

Java Platform, Standard Edition
Java Flight Recorder Runtime Guide

Release 5.3

E56381-01

March 2014

Describes the Java Flight Recorder runtime implementation
and instructions for using the tool.

Java Platform, Standard Edition Java Flight Recorder Runtime Guide, Release 5.3

E56381-01

Copyright © 2001, 2014 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

1 About Java Flight Recorder

Understanding Events ... 1-1
Understanding Data Flow... 1-2
Java Flight Recorder Architecture ... 1-3
Enabling Java Flight Recorder ... 1-3

2 Running Java Flight Recorder

Using the Command Line ... 2-1
Using Diagnostic Command .. 2-2
Configuring Recordings.. 2-2

Setting Maximum Size and Age ...2-2
Setting the Delay ..2-3
Setting Compression ..2-3

Creating Recordings Automatically ... 2-3
Creating a Recording On Exit ...2-3
Creating a Recording Using Triggers ..2-3

Security... 2-4
Troubleshooting.. 2-4
Command-Line Options .. A-1
Diagnostic Command Reference.. A-1

JFR.start ... A-2
JFR.check .. A-2
JFR.stop ... A-2
JFR.dump .. A-3

iv

v

Preface

This document describes the Java Flight Recorder runtime implementation and
instructions for using the tool.

Audience
This document is intended for Java developers and support engineers who need an
introduction about the architecture and runtime implementation of Java Flight
Recorder. It assumes that the reader has basic knowledge of Java.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

1

About Java Flight Recorder 1-1

1About Java Flight Recorder

Java Flight Recorder (JFR) is a tool for collecting diagnostic and profiling data about a
running Java application. It is integrated into the Java Virtual Machine (JVM) and
causes almost no performance overhead, so it can be used even in heavily loaded
production environments. When default settings are used, both internal testing and
customer feedback indicate that performance impact is less than one percent. For some
applications, it can be significantly lower. However, for short-running applications
(which are not the kind of applications running in production environments), relative
startup and warmup times can be larger, which might impact the performance by
more than one percent. JFR collects data about the JVM as well as the Java application
running on it.

Compared to other similar tools, JFR has the following benefits:

■ Provides better data: A coherent data model used by JFR makes it easier to cross
reference and filter events.

■ Allows for third-party event providers: A set of APIs allow JFR to monitor
third-party applications, including WebLogic Server and other Oracle products.

■ Reduces total cost of ownership: JFR enables you to spend less time diagnosing
and troubleshooting problems, reduces operating costs and business interrupts,
provides faster resolution time when problems occur, and improves system
efficiency.

JFR is primarily used for:

■ Profiling

JFR continuously saves large amounts of data about the running system. This
profiling information includes thread samples (which show where the program
spends its time), lock profiles, and garbage collection details.

■ Black Box Analysis

JFR continuously saves information to a circular buffer. This information can be
accessed when an anomaly is detected to find the cause.

■ Support and Debugging

Data collected by JFR can be essential when contacting Oracle support to help
diagnose issues with your Java application.

Understanding Events
Java Flight Recorder collects data about events. Events occur in the JVM or the Java
application at a specific point in time. Each event has a name, a time stamp, and an
optional payload. The payload is the data associated with an event, for example, the

Understanding Data Flow

1-2 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

CPU usage, the Java heap size before and after the event, the thread ID of the lock
holder, and so on.

Most events also have information about the thread in which the event occurred, the
stack trace at the time of the event, and the duration of the event. Using the
information available in events, you can reconstruct the runtime details for the JVM
and the Java application.

JFR collects information about three types of events:

■ A duration event takes some time to occur, and is logged when it completes. You
can set a threshold for duration events, so that only events lasting longer than the
specified period of time are recorded. This is not possible for other types of events.

■ An instant event occurs instantly, and is logged right away.

■ A sample event (also called requestable event) is logged at a regular interval to
provide a sample of system activity. You can configure how often sampling occurs.

JFR monitors the running system at an extremely high level of detail. This produces an
enormous amount of data. To keep the overhead as low as possible, limit the type of
recorded events to those you actually need. In most cases, very short duration events
are of no interest, so limit the recording to events with a duration exceeding a certain
meaningful threshold.

Understanding Data Flow
JFR collects data from the JVM (through internal APIs) and from the Java application
(through the JFR APIs). This data is stored in small thread-local buffers that are
flushed to a global in-memory buffer. Data in the global in-memory buffer is then
written to disk. Disk write operations are expensive, so you should try to minimize
them by carefully selecting the event data you enable for recording. The format of the
binary recording files is very compact and efficient for applications to read and write.

There is no information overlap between the various buffers. A particular chunk of
data is available either in memory or on disk, but never in both places. This has the
following implications:

■ Data not yet flushed to a disk buffer will not be available in the event of a power
failure.

■ A JVM crash can result in some data being available in the core file (that is, the
in-memory buffer) and some in the disk buffer. JFR does not provide the capability
to merge such buffers.

■ There may be a small delay before data collected by JFR is available to you (for
example, when it has to be moved to a different buffer before it can be made
visible).

■ The data in the recording file may not be in time sequential order as the data is
collected in chunks from several thread buffers.

In some cases, the JVM drops the event order to ensure that it does not crash. Any data
that cannot be written fast enough to disk is discarded. When this happens, the
recording file will include information on which time period was affected. This
information will also be logged to the logging facility of the JVM.
You can configure JFR to not write any data to disk. In this mode, the global buffer acts
as a circular buffer and the oldest data is dropped when the buffer is full. This very
low-overhead operating mode still collects all the vital data necessary for root-cause
problem analysis. Because the most recent data is always available in the global buffer,

Enabling Java Flight Recorder

About Java Flight Recorder 1-3

it can be written to disk on demand whenever operations or surveillance systems
detect a problem. However, in this mode, only the last few minutes of data is available,
so it only contains the most recent events. If you need to get the full history of
operation for a long period of time, use the default mode when events are written to
disk regularly.

Java Flight Recorder Architecture
JFR is comprised of the following components:

■ JFR runtime is the recording engine inside the JVM that produces the recordings.
The runtime engine itself is comprised of the following components:

– The agent controls buffers, disk I/O, MBeans, and so on. This component
provides a dynamic library written in C and Java code, and also provides a
JVM-independent pure Java implementation.

– The producers insert data into the buffers. They can collect events from the JVM
and the Java application, and (through a Java API) from third-party
applications.

■ Flight Recorder plugin for Java Mission Control (JMC) enables you to work with JFR
from the JMC client, using a graphical user interface (GUI) to start, stop, and
configure recordings, as well as view recording files.

Enabling Java Flight Recorder
By default, JFR is disabled in the JVM. To enable JFR, you must launch your Java
application with the -XX:+FlightRecorder option. Because JFR is a commercial
feature, available only in the commercial packages based on Java Platform, Standard
Edition (Oracle Java SE Advanced and Oracle Java SE Suite), you also have to enable
commercial features using the -XX:+UnlockCommercialFeatures options.

For example, to enable JFR when launching a Java application named MyApp, use the
following command:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder MyApp

Enabling Java Flight Recorder

1-4 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

2

Running Java Flight Recorder 2-1

2Running Java Flight Recorder

This chapter describes how you can run Java Flight Recorder.

You can run multiple recordings concurrently and configure each recording using
different settings; in particular, you can configure different recordings to capture
different sets of events. However, in order to make the internal logic of Java Flight
Recorder as streamlined as possible, the resulting recording always contains the union
of all events for all recordings active at that time. This means that if more than one
recording is running, you might end up with more information in the recording than
you wanted. This can be confusing but has no other negative implications.

The easiest and most intuitive way to use JFR is through the Flight Recorder plugin
that is integrated into Java Mission Control. This plugin enables access to JFR
functionality through an intuitive GUI. For more information about using the JMC
client to control JFR, see the Flight Recorder Plugin section of the Java Mission Control
help.

This chapter explains more advanced ways of running and managing JFR recordings
and contains the following sections:

■ Section 2.1, "Using the Command Line"

■ Section 2.2, "Using Diagnostic Command"

■ Section 2.3, "Configuring Recordings"

■ Section 2.4, "Creating Recordings Automatically"

■ Section 2.5, "Security"

■ Section 2.6, "Troubleshooting"

2.1 Using the Command Line
You can start and configure a recording from the command line using the
-XX:StartFlightRecording option of the java command, when starting the
application. To enable the use of JFR, specify the -XX:+FlightRecorder option.
Because JFR is a commercial feature, you also have to specify the
-XX:+UnlockCommercialFeatures option. The following example illustrates how
to run the MyApp application and immediately start a 60-second recording which will
be saved to a file named myrecording.jfr:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder
-XX:StartFlightRecording=duration=60s,filename=myrecording.jfr MyApp

To configure JFR, you can use the -XX:FlightRecorderOptions option. For more
information, see Appendix A.1, "Command-Line Options".

Using Diagnostic Command

2-2 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

2.2 Using Diagnostic Command
You can also control recordings by using Java-specific diagnostic commands. For a
more detailed description of Diagnostic Commands, see Appendix A.2, "Diagnostic
Command Reference".

The simplest way to execute a diagnostic command is to use the jcmd tool (located in
the Java installation directory). To issue a command, you have to pass the process
identifier of the JVM (or the name of the main class) and the actual command as
arguments to jcmd. For example, to start a 60-second recording on the running Java
process with the identifier 5368 and save it to myrecording.jfr in the current
directory, use the following:

jcmd 5368 JFR.start duration=60s filename=myrecording.jfr

To see a list of all running Java processes, run the jcmd command without any
arguments. To see a complete list of commands available to a runnning Java
application, specify help as the diagnostic command after the process identificator (or
the name of the main class). The commands relevant to Java Flight Recorder are:

■ JFR.start

Start a recording.

■ JFR.check

Check the status of all recordings running for the specified process, including the
recording identification number, file name, duration, and so on.

■ JFR.stop

Stop a recording with a specific identification number (by default, recording 1 is
stopped).

■ JFR.dump

Dump the data collected so far by the recording with a specific identification
number (by default, data from recording 1 is dumped).

2.3 Configuring Recordings
You can configure an explicit recording in a number of other ways. These techniques
work the same regardless of how you start a recording (that is, either by using the
command-line approach or by using diagnostic commands).

2.3.1 Setting Maximum Size and Age
You can configure an explicit recording to have a maximum size or age by using the
following parameters:

maxsize=size

Append the letter k or K to indicate kilobytes, m or M to indicate megabytes, g or G
to indicate gigabytes, or do not specify any suffix to set the size in bytes.

Note: These commands are available only if the Java application was
started with the Java Flight Recorder enabled, that is, using the
following options:

-XX:+UnlockCommercialFeatures -XX:+FlightRecorder

Creating Recordings Automatically

Running Java Flight Recorder 2-3

maxage=age

Append the letter s to indicate seconds, m to indicate minutes, h to indicate hours,
or d to indicate days.

If both a size limit and an age are specified, the data is deleted when either limit is
reached.

2.3.2 Setting the Delay
When scheduling a recording. you might want to add a delay before the recording is
actually started; for example, when running from the command line, you might want
the application to boot or reach a steady state before starting the recording. To achieve
this, use the delay parameter:

delay=delay

Append the letter s to indicate seconds, m to indicate minutes, h to indicate hours, or d
to indicate days.

2.3.3 Setting Compression
Although the recording file format is very compact, you can compress it further by
adding it to a ZIP archive. To enable compression, use the following parameter:

compress=true

Note that CPU resources are required for the compression, which can negatively
impact performance.

2.4 Creating Recordings Automatically
When running with a default recording you can configure Java Flight Recorder to
automatically save the current in-memory recording data to a file whenever certain
conditions occur. If a disk repository is used, the current information in the disk
repository will also be included.

2.4.1 Creating a Recording On Exit
To save the recording data to the specified path every time the JVM exits, start your
application with the following option:

-XX:FlightRecorderOptions=defaultrecording=true,dumponexit=true,dumponexitpath=pat
h

Set path to the location where the recording should be saved. If you specify a directory,
a file with the date and time as the name is created in that directory. If you specify a
file name, that name is used. If you do not specify a path, the recording will be saved
in the current directory.

2.4.2 Creating a Recording Using Triggers
You can use the Console in Java Mission Control to set triggers. A trigger is a rule that
executes an action whenever a condition specified by the rule is true. For example, you
can create a rule that triggers a flight recording to commence whenever the heap size
exceeds 100 MB. Triggers in Java Mission Control can use any property exposed
through a JMX MBean as the input to the rule. They can launch many other actions
than just Flight Recorder dumps.

Security

2-4 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

Define triggers on the Triggers tab of the JMX Console. For more information on how
to create triggers, see the Java Mission Control help.

2.5 Security
Java Flight Recorder is intended only for diagnostic purposes. The recording file can
potentially contain confidential information such as Java command-line options and
environment variables. Use extreme care when you store or transfer the recording files
as you would do with diagnostic core files or heap dumps.

Table 2–1 describes security permissions for various methods of using JFR.

2.6 Troubleshooting
You can collect a significant amount of diagnostic information from Java Flight
Recorder by starting the JVM with one of the following options:

■ -XX:FlightRecorderOptions=loglevel=debug

■ -XX:FlightRecorderOptions=loglevel=trace.

Table 2–1 Security Permissions

Method Security

Command line Anyone with access to the command line of the Java process
must be trusted.

Diagnostic commands Only the owner of the Java process can use jcmd to control the
process.

Java Mission Control Client Java Mission Control Client uses JMX to access the JVM.

A

Command Reference A-1

ACommand Reference

This appendix serves as a basic reference to the commands you can use with Java
Flight Recorder. It contains the following sections:

■ Section A.1, "Command-Line Options"

■ Section A.2, "Diagnostic Command Reference"

A.1 Command-Line Options
When you launch your Java application with the java command, you can specify
options to enable Java Flight Recorder, configure its settings, and start a recording. The
following command-line options are specific to Java Flight Recorder:

■ -XX:+|-FlightRecorder

■ -XX:FlightRecorderOptions

■ -XX:StartFlightRecording

These command-line options are available only in the commercial license of the JDK.
To use them, you have to also specify the -XX:+UnlockCommercialFeatures
option.

A.2 Diagnostic Command Reference
This is a description of the diagnostic commands available to control Java Flight
Recorder and the parameters available for each command. This information is also
available by running the jcmd command with the process identifier specified,
followed by the help parameter and the commad name. For example, to get help
information for the JFR.start command on a running JVM process with the
identifier 5361, run the following:

jcmd 5361 help JFR.start

To get a full list of diagnostic commands available to the JVM, do not specify the name
of the command.

The diagnostic commands associated with Java Flight Recorder are:

Note: You should use -XX options only if you have a thorough
understanding of your system. If you use these commands
improperly, you might affect the stability or performance of your
system. -XX options are experimental, and they are subject to change
at any time.

Diagnostic Command Reference

A-2 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

■ JFR.start

■ JFR.check

■ JFR.stop

■ JFR.dump

A.2.1 JFR.start
The JFR.start diagnostic command starts a flight recording. Table A–1 lists the
parameters you can use with this command.

A.2.2 JFR.check
The JFR.check command shows information about running recordings. Table A–2
lists the parameters you can use with this command.

A.2.3 JFR.stop
The JFR.stop diagnostic command stops running flight recordings. Table A–3 lists
the parameters you can use with this command.

Table A–1 JFR.start

Parameter Description Type of value Default

name Name of recording String

settings Server-side template String

defaultrecording Starts default recording Boolean False

delay Delay start of recording Time 0s

duration Duration of recording Time 0s (means
"forever")

filename Resulting recording filename String

compress GZip compress the resulting
recording file

Boolean False

maxage Maximum age of buffer data Time 0s (means "no
age limit")

maxsize Maximum size of buffers in bytes Long 0 (means "no
max size")

Table A–2 JFR.check

Parameter Description Type of value Default

name Recording name String

recording Recording id Long 1

verbose Print verbose data Boolean False

Table A–3 JFR.stop

Parameter Description Type of value Default

name Recording name String

recording Recording id Long 1

Diagnostic Command Reference

Command Reference A-3

A.2.4 JFR.dump
The JFR.dump diagnostic command stops running flight recordings. Table A–4 lists
the parameters you can use with this command.

discard Discards the recording data Boolean

copy_to_file Copy recording data to file String

compress_copy GZip compress "copy_to_file"
destination

Boolean False

Table A–4 JFR.dump

Parameter Description Type of value Default

name Recording name String

recording Recording id Long 1

copy_to_file Copy recording data to file String

compress_copy GZip compress "copy_to_file"
destination

Boolean False

Table A–3 (Cont.) JFR.stop

Parameter Description Type of value Default

Diagnostic Command Reference

A-4 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	1 About Java Flight Recorder
	Understanding Events
	Understanding Data Flow
	Java Flight Recorder Architecture
	Enabling Java Flight Recorder

	2 Running Java Flight Recorder
	2.1 Using the Command Line
	2.2 Using Diagnostic Command
	2.3 Configuring Recordings
	2.3.1 Setting Maximum Size and Age
	2.3.2 Setting the Delay
	2.3.3 Setting Compression

	2.4 Creating Recordings Automatically
	2.4.1 Creating a Recording On Exit
	2.4.2 Creating a Recording Using Triggers

	2.5 Security
	2.6 Troubleshooting

	A Command Reference
	A.1 Command-Line Options
	A.2 Diagnostic Command Reference
	A.2.1 JFR.start
	A.2.2 JFR.check
	A.2.3 JFR.stop
	A.2.4 JFR.dump

