
Java DB Tools and Utilities Guide
Version 10.6

Derby Document build:
April 7, 2014, 5:25:02 PM (EDT)

Version 10.6 Java DB Tools and Utilities Guide

i

Contents
Copyright..5

License... 6

Relationship between Java DB and Apache Derby...10

About this guide..11
Purpose of this document.. 11
Audience... 11
How this guide is organized...11

What are the Derby tools and utilities?..13
Overview... 13

Environment setup and the Derby tools..13
About Derby databases...14
JDBC connection basics...14

JDBC drivers overview.. 14
Database connection URLs...14

Tools and localization... 15
About locales... 15
Database territory.. 16
Specifying an alternate codeset.. 16
Formatting display of locale-sensitive data... 16

Using ij... 17
Starting ij.. 17
Creating a database using ij.. 18
Starting ij using properties...18
Getting started with ij..19

Connecting to a Derby database.. 19
Using ij commands..21
Running ij scripts...21

ij properties reference.. 23
ij.connection.connectionName property... 23
ij.database property...23
ij.dataSource property... 24
ij.driver property...25
ij.exceptionTrace property.. 25
ij.maximumDisplayWidth property... 26
ij.outfile property..26
ij.password property..26
ij.protocol property.. 27
ij.protocol.protocolName property... 27
ij.showErrorCode property..27
ij.showNoConnectionsAtStart property...28
ij.showNoCountForSelect property..28
ij.URLCheck property.. 29
ij.user property...30
derby.ui.codeset property... 30
derby.ui.locale property.. 31

ij commands and errors reference..33
ij commands... 33

Conventions for ij examples..33

Version 10.6 Java DB Tools and Utilities Guide

ii

ij SQL command behavior...33
Absolute command..34
After Last command.. 34
Async command.. 35
Autocommit command.. 35
Before First command...36
Close command... 36
Commit command..37
Connect command...37
Describe command..38
Disconnect command..38
Driver command...39
Elapsedtime command.. 40
Execute command... 40
Exit command.. 41
First command... 42
Get Cursor command.. 42
Get Scroll Insensitive Cursor command... 43
Help command... 45
Last command..45
LocalizedDisplay command.. 45
MaximumDisplayWidth command..46
Next command... 46
Prepare command..47
Previous command..47
Protocol command...48
Readonly command...48
Relative command... 49
Remove command... 49
Rollback command.. 50
Run command.. 50
Set Connection command.. 51
Show command..51
Wait For command.. 55
Syntax for comments in ij commands...55
Syntax for identifiers in ij commands... 56
Syntax for strings in ij commands.. 57
ij errors..57

ERROR SQLState... 57
WARNING SQLState...58
IJ ERROR..58
IJ WARNING... 58
JAVA ERROR..58

Using the bulk import and export procedures.. 59
Methods for running the import and export procedures..................................... 59
Bulk import and export requirements and considerations..................................59
Bulk import and export of large objects... 60
File format for input and output...61
Importing data using the built-in procedures...62

Parameters for the import procedures.. 63
Import into tables that contain identity columns..64

Exporting data using the built-in procedures...66
Parameters for the export procedures.. 67

Examples of bulk import and export... 68
Import and export procedures from JDBC... 70

Version 10.6 Java DB Tools and Utilities Guide

iii

How the Import and export procedures process NULL values........................... 70
CODESET values for import and export procedures... 70

Storing jar files in a database ..72
Adding a Jar File... 72
Removing a jar file.. 72
Replacing a jar file...72
Installing a jar example...72

sysinfo.. 74
sysinfo example... 74
Using sysinfo to check the classpath... 75

dblook...76
Using dblook.. 76
dblook options... 76
Generating the DDL for a database... 77
dblook examples..78

SignatureChecker..80
Using SignatureChecker... 80

Trademarks.. 82

Java DB Tools and Utilities Guide

4

Apache Software FoundationJava DB Tools and Utilities GuideApache Derby

Java DB Tools and Utilities Guide

5

Copyright

Copyright 2004-2010 The Apache Software Foundation

Copyright 2010 Oracle and/or its affiliates. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Java DB Tools and Utilities Guide

6

License

The Apache License, Version 2.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use,
 reproduction, and distribution as defined by Sections 1 through
 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized
 by the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under
 common control with that entity. For the purposes of this
 definition, "control" means (i) the power, direct or indirect,
 to cause the direction or management of such entity, whether by
 contract or otherwise, or (ii) ownership of fifty percent (50%)
 or more of the outstanding shares, or (iii) beneficial ownership
 of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making
 modifications, including but not limited to software source code,
 documentation source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or
 Object form, that is based on (or derived from) the Work and
 for which the editorial revisions, annotations, elaborations,
 or other modifications represent, as a whole, an original work
 of authorship. For the purposes of this License, Derivative
 Works shall not include works that remain separable from, or
 merely link (or bind by name) to the interfaces of, the Work
 and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or
 additions to that Work or Derivative Works thereof, that is
 intentionally submitted to Licensor for inclusion in the Work
 by the copyright owner or by an individual or Legal Entity
 authorized to submit on behalf of the copyright owner. For the
 purposes of this definition,
 "submitted" means any form of electronic, verbal, or written
 communication sent to the Licensor or its representatives,
 including but not limited to communication on electronic mailing
 lists, source code control systems, and issue tracking systems

Java DB Tools and Utilities Guide

7

 that are managed by, or on behalf of, the Licensor for the
 purpose of discussing and improving the Work, but excluding
 communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a
 Contribution."

 "Contributor" shall mean Licensor and any individual or Legal
 Entity on behalf of whom a Contribution has been received by
 Licensor and subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions
 of this License, each Contributor hereby grants to You a
 perpetual, worldwide, non-exclusive, no-charge, royalty-free,
 irrevocable copyright license to reproduce, prepare Derivative
 Works of, publicly display, publicly perform, sublicense, and
 distribute the Work and such Derivative Works in Source or
 Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have
 made, use, offer to sell, sell, import, and otherwise transfer
 the Work, where such license applies only to those patent claims
 licensable by such Contributor that are necessarily infringed by
 their Contribution(s) alone or by combination of their
 Contribution(s) with the Work to which such Contribution(s) was
 submitted. If You institute patent litigation against any entity
 (including a cross-claim or counterclaim in a lawsuit) alleging
 that the Work or a Contribution incorporated within the Work
 constitutes direct or contributory patent infringement, then any
 patent licenses granted to You under this License for that Work
 shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute
 must include a readable copy of the attribution notices
 contained within such NOTICE file, excluding those notices
 that do not pertain to any part of the Derivative Works, in
 at least one of the following places: within a NOTICE text
 file distributed as part of the Derivative Works; within the
 Source form or documentation, if provided along with the
 Derivative Works; or, within a display generated by the
 Derivative Works, if and wherever such third-party notices
 normally appear. The contents of the NOTICE file are for
 informational purposes only and do not modify the License.
 You may add Your own attribution notices within Derivative
 Works that You distribute, alongside or as an addendum to
 the NOTICE text from the Work, provided that such additional
 attribution notices cannot be construed as modifying the
 License.

 You may add Your own copyright statement to Your modifications

Java DB Tools and Utilities Guide

8

 and may provide additional or different license terms and
 conditions for use, reproduction, or distribution of Your
 modifications, or for any such Derivative Works as a whole,
 provided Your use, reproduction, and distribution of the Work
 otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state
 otherwise, any Contribution intentionally submitted for
 inclusion in the Work by You to the Licensor shall be under the
 terms and conditions of this License, without any additional
 terms or conditions. Notwithstanding the above, nothing herein
 shall supersede or modify the terms of any separate license
 agreement you may have executed with Licensor regarding such
 Contributions.

 6. Trademarks. This License does not grant permission to use the
 trade names, trademarks, service marks, or product names of the
 Licensor, except as required for reasonable and customary use
 in describing the origin of the Work and reproducing the content
 of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or
 conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
 FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
 determining the appropriateness of using or redistributing the
 Work and assume any risks associated with Your exercise of
 permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and
 grossly negligent acts) or agreed to in writing, shall any
 Contributor be liable to You for damages, including any direct,
 indirect, special, incidental, or consequential damages of any
 character arising as a result of this License or out of the use
 or inability to use the Work (including but not limited to
 damages for loss of goodwill, work stoppage, computer failure or
 malfunction, or any and all other commercial damages or losses),
 even if such Contributor has been advised of the possibility of
 such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by
 reason of your accepting any such warranty or additional
 liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Java DB Tools and Utilities Guide

9

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the License for the specific language governing
 permissions and limitations under the License.

Java DB Tools and Utilities Guide

10

Relationship between Java DB and Apache Derby

Java DB is a relational database management system that is based on the Java
programming language and SQL. Java DB is the Oracle release of the Apache Derby
project, the Apache Software Foundation's (ASF) open source relational database
project.

The Java DB product includes Derby without any modification whatsoever to the
underlying source code.

Because Java DB and Derby have the same functionality, the Java DB documentation
refers to the core functionality as Derby.

The Java DB 10.6 documentation is based on the Derby 10.6 documentation. References
to "Derby" in the Java DB documentation should be understood as synonyms for "Java
DB."

Oracle has made changes to the Apache Derby documentation. This manual is identical
to the Derby Tools and Utilities Guide, with the following exceptions:

• Oracle has added this topic, "Relationship between Java DB and Apache Derby".
• In the titles of manuals, "Derby" has been changed to "Java DB".

Java DB Tools and Utilities Guide

11

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Java DB.

Purpose of this document
This book describes how to use the Derby tools and utilities. The tools and utilities
covered in this book include:

• ij
• the import and export utilities
• the jar file utilities
• sysinfo
• dblook
• SignatureChecker

Audience
This book is for:

• developers, who might use the tools when developing applications
• system administrators, who might use the tools to run backup scripts or to import

large amounts of data
• end-users, who might use one of the tools to run ad-hoc queries against a database

How this guide is organized
This guide includes the following sections:

• What are the Derby tools and utilities?

Overview of the tools and utilities, and Derby and JDBC basics for new or infrequent
users.

• Using ij

How to get started with ij, a JDBC and SQL scripting tool.
• ij properties reference

Reference for ij properties.
• ij commands and errors reference

Reference for ij commands and errors.
• Using the bulk import and export procedures

Reference and how-to instructions for using bulk import and export.
• Storing jar files in a database

Syntax for executing the built-in procedures for storing jar files in the database.
• sysinfo

Reference information on the utility that provides information about your Derby
environment.

• dblook

Reference information for a utility that dumps the DDL of a user-specified database
to either a console or a file.

• SignatureChecker

Java DB Tools and Utilities Guide

12

Reference information for a tool that identifies any SQL functions and procedures in
a database that do not follow the SQL Standard argument matching rules.

Java DB Tools and Utilities Guide

13

What are the Derby tools and utilities?

The Derby tools and utilities are a set of routines supplied with Derby that are typically
used to setup and update a Derby database.

For more complete information on developing a system using Derby, see the Java DB
Developer's Guide.

Overview
Derby is a database management system (DBMS), accessed by applications through the
JDBC API.

Included with the product are some standalone Java tools and utilities that make it easier
to use and develop applications for Derby.

These tools and utilities include:
• ij

ij is Derby's interactive JDBC scripting tool. It is a simple utility for running scripts
against a Derby database. You can also use it interactively to run ad hoc queries.
ij provides several commands for ease in accessing a variety of JDBC features.

ij can be used in an embedded or a client/server environment.
• The import and export utilities

These server-side utilities allow you to import data directly from files into tables and
to export data from tables into files. Server-side utilities can be in a client/server
environment but require that all files referenced be on the Server machine.

• The jar file utilities

These utilities allow you to store jar files in a database.
• sysinfo

sysinfo provides information about your version of Derby and your environment.
• dblook

dblook is Derby's Data Definition Language (DDL) Generation Utility, more
informally called a schema dump tool. It is a simple utility that dumps the DDL of a
user-specified database to either a console or a file. The generated DDL can then
be used for such things as recreating all or parts of a database, viewing a subset
of a database's objects (for example, those which pertain to specific tables and
schemas), or documenting a database's schema.

• SignatureChecker

The SignatureChecker tool identifies any SQL functions and procedures in a
database that do not follow the SQL Standard argument matching rules.

Environment setup and the Derby tools

ij, sysinfo, dblook, and SignatureChecker are tools that can be used in an
embedded or a client/server environment. The import and export utilities and jar file
utilities are database-side utilities, which means that they run in the same JVM as Derby
(that is, on the server). This means when used in a client/server environment all files
imported, exported, or loaded must be local to the server machine.

Java 2 Platform, Standard Edition, Version 1.4

All Derby tools require the Java 2 Platform, Standard Edition, Version 1.4 or later.

Java DB Tools and Utilities Guide

14

Classpath

To simplify the process of setting up the CLASSPATH environment variable to run Derby
and the tools, a new jar file, derbyrun.jar, has been added to the Derby distribution.
Adding this jar file to your classpath has the effect of putting all the Derby jar files in your
classpath.

For details on using the Derby jar files for deploying applications, see the sections on
deploying Derby applications in the Java DB Developer's Guide.

About Derby databases
A Derby database consists of platform-independent files stored in a directory that has the
same name as the database.

JDBC connection basics
Most of the Derby tools are JDBC applications. A JDBC application is one that uses the
classes in the java.sql package to interact with a DBMS.

When you work with JDBC applications, you need to know about several concepts. The
most basic is the connection. A JDBC connection is the object through which commands
are sent to the Derby engine and responses are returned to the program. Establishing a
connection to a specific database is done by specifying a appropriate database URL. The
following sections provide background information to help in understanding the Derby
database connection URL.

JDBC drivers overview

Before a JDBC application connects to a database, it must cause the proper JDBC driver
to be loaded in the Java session. Derby provides the following JDBC drivers for use with
the Derby database engine:

• org.apache.derby.jdbc.EmbeddedDriver

For embedded environments, when Derby runs in the same JVM as the application.
This is commonly referred to as the embedded drvier.

• org.apache.derby.jdbc.ClientDriver

For client/server environments that use the Derby Network Server. This is
commonly referred to as the Network Client driver.

You can use ij to connect to any database that supplies a JDBC driver. For those
databases, you would need to load the supplied JDBC driver.

Database connection URLs

A JDBC URL provides a way of identifying a database so that the appropriate driver
recognizes it and connects to it. In the Derby documents, a JDBC URL is referred to as a
database connection URL.

After the driver is loaded, an application must specify the correct database connection
URL to connect to a specific database. The Derby database connection URL allows you
to accomplish tasks other than simply connecting. For more information about the Derby
database connection URLs, see the Java DB Developer's Guide.

A JDBC URL always starts with jdbc:. After that, the format for the database connection
URL depends on the JDBC driver.

Java DB Tools and Utilities Guide

15

Here is the format for the database connection URL for connecting to an existing Derby
database using the embedded driver:

• jdbc:derby:databaseName;URLAttributes

The format for the database connection URL for connecting to an existing Derby
database using the Network Client is:

• jdbc:derby://host:port/databaseName;URLAttributes

The italicized items stand for something the user fills in:
• databaseName

The name of the database you want to connect to. This might also include the file
system path to the database.

• URLAttributes

One or more of the supported attributes of the database connection URL, such as
upgrade=true, create=true or territory=ll_CC. For more information, see "Setting
attributes for the database connection URL" in the Java DB Reference Manual.

• host

The name of the machine where the server is running. It can be the name of the
machine or the address.

• port

The port number used by the server framework

About Protocols

Officially, the portion of the database connection URL called the protocol is jdbc:, just
as http:// is a protocol in Web URLs. However, the second portion of the database
connection URL (everything between jdbc: and databaseName), which is called the
subprotocol, is informally considered part of the protocol. Later in this book you might
see references to protocol. Consider protocol to be everything that comes before
databaseName.

For complete information about the database connection URL, see the Java DB
Developer's Guide.

Tools and localization
The Derby tools provide support for common localization features such as localized
message files and GUI, locale-appropriate formatting of data, codesets, unicode
identifiers and data, and database territories.

For general information about international Derby systems, see the Java DB Developer's
Guide.

About locales
In the Derby documentation, we refer to three locales:

• Java System locale

This is the locale of your machine, which is automatically detected by your JVM. For
Derby and Derby tools, the Java system locale determines the default locale.

• Database territory

This is the territory associated with your database when it is created. By default,
this is the same as the java system locale. The database territory determines the
language of database errors.

• Tools Session locale

Java DB Tools and Utilities Guide

16

This locale is associated with your session, when using Derby tools such as ij
or dblook. This locale determines the language of messages, as well as the
localized display format for numbers, dates, times, and timestamps. You can use
the derby.ui.locale property to specify the session locale that should be used.

Database territory
To specify a database territory, use the territory attribute on the URL connection when
creating the database.
Note: You cannot modify a database's territory after the database has been created.

For information about database territories, see the Internationalization appendix in the
Java DB Developer's Guide.

Specifying an alternate codeset

You can specify an alternate codeset for your tool session.

Use the derby.ui.codeset property when starting ij or dblook. This property can be
useful when working with scripts created on a different system.

Formatting display of locale-sensitive data
To display dates, timestamps, numbers, and times in the format of the ij Session locale,
use the LocalizedDisplay command.
Note: These options do not change how Derbystores locale-sensitive data, simply how
the tool displays the data.

The following example demonstrates using localizedDisplay in an en_US locale:

ij> VALUES CURRENT_DATE;
1

2001-09-06
1 row selected
ij> localizeddisplay on;
ij> VALUES CURRENT_DATE;
1

September 6, 2001
1 row selected

Java DB Tools and Utilities Guide

17

Using ij

ij is Derby's interactive JDBC scripting tool. It is a simple utility for running scripts or
interactive queries against a Derby database.

ij is a Java application, which you start from a command window such as an MS-DOS
Command Window or the UNIX shell. ij provides several non-SQL commands for ease in
accessing a variety of JDBC features for testing.

Starting ij
Derby provides batch and shell scripts for users in Windows and UNIX environments
that can be used to start ij. By calling the appropriate script you will start ij and be able to
connect with a simple command. The scripts are found in the bin directory of your Derby
installation. You can also customize the ij scripts to suit your environment.

If you are using Derby as a client/server environment, start the Network Server before
connecting to the Derby database. (See "Starting the Network Server" in the Java DB
Server and Administration Guide for details.) You can start ij by running the ij scripts for
your environment. Follow the instructions in "Setting up your environment" in Getting
Started with Java DB to set the DERBY_HOME and JAVA_HOME environment variables
and to add DERBY_HOME/bin to your path. Then use the following command:

ij [-p propertyFile] [inputFile]

Alternatively, set the DERBY_HOME environment variable, then use one of these
commands:

(UNIX) java [options] -jar $DERBY_HOME/lib/derbyrun.jar ij
 [-p propertyFile] [inputFile]

(Windows) java [options] -jar %DERBY_HOME%\lib\derbyrun.jar ij
 [-p propertyFile] [inputFile]

java [options] org.apache.derby.tools.ij
 [-p propertyFile] [inputFile]

If you use the last form of the command, be sure that derbyrun.jar is in your
classpath (for pre-10.2 distributions derbytools.jar and usually derby.jar were
required in the classpath).

If you need to use other classes in addition to derbyrun.jar, you cannot use the -cp
argument or the CLASSPATH environment variable to set CLASSPATH variables when
you are using the -jar argument to start the ij tool. If you want to run the ij tool with a
custom classpath, you cannot use the -jar argument. Instead, you have to use the full
class name to start the ij tool (java org.apache.derby.tools.ij).

The command line items are:

• java

Start the JVM.
• options

The options that the JVM uses. You can use the -D option to set ij properties (see
Starting ij using properties) or system properties, such as Derby properties.

• propertyFile

Java DB Tools and Utilities Guide

18

A file you can use to set ij properties (instead of the -D option). The property file
should be in the format created by the java.tools.Properties.save methods, which is
the same format as the derby.properties file.

• inputFile

A file from which to read commands. The ij tool exits at the end of the file or an exit
command. Using an input file causes ij to print out the commands as it runs them. If
you reroute standard input, ij does not print out the commands. If you do not supply
an input file, ij reads from the standard input.

For detailed information about ij commands, see ij commands and errors reference.

Creating a database using ij
You can create a Derby from within the ij tool.

1. To create a database with the ij tool, type the following command:

ij> connect 'jdbc:derby:testdb;create=true';

This command creates a database called testdb in the current directory,
populates the system tables, and connects to the database. You can then run any
SQL statements from the ij command line.

Starting ij using properties
You set ij properties in any of the following ways:

1. by using the -D option on the command line
2. by specifying a properties file using the -p propertyfile option on the

command line
Remember: ij property names are case-sensitive, while commands are case-insensitive.

The following examples illustrate how to use ij properties:

To start ij by using a properties file called ij.properties, use a command like the
following (with the addition of the file paths):

java -jar derbyrun.jar -p ij.properties

To start ij with a maximumDisplayWidth of 1000:

java -Dij.maximumDisplayWidth=1000 -jar derbyrun.jar

To start ij with an ij.protocol of jdbc:derby: and an ij.database of sample, use the
following command:

java -Dij.protocol=jdbc:derby: -Dij.database=sample derbyrun.jar

To start ij with two named connections, using the ij.connection.connectionName property,
use a command like the following (all on one line):

java -Dij.connection.sample=jdbc:derby:sample
-Dij.connection.History=jdbc:derby:History
-Dderby.system.home=c:\derby\demo\databases
-jar c:\derby\lib\derbyrun.jar

To see a list of connection names and the URLs used to connect to them, use the
following command. (If there is a connection that is currently active, it will show up with
an * after its name.)

ij version 10.6
ij(HISTORY)> show connections;

Java DB Tools and Utilities Guide

19

HISTORY* - jdbc:derby:History
SAMPLE - jdbc:derby:sample
* = current connection
ij(HISTORY)>

Getting started with ij
This section discusses the use of the ij tool.

Connecting to a Derby database

To connect to a Derby database, you need to perform the following steps:

1. Start the JVM
2. Load the appropriate driver.
3. Create a connection by providing a valid database connection URL.

When using ij interactively to connect to a Derby database connection information
is generally supplied on the full database connection URL. ij automatically loads the
appropriate driver based on the syntax of the URL. The following example shows how to
connect in this manner by using the Connect command and the embedded driver:

D:>java org.apache.derby.tools.ij
ij version 10.6
ij> connect 'jdbc:derby:sample';
ij>

If the URL entered contains Network Client information the Connect command loads the
Network Client driver:

D:>java org.apache.derby.tools.ij
ij version 10.6
ij> connect 'jdbc:derby://localhost:1527/sample';
ij>

Note: In these and subsequent examples the databases were created in the
derby.system.home directory. For more information on the System Directory see the Java
DB Developer's Guide.

ij provides alternate methods of specifying part or all of a connection URL (e.g. the
ij.protocol, ij.database, or ij.connection.connectionName properties). These properties
are often used when a script is being used and the path to the database or the driver
name is not known until runtime. The properties can also to used to shorten the amount
of information that must be provided with the connection URL. The following are some
examples of different ways to supply the connection information:

• Supplying full connection information on the command line
Specifying one of the following properties along with a valid connection URL on the
ij command line starts ij with the connection already active. This is often used when
running a SQL script so the database name or path can be specified at runtime.

• ij.database - opens a connection using the URL provided
• ij.connection.connectionName - Used to open one or more connections.

The property can appear multiple times on the command line with different
connectionNames and the same or different URLs.

This example shows how to create the database myTours and run the script
ToursDB_schema.sql by specifying the database URL using the ij.database
property.

C:\>java -Dij.database=jdbc:derby:myTours;create=true
 org.apache.derby.tools.ij
 %DERBY_HOME%\demo\programs\toursdb\ToursDB_schema.sql

Java DB Tools and Utilities Guide

20

ij version 10.6
CONNECTION0* - jdbc:derby:myTours
* = current connection
ij> -- Licensed to the Apache Software Foundation (ASF) under one or
 more
-- contributor license agreements. See the NOTICE file distributed
 with
 ...output removed...
ij> CREATE TRIGGER TRIG2 AFTER DELETE ON FLIGHTS FOR EACH STATEMENT
 MODE DB2SQL
INSERT INTO FLIGHTS_HISTORY (STATUS) VALUES ('INSERTED FROM TRIG2');
0 rows inserted/updated/deleted
ij>

• Defining a Protocol and using a "short form" URL

A default URL protocol and subprotocol can be specified by setting the property
ij.protocol or using the ij Protocol command. This allows a connection to be made
by specifying only the database name. This "short form" of the database connection
URL defaults the protocol (For more information, see About Protocols).

This example uses the ij Protocol command and a "short form" connection URL:

D:>java org.apache.derby.tools.ij
ij version 10.6
ij> protocol 'jdbc:derby:';
ij> connect 'sample';
ij>

• Specifying an alternate Driver

If you are using the drivers supplied by Derby, you can specify the driver names
listed in JDBC drivers overview. However, the Derby drivers are implicitly loaded
when a supported protocol is used so specifying them is probably redundant.
Specifying a driver is required when ij is used with other JDBC drivers to connect
to non-Derby databases. To use drivers supplied by other vendors explicitly specify
the driver one of three ways

• with an ij property ij.Driver
• using the JVM system property jdbc.drivers
• using the ij Driver command

This example specifies the driver using the ij Driver command

D:>java org.apache.derby.tools.ij
ij version 10.6
ij> driver 'sun.jdbc.odbc.JdbcOdbcDriver';
ij> connect 'jdbc:odbc:myOdbcDataSource';
ij>

The ij Driver name and connection URL

Specifying the Driver Name and database connection URL, summarizes the different
ways to specify the driver name and database connection URL.
Table 1. Specifying the Driver Name and database connection URL

Action System
Property

ij Property ij Command

loading the driver
implicitly

 ' ij.connection.connectionName
(plus full URL)
ij.database (plus full
URL) ij.protocolij.protocol.protocolName
(plus protocol clause in
Connect command)

ProtocolConnect
(plus full URL)

Java DB Tools and Utilities Guide

21

Action System
Property

ij Property ij Command

loading the driver
explicitly

jdbc.drivers -Dij.Driver Driver

specifying the database
connection URL

 ' ij.connection.connectionNameij.databaseConnect

Using ij commands

The primary purpose of ij is to allow the execution of Derby SQL statements interactively
or via scripts. Since SQL statements can be quite long, ij uses the semicolon to mark the
end of a statement or command. All statements and commands must be terminated with
a semicolon. If you press Return before terminating a statement or command, ij places a
continuation character (>) at the beginning of the next line.

ij uses properties, listed in ij properties reference, to simplify its use.

ij also recognizes specialized commands that provide additional features, such as the
ability to create and test cursors and prepared statements, transaction control, and more.
For complete information about ij commands, see ij commands and errors reference.

Other uses for ij

ij is a JDBC-neutral scripting tool with a small command set. It can be used to access any
JDBC driver and database accessible through that driver.

The main benefit of a tool such as ij is that it is easy to run scripts for creating a database
schema and automating other repetitive database tasks.

In addition, ij accepts and processes SQL commands interactively for ad hoc database
access.

Running ij scripts

You can run scripts in ij in any of the following ways:

• Name an input file as a command-line argument.

For example:

java org.apache.derby.tools.ij <myscript.sql>
• Redirect standard input to come from a file.

For example:

java org.apache.derby.tools.ij < <myscript.sql>
• Use the Run command from the ij command line.

For example:

ij> run 'myscript.sql';

Note: If you name an input file as a command-line argument or if you use the Run
command, ij echoes input from a file. If you redirect standard input to come from a file, ij
does not echo commands.

You can save output in any of the following ways:

• By redirecting output to a file:

java org.apache.derby.tools.ij <myscript.sql> > <myoutput.txt>

Java DB Tools and Utilities Guide

22

• By setting the ij.outfile property:

java -Dij.outfile=<myoutput.txt> org.apache.derby.tools.ij
 <myscript.sql>

ij exits when you enter the Exit command or, if executing a script, when the end of the
command file is reached. When you use the Exit command, ij automatically shuts down
an embedded Derby system by issuing a connect jdbc:derby:;shutdown=true
request. It does not shut down Derby if it is running in a server framework.

Java DB Tools and Utilities Guide

23

ij properties reference

When starting up ij, you can specify properties on the command line or in a properties
file, as described in Starting ij using properties.

ij.connection.connectionName property
Function

Creates a named connection to the given database connection URL when ij starts up;
it is equivalent to the Connect AS Identifier command. The database connection URL
can be of the short form if an ij.protocol is specified. This property can be specified more
than once per session, creating multiple connections. When ij starts, it displays the
names of all the connections created in this way. It also displays the name of the current
connection, if there is more than one, in the ij prompt.

Syntax

ij.connection.connectionName=databaseConnectionURL

When specified on the command line the databaseConnectionURL should not be
enclosed in single quotations, however, if the database path contains special characters
(e.g. a space) it must be enclosed in double quotes.

Example
This example connects to the existing database sample and creates then connects to the
database anohterDB.

D:> java -Dij.connection.sample1=jdbc:derby:sample
-Dij.connection.anotherConn=jdbc:derby:anotherDB;create=true
 org.apache.derby.tools.ij
ij version 10.6
ANOTHERCONN* - jdbc:derby:anotherDB;create=true
SAMPLE1 - jdbc:derby:sample
* = current connection
ij(ANOTHERCONN)>

See also
• Connect command

ij.database property
Function

Creates a connection to the database name listed indicated by the property when ij
starts up. You can specify the complete connection URL (including protocol) with this
property or just the database name if you also specify ij.protocol on the command line.
After it boots, ij displays the generated name of the connection made with this property.

Syntax

ij.database=databaseConnectionURL

When specified on the command line the databaseConnectionURL should not be
enclosed in single quotations, however, if the database path contains special characters
(e.g. a space) it must be enclosed in double quotes.

Example

java -Dij.protocol=jdbc:derby:

Java DB Tools and Utilities Guide

24

 -Dij.database=wombat;create=true org.apache.derby.tools.ij
ij version 10.6
CONNECTION0* - jdbc:derby:wombat
* = current connection
ij>

ij.dataSource property
Function

The ij.dataSource property specifies the datasource to be used to access the
database. When specifying a datasource, ij does not use the DriverManager
mechanism to establish connections.

Syntax
When you set the ij.dataSource property ij will automatically try to
connect to a database. To establish a connection to a specific database using
ij.dataSource, set the ij.dataSource.databaseName property. If you
do not set this property, ij will start with an error. If you want to create the
database, specify the ij.dataSource.createDatabase property as well as
ij.dataSource.databaseName. Do not specify ij.protocol when setting
ij.dataSource as that would activate the DriverManager mechanism.

ij.dataSource=datasource class name
ij.dataSource.databaseName=databasename
[ij.dataSource.createDatabase=create]

If you do not specify ij.dataSource.databaseName and get an error indicating
no database was found, you can still connect to a database by using ij's connect
command. You should not specify the protocol (for example jdbc:derby:) in the connect
command when using ij.dataSource.

Example 1

In the following example, ij connects to a database named sample using an
EmbeddedDataSource. The sample database is created if it does not already exist.

#
If your application runs on JDK 1.6 or higher, then you should
specify the JDBC4 variant of this DataSource:
org.apache.derby.jdbc.EmbeddedDataSource40.
If your application runs with a jvm supporting JSR169, you cannot use
org.apache.derby.jdbc.EmbeddedDataSource, instead, use:
org.apache.derby.jdbc.EmbeddedSimpleDataSource.
#
java -Dij.dataSource=org.apache.derby.jdbc.EmbeddedDataSource
-Dij.dataSource.databaseName=sample -Dij.dataSource.createDatabase=create
 org.apache.derby.tools.ij
ij version 10.6
CONNECTION0*
* = current connection
ij>

Example 2

In the following example, ij starts using an EmbeddedSimpleDataSource, without
specifying ij.dataSource.databaseName. This results in an error indicating no
database was found. After the error, the connect command is used to create and
connect to a database named smalldb.

#
Start ij using EmbeddedSimpleDataSource

Java DB Tools and Utilities Guide

25

#
java -Dij.dataSource=org.apache.derby.jdbc.EmbeddedSimpleDataSource
 org.apache.derby.tools.ij
ERROR XJ004: Database '' not found.
ij version 10.6
ij> connect 'smalldb;create=true';
ij>

For more information about DataSources, refer to the JDBC documentation and "Using
Derby as a J2EE Resource Manager" in the Java DB Developer's Guide.

ij.driver property
Function

Loads the JDBC driver that the class specifies.

Syntax

ij.driver=JDBCDriverClassName

Notes

Example

D:>java -Dij.driver=sun.jdbc.odbc.JdbcOdbcDriver
 org.apache.derby.tools.ij
ij version 10.6
ij> Connect 'jdbc:odbc:MyODBCDataSource';
ij>

See also
• Driver command

ij.exceptionTrace property
Function

When the ij.exceptionTrace property is set to true, a full exception stack trace is
printed when exceptions occur in ij. The default setting is false.

Syntax

ij.exceptionTrace={ false | true }

Example

In the following example, ij is started with the ij.exceptionTrace property set to
true.

java -Dij.exceptionTrace=true org.apache.derby.tools.ij
ij version 10.6
ij> connect 'jdbc:derby:wombat';
ERROR XJ004: Database 'wombat' not found.
SQL Exception: Database 'wombat' not found.
 at
 org.apache.derby.impl.jdbc.SQLExceptionFactory.getSQLException(SQLExceptionFactory.java:44)
 at org.apache.derby.impl.jdbc.Util.newEmbedSQLException(Util.java:87)
 at org.apache.derby.impl.jdbc.Util.newEmbedSQLException(Util.java:93)
 at
 org.apache.derby.impl.jdbc.Util.generateCsSQLException(Util.java:172)
 at
 org.apache.derby.impl.jdbc.EmbedConnection.newSQLException(EmbedConnection.java:1955)
 at
 org.apache.derby.impl.jdbc.EmbedConnection.(EmbedConnection.java:254)

Java DB Tools and Utilities Guide

26

 at
 org.apache.derby.impl.jdbc.EmbedConnection30.(EmbedConnection30.java:72)
 at
 org.apache.derby.jdbc.Driver30.getNewEmbedConnection(Driver30.java:73)
 at
 org.apache.derby.jdbc.InternalDriver.connect(InternalDriver.java:200)
 at java.sql.DriverManager.getConnection(DriverManager.java:512)
 at java.sql.DriverManager.getConnection(DriverManager.java:140)
 at org.apache.derby.impl.tools.ij.ij.dynamicConnection(ij.java:873)
 at org.apache.derby.impl.tools.ij.ij.ConnectStatement(ij.java:723)
 at org.apache.derby.impl.tools.ij.ij.ijStatement(ij.java:553)
 at org.apache.derby.impl.tools.ij.utilMain.go(utilMain.java:289)
 at org.apache.derby.impl.tools.ij.Main.go(Main.java:207)
 at org.apache.derby.impl.tools.ij.Main.mainCore(Main.java:173)
 at org.apache.derby.impl.tools.ij.Main14.main(Main14.java:55)
 at org.apache.derby.tools.ij.main(ij.java:60) ij
ij>

ij.maximumDisplayWidth property
Function

Specifies the maximum number of characters used to display any column. The default
value is 128. Values with display widths longer than the maximum are truncated and
terminated with an & character.

Syntax

ij.maximumDisplayWidth=numberOfCharacters

Example

java -Dij.maximumDisplayWidth=1000 org.apache.derby.tools.ij

See also
• MaximumDisplayWidth command

ij.outfile property
Function

Specifies a file to which the system should direct output for a session. Specify the file
name relative to the current directory, or specify the absolute path.

Syntax

ij.outfile=fileName

Example

java -Dij.outfile=out.txt org.apache.derby.tools.ij myscript.sql

ij.password property
Function

Specifies the password used to make connections. This property is used in conjunction
with the ij.user property to authenticate a connection. If authentication is not active then
these properties are ignored.

Syntax

ij.password=password

Java DB Tools and Utilities Guide

27

Example

java -Dij.user=me -Dij.password=mine org.apache.derby.tools.ij

See the Java DB Developer's Guide for more information on Derby authentication and
security.

ij.protocol property
Function
Specifies the default protocol and subprotocol portions of the database connection URL
for connections. The Derby protocol is:

• jdbc:derby:

Allows you to use a short form of a database name in a connection URL.

Syntax

ij.protocol=protocolForEnvironment

Example

D:>java -Dij.protocol=jdbc:derby:
 org.apache.derby.tools.ij
ij version 10.6
ij> Connect 'newDB;create=true';
ij>

See also
• Protocol command

ij.protocol.protocolName property
Function

This property is similar to the ij.protocol property. The only difference is that it associates
a name with the value, thus allowing you to define and use more than one protocol. (See
Connect command.)

Syntax

ij.protocol.protocolName=protocolForEnvironment

Example

D:>java -Dij.protocol.derby=jdbc:derby:
-Dij.protocol.emp=jdbc:derby: org.apache.derby.tools.ij
ij version 10.6
ij> Connect 'newDB' protocol derby as new;
ij>

See also
• Protocol command

ij.showErrorCode property
Function

Set this property to true to have ij display the SQLException ErrorCode value with error
messages. The default is false.

Error codes denote the severity of the error. For more information, see the Java DB
Reference Manual.

Java DB Tools and Utilities Guide

28

Syntax

ij.showErrorCode={ false | true }

Example

java -Dij.showErrorCode=true -Dij.protocol=jdbc:derby:
 org.apache.derby.tools.ij
ij version 10.6
ij> Connect 'sample';
ij> VLUES 1;
ERROR 42X01: Syntax error: Encountered "VLUES"
at line 1, column 1. (errorCode = 30000)
ij>

ij.showNoConnectionsAtStart property
Function

The ij.showNoConnectionsAtStart property specifies whether the connections
message should be displayed when ij is started. Default is false, that is, a message
indicating the current connections, if any, is displayed.

Syntax

ij.showNoConnectionsAtStart={ false | true }

Example

In the following example, ij connects to a previously created database named sample
using an EmbeddedDataSource. The property ij.showNoConnectionsAtStart is
set to true in the first session of the example, and set to false in the second session.

java -Dij.dataSource=org.apache.derby.jdbc.EmbeddedDataSource
-Dij.dataSource.databaseName=sample -Dij.showNoConnectionsAtStart=true
 org.apache.derby.tools.ij
ij version 10.6
ij> disconnect;
ij> exit;

java -Dij.dataSource=org.apache.derby.jdbc.EmbeddedDataSource
-Dij.dataSource.databaseName=sample -Dij.showNoConnectionsAtStart=false
 org.apache.derby.tools.ij
ij version 10.6
CONNECTION0*
* = current connection
ij> disconnect;
ij> exit;

ij.showNoCountForSelect property
Function

The ij.showNoCountForSelect property specifies whether to display messages
indicating the number of rows selected. Default is false, that is, if the property is not set,
select count messages are displayed.

Syntax

ij.showNoCountForSelect={ false | true }

Example

Java DB Tools and Utilities Guide

29

In the following example, ij is first started with the ij.showNoCountForSelect
property to true, then with the property set to false.

java -Dij.showNoCountForSelect=true org.apache.derby.tools.ij
ij version 10.6
CONNECTION0*
* = current connection
ij> create table t1 (c1 int);
0 rows inserted/updated/deleted
ij> insert into t1 values 1, 2, 3;
3 rows inserted/updated/deleted
ij> select * from t1;
C1

1
2
3
ij> disconnect;
ij> exit;

java -Dij.showNoCountForSelect=false org.apache.derby.tools.ij
ij version 10.6
CONNECTION0*
* = current connection
ij> select * from t1;
C1

1
2
3

3 rows selected

ij>

ij.URLCheck property
Function

This property determines whether ij checks for invalid or non-Derby URL attributes
when you are using the embedded driver. Set this property to false to prevent ij from
validating URL attributes. The default value is true.

When the ij.URLCheck property is set to true, you are notified whenever a connection
URL contains an incorrectly specified attribute. For example if the attribute name is
misspelled or cased incorrectly ij prints a message.
Note: ij checks attribute values if the attribute has pre-defined values. For example, the
attribute shutdown has the pre-defined values of true or false. If you try to set the attribute
shutdown to a value other than true or false, ij displays an error. For example:

ij> Connect 'jdbc:derby:anyDB;shutdown=rue';
ERROR XJ05B: JDBC attribute 'shutdown' has an invalid value 'rue',
valid values are '{true|false}'.
ij>

Syntax

ij.URLCheck={ false | true }

Example
By default, ij displays messages about invalid attributes:

java org.apache.derby.tools.ij

Java DB Tools and Utilities Guide

30

ij version 10.6
ij> connect 'mydb;uSer=naomi';
URL Attribute [uSer=naomi]
 Case of the Derby attribute is incorrect.

The following command line specifies to turn off URL attribute checking in ij.

java -Dij.URLCheck=false org.apache.derby.tools.ij
ij version 10.6
ij> connect 'mydb;uSer=naomi';
ij>

Typically, you would only explicitly turn off the URL checker if you were using ij with a
non-Derby JDBC driver or database.

Notes

The URL checker does not check the validity of properties, only database connection
URL attributes.

For a list of attributes, see "Setting attributes for the database connection URL" in the
Java DB Reference Manual. Because the ij.URLCheck property is valid only with the
embedded driver, it does not apply to attributes such as securityMechanism=value,
ssl=sslMode, and the attributes related to tracing.

ij.user property
Function

Specifies the logon name used to establish the connection. This property is used in
conjunction with the ij.password property to authenticate a connection. If authentication is
not active then these properties are ignored.

When a username is supplied you need to be aware of the database schema. When you
connect using ij.user, the default database schema applied to all SQL statements
is the same as the user id provided even if the schema does not exist. Use the SET
SCHEMA statement to change the default when the schema does not match the
username. Alternately you can fully qualify the database objects referred to in the SQL
statements . If no user is specified, no SET SCHEMA statement has been issued, or SQL
statements do not include the schema name, all database objects are assumed to be
under the APP schema.

Syntax

ij.user=username

Example

java -Dij.user=me -Dij.password=mine org.apache.derby.tools.ij
ij version 10.6
ij> connect 'jdbc:derby:sampleDB';
ij> set schema finance;
ij> select * from accounts;

See the Java DB Developer's Guide for more information on Derby and security.

derby.ui.codeset property
Function

Set this property to a supported character encoding value when using one of the Derby
tools with a language not supported by your default system.

Syntax

Java DB Tools and Utilities Guide

31

derby.ui.codeset=derbyval

where derbyval is a supported character encoding value, for example, UTF8 (see Sample
Character Encodings).

Example

The following command specifies to run ij using the Japanese territory
(derby.ui.locale=ja_JP) using Japanese Latin Kanji mixed encoding (codeset=Cp939):

java -Dderby.ui.locale=ja_JP -Dderby.ui.codeset=Cp939
 -Dij.protocol=jdbc:derby:
 org.apache.derby.tools.ij

The following table contains a sampling of character encodings. Supported encodings
vary from product to product. For example, to see the full list of the character encodings
that are supported by Java 2 Software Development Kit, Standard Edition, v. 1.4.2 go to
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html.
Table 2. Sample Character Encodings

Character Encoding Explanation

8859_1 ISO Latin-1

8859_2 ISO Latin-2

8859_7 ISO Latin/Greek

Cp1257 Windows Baltic

Cp1258 Windows Vietnamese

Cp437 PC Original

EUCJIS Japanese EUC

GB2312 GB2312-80 Simplified Chinese

JIS JIS

KSC5601 KSC5601 Korean

MacCroatian Macintosh Croatian

MacCyrillic Macintosh Cyrillic

SJIS PC and Windows Japanese

UTF8 Standard UTF-8

derby.ui.locale property
Function

Set this property to a supported locale name when using one of the Derby tools, if you
want another locale than the system default locale. The locale determines the localized
display format for numbers, dates, times and timestamps, as well as the language of
the messages from the Derby tools. Note that some pages in the Derby documentation
guides refer to a "locale" as a "territory".

Syntax

derby.ui.locale=derbyval

where derbyval is a supported locale name, in the form ll_CC, where ll is the two-letter
language code, and CC is the two-letter country code; for example, ja_JP.

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Java DB Tools and Utilities Guide

32

Example

The following command specifies to run ij using the Japanese territory
(derby.ui.locale=ja_JP) using Japanese Latin Kanji mixed encoding (codeset=Cp939):

java -Dderby.ui.locale=ja_JP -Dderby.ui.codeset=Cp939
 -Dij.protocol=jdbc:derby:
 org.apache.derby.tools.ij

Language codes consist of a pair of lowercase letters that conform to ISO-639.
Table 3. Sample Language Codes

Language Code Description

de German

en English

es Spanish

ja Japanese

To see a full list of ISO-639 codes, go to
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt.

Country codes consist of two uppercase letters that conform to ISO-3166.
Table 4. Sample Country Codes

Country Code Description

DE Germany

US United States

ES Spain

MX Mexico

JP Japan

A copy of ISO-3166 can be found at
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Java DB Tools and Utilities Guide

33

ij commands and errors reference

This section describes the commands and errors within the ij tool.

ij commands
ij accepts several commands to control its use of JDBC. It recognizes a semicolon as
the end of an ij or SQL command; it treats semicolons within SQL comments, strings,
and delimited identifiers as part of those constructs, not as the end of the command.
Semicolons are required at the end of an ij or SQL statement.

All ij commands, identifiers, and keywords are case-insensitive.

Commands can span multiple lines without any special escaping for the ends of lines.
This means that if a string spans a line, the new lines will show up in the value in the
string.

ij treats any command that it does not recognize as an SQL command to be passed
to the underlying connection, so syntactic errors in ij commands will cause them to be
handed to the SQL engine and will probably result in SQL parsing errors.

Conventions for ij examples

Examples in this document show input from the keyboard or a file in bold text and
console output from the DOS prompt or the ij application in regular text.

C:\> REM This example is from a DOS prompt:
C:\> java -Dij.protocol=jdbc:derby: org.apache.derby.tools.ij
ij version 10.6
ij> connect 'menuDB;create=true';
ij> CREATE TABLE menu(course CHAR(10), item CHAR(20), price INTEGER);
0 rows inserted/updated/deleted
ij> disconnect;
ij> exit;
C:\>

ij SQL command behavior

Any command other than those documented in the ij command reference are handed
to the current connection to execute directly. The statement's closing semicolon, used
by ij to determine that it has ended, is not passed to the underlying connection. Only
one statement at a time is passed to the connection. If the underlying connection itself
accepts semicolon-separated statements (which Derby does not), they can be passed
to the connection using ij's Execute command to pass in a command string containing
semicolon-separated commands.

ij uses the result of the JDBC execute request to determine whether it should print a
number-of-rows message or display a result set.

If a JDBC execute request causes an exception, it displays the SQLState, if any, and
error message.

Setting the ij property ij.showErrorCode to true displays the SQLException's error code
(see ij properties reference).

The number-of-rows message for inserts, updates, and deletes conforms to the JDBC
specification for any SQL statement that does not have a result set. DDL (data definition

Java DB Tools and Utilities Guide

34

language) commands typically report "0 rows inserted/updated/deleted" when they
successfully complete.

To display a result set, ij formats a banner based on the JDBC ResultSetMetaData
information returned from getColumnLabel and getColumnWidth. Long columns wrap the
screen width, using multiple lines. An & character denotes truncation (ij limits displayed
width of a column to 128 characters by default; see MaximumDisplayWidth command).

ij displays rows as it fetches them. If the underlying DBMS materializes rows only as
they are requested, ij displays a partial result followed by an error message if there is a
error in fetching a row partway through the result set.

ij verifies that a connection exists before issuing statements against it and does not
execute SQL when no connection has yet been made.

There is no support in ij for the JDBC feature multiple result sets.

ij command example

ij> INSERT INTO menu VALUES ('appetizer','baby greens',7),
('entree','lamb chops ',6),('dessert','creme brulee',14);
3 rows inserted/updated/deleted
ij> SELECT * FROM menu;
COURSE |ITEM |PRICE

entree |lamb chop |14
dessert |creme brulee |6
appetizer |baby greens |7

3 rows selected
ij>

Absolute command
Syntax

ABSOLUTE int Identifier

Description

Moves the cursor to the row specified by the int, then fetches the row. The cursor must
have been created with the Get Scroll Insensitive Cursor command. It displays a banner
and the values of the row.

Example

ij> autocommit off;
ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> absolute 3 scrollCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14

After Last command
Syntax

AFTER LAST Identifier

Description

Moves the cursor to after the last row, then fetches the row. (Since there is no current
row, it returns the message: "No current row."

Java DB Tools and Utilities Guide

35

The cursor must have been created with the Get Scroll Insensitive Cursor command.

Example

ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> after last scrollcursor;
No current row

Async command
Syntax

ASYNC Identifier String

Description

The ASYNC command lets you execute an SQL statement in a separate thread. It is
used in conjunction with the Wait For command to get the results.

You supply the SQL statement, which is any valid SQL statement, as a String. The
Identifier you must supply for the async SQL statement is used in the Wait For
command and is a case-insensitive ij identifier. An identifier that does not specify a
connectionName must not be the same as any other identifier for an async statement
on the current connection; an identifier that specifies a connectionName must not be
the same as any other identifier for an async statement on the designated connection.
You cannot reference a statement previously prepared and named by the ij Prepare
command in this command.

ij creates a new thread in the current or designated connection to issue the SQL
statement. The separate thread is closed once the statement completes.

Examples

ij> async aInsert 'INSERT into menu values (''entree'',''chicken'',11)';
ij> INSERT INTO menu VALUES ('dessert','ice cream',3);
1 rows inserted/updated/deleted.
ij> wait for aInsert;
1 rows inserted/updated/deleted.
-- the result of the asynchronous insert

ij> connect 'jdbc:derby:memory:dummy;create=true;user=john'
 as john_conn;
ij> create table john_tbl (c int);
0 rows inserted/updated/deleted
ij> insert into john_tbl values(1),(2),(3);
3 rows inserted/updated/deleted
ij> connect 'jdbc:derby:memory:dummy;user=fred' as fred_conn;
ij(FRED_CONN)> async john_async @ john_conn 'select * from john_tbl';
ij(FRED_CONN)> wait for john_async @ john_conn;
C

1
2
3

3 rows selected
ij(FRED_CONN)>

Autocommit command
Syntax

AUTOCOMMIT { ON | OFF }

Java DB Tools and Utilities Guide

36

Description

Turns the connection's auto-commit mode on or off. JDBC specifies that the default
auto-commit mode is ON. Certain types of processing require that auto-commit mode be
OFF. For information about auto-commit, see the Java DB Developer's Guide.

If auto-commit mode is changed from off to on when there is a transaction outstanding,
that work is committed when the current transaction commits, not at the time auto-commit
is turned on. Use Commit or Rollback before turning on auto-commit when there
is a transaction outstanding, so that all prior work is completed before the return to
auto-commit mode.

Example

ij> autocommit off;
ij> DROP TABLE menu;
0 rows inserted/updated/deleted
ij> CREATE TABLE menu (course CHAR(10), item CHAR(20), price INT);
0 rows inserted/updated/deleted
ij> INSERT INTO menu VALUES ('entree', 'lamb chop', 14),
('dessert', 'creme brulee', 6),
('appetizer', 'baby greens', 7);
3 rows inserted/updated/deleted
ij> commit;
ij> autocommit on;
ij>

Before First command
Syntax

BEFORE FIRST int Identifier

Description

Moves the cursor to before the first row, then fetches the row. (Since there is no current
row, it returns the message No current row.)

The cursor must have been created with the Get Scroll Insensitive Cursor command.

Example

ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> before first scrollcursor;
No current row

Close command
Syntax

CLOSE Identifier

Description

Closes the named cursor. The cursor must have previously been successfully created
with the ijGet Cursor or Get Scroll Insensitive Cursor commands.

Example

ij> get cursor menuCursor as 'SELECT * FROM menu';
ij> next menuCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14

Java DB Tools and Utilities Guide

37

ij> next menuCursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> close menuCursor;
ij>

Commit command
Syntax

COMMIT

Description

Issues a java.sql.Connection.commit request. Use this command only if auto-commit is
off. A java.sql.Connection.commit request commits the currently active transaction and
initiates a new transaction.

Example

ij> commit;
ij>

Connect command
Syntax

CONNECT ConnectionURLString [PROTOCOL Identifier]
 [AS Identifier] [USER String
 PASSWORD String]

Description

Connects to the database indicated by the ConnectionURLString. Specifically, takes the
value of the string (the database connection URL) and issues a getConnection request
using java.sql.DriverManager or a javax.sql.DataSource implementation (see
the ij.dataSource property) to set the current connection to that database connection
URL.

You have the option of specifying a name for your connection. Use the Set Connection
command to switch between connections. If you do not name a connection, the system
generates a name automatically.

You also have the option of specifying a named protocol previously created with the
Protocol command or the ij.protocol.protocolName property.

If the connection requires a user name and password, supply those with the optional user
and password parameters.

If the connect succeeds, the connection becomes the current one and ij displays a new
prompt for the next command to be entered. If you have more than one open connection,
the name of the connection appears in the prompt.

All further commands are processed against the new, current connection.

Examples

ij> connect 'jdbc:derby:menuDB;create=true';
ij> -- we create a new table in menuDB:
CREATE TABLE menu(course CHAR(10), item CHAR(20), price INTEGER);
ij> protocol 'jdbc:derby:';
ij> connect 'sample' as sample1;
ij(SAMPLE1)> connect 'newDB;create=true' as newDB;

Java DB Tools and Utilities Guide

38

ij(NEWDB)> show connections;
CONNECTION0 - jdbc:derby:menuDB
NEWDB* - jdbc:derby:anotherDB
SAMPLE1 - jdbc:derby:newDB
ij>
ij> connect 'jdbc:derby:sample' user 'sa' password 'cloud3x9';
ij>

ij> protocol 'jdbc:derby:';
ij> connect 'memory:sample;create=true';

ij> protocol 'jdbc:derby:memory:';
ij> connect 'sample;create=true';

Describe command
Syntax

DESCRIBE { table-Name | view-Name }

Description

Provides a decription of the specified table or view. For a list of tables in the current
schema, use the Show Tables command. For a list of views in the current schema, use
the Show Views command. For a list of available schemas, use the Show Schemas
command.

If the table or view is in a particular schema, qualify it with the schema name. If the
table or view name is case-sensitive, enclose it in single quotes. You can display all the
columns from all the tables and views in a single schema in a single display by using the
wildcard character '*'. See the examples below.

Examples

ij> describe airlines;
COLUMN_NAME
 |TYPE_NAME|DEC&|NUM&|COLUM&|COLUMN_DEF|CHAR_OCTE&|IS_NULL&

AIRLINE |CHAR |NULL|NULL|2 |NULL |4 |NO
AIRLINE_FULL |VARCHAR |NULL|NULL|24 |NULL |48 |YES
BASIC_RATE |DOUBLE |NULL|2 |52 |NULL |NULL |YES
DISTANCE_DISCOUNT |DOUBLE |NULL|2 |52 |NULL |NULL |YES
BUSINESS_LEVEL_FACT&|DOUBLE |NULL|2 |52 |NULL |NULL |YES
FIRSTCLASS_LEVEL_FA&|DOUBLE |NULL|2 |52 |NULL |NULL |YES
ECONOMY_SEATS |INTEGER |0 |10 |10 |NULL |NULL |YES
BUSINESS_SEATS |INTEGER |0 |10 |10 |NULL |NULL |YES
FIRSTCLASS_SEATS |INTEGER |0 |10 |10 |NULL |NULL |YES

 -- describe a table in another schema:
 describe user2.flights;
 -- describe a table whose name is in mixed-case:
 describe 'EmployeeTable';
 -- describe a table in a different schema, with a case-sensitive
 name:
 describe 'MyUser.Orders';
 -- describe all the columns from all the tables and views in APP
 schema:
 describe 'APP.*';
 -- describe all the columns in the current schema:
 describe '*';

Disconnect command

Java DB Tools and Utilities Guide

39

Syntax

DISCONNECT [ALL | CURRENT | ConnectionIdentifier]

Description

Disconnects from the database. Specifically issues a java.sql.Connection.close
request against the connection indicated on the command line. There must be a current
connection at the time the request is made.

If ALL is specified, all known connections are closed and there will be no current
connection.

Disconnect CURRENT is the same as Disconnect without indicating a connection, the
default connection is closed.

If a connection name is specified with an identifier, the command disconnects the named
connection. The name must be the name of a connection in the current session provided
with the ij.connection.connectionName property or with the Connect command.

If the ij.database property or the Connect command without the AS clause was used, you
can supply the name the system generated for the connection. If the current connection
is the named connection, when the command completes, there will be no current
connection and you must issue a Set Connection or Connect command.

A Disconnect command issued against a Derby connection does not shut down the
database or Derby (but the Exit command does).

Example

ij> connect 'jdbc:derby:menuDB;create=true';
ij> -- we create a new table in menuDB:
CREATE TABLE menu(course CHAR(10), ITEM char(20), PRICE integer);
0 rows inserted/updated/deleted
ij> disconnect;

ij> protocol 'jdbc:derby:';
ij> connect 'sample' as sample1;
ij> connect 'newDB;create=true' as newDB;
SAMPLE1 - jdbc:derby:sample
NEWDB* - jdbc:derby:newDB;create=true
* = current connection
ij(NEWDB)> set connection sample1;
ij> disconnect sample1;
ij> disconnect all;
ij>

Driver command
Syntax

DRIVER DriverNameString

Description

Takes the value of the DriverNameString and issues a Class.forName request to load
the named class. The class is expected to be a JDBC driver that registers itself with
java.sql.DriverManager.

If the Driver command succeeds, a new ij prompt appears for the next command.

Example

ij> -- load the Derby driver so that a connection
-- can be made:
driver 'org.apache.derby.jdbc.EmbeddedDriver';

Java DB Tools and Utilities Guide

40

ij> connect 'jdbc:derby:menuDB;create=true';
ij>

Elapsedtime command
Syntax

ELAPSEDTIME { ON | OFF }

Description

When elapsedtime is turned on, ij displays the total time elapsed during statement
execution. The default value is OFF.

Example

ij> elapsedtime on;
ij> VALUES current_date;
1

1998-07-15
ELAPSED TIME = 2134 milliseconds
ij>

Execute command
Syntax

EXECUTE { SQLString | PreparedStatementIdentifier }
[USING { String | Identifier }]

Description
Has several uses:

• To execute an SQL command entered as SQLString, using the Execute String style.
The String is passed to the connection without further examination or processing by
ij. Normally, you execute SQL commands directly, not with the Execute command.

• To execute a named command identified by PreparedStatementIdentifier. This must
be previously prepared with the ij Prepare command.

• To execute either flavor of command when that command contains dynamic
parameters, specify the values in the Using portion of the command. In this style,
the SQLString or previously prepared PreparedStatementIdentifier is executed
using the values supplied as String or Identifier. The Identifier in the USING clause
must have a result set as its result. Each row of the result set is applied to the
input parameters of the command to be executed, so the number of columns in
the Using's result set must match the number of input parameters in the Execute's
statement. The results of each execution of the Execute statement are displayed as
they are made. If the Using's result set contains no rows, the Execute's statement is
not executed.

When auto-commit mode is on, the Using's result set is closed upon the first
execution of the Execute statement. To ensure multiple-row execution of the
Execute command, use the Autocommit command to turn auto-commit off.

Examples

ij> autocommit off;
ij> prepare menuInsert as 'INSERT INTO menu VALUES (?, ?, ?)';
ij> execute menuInsert using 'VALUES
 (''entree'', ''lamb chop'', 14),
 (''dessert'', ''creme brulee'', 6)';
1 row inserted/updated/deleted
1 row inserted/updated/deleted

Java DB Tools and Utilities Guide

41

ij> commit;

ij> connect 'jdbc:derby:firstdb;create=true';
ij> create table firsttable (id int primary key,
 name varchar(12));
0 rows inserted/updated/deleted
ij> insert into firsttable values
 (10,'TEN'),(20,'TWENTY'),(30,'THIRTY');
3 rows inserted/updated/deleted
ij> select * from firsttable;
ID |NAME

10 |TEN
20 |TWENTY
30 |THIRTY

3 rows selected
ij> connect 'jdbc:derby:seconddb;create=true';
ij(CONNECTION1)> create table newtable (newid int primary key,
 newname varchar(12));
0 rows inserted/updated/deleted
ij(CONNECTION1)> prepare src@connection0 as 'select * from firsttable';
ij(CONNECTION1)> autocommit off;
ij(CONNECTION1)> execute 'insert into newtable(newid, newname)
 values(?,?)' using src@connection0;
1 row inserted/updated/deleted
1 row inserted/updated/deleted
1 row inserted/updated/deleted
ij(CONNECTION1)> commit;
ij(CONNECTION1)> select * from newtable;
NEWID |NEWNAME

10 |TEN
20 |TWENTY
30 |THIRTY

3 rows selected
ij(CONNECTION1)> show connections;
CONNECTION0 - jdbc:derby:firstdb
CONNECTION1* - jdbc:derby:seconddb
ij(CONNECTION1)> disconnect connection0;
ij>

Exit command
Syntax

EXIT

Description

Causes the ij application to complete and processing to halt. Issuing this command
from within a file started with the Run command or on the command line causes the
outermost input loop to halt.

ij automatically shuts down a Derby database running in an embedded environment
(issues a Connect 'jdbc:derby:;shutdown=true' request) on exit.

ij exits when the Exit command is entered or if given a command file on the Java
invocation line, when the end of the command file is reached.

Example

ij> disconnect;
ij> exit;
C:\>

Java DB Tools and Utilities Guide

42

First command
Syntax

FIRST Identifier

Description

Moves the cursor to the first row in the ResultSet, then fetches the row. The cursor must
have been created with the Get Scroll Insensitive Cursor command. It displays a banner
and the values of the row.

Example

ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> first scrollcursor;
COURSE |ITEM |PRICE

entree |lamb chop |14

Get Cursor command
Syntax

GET [WITH {HOLD|NOHOLD}] CURSOR Identifier AS String

WITH HOLD is the default attribute of the cursor. For a non-holdable cursor, use the
WITH NOHOLD option.

Description

Creates a cursor with the name of the Identifier by issuing a
java.sql.Statement.executeQuery request on the value of the String.

If the String is a statement that does not generate a result set, the behavior of the
underlying database determines whether an empty result set or an error is issued. If there
is an error in executing the statement, no cursor is created.

ij sets the cursor name using a java.sql.Statement.setCursorName request. Behavior
with respect to duplicate cursor names is controlled by the underlying database. Derby
does not allow multiple open cursors with the same name.

Once a cursor has been created, the ij Next and Close commands can be used to step
through its rows, and if the connection supports positioned update and delete commands,
they can be issued to alter the rows.

Examples

ij> -- autocommit needs to be off so that the positioned update
ij> -- can see the cursor it operates against.
ij> autocommit off;
ij> get cursor menuCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> next menuCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> next menuCursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> UPDATE menu SET price=price+1 WHERE CURRENT OF menuCursor;
1 row inserted/updated/deleted

Java DB Tools and Utilities Guide

43

ij> next menuCursor;
COURSE |ITEM |PRICE

appetizer |baby greens salad |7
ij> close menuCursor;
ij> commit;
ij>

ij> connect 'jdbc:derby:memory:dummy;create=true;user=john'
 as john_conn;
ij> create table john_tbl(c int);
0 rows inserted/updated/deleted
ij> insert into john_tbl values(1),(2),(3);
3 rows inserted/updated/deleted
ij> connect 'jdbc:derby:memory:dummy;user=fred' as fred_conn;
ij(FRED_CONN)> get cursor john_cursor@john_conn
 as 'select * from john_tbl';
ij(FRED_CONN)> next john_cursor@john_conn;
C

1
ij(FRED_CONN)> next john_cursor@john_conn;
C

2
ij(FRED_CONN)> next john_cursor@john_conn;
C

3
ij(FRED_CONN)> next john_cursor@john_conn;
No current row
ij(FRED_CONN)> close john_cursor@john_conn;
ij(FRED_CONN)> disconnect all;
ij>

Get Scroll Insensitive Cursor command
Syntax

GET SCROLL INSENSITIVE [WITH {HOLD|NOHOLD}]
 CURSOR Identifier AS
 String

WITH HOLD is the default attribute of the cursor. For a non-holdable cursor, use the
WITH NOHOLD option.

Description

Creates a scrollable insensitive cursor with the name of the Identifier. It does
this by issuing a createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY) call and then executing the statement with a
java.sql.StatementExecuteQuery request on the value of the String.

If the String is a statement that does not generate a result set, the behavior of the
underlying database determines whether an empty result set or an error is issued. If there
is an error in executing the statement, no cursor is created.

ij sets the cursor name using a java.sql.Statement.setCursorName request. Behavior
with respect to duplicate cursor names is controlled by the underlying database. Derby
does not allow multiple open cursors with the same name.

Once a scrollable cursor has been created, you can use the following commands to work
with the result set:

• Absolute command
• After Last command

Java DB Tools and Utilities Guide

44

• Before First command
• Close command
• First command
• Last command
• Next command
• Previous command
• Relative command

Examples

ij> autocommit off;
ij> get scroll insensitive cursor scrollCursor as
 'SELECT * FROM menu';
ij> absolute 5 scrollCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> after last scrollcursor;
No current row
ij> before first scrollcursor;
No current row
ij> first scrollcursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> last scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> previous scrollcursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> relative 1 scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij>>previous scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> next scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6

ij> connect 'jdbc:derby:memory:dummy;create=true;user=john'
 as john_conn;
ij> create table john_tbl(c int);
0 rows inserted/updated/deleted
ij> insert into john_tbl values(1),(2),(3);
3 rows inserted/updated/deleted
ij> connect 'jdbc:derby:memory:dummy;user=fred' as fred_conn;
ij(FRED_CONN)> get scroll insensitive cursor john_cursor@john_conn
 as 'select * from john_tbl';
ij(FRED_CONN)> next john_cursor@john_conn;
C

1
ij(FRED_CONN)> getcurrentrownumber john_cursor@john_conn;
1
ij(FRED_CONN)> last john_cursor@john_conn;
C

3
ij(FRED_CONN)> previous john_cursor@john_conn;
C

Java DB Tools and Utilities Guide

45

2
ij(FRED_CONN)> first john_cursor@john_conn;
C

1
ij(FRED_CONN)> after last john_cursor@john_conn;
No current row
ij(FRED_CONN)> before first john_cursor@john_conn;
No current row
ij(FRED_CONN)> relative 2 john_cursor@john_conn;
C

2
ij(FRED_CONN)> absolute 1 john_cursor@john_conn;
C

1
ij(FRED_CONN)> close john_cursor@john_conn;
ij(FRED_CONN)> disconnect all;
ij>

Help command
Syntax

HELP

Description

Prints out a brief list of the ij commands.

Last command
Syntax

LAST Identifier

Description

Moves the cursor to the last row in the ResultSet, then fetches the row. The cursor must
have been created with the Get Scroll Insensitive Cursor command. It displays a banner
and the values of the row.

Example

ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> absolute 5 scrollCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> last scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6

LocalizedDisplay command
Syntax

LOCALIZEDDISPLAY { on | off }

Description

Java DB Tools and Utilities Guide

46

Specifies to display locale-sensitive data (such as dates) in the native format for the ij
locale. The ij locale is the same as the Java system locale.

Note: NUMERIC and DECIMAL values are not localized when using the
J2ME/CDC/Foundation Profile because of platform limitations.

Example

The following demonstrates LocalizedDisplay in an English locale:

ij> VALUES CURRENT_DATE;
1

2000-05-01
1 row selected
ij> localizeddisplay on;
ij> VALUES CURRENT_DATE;
1

May 1, 2000
1 row selected

MaximumDisplayWidth command
Syntax

MAXIMUMDISPLAYWIDTH integer_value

Description

Sets the largest display width for columns to the specified value. This is generally used to
increase the default value in order to display large blocks of text.

Example

ij> maximumdisplaywidth 3;
ij> VALUES 'NOW IS THE TIME!';
1

NOW
ij> maximumdisplaywidth 30;
ij> VALUES 'NOW IS THE TIME!';
1

NOW IS THE TIME!

Next command
Syntax

NEXT Identifier

Description

Fetches the next row from the named cursor created with the Get Cursor command or
Get Scroll Insensitive Cursor. It displays a banner and the values of the row.

Example

ij> get cursor menuCursor as 'SELECT * FROM menu';
ij> next menuCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij>

Java DB Tools and Utilities Guide

47

Prepare command
Syntax

PREPARE Identifier AS String

Description

Creates a java.sql.PreparedStatement using the value of the String, accessible in ij by
the Identifier given to it. If a prepared statement with that name already exists in ij, an
error will be returned and the previous prepared statement will remain. Use the Remove
command to remove the previous statement first. If there are any errors in preparing the
statement, no prepared statement is created.

Any SQL statements allowed in the underlying connection's prepared statement can be
prepared with this command.

If the Identifier specifies a connectionName, the statement is prepared on the specified
connection.

Examples

ij> prepare seeMenu as 'SELECT * FROM menu';
ij> execute seeMenu;
COURSE |ITEM |PRICE

entree |lamb chop |14
dessert |creme brulee |6

2 rows selected
ij>

ij> connect 'jdbc:derby:firstdb;create=true';
ij> create table firsttable (id int primary key,
 name varchar(12));
0 rows inserted/updated/deleted
ij> insert into firsttable values
 (10,'TEN'),(20,'TWENTY'),(30,'THIRTY');
3 rows inserted/updated/deleted
ij> select * from firsttable;
ID |NAME

10 |TEN
20 |TWENTY
30 |THIRTY

3 rows selected
ij> connect 'jdbc:derby:seconddb;create=true';
ij(CONNECTION1)> create table newtable (newid int primary key,
 newname varchar(12));
0 rows inserted/updated/deleted
ij(CONNECTION1)> prepare src@connection0 as 'select * from firsttable';
ij>

Previous command
Syntax

PREVIOUS Identifier

Description

Java DB Tools and Utilities Guide

48

Moves the cursor to the row previous to the current one, then fetches the row. The cursor
must have been created with the Get Scroll Insensitive Cursor command. It displays a
banner and the values of the row.

Example

ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> last scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> previous scrollcursor;
COURSE |ITEM |PRICE

entree |lamb chop |14

Protocol command
Syntax

PROTOCOL String [AS Identifier]

Description

Specifies the protocol, as a String, for establishing connections and automatically loads
the appropriate driver. Protocol is the part of the database connection URL syntax
appropriate for your environment, including the JDBC protocol and the protocol specific to
Derby. For further information about the Derby database connection URL, see the Java
DB Developer's Guide. Only Derby protocols are supported. Those protocols are listed in
ij.protocol property.

Providing a protocol allows you to use a shortened database connection URL for
connections. You can provide only the database name (and a subsubprotocol name
if needed) instead of the full protocol. In addition, you do not need to use the Driver
command or specify a driver at start-up, since the driver is loaded automatically.

If you name the protocol, you can refer to the protocol name in the Connect command.

Examples

ij> protocol 'jdbc:derby:';
ij> connect 'sample';

ij> protocol 'jdbc:derby:';
ij> connect 'memory:sample;create=true';

ij> protocol 'jdbc:derby:memory:';
ij> connect 'sample;create=true';

Readonly command
Syntax

READONLY { ON | OFF }

Description

Sets the current connection to a "read-only" connection, as if the current user were
defined as a readOnlyAccess user. (For more information about database authorization,
see the Java DB Developer's Guide.)

Example

Java DB Tools and Utilities Guide

49

ij> connect 'jdbc:derby:menuDB';
ij> readonly on;
ij> SELECT * FROM menu;
COURSE |ITEM |PRICE

entree |lamb chop |14
dessert |creme brulee |6
appetizer |baby greens |7
entree |lamb chop |14
entree |lamb chop |14
dessert |creme brulee |6
6 rows selected
ij> UPDATE menu set price = 3;
ERROR 25502: An SQL data change is not permitted for a read-only
connection, user or database.

Relative command
Syntax

RELATIVE int Identifier

Description

Moves the cursor to the row that is int number of rows relative to the current row, then
fetches the row. The cursor must have been created with the Get Scroll Insensitive
Cursor command. It displays a banner and the values of the row.

Example

ij> -- autocommit needs to be off so that the positioned update
ij> -- can see the cursor it operates against.
ij> autocommit off;
ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> last scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> previous scrollcursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> relative 1 scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6

Remove command
Syntax

REMOVE Identifier

Description

Removes a previously prepared statement from ij. The identifier is the name by which the
statement was prepared. The statement is closed to release its database resources.

Example

ij> prepare seeMenu as 'SELECT * FROM menu';
ij> execute seeMenu;
COURSE |ITEM |PRICE

entree |lamb chop |14

Java DB Tools and Utilities Guide

50

dessert |creme brulee |6

2 rows selected
ij> remove seeMenu;
ij> execute seeMenu;
IJ ERROR: Unable to establish prepared statement SEEMENU
ij>

Rollback command
Syntax

ROLLBACK

Description

Issues a java.sql.Connection.rollback request. Use only if auto-commit is off. A
java.sql.Connection.rollback request undoes the currently active transaction and initiates
a new transaction.

Example

ij> autocommit off;
ij> INSERT INTO menu VALUES ('dessert', 'rhubarb pie', 4);
1 row inserted/updated/deleted
ij> SELECT * from menu;
COURSE |ITEM |PRICE

entree |lamb chop |14
dessert |creme brulee |7
appetizer |baby greens |7
dessert |rhubarb pie |4

4 rows selected
ij> rollback;
ij> SELECT * FROM menu;
COURSE |ITEM |PRICE

entree |lamb chop |14
dessert |creme brulee |7
appetizer |baby greens |7

3 rows selected
ij>

Run command
Syntax

RUN String

Description

Assumes that the value of the string is a valid file name, and redirects ij processing to
read from that file until it ends or an Exit command is executed. If the end of the file is
reached without ij exiting, reading will continue from the previous input source once the
end of the file is reached. Files can contain Run commands.

ij prints out the statements in the file as it executes them.

Any changes made to the ij environment by the file are visible in the environment when
processing resumes.

Example

Java DB Tools and Utilities Guide

51

ij> run 'setupMenuConn.ij';
ij> -- this is setupMenuConn.ij
-- ij displays its contents as it processes file
ij> connect 'jdbc:derby:menuDB';
ij> autocommit off;
ij> -- this is the end of setupMenuConn.ij
-- there is now a connection to menuDB and no autocommit.
-- input will now resume from the previous source.
;
ij>

Set Connection command
Syntax

SET CONNECTION Identifier

Description

Allows you to specify which connection to make current when you have more than one
connection open. Use the Show Connections command to display open connections.

If there is no such connection, an error results and the current connection is unchanged.

Example

ij> protocol 'jdbc:derby:';
ij> connect 'sample' as sample1;
ij> connect 'newDB;create=true' as newDB;
ij (NEWDB)> show connections;
SAMPLE1 - jdbc:derby:sample
NEWDB* - jdbc:derby:newDB;create=true
* = current connection
ij(NEWDB)> set connection sample1;
ij(SAMPLE1)> disconnect all;
ij>

Show command
Syntax

SHOW
{
 CONNECTIONS |
 FUNCTIONS [IN schemaName] |
 INDEXES [IN schemaName | FROM table-Name] |
 PROCEDURES [IN schemaName] |
 ROLES |
 ENABLED_ROLES |
 SETTABLE_ROLES |
 SCHEMAS |
 SYNONYMS [IN schemaName] |
 TABLES [IN schemaName] |
 VIEWS [IN schemaName] |

}

Description

The SHOW command can be used to display information about active connections and
database objects.

SHOW CONNECTIONS

If there are no connections, the SHOW CONNECTIONS command returns "No
connections available".

Java DB Tools and Utilities Guide

52

Otherwise, the command displays a list of connection names and the URLs used to
connect to them. The currently active connection, if there is one, is marked with an * after
its name.

Example

ij> connect 'sample' as sample1;
ij> connect 'newDB;create=true' as newDB;
ij(NEWDB)> show connections;
SAMPLE1 - jdbc:derby:sample
NEWDB* - jdbc:derby:newDB;create=true
* = current connection
ij(NEWDB)>

SHOW FUNCTIONS

SHOW FUNCTIONS displays all functions in the database. By default, both system
functions and user-defined functions appear in the output.

If IN schemaName is specified, then only the functions in the specified schema are
displayed.

Example

If you created the TO_DEGREES function described in "CREATE FUNCTION statement"
in the Java DB Reference Manual, the output of the CREATE FUNCTION and SHOW
FUNCTIONS commands would look something like the following:

ij> connect 'jdbc:derby:firstdb';

ij> CREATE FUNCTION TO_DEGREES (RADIANS DOUBLE)
> RETURNS DOUBLE
> PARAMETER STYLE JAVA
> NO SQL LANGUAGE JAVA
> EXTERNAL NAME 'java.lang.Math.toDegrees';
0 rows inserted/updated/deleted
ij> show functions in app;
FUNCTION_SCHEM|FUNCTION_NAME |REMARKS

APP |TO_DEGREES |java.lang.Math.toDegrees

1 row selected

SHOW INDEXES

SHOW INDEXES displays all the indexes in the database.

If IN schemaName is specified, then only the indexes in the specified schema are
displayed.

If FROM table-Name is specified, then only the indexes on the specified table are
displayed.

Example

ij> show indexes in app;
TABLE_NAME |COLUMN_NAME |NON_U&|TYPE|ASC&|CARDINA&|PAGES

AIRLINES |AIRLINE |false |3 |A |NULL |NULL
COUNTRIES |COUNTRY_ISO_CODE |false |3 |A |NULL |NULL
COUNTRIES |COUNTRY |false |3 |A |NULL |NULL
CITIES |CITY_ID |false |3 |A |NULL |NULL
FLIGHTS |FLIGHT_ID |false |3 |A |NULL |NULL
FLIGHTS |SEGMENT_NUMBER |false |3 |A |NULL |NULL
FLIGHTAVAILABILITY |FLIGHT_ID |false |3 |A |NULL |NULL
FLIGHTAVAILABILITY |SEGMENT_NUMBER |false |3 |A |NULL |NULL

Java DB Tools and Utilities Guide

53

FLIGHTAVAILABILITY |FLIGHT_DATE |false |3 |A |NULL |NULL
MAPS |MAP_ID |false |3 |A |NULL |NULL
MAPS |MAP_NAME |false |3 |A |NULL |NULL
FLIGHTS |DEST_AIRPORT |true |3 |A |NULL |NULL
FLIGHTS |ORIG_AIRPORT |true |3 |A |NULL |NULL
CITIES |COUNTRY_ISO_CODE |true |3 |A |NULL |NULL
FLIGHTAVAILABILITY |FLIGHT_ID |true |3 |A |NULL |NULL
FLIGHTAVAILABILITY |SEGMENT_NUMBER |true |3 |A |NULL |NULL

16 rows selected
ij> show indexes from flights;
TABLE_NAME |COLUMN_NAME |NON_U&|TYPE|ASC&|CARDINA&|PAGES

FLIGHTS |FLIGHT_ID |false |3 |A |NULL |NULL
FLIGHTS |SEGMENT_NUMBER |false |3 |A |NULL |NULL
FLIGHTS |DEST_AIRPORT |true |3 |A |NULL |NULL
FLIGHTS |ORIG_AIRPORT |true |3 |A |NULL |NULL

4 rows selected

SHOW PROCEDURES

SHOW PROCEDURES displays all the procedures in the database that have been
created with the CREATE PROCEDURE statement, as well as system procedures.

If IN schemaName is specified, only procedures in the specified schema are displayed.

Example

ij> show procedures in syscs_util;
PROCEDURE_SCHEM |PROCEDURE_NAME |REMARKS
--
SYSCS_UTIL |SYSCS_BACKUP_DATABASE |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_BACKUP_DATABASE_AND_ENA&|org.apache.derby.ca&
SYSCS_UTIL |SYSCS_BACKUP_DATABASE_AND_ENA&|org.apache.derby.ca&
SYSCS_UTIL |SYSCS_BACKUP_DATABASE_NOWAIT |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_BULK_INSERT |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_CHECKPOINT_DATABASE |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_COMPRESS_TABLE |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_DISABLE_LOG_ARCHIVE_MODE|org.apache.derby.ca&
SYSCS_UTIL |SYSCS_EXPORT_QUERY |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_EXPORT_TABLE |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_FREEZE_DATABASE |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_IMPORT_DATA |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_IMPORT_TABLE |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_INPLACE_COMPRESS_TABLE |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_SET_DATABASE_PROPERTY |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_SET_RUNTIMESTATISTICS |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_SET_STATISTICS_TIMING |org.apache.derby.ca&
SYSCS_UTIL |SYSCS_UNFREEZE_DATABASE |org.apache.derby.ca&

18 rows selected

SHOW ROLES, SHOW ENABLED_ROLES, SHOW SETTABLE_ROLES

SHOW ROLES displays the names of all roles created, whether settable for the current
session or not.

SHOW ENABLED_ROLES displays the names of all the roles whose privileges are
available for the current session. That is, it shows the current role and any role contained
in the current role. (For a definition of role containment, see "Using SQL roles" in the
Java DB Developer's Guide.)

SHOW SETTABLE_ROLES displays all the roles that the current session can set, that is,
all roles that have been granted to the current user or to PUBLIC.

The roles shown by these commands are sorted in ascending order.

Java DB Tools and Utilities Guide

54

Example

ij> show roles;
ROLEID

ANYUSER
CASUALUSER
POWERUSER

3 rows selected
ij> show enabled_roles;
ROLEID

ANYUSER
CASUALUSER

2 rows selected
ij> show settable_roles;
ROLEID

CASUALUSER
POWERUSER

2 rows selected

In the examples above, both CASUALUSER and POWERUSER contain ANYUSER, but
ANYUSER is not settable directly.

SHOW SCHEMAS

SHOW SCHEMAS displays all of the schemas in the current connection.

Example

ij> show schemas;
TABLE_SCHEM

APP
NULLID
SQLJ
SYS
SYSCAT
SYSCS_DIAG
SYSCS_UTIL
SYSFUN
SYSIBM
SYSPROC
SYSSTAT

11 rows selected

SHOW SYNONYMS

SHOW SYNONYMS displays all the synonyms in the database that have been created
with the CREATE SYNONYMS statement.

If IN schemaName is specified, only synonyms in the specified schema are displayed.

Example

ij> show synonyms;
TABLE_SCHEM |TABLE_NAME |REMARKS
--
APP |MYAIRLINES |

SHOW TABLES

SHOW TABLES displays all of the tables in the current schema.

If IN schemaName is specified, the tables in the given schema are displayed.

Java DB Tools and Utilities Guide

55

Example

ij> show tables;
TABLE_SCHEM |TABLE_NAME |REMARKS
--
APP |AIRLINES |
APP |CITIES |
APP |COUNTRIES |
APP |FLIGHTAVAILABILITY |
APP |FLIGHTS |
APP |FLIGHTS_HISTORY |
APP |MAPS |

7 rows selected

SHOW VIEWS

SHOW VIEWS displays all of the views in the current schema.

If IN schemaName is specified, the views in the given schema are displayed.

Example

ij> show views;
TABLE_SCHEM |TABLE_NAME |REMARKS
--
APP |TOTALSEATS |

1 row selected

Wait For command
Syntax

WAIT FOR Identifier

Description

Displays the results of a previously started asynchronous command.

The identifier for the asynchronous command must have been used in a previous Async
command on this connection. The Wait For command waits for the SQL statement to
complete execution, if it has not already, and then displays the results. If the statement
returns a result set, the Wait For command steps through the rows, not the Async
command. This might result in further execution time passing during the result display.

Example

See Async command.

Syntax for comments in ij commands
Syntax

-- Text

/* Text */

Description

You can use a double dash to create a comment anywhere within an ij command line
and as permitted by the underlying connection within SQL commands. The comment is
ended at the first new line encountered in the text.

Comments are ignored on input and have no effect on the output displayed.

Java DB Tools and Utilities Guide

56

You can also enclose text in /* */ characters to create either one-line or multi-line
comments. Nested comments are permitted. For example, you could put lines like the
following into a script named comment.sql:

/* start the file with a /* nested comment */ and see what happens */
connect 'jdbc:derby:newdb;create=true';
values 'hi!';
create table t (x int);
/* use a multi-line comment */
/*
insert into t values 1, 2, 3;
insert into t values 4, 5, 6;
*/
/* end the file with a comment */
values 'This is a test';
/* This is also a test */

Examples

ij> -- this is a comment;
-- the semicolons in the comment are not taken as the end
-- of the command; for that, we put it outside the --:
;
ij>

ij> run 'comment.sql';
ij> /* start the file with a /* nested comment */ and see what happens */
connect 'jdbc:derby:newdb;create=true';
ij> values 'hi!';
1

hi!

1 row selected
ij> create table t (x int);
0 rows inserted/updated/deleted
ij> /* use a multi-line comment */
/*
insert into t values 1, 2, 3;
insert into t values 4, 5, 6;
*/
/* end the file with a comment */
values 'This is a test';
1

This is a test

1 row selected
ij> /* This is also a test */
;
ij>

Syntax for identifiers in ij commands
Syntax

Identifier [@ connectionName]

Description

Some ij commands require identifiers. These ij identifiers are case-insensitive. They
must begin with a letter in the range A-Z, and can consist of any number of letters in the
range A-Z, digits in the range 0-9, and underscore (_) characters.

Java DB Tools and Utilities Guide

57

An identifier can optionally use an at sign (@) followed by a connectionName. Spaces on
either side of the @ sign are optional. If you specify a connectionName, you can refer to
databases on different connections. This capability enables you to perform tasks such
as copying data from one database to another. For an example of copying data between
databases, see Execute command. For other examples, see Async command, Get
Cursor command, and Get Scroll Insensitive Cursor command.

These identifiers exist within the scope of ij only and are distinct from any identifiers
used in SQL commands, except in the case of the Get Cursor command. The Get Cursor
command specifies a cursor name to use in creating a result set.

ij does not recognize or permit delimited identifiers in ij commands. They can be used
in SQL commands.

Example

These are valid ij identifiers:
foo1
exampleIdentifier12345
another_one
myId@connection0
id2 @ connection1

Syntax for strings in ij commands
Syntax

'Text'

Description

Some ij commands require strings. ij strings are represented by the same literal
format as SQL strings and are delimited by single quotation marks. To include a single
quotation mark in a string, you must use two single quotation marks, as shown in
the examples below. ij places no limitation on the lengths of strings, and will treat
embedded new lines in the string as characters in the string.

Some ij commands execute SQL commands specified as strings. Therefore, you must
double any single quotation marks within such strings, as shown in the second example
below.

The cases of letters within a string are preserved.

Example

This is a string in ij And this is its value
'Mary''s umbrella' Mary's umbrella
'hello world' hello world

--returns Joe's
execute 'VALUES ''Joe''''s''';

ij errors
ij might issue messages to inform the user of errors during processing of statements.

ERROR SQLState

When the underlying JDBC driver returns an SQLException, ij displays the
SQLException message with the prefix "ERROR SQLState". If the SQLException has no
SQLState associated with it, the prefix "ERROR (no SQLState)" is used.

Java DB Tools and Utilities Guide

58

WARNING SQLState

Upon completion of execution of any JDBC request, ij will issue a getWarnings request
and display the SQLWarnings that are returned. Each SQLWarning message is displayed
with the prefix "WARNING SQLState". If an SQLWarning has no SQLState associated
with it, the prefix "WARNING (no SQLState)" is used.

IJ ERROR

When ij runs into errors processing user commands, such as being unable to open the
file named in a Run command or not having a connection to disconnect from, it prints out
a message with the prefix "IJ ERROR".

IJ WARNING

ij displays warning messages to let the user know if behavior might be unexpected. ij
warnings are prefixed with "IJ WARNING".

JAVA ERROR

When an unexpected Java exception occurs, ij prints a message with the prefix "JAVA
ERROR".

Java DB Tools and Utilities Guide

59

Using the bulk import and export procedures

You can import and export large amounts of data between files and the Derby database.
Instead of having to use INSERT and SELECT statements, you can use Derby system
procedures to import data directly from files into tables and to export data from tables into
files.

The Derby system procedures import and export data in delimited data file format.

• Use the export system procedures to write data from a database to one or more
files that are stored outside of the database. You can use a procedure to export
data from a table into a file or export data from a SELECT statement result into a
file.

• Use the import system procedures to import data from a file into a table. If the target
table already contains data, you can replace or append to the existing data.

Methods for running the import and export procedures
You can run the import and export procedures from within an SQL statement using ij or
any Java application.

The import and export procedures read and write text files, and if you use an external file
when you import or export data, you can also import and export blob data. The import
procedures do not support read-once streams (live data feeds), because the procedures
read the first line of the file to determine the number of columns, then read the file again
to import the data.

Note: The import and export procedures are server-side utilities that exhibit different
behavior in client/server mode. Typically, you use these procedures to import data into
and export data from a locally running Derby database. However, you can use the import
and export procedures when Derby is running in a server framework if you specify import
and export files that are accessible to the server.

Bulk import and export requirements and considerations
There are requirements and limitations that you must consider before you use the Derby
import and export procedures.

Database transactions
You should issue either a COMMIT or ROLLBACK statement to complete all
transactions and release all table-level locks before you invoke an import or export
procedure. Derby issues a COMMIT or a ROLLBACK statement after each import
and export procedure is run.
Note: Imports are transactional. If an error occurs during bulk import, all changes are
rolled back.

Database connections
To invoke a Derby import or export procedure, you must be connected to the
database into which the data is imported or from which the data is exported. Other
user applications that access the table with a separate connection do not need to
disconnect.

Classpath
You must have the derbytools.jar file in your classpath before you can use the
import or export procedures from ij.

The table must exist

Java DB Tools and Utilities Guide

60

To import data into a table, the table must already exist in Derby. The table does not
have to be empty. If the table is not empty, bulk import performs single row inserts
which results in slower performance.

Create indexes, keys, and unique constraints before you import
To avoid a separate step, create the indexes, keys (primary and foreign), and unique
constraints on tables before you import data. However, if your memory and disk
spaces resources are limited, you can build the indexes and primary keys after
importing data.

Data types
Derby implicitly converts the strings to the data type of the receiving column. If any of
the implicit conversions fail, the whole import is aborted. For example, "3+7" cannot
be converted into an integer. An export that encounters a runtime error stops.
Note: You cannot import or export the XML data type.

Locking during import
Import procedures use the same isolation level as the connection in which they are
executed to insert data into tables. During import, the entire table is exclusively locked
irrespective of the isolation level.

Locking during export
Export procedures use the same isolation level as the connection in which they are
executed to fetch data from tables.

Import behavior on tables with triggers
The import procedures enables INSERT triggers when data is appended to the table.
The REPLACE parameter is not allowed when triggers are enabled on the table.

Restrictions on the REPLACE parameter
If you import data into a table that already contains data, you can either replace
or append to the existing data. You can use the REPLACE parameter on tables
that have dependent tables. The replaced data must maintain referential integrity,
otherwise the import operation will be rolled back. You cannot use the REPLACE
parameter if the table has triggers enabled.

Restrictions on tables
You cannot use import procedures to import data into a system table or a declared
temporary table.

Bulk import and export of large objects
You can import and export large objects (LOBs) using the Derby system procedures.

Importing and exporting CLOB and BLOB data

CLOB and BLOB can be exported to the same file as the rest of the column data, or the
LOB column data can be exported to separate external file. When the LOB column data
is exported to separate external file, reference to the location of the LOB data is placed in
the LOB column in the main export file.

Importing and exporting LOB data using an separate external file might be faster than
storing the LOB data in the same file as the rest of the column data:

• The CLOB data does not have to be scanned for the delimiters inside the data
• The BLOB data does not need to be converted into a hexadecimal format

Importing and exporting other binary data

When you export columns that contain the data types CHAR FOR BIT DATA, VARCHAR
FOR BIT DATA, and LONG VARCHAR FOR BIT DATA, the column data is always
exported to the main export file. The data is written in the hexadecimal format. To import
data into a table that has columns of these data types, the data in the import file for those
column must be in the hexadecimal format.

Importing LOB data from a file that contains all of the data

Java DB Tools and Utilities Guide

61

You can use the SYSCS_UTIL.SYSCS_IMPORT_TABLE and
SYSCS_UTIL.SYSCS_IMPORT_DATA procedures to import data into a table that
contains a LOB column. The LOB data must be stored in the same file as the other
column data that you are importing. If you are importing data from a file that was exported
from a non-Derby source, the binary data must be in the hexadecimal format.

Importing LOB data from a separate external file

You can use the SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE
and SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE procedures to
import LOB data that is stored in a file that is separate from the main import file. These
procedures read the LOB data using the reference that is stored in the main import file. If
you are importing data from a non-Derby source, the references to the LOB data must be
in the main import file in the format lobsFileName.Offset.length/. This is the same method
that the Derby export procedures use to export the LOB data to a separate external file.

Exporting LOB data to the same file as the other column data

You can use the SYSCS_UTIL.SYSCS_EXPORT_TABLE and
SYSCS_UTIL.SYSCS_EXPORT_QUERY procedures to write LOB data, along with rest
of the column data, to a single export file.

CLOB column data is treated same as other character data. Character delimiters are
allowed inside the CLOB data. The export procedures write the delimiter inside the data
as a double-delimiter.

BLOB column data is written to the export file in the hexadecimal format. For each byte of
BLOB data, two characters are generated. The first character represents the high nibble
(4 bits) in hexadecimal and the second character represents the low nibble.

Exporting LOB data to a separate external file from the other column data

You can use the SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE and
SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE procedures to write LOB
data to a separate external file. These procedures include the lobFileName parameter,
which specifies the name of external file for the LOB data.

When you use these procedures, the location of the LOB data is written to the main
export file. The format of the reference to the LOB stored in the main export file is
lobsFileName.Offset.length/.

• Offset is the position in the external file in bytes
• length is the size of the LOB column data in bytes

If a LOB column value is NULL, length is written as -1. No data conversion is performed
when you export LOB data to an external file. BLOB data is written in binary format and
CLOB data is written using the codeset that you specify.

See Examples of bulk import and export for examples using each of the import and
export procedures.

File format for input and output
There are specific requirements for the format of the input and output files when you
import and export data.

The default file format is a delimited text file with the following characteristics:

• Rows are separated by a new line
• Fields are separated by a comma (,)
• Character-based fields are delimited with double quotes (")

Java DB Tools and Utilities Guide

62

Restriction: Before you perform import or export operations, you must ensure that the
chosen delimiter character is not contained in the data to be imported or exported. If you
chose a delimiter character that is part of the data to be imported or exported unexpected
errors might occur. The following restrictions apply to column and character delimiters:

• Delimiters are mutually exclusive
• A delimiter cannot be a line-feed character, a carriage return, or a blank space
• The default decimal point (.) cannot be a character delimiter
• Delimiters cannot be hex decimal characters (0-9, a-f, A-F).

The record delimiter is assumed to be a new-line character. The record delimiter should
not be used as any other delimiter.

Character delimiters are permitted with the character-based fields (CHAR, VARCHAR,
and LONG VARCHAR) of a file during import. Any pair of character delimiters found
between the enclosing character delimiters is imported into the database. For example,
suppose that you have the following character string:

"what a ""great"" day!"

The preceding character string gets imported into the database as:

What a "great" day!

During export, the rule applies in reverse. For example, suppose you have the following
character string:

"The boot has a 3" heel."

The preceding character string gets exported to a file as:

"The boot has a 3""heel."

The following example file shows four rows and four columns in the default file format:

1,abc,22,def
22,,,"a is a zero-length string, b is null"
13,"hello",454,"world"
4,b and c are both null,,

The export procedure outputs the following values:

1,"abc",22,"def"
22,,,"a is a zero-length string, b is null"
13,"hello",454,"world"
4,"b and c are both null",,

Importing data using the built-in procedures
You can use the Derby import procedures to import all of the data from table or query, or
to import LOB data separately from the other data.

1. Choose the correct procedure for the type of import that you want to perform. For
examples of these procedures, see Examples of bulk import and export.

Type of import Procedure to use

To import all the data to a table, where the
import file contains the LOB data

SYSCS_UTIL.SYSCS_IMPORT_TABLE
 (IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128), IN
 FILENAME VARCHAR(32672), IN
 COLUMNDELIMITER CHAR(1), IN
 CHARACTERDELIMITER CHAR(1),

Java DB Tools and Utilities Guide

63

 IN CODESET VARCHAR(128), IN
 REPLACE SMALLINT)

To import the data to a table, where the LOB
data is stored in a separate file and the main
import file contains all of the other data with
a reference to the LOB data

SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE
 (IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128), IN
 FILENAME VARCHAR(32672), IN
 COLUMNDELIMITER CHAR(1), IN
 CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128), IN
 REPLACE SMALLINT)

The import utility looks in the main
import file for a reference to the
location of the LOB data. The format
of the reference to the LOB stored
in the main import file must be
lobsFileName.Offset.length/.

To import data from a file to a subset of
columns in a table, where the import file
contains the LOB data

SYSCS_UTIL.SYSCS_IMPORT_DATA
 (IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128), IN
 INSERTCOLUMNS VARCHAR(32672),
 IN COLUMNINDEXES
 VARCHAR(32672), IN FILENAME
 VARCHAR(32672), IN
 COLUMNDELIMITER CHAR(1), IN
 CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128), IN
 REPLACE SMALLINT)

You must specify the insertColumns
parameter on the table into which data
will be imported. You must specify the
columnIndex parameter to import data
fields from a file to column in a table.

To import data to a subset of columns
in a table, where the LOB data is stored
in a separate file and the main import
file contains all of the other data with a
reference to the LOB data

SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE
 (IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128), IN
 INSERTCOLUMNS VARCHAR(32672),
 IN COLUMNINDEXES
 VARCHAR(32672), IN
 FILENAME VARCHAR(32672), IN
 COLUMNDELIMITER CHAR(1), IN
 CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128), IN
 REPLACE SMALLINT)

The import utility looks in the main
import file for a reference to the
location of the LOB data. The format
of the reference to the LOB stored
in the main import file must be
lobsFileName.Offset.length/.

Parameters for the import procedures

The Derby import procedures use specific parameters.

SCHEMANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR (128) data type.

TABLENAME

Java DB Tools and Utilities Guide

64

Specifies the name of the table into which the data is to be imported. This table
cannot be a system table or a declared temporary table. The string must exactly
match case of the table name. Specifying a NULL value results in an error. The
TABLENAME parameter takes an input argument that is a VARCHAR (128) data
type.

INSERTCOLUMNS
Specifies the comma separated column names of the table into which the data will be
imported. You can specify a NULL value to import into all columns of the table. The
INSERTCOLUMNS parameter takes an input argument that is a VARCHAR (32672)
data type.

COLUMNINDEXES
Specifies the comma separated column indexes (numbered from one) of the input
data fields that will be imported. You can specify a NULL value to use all input data
fields in the file. The COLUMNINDEXES parameter takes an input argument that is a
VARCHAR (32762) data type.

FILENAME
Specifies the name of the file that contains the data to be imported. If the path is
omitted, the current working directory is used. The specified location of the file should
refer to the server side location if using the Network Server. Specifying a NULL value
results in an error. The FILENAME parameter takes an input argument that is a
VARCHAR (32672) data type.

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value
of a comma. The COLUMNDELIMITER parameter takes an input argument that is a
CHAR (1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to
use the default value of a double quotation mark. The CHARACTERDELIMITER
parameter takes an input argument that is a CHAR (1) data type.

CODESET
Specifies the code set of the data in the input file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the specified
code set to the database code set (UTF-8). You can specify a NULL value to interpret
the data file in the same code set as the JVM in which it is being executed. The
CODESET parameter takes an input argument that is a VARCHAR (128) data type.

REPLACE
A non-zero value for the replace parameter will import in REPLACE mode, while
a zero value will import in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the table and inserts the imported data. The table
definition and the index definitions are not changed. You can only import with
REPLACE mode if the table already exists. INSERT mode adds the imported data to
the table without changing the existing table data. Specifying a NULL value results in
an error. The REPLACE parameter takes an input argument that is a SMALLINT data
type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Import into tables that contain identity columns

You can use the either the SYSCS_UTIL.SYSCS_IMPORT_DATA procedure or
the SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE procedure to

Java DB Tools and Utilities Guide

65

import data into a table that contains an identity column. The approach that you take
depends on whether the identity column is GENERATED ALWAYS or GENERATED BY
DEFAULT.

Identity columns and the REPLACE parameter

If the REPLACE parameter is used during import, Derby resets its internal counter of the
last identity value for a column to the initial value defined for the identity column.

Identity column is GENERATED ALWAYS

If the identity column is defined as GENERATED ALWAYS, an identity value is always
generated for a table row. When a corresponding row in the input file already contains
a value for the identity column, the row cannot be inserted into the table and the import
operation will fail.

To prevent such failure, the following examples show how to specify
parameters in the SYSCS_UTIL.SYSCS_IMPORT_DATA and
SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE procedures to ignore
data for the identity column from the file, and omit the column name from the insert
column list.

The following table definition contains an identity column, c2 and is used in the examples
below:

CREATE TABLE tab1 (c1 CHAR(30), c2 INT GENERATED ALWAYS AS IDENTITY,
 c3 REAL, c4 CHAR(1))

• Suppose that you want to import data into tab1 from a file myfile.del that does
not have identity column information. The myfile.del file contains three fields
with the following data:

Robert,45.2,J
Mike,76.9,K
Leo,23.4,I

To import the data, you must explicitly list the column names in the tab1 table
except for the identity column c2 when you call the procedure. For example:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', 'C1,C3,C4',
 null, 'myfile.del',null, null, null, 0)

• Suppose that you want to import data into tab1 from a file empfile.del that also
has identity column information. The file contains three fields with the following data:

Robert,1,45.2,J
Mike,2,23.4,I
Leo,3,23.4,I

To import the data, you must explicitly specify an insert column list without the
identity column c2 and specify the column indexes without identity column data
when you call the procedure. For example:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', 'C1,C3,C4',
 '1,3,4', 'empfile.del',null, null, null, 0)

Identity column is GENERATED BY DEFAULT
If the identity column is defined as GENERATED BY DEFAULT, an identity value is only
generated for a table row if no explicit value is given. This means that you have several
options, depending on the contents of your input file, and the desired outcome of the
import processing:

• You may omit the identity column from the insert column list, in which case Derby
will generate a new value for the identity column for each input row. You may use

Java DB Tools and Utilities Guide

66

this option whether or not the input file contains values for the identity column, but
note that if the input file contains values for the identity column, you must also then
omit the identity column from the column indexes when you call the procedure.

• You may include the identity column in the insert column list, in which case Derby
will use the column values from the input file. Of course, this option is only available
if the input file actually contains values for the identity column.

The following table definition contains an identity column, c2 and is used in the examples
below:

CREATE TABLE tab1 (c1 CHAR(30),
 c2 INT GENERATED BY DEFAULT AS IDENTITY,
 c3 REAL, c4 CHAR(1))

• Suppose that you want to import data into tab1 from a file myfile.del that does
not have identity column information. The myfile.del file contains three fields
with the following data:

Robert,45.2,J
Mike,76.9,K
Leo,23.4,I

To import the data, you must explicitly list the column names in the tab1 table
except for the identity column c2 when you call the procedure. For example:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', 'C1,C3,C4',
 null, 'myfile.del',null, null, null, 0)

• Suppose that you want to import data into tab1 from a file empfile.del that also
has identity column information. The file contains three fields with the following data:

Robert,1,45.2,J
Mike,2,23.4,I
Leo,3,23.4,I

In this case, suppose that you wish to use the existing identity column values from
the input file. To import the data, you may simply pass null for the insert column
list and column indexes parameters when you call the procedure. For example:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', NULL,
 NULL, 'empfile.del',null, null, null, 0)

• Suppose (again) that you want to import data into tab1 from a file empfile.del
that also has identity column information, but in this case, suppose that you do
not wish to use the identity column values from the input file, but would prefer to
allow Derby to generate new identity column values instead. In this case, to import
the data, you must specify an insert column list without the identity column c2
and specify the column indexes without identity column data when you call the
procedure. For example:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', 'C1,C3,C4',
 '1,3,4', 'empfile.del',null, null, null, 0)

Exporting data using the built-in procedures
You can use the Derby export procedures to export all of the data from table or query, or
to export LOB data separately from the other data.

1. Choose the correct procedure for the type of export that you want to perform. For
examples of these procedures, see Examples of bulk import and export.

Type of export Procedure to use

Java DB Tools and Utilities Guide

67

To export all the data from
a table to a single export
file, including the LOB
data

SYSCS_UTIL.SYSCS_EXPORT_TABLE (IN
 SCHEMANAME VARCHAR(128), IN TABLENAME
 VARCHAR(128), IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1), IN
 CHARACTERDELIMITER CHAR(1), IN CODESET
 VARCHAR(128))

To export all the data from
a table, and place the LOB
data into a separate export
file

SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE
 (IN SCHEMANAME VARCHAR(128), IN
 TABLENAME VARCHAR(128), IN FILENAME
 VARCHAR(32672), IN COLUMNDELIMITER
 CHAR(1), IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128), IN LOBSFILNAME
 VARCHAR(32672))

A reference to the location of the LOB data is
placed in the LOB column in the main export file.

To export the result of a
SELECT statement to a
single file, including the
LOB data

SYSCS_UTIL.SYSCS_EXPORT_QUERY (IN
 SELECTSTATEMENT VARCHAR(32672),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1), IN
 CHARACTERDELIMITER CHAR(1), IN CODESET
 VARCHAR(128))

To export the result of
a SELECT statement to
a main export file, and
place the LOB data into a
separate export file

SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE
 (IN SELECTSTATEMENT VARCHAR(32672),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1), IN
 CHARACTERDELIMITER CHAR(1), IN
 CODESET VARCHAR(128), IN LOBSFILENAME
 VARCHAR(32672))

A reference to the LOB data is written to the main
export file.

Parameters for the export procedures

The Derby export procedures use specific parameters.

SCHEMANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR (128) data type.

SELECTSTATEMENT
Specifies the SELECT statement query that returns the data to be exported.
Specifying a NULL value will result in an error. The SELECTSTATEMENT parameter
takes an input argument that is a VARCHAR (32672) data type.

TABLENAME
Specifies the table name of the table or view from which the data is to be exported.
This table cannot be a system table or a declared temporary table. The string must
exactly match the case of the table name. Specifying a NULL value results in an
error. The TABLENAME parameter takes an input argument that is a VARCHAR
(128) data type.

FILENAME
Specifies the file to which the data is to be exported. If the path is omitted, the current
working directory is used. If the name of a file that already exists is specified, the
export utility overwrites the contents of the file; it does not append the information.
The specified location of the file should refer to the server-side location if you
are using the Network Server. Specifying a NULL value results in an error. The
FILENAME parameter takes an input argument that is a VARCHAR (32672) data
type.

COLUMNDELIMITER

Java DB Tools and Utilities Guide

68

Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value of
a comma. The COLUMNDELIMITER parameter must be a CHAR (1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to
use the default value of a double quotation mark. The CHARACTERDELIMITER
parameter takes an input argument that is a CHAR (1) data type.

CODESET
Specifies the code set of the data in the export file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the database
code page to the specified code page before writing to the file. You can specify a
NULL value to write the data in the same code page as the JVM in which it is being
executed. The CODESET parameter takes an input argument that is a VARCHAR
(128) data type.

LOBSFILENAME
Specifies the file that the large object data is exported to. If the path is omitted,
the lob file is created in the same directory as the main export file. If you specify
the name of an existing file, the export utility overwrites the contents of the file.
The data is not appended to the file. If you are using the Network Server, the file
should be in a server-side location. Specifying a NULL value results in an error. The
LOBSFILENAME parameter takes an input argument that is a VARCHAR (32672)
data type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the export procedure using all uppercase characters. If you created a
schema or table name as a delimited identifier, you must pass the name to the export
procedure using the same case that was used when it was created.

Examples of bulk import and export
All of the examples in this section are run using the ij utility.

Example importing all data from a file

The following example shows how to import data into the STAFF table in a sample
database from the myfile.del file. The data will be appended to the existing data in the
table.

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE
 (null,'STAFF','myfile.del',null,null,null,0);

Example importing all data from a delimited file

The following example shows how to import data into the STAFF table in a sample
database from a delimited data file myfile.del. This example defines the percentage
character (%) as the string delimiter, and a semicolon as the column delimiter. The data
will be appended to the existing data in the table.

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE
 (null,'STAFF','c:\output\myfile.del',';','%',null,0);

Example importing all data from a table, using a separate import file for the LOB
data

The following example shows how to import data into the STAFF table in a sample
database from a delimited data file staff.del. The import file staff.del is the
main import file and contains references that point to a separate file which contains the

Java DB Tools and Utilities Guide

69

LOB data. This example specifies a comma as the column delimiter. The data will be
appended to the existing data in the table.

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE(
 null,'STAFF','c:\data\staff.del',',','"','UTF-8',0);

Example importing data into specific columns, using a separate import file for the
LOB data
The following example shows how to import data into several columns of the STAFF
table. The STAFF table includes a LOB column in a sample database. The import file
staff.del is a delimited data file. The staff.del file contains references that point
to a separate file which contains the LOB data. The data in the import file is formatted
using double quotation marks (") as the string delimiter and a comma (,) as the column
delimiter. The data will be appended to the existing data in the STAFF table.

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE
 (null, 'STAFF', 'NAME,DEPT,SALARY,PICTURE', '2,3,4,6',
 'c:\data\staff.del', ',','"','UTF-8', 0);

Example exporting all data from a table to a single export file

The following example shows how to export data from the STAFF table in a sample
database to the file myfile.del.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE
 (null,'STAFF','myfile.del',null,null,null);

Example exporting data from a table to a single delimited export file

The following example shows how to export data from the STAFF table to a delimited
data file myfile.del with the percentage character (%) as the character delimiter, and
a semicolon as the column delimiter from the STAFF table.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE
 (null,'STAFF','c:\output\myfile.del',';','%',null);

Example exporting all data from a table, using a separate export file for the LOB
data

The following example shows how to export data from the STAFF table in a sample
database to the main file staff.del and the LOB export file pictures.dat.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE(null,'STAFF'
 'c:\data\staff.del',',','"','UTF-8', 'c:\data\pictures.dat');

Example exporting data from a query to a single export file

The following example shows how to export employee data in department 20 from the
STAFF table in a sample database to the file awards.del.

CALL SYSCS_UTIL.SYSCS_EXPORT_QUERY
 ('SELECT * FROM STAFF WHERE dept=20',
 'c:\output\awards.del',null,null,null);

Example exporting data from a query, using a separate export file for the LOB data

The following example shows how to export employee data in department 20 from the
STAFF table in a sample database to the main file staff.del and the lob data to the
file pictures.dat.

CALL SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE(
 'SELECT * FROM STAFF WHERE dept=20',
 'c:\data\staff.del', ',' ,'"',
 'UTF-8','c:\data\pictures.dat');

Java DB Tools and Utilities Guide

70

Import and export procedures from JDBC
You can run import and export procedures from a JDBC program.

The following code fragment shows how you might call the
SYSCS_UTIL.SYSCS_EXPORT_TABLE procedure from Java. In this example, the
procedure exports the data in the staff table in the default schema to the staff.dat
file. A percentage (%) character is used to specify the column delimiter.

PreparedStatement ps=conn.prepareStatement(
 "CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE (?,?,?,?,?,?)");
 ps.setString(1,null);
 ps.setString(2,"STAFF");
 ps.setString(3,"staff.dat");
 ps.setString(4,"%");
 ps.setString(5,null);
 ps.setString(6,null);
 ps.execute();

How the Import and export procedures process NULL values
In a delimited file, a NULL value is exported as an empty field. The following example
shows the export of a four-column row where the third column is empty:

7,95,,Happy Birthday

The import procedures work the same way; an empty field is imported as a NULL value.

CODESET values for import and export procedures
Import and export procedures accept arguments to specify codeset values. You can
specify the codeset (character encoding) for import and export procedures to override the
system default.

The following table contains a sample of the character encoding that is supported by JDK
1.x. To review the complete list of character encodings, refer to your Java documentation.

Table 5. Sample character encodings
This table contains sample character encodings supported by JDK1.x.

Character Encoding Explanation

8859_1 ISO Latin-1

8859_2 ISO Latin-2

8859_7 ISO Latin/Greek

Cp1257 Windows Baltic

Cp1258 Windows Vietnamese

Cp437 PC Original

EUCJIS Japanese EUC

GB2312 GB2312-80 Simplified Chinese

JIS JIS

KSC5601 KSC5601 Korean

MacCroatian Macintosh Croatian

Java DB Tools and Utilities Guide

71

Character Encoding Explanation

MacCyrillic Macintosh Cyrillic

SJIS PC and Windows Japanese

UTF-8 Standard UTF-8

Examples of specifying the codeset in import and export procedures
The following example shows how to specify UTF-8 encoding to export to the
staff.dat table:

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE
 (NULL,'STAFF','staff.dat',NULL,NULL,'UTF-8')

The following example shows how to specify UTF-8 encoding to import from the
staff.dat table:

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE
 (NULL,'STAFF','staff.dat',NULL,NULL,'UTF-8',0)

Java DB Tools and Utilities Guide

72

Storing jar files in a database

SQLJ.install_jar, SQLJ.remove_jar, and SQLJ.replace_jar, are a set of
procedures in the SQL schema that allow you to store jar files in the database.

Your jar file has a physical name (the name you gave it when you created it) and a Derby
name (the Derby identifier you give it when you load it into a particular schema). Its Derby
name is an SQL92Identifier; it can be delimited and must be unique within a schema. A
single schema can store more than one jar file.

Adding a Jar File
To add a jar file using SQL syntax:

CALL SQLJ.install_jar('jarFilePath', qualifiedJarName, 0)

•
• jarFilePath

The path and physical name of the jar file to add or use as a replacement. For
example:

d:/todays_build/tours.jar
• qualifiedJarName

The Derby name of the jar file, qualified by the schema name. Two examples:

MYSCHEMA.Sample1

 -- a delimited identifier.
MYSCHEMA."Sample2"

Removing a jar file
To remove a jar file using SQL syntax:

CALL SQLJ.remove_jar (qualifiedJarName, 0)

Replacing a jar file
To replace a jar file using SQL syntax:

CALL SQLJ.replace_jar('jarFilePath', qualifiedJarName)

• jarFilePath

The path and physical name of the jar file to add or use as a replacement. For
example:

d:/todays_build/tours.jar
• qualifiedJarName

The Derby name of the jar file, qualified by the schema name. Two examples:

MYSCHEMA.Sample1 -- a delimited identifier.

MYSCHEMA."Sample2"

Java DB Tools and Utilities Guide

73

Installing a jar example
• Complete SQL example for installing a jar:

CALL SQLJ.install_jar('d:\todays_build\tours.jar',
'APP."ToursLogic!"', 0);

For more information about storing classes in a database, see the Java DB Developer's
Guide.

Java DB Tools and Utilities Guide

74

sysinfo

Use the sysinfo utility to display information about your Java environment and Derby
(including version information). To use sysinfo, do one of the following:

• If you are relatively new to the Java programming language, follow the
instructions in "Setting up your environment" in Getting Started with Java DB
to set the DERBY_HOME and JAVA_HOME environment variables and to add
DERBY_HOME/bin to your path. Then use the following command:

sysinfo
• If you are a regular Java user but are new to Derby, set the DERBY_HOME

environment variable, then use a java command to invoke the derbyrun.jar file:

(UNIX) java [options] -jar $DERBY_HOME/lib/derbyrun.jar sysinfo

(Windows) java [options] -jar %DERBY_HOME%\lib\derbyrun.jar sysinfo
• If you are familiar with both the Java programming language and Derby, you have

already set DERBY_HOME. Set your classpath to include the Derby jar files. Then
use a java command to invoke the sysinfo class directly.

java org.apache.derby.tools.sysinfo

sysinfo example
When you run the sysinfo command using the derbyrun.jar file, the output looks
something like this:

java -jar C:\db-derby-10.6.0.0-bin\lib\derbyrun.jar sysinfo
------------------ Java Information ------------------
Java Version: 1.6.0_20
Java Vendor: Sun Microsystems Inc.
Java home: C:\jdk1.6.0_20\jre
Java classpath: C:\db-derby-10.6.0.0-bin\lib\derbyrun.jar
OS name: Windows XP
OS architecture: x86
OS version: 5.1
Java user name: user1
Java user home: C:\Documents and Settings\user1
Java user dir: C:\DERBYDBS
java.specification.name: Java Platform API Specification
java.specification.version: 1.6
java.runtime.version: 1.6.0_20-b02
--------- Derby Information --------
JRE - JDBC: Java SE 6 - JDBC 4.0
[C:\db-derby-10.6.0.0-bin\lib\derby.jar] 10.6.0.0 - (908506)
[C:\db-derby-10.6.0.0-bin\lib\derbytools.jar] 10.6.0.0 - (908506)
[C:\db-derby-10.6.0.0-bin\lib\derbynet.jar] 10.6.0.0 - (908506)
[C:\db-derby-10.6.0.0-bin\lib\derbyclient.jar] 10.6.0.0 - (908506)
--
----------------- Locale Information -----------------
Current Locale : [English/United States [en_US]]
Found support for locale: [cs]
 version: 10.6.0.0 - (908506)
Found support for locale: [de_DE]
 version: 10.6.0.0 - (908506)
Found support for locale: [es]
 version: 10.6.0.0 - (908506)
Found support for locale: [fr]
 version: 10.6.0.0 - (908506)
Found support for locale: [hu]
 version: 10.6.0.0 - (908506)

Java DB Tools and Utilities Guide

75

Found support for locale: [it]
 version: 10.6.0.0 - (908506)
Found support for locale: [ja_JP]
 version: 10.6.0.0 - (908506)
Found support for locale: [ko_KR]
 version: 10.6.0.0 - (908506)
Found support for locale: [pl]
 version: 10.6.0.0 - (908506)
Found support for locale: [pt_BR]
 version: 10.6.0.0 - (908506)
Found support for locale: [ru]
 version: 10.6.0.0 - (908506)
Found support for locale: [zh_CN]
 version: 10.6.0.0 - (908506)
Found support for locale: [zh_TW]
 version: 10.6.0.0 - (908506)
--

When you request help for a problem by posting to the derby-user mailing list, include a
copy of the information provided by the sysinfo utility.

Using sysinfo to check the classpath
sysinfo provides an argument (-cp) which can be used to test the classpath.

java org.apache.derby.tools.sysinfo -cp
[[embedded][server][client] [tools] [anyClass.class]]

If your environment is set up correctly, the utility shows output indicating success.

You can provide optional arguments with -cp to test different environments. Optional
arguments to -cp are:

• embedded
• server
• client
• tools
• classname.class

If something is missing from your classpath, the utility indicates what is missing. For
example, if you neglected to include the directory containing the class named SimpleApp
to your classpath, the utility would indicate this when the following command line was
issued (type all on one line):

$ java org.apache.derby.tools.sysinfo -cp embedded SimpleApp.class
FOUND IN CLASS PATH:

Derby embedded engine library (derby.jar)

NOT FOUND IN CLASS PATH:

user-specified class (SimpleApp)
(SimpleApp not found.)

Java DB Tools and Utilities Guide

76

dblook

Use the dblook utility to view all or parts of the Data Definition Language (DDL) for a
given database. To use the dblook utility, do one of the following:

• If you are relatively new to the Java programming language, follow the
instructions in "Setting up your environment" in Getting Started with Java DB
to set the DERBY_HOME and JAVA_HOME environment variables and to add
DERBY_HOME/bin to your path. Then use the following command:

dblook -d connectionURL [options]
• If you are a regular Java user but are new to Derby, set the DERBY_HOME

environment variable, then use a java command to invoke the derbyrun.jar file
(all on one line):

(UNIX) java [options] -jar $DERBY_HOME/lib/derbyrun.jar dblook
 -d connectionURL [options]

(Windows) java [options] -jar %DERBY_HOME%\lib\derbyrun.jar dblook
 -d connectionURL [options]

• If you are familiar with both the Java programming language and Derby, you have
already set DERBY_HOME. Set your classpath to include the Derby jar files. Then
use a java command to invoke the dblook class directly.

java org.apache.derby.tools.dblook -d connectionURL [options]

Using dblook
The syntax for the command to launch the dblook utility is:

dblook -d connectionURL [options]

The value for connectionURL is the complete URL for the database. Where appropriate,
the URL includes any connection URL attributes that might be required to access the
database. For complete information on connection URL attributes, see "Setting attributes
for the database connection URL" in the Java DB Reference Manual.

For example, to connect to the database 'myDB', the URL would simply be
'jdbc:derby:myDB'; to connect using the Network Server to a database
'C:\private\tmp\myDB' on a remote server (port 1527), the URL would be:

'jdbc:derby://localhost:1527/
"C:\private\tmp\myDB";user=someusr;password=somepwd'

As with other Derby utilities, you must ensure that no other JVMs are started against the
database when you call the dblook utility, or an exception will occur and will print to
the dblook.log. If this exception is thrown, the dblook utility will quit. To recover, you
must ensure that no other Derby applications running in a separate JVM are connected
to the source database. These connections need to be shutdown. Once all existing
JVMs running against the database have been shutdown, the dblook utility will execute
successfully. You can also start the Derby Network server and run the dblook utility as a
client application while other clients are connected to the server.

dblook options
The dblook utility options include:

-z <schemaName>

Java DB Tools and Utilities Guide

77

specifies the schema to which the DDL should be restricted. Only objects with the
specified schema are included in the DDL file.

-t <tableOne> <tableTwo> ...
specifies the tables to which the DDL should be restricted. All tables with a name from
this list will be included in the DDL file subject to -z limitations, as will the DDL for any
keys, checks, or indexes on which the table definitions depend.

Additionally, if the statement text of any triggers or views includes a reference to any
of the listed table names, the DDL for that trigger/view will also be generated, subject
to -z limitations. If a table is not included in this list, then neither the table nor any
of its keys, checks, or indexes will be included in the final DDL. If this parameter is
not provided, all database objects will be generated, subject to -z limitations. Table
names are separated by whitespace.

-td
specifies a statement delimiter for SQL statements generated by dblook. If a
statement delimiter option is not specified, the default is the semicolon (';'). At the end
of each DDL statement, the delimiter is printed, followed by a new line.

-o <filename>
specifies the file where the generated DDL is written. If this file is not specified, it
defaults to the console (i.e. standard System.out).

-append
prevents overwriting the DDL output ('-o' parameter, if specified) and "dblook.log"
files. If this parameter is specified, and execution of the dblook command leads
to the creation of files with names identical to existing files in the current directory,
dblook will append to the existing files. If this parameter is not set, the existing files
will be overridden.

-verbose
specifies that all errors and warnings (both SQL and internal to dblook) should be
echoed to the console (via System.err), in addition to being printed to the "dblook.log"
file. If this parameter is not set, the errors and warnings only go to the "dblook.log"
file.

-noview
specifies that CREATE VIEW statements should not be generated.

Generating the DDL for a database
The dblook utility generates all of the following objects when generating the DDL for a
database:

• Checks
• Functions
• Indexes
• Jar files
• Keys (primary, foreign, and unique)
• Schemas
• Stored procedures
• Triggers
• Tables
• Views

Note: When dblook runs against a database that has jar files installed, it will create a
new directory, called DERBYJARS, within the current directory, and that is where it will
keep copies of all of the jars it encounters. In order to run the generated DDL as a script,
this DERBYJARS directory must either 1) exist within the directory in which it was created,

Java DB Tools and Utilities Guide

78

or 2) be moved manually to another directory, in which case the path in the generated
DDL file must be manually changed to reflect to the new location.

The dblook utility ignores any objects that have system schemas (for example, SYS,
SYSIBM), since DDL is not able to directly create nor modify system objects.

dblook examples
The following examples demonstrate how the various dblook utility options can be
specified from a command line. These examples use the sample database.

Note: The quotations marks shown in these examples are part of the command
argument and must be passed to dblook. The way in which quotation marks are passed
depends on the operating system and command line that you are using. With some
systems it might be necessary to escape the quotation marks by using a forward slash
before the quotation mark, for example: "\"My Table"\"

Status messages are written to the output (either a -o filename, if specified, or the
console) as SQL script comments. These status messages serve as headers to show
which types of database objects are being, or have been, processed by the dblook
utility.

Writing the DDL to the console
You can write the DDL to the console for everything that is in the sample database. In
this example, the database is in the current directory. For example:

java org.apache.derby.tools.dblook -d jdbc:derby:sample

Including error and warning messages in the dblook command
You can write error and warning messages when you write the DDL to the console. The
messages are written using System.err. For example:

java org.apache.derby.tools.dblook -d jdbc:derby:sample -verbose

Writing the DDL to a file
You can write the DDL to a file called myDB_DDL.sql for everything that is in the
sample database. In this example, the database and file are in the current directory. For
example:

java org.apache.derby.tools.dblook -d jdbc:derby:sample -o myDB_DDL.sql

Specifying directory paths in the dblook command
If the database or file are not in the current directory, you must specify the directory
paths. For example:

java org.apache.derby.tools.dblook -d
 'jdbc:derby:c:\private\stuff\sample'
 -o 'C:\temp\newDB.sql'

Specifying a schema in the dblook command
You can specify the schema for the database. To write the DDL to the console, for all of
the objects in the sample database where the database is in the SAMP schema, use the
following command:

java org.apache.derby.tools.dblook -d jdbc:derby:sample -z samp

Specifying a remote database and host
If the sample database is in the SAMP schema on localhost:1527, you must specify your
user ID and password. For example, use the following command to write the DDL to the
console:

Java DB Tools and Utilities Guide

79

java org.apache.derby.tools.dblook
 -d 'jdbc:derby://localhost:1527/"C:\temp\sample";
 user=someusername;password=somepassword' -z samp

Specifying a schema and a table within the database in the dblook command
You can specify that only the objects in the sample database that are associated with
the SAMP and the My Table table are written to the console. For example:

java org.apache.derby.tools.dblook -d jdbc:derby:sample -z samp -t "My
 Table"

Specifying multiple tables in the dblook command
You can specify more than one table in the dblook command by separating the names
of the tables with a space. For example, for objects in the sample database that
are associated with either the My Table table or the STAFF table, use the following
command:

java org.apache.derby.tools.dblook -d jdbc:derby:sample -t "My Table"
 staff

Writing DDL to a file without a statement delimiter
To write the DDL for all of the objects insample database to the myDB_DDL.sql file
without a statement delimiter, you must omit the default semi-colon. You can append the
DDL to the output files if the files are already there. For example:

java org.apache.derby.tools.dblook -d jdbc:derby:sample
 -o myDB_DDL.sql -td '' -append

Excluding views from the DDL
To write the DDL to the console for all of the objects in the sample database except for
views, use the following command:

java org.apache.derby.tools.dblook -d jdbc:derby:sample -noview

Java DB Tools and Utilities Guide

80

SignatureChecker

Use the SignatureChecker tool to identify any SQL functions and procedures in a
database that do not follow the SQL argument matching rules described in "Argument
matching" in the Java DB Reference Manual. If your application uses SQL functions
and/or procedures, you should run this tool against your databases.

Using SignatureChecker
Before you run the SignatureChecker tool, make sure that your classpath contains the
Derby jar files, including derbytools.jar.

On a Java SE platform, run the SignatureChecker tool as follows, where
connection-url-to-database is the connection URL you would use in order to obtain a
connection by calling DriverManager.getConnection():

java org.apache.derby.tools.SignatureChecker connection-url-to-database

Alternatively, you can invoke the tool using derbyrun.jar. For example:

java -jar derbyrun.jar SignatureChecker "jdbc:derby:myDB"

On a Java ME platform, run the SignatureChecker tool as follows,
where database-name is the database name you would set by calling
EmbeddedSimpleDataSource.setDatabaseName():

java org.apache.derby.tools.SignatureChecker database-name

The tool examines every routine registered in the database and displays results like the
following:

Found a matching method for: "APP"."DOINSERT"()
Found a matching method for: "APP"."DOINSERTANDCOMMIT"()
Found a matching method for: "APP"."APPENDFOOANDBAR"(VARCHAR)
Unresolvable routine: "APP"."IDONTEXIST"(VARCHAR , INTEGER).
Detailed reason: No method was found that matched the method call
 z.iDontExist(java.lang.String, int),
tried all combinations of object and primitive types and any possible
 type conversion for any parameters the method call may have.
The method might exist but it is not public and/or static, or the
 parameter types are not method invocation convertible.
Found a matching method for: "APP"."RUNDDL"(VARCHAR)
Unresolvable routine: "APP"."TABFUNCDOESNTEXIST"(VARCHAR , BIGINT).
Detailed reason: No method was found that matched the method call
 org.apache.derbyTesting.functionTests.tests.lang.TableFunctionTest.
 appendFooAndBar(java.lang.String, long),
tried all combinations of object and primitive types and any possible
 type conversion for any parameters the method call may have.
The method might exist but it is not public and/or static, or the
 parameter types are not method invocation convertible.

In the example above, the SignatureChecker tool found matches for all routines
except for the functions app.iDontExist and app.tabFuncDoesntExist. If the tool cannot
find a match for one of your functions or procedures, it tells you what signature it
expected to find. You need to adjust your application in one of the following ways:

• Method: Change the signature of your Java method to match the signature
suggested by the SignatureChecker tool.

Java DB Tools and Utilities Guide

81

• Routine: Drop and recreate your function or procedure so that its arguments and
return type match your Java method according to the SQL Standard rules described
in "Argument matching" in the Java DB Reference Manual.

Java DB Tools and Utilities Guide

82

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

	Cover
	Contents
	Copyright
	License
	Relationship between Java DB and
Apache Derby
	About this guide
	Purpose of this document
	Audience
	How this guide is organized

	What are the Derby tools and utilities?
	Overview
	Environment setup and the Derby tools
	Java 2 Platform, Standard Edition, Version 1.4
	Classpath

	About Derby databases
	JDBC connection basics
	JDBC drivers overview
	Database connection URLs

	Tools and localization
	About locales
	Database territory
	Specifying an alternate codeset
	Formatting display of locale-sensitive data

	Using ij
	Starting ij
	Creating a database using ij
	Starting ij using properties
	Getting started with ij
	Connecting to a Derby database
	The ij Driver name and connection URL

	Using ij commands
	Other uses for ij

	Running ij scripts

	ij properties reference
	ij.connection.connectionName property
	ij.database property
	ij.dataSource property
	ij.driver property
	ij.exceptionTrace property
	ij.maximumDisplayWidth property
	ij.outfile property
	ij.password property
	ij.protocol property
	ij.protocol.protocolName property
	ij.showErrorCode property
	ij.showNoConnectionsAtStart property
	ij.showNoCountForSelect property
	ij.URLCheck property
	ij.user property
	derby.ui.codeset property
	derby.ui.locale property

	ij commands and errors reference
	ij commands
	Conventions for ij examples
	ij SQL command behavior
	ij command example

	Absolute command
	After Last command
	Async command
	Autocommit command
	Before First command
	Close command
	Commit command
	Connect command
	Describe command
	Disconnect command
	Driver command
	Elapsedtime command
	Execute command
	Exit command
	First command
	Get Cursor command
	Get Scroll Insensitive Cursor command
	Help command
	Last command
	LocalizedDisplay command
	MaximumDisplayWidth command
	Next command
	Prepare command
	Previous command
	Protocol command
	Readonly command
	Relative command
	Remove command
	Rollback command
	Run command
	Set Connection command
	Show command
	Wait For command
	Syntax for comments in ij commands
	Syntax for identifiers in ij commands
	Syntax for strings in ij commands
	ij errors
	ERROR SQLState
	WARNING SQLState
	IJ ERROR
	IJ WARNING
	JAVA ERROR

	Using the bulk import and export procedures
	Methods for running the import and export procedures
	Bulk import and export requirements and considerations
	Bulk import and export of large objects
	File format for input and output
	Importing data using the built-in procedures
	Parameters for the import procedures
	Import into tables that contain identity columns

	Exporting data using the built-in procedures
	Parameters for the export procedures

	Examples of bulk import and export
	Import and export procedures from JDBC
	How the Import and export procedures process NULL values
	CODESET values for import and export procedures

	Storing jar files in a database
	Adding a Jar File
	Removing a jar file
	Replacing a jar file
	Installing a jar example

	sysinfo
	sysinfo example
	Using sysinfo to check the classpath

	dblook
	Using dblook
	dblook options
	Generating the DDL for a database
	dblook examples

	SignatureChecker
	Using SignatureChecker

	Trademarks

