications and tools that are used for test execution and test suite management.
The JavaTest harness is an example of a test harness.

test script

A Java class whose job it is to interpret the test description values, run the tests, and
then report the results back to the JavaTest harness. The test script must understand
how to interpret the test description information returned to it by the test finder.

test specification

A human-readable description, in logical terms, of what a test does and the expected
results. Test descriptions are written for test users who need to know in specific detail
what a test does. The common practice is to write the test specification in HTML
format and store it in test suite's test directory tree.

work directory

test suite

A collection of tests, used in conjunction with the JavaTest harness to verify
compliance of the licensee's implementation of Java technology specification. All TCKs
contain one or more test suites.

work directory

A directory associated with a specific test suite and used by the JavaTest harness to
store files containing information about the test suite and its tests.

Glossary-7

work directory

Glossary-8

Symbols

@executeArgs test description entry, 4-4
@executeClass test description entry, 4-4
@sources test description entry, 4-4
@test test description entry, 4-4
$testExecuteArgs, 6-5

$testExecuteClass, 6-5

$testSource, 6-5

$testURL, A-2, A-6, A-9

A

active agent, Glossary-1
ActiveAgentCommand, A-1

adding entries to the Help menu, 8-1
additionalDocs entry (testsuite.jtt), 8-1
agent (remote execution), 3-3

agent class path, 4-8

agent monitor, Glossary-1

agent See test agent

Alt-Shift-D, using to view question ID, 6-20
AntService, 11-4,11-6

AntServiceExecutor, 11-4

API See Application Programing Interface
Application Programming Interface, Glossary-1
architect, TCK, 1-1

assertion testing, Glossary-1

assertions, Glossary-1

atomic operation, Glossary-1

BasicInterviewParameters, 6-12
BasicInterviewParameters class, 6-6
batch mode, 7-2

-batch option, 7-2

behavior-based testing, Glossary-1
binary test finder, 9-4

black-box testing, Glossary-1

Cc

ChameleonTestFinder, 12-5
class files, test, 5-7
class path, 4-7,5-3

agent, 4-8

Index

JavaTest, 4-8

setting intestsuite.jtt, 8-2

test, 4-8
classes, Glossary-2
classes directory, 4-3,4-6
classpath entry intestsuite jtt, 4-2
command interface, 10-4
command strings, configuration interview, 6-3
commands, custom, 10-3
commands, standard (defined), A-1
compatibility rules, Glossary-2
compatibility testing, Glossary-2
compiling test suites with JavaTest, 7-1
components, JavaTest, 3-1

diagram, 3-2
com.sun.interview.Interview, 6-6
com.sun.interview.Question, 6-6
com.sun.javatest.Command, 10-3
com.sun.javatest.interview.BasicInterviewParameters,

6-6

com.sun.javatest.InterviewParameters, 6-6
com.sun.javatest.lib

SerialAgentCommand test suite, A-8
com.sun.javatest.Status, 5-4
com.sun.javatest.TestResult, 10-5
configuration, Glossary-2
configuration editor, 1-1, 2-4, Glossary-2
configuration interview, 3-1, 6-1, 6-21

classes, 6-6

command strings, 6-3

controlling question, 6-8

current interview path, 6-7

designing configuration, 6-1

designing interview, 6-2

designing questions, 6-10

error checking, 6-8

exporting, 6-8

final question, 6-7

flow charts, 6-12

getEnv() method, 6-15

getNext() method, 6-7

JAR file, 6-21

landing point questions, 6-11

More Info help, 6-16, 6-18, 6-21

prolog, 6-15

question text, 6-16, 6-18

Index-1

questions, 6-8

resource file, 6-16, 6-18

standard values, 6-2, 6-12

sub-interviews, 6-11

test commands, 6-1

test description, 6-2

test environment, 6-2

test script, 6-1

tutorial, 2-5

writing your interview, 6-5
Connector, 11-4,11-8
creating a test suite, 4-1
creating tests, 4-3
current interview path, 6-7
custom commands, 10-3
custom splash screen, 13-3

D

-D option, 7-1
default tags
@executeArgs, 5-5
@executeClass, 5-5
@sources, 5-5
Demo Interview, 6-6
Demo TCK, 2-1
Demo TCK configuration interview, 6-6
demoapijar, 1-2
descriptions, test, Glossary-6
doc directory, 4-6

E

env.tsRoot, 8-2
equivalence class partitioning, Glossary-2
error checking in configuration interviews, 6-8
error exit value, 5-3
error messages, 5-8
examples directory, 1-2
exclude list, 2-11

file format, B-2

file syntax, B-2
exclude lists, Glossary-2
ExecStdTestSame]VMCmd, A-3
executing tests remotely, 3-3
export() method, 6-8
exporting test environment, 6-8

F

failed exit value, 5-3
failed method, 5-3
finder, test, 3-1

binary, 9-4
HTML, 9-2
tag, 9-1

first question (interview), 6-14
flow charts, 6-12
Folder pane, 2-7

Index-2

G

generate a report, 2-12
getEnv() method, 6-8, 6-15
getNext() method, 6-7

H

Help menu, adding entries, 8-1
HelpSet file, 6-19

HTML test description, 3-1
HTML test finder, 9-2

id keys, 12-2

implementation, Glossary-3
Instantiation, Glossary-3
Interview class, 6-6

interview. Seeconfiguration interview
InterviewParameters class, 6-6

J

J2SE See Java Platform Standard Edition
JAM See Java Application Manager
JAR See Java Archive
Java Application Manager (JAM), Glossary-3
Java Archive, Glossary-3
Java Platform Libraries, Glossary-3
Java Platform, Standard Edition, Glossary-3
Java SE, Glossary-3
Java technology, Glossary-3
Java technology specification, Glossary-3
JavaCompileCommand, 10-4
JavaTest Agent, 3-3
JavaTest class path, 4-8
JavaTest components, 3-1

diagram, 3-2
JavaTest harness, 1-1
JavaTest tutorial, 2-1
javatest.jar, 4-6
JCKTestFinder, 9-3
JDKCompileCommand, 10-4
jtjunitjar, 12-1,12-2
jtr files, 10-5
jtt file, 3-2,4-2,4-6, 8-1
jtt file, 8-1
jtx files, 2-11, Glossary-2
jtx files, Glossary-2
JUnit3.x, 12-1
JUnit4.x, 12-2
JUnit distribution, 12-1
JUnit framework, 12-1
junit keyword, 12-6
JUnit library, 12-5
JUnit test suite, 12-1
JUnit tests, 12-1
JUnitAnnotationMultiTest, 12-5
JUnitAnnotationTestFinder, 12-2,12-3
JUnitBareMultiTest, 12-5

JUnitBaselnterview, 12-2,12-3
junit.finderscantype, 12-5

junit.framework.TestCase, 12-1,12-4

JUnitMultiTest, 12-3
JUnitSuperTestFinder, 12-1, 12-2,
JUnitTestFinder, 12-3
junit.testmethods, 12-5
JUnitTestRunner, 12-3
JUnitTestSuite, 12-3

K

12-3

keywords, 5-5, 12-5, Glossary-4

L

lib directory, 4-6

maintenance lead, Glossary-4
map file, More Info help, 6-19
method, Glossary-4
ML See maintenance lead
More Info help, 6-16, 6-18, 6-21
HelpSet file, 6-19
map file, 6-19
More Info topic substitution, 6-20
MultiTest, Glossary-4
MultiTest class, 5-5

N

namespace, Glossary-4

-newdesktop option (JavaTest), 2-3,4-5

next question (interview), 6-14

(o)

object-oriented, Glossary-4
objects, Glossary-4
orgjunit.Test, 12-2

Overriding defaulttestsuite.jtt default methods,

P

8-4

package, Glossary-4
packaging

test suite JAR file, 4-7

testsuite jtt, 4-6
ParamResolver, 11-8
passed exit value, 5-3
passed() method, 5-3
PassiveAgentCommand, A-6
prior status, Glossary-4
processCommand, 7-2
ProcessServiceExecutor, 11-4
prolog (configuration interview),
PropertyServiceReader, 11-4

6-15

Q

Question class, 6-6
questions, configuration interview, 6-8
designing, 6-10
keys, 6-18
landing point questions, 6-11
text, 6-18
questions, interview
question text, 6-16, 6-18

R

remote execution, 3-3

remote service management, 11-3

report directory, 7-2

report generation, 2-12

-report option, 7-2

resource file, configuration interview, 6-16
resource file, interview, 6-18

retrofitting JUnit tests, 12-1

S

sampleFiles directory, 1-2
script, test, 3-1, 10-3, Glossary-6

designing, 10-1, 10-3
sequence of events (table), 4-6
SerialAgentCommand, A-8
Service, 11-2
Service Management architecture, 11-8
Service properties, 11-7
service start-up, 11-11
service support, 11-3
ServiceConnector, 11-4
ServiceExecutor, 11-4,11-8
ServiceManager, 11-1
ServiceProperties object, 11-7
ServiceReader, 11-4
Service.start methods, 11-11
setHelpSet method, 6-16
signature file, Glossary-5
signature test, Glossary-5
Smalltalk, 12-1
source files, test, 5-7
SourceForgenet, 12-1
specification See Java technology specification
specification, URL, B-1
splash screen

custom, 13-3
splash.properties file, 13-3
standard commands (defined), A-1
standard configuration values, 6-2
Standard Test Script, 6-1
Status object, 3-2
sub-interviews, configuration interview, 6-11
summary of JavaTest events (table), 3-3
system configuration, Glossary-5

Index-3

T

-tag, A-2, A-6, A9

tag test description, 3-1, Glossary-5
tag test finder, 9-1

TCK, 1-1

TCK See Technology Compatibility Kit

Technology Compatibility Kit, Glossary-5

technology See Java technology
test agent, Glossary-5
test cases, Glossary—S
test class files, 5-7
test class path, 4-8
test command templates, Glossary-6
test commands, 6-1, Glossary-6
test description, 3-1
configuration interview, 6-2
HTML, 3-1
tag, 3-1
variables, 6-2
test description default entries
@executeArgs, 4-4
@executeClass, 4-4
@sources, 4-4
@test, 4-4
test description file, 9-2
test descriptions, Glossary-6
test environment, 6-2, 6-15
test environment, exporting, 6-8
test execution mode, Glossary-6
test execution model, 5-1, 10-3
test finder, 3-1, 3-3, Glossary-6

binary, 9-4
HTML, 9-2
tag, 9-1

Test interface, 5-2
Test pane, 2-8
test script, 3-1, 10-3, Glossary-6
designing, 10-1,10-3
test source files, 5-7
test specification, Glossary-6
test status, 3-2,5-3
test suite, 1-1
test suite JAR file, 4-7
test suite user's guide, 1-1
test suite, creating, 4-1
test suites, Glossary-7
test URL specification, B-1
test, creating, 4-3
TestEnvironment, 11-7
TestResult, 3-2
tests, Glossary-5
tests directory, 4-6
-testsuite, 13-3
TestSuite object, 3-2,3-3
-testsuite option, 7-2
testsuite jtt, 3-2,4-2,8-1
testsuite jtt entries, 8-2
additionalDocs, 8-1
classpath, 8-2
finder, 8-2

Index-4

id, 82

initial jtx, 8-2

interview, 8-2

keywords, 8-3

latest.jtx, 8-3

logo, 8-3

name, 8-3

script, 8-3

testCount, 8-3

tests, 8-3

testsuite, 8-3
ThreadServiceExecutor, 11-4
-ts, 13-3
tutorial configuration answers, 2-5
tutorial, JavaTest, 2-1

U

URL specification, B-1
user's guide, test suite, 1-1

\'}

variables, test description, 6-2
variables, test environment
Configuration environment
variables, 6-5

w

work directory, 2-4,7-2, Glossary-7
-workdir option, 7-2
wrapper class, 10-4

	List of Figures
	List of Tables
	Preface
	Before You Read This Book

	1 Introduction
	1.1 Installation and Runtime Security Guidelines
	1.2 Examples
	Part I The Basics

	2 JavaTest Tutorial
	2.1 Overview
	2.2 Running the Tutorial
	2.2.1 Start the JavaTest Harness
	2.2.2 Run the Quick Start Wizard
	2.2.3 Configure Test Information
	2.2.4 Run Tests
	2.2.5 Browse the Results
	2.2.5.1 The Folder Pane
	2.2.5.1.1 Browse the Results

	2.2.5.2 The Test Pane
	2.2.5.2.1 Browse the Results

	2.2.6 Exclude the Failed Test
	2.2.7 Generate a Report

	2.3 Summary

	3 Overview
	3.1 Test Suite Components
	3.2 Remote Execution

	4 Creating a Test Suite
	4.1 Create a Test Suite
	4.1.1 Create a Test Suite Directory
	4.1.2 Create the testsuite.jtt File
	4.1.3 Copy javatest.jar
	4.1.4 Set Up the classes Directory
	4.1.5 Use a Simple Test Template
	4.1.6 Create and Compile a Simple Test Example
	4.1.7 Run a Test Suite

	4.2 Odds and Ends
	4.2.1 Top-Level Test Suite Directory
	4.2.2 The Test Suite JAR File
	4.2.3 Class Paths
	4.2.3.1 JavaTest Class Path
	4.2.3.2 Agent Class Path
	4.2.3.3 Test Class Path

	5 Writing Tests
	5.1 The Test Execution Model
	5.2 The Test Interface
	5.2.1 Class Paths

	5.3 Test Status
	5.4 Test Description Entries
	5.4.1 Keywords

	5.5 Multiple Tests in a Single Test File
	5.5.1 Subtyping MultiTest

	5.6 Organizing Tests Within Your Test Suite
	5.6.1 Source Files
	5.6.2 Class Files

	5.7 Error Messages

	6 Creating a Configuration Interview
	6.1 Designing Your Configuration
	6.1.1 What is a Configuration?
	6.1.1.1 Test Script Information
	6.1.1.2 Test Description Entries
	6.1.1.3 Which Tests to Run

	6.2 Designing Your Interview
	6.2.1 Command Strings
	6.2.1.1 Example 1
	6.2.1.2 Example 2

	6.2.2 Test Environment Variables

	6.3 Writing Your Interview
	6.3.1 Demo TCK interview
	6.3.2 Demo Interview
	6.3.2.1 Start the Demo Interview

	6.3.3 Interview Classes
	6.3.4 The Current Interview Path
	6.3.5 Determining the Next Question
	6.3.6 Error Checking
	6.3.7 Exporting the Test Environment
	6.3.8 Question Types
	6.3.8.1 Designing Your Questions
	6.3.8.2 Landing Point Questions
	6.3.8.3 Sub-Interviews
	6.3.8.3.1 Flow Charts

	6.3.9 Putting it All Together
	6.3.9.1 Providing the Prolog
	6.3.9.2 Providing the Environment Group
	6.3.9.3 Providing the Resource File for the Interview
	6.3.9.4 Providing the More Info Help for the Interview

	6.4 Creating Question Text and More Info
	6.4.1 Writing Style
	6.4.2 Creating Question Text and Keys
	6.4.3 Creating More Info
	6.4.3.1 Set Up the More Info System
	6.4.3.2 Create HTML Topics for All Interview Questions
	6.4.3.3 Customizing Standard Question More Info

	6.5 Creating the JAR File
	Part II Advanced Topics

	7 Compiling Test Suites
	7.1 System Properties

	8 The TestSuite Object
	8.1 The testsuite.jtt File
	8.2 Overriding Default Methods

	9 Test Finder
	9.1 Test Finder Subtypes
	9.1.1 Tag Test Finder
	9.1.2 HTML Test Finder
	9.1.3 Binary Test Finder
	9.1.3.1 BinaryTestWriter
	9.1.3.2 BinaryTestFinder
	9.1.3.2.1 Examples

	10 Test Scripts
	10.1 Design Decisions
	10.1.1 Simple Test Scripts
	10.1.2 More Flexible Test Scripts
	10.1.2.1 Example 1
	10.1.2.2 Example 2

	10.2 Writing Custom Commands
	10.3 Test Result

	11 Service Management
	11.1 Description
	11.2 Services-Related Work Flow
	11.3 Implementation
	11.3.1 Implementations of ServiceReader Interface
	11.3.1.1 PropertyServiceReader File Format
	11.3.1.2 XMLServiceReader File Format

	11.3.2 Implementation of Service Interface
	11.3.3 Service Properties

	11.4 Service Management Architecture
	11.4.1 Mechanism to Instantiate Service, Connector, and ServiceExecutor Interfaces
	11.4.2 Separate Services Start Up

	12 Running JUnit Tests
	12.1 The Retrofit Process
	12.1.1 Prerequisites for Converting Tests
	12.1.1.1 Procedure for Converting Tests

	12.2 Technical Details
	12.2.1 Support Classes
	12.2.1.1 JUnitSuperTestFinder
	12.2.1.2 JUnitAnnotationTestFinder
	12.2.1.3 JUnitBareMultiTest
	12.2.1.4 JUnitAnnotationMultiTest

	12.2.2 Implementation Notes

	12.3 Areas for Improvement
	12.3.1 References

	13 Customization
	13.1 Customization API
	13.2 Internationalization
	13.3 Customizing the Splash Screen
	13.3.1 Example of splash.properties File
	13.3.2 Notes About the Implementation

	13.4 Customizing Menus
	13.4.1 Adding Menu Items to Test Manager Menus
	13.4.2 Adding Menu Items to the Tree Popup Menu

	13.5 Customizing Toolbars

	A Standard Commands
	A.1 ActiveAgentCommand
	A.2 ExecStdTestSameJVMCmd
	A.3 ExecStdTestOtherJVMCmd
	A.4 JavaCompileCommand
	A.5 PassiveAgentCommand
	A.6 ProcessCommand
	A.7 SerialAgentCommand

	B Formats and Specifications
	B.1 Test URL Specification
	B.1.1 Test Paths

	B.2 Exclude List File Format
	B.2.1 Syntax
	B.2.1.1 Test URL and Test Cases
	B.2.1.2 BugIDs
	B.2.1.3 Keywords
	B.2.1.4 Synopsis
	B.2.1.5 Comments and Header Information

	C What Technical Writers Should Know About Configuration Interviews
	C.1 Question Text
	C.2 More Info
	C.2.1 Formatting Styles
	C.2.2 Usage and Conventions
	Glossary
	active agent
	agent monitor
	agents
	Application Programming Interface (API)
	assertion
	assertion testing
	atomic operation
	behavior-based testing
	class
	classes
	compatibility rules
	compatibility testing
	configuration
	configuration editor
	configuration interview
	configuration value
	equivalence class partitioning
	exclude list
	HTML test description
	implementation
	instantiation
	Java Platform, Standard Edition (Java SE)
	Java Application Manager (JAM)
	Java Archive (JAR)
	Java Platform Libraries
	Java technology
	Java technology specification
	JavaTest agent
	JavaTest harness
	keywords
	Maintenance Lead (ML)
	methods
	MultiTest
	namespace
	object-oriented
	objects
	packages
	passive agent
	prior status
	reference implementation (RI)
	signature file
	signature test
	specification
	standard values
	system configuration
	tag test description
	Technology Compatibility Kit (TCK)
	technology implementation
	technology specification
	test agent
	test
	test cases
	test command
	test command template
	test description
	test environment
	test execution model
	test finder
	test harness
	test script
	test specification
	test suite
	work directory

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

