Java DB Developer's Guide

Version 10.6

Derby Document build:
April 7, 2014, 5:10:14 PM (EDT)

Version 10.6 Java DB Developer's Guide

Contents

1670] o)V A 8 [0 1| ST TP PP PPR PP 5
(Lo =T o L] = PP PPP T PPPRO 6
Relationship between Java DB and Apache Derby.......ccccoiiiiiniiiiieiiniee e 10
ADOUL IS QUITE. ..t e e e e e e e aees 11
PUrpose of thisS gUIde.......cooi e 11

F U Lo [T o [od =TT P TP PPPRPRPPPRPN 11

How this guide iS Organized.........occueiiiiiiiiiiiii e 11

F N =T AT B = 111 o o TP PPPTOTIPRPN 13
The installation dir€CTOTYuiii i 13

Batch files and Shell SCrPLS.......coii i 13

DErbY B0 JVMS ..ottt 13
Derby libraries and Classpath.........cccoiiiiiiiiiiii e 14
UNIX-SPECITIC ISSUEBS...uitiiieei ittt 14
Configuring file deSCHPLOIS.iiiiiiiiiei e 14

Yol] o] £ T TR TP PRP 14

(6T] =T =2 ST PRI 15
Preparing to UPGrade..... .ottt 15
Upgrading @ database...........ooiiiiiiii 15

Soft upgrade lIMItatioNS........oii i 16
JDBC applications and Derby DasSiCS......ccuuuiiiiiiiiiiiiiiie et 17
Application developmeENt OVEIVIEW..........eiiiiiiiiiieiiie et 17
Derby embedded DaSICS......cuiiiiiiii e 17

DErbY JDBC AlIVET....cciiiiiiiiie ettt s e 17

Derby JDBC database connection URL..........ccoccuviiiiiiiiiiiiiiiiiiee e 18

DEIDY SYSEIM...ciiiiiiiiiiei it 19

A Derby dat@base.ccooiiuiiiiiiiiiiiie e 22
Connecting t0 dat@basesS.ccoiiiuiiiiiiiiii e 25

Working with the database connection URL attributes.........cccccccceeevviiiciininnnnen. 28

Using in-memory databases..........ooviiiiiiiiiii 32
Working with Derby properties. ... 33
PrOPEItIES OVEIVIEW......eviiiieiiiiiiee ettt ettt e e et e e e s sbbeeee e 33

Setting Derby PrOPertiES........cceeiiiiiiieeiiiiiee et 35

PropertieS CaSE STUAY.......ccoiiiiiiiiiiiiiiee ettt e e ee e 37
Deploying Derby appliCatiONS......ccooiiiiiiiiiiie e 40
DEPIOYMENT ISSUES...ciiiiiiiiiie ettt e et e e e st e e e e s sbbeeeee e e 40
Embedded deployment application OVEIVIEW...........c.covuuueieiiiiiiiieiiiiiiee e 40

Deploying Derby in an embedded environment...........cccoocvviieiiiiieeenniiieee e 41

Creating Derby databases for read-only USE€.........ccccciiiiiiiiiiiie e, 42
Creating and preparing the database for read-only use.........cccccccceeeeiiiiiiiinnnns 42

Deploying the database on the read-only media.........ccccoovveiiciiiiiiiiiiiiee s 42
Transferring read-only databases to archive (jar or zip) files.........ccccooviieennnnn 42

Accessing a read-only database in a zip/jar file........cccoooieeiiii . 43

Accessing databases within a jar file using the classpath...............cccocooceenn 44
Databases on read-only media and DatabaseMetaData............ccccccceveeeeiiiinnnnns 44

Loading classes from a database...........cccov i 45

Class 10adiNg OVEIVIEW...........oiiiiiiiiiiaiiiiee ettt 45

Dynamic changes to jar files or to the database jar classpath.............cccccoeoneee. 47

Derby server-side ProgrammMiNg.......c.eeeeeoiiieeeee ittt e et s s e e e s asbee e e e e nanees 48

Version 10.6 Java DB Developer's Guide

Programming database-side JDBC roUtiNeS..........cccccviiiiiiiiiie e 48
Database-side JDBC routines and nested CONNECLIONS...........ccccvvveerriiieeeeennnn. 48
Database-side JDBC routines using non-nested connections..........cccccccceeeeeeas 49
Database-side JDBC routines and SQLEXCEPLIONS........ccevveeeeeiiiiiiiiiiiiiiieeeeeeenn, 49
User-defined SQLEXCEPLONS.uuuiiiiiiiiieeeiie it e e e e e e e e e e sssrairerre e e e e e e e e e e 50

Programming trigger aCtiONS........ccooiiiiiiiiiiiie e e s 50
TrIQQEr ACtION OVEIVIEW......cciiiiiiiiiiiieee e e e e e s e e e e e e e e e s s areeeeeaeeeeeeanns 50
Performing referential aCtioNS.............cooiiiiiiiiiiiiiiee e 51
Accessing before and after rOWS...........eevvvveeiiii i 51
Examples of trigger aCtiONS..........ueeiiiiieeiiiiiiiiiee e e e 51
Triggers and EXCEPLIONS.uuuuiiiieieeeeie e it e e e e e e e s e s e e e e e e e e e e e s e e aanreraaeeeees 51

Programming Derby-style table functions..........ccccoveeii e, 52
Overview of Derby-style table functions.............ccccciiiiieiiee e, 52
Example Derby-style table fUNCLiON..............ooiiiiiiiiiic e 54
Writing restricted table funCLioNS.............cccciiiiii e 55
Optimizer support for Derby-style table functions.............ccccccveiieei i, 57

Programming user-defined tYyPeS.....ccccuiiiiiiiieii et 61

Controlling Derby application behavior.........ccccooiiiiiiiiiie e 64

The JDBC connection and transaction model.........ccccveiieiiiiiiiie e 64
1070] 1] a =T 1 o] o = T PR PRT 64
QL2107 T 1o T PRSP 65

Result set and CUrsor MeChaniSMS........ciiiiiiiiiii e 68
Simple non-updatable result SetS............ooociiiiiiiiiee e 68
Updatable reSUIL SELS.....uuuiiiiiieie e 69
Result sets and auto-COMIMIL..........cooiiiiiiiie e 73
SCrollable reSUIt SELS.........oiiiiiiiiiee e 73
HoIdable reSUIt SES.........eiiiiiiii e e 74

Locking, concurrency, and isolation.........cccccevveveeeeii i 76
Isolation levels and CONCUITENCY...........cooccuiiiiieiei e e e e 76
Configuring iSolation 1EVEIS............cociiiiiiiee e 78
LOCK QranUIATILY........c..uueiiiiieieeie e e e e e e e e s e eeeeaeae s 79
Types and scope of locks in Derby SYStEMS.........ccccuvviiiiiieeeeee e 79
(D= T=To | Lo Lot 2C S PSSR 82

Working with multiple connections to a single database................cccccvvveeeenen.n. 87
Deployment options and threading and connection modes..........ccccccvveeeeeiiinnnns 87
Multi-user database ACCESS.........uuiiiiiiiiiiie it 88
Multiple connections from a single application............cccccoooveiiiiiiiieieeeee e 88

Working with multiple threads sharing a single connection.........ccccccccceeeeiiins 89
Pitfalls of sharing a connection among threads..............cccoocveeieie i, 89
Multi-thread programming tiPS........uuueeiiiieeeeiiiiiir e e e e e e e 90
Example of threads sharing a statement.............ccccoviieie e, 90

Working with database threads in an embedded environment...........cccccceeeenn. 90

Working with Derby SQLEXxceptions in an application...........ccccccvevveveeennniicnnns 91
Information provided in SQL EXCEPLIONS......cccivvieiiiiiiiiiieeece e 91

Using Derby as a J2EE reSOUrCe Manager.........ccccuuuireiriiieeeeeeeieeiiinrnnereeeaeaeeesssssnsssnnens 92

Classes that pertain t0 reSOUrCe MaNAQElS.....ccccuuriiriereeeeeeiiiiiirirreeereeeeeeeeesninnnes 92

Getting @ Dat@SOUICE.......iii ittt e et e e e e e e e e e e e e e e e e s e e sanreeanees 93

Shutting down or creating a database..........ccccovviiiiiiiie e 93

(DT o) VA= Ta Yo BT =Tod UL) Y2 SR 95

Configuring security for your envVironmeNt...........ccccciiiiiieiiiee e 96
Configuring security in a client/server environMeNt.............coccccvviieeeeeeeeeeeeeeeenns 97
Configuring security in an embedded environment..............ccccceveeeeeeeeiiecccinnnne, 97

Working with user authentiCation........cccccveeiiiiiiiiie e 98
Enabling user authentiCation.............ceuveeeiiiiiiiiiiiieeie e 99

Version 10.6 Java DB Developer's Guide

DEfINING USEIS. .. ittt e e e e e e e e s e s e s rrreeaaaeeeeaean 99

EXternal dir€Ctory SEIVICE........cuuviiiiiieiie et e e e e 100

BUIIE-IN DEIDY USEIS... uiiiiiiiiie ettt e e e e e e e e et e e e e e e e e e 104

List of user authentication Properties.........cccciverreieeeee i 105
Programming applications for Derby user authentication............c.cccccceeeeeeiiinns 106

Users and authorization identifiers.......cccccviiieiii e 107
Authorization identifiers, user authentication, and user authorization............... 107

Database OWNETccoiiiiiiiie ittt e e e e s annreeeas 108

User Names and SCREM@S.........uuviieiiiiiiiee it 108
Exceptions when using authorization identifiers...........coccccveeeeiiiiiciciciiieeeeeee. 108

USEr AUtNOTIZAtIONS. .. .ueiiiiiiiiiie et s e e e e eneees 108
Setting the default connection access MOode..........ccceeeevviviiiiiiiiieeieee e 110

Setting access for iNdividual USErS..........uueeiiiiieeeiii e 110

Setting the SQL standard authorization mode..............cccooevceiiiiiiiieeee e 111
Encrypting databases 0N diSK.......ccccuuuiiiiiiiieiiii e 118
Requirements for Derby encryption..........cccuveeeiiiieeeee i 118

Working With €NCryPtioN.........cooi oo 118

SIGNEA JAr FIlES .t a e e 123

Notes on the Derby security features.......ccovcciiieeeiiiiiicieee e 123

User authentication and authorization examples........cccccccvveeeiiiiiciciiiiieeeceee, 124

User authentication example in a client/server environment..............ccccvvveeeeee. 124

User authentication example in a single-user, embedded environment............ 131

User authentication examples using SQL authorization..............ccccccvevveeeeeennn. 137

Running Derby under a SEecUrity Manager..........cccccuviiriiiieeeeeeeieeccirnreeeeeeee e 152
Granting permissions t0 Derby..........ccccuiiiiiiiieie e 152

Examples of Java 2 security policy files for embedded Derby......................... 154
Developing tools and using Derby with an IDE...........ccccviiiiiiiiiiie e 156
Offering connection choices t0 the USer.......cccueiiiiiiiiiiii e 156

The DriverPropertylnfo ArTay.......ccuuuueieeeieeee e e e e e e 156

Using Derby With IDES.......ccccuiiiiiiieiic et e e e e e e e e 157

IDES and mMUItIPle JVIMS........cooiiiiiieeie ettt a e e 157

LT I {1 1= SRR 159
Retrieving the database connection URL.......cccccccoeoviiiiiiiiiiiiieie e 159
Supplying a parameter ONlY ONCE........ooi ittt 159
Defining an identity COIUMN........uiiiiiiiii e 159

Using third-party t00IS. ... 159
Tricks Of the VALUES ClaUSE......coiiiiiiiiieiiiiiiie et 160
MUIIPIE TOWS. ...ttt e e e e e e e e e e e e e e e s s e a b e e eeeeaeeeeeeanns 160

Mapping column values to return ValUEs...........ccuvveevveeeeeiiiiiiiiieiieee e e e e 160

Creating €MPLY QUEIIES.uuiiiiiieieeeeee e eeieiiete e e e e e e e e s s e e e e e e e e e e s seennnranaeees 160

(o Tox= 1141 o Yo [BI=T4 o Y 2P PRP ORI 161
SQL parser support for UNiCOAE........cccuuiiiiiiiiiiie e 161
Character-based collation in Derby........cccooiiiiiiiiiiie e 161

Other components with locale SUPPOIt.......cccviiiiiiiiiiee e 163
MESSAQES [IDIArIES. ... 164
(DT o) VA= Ta Yo] =4 T F= o £ SUURR 165
XML data types and OPEratOrS......cccciiiieiiiiiiiiiiieee e e e s e s s e e e e e e e e e e s s s sanrr e eee s 166

LI 10 L= 4=V PRSP PP 167

Java DB Developer's Guide
Apache Software FoundationJava DB Developer's GuideApache Derby

Java DB Developer's Guide

Copyright

Apache Derby %

Copyright 2004-2010 The Apache Software Foundation
Copyright 2010 Oracle and/or its affiliates. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Java DB Developer's Guide
License

The Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://ww. apache. org/licenses/

TERMS AND CONDI TI ONS FOR USE, REPRODUCTI ON, AND DI STRI BUTI ON
1. Definitions.

"Li cense" shall nmean the terns and conditions for use
reproduction, and distribution as defined by Sections 1 through
9 of this docunent.

"Li censor" shall mean the copyright owner or entity authorized
by the copyright owner that is granting the License

"Legal Entity" shall nean the union of the acting entity and al
other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this
definition, "control" neans (i) the power, direct or indirect,
to cause the direction or managenent of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%
or nmore of the outstanding shares, or (iii) beneficial ownership
of such entity.

"You" (or "Your") shall nmean an individual or Legal Entity
exerci sing perm ssions granted by this License.

"Source" formshall nean the preferred formfor naking
nodi fi cations, including but not linted to software source code
docunent ati on source, and configuration files.

"Cbject" formshall nean any formresulting from nechani ca
transformation or translation of a Source form including but
not limted to conpiled object code, generated docunentation,
and conversions to other nedia types.

"Work" shall nean the work of authorship, whether in Source or
Ooj ect form nade avail abl e under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendi x bel ow).

"Derivative Wrks" shall mean any work, whether in Source or
oject form that is based on (or derived fronm) the Wrk and
for which the editorial revisions, annotations, el aborations,
or other nodifications represent, as a whole, an original work
of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from or
nerely link (or bind by nane) to the interfaces of, the Wrk
and Derivative Wrks thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any nodifications or
additions to that Work or Derivative Wrks thereof, that is
intentionally submtted to Licensor for inclusion in the Wrk
by the copyright owner or by an individual or Legal Entity
authorized to subnmit on behalf of the copyright owner. For the
purposes of this definition,

"submtted" means any form of electronic, verbal, or witten
comuni cation sent to the Licensor or its representatives,
including but not limted to comrunication on electronic mailing
lists, source code control systenms, and issue tracking systens

6

Java DB Developer's Guide

that are nmanaged by, or on behalf of, the Licensor for the
purpose of discussing and i nproving the Work, but excl uding
communi cation that is conspicuously nmarked or otherw se
designated in witing by the copyright owner as "Not a
Contri bution.™"

"Contributor" shall nean Licensor and any individual or Legal
Entity on behal f of whom a Contribution has been recei ved by
Li censor and subsequently incorporated within the Wrk.

Grant of Copyright License. Subject to the terns and conditions
of this License, each Contributor hereby grants to You a

per petual, worldw de, non-exclusive, no-charge, royalty-free,
irrevocabl e copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform sublicense, and
distribute the Work and such Derivative Wrks in Source or

Obj ect form

Grant of Patent License. Subject to the ternms and conditions of
this License, each Contributor hereby grants to You a perpetual,
wor | dwi de, non-excl usi ve, no-charge, royalty-free, irrevocable
(except as stated in this section) patent |icense to make, have
made, use, offer to sell, sell, inport, and otherw se transfer
the Wrk, where such license applies only to those patent clains
l'i censabl e by such Contributor that are necessarily infringed by
their Contribution(s) alone or by conbination of their
Contribution(s) with the Wrk to which such Contribution(s) was
submitted. If You institute patent litigation against any entity
(including a cross-claimor counterclaimin a lawsuit) alleging
that the Work or a Contribution incorporated within the Wrk
constitutes direct or contributory patent infringenent, then any
patent |icenses granted to You under this License for that Wrk
shall terminate as of the date such litigation is filed.

Redi stri bution. You may reproduce and distribute copies of the
Work or Derivative Wrks thereof in any nedium wth or wthout
nmodi fications, and in Source or (bject form provided that You
neet the follow ng conditions:

(a) You must give any other recipients of the Work or
Derivative Wrks a copy of this License; and

(b) You nust cause any nodified files to carry promi nent notices
stating that You changed the files; and

(c) You nust retain, in the Source formof any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source formof the Wrk,
excl udi ng those notices that do not pertain to any part of
the Derivative Wrks; and

(d) If the Work includes a "NOTICE" text file as part of its
di stribution, then any Derivative Wrks that You distribute
nmust include a readable copy of the attribution notices
contai ned within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Wrks, in
at | east one of the follow ng places: within a NOTICE text
file distributed as part of the Derivative Wrks; within the
Source form or docunentation, if provided along with the
Derivative Wrrks; or, within a display generated by the
Derivative Wrks, if and wherever such third-party notices
normal | y appear. The contents of the NOTICE file are for
i nformati onal purposes only and do not nodify the License.
You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendumto
the NOTICE text fromthe Work, provided that such additional
attribution notices cannot be construed as nodifying the
Li cense.

You may add Your own copyright statenent to Your nodifications

Java DB Developer's Guide

and nay provide additional or different |license terns and
conditions for use, reproduction, or distribution of Your

nodi fications, or for any such Derivative Wrks as a whol e,
provi ded Your use, reproduction, and distribution of the Work
ot herwi se conplies with the conditions stated in this License.

Submi ssi on of Contributions. Unless You explicitly state

ot herwi se, any Contribution intentionally subnmitted for
inclusion in the Wrk by You to the Licensor shall be under the
ternms and conditions of this License, w thout any additional
terns or conditions. Notwithstanding the above, nothing herein
shal | supersede or nodify the terns of any separate |icense
agreenent you may have executed with Licensor regardi ng such
Contri buti ons.

Trademarks. This License does not grant perm ssion to use the
trade names, trademarks, service marks, or product nanes of the
Li censor, except as required for reasonable and custonary use
in describing the origin of the Wrk and reproducing the content
of the NOTICE file.

Di scl ai ner of Warranty. Unless required by applicable | aw or
agreed to in witing, Licensor provides the Wrk (and each
Contri butor provides its Contributions) on an "AS | S* BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or
inmplied, including, without limtation, any warranties or
conditions of TITLE, NON- I NFRI NGEMENT, MERCHANTABI LITY, or

FI TNESS FOR A PARTI CULAR PURPCSE. You are solely responsible for
determ ni ng the appropriateness of using or redistributing the
Work and assune any risks associated with Your exercise of
permi ssi ons under this License

Limtation of Liability. In no event and under no |egal theory,
whet her in tort (including negligence), contract, or otherw se,
unl ess required by applicable | aw (such as deliberate and
grossly negligent acts) or agreed to in witing, shall any
Contributor be liable to You for danmages, including any direct,
indirect, special, incidental, or consequential danages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limted to
danmages for |oss of goodw ||, work stoppage, conputer failure or
mal function, or any and all other conmercial danmages or | osses),
even i f such Contributor has been advi sed of the possibility of
such damages.

Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wrks thereof, You may choose to offer

and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this
Li cense. However, in accepting such obligations, You may act only
on Your own behal f and on Your sole responsibility, not on behal f
of any other Contributor, and only if You agree to i ndemify,

def end, and hol d each Contributor harm ess for any liability
incurred by, or clains asserted agai nst, such Contributor by
reason of your accepting any such warranty or additiona
liability.

END OF TERVS AND CONDI Tl ONS

APPENDI X: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the foll ow ng
boil erpl ate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
coment syntax for the file format. W al so recommend that a
file or class nanme and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives

Java DB Developer's Guide
Copyright [yyyy] [name of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ |l i censes/ LI CENSE-2. 0

Unl ess required by applicable |aw or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
inmplied. See the License for the specific | anguage governing

perm ssions and |limtations under the License.

Java DB Developer's Guide

Relationship between Java DB and Apache Derby

Java DB is a relational database management system that is based on the Java
programming language and SQL. Java DB is the Oracle release of the Apache Derby
project, the Apache Software Foundation's (ASF) open source relational database
project.

The Java DB product includes Derby without any modification whatsoever to the
underlying source code.

Because Java DB and Derby have the same functionality, the Java DB documentation
refers to the core functionality as Derby.

The Java DB 10.6 documentation is based on the Derby 10.6 documentation. References
to "Derby" in the Java DB documentation should be understood as synonyms for "Java
DB."

Oracle has made changes to the Apache Derby documentation. This manual is identical
to the Derby Developer's Guide, with the following exceptions:

» Oracle has added this topic, "Relationship between Java DB and Apache Derby".
* In the titles of manuals, "Derby" has been changed to "Java DB".

10

Java DB Developer's Guide

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Java DB.

Purpose of this guide

This guide explains how to use the core Derby technology and is for developers building
Derby applications.

It describes basic Derby concepts, such as how you create and access Derby databases
through JDBC routines and how you can deploy Derby applications.

Audience

This guide is intended for software developers who already know some SQL and Java.

Derby users who are not familiar with the SQL standard or the Java programming
language will benefit from consulting books on those subjects.

How this guide is organized

This document includes the following sections.
* After installing

Explains the installation layout.
« Upgrades

Explains how to upgrade a database created with a previous version of Derby.
» JDBC applications and Derby basics

Basic details for using Derby, including loading the JDBC driver, specifying a
database URL, starting Derby, and working with Derby properties.
» Deploying Derby applications

An overview of different deployment scenarios, and tips for getting the details right
when deploying applications.
» Derby server-side programming

Describes how to program database-side JDBC routines, triggers, and table
functions.
» Controlling Derby application behavior

JDBC, cursors, locking and isolation levels, and multiple connections.
« Using Derby as a J2EE resource manager

Information for programmers developing back-end components in a J2EE system.
» Derby and Security

Describes how to use the security features of Derby.
» Developing tools and using Derby with an IDE

Tips for tool designers.
e SQL tips

Insiders' tricks of the trade for using SQL.
* Localizing Derby

11

Java DB Developer's Guide

An overview of database localization.
¢ Derby and standards

Describes those parts of Derby that are non-standard or not typical for a database
system.

12

Java DB Developer's Guide

After installing

This section provides reference information about the installation directory, JVMs,
classpath, upgrades, and platform-specific issues.

Review the i ndex. ht m file at the top level of the Derby distribution for pointers to
reference and tutorial information about Derby. See the Release Notes for information on
platform support, changes that may affect your existing applications, defect information,
and recent documentation updates. See Getting Started with Java DB for basic product
descriptions, information on getting started, and directions for setting the path and the
classpath.

The installation directory
You may install the Derby software in a directory of your choice.
See the i ndex. ht ml file for pointers to information on Derby.

The distribution includes setup scripts that use an environment variable called
DERBY_HOME. The variable's value is set to the Derby base directory.

C. >echo Y©OERBY_HOVE%
C: \ DERBY_HOVE

If you want to set your own environment, Getting Started with Java DB instructs you on
setting its value to the directory in which you installed the Derby software.

The distribution for Derby contains all the files you need, including the documentation set,
some example applications, and a sample database.

Details about the installation:

 index.html in the top-level directory is the top page for the on-line documentation.

* RELEASE-NOTES.html, in the top-level Derby base directory, contains important
last-minute information. Read it first.

« /bin contains utilities and scripts for running Derby.

» /demo contains some sample applications, useful scripts, and prebuilt databases.

 /databases includes prebuilt sample databases.
» /programs includes sample applications.

 /docs contains the on-line documentation (including this document).

« /javadoc contains the documented APIs for the public classes and interfaces.
Typically, you use the JDBC interface to interact with Derby; however, you can use
some of these additional classes in certain situations.

« /lib contains the Derby libraries.

Batch files and shell scripts

The /bin directory contains scripts for running some of the Derby tools and utilities. To
customize your environment, put the directory first in your path.

These scripts serve as examples to help you get started with these tools and utilities on
any platform. However, they may require modification in order to run properly on certain
platforms.

Derby and JVMs

13

Java DB Developer's Guide

Derby is a database engine written completely in Java; it will run in any JVM, version 1.4
or higher.

Derby libraries and classpath

Derby libraries are located in the /lib subdirectory of the Derby base directory. You must
set the classpath on your development machine to include the appropriate libraries.

Getting Started with Java DB explains how to set the classpath in a development
environment.

UNIX-specific issues

This section discusses Derby issues specifically related to UNIX platforms.

Configuring file descriptors

Scripts

Derby databases create one file per table or index. Some operating systems limit the
number of files an application can open at one time.

If the default is a low number, such as 64, you might run into unexpected IOExceptions
(wrapped in SQLExcept i ons). If your operating system lets you configure the number of
file descriptors, set this number to a higher value.

Your installation contains executable script files that simplify invoking the Derby tools.
On UNIX systems, these files might need to have their default protections set to include
execute privilege.

A typical way to do this is with the command chmod +x *.ksh.

Consult the documentation for your operating system for system-specific details.

14

Java DB Developer's Guide

Upgrades

To connect to a database created with a previous version of Derby, you must first
upgrade that database.

Upgrading involves writing changes to the system tables, so it is not possible for
databases on read-only media. The upgrade process:

* marks the database as upgraded to the current release (Version 10.6).
« allows use of new features.

See the release notes for more information on upgrading your databases to this version
of Derby.

Preparing to upgrade

Upgrading your database occurs the first time the new Derby software connects to the
old database.

Before you connect to the database using the new software:

1. Back up your database to a safe location using Derby online/offline backup
procedures.

For more information on backup, see the Java DB Server and Administration Guide.

Update your CLASSPATH with the latest jar files.

3. Make sure that there are no older versions of the Derby jar files in your
CLASSPATH. You can determine if you have multiple versions of Derby in your
CLASSPATH by using the sysinfo tool.

N

To use the sysi nf o tool, execute the following command:

java org. apache. derby. t ool s. sysi nfo

The sysi nf o tool uses information found in the Derby jar files to determine the
version of any Derby jar in your CLASSPATH. Be sure that you have only one
version of the Derby jar files specified in your CLASSPATH.

Upgrading a database

To upgrade a database, you must explicitly request an upgrade the first time you connect
to the database with the new version of Derby.

Ensure that you complete the prerequisite steps before you upgrade:
» Back up your database before you upgrade.
» Ensure that only the new Derby jar files are in your CLASSPATH.

When you upgrade the database, you can perform a full upgrade or soft upgrade:

A full upgrade is a complete upgrade of the Derby database. When you perform a
full upgrade, you cannot connect to the database with an older version of Derby and
you cannot revert back to the previous version.

A soft upgrade allows you to run a newer version of Derby against an existing
database without having to fully upgrade the database. This means that you
can continue to run an older version of Derby against the database. However, if
you perform a soft upgrade, certain features will not be available to you until you
perform a full upgrade.

1. To upgrade the database, select the type of upgrade that you want to perform:

15

Java DB Developer's Guide

Type of upgrade Action

Full upgrade Connect to the database using the
upgr ade=t r ue database connection URL
attribute. For example:

j dbc: der by: sanpl e; upgr ade=t r ue

Soft upgrade Connect to the database. For example:

connect 'jdbc: derby: sanpl e

In this example, sanpl e is a database
from a previous version of Derby.

Soft upgrade limitations

Soft upgrade allows you to run a newer version of Derby against an existing database
without having to fully upgrade the database. This means that you can continue to run an
older version of Derby against the database.

If you perform a soft upgrade, you will not be able to perform certain functions that are
not available in older versions of Derby. Specifically, new features that affect the structure
of a database are not available with a soft upgrade. For a list of the new features in a
release, see the Release Notes for that release.

To perform a soft upgrade on a database created using an earlier version of Derby,
simply connect to the database, as shown in the following example:

connect 'jdbc: derby: sanpl e’

16

Java DB Developer's Guide

JDBC applications and Derby basics

This section describes the core Derby functionality. In addition, it details the most basic
Derby deployment, Derby embedded in a Java application.

Application development overview

Derby application developers use the Java Database Connectivity (JDBC) API, the
application programming interface that makes it possible to access relational databases
from Java programs.

The JDBC API is part of the Java Platform, Standard Edition and is not specific to Derby.
It consists of the java.sqgl and javax.sqgl packages, which is a set of classes and interfaces
that make it possible to access databases (from a number of different vendors, not just
Derby) from a Java application.

To develop Derby applications successfully, you will need to learn the JDBC API. This
section does not teach you how to program with the JDBC API.

This section covers the details of application programming that are specific to Derby
applications. For example, all JDBC applications typically start their DBMS's JDBC driver
and use a connection URL to connect to a database. This chapter gives you the details
of how to start Derby's JDBC driver and how to work with Derby's connection URL to
accomplish various tasks. It also covers essential Derby concepts such as the Derby
system.

You will find reference information about the particulars of Derby's implementation of the
JDBC API in the Java DB Reference Manual.

Derby application developers will need to learn SQL. SQL is the standard query language
used with relational databases and is not tied to a particular programming language. No
matter how a particular RDBMS has been implemented, the user can design databases
and insert, modify, and retrieve data using the standard SQL statements and well-defined
data types. SQL-92 is the version of SQL standardized by ANSI and ISO in 1992; Derby
supports entry-level SQL-92 as well as some higher-level features. Entry-level SQL-92 is
a subset of full SQL-92 specified by ANSI and ISO that is supported by nearly all major
DBMSs today. This chapter does not teach you SQL. You will find reference information
about the particulars of Derby's implementation of SQL in the Java DB Reference
Manual.

Derby implements the JDBC API so as to allow Derby to serve as a resource manager in
a Java EE compliant system.

Derby embedded basics
This section explains how to use and configure Derby in an embedded environment.

Included in the installation is a sample application program, /demo/programs/simple,
which illustrates how to run Derby embedded in the calling program.

Derby JDBC driver

Derby consists of both the database engine and an embedded JDBC driver. Applications
use JDBC to interact with a database. Applications running on JDK 5 or earlier must load
the driver in order to work with the database.

17

Java DB Developer's Guide
In an embedded environment, loading the driver also starts Derby.

The Derby driver class name for the embedded environment is
org.apache.derby.jdbc.EmbeddedDriver.

In a Java application, you typically load the driver with the static Class.forName method
or with the jdbc.drivers system property. For example:

Cl ass. for Nane(" or g. apache. der by. j dbc. EnbeddedDri ver");

java -Djdbc. drivers=org. apache. der by. j dbc. EnbeddedDri ver applicati onCl ass

For detailed information about loading the Derby JDBC driver, see "java.sql.Driver
interface" in the Java DB Reference Manual.

If your application runs on JDK 6 or higher, you do not need to explicitly load the
EnbeddedDr i ver . In that environment, the driver loads automatically.

If your application shuts down Derby or calls the DriverManager.unload method, and you
then want to reload the driver, call the Class.forName().newlnstance() method.

Derby JDBC database connection URL

A Java application using the JDBC API establishes a connection to a database by
obtaining a Connection object.

The standard way to obtain a Connect i on object is to call the method

Dri ver Manager . get Connect i on, which takes a String containing a connection URL
(uniform resource locator). A JDBC connection URL provides a way of identifying a
database. It also allows you to perform a number of high-level tasks, such as creating a
database or shutting down the system.

An application in an embedded environment uses a different connection URL from that
used by applications using the Derby Network Server in a client/server environment.
See the Java DB Server and Administration Guide for more information on the Network
Server.

However, all versions of the connection URL (which you can use for tasks besides
connecting to a database) have common features:

» you can specify the name of the database you want to connect to

* you can specify a number of attributes and values that allow you to accomplish
tasks. For more information about what you can specify with the Derby connection
URL, see Database connection examples.

The connection URL syntax is as follows:

j dbc: der by: [subsubpr ot ocol :] [dat abaseNan®e] [; attri but e=val ue] *

Subsubprotocol, which is not typically specified, determines how Derby looks for a
database: in a directory, in memory, in a class path, or in a jar file. Subsubprotocol is one
of the following:

« directory: The default. Specify this explicitly only to distinguish a database that
might be ambiguous with one on the class path.

« memory: Databases exist only in main memory and are not written to disk. An
in-memory database may be useful when there is no need to persist the database --
for example, in some testing situations.

« classpath: Databases are treated as read-only databases, and all databaseNames
must begin with at least a slash, because you specify them "relative" to the
classpath directory. See Accessing databases from the classpath for details.

18

Java DB Developer's Guide

- jar: Databases are treated as read-only databases. DatabaseNames might require
a leading slash, because you specify them "relative" to the jar file. See Accessing
databases from a jar or zip file for details.

jar requires an additional element immediately before the database name:

(pat hToAr chi ve)
pathToArchive is the path to the jar or zip file that holds the database.

For detailed reference about connection URL attributes and values, see "Setting
attributes for the database connection URL" in the Java DB Reference Manual.

The following example shows the use of the connection URL:

Connecti on conn = Driver Manager. get Connection("j dbc: derby: sanpl e");

Derby system
A Derby database exists within a system.

A Derby system is a single instance of the Derby database engine and the environment
in which it runs. It consists of a system directory, zero or more databases, and a
system-wide configuration. The system directory contains any persistent system-wide
configuration parameters, or properties, specific to that system in a properties file called
derby.properties. This file is not automatically created; you must create it yourself.

The Derby system is not persistent; you must specify the location of the system directory
at every startup.

However, the Derby system and the system directory is an essential part of a running
database or databases. Understanding the Derby system is essential to successful
development and deployment of Derby applications. Derby databases live in a system,
which includes system-wide properties, an error log, and one or more databases.

Figure 1. Derby databases live in a system, which includes system-wide properties,
an error log, and one or more databases.

* derby.system.home

(value of this system variable
Darty tells Derby the name
of your system directory)

|

v f]
derby. properties

—
Accounting DB Sales DB I

derby.log

19

Java DB Developer's Guide
The system directory can also contain an error log file called derby.log (see The error
log).

Each database within that system is contained in a subdirectory, which has the same
name as the database (see A Derby database).

In addition, if you connect to a database outside the current system, it automatically
becomes part of the current system.

Note: In-memory databases do not appear in the system directory.
One Derby instance for each Java Virtual Machine (JVM)

You could potentially have two instances of a Derby system running on the same
machine at the same time. Each instance must run in a different Java Virtual Machine
(JVM).

If you use the embedded driver, two separate instances of Derby cannot access the
same database. If a Derby instance attempts to access a running database, an error
message appears, and a stack trace appears in the derby.log file. If you want more than
one Derby instance to be able to access the same database, you can use the Network
Server.

If a Derby instance uses the in-memory database capability for its database connection,
the database exists only within the JVM of that Derby instance. Another Derby instance
could refer to the same database name, but it would not be referring to the same actual
database, and no error would result.

Booting databases

The default configuration for Derby is to boot (or start) a database when an application
first makes a connection to it. When Derby boots a database, it checks to see if recovery
needs to be run on the database, so in some unusual cases booting can take some time.

You can also configure your system to automatically boot all databases in the system
when it starts up; see "derby.system.bootAll" in the Java DB Reference Manual. Because
of the time needed to boot a database, the number of databases in the system directory
affects startup performance if you use that configuration.

Once a database has been booted within a Derby system, it remains active until the
Derby system has been shut down or until you shut down the database individually.

When Derby boots a database, a message is added to the log file. The message includes
the Derby version that the database was booted with, for example:

2010-02-11 22:17:36.174 GVI:

Booti ng Derby version The Apache Software Foundation - Apache Derby
- 10.6.0.0 - (908506): instance a816c00e-0121-2140-ffd9-fffffOcfee85
on database directory C:\sanpl edb

The number of databases running in a Derby system is limited only by the amount of
memory available in the JVM.

Shutting down the system

In an embedded environment, when an application shuts down, it should first shut down
Derby.

If the application that started the embedded Derby quits but leaves the Java Virtual
Machine (JVM) running, Derby continues to run and is available for database
connections.

In an embedded system, the application shuts down the Derby system by issuing the
following JDBC call:

Dri ver Manager . get Connecti on("j dbc: der by: ; shut down=true");

20

Java DB Developer's Guide
Shutdown commands always raise SQLEXxceptions.

When a Derby system shuts down, a message goes to the log file:

2010-02-11 22:19:13. 372 GWI:
Shutting down instance a816c00e-0121-2140-ffd9-fffffOcfee85

Typically, an application using an embedded Derby engine shuts down Derby just before
shutting itself down. However, an application can shut down Derby and later restart it in
the same JVM session. To restart Derby successfully, the application needs to reload
org.apache.derby.jdbc.EmbeddedDriver as follows:

Cl ass. for Nane(or g. apache. der by. j dbc. EnbeddedDri ver) . new nst ance() ;
Loading the embedded driver starts Derby.

The JDBC specification does not recommend calling newl nst ance() , but adding a
newl nst ance() call guarantees that Derby will be booted on any JVM.

It is also possible to shut down a single database instead of the entire Derby system. See
Shutting down Derby or an individual database. You can reboot a database in the same
Derby session after shutting it down.

Defining the system directory

You define the system directory when Derby starts up by specifying a Java system
property called derby.system.home.

If you do not specify the system directory when starting up Derby, the current directory
becomes the system directory.

Derby uses the derby.system.home property to determine which directory is its system
directory - and thus what databases are in its system, where to create new databases,
and what configuration parameters to use. See the Java DB Reference Manual for more
information on this property.

If you specify a system directory at startup that does not exist, Derby creates this new
directory - and thus a new system with no databases-automatically.

The error log

Once you create or connect to a database within a system, Derby begins outputting
information and error messages to the error log.

Typically, Derby writes this information to a log called derby.log in the system
directory, although you can also have Derby send messages to a stream, using

the derby.stream.error.method property. By default, Derby overwrites derby.log

when you start the system. You can configure Derby to append to the log with the
derby.infolog.append property. For information on setting this and other properties, see
the Java DB Reference Manual.

derby.properties

The text file derby.properties contains the definition of properties, or configuration
parameters that are valid for the entire system.

The derby.properties file is not automatically created. If you want to set Derby properties
with this file, you need to create the file yourself. The derby.properties file should be in
the format created by the java.util.Properties.save method. For more information about
properties and the derby.properties file, see Working with Derby properties and the Java
DB Reference Manual.

Double-booting system behavior
Derby prevents two instances of itself from booting the same database by using a file
called db.Ick inside the database directory.

21

Java DB Developer's Guide

If a second instance of Derby attempts to boot an already running database, the following
error messages appear:

ERROR XJ040: Failed to start database 'firstdb', see the next exception
for details.

ERROR XSDB6: Anot her instance of Derby nay have al ready booted the

dat abase /hone/ nysel f/ DERBYTUTOR/ fi r st db.

In addition, a stack trace appears in the derby.log file.

If you need to access a single database from more than one Java Virtual Machine (JVM),
you will need to put a server solution in place. You can allow applications from multiple
JVMs that need to access that database to connect to the server. The Derby Network
Server is provided as a server solution. For basic information on starting and using

the Network Server, see Getting Started with Java DB. See the Java DB Server and
Administration Guide for more information on the Network Server.

Recommended practices

When developing Derby applications, create a single directory to hold your database or
databases.

Give this directory a unique name, to help you remember that:

« All databases exist within a system.

« System-wide properties affect the entire system, and persistent system-wide
properties live in the system directory.

« You can boot all the databases in the system, and the boot-up times of all
databases affect the performance of the system.

* You can preboot databases only if they are within the system. (Databases do not
necessarily have to live inside the system directory, but keeping your databases
there is the recommended practice.)

< Once you connect to a database, it is part of the current system and thus inherits all
system-wide properties.

< Only one instance of Derby can run in a JVM at a single time.

« The error log is located inside the system directory.

A Derby database

A Derby database contains dictionary objects such as tables, columns, indexes, and jar
files. A Derby database can also store its own configuration information.

The database directory

A Derby database is stored in files that live in a directory of the same name as the
database. Database directories typically live in system directories.

Note: An in-memory database does not use the file system, but the size limits listed in
the table Size limits for Derby database objects still apply. For some limits, the maximum
value is determined by the available main memory instead of the available disk space
and file system limitations.

A database directory contains the following, as shown in the following figure.
« log directory

Contains files that make up the database transaction log, used internally for data
recovery (not the same thing as the error log).
 segO directory

Contains one file for each user table, system table, and index (known as
conglomerates).
* service.properties file

22

Java DB Developer's Guide

A text file with internal configuration information.
 tmp directory

(might not exist.) A temporary directory used by Derby for large sorts and deferred
updates and deletes. Sorts are used by a variety of SQL statements. For databases
on read-only media, you might need to set a property to change the location of this
directory. See "Creating Derby Databases for Read-Only Use".

« jar directory

(might not exist.) A directory in which jar files are stored when you use database
class loading.

Read-only database directories can be archived (and compressed, if desired) into jar or
zip files. For more information, see Accessing a read-only database in a zip/jar file.

The following figure shows the files and directories in the Derby database directories that
are used by the Derby software.

Figure 2. An example of a Derby database directory and file structure.

j Sales DB h‘ﬂ

(=

jar
service.properties

Derby imposes relatively few limitations on the number and size of databases and
database objects. The following table shows some size limitations of Derby databases
and database objects:

Table 1. Size limits for Derby database objects

Type of Object Limit

tables in each database java.lang.Long.MAX_VALUE

Some operating systems impose a limit to the
number of files allowed in a single directory.

indexes in each table 32,767 or storage

columns in each table 1,012

number of columns on an index 16

key

rows in each table No limit.

size of table No limit. Some operating systems impose a limit on

the size of a single file.

23

Java DB Developer's Guide

Type of Object Limit

size of row No limit. Rows can span pages. Rows cannot span
tables so some operating systems impose a limit on
the size of a single file, which results in limiting the

size of a table and size of a row in that table.

For a complete list of restrictions on Derby databases and database objects, see the
Java DB Reference Manual.

Creating, dropping, and backing up databases

You create new databases and access existing ones by specifying attributes to the Derby
connection URL.

If you use an in-memory database, you can use a connection URL attribute to drop it. For
a file system database, however, there is no drop attribute. To drop a database on the file
system, delete the database directory with operating system commands. The database
must not be booted when you remove a database. You can get a list of booted databases
with getPropertylnfo.

To back up a database, you can use the online backup utility. For information on this
utility, see the Java DB Server and Administration Guide.

You can also use roll-forward recovery to recover a damaged database. Derby
accomplishes roll-forward recovery by using a full backup copy of the database, archived
logs, and active logs from the most recent time before a failure. For more information on
roll-forward recovery see the Java DB Server and Administration Guide.

Single database shutdown

An application can shut down a single database within a Derby system and leave the rest
of the system running.

Storage and recovery

A Derby database (unless it is an in-memory database) provides persistent storage and
recovery. Derby ensures that all committed transactions are durable, even if the system
fails, through the use of a database transaction log.

Whereas inserts, updates, and deletes may be cached before being written to disk, log
entries tracking all those changes are never cached but always forced to disk when a
transaction commits. If the system or operating system fails unexpectedly, when Derby
next starts up it can use the log to perform recovery, recovering the "lost" transactions
from the log and rolling back uncommitted transactions. Recovery ensures that all
committed transactions at the time the system failed are applied to the database, and all
transactions that were active are rolled back. Thus the databases are left in a consistent,
valid state.

In normal operation, Derby keeps the log small through periodic checkpoints.
Checkpointing marks the portions of the log that are no longer useful, writes changed
pages to disk, then truncates the log.

Derby checkpoints the log file as it fills. It also checkpoints the log when a shutdown
command is issued. Shutting down the JVM in which Derby is running without issuing the
proper shutdown command is equivalent to a system failure from Derby's point of view.

Booting a database means that Derby checks to see if recovery needs to be run on a
database. Recovery can be costly, so using the proper shutdown command improves
connection or startup performance.

24

Java DB Developer's Guide
Log on separate device

You can put a database's log on a separate device when you create it.

For more information, see the Java DB Server and Administration Guide.

Database pages

Derby tables and indexes, known as conglomerates, consist of two or more pages.

A page is a unit of storage whose size is configurable on a system-wide, database-wide,
or conglomerate-specific basis. By default, a conglomerate grows one page at a time
until eight pages of user data (or nine pages of total disk use, which includes one page
of internal information) have been allocated. (You can configure this behavior; see
"derby.storage.initialPages" in the Java DB Reference Manual.) After that, it grows eight
pages at a time.

The size of a row or column is not limited by the page size. Rows or columns that are
longer than the table's page size are automatically wrapped to overflow pages.

Database-wide properties

You can set many Derby properties as database-level properties. When set in this way,
they are stored in the database and "travel" with the database unless overridden by a
system property.

For more information, see Scope of properties and Setting database-wide properties.
Derby database limitations

Derby databases have a few limitations.

Indexes

Indexes are not supported for columns defined on CLOB, BLOB, LONG VARCHAR, and
XML data types.

If the length of the key columns in an index is larger than half the page size of the index,

creating an index on those key columns for the table fails. For existing indexes, an insert
of new rows for which the key columns are larger than half of the index page size causes
the insert to fail.

Avoid creating indexes on long columns. Create indexes on small columns that provide

a quick look-up to larger, unwieldy data in the row. You might not see performance
improvements if you index long columns. For information about indexes, see Tuning Java
DB.

System shutdowns
The system shuts down if the database log cannot allocate more disk space.

A "LogFull" error or some sort of | OExcept i on occurs in the der by. | og file when
the system runs out of space. If the system has no more disk space to append to the
der by. | og file, you might not see the error messages.

Connecting to databases

You connect to a database using a form of the Derby connection URL as an argument to
the DriverManager.getConnection call.

You specify a path to the database within this connection URL.

25

Java DB Developer's Guide
Connecting to databases within the system

The standard way to access databases in the file system is by specifying the path
to the database, either absolute or relative to the system directory. In a client/server
environment, this path is always on the server machine.

By default, you can connect to databases within the current system directory (see
Defining the system directory). To connect to databases within the current system, just
specify the database name on the connection URL. For example, if your system directory
contains a database called myDB, you can connect to that database with the following
connection URL:

j dbc: der by: myDB
The full call within a Java program would be:

Connecti on conn =Dri ver Manager. get Connecti on("j dbc: der by: nyDB") ;
Connecting to databases outside the system directory

You can also connect to databases in other directories (including subdirectories of the
system directory) by specifying a relative or absolute path name to identify the database.
The way you specify an absolute path is defined by the host operating system.

Using the connection URL as described here, you can connect to databases in more than
one directory at a time.

Two examples:

jdbc: derby:../otherDirectory/ nyDB
jdbc: derby: c:/otherDirectory/ nyDB

Note: Once connected, such a database becomes a part of the Derby system, even
though it is not in the system directory. This means that it takes on the system-wide
properties of the system and no other instance of Derby should access that database. It
is recommended that you connect to databases only in the system directory.
Conventions for specifying the database path

When accessing databases from the file system (instead of from memory, the classpath,
or a jar file), any path that is not absolute is interpreted as relative to the system directory.

The path must do one of the following:

« refer to a previously created Derby database
« specify the create=true attribute

The path separator in the connection URL is / (forward slash), as in the standard file://
URL protocol.

You can specify only databases that are local to the machine on which the JVM

is running. NFS file systems on UNIX and remote shared files on Windows
(//machine/directory) are not guaranteed to work. Using derby.system.home and forward
slashes is recommended practice for platform independent applications.

If two different database name values, relative or absolute, refer to the same actual
directory, they are considered equivalent. This means that connections to a database
through its absolute path and its relative path are connections to the same database.
Within Derby, the name of the database is defined by the canonical path of its directory
from java.io.File.getCanonicalPath.

Derby automatically creates any intermediate directory that does not already exist when
creating a new database. If it cannot create the intermediate directory, the database
creation fails.

26

Java DB Developer's Guide

If the path to the database is ambiguous, i.e., potentially the same as that to a database
that is available on the classpath (see "Special Database Access"), use the directory:
subsubprotocol to specify the one in the file system. For example:

j dbc: derby: directory: nyDB
Special database access

You can also access databases from the classpath or from a jar file (in the classpath or
not) as read-only databases.

You can create in-memory databases for use in testing and development and for
processing temporary or reproducible data. See Using in-memory databases for details.

Accessing databases from the classpath:

In most cases, you access databases from the file system. However, it is also possible to
access databases from the classpath. The databases can be archived into a jar or zip file
or left as is.

All such databases are read-only.

To access an unarchived database from the classpath, specify the name of the database
relative to the directory in the classpath. You can use the classpath subprotocol if such a
database is ambiguous within the directory system.

For example, for a database called sample in C:\derby\demo\databases, you can put the
C:\derby\demo\databases directory in the classpath and access sample like this:

j dbc: der by: / sanpl e

The forward slash is required before sample to indicate that it is relative to
C:\derby\demo\databases directory.

If only C:\derby were in the class path, you could access sample (read-only) like this:

j dbc: der by: / deno/ dat abases/ sanpl e
Accessing databases from a jar or zip file:

It is possible to access databases from a jar file. The jar file does not have to be on the
classpath.

Note: All such databases are read-only.

For example, suppose you have archived the database jarDB1 into a file called jarl.jar.
This archive is in the classpath before you start up Derby. You can access jarDB1 with
the following connection URL

j dbc: derby: /j ar DB1
To access a database in a jar file that is not on the classpath, use the jar subprotocol.

For example, suppose you have archived the database jarDB2 into a file called jar2.jar.
This archive is not in the classpath. You can access jarDB2 by specifying the path to the
jar file along with the jar subsubprotocol, like this:

jdbc:derby:jar:(c:/derby/lib/jar2.jar)jarDB2

For complete instructions and examples of accessing databases in jar files, see
Accessing a read-only database in a zip/jar file.

27

Java DB Developer's Guide
Database connection examples

The examples in this section use the syntax of the connection URL for use in an
embedded environment.

This information also applies to the client connection URL in a client/server environment.
For reference information about client connection URLSs, see "java.sgl.Connection
interface" in the Java DB Reference Manual.

jdbc:derby:dbl

Open a connection to the database dbl. dbl is a directory located in the system
directory.
jdbc:derby:london/sales

Open a connection to the database london/sales. london is a subdirectory of the
system directory, and sales is a subdirectory of the directory london.
jdbc:derby:/reference/phrases/french

Open a connection to the database /reference/phrases/french.

On a UNIX system, this would be the path of the directory. On a Windows system,
the path would be C:\reference\phrases\french if the current drive were C. If a jar file
storing databases were in the user's classpath, this could also be a path within the
jar file.

jdbc:derby:a:/demo/sample

Open a connection to the database stored in the directory \demo\sample on drive A
(usually the floppy drive) on a Windows system.
jdbc:derby:c:/databases/salesdb jdbc:derby:salesdb

These two connection URLs connect to the same database, salesdb, on a Windows
platform if the system directory of the Derby system is C:\databases.
jdbc:derby:support/bugsdb;create=true

Create the database support/bugsdb in the system directory, automatically creating
the intermediate directory support if it does not exist.
jdbc:derby:sample;shutdown=true

Shut down the sample database. (Authentication is not enabled, so no user
credentials are required.)
jdbc:derby:/myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database.
jdbc:derby:memory:myDB

Access the in-memory database named myDB. The syntax for a client connection
URL is different; see Using in-memory databases for details.
jdbc:derby:classpath:/myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database. The reason for using the subsubprotocol is that it might have the same
path as a database in the directory structure.
jdbc:derby:jar:(C:/dbs.jar)products/boiledfood

Access the read-only database boiledfood in the products directory from the jar file
C:/dbs.jar.
jdbc:derby:directory:myDB

Access myDB, which is in the system directory. The reason for using the
di rect ory: subsubprotocol is that it might happen to have the same path as a
database in the classpath.

28

Java DB Developer's Guide
Working with the database connection URL attributes
You specify attributes on the Derby connection URL.

The examples in this section use the syntax of the connection URL for use in an
embedded environment. You can also specify these same attributes and values on the
client connection URL if you are using Derby as a database server. For more information,
see the Java DB Server and Administration Guide.

You can also set these attributes by passing a Properties object along with a connection
URL to Dri ver Manager . get Connect i on when obtaining a connection; see
Specifying attributes in a properties object.

All attributes are optional.

For complete information about the attributes, see "Setting attributes for the database
connection URL" in the Java DB Reference Manual.

For detailed information about the connection URL syntax, see Derby JDBC database
connection URL.

Using the databaseName attribute

You can use a databaseName attribute on a database connection URL to specify the
name of the database to which you want to connect.

j dbc: der by: ; dat abaseNane=dat abaseNane

You can access read-only databases in jar or zip files by specifying j ar as the
subsubprotocol, like this:

j dbc: derby: jar: (pat hToAr chi ve) dat abasePat hW t hi nAr chi ve

Or, if the jar or zip file has been included in the classpath, like this:

j dbc: der by: / dat abasePat hW t hi nAr chi ve
Shutting down Derby or an individual database

Applications in an embedded environment shut down the Derby system by specifying
the shutdown=true attribute in the connection URL. To shut down the system, you do not
specify a database name, and you do not ordinarily specify any other attribute.

j dbc: der by: ; shut down=t r ue

A successful shutdown always results in an SQLException to indicate that Derby has
shut down and that there is no other exception.

If you have enabled Derby BUILTIN user authentication at the system level (for
example, by setting the property derby.connection.requireAuthentication=true in the
derby.properties file), you will need to specify credentials (that is, username and
password) in order to shut down a Derby system, and the supplied username and
password must also be defined at the system level.

> Important: Derby's BUILTIN authentication mechanism is suitable only for
development and testing purposes. It is strongly recommended that production systems
rely on LDAP or a user-defined class for authentication. It is also strongly recommended
that production systems protect network connections with SSL/TLS.

You can also shut down an individual database if you specify the databaseName.
You can shut down the database of the current connection if you specify the default
connection instead of a database name(within an SQL statement).

/1 shutting down a database from your application
Dri ver Manager . get Connecti on(

29

Java DB Developer's Guide
"j dbc: der by: sanpl e; shut down=t rue");

If user authentication and SQL authorization are both enabled, only the database owner
can shut down the database.

/1 shutting down an aut henticated dat abase as dat abase owner
Dri ver Manager . get Connecti on(

"j dbc: der by: secur esanpl e; user =j oeowner ; passwor d=secr et ; shut down=t rue");

Attention: Itis good practice to close existing connections before shutting down the
system or database. Connections created before the shutdown will not be usable after
shutdown is performed. Attempting to access connections after shutdown may cause
errors including instances of Nul | Poi nt er Except i on or protocol violations.

Creating and accessing a database

You create a database by supplying a new database name in the connection URL and
specifying create=true.

Derby creates a new database inside a new subdirectory in the system directory. This
system directory has the same name as the new database. If you specify a partial path, it
is relative to the system directory. You can also specify an absolute path.

j dbc: der by: dat abaseNan®e; cr eat e=tr ue
For more details about create=true, see "create=true" in the Java DB Reference Manual.
Providing a user name and password

When user authentication is enabled, an application must provide a user
name and password. One way to do this is to use the user=userName and
password=userPassword connection URL attributes.

j dbc: der by: sanpl e; user=jil |l ; passwor d=t oFet chAPai |
Creating a database with territory-based collation

By default, Derby uses Unicode codepoint collation. However, you can specify
territory-based collation when you create the database.

You canusethecol l ati onandterritory attributes to specify territory-based
collation. This type of collation applies only to user-defined tables. The system tables use
the Unicode codepoint collation.

Restriction: The col | ati on attribute can be specified only when you create a
database. You cannot specify this attribute on an existing database or when you upgrade
a database.

To create a database with territory-based collation:

1. Specify the language and country codes for the t erri t or y attribute, and the
TERRITORY_BASED value for the col | at i on attribute when you create the
database.

For example:

j dbc: der by: Mexi canDB; create=true;territory=es_MX; col | ati on=TERRI TORY_BASED

Creating a case-insensitive database

The col I ati on value TERRITORY_BASED uses the default collation strength for the
locale, usually TERTIARY, which will consider character case significant in searches
and comparisons. To make the database use case-insensitive searches, specify an

30

Java DB Developer's Guide
explicit strength with the col | at i on attribute. The strength name is appended to
TERRITORY_BASED with a colon to separate them.

For example:

j dbc: der by: Swedi shDB; creat e=true; territory=sv_SE; col | ati on=TERRI TORY_BASED: PRI MARY

With strength PRIMARY, the characters 'A" and 'a’ will be considered equal, as well
as 'a’' (‘a' with a grave accent). (This behavior is commonly the default with many
other databases.) To make searches respect differences in accent, use strength
SECONDARY.

The exact interpretation of the strength part of the attribute depends upon the locale.

For more information, see Character-based collation in Derby and the documentation of
the col | ati on attribute in the Java DB Reference Manual.

Encrypting a database when you create it

If your environment is configured properly, you can create your database as an encrypted
database (one in which the database is encrypted on disk). To do this, you use the
dataEncryption=true attribute to turn on encryption and the boot Passwor d=key
attribute or the encryptionKey attribute to specify a key for the encryption.

You can also specify an encryption provider and encryption algorithm other
than the defaults with the encrypti onPr ovi der =pr ovi der Nane and
encryptionAl gorithmeal gorithm attributes.

j dbc: der by: encrypt edDB; cr eat e=t r ue; dat aEncrypti on=tr ue;
boot Passwor d=DBpasswor d

Creating an encrypted database with an external key
You can create a database and encrypt the database with an external key.
To create an encrypted database using an external key:

1. Use the encryptionKey attribute in the connection URL.

For example to create the database and encrypt the database encDB using an
external key, specify this URL:

j dbc: der by: encDB; cr eat e=t r ue; dat aEncrypti on=t rue; encrypti onAl gorit hm=DES/
CBC/ NoPaddi ng; encrypti onKey=6162636465666768

Attention: If you lose the encryption key you will not be able to boot the database.
Booting an encrypted database

You must specify several attributes in the URL when you boot an encrypted database.
You must specify these attributes the first time that you connect to the database within a
JVM session, or after you shut the database down within the same JVM session.

To boot an existing encrypted database:

1. The attribute that you specify depends on how the database was originally
encrypted:
« If the database was encrypted using the bootPassword mechanism, specify
the bootPassword attribute. For example:

j dbc: der by: wonbat ; boot Passwor d=cl 0760uds2caPe
« If the database was encrypted using an external key, specify the
encryptionKey attribute. For example:

jdbc: derby: flintstone; encrypti onAl gorithm=AES/ CBC/ NoPaddi ng;
encrypt i onKey=c566bab9ee8b62a5ddb4d9229224c678

31

Java DB Developer's Guide

If the algorithm that was used when the database was created is not the

default algorithm, you must also specify the encryptionAlgorithm attribute. The

default encryption algorithm used by Derby is DES/CBC/NoPadding.
Specifying attributes in a properties object

Instead of specifying attributes on the connection URL, you can specify attributes
as properties in a Pr opert i es object that you pass as a second argument to the
Dri ver Manager . get Connect i on method.

For example, to set the user name and password:

d ass. f or Name(" or g. apache. der by. j dbc. EnbeddedDri ver");

Properties p = new Properties();

p. set Property("user", "sa");
p. set Property("password", "nmanager");
p. set Property("create", "true");

Connection conn = DriverManager. get Connecti on(
"j dbc: der by: nynewDB", p);

If you are running on JDK 6 or higher, you do not normally need to invoke

C ass. for Narre() . In that environment, the EnbeddedDr i ver loads automatically.
The only exception to this rule is when you need to shut down Derby in the middle of your
application and then restart it. To restart Derby, create a new instance of the driver as
follows:

Cl ass. f or Name(" or g. apache. der by. j dbc. EnbeddedDri ver") . newl nst ance() ;

Using in-memory databases

For testing and developing applications, or for processing transient or reproducible data,
you can use Derby's in-memory database facility.

An in-memory database resides completely in main memory, not in the file system. It is
useful for testing and developing applications, when you may want to create and discard
databases that will never be used again. It is also useful when you need to process only
temporary or reproducible data.

If you have the required memory available, you may also benefit from faster processing
(no disk 1/0) and from the simplicity of not having to explicitly delete databases you have
finished with.

Creating an in-memory database

To create an in-memory database, specify menory as the JDBC subsubprotocol. For
example, to create an in-memory database named ny DB using the embedded driver, use
the following connection URL:

j dbc: der by: menory: nyDB; cr eat e=t r ue

For the network client driver, use the following connection URL. Because the client driver
does not understand the nenor y subsubprotocol, you must include it in the database
name:

jdbc: derby: // nyhost: 1527/ menory: nyDB; cr eat e=t r ue
Be careful to specify a colon (:) after nenory.

Using in-memory databases

32

Java DB Developer's Guide
When you use an in-memory database, you need to make sure to configure the heap
and the Derby page cache size. See "Configure Derby to use an in-memory database" in
Tuning Java DB for details.

For examples of how to use an in-memory database, see some of the i j command
examples in the Java DB Tools and Utilities Guide (execut e and async, for example).

Removing an in-memory database

To remove an in-memory database, use the connection URL attribute drop as follows:
j dbc: der by: menory: myDB; dr op=t r ue
jdbc: derby:// nyhost: 1527/ menory: myDB; dr op=t r ue

You can shut down an in-memory database using the shutdown=true attribute before
you drop the database, but this is optional. Dropping the database also performs the
shutdown.

When you drop the database, Derby issues what appears to be an error but is
actually an indication of success. You need to catch error 08006, as described in "The
WwdEmbedded program" in Getting Started with Java DB.

If user authentication and SQL authorization are both enabled, only the database owner
can drop the database.

An in-memory database is automatically removed if any of the following happens:

« The Java Virtual Machine (JVM) is shut down normally (for example, if you exit the
i j tool)

e The JVM crashes

* The machine you are running on crashes or shuts down

Persisting an in-memory database

If you create an in-memory database and then decided that you want

to keep it after all, you can use one of the backup system procedures
(SYSCS_UTIL.SYSCS_BACKUP_DATABASE, for example) to persist it. You can
then boot it as an in-memory database at a later time, or use it as a normal file
system database. See "Backing up and restoring databases" in Java DB Server and
Administration Guide for information on using the backup procedures.

Working with Derby properties

This section describes how to use Derby properties. For details on specific properties,
see the "Derby properties" section of the Java DB Reference Manual.

Properties overview

Derby lets you configure behavior or attributes of a system, a specific database, or a
specific conglomerate (a table or index) through the use of properties.

Examples of behavior or attributes that you can configure are:
* Whether to authorize users
» Page size of tables and indexes
* Where and whether to create an error log
« Which databases in the system to boot

Scope of properties
You use properties to configure a Derby system, database, or conglomerate.
» system-wide

33

Java DB Developer's Guide

Most properties can be set on a system-wide basis; that is, you set a property for
the entire system and all its databases and conglomerates, if this is applicable.
Some properties, such as error handling and automatic booting, can be configured
only in this way, since they apply to the entire system. (For information about the
Derby system, see Derby system.)

 database-wide

Some properties can also be set on a database-wide basis. That is, the property is
true for the selected database only and not for the other databases in the system
unless it is set individually within each of them.

For properties that affect conglomerates, changing the value of such properties affects
only conglomerates that are created after the change. Conglomerates created earlier are
unaffected.

Note: Database-wide properties are stored in the database and are simpler for
deployment, in the sense that they follow the database. Database-wide properties are
also recommended for security reasons when you use Derby built-in user authentication
(see Derby and Security). System-wide properties can be more practical during the
development process.

> Important: Derby's built-in authentication mechanism is suitable only for development
and testing purposes. It is strongly recommended that production systems rely on

LDAP or a user-defined class for authentication. It is also strongly recommended that
production systems protect network connections with SSL/TLS.

Persistence of properties

A database-wide property always has persistence. That is, its value is stored in the
database. Typically, it is in effect until you explicitly change the property or until you set a
system-wide property with precedence over database-wide properties (see Precedence
of properties).

To disable or turn off a database-wide property setting, set its value to null. This has
the effect of removing the property from the list of database properties and restoring the
system property setting, if there is one (and if derby.database.propertiesOnly has not
been set; see Protection of database-wide properties).

A system-wide property might have persistence, depending on how you set it. If you set it
programmatically, it persists only for the duration of the JVM of the application that set it.
If you set it in the derby.properties file, a property persists until:

« That value is changed and the system is rebooted
« The file is removed from the system and the system is rebooted
« The database is booted outside of that system
Precedence of properties
The search order for properties is:
1. System-wide properties set programmatically (as a command-line option to the JVM
when starting the application or within application code)
2. Database-wide properties
3. System-wide properties set in the derby.properties file

This means, for example, that system-wide properties set programmatically override
database-wide properties and system-wide properties set in the derby.properties file, and
that database-wide properties override system-wide properties set in the derby.properties
file.

34

Java DB Developer's Guide
Protection of database-wide properties:
There is one important exception to the search order for properties described above:

When you set the derby.database.propertiesOnly property to true, database-wide
properties cannot be overridden by system-wide properties.

This property ensures that a database's environment cannot be modified by the
environment in which it is booted. Any application running in an embedded environment
can set this property to t r ue for security reasons.

See the "Derby properties"” section of the Java DB Reference Manual for details on the
derby.database.propertiesOnly property.

Dynamic versus static properties

Most properties are dynamic; that means you can set them while Derby is running, and
their values change without requiring a reboot of Derby. In some cases, this change
takes place immediately; in some cases, it takes place at the next connection.

Some properties are static, which means changes to their values will not take effect while
Derby is running. You must restart or set them before (or while) starting Derby.

For more information, see Making dynamic or static changes to properties.

Setting Derby properties

This section covers the different ways of setting properties.
Setting system-wide properties

You can set system-wide properties programmatically (as a command-line option to
the JVM when starting the application or within application code) or in the text file
derby.properties.

Changing the system-wide properties programmatically:

You can set properties programmatically -- either in application code before booting
the Derby driver or as a command-line option to the Java Virtual Machine (JVM) when
booting the application that starts up Derby. When you set properties programmatically,
these properties persist only for the duration of the application. Properties set
programmatically are not written to the derby.properties file or made persistent in any
other way by Derby.

Note: Setting properties programmatically works only for the application that starts up
Derby; for example, for an application in an embedded environment or for the application
server that starts up a server product. It does not work for client applications connecting
to a server that is running.

You can set properties programmatically in the following ways:

¢ As a parameter to the JVM command line
¢ Using a Properties object within an application or statement

As a parameter to the JVM command line

You can set system-wide properties as parameters to the JVM command line when you
start up the application or framework in which Derby is embedded. To do so, you typically
use the -D option. For example:

java - Dder by. syst em hone=C: \ hone\ Der by\
- Dder by. st or age. pageSi ze=8192 JDBCTest

Using a Properties object within an application or statement

35

Java DB Developer's Guide

In embedded mode, your application runs in the same JVM as Derby, so you can also
set system properties within an application using a Properties object before loading the
Derby JDBC driver. The following example sets derby.system.home on Windows.

Properties p = System get Properties();
p. set Property("derby. system hone", "C:.\databases\sanple");

Note: If you pass in a Properties object as an argument to the
DriverManager.getConnection call when connecting to a database, those properties are
used as database connection URL attributes, not as properties of the type discussed in
this section. For more information, see Connecting to databases and Working with the
database connection URL attributes as well as the Java DB Reference Manual.
Changing the system-wide properties by using the derby.properties file:

You can set persistent system-wide properties in a text file called derby.properties, which
must be placed in the directory specified by the derby.system.home property. There is
one derby.properties file per system, not one per database. The file must be created in
the system directory. In a client/server environment, that directory is on the server. (For
more information about a Derby system and the system directory, see Derby system.)

Derby does not:
* Provide this file
» Automatically create this file for you
« Automatically write any properties or values to this file

Instead, you must create, write, and edit this file yourself.
The file should be in the format created by the java.util.Properties.save method.

The following is the text of a sample properties file:

der by. i nf ol og. append=t r ue
der by. st or age. pageSi ze=8192
der by. st or age. pageReser vedSpace=60

Properties set this way are persistent for the system until changed, until the file is
removed from the system, or until the system is booted in some other directory (in which
case Derby would be looking for derby.properties in that new directory). If a database is
removed from a system, system-wide properties do not "travel" with the database unless
explicitly set again.

Verifying system properties:
You can find out the value of a system property if you set it programmatically. You cannot
find out the value of a system property if you set it in the derby.properties file.

For example, if you set the value of the der by. st or age. pageSi ze system-wide
property in your program or on the command line, the following code will retrieve its value
from the System Properties object:

Properties sprops = System get Properties();
System out . printl n("derby. storage. pageSi ze val ue:
+ sprops. get Property("derby. storage. pageSi ze"));

You can also use Java Management Extensions (JMX) technology to obtain system
information, including some settings that correspond to system properties. For
details, visit the wiki page http://wiki.apache.org/db-derby/DerbyJMX and refer

to the APl documentation for the packages or g. apache. der by. nbeans and

or g. apache. der by. nbeans. dr da. For information on JMX technology, see
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

36

http://wiki.apache.org/db-derby/DerbyJMX
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

Java DB Developer's Guide
Setting database-wide properties

Database-wide properties, which affect a single database, are stored within the database
itself. This allows different databases within a single Derby system to have different
properties and ensures that the properties are correctly retained when a database is
moved away from its original system or copied.

You should use database-wide properties wherever possible for ease of deployment and
for security.

You set and verify database-wide properties using system procedures within SQL
statements.

To set a property, you connect to the database, create a statement, and then use the
SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY procedure, passing the name of the
property and the value.

To check the current value of a property, you connect to the database, create a
statement, and then use the SYSCS_UTI L. SYSCS_GET_DATABASE PROPERTY function,
passing in the name of the property.

If you specify an invalid value, Derby uses the default value for the property. (If you call
the SYSCS_UTI L. SYSCS_GET_DATABASE PROPERTY function, however, it displays the
invalid value.)

See the Java DB Reference Manual for more information on how to use these system
functions and procedures.

Setting properties in a client/server environment

In a client/server environment, you must set the system properties for the server's
system. That means that when you are using the derby.properties file, the file exists in
the server's derby.system.home directory. Client applications can set database-wide
properties because they are set via SQL statements.

Table 2. Summary of ways to set properties

Type of property How you set it

System-wide « In derby.properties

¢ As a command-line option when starting the JVM
that holds the server or, if the server is started
from within a program, programmatically by the
program that hosts the server

Database-wide Using system procedures and functions in an SQL
statement

Making dynamic or static changes to properties
Note: Properties set in the derby.properties file and on the command line of the
application that boots Derby are always static, because Derby reads this file and those
parameters only at startup.
Only properties set in the following ways have the potential to be dynamic:

« As database-wide properties

« As system-wide properties via a Properties object in the application in which the

Derby engine is embedded

See the "Derby properties"” section of the Java DB Reference Manual for information
about specific properties.

Properties case study

37

Java DB Developer's Guide

Derby allows you a lot of freedom in configuring your system. This freedom can be
confusing if you do not understand how properties work. You also have the option of
not setting any properties and instead using the Derby defaults, which are tuned for a
single-user embedded system.

Imagine the following scenario of an embedded environment:

Your system has a derby.properties file, a text file in the system directory, which you
have created and named system_directory. Your databases have also been created in
this directory. The properties file sets the following property:

der by. st or age. pageSi ze=8192

You start up your application, being sure to set the derby.system.home property
appropriately:

java - Dder by. system hone=c: \system directory M/App

The command lines in this example assume that you are using a Windows system.

You then create a new table:

CREATE TABLE tablel (a INT, b VARCHAR(10))

Derby takes the page size of 8192 from the system-wide properties set in the
derby.properties file, since the property has not been set any other way.

You shut down and then restart your application, setting the value of
derby.storage.pageSize to 4096 programmatically, as a parameter to the JVM command
line:

java - Dder by. system home=c: \system directory
- Dder by. st or age. pageSi ze=4096 MyApp

CREATE TABLE anothertable (a |INT, b VARCHAR(10))
The page size for the anothertable table will be 4096 bytes.

You establish a connection to the database and set the value of the page size for all new
tables to 32768 as a database-wide property:

Cal | abl eSt at enent cs =
conn. prepareCal | ("CALL SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY(?, ?)");
cs.setString(l, "derby. storage. pageSi ze");
cs.setString(2, "32768");
cs. execute();
cs.close();

You then create a new table that automatically inherits the page size set by the property:

CREATE TABLE table2 (a INT, b VARCHAR(10))
The page size for the table2 table is 32768 bytes.

You shut down the application, then restart, this time forgetting to set the system-wide
property programmatically (as a command-line option to the JVM):

java - Dder by. system honme=c: \system directory M/App

You then create another table:

CREATE TABLE table4 (a INT, b VARCHAR(10))

Derby uses the persistent database-wide property of 32768 for this table, since the
database-wide property set in the previous session is persistent and overrides the
system-wide property set in the derby.properties file.

38

Java DB Developer's Guide

What you have is a situation in which three different tables each get a different page size,
even though the derby.properties file remained constant.

If you remove the derby.properties file from the system or remove the database from its
current location (forgetting to move the file with it), you could get yet another value for a
new table.

To avoid this situation, be consistent in the way you set properties.

39

Java DB Developer's Guide

Deploying Derby applications

Typically, once you have developed a Derby application and database, you package up
the application, the Derby libraries, and the database in some means for distribution to
your users. This process is called deployment.

This section discusses issues for deploying Derby applications and databases.

Deployment issues

This section discusses deployment options and details.

Embedded deployment application overview
In an embedded environment, Derby runs in the same JVM as the application.

The application can be a single-user application or a multi-user application server. In the
latter case, Derby runs embedded in the user-provided server framework, and any client
applications use user-provided connectivity or allow the application server to handle all
database interaction.

Figure 3. Derby embedded in a single-user Java application

Java Virtual Machine

p———) e mmm—— []

Application Derby Deroy database

Figure 4. Derby embedded in a multi-user Java application server

¢ 0
Loppte = and == |

ﬁjj] Application Derby Derby «
-l

Application Server

When a Derby database is embedded in a Java application, the database is dedicated
to that single application. If you deploy more than one copy of the application, each
application has its own copy of the database and Derby software. A Derby server
framework can work in multi-threaded, multi-connection mode and can even connect
to more than one database at a time. A server framework, such as the Derby Network

40

Java DB Developer's Guide

Server, can be used to manage multiple connections and handle network capabilities.
Some server framework solutions, such as WebSphere Application Server, provide
additional features such as web services and connection pooling. However, only one
server framework at a time can operate against a Derby database.

The Derby application accesses an embedded Derby database through the JDBC API.
To connect, an application makes a call to the local Derby JDBC driver. Accessing the
JDBC driver automatically starts the embedded Derby software. The calling application is
responsible for shutting down the embedded Derby database software.

Deploying Derby in an embedded environment

You can embed Derby in any Java application (single- or multi-user) by deploying the
following packages.

« The Derby library (derby.jar).

» The libraries for the application. You have the option of storing these libraries in the
database.

» The database or databases used by the application, in the context of their system
directory.

In the following figure, the top graphic shows the deployment of an application, where
the application, the Derby software for embedded use, the derby.properties file and

the database are four objects. The bottom graphic shows a simplified deployment by
reducing the number of objects to two by storing the application and the properties file in
the database.

Figure 5. Two approaches to deploying a Derby application in an embedded
environment.

Y Your System Direct
derby.jar ! o
b, ;
Your application.jar derby.proparties Your DB

D i Your System Directory
derbyjar

Application and
properties stored
in databasa

Your DB

Embedded systems and properties

Database-wide properties are stored in the database and are simpler for deployment,
while system-wide parameters might be easier for development.

41

Java DB Developer's Guide
« If you are setting any system-wide properties, see if they can be set as

database-wide properties instead.

« Are any properties being set in the derby.properties file? Some properties can only

be set on a system-wide basis. If so, deploy the entire system directory along with
the properties file. Deploy only those databases that you wish to include. Setting
properties programmatically can simplify this step- you will not have to worry about
deploying the system directory/properties file.

Extra steps are required for deploying an application and an embedded database on
read-only media.

Creating Derby databases for read-only use

You can create Derby databases for use on read-only media such as CD-ROMs.

Derby databases in zip or jar files are also read-only databases. Typically, read-only
databases are deployed with an application in an embedded environment.

Creating and preparing the database for read-only use

To create databases for use on read-only media, perform these steps.

1.
2.

Create and populate the database on read-write media.

Commit all transactions and shut down Derby in the prescribed manner. If you do
not shut down Derby in the prescribed manner, Derby will need to perform recovery
the next time the system boots. Derby cannot perform recovery on read-only media.
Delete the tmp directory if one was created within your database directory. If you
include this directory, Derby will attempt to delete it and will return errors when
attempting to boot a database on read-only media.

For the read-only database, set the property derby.storage.tempDirectory to a
writable location.

Derby needs to write to temporary files for large sorts required by such SQL
statements as ORDER BY, UNION, DISTINCT, and GROUP BY. For more
information about this property, see the Java DB Reference Manual.

der by. st orage. t enpDi rect ory=c: / t enp/ myt enp
Configure the database to send error messages to a writable file or to an output
stream.

For information on the derby.stream.error.file property, see the Java DB Reference
Manual.

derby.streamerror.file=c:/tenp/ nyl og. LOG

Be sure to set these properties so that they are deployed with the database.

Deploying the database on the read-only media

To deploy the database on read-only media, perform the following steps.

1.

2.

Move the database directory to the read-only media, including the necessary
subdirectory directories (log and seg0) and the file ser vi ce. properti es.

Use the database as usual, except that you will not be able to insert or update any
data in the database or create or drop dictionary objects.

Transferring read-only databases to archive (jar or zip) files

42

Java DB Developer's Guide

Once a database has been created in Derby, it can be stored in a jar or zip file and
continue to be accessed by Derby in read-only mode.

This allows a read-only database to be distributed as a single file instead of as multiple
files within a directory and to be compressed. In fact, a jar or zip file can contain any
number of Derby databases and can also contain other information not related to Derby,
such as application data or code.

You cannot store the derby.properties file in a jar or zip file.

To create a jar or zip file containing one or more Derby databases:

1. Create a database for use on read-only media.

2. From the directory that contains the database folder, archive the database directory
and its contents. For example, for the database sales that lives in the system
directory C:\london, issue the command from london. Do not issue the command
from inside the database directory itself.

For example, archive the database folder and its contents using the JAR program from
the JDK. You can use any zip or jar tool to generate the archive.

This command archives the database directory sales and its contents into a compressed
jar file called dbs.jar.

cd C\london
jar cM C\dbs.jar sales

You can add multiple databases with jar. For example, this command puts the sales
databases and the boiledfood database (in the subdirectory products) into the archive.

cd C\london
jar cM C:\dbs.jar sal es products\boil edfood

The relative paths of the database in the jar need not match their original relative paths.
You can do this by allowing your archive tool to change the path, or by moving the
original databases before archiving them.

The archive can be compressed or uncompressed, or individual databases can be
uncompressed or compressed if your archive tool allows it. Compressed databases take
up a smaller amount of space on disk, depending on the data loaded, but are slower to
access.

Once the database is archived into the jar or zip file, it has no relationship to the original
database. The original database can continue to be modified if desired.

Accessing a read-only database in a zip/jar file

To access a database in a zip/jar, you specify the jar in the subsubprotocol.

jdbc: derby: jar: (pat hToAr chi ve) dat abasePat hW't hi nAr chi ve

The pathToArchive is the absolute path to the archive file. The
databasePathWithinArchive is the relative path to the database within the archive. For
example:

jdbc: derby:jar: (C:/dbs.jar)products/boil edf ood
jdbc: derby:jar: (C /dbs.jar)sal es

If you have trouble finding a database within an archive, check the contents of the archive
using your archive tool. The databasePathWithinArchive must match the one in the
archive. You might find that the path in the archive has a leading slash, and thus the URL
would be:

jdbc: derby:jar: (C:/dbs.jar)/products/boil edf ood

43

Java DB Developer's Guide

Databases in a jar or zip file are always opened read-only and there is currently no
support to allow updates of any type.

Accessing databases within a jar file using the classpath

Once an archive containing one or more Derby databases has been created it can be
placed in the classpath. This allows access to a database from within an application
without the application's knowing the path of the archive.

When jar or zip files are part of the classpath, you do not have to specify the jar
subsubprotocol to connect to them.

To access a database in a zip or jar file in the classpath:

1. Set the classpath to include the jar or zip file before starting up Derby:

CLASSPATH="C: \ dbs. j ar ; %CL ASSPATHY%
2. Connect to a database within the jar or zip file with one of the following connection
URLs:

St andard synt ax:
j dbc: der by: / dat abasePat hW t hi nAr chi ve

Syntax w th subsubprotocol:
j dbc: der by: cl asspat h: / dat abasePat hW t hi nAr chi ve

For example:

j dbc: der by: / product s/ boi | edf ood
j dbc: der by: cl asspat h: / product s/ boi | edf ood

Connecting to databases with ambiguous paths to databases in the file system

Use the basic connection URL syntax only if the database path specified does not also
point to a Derby database in the file system.

If this is the case, the connection attempt might fail or connect to the wrong database.
Use the form of the syntax with the subsubprotocol to distinguish between the databases.

For example:

j dbc: der by: cl asspat h: / product s/ boi | edf ood

Connecting to databases when the path is ambiguous because of databases in the
classpath

To connect to a database in the file system when the connection URL that you would
use would be ambiguous with a database in the classpath, use the following form of the
connection URL.

j dbc: der by: di rect ory: dat abasePat hl nFi | eSyst em
For example,

jdbc: derby: directory:/product s/ boil edf ood

Apart from the connection URL, databases in archives in the classpath behave just like
databases in archives accessed through the file system. However, databases in archives
are read-only.

Databases on read-only media and DatabaseMetaData

Databases on read-only media return true for DatabaseMetaData.isReadOnly.

44

Java DB Developer's Guide

Loading classes from a database
You can store application logic in a database and then load classes from the database.

Application logic, which can be used by SQL functions and procedures, includes
Java class files and other resources. Storing application code simplifies application
deployment, since it reduces the potential for problems with a user's classpath.

In an embedded environment, when application logic is stored in the database, Derby
can access classes loaded by the Derby class loader from stored jar files.

Class loading overview

You store application classes and resources by storing one or more jar files in the
database. Then your application can access classes loaded by Derby from the jar file and
does not need to be coded in a particular way. The only difference is the way in which
you invoke the application.

Here are the basic steps.
Create jar files for your application

Include any Java classes in a jar file that are intended for Derby class loading, except the
following classes:

» The standard Java packages (java.*, j avax. *)

Derby does not prevent you from storing such a jar file in the database, but these
classes are never loaded from the jar file.
* The classes that are supplied with your Java environment (for example, sun.*)

A running Derby system can load classes from any number of jar files from any number
of schemas and databases.

Create jar files intended for Derby database class loading the same way you create a jar
file for inclusion in a user's classpath. For example, consider an application targeted at
travel agencies:

jar cf travelagent.jar travel agent/*.cl ass.

Various IDEs have tools to generate a list of contents for a jar file based on your
application. If your application requires classes from other jar files, you have a choice:

 Extract the required third-party classes from their jar file and include only those
classes in your jar file.

Use this option when you need only a small subset of the classes in the third-party
jar file.
« Store the third-party jar file in the database.

Use this option when you need most or all of the classes in the third-party jar file,
since your application and third-party logic can be upgraded separately.
« Deploy the third-party jar file in the user's class path.

Use this option when the classes are already installed on a user's machine (for
example, Objectspace's JGL classes).
Add the jar file or files to the database

Use a set of procedures to install, replace, and remove jar files in a database.
When you install a jar file in a database, you give it a Derby jar name, which is an
SQ.92l dentifier.

45

Java DB Developer's Guide

Note: Once a jar file has been installed, you cannot modify any of the individual classes
or resources within the jar file. Instead, you must replace the entire jar file.
Jar file examples:

See the Java DB Tools and Utilities Guide for reference information about the utility and
complete syntax.

Installing jar files:

-- SQ. statenent
CALL sqlj.install_jar(
‘tours.jar', 'APP.Sanplel , 0)

-- SQ. statenent
-- using a quoted identifier for the
-- Derby jar nane
CALL sqlj.install _jar(
"tours.jar', 'APP."Sanple2"', 0)

Removing jar files:

-- SQ statenent
CALL sqglj.renove_j ar(
" APP. Sampl el', 0)

Replacing jar files:

-- SQ. statenent
CALL sqlj.replace_jar(
‘c:\nyjarfiles\newtours.jar', 'APP. Sanplel')

Enable database class loading with a property

Once you have added one or more jar files to a database, you must set the database jar
"classpath” by including the jar file or files in the derby.database.classpath property to
enable Derby to load classes from the jar files.

This property, which behaves like a class path, specifies the jar files to be searched for
classes and resources and the order in which they are searched. If Derby does not find a
needed class stored in the database, it can retrieve the class from the user's classpath.
(Derby first looks in the user's classpath before looking in the database.)

» Separate jar files with a colon ().

» Use two-part names for the jar files (schema name and jar name). Set the property
as a database-level property for the database. The first time you set the property,
you must reboot to load the classes.

Example:

CALL SYSCS _UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. cl asspat h' ,
" APP. Tour sLogi c: APP. ACCOUNTI NGLOG C')

See "derby.database.classpath" in the Java DB Reference Manual for more information
about the property.

Note: Derby's class loader looks first in the user's classpath for any needed classes, and
then in the database. To ensure class loading with the database class loader, remove
classes from the classpath.

Code your applications

In your applications, you load the classes either by indirectly referencing them in the code
or by directly using java.lang.Class.forName.

46

Java DB Developer's Guide
You load resources the way you normally would, using the standard

java.lang.Class.getResourceAsStream, a mechanism that allows an application to access
resources defined in the classpath without knowing where or how they are stored.

You do not need to make any changes to the way code interacts with Derby and its JDBC
driver. An application can safely attempt to boot Derby, even though it is already running,
without any errors. Applications connect to Derby in the usual manner.

Note: The method getResource is not supported.

Dynamic changes to jar files or to the database jar classpath

When you store jar files in a single database and make those jar files available to that
database, it is possible to make changes to jar files or to change the database jar
"classpath" dynamically (without having to reboot).

That is, when you install or replace a jar file within an SQL statement or change the
database jar "classpath” (the derby.database.classpath property) , Derby is able to load
the new classes right away without your having to reboot.

Requirements for dynamic changes

Certain conditions must be met for Derby to be able to load the new classes right away
without you having to reboot.

 You originally configured database-level class loading for the database correctly.
Turning on the database-level class loading property requires setting the
der by. dat abase. cl asspat h property with valid two-part names, then rebooting.
« If changes to the derby.database.classpath property are needed to reflect new jar
files, you change the property to a valid value.

If these requirements are not met, you will have to reboot to see the changes.
Notes on dynamic changes

When you are changing the derby.database.classpath property, all classes loaded from
database jar files are reloaded, even for a jar file that has not changed.

Remember that the user's classpath is searched first.

Any existing prepared statements will use the previously loaded classes unless they
require class loading, in which case they will fail with a ClassNotFound error.

Cached objects do not match objects created with newly loaded classes. For example,
an in-memory Customer object will not match a new Cust oner object if the Cust oner
class has been reloaded, and it will raise a Cl assCast Except i on.

a7

Java DB Developer's Guide

Derby server-side programming

This section discusses special programming for Derby.

In particular, this section discusses how to program database-side JDBC routines,
triggers, and table functions.

Programming database-side JDBC routines

Methods invoked within an application are called application-side methods. Methods
invoked within Derby are called database-side routines.

An application-side method can be exactly the same as a database-side routine. The only
difference is where you invoke them. You write the method only once. Where you invoke
the method--within the application or within an SQL statement--determines whether it is
an "application-side" or a "database-side" method.

Database-side JDBC routines and nested connections

Most database-side JDBC routines need to share the same transaction space as the
statements that called them.

The reasons for this are:

« to avoid blocking and deadlocks
« to ensure that any updates done from within the routine are atomic with the outer
transaction

In order to use the same transaction, the routine must use the same connection as the
parent SQL statement in which the routine was executed. Connections re-used in this
way are called nested connections.

Use the connection URL jdbc:default:connection to re-use the current Connection.

The database donnection URL jdbc:default:connection allows a Java method to get the
Connection of the SQL statement that called it. This is the standard (SQL standard, Part
13, SQL Routines and Java) mechanism to obtain the nested connection object. The
method would get a Connection as follows:

Connection conn = DriverManager. get Connecti on(
"j dbc: def aul t: connecti on");

URL attributes are not supported as part of this connection URL. Any URL attributes
specified in a Properties object, user name, or password that are passed to a
java.sql.DriverManager.getConnection() call will be ignored.

Loading a JDBC driver in a database-side routine is not required.
Requirements for database-side JDBC routines using nested connections

In order to preserve transactional atomicity, database-side JDBC routines that use nested
connections have the following limitations.

« Can issue a commit or rollback only within a procedure (not a function).

« Cannot change the auto-commit connection attribute.

« Cannot modify the data in a table used by the parent statement that called the
routine, using INSERT, UPDATE, or DELETE. For example, if a SELECT statement
using the T table calls the changeTabl es procedure, changeTabl es cannot
modify data in the T table.

48

Java DB Developer's Guide

« Cannot drop a table used by the statement that called the routine.

« Cannot be in a class whose static initializer executes DDL statements.
In addition, the Connection object that represents the nested connection always has its
auto-commit mode set to false.

Database-side JDBC routines using non-nested connections

A database-side JDBC routine can create a new connection instead of using a nested
connection. Statements executed in the routine will be part of a different transaction, and
S0 can issue commits and rollbacks.

Such a routine can connect to a database different from the one to which the parent SQL
statement that called it is connected. The routine does not use the same transaction or
Connection. It establishes a new Connection and transaction.

Note: If database-side JDBC routines do not use nested connections, this means that
they are operating outside of the normal DBMS transaction control, so it is not good
practice to use them indiscriminately.

Invoking a procedure using the CALL command

If a procedure uses only IN parameters, Derby can execute the procedure by using the
SQL CALL command. A stored procedure with IN, OUT, or INOUT parameters can be
invoked from a client application by using a CallableStatement.

You can invoke the procedure in an SQL statement such as the following:

CALL MYPROC()

Note: You can roll back a CALL statement only if no commits or rollbacks occur within
the specified procedure.

You can also use the CALL command to execute a routine that returns a value, but you
will not be able to access the value.

Database-side JDBC routines and SQLEXxceptions

It is possible to code database-side routines, like application-side methods, to catch
SQLExceptions. SQLExceptions that are caught within a routine are hidden from the
calling application code.

When such SQLExceptions are of transaction severity (such as deadlocks), this "hiding"
of the exception causes unexpected problems.

This is because errors of transaction severity roll back work already done by a
transaction (not just the piece executed by the called method) and silently begin a new
transaction. When the method execution is complete, Derby detects that the outer
statement was invalidated by a deadlock and rolls back any work done in the new
transaction as well. This is the expected behavior, because all the statements in between
explicit commits should be treated atomically; the new transaction implicitly begun by
Derby's rollback was not intended by the application designer.

However, this is not the same behavior that would happen if the method were invoked in
the application. In that situation, Derby would roll back the work done by the transaction
and silently begin a new transaction. Work in the new transaction would not be rolled
back when the method returned. However, coding the application in that way means
that the transaction did not end where you expected it to and is probably a programming
mistake. Coding in this manner is not recommended.

A method that catches a deadlock exception and then continues is probably making a
mistake. Errors of transaction severity should be caught not by nested code, but only by

49

Java DB Developer's Guide

the outermost application code. That is the only way to ensure that transactions begin
and end where you expect them to.

Not all database vendors handle nested deadlocks the same way. For this and other
reasons, it is not possible to write portable SQL-invoking methods. However, it is possible
to write SQL-invoking methods that behave identically regardless of whether you invoke
them in the application or as a routine in the database.

In order to ensure identical application- and database-side handling of nested errors,
code try-catch blocks to check for the severity of exceptions as follows:

try {
pr epar edSt at enent . execut e() ;

} catch (SQLException se) {
String SQLState = se.getSQ.State();
if (SQState.equal s("23505"))
{ correctDuplicateKey(); }
else if (SQState.equal s("22003")) {
correctArithmeticOverflow(); }
else { throw se; }

}

Of course, users also have the choice of not wrapping SQL statements in try-catch blocks
within methods. In that case, SQLExceptions are caught higher up in their applications,
which is the desired behavior.

User-defined SQLExceptions

When the execution of a database-side method raises an error, Derby wraps that
exception in an SQLException with an SQLSt at e of 38000.

You can avoid having Derby wrap the exception if:

» The exception is an SQLException
» The range of the SQLState is 38001-38999

(This conforms to the SQL99 standard.)

Programming trigger actions

Derby allows you to create triggers. When you create a trigger, you define an action or
set of actions that are executed when a database event occurs on a specified table. A
database event is a delete, insert, or update operation.

For example, if you define a trigger for a delete on a particular table, the trigger action is
executed whenever someone deletes a row or rows from the table.

The CREATE TRI GGER statement in the Java DB Reference Manual goes into detail of
the complete CREATE TRI GGER syntax. This section provides information on defining the
trigger action itself, which is only one aspect of creating triggers.

This section refers to the CREATE TRI GGER statement as the trigger actions.

Trigger action overview
A trigger action is a simple SQL statement.

For example:

CREATE TRIGGER . . .

DELETE FROM flightavailability

WHERE flight_id IN (SELECT flight_id FROMflightavailability
VWHERE YEAR(flight_date) < 2005);)

50

Java DB Developer's Guide

A trigger action does have some limitations, though; for example, it cannot contain
dynamic parameters or alter the table on which the trigger is defined. See "TriggerAction”
in the Java DB Reference Manual for details.

Performing referential actions

Derby provides referential actions. Examples in this section are included to illustrate how
to write triggers.

You can choose to use standard SQL referential integrity to obtain this functionality,
rather than writing triggers. See the Java DB Reference Manual for more information on
referential integrity.

Accessing before and after rows
Many trigger actions need to access the values of the rows being changed.
Such trigger actions need to know one or both of the following:

« the "before" values of the rows being changed (their values before the database
event that caused the trigger to fire)

« the "after" values of the rows being changed (the values to which the database
event is setting them)

Derby provides transition variables and transition tables for a trigger action to access
these values. See "Referencing Old and New Values: The Referencing Clause" in the
Java DB Reference Manual.

Examples of trigger actions

The following trigger action copies a row from the flights table into the flight_history table
whenever any row gets inserted into flights and adds the comment "inserted from trigl" in
the status column of the flight_history table.

CREATE TRIGGER trigl

AFTER UPDATE ON flights

REFERENCI NG OLD AS UPDATEDROW

FOR EACH ROW MODE DB2SQL

I NSERT | NTO flights_history

VALUES (UPDATEDROW FLI GHT_I| D, UPDATEDROW SEGVENT_NUMBER,
UPDATEDROW ORI G_Al RPORT, UPDATEDROW DEPART_TI ME,

UPDATED ROW DEST_AI RPORT, UPDATEDROW ARRI VE_TI ME,
UPDATEDROW MEAL, UPDATEDROW FLYI NG Tl ME, UPDATEDROW M LES,
UPDATEDROW Al RCRAFT, ' | NSERTED FROM trigl');

Triggers and exceptions

Exceptions raised by triggers have a statement severity; they roll back the statement that
caused the trigger to fire.

This rule applies to nested triggers (triggers that are fired by other triggers). If a trigger
action raises an exception (and it is not caught), the transaction on the current connection
is rolled back to the point before the triggering event. For example, suppose Trigger A
causes Trigger B to fire. If Trigger B throws an exception, the current connection is rolled
back to the point before the statement in Trigger A that caused Trigger B to fire. Trigger
A is then free to catch the exception thrown by Trigger B and continue with its work. If
Trigger A does not throw an exception, the statement that caused Trigger A, as well as
any work done in Trigger A, continues until the transaction in the current connection is
either committed or rolled back. However, if Trigger A does not catch the exception from

51

Java DB Developer's Guide

Trigger B, it is as if Trigger A had thrown the exception. In that case, the statement that
caused Trigger A to fire is rolled back, along with any work done by both of the triggers.

Aborting statements and transactions

You might want a trigger action to be able to abort the triggering statement or even the
entire transaction.

Triggers that use the current connection are not permitted to commit or roll back the
connection, so how do you do that? The answer is: have the trigger throw an exception,
which is by default a statement-level exception (which rolls back the statement). The
application-side code that contains the statement that caused the trigger to fire can then
roll back the entire connection if desired. Programming triggers in this respect is no
different from programming any database-side JDBC method.

Programming Derby-style table functions

Derby lets you create table functions. Table functions are functions which package up
external data to look like Derby tables. The external data can be an XML file, a table in a
foreign database, a live data feed--in short, any information source that can be presented
as a JDBC ResultSet.

Derby-style table functions let you efficiently import foreign data into Derby tables. Table
functions let you join Derby tables with any of the following data sources:

« XML-formatted reports and logs

* Queries that run in foreign databases
« Streaming data from sensors

* RSS feeds

See "CREATE FUNCTION statement" in the Java DB Reference Manual for the
complete syntax needed to declare Derby-style table functions. The following topics
provide information on how to write Java methods which wrap foreign data sources inside
ResultSets.

Overview of Derby-style table functions
A Derby-style table function is a method which returns a JDBC ResultSet.

Most of the ResultSet methods can be written as stubs which simply raise exceptions.
However, the Derby-style table function must implement the following ResultSet
methods:

* next()

* close()

« wasNull()

« getXXX() - When invoking a Derby-style table function at runtime, Derby calls a
getXXX() method on each referenced column. The particular getXXX() method is
based on the column's data type as declared in the CREATE FUNCTI ON statement.
Preferred getXXX() methods for Derby-style table functions explains how Derby
selects an appropriate getXXX() method. However, nothing prevents application
code from calling other getXXX() methods on the ResultSet. The returned ResultSet
needs to implement the getXXX() methods which Derby will call as well as all
getXXX() methods which the application will call.

A Derby-style table function is materialized by a public static method which returns a
ResultSet:

public static ResultSet read() {...}

52

Java DB Developer's Guide
The public static method is then bound to a Derby function name:

CREATE FUNCTI ON ext er nal Enpl oyees

Q)
RETURNS TABLE
(

enpl oyeel d I NT,
| ast Nane VARCHAR(50),
firstNane VARCHAR(50),
bi r t hday DATE

)

LANGUAGE JAVA

PARAMVETER STYLE DERBY _JDBC RESULT SET

READS SQL DATA

EXTERNAL NAME ' com exanpl e. hr Schena. Enpl oyeeTabl e. r ead'

To invoke a table function, wrap it in a TABLE constructor in the FROM list of a query.
Note that the table alias (in this example "s") is a required part of the syntax:

I NSERT | NTO enpl oyees
SELECT s. *
FROM TABLE (ext ernal Enpl oyees()) s;

With a normal table function, you must select its entire contents. You can, however, write
a restricted table function that lets you limit the rows and columns you select. A restricted
table function can improve performance greatly. See Writing restricted table functions for
details.

Preferred getXXX() methods for Derby-style table functions

While scanning a Derby-style table function, Derby calls a preferred getXXX() method
for each column, based on the column's data type. If Derby is running on a small device
platform and presenting the JSR 169 interface to clients, then the methods which Derby
calls are slightly different. This is because JSR 169 does not support BigDecimal.

The following table lists the preferred getXXX() method for each Derby data type.
Table 3. getXXX() Methods Called for Declared SQL Types

getXXX()
Method Called | getXXX()
by Derby for Method Called
JDBC 3.0 and | by Derby for
Column Type Declared by CREATE FUNCTION | 4.0 JSR 169
BIGINT getLong() Same
BLOB getBlob() Same
CHAR getString() Same
CHAR FOR BIT DATA getBytes() Same
CLOB getClob() Same
DATE getDate() Same
DECIMAL getBigDecimal() | getString()
DOUBLE getDouble() Same
DOUBLE PRECISION getDouble() Same
FLOAT getDouble() Same

53

Java DB Developer's

Guide

getXXX()
Method Called
by Derby for

getXXX()
Method Called

JDBC 3.0 and |{ by Derby for
Column Type Declared by CREATE FUNCTION | 4.0 JSR 169
INTEGER getint() Same
LONG VARCHAR getString() Same
LONG VARCHAR FOR BIT DATA getBytes() Same
NUMERIC getBigDecimal() | getString()
REAL getFloat() Same
SMALLINT getShort() Same
TIME getTime() Same
TIMESTAMP getTimestamp() | Same
VARCHAR getString() Same
VARCHAR FOR BIT DATA getBytes() Same
XML Not supported | Not supported

Example Derby-style table function

The following simple table function selects rows from a foreign database.

package com exanpl e. hr Scheng;

/

mport java.sql.*;

* %

* Sanpl e Tabl e Function for reading the enpl oyee table in an

* external database.

*/

public class Enpl oyeeTabl e

{

public static Result Set
t hrows SQLExcepti on

read()

{
Connecti on conn = get Connection();
Prepar edSt at ement ps = conn. pr epar eSt at enment (
"select * from hr Schema. Enpl oyeeTabl e");
return ps. executeQery();
}

protected static Connection getConnection()

t hrows SQLExcepti on
{

String EXTERNAL_DRI VER = "com nysql . j dbc. Driver";

try {

Cl ass. for Name(EXTERNAL_DRI VER) ;

}
catch (C assNot FoundException e) {

t hr ow new SQLException("Could not find class "

+ EXTERNAL_DRI VER);
}

Connection conn =

54

Dri ver Manager . get Connect i on(

Java DB Developer's Guide
"jdbc: nysql : / /1 ocal host/ hr ?user =r oot &asswor d=nysql - passwd"
)

return conn;

Writing restricted table functions

Restricted table functions are Derby-style table functions which perform more efficiently
because they can be told in advance which columns they will be asked to fetch along
with simple limits on those columns. This feature exploits the expressiveness of the Java
programming language and does not require any extensions to SQL.

A table function returns a rectangular chunk of data. If you use a restricted table function,
Derby can tell the table function to return a shorter and narrower rectangle.

Consider the following scan of a table in a foreign database:

select id, firstNane, |astNane
fromtabl e(foreignDatabaseEnpl oyeeTable()) s
where | ast Name = ' Stone'

If foreignDatabaseEmployeeTable is a restricted table function, Derby can tell the table
function to fetch only the id, firstName, and lastName columns. In addition, Derby can tell
the table function that it does not need to scan the entire foreign table; instead, the table
function only needs to retrieve information for employees whose last name is "Stone".

Depending on the table function and query, this feature can support 1000X, 1000000X, or
even greater performance improvements.

How to use restricted table functions
Creating and using a restricted table function involves the following steps:

1. Implement - You must write a class which implements both java.sgl.ResultSet
and the Derby-specific interface org.apache.derby.vti.RestrictedVTI. This interface
defines an initScan() method. When executing a query, Derby uses that method to
tell the table function what columns it will have to fetch and what bounds should be
applied to those columns in order to reduce the number of rows returned. For the
rest of this discussion, this user-written class will be referred to as MyVTIClass.

2. Publish - You must publish the table function by creating a public static method
which returns a MyVTIClass. This is important. The Derby compiler must be
able to see that the table function returns an object which implements both
java.sgl.ResultSet and org.apache.derby.vti.RestrictedVTI.

3. Declare - You declare the table function to Derby using the same CREATE
FUNCTION syntax you are already familiar with. This syntax does not change.

4. Invoke - You then use the table function in a query. When Derby compiles
the query, it sees that the return type of the table function implements
org.apache.derby.vti.RestrictedVTI. Armed with this information, at runtime Derby
calls the initScan() method once before calling any of the ResultSet methods.

For example, you would declare the function as follows:

public class MyVTICl ass inplenments ResultSet, RestrictedVTI
{

public void initScan(java.lang.String[] col umNanes,
org. apache. derby. vti.Restriction restriction)
throws SQLException {

55

Java DB Developer's Guide

}
}

Then you publish the table function method:

public static MyVTI O ass forei gnDat abaseEnpl oyeeTabl e()
throws SQLException {

}
Then you declare the table function to Derby:

create function foreignDatabaseEnpl oyeeTabl e()
returns table

C
idint,
bi rt hday date,
t axPayer | D varchar(50),
firstNane varchar(50),
| ast Nane varchar(50)

)
| anguage j ava
paraneter style DERBY_JDBC RESULT_SET
no sql
ext ernal nane
' com exanpl e. portal . Forei gnQueri es. f orei gnDat abaseEnpl oyeeTabl €'

Finally, you invoke the table function in a query:

select id, firstNanme, |astNane
fromtabl e(foreignDatabaseEnpl oyeeTable()) s
where | ast Nane = ' St one'

When you invoke this query, Derby does the following:

* Prepare - When Derby prepares the query, Derby sees that the
foreignDatabaseEmployeeTable() method returns an object which implements
org.apache.derby.vti.RestrictedVTI. This is all that Derby needs to know in order to
compile a plan which takes advantage of this feature.

» Execute - When Derby executes the query, Derby calls initScan(). In this example,
Derby calls initScan() with the following arguments:

initScan(new String[] { "ID', null, null, "FIRSTNAMVE", "LASTNAME"
},

new Restriction. Col umQualifier(
"LASTNAME", ORDER OP_EQUALS, "Stone"))

This, in turn, causes the following to happen:

* Width - The call to initScan() told the table function what columns should be
fetched.
* Length - The call to initScan() told the table function how to filter the rows it
returns.
* Loop - Derby then calls MyVTIClass.next() and retrieves rows until
MyVTIClass.next() returns false. For each row, Derby calls:
* MyVTIClass.getint(1) to get the id column.
* MyVTIClass.getString(4) to get the firstName column.
* MyVTIClass.getString(5) to get the lastName column.

Contract

56

Java DB Developer's Guide

Derby calls initScan() before calling any other method on the ResultSet. The call to
initScan() merely passes hints, which the restricted table function can exploit in order
to perform better. Derby enforces the restriction outside the table function. Therefore,
a restricted table function can still fetch extra columns and can ignore part or all of the
restriction set by the call to initScan().

Affected Operations

Compared to ordinary table functions, a restricted table function can perform better in
gueries involving the following comparisons of its columns to constants:

>=
I'S NULL
I'S NOT NULL

In addition, performance gains can be realized for queries involving the following
operators on the columns of the restricted table function:

LI KE
BETVEEEN

However, this feature does not boost performance either for the IN operator, or in
situations where Derby transforms OR lists into IN lists. See "Or transformations” in
Tuning Java DB for more information.

Optimizer support for Derby-style table functions

This topic explains how to fine-tune the Derby optimizer's decision about where to place a
table function in the join order.

By default, the Derby optimizer makes the following assumptions about a table function:

* Expensive - It is expensive to create and loop through the rows of the table
function. This makes it likely that the optimizer will place the table function in an
outer slot of the join order so that it will not be looped through often.

* Repeatable - The table function can be instantiated multiple times with the same
results. This is probably true for most table functions. However, some table
functions may open read-once streams. If the optimizer knows that a table function
is repeatable, then the optimizer can place the table function in an inner slot where
the function can be invoked multiple times. If a table function is not repeatable, then
the optimizer must either place it in the outermost slot or invoke the function once
and store its contents in a temporary table.

The user can override this optimizer behavior by giving the optimizer more information.
Here's how to do this:

* No-arg constructor - The table function's class must have a public constructor
whose signature has no arguments.

* VTICosting - The class must also implement org.apache.derby.vti.VTICosting. This
involves implementing the following methods as described in Measuring the cost of
Derby-style table functions and Example VTICosting implementation:

» getEstimatedCostPerInstantiation() - This method estimates the cost of
invoking the table function and looping through its rows. The returned value
adds together two estimates:

57

Java DB Developer's Guide
« Empty table - This is the cost of invoking the table function, even if it
contains 0 rows. See the description of variable E in Measuring the cost
of Derby-style table functions.
« Scanning - This is the cost of looping through all of the rows returned by
the table function. See the calculation of P*N in Measuring the cost of
Derby-style table functions.
 getEstimatedRowCount() - This guesses the number of rows returned by
invoking the table function.
 supportsMultipleInstantiations() - This returns false if the table function returns
different results when invoked more than once.
Measuring the cost of Derby-style table functions

This topic shows how to measure the cost of a Derby-style table function.

The following formula describes how to estimate the value returned by
VTICosting.getEstimatedCostPerInstantiation():

C=I*A
where

e C = The estimated Cost for creating and running the table function. That is, the
value returned by VTICosting.getEstimatedCostPerlnstantiation(). In general, Cost
is a measure of time in milliseconds.

« | = The optimizer's Imprecision. A measure of how skewed the optimizer's estimates
tend to be in your particular environment. See below for instructions on how to
estimate this Imprecision.

* A =The Actual time in milliseconds which it takes to create and run this table

function.
Calculating the optimizer's imprecision

We treat optimizer Imprecision as a constant across the runtime environment. The
following formula describes it:

I=0/T
where

« O = The Optimizer's estimated cost for a plan.
e T = The Total runtime in milliseconds for the plan.

To estimate these values, turn on Derby statistics collection and run the following
experiment several times, averaging the results:

» Select = Select all of the rows from a big table.
« Record = In the statistics output, look for the ResultSet which represents the table
scan. That scan has a field labelled "optimizer estimated cost". That's O. Now look

for the fields in that ResultSet's statistics labelled "constructor time", "open time",
"next time", and "close time". Add up all of those fields. That total is T.

For example:

MAXI MUMDI SPLAYW DTH 7000;

CALL SYSCS_UTI L. SYSCS_SET_RUNTI MESTATI STI CS(1) ;
CALL SYSCS_UTI L. SYSCS_SET_STATI STI CS_TI M NG 1) ;

select * fromT;
val ues SYSCS_UTI L. SYSCS_GET_RUNTI MESTATI STI CS() ;

Calculating the actual runtime cost of a table function

58

Java DB Developer's Guide

The following formula explains how to compute the Actual runtime cost for the table
function:

A=(P*N)+E
where

e P = The runtime spent Per row (in milliseconds).

* N = The Number of rows in the table function.

« E = The time spent creating an Empty instance of the table function which has no
rows in it. Usually, P * N dwarfs E. That is, the table function instantiation cost is
very small compared to the actual cost of looping through the rows. However, for
some table functions, E may be significant and may dominate the table function's
cost when N is small.

You may know that E is basically 0. If so, you can skip this step. Otherwise, to estimate
E, turn on Derby statistics collection and run the following experiment several times,
averaging the results:

« Short-circuit = Short-circuit the next() method of the ResultSet returned by your
Derby-style table function so that it returns false the first time it is called. This makes
it appear that the ResultSet has no rows.

» Select = Select all of the rows from the table function.

« Record = In the statistics output, look for the VTIResultSet which represents the
table function scan. Add up the values of the fields in that VTIResultSet's statistics

labelled "constructor time", "open time", "next time", and "close time". That total is E.

To estimate P, turn on Derby statistics collection and run the following experiment several
times, averaging the results:

» Select = Select all of the rows from the table function.
« Record = In the statistics output, look for the VTIResultSet which represents the
table function scan. Add up the values of the fields in that VTIResultSet's statistics

labelled "constructor time", "open time", "next time", and "close time". Subtract E
from the result. Now divide by the value of the field "Rows seen". The result is P.

Computing the value returned by getEstimatedCostPerInstantiation()

Putting all of this together, the following formula describes the value returned by your
table function's VTICosting.getEstimatedCostPerinstantiation() method.

C=0/T*[(P*N)+E]
Example VTICosting implementation

Once you have measured your table function's cost, you can write the VTICosting
methods.

Optimizer fine-tuning can be added to the EmployeeTable table function shown before in
Example Derby-style table function:

package com exanpl e. hr Scheng;

import java.io.Serializable;
import java.sql.*;

i mport org. apache. derby. vti. VTl Costi ng;
i mport org.apache. derby. vti. VTl Envi ronnent ;

/**
* Tuned table function.
*/
public class TunedEnpl oyeeTabl e ext ends Enpl oyeeTabl e
i mpl enents VTI Costing

59

Java DB Developer's Guide

{
publ i ¢ TunedEnpl oyeeTabl e() {}

publ i c doubl e get Esti mat edRowCount (VTI Envi ronment optim zerState)
throws SQLException
{

}

publ i ¢ doubl e get Esti mat edCost Per | nstanti ati on(
VTl Envi ronnment optimzerState) throws SQ.Exception

return get RowCount (optinizerState);

doubl e
doubl e
doubl e

100.0; // optimzer inprecision

10. 0; /1 cost per rowin nilliseconds

0. 0; /1 cost of instantiating the external
/1 Resul t Set

get RowCount (optim zerState);

Z mT—
1

doubl e

returnl * ((P* N) + E);
}

publ i ¢ bool ean supportsMiltiplelnstantiations(
VTl Envi ronnment optimzerState) throws SQ.Exception
{

}
LEEEEEEEEE iy

return true;

private double getRowCount(VTIEnvironment optimzerState)
t hrows SQLException
{

String ROW COUNT_KEY = "rowCount Key";
Doubl e esti mat edRowCount = (Doubl e) get SharedSt at e(
optim zerState, ROW COUNT_KEY);

if (estimtedRowCount == null)
{

Connecti on conn = get Connection();
Prepar edSt at ement ps = conn. pr epar eSt at enment (

"sel ect count(*) from hr Schema. Enpl oyeeTabl e");
Resul t Set rs = ps. executeQery();

rs.next();
esti mat edRowCount = new Doubl e(rs.getDouble(1));

set SharedState(optini zerState, ROW COUNT_KEY,
esti mat edRowCount) ;

rs.close();

ps. cl ose();
conn. cl ose();

}

return esti mat edRowCount . doubl eVal ue() ;

}

private Serializabl e get SharedSt at e(
VTl Envi ronnment optim zerState, String key)

return (Serializable) optimzerState. get SharedState(key);
private void set SharedState(VTI Environnent optim zerState,
String key, Serializable value)

optim zer St at e. set SharedSt at e(key, value);

60

Java DB Developer's Guide

Programming user-defined types

Derby allows you to create user-defined types. A user-defined type is a serializable
Java class whose instances are stored in columns. The class must implement the
java.io.Serializable interface, and it must be declared to Derby by means of a CREATE
TYPE statement.

The key to designing a good user-defined type is to remember that data evolves over
time, just like code. A good user-defined type has version information built into it. This
allows the user-defined data to upgrade itself as the application changes. For this reason,
it is a good idea for a user-defined type to implement java.io.Externalizable and not just
java.io.Serializable. Although the SQL standard allows a Java class to implement only
java.io.Serializable, this is bad practice for the following reasons:

« Recompilation - If the second version of your application is compiled on a different
platform from the first version, then your serialized objects may fail to deserialize.
This problem and a possible workaround are discussed in the "Version Control"
section near the end of this Serialization Primer and in the last paragraph of the
header comment for java.io.Serializable.

« Evolution - Your tools for evolving a class which simply implements
java.io.Serializable are very limited.

Fortunately, it is easy to write a version-aware UDT which implements java.io.Serializable
and can evolve itself over time. For example, here is the first version of such a class:

package com exanpl e. types;

import java.io.*;
i mport java.nath.*;

public class Price inplenents Externalizable

{

// initial version id
private static final int FIRST_VERSION = 0;

public String currencyCode;
publ i c Bi gDeci mal anount;

/1 zero-arg constructor needed by Externalizable machi nery
public Price() {}

public Price(String currencyCode, BigDeci nal anpunt)

this. currencyCode = currencyCode;
t hi s. amount = anount;

}

/| Externalizable inplenmentation
public void witeExternal (CbjectQutput out) throws | OException

{
/1 first wite the version id
out.witelnt(FIRST_VERSION);
/1l now wite the state
out.witeObject(currencyCode);
out.witeCbject(amunt);

}

public void readExternal (Cbjectlnput in)
throws | OException, C assNot FoundExcepti on

/'l read the version id
int oldVersion = in.readlnt();

61

http://java.sun.com/developer/technicalArticles/Programming/serialization/

Java DB Developer's Guide

if (oldVersion < FIRST_VERSI ON)
t hrow new | CException("Corrupt data stream");

}
if (oldVersion > FIRST_VERSION) {
throw new | OException("Can't deserialize fromthe future."

Ik
}
currencyCode = (String) in.readQject();
amount = (Bi gDecimal) in.readObject();
}
}

After this, it is easy to write a second version of the user-defined type which adds a new
field. When old versions of Pr i ce values are read from the database, they upgrade
themselves on the fly. Changes are shown in bold:

package com exanpl e. types;
import java.io.*;

i mport java.nmath.*;

i mport java.sql.*;

public class Price inplenents Externalizable

{
/1 initial version id
private static final int FIRST_VERSION = O;
private static final int TI MESTAMPED VERSI ON = FI RST_VERSI ON + 1;
private static final Tinestanp DEFAULT_TI MESTAVP = new Ti nest anp(OL
)

public String currencyCode;
publ i c Bi gDeci mal anount;
public Tinestanp tinelnstant;

/1 0-arg constructor needed by Externalizable machinery
public Price() {}

public Price(String currencyCode, Bi gDeci nal amount,
Ti nestanp tinmel nstant)

t hi s. currencyCode = currencyCode;
t hi s. anount = anount;
this.tinelnstant = tinelnstant;

}

/| Externalizable inplenmentation
public void witeExternal (CbjectQutput out) throws | OException
{

// first wite the version id

out.witelnt(TIMESTAMPED VERSI ON);

/'l now wite the state
out.witeObject(currencyCode);
out.witeCbject(amunt);
out.witeQoject(tinelnstant);

public void readExternal (Obj ectlnput in)
throws | OExcepti on, Cl assNot FoundExcepti on
/1 read the version id
int oldVersion = in.readlnt();
if (oldVersion < FIRST_VERSI ON)
t hrow new | CException("Corrupt data stream");

}
if (oldVersion > TI MESTAMPED VERSI ON) {

62

Java DB Developer's Guide
throw new | OException("Can't deserialize fromthe future."

Ik

}

currencyCode = (String) in.readQject();

amount = (Bi gDecimal) in.readObject();

if (oldVersion >= TI MESTAMPED VERSI ON) {
tinelnstant = (Tinestanp) in.readObject();

el se {
tinelnstant = DEFAULT_TI MESTAMP;

}

}
}

An application needs to keep its code in sync across all tiers. This is true for all Java
code which runs both in the client and in the server. This is true for functions and
procedures which run in multiple tiers. It is also true for user-defined types which run

in multiple tiers. The programmer should code defensively for the case when the client
and server are running different versions of the application code. In particular, the
programmer should write defensive serialization logic for user-defined types so that the
application gracefully handles client/server version mismatches.

63

Java DB Developer's Guide

Controlling Derby application behavior

This section looks at some advanced Derby application concepts.

The JDBC connection and transaction model

Session and transaction capabilities for SQL are handled through JDBC routines, not by
SQL commands.

JDBC defines a system session and transaction model for database access. A session
is the duration of one connection to the database and is handled by a JDBC Connection
object.

Connections
A Connection object represents a connection with a database.

Within the scope of one Connection, you access only a single Derby database.
(Database-side JDBC routines can allow you to access more than one database in
some circumstances.) A single application might allow one or more Connections to
Derby, either to a single database or to many different databases, provided that all the
databases are within the same system.

With DriverManager, you use the connection URL as an argument to get the
getConnection method to specify which database to connect to and other details.

The following example shows an application establishing three separate connections to
two different databases in the current system.

Connection conn = DriverManager. get Connecti on(

"j dbc: der by: sanpl e") ;
System out . println("Connected to dat abase sanple");
conn. set Aut oConmi t (f al se);
Connection conn2 = Driver Manager. get Connecti on(

"j dbc: der by: newDB; creat e=true");
System out. printl n("Created AND connected to newDB");
conn2. set Aut oCommi t (f al se) ;
Connection conn3 = Driver Manager. get Connecti on(

"j dbc: der by: newDB") ;
System out. println("Got second connection to newDB");
conn3. set Aut oCommi t (f al se) ;

A Connection object has no association with any specific thread; during its lifetime, any
number of threads might have access to it, as controlled by the application.

Statements

To execute SQL statements against a database, an application uses
Statements (j ava. sql . St at enent) and PreparedStatements

(j ava. sql . Prepar edSt at enent), or CallableStatements

(j ava. sql . Cal | abl eSt at enent) for stored procedures.

Because PreparedStatement extends Statement and CallableStatement extends
PreparedStatement, this section refers to both as Statements. Statements are obtained
from and are associated with a particular Connection.

ResultSets and Cursors

Executing a Statement that returns values gives a Resul t Set
(j ava. sgl . Resul t Set), allowing the application to obtain the results of the statement.

64

Java DB Developer's Guide

Only one Resul t Set can be open for a particular St at enent at any time, as per the
JDBC specification.

Thus, executing a Statement automatically closes any open Resul t Set generated by an
earlier execution of that St at ermrent .

For this reason, you must use a different Statement to update a cursor (a named
Resul t Set) from the one used to generate the cursor.

The names of open cursors must be unique within a Connection.
Nested connections

SQL statements can include routine invocations. If these routines interact with the
database, they must use a Connection.

Transactions

A transaction is a set of one or more SQL statements that make up a logical unit of work
that you can either commit or roll back and that will be recovered in the event of a system
failure.

All the statements in the transaction are atomic. A transaction is associated with a
single Connect i on object (and database). A transaction cannot span Connections (or
databases).

Derby permits schema and data manipulation statements (DML) to be intermixed within
a single transaction. If you create a table in one transaction, you can also insert into it
in that same transaction. A schema manipulation statement (DDL) is not automatically
committed when it is performed, but participates in the transaction within which it is
issued. Because DDL requires exclusive locks on system tables, keep transactions that
involve DDL short.

Transactions when auto-commit is disabled

When auto-commiit is disabled, you use a Connection object's commi t and r ol | back
methods to commit or roll back a transaction.

The comi t method makes permanent the changes resulting from the transaction
and releases locks. The r ol | back method undoes all the changes resulting from the
transaction and releases locks. A transaction encompasses all the SQL statements
executed against a single Connect i on object since the last commi t orrol | back.

You do not need to explicitly begin a transaction. You implicitly end one transaction and
begin a new one after disabling auto-commit, changing the isolation level, or after calling
comit orroll back.

Committing a transaction also closes all Resul t Set objects excluding the Resul t Set
objects associated with cursors with holdability t r ue. The default holdability of the
cursorsis true and Resul t Set objects associated with them need to be closed
explicitly. A commit will not close such Resul t Set objects. It also releases any database
locks currently held by the Connect i on, whether or not these objects were created in
different threads.

Using auto-commit

A new connection to a Derby database is in auto-commit mode by default, as specified by
the JDBC standard.

Auto-commit mode means that when a statement is completed, the method commit is
called on that statement automatically. Auto-commit in effect makes every SQL statement
a transaction. The commit occurs when the statement completes or the next statement

is executed, whichever comes first. In the case of a statement returning a forward only

65

Java DB Developer's Guide

Resul t Set , the statement completes when the last row of the Resul t Set has been
retrieved or the Resul t Set has been closed explicitly. In the case of a statement
returning a scrollable Resul t Set , the statement completes only when the Resul t Set
has been closed explicitly.

Some applications might prefer to work with Derby in auto-commit mode; some might
prefer to work with auto-commit turned off. You should be aware of the implications of
using either model.

You should be aware of the following when you use auto-commit:
» Cursors

You cannot use auto-commit if you do any positioned updates or deletes (that is, an
update or delete statement with a WHERE CURRENT OF clause) on cursors which
have the Resul t Set . CLOSE_CURSCRS_AT_COWM T holdability value set.

Auto-commit automatically closes cursors that are explicitly opened with the
Resul t Set . CLOSE_CURSORS_AT_COWM T value, when you do any in-place
updates or deletes.

An updatable cursor declared to be held across commit (this is the default value)
can execute updates and issue multiple commits before closing the cursor. After an
explicit or implicit commit, a holdable forward-only cursor must be repositioned with
a call to the next method before it can accessed again. In this state, the only other
valid operation besides calling next is calling cl ose.

» Database-side JDBC routines (routines using nested connections)

You cannot execute functions within SQL statements if those functions perform a
commit or rollback on the current connection. Since in auto-commit mode all SQL
statements are implicitly committed, Derby turns off auto-commit during execution of
database-side routines and turns it back on when the statement completes.

Routines that use nested connections are not permitted to turn auto-commit on or
off.
« Table-level locking and the SERIALIZABLE isolation level

When an application uses table-level locking and the SERIALIZABLE isolation level,
all statements that access tables hold at least shared table locks. Shared locks
prevent other transactions that update data from accessing the table. A transaction
holds a lock on a table until the transaction commits. So even a SELECT statement
holds a shared lock on a table until its connection commits and a new transaction
begins.

Table 4. Summary of Application Behavior with Auto-Commit On or Off

transaction.

Topic Auto-Commit On | Auto-Commit Off
Transactions Each statement Commit() or
is a separate rollback() completes

a transaction.

Database-side JDBC routines

Auto-commit is

Works (no explicit

cursors; does
not work for

(routines that use nested connections) | turned off. commits or
rollbacks are
allowed).

Updatable cursors Works for holdable | Works.

Java DB Developer's Guide

Topic Auto-Commit On | Auto-Commit Off
non-holdable
cursors.
Multiple connections accessing the Works. Works. Lower
same data concurrency when
applications use
SERIALIZABLE

isolation mode and
table-level locking.

Updatable ResultSets Works. Works.

Savepoints Does not work. Works.

Turning off auto-commit

You can disable auto-commit with the Connection class's setAutoCommit method.

conn. set Aut oCommi t (f al se);
Explicitly closing Statements, ResultSets, and Connections

You should explicitly close Statements, Resul t Set' s, and Connect i ons when you no
longer need them.

Connections to Derby are resources external to an application, and the garbage collector
will not close them automatically.

For example, close a Statement object using its ¢l ose method; close a Connecti on
object using its cl ose method. If auto-commit is disabled, active transactions need to be
explicitly committed or rolled back before closing the connection

Statement versus transaction runtime rollback

When an SQL statement generates an exception, this exception results in a runtime
rollback. A runtime rollback is a system-generated rollback of a statement or transaction
by Derby, as opposed to an explicit r ol | back call from your application.

Extremely severe exceptions, such as disk-full errors, shut down the system, and the
transaction is rolled back when the database is next booted. Severe exceptions, such as
deadlock, cause transaction rollback; Derby rolls back all changes since the beginning
of the transaction and implicitly begins a new transaction. Less severe exceptions, such
as syntax errors, result in statement rollback; Derby rolls back only changes made by the
statement that caused the error. The application developer can insert code to explicitly
roll back the entire transaction if desired.

Derby supports patrtial rollback through the use of savepoints. See Using savepoints for
more information.

Using savepoints

The Savepoint interface contains methods to set, release, or roll back a transaction to
designated savepoints. Once a savepoint has been set, the transaction can be rolled
back to that savepoint without affecting preceding work. Savepoints provide finer-grained
control of transactions by marking intermediate points within a transaction.

Setting and rolling back to a savepoint

The Connection.setSavepoint method sets a savepoint within the current transaction. The
Connection.rollback method is overloaded to take a savepoint argument.

The code example below inserts a row into a table, sets the savepoint svpt 1, and then
inserts a second row. When the transaction is later rolled back to svpt 1, the second

67

Java DB Developer's Guide

insertion is undone, but the first insertion remains intact. In other words, when the
transaction is committed, only the row containing '1' will be added to TABLE1.

conn. set AutoConmi t (fal se); // Autoconmt nust be off to use savepoints.
Statenent stmt = conn.createStatenent();

int rows = stnt.executeUpdate("|NSERT | NTO TABLE1 (COL1) VALUES(1)");
/| set savepoi nt

Savepoi nt svptl = conn. set Savepoi nt ("S1");

rows = stnt.executeUpdate("|NSERT | NTO TABLEL (COL1) VALUES (2)");

E:b.nn. rol | back(svpt1);
ébhn. comm t();
Releasing a savepoint

The method Connection.releaseSavepoint takes a Savepoint object as a parameter and
removes it from the current transaction. Once a savepoint has been released, attempting
to reference it in a rollback operation will cause an SQLException to be thrown.

Any savepoints that have been created in a transaction are automatically released and
become invalid when the transaction is committed or when the entire transaction is rolled
back.

Rolling a transaction back to a savepoint automatically releases and makes invalid any
other savepoints created after the savepoint in question.

Rules for savepoints

The savepoint cannot be set within a batch of statements to enable partial recovery. If a
savepoint is set any time before the method executeBatch is called, it is set before any of
the statements that have been added to the batch are executed.

A savepoint can be reused after it has been released explicitly (by issuing a release of
the savepoint) or implicitly (by issuing a connection commit/rollback to that savepoint or
to a savepoint declared earlier than that savepoint).

It is possible to nest savepoints, but only in an embedded environment.

Result set and cursor mechanisms

A result set maintains a cursor, which points to its current row of data. It can be used to
step through and process the rows one by one.

In Derby, any SELECT statement generates a cursor which can be controlled by a

j ava. sgl . Resul t Set object. Derby does not support SQL-92's DECLARE CURSOR
language construct to create cursors, however Derby supports positioned deletes and
positioned updates of updatable cursors.

Simple non-updatable result sets

This example is an excerpt from a sample JDBC application that generates a result set
with a simple SELECT statement and then processes the rows.

Connection conn = DriverManager. get Connecti on(
"j dbc: der by: sanpl e") ;

Statenent s = conn.createStatenment();

s. execute("set schema ' SAMP'");

/I note that autocommit is on--it is on by default in JDBC

ResultSet rs = s. execut eQuery(
"SELECT enpno, firstnnme, |astnanme, salary, bonus, comm"
+ " FROM sanp. enpl oyee") ;

/** a standard JDBC ResultSet. It nmaintains a

* cursor that points to the current row of data. The cursor

68

Java DB Developer's Guide

* noves down one row each tinme the nmethod next() is called.
* You can scroll one way only--forward--with the next()
* method. When auto-conmit is on, after you reach the
* last row the statement is considered conpl eted
* and the transaction is conmmtted.
*/
Systemout.println("last name" + "," + "first nane" + ": earnings");
/* here we are scrolling through the result set
with the next() nethod.*/
while (rs.next()) {
/'l processing the rows
String firstnne = rs.getString("Fl RSTNVE") ;
String | astNane = rs.getString("LASTNAMVE");
Bi gDeci mal sal ary = rs. get Bi gDeci mal (" SALARY") ;
Bi gDeci mal bonus = rs. get Bi gDeci nal (" BONUS") ;
Bi gDeci mal comm = rs. get Bi gDeci mal (" COW'") ;
Systemout.printin(lastNane + ", " + firstnme + ":
+ (sal ary. add(bonus. add(comn))));

}

rs.close();

/1 once we've iterated through the |ast row,

/'l the transaction commts autonatically and rel eases
/'l shared | ocks

s.cl ose();

Updatable result sets

Updatable result sets in Derby can be updated by using result set update methods
(updat eRow() ,del et eRow() andi nsert Row()), or by using positioned update or
delete queries.

Both scrollable and non-scrollable result sets can be updatable in Derby.

If the query which was executed to create the result set is not updatable, Derby will
downgrade the concurrency mode to Resul t Set . CONCUR_READ ONLY, and add a
warning about this on the Resul t Set . The compilation of the query fails if the result set
cannot be updatable, and contains a FOR UPDATE clause.

Positioned updates and deletes can be performed if the query contains FOR UPDATE or if
the concurrency mode for the result set is Resul t Set . CONCUR_UPDATABLE.

To use the result set update methods, the concurrency mode for the result set must be
Resul t Set . CONCUR_UPDATABLE. The query does not need to contain FOR UPDATE to
use these methods.

Updatable cursors lock the current row with an update lock when positioned on the row,
regardless of isolation level. Therefore, to avoid excessive locking of rows, only use
concurrency mode Resul t Set . CONCUR_UPDATABLE or the FOR UPDATE clause when
you actually need to update the rows. For more information about locking, see Types and
scope of locks in Derby systems.

Requirements for updatable result sets

Only specific SELECT statements- simple accesses of a single table-allow you to update
or delete rows as you step through them.

For more information, see "SELECT statement" and "FOR UPDATE clause" in the Java
DB Reference Manual.

Forward only updatable result sets

A forward only updatable result set maintains a cursor which can only move in one
direction (forward), and also update rows.

69

Java DB Developer's Guide

To create a forward only updatable result set, the statement has to be
created with concurrency mode Resul t Set . CONCUR_UPDATABLE and type
Resul t Set . TYPE_FORWARD_ONLY.

Note: The default type is Resul t Set . TYPE_FORWARD ONLY.

Example of using Resul t Set . updat eXXX() + Result Set. updat eRow() to update
a row:

Statenent stnmt = conn. createStatenent (ResultSet. TYPE_FORWARD _ONLY,
Resul t Set . CONCUR_UPDATABLE) ;

Resul t Set uprs = stnt.executeQuery(
"SELECT FI RSTNAME, LASTNAME, WORKDEPT, BONUS " +
" FROM EMPLOYEE") ;

while (uprs.next()) {
i nt newBonus = uprs.getlnt("BONUS") + 100;
uprs. updat el nt (" BONUS", newBonus);
uprs. updat eRow() ;

}

Example of using Resul t Set . del et eRow() to delete a row:

Statenent stnt = conn. createStatenent (ResultSet. TYPE_FORWARD _ONLY,
Resul t Set . CONCUR_UPDATABLE) ;
Resul t Set uprs = stnt.executeQuery(
"SELECT FI RSTNAVE, LASTNAME, WORKDEPT, BONUS " +
"FROM EMPLOYEE") ;

while (uprs.next()) {
if (uprs.getlnt("WORKDEPT")==300) ({
uprs. del et eRow() ;
}

}

Visibility of changes

 After an update or delete is made on a forward only result set, the result set's
cursor is no longer on the row just updated or deleted, but immediately before
the next row in the result set (it is necessary to move to the next row before
any further row operations are allowed). This means that changes made by
Resul t Set . updat eRow() and Resul t Set . del et eRow() are never visible.

« If arow has been inserted, i.e using Resul t Set . i nsert Row() it may be visible in
a forward only result set.

Conflicting operations

The current row of the result set cannot be changed by other transactions, since it will
be locked with an update lock. Result sets held open after a commit have to move to the
next row before allowing any operations on it.

Some conflicts may prevent the result set from doing updates/deletes:
« If the current row is deleted by a statement in the same transaction, calls to
Resul t Set . updat eRow() will cause an exception, since the cursor is no longer
positioned on a valid row.
Scrollable updatable result sets

A scrollable updatable result set maintains a cursor which can both scroll and update
rows.

Derby only supports scrollable insensitive result sets. To create a scrollable
insensitive result set which is updatable, the statement has to be created
with concurrency mode Resul t Set . CONCUR_UPDATABLE and type

Resul t Set . TYPE_SCROLL_I NSENSI TI VE.

70

Java DB Developer's Guide
Example of using result set update methods to update a row:

Statenent stnt =
conn. creat eSt at ement (Resul t Set . TYPE_SCROLL_| NSENSI Tl VE,
Resul t Set . CONCUR_UPDATABLE) ;
Resul t Set uprs = stnt.executeQuery(
"SELECT FI RSTNAME, LASTNAME, WORKDEPT, BONUS " +
"FROM EMPLOYEE") ;

uprs. absolute(5); // update the fifth row
int newBonus = uprs.getlnt("BONUS") + 100;
uprs. updat el nt (" BONUS", newBonus);

upr s. updat eRow() ;

Example of using Resul t Set . del et eRow() to delete a row:

Statenent stnt =
conn. creat eSt at ement (Resul t Set . TYPE_SCROLL_| NSENSI Tl VE,
Resul t Set . CONCUR_UPDATABLE) ;
Resul t Set uprs = stnt.executeQuery(
"SELECT FI RSTNAME, LASTNAME, WORKDEPT, BONUS " +
"FROM EMPLOYEE") ;

uprs. last();
uprs.relative(-5); // noves to the 5th fromthe |ast row
uprs. del et eRow() ;

Visibility of changes
« Changes caused by other statements, triggers and other transactions (others) are
considered as other changes, and are not visible in scrollable insensitive result sets.
« Own updates and deletes are visible in Derby's scrollable insensitive result sets.
Note: Derby handles changes made using positioned updates and deletes as own
changes, so when made via a result set's cursor such changes are also visible in
that result set.
* Rows inserted to the table may become visible in the result set.
* Resul t Set . rowDel et ed() returns true if the row has been deleted using
the cursor or result set. It does not detect deletes made by other statements or
transactions. Note that the method will also work for result sets with concurrency
CONCUR_READ_ONLY if the underlying result set is FOR UPDATE and a cursor
was used to delete the row.
* Resul t Set . r owUpdat ed() returns true if the row has been updated using
the cursor or result set. It does not detect updates made by other statements or
transactions. Note that the method will also work for result sets with concurrency
CONCUR_READ_ONLY if the underlying result set is FOR UPDATE and a cursor
was used to update the row.
* Note: Both Resul t Set . r owpdat ed() and Resul t Set . r owDel et ed() return
true if the row first is updated and later deleted.
Please be aware that even if changes caused by others are not visible in the result set,
SQL operations, including positioned updates, which access the current row will read and
use the row data as it is in the database, not as it is reflected in the result set.

Conflicting operations

A conflict may occur in scrollable insensitive result sets if a row is updated/deleted by
another committed transaction, or if a row is updated by another statement in the same
transaction. The row which the cursor is positioned on is locked, however once it moves
to another row, the lock may be released depending on transaction isolation level. This
means that rows in the scrollable insensitive result set may have been updated/deleted
by other transactions after they were fetched.

71

Java DB Developer's Guide

Since the result set is insensitive, it will not detect the changes made by others. When
doing updates using the result set, conflicting changes on the columns being changed wiill
be overwritten.

Some conflicts may prevent the result set from doing updates/deletes:

» The row has been deleted after it was read into the result set: Scrollable insensitive
result sets will give a warning with SQLSt at e 01001 .

« The table has been compressed: Scrollable insensitive result sets will give a
warning with SQLSt at e 01001. A compress conflict may happen if the cursor is
held over a commit. This is because the table intent lock is released on commit, and
not reclaimed until the cursor moves to another row.

To avoid conflicts with other transactions, you may increase the transaction isolation
level to repeatable read or serializable. This will make the transaction hold locks on the
rows which have been read until it commits.

Note: When you use holdable result sets, be aware that the locks will be released on
commit, and conflicts may occur regardless of isolation level. You should probably avoid
using holdable result sets if your application relies on transactional behavior for the result
set.

Inserting rows with updatable result sets

Updatable result set can be used to insert rows to the table, by using
Resul t Set. i nsert Row() .

When inserting a row, each column in the insert row that does not allow null as a value
and does not have a default value must be given a value using the appropriate update
method. If the inserted row satisfies the query predicate, it may become visible in the
result set.

Example of using Resul t Set . i nsert Row() to insert a row:

Statenent stnmt = conn. createStatenent (ResultSet. TYPE_FORWARD _ONLY,
Resul t Set . CONCUR_UPDATABLE) ;

Resul t Set uprs = stnt.executeQuery(
"SELECT firstnanme, |astnanme, workdept, bonus " +
"FROM enpl oyee") ;

uprs. noveTol nsert Row() ;

uprs. updat eStri ng(" FlI RSTNAME", "Andreas");

uprs. updat eStri ng("LASTNAME", "Korneliussen");

upr s. updat el nt (" WORKDEPT", 123);

uprs.insertRow();

upr s. noveToCur r ent Row() ;

Naming or accessing the name of a cursor

There is no SQL language command to assign a name to a cursor. You can use
the JDBC set Cur sor Nanme method to assign a name to a Resul t Set that allows
positioned updates and deletes.

You assign a name to a Resul t Set with the set Cur sor Nane method of the
St at ement interface. You assign the name to a cursor before executing the St at ermrent
that will generate it.

Statenent s3 = conn.createStatenent();
/1 name the statement so we can reference the result set
/1 it generates
s3. set Cur sor Nanme(" UPDATABLESTATEMENT") ;
/1 we will be able to use the followi ng statenent |ater
/1 to access the current row of the cursor
/1l a result set needs to be obtained prior to using the
/1 WHERE CURRENT synt ax
ResultSet rs = s3. executeQuery("select * from

Fl i ght Booki ngs FOR UPDATE of nunber_seats");

72

Java DB Developer's Guide

Prepar edSt at enent ps2 = conn. prepar eSt at ement (
"UPDATE Fl i ght Booki ngs SET nunber_seats = ? " +
"WHERE CURRENT OF UPDATABLESTATEMENT");

Typically, you do not assign a name to the cursor, but let the system generate one for
you automatically. You can determine the system-generated cursor name of a ResultSet
generated by a SELECT statement using the Resul t Set class's get Cur sor Nane
method.

Pr epar edSt at ement ps2 = conn. pr epar eSt at ement (
"UPDATE enpl oyee SET bonus = ? WHERE CURRENT OF "+
Updat abl e. get Cur sor Nane()) ;

Extended updatable result set example

Connecti on conn = Driver Manager. get Connection("j dbc: derby: sanpl e");
conn. set Aut oConmi t (f al se);

/'l Create the statement with concurrency node CONCUR UPDATABLE
/1l to allow result sets to be updatable
Statenent stnt = conn. createStatenent (ResultSet. TYPE_FORWARD ONLY,
Resul t Set . CONCUR_UPDATABLE,
Resul t Set . CLOSE_CURSORS_AT_COWM T) ;
/1 Updat abl e statenents have some requirenments
/1 for exanple, select nust be on a single table
Resul t Set uprs = stnt.executeQuery(
"SELECT FI RSTNVE, LASTNAME, WORKDEPT, BONUS " +
"FROM EMPLOYEE FOR UPDATE of BONUS'); // Only bonus can be updated

String theDept="E21";

while (uprs.next())
String firstnne uprs. get String("FlI RSTNVE") ;
String | ast Nane uprs. get String("LASTNAME") ;
String wor kDept uprs. get Stri ng(" WORKDEPT") ;
Bi gDeci mal bonus = uprs. get Bi gDeci mal (" BONUS") ;
i f (workDept.equal s(theDept)) {
/1 if the current row neets our criteria,
/1 update the updatable colum in the row
upr s. updat eBi gDeci mal (" BONUS",
bonus. add(Bi gDeci mal . val ueO (250L)));
uprs. updat eRow() ;
System out . println("Updating bonus for enployee:" +
firstnme + | ast Nane);

I mn—-

}
} . _ .
conn.comit(); // conmit the transaction
/'l cl ose object
uprs. cl ose();
stnt.close();

/1 Cdose connection if the application does not need it any nore
conn. cl ose();

Result sets and auto-commit

Except for the result sets associated with holdable cursors, issuing a commit will cause
all result sets on your connection to be closed.

The JDBC application is not required to have auto-commit off when using update
methods on updatable result set, even if the result set is not holdable. Positioned updates
and deletes cannot be used in combination with autocommit and non-holdable result
sets.

73

Java DB Developer's Guide
Scrollable result sets

JDBC provides two types of result sets that allow you to scroll in either direction or
to move the cursor to a particular row. Derby supports one of these types: scrollable
insensitive result sets (Resul t Set . TYPE_SCRCLL_| NSENSI TI VE).

When you use a result set of type of type Resul t Set . TYPE_SCRCLL_| NSENSI Tl VE,
Derby materializes rows from the first one in the result set up to the one with the biggest
row number as the rows are requested. The materialized rows will be backed to disk if
necessary, to avoid excessive memory usage.

Insensitive result sets, in contrast to sensitive result sets, cannot see changes made by
others on the rows which have been materialized. Derby allows updates of scrollable
insensitive result sets; see Visibility of changes, which also explains visibility of own
changes.

Note: Derby does not support result sets of type
Resul t Set . TYPE_SCROLL_SENSI Tl VE.

//autocommit does not have to be off because even if
//we accidentally scroll past the last row, the inplicit conmt
/lon the the statement will not close the result set because result sets
/lare held over conmt by default
conn. set Aut oConmi t (f al se);
Statenent s4 = conn. creat eSt at enent (Resul t Set . TYPE_SCROLL_| NSENSI Tl VE
Resul t Set . CONCUR_READ _ONLY) ;
s4. execute("set schema ' SAMP' ") ;
Resul t Set scrol | er=s4. execut eQuery(
"SELECT sal es_person, region, sales FROM sales " +
"WHERE sal es > 8 ORDER BY sal es DESC');
if (scroller.first()) { // One rowis now materialized
Systemout.println("The sales rep who sold the highest nunber"” +
of sales is " +
scroller.getString("SALES_PERSON'));
} else {
Systemout.println("There are no rows.");

scrol l er. beforeFirst();
scrol |l er.afterlLast(); /1 By calling afterlast(), all rows will be
materi al i zed
scrol | er. absol ute(3);
if (!scroller.isAfterLast()) {
System out. println("The enployee with the third hi ghest number " +

"of sales is " +
scrol l er.getString("SALES PERSON') + ", with " +
scrol l er.getlnt("SALES") + " sales");

if (scroller.isLast()) {
Systemout.println("There are only three rows.");

if (scroller.last()) {
Systemout.println("The | east highest nunber " +
"of sales of the top three sales is: " +
scroller.getlnt("SALES"));

scrol l er.close();

s4. cl ose();

conn. commi t ()

conn. cl ose();

System out . println("d osed connection");

Holdable result sets

The holdable result set feature permits an application to keep result sets open after
implicit or explicit commits. By default, the cursor controlled by the result set is held open
after a commit.

74

Java DB Developer's Guide
Note: Derby also supports non-holdable result sets.

When you create a statement, you can specify that the result set will be automatically
closed when a commit occurs. Result sets are automatically closed when a transaction
aborts, whether or not they have been specified to be held open.

To specify whether a result set should be held open after a commit takes place,
supply one of the following ResultSet parameters to the Connect i on method
creat eSt at ement, prepar eSt at enent, or prepareCal | :

* CLOSE_CURSORS_AT_COMMIT

Result sets are closed when an implicit or explicit commit is performed.
« HOLD_CURSORS_OVER_COMMIT

Result sets are held open when a commit is performed, implicitly or explicitly. This is
the default behavior.

The method Statement.getResultSetHoldability() indicates whether a result set generated
by the Statement object stays open or closes, upon commit. See the Java DB Reference
Manual for more information.

When an implicit or explicit commit occurs, result sets that hold cursors open behave as
follows:

« Open result sets remain open. Non-scrollable result sets becomes positioned before
the next logical row of the result set. Scrollable insensitive result sets keep their
current position.

« When the session is terminated, the result set is closed and destroyed.

« All locks are released, including locks protecting the current cursor position.

« For non-scrollable result sets, immediately following a commit, the only valid
operations that can be performed on the ResultSet object are:

* positioning the result set to the next row with Resul t Set . next ().
« closing the result set with Resul t Set . cl ose().

When a rollback or rollback to savepoint occurs, either explicitly or implicitly, the following
behavior applies:

« All open result sets are closed.

« All locks acquired during the unit of work are released.

Note: Holdable result sets do not work with XA transactions in Derby. When
working with XA transactions, the result set should be opened with holdability
Resul t Set . CLOSE_CURSORS_AT_COW T.

Holdable result sets and autocommit

When autocommit is on, a positioned update or delete statement will automatically cause
the transaction to commit.

If the result set has holdability Resul t Set . CLOSE_CURSORS_AT_COWM T, combined
with autocommit on, Derby gives an exception on positioned updates and deletes
because the cursor is closed immediately before the positioned statement is commenced,
as mandated by JDBC. In contrast, no such implicit commit is done when using result set
updates methods.

Non-holdable result set example

The following example uses Connection.createStatement to return a Resul t Set that will
close after a commit is performed.

Connection conn = ds. get Connecti on(user, passwd);
Statenent stnt =
conn. creat eSt at ement (Resul t Set. TYPE_SCROLL_| NSENSI Tl VE,
Resul t Set . CONCUR READ ONLY,
Resul t Set . CLOSE_CURSORS_AT_COWM T) ;

75

Java DB Developer's Guide

Locking, concurrency, and isolation

This section discusses topics pertinent to multi-user systems, in which concurrency is
important.

Derby is configured by default to work well for multi-user systems. For single-user
systems, you might want to tune your system so that it uses fewer resources; see Lock
granularity.

Isolation levels and concurrency

Derby provides four transaction isolation levels. Setting the transaction isolation level
for a connection allows a user to specify how severely the user's transaction should be
isolated from other transactions.

For example, it allows you to specify whether transaction A is allowed to make changes
to data that have been viewed by transaction B before transaction B has committed.

A connection determines its own isolation level, so JDBC provides an application with

a way to specify a level of transaction isolation. It specifies four levels of transaction
isolation. The higher the transaction isolation, the more care is taken to avoid conflicts;
avoiding conflicts sometimes means locking out transactions. Lower isolation levels thus
allow greater concurrency.

Inserts, updates, and deletes always behave the same no matter what the isolation level
is. Only the behavior of select statements varies.

To set isolation levels you can use the JDBC Connection.setTransactionlsolation method
or the SQL SET ISOLATION statement.

If there is an active transaction, the network client driver always commits the active
transaction, whether you use the JDBC Connection.setTransactionlsolation method
or the SQL SET ISOLATION statement. It does this even if the method call or
statement does not actually change the isolation level (that is, if it sets the isolation
level to its current value). The embedded driver also always commits the active
transaction if you use the SET ISOLATION statement. However, if you use the
Connection.setTransactionlsolation method, the embedded driver commits the active
transaction only if the call to Connection.setTransactionlsolation actually changes the
isolation level.

The names of the isolation levels are different, depending on whether you use a JDBC
method or SQL statement. Mapping of JDBC transaction isolation levels to Derby
isolation levels shows the equivalent names for isolation levels whether they are set
through the JDBC method or an SQL statement.

Table 5. Mapping of JDBC transaction isolation levels to Derby isolation levels

Isolation levels for JDBC Isolation levels for SQL
Connection. TRANSACTION_READ_UNCOMMITT| UR, DIRTY READ, READ

(ANSI level 0) UNCOMMITTED

Connection. TRANSACTION_READ_COMMITTED] CS, CURSOR STABILITY, READ
(ANSI level 1) COMMITTED

Connection. TRANSACTION_REPEATABLE_REAI[RS

(ANSI level 2)

Connection. TRANSACTION_SERIALIZABLE RR, REPEATABLE READ,

(ANSI level 3) SERIALIZABLE

76

Java DB Developer's Guide

These levels allow you to avoid particular kinds of transaction anomalies, which are
described in Transaction Anomalies.

Table 6. Transaction Anomalies

Anomaly Example
Dirty Reads Transaction A begins.
A dirty read happens when a transaction | yppaTE enpl oyee SET sal ary = 31650
reads data that is being modified by WHERE enpno = ' 000090
another transaction that has not yet - tion B beai
e ransaction B begins.

SELECT * FROM enpl oyee

(Transaction B sees data updated by
transaction A. Those updates have not yet
been committed.)

Non-Repeatable Reads Transaction A begins.

Non-repeatable reads happen when a SELECT * FROM enpl oyee
query returns data that would be different | WHERE enpno = ' 000090
if the query were repeated within the

same transaction. Non-repeatable reads Transaction B begins.

can Qcpurwhen othertransac_tlon_s are UPDATE enpl oyee SET sal ary = 30100
modifying data that a transaction is VWHERE enpno = ' 000090'
reading.

(Transaction B updates rows viewed

by transaction A before transaction A
commits.) If Transaction A issues the same
SELECT statement, the results will be

different.
Phantom Reads Transaction A begins.
Records that appear in a set being SELECT * FROM enpl oyee
read by another transaction. Phantom WHERE sal ary > 30000

reads can occur when other transactions
insert rows that would satisfy the
WHERE clause of another transaction's I NSERT | NTO enpl oyee
statement. (empno, firstnme, nmidinit,
| ast nane, job,

sal ary) VALUES (' 000350', ' NI CK',
"A',' GREEN ,' LEGAL COUNSEL', 35000)

Transaction B begins.

Transaction B inserts a row that would
satisfy the query in Transaction A if it were
issued again.

The transaction isolation level is a way of specifying whether these transaction anomalies
are allowed. The transaction isolation level thus affects the quantity of data locked by a
particular transaction. In addition, a DBMS's locking schema might also affect whether
these anomalies are allowed. A DBMS can lock either the entire table or only specific
rows in order to prevent transaction anomalies.

When Transaction Anomalies Are Possible shows which anomalies are possible under
the various locking schemas and isolation levels.

Table 7. When Transaction Anomalies Are Possible

77

Java DB Developer's Guide

Table-Level Row-Level
Isolation Level Locking Locking
TRANSACTION_READ_UNCOMMITTED Dirty reads, Dirty reads,
nonrepeatable nonrepeatable
reads, and reads, and
phantom reads | phantom reads
possible possible
TRANSACTION_READ_COMMITTED Nonrepeatable | Nonrepeatable
reads and reads and
phantom reads | phantom reads
possible possible
TRANSACTION_REPEATABLE_READ Phantom reads | Phantom reads
not possible possible
because entire
table is locked
TRANSACTION_SERIALIZABLE None None

The following java.sgl.Connection isolation levels are supported:

* TRANSACTI ON_SERI ALI ZABLE

RR, SERI ALI ZABLE, or REPEATABLE READ from SQL.

TRANSACTION_SERIALIZABLE means that Derby treats the transactions as if
they occurred serially (one after the other) instead of concurrently. Derby issues
locks to prevent all the transaction anomalies listed in Transaction Anomalies from
occurring. The type of lock it issues is sometimes called a range lock.

« TRANSACTI ON_REPEATABLE_READ
RS from SQL.

TRANSACTION_REPEATABLE_READ means that Derby issues locks to prevent
only dirty reads and non-repeatable reads, but not phantoms. It does not issue
range locks for selects.

e TRANSACTI ON_READ_COWM TTED

CS or CURSOR STABI LI TY from SQL.

TRANSACTION_READ_ COMMITTED means that Derby issues locks to prevent
only dirty reads, not all the transaction anomalies listed in Transaction Anomalies.

TRANSACTION_READ_COMMITTED is the default isolation level for transactions.
« TRANSACTI ON_READ_UNCOWM TTED

UR, DI RTY READ, or READ UNCOWM TTED from SQL.

For a SELECT INTO, FETCH with a read-only cursor, full select used in an
INSERT, full select/subquery in an UPDATE/DELETE, or scalar full select
(wherever used), READ UNCOMMITTED allows:

« Any row that is read during the unit of work to be changed by other application
processes.

< Any row that was changed by another application process to be read even if
the change has not been committed by the application process.

For other operations, the rules that apply to READ COMMITTED also apply to
READ UNCOMMITTED.

Configuring isolation levels

78

Java DB Developer's Guide

If a connection does not specify its isolation level, it inherits the default isolation level for
the Derby system. The default value is CS.

When set to CS, the connection inherits the TRANSACTION_READ_COMMITTED
isolation level. When set to RR, the connection inherits the
TRANSACTION_SERIALIZABLE isolation level, when set to RS, the connection inherits
the TRANSACTION_REPEATABLE_READ isolation level, and when set to UR, the
connection inherits the TRANSACTION_READ_UNCOMMITTED isolation level.

To override the inherited default, use the methods of java.sql.Connection.

In addition, a connection can change the isolation level of the transaction within an
SQL statement. For more information, see "SET ISOLATION statement” in the Java DB
Reference Manual. You can use the WITH clause to change the isolation level for the
current statement only, not the transaction. For information about the WITH clause, see
"SELECT statement" in the Java DB Reference Manual.

In all cases except when you change the isolation level using the WITH clause, changing
the isolation level commits the current transaction. In most cases, the current transaction
is committed even if you set the isolation level in a way that does not change it (that is, if
you set it to its current value). See Isolation levels and concurrency for details.

Note: For information about how to choose a particular isolation level, see "Shielding
users from Derby class-loading events" in Tuning Java DB and Multi-thread programming
tips.

Lock granularity

Derby can be configured for table-level locking. With table-level locking, when a
transaction locks data in order to prevent any transaction anomalies, it always locks the
entire table, not just those rows being accessed.

By default, Derby is configured for row-level locking. Row-level locking uses more
memory but allows greater concurrency, which works better in multi-user systems.
Table-level locking works best with single-user applications or read-only applications.

You typically set lock granularity for the entire Derby system, not for a particular
application. However, at runtime, Derby may escalate the lock granularity for a particular
transaction from row-level locking to table-level locking for performance reasons. You
have some control over the threshold at which this occurs. For information on turning off
row-level locking, see "derby.storage.rowlLocking" in the Java DB Reference Manual. For
more information about automatic lock escalation, see "About the system's selection of
lock granularity" and "Transaction-based lock escalation” in Tuning Java DB. For more
information on tuning your Derby system, see "Tuning databases and applications," also
in Tuning Java DB.

Types and scope of locks in Derby systems

There are several types of locks available in Derby systems, including exclusive, shared,
and update locks.

Exclusive locks

When a statement modifies data, its transaction holds an exclusive lock on data that
prevents other transactions from accessing the data.

This lock remains in place until the transaction holding the lock issues a commit or
rollback. Table-level locking lowers concurrency in a multi-user system.

79

Java DB Developer's Guide
Shared locks

When a statement reads data without making any modifications, its transaction obtains a
shared lock on the data.

Another transaction that tries to read the same data is permitted to read, but

a transaction that tries to update the data will be prevented from doing so

until the shared lock is released. How long this shared lock is held depends

on the isolation level of the transaction holding the lock. Transactions using

the TRANSACTION_READ_COMMITTED isolation level release the lock

when the transaction steps through to the next row. Transactions using the
TRANSACTION_SERIALIZABLE or TRANSACTION_REPEATABLE_READ
isolation level hold the lock until the transaction is committed, so even a SELECT
can prevent updates if a commit is never issued. Transactions using the
TRANSACTION_READ_UNCOMMITTED isolation level do not request any locks.

Update locks

When a user-defined update cursor (created with the FOR UPDATE clause or by using
concurrency mode Resul t Set . CONCUR_UPDATABLE) reads data, its transaction
obtains an update lock on the data.

If the user-defined update cursor updates the data, the update lock is converted to an
exclusive lock. If the cursor does not update the row, when the transaction steps through
to the next row, transactions using the TRANSACTION_READ_COMMITTED isolation
level release the lock. (For update locks, the TRANSACTION_READ_UNCOMMITTED
isolation level acts the same way as TRANSACTION_READ_COMMITTED.)

Update locks help minimize deadlocks.
Lock compatibility

This table lists compatibility between lock types. + means the lock types are compatible,
while - means they are incompatible.

Table 8. Lock Compatibility Matrix

' Shared Update Exclusive
Shared + + =

Update + - -
Exclusive - - -

Scope of locks

The amount of data locked by a statement can vary.
Table locks

A statement can lock the entire table.

Table-level locking systems always lock entire tables.

Row-level locking systems can lock entire tables if the WHERE clause of a statement
cannot use an index. For example, UPDATES that cannot use an index lock the entire
table.

Row-level locking systems can lock entire tables if a high number of single-row locks
would be less efficient than a single table-level lock. Choosing table-level locking
instead of row-level locking for performance reasons is called lock escalation. For more
information about this topic, see "About the system's selection of lock granularity" and
"Transaction-based lock escalation" in Tuning Java DB.

80

Java DB Developer's Guide

Single-row locks
A statement can lock only a single row at a time.

For row-level locking systems:

« For TRANSACTION_REPEATABLE_READ isolation, the locks are released at the
end of the transaction.

e For TRANSACTION_READ_COMMITTED isolation, Derby locks rows only as the
application steps through the rows in the result. The current row is locked. The row
lock is released when the application goes to the next row.

« For TRANSACTION_SERIALIZABLE isolation, however, Derby locks the whole set
before the application begins stepping through.

e For TRANSACTION_READ_UNCOMMITTED, no row locks are requested.

Derby locks single rows for INSERT statements, holding each row until the transaction is
committed. If there is an index associated with the table, the previous key is also locked.

Range locks
A statement can lock a range of rows (range lock).

For row-level locking systems:
« For any isolation level, Derby locks all the rows in the result plus an entire range of
rows for updates or deletes.
» For the TRANSACTION_SERIALIZABLE isolation level, Derby locks all the rows
in the result plus an entire range of rows in the table for SELECTSs to prevent
nonrepeatable reads and phantoms.

For example, if a SELECT statement specifies rows in the Employee table where the
salary is BETWEEN two values, the system can lock more than just the actual rows it
returns in the result. It also must lock the entire range of rows between those two values
to prevent another transaction from inserting, deleting, or updating a row within that
range.

An index must be available for a range lock. If one is not available, Derby locks the entire
table.

Table 9. Types and scopes of locking

Transaction Isolation Table-Level

Level Locking Row-Level Locking
Connection. TRANSACTIf§ For SELECT SELECT statements get no
(SQL: UR) statements, locks. For other statements,

table-level locking same as for TRANSACTION_
is never requested | READ_COMMITTED.

using this isolation
level. For other
statements, same

as for TRANSACTIO
Connection. TRANSACTI{ SELECT statements | SELECTSs lock and release single
(SQL: CS) get a shared lock rows as the user steps through the
on the entire table. | ResultSet. UPDATEs and DELETES
The locks are get exclusive locks on a range
released when of rows. INSERT statements get
the user closes exclusive locks on single rows (and
the ResultSet. sometimes on the preceding rows).

Other statements
get exclusive

81

Java DB Developer's Guide

Transaction Isolation | Table-Level
Level Locking Row-Level Locking
locks on the entire
table, which are
released when
the transaction
commits.
Connection. TRANSACTI{ Same as for TRANSA SELECT statements get shared
(SQL: RS) locks on the rows that satisfy the
WHERE clause (but do not prevent
inserts into this range). UPDATEs and
DELETEs get exclusive locks on a
range of rows. INSERT statements
get exclusive locks on single rows
(and sometimes on the preceding
rows).
Connection. TRANSACTI{ SELECT statements | SELECT statements get shared locks
(SQL: RR) get a shared lock on a range of rows. UPDATE and
on the entire table. | DELETE statements get exclusive
Other statements locks on a range of rows. INSERT
get exclusive statements get exclusive locks on
locks on the entire | single rows (and sometimes on the
table, which are preceding rows).
released when
the transaction
commits.

Notes on locking

In addition to the locks already described, foreign key lookups require briefly held shared
locks on the referenced table (row or table, depending on the configuration).

The table and examples in this section do not take performance-based lock escalation
into account. Remember that the system can choose table-level locking for performance
reasons.

Deadlocks

In a database, a deadlock is a situation in which two or more transactions are waiting for
one another to give up locks.

For example, Transaction A might hold a lock on some rows in the Accounts table and
needs to update some rows in the Orders table to finish. Transaction B holds locks on
those very rows in the Orders table but needs to update the rows in the Accounts table
held by Transaction A. Transaction A cannot complete its transaction because of the

lock on Orders. Transaction B cannot complete its transaction because of the lock on
Accounts. All activity comes to a halt and remains at a standstill forever unless the DBMS
detects the deadlock and aborts one of the transactions.

Figure 6. A deadlock where two transactions are waiting for one another to give up
locks.

82

Java DB Developer's Guide

Transaction A Transaction B
A has alock on B has alock o
accounts and needs | and needs a lr
a lock on orders to accounts 1o fir
finish the transaction. fransaction.
Orders Accounts

Avoiding deadlocks

Using both row-level locking and the TRANSACTION_READ_COMMITTED isolation
level makes it likely that you will avoid deadlocks (both settings are Derby defaults).
However, deadlocks are still possible.

Derby application developers can avoid deadlocks by using consistent application logic;
for example, transactions that access Accounts and Orders should always access the
tables in the same order. That way, in the scenario described above, Transaction B
simply waits for transaction A to release the lock on Orders before it begins. When
transaction A releases the lock on Orders, Transaction B can proceed freely.

Another tool available to you is the LOCK TABLE statement. A transaction can attempt
to lock a table in exclusive mode when it starts to prevent other transactions from getting
shared locks on a table. For more information, see "LOCK TABLE statement" in the Java
DB Reference Manual.

Deadlock detection

When a transaction waits more than a specific amount of time to obtain a lock (called the
deadlock timeout), Derby can detect whether the transaction is involved in a deadlock.

When Derby analyzes such a situation for deadlocks it tries to determine how many
transactions are involved in the deadlock (two or more). Usually aborting one transaction
breaks the deadlock. Derby must pick one transaction as the victim and abort that
transaction; it picks the transaction that holds the fewest number of locks as the victim,
on the assumption that transaction has performed the least amount of work. (This may
not be the case, however; the transaction might have recently been escalated from
row-level locking to table locking and thus hold a small number of locks even though it
has done the most work.)

When Derby aborts the victim transaction, it receives a deadlock error (an SQLException
with an SQLSt at e of 40001). The error message gives you the transaction IDs, the
statements, and the status of locks involved in a deadlock situation.

83

Java DB Developer's Guide

ERROR 40001: A | ock coul d not be obtained due to a deadl ock,

cycle of locks & waiters is:

Lock : ROW DEPARTMENT, (1,14)

Waiting XID : {752, X} , APP, update departnent set |ocation='Boise'
wher e dept no=' E21'

Ganted XID : {758, X} Lock : ROW EMPLOYEE, (2,8)

Waiting XID : {758, U , APP, update enpl oyee set bonus=150 where
sal ary=23840

Ganted XID : {752, X} The selected victimis XID: 752

For information on configuring when deadlock checking occurs, see Configuring deadlock
detection and lock wait timeouts.

Note: Deadlocks are detected only within a single database. Deadlocks across multiple
databases are not detected. Non-database deadlocks caused by Java synchronization
primitives are not detected by Derby.

Lock wait timeouts

Even if a transaction is not involved in a deadlock, it might have to wait a considerable
amount of time to obtain a lock because of a long-running transaction or transactions
holding locks on the tables it needs.

In such a situation, you might not want a transaction to wait indefinitely. Instead, you
might want the waiting transaction to abort, or time out, after a reasonable amount of
time, called a lock wait timeout.

Configuring deadlock detection and lock wait timeouts

You configure the amount of time a transaction waits before Derby does any deadlock
checking with the derby.locks.deadlockTimeout property.

You configure the amount of time a transaction waits before timing out with the

der by. | ocks. wai t Ti meout property. When configuring your database or system,
you should consider these properties together. For example, in order for any deadlock
checking to occur, the der by. | ocks. deadl ockTi meout property must be setto a
value lower than the der by. | ocks. wai t Ti neout property. If it is set to a value equal
to or higher than the der by. | ocks. wai t Ti meout , the transaction times out before
Derby does any deadlock checking.

By default, derby.locks.waitTimeout is set to 60 seconds. -1 is the equivalent of no wait
timeout. This means that transactions never time out, although Derby can choose a
transaction as a deadlock victim.

Figure 7. One possible configuration: deadlock checking occurs when a
transaction has waited 30 seconds; no lock wait timeouts occur.

84

Java DB Developer's Guide

Transactions are never abored
deadiockTimeoud=30 unless they are salected as the
wictim whan desdiocks ane checkad.

v

I've vasiled 30 seconds,
Arn | deadlocked?

Hmot, keap waiting unil
| can chiain locks (| or forawar).

seconds waiting o obtain & lock

v

Figure 8. Another typical configuration: deadlock checking occurs after a
transaction has waited 60 seconds for a lock; after 90 seconds, the transaction
times out and is rolled back.

deadlock Timaout=60

I'va baan wailing 80 saconds. I've waited 90 seconds.
Am | deediocked with anybody? b AT R e
I et keep walting, v

v

seconds waiting o obtain & lock

85

Java DB Developer's Guide

Figure 9. A configuration in which no deadlock checking occurs: transactions time
out after they have waited 50 seconds. No deadlock checking occurs.

kocksWaitTimeout=50

MNe deadlock shecking
oocurs. Waiting fransactions
alwrays limeaul

deaciockTimeout=_80 v

I've baan wailing 50 saconds
Abort e | 'l try again later).

seconds waiting o obtain & lock

Debugging Deadlocks

If deadlocks occur frequently in your multi-user system with a particular application, you
might need to do some debugging.

Derby provides a class to help you in this situation, org.apache.derby.diag.LockTable.
Access to the LockTable information is provided via the SYSCS_DIAG.LOCK_TABLE
diagnostic table.

The SYSCS_DIAG.LOCK_TABLE diagnostic table shows all of the locks
that are currently held in the Derby database. You can reference the
SYSCS_DIAG.LOCK_TABLE diagnostic table directly in a statement.

For example:

SELECT * FROM SYSCS_DI AG LOCK_TABLE

When the SYSCS_DIAG.LOCK_TABLE diagnostic table is referenced in a statement, a
snhapshot of the lock table is taken.

For more information about how to use this table:

e See "SYSCS_DIAG diagnostic tables and functions" in the Java DB Reference

Manual.

» See the LockTable API documentation.
You can also set the property derby.locks.deadlockTrace to dump additional information
to the derby.log file about any deadlocks that occur on your system. See the Tuning
Guide for more information on this property. For information, see the Java DB Server and
Administration Guide.

Additional general information about diagnosing locking problems can be found in the
Derby Wiki at http://wiki.apache.org/db-derby/LockDebugging.

86

http://db.apache.org/derby/javadoc/engine/org/apache/derby/diag/LockTable.html
http://wiki.apache.org/db-derby/LockDebugging

Java DB Developer's Guide
Programming applications to handle deadlocks

When you configure your system for deadlock and lockwait timeouts and an application
could be chosen as a victim when the transaction times out, you should program your
application to handle them.

To do this, test for SQLExceptions with SQLSt at es of 40001 (deadlock timeout) or
40XL1 or 40XL2 (lockwait timeout).

In the case of a deadlock you might want to re-try the transaction that was chosen as a
victim. In the case of a lock wait timeout, you probably do not want to do this right away.

The following code is one example of how to handle a deadlock timeout.

/11 if this code m ght encounter a deadl ock,
/1 put the whole thing in a try/catch bl ock
/1 then try again if the deadl ock victimexception
/1 was thrown
try {
s6. execut eUpdat e(
"UPDATE enpl oyee " +
"SET bonus = 625 "
"WHERE enpno='000150"");
s6. execut eUpdat e(" UPDATE project " +
"SET respenp = '000150" " +
"WHERE proj no='1F1000'");

/ note: do not catch such exceptions in database-si de nethods;
/ catch such exceptions only at the outernost |evel of
/ application code.
| See Dat abase-side JDBC routines and SQ.LExcepti ons.
atch (SQLException se) {
if (se.getSQState().equal s("40001")) {
/1 it was chosen as a victimof a deadl ock.
/1 try again at |east once at this point.
Systemout.println("WII try the transaction again.");
s6. execut eUpdat e(" UPDATE enpl oyee " +
"SET bonus = 625 " +
"WHERE enpno=' 000150"");
s6. execut eUpdat e(" UPDATE project " +
"SET respenp = 000150 " +
"WHERE pr oj no='1F1000"'");

}
!
/
/
/
c

el se throw se;

Working with multiple connections to a single database

This section discusses deploying Derby so that many connections can exist to a single
database.

Deployment options and threading and connection modes
A database can be available to multiple connections in several situations.

« Multiple applications access a single database (possible only when Derby is running
inside a server framework).
« A single application has more than one Connection to the same database.

The way you deploy Derby affects the ways applications can use multi-threading
and connections, as shown in Threading and Connection Modes.

Table 10. Threading and Connection Modes

87

Java DB Developer's Guide

Connection mode

Embedded

Server

Multi-Threaded

From an application, using
a singleConnect i on to

a Derby database and
issuing requests against
that connection in multiple
threads.

Supply a single Connection
object to separate threads.
Derby ensures that only one
operation is applied at a
time for consistency. Server
frameworks automatically
manage multi-threaded
operations..

Server frameworks
can automatically
multi-thread
operations. Remote
client applications
can multi-thread if
desired.

Multi-Connection

From an application, using
multiple connections to a
Derby database and issuing
requests against those
connections on multiple
threads.

Create individual
connections within a single
application and use the
appropriate connection for
each JDBC request. The
connections can all be to the
same database, or can be
to different databases in the
same Derby system.

Remote client
applications can
establish the
multiple connections
desired.

Multi-User

Multiple applications (or
JVMSs) accessing the same
Derby database. Each user
application has its own
connection or connections
to the database.

Not possible. Only one
application can access a
database at a time, and only
one application can access
a specific system at a time.
When using a pre-1.4 JVM,
Derby might not prevent
multiple applications from
concurrently accessing the
same Derby system, but

do not allow this because
such access can corrupt the
databases involved.

Only one server
should access a
database at a time.
Multiple remote
client applications
can access the
same server, and
thus can access
the same database
at the same time
through that server.

Multi-user database access

Multi-user database access is possible if Derby is running inside a server framework.

If more than one client application tries to modify the same data, the connection that
gets the table first gets the lock on the data (either specific rows or the entire table).
The second connection has to wait until the first connection commits or rolls back the
transaction in order to access the data. If two connections are only querying and not
modifying data, they can both access the same data at the same time because they can
each get a shared lock.

Multiple connections from a single application

A single application can work with multiple Connections to the same database and assign
them to different threads.

You can avoid concurrency and deadlock problems in your application in several ways:

¢ Use the TRANSACTION_READ_ COMMITTED isolation level and turn on row-level
locking (the defaults).

88

Java DB Developer's Guide

» Beware of deadlocks caused by using more than one Connection in a single thread
(the most obvious case). For example, if the thread tries to update the same table
from two different Connect i ons, a deadlock can occur.

« Assign Connections to threads that handle discrete tasks. For example, do not have
two threads update the Hotels table. Have one thread update the Hotels table and a
different one update the Groups table.

« If threads access the same tables, commit transactions often.

« Multi-threaded Java applications have the ability to self-deadlock without even
accessing a database, so beware of that too.

« Use nested connections to share the same lock space.

Working with multiple threads sharing a single connection

JDBC allows you to share a single Connection among multiple threads.

Pitfalls of sharing a connection among threads

Here is a review of the potential pitfalls of sharing a single Connection among multiple
threads.

« Committing or rolling back a transaction closes all open ResultSet objects and
currently executing Statements, unless you are using held cursors.

If one thread commits, it closes the Statements and ResultSets of all other threads
using the same connection.

« Executing a Statement automatically closes any existing open ResultSet generated
by an earlier execution of that Statement.

If threads share Statements, one thread could close another's ResultSet.

In many cases, it is easier to assign each thread to a distinct Connection. If thread

A does database work that is not transactionally related to thread B, assign them to
different Connections. For example, if thread A is associated with a user input window
that allows users to delete hotels and thread B is associated with a user window that
allows users to view city information, assign those threads to different Connections. That
way, when thread A commits, it does not affect any ResultSets or Statements of thread
B.

Another strategy is to have one thread do queries and another thread do updates.
Queries hold shared locks until the transaction commits in SERIALIZABLE isolation
mode; use READ_COMMITTED instead.

Yet another strategy is to have only one thread do database access. Have other threads
get information from the database access thread.

Multiple threads are permitted to share a Connection, Statement, or ResultSet. However,
the application programmer must ensure that one thread does not affect the behavior of
the others.

Recommended Practices
Here are some tips for avoiding unexpected behavior:

« Avoid sharing Statements (and their Resul t Set s) among threads.

« Each time a thread executes a Statement, it should process the results before
relinquishing the Connect i on.

« Each time a thread accesses the Connection, it should consistently commit or not,
depending on application protocol.

« Have one thread be the "managing"” database Connection thread that should
handle the higher-level tasks, such as establishing the Connect i on, committing,

89

Java DB Developer's Guide

rolling back, changing Connect i on properties such as auto-commit, closing the
Connect i on, shutting down the database (in an embedded environment), and so
on.

» Close ResultSets and St at enent s that are no longer needed in order to release
resources.

Multi-thread programming tips

You may be sharing a Connection among multiple threads because you have
experienced poor concurrency using separate transactions.

Here are some tips for increasing concurrency:

« Use row-level locking.

« Use the TRANSACTION_READ_COMMITTED isolation level.

« Avoid queries that cannot use indexes; they require locking of all the rows in the
table (if only very briefly) and might block an update.

In addition, some programmers might share a statement among multiple threads to avoid
the overhead of each thread's having its own. Using the single statement cache, threads
can share the same statement from different connections. For more information, see
"Using the statement cache" in Tuning Java DB.

Example of threads sharing a statement

This example shows what can happen if two threads try to share a single Statement.

Prepar edSt at enent ps = conn. pr epar eSt at enment (
"UPDATE account SET bal ance = balance + ? WHERE id = ?");
/* now assunme two threads T1, T2 are given this
java. sql . Prepar edSt at ement obj ect and that the foll owi ng events
happen in the order shown (pseudojava code)*/
Tl - ps.setBigDecinal (1, 100.00);
Tl - ps.setlLong(2, 1234);
T2 - ps.setBigDecinmal (1, -500.00);
/1 *** At this point the prepared statenent has the paraneters
// -500.00 and 1234
/1 T1 thinks it is adding 100.00 to account 1234 but actually
/1 it is subtracting 500.00
T1 - ps. executeUpdate();
T2 - ps.setlong(2, 5678);
/1 T2 executes the correct update
T2 - ps.executeUpdate();
/* Also, the auto-commt node of the connection can |ead
to sonme strange behavior. */

If it is absolutely necessary, the application can get around this problem with Java
synchronization.

If the threads each obtain their own PreparedStatement (with identical text), their

set XXX calls do not interfere with each other. Moreover, Derby is able to share the same
compiled query plan between the two statements; it needs to maintain only separate
state information. However, there is the potential for confusion in regard to the timing of
the commit, since a single commit commits all the statements in a transaction.

Working with database threads in an embedded environment

Do notuse i nt er rupt calls to notify threads that are accessing a database, because
Derby will catch the i nt er r upt call and close the connection to the database. Use
wai t and noti fy calls instead.

90

Java DB Developer's Guide

This will not happen in a client/server environment, but if you want your application to
work in either environment it is good practice to follow this rule.

There are also special considerations when working with more than one database thread
in an application.

Working with Derby SQLEXxceptions in an application

JDBC generates exceptions of the type java.sql.SQLException. If your application

runs on JDK 1.6 or higher, the exceptions will be the refined subtypes of
java.sql.SQLException introduced by JDBC4. To see the exceptions generated by Derby,
retrieve and process the SQLExcept i ons in a catch block.

Information provided in SQL Exceptions
Derby provides the message, SQLState values, and error codes in SQL exceptions.

Use the get SQLSt at e and get Message methods to view the SQLSt at e and error
messages. Use get Er r or Code to see the error code. The error code defines the
severity of the error and is not unique to each exception.

Note: Severity is not standardized in Derby. Applications should not depend on the
severity returned from SQL exceptions.

Applications should also check for and process java.sql.SQLWarnings, which are
processed in a similar way. Derby issues an SQLWar ni ng if the cr eat e=t r ue attribute
is specified and the database already exists.

Example of processing SQLExceptions

A single error can generate more than one SQLException. Use a loop and the
get Next Except i on method to process all SQLExcept i ons in the chain. In many
cases, the second exception in the chain is the pertinent one.

The following is an example:

catch (Throwabl e e) {
Systemout. println("exception thrown:");
errorPrint(e);
}
static void errorPrint(Throwabl e e) {
if (e instanceof SQ.Exception)
SQLExcepti onPri nt ((SQLException)e);
el se
Systemout.println("A non-SQ error: " + e.toString());

}
static void SQ.ExceptionPrint(SQException sqgle) {
while (sqle !'=null) {
Systemout. println("\n---SQ.Exception Caught---\n");

Systemout. println("SQ.Stat e: " + (sqle).getSQState());
Systemout.println("Severity: " + (sqgle).getErrorCode());
Systemout. println("Message: " + (sgle).getMssage());

sql e. print StackTrace();
sql e = sql e. get Next Exception();

}

If your application runs on JDK 1.4 or higher, then the SQLException may wrap another,
triggering exception, like an IOException. To inspect this additional, wrapped error, call
the SQLEXxception's getCause method.

See also "Derby Exception Messages and SQL States", in the Java DB Reference
Manual.

91

Java DB Developer's Guide

Using Derby as a J2EE resource manager

J2EE, or the Java 2 Platform, Enterprise Edition, is a standard for development of
enterprise applications based on reusable components in a multi-tier environment. In
addition to the features of the Java 2 Platform, Standard Edition (J2SE), J2EE adds
support for Enterprise Java Beans (EJBs), Java Server Pages (JSPs), Servlets, XML and
many more. The J2EE architecture is used to bring together existing technologies and
enterprise applications in a single, manageable environment.

Derby is a J2EE-conformant component in a distributed J2EE system. As such, it is one
part of a larger system that includes, among other things, a JNDI server, a connection
pool module, a transaction manager, a resource manager, and user applications. Within
this system, Derby can serve as the resource manager.

For more information on J2EE and how to work in this environment, see the J2EE
specification available at http://java.sun.com/j2ee/docs.html.

Note: This chapter does not show you how to use Derby as a Resource Manager.
Instead, it provides details specific to Derby that are not covered in the specification. This
information is useful to programmers developing other modules in a distributed J2EE
system, not to end-user application developers.

In order to qualify as a resource manager in a J2EE system, J2EE requires these basic
areas of support. These three areas of support involve implementation of APIS and are
described in "J2EE Compliance: Java Transaction API and javax.sqgl Extensions" in the
Java DB Reference Manual.

This chapter describes the Derby classes that implement the APIs and provides some
implementation-specific details.

Classes that pertain to resource managers
Derby provides two variants of each DataSource interface defined by the JDBC API.

Applications that run on the J2SE 1.4 or 1.5 platform must use the first variant.
Applications that run on the Java SE 6 platform can use either of the two variants.
However, the DataSource methods specific to the JDBC 4 API are available only from the
second variant (the one whose class name ends with "40").

If an application is running on the Java SE 6 platform, all connection objects returned
from the DataSource will be JDBC 4 connection objects, regardless of which DataSource
variant is in use.

The Derby implementation classes for the DataSource interfaces are as follows:

 org.apache.derby.jdbc.EmbeddedDataSource and
org.apache.derby.jdbc.EmbeddedDataSource40

Implements the javax.sgl.DataSource interface, which a JNDI server can reference.

Typically this is the object that you work with as a DataSource.
 org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource and

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40

Implements the javax.sgl.ConnectionPoolDataSource interface. A factory for

PooledConnection objects.
 org.apache.derby.jdbc.EmbeddedXADataSource and

org.apache.derby.jdbc.EmbeddedXADataSource40

Derby's implementation of the javax.sql.XADataSource interface.

92

Java DB Developer's Guide
See the javadoc for each class for more information.

Getting a DataSource

Normally, you can simply work with the interfaces for javax.sql.DataSource,
javax.sgl.ConnectionPoolDataSource, and javax.sgl.XADataSource, as shown in the
following examples.

If your application is running on the Java SE 6 platform
and if you would like to call DataSource nethods specific
to the JDBC 4 APl (for exanple, isWapperFor), use the
JDBC 4 variants of these cl asses:

or g. apache. der by. j dbc. EnbeddedConnect i onPool Dat aSour ce40
or g. apache. der by. j dbc. EnbeddedDat aSour ce40
or g. apache. der by. j dbc. EnheddedXADat aSour ce40

B e
~—m— e~~~

i mport org. apache. derby. j dbc. EnbeddedConnect i onPool Dat aSour ce;
i mport org. apache. derby. j dbc. EnbeddedDat aSour ce;
i nport org. apache. derby. j dbc. EnbeddedXADat aSour ce;

j avax. sql . Connect i onPool Dat aSour ce cpds = new
EnbeddedConnect i onPool Dat aSour ce() ;

j avax. sql . Dat aSour ce ds = new EnbeddedDat aSour ce();

j avax. sql . XADat aSour ce xads = new EnbeddedXADat aSour ce();

Derby provides six properties for a DataSource. These properties are in
org.apache.derby.jdbc.EmbeddedDataSource. They are:

+ DatabaseName

This mandatory property must be set. It identifies which database to access.
To access a database named wombat located at /locall/db/wombat, call
setDatabaseName("/locall/db/wombat™) on the data source object.

» CreateDatabase

Optional. Sets a property to create a database the next time the getConnection
method of a data source object is called. The string createString is always "create"
(or possibly null). (Use the method setDatabaseName() to define the name of the
database.)

» ShutdownDatabase

Optional. Sets a property to shut down a database. The string shutDownString is
always "shutdown" (or possibly null). Shuts down the database the next time the
getConnection method of a data source object is called.

« DataSourceName

Optional. Name for ConnectionPoolDataSource or XADataSource. Not used by the
data source object. Used for informational purposes only.
 Description

Optional. Description of the data source. Not used by the data source object. Used
for informational purposes only.
» connectionAttributes

Optional. Connection attributes specific to Derby. See the Java DB Reference
Manual for a more information about the attributes.

Shutting down or creating a database

If you need to shut down or create a database, it is easiest just to work with the
Derby-specific implementations of interfaces, as shown in these examples.

93

Java DB Developer's Guide
j avax. sql . XADat aSour ce xads = makeXADat aSour ce(mydb, true);

/'l exanpl e of setting property directory using

/1 Derby 's XADat aSource obj ect

i mport org. apache. derby. j dbc. EnbeddedXADat aSour ce;

i mport javax. sql . XADat aSour ce;

/1 dbnane is the database nane

/1 if create is true, create the database if not already created
XADat aSour ce makeXADat aSource (String dbname, bool ean create)

{
/1
/1 1f your application runs on JDK 1.6 or higher, then
/1 you will use the JDBC4 variant of this class:
/| EnmbeddedXADat aSour ce40.
/1
EnbeddedXADat aSour ce xads = new EnbeddedXADat aSour ce() ;
/1 use Derby 's setDatabaseNane cal l
xads. set Dat abaseNane(dbnane) ;
if (create)
xads. set Cr eat eDat abase("create");
return xads;
}

Setting the property does not create or shut down the database. The database is not
actually created or shut down until the next connection request.

94

Java DB Developer's Guide

Derby and Security

Derby can be deployed in a number of ways and in a number of different environments.
The security needs of the Derby system are also diverse.

Derby supplies or supports the following optional security mechanisms:

User authentication

Derby verifies user names and passwords before permitting them access to the
Derby system.
User authorization

A means of granting specific users permission to read a database or to write to a
database.
Disk encryption

A means of encrypting Derby data stored on disk.
Validation of Certificate for Signed Jar Files

In a Java 2 environment, Derby validates certificates for classes loaded from signed
jar files.
Network encryption and authentication

Derby network traffic may be encrypted with SSL/TLS. SSL/TLS certificate
authentication is also supported. See "Network encryption and authentication with
SSL/TLS" in the Java DB Server and Administration Guide for details.

The following figure shows some of the Derby security mechanisms at work in a
client/server environment. User authentication is performed by accessing an LDAP
Directory Service. The data in the database is not encrypted in this trusted environment.

Figure 10. Example of using an LDAP Directory Service in a trusted environment.

95

Java DB Developer's Guide

— §_|:|

) S

Client Application Metwork [S5L)

Permission o read/write data

Connectivity G
framenwork

Derty Data not encrypted
{ frusted emdronment)

il

Uiser authentication

i

LDAF Directory Service

The following figure shows how another Derby security mechanism, disk encryption,
protects data when the recipient might not know how to protect data. It is useful for
databases deployed in an embedded environment.

Figure 11. Example of using disk encryption to protect data.

=Ni=

Disk encryption
Application Dartby

Configuring security for your environment

In most cases, you enable Derby's security features through the use of properties. It is
important to understand the best way of setting properties for your environment.

Derby does not come with a built-in superuser. For that reason, be careful when
configuring Derby for user authentication and user authorization.

1. When first working with security, work with system-level properties only so that you
can easily override them if you make a mistake.
2. Be sure to create at least one valid user, and grant that user full (read-write) access.

For example, you might always want to create a user called sa with the password
derby while you are developing.

96

Java DB Developer's Guide

3.

Test the authentication system while it is still configured at the system level. Be
absolutely certain that you have configured the system correctly before setting the
properties as database-level properties.

Before disabling system-level properties (by setting derby.database.propertiesOnly
to true), test that at least one database-level read-write user (such as sa) is valid.
If you do not have at least one valid user that the system can authenticate, you will
not be able to access your database.

Configuring security in a client/server environment

This procedure requires a system with multiple databases and some administrative
resources.

1.

2.

Configure security features as system properties. See Scope of properties and
Setting system-wide properties.

Provide administrative-level protection for the derby.properties file and Derby
databases. For example, you can protect these files and directories with operating
system permissions and firewalls.

Turn on user authentication for your system. All users must provide valid user IDs
and passwords to access the Derby system. If you are using Derby's built-in users,
configure users for the system in the derby.properties file. Provide the protection for
this file.

> Important: Derby's built-in authentication mechanism is suitable only for
development and testing purposes. It is strongly recommended that production
systems rely on LDAP or a user-defined class for authentication. It is also strongly
recommended that production systems protect network connections with SSL/TLS.
Configure user authorization for sensitive databases in your system. Only
designated users will be able to access sensitive databases. You typically configure
user authorization with database-level properties. It is also possible to configure
user authorization with system-level properties. This is useful when you are
developing systems or when all databases have the same level of sensitivity.
Check and if necessary configure your Derby network security according to your
environment. See the section "Network client security" in the Java DB Server and
Administration Guide.

Configuring security in an embedded environment

In an embedded environment, typically there is only one database per system and there
are no administrative resources to protect databases.

To configure security in an embedded environment:

1.
2.

Encrypt the database when you create it.

Configure all security features as database-level properties. These properties are
stored in the database (which is encrypted). See Scope of properties and Setting
database-wide properties for more information.

Turn on protection for database-level properties so that they cannot be overridden
by system properties by setting the derby.database.propertiesOnly property to
TRUE. See the Java DB Reference Manual for details on this property.

To prevent unauthorized users from accessing databases once they are booted,
turn on user authentication for the database and configure user authorization for the
database.

If you are using Derby's built-in users, configure each user as a database-level
property so that user names and passwords can be encrypted.

> Important: Derby's built-in authentication mechanism is suitable only for
development and testing purposes. It is strongly recommended that production

97

Java DB Developer's Guide

systems rely on LDAP or a user-defined class for authentication. It is also strongly
recommended that production systems protect network connections with SSL/TLS.

Working with user authentication

Derby provides support for user authentication. User authentication means that Derby
authenticates the name and password for a user before allowing that user access to the
system.

When user authentication is enabled (which it is not by default), the user requesting a
connection must provide a valid name and password, which Derby verifies against the
repository of users defined for the system. After Derby authenticates the user, it grants
the user access to the Derby system but not necessarily access to the database made in
the connection request. In the Derby system, access to a database is determined by user
authorization.

For user authentication, Derby allows you to provide a repository of users in a number
of different ways. For example, you can hook Derby up to an external directory service
elsewhere in your enterprise, create your own directory service, or use Derby's simple
mechanism for creating a built-in repository of users.

> Important: Derby's built-in authentication mechanism is suitable only for development
and testing purposes. It is strongly recommended that production systems rely on an
external directory service such as LDAP or a user-defined class for authentication. It is
also strongly recommended that production systems protect network connections with
SSL/TLS.

You can define a repository of users for a particular database or for an entire system,
depending on whether you use system-wide or database-wide properties.

When Derby user authentication is enabled and Derby uses an external directory service,
the architecture looks something like that shown in the figure below.

Figure 12. Derby user authentication using an external service. The application
can be a single-user application with an embedded Derby engine or a multi-user
application server.

Application or Derby
application server &

Derby External directory
User authentication service

Derby always runs embedded in another Java application, whether that application is a
single-user application or a multiple-user application server or connectivity framework.

98

Java DB Developer's Guide
A database can be accessed by only one JVM at a time, so it is possible to deploy a

system in which the application in which Derby is embedded, not Derby, handles the user
authentication by connecting to an external directory service.

Figure 13. The application provides the user authentication using an external
service. The application can be a single-user application with an embedded Derby
engine or a multi-user application server.

External directory service

Application User Application or Derby
authentication application server

Enabling user authentication

To enable user authentication, set the derby.connection.requireAuthentication property
to true. Otherwise, Derby does not require a user name and password. You can set this
property as a system-wide property or as a database-wide property.

For a multi-user product, you would typically set it for the system in the derby.properties
file for your server, since it is in a trusted environment.

Note: If you start a Derby system with user authentication enabled but without defining

at least one user, you will not be able to shut down the system gracefully. When Derby is
running in a connectivity server and user authentication is turned on, stopping the server
requires a user name and password. You will need to alter shutdown scripts accordingly.

Note: Additionally, if you create and start a Derby system with user authentication and
SQL authorization both enabled, or plan to enable them later, you should make sure you
create the database by connecting as the user that is to become the database owner. If
you neglect to supply a user when the database is created, the database owner will by
default become "APP". If you later enable both authentication and SQL authorization and
"APP" is a not valid user name, you will not be able to perform operations restricted to
the database owner, including shutting down the database (as opposed to the full system
which may currently be shut down by any authenticated user, see previous note). Nor will
you be able to (re)encrypt the database nor perform a full upgrade of it.

Defining users

99

Java DB Developer's Guide
Derby provides several ways to define the repository of users and passwords. To
specify which of these services to use with your Derby system, set the property
derby.authentication.provider to the appropriate value as discussed here.

Setting the property as a system-wide property creates system-wide users. Setting the
property as a database-wide property creates users for a single database only.

« External directory service: LDAP directory service. This includes Windows NT
domain user authentication through the Netscape NT Synchronization Service.
» User-defined class
 Built-in Derby users
Note: Shutting down the Derby system (for example, using the shutdown=true form of
the connection URL without specifying a particular database) when user authentication is
turned on requires that you define at least one user as a system-wide user.

External directory service

A directory service stores names and attributes of those names. A typical use for a
directory service is to store user names and passwords for a computer system. Derby
uses the Java naming and directory interface (JNDI) to interact with external directory
services that can provide authentication of users' names and passwords.

LDAP directory service

You can allow Derby to authenticate users against an existing LDAP directory service
within your enterprise. LDAP (lightweight directory access protocol) provides an open
directory access protocol running over TCP/IP. An LDAP directory service can quickly
authenticate a user's name and password.

The runtime library provided with the Java Development Kit (JDK) includes libraries that
allow you to access an LDAP directory service.

To use an LDAP directory service, set derby.authentication.provider to LDAP.
Examples of LDAP service providers include the 389 Directory Server and OpenLDAP.
Setting up Derby to use your LDAP directory service:

When specifying LDAP as your authentication service, you must specify what LDAP
server to use.

 derby.authentication.server

Set the property derby.authentication.server to the URL to the LDAP server. For
example:

der by. aut henti cati on. server =l dap: // godf rey: 389/

The LDAP server may be specified using just the server name, the server name and
its port number separated by a colon, or a I[dap URL. If a full URL is not provided,
Derby will by default use unencrypted LDAP - to use SSL encrypted LDAP an URL
starting with "ldaps://" must be provided.

Also note that support for Idaps:// URLSs requires that Derby runs on Java 1.4.2 or
higher.
Guest access to search for DNs:

In an LDAP system, users are hierarchically organized in the directory as a set of
entries. An entry is a set of name-attribute pairs identified by a unique name, called a DN
(distinguished name).

100

Java DB Developer's Guide

An entry is unambiguously identified by a DN, which is the concatenation of selected
attributes from each entry in the tree along a path leading from the root down to the
named entry, ordered from right to left. For example, a DN for a user might look like this:

cn=mary, ou=Peopl e, o=exanpl e. com
ui d=mary, ou=Peopl e, o=exanpl e. com
The allowable entries for the name are defined by the entry's objectClass.

An LDAP client can bind to the directory (successfully log in) if it provides a user ID and
password. The user ID must be a DN, the fully qualified list of names and attributes. This
means that the user must provide a very long name.

Typically, the user knows only a simple user name (e.g., the first part of the DN above,
mary). With Derby, you do not need the full DN, because an LDAP client (Derby) can go
to the directory first as a guest or even an anonymous user, search for the full DN, then
rebind to the directory using the full DN (and thus authenticate the user).

Derby typically initiates a search for a full DN before binding to the directory using the full
DN for user authentication. Derby does not initiate a search in the following cases:

* You have set derby.authentication.ldap.searchFilter to derby.user.
* A user DN has been cached locally for the specific user with the
derby.user.UserName property.

For more information, see "derby.authentication.ldap.searchFilter" in the Java DB
Reference Manual.

Some systems permit anonymous searches; other require a user DN and password. You
can specify a user's DN and password for the search with the properties listed below.

In addition, you can limit the scope of the search by specifying a filter (definition of the
object class for the user) and a base (directory from which to begin the search) with the
properties listed below.

 derby.authentication.ldap.searchAuthDN (optional)

Specifies the DN with which to bind (authenticate) to the server when searching
for user DNs. This parameter is optional if anonymous access is supported by your
server. If specified, this value must be a DN recognized by the directory service,
and it must also have the authority to search for the entries.

If not set, it defaults to an anonymous search using the root DN specified by the
derby.authentication.ldap.searchBase property. For example:

ui d=guest , o=exanpl e. com
« derby.authentication.ldap.searchAuthPW (optional)

Specifies the password to use for the guest user configured above to bind to the
directory service when looking up the DN. If not set, it defaults to an anonymous
search using the root DN specified by the derby.authentication.ldap.searchBase

property.

myPasswor d
« derby.authentication.ldap.searchBase (optional)

Specifies the root DN of the point in your hierarchy from which to begin a guest
search for the user's DN. For example:

ou=peopl e, o=exanpl e. com

When using Netscape Directory Server, set this property to the root DN, the special
entry to which access control does not apply (optional).

101

Java DB Developer's Guide
To narrow the search, you can specify a user's objectClass.
 derby.authentication.ldap.searchFilter (optional)

Set derby.authentication.ldap.searchFilter to a logical expression that specifies what
constitutes a user for your LDAP directory service. The default value of this property
is obj ect ass=i net Or gPer son. For example:

obj ect O ass=per son

See the Java DB Reference Manual for details on all these properties.
LDAP performance issues:

For performance reasons, the LDAP directory server should be in the same LAN as
Derby. Derby does not cache the user's credential information locally and thus must
connect to the directory server every time a user connects.

Connection requests that provide the full DN are faster than those that must search for
the full DN.

LDAP restrictions:
Derby does not support LDAP groups.
JNDI-specific properties for external directory services

Derby allows you to set a few advanced JNDI properties, which you can set in any of the
supported ways of setting Derby properties. Typically you would set these at the same
level (database or system) for which you configured the external authentication service.

The list of supported properties can be found in Appendix A: JNDI

Context Environment in the Java Naming and Directory API at
http://java.sun.com/products/jndi/reference/api/index.html. The external directory service
must support the property.

Each JNDI provider has its set of properties that you can set within the Derby system.

For example, you can set the property java.naming.security.authentication to allow user
credentials to be encrypted on the network if the provider supports it. You can also
specify that SSL be used with LDAP (LDAPS).

User-defined class

Set derby.authentication.provider to the full name of a class that implements the public
interface org.apache.derby.authentication.UserAuthenticator.

By writing your own class that fulfills some minimal requirements, you can hook Derby

up to an external authentication service other than LDAP. To do so, specify an external
authentication service by setting the property der by. aut hent i cati on. provi der toa
class name that you want Derby to load at startup.

The class that provides the external authentication service must implement the public
interface org.apache.derby.authentication.UserAuthenticator and throw exceptions of the
type java.sgl.SQLException where appropriate.

Using a user-defined class makes Derby adaptable to various haming and directory
services.

Example of setting a user-defined class:

A very simple example of a class that implements the
org.apache.derby.authentication.UserAuthenticator interface.

i mport org. apache. derby. aut henti cati on. User Aut henti cat or;
import java.io.FilelnputStream

102

Java DB Developer's Guide

inmport java.util.Properties;
i mport java.sql.SQ.Excepti on;
/**
* A sinmple exanple of a specialized Authentication schene.
The system property 'derby.connection.requireAuthentication’
must be set
to true and 'derby. authentication. provider' nust
contain the full class name of the overriden authentication
schene, i.e., the nanme of this class.

* 0% Xk ok Ok Ok F

@ee org. apache. der by. aut henti cati on. User Aut hent i cat or
/

public class M/Aut henti cati onSchenel npl inpl enents

User Aut henti cat or {
private static final String USERS CONFI G FI LE = "nyUsers. cfg";
private static Properties usersConfi g;

/1 Constructor

/1l W get passed sone Users properties if the
//aut hentication service could not set them as
[/ part of System properties.

I

publ i c MyAut henti cati onSchenel mpl () {

/* static block where we |oad the users definition froma
users configuration file.*/

static {

/* load users config file as Java properties
File must be in the same directory where
Derby gets started.

(otherwi se full path nust be specified) */
FilelnputStreamin = null;
usersConfig = new Properties();

try {

in = new Fil el nput Stream USERS_CONFI G _FI LE) ;
usersConfig.load(in);
in.close();
} catch (java.io.lCOException ie) {
/1 No Config file. Raise error nessage
Systemerr. println(
"WARNI NG Error during Users Config file
retrieval");

Systemerr.println("Exception: " + ie);

}
}
/**
* Aut henticate the passed-in user's credential s.
* A nore conplex class could nake calls
* to any external users directory.
*
* @ar am user Nane The user's nane
* @ar am user Passwor d The user's password
* @ar am dat abaseNane The dat abase
* @aram i nfoAddi ti onal jdbc connection info.
* @xception SQLException on failure
*/

publ i c bool ean aut henti cateUser(String user Nane,
String userPassword,
String dat abaseNane,
Properties info)
throws SQLException

/* Specific Authentication schene |ogic.

If user has been authenticated, then sinply return.
I f user nane and/or password are invalid,

then rai se the appropriate exception.

This exanple allows only users defined in the

103

Java DB Developer's Guide
users config properties object.

Check if the passed-in user has been defined for the system
We expect to find and match the property corresponding to
the credentials passed in. */
if (userNane == null)

/1l W do not tolerate 'guest' user for now.

return fal se;
I
/1 Check if user exists in our users config (file)
/| properties set.
/1 If we did not find the user in the users config set, then
[/l try to find if the user is defined as a System property.
I
String actual User Passwor d;
act ual User Password = usersConfi g. get Property(user Nane) ;

i f (actual UserPassword == null)
act ual User Password = Syst em get Property(user Nane) ;
i f (actual UserPassword == nul |)

/1 no such passed-in user found
return false;
/1 check if the password natches
i f (!actual User Password. equal s(user Password))
return fal se;
/1 Now, check if the user is a valid user of the database
i f (databaseNane != null)
{
/[* if database users restriction lists present, then check
if there is one for this database and if so,
check if the user is a valid one of that database.
For this exanple, the only user we authorize in database
DarkSide is user 'DarthVader'. This is the only database
users restriction list we have for this exanple.
We authorize any valid (login) user to access the
OTHER dat abases in the system
Not e that dat abase users ACLs could be set in the sane
properties file or a separate one and inplemented as you
wi sh. */
/1
i f (databaseNane. equal s("DarkSide")) {
/1 check if user is a valid one.
if (!userNane. equal s("DarthVader"))
/1 This user is not a valid one of the passed-in
return fal se;

}

/'l The user is a valid one in this database
return true;

Built-in Derby users
Derby provides a simple, built-in repository of user names and passwords.

> Important: Derby's built-in authentication mechanism is suitable only for development
and testing purposes. It is strongly recommended that production systems rely on

LDAP or a user-defined class for authentication. It is also strongly recommended that
production systems protect network connections with SSL/TLS.

To use the built-in repository, set derby.authentication.provider to BUILTIN. Using built-in
users is an alternative to using an external directory service such as LDAP.

der by. aut henti cati on. provi der =BUl LTI N

You can create user names and passwords for Derby users by specifying them with the
derby.user.UserName property.

104

Java DB Developer's Guide

Note: These user names are case-sensitive for user authentication. User names are
SQL92ldentifiers. Delimited identifiers are allowed:

der by. user. "FRed" =j ava

Note: For passwords, it is a good idea not to use words that would be easily guessed,
such as a login name or simple words or numbers. A password should be a mix of
numbers and upper- and lowercase letters.

Database-level properties

When you create users with database-level properties, those users are available to the
specified database only.

You set the property once for each user. To delete a user, set that user's password to
null.

-- adding the user sa with password ' derbypass'
CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(

‘derby. user.sa', 'derbypass')
-- adding the user mary with password 'little7xyl anb'
CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
"derby.user.nmary', 'little7xylanb')

-- renoving mary by setting password to null
CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
"derby.user.mary', null)

System-level properties

When you create users with system-level properties, those users are available to all
databases in the system.

You set the value of this system-wide property once for each user, so you can set it
several times. To delete a user, remove that user from the file.

You can define this property in the usual ways -- typically in the derby.properties file. For
more information about setting properties, see Working with Derby properties.

Here is a sample excerpt from the derby.properties file:

Users definition

#

der by. user. sa=der bypass

derby. user. mary=littl e7xyl anb

List of user authentication properties
This table summarizes the various properties related to user authentication.

Table 11. User authentication properties

Property Name Use
derby.connection.requireAuthentication Turns on user authentication.
derby.authentication.provider Specifies the kind of user
authentication to use.
derby.authentication.server For LDAP user authentication,
specifies the location of the server.
derby.authentication.ldap.searchAuthDN, Configures the way that DN searches
derby.authentication.ldap.searchAuthPW, are performed.

derby.authentication.ldap.searchFilter, and
derby.authentication.ldap.searchBase

105

Java DB Developer's Guide

Property Name Use

derby.user.UserName Creates a user name and password for
the built-in user repository in Derby.

derby.authentication.builtin.algorithm Specifies the message digest
algorithm to use to protect the
passwords that are stored in the
database when using built-in
authentication.

java.naming.* JNDI properties. See Appendix A
in the JNDI API reference for more
information about these properties.

> Important: Derby's built-in authentication mechanism is suitable only for development
and testing purposes. It is strongly recommended that production systems rely on

LDAP or a user-defined class for authentication. It is also strongly recommended that
production systems protect network connections with SSL/TLS.

Programming applications for Derby user authentication

This section discusses programming user authentication into applications for use with
Derby.

Programming the application to provide the user and password

In the DriverManager.getConnection call, an application can provide the user name and
password in the following ways.

« Separately as arguments to the following signature of the method:
getConnection(String url, String user, String password)

Connecti on conn = Driver Manager. get Connecti on(
"jdbc: derby: myDB", "mary", "little7xylanb");
« As attributes to the database connection URL

Connecti on conn = Driver Manager. get Connecti on(
"j dbc: der by: myDB; user =mary; password=littl e7xyl anb");
< By setting the user and password properties in a Properties object as with other
connection URL attributes

Properties p = new Properties();

p. put ("user", "mary");

p. put ("password", "little7xylamb");

Connecti on conn = Driver Manager. get Connecti on(

"j dbc: der by: nyDB", p);

Note: The password is not encrypted. When you are using Derby in the context of a
server framework, the framework should be responsible for encrypting the password
across the network. If your framework does not encrypt the password, consider using
SSL.

For information about the treatment of user names within the Derby system, see Users
and authorization identifiers.

Login failure exceptions with user authentication

If user authentication is turned on and a valid user name and password are not provided,
SQLException 08004 is raised.

ERROR 08004: Connection refused : Invalid authentication.

106

Java DB Developer's Guide

Users and authorization identifiers

User names within the Derby system are known as authorization identifiers. The
authorization identifier is a string that represents the name of the user, if one was
provided in the connection request.

For example, the built-in function CURRENT_USER returns the authorization identifier for
the current user.

Once the authorization identifier is passed to the Derby system, it becomes an
SQL92Identifier. SQL921 dent i fi er s-the kind of identifiers that represent database
objects such as tables and columns-are case-insensitive (they are converted to all
caps) unless delimited with double quotes, are limited to 128 characters, and have other
limitations.

User names must be valid authorization identifiers even if user authentication is turned
off, and even if all users are allowed access to all databases.

For more information about SQL92ldentifiers, see the Java DB Reference Manual.

Authorization identifiers, user authentication, and user authorization

When working with both user authentication and user authorization, you need to
understand how user names are treated by each system.

If an external authentication system is used, the conversion of the user's name to an
authorization identifier does not happen until after authentication has occurred but before
user authorization. Imagine, for example, a user named Fred.

< Within the user authentication system, Fred is known as FRed. Your external user
authorization service is case-sensitive, so Fred must always type his name that
way.

Connection conn = DriverManager. get Connecti on(
"jdbc: derby: myDB", "FRed", "flintstone");
» Within the Derby user authorization system, Fred becomes a case-insensitive
authorization identifier. Fred is known as FRED.
* When specifying which users are authorized to access the accounting database,
you must list Fred's authorization identifier, FRED (which you can type as FRED,
FREd, or fred, since the system automatically converts it to all-uppercase).

der by. ful | AccessUser s=sa, FRED, mary

Let's take a second example, where Fred has a slightly different name within the user
authentication system.

« Within the user authentication system, Fred is known as Fred!. You must now put
double quotes around the name, because it is not a valid SQL92I denti fi er.
(Derby knows to remove the double quotes when passing the name to the external
authentication system.)

Connecti on conn = Driver Manager. get Connecti on(
"jdbc: derby: nyDB", "\"Fred!\"", "flintstone");
» Within the Derby user authorization system, Fred becomes a case-sensitive
authorization identifier. Fred is known as Fred!.
* When specifying which users are authorized to access the accounting database,
you must list Fred's authorization identifier, "Fred!" (which you must always delimit
with double quotation marks).

derby. ful | AccessUsers=sa, "Fred!", manager

107

Java DB Developer's Guide

As shown in the first example, your external authentication system may be
case-sensitive, whereas the authorization identifier within Derby may not be. If your
authentication system allows two distinct users whose names differ by case, delimit all
user names within the connection request to make all user names case-sensitive within
the Derby system. In addition, you must also delimit user names that do not conform to
SQL92ldentifier rules with double quotes.

Database owner

The term database owner refers to the current authorization identifier when the database
is created, that is, the user creating the database. If you enable or plan to enable SQL
authorization, controlling the identity of the database owner becomes important.

When a database is created, the database owner of that database gets implicitly

set to the authorization identifier used in the connect operation which creates the
database, for example by supplying the URL attribute "user". Note that this applies
even if authentication is not (yet) enabled. In SQL, the built-in functions USER and the
equivalent CURRENT_USER return the current authorization identifier.

If the database is created without supplying a user (only possible if authentication is not
enabled), the database owner gets set to the default authorization identifier, "APP", which
is also the name of the default schema, see the section "SET SCHEMA statement" in the
Java DB Reference Manual.

The database owner has automatic SQL level permissions when SQL authorization is
enabled, see more about this in User authorizations.

To further enhance security, when bothauthentication and SQL authorization are enabled
for a database, Derby restricts some special powers to the database owner: only the
database owner is allowed to shut down the database, to encrypt or reencrypt the
database or to perform a full upgrade of it. These powers can not be delegated.

Attention: There is currently no way of changing the database owner once the database
is created. This means that if you plan to run with SQL authorization enabled, you should
make sure to create the database as the user you want to be the owner.

User names and schemas
User names can affect a user's default schema.

For information about user names and schemas, see "SET SCHEMA statement” in the
Java DB Reference Manual.

Exceptions when using authorization identifiers

Specifying an invalid authorization identifier in a database user authorization property
raises an exception. Specifying an invalid authorization identifier in a connection request
raises an exception.

User authorizations

When you specify user authorizations, Derby verifies that a user has been granted
permission to access a system, database, object, or SQL action.

There are two types of user authorization in Derby, connection authorization and SQL
authorization. Connection authorization specifies the access that users have to connect
to a system or database. SQL authorization controls the permissions that users have on

108

Java DB Developer's Guide

database objects or for SQL actions. You can set the user authorization properties in
Derby as system-level properties or database-level properties.

Set system-level user authorizations when you are developing applications, or when
you want to specify a secure default authorization for all users to connect to all of the
databases in the system.

There are several properties that you can set to control database-level user
authorizations. Some of the properties are general properties that set the access mode
for all users. Other properties are user specific properties that set the type of access for
specific user IDs.

The properties that affect authorization are:

e The der by. dat abase. def aul t Connect i onMode property controls the
default access mode. Use the der by. dat abase. def aul t Connecti onMbde
property to specify the default connection access that users have
when they connect to the database. If you do not explicitly set the
der by. dat abase. def aul t Connect i onMbode property, the default user
authorization for a database is fullAccess, which is read-write access.

e The der by. dat abase. ful | AccessUser s and
der by. dat abase. readOnl yAccessUser s properties are user specific
properties. Use these properties to specify the user IDs that have read-write access
and read-only access to a database.

e The der by. dat abase. sql Aut hori zat i on property enables SQL
standard authorization. Use the der by. dat abase. sql Aut hori zati on
property to specify if object owners can grant and revoke permission for
users to perform SQL actions on database objects. The default setting for
the der by. dat abase. sqgl Aut hori zat i on property is FALSE. When the
der by. dat abase. sql Aut hori zat i on property is set to TRUE, object owners
can use the GRANT and REVOKE SQL statements to set the user permissions for
specific database objects or for specific SQL actions.

If you do not specify the user authorizations for a specific user ID, the user ID inherits
whatever authorization is set as the default user authorization for the database.

Tip: If you set the der by. dat abase. def aul t Connect i onMode property to
noAccess or readOnlyAccess, you should allow at least one user read-write access.
Otherwise, depending on the default connection authorization you specify, you will
configure the database so that it cannot be accessed or changed.

How user authorization properties work together

The der by. dat abase. def aul t Connect i onMode property and the

der by. dat abase. sql Aut hori zat i on property work together. The default settings
for these properties allow anyone to access and drop the database objects that you
create. You can change the default access mode by specifying different settings for these
properties.

« When the der by. dat abase. sql Aut hori zat i on property is FALSE, the
ability to read from or write to database objects is determined by the setting
for the der by. dat abase. def aul t Connect i onMbde property. If the
der by. dat abase. def aul t Connect i onMbde property is set to readOnlyAccess,
users can access all of the database objects but they cannot update or drop the
objects.

« When the der by. dat abase. sql Aut hori zat i on property is TRUE, the ability
to read from or write to database objects is further restricted to the owner of the
database objects. The owner must grant permission for others to access the
database objects. No one but the owner of an object or the database owner can
drop the object.

« The access mode specified for the der by. dat abase. def aul t Connect i onMbde
property overrides the permissions that are granted by the owner of a database

109

Java DB Developer's Guide
object. For example, if a user is granted INSERT privileges on a table but the user
only has read-only connection authorization, the user cannot insert data into the
table.

Changes to connection authorization settings

Connection authorization properties are fixed for the duration of a connection. If you
change the connection authorization properties during a connection, those changes are
not in affect until you establish a new connection.

Setting the default connection access mode

Use the der by. dat abase. def aul t Connect i onMbde property to specify the default
type of access that users have when they connect to the database.

The valid settings for the der by. dat abase. def aul t Connect i onMbde property are:
* noAccess
» readOnlyAccess
« fullAccess

If you do not specify a setting for the der by. dat abase. def aul t Connecti onMbde
property, the default access setting is fullAccess.

To set the default connection access mode, specify the access in a CALL statement. For
example:

To specify read-write access for the system administrator userlD sa and the read-only
as the default access for anyone else who connects to the database, issue these CALL
statements:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. ful | AccessUsers', 'sa')

CALL SYSCS _UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. def aul t Connect i onivbde’
'readOnl yAccess')

To specify read-write access for the user ID Fred and no access for other users, issue
these CALL statements:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. ful | AccessUsers', 'Fred')

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(

' der by. dat abase. def aul t Connect i onMbde'
' noAccess')

Setting access for individual users

Use the der by. dat abase. ful | AccessUser s and
der by. dat abase. readOnl yAccessUser s properties to specify the user IDs that
have read-write access and read-only access to a database.

You can specify multiple user IDs by using a comma-separated list, with no spaces
between the comma and the next user ID.

To set the user authorizations for individual users, specify the access in a CALL
statement. For example:

To specify read-write access for the system administrator user ID sa and for the user ID
mari a, issue this CALL statement:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(

110

Java DB Developer's Guide
' der by. dat abase. ful | AccessUsers', 'sa,nmaria')

To specify read-only access for a guest user ID and for Fred, issue this CALL statement:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. readOnl yAccessUsers', 'qguest, Fred')

To specify read-write access for the user ID "Elena!”, use delimited identifiers for the user
ID. For example:

CALL SYSCS _UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. ful | AccessUsers', '"Elenal"")

Read-only and full access permissions

The actions that users can perform on a Derby database is determined by the type of
access that users have to the database objects.

The following table lists the actions that users can perform based on the type of access
that a user is granted on a database. These actions apply to regular databases, source
databases, and target databases.

Table 12. Actions that are authorized by type of access

Read-only
Action access Full access
Executing SELECT statements X X
Reading database properties X X
Loading database classes from | X X
jar files
Executing INSERT, UPDATE, or X
DELETE statements
Executing DDL statements X
Adding or replacing jar files X
Setting database properties X

User authorization exceptions
SQL exceptions are returned when errors occur with user authorizations.

Derby validates the database properties when you set the properties. An exception is
returned if you specify an invalid value when you set these properties.

If a user attempts to connect to a database but is not authorized to connect to that
database, the SQLException 04501 is returned.

If a user with read-only access attempts to write to a database, the SQLException 08004
- connection refused is returned.

Setting the SQL standard authorization mode

Use the der by. dat abase. sql Aut hori zat i on property to enable SQL standard
authorization.

The der by. dat abase. sql Aut hori zat i on property controls the ability for object
owners to grant and revoke permission for users to perform actions on database objects.
It also controls the ability for users to create, set, and drop roles.

The valid settings for the der by. dat abase. sql Aut hori zati on property are:

111

Java DB Developer's Guide

» TRUE
* FALSE

The default setting for the der by. dat abase. sqgl Aut hori zat i on property is FALSE.

The der by. dat abase. sql Aut hori zat i on property is usable only if the property
der by. connecti on. requi r eAut hent i cati on is also set to true, since SQL
authorization is of no value unless authentication is also enabled.

After you set the der by. dat abase. sqgl Aut hori zat i on property to TRUE, you
cannot set the property back to FALSE.

You can set the der by. dat abase. sql Aut hori zat i on property as a system property
or as a database property. If you set this property as a system property before you create
the databases, all new databases will automatically have SQL authorization enabled. If
the databases already exists, you can set this property only as a database property.

To enable SQL standard authorization for the entire system, set the
der by. dat abase. sql Aut hori zat i on property as a system property:

der by. dat abase. sqgl Aut hori zati on=true

To enable SQL standard authorization for a specific database, set the
der by. dat abase. sqgl Aut hori zat i on property as a database property:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. sql Aut hori zati on',
"true')

Using SQL standard authorization

When the SQL standard authorization mode is enabled, object owners can use the
GRANT and REVOKE SQL statements to set the user privileges for specific database
objects or for specific SQL actions. They can also use roles to administer privileges.

The SQL standard authorization mode is a SQL2003 compatible access control
system. You enable the SQL standard authorization mode by setting the
der by. dat abase. sql Aut hori zat i on property to TRUE.

While Derby has a simpler database access mode which can be set to provide users with
full, read-only, or no access authorization, this simpler access mode is less appropriate
for most client-server database configurations. When users or applications issue SQL
statements directly against the database, the Derby SQL authorization mode provides a
more precise mechanism to limit the actions that users can take on the database.

The GRANT statement is used to grant specific privileges to users or to roles, or to grant
roles to users or to roles. The REVOKE statement is used to revoke privileges and role
grants. The grant and revoke privileges are:

« DELETE

« EXECUTE

* INSERT

e SELECT

« REFERENCES

e TRIGGER

« UPDATE

When a table, view, function, or procedure is created, the person that creates the object
is referred to as the owner of the object. Only the object owner and the database owner
have full privileges on the object. No other users have privileges on the object until the
object owner grants privileges to them.

112

Java DB Developer's Guide

Another way of saying that privileges on objects belong to the owner is to call them
definer rights, as opposed to invoker rights. This is the terminology used by the SQL
standard.

See the Java DB Reference Manual for more information on the GRANT and REVOKE
statements.

Public and individual user privileges

The object owner can grant and revoke privileges for specific users, for specific roles,

or for all users. The keyword PUBLIC is used to specify all users. When PUBLIC is
specified, the privileges affect all current and future users. The privileges granted and
revoked to PUBLIC and to individual users or roles are independent. For example, a
SELECT privilege on table t is granted to both PUBLIC and to the user harry. The
SELECT privilege is later revoked from user har r y, but user har r y has access to table
t through the PUBLIC privilege.

Exception: When you create a view, trigger, or constraint, Derby first checks to
determine if you have the required privileges at the user level. If you have the user-level
privileges, the object is created and is dependent on that user-level privilege. If you
do not have the required privileges at the user-level, Derby checks to determine if
you have the required privileges at the PUBLIC level. If you have the PUBLIC level
privileges, the object is created and is dependent on that PUBLIC level privilege. After
the object is created, if the privilege on which the object depends is revoked, the object is
automatically dropped. Derby does not try to determine if you have other privileges that
can replace the privileges that are being revoked.
Example 1
User zhi creates table t 1 and grants SELECT privileges to user har ry on table
t 1. User zhi grants SELECT privileges to PUBLIC on table t 1. User har ry creates
view v1 with the statement SELECT * from zhi .t 1. The view depends on the
user-level privilege that user har ry has on t 1. Subsequently, user zhi revokes
SELECT privileges from user har ry on table t 1. As a result, the view harry. vlis
dropped.
Example 2
User ani t a creates table t 1 and grants SELECT privileges to PUBLIC. User harry
creates view v1 with the statement SELECT * from anita.t1. The view depends
on the PUBLIC level privilege that user har ry has ont 1, since user harry does
not have user-level privileges on table t 1 when he creates the view harry. v1.
Subsequently, user ani t a grants SELECT privileges to user har ry on table
ani ta.t1l. The view harry. vl continues to depend on the PUBLIC level privilege
that user harry has ont 1. When user ani t a revokes SELECT privileges from
PUBLIC on table t 1, the view harry. v1 is dropped.

See Privileges on views, triggers, and constraints for more information.
Privileges on views, triggers, and constraints

Views, triggers, and constraints operate with the privileges of the owner of the view,
trigger, or constraint.

For example, suppose that user ani t a wants to create a view using the following
statement:

CREATE VI EWs. v(vcl, vc2, vc3)
AS SELECT t1.cl,t1.c2,f(t1.c3)
FROMt1 JONt2 ONtl.cl =t2.cl
WHERE t2.c2 = 5
User ani t a needs the following privileges to create the view:

« Ownership of the schema s, so that she can create something in the schema

113

Java DB Developer's Guide

« Ownership of the table t 1, so that she can allow others to see columns in the table
e SELECT privilege on columnt 2. c1 and columnt 2. c2
« EXECUTE privilege on function f

When the view is created, only user ani t a has the SELECT privilege on it. User ani t a
can grant the SELECT privilege on any or all of the columns of view s. v to anyone, even
to users that do not have the SELECT privilegeont 1 ort 2, or the EXECUTE privilege
on f. User ani t a then grants the SELECT privilege on view s. v to user har ry. When
user harry issues a SELECT statement on the view s. v, Derby checks to determine if
user har ry has the SELECT privilege on view s. v. Derby does not check to determine if
user har ry has the SELECT privilege ont 1 ort 2, or the EXECUTE privilege on f .

Privileges on triggers and constraints work the same way as privileges on views. When

a view, trigger, or constraint is created, Derby checks that the owner has the required
privileges. Other users do not need to have those privileges to perform actions on a view,
trigger, or constraint.

If the required privileges are revoked from the owner of a view, trigger, or constraint, the
object is dropped as part of the REVOKE statement.

Another way of saying that privileges on objects belong to the owner is to call them
definer rights, as opposed to invoker rights. This is the terminology used by the SQL
standard.

Using SQL roles

When the SQL standard authorization mode is enabled, object owners can use the SQL
roles facility to administer privileges.

SQL roles are useful for administering privileges when a database has many users.
Roles provide a more powerful way to grant privileges to users' sessions than to grant
privileges to each user of the database, which easily becomes tedious and error-prone
when many users are involved. Roles do not in and of themselves give better database
security, but used correctly, they facilitate better security. Only the database owner can
create, grant, revoke, and drop roles. However, object owners can grant and revoke
privileges for those objects to and from roles, as well as to and from individual users and
PUBLIC (all users).

Note: Derby implements a subset of SQL roles. The fact that only the database owner
can create, grant, revoke, and drop roles is an implementation restriction.

Creating and granting roles

Roles are available only when SQL authorization mode is enabled (that is, when the
property der by. dat abase. sql Aut hori zati on is set to TRUE).

Old databases must be (hard) upgraded to at least Release 10.5 before roles can be
used.

If SQL authorization mode is enabled, the database owner can use the CREATE ROLE
statement to create roles. The database owner can then use the GRANT statement to
grant a role to one or more users, to PUBLIC, or to another role.

A role A contains another role B if role B is granted to role A, or is contained in a role C
granted to role A. Privileges granted to a contained role are inherited by the containing
roles. So the set of privileges identified by role A is the union of the privileges granted to
role A and the privileges granted to any contained roles of role A.

For example, suppose the database owner issued the following statements:

create rol e reader;
create rol e updater;
create rol e taskLeaderA;
create rol e tasklLeaderB;

114

Java DB Developer's Guide

create rol e projectLeader;

grant reader to updater;

grant updater to taskLeaderA;

grant updater to taskLeaderB;

grant taskLeaderA to projectlLeader;
grant taskLeaderB to projectLeader;

The roles would then have the following containment relationships:

r eader

%
updat er
/ \
t askLeader A t askLeader B
\ /
pr oj ect Leader

In this case, the pr oj ect Leader role contains all the other roles and has all their
privileges. If the database owner then revokes updat er fromt askLeader A,
pr oj ect Leader still contains that role through t askLeader B.

The SYSCS_DIAG.CONTAINED_ROLES diagnostic table function can be used to
determine the set of contained roles for a role.

Cycles are not permitted in role grants. That is, if a role contains another role, you cannot
grant the container role to the contained role. For example, the following statement would
not be permitted:

grant projectlLeader to updater;
Setting roles

When a user first connects to Derby, no role is set, and the CURRENT_ROLE function
returns null. During a session, the user can call the SET ROLE statement to set the
current role for that session. The role can be any role that has been granted to the
session's current user or to PUBLIC. To unset the current role, call SET ROLE with an
argument of NONE. At any time during a session, there is always a current user, but
there is a current role only if SET ROLE has been called with an argument other than
NONE. If a current role is not set, the session has only the privileges granted to the user
directly or to PUBLIC.

For example, if the database owner created and granted the roles shown in the previous
session, a user would have to issue a SET ROLE statement to have them take effect.
Suppose a user issued the following statement:

SET RCLE tasklLeader A;

Assuming that the database owner had granted the t askLeader Arole to the user, the
user would be allowed to set the role as shown and would have all the privileges granted
to the t askLeader A, updat er, and r eader roles.

To retrieve the current role identifier in SQL, call the CURRENT_ROLE function.

Within stored procedures and functions that contain SQL, the current role is on the
authorization stack. Initially, inside a nested connection, the current role is set to that of
the calling context. Upon return from the stored procedure or function, the authorization
stack is popped, so the current role of the calling context is not affected by any setting
of the role inside the called procedure or function. If the stored procedure opens more
than one nested connection, these all share the same (stacked) current role state. Any
dynamic result set passed out of a stored procedure sees the current role of the nested
context.

Granting privileges to roles

115

Java DB Developer's Guide

Once a role has been created, both the database owner and the object owner can
grant privileges on tables and routines to that role. You can grant the same privileges
to roles that you can grant to users. Granting a privilege to a role implicitly grants
privileges to all roles that contain that role. For example, if you grant delete privileges
on a table to updat er, every user in the updat er , t askLeader A, t askLeader B,
and pr oj ect Leader role will also have delete privileges on that table, but users in the
reader role will not.

Revoking privileges from arole
Either the database owner or the object owner can revoke privileges from a role.

When a privilege is revoked from a role A, that privilege is no longer held by role A,
unless A otherwise inherits that privilege from a contained role.

If a privilege to an object is revoked from role A, a session will lose that privilege if it has
a current role set to A or a role that contains A, unless one or more of the following is
true:

» The privilege is granted directly to the current user

« The privilege is granted to PUBLIC

« The privilege is also granted to another role B in the current role's set of contained
roles

» The session's current user is the database owner or the object owner

Revoking roles

The database owner can use the REVOKE statement to revoke a role from a user, from
PUBLIC, or from another role.

When a role is revoked from a user, that session can no longer keep that role, nor can it
take on that role in a SET ROLE statement, unless the role is also granted to PUBLIC.
If that role is the current role of an existing session, the current privileges of the session
lose any extra privileges obtained through setting that role.

The default drop behavior is CASCADE. Therefore, all persistent objects (constraints,
views and triggers) that rely on that role are dropped. Although there may be other
ways of fulfilling that privilege at the time of the revoke, any dependent objects are still
dropped. This is an implementation limitation. Any prepared statement that is potentially
affected will be checked again on the next execute. A result set that depends on a role
will remain open even if that role is revoked from a user.

When a role is revoked from a role, the default drop behavior is also CASCADE.
Suppose you revoke role A from role B. Revoking the role will have the effect of revoking
all additional applicable privileges obtained through A from B. Roles that contain B will
also lose those privileges, unless A is still contained in some other role C granted to B,
or the privileges come through some other role. See Creating and granting roles for an
example.

Dropping roles

Only the database owner can drop a role. To drop a role, use the DROP ROLE
statement.

Dropping a role effectively revokes all grants of this role to users and other roles.

Further information
For details on the following statements, functions, and system table related to roles, see
the Java DB Reference Manual.

e CREATE ROLE statement

 SET ROLE statement

¢ DROP ROLE statement

¢ GRANT statement

116

Java DB Developer's Guide

« REVOKE statement

e« CURRENT_ROLE function

e SYSCS DIAG.CONTAINED_ROLES table function
e SYSROLES system table

SQL standard authorization exceptions
SQL exceptions are returned when errors occur with SQL authorization.
The following errors can result from the CREATE ROLE statement:

« You cannot create a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

* You cannot create a role if a role with that name already exists. An attempt to do so
raises the SQLException X0Y68.

« You cannot create a role name if there is a user by that name. An attempt to create
a role name that conflicts with an existing user name raises the SQLException
X0Y68.

« A role name cannot start with the prefix SYS (after case normalization). Use of the
prefix SYS raises the SQLEXxception 4293A.

« You cannot create a role with the name PUBLIC (after case normalization). PUBLIC
is a reserved authorization identifier. An attempt to create a role with the name
PUBLIC raises SQLException 4251B.

The following errors can result from the DROP ROLE statement:

« You cannot drop a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

* You cannot drop a role that does not exist. An attempt to do so raises the
SQLEXxception 0P000.

The following errors can result from the SET ROLE statement:

* You cannot set a role if you are not the database owner. An attempt to do so raises
the SQLEXxception 4251A.

* You cannot set a role that does not exist. An attempt to do so raises the
SQLEXxception 0P000.

* You cannot set a role when a transaction is in progress. An attempt to do so raises
the SQLEXxception 25001.

* You cannot use NONE or a malformed identifier as a string or ? argument to SET
ROLE. An attempt to do so raises the SQLException XCXAO.

The following errors can result from the GRANT statement:

* You cannot grant a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

« You cannot grant a role that does not exist. An attempt to do so raises the
SQLEXxception 0P000.

* You cannot grant the role "PUBLIC". An attempt to do so raises the SQLEXxception
4251B.

* You cannot grant a role if doing so would create a circularity by granting a container
role to a contained role. An attempt to do so raises the SQLException 4251C.

The following errors can result from the REVOKE statement:

* You cannot revoke a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

* You cannot revoke a role that does not exist. An attempt to do so raises the
SQLEXxception 0P000.

* You cannot revoke the role "PUBLIC". An attempt to do so raises the SQLException
4251B.

117

Java DB Developer's Guide

For all statements, an attempt to specify an identifier argument more than 128 characters
long raises the SQLEXxception 42622.

Encrypting databases on disk
Derby provides a way for you to encrypt your data on disk.

Typically, database systems encrypt and decrypt data in transport over the network,
using industry-standard systems. This system works well for client/server databases;
the server is assumed to be in a trusted, safe environment, managed by a system
administrator. In addition, the recipient of the data is trusted and should be capable of
protecting the data. The only risk comes when transporting data over the wire, and data
encryption happens during network transport only.

However, Derby databases are platform-independent files that are designed to be easily
shared in a number of ways, including transport over the Internet. Recipients of the data
might not know how, or might not have the means, to properly protect the data.

This data encryption feature provides the ability to store user data in an encrypted form.
The user who boots the database must provide a boot password.

Note: Jar files stored in the database are not encrypted.

Requirements for Derby encryption

Derby supports disk encryption and requires an encryption provider. An
encryption provider implements the Java cryptography concepts. The JRE

for J2SE 1.4 and higher includes Java Cryptographic Extensions (JCE
http://java.sun.com/products/jce/index.html) and one or more default encryption
providers.

Working with encryption

This section describes using encryption in Derby.
Encrypting databases on creation

You configure a Derby database for encryption when you create the database by
specifying the dataEncryption=true attribute on the connection URL.

The Java Runtime Environment (JRE) determines the default encryption provider, as
follows:

e For J2SE/J2EE 1.4 or higher, the JRE's provider is the default.
« If your environment for some reason does not include a provider, it must be
specified.

You have the option of specifying an alternate encryption provider. The default encryption
algorithm is DES, but you have the option of specifying an alternate algorithm as well.
See Specifying an alternate encryption provider

Encrypting an existing unencrypted database

You can encrypt an unencrypted Derby database by specifying attributes on the
connection URL when you boot the database. The attributes that you specify depend on
how you want the database encrypted.

« If the database is configured with log archival, you must disable log archival and
perform a shutdown before you can encrypt the database.

« If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted.

118

http://java.sun.com/products/jce/index.html

Java DB Developer's Guide

When you encrypt an existing, unencrypted database, you can specify whether the
database should be encrypted using a boot password or an external encryption key. You
can also specify the encryptionProvider attribute and the encryptionAlgorithm attribute on
the connection URL. The database is configure with the specified encryption attributes
and all of the existing data in the database is encrypted.

Encrypting a database is a time consuming process because it involves encrypting all

of the existing data in the database. If the process is interrupted before completion, all
the changes are rolled back the next time that the database is booted. If the interruption
occurs immediately after the database is encrypted but before the connection is returned
to the application, you might not be able to boot the database without the boot password
or external encryption key. In these rare circumstances, you should try to boot the
database with the boot password or the external encryption key.

Recommendation: Ensure that you have enough free disk space before you encrypt
a database. In addition to the disk space required for the current size of the database,
temporary disk space is required to store the old version of the data to restore the
database back to it's original state if the encryption is interrupted or returns errors. All of
the temporary disk space is released back to the operating system after the database is
encrypted.

To encrypt an existing unencrypted database:

1. Specify the dataEncryption=true attribute and either the encryptionKey attribute or
the bootPassword attribute in a URL and boot the database.

For example, to encrypt the sal esdb database with the boot password
abc1234xyz, specify the following attributes in the URL:

j dbc: der by: sal esdb; dat aEncr ypti on=t r ue; boot Passwor d=abc1234xyz

If authentication and SQL authorization are both enabled, the credentials of the
database owner must be supplied as well, since encryption is a restricted operation.

If you disabled log archival before you encrypted the database, create a new
backup of the database after the database is encrypted.
Creating the boot password

When you encrypt a database you must also specify a boot password, which is an
alpha-numeric string used to generate the encryption key.

The length of the encryption key depends on the algorithm used:

e AES (128, 192, and 256 bits)

« DES (the default) (56 bits)

« DESede (168 hits)

« All other algorithms (128 bits)
Note: The boot password should have at least as many characters as number of bytes
in the encryption key (56 bits=8 bytes, 168 bits=24 bytes, 128 bits=16 bytes). The
minimum number of characters for the boot password allowed by Derby is eight.

It is a good idea not to use words that would be easily guessed, such as a login name
or simple words or numbers. A bootPassword, like any password, should be a mix of
numbers and upper- and lowercase letters.

You turn on and configure encryption and specify the corresponding boot password on
the connection URL for a database when you create it:

j dbc: der by: encrypti onDB1; cr eat e=t r ue; dat aEncrypti on=t r ue;
boot Passwor d=cl 0760uds2caPe

119

Java DB Developer's Guide

Note: If you lose the bootPassword and the database is not currently booted, you will not
be able to connect to the database anymore. (If you know the current bootPassword, you
can change it. See Encrypting databases with a new key.)

Specifying an alternate encryption provider:

You can specify an alternate provider when you create the database with the
encrypti onProvi der =provi der Nane attribute.

You must specify the full package and class name of the provider, and you must also add
the libraries to the application's classpath.

-- using the the provider library jce_jdkl13-10b4. zi p|

-- avail abl e from ww. bouncycastl| e. org

j dbc: der by: encrypt edDB3; cr eat e=t r ue; dat aEncrypti on=true;

boot Passwor d=cl 0760uds2caPe;

encrypti onProvi der =or g. bouncycast| e. j ce. provi der. BouncyCast | eProvi der;
encrypti onAl gorit hm=DES/ CBC/ NoPaddi ng

-- using a provider

-- available from

-- http://jceww.iaik.tu-graz. ac. at/downl oad. ht n

j dbc: der by: encrypt edDB3; cr eat e=t r ue; dat aEncrypti on=true;

boot Passwor d=cl 0760uds2caPe;

encrypti onProvi der =i ai k. security. provider.|AlK; encrypti onAl gorithne
DES/ CBC/ NoPaddi ng

Specifying an alternate encryption algorithm:
Derby supports the following encryption algorithms.

» DES (the default)
» DESede (also known as triple DES)
* Any encryption algorithm that fulfills the following requirements:
* Itis symmetric
« Itis a block cipher, with a block size of 8 bytes
* It uses the NoPadding padding scheme
« Its secret key can be represented as an arbitrary byte array
* It requires exactly one initialization parameter, an initialization vector of type
javax.crypto.spec.lvParameterSpec
« It can use javax.crypto.spec.SecretKeySpec to represent its key

For example, the algorithm Blowfish implemented in the Java Cryptography
Extension (JCE) packages (javax.crypto.*) fulfills these requirements.

By Java convention, an encryption algorithm is specified like this:

al gori t hmNane/ f eedbackMode/ paddi ng
The only feedback modes allowed are:

« CBC
- CFB
- ECB
- OFB

The only padding mode allowed is NoPadding.
By default, Derby uses the DES algorithm of DES/CBC/NoPadding.

To specify an alternate encryption algorithm when you create a database, use the
encryptionAlgorithm=algorithm attribute. If the algorithm you specify is not supported by
the provider you have specified, Derby throws an exception.

120

Java DB Developer's Guide

To specify the AES encryption algorithm with a key length other than the default of 128,
specify the encryptionKeyLength attribute. For example, you might specify the following
connection attributes:

j dbc: der by: encdbcbc_192; cr eat e=t r ue; dat aEncrypti on=true;
encrypti onKeyLengt h=192; encrypti onAl gori t hmrAES/ CBC/ NoPaddi ng;
boot Passwor d=Thur sday

To use the AES algorithm with a key length of 192 or 256, you must use unrestricted
policy jar files for your JRE. You can obtain these files from your Java provider. They
might have a name like "Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files." If you specify a non-default key length using the default policy
jar files, a Java exception occurs.

Encrypting databases with a new key

You can apply a new encryption key to a Derby database by specifying a new boot
password or a new external key.

Encrypting a database with a new encryption key is a time consuming process because

it involves encrypting all of the existing data in the database with the new encryption key.
If the process is interrupted before completion, all the changes are rolled back the next
time that the database is booted. If the interruption occurs immediately after the database
is encrypted with the new encryption key but before the connection is returned to the
application, you might not be able to boot the database with the old encryption key. In
these rare circumstances, you should try to boot the database with the new encryption
key.

Recommendation: Ensure that you have enough free disk space before you encrypt
a database with a new key. In addition to the disk space required for the current size
of the database, temporary disk space is required to store the old version of the data
to restore the database back to it's original state if the new encryption is interrupted or
returns errors. All of the temporary disk space is released back to the operating system
after the database is reconfigured to work with the new encryption key.

To encrypt a database with a new encryption key:

1. Use the type of encryption that is currently used to encrypt the database:
* To encrypt the database with a new boot password key, use the
newBootPassword attribute.
« To encrypt the database with a new external encryption key, use the
newEncryptionKey attribute.

If authentication and SQL authorization are both enabled, the credentials of the
database owner must be supplied, since reencryption is a restricted operation.
Encrypting databases with a new boot password:

You can apply a new boot password to a Derby database by specifying the
newBootPassword attribute on the connection URL when you boot the database.

« If the database is configured with log archival for roll-forward recovery, you must
disable log archival and perform a shutdown before you can encrypt the database
with a new boot password.

« If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted with a new boot password.

« If the database is currently encrypted with an external encryption key, you should
use the newEncryptionKey attribute to encrypt the database.

When you use the newBootPassword attribute, a new encryption key is generated
internally by the engine and the key is protected using the new boot password. The
newly generated encryption key encrypts the database, including the existing data. You

121

Java DB Developer's Guide

cannot change the encryption provider or encryption algorithm when you apply a new
boot password.

To encrypt a database with a new boot password:
1. Specify the newBootPassword attribute in a URL and reboot the database.

For example, when the following URL is used when the sal esdb database is
rebooted, the database is encrypted with the new encryption key, and is protected
by the password new1234xyz:

j dbc: der by: sal esdb; boot Passwor d=abc1234xyz; newBoot Passwor d=newl234xyz

If authentication and SQL authorization are both enabled, the credentials of
the database owner must be supplied as well, since reencryption is a restricted
operation.

If you disabled log archival before you applied the new boot password, create a
new backup of the database after the database is reconfigured with the new boot
password.

Encrypting databases with a new external encryption key:

You can apply a new external encryption key to a Derby database by specifying the
newEncryptionKey attribute on the connection URL when you boot the database.

« If the database is configured with log archival for roll-forward recovery, you must
disable log archival and perform a shutdown before you can encrypt the database
with a new external encryption key.

« If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted with a new encryption key.

« If the database is currently encrypted with a boot password , you should use the
newBootPassword attribute to encrypt the database.

To encrypt a database with a new external encryption key:
1. Specify the newEncryptionKey attribute in a URL and reboot the database.

For example, when the following URL is used when the sal esdb database
is rebooted, the database is encrypted with the new encryption key
6862636465666768:

j dbc: der by: sal esdb; encrypti onKey=6162636465666768; newEncr ypt i onKey=686263646566676

If authentication and SQL authorization are both enabled, the credentials of the
database owner must be supplied as well, since encryption is a restricted operation.

If you disabled log archival before you applied the new encryption key, create a new
backup of the database after the database is reconfigured with new the encryption
key.

Booting an encrypted database

If you create an encrypted database using the bootPassword attribute, you must specify
the boot password to reboot the database. If you create an encrypted database using the
encryptionKey attribute, you must specify the encryptionKey to reboot the database.

Encrypted databases cannot be booted automatically along with all other system
databases on system startup (see "derby.system.bootAll" in the Java DB Reference
Manual). Instead, you boot encrypted databases when you first connect to the database.

Booting a database with the bootPassword attribute
To access an encrypted database called wonrbat that was created with the boot
password cl 0760uds2caPe, use the following connection URL:

j dbc: der by: wonbat ; boot Passwor d=cl 0760uds2caPe

122

Java DB Developer's Guide

Signed jar

Booting a database with the encryptionKey attribute
To access an encrypted database called f | i nt st one that was created with
the encrypti onKey=c566bab9ee8b62a5ddb4d9229224c¢678 and with the
encrypti onAl gorit hmeAES/ CBC/ NoPaddi ng, use the following connection URL:

j dbc: derby: flintstone;encryptionAl gorithmAES/ CBC/ NoPaddi ng;
encrypti onKey=c566bab9ee8b62a5ddb4d9229224c678

After the database is booted, all connections can access the database without the boot
password. Only a connection that boots the database requires the key.

For example, the following connections would boot the database and require the boot
password or encryption key, depending on what mechanism was used to encrypt the
database originally:
» The first connection to the database in the JVM session
» The first connection to the database after the database has been explicitly shut
down
» The first connection to the database after the system has been shut down and then
rebooted

Note: The boot password and the encryption key are not meant to prevent unauthorized
connections to the database after the database is booted. To protect a database after it
has been booted, turn on user authentication (see Working with user authentication).

files

In a Java 2 environment, Derby can detect digital signatures on jar files. When attempting
to load a class from a signed jar file stored in the database, Derby will verify the validity of
the signature.

Note: The Derby class loader only validates the integrity of the signed jar file and that
the certificate has not expired. Derby cannot ascertain whether the validity/identity

of declared signer is correct. To validate identity, use a Security Manager (i.e., an
implementation of java.lang.SecurityManager).

When loading classes from an application jar file in a Java 2 environment, Derby behaves
as follows:

* If the class is signed, Derby will:

« Verify that the jar was signed using a X.509 certificate (i.e., can be
represented by the class java.security.cert.X509Certificate). If not, throw an
exception.

 Verify that the digital signature matches the contents of the file. If not, throw an
exception.

» Check that the set of signing certificates are all valid for the current date and
time. If any certificate has expired or is not yet valid, throw an exception.

» Pass the array of certificates to the setSigners() method of
j ava. |l ang. C assLoader . This allows security managers to obtain the
list of signers for a class (using j ava. | ang. C ass. get Si gner s) and
then validate the identity of the signers using the services of a Public Key
Infrastructure (PKI).

Note: Derby does not provide a security manager.

For more information about signed jar files, see the Java 2 specifications at
http://java.sun.com.

For more information about Java 2 security, go to http://java.sun.com/security/.

Notes on the Derby security features

123

Java DB Developer's Guide
TheDerby security model has some basic limitations.

You lock out non full-access users with database properties, which are stored in the
database (and in an encrypted database these properties are also encrypted). Note,
however, for a distributed/embedded system that a sophisticated user with the database
encryption key might be able to physically change those properties in the database files.

In addition, in the Derby system, it is not necessary to have a specific connection (or
permission to access a particular database) to shut down the system. Any authenticated
user can shut down the system.

Other security holes to think about are:

« JVM subversion, running the application under a home-grown JVM.

« Trolling for objects

 Class substitution, locating a class that has access to sensitive data and replacing it
with one that passes on information

User authentication and authorization examples

This section provides examples on using user authentication and authorization in Derby
in either a client/server environment or in an embedded environment.

User authentication example in a client/server environment
In this example, Derby is running in a user-designed application server.

Derby provides the user authentication, not the application server. The server is running
in a secure environment, the application server encrypts the passwords, and a database
administrator is available. The administrator configures security using system-level
properties in the derby.properties file and has protected this file with operating system
tools. Derby connects to an existing LDAP directory service within the enterprise to
authenticate users.

The default access mode for all databases is set to fullAccess (the default).

The derby.properties file for the server includes the following entries:

turn on user authentication

der by. connecti on. requi r eAut henti cati on=true

set the authentication provider to an external LDAP server

der by. aut henti cati on. provi der =LDAP

the host name and port nunber of the LDAP server

der by. aut henti cati on. server =godfrey: 389

the search base for user nanes

der by. aut henti cati on. | dap. sear chBase=0=o0akl and. exanpl e. com

explicitly show the access node for databases (this is default)
der by. dat abase. def aul t Connect i onMode=f ul | Access

With these settings, all users must be authenticated by the LDAP server in order to
access any Derby databases.

The database administrator has determined that one database, accountingDB,

has additional security needs. Within a connection to that database, the database
administrator uses database-wide properties (which override properties set in the
derby.properties file) to limit access to this database. Only the users prez, cfo, and
numberCruncher have full (read-write) access to this database, and only clerkl and
clerk2 have read-only access to this database. No other users can access the database.

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. def aul t Connecti onMbde', ' noAccess')

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(

124

Java DB Developer's Guide

' der by. dat abase. ful | AccessUsers',
' prez, cfo, nunber Cruncher"')

CALL SYSCS _UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. readOnl yAccessUsers', 'clerkl, clerk2")

The database administrator then requires all current users to disconnect and re-connect.
These property changes do not go into effect for current connections. The database
administrator can force current users to reconnect by shutting down the database

User authentication and authorization client example

This example consists of a pair of programs, Aut hExanpl eCl i ent 1. j ava and

Aut hExanpl eCl i ent 2. j ava, which show how to turn on, use, and turn off user
authentication using Derby's built-in user authentication and user authorization using the
client driver.

> Important: Derby's built-in authentication mechanism is suitable only for development
and testing purposes. It is strongly recommended that production systems rely on

LDAP or a user-defined class for authentication. It is also strongly recommended that
production systems protect network connections with SSL/TLS.

This example uses one program to set properties and a second program to perform
database operations. A similar example that uses the embedded driver, in User
authentication and authorization embedded example, is a single long program. Either
example would work equally well in the other format.

See User authentication and SQL authorization client example for an example similar to
this one that uses SQL authorization.

The first program, Aut hExanpl ed i ent 1. j ava, does the following:

1. Creates a database named aut hd i ent DB, using the client driver.

2. Sets database properties that create users with different levels of access (read-only
and full access), require authentication, and set the default access level to no
access.

3. Closes the connection and shuts down the database.

The second program, Aut hExanpl ed i ent 2. j ava, does the following:

1. Tries to connect to the database without a username and password, raising an
exception.

2. Connects to the database as a user with read-only access; the connection
succeeds, but an attempt to create a table raises an exception.

3. Connects to the database as a user with full access; this user can create and
populate a table.

4. Removes the table.

5. Closes the connection and shuts down the database.

Make sure that the j avac command is in your path, then compile the programs as
follows:

javac Aut hExanpledientl.java
javac Aut hExanpl edient2.java

Before you run the programs, start the Derby Network Server as described in

step 2 of "Activity 4: Create and run a JDBC program using the client driver

and Network Server" in Getting Started with Java DB. When you run the

programs, make sure that “ODERBY_HOVE% | i b\ der byclient.jar (or
$DERBY_HOWME/ | i b/ der bycl i ent . j ar)is in your classpath. For example, you might
use the following commands on a Windows system:

java -cp .; YOERBY _HOVE% | i b\ derbyclient.jar AuthExanpleCientl

125

Java DB Developer's Guide
java -cp .; YDERBY_HOVE% | i b\ der byclient.jar AuthExanpleCient2

Source code for Aut hExanpl eC i ent 1. java
import java.sql.*;
public class AuthExanpleQdientl {

public static void nmain(String[] args) {

String driver = "org.apache. derby.jdbc.ClientDriver";

String dbName="aut hCl i ent DB";

String connectionURL = "jdbc:derby://I|ocal host: 1527/" + dbName +
";create=true";

Connection conn = null;

/! Load the driver. This code is not needed if you are using
/1 JDK 6, because in that environment the driver is |oaded
/1 automatically when the application requests a connecti on.
try {
Cl ass. for Nane(driver);
Systemout.println(driver + " |oaded.");
} catch (java.lang. d assNot FoundException ce) {
System err. print("C assNot FoundException: ");
Systemerr.println(ce.get Message());
Systemout.println("\n Make sure your CLASSPATH variable " +
"contai ns YDERBY_HOVE% \|i b\\derbyclient.jar " +
"(${ DERBY_HQOVE}/ | i b/ derbyclient.jar).\n");
} catch (Exception ee) {
errorPrint AndExi t (ee);
}

/'l Create and boot the database and set up users, then shut down

/1 the database as one of the users with full access

try {
Systemout.println("Trying to connect to " + connectionURL);
conn = Driver Manager . get Connecti on(connecti onURL) ;
Systemout. println("Connected to database " + connectionURL);

turnOnBui | t I nUser s(conn) ;
/'l O ose connection

conn. cl ose();
System out. println("d osed connection");

~
b T S . T I

< ~

Shut down the database to make static properties take
ef fect. Because the default connection node i s now
noAccess, you nust specify a user that has access. But
because requireAuthenticati on does not take effect until
you restart the database, the password is not checked.

Dat abase shut down throws the 08006 exception to confirm
success.

{

Dri ver Manager . get Connect i on(
"jdbc: derby:/ /| ocal host: 1527/" + dbNanme +
";user=sa; passwor d=badpass; shut down=t rue") ;
} catch (SQ.Exception se)
if (!se.getSQState().equal s("08006")) {
t hrow se;
}
}

System out. printl n("Dat abase shut down normal ly");
} catch (Throwable e) {

errorPrint AndExit(e);
}

—

/**

126

Java DB Developer's Guide

* Turn on built-in user authentication and user authorization.
*
* @aram conn a connection to the database.
>/
public static void turnOnBuiltlnUsers(Connecti on conn)
t hrows SQLException {

String setProperty =

"CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(" ;
String getProperty =

"VALUES SYSCS_UTI L. SYSCS_GET_DATABASE_PROPERTY(" ;
String requireAuth = "' derby. connection. requireAut hentication'";
String def aul t ConnMode =

"' der by. dat abase. def aul t Connect i onMbde' " ;
String full AccessUsers = "'derby. dat abase. ful | AccessUsers'";
String readOnl yAccessUsers =

der by. dat abase. readOnl yAccessUsers'";
String provider = "'derby. aut hentication. provider'";
String propertiesOnly = "'derby. dat abase. propertiesOnly'";

Systemout. println("Turning on authentication.");
Statenent s = conn.createStatenent();

/1 Set and confirmrequireAuthentication

s. execut eUpdat e(set Property + requireAuth + ", "true')");
ResultSet rs = s.executeQuery(getProperty + requireAuth + ")");
rs.next();

System out . println("Value of requireAuthenticationis " +
rs.getString(l));

/1 Set authentication scheme to Derby builtin
s. execut eUpdat e(set Property + provider + ", "BULTIN)");

/! Create some sanple users
s. execut eUpdat e(
set Property +
s. execut eUpdat e(
setProperty + "'derby.user.guest', 'java5wex')");
s. execut eUpdat e(
set Property +

derby. user.sa', 'ajaxj3x9')");

derby.user.mary', 'little7xylanmbd')");

/1 Define noAccess as default connecti on npde
s. execut eUpdat e(
set Property + default ConnMbde + ", 'noAccess')");

/1 Confirmdefault connection node

rs = s.executeQery(getProperty + defaultConnWbde + ")");

rs.next();

System out. println("Val ue of defaultConnectionMde is " +
rs.getString(1));

[/l Define read-wite users
s. execut eUpdat e(
setProperty + full AccessUsers + ", 'sa,mary')");

/1 Define read-only user
s. execut eUpdat e(
setProperty + readOnl yAccessUsers + ", 'guest')");

/1 Confirmfull-access users
rs = s.executeQuery(getProperty + full AccessUsers + ")");
rs.next();
System out. printl n(
"Val ue of full AccessUsers is " + rs.getString(1));

/1 Confirmread-only users
rs = s.executeQery(getProperty + readOnl yAccessUsers + ")");
rs.next();
System out. println(
"Val ue of readOnl yAccessUsers is " + rs.getString(1));

127

Java DB Developer's Guide

}

/1 W would set the followi ng property to TRUE only when we were

/1 ready to deploy. Setting it to FALSE neans that we can al ways

/'l override using system properties if we accidentally paint

/! ourselves into a corner.

s. execut eUpdat e(" CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(" +
"' der by. dat abase. propertiesOnly', 'false')");

s.cl ose();

}
/**
* Report exceptions, with special handling of SQ.Exceptions,
* and exit.
*
* @aram e an exception (Throwabl e)
*/
static void errorPrint AndExit(Throwabl e e) {
if (e instanceof SQ.Exception)
SQLExcepti onPri nt ((SQLException)e);
el se {
Systemout.println("A non-SQ. error occurred.");
e.printStackTrace();

}
System exit(1);
}
/**
* |terate through a stack of SQ.Exceptions.
*
* @aram sqgl e a SQLException
*
/
static void SQ.ExceptionPrint(SQ.Exception sqgle) {
while (sqle !'= null)
Systemout. println("\n---SQLException Caught---\n");

System out . println("SQStat e: " + (sqle).getSQState());
Systemout.println("Severity: " + (sqgle).getErrorCode());
Systemout.println("Mssage: " + (sqle).getMssage());

sql e = sql e. get Next Exception();

Source code for Aut hExanmpl eCl i ent 2. j ava

i mport java.sql.*;

public class Aut hExanpleCient2 {

public static void main(String[] args) {

String driver = "org.apache.derby.jdbc.ClientDriver";

String dbNanme="aut hd i ent DB";

String connecti onURL = "jdbc:derby://|ocal host: 1527/" + dbNane;
Connection conn = null;

/! Restart database and confirmthat unauthorized users cannot
[/l access it

/1 Load the driver. This code is not needed if you are using
// JDK 6, because in that environnent the driver is |oaded
/1 automatically when the application requests a connecti on.
try {
Cl ass. for Name(dri ver);
Systemout.println(driver + " |oaded.");
} catch (java.lang. d assNot FoundException ce) {
Systemerr. print("C assNot FoundException: ");
Systemerr.println(ce. get Message());
Systemout.println("\n Make sure your CLASSPATH variable " +
"contai ns YOERBY_HOVE% \I|ib\\derbyclient.jar " +
"(${ DERBY_HOVE}/|li b/ derbyclient.jar). \n");

128

Java DB Developer's Guide

} catch (Exception ee) {
errorPrint AndExit (ee);

}
/1l Try tolog in with no usernane or password
try {

/1 connection attenpt should fail
Systemout.println("Trying to connect to " + connectionURL +
" w t hout usernanme or password");
conn = Driver Manager. get Connecti on(connecti onURL) ;
System out. printl n(
"ERROR: Unexpectedly connected to database " + dbNane);
cl eanUpAndsShut Down(conn) ;
} catch (SQ.Exception e) {
if (e.getSQState().equal s("08004")) {
System out. println("Correct behavior: SQException: " +
e. get Message());
} else {
errorPrint AndExit(e);

}
}
/! Log in as a user with read-only access
try {

/1 connection shoul d succeed, but create table should fail
String newdRL = connectionURL +

"; user=guest ; passwor d=j avabwex";
Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager . get Connecti on(newURL) ;
Systemout. println("Connected to database " + dbNane +

" with read-only access");

Statenent s = conn.createStatement();
s. execut eUpdat e(" CREATE TABLE t1(Cl VARCHAR(6))");
System out. printl n(
"ERROR: Unexpectedly allowed to nodify database " +
dbNane) ;
cl eanUpAndShut Down(conn) ;
} catch (SQLException e) {
if (e.getSQState().equal s("25503")) {
Systemout. println("Correct behavior: SQException: " +
e. get Message());
try {
conn. cl ose();
} catch (SQLException ee) {
errorPrint AndExi t (ee);

} else {
errorPrint AndExit(e);
}

}

/! Log in as a user with full access
/1l Create, update, and query table
try {
/1 this should succeed
String newdRL = connecti onURL +
";user=mary; password=little7xyl anb";
Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager. get Connecti on(newUrL) ;
System out. println("Connected to database " + dbNane);

Statenent s = conn.createStatenent();

s. execut eUpdat e(" CREATE TABLE T1(Cl VARCHAR(6))");
Systemout.println("Created table T1");

s. execut eUpdat e(" 1 NSERT | NTO T1 VALUES(' hello')");

ResultSet rs = s. executeQuery("SELECT * FROM T1");

rs.next();
Systemout.println("Value of T1/Cl is " + rs.getString(1));

129

Java DB Developer's Guide
s. execut eUpdat e("DROP TABLE T1");

s.cl ose();
} catch (SQ.Exception e) {
errorPrint AndExit(e);
}

try {
cl eanUpAndsShut Down(conn) ;

} catch (SQ.Exception e) {
errorPrint AndExit(e);
}

}

/**

* Cl ose connection and shut down dat abase.

*

* @aram conn a connection to the database

*/

public static void cl eanUpAndShut Down (Connecti on conn)
throws SQLException {

String dbNanme="aut hd i ent DB";
String connecti onURL = "jdbc:derby://|ocal host: 1527/" + dbNane;

try {
conn. cl ose();
System out. println("d osed connection");

/1 As mary, shut down the database.
try {
String newdRL = connectionURL +
";user=mary; password=littl e7xyl anb; shut down=t r ue";
Dri ver Manager . get Connecti on(newURL) ;
} catch (SQLException se) ({
if (!se.getSQState().equal s("08006")) {
t hrow se;
}
}

System out. printl n("Dat abase shut down normal | y");
} catch (SQ.Exception e) {

errorPrint AndExit(e);
}

}
/**
* Report exceptions, with special handling of SQ.Exceptions,
* and exit.
*
* @aram e an exception (Throwabl e)
*/
static void errorPrintAndExit(Throwable e) {
if (e instanceof SQLException)
SQLExcepti onPri nt ((SQLException)e);
el se {
Systemout. println("A non-SQ error occurred.");
e. printStackTrace();

}
System exit(1);
}

/**

* |terate through a stack of SQ.Exceptions.

*

* @aram sqgl e a SQLException
*
/

static void SQ.ExceptionPrint(SQException sqgle) {
while (sqle !'=null) {
Systemout. println("\n---SQ.Exception Caught---\n");
Systemout. println("SQ.Stat e: " + (sqle).getSQState());

130

Java DB Developer's Guide

Systemout.println("Severity: " + (sqle).getErrorCode());
Systemout. println("Mssage: " + (sqle).getMssage());
sql e = sql e. get Next Exception();

User authentication example in a single-user, embedded environment

In this example, Derby is embedded in a single-user application that is deployed in a
number of different and potentially insecure ways.

For that reason, the application developer has decided to encrypt the database and
to turn on user authentication using Derby's built-in user authentication, which will not
require connections to an LDAP server. The end-user must know the bootPassword
to boot the database and the user name and password to connect to the database.
Even if the database ended up in an e-mail, only the intended recipient would be able
to access data in the database. The application developer has decided not to use any
user authorization features, since each database will accept only a single user. In that
situation, the default full-access connection mode is acceptable.

> Important: Derby's built-in authentication mechanism is suitable only for development
and testing purposes. It is strongly recommended that production systems rely on

LDAP or a user-defined class for authentication. It is also strongly recommended that
production systems protect network connections with SSL/TLS.

When creating the database, the application developer encrypts the database by using
the following connection URL:

j dbc: der by: wonbat ; cr eat e=t r ue; dat aEncrypti on=true;
boot Passwor d=sxy90WB48HHN; user =r edbar on

Before deploying the database, the application developer turns on user authentication,
sets the authentication provider to BUILTIN, creates a single user and password, and
disallows system-wide properties to protect the database-wide security property settings:

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. connecti on. requi reAut hentication', 'true')

CALL SYSCS _UTI L. SYSCS_SET_DATABASE_PROPERTY(
"der by. authentication.provider', 'BULTIN)

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
" derby. user.redbaron', 'red29Pl aNe')

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. propertiesOnly', true')

When the user connects (and boots) the database, the user has to provide the
bootPassword, the user name, and the password.

Note: The user name (the value specified by the der by. user . enduser property)
must be supplied when the database is created, even if authentication is not yet enabled.
Otherwise the database owner will have the default name "APP" (see Database owner
for details).

The following example shows how to provide these properties in a connection URL,
although the application programmer would probably provide GUI windows to allow the
end user to type those in:

j dbc: der by: wonbat ; boot Passwor d=sxy90W848HHn;
user =r edbar on; passwor d=r ed29PI aNe

131

Java DB Developer's Guide
User authentication and authorization embedded example

This example, Aut hExanpl eEnbedded. j ava, shows how to turn on, use, and turn off
user authentication using Derby's built-in user authentication and user authorization using
the embedded driver.

> Important: Derby's built-in authentication mechanism is suitable only for development
and testing purposes. It is strongly recommended that production systems rely on

LDAP or a user-defined class for authentication. It is also strongly recommended that
production systems protect network connections with SSL/TLS.

This example is a single long program. A similar example that uses the client driver, in
User authentication and authorization client example, uses one program to set properties
and a second program to perform database operations. Either example would work
equally well in the other format.

See User authentication and SQL authorization embedded example for an example
similar to this one that uses SQL authorization.

The program does the following:

1. Starts Derby and creates a database named aut hEnbDB, using the embedded
driver.

2. Sets database properties that create users with different levels of access (read-only
and full access), require authentication, and set the default access level to no
access.

3. Closes the connection, then stops and restarts the database so that the
authentication changes can take effect.

4. Tries to connect to the database without a username and password, raising an
exception.

5. Connects to the database as a user with read-only access; the connection
succeeds, but an attempt to create a table raises an exception.

6. Connects to the database as a user with full access; this user can create and
populate a table.

7. Deletes the table.

8. Closes the connection, shuts down the database, then shuts down Derby.

Make sure that the j avac command is in your path, then compile the program as follows:
j avac Aut hExanpl eEnbedded. j ava

When you run Aut hExanpl eEnbedded, make sure that
YOERBY_HOVE% | i b\ der by. j ar (or $DERBY_HOME/ | i b/ der by. j ar) is in your
classpath. For example, you might use the following command on a UNIX system:

java -cp .:${DERBY_HOVE}/Ili b/ derby.jar Aut hExanpl eEnbedded

Source code for Aut hExanpl eEnbedded. j ava
import java.sql.*;
public class Aut hExanpl eEnbedded {
public static void nmain(String[] args) {
String driver = "org.apache. derby. jdbc. EnbeddedDri ver";
String dbName="aut hEnbDB";
String connectionURL = "jdbc:derby:" + dbNane + ";create=true";
Connection conn = null;
/1 Load the driver. This code is not needed if you are using
// JDK 6, because in that environnent the driver is |oaded

/1 automatically when the application requests a connecti on.
try {

132

Java DB Developer's Guide

Cl ass. for Nane(driver);
Systemout.println(driver + " |oaded.");

} catch (java.lang. d assNot FoundException ce) {
System err. print("C assNot FoundException: ");
Systemerr.println(ce.get Message());
Systemout.println("\n Make sure your CLASSPATH variable " +

"contai ns YDERBY_HOVE% \|ib\\derby.jar " +
" (${DERBY_HOME}/ i b/ derby.jar).\n");

} catch (Exception ee) {
errorPrint AndExi t (ee);

}

/'l Create and boot the database and set up users, then shut down

/1 the database as one of the users with full access

try {
Systemout.println("Trying to connect to " + connectionURL);
conn = Driver Manager . get Connecti on(connecti onURL) ;
Systemout. println("Connected to database " + connectionURL);

turnOnBui | t I nUser s(conn) ;

/'l close the connection
conn. cl ose();
System out. println("d osed connection");

/* Shut down the database to nake static properties take
* effect. Because the default connection node is now
* noAccess, you must specify a user that has access. But
* because requireAuthentication does not take effect until
* you restart the database, the password is not checked.
*
* Dat abase shutdown throws the 08006 exception to confirm
* success.
*/
try {
Dri ver Manager . get Connecti on("j dbc: derby: " + dbNanme +
"; user =sa; passwor d=badpass; shut down=t r ue") ;
} catch (SQ.Exception se)
if (!se.getSQState().equal s("08006")) {
t hrow se;
}

System out . printl n("Dat abase shut down nornally");
} catch (SQ.Exception e) {

errorPrint AndExit(e);
}

// Restart database and confirmthat unauthorized users cannot
// access it
connecti onURL = "jdbc: derby:" + dbNaneg;

/1l Try to log in with no username or password
try {
/1 connection attenpt should fail
Systemout.println("Trying to connect to " + connectionURL +
" wi thout usernane or password");
conn = Driver Manager . get Connecti on(connecti onURL) ;
System out . printl n(
"ERROR: Unexpectedly connected to database " + dbNane);
cl eanUpAndShut Down(conn) ;
} catch (SQLException e) {
if (e.getSQ.State().equal s("08004")) {
Systemout. println("Correct behavior: SQException: " +
e. get Message());
} else {
errorPrint AndExit(e);
}

}

/1l Log in as a user with read-only access

133

Java DB Developer's Guide

try {
/! connection should succeed, but create table should fail

String newdRL = connectionURL +
", user=guest ; passwor d=j avabwex" ;
Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager. get Connecti on(newURrL) ;
System out. println("Connected to database " + dbNanme +
" with read-only access");

Statenent s = conn.createStatenent();
s. execut eUpdat e(" CREATE TABLE t 1(Cl VARCHAR(6))");
System out . printl n(
"ERROR: Unexpectedly allowed to nodify database " +
dbNane) ;
cl eanUpAndsShut Down(conn) ;
} catch (SQ.Exception e) {
if (e.getSQState().equal s("25503")) ({
Systemout. println("Correct behavior: SQ.Exception: " +
e. get Message());
try {
conn. cl ose();
} catch (SQLException ee) {
errorPrint AndExi t (ee);

} else {
errorPrint AndExit(e);
}

}

/1l Log in as a user with full access

/1 Create, update, and query table

try {
/1 this should succeed
String newdRL = connectionURL +

";user=mary; password=little7xyl anb";

Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager . get Connecti on(newURL) ;
Systemout. println("Connected to database " + dbNane);

Statenment s = conn. createStatenent();

s. execut eUpdat e(" CREATE TABLE T1(Cl VARCHAR(6))");
Systemout.println("Created table T1");

s. execut eUpdat e(" 1 NSERT | NTO T1 VALUES(' hello')");

Resul t Set rs = s.executeQuery("SELECT * FROM T1");
rs.next();

Systemout.println("Value of T1/ClL is " + rs.getString(1));
S. execut eUpdat e(" DROP TABLE T1");

s.cl ose();
} catch (SQ.Exception e) {
errorPrint AndExit(e);
}

try {
cl eanUpAndShut Down(conn) ;

} catch (SQ.Exception e) {
errorPrint AndExit (e);
}

}
/**

* Cl ose connection and shut down database. Since this is enbedded
* mode, we nust al so shut down the Derby system
*
* @aram conn a connection to the database
*/
public static void cl eanUpAndShut Down (Connecti on conn)
throws SQLException {

134

Java DB Developer's Guide

String dbNanme="aut hEnbDB";
String connecti onURL = "jdbc:derby:" + dbNane;

try {
conn. cl ose();

Systemout. println("d osed connection");

/1 As mary, shut down the database.
try {
String newdRL = connectionURL +
";user=mary; password=littl e7xyl anb; shut down=t rue";
Dri ver Manager . get Connecti on(newURL) ;
} catch (SQLException se) {
if (!se.getSQState().equal s("08006")) {
throw se;
}

System out . printl n("Dat abase shut down nornally");

try {
Dri ver Manager . get Connecti on("j dbc: der by: ; shut down=true");

} catch (SQ.Exception se)
if (!se.getSQState().equal s("XJ015")) {
t hrow se;
}

}

System out . println("Derby system shut down normal ly");
} catch (SQ.Exception e) {

errorPrint AndExit (e);
}

}
/**
* Turn on built-in user authentication and user authorization.
*
* @aram conn a connection to the database
*/
public static void turnOnBuiltlnUsers(Connection conn)
t hrows SQLException {

String setProperty =
"CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(";
String getProperty =
"VALUES SYSCS_UTI L. SYSCS_GET_DATABASE_PROPERTY(";
String requireAuth = "' derby. connection. requireAut hentication'";
String defaul t ConnMbde =
"' der by. dat abase. def aul t Connect i onMbde' ;
String full AccessUsers = "' derby. dat abase. ful | AccessUsers'";
String readOnl yAccessUsers =
"' der by. dat abase. readOnl yAccessUsers'";
String provider = "'derby. aut hentication. provi der'";
String propertiesOnly ="'

der by. dat abase. propertiesOnly'";

System out . println("Turning on authentication.");
Statenment s = conn. createStatenent();

/1 Set and confirmrequireAuthentication

s. execut eUpdat e(set Property + requireAuth + ", "true')");
ResultSet rs = s. executeQuery(getProperty + requireAuth + ")");
rs.next();

Systemout. println("Value of requireAuthenticationis " +
rs.getString(1));

/1 Set authentication scheme to Derby builtin
s. execut eUpdat e(set Property + provider + ", '"BULTIN)");

/'l Create some sanple users

s. execut eUpdat e(
setProperty + "'derby.user.sa', 'ajaxj3x9')");

135

Java DB Developer's Guide

s. execut eUpdat e(
setProperty + "'derby.user.guest', 'java5wex')");

s. execut eUpdat e(
set Property +

derby.user.mary', 'little7xylanmbd')");

/1 Define noAccess as default connection node
s. execut eUpdat e(
set Property + default ConnMbde + ", 'noAccess')");

/1 Confirmdefault connection node

rs = s.executeQery(getProperty + defaultConnvbde + ")");

rs.next();

System out. println("Val ue of defaultConnectionMde is " +
rs.getString(1));

[/l Define read-wite user
s. execut eUpdat e(
setProperty + full AccessUsers + ", 'sa,mary')");

/1 Define read-only user
s. execut eUpdat e(
setProperty + readOnl yAccessUsers + ", 'guest')");

/1 Confirmfull-access users
rs = s.executeQuery(getProperty + full AccessUsers + ")");
rs.next();
System out. printl n(
"Val ue of full AccessUsers is " + rs.getString(1l));

/1 Confirmread-only users
rs = s.executeQery(getProperty + readOnl yAccessUsers + ")");
rs.next();
System out . println(
"Val ue of readOnl yAccessUsers is " + rs.getString(1));

/1 W would set the followi ng property to TRUE only when we were
/'l ready to deploy. Setting it to FALSE neans that we can al ways

/1 override using systemproperties if we accidentally paint
/] ourselves into a corner.

S. execut eUpdat e(set Property + propertiesOnly + ", 'false')");
s.close();

/**

* Report exceptions, with special handling of SQ.Exceptions,
* and exit.
*
* @aram e an exception (Throwabl e)
*/
static void errorPrint AndExit(Throwable e) {
if (e instanceof SQ.Exception)
SQLExcepti onPri nt ((SQLException)e);
el se {
Systemout.println("A non-SQ error occurred.");
e.printStackTrace();

}
Systemexit(1);

/**

* |terate through a stack of SQLExcepti ons.

*

* @aram sqgle a SQLException

*

/
static void SQ.ExceptionPrint(SQLException sqgle) {

while (sqle !'= null)
Systemout. println("\n---SQ.Exception Caught---\n");

System out . printl n("SQSt at e: " + (sqle).getSQState());
Systemout.println("Severity: " + (sqle).getErrorCode());
Systemout. println("Mssage: " + (sqle).getMssage());

136

Java DB Developer's Guide
sql e = sql e. get Next Exception();

User authentication examples using SQL authorization

These examples show how to use SQL authorization in conjunction with Derby's built-in
user authentication and user authorization.

> Important: Derby's built-in authentication mechanism is suitable only for development
and testing purposes. It is strongly recommended that production systems rely on

LDAP or a user-defined class for authentication. It is also strongly recommended that
production systems protect network connections with SSL/TLS.

These examples are based on the examples in User authentication and authorization
client example and User authentication and authorization embedded example.

User authentication and SQL authorization client example

This example consists of a pair of programs, Aut hExanpl ed i ent SQLAut hl. j ava
and Aut hExanpl ed i ent SQLAut h2. j ava, which show how to use SQL authorization,
in addition to Derby's built-in user authentication and user authorization, with the client
driver.

> Important: Derby's built-in authentication mechanism is suitable only for development
and testing purposes. It is strongly recommended that production systems rely on

LDAP or a user-defined class for authentication. It is also strongly recommended that
production systems protect network connections with SSL/TLS.

This example uses one program to set properties and a second program to perform
database operations. A similar example that uses the embedded driver, in User
authentication and SQL authorization embedded example, is a single long program.
Either example would work equally well in the other format.

See User authorizations for more information on using SQL authorization, which allows
you to use ANSI SQL Standard GRANT and REVOKE statements. Compare this
example to the one in User authentication and authorization client example, which does
not use SQL authorization.

The first program, Aut hExanpl ed i ent SQLAut hl. j ava, does the following:

1. Creates a database named sql Aut hCl i ent DB, using the client driver. The
connection URL creates the database as the user nar y, who is therefore the
database owner. After SQL authorization is enabled, only the database owner will
have the right to set and read database properties.

2. Sets database properties that create users with different levels of access (no
access, read-only access, and full access), that require authentication, and that turn
on SQL authorization. The users nar y and sql samhave full access.

3. Closes the connection, then shuts down the database so that the authentication and
SQL authorization changes can take effect.

The second program, Aut hExanpl eC i ent SQLAut h2. j ava, does the following:

1. Tries to connect to the database without a username and password, raising an
exception.

2. Tries to connect to the database as a user with no access, raising an exception.

3. Connects to the database as a user with read-only access; the connection
succeeds, but an attempt to create a table raises an exception.

4. Connects to the database as nmar y, who has full access; this user creates and
populates a table. This user also grants select and insert privileges on this table to
another user.

137

Java DB Developer's Guide

5. Connects to the database as sgl sam the user who has been granted select and
insert privileges by mar y. This user has full (that is, read-write) access on the
connection level, but has limited powers for this table because SQL authorization is
active. The user successfully performs select and insert operations on the table, but
an attempt to delete a row from the table raises an exception.

6. Connects to the database again as mar y, who then deletes the table.

7. Shuts down the database.

Make sure that the j avac command is in your path, then compile the programs as
follows:

j avac Aut hExanpl ed i ent SQLAut hl.j ava
javac Aut hExanpl ed i ent SQLAut h2. j ava

Before you run the programs, start the Derby Network Server as described in

step 2 of "Activity 4: Create and run a JDBC program using the client driver

and Network Server" in Getting Started with Java DB. When you run the

programs, make sure that YOERBY_HOVE% | i b\ der bycl i ent.jar (or
$DERBY_HOWE/ | i b/ der bycl i ent . j ar) is in your classpath. For example, you might
use the following commands on a UNIX system:

java -cp .:${DERBY_HOVE}/Ili b/ derbyclient.jar
Aut hExanpl eCl i ent SQLAut hl

java -cp .:${DERBY_HOVE}/Ili b/ derbyclient.jar
Aut hExanpl eCl i ent SQLAuUt h2

Source code for Aut hExanpl e i ent SQLAut hl. j ava
import java.sql.*;
public class Aut hExanpl ed i ent SQLAut hl {

public static void nmain(String[] args) {

String driver = "org.apache. derby.jdbc.ClientDriver";

String dbName="sql Aut hCl i ent DB";

String dbOaner ="mary";

String connecti onURL = "jdbc:derby://|ocal host: 1527/" + dbNane +
";user=" + dbOmner + ";create=true";

Connection conn = null;

/1 Load the driver. This code is not needed if you are using
/1 JDK 6, because in that environment the driver is |oaded
/1 automatically when the application requests a connecti on.
try {
Cl ass. for Nane(dri ver);
Systemout.println(driver + " |oaded.");
} catch (java.lang. d assNot FoundException ce) {
System err. print("d assNot FoundException: ");
Systemerr.println(ce. get Message());
Systemout.println("\n Make sure your CLASSPATH variable " +
"cont ai ns YOERBY_HOVE%W \ | i b\\derbyclient.jar " +
"(${DERBY_HOME}/ | i b/ derbyclient.jar).\n");
} catch (Exception ee) {
error Print AndExi t (ee);
}

/!l Create and boot the database as user nmary (who then becones
/1 the database owner), set up users and then shut down the
/| dat abase
try {
Systemout.println("Trying to connect to " + connectionURL);
conn = DriverManager. get Connecti on(connecti onURL) ;
System out . printl n("Connected to database " + connecti onURL);

138

Java DB Developer's Guide
turnOnBui | t I nUsers(conn);
/1 C ose connection

conn. cl ose();
System out . println("d osed connection");

/* Shut down the database to nmake static properties take
effect. Because the default connection node is now

* noAccess, you nust specify a user that has access. But

* because requireAuthentication and sql Authorizati on do not
* take effect until you restart the database, you do not

* need to specify a password.

*

* Dat abase shutdown throws the 08006 exception to confirm
* success.

*/

try {

Dri ver Manager . get Connecti on(
"jdbc: derby://local host: 1527/" + dbNanme +
";user=mary; shut down=t rue") ;
} catch (SQLException se) ({
if (!se.getSQState().equal s("08006")) {
t hr ow se;
}

System out . printl n("Dat abase shut down nornally");
} catch (Throwable e) {

errorPrint AndExit(e);
}

}
/**

* Turn on built-in user authentication and SQ. authorization.
*

* Default connection node is full Access, but SQL authorization
* restricts access to the owners of database objects.
*

* @aram conn a connection to the database

*/

public static void turnOnBuiltlnUsers(Connection conn)
throws SQLException {

String setProperty =

"CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(";
String getProperty =

"VALUES SYSCS_UTI L. SYSCS_GET_DATABASE_PROPERTY(";
String requi reAuth = "' derby. connection. requi r eAut hentl cation
String sql Aut hori zatl on = "'derby. dat abase. sql Aut hori zation'";
String def aul t ConnMode =

"' der by. dat abase. def aul t Connect i onMbde' *;
String full AccessUsers = "' derby. dat abase. ful | AccessUser s
String readOnl yAccessUsers =

"' der by. dat abase. r eadOnl yAccessUser s
String provider = "'der by aut henti cati on. provi der'";
String propertiesOnly = "'derby. dat abase. properti ESO’H y

System out. println(
“"Turni ng on authentication and SQ. aut horization.");
Statenent s = conn.createStatement();

/1 Set requireAuthentication

s. execut eUpdat e(set Property + requireAuth + ", "true')");
/1 Set sql Aut hori zation
S. execut eUpdat e(set Property + sqgl Authorization + ", "true')");

/1 Retrieve and di splay property val ues
ResultSet rs = s. executeQuery(getProperty + requireAuth + ")");
rs.next();
System out. println(
"Val ue of requireAuthentication is " + rs.getString(1));

139

Java DB Developer's Guide

rs = s.executeQery(getProperty + sql Authorization + ")");
rs.next();
System out . printl n(

"Val ue of sql Authorization is " + rs.getString(1));

/1 Set authentication scheme to Derby builtin
s. execut eUpdat e(set Property + provider + ", "BULTIN)");

/! Create sonme sanple users
s. execut eUpdat e(
set Property +
s. execut eUpdat e(
setProperty + "'derby.user.guest', 'javabwex')");
s. execut eUpdat e(

derby. user.sa', 'ajaxj3x9')");

setProperty + "'derby.user.mary', 'little7xylanb')");
s. execut eUpdat e(
setProperty + "'derby.user.sqlsam, 'light8q9bulb')");

/1 Define noAccess as default connection node
s. execut eUpdat e(
set Property + default ConnMbde + ", 'noAccess')");

/1 Confirm default connection node

rs = s.executeQuery(getProperty + defaul tConnMode + ")");

rs.next();

System out . println("Value of defaultConnectionMde is " +
rs.getString(1));

/| Define read-wite users
s. execut eUpdat e(
setProperty + full AccessUsers + ", 'sqlsammary')");

/1 Define read-only user
s. execut eUpdat e(
set Property + readOnl yAccessUsers + ", 'guest')");

/! Therefore, user sa has no access

/1 Confirmfull-access users
rs = s.executeQuery(getProperty + full AccessUsers + ")");
rs.next();
System out. printl n(
"Val ue of full AccessUsers is " + rs.getString(1));

/1 Confirmread-only users
rs = s.executeQery(getProperty + readOnl yAccessUsers + ")");
rs.next();
System out. println(
"Val ue of readOnl yAccessUsers is " + rs.getString(1));

/1 W would set the followi ng property to TRUE only when we were

/'l ready to deploy. Setting it to FALSE neans that we can al ways

/1 override using systemproperties if we accidentally paint

/1 ourselves into a corner.

s. execut eUpdat e(" CALL SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY(" +
"' der by. dat abase. propertiesOnly', 'false')");

s.cl ose();

}
/**

* Report exceptions, with special handling of SQ.Excepti ons,
* and exit.
*
* @aram e an exception (Throwabl e)
*/
static void errorPrint AndExit(Throwable e) {

if (e instanceof SQ.Exception)

SQ.Excepti onPrint ((SQLExcepti on)e);
el se {

140

Java DB Developer's Guide

Systemout.println("A non-SQ. error occurred.");
e.printStackTrace();

}
System exit(1);
}
/**
* |terate through a stack of SQ.Exceptions.
*
* @aram sqle a SQLException
*
/
static void SQ.ExceptionPrint(SQ.Exception sqgle) {
while (sqle !'= null)
Systemout. println("\n---SQLException Caught---\n");

System out . println("SQSt at e: " + (sqle).getSQState());
Systemout.println("Severity: " + (sqgle).getErrorCode());
Systemout.println("Mssage: " + (sqle).getMssage());

sql e = sql e. get Next Exception();

}
Source code for Aut hExanpl ed i ent SQLAut h2. j ava

i mport java.sql.*;
public class Aut hExanpl ed i ent SQLAut h2 {
public static void main(String[] args) {

String driver = "org.apache.derby.jdbc.ClientDriver";

String dbNane="sql Aut hCl i ent DB";

String dbOmner="nmary";

String connecti onURL = "jdbc:derby://|ocal host: 1527/" + dbNane;
Connection conn = null;

/!l Restart database and confirmthat unauthorized users cannot
[/l access it

/! Load the driver. This code is not needed if you are using
/1 JDK 6, because in that environment the driver is |oaded
/1 automatically when the application requests a connecti on.
try {
Cl ass. for Nane(dri ver);
Systemout.println(driver + " |oaded.");
} catch (java.lang. d assNot FoundException ce) {
System err. print("C assNot FoundException: ");
Systemerr.println(ce.get Message());
Systemout.println("\n Make sure your CLASSPATH variable " +
"contai ns YDERBY_HOVE% \|i b\\derbyclient.jar " +
"(${ DERBY_HOVE}/ | i b/ derbyclient.jar). \n");
} catch (Exception ee) {
errorPrint AndExi t (ee);

}
/!l Try to log in with no usernane or password
try {

/1 connection attenpt should fail
Systemout.println("Trying to connect to " + connectionURL +
" without usernane or password");
conn = Driver Manager. get Connecti on(connecti onURL) ;
System out. printl n(
"ERROR: Unexpectedly connected to database " + dbNane);
cl eanUpAndsShut Down(conn) ;
} catch (SQ.Exception e) {
if (e.getSQState().equal s("08004")) {
System out. println("Correct behavior: SQException: " +
e. get Message());
} else {
errorPrint AndExit(e);

141

Java DB Developer's Guide

}
}
/1l Try to log in as a valid user with noAccess
try {

/1 connection attenpt should fail
String newdRL = connectionURL + "; user=sa; passwor d=aj axj 3x9";
Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager . get Connecti on(newURL) ;
System out . printl n(
"ERROR: Unexpectedly allowed to connect to database " +
dbNare) ;
cl eanUpAndsShut Down(conn) ;
} catch (SQ.Exception e) {
if (e.getSQState().equal s("08004")) {
System out. println("Correct behavior: SQException: " +
e. get Message());
} else {
errorPrint AndExit(e);

}
}
/! Log in as a user with read-only access
try {

/1 connection shoul d succeed, but create table should fail
String newdRL = connectionURL +

"; user=guest ; passwor d=j avabwex";
Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager . get Connecti on(newURL) ;
Systemout. println("Connected to database " + dbNane +

" with read-only access");

Statenent s = conn.createStatement();
s. execut eUpdat e(
" CREATE TABLE accessi bl et bl (textcol VARCHAR(6))");
System out . printl n(
"ERROR: Unexpectedly allowed to nodify database " +
dbNane) ;
cl eanUpAndsShut Down(conn) ;
} catch (SQ.Exception e) {
if (e.getSQState().equal s("25503")) ({
Systemout. println("Correct behavior: SQ.Exception: " +
e. get Message());
try {
conn. cl ose();
} catch (SQLException ee) {
errorPrint AndExi t (ee);

} else {
errorPrint AndExit(e);
}

}

/1l Log in as a user with full access

/1 Create, update, and query table

/1l Grant select and insert privileges to another user

try {
/1 this should succeed
String newdRL = connectionURL +

";user=mary; password=little7xyl anmb";

Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager. get Connecti on(newURrL) ;
Systemout . println("Connected to database " + dbNane);

Statenent s = conn.createStatement();
s. execut eUpdat e(
" CREATE TABLE accessi bl et bl (textcol VARCHAR(6))");

Systemout.println("Created table accessibletbl");
s. execut eUpdat e(" 1 NSERT | NTO accessi bl etbl VALUES(' hello')");

142

Java DB Developer's Guide

ResultSet rs = s. executeQuery("SELECT * FROM accessi blethbl");

rs.next();

System out . println("Value of accessibletbl/textcol is " +
rs.getString(l));

/1 grant insert privileges on table to user sqgl sam
s. execut eUpdat e(

"GRANT SELECT, | NSERT ON accessibl etbl TO sqgl sant');
System out . printl n(

"Granted select/insert privileges to sqlsant);

s.close();
conn. cl ose();
} catch (SQLException e) {
errorPrint AndExit(e);
}

/1 Log in as user with select and insert privileges on the table,
/1 but not delete privileges
try {

String newdRL =

connecti onURL + "; user=sql sam passwor d=I i ght 8q9bul b";

Systemout.println("Trying to connect to " + newURL);

conn = Driver Manager . get Connecti on(newURL) ;

Systemout. println("Connected to database " + dbNane);

/1 1ook at table
Statenent s = conn.createStatement();
ResultSet rs =
s. execut eQuery(" SELECT * FROM nary. accessi bl etbl ");
rs.next();
System out. println("Val ue of accessibletbl/textcol is " +
rs.getString(1));

s. execut eUpdat e(
"1 NSERT | NTO nary. accessi bl et bl VALUES(' sami)");
Systemout.println("Inserted string into table");

rs = s.executeQuery("SELECT * FROM nmary. accessi bl etbl");
while (rs.next()) {
Systemout. println("Value of accessibletbl/textcol is " +
rs.getString(1));

s.close();
} catch (SQ.Exception e) {
errorPrint AndExit(e);
}

try {
Statenent s = conn.createStatement();

// this should fail
s. execut eUpdat e(" DELETE FROM nmary. accessi bl etbl " +
"WHERE textcol = "hello'");
System out . printl n("ERROR Unexpectedly allowed to DELETE " +
"table mary. accessibletbl");
cl eanUpAndShut Down(conn) ;
} catch (SQLException e) {
if (e.getSQState().equal s("42500")) {
Systemout. println("Correct behavior: SQException: " +
e. get Message());
try {
conn. cl ose();
} catch (SQLException ee) {
error Print AndExi t (ee);

} else {
errorPrint AndExit(e);
}

143

Java DB Developer's Guide

}

/* Log in again as mary, delete table

*/

try {
String newdRL = connectionURL +

";user=mary; password=little7xyl anmb";

Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager . get Connecti on(newURL) ;
Systemout. println("Connected to database " + dbNane);

Statenment s = conn.createStatenent();
s. execut eUpdat e(" DROP TABLE accessi bl etbl");
Systemout. println("Renoved table accessibletbl");
s.cl ose();

} catch (SQ.Exception e) {
errorPrint AndExit(e);

}

try {
cl eanUpAndshut Down(conn) ;

} catch (SQ.Exception e) {
errorPrint AndExit(e);
}

}

/** Cl ose connection and shut down dat abase.
*

* @aram conn a connection to the database
*/
public static void cleanUpAndShut Down (Connecti on conn)
t hrows SQLException {

String dbNanme="sql Aut hCl i ent DB";
String dbOmner="nary";
String connecti onURL = "jdbc:derby://|ocal host: 1527/" + dbNane;

try {
conn. cl ose();

System out. println("d osed connection");

/1 As mary, the database owner, shut down the database.
try {
String newdRL = connectionURL + ";user=" + dbOmner +
"; password=little7xyl amb; shut down=t rue";
Dri ver Manager . get Connecti on(newURL) ;
} catch (SQLException se) {
if (!se.getSQState().equal s("08006")) {
t hrow se;
}
}

System out. printl n("Dat abase shut down normally");
} catch (SQ.Exception e) {

errorPrint AndExit(e);
}

}
/**

* Report exceptions, with special handling of SQ.Exceptions,
* and exit.
*
* @aram e an exception (Throwabl e)
*/
static void errorPrintAndExit(Throwable e) {
if (e instanceof SQLException)
SQLExcepti onPri nt ((SQLException)e);
el se {
Systemout. println("A non-SQ error occurred.");
e. printStackTrace();

144

Java DB Developer's Guide
Systemexit(1);

/**

* |terate through a stack of SQLExcepti ons.

*

* @aram sqgle a SQLException

*

/
static void SQ.ExceptionPrint(SQLException sqgle) {

while (sqle !'=null) {
Systemout. println("\n---SQ.Exception Caught---\n");

System out . printl n("SQSt at e: " + (sqle).getSQState());
Systemout.println("Severity: " + (sqle).getErrorCode());
Systemout. println("Mssage: " + (sqle).getMssage());

sql e = sql e. get Next Exception();

}

User authentication and SQL authorization embedded example

This example, Aut hExanpl eEnbeddedSQLAut h. j ava, shows how to use SQL
authorization, in addition to Derby's built-in user authentication and user authorization,
with the embedded driver.

> Important: Derby's built-in authentication mechanism is suitable only for development
and testing purposes. It is strongly recommended that production systems rely on

LDAP or a user-defined class for authentication. It is also strongly recommended that
production systems protect network connections with SSL/TLS.

This example is a single long program. A similar example that uses the client driver,

in User authentication and SQL authorization client example, uses one program to set
properties and a second program to perform database operations. Either example would
work equally well in the other format.

See User authorizations for more information on using SQL authorization, which allows
you to use ANSI SQL Standard GRANT and REVOKE statements. Compare this
example to the one in User authentication and authorization embedded example, which
does not use SQL authorization.

The program does the following:

1. Starts Derby and creates a database named sql Aut hEnbDB, using the embedded
driver. The connection URL creates the database as the user mary, who is
therefore the database owner. After SQL authorization is enabled, only the
database owner will have the right to set and read database properties.

2. Sets database properties that create users with different levels of access (no
access, read-only access, and full access), that require authentication, and that turn
on SQL authorization. The users mar y and sql samhave full access.

3. Closes the connection, then stops and restarts the database so that the
authentication and SQL authorization changes can take effect.

4. Tries to connect to the database without a username and password, raising an
exception.

5. Tries to connect to the database as a user with no access, raising an exception.

6. Connects to the database as a user with read-only access; the connection
succeeds, but an attempt to create a table raises an exception.

7. Connects to the database as mar y, who has full access; this user creates and
populates a table. This user also grants select and insert privileges on this table to
another user.

8. Connects to the database as sgl sam the user who has been granted select and
insert privileges by mar y. This user has full (that is, read-write) access on the
connection level, but has limited powers for this table because SQL authorization is

145

Java DB Developer's Guide

active. The user successfully performs select and insert operations on the table, but
an attempt to delete a row from the table raises an exception.
9. Connects to the database again as mar y, who then deletes the table.
10. Closes the connection, shuts down the database, then shuts down Derby.

Make sure that the j avac command is in your path, then compile the program as follows:
j avac Aut hExanpl eEnbeddedSQ.Aut h. j ava

When you run Aut hExanpl eEnmbeddedSQLAut h, make sure that
YOERBY_HOVE% | i b\ der by. j ar (or $DERBY_HOME/ | i b/ der by. j ar) is in your
classpath. For example, you might use the following command on a Windows system:

java -cp .; YDERBY_HOVE% | i b\ der by. j ar Aut hExanpl eEnbeddedSQLAut h
Source code for Aut hExanpl eEnbeddedSQLAut h. j ava

import java.sql.*;
public class Aut hExanpl eEnbeddedSQLAut h {
public static void nmain(String[] args) {

String driver = "org.apache. derby. jdbc. EnbeddedDri ver";

String dbName="sql Aut hEmbDB";

String dbOaner ="nmary";

String connectionURL = "jdbc:derby:" + dbName +
";user=" + dbOmer + ";create=true";

Connection conn = null;

/1 Load the driver. This code is not needed if you are using
/1 JDK 6, because in that environment the driver is |oaded
/1 automatically when the application requests a connecti on.
try {
Cl ass. for Nane(dri ver);
Systemout.println(driver + " |oaded.");
} catch (java.lang. d assNot FoundException ce) {
System err. print("d assNot FoundException: ");
Systemerr.println(ce. get Message());
Systemout.println("\n Make sure your CLASSPATH variable " +
"cont ai ns YOERBY_HOVEW \I|ib\\derby.jar " +
"(${DERBY_HOVE}/li b/ derby.jar).\n");
} catch (Exception ee) {
error Print AndExi t (ee);
}

/!l Create and boot the database as user nmary (who then becones
/'l the database owner), set up users and then shut down the
/| dat abase
try {
Systemout.println("Trying to connect to " + connectionURL);
conn = DriverManager. get Connecti on(connecti onURL) ;
System out . printl n("Connected to database " + connecti onURL);

turnOnBui | t I nUser s(conn) ;

/1 C ose connection

conn. cl ose();

Systemout. println("d osed connection");
/* Shut down the database to nake static properties take
effect. Because the default connection node is now
noAccess, you nust specify a user that has access. But
because requireAuthenticati on and sql Authorizati on do not
take effect until you restart the database, you do not
need to specify a password.

Dat abase shutdown throws the 08006 exception to confirm
success.

L I R R

146

Java DB Developer's Guide

*/
try {
Dri ver Manager . get Connecti on("j dbc: derby: " + dbNanme +
";user=mary; shut down=t rue") ;
} catch (SQLException se) {
if (!se.getSQState().equal s("08006")) {
t hrow se;
}

System out . printl n("Dat abase shut down nornally");
} catch (SQ.Exception e) {

errorPrint AndExit(e);
}

/!l Restart database and confirmthat unauthorized users cannot
// access it
connectionURL = "jdbc:derby:" + dbNane;

/1l Try to log in with no usernanme or password
try {
/| connection attenpt should fail
Systemout.printIn("Trying to connect to " + connectionURL +
" wi thout usernane or password");
conn = Driver Manager. get Connecti on(connecti onURL) ;
System out. println(
"ERROR: Unexpectedly connected to database " + dbNane);
cl eanUpAndsShut Down(conn) ;
} catch (SQ.Exception e) {
if (e.getSQState().equal s("08004")) ({
Systemout. println("Correct behavior: SQ.Exception: " +
e. get Message());
} else {
errorPrint AndExit(e);

}
}
/!l Try to log in as a valid user with noAccess
try {

/1 connection attenpt should fail
String newdRL = connecti onURL + "; user=sa; passwor d=aj axj 3x9";
Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager. get Connecti on(newURrL) ;
System out. printl n(
"ERROR: Unexpectedly allowed to connect to database " +
dbNane) ;
cl eanUpAndShut Down(conn) ;
} catch (SQLException e) {
if (e.getSQState().equal s("08004")) {
Systemout. println("Correct behavior: SQException: " +
e. get Message());
} else {
errorPrint AndExit(e);

}
}
/1 Log in as a user with read-only access
try {

/1 connection shoul d succeed, but create table should fail
String newdRL = connectionURL +

", user=guest ; passwor d=j avabwex" ;
Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager. get Connecti on(newURrL) ;
System out. println("Connected to database " + dbNanme +

" with read-only access");

Statenent s = conn.createStatenent();
s. execut eUpdat e(

" CREATE TABLE accessi bl et bl (textcol VARCHAR(6))");
System out . println(

"ERROR: Unexpectedly allowed to nodify database " +

147

Java DB Developer's Guide

dbNane) ;
cl eanUpAndShut Down(conn) ;
} catch (SQLException e) {
if (e.getSQState().equal s("25503")) {
Systemout . println("Correct behavior: SQException: " +
e. get Message());
try {
conn. cl ose();
} catch (SQLException ee) {
errorPrint AndExi t (ee);

} else {
errorPrint AndExit(e);
}

}

/! Log in as a user with full access

/1 Create, update, and query table

/1l Grant select and insert privileges to another user

try {
/1 this should succeed
String newdRL = connectionURL +

";user=mary; password=little7xyl anmb";

Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager . get Connecti on(newURL) ;
Systemout. println("Connected to database " + dbNane);

Statenment s = conn. createStatenment();

s. execut eUpdat e(

" CREATE TABLE accessi bl et bl (textcol VARCHAR(6))"):;
Systemout. println("Created table accessibletbl");
s. execut eUpdat e(" | NSERT | NTO accessi bl et bl VALUES(' hello')");

ResultSet rs = s. executeQuery("SELECT * FROM accessi bletbl");

rs.next();

System out. println("Val ue of accessibletbl/textcol is " +
rs.getString(1));

/1 grant insert privileges on table to user sqgl sam
s. execut eUpdat e(

"CGRANT SELECT, | NSERT ON accessibletbl TO sql sant');
System out. printl n(

"Granted select/insert privileges to sql sani);

s.cl ose();
conn. cl ose();
} catch (SQ.Exception e) {
errorPrint AndExit(e);
}

/1l Log in as user with select and insert privileges on the table,
/1 but not delete privileges
try {

String newlRL =

connecti onURL + "; user=sql san passwor d=I i ght 8q9bul b";

Systemout.println("Trying to connect to " + newURL);

conn = Driver Manager. get Connecti on(newURrL) ;

System out . println("Connected to database " + dbNane);

/1 1ook at table
Statenent s = conn.createStatenent();
ResultSet rs =
s. execut eQuery(" SELECT * FROM mary. accessi bl etbl ");
rs.next();
Systemout. println("Value of accessibletbl/textcol is " +
rs.getString(1));

s. execut eUpdat e(
"I NSERT | NTO nary. accessi bl etbl VALUES(' sam)");

148

Java DB Developer's Guide
Systemout.printin("Inserted string into table");

rs = s.executeQery("SELECT * FROM mary. accessibletbl");
while (rs.next()) {
Systemout. println("Val ue of accessibletbl/textcol is " +
rs.getString(1));

s.close();
} catch (SQLException e) {
errorPrint AndExit(e);
}

try {
Statenent s = conn.createStatenent();

/1 this should fail
s. execut eUpdat e(" DELETE FROM mary. accessi bl etbl " +
"WHERE textcol = "hello'");
System out . println("ERROR Unexpectedly allowed to DELETE " +
"table mary. accessibletbl");
cl eanUpAndshut Down(conn) ;
} catch (SQ.Exception e) {
if (e.getSQState().equal s("42500")) {
System out. println("Correct behavior: SQException: " +
e. get Message());
try {
conn. cl ose();
} catch (SQLException ee) {
errorPrint AndExi t (ee);

} else {
errorPrint AndExit(e);
}
}
/* Log in again as mary, delete table
*/
try {

String newdRL = connectionURL +

";user=mary; password=little7xyl amb";
Systemout.println("Trying to connect to " + newURL);
conn = Driver Manager. get Connecti on(newURrL) ;
System out . println("Connected to database " + dbNane);

Statenent s = conn.createStatenment();
s. execut eUpdat e(" DROP TABLE accessi bl ethbl");
System out . println("Renoved table accessibletbl");
s.cl ose();

} catch (SQLException e) {
errorPrint AndExit(e);

}

try {
cl eanUpAndShut Down(conn) ;
} catch (SQ.Exception e) {
errorPrint AndExit(e);
}

}
/**

* (C ose connection and shut down database. Since this is enbedded
* node, we nust al so shut down the Derby system
*
* @aram conn a connection to the database
*/
public static void cleanUpAndShut Down (Connecti on conn)
throws SQLException {

String dbNane="sql Aut hEnbDB";
String dbOmner="nmary";

149

Java DB Developer's Guide
String connectionURL = "jdbc:derby:" + dbNane;

try {
conn. cl ose();
System out . println("d osed connection");

/1l As mary, the database owner, shut down the database.
try {
String newdRL = connecti onURL + ";user=" + dbOaner +
"; password=little7xyl anb; shut down=true";
Dri ver Manager . get Connecti on(newURL) ;
} catch (SQLException se) {
if (!se.getSQState().equal s("08006")) {
throw se;
}
}

System out. printl n("Database shut down normal ly");

try {
Dri ver Manager . get Connecti on("j dbc: der by: ; shut down=t rue");

} catch (SQLException se) {
if (!se.getSQState().equal s("XJ015")) {
throw se;
}

}

System out . println("Derby system shut down normally");
} catch (SQ.Exception e) {
errorPrint AndExit(e);

}
}
/**
* Turn on built-in user authentication and SQ. authorization.
*
* Default connection node is full Access, but SQL aut horization
* restricts access to the owners of database objects.
*

* @aram conn a connection to the database
>/
public static void turnOnBuiltlnUsers(Connection conn)
t hrows SQLException {

String setProperty =

"CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(" ;
String getProperty =

"VALUES SYSCS_UTI L. SYSCS_GET_DATABASE_PROPERTY(";
String requireAuth = "' derby. connection. requireAut hentication'";
String sql Aut horization = "'derby. dat abase. sql Aut hori zation'";
String defaul t ConnMode =

"' der by. dat abase. def aul t Connect i onMbde' ";
String full AccessUsers = "'derby. dat abase. ful | AccessUsers'";
String readOnl yAccessUsers =

"' der by. dat abase. readOnl yAccessUsers'";
String provider = "'derby. aut hentication. provider'";
String propertiesOnly = "'derby. dat abase. propertiesOnly'";

System out . printl n(
"Turni ng on authentication and SQ authorization.");
Statenment s = conn. createStatenent();

/1 Set requireAuthentication

s. execut eUpdat e(set Property + requireAuth + ", "true')");
/1 Set sqgl Aut hori zation
s. execut eUpdat e(set Property + sql Authorization + ", 'true')");

/1 Retrieve and di splay property val ues

ResultSet rs = s. executeQuery(getProperty + requireAuth + ")");
rs.next();

System out . printl n(

150

Java DB Developer's Guide
"Val ue of requireAuthentication is " + rs.getString(1));

rs = s.executeQery(getProperty + sql Authorization + ")");
rs.next();
System out. println(

"Val ue of sql Authorization is " + rs.getString(1));

/1 Set authentication scheme to Derby builtin
s. execut eUpdat e(set Property + provider + ", "BULTIN)");

/'l Create sonme sanple users
S. execut eUpdat e(
set Property +
s. execut eUpdat e(
setProperty + "'derby.user.guest', 'javabwex')");
S. execut eUpdat e(

derby. user.sa', 'ajaxj3x9')");

set Property + "'derby.user.mary', 'little7xylanb')");
s. execut eUpdat e(
setProperty + "'derby.user.sqglsam, 'light8g9bulb')");

/1 Define noAccess as default connection npde
s. execut eUpdat e(
set Property + default ConnMbde +

' noAccess')");

/1 Confirm default connection node

rs = s.executeQuery(getProperty + defaultConnvbde + ")");

rs.next();

System out . println("Value of defaultConnectionMde is " +
rs.getString(l));

/'l Define read-wite users
S. execut eUpdat e(
setProperty + full AccessUsers + ", '"sqlsammary')");

/| Define read-only user
S. execut eUpdat e(
set Property + readOnl yAccessUsers + ", 'guest')");

[/l Therefore, user sa has no access

/1 Confirmfull-access users
rs = s.executeQery(getProperty + full AccessUsers + ")");
rs.next();
System out . printl n(
"Val ue of full AccessUsers is " + rs.getString(1));

/1 Confirmread-only users
rs = s.executeQuery(getProperty + readOnl yAccessUsers + ")");
rs.next();
System out . printl n(
"Val ue of readOnl yAccessUsers is " + rs.getString(1l));

/1 W& would set the follow ng property to TRUE only when we were
/1 ready to deploy. Setting it to FALSE neans that we can al ways
/1 override using systemproperties if we accidentally paint
/1 ourselves into a corner.
s. execut eUpdat e(set Property + propertiesOnly + ", 'false')");
s.cl ose();

}

/**

* Report exceptions, with special handling of SQ.Excepti ons,
* and exit.
*
* @aram e an exception (Throwabl e)
*/
static void errorPrint AndExit(Throwable e) {

if (e instanceof SQ.Exception)

SQ.Excepti onPrint ((SQLExcepti on)e);
el se {

151

Java DB Developer's Guide

Systemout.println("A non-SQ. error occurred.");
e.printStackTrace();

}
System exit(1);
}
/**
* |terate through a stack of SQ.Exceptions.
*
* @aram sqle a SQLException
*
/
static void SQ.ExceptionPrint(SQ.Exception sqgle) {
while (sqle !'= null) {
Systemout. println("\n---SQLException Caught---\n");

System out . println("SQSt at e: " + (sqle).getSQState());
Systemout.println("Severity: " + (sqgle).getErrorCode());
Systemout.println("Mssage: " + (sqle).getMssage());

sql e = sql e. get Next Exception();

Running Derby under a security manager

When running within an application or application server with a Java 2 Security Manager
enabled, Derby must be granted certain permissions to execute and access database
files.

For more information about permissions and examples of creating permission
objects and granting permissions, see the Security Architecture specification at
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html.

Granting permissions to Derby

This section discusses which permissions should be granted to Derby (the code base
derby. j ar).

See Default Policy Implementation and Policy File Syntax at
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html for more information
about creating policy files.

Mandatory permissions

permission java.lang.RuntimePermission createClassLoader
Mandatory. It allows Derby to execute SQL queries and supports loading class files
from jar files stored in the database.

permission java.util.PropertyPermission "derby.*", "read"
Allows Derby to read individual Derby properties set in the JVM machine's system
set. If the action is denied, properties in the JVM machine's system set are ignored.

permission java.util.PropertyPermission "derby.storage.jvminstanceld",

"write"
This property is used by Derby to prevent the accidental boot of the database by two
class loaders. If the database is booted by two class loaders, database corruption can
occur. If write permission for this property is not granted, a message is printed to the
log file which indicates that the Derby database is not protected from dual boot and
possible corruption.

Database access permissions

permission java.io.FilePermission "directory${/}/-", "read,write,delete"
Allows Derby to manage files within the database that maps to the directory specified.
For read-only databases, only the "read" action needs to be granted.

Optional permissions

152

http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html

Java DB Developer's Guide

permission java.io.FilePermission "${derby.system.home}", "read,write"

Allows Derby to determine the system directory when set by derby.system.home

and create it if needed. If the system directory already exists then only the "read"

permission needs to be granted.
permission java.util.PropertyPermission "user.dir", "read"

Permits access to the system directory value if derby.system.home is not set or no

permission has been granted to read the derby.system.home property.
permission java.util.PropertyPermission "sun.arch.data.model", "read"

If set by the JVM, this is the definite answer to whether the system is 32 or 64 bit.
permission java.util.PropertyPermission "os.arch", "read"

Used by Derby to determine if the system is 32 or 64 bit, if the system property

sun.arch.data.model isn't set by the JVM. Derby has to recognize the value of os.arch

to determine if the system is 32 or 64 bit, and if the value isn't recognized a heuristic
will be used instead.

permission java.io.FilePermission

"${derby.system.home}${/}derby.properties"”, "read"

Allows Derby to read the system properties file from the system directory.
permission java.io.FilePermission "${derby.system.home}${/}derby.log",
"read,write,delete"
permission java.io.FilePermission "${user.dir}${/}derby.log",
"read,write,delete";

Only one of these permissions is needed. Permits the application to read, write,

and delete to the Derby log file, unless the log has been re-directed. (See

the derby.stream.error properties in the Java DB Reference Manual for more

information.) If one of the requested valid actions is denied, the Derby log will be

java.l ang. Systemerr.
permission java.security.SecurityPermission "getPolicy”

You need this permission if you want to change the security policy on the fly and

reload it into a running system. Given this permission, a DBA can reload the policy

file by calling the SYSCS_UTI L. SYSCS_RELOAD_SECURI TY_PQOLI CY system
procedure. For more information, see the section which describes this procedure in
the Java DB Reference Manual.

permission java.lang.RuntimePermission "setContextClassLoader"

Allows Derby to set the context class loader for long running threads to null to

avoid potential for class loader leaks in application server environments when the

application server starts Derby in a custom class loader.
permission java.lang.RuntimePermission "getClassLoader"

This permission is also needed when setting the context class loader to avoid class

loader leaks. The class loader for the parent is saved and set to null before creation

of the thread and restored afterwards.
permission javax.management.MBeanServerPermission
"createMBeanServer";

Allows Derby to create an MBean server. If the JVM running Derby

supports the platform MBean server, Derby will automatically try to create

such a server if it does not already exist. For details, visit the wiki page

http://wiki.apache.org/db-derby/DerbyJMX.
permission javax.management.MBeanPermission
"org.apache.derby.*#[org.apache.derby:*]","registerMBean,unregisterMBean";

Allows Derby to register and unregister its (JMX) MBeans. Such MBeans are

associated with the domain or g. apache. der by, which is also the prefix

of the fully qualified class name of all Derby MBeans. For more information

about Derby's MBeans, refer to the public API (Javadoc) documentation of the

package or g. apache. der by. nbeans and its subpackages. It is possible

to fine-tune this permission, for example in order to allow access only to

certain MBeans. To fine-tune this permission, see the API documentation for

153

http://wiki.apache.org/db-derby/DerbyJMX

Java DB Developer's Guide

j avax. managenent . MBeanPer mi ssi on or the JMX Instrumentation and Agent
Specification.

permission javax.management.MBeanTrustPermission "register";
Trusts Derby code to be the source of MBeans and to register these in the MBean
server.

Combining permissions
You might grant one FilePermission that encompasses several or all of the permissions
instead of separately granting a number of the more specific permissions. For example:

perm ssion java.io. FilePerm ssion "${derby.system hone}/-",
"read,wite, del ete";

This allows the Derby engine complete access to the system directory and any
databases contained in the system directory.

Examples of Java 2 security policy files for embedded Derby
Java 2 security policy file example 1

/* Grants permission to run Derby and access all */
/* dat abases under the Derby system hone */
/* when it is specified by the system property */
/* Derby.system hone */

/* Note Derby.system honme nust be an absol ute pathnane */
grant codeBase "file://f:/derby/lib/derby.jar" {

perm ssi on java. |l ang. Runti mePerm ssion "createC assLoader";
permi ssion java.util.PropertyPerm ssion "derby.*", "read";

perm ssion.java.io. FilePerm ssion "${derby. system hone}", "read";
perm ssion java.io.FilePerm ssion "${derby. system home}${/}

-", "read,wite, del ete";
permi ssion java.util.PropertyPerm ssion "derby. storage.jvmn nstancel d",

"wite";
i
Java 2 security policy file example 2
/* Grants permission to run Derby and access all */
/* dat abases under the Derby system home */
/* when it defaults to the current directory */

grant codeBase "file://f:/derby/lib/derby.jar" {

permi ssi on java. |l ang. Runti mePer m ssion "createCl assLoader";

perm ssion java.util.PropertyPerm ssion "derby.*", "read";

perm ssion java.util.PropertyPerm ssion "user.dir", "read";

perm ssion java.io.FilePerm ssion "${derby. system hone}", "read";

perm ssion java.io. FilePerm ssion "${user.dir}${/}-",
"read,wite,delete";

perm ssion java.util.PropertyPerm ssion "derby. storage.jvn nstancel d",
"wite";

i
Java 2 security policy file example 3

/* Grants permission to run Derby and access a single */
/* dat abase (sal esdb) under the Derby system hone */

/* Note Derby.system hone nust be an absol ute pathnane */
grant codeBase "file://f:/derby/lib/derby.jar" {

permi ssi on java. |l ang. Runti mePer m ssion "createC assLoader";

154

Java DB Developer's Guide

perm ssion java.util.PropertyPerm ssion "derby.*", "read";

perm ssion java.io.FilePern ssion "${derby.system hone}", "read";

perni ssion java.io. FilePerni ssion "${derby.system hone}${/}*",
"read, wite, del ete";

perm ssion java.io. FilePerm ssion "${derby. system hone} ${/}

sal esdb${/}-", "read,wite,delete";
permi ssion java.util.PropertyPerm ssion "derby. storage.jvmn nstancel d",
"write";

155

Java DB Developer's Guide

Developing tools and using Derby with an IDE

Applications such as database tools are designed to work with databases whose
schemas and contents are unknown in advance. This section discusses a few topics
useful for such applications.

Offering connection choices to the user

JDBC's java.sql.Driver.getPropertylnfo method allows a generic GUI tool to determine
the properties for which it should prompt a user in order to get enough information to
connect to a database. Depending on the values the user has supplied so far, additional
values might become necessary. It might be necessary to iterate though several calls to
getPropertyinfo.

If no more properties are necessary, the call returns an array of zero length.

In a Derby system, do not use the method against an instance of
org.apache.derby.jdbc.EmbeddedDriver. Instead, request the JDBC driver from the driver
manager:

java.sql . DriverManager. getDri ver (
"jdbc: derby:"). get Propertyl nfo(URL, Prop)

In a Derby system, the properties returned in the DriverPropertylnfo object are
connection URL attributes, including a list of booted databases in a system (the
databaseName attribute).

Databases in a system are not automatically booted until you connect with them. You can
configure your system to retain the former behavior, in which case the steps described in
this section will continue to work. See "derby.system.bootAll" in the Java DB Reference
Manual.

getPropertyinfo requires a connection URL and a Properties object as
parameters. Typically, what you pass are values that you will use in a future call to
java.sql.DriverManager.getConnection when you actually connect to the database.

A call to getPropertylnfo with parameters that contain sufficient information to connect
successfully returns an array of zero length. (Receiving this zero-length array does not
guarantee that the getConnection call will succeed, because something else could go

wrong.)

Repeat calls to getPropertylnfo until it returns a zero-length array or none of the
properties remaining are desired.

The DriverPropertyinfo Array

When a non-zero-length array is returned by getPropertyinfo, each element is a
Dri ver Propertyl nf o object representing a connection URL attribute that has not
already been specified. Only those that make sense in the current context are returned.

This DriverPropertylnfo object contains:

* name of the attribute
* description
e current value

If an attribute has a default value, this is set in the value field of DriverPropertyinfo,
even if the attribute has not been set in the connection URL or the Properti es

156

Java DB Developer's Guide

object. If the attribute does not have a default value and it is not set in the URL or
the Pr operti es object, its value will be null.

« list of choices

« whether required for a connection request

Several fields in a DriverPropertylnfo object are allowed to be null.
DriverPropertyInfo array example

Here is some example code:

import java.sql.*;

import java.util.Properties;

/1 start with the | east amount of information
/1l to see the full list of choices

/1 we could also enter with a URL and Properties
/'l provided by a user.

String url = "jdbc:derby:";

Properties info = new Properties();

Driver cDriver = DriverManager.getDriver(url);
for (;;)

DriverPropertylnfo[] attributes = cDriver.getPropertylnfo(
url, info);

/'l zero length neans a connection attenpt can be nmde

if (attributes.length == 0)

br eak;

/'l insert code here to process the array, e.g.,

/1 display all options in a GJ and allow the user to

/1 pick and then set the attributes in info or URL.

/1 try the connection
Connecti on conn = Driver Manager. get Connection(url, info);

Using Derby with IDEs

When you use an integrated development environment (IDE) to develop an embedded
Derby application, you might need to run Derby within a server framework.

This is because an IDE might try connecting to the database from two different JVMs,
whereas only a single JVM instance should connect to a Derby database at one time
(multiple connections from the same JVM are allowed).

An "embedded Derby application” is one which runs in the same JVM

as the application. Such an application uses the embedded Derby

driver (org.apache.derby.jdbc.EmbeddedDriver) and connection URL

(j dbc: der by: dat abaseNane). If you use this driver name or connection URL from
the IDE, when the IDE tries to open a second connection to the same database with the
embedded Derby, the attempt fails. Two JVMs cannot connect to the same database in
embedded mode.

IDEs and multiple JVMs

When you use an integrated development environment (IDE) to build a Java application,
you can launch the application from within the IDE at any point in the development
process. Typically, the IDE launches a JVM dedicated to the application. When the
application completes, the JVM exits. Any database connections established by the
application are closed.

During the development of a database application, most IDEs allow you to test individual
database connections and queries without running the entire application. When you test
an individual database connection or query (which requires a database connection),

the IDE might launch a JVM that runs in a specialized testing environment. In this case,

157

Java DB Developer's Guide

when a test completes, the JVM remains active and available for further testing, and the
database connection established during the test remains open.

Because of the behaviors of the IDE described above, if you use the embedded Derby
JDBC driver, you may encounter errors connecting in the following situations:

* You test an individual query or database connection and then try to run an
application that uses the same database as the tested feature.

The database connection established by testing the connection or query stays
open, and prevents the application from establishing a connection to the same
database.

« You run an application, and before it completes (for example, while it waits for user
input), you attempt to run a second application or to test a connection or query that
uses the same database as the first application.

158

Java DB Developer's Guide

SOL tips

This section provides some examples of interesting SQL features. It also includes a few
non-SQL tips.

Retrieving the database connection URL

Derby does not have a built-in function that returns the name of the database.
However, you can use Dat abaseMet aDat a to return the connection URL of any local
Connecti on.

/* in java */
String myURL = conn. get Met aDat a() . get URL();

Supplying a parameter only once

If you want to supply a parameter value once and use it multiple times within a query, put
it in the FROM clause with an appropriate CAST.

SELECT phonebook. *
FROM phonebook, (VALUES (CAST(? AS INT), CAST(? AS VARCHAR(255))))
AS Choi ce(choi ce, search_string)
VWHERE search_string = (case when choice = 1 then firstnnme
when choi ce=2 then | astnanme
when choi ce=3 t hen phonenunber end);

This query selects what the second parameter will be compared to based on the value in
the first parameter. Putting the parameters in the FROM clause means that they need to

be applied only once to the query, and you can give them names so that you can refer to
them elsewhere in the query. In the example above, the first parameter is given the name
choice, and the second parameter is given the name search_string.

Defining an identity column

An identity column is a column that stores numbers that increment by one with each
insertion. Identity columns are sometimes called autoincrement columns.

Derby provides autoincrement as a built-in feature; see CREATE TABLE statement in the
Java DB Reference Manual.

Below is an example that shows how to use an identity column to create the MAP_ID
column of the MAPS table in the toursDB database.

CREATE TABLE MAPS

(

MAP_| D | NTEGER NOT NULL GENERATED ALWAYS AS | DENTI TY (START W TH 1,
| NCREMENT BY 1),

MAP_NANME VARCHAR(24) NOT NULL,

REG ON VARCHAR(26) ,

AREA DECI MAL(8, 4) NOT NULL,

PHOTO_FORMAT VARCHAR(26) NOT NULL,

Pl CTURE BLOB(102400),

UNI QUE (MAP_I D, MAP_NANE)

)

Using third-party tools

159

Java DB Developer's Guide

You can hook into any JDBC tool with just our JDBC Driver class name
(org.apache.derby.jdbc.EmbeddedDriver) and Derby's JDBC connection URL.

Tricks of the VALUES clause

This section contains some tips to use with the VALUES clause.

Multiple rows

Derby supports the complete SQL-92 VALUES clause; this is very handy in several
cases.

The first useful case is that it can be used to insert multiple rows:

I NSERT | NTO OneCol ummTabl e VALUES 1, 2,3,4,5,6,7,8

I NSERT | NTO TwoCol utmTabl e VALUES
(1, '"first row),
(2, 'second row),
(3, "third row)

Dynamic parameters reduce the number of times execute requests are sent across:

ij>-- send 5 rows at a tine:

i j> PREPARE pl AS 'INSERT | NTO Thr eeCol ummTabl e VALUES
(2,2,?2), (2,2,?), (2,?2,?), (2,?2,?), (2,?2,?2)";

ij> EXECUTE pl USING ' VALUES (''1st'',1,1,"'2nd"'",2,2,'" 3rd" "',
3,3, "4th'', 4,4, '5th'",55)" :

Mapping column values to return values

Multiple-row VALUES tables are useful in mapping column values to desired return
values in queries.

-- get the nanes of all departments in Ohi oSELECT Dept Nane

FROM Dept s,
(VALUES (1, ' Shoe'),
(2, 'Laces'),

(4, 'Polish"))
AS Dept Map(Dept Code, Dept Desc)
WHERE Dept s. Dept Code = Dept Map. Dept Code
AND Depts. Dept Locn LI KE ' %hi 0%

You might also find it useful to store values used often for mapping in a persistent table
and then using that table in the query.

Creating empty queries

You may need Derby to create "empty" queries in existing applications for filling in bits of
functionality that Derby does not supply.

Empty queries of the right size and shape can be formed off a single values table and a
"WHERE FALSE" condition:

SELECT *
FROM (VALUES ('',1,"TRUE")) AS Procedur el nf o(Procedur eNanme, NunPar anet er s,

ProcedureVal i d)
VWHERE 1=0

160

Java DB Developer's Guide

Localizing Derby

Derby offers support for locales.

The word locale in the Java platform refers to an instance of a class that identifies

a particular combination of language and region. If a Java class varies its behavior
according to locale, it is said to be locale-sensitive. Derby provides some support for
locales for databases and other components such as the tools and the installer.

It also provides a feature to support databases in many different languages, a feature
which is independent of a particular territory.

When you create or upgrade a database, you can use the territory attribute to associate
a non-default territory with the database. For information about how to use the territory
attribute, see the Java DB Reference Manual.

SQL parser support for Unicode

To support users in many different languages, Derby's SQL parser understands all
Unicode characters and allows any Unicode character or number to be used in an
identifier.

Derby does not attempt to ensure that the characters in identifiers are valid in the
database's locale.

Character-based collation in Derby

A character set is a set of symbols and encodings. Character data types are represented
as Unicode 2.0 sequences in Derby.

How collation works in Derby

Derby supports a wide range of character sets and encodes all of the character sets by
using the Unicode support provided by the java.lang.Character class in the Java Virtual
Machine (JVM) in which the Derby database runs. See the Java API documentation for
the java.lang.Character class for the exact level of Unicode Standard that is supported.

A collation is a set of rules for comparing characters in a character set. In Derby the
collation rules affect comparisons of the CHAR and VARCHAR data types. Collation rules
also affect how the LIKE Boolean operator processes the CHAR, VARCHAR, CLOB, and
LONG VARCHAR data types.

The default Derby collation rule is based on the binary Unicode values of the characters.
So a character is greater than (<), equal to (=), or less than (>) another character based
on the numeric comparison of the Unicode values. This rule allows for very efficient
comparisons of character strings.

Note: When LIKE comparisons are used, Derby compares one character at a time for
non-metacharacters. This is different than the way Derby processes = comparisons. The
comparisons with the = operator compare the entire character string on left side of the

= operator with the entire character string on the right side of the = operator. See the
Differences between LIKE and equal (=) comparisons section below.

Territory-based collation

Derby also supports the ability to define collation rules that are appropriate to a territory,
and is referred to as territory-based collation. Derby supports the territories that Java
supports.

161

Java DB Developer's Guide

You can specifically set the territory of a database when you create the database. If
you do not specify a territory, Derby uses the default territory of the JVM in which the
database is created. Each JVM can support many territories that are independent

from the default territory for the JVM. Collation support for these additional territories is
provided through the j ava. t ext . Rul eBasedCol | at or class and the set of rules for
these territories. Refer to the JVM specification for details of how these rules are used
to provide territory specific collation. Derby currently supports only running those rules
that can be loaded dynamically from the running JVM based on the territory attribute.
Overrides to these rules by the user are not supported.

The territory-based collation in Derby affects how the CHAR and VARCHAR data types
are compared. Specifying territory-based collation also impacts how the LIKE Boolean
operator processes CHAR, VARCHAR, CLOB, and LONG VARCHAR data.

Territory-based collation does add extra processing overhead to all character-based
comparison operations.

Database attributes that control collation

When you create a Derby database, the attributes that you set determine the collation
that is used with all of character data in the database. For example:

Table 13. The create database attributes that control collation

Example create commands Collation is driven by

jdbc:derby:abcDB;create=true Unicode codepoint collation
(UCS_BASIC), which is the default
collation for Derby databases.

jdbc:derby:abcDB;create=true;territory=es_|[Unicode codepoint collation
(UCS_BASIC). The col | ati on attribute
is not set.

jdbc:derby:abcDB;create=true;collation=TEl The territory of the JVM, since the
territory attribute is not set.

Tip: To determine the territory of the JVM,
run Local e. get Def aul t ().

jdbc:derby:abcDB;create=true;territory=es_| The t erri t ory attribute.

Collation examples

With Unicode codepoint collation (UCS_BASIC), the numerical values of the Unicode
encoding of the characters are used directly for ordering. For example, the FRUIT table
contains the NAME column that uses the VARCHAR(20) data type. The contents of the
NAME column are:

orange

apple

Banana

Pineapple

Grape

UCS_BASIC caollation sorts all lower case letters before upper case letters. The
statement SELECT * FROM FRU T ORDER BY NAME returns:

apple

orange

Banana

Grape

Pineapple

162

Java DB Developer's Guide

If the database is created with the territory attribute set to en_US (English language,
United States country code), and the collation attribute set to TERRITORY_BASED, the
results of the statement SELECT * FROM FRU T ORDER BY NAME returns:

apple

Banana

Grape

orange

Pineapple

The collation set for the database also impacts comparison operators on character
data types. For example, the statement SELECT * FROM FRU T WHERE NAME >
' Banana' ORDER BY NANME returns:

UCS_BASIC collation Territory-based collation

Grape Grape
Pineapple orange
Pineapple

For information on creating case-insensitive databases, see Creating a database with
territory-based collation.

Differences between LIKE and equal (=) comparisons
When you use territory-based collation, the comparisons can return different results
when you use the LIKE and equal (=) operators. For example, suppose that the Derby
database is set to use a territory where the character 'z' has same collation elements as
'xy'. Consider the following two WHERE clauses:

1. WHERE 'zcb' = 'xycb'

2. WHERE 'zcb' LIKE 'xy_b'

For WHERE clause 1, Derby returns TRUE because the collation elements for the entire
string 'zcb' will match the collation elements of the entire string 'xycb'.

For WHERE clause 2, Derby returns FALSE because collation element for character 'z'
does not match the collation element for character 'x'. In addition, when metacharacter
such as an underscore is used with the LIKE operator, the metacharacter counts for
one character in the string value. A clause like WHERE 'xycb' LIKE '_cb' returns FALSE
because 'x' is compared to the metacharacter _ and'y' does not match 'c'.

Other components with locale support
Derby also provides locale support for the following components:

» Database error messages are in the language of the locale, if support is explicitly
provided for that locale with a special library.

For example, Derby explicitly supports Spanish-language error messages. If a
database's locale is set to one of the Spanish-language locales, Derby returns error
messages in the Spanish language.

« The Derby tools. In the case of the tools, locale support includes locale-specific
interface and error messages and localized data display.

For more information about localization of the Derby tools, see the Java DB Tools
and Utilities Guide.

Localized messages require special libraries.

The locale of the database is set by the territory=Il_CC attribute when the database

is created. However, the locale of the error messages and tools is not determined by
the locale of the database. The locale of the error messages and tools is determined
by the default system locale. This means that it is possible to create a database with a

163

Java DB Developer's Guide

non-default locale. In such a case, error messages are not returned in the language of
the locale of the database but are returned in the language of the default locale instead.

Note: You can override the default locale for ij with a property on the JVM. For more
information, see the Java DB Tools and Utilities Guide.

Messages libraries

The following list describes the items required in order for Derby to provide localized
messages.

* You must have the locale-specific Derby jar file. Derby provides such jars for only
some locales. You will find the locale jar files in the /lib directory in your Derby
installation.

» The locale-specific Derby jar file must be in the classpath.

The locale-specific Derby jar file is named derbyLocale_Il_CC.jar, where Il is
the two-letter code for language, and CC is the two-letter code for country. For
example, the name of the jar file for error messages for the German locale is
derbylLocal e_de DE.j ar.

Derby supports the following locales:
« derbyLocale_cs.jar - Czech
« derbyLocale_de DE.jar - German
« derbyLocale_es.jar - Spanish
 derbyLocale_fr.jar - French
 derbyLocale_hu.jar - Hungarian
 derbyLocale_it.jar - Italian
« derbyLocale ja_JP.jar - Japanese
« derbyLocale ko KR.jar - Korean
 derbyLocale_pl.jar - Polish
» derbyLocale pt BR.jar - Brazilian Portuguese
« derbyLocale_ru.jar - Russian
« derbyLocale_zh CN.jar - Simplified Chinese
« derbyLocale_zh TW.jar - Traditional Chinese

164

Java DB Developer's Guide

Derby and standards

Derby adheres to SQL99 or newer standards wherever possible. This section describes
those features currently in Derby that are not standard; these features are currently being
evaluated and might be removed in future releases.

This section describes those parts of Derby that are non-standard or not typical for a
database system.

ALTER TABLE syntax
Derby uses a slightly different ALTER TABLE syntax for altering column defaults.
While SQL99 uses DROP and SET, Derby uses DEFAULT.
Calling functions and procedures
Derby supports the CALL (procedure) statement for calling external procedures
declared by the CREATE PROCEDURE statement. Built-in functions and
user-defined functions declared with the CREATE FUNCTION command can be
called as part of an SQL select statement or by using either a VALUES clause or
VALUES expression.
CLOB and BLOB data types
Derby supports the standard CLOB and BLOB data types. BLOB and CLOB values
are limited to a maximum of 2,147,483,647 characters.
Cursors
Derby uses JDBC's result sets, and does not provide SQL for manipulating cursors
except for positioned update and delete. Derby's scrollable insensitive cursors are
provided through JDBC, not through SQL commands.
DECIMAL max precision
For Derby, the maximum precision for DECIMAL columns is 31 digits. SQL99 does
not require a specific maximum precision for decimals, but most products have a
maximum precision of 15-32 digits.
Dynamic SQL
Derby uses JDBC's Prepared Statement, and does not provide SQL commands for
dynamic SQL.
Expressions on LONGs
Derby permits expressions on LONG VARCHAR; however, LONG VARCHAR data
types are not allowed in the following clauses, operations, constraints, functions, and
predicates:
* GROUP BY clauses
» ORDER BY clauses
» JOIN operations
* PRIMARY KEY constraints
» Foreign KEY constraints
* UNIQUE key constraints
» MIN aggregate function
* MAX aggregate function
» [NOT] IN predicate
* UNION, INTERSECT, and EXCEPT operators
SQL99 also places some restrictions on expressions on LONG types.
Information schema
Derby uses its own system catalog that can be accessed using standard JDBC
DatabaseMetadata calls. Derby does not provide the standard Information Schema
views.
NOT NULL characteristic
The SQL standard says NOT NULL is a constraint, and can be hamed and viewed in
the information schema as such. Derby does not provide naming for NOT NULL, nor

165

Java DB Developer's Guide

does it present it as a constraint in the information schema, only as a characteristic of
the column.

Stored routines and PSM
Derby supports external procedures using the Java programming language.
Procedures are managed using the CREATE PROCEDURE and DROP
PROCEDURE statements.

Transactions
All operations in Derby are transactional. Derby supports transaction control using
JDBC Connection methods. This includes support for savepoints and for the four
JDBC transaction isolation levels. The only SQL command provided for transaction
control is SET TRANSACTION ISOLATION.

XML data types and operators

Derby supports the XML data type and a set of operators that work with the XML data
type, but does not provide JDBC support for the XML data type. The XML data type and
operators are based on a small subset of the SQL/XML specification.

The XML data type and operators are defined only in the SQL layer.

There is no JDBC-side support for XML data types. It is not possible to bind directly
into an XML value or to retrieve an XML value directly from a result set. Instead, you
must bind and retrieve the XML data as Java strings or character streams by explicitly
specifying the appropriate XML operator as part of the SQL statements:

« Use the XMLPARSE operator for binding data into XML values.

» Use the XMLSERIALIZE operator to retrieve XML values from a result set.
Additionally, there is no JDBC metadata support for the XML data type.

The XML data type is not allowed in any of the clauses or operations that are described
in the section on expressions on LONG data types in Derby and standards.

For the XML operators to work properly, Derby requires that a JAXP parser, such as
Apache Xerces, and Apache Xalan are included in the Java classpath. If either the parser
or Xalan are missing from the classpath, Derby disallows any XML-related operations.

Classpath and version issues

Most Java Virtual Machines (JVMSs) that are version 1.4 or later have a JAXP parser
embedded in the JVM. If you are using one of these JVMs, you may not need to add any
classes to your classpath. Some exceptions exist:

* In most version 1.4.2 JVMs, the version of Xalan that comes with the JVM is
not new enough, so you must override the version of Xalan in the JVM with a
newer version by using the Endorsed Standards Override Mechanism described
at http://java.sun.com/j2se/1.4.2/docs/guide/standards/. To use this mechanism,
download and install a binary distribution of Xalan from Apache and set the system
property j ava. endor sed. di r s to point to the Xalan installation directory.

« After JVM version 1.4, Sun renamed the JAXP packages. Derby cannot find these
renamed packages. If you are using a Sun JVM later than version 1.4, download
and install a binary distribution of Xalan from Apache and place the xal an. j ar
file in your classpath. The xal an. j ar file automatically puts into the classpath the
other required jars that are in the same directory.

166

http://java.sun.com/j2se/1.4.2/docs/guide/standards/

Java DB Developer's Guide

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

167

	Cover
	Contents
	Copyright
	License
	Relationship between Java DB and
Apache Derby
	About this guide
	Purpose of this guide
	Audience
	How this guide is organized

	After installing
	The installation directory
	Batch files and shell scripts

	Derby and JVMs
	Derby libraries and classpath
	UNIX-specific issues
	Configuring file descriptors
	Scripts

	Upgrades
	Preparing to upgrade
	Upgrading a database
	Soft upgrade limitations

	JDBC applications and Derby basics
	Application development overview
	Derby embedded basics
	Derby JDBC driver
	Derby JDBC database connection URL
	Derby system
	One Derby instance for each Java Virtual Machine (JVM)
	Booting databases
	Shutting down the system
	Defining the system directory
	The error log
	derby.properties
	Double-booting system behavior
	Recommended practices

	A Derby database
	The database directory
	Creating, dropping, and backing up databases
	Single database shutdown
	Storage and recovery
	Log on separate device
	Database pages
	Database-wide properties
	Derby database limitations

	Connecting to databases
	Connecting to databases within the system
	Connecting to databases outside the system directory
	Conventions for specifying the database path
	Special database access
	Accessing databases from the classpath
	Accessing databases from a jar or zip file

	Database connection examples

	Working with the database connection URL attributes
	Using the databaseName attribute
	Shutting down Derby or an individual database
	Creating and accessing a database
	Providing a user name and password
	Creating a database with territory-based collation
	Encrypting a database when you create it
	Creating an encrypted database with an external key
	Booting an encrypted database
	Specifying attributes in a properties object

	Using in-memory databases
	Working with Derby properties
	Properties overview
	Scope of properties
	Persistence of properties
	Precedence of properties
	Protection of database-wide properties

	Dynamic versus static properties

	Setting Derby properties
	Setting system-wide properties
	Changing the system-wide properties programmatically
	Changing the system-wide properties by using the derby.properties file
	Verifying system properties

	Setting database-wide properties
	Setting properties in a client/server environment
	Making dynamic or static changes to properties

	Properties case study

	Deploying Derby applications
	Deployment issues
	Embedded deployment application overview
	Deploying Derby in an embedded environment
	Embedded systems and properties

	Creating Derby databases for read-only use
	Creating and preparing the database for read-only use
	Deploying the database on the read-only media
	Transferring read-only databases to archive (jar or zip) files
	Accessing a read-only database in a zip/jar file
	Accessing databases within a jar file using the classpath
	Connecting to databases with ambiguous paths to databases in the file
system
	Connecting to databases when the path is ambiguous because of databases
in the classpath

	Databases on read-only media and DatabaseMetaData

	Loading classes from a database
	Class loading overview
	Create jar files for your application
	Add the jar file or files to the database
	Jar file examples
	Installing jar files
	Removing jar files
	Replacing jar files

	Enable database class loading with a property
	Code your applications

	Dynamic changes to jar files or to the database jar classpath
	Requirements for dynamic changes
	Notes on dynamic changes

	Derby server-side programming
	Programming database-side JDBC routines
	Database-side JDBC routines and nested connections
	Requirements for database-side JDBC routines using nested connections

	Database-side JDBC routines using non-nested connections
	Invoking a procedure using the CALL command

	Database-side JDBC routines and SQLExceptions
	User-defined SQLExceptions

	Programming trigger actions
	Trigger action overview
	Performing referential actions
	Accessing before and after rows
	Examples of trigger actions
	Triggers and exceptions
	Aborting statements and transactions

	Programming
Derby-style table
functions
	Overview of
Derby-style table
functions
	Preferred getXXX() methods for
Derby-style table
functions

	Example Derby-style
table function
	Writing restricted table functions
	Optimizer support for
Derby-style table
functions
	Measuring the cost of
Derby-style table
functions
	Example VTICosting implementation

	Programming user-defined types

	Controlling Derby application behavior
	The JDBC connection and transaction model
	Connections
	Statements
	ResultSets and Cursors
	Nested connections

	Transactions
	Transactions when auto-commit is disabled
	Using auto-commit
	Turning off auto-commit
	Explicitly closing Statements, ResultSets, and Connections
	Statement versus transaction runtime rollback
	Using savepoints

	Result set and cursor mechanisms
	Simple non-updatable result sets
	Updatable result sets
	Requirements for updatable result sets
	Forward only updatable result sets
	Scrollable updatable result sets
	Inserting rows with updatable result sets
	Naming or accessing the name of a cursor
	Extended updatable result set example

	Result sets and auto-commit
	Scrollable result sets
	Holdable result sets
	Holdable result sets and autocommit
	Non-holdable result set example

	Locking, concurrency, and isolation
	Isolation levels and concurrency
	Configuring isolation levels
	Lock granularity
	Types and scope of locks in Derby systems
	Exclusive locks
	Shared locks
	Update locks
	Lock compatibility
	Scope of locks
	Notes on locking

	Deadlocks
	Avoiding deadlocks
	Deadlock detection
	Lock wait timeouts
	Configuring deadlock detection and lock wait timeouts
	Debugging Deadlocks
	Programming applications to handle deadlocks

	Working with multiple connections to a single database
	Deployment options and threading and connection modes
	Multi-user database access
	Multiple connections from a single application

	Working with multiple threads sharing a single connection
	Pitfalls of sharing a connection among threads
	Multi-thread programming tips
	Example of threads sharing a statement

	Working with database threads in an embedded environment
	Working with Derby SQLExceptions in an application
	Information provided in SQL Exceptions
	Example of processing SQLExceptions

	Using Derby as a J2EE resource manager
	Classes that pertain to resource managers
	Getting a DataSource
	Shutting down or creating a database

	Derby and Security
	Configuring security for your environment
	Configuring security in a client/server environment
	Configuring security in an embedded environment

	Working with user authentication
	Enabling user authentication
	Defining users
	External directory service
	LDAP directory service
	Setting up Derby to use your LDAP directory service
	Guest access to search for DNs
	LDAP performance issues
	LDAP restrictions

	JNDI-specific properties for external directory services
	User-defined class
	Example of setting a user-defined class

	Built-in Derby users
	Database-level properties
	System-level properties

	List of user authentication properties
	Programming applications for Derby user authentication
	Programming the application to provide the user and password
	Login failure exceptions with user authentication

	Users and authorization identifiers
	Authorization identifiers, user authentication, and user authorization
	Database owner

	User names and schemas
	Exceptions when using authorization identifiers

	User authorizations
	Setting the default connection access mode
	Setting access for individual users
	Read-only and full access permissions
	User authorization exceptions

	Setting the SQL standard authorization mode
	Using SQL standard authorization
	Privileges on views, triggers, and constraints
	Using SQL roles
	SQL standard authorization exceptions

	Encrypting databases on disk
	Requirements for Derby encryption
	Working with encryption
	Encrypting databases on creation
	Encrypting an existing unencrypted database
	Creating the boot password
	Specifying an alternate encryption provider
	Specifying an alternate encryption algorithm

	Encrypting databases with a new key
	Encrypting databases with a new boot password
	Encrypting databases with a new external encryption key

	Booting an encrypted database

	Signed jar files
	Notes on the Derby security features
	User authentication and authorization examples
	User authentication example in a client/server environment
	User authentication and authorization client example

	User authentication example in a single-user, embedded environment
	User authentication and authorization embedded example

	User authentication examples using SQL authorization
	User authentication and SQL authorization client example
	User authentication and SQL authorization embedded example

	Running Derby under a security manager
	Granting permissions to Derby
	Examples of Java 2 security policy files for embedded Derby
	Java 2 security policy file example 1
	Java 2 security policy file example 2
	Java 2 security policy file example 3

	Developing tools and using Derby with an IDE
	Offering connection choices to the user
	The DriverPropertyInfo Array
	DriverPropertyInfo array example

	Using Derby with IDEs
	IDEs and multiple JVMs

	SQL tips
	Retrieving the database connection URL
	Supplying a parameter only once
	Defining an identity column
	Using third-party tools
	Tricks of the VALUES clause
	Multiple rows
	Mapping column values to return values
	Creating empty queries

	Localizing Derby
	SQL parser support for Unicode
	Character-based collation in Derby
	Other components with locale support
	Messages libraries

	Derby and standards
	XML data types and operators

	Trademarks

