Java Platform, Standard Edition
JRockit to HotSpot Migration Guide
Release 8

E63235-01

June 2015

ORACLE

Java Platform, Standard Edition JRockit to HotSpot Migration Guide, Release 8
E63235-01

Copyright © 1995, 2015, Oracle and/or its affiliates. All rights reserved.
Primary Author: Devika Gollapudi

Contributing Author:

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Preface

This guide helps users of Oracle JRockit migrate to Java HotSpot VM (Java platform,
Standard Edition). The document describes the command-line options and tools
available in Oracle JRockit and their equivalents in the HotSpot JVM.

Audience

The target audience for this document comprises of developers and users who are
using Oracle JRockit and planning to migrate to Java Development Kit (JDK), which is
Oracle's implementation of the Java Platform, Standard Edition (Java SE). The current
release is Java SE 8 and JDK 8; however, most of the information in this document can
be applied to releases earlier than JDK 8.

This document is intended for readers with a detailed understanding of the
components of the Java HotSpot VM, and also some understanding of concepts such
as garbage collection, threads, and native libraries. In addition, it is assumed that the
reader is reasonably proficient with the operating system where the Java application is
developed and run.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see the Java SE 8 documentation at:

http://docs.oracle.com/javase/8/docs/

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

1

Introduction

This document provides simple guidelines to help migrate applications from Oracle
JRockit to HotSpot JVM. It contains sections for each component of the JVM system
that describe the equivalents of those in both Oracle JRockit and HotSpot JVM, and
also list the corresponding important JVM options of those components. It includes
tables mapping the complete set of Oracle JRockit -X and -XX command-line options
to the ones available in the HotSpot.

= Heap Sizing

Note: Some of the tools described in this document require a
commercial license for use in production. To learn more about
commercial features and how to enable them, see
http://www.oracle.com/technetwork/java/javaseproducts/.

Introduction 1-1

http://www.oracle.com/technetwork/java/javaseproducts/

Heap Sizing

Heap Sizing

HotSpot has the same options as Oracle JRockit to set the initial and the maximum
Java heap size.

Table 1-1 Heap Size

Option Oracle JRockit HotSpot

-Xms Sets the initial and Sets the initial and
minimum size of the heap minimum size of the heap

-Xmx Sets the maximum size of Sets the maximum size of
the heap the heap

When migrating from Oracle JRockit to HotSpot, the Java heap size should essentially
remain the same.

1-2 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

2

Garbage Collectors

This chapter describes garbage collection tuning options available in Oracle JRockit
and HotSpot and compares their functionality and performance.

s Tuning Garbage Collection

= HotSpot GC Tuning Guide

Note: Some of the tools described in this document require a
commercial license for use in production. To learn more about
commercial features and how to enable them, see
http://www.oracle.com/technetwork/java/javaseproducts/.

Garbage Collectors 2-1

http://www.oracle.com/technetwork/java/javaseproducts/

Tuning Garbage Collection

Tuning Garbage Collection

The following table lists important garbage collection (GC) tuning options available in

Oracle JRockit and HotSpot.

Table 2-1 Garbage Collectors

Oracle JRockit Garbage HotSpot Garbage

Collectors Collectors Note

Throughput collector set Throughput collector: On Server-class machines,

using any of these options:

n -Xgc:throughput
. -Xgc:genpar
u -Xgc:singlepar

u -Xgc:parallel

Low latency collector set
using any of the following
options:

-Xgc:pausetime
-Xgc:gencon

-Xgc:singlecon

-XX:+UseParallelGC — Use
parallel collector for the
young generation

-XX:+UseParallel0ldGC —
Use parallel collector for
both young and old
generation

-XX:+UseConcurrentMarkSw
eepGC

Or
-XX:+UseG1GC

2-2 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

throughput collector is the
default collector.

Since JDK 7u4, using
-XX:+UseParallelGC
(explicitly set or picked
ergonomically) also sets
UseParallel01dGC and
enables the parallel collector
for the tenured generation
as well.

The number of parallel GC
threads can be controlled
using
-XX:ParallelGCThreads=n

The Java HotSpot VM offers
a choice between two
mostly concurrent
collectors:

= Concurrent Mark
Sweep (CMS) Collector
is for applications that
prefer shorter garbage
collection pauses and
can afford to share
processor resources
with the garbage
collection.

= Garbage-First Garbage
Collectoris a
server-style collector is
for multiprocessor
machines with large
memories. It meets
garbage collection
pause time goals with
high probability while
achieving high
throughput.

Tuning Garbage Collection

Table 2-1 (Cont.) Garbage Collectors

Oracle JRockit Garbage HotSpot Garbage
Collectors Collectors Note

-Xgc:deterministic (see note) There is no real-time
deterministic collector
available in HotSpot.

However G1 collector
(enabled using

-XX: +UseG1GC) attempts to
meet the garbage collection
pause time goals with high
probability while achieving
high throughput.

Note that DetGC was
designed to provide really
short (for example, 1ms)
and highly predictable
pause times for collections
but G1GC does not promise
to work with such short
pause times.

Garbage Collectors 2-3

HotSpot GC Tuning Guide

HotSpot GC Tuning Guide

For further GC tuning, refer to the following document:

http:/ /docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/

2-4 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

3

Runtime

This chapter describes important options that control the runtime behavior of the
HotSpot VM.

= Runtime Options

Note: Some of the tools described in this document require a
commercial license for use in production. To learn more about
commercial features and how to enable them, see
http://www.oracle.com/technetwork/java/javaseproducts/.

Runtime 3-1

http://www.oracle.com/technetwork/java/javaseproducts/

Runtime Options

Runtime Options

The following table lists some important equivalent options of the runtime subsystem
in Oracle JRockit and HotSpot.

Table 3—-1 Runtime Options
Oracle JRockit HotSpot Note

-XX:+UseLazyUnlocking -XX:+UseBiasedLocking UseBiasedLocking
improves the performance
of uncontended
synchronization. This
option is enabled by default.
However If the application
has high contended
synchronization, then
disabling UseBiasedLocking
benefits the performance.

-XlargePages -XX:+UseLargePages In HotSpot VM, this option
is ON by default on Solaris.
On Linux, this has been
disabled since 7u60 and 8.
Use -XX:+UseLargePages to
enable the use of large
pages on the platforms
where it is disabled by
default.

It must be noted that
-XX:+UseLargePages does
not enable the use of large
pages in the MetaSpace. To
enable this option, add
-XX:+UseLargePagesInMeta

space.
-XX:MaxLargePageSize -XX:LargePageSizeInBytes Sets the maximum size (in
=size bytes) for large pages used

for Java heap. By default,
the size is set to 0, meaning
that the JVM chooses the
size for large pages
automatically.

-XXcompressedRefs -XX:+UseCompressedOops Use of compressed oops is
the default for 64-bit
HotSpot JVM processes
when -xmx is not specified
and for values of -Xmx less
than 32 gigabytes.

3-2 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

4

Compilation Optimization

This chapter describes various compiler options available in Oracle JRockit and
HotSpot VMs to optimize compilation.

s Compiler Considerations

Note: Some of the tools described in this document require a
commercial license for use in production. To learn more about
commercial features and how to enable them, see
http://www.oracle.com/technetwork/java/javaseproducts/.

4.1 Compiler Considerations

Unlike Oracle JRockit, HotSpot features a Java byte code interpreter in addition to two
different JIT compilers - client (aka C1) and server (aka C2)). HotSpot VM defaults to
interpreting Java byte code, and will only JIT compile methods that runtime profiling
determines to be "hot" - the methods that have been executed for a threshold number
of times. Originally, users had to chose at startup which of the two JIT compilers, client
or server, would be used. The client compiler compiles methods quickly, but emits
machine code that is less optimized than the server compiler. By comparison, the
server JIT compiler often takes more time (and memory) to compile the same methods,
but generates better optimized machine code than the code produced by the client
compiler. The result is that the client compiler allows most applications to start up
faster (because of less compilation overhead), but the server compiler untimely
provides better run-time performance once the application has reached stead-state
(has warmed up). Used independently, each of these two compilers serve two different
use-cases:

» client: quick startup and smaller memory footprint is more important than
steady-state performance

» server: steady-state performance is more important than a quick startup

If having to chose a single JIT compiler, most Oracle JRockit users should chose the
server compiler. As Oracle JRockit was designed as a server side JVM, most
environments that use Oracle JRockit are server deployments like WLS or Coherence.
The one notable exception would be cases where Oracle JRockit was used to run a
smaller client application. For example, the client compiler would probably be a better
fit for a command line administration tool like WLST.

Oracle JRockit JVM compiles a Java method and generates the machine code for it the
very first time it is invoked. This compiled code of frequently invoked methods is then
later optimized in the background by an Optimizer thread. This is completely different

Compilation Optimization 4-1

http://www.oracle.com/technetwork/java/javaseproducts/

Compiler Considerations

from the HotSpot JVM where methods are first interpreted and later compiled either
by the Client (less optimizations) or the Server (more optimizations) compiler.

The client compiler can be invoked using -client JVM option and the server compile
can be invoked using -server JVM option. The server compiler is selected by default
on the server-class machines.

Tiered compilation, introduced in Java SE 7, brings client startup speeds to the server
VM. A server VM uses the interpreter to collect profiling information about methods
that is fed into the compiler. In the tiered scheme, in addition to the interpreter, the
client compiler generates compiled versions of methods that collect profiling
information about themselves. Since the compiled code is substantially faster than the
interpreter, the program executes with greater performance during this profiling
phase. In many cases, a startup that is even faster than with the client VM can be
achieved because the final code produced by the server compiler may be already
available during the early stages of application initialization. The tiered scheme can
also achieve better peak performance than a regular server VM because the faster
profiling phase allows a longer period of profiling, which may yield better
optimization. Use the -XX: +TieredCompilation flag with the java command to enable
tiered compilation.

In Java SE 8, Tiered compilation is the default mode for the server VM. Both 32 and 64
bit modes are supported. -XX: -TieredCompilation flag can be used to disable tiered
compilation.

4-2 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

Important HotSpot JIT Compiler Options

Important HotSpot JIT Compiler Options

The following table lists some important Oracle JRockit and HotSpot compiler options.

Compilation Optimization 4-3

Important HotSpot JIT Compiler Options

4-4 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

Important HotSpot JIT Compiler Options

Table 4-1 JIT Compiler Options

Oracle JRockit HotSpot Note
-XnoOpt Because JIT compilation in HotSpot can be considered ~ Options
XXoptFile:<file> analogous to optimization in Oracle JRockit (that is both CompileCommand,
°p e © techniques are only used on methods that are CompileCommandFile,
determined by profiling to be "hot"), the HotSpot CompileOnly and

equivalent to Oracle JRockit's -XnoOpt is -Xint, where CompileThreshold can be
no JIT compilation is done at all, and only the byte code used to disable or delay
interpreter is used to execute all methods. This may the compilation of

result in a substantial performance impact, but can be specified methods.

useful for the same types of situations where -XnoOpt

was used for Oracle JRockit: Troubleshooting or

working around possible compiler issues.

Like Oracle JRockit, HotSpot also offers ways to exclude
methods from compilation and/or to turn off specific
optimizations on them.

If you are using XnoOpt or XXoptFile options with
Oracle JRockit VM to turn off the optimization on
certain methods as you were facing some issues when
these methods were optimized, then these options
should not be directly translated to HotSpot options to
exclude the compilation and/or turn off specific
optimizations on these methods.

The exact same compilation/optimization issues
observed with the Oracle JRockit JVM for any specific
methods are very unlikely to be present with the
HotSpot JVM. So, to begin with, it is best to remove
these options when migrating to the HotSpot JVM.

Equivalent HotSpot JVM options:
n -XX:CompileCommand=command, method[, option]

Specifies a command to perform on a method. For
example, to exclude the indexOf() method of the
String class from being compiled, use the following:

-XX:CompileCommand=exclude, java/lang/String.
indexOf

n -XX:CompileCommandFile=<filename>

Sets the file from which JIT compiler commands are
read. By default, the .hotspot_compiler file is used
to store commands performed by the JIT compiler.

n -XX:CompileOnly=<methods>

Sets the list of methods (separated by commas) to
which compilation should be restricted.

n -XX:CompileThreshold=<invocations>

Sets the number of interpreted method invocations
before compilation. By default, in the server JVM,
the JIT compiler performs 10,000 interpreted
method invocations to gather information for
efficient compilation. For the client JVM, the default
setting is 1,500 invocations.

Compilation Optimization 4-5

Important HotSpot JIT Compiler Options

Table 4-1 (Cont.) JIT Compiler Options

Oracle JRockit

HotSpot

Note

-XX:0ptThreads

-XX:+ReserveCodeMemory

-XX:MaxCodeMemory=<size>

None

There are no optimization threads in HotSpot JVM. The
count of compiler threads that perform both the
compilation and the optimizations can be set using;:

-XX:CICompilerCount=<threads>

-XX:ReservedCodeCacheSize=<size>

-XX:+TieredCompilation

Sets the number of
compiler threads to use
for compilation. By
default, the number of
threads is set to 2 for the
server JVM, to 1 for the
client JVM, and it scales to
the number of cores if
tiered compilation is used.

Sets the maximum code
cache size (in bytes) for
JIT-compiled code. This
option is equivalent to
-Xmaxjitcodesize.

Enables the use of tiered
compilation. On JDKS this
option is enabled by
default. Only the Java
HotSpot Server VM
supports this option.

4-6 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

O

Logging

This chapter describes various logging options available in Oracle JRockit and
HotSpot.

= Verbose Logging
s HotSpot Logging Options

Note: Some of the tools described in this document require a
commercial license for use in production. To learn more about
commercial features and how to enable them, see
http://www.oracle.com/technetwork/java/javaseproducts/.

Logging 5-1

http://www.oracle.com/technetwork/java/javaseproducts/

Verbose Logging

Verbose Logging

Verbose logging in HotSpot can be turned on using the -verbose option. There are
some specific flags that can be used with this option to get area-specific verbose
output.

The following table lists various logging options available in Oracle JRockit and
compares them with the options available in HotSpot.

Table 5-1 Verbose Logging

Oracle JRockit Verbose
Module HotSpot Option Note

alloc - -
class -verbose:class Displays information.
codegen - -
compaction - -
cpuinfo - -
exceptions - -

gc -verbose:gc Displays information about
each garbage collection
(GC) event.

gcheuristic - -
gcpause - -
gcpausetree - -
gcreport - -
load - -
memory - -
memdbg - -
opt - -
refobj - -
starttime - -
shutdown - -
systemgc - -
timing - -

- -verbose:jni Displays information about
the use of native methods
and other Java Native
Interface (JNI) activity.

5-2 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

HotSpot Logging Options

HotSpot Logging Options

These are some of the common logging options available in HotSpot that can be used
to turn on the diagnostic output for a specific subsystem within the HotSpot JVM.

Table 5-2 Logging Options

HotSpot Logging Options Note

-Xloggc:<filename> Sets the file to which verbose GC event information
should be redirected for logging. The information written
to this file is similar to the output of -verbose:gc with the
time elapsed since the first GC event preceding each
logged event. The -Xloggc option overrides -verbose:gc
if both are given with the same java command.

-XX:LogFile=<path> Sets the path and file name where log data is written.

-XX:+PrintCommandLineFla Enables printing of ergonomically selected JVM flags that
gs appeared on the command line.

-XX:+PrintNMTStatistics Enables printing of collected native memory tracking data
at JVM exit when native memory tracking is enabled

-XX:+LogCompilation Enables logging of compilation activity to a file named
hotspot.log in the current working directory. You can
specify a different log file path and name using the
-XX:LogFile option. The -XX: +LogCompilation option
must be used together with the
-XX:UnlockDiagnosticVMOptions option that unlocks
diagnostic JVM options.

-XX:+PrintAssembly Enables printing of assembly code resulting from JIT
compilation of Java bytecode by using the external
disassembler.so library. This option enables you to see the
generated code, which may help you to diagnose
performance issues. This option must be used together
with the -XX:UnlockDiagnosticVMOptions option that
unlocks diagnostic JVM options.

-XX:+PrintCompilation Enables verbose diagnostic output from the JVM by
printing a message to the console every time a method is
compiled.

-XX:+PrintInlining Enables printing of inlining decisions. This option enables

you to see which methods are getting inlined.

-XX:+PrintClassHistogram Enables printing of a class instance histogram after a
Control+C event (SIGTERM). By default, this option is
disabled.

-XX:+PrintConcurrentLock Enables printing of java.util.concurrent locks after a
s Control+C event (SIGTERM). By default, this option is
disabled.

-XX:+GlPrintHeapRegions Enables the printing of information about which regions
are allocated and which are reclaimed by the G1 collector.

-XX:+PrintAdaptiveSizePo Enables printing of information about adaptive generation
licy sizing.

-XX:+PrintGC Enables printing of messages at every GC.

-XX:+PrintGCApplicationC Enables printing of how much time elapsed since the last
oncurrentTime pause (for example, a GC pause).

-XX:+PrintGCApplicationS Enables printing of how much time the pause (for
toppedTime example, a GC pause) lasted.

Logging 5-3

HotSpot Logging Options

Table 5-2 (Cont.) Logging Options

HotSpot Logging Options

Note

-XX:+PrintGCDateStamps
-XX:+PrintGCDetails

-XX:+PrintGCTaskTimeStam
ps

-XX:+PrintGCTimeStamps

-XX:+PrintStringDeduplic
ationStatistics

-XX:+PrintTenuringDistri
bution

Enables printing of a date stamp at every GC.
Enables printing of detailed messages at every GC.

Enables printing of time stamps for every individual GC
worker thread task.

Enables printing of time stamps at every GC.

Prints detailed deduplication statistics.

Enables printing of tenuring age information.

5-4 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

6

Command Line Options

This chapter describes various HotSpot command line options and compares them
with those available in Oracle JRockit.

= Mapping of Oracle JRockit to HotSpot Command Line Options

Note: Some of the tools described in this document require a
commercial license for use in production. To learn more about
commercial features and how to enable them, see
http://www.oracle.com/technetwork/java/javaseproducts/.

Command Line Options 6-1

http://www.oracle.com/technetwork/java/javaseproducts/

Mapping of Oracle JRockit to HotSpot Command Line Options

Mapping of Oracle JRockit to HotSpot Command Line Options

This section can be used as a reference by users who are searching for functionality
similar to a specific Oracle JRockit flag they may be familiar with. This section seeks to
provide either a one-to-one mapping of Oracle JRockit options to HotSpot options, or
refers to the other sections of this document. There may be certain Oracle JRockit
options for which there are no corresponding HotSpot JVM options. Some of the
mapped HotSpot options may not be exactly equivalent to the Oracle JRockit options
and may provide slightly different behavior on the HotSpot.

When migrating, simply translating every option used with Oracle JRockit into similar
HotSpot option is not recommended. Especially for performance-related options, the
best practice is to start by only specifying the Java heap size and the garbage collector
(CMS, G1, and so on). Any additional tuning for HotSpot, if necessary at all, should
only be done based off of new benchmarking and profiling done with HotSpot. It is
not advised to assume that most, if any, JVM-level tuning decisions made for an Oracle
JRockit configuration will also apply as-is to a HotSpot configuration.

See Oracle JRockit Documentation for more information.

Table 6-1 -X Command-Line Options

Added

Oracle JRockit HotSpot In Note

-Xbootclasspath SAME

-Xbootclasspath/a SAME

-Xbootclasspath/p SAME

-Xcheck:jni SAME

-Xdebug SAME

-Xgc - See section on GC for more
details.

-XgcPrio (deprecated) -- See section on GC for more
details.

-XlargePages -XX:+UseLargePages 5ub See

https:/ /blogs.oracle.com/p
oonam/entry/uselargepage
s_on_linux

-Xmanagement - See
http://docs.oracle.com/jav
ase/7/docs/technotes/guid
es/management/agent.html

-Xms SAME

-Xmx SAME

-XnoClassGC SAME Should not use except for

(deprecated) troubleshooting.

-XnoOpt - See section on Compilation
Optimization for more
details.

-Xns SAME

-XpauseTarget -XX:MaxGCPauseMillis=n See section on GC for more
details.

6-2 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

Mapping of Oracle JRockit to HotSpot Command Line Options

Table 6-1 (Cont.) -X Command-Line Options

Added
Oracle JRockit HotSpot In Note
-Xrs SAME
-Xss SAME
-XstrictFP -
-Xverbose -verbose See section on Logging.
-Xverbosedecoration -- See section on Logging.
S
-XverboseLog - See section on Logging.
-XverboseTimeStamp -- See section on Logging.
-Xverify SAME
Table 6-2 -XX Command-Line Options
Oracle JRockit HotSpot Note On HotSpot Options
-XXaggressive -XX:+AggressiveHeap -XX:+AggressiveHeap

-XX:AllocChunkSize

-XX:+|-CheckJNICalls
-XX:+|-CheckStacks
-XXcompaction

-XXcompactRatio
(deprecated)

-XX:+AggressiveOpts

Related options:

u -XX:AllocateInstancePre

fetchLines=<lines>

. -XX:AllocatePrefetchDis

tance=<size>

n -XX:AllocatePrefetchIns

tr=<instruction>

. -XX:AllocatePrefetchLin

es=<lines>

n -XX:AllocatePrefetchSte

pSize=<size>

n -XX:AllocatePrefetchSty

le=<style>

-Xcheck:jni

enables Java heap
optimization. This sets
various parameters to be
optimal for long-running
jobs with intensive memory
allocation, based on the
configuration of the
computer (RAM and CPU).
By default, the option is
disabled and the heap is not
optimized.

-XX:+AggressiveOpts
enables other non-heap
related optimization.

Command Line Options 6-3

Mapping of Oracle JRockit to HotSpot Command Line Options

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit

HotSpot

Note On HotSpot Options

-XXcompactSetLimit
(deprecated)

-XXcompactSetLimitPerObj
ect (deprecated)

-XXcompressedRefs

-XX:+|-CrashOnOutOfMemor
yError

-XX:+|-DisableAttachMech
anism

-XXdumpFullState

-XXdumpSize
-XX:ExceptionTraceFilter

-XX:+|-ExitOnOutOfMemory
Error

-XX:ExitOnOutOfMemoryErr
orExitCode

-XXexternalCompactRatio

(deprecated)

-XX:+|-FailOverToOldveri
fier

-XX:+|-FlightRecorder

-XX:-UseCompressedOops

Can achieve the same by
using
-XX:0nOutOfMemoryError=<
command>

SAME

Can achieve the same by
using
-XX:0nOutOfMemoryError=<
command>

SAME

SAME

6-4 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

See section on Runtime
options for more details.

Sets a custom command or a
series of
semicolon-separated
commands to run when an
OutOfMemoryError
exception is first thrown.

For example:

java
-XX:0nOutOfMemoryError="
kill -11 %$p" JavaProgram

On HotSpot side, there is an
option
CreateMinidumpOnCrash to
enable the dumping of
minidumps upon fatal
errors on Windows
platform.

Sets a custom command or a
series of
semicolon-separated
commands to run when an
OutOfMemoryError
exception is first thrown.

For example:

java
-XX:0nOutOfMemoryError="
kill -9 %p" JavaProgram

Enables the use of the Java
Flight Recorder (JFR) during
the runtime of the
application. This is a
commercial feature that
requires you to also specify
the
-XX:+UnlockCommercialFea
tures option.

Mapping of Oracle JRockit to HotSpot Command Line Options

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit HotSpot Note On HotSpot Options
-XX:FlightRecorderOption SAME
s
-XX:+|-FlightRecordingDu --
mpOnUnhandledException
-XX:FlightRecordingDumpP --
ath
-XXfullSystemGC Related options: See GC section for more
. -XX:+DisableExplicitGC details.
s -XX:+ExplicitGCInvokesC
oncurrent
. -XX:+ExplicitGCInvokesC
oncurrentAndUnloadsC
lasses
-XXgcThreads Related options: See GC section for more

-XX:GCTimePercentage
-XX:GCTimeRatio

-XXgcTrigger

-XX:+|-HeapDiagnosticsOn
OutOfMemoryError

-XX:HeapDiagnosticsPath

-XX:+|-HeapDumpOnCtrlBre
ak

-XX:+| -HeapDumpOnOutOfMe
moryError

-XX:HeapDumpPath
-XX:HeapDumpSegmentSize
-XXheapParts (deprecated)

-XXinternalCompactRatio

(deprecated)

-XX:+|-JavaDebug

u -XX:ParallelGCThreads=<
threads>

u -XX:ConcGCThreads=<thre
ads>

Related options:

" -XX:CMSInitiatingOccupa
ncyFraction=<percent
>

. -XX:CMSTriggerRatio=<pe
rcent>

Can achieve the same by

using

-XX:0nOutOfMemoryError=<

command>

SAME

SAME

details.

See section on GC for more
details.

Example:

java
-XX:0nOutOfMemoryError="
jmap -heap %p"
JavaProgram

Command Line Options 6-5

Mapping of Oracle JRockit to HotSpot Command Line Options

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit HotSpot Note On HotSpot Options

-XXkeepAreaRatio XX:SurvivorRatio=<ratio> Sets the ratio between eden
space size and survivor
space size. By default, this
option is set to 8.

There is another option
-XX:InitialSurvivorRatio
=ratio to set the initial
survivor space ratio used by
the throughput garbage
collector.. Adaptive sizing is
enabled by default with the
throughput garbage
collector by using the
-XX:+UseParallelGC and
-XX:+UseParallel01dGC
options, and survivor space
is resized according to the

application behavior,
starting with this initial
value.
-XXlargeObjectLimit -
(deprecated)
-XX:MaxCodeMemory -XX:ReservedCodeCacheSiz See section on
e=<size> Compilation/Optimization

for more details.

-XX:MaxDirectMemorySize SAME

-XX:MaximumNurseryPercen -XX:NewRatio=<ratio> Sets the ratio between
tage young and old generation
sizes. By default, this option
is set to 2.
-XX:MaxLargePageSize -XX:LargePageSizeInBytes See section on Runtime
=<size> options for more details.

-XX:MaxRecvBufferSize -

-XXminBlockSize -
(deprecated)
-XXnoSystemGC Related options: See GC section for details.
. -XX:+DisableExplicitGC
s -XX:+ExplicitGCInvokesC
oncurrent
m -XX:+ExplicitGCInvokesCo
ncurrentAndUnloadsCl
asses
-XX:0ptThreads -XX:CICompilerCount=thre See section on
ads Compilation/Optimization

for more details.

6-6 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

Mapping of Oracle JRockit to HotSpot Command Line Options

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit

HotSpot

Note On HotSpot Options

-XX:+|-RedoAllocPrefetch

-XX:+|-ReserveCodeMemory

-XX:SegmentedHeapDumpThr
eshold

-XXsetGC (deprecated)
-XX:+|-StrictFP
-XX:StartFlightRecording

-XXtlaSize

-XX:TreeMapNodeSize

-XX:+|-UseAdaptiveFatSpi
n

-XX:+|-UseAllocPrefetch

-XX:+|-UseCallProfiling

-XX:+|-UseCfsAdaptedyiel
d

Related options:

-XX:AllocateInstancePre
fetchLines=<lines>

-XX:AllocatePrefetchDis
tance=<size>

-XX:AllocatePrefetchIns
tr=<instruction>

-XX:AllocatePrefetchlLin
es=<lines>

-XX:AllocatePrefetchSte
pSize=<size>

-XX:AllocatePrefetchSty
le=<style>

-XX:ReservedCodeCacheSiz
e=<size>

SAME

XX:TLABSize=<size>

Related options:

-XX:AllocateInstancePre
fetchLines=<lines>

-XX:AllocatePrefetchDis
tance=<size>

-XX:AllocatePrefetchIns
tr=<instruction>

-XX:AllocatePrefetchLin
es=<lines>

-XX:AllocatePrefetchSte
pSize=<size>

-XX:AllocatePrefetchSty
le=<style

-XX:+UseTypeProfile

See section on
Compilation/Optimization
for more details.

Sets the initial size (in bytes)
of a thread-local allocation
buffer (TLAB). If this option
is set to 0, then the JVM
chooses the initial size
automatically.

Command Line Options 6-7

Mapping of Oracle JRockit to HotSpot Command Line Options

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit HotSpot Note On HotSpot Options

-XX:+|-UseClassGC -Xnoclassgc Disables garbage collection
(GC) of classes. This can
save some GC time, which
shortens interruptions
during the application run.

When you specify
Xnoclassgc at startup, the
class objects in the
application will be left

untouched during GC and
will always be considered
live.

-XX:+|-UseCP00lGC -

-XX:+|-UseFastTime --

-XX:+|-UseFatSpin --

-XX:+|-UseLargePagesFor[= -XX:+UseLargePages See section on Runtime

Heap |Code] a -XX:+UselargePagesInMet options for more details.

aspace

-XX:+|-UseLazyUnlocking -XX:+UseBiasedLocking See section on Runtime
options for more details.

-XX:+|-UseLockProfiling --

-XX:+|-UseLowAddressForH -- No direct corresponding

eap option available in HotSpot
but the low heap base can
be specified explicitly using
HeapBaseMinAddress
option.

-XX:+|-UseNewHashFunctio SAME Only relevant for JDK5.

n Should not be used on JDK
6 or higher.

-XX:+|-UseThreadPrioriti SAME On HS, enabled by default

es for Windows. On JR,
disabled by default for
Windows.

Table 6-3 Diagnostic Commands

Oracle JRockit HotSpot

check_flightrecording JFR.check

command_line VM.command_line

dump_flightrecording JFR. dump

exception_trace_filter -

force_crash -

heap_diagnostics -

help help

hprofdump GC.heap_dump

kill_management_server ManagementAgent.stop

6-8 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

Mapping of Oracle JRockit to HotSpot Command Line Options

Table 6-3 (Cont.) Diagnostic Commands

Oracle JRockit

HotSpot

list_vmflags
lockprofile print
lockprofile_reset
memleakserver
print_class_summary
print_exceptions
print_memusage
print_object_summary
print_threads
print_utf8pool
print_vm_state
runsystemgc
set_filename

start_flightrecording

start_management_server

stop_flightrecording
stop_management_server
timestamp

verbosity

version

VM. flags

GC.class_stats

VM.native_memory
GC.class_histogram

Thread.print

JFR.start

ManagementAgent.start

ManagementAgent.start_local

JFR. stop

ManagementAgent.stop

VM.version

Command Line Options 6-9

Mapping of Oracle JRockit to HotSpot Command Line Options

6-10 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

7

Common Migration Issues and Solutions

This chapter describes some common issues that can occur while migrating from
Oracle JRockit to HotSpot VM, along with their solutions.

s Common Migration Issues and Solutions

Note: Some of the tools described in this document require a
commercial license for use in production. To learn more about
commercial features and how to enable them, see
http://www.oracle.com/technetwork/java/javaseproducts/.

Common Migration Issues and Solutions 7-1

http://www.oracle.com/technetwork/java/javaseproducts/

Common Migration Issues and Solutions

Common Migration Issues and Solutions

The following table lists some common issues that can occur during the migration
process and solutions for resolving them.

Table 7-1 Migrations Issues and Solutions

Oracle JRockit
Problem Option HotSpot Option Comments
Performance -XX:+ReserveCodeMem -XX:ReservedCodeCac With HotSpot VM, it
degradation after ory heSize was observed that in
migrating to JDK?. Default values: Default value on most Son ' C45€8 INCTEAsng

Issue was resolved
with the use of
-XX:ReservedCodeCac
heSize=1g

Increased

locking /unlocking
events observed after
switching to HotSpot.

Disabling
UseBiasedLocking
helped improve the
overall performance.

= When you use
-XX:+UseLargePa
gesForCode: 64
MB

= When you use
-XX:-UseLargePa
gesForCode: 1024
MB

-XX:-UseLazyUnlocki
ng (to disable)

of the platforms is 48
MB

-XX:-UseBiasedLocki
ng (to disable)

ReservedCodeCacheSi
ze value, for example,
-XX:ReservedCodeCac
heSize=1g, improves
the performance
significantly.

UseBiasedLocking
option improves the
performance of
uncontended
synchronization. This
option is enabled by

default.

However if the
application has high
contended
synchronization, then
disabling
UseBiasedLocking
benefits the
performance.

If you face
performance issues
due to
locking/synchronizati
on after migrating to
HotSpot, turning off
this option may
provide some
performance gains.

7-2 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

8

Troubleshooting Tools

This chapter describes various troubleshooting tools available in Java SE and
compares their functionality to those available in Oracle JRockit.

s Troubleshooting Tools Available in Java SE

Note: Some of the tools described in this document require a
commercial license for use in production. To learn more about
commercial features and how to enable them, see
http://www.oracle.com/technetwork/java/javaseproducts/.

Troubleshooting Tools 8-1

http://www.oracle.com/technetwork/java/javaseproducts/

Troubleshooting Tools Available in Java SE

Troubleshooting Tools Available in Java SE

The following table lists various tools available for troubleshooting in Java SE. Some of
these tools have been brought over from Oracle JRockit to HotSpot VM for providing
comparable functionality.

Table 8-1 Tools

Java SE Troubleshooting
Tools Notes/Resources

Java Flight Recorder and s Java Mission Control
Mission Control = What are Java Flight Recordings

= How to produce a Flight Recording

= Inspect a Flight Recording

= Debug a Memory Leak Using Java Flight Recorder

= Java Mission Control User's Guide
Serviceability Agent = Article on Serviceability Agent
Java VisualVM = Troubleshoot with Java VisualVM
= Java VisualVM Guide
JConsole s Troubleshoot with JConsole

= JConsole

jemd command utility s Troubleshoot with jemd Utility
= jomd
JDK utilities There are many useful utilities bundled with JDK:
= jdb
= jhat
= jinfo
= jmap
= jps
= jstack
= jstat

= jrunscript

= jsadebugd

= jstatd
visualgc visualgc Tool

Native Memory Tracking -XX:NativeMemoryTracking=mode

Too Specifies the mode for tracking JVM native memory usage. This

option is useful for tracking the native memory usage by the
JVM.

http:/ /hirt.se/blog/?p=401
JOverflow - Experimental ~ There is still no Memory Leak Detector Tool available in Java SE.

plug-in However, there is an experimental plugin for Java Mission
Control that can be used to detect memory leaks:

http:/ /hirt.se/blog/?p=343

8-2 Java Platform, Standard Edition JRockit to HotSpot Migration Guide

	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	Heap Sizing

	2 Garbage Collectors
	Tuning Garbage Collection
	HotSpot GC Tuning Guide

	3 Runtime
	Runtime Options

	4 Compilation Optimization
	4.1 Compiler Considerations
	Important HotSpot JIT Compiler Options

	5 Logging
	Verbose Logging
	HotSpot Logging Options

	6 Command Line Options
	Mapping of Oracle JRockit to HotSpot Command Line Options

	7 Common Migration Issues and Solutions
	Common Migration Issues and Solutions

	8 Troubleshooting Tools
	Troubleshooting Tools Available in Java SE

