
Your First Cup: An Introduction to the JavaTM

EE Platform

Part No: 821–1770–14
April 2012



Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Copyright and License: Your First Cup: An Introduction to the Java EE Platform

This tutorial is a short tutorial introducing beginning Java EE developers to the Java Platform, Enterprise Edition and contains documentation ("Tutorial") and
sample code. The "sample code" made available with this Tutorial is licensed separately to you by Oracle under the Berkeley license. If you download any such sample
code, you agree to the terms of the Berkeley license.

This Tutorial is provided to you by Oracle under the following license terms containing restrictions on use and disclosure and is protected by intellectual property
laws. Oracle grants to you a limited, non-exclusive license to use this Tutorial for information purposes only, as an aid to learning about the Java EE platform. Except
as expressly permitted in these license terms, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish,
or display any part, in any form, or by any means this Tutorial. Reverse engineering, disassembly, or decompilation of this Tutorial is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If the Tutorial is licensed on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This Tutorial is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this Tutorial in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use.

THE TUTORIAL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ORACLE FURTHER DISCLAIMS ALL WARRANTIES, EXPRESS AND
IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NONINFRINGEMENT.

IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, OR
DAMAGES FOR LOSS OF PROFITS, REVENUE, DATA OR DATA USE, INCURRED BY YOU OR ANY THIRD PARTY, WHETHER IN AN ACTION IN
CONTRACT OR TORT, EVEN IF ORACLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ORACLE'S ENTIRE LIABILITY FOR
DAMAGES HEREUNDER SHALL IN NO EVENT EXCEED ONE THOUSAND DOLLARS (U.S. $1,000).

No Technical Support

Oracle's technical support organization will not provide technical support, phone support, or updates to you.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

The sample code and Tutorial may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

120406@25097

http://developers.sun.com/license/berkeley_license.html


Contents

Preface .....................................................................................................................................................5

1 Introduction ...........................................................................................................................................7
Goals of This Tutorial ............................................................................................................................7
Requirements for This Tutorial ............................................................................................................7

A Checklist .......................................................................................................................................7

2 Understanding Java Platform, Enterprise Edition ......................................................................... 11
Differences between Java EE and Java SE .......................................................................................... 11

The Java Programming Language Platforms ............................................................................ 11
Overview of Enterprise Applications ................................................................................................ 12

Tiered Applications ..................................................................................................................... 13
Java EE Servers ..................................................................................................................................... 16

Java EE Containers ....................................................................................................................... 16

3 Creating Your First Java EE Application ........................................................................................... 17
Architecture of the Example Applications ....................................................................................... 17

Tiers in the Example Applications ............................................................................................. 18
Java EE Technologies Used in the Example Applications ....................................................... 19

Coding the DukesAgeResource Example Application .................................................................... 19
Getting Started ............................................................................................................................. 19
Creating the Web Service ............................................................................................................ 19

4 Creating Your Second Web Application ........................................................................................... 25
Creating the firstcup Project ........................................................................................................... 25

▼ Create the Web Application Project .......................................................................................... 25
Creating the Java Persistence API Entity .......................................................................................... 26

3



▼ Create the FirstcupUser Entity Class ...................................................................................... 26
▼ Add Properties to the FirstcupUser Entity ............................................................................. 27
▼ Add Constructors to the FirstcupUser Entity ........................................................................ 28
▼ Add a Named Query to the FirstcupUser Entity .................................................................... 28

Creating the Enterprise Bean ............................................................................................................. 29
▼ Create the DukesBirthdayBean Enterprise Bean Class ........................................................... 29
▼ Add a Logger Instance to DukesBirthdayBean.java ............................................................. 30
▼ Add a Business Method to DukesBirthdayBean that Gets the Average Age Difference of

firstcup Users ............................................................................................................................ 30
▼ Add a Business Method for Calculating the Age Difference Between Duke and the User .. 31

Creating the Web Client ..................................................................................................................... 32
Creating a Resource Bundle ........................................................................................................ 32
Configuring the Resource Bundle in the Configuration File .................................................. 33
Creating the DukesBDay Managed Bean Class .......................................................................... 34
Creating the Facelets Client ........................................................................................................ 38

Building, Packaging, Deploying, and Running the firstcup Web Application ......................... 46
▼ Build, Package, and Deploy the firstcup Web Application .................................................. 46
▼ Run the firstcup Application ................................................................................................... 46

5 Next Steps .............................................................................................................................................49
The Java EE Tutorial ............................................................................................................................ 49
More Information on the Java EE Platform ...................................................................................... 49
Java EE Servers ..................................................................................................................................... 49

GlassFish Server Open Source Edition ...................................................................................... 49
Other Java EE Servers .................................................................................................................. 50

Contents

Your First Cup: An Introduction to the Java EE Platform • April 20124



Preface

This is Your First Cup: An Introduction to Java Platform, Enterprise Edition, a short tutorial for
beginning Java EE programmers. This tutorial is designed to give you a hands-on lesson on
developing an enterprise application from initial coding to deployment.

Who Should Use This Book
This tutorial is for novice Java EE developers. You should be familiar with the Java
programming language, particularly the features introduced in Java Platform, Standard Edition
6. While familiarity with enterprise development and Java EE technologies is helpful, this
tutorial assumes you are new to developing Java EE applications.

Before You Read This Book
Before you start this tutorial, you should:

■ Be familiar with the Java programming language
■ Be able to install software on your work machine
■ Have a modern web browser installed on your work machine

Related Books and Projects
The following books and projects may be helpful to you in understanding this tutorial:

■ The Java EE 6 Tutorial
■ The Oracle GlassFish Server documentation set
■ The NetBeans IDE documentation set

5

http://docs.oracle.com/javaee/6/tutorial/doc/


Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

Your First Cup: An Introduction to the Java EE Platform • April 20126



Introduction

An introduction to this tutorial. This chapter outlines the goals and the prerequisites for
completing this tutorial.

Goals of This Tutorial
At the completion of this tutorial, you will:

■ Understand the basics of tiered applications
■ Understand the basics of the Java EE platform
■ Have created a multi-tiered Java EE application
■ Have deployed and run your application on a Java EE server
■ Know where to go next for more information on the Java EE platform

Requirements for This Tutorial

A Checklist
To complete this tutorial, you need to:

■ Get the Java EE 6 Software Development Kit.
■ Get NetBeans IDE and all necessary plugins.
■ Configure your environment.
■ Get the latest updates to the tutorial bundle.

For up-to-the-minute information on which versions of the required software are compatible
with this tutorial, see the First Cup compatibility page (http://java.net/projects/
firstcup/pages/FirstCupCompatibility).

1C H A P T E R 1

7

http://java.net/projects/firstcup/pages/FirstCupCompatibility
http://java.net/projects/firstcup/pages/FirstCupCompatibility


Getting the Java EE 6 SDK
To get the Java EE 6 SDK, go to http://www.oracle.com/technetwork/java/javaee/

downloads/.

Getting NetBeans IDE
To get NetBeans IDE, go to http://www.netbeans.org/downloads/, and download the Java
EE distribution.

Configuring Your Environment
Once you have all the necessary downloads, you must configure the tutorial bundle to reflect
your environment.

▼ Add GlassFish Server as a Server in NetBeans IDE
To run the tutorial examples in NetBeans IDE, you must register your GlassFish Server
installation as a NetBeans server instance. Follow these instructions to register the GlassFish
Server in NetBeans IDE.

From the Tools menu, choose Servers.
The Servers dialog opens.

Click Add Server.

Under Server, select GlassFish Server 3+ and click Next.

Under Platform Location, browse to or enter the location of your GlassFish Server installation.

Click Next.

Under Domain, use the drop-down list to select an existing domain, type in the path to the
domain directly in the field, or type the name of a new domain to create.
Normally, you will select the default domain, domain1.

Click Finish.

Getting the Latest Updates to the Tutorial
Check for any updates to the tutorial by using the Update Center included with the Java EE 6
SDK.

1

2

3

4

5

6

7

Requirements for This Tutorial

Your First Cup: An Introduction to the Java EE Platform • April 20128

http://www.oracle.com/technetwork/java/javaee/downloads/
http://www.oracle.com/technetwork/java/javaee/downloads/
http://www.netbeans.org/downloads/


▼ Update the Tutorial Through the Update Center
Open the Update Center and check for any updates to the tutorial.

Open the Services tab in NetBeans IDE and expand Servers.

Right-click the GlassFish Server instance and select View Update Center to display the Update
Tool.

Select Available Updates in the tree to display a list of updated packages.

Look for updates to the First Cup for Java EE 6 (javaee-firstcup-tutorial) package.

If there is an updated version of First Cup, select First Cup 2.1 for Java EE 6
(javaee-firstcup-tutorial) and click Install.

1

2

3

4

5

Requirements for This Tutorial

Chapter 1 • Introduction 9



10



Understanding Java Platform, Enterprise
Edition

This chapter outlines the features of Java Platform, Enterprise Edition (Java EE), how it differs
from Java Platform, Standard Edition (Java SE), Java Platform, Micro Edition (Java ME), and
JavaFX, and the basic concepts behind enterprise application development.

Differences between Java EE and Java SE
Java technology is both a programming language and a platform. The Java programming
language is a high-level object-oriented language that has a particular syntax and style. A Java
platform is a particular environment in which Java programming language applications run.

There are several Java platforms. Many developers, even long-time Java programming language
developers, do not understand how the different platforms relate to each other.

The Java Programming Language Platforms
There are four platforms of the Java programming language:

■ Java Platform, Standard Edition (Java SE)
■ Java Platform, Enterprise Edition (Java EE)
■ Java Platform, Micro Edition (Java ME)
■ JavaFX

All Java platforms consist of a Java Virtual Machine (VM) and an application programming
interface (API). The Java Virtual Machine is a program, for a particular hardware and software
platform, that runs Java technology applications. An API is a collection of software components
that you can use to create other software components or applications. Each Java platform
provides a virtual machine and an API, and this allows applications written for that platform to
run on any compatible system with all the advantages of the Java programming language:
platform-independence, power, stability, ease-of-development, and security.

2C H A P T E R 2

11



Java SE
When most people think of the Java programming language, they think of the Java SE API. Java
SE's API provides the core functionality of the Java programming language. It defines
everything from the basic types and objects of the Java programming language to high-level
classes that are used for networking, security, database access, graphical user interface (GUI)
development, and XML parsing.

In addition to the core API, the Java SE platform consists of a virtual machine, development
tools, deployment technologies, and other class libraries and toolkits commonly used in Java
technology applications.

Java EE
The Java EE platform is built on top of the Java SE platform. The Java EE platform provides an
API and runtime environment for developing and running large-scale, multi-tiered, scalable,
reliable, and secure network applications.

Java ME
The Java ME platform provides an API and a small-footprint virtual machine for running Java
programming language applications on small devices, like mobile phones. The API is a subset of
the Java SE API, along with special class libraries useful for small device application
development. Java ME applications are often clients of Java EE platform services.

JavaFX
JavaFX is a platform for creating rich internet applications using a lightweight user-interface
API. JavaFX applications use hardware-accelerated graphics and media engines to take
advantage of higher-performance clients and a modern look-and-feel as well as high-level APIs
for connecting to networked data sources. JavaFX applications may be clients of Java EE
platform services.

Overview of Enterprise Applications
This section describes enterprise applications and how they are designed and developed.

As stated above, the Java EE platform is designed to help developers create large-scale,
multi-tiered, scalable, reliable, and secure network applications. A shorthand name for such
applications is “enterprise applications,” so called because these applications are designed to
solve the problems encountered by large enterprises. Enterprise applications are not only useful
for large corporations, agencies, and governments, however. The benefits of an enterprise
application are helpful, even essential, for individual developers and small organizations in an
increasingly networked world.

Overview of Enterprise Applications

Your First Cup: An Introduction to the Java EE Platform • April 201212



The features that make enterprise applications powerful, like security and reliability, often make
these applications complex. The Java EE platform is designed to reduce the complexity of
enterprise application development by providing a development model, API, and runtime
environment that allows developers to concentrate on functionality.

Tiered Applications
In a multi-tiered application, the functionality of the application is separated into isolated
functional areas, called tiers. Typically, multi-tiered applications have a client tier, a middle tier,
and a data tier (often called the enterprise information systems tier). The client tier consists of a
client program that makes requests to the middle tier. The middle tier's business functions
handle client requests and process application data, storing it in a permanent datastore in the
data tier.

Java EE application development concentrates on the middle tier to make enterprise application
management easier, more robust, and more secure.

The Client Tier
The client tier consists of application clients that access a Java EE server and that are usually
located on a different machine from the server. The clients make requests to the server. The
server processes the requests and returns a response back to the client. Many different types of
applications can be Java EE clients, and they are not always, or even often Java applications.
Clients can be a web browser, a standalone application, or other servers, and they run on a
different machine from the Java EE server.

The Web Tier
The web tier consists of components that handle the interaction between clients and the
business tier. Its primary tasks are the following:

■ Dynamically generate content in various formats for the client.
■ Collect input from users of the client interface and return appropriate results from the

components in the business tier.
■ Control the flow of screens or pages on the client.
■ Maintain the state of data for a user's session.
■ Perform some basic logic and hold some data temporarily in JavaBeans components.

Java EE Technologies Used in the Web Tier

The following Java EE technologies are used in the web tier in Java EE applications.

Overview of Enterprise Applications

Chapter 2 • Understanding Java Platform, Enterprise Edition 13



TABLE 2–1 Web-Tier Java EE Technologies

Technology Purpose

Servlets Java programming language classes that dynamically
process requests and construct responses, usually for
HTML pages

JavaServer Faces technology A user-interface component framework for web
applications that allows you to include UI
components (such as fields and buttons) on a page,
convert and validate UI component data, save UI
component data to server-side data stores, and
maintain component state.

JavaServer Faces Facelets technology Facelets applications are a type of JavaServer Faces
applications that use XHTML pages rather than JSP
pages.

Expression Language A set of standard tags used in JSP and Facelets pages to
refer to Java EE components.

JavaServer Pages (JSP) Text-based documents that are compiled into servlets
and define how dynamic content can be added to
static pages, such as HTML pages.

JavaServer Pages Standard Tag Library A tag library that encapsulates core functionality
common to JSP pages

JavaBeans Components Objects that act as temporary data stores for the pages
of an application

The Business Tier
The business tier consists of components that provide the business logic for an application.
Business logic is code that provides functionality to a particular business domain, like the
financial industry, or an e-commerce site. In a properly designed enterprise application, the
core functionality exists in the business tier components.

Java EE Technologies Used in the Business Tier

The following Java EE technologies are used in the business tier in Java EE applications:

TABLE 2–2 Business Tier Java EE Technologies

Technology Description

Enterprise JavaBeans (enterprise bean) components Enterprise beans are managed components that
encapsulate the core functionality of an application.

Overview of Enterprise Applications

Your First Cup: An Introduction to the Java EE Platform • April 201214



TABLE 2–2 Business Tier Java EE Technologies (Continued)
Technology Description

JAX-RS RESTful web services An API for creating web services that respond to
HTTP methods (for example GET or POST methods).
JAX-RS web services are developed according to the
principles of REST, or representational state transfer.

JAX-WS web service endpoints An API for creating and consuming SOAP web
services.

Java Persistence API entities An API for accessing data in underlying data stores
and mapping that data to Java programming language
objects.

Java EE managed beans Managed components that may provide the business
logic of an application, but do not require the
transactional or security features of enterprise beans.

The Enterprise Information Systems Tier
The enterprise information systems (EIS) tier consists of database servers, enterprise resource
planning systems, and other legacy data sources, like mainframes. These resources typically are
located on a separate machine than the Java EE server, and are accessed by components on the
business tier.

Java EE Technologies Used in the EIS Tier

The following Java EE technologies are used to access the EIS tier in Java EE applications:

TABLE 2–3 EIS Tier Java EE Technologies

Technology Description

The Java Database Connectivity API (JDBC) A low-level API for accessing and retrieving data from
underlying data stores. A common use of JDBC is to
make SQL queries on a particular database.

The Java Persistence API An API for accessing data in underlying data stores
and mapping that data to Java programming language
objects. The Java Persistence API is a much
higher-level API than JDBC, and hides the complexity
of JDBC from the user.

The Java EE Connector Architecture An API for connecting to other enterprise resources,
like enterprise resource planning or customer
management system software.

The Java Transaction API (JTA) An API for defining and managing transactions,
including distributed transactions or transactions that
cross multiple underlying data sources.

Overview of Enterprise Applications

Chapter 2 • Understanding Java Platform, Enterprise Edition 15



Java EE Servers
A Java EE server is a server application that the implements the Java EE platform APIs and
provides the standard Java EE services. Java EE servers are sometimes called application servers,
because they allow you to serve application data to clients, much like web servers serve web
pages to web browsers.

Java EE servers host several application component types that correspond to the tiers in a
multi-tiered application. The Java EE server provides services to these components in the form
of a container.

Java EE Containers
Java EE containers are the interface between the component and the lower-level functionality
provided by the platform to support that component. The functionality of the container is
defined by the platform, and is different for each component type. Nonetheless, the server
allows the different component types to work together to provide functionality in an enterprise
application.

The Web Container
The web container is the interface between web components and the web server. A web
component can be a servlet, a JavaServer Faces Facelets page, or a JSP page. The container
manages the component's lifecycle, dispatches requests to application components, and
provides interfaces to context data, such as information about the current request.

The Application Client Container
The application client container is the interface between Java EE application clients, which are
special Java SE applications that use Java EE server components, and the Java EE server. The
application client container runs on the client machine, and is the gateway between the client
application and the Java EE server components that the client uses.

The EJB Container
The EJB container is the interface between enterprise beans, which provide the business logic in
a Java EE application, and the Java EE server. The EJB container runs on the Java EE server and
manages the execution of an application's enterprise beans.

Java EE Servers

Your First Cup: An Introduction to the Java EE Platform • April 201216



Creating Your First Java EE Application

This chapter gives an overview of the example applications and step-by-step instructions on
coding and running the dukes-age web service example application.

Architecture of the Example Applications
The example applications consist of four main components: DukesAgeResource, a JAX-RS
RESTful web service; DukesBirthdayBean, an enterprise bean; FirstcupUser, a Java
Persistence API entity; and firstcup, a web application created with JavaServer Faces Facelets
technology.

DukesAgeResource is a JAX-RS resource that calculates the age of Duke, the Java mascot. Duke
was born May 23, 1995, when the first demo of Java technology was publicly released.

FIGURE 3–1 Architecture of the First Cup Example Applications

  Java EE Server 

dukes-age

Java DB

JAX-RS 
Resource

firstcup

Enterprise Beans

Java Persistence API

JavaServer Faces 
Application

3C H A P T E R 3

17



DukesBirthdayBean is a local, no-interface view stateless session bean that calculates the
difference between the user's age and Duke's age, and stores the user-submitted data in a Java
Persistence API entity.

FirstcupUser is a Java Persistence API entity that represents a particular user's birthday. It is
stored in a Java DB database table, and managed by DukesBirthdayBean's business methods.

The firstcup web application is a JavaServer Faces Facelets application that accesses
DukesAgeResource to display Duke's age, reads in a date provided by the user, accesses
DukesBirthdayBean to calculate who is older, and then displays the difference in years between
the user and Duke and the average age difference of all users.

The firstcup web application consists of the following:
■ greeting.xhtml: An XHTML page that uses the JavaServer Faces Facelets tag libraries.

Users can type their birth date in a field and submit it for comparison against Duke's birth
date.

■ response.xhtml: A Facelets-enabled XHTML page that tells the user whether he or she is
older or younger than Duke, based on the date the user entered in the greeting.xhtml
page, and displays the average age difference of all users.

■ DukesBDay.java: A JavaServer Faces managed bean that defines properties to hold the user's
birth date, get Duke's current age from the DukesAgeResource web service, and get the age
difference between the user and Duke from the enterprise bean.

■ web.xml: The web application's deployment descriptor, which is used to configure certain
aspects of a web application when it is installed. In this case, it is used to provide a mapping
to the application's FacesServlet instance, which accepts incoming requests, passes them
to the life cycle for processing, and initializes resources. It also specifies greeting.xhtml as
the welcome file for the application.

■ WebMessages.properties and WebMessages_es.properties: Java programming language
properties files that contain the localized strings used in greeting.xhtml and
response.xhtml. By default, the English language strings in WebMessages.properties are
used, but Spanish language strings are also provided in WebMessages_es.properties.

■ DukesBirthdayBean.java: as described above, the enterprise bean packaged within the
firstcup application. DukesBirthdayBean calculates the difference between the user's
birthday and Duke's birthday.

Tiers in the Example Applications
The example applications have one web tier component (the firstcup web client), three
business tier components (the DukesAgeResource web service, the FirstcupUser entity, and
the DukesBirthdayBean enterprise bean), and one enterprise information system (EIS) tier (the
data in the Java DB database table). The user's web browser is the client tier component, as it
accesses the rest of the application through the web tier.

Architecture of the Example Applications

Your First Cup: An Introduction to the Java EE Platform • April 201218



Java EE Technologies Used in the Example
Applications
The DukesAgeResource web service is a JAX-RS resource. The DukesBirthdayBean enterprise
bean is a stateless session bean. The FirstcupUser entity is a Java Persistence API entity. The
firstcup web client is a JavaServer Faces application that runs in the web container of the Java
EE server.

Coding the DukesAgeResource Example Application
This section describes how to code the DukesAgeResource example application, a JAX-RS
RESTful web service endpoint.

Getting Started
Before you start coding the example, you need to perform some configuration tasks:

1. Register the server with your NetBeans IDE as described in “Configuring Your
Environment” on page 8.

2. Create a directory for the example you will build.

▼ Create a Directory for the Example

Create another directory at the same level as the tut-install/exampledirectory, where tut-install
is the location of the firstcup tutorial installation, and call it myexample.
You'll create the applications described in this tutorial in this directory.

Creating the Web Service
The DukesAgeResource endpoint is a simple RESTful web service. REST stands for
representational state transfer, and software architectures that conform to the principles of
REST are referred to as RESTful. RESTful web services are web-based applications that use the
HTTP protocol to access, modify, or delete information contained within a resource. A RESTful
web service resource is a source of specific information identifiable by a uniform resource
identifier (URI), for example http://example.com/someResource, and may be manipulated by
calling the HTTP protocol's methods, for example GET or POST.

RESTful web services are often contrasted to SOAP web services (for example, web services
created with the JAX-WS API that is part of Java EE 6). Compared to SOAP web services,
RESTful web services are simpler, as they use HTTP directly rather than as a transport
mechanism for an underlying XML document format, and typically offer better performance.

●

Coding the DukesAgeResource Example Application

Chapter 3 • Creating Your First Java EE Application 19



Web services are designed to be independent of their clients. Typically RESTful web services are
publicly available to a wide variety of clients, and the clients are located throughout the Internet.
This is called “loose coupling,” as the clients and servers are connected only by the standard
HTTP-based requests and responses, and do not need to know each other's implementation
details. For this reason, DukesAge will be developed in its own application module, and
deployed separately from the DukesBirthdayBean enterprise bean and firstcup web client.
DukesAge could be deployed on a completely different machine without affecting the
functionality of the firstcup web client.

JAX-RS Resources
DukesAgeResource is a JAX-RS resource class that responds to HTTP GET requests and returns
a String representing the age of Duke at the time of the request.

To create DukesAgeResource, use the wizard provided by the JAX-RS plug-in for NetBeans IDE
to generate the resource class. This class is annotated with the javax.ws.rs.Path annotation,
which specifies the URL suffix to which the resource will respond. DukesAgeResource has a
single method, getText, annotated with the javax.ws.rs.GET and javax.ws.rs.Produces

annotations. @GET marks the method as a responder to HTTP GET requests, and @Produces

specifies the MIME-type of the response sent back from getText to clients. In this case, the
MIME-type is text/plain.

Creating the Endpoint
In NetBeans IDE, create a web project with a source file called DukesAgeResource.java in the
firstcup.webservice package using the RESTful Web Service wizard.

▼ Create the Project in NetBeans

From the File menu, choose New Project.

In the Categories pane, select Java Web.

In the Projects pane, select Web Application.

Click Next.

In the Project Name field, type dukes-age.

In the Project Location field, browse to tut-install/myexample, where tut-install is the location of
the firstcup tutorial installation.

Click Next.

Select your GlassFish Server instance from the Server menu.

1

2

3

4

5

6

7

8

Coding the DukesAgeResource Example Application

Your First Cup: An Introduction to the Java EE Platform • April 201220



Select Java EE 6 Web from the Java EE Version menu.

In the Context Path field, type /DukesAgeService.

Click Finish.
You should now see the module you created in the Projects tab.

From the Projects tab, right-click the index.jspfile and select Delete. Click Yes in the dialog.

▼ Create the DukesAgeResource Class

Select the dukes-ageproject in the Projects tab.

From the File menu, choose New File.

In the Categories pane, select Web Services.

In the File Types pane, select RESTful Web Services From Patterns.

Click Next.

Under Select Pattern, select Simple Root Resource and click Next.

In the Resource Package field, type firstcup.webservice.

In the Path field, type dukesAge.

In the Class Name field, type DukesAgeResource.

From the MIME Type menu, select text/plain.

Click Finish.

In the REST Resources Configuration dialog, uncheck Add Jersey Library and click OK.
You should now see the DukesAgeResource.java file inside the firstcup.webservice package
in the Projects tab. The DukesAgeResource.java file should also be open in the editor pane.

▼ Configure the dukes-age Web Application
Set the default URL that is brought up in a web browser when you run dukes-age.

Right-click the dukes-ageproject in the Projects tab and select Properties.

In the Categories pane, click Run.

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

Coding the DukesAgeResource Example Application

Chapter 3 • Creating Your First Java EE Application 21



Set Relative URL to /resources/dukesAge.

Click OK.

▼ Remove the putText Method
The DukesAgeResource JAX-RS resource doesn't respond to HTTP PUT requests. Delete the
generated putText method in DukesAgeResource.

Highlight the following generated Javadoc and method definition and delete it.
/**

* PUT method for updating or creating an instance of DukesAgeResource

* @param content representation for the resource

* @return an HTTP response with content of the updated or created resource.

*/

@PUT

@Consumes("text/plain")
public void putText(String content) {

}

▼ Implement the getText Method
Add code to DukesAgeResource.getText that calculates Duke's age at the time of the request.
To do this, use the java.util.Calendar and java.util.GregorianCalendar classes to create
an object representing the date May 23, 1995, Duke's birthday. Then create another Calendar
object representing today's date, and subtract today's year from Duke's birth year. If today's date
falls before May 23, subtract a year from this result. Then return the result as a String
representation.

Highlight the current code in getText and replace it with the following code:
// Create a new Calendar for Duke’s birthday

Calendar dukesBirthday = new GregorianCalendar(1995, Calendar.MAY, 23);

// Create a new Calendar for today

Calendar now = GregorianCalendar.getInstance();

// Subtract today’s year from Duke’s birth year, 1995

int dukesAge = now.get(Calendar.YEAR) - dukesBirthday.get(Calendar.YEAR);

dukesBirthday.add(Calendar.YEAR, dukesAge);

// If today’s date is before May 23, subtract a year from Duke’s age

if (now.before(dukesBirthday)) {

dukesAge--;

}

// Return a String representation of Duke’s age

return "" + dukesAge;

Right-click in the editor window and select Format.

Right-click in the Editor and select Fix Imports.

From the File menu, choose Save to save the file.

3

4

●

1

2

3

4

Coding the DukesAgeResource Example Application

Your First Cup: An Introduction to the Java EE Platform • April 201222



Building and Deploying the Web Service
Build the JAX-RS web application and deploy it to your GlassFish Server instance.

▼ Build and Deploy the Web Service Endpoint
Compile, package, and deploy dukes-age.war to GlassFish Server. This task gives instructions
on deploying dukes-age.war in NetBeans IDE.

Right-click dukes-age in the Projects tab and select Run.
After dukes-age.war deploys successfully to GlassFish Server a web browser will load the URL
of the DukesAgeResource path, and you'll see the returned String representing Duke's age.

Output of DukesAgeResource

Here's an example of the output of DukesAgeResource displayed in a web browser.

16

At this point, you've successfully created, deployed, and run your first Java EE application. Now
you will create a web application that uses this web service data.

●

Example 3–1

Coding the DukesAgeResource Example Application

Chapter 3 • Creating Your First Java EE Application 23



24



Creating Your Second Web Application

This chapter gives step-by-step instructions on coding and running the firstcup web
application, which uses the dukes-age web service described in Chapter 3, “Creating Your First
Java EE Application.” The firstcup web application is a more complicated application, and
uses several different Java EE APIs.

The firstcup example application retrieves, or “consumes,” the data from the dukes-age web
service. A JavaServer Faces web front-end asks users to enter their birthdays to find out who is
older, the user or Duke. This data is stored in a Java DB database table using the Java Persistence
API. The business logic, which provides the core functionality of the application, is handled by
an enterprise bean.

All the tiers described in “Tiered Applications” on page 13 are present in the firstcup web
application. The web or client tier is the JavaServer Faces front-end. The enterprise information
systems, or EIS, tier is the Java DB database. The business tier is the enterprise bean.

Creating the firstcup Project
The firstcup web application project consists of the Java Persistence API entity, the enterprise
bean, and the JavaServer Faces web front-end.

▼ Create the Web Application Project
Follow these steps to create a new web application project in NetBeans IDE.

From the File menu, choose New Project.

In the Categories pane, select Java Web.

In the Projects pane, select Web Application.

4C H A P T E R 4

1

2

3

25



Click Next.

In the Project Name field, type firstcup.

In the Project Location field, browse to tut-install/myexample, where tut-install is the location of
the firstcup tutorial installation.

Click Next.

Select your GlassFish Server instance from the Server menu.

Make sure Java EE 6 Web is selected in the Java EE Version menu.

Check the Enable Contexts and Dependency Injection box.

In the Context Path field, makes sure it is set to /firstcup.

Click Next.

Under Frameworks, select JavaServer Faces.

Click Finish.

From the Projects tab, right-click the index.xhtml file and select Delete. Click Yes in the dialog.

Creating the Java Persistence API Entity
The Java Persistence API allows you to create and use Java programming language classes that
represent data in a database table. A Java Persistence API entity is a lightweight, persistent Java
programming language object that represents data in a data store. Entities can be created,
modified, and removed from the data store by calling the operations of the Java Persistence API
entity manager. Entities, or the data encapsulated by the persistent fields or properties of a
entity, can be queried using the Java Persistence Query Language (JPQL), a language similar to
SQL that operates on entities.

In firstcup, there is a single entity that defines one query.

▼ Create the FirstcupUser Entity Class
The FirstcupUser Java Persistence API entity represents a particular firstcup user, and stores
the user's birthday and the difference in age between the user and Duke. FirstcupUser also
defines a Java Persistence API query used to calculate the average age difference of all users.

4

5

6

7

8

9

10

11

12

13

14

15

Creating the Java Persistence API Entity

Your First Cup: An Introduction to the Java EE Platform • April 201226



Select the firstcupproject in the Projects tab.

From the File menu, choose New File.

In the Categories pane, select Persistence.

In the File Types pane, select Entity Class.

Click Next.

In the Class Name field, type FirstcupUser.

In the Package field, type firstcup.entity.

Click Next.

Select jdbc/__default from the Data Source menu.

For Table Generation Strategy, select Drop and Create.

Click Finish.
You should now see the FirstcupUser.java file inside the firstcup.entity package in the
Projects tab. The FirstcupUser.java file should also be open in the editor pane.

▼ Add Properties to the FirstcupUser Entity
Create the FirstcupUser entity's two properties: birthday, of type java.util.Calendar; and
ageDifference, of type int.

The birthday property must be annotated with the javax.persistence.Temporal annotation
to mark the property as a date field in the underlying database table. All persistent fields or
properties of type java.util.Calendar or java.util.Date must be annotated with
@Temporal.

In FirstcupUser.java below the idfield definition, copy and paste in the following field
definitions for birthday and ageDifference:

@Temporal(javax.persistence.TemporalType.DATE)

protected Calendar birthday;

protected int ageDifference;

Below the getter and setter methods for the idproperty, copy and paste in the following getter
and setter methods for the birthday and ageDifferenceproperties:

public Calendar getBirthday() {

return birthday;

1

2

3

4

5

6

7

8

9

10

11

1

2

Creating the Java Persistence API Entity

Chapter 4 • Creating Your Second Web Application 27



}

public void setBirthday(Calendar birthday) {

this.birthday = birthday;

}

public int getAgeDifference() {

return ageDifference;

}

public void setAgeDifference(int ageDifference) {

this.ageDifference = ageDifference;

}

Right-click in the editor window and select Format.

Right-click in the editor window and select Fix Imports.

▼ Add Constructors to the FirstcupUser Entity
Create two constructors for FirstcupUser: one that takes no arguments, and another that takes
two arguments.

Below the field definitions in the FirstcupUser class, add the following constructors:.
public FirstcupUser() {

}

public FirstcupUser(Date date, int ageDifference) {

Calendar cal = new GregorianCalendar();

cal.setTime(date);

this.setBirthday(cal);

this.setAgeDifference(ageDifference);

}

Right-click in the editor window and select Format.

Right-click in the editor window and select Fix Imports, then click OK.

▼ Add a Named Query to the FirstcupUser Entity
Add a JPQL named query to the FirstcupUser entity that returns the average age difference of
all firstcup users.

This query uses the AVG aggregate function to return the average of all the values of the
ageDifference property of the FirstcupUser entities.

Directly before the class definition, copy and paste in the following code:
@NamedQuery(name="findAverageAgeDifferenceOfAllFirstcupUsers",
query="SELECT AVG(u.ageDifference) FROM FirstcupUser u")

3

4

1

2

3

1

Creating the Java Persistence API Entity

Your First Cup: An Introduction to the Java EE Platform • April 201228



The @NamedQuery annotation appears just before the class definition of the entity, and has two
required attributes: name, with the unique name for this query; and query, the JPQL query
definition.

Right-click in the editor window and select Format.

Right-click in the editor window and select Fix Imports.

From the File menu, choose Save.

Creating the Enterprise Bean
DukesBirthdayBean is a stateless session bean. Stateless session beans are enterprise beans that
do not maintain a conversational state with a client. With stateless session beans, the client
makes isolated requests that do not depend on any previous state or requests. If an application
requires conversational state, use stateful session beans.

To create DukesBirthdayBean, create one Java class: DukesBirthdayBean, the enterprise bean
class. DukesBirthdayBean is a local enterprise bean that uses a no-interface view, meaning two
things. First, a local enterprise bean is only visible within the application in which it is deployed.
Second, enterprise beans with a no-interface view do not need a separate business interface that
the enterprise bean class implements. The enterprise bean class is the only coding artifact
needed to create a local, no-interface enterprise bean.

DukesBirthdayBean will be packaged within the same WAR file as the Facelets web front-end.

▼ Create the DukesBirthdayBean Enterprise Bean Class
Follow these steps to create the enterprise bean class in NetBeans IDE.

Select the firstcupproject in the Projects tab.

From the File menu, choose New File.

In the Categories pane, select Enterprise JavaBeans.

In the File Types pane, select Session Bean.

Click Next.

In the EJB Name field, type DukesBirthdayBean.

In the Package field, type firstcup.ejb.

2

3

4

1

2

3

4

5

6

7

Creating the Enterprise Bean

Chapter 4 • Creating Your Second Web Application 29



Make sure Stateless is selected under Session Type.

Click Finish.
You should now see the DukesBirthdayBean.java file inside the firstcup.ejb package in the
Projects tab. The DukesBirthdayBean.java file should also be open in the editor pane.

▼ Add a Logger Instance to DukesBirthdayBean.java
Add a java.util.logging.Logger instance to the session bean for logging events.

Directly after the class declaration, paste in the following field definition:
private static final Logger logger =

Logger.getLogger("firstcup.ejb.DukesBirthdayBean");

This code creates a logger for the session bean.

Right-click in the editor window and select Format.

Right-click in the editor window and select Fix Imports, then click OK.

▼ Add a Business Method to DukesBirthdayBean that
Gets the Average Age Difference of firstcup Users
Add a business method to the DukesBirthdayBean session bean to call the
findAverageAgeDifferenceOfAllFirstcupUsers named query in FirstcupUser that returns
the average age difference of all users.

Below the class definition, add a @PersistenceContext annotation and field of type
EntityManager:
@PersistenceContext

private EntityManager em;

Right-click in the editor window and select Fix Imports.

Add a business method called getAverageAgeDifference by copying and pasting the following
code:

public Double getAverageAgeDifference() {

Double avgAgeDiff =

(Double) em.createNamedQuery("findAverageAgeDifferenceOfAllFirstcupUsers")
.getSingleResult();

logger.info("Average age difference is: " + avgAgeDiff);

return avgAgeDiff;

}

8

9

1

2

3

1

2

3

Creating the Enterprise Bean

Your First Cup: An Introduction to the Java EE Platform • April 201230



The named query in FirstcupUser is called by using the EntityManager's createNamedQuery
method. Because this query returns a single number, the getSingleResult method is called on
the returned Query object. The query returns a Double.

Right-click in the editor window and select Format.

▼ Add a Business Method for Calculating the Age
Difference Between Duke and the User
Add a business method that calculates the difference in age in years between Duke and the user
and creates a new FirstcupUser entity.

Add a business method called getAgeDifference by copying and pasting the following code:
public int getAgeDifference(Date date) {

int ageDifference;

Calendar theirBirthday = new GregorianCalendar();

Calendar dukesBirthday = new GregorianCalendar(1995, Calendar.MAY, 23);

// Set the Calendar object to the passed in Date

theirBirthday.setTime(date);

// Subtract the user’s age from Duke’s age

ageDifference = dukesBirthday.get(Calendar.YEAR)

- theirBirthday.get(Calendar.YEAR);

logger.info("Raw ageDifference is: " + ageDifference);

// Check to see if Duke’s birthday occurs before the user’s. If so,

// subtract one from the age difference

if (dukesBirthday.before(theirBirthday) && (ageDifference > 0)) {

ageDifference--;

}

// create and store the user’s birthday in the database

FirstcupUser user = new FirstcupUser(date, ageDifference);

em.persist(user);

logger.info("Final ageDifference is: " + ageDifference);

return ageDifference;

}

This method creates the Calendar objects used to calculate the difference in age between the
user and Duke and performs the actual calculation of the difference in age.

Similar to the DukesAgeResource.getText code, getAgeDifference subtracts Duke's birthday
year from the user's birthday year to get a raw age difference. If Duke's birthday falls before the
user's, and the raw difference is more than 0, it subtracts one year from the age difference.

A new FirstcupUser entity is created with the user's birthday and age difference, then stored in
the Java DB database by calling the EntityManager's persist method.

The final age difference is returned as an int.

4

1

Creating the Enterprise Bean

Chapter 4 • Creating Your Second Web Application 31



Right-click in the editor window and select Format.

Right-click in the editor window and select Fix Imports, then OK.

From the File menu, choose Save.

Creating the Web Client
To create the web client, you need to perform the following tasks:

■ Create a resource bundle to hold localized messages used by the Facelets pages.
■ Configure the resource bundle in the configuration file.
■ Create the DukesBDay managed bean class.
■ Create the Facelets pages.

Creating a Resource Bundle
In this section, you'll create the resource bundle that contains the static text and error messages
used by the Facelets pages. The firstcup client supports both English and Spanish locales.
Therefore you need to create two properties files, each of which will contain the messages for
one of the locales.

▼ Create a Resource Bundle

Right-click the firstcupproject in the Projects tab.

From the popup menu, choose New, then choose Other.

In the Categories pane, select Other.

In the File Types pane, select Properties File, then click Next.

In the File Name field, type WebMessages.

In the Folder field, type src/java/firstcup/web as the location of the file.

Click Finish.

After NetBeans IDE creates the properties file, type the following messages or copy them from
here to the file:
Welcome=Hi. My name is Duke. Let us find out who is older -- you or I.

DukeIs=Duke is

YearsOldToday=years old today.

2

3

4

1

2

3

4

5

6

7

8

Creating the Web Client

Your First Cup: An Introduction to the Java EE Platform • April 201232



Instructions=Type your birthday and click submit.

YourBD=Your birthday

Pattern=MM/dd/yyyy

YouAre=You are

Year=year

Years=years

Older=older than Duke!

Younger=younger than Duke!

SameAge= the same age as Duke!

Submit=Submit

Back=Back

AverageAge=The average age difference of all First Cup users is

These messages will be referenced from the XHTML pages.

From the File menu, choose Save.

To add the Spanish translations of the messages, copy the properties file
WebMessages_es.properties from
tut-install/firstcup/example/firstcup/src/java/com/sun/firstcup/web to
tut-install/firstcup/myexample/firstcup/src/java/firstcup/web.
You can create multiple properties files, each with a set of messages for a different locale. By
storing localized static text and messages in resource bundles, you don't need to create a
separate set of XHTML pages for each locale.

Configuring the Resource Bundle in the Configuration
File
To make the resource bundle available to the application, you need to configure it in the
configuration file, by performing the following task.

▼ Create a Configuration File
The faces-config.xml deployment descriptor contains configuration settings for the
JavaServer Faces application. JSF applications don't require a deployment descriptor unless they
use features that can only be configured in faces-config.xml. In firstcup, the deployment
descriptor has settings defining the resource bundle that provides localized strings in English
and Spanish.

Select the firstcupproject in the Projects tab.

From the File menu, choose New File.

In the Categories pane, select JavaServer Faces.

In the File Types pane, select JSF Faces Configuration.

9

10

1

2

3

4

Creating the Web Client

Chapter 4 • Creating Your Second Web Application 33



Click Next, then click Finish.

▼ Configure the Resource Bundle
The firstcup application is localized for the English and Spanish languages. JavaServer Faces
applications can automatically select the proper language based on the locale of the user's web
browser. Specify the default and supported locales in the faces-config.xml file.

With the newly created faces-config.xml file open, click XML.

Place the cursor between the opening and closing faces-config tags.

Add the following <application> tag to configure the resource bundle:
<application>

<resource-bundle>

<base-name>firstcup.web.WebMessages</base-name>

<var>bundle</var>

</resource-bundle>

<locale-config>

<default-locale>en</default-locale>

<supported-locale>es</supported-locale>

</locale-config>

</application>

The base-name element of the resource-bundle element identifies the fully qualified class
name of the resource bundle. The var element identifies the name by which the XHTML pages
will reference the resource bundle. The locale-config element identifies the locales supported
by the resource bundle.

Right-click in the editor window and select Format.

From the File menu, choose Save.

Creating the DukesBDay Managed Bean Class
The DukesBDay JavaBeans component is a backing bean. A backing bean is a JavaServer Faces
managed bean that acts as a temporary data storage for the values of the components included
on a particular JavaServer Faces page. A managed bean is a JavaBeans component that a
JavaServer Faces application instantiates and stores in scope. The section following this one
describes more about managed beans and how to configure them.

This section describes how to create the DukesBDay class. To create the class you need to do the
following:
■ Create the managed bean class.
■ Add a property that stores Duke's current age from the JAX-RS web service.
■ Add a property that stores the user's current birth date.

5

1

2

3

4

5

Creating the Web Client

Your First Cup: An Introduction to the Java EE Platform • April 201234



■ Add a property that stores the age difference from the DukesBirthdayBean enterprise bean.
■ Add a property that stores the absolute value of the age difference.
■ Add a property that stores the average age difference of all users.
■ Add a method that calls DukesBirthdaybean.getAgeDifference, sets the absolute age

difference, and forwards the user to the display page.

▼ Create the Managed Bean Class
Create a JavaServer Faces managed bean class that will subsequently be modified.

Right-click the firstcup.webpackage in the Projects tab.

From the popup menu, choose New, then choose Other.

In the Categories pane, select JavaServer Faces.

In the File Types pane, select JSF Managed Bean, then click Next.

In the Class Name field, type DukesBDay.

In the Package field, select firstcup.web.

Select session from the Scope menu.

Click Finish.

You should now see the DukesBDay.java file inside the firstcup.web package in the Projects
tab. The DukesBDay.java file should also be open in the editor pane.

In the editor pane, find the @Named annotation and modify the value attribute, with the value
DukesBDay. The resulting code should look like this:
@Named(value = "DukesBDay")

▼ Add an Enterprise Bean Reference
Add a javax.ejb.EJB annotation to inject a reference to the DukesBirthdayBean enterprise
bean. This session bean will be called from the methods in DukesBDay.

Right-click in the editor window inside the class and select Insert Code, then select Call
Enterprise Bean.

1

2

3

4

5

6

7

8

9

1

Creating the Web Client

Chapter 4 • Creating Your Second Web Application 35



In the Call Enterprise Bean dialog, expand the firstcup application, select
DukesBirthdayBean, and click OK.
The following field will be added:
@EJB

private DukesBirthdayBean dukesBirthdayBean;

▼ Add Properties to the Bean
During this task, you will add the following properties to the DukesBDay bean:
■ age for getting Duke's age from the web service
■ yourBD to hold the user's birth date
■ ageDiff to get the age difference from the enterprise bean
■ absAgeDiff to hold the absolute value of the age difference
■ averageAgeDifference to hold the average age difference of all users

The getter method for the age property uses the java.net and java.io classes to create an
HTTP connection to the Duke's Age web service and stores the result.

The yourBD property is annotated @NotNull to indicate that this property must be set. The
@NotNull annotation is one of the Bean Validation constraints.

In the DukesBDay class, copy and paste the following field definitions:
protected int age;

@NotNull protected Date yourBD;

protected int ageDiff;

protected int absAgeDiff;

protected Double averageAgeDifference;

private static final Logger logger = Logger.getLogger("firstcup.web.DukesBDay");

Add a default constructor that sets the initial values of the fields by copying and pasting the
following code:

public DukesBDay() {

age = -1;

yourBD = null;

ageDiff = -1;

absAgeDiff = -1;

averageAgeDifference = -1.0;

}

Add the following getter and setter methods for the new fields by copying and pasting the
following code:

public int getAge() {

// Use the java.net.* APIs to access the Duke’s Age RESTful web service

HttpURLConnection connection = null;

BufferedReader rd = null;

StringBuilder sb = null;

String line = null;

URL serverAddress = null;

2

1

2

3

Creating the Web Client

Your First Cup: An Introduction to the Java EE Platform • April 201236



try {

serverAddress = new URL(

"http://localhost:8080/DukesAgeService/resources/dukesAge");
connection = (HttpURLConnection) serverAddress.openConnection();

connection.setRequestMethod("GET");
connection.setDoOutput(true);

connection.setReadTimeout(10000);

// Make the connection to Duke’s Age

connection.connect();

// Read in the response

rd = new BufferedReader(

new InputStreamReader(connection.getInputStream()));

sb = new StringBuilder();

while ((line = rd.readLine()) != null) {

sb.append(line);

}

// Convert the response to an int

age = Integer.parseInt(sb.toString());

} catch (MalformedURLException e) {

logger.warning("A MalformedURLException occurred.");
e.printStackTrace();

} catch (ProtocolException e) {

logger.warning("A ProtocolException occurred.");
e.printStackTrace();

} catch (IOException e) {

logger.warning("An IOException occurred");
e.printStackTrace();

}

return age;

}

public void setAge(int age) {

this.age = age;

}

public Date getYourBD() {

return yourBD;

}

public void setYourBD(Date yourBD) {

this.yourBD = yourBD;

}

public int getAgeDiff() {

return ageDiff;

}

public void setAgeDiff(int ageDiff) {

this.ageDiff = ageDiff;

}

public int getAbsAgeDiff() {

return absAgeDiff;

}

Creating the Web Client

Chapter 4 • Creating Your Second Web Application 37



public void setAbsAgeDiff(int absAgeDiff) {

this.absAgeDiff = absAgeDiff;

}

public Double getAverageAgeDifference() {

return averageAgeDifference;

}

public void setAverageAgeDifference(Double averageAgeDifference) {

this.averageAgeDifference = averageAgeDifference;

}

Right-click in the editor window and select Format.

Right-click in the editor window and select Fix Imports, and click OK.

▼ Get the Age Difference from the DukesBirthdayBean Enterprise Bean
During this task, you will create a processBirthday method to get the difference in age between
the user's age and Duke's age from the EJB, set the absAgeDiff variable to the absolute value of
the age difference, and set a result string that will forward the user to the display page.

Add a processBirthdaymethod by copying and pasting the following code just before the end
of the class:

public String processBirthday() {

this.setAgeDiff(dukesBirthdayBean.getAgeDifference(yourBD));

logger.info("age diff from dukesbday " + ageDiff);

this.setAbsAgeDiff(Math.abs(this.getAgeDiff()));

logger.info("absAgeDiff " + absAgeDiff);

this.setAverageAgeDifference(dukesBirthdayBean.getAverageAgeDifference());

logger.info("averageAgeDifference " + averageAgeDifference);

return "/response.xhtml";
}

This method calls the getAgeDifference method of DukesBirthdayBean to get the age
difference and store it in the ageDiff property, sets the absolute age difference stored in the
absAgeDiff property, and sets the average age difference stored in the averageAgeDifference
property. It returns the relative URL of the response page to which the user will be forwarded.

Right-click in the editor window and select Format.

From the File menu, choose Save.

Creating the Facelets Client
The Facelets client consists of a resource library, a composite component, and two XHTML files.

4

5

1

2

3

Creating the Web Client

Your First Cup: An Introduction to the Java EE Platform • April 201238



Resource Libraries in firstcup
A JavaServer Faces resource library is a collection of user-created components collected in a
standard location in a web application. Resource libraries are identified according to a resource
identifier, a string that represents a particular resource within a web application. Resources can
be packaged either at the root of the web application or on the web application's classpath.

A resource packaged in the web application root must be in a subdirectory of a resources
directory at the web application root.

resources/resource-identifier

A resource packaged in the web application classpath must be in a subdirectory of the
META-INF/resources directory within a web application.

META-INF/resources/resource-identifier

Resource identifiers are unique strings that conform to the following format:

[locale-prefix/][library-name/][library-version/]resource-name[/resource-version]

Elements of the resource identifier in brackets ([]) are optional. A resource name, identifying a
particular resource (a file or a graphic, for example), is required. In firstcup, a resource library
with the name components is packaged in the web application root, and this library contains
one resource, a file called inputDate.xhtml. The resource identifier for this resource is
therefore components/inputDate.xhtml, and it is located in the web application root at
resources/components/inputDate.xhtml.

The inputDate Composite Component
A composite component is a set of user-defined JavaServerFaces and Facelets components
located in a resource. In firstcup, the inputDate.xhtml resource, located in the components
resource library, is a composite component that contains tags for reading in a date the user
enters in a form. Composite components consist of an interface definition and an
implementation.

The interface definition is specified with the <cc:interface> tag to define which attributes are
exposed to pages that use the composite component. Attributes are identified with the
<cc:attribute> tag.

The inputDate.xhtml interface definition is as follows. It defines a single attribute, date, that
must be specified in pages that use the inputDate composite component.

<cc:interface>

<cc:attribute name="date" />

</cc:interface>

Creating the Web Client

Chapter 4 • Creating Your Second Web Application 39



The implementation of the composite component is specified with the <cc:implementation>
tag. The tags within the <cc:implementation> are the actual component tags that will be added
to pages that use the composite component. They can be any HTML Render Kit, JavaServer
Faces, or Facelets tags. The #{cc.attrs.attribute-name} expression is used to get the value of
the specified attribute from the page or component that is using the composite component.

The implementation of the inputDate composite component is as follows. An HTML input
text component will store the entered text into the date attribute, accessed by the
#{cc.attrs.date} expression. A JavaServer Faces convertDateTime component will convert
the entered text to a date with the form of MM/dd/yyyy (04/13/2009, for example).

<cc:implementation>

<h:inputText value="#{cc.attrs.date}">
<f:convertDateTime pattern="MM/dd/yyyy" />

</h:inputText>

</cc:implementation>

▼ Create the inputDate Composite Component
Create the inputDate composite component as a resource in the components resource library.

Select the firstcupproject in the Projects tab.

From the File menu, choose New File.

In the Categories pane, select JavaServer Faces.

In the File Types pane, select JSF Composite Component, then click Next.

In the File Name field, type inputDate.

In the Folder field, type resources/components, then click Finish.

Add the composite component interface definition between the opening and closing
<cc:interface> tags in inputDate.xhtml:

<cc:interface>

<cc:attribute name="date" />

</cc:interface>

Add the composite component implementation between the opening and closing
cc:implementation tags:

<cc:implementation>

<h:inputText value="#{cc.attrs.date}">

<f:convertDateTime pattern="MM/dd/yyyy" />

</h:inputText>

</cc:implementation>

1

2

3

4

5

6

7

8

Creating the Web Client

Your First Cup: An Introduction to the Java EE Platform • April 201240



On each of the other two lines where error glyphs appear, press Alt-Enter and select the library
declaration that appears.

Right-click in the editor window and select Format.

From the File menu, choose Save.

The Facelets Web Interface
The firstcup web application interface has two XHTML files. The greeting.xhtml file
displays Duke's current age and the form where the user can enter a birthday. The
response.xhtml file displays the age difference between the user and Duke.

The greeting.xhtml file contains several pieces of the firstcup application detailed
previously. It uses the localized strings contained in WebMessages.properties and
WebMessages_es.properties. It uses the DukesBDay managed bean to call both the
DukesAgeResource JAX-RS web service and the DukesBirthdayBean enterprise bean. It uses
the inputDate composite component to create the input for the user to enter a birthday.

Here's the content of the greeting.xhtml file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:fc="http://java.sun.com/jsf/composite/components">

<h:head>

<title>Firstcup Greeting Page</title>

</h:head>

<h:body>

<h:form>

<h2>

<h:outputText value="#{bundle.Welcome}"/>
</h2>

<h:outputText value="#{bundle.DukeIs} "/>
<h:outputText value="#{DukesBDay.age} #{bundle.YearsOldToday}"/>
<p/>

<h:outputText value="#{bundle.Instructions}"/>
<p/>

<h:outputText value="#{bundle.YourBD} "/>
<fc:inputDate id="userBirthday" date="#{DukesBDay.yourBD}" />

<h:outputText value=" #{bundle.Pattern}"/>
<p/>

<h:commandButton value="#{bundle.Submit}"
action="#{DukesBDay.processBirthday}"/>

<p/>

<h:message for="userBirthday" style="color:red"/>
</h:form>

</h:body>

</html>

9

10

11

Creating the Web Client

Chapter 4 • Creating Your Second Web Application 41



The greeting.xhtml file uses the HTML Render Kit and the components resource library tag
libraries. The components tag library has a prefix of fc, and is used to specify the inputDate
composite component in the form below. The <fc:inputDate id="userBirthday"
date="#{DukesBDay.yourBD}" /> tag has the required date attribute, and it stores the value in
the yourBD property in the DukesBDay managed bean by using the EL expression
#{DukesBDay.yourBD}.

The localized strings are referred to by using the EL expressions #{bundle.property-name}. For
example, the <h:outputText value="#{bundle.Welcome}"/> tag will display the following
string in English locales:

Hi. I’m Duke. Let’s find out who’s older -- you or I.

The <h:commandButton> tag creates a Submit button and specifies that a successful submission
should render the response.xhtml file by setting the action attribute to
#{DukesBDay.processBirthday}. The processBirthday method returns the value
"/response.xhtml". The action attribute is used to define navigation rules for forms in
Facelets pages.

If the form submission is unsuccessful, a warning message is displayed. This is done with the
<h:message for="userBirthday" style="color:red"/> tag, which is connected to the
inputDate composite component with the id userBirthday. That is, if there's an error with the
input of the inputDate component, a warning message is displayed.

The response.xhtml file displays the age difference between the user and Duke and the average
age difference of all users so far. Different strings are displayed based on whether the user is the
same age, younger, or older than Duke. The text can be displayed or not based on the conditions
specified by the rendered attribute of the <h:outputText> tag. The conditions used in the
rendered attribute are EL language alternatives to the Java programming language conditional
operators to allow XML parsing of the XHTML file.

TABLE 4–1 Conditional Operator EL Language Alternatives

Logical Condition Java Programming Language Conditional Operator EL Language Alternative

AND && &&

EQUALS == ==

LESS THAN < lt

GREATER THAN > gt

Here's the content of the response.xhtml file.

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Creating the Web Client

Your First Cup: An Introduction to the Java EE Platform • April 201242



<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Response Page</title>

</h:head>

<h:body>

<h:form>

<h:outputText value="#{bundle.YouAre} "/>
<h:outputText value="#{bundle.SameAge}"

rendered="#{DukesBDay.ageDiff == 0}"/>
<h:outputText value="#{DukesBDay.absAgeDiff}"

rendered="#{DukesBDay.ageDiff lt 0}"/>
<h:outputText value=" #{bundle.Year} "

rendered="#{DukesBDay.ageDiff == -1}"/>
<h:outputText value=" #{bundle.Years} "

rendered="#{DukesBDay.ageDiff lt -1}"/>
<h:outputText value="#{bundle.Younger}"

rendered="#{DukesBDay.ageDiff lt 0}"/>
<h:outputText value="#{DukesBDay.absAgeDiff}"

rendered="#{DukesBDay.ageDiff gt 0}"/>
<h:outputText value=" #{bundle.Year} "

rendered="#{DukesBDay.ageDiff == 1}"/>
<h:outputText value=" #{bundle.Years} "

rendered="#{DukesBDay.ageDiff gt 1}"/>
<h:outputText value="#{bundle.Older}"

rendered="#{DukesBDay.ageDiff gt 0}"/>
<p/>

<h:outputText

value="#{bundle.AverageAge} #{DukesBDay.averageAgeDifference}."/>
<p/>

<h:commandButton id="back" value="#{bundle.Back}" action="greeting"/>
</h:form>

</h:body>

</html>

For example, the #{bundle.SameAge} string is displayed if the user and Duke have the same
birthday as specified by the condition #{DukesBDay.ageDiff == 0} in the rendered attribute.
That is, display the following string if the ageDiff property of DukesBDay equals 0:

You are the same age as Duke!

The form also contains a <h:commandButton> tag that creates a back button that will direct the
user back to the greeting.xhtml page, as specified in the action attribute.

▼ Create the XHTML Files
Create the Facelets XHTML files in NetBeans IDE.

Select Web Pages under the firstcupproject in the Projects tab.

From the File menu, choose New File.

In the Categories pane, select JavaServer Faces.

1

2

3

Creating the Web Client

Chapter 4 • Creating Your Second Web Application 43



In the File Types pane, select JSF Page, then click Next.

In the File Name field, type greeting, then click Finish.

Repeat the previous steps to create a new Facelets file named response.

▼ Set the Welcome File in the web.xml Deployment Descriptor
Configure the application to use greeting.xhtml as the welcome file by modifying web.xml.

In the firstcupproject, expand the Configuration Files node, then double-click web.xml.

Click Pages.

Click Browse under Welcome Files, expand Web Pages, select greeting.xhtml, and click Select
File.

Edit the Welcome Files text field so that the field looks like this:
faces/greeting.xhtml

From the File menu, choose Save.

▼ Modify the XHTML Files
Modify greeting.xhtml to include the components tag library. Modify the titles of both files.

In the firstcupproject, double-click greeting.xhtml under Web Pages.

Replace the current <html> tag with the following, which includes the components tag library:
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html"
xmlns:fc="http://java.sun.com/jsf/composite/components">

The components resource library is referred to by the fc prefix. The HTML Render Kit tag
library is also used in greeting.xhtml.

Modify the title directly after the <html> tag.
<h:head>

<title>First Cup Greeting Page</title>

</h:head>

From the File menu, choose Save.

Double-click response.xhtml and modify the title as follows:
<h:head>

<title>Response Page</title>

</h:head>

4

5

6

1

2

3

4

5

1

2

3

4

5

Creating the Web Client

Your First Cup: An Introduction to the Java EE Platform • April 201244



From the File menu, choose Save.

▼ Add the Form to greeting.xhtml
Add the form that provides the user interface for displaying Duke's age and specifying the user's
birthday.

In the firstcupproject, in greeting.xhtml, replace the text between the <h:body> and
</h:body> tags with the following:
<h:form>

<h2>

<h:outputText value="#{bundle.Welcome}"/>
</h2>

<h:outputText value="#{bundle.DukeIs} "/>
<h:outputText value="#{DukesBDay.age} #{bundle.YearsOldToday}"/>
<p/>

<h:outputText value="#{bundle.Instructions}"/>
<p/>

<h:outputText value="#{bundle.YourBD} "/>
<fc:inputDate id="userBirthday" date="#{DukesBDay.yourBD}" />

<h:outputText value=" #{bundle.Pattern}"/>
<p/>

<h:commandButton value="#{bundle.Submit}"
action="#{DukesBDay.processBirthday}"/>

<p/>

<h:message for="userBirthday" style="color:red"/>
</h:form>

Right-click in the editor window and select Format.

From the File menu, choose Save.

▼ Add the Form to response.html
Add a form that displays the age difference between Duke and the user, displays the average age
difference of all users, and allows the user to navigate back to greeting.xhtml.

In the firstcupproject, in response.xhtml, replace the text between the <h:body> and
</h:body> tags with the following:
<h:form>

<h:outputText value="#{bundle.YouAre} "/>
<h:outputText value="#{bundle.SameAge}"

rendered="#{DukesBDay.ageDiff == 0}"/>
<h:outputText value="#{DukesBDay.absAgeDiff}"

rendered="#{DukesBDay.ageDiff lt 0}"/>
<h:outputText value=" #{bundle.Year} "

rendered="#{DukesBDay.ageDiff == -1}"/>
<h:outputText value=" #{bundle.Years} "

rendered="#{DukesBDay.ageDiff lt -1}"/>
<h:outputText value="#{bundle.Younger}"

rendered="#{DukesBDay.ageDiff lt 0}"/>
<h:outputText value="#{DukesBDay.absAgeDiff}"

6

1

2

3

1

Creating the Web Client

Chapter 4 • Creating Your Second Web Application 45



rendered="#{DukesBDay.ageDiff gt 0}"/>
<h:outputText value=" #{bundle.Year} "

rendered="#{DukesBDay.ageDiff == 1}"/>
<h:outputText value=" #{bundle.Years} "

rendered="#{DukesBDay.ageDiff gt 1}"/>
<h:outputText value="#{bundle.Older}"

rendered="#{DukesBDay.ageDiff gt 0}"/>
<p/>

<h:outputText

value="#{bundle.AverageAge} #{DukesBDay.averageAgeDifference}." />

<p/>

<h:commandButton id="back" value="#{bundle.Back}" action="greeting"/>
</h:form>

Right-click in the editor window and select Format.

From the File menu, choose Save.

Building, Packaging, Deploying, and Running the firstcup
Web Application

In this section, you will build the firstcup web application, deploy it to the server, and run the
application.

▼ Build, Package, and Deploy the firstcup Web
Application
While performing this task, you'll build and package the DukesBirthdayBean enterprise bean,
the FirstcupUser entity, and the firstcup web client into a WAR file, firstcup.war, in the
dist directory, then deploy it to the server.

Select the firstcupproject in the Projects tab.

Right-click firstcup and select Deploy.

▼ Run the firstcup Application
This section describes how to run the firstcup application.

Launch a web browser.

Type the following URL in the address field of the browser:
http://localhost:8080/firstcup/

2

3

1

2

1

2

Building, Packaging, Deploying, and Running the firstcup Web Application

Your First Cup: An Introduction to the Java EE Platform • April 201246



Type your birth date in the Your birthday text field. Make sure you use the date pattern specified
on the page: MM/dd/yyyy.

Click Submit.

After the response.xhtmlpage is displayed, click Back to return to the greeting.xhtmlpage.

Type a different birthday in the text field and click Submit again to see how the average age of
First Cup users changes.

A Successful Response Page for firstcup

You are 20 years older than Duke!

The average age difference of all First Cup users is 20.0.

3

4

5

6

Example 4–1

Building, Packaging, Deploying, and Running the firstcup Web Application

Chapter 4 • Creating Your Second Web Application 47



48



Next Steps

This chapter points the user at additional resources for learning more about enterprise
application architecture, the Java EE platform, and GlassFish Server.

The Java EE Tutorial
The Java EE Tutorial (http://docs.oracle.com/javaee/6/tutorial/doc/) documents the
technologies that make up the Java EE platform. The Java EE Tutorial describes each piece of
the platform in detail, and includes code examples that demonstrate how to use each piece of
the platform.

More Information on the Java EE Platform
For more information on the Java EE platform, see these resources:

■ The Java EE Platform site (http://www.oracle.com/technetwork/java/javaee/
overview/)

■ GlassFish (http://glassfish.java.net/)
■ The Aquarium (http://blogs.oracle.com/theaquarium/), a blog about GlassFish and

open-source Java EE projects

Java EE Servers
Java EE servers are application servers that implement the Java EE platform technologies.

GlassFish Server Open Source Edition
GlassFish Server Open Source Edition is the reference implementation of the Java EE platform
APIs.

5C H A P T E R 5

49

http://docs.oracle.com/javaee/6/tutorial/doc/
http://www.oracle.com/technetwork/java/javaee/overview/
http://www.oracle.com/technetwork/java/javaee/overview/
http://glassfish.java.net/
http://blogs.oracle.com/theaquarium/


The GlassFish Project
The GlassFish (http://glassfish.java.net/) project is the open-source basis for GlassFish
Server.

Other Java EE Servers
There are several other popular Java EE servers used by developers and enterprises.

■ Oracle WebLogic Suite (http://www.oracle.com/
us/products/middleware/application-server/weblogic-suite/).

■ JBoss from Red Hat (http://www.jboss.org/).
■ Apache Geronimo (http://geronimo.apache.org/).
■ WebSphere software from IBM (http://www.ibm.com/software/websphere/).

Java EE Servers

Your First Cup: An Introduction to the Java EE Platform • April 201250

http://glassfish.java.net/
http://www.oracle.com/us/products/middleware/application-server/weblogic-suite/
http://www.oracle.com/us/products/middleware/application-server/weblogic-suite/
http://www.jboss.org/
http://geronimo.apache.org/
http://www.ibm.com/software/websphere/

	Your First Cup: An Introduction to the JavaTM EE Platform
	Preface
	Who Should Use This Book
	Before You Read This Book
	Related Books and Projects
	Related Third-Party Web Site References
	Typographic Conventions

	Introduction
	Goals of This Tutorial
	Requirements for This Tutorial
	A Checklist
	Getting the Java EE 6 SDK
	Getting NetBeans IDE
	Configuring Your Environment
	Add GlassFish Server as a Server in NetBeans IDE

	Getting the Latest Updates to the Tutorial
	Update the Tutorial Through the Update Center




	Understanding Java Platform, Enterprise Edition
	Differences between Java EE and Java SE
	The Java Programming Language Platforms
	Java SE
	Java EE
	Java ME
	JavaFX


	Overview of Enterprise Applications
	Tiered Applications
	The Client Tier
	The Web Tier
	Java EE Technologies Used in the Web Tier

	The Business Tier
	Java EE Technologies Used in the Business Tier

	The Enterprise Information Systems Tier
	Java EE Technologies Used in the EIS Tier



	Java EE Servers
	Java EE Containers
	The Web Container
	The Application Client Container
	The EJB Container



	Creating Your First Java EE Application
	Architecture of the Example Applications
	Tiers in the Example Applications
	Java EE Technologies Used in the Example Applications

	Coding the DukesAgeResource Example Application
	Getting Started
	Create a Directory for the Example

	Creating the Web Service
	JAX-RS Resources
	Creating the Endpoint
	Create the Project in NetBeans
	Create the DukesAgeResource Class
	Configure the dukes-age Web Application
	Remove the putText Method
	Implement the getText Method

	Building and Deploying the Web Service
	Build and Deploy the Web Service Endpoint




	Creating Your Second Web Application
	Creating the firstcup Project
	Create the Web Application Project

	Creating the Java Persistence API Entity
	Create the FirstcupUser Entity Class
	Add Properties to the FirstcupUser Entity
	Add Constructors to the FirstcupUser Entity
	Add a Named Query to the FirstcupUser Entity

	Creating the Enterprise Bean
	Create the DukesBirthdayBean Enterprise Bean Class
	Add a Logger Instance to DukesBirthdayBean.java
	Add a Business Method to DukesBirthdayBean that Gets the Average Age Difference of firstcup Users
	Add a Business Method for Calculating the Age Difference Between Duke and the User

	Creating the Web Client
	Creating a Resource Bundle
	Create a Resource Bundle

	Configuring the Resource Bundle in the Configuration File
	Create a Configuration File
	Configure the Resource Bundle

	Creating the DukesBDay Managed Bean Class
	Create the Managed Bean Class
	Add an Enterprise Bean Reference
	Add Properties to the Bean
	Get the Age Difference from the DukesBirthdayBean Enterprise Bean

	Creating the Facelets Client
	Resource Libraries in firstcup
	The inputDate Composite Component
	Create the inputDate Composite Component
	The Facelets Web Interface
	Create the XHTML Files
	Set the Welcome File in the web.xml Deployment Descriptor
	Modify the XHTML Files
	Add the Form to greeting.xhtml
	Add the Form to response.html


	Building, Packaging, Deploying, and Running the firstcup Web Application
	Build, Package, and Deploy the firstcup Web Application
	Run the firstcup Application


	Next Steps
	The Java EE Tutorial
	More Information on the Java EE Platform
	Java EE Servers
	GlassFish Server Open Source Edition
	The GlassFish Project

	Other Java EE Servers



