
[1] Java Platform, Enterprise Edition
Your First Cup: An Introduction to the Java EE Platform

Release 7

E39032-01

September 2014

Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform, Release 7

E39032-01

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.

Primary Author: Ian Evans

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Before You Read This Book.. v
Related Books and Projects .. v
Conventions ... vi

1 Introduction

1.1 Goals of This Tutorial ... 1-1
1.2 Requirements for This Tutorial: A Checklist .. 1-1
1.2.1 Getting the Java EE 7 SDK.. 1-1
1.2.2 Getting NetBeans IDE ... 1-1
1.2.3 Configuring Your Environment .. 1-2
1.2.3.1 Add GlassFish Server as a Server in NetBeans IDE .. 1-2
1.2.4 Getting the Latest Updates to the Tutorial... 1-2
1.2.4.1 Update the Tutorial Through the Update Center .. 1-2

2 Understanding Java Platform, Enterprise Edition

2.1 Overview of Enterprise Applications .. 2-1
2.1.1 Tiered Applications ... 2-1
2.1.1.1 The Client Tier... 2-1
2.1.1.2 The Web Tier ... 2-2
2.1.1.3 The Business Tier.. 2-2
2.1.1.4 The Enterprise Information Systems Tier ... 2-2
2.2 Java EE Servers and Containers.. 2-3
2.2.1 The Web Container.. 2-3
2.2.2 The EJB Container.. 2-3
2.2.3 The Application Client Container ... 2-3

3 Creating Your First Java EE Application

3.1 Architecture of the Example Applications .. 3-1
3.1.1 Tiers in the Example Applications .. 3-2
3.1.2 Java EE Technologies Used in the Example Applications ... 3-2
3.2 Coding the dukes-age Example Application .. 3-2
3.2.1 Getting Started ... 3-2
iii

3.2.1.1 Install the Maven Archetypes ... 3-3
3.2.2 Creating the Web Service.. 3-3
3.2.2.1 JAX-RS Resources ... 3-3
3.2.2.2 Creating the dukes-age Application Using the Maven Archetype 3-4
3.2.2.3 Starting GlassFish Server and the Database Server... 3-5
3.2.2.4 Building and Deploying the Web Service Endpoint ... 3-5

4 Creating Your Second Web Application

4.1 Creating the firstcup-war Project.. 4-1
4.1.1 Create the Web Application Project Using the Archetype .. 4-1
4.2 Modifying the Java Persistence API Entity ... 4-2
4.2.1 Edit the Constructor of the FirstcupUser Entity ... 4-2
4.2.2 Add a Named Query to the FirstcupUser Entity .. 4-2
4.3 Modifying the Enterprise Bean ... 4-3
4.3.1 Implement a Business Method to DukesBirthdayBean that Gets the Average Age

Difference of firstcup-war Users 4-3
4.3.2 Implement a Business Method for Calculating the Age Difference Between Duke and

the User 4-3
4.4 Modifying the Web Client ... 4-4
4.4.1 Modify the DukesBDay Managed Bean Class... 4-4
4.4.1.1 Call the dukes-age Web Service to Retrieve Duke’s Current Age 4-5
4.4.1.2 Get the Age Difference from the DukesBirthdayBean Enterprise Bean............... 4-5
4.4.2 Creating the Facelets Client.. 4-6
4.4.2.1 Resource Libraries in firstcup-war... 4-6
4.4.2.2 The inputDate Composite Component ... 4-6
4.4.2.3 Implement the inputDate Composite Component .. 4-7
4.4.2.4 The Facelets Web Interface.. 4-7
4.4.2.5 Add the Form to greeting.xhtml ... 4-10
4.4.2.6 Add the Form to response.html .. 4-10
4.5 Building, Packaging, Deploying, and Running the firstcup-war Web Application 4-11
4.5.1 Build, Package, and Deploy the firstcup-war Web Application................................ 4-11
4.5.2 Run the firstcup-war Application .. 4-11

5 Next Steps

5.1 The Java EE Tutorial ... 5-1
5.2 More Information on the Java EE Platform... 5-1
iv

Preface

This is Your First Cup: An Introduction to Java Platform, Enterprise Edition, a short tutorial
for beginning Java EE programmers. This tutorial is designed to give you a hands-on
lesson on developing an enterprise application from initial coding to deployment.

Audience
This tutorial is intended for novice Java EE developers. You should be familiar with
the Java programming language, particularly the features introduced in Java Platform,
Standard Edition 7. While familiarity with enterprise development and Java EE
technologies is helpful, this tutorial assumes you are new to developing Java EE
applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Before You Read This Book
Before you start this tutorial, you should:

■ Be familiar with the Java programming language

■ Be able to install software on your work machine

■ Have a modern web browser installed on your work machine

Related Books and Projects
The following books and projects may be helpful to you in understanding this tutorial:

■ The Java EE 7 Tutorial

■ The GlassFish Server Open Source Edition documentation set

■ The NetBeans IDE documentation
v

Conventions
The following table describes the typographic conventions that are used in this book.

Convention Meaning Example

Boldface Boldface type indicates graphical
user interface elements associated
with an action, or terms defined in
text.

From the File menu, select New Project.

A cache is a copy that is stored locally.

Monospace Monospace type indicates the names
of files and directories, commands
within a paragraph, URLs, code in
examples, text that appears on the
screen, or text that you enter.

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

Italic Italic type indicates book titles,
emphasis, or placeholder variables
for which you supply particular
values.

The command to remove a file is rm
filename.

Read Chapter 6 in the User's Guide.

Do not save the file.
vi

1

1Introduction

This chapter outlines the goals and the prerequisites for completing this tutorial.

1.1 Goals of This Tutorial
At the completion of this tutorial, you will:

■ Understand the basics of tiered applications

■ Understand the basics of the Java EE platform

■ Have created a multi-tiered Java EE application

■ Have deployed and run your application on a Java EE server

■ Know where to go next for more information on the Java EE platform

1.2 Requirements for This Tutorial: A Checklist
To complete this tutorial, you need to:

■ Get the Java EE 7 Software Development Kit Update 1

■ Get NetBeans IDE and all necessary plugins

■ Configure your environment

■ Get the latest updates to the tutorial bundle

For up-to-the-minute information on which versions of the required software are
compatible with this tutorial, see the First Cup compatibility page
(http://java.net/projects/firstcup/pages/FirstCupCompatibility).

1.2.1 Getting the Java EE 7 SDK
To get the Java EE 7 SDK Update 1, go to
http://www.oracle.com/technetwork/java/javaee/downloads/. Download and
install the SDK. The location where you install it is typically glassfish4 in your home
directory, but you can change this.

The tutorial is installed in the docs/firstcup directory of your SDK installation.

1.2.2 Getting NetBeans IDE
To get NetBeans IDE, go to https://netbeans.org/downloads/ and download the
Java EE distribution. Install this distribution.
Introduction 1-1

Requirements for This Tutorial: A Checklist
1.2.3 Configuring Your Environment
Once you have all the necessary downloads, you must configure NetBeans IDE and
get the latest tutorial updates.

1.2.3.1 Add GlassFish Server as a Server in NetBeans IDE
To run this tutorial in NetBeans IDE, you must register your GlassFish Server
installation as a NetBeans server instance. Follow these instructions to register the
GlassFish Server in NetBeans IDE.

1. From the Tools menu, select Servers.

2. In the Servers dialog, click Add Server.

3. Under Choose Server, select GlassFish Server and click Next.

4. Under Server Location, browse to or enter the location of your GlassFish Server
installation.

5. Click Next.

6. Under Domain Location, select the default domain, domain1.

7. Click Finish.

1.2.4 Getting the Latest Updates to the Tutorial
Check for any updates to this tutorial by using the Update Center included with the
Java EE 7 SDK.

1.2.4.1 Update the Tutorial Through the Update Center
Open the Update Center and check for any updates to the tutorial.

1. In NetBeans IDE, select the Services tab and expand the Servers node.

2. Right-click the GlassFish Server instance and select View Domain Update Center
to display the Update Tool.

3. In the tree, select Available Updates to display a list of updated packages.

4. Look for updates to the First Cup for Java EE 7 (javaee-firstcup-tutorial)
package.

5. If there is an updated version, select First Cup for Java EE 7
(javaee-firstcup-tutorial) and click Install.
1-2 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

2

2Understanding Java Platform, Enterprise

Edition

This chapter describes the basic concepts behind enterprise application development
and examines how an application server is the sum of its Java EE containers.

2.1 Overview of Enterprise Applications
This section describes enterprise applications and how they are designed and
developed.

As stated above, the Java EE platform is designed to help developers create large-scale,
multi-tiered, scalable, reliable, and secure network applications. A shorthand name for
such applications is "enterprise applications," so called because these applications are
designed to solve the problems encountered by large enterprises. Enterprise
applications are not only useful for large corporations, agencies, and governments,
however. The benefits of an enterprise application are helpful, even essential, for
individual developers and small organizations in an increasingly networked world.

The features that make enterprise applications powerful, like security and reliability,
often make these applications complex. The Java EE platform reduces the complexity
of enterprise application development by providing a development model, API, and
runtime environment that allow developers to concentrate on functionality.

2.1.1 Tiered Applications
In a multi-tiered application, the functionality of the application is separated into
isolated functional areas, called tiers. Typically, multi-tiered applications have a client
tier, a middle tier, and a data tier (often called the enterprise information systems tier).
The client tier consists of a client program that makes requests to the middle tier. The
middle tier is divided into a web tier and a business tier, which handle client requests
and process application data, storing it in a permanent datastore in the data tier.

Java EE application development concentrates on the middle tier to make enterprise
application management easier, more robust, and more secure.

2.1.1.1 The Client Tier
The client tier consists of application clients that access a Java EE server and that are
usually located on a different machine from the server. The clients make requests to
the server. The server processes the requests and returns a response back to the client.
Many different types of applications can be Java EE clients, and they are not always, or
even often Java applications. Clients can be a web browser, a standalone application,
or other servers, and they run on a different machine from the Java EE server.
Understanding Java Platform, Enterprise Edition 2-1

Overview of Enterprise Applications
2.1.1.2 The Web Tier
The web tier consists of components that handle the interaction between clients and
the business tier. Its primary tasks are the following:

■ Dynamically generate content in various formats for the client

■ Collect input from users of the client interface and return appropriate results from
the components in the business tier

■ Control the flow of screens or pages on the client

■ Maintain the state of data for a user's session

■ Perform some basic logic and hold some data temporarily in managed beans

Table 2–1 lists some of the main Java EE technologies that are used in the web tier in
Java EE applications.

2.1.1.3 The Business Tier
The business tier consists of components that provide the business logic for an
application. Business logic is code that provides functionality to a particular business
domain, like the financial industry, or an e-commerce site. In a properly designed
enterprise application, the core functionality exists in the business tier components.

The following Java EE technologies are among those that are used in the business tier
in Java EE applications:

■ Enterprise JavaBeans (enterprise bean) components

■ JAX-RS RESTful web services

■ Java Persistence API entities

2.1.1.4 The Enterprise Information Systems Tier
The enterprise information systems (EIS) tier consists of database servers, enterprise
resource planning systems, and other legacy data sources, like mainframes. These
resources typically are located on a separate machine from the Java EE server, and are
accessed by components on the business tier.

The following Java EE technologies are used to access the EIS tier in Java EE
applications:

Table 2–1 Web-Tier Java EE Technologies

Technology Purpose

JavaServer Faces technology A user-interface component framework for web
applications that allows you to include UI
components (such as fields and buttons) on a
XHTML page, called a Facelets page; convert and
validate UI component data; save UI component
data to server-side data stores; and maintain
component state

Expression Language A set of standard tags used in Facelets pages to refer
to Java EE components

Servlets Java programming language classes that
dynamically process requests and construct
responses, usually for HTML pages

Contexts and Dependency Injection for
Java EE

A set of contextual services that make it easy for
developers to use enterprise beans along with
JavaServer Faces technology in web applications
2-2 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

Java EE Servers and Containers
■ The Java Database Connectivity API (JDBC)

■ The Java Persistence API

■ The Java EE Connector Architecture

■ The Java Transaction API (JTA)

2.2 Java EE Servers and Containers
A Java EE server is a server application that implements the Java EE platform APIs
and provides standard Java EE services. Java EE servers are sometimes called
application servers, because they allow you to serve application data to clients, much
as web servers serve web pages to web browsers.

Java EE servers host several application component types that correspond to the tiers
in a multi-tiered application. The Java EE server provides services to these components
in the form of a container.

Java EE containers are the interface between the component and the lower-level
functionality provided by the platform to support that component. The functionality
of the container is defined by the platform and is different for each component type.
Nonetheless, the server allows the different component types to work together to
provide functionality in an enterprise application.

2.2.1 The Web Container
The web container is the interface between web components and the web server. A
web component can be a servlet or a JavaServer Faces Facelets page. The container
manages the component's lifecycle, dispatches requests to application components,
and provides interfaces to context data, such as information about the current request.

2.2.2 The EJB Container
The EJB container is the interface between enterprise beans, which provide the
business logic in a Java EE application, and the Java EE server. The EJB container runs
on the Java EE server and manages the execution of an application's enterprise beans.

2.2.3 The Application Client Container
The application client container is the interface between Java EE application clients
(special Java SE applications that use Java EE server components) and the Java EE
server. The application client container runs on the client machine and is the gateway
between the client application and the Java EE server components that the client uses.
Understanding Java Platform, Enterprise Edition 2-3

Java EE Servers and Containers
2-4 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

3

3Creating Your First Java EE Application

This chapter gives an overview of the example applications and step-by-step
instructions on coding and running the dukes-age web service example application.

3.1 Architecture of the Example Applications
The example applications consist of four main components: DukesAgeResource, a
JAX-RS RESTful web service; DukesBirthdayBean, an enterprise bean; FirstcupUser, a
Java Persistence API entity; and firstcup-war, a web application created with
JavaServer Faces Facelets technology.

Figure 3–1 Architecture of the First Cup Example Applications

DukesAgeResource is a JAX-RS resource that calculates the age of Duke, the Java
mascot. Duke was born May 23, 1995, when the first demo of Java technology was
publicly released.

DukesBirthdayBean is a local, no-interface view stateless session bean that calculates
the difference between the user's age and Duke's age and stores the user-submitted
data in a Java Persistence API entity.

FirstcupUser is a Java Persistence API entity that represents a particular user's
birthday. It is stored in a Java DB database table and managed by DukesBirthdayBean's
business methods.

The firstcup-war web application is a JavaServer Faces Facelets application that
accesses DukesAgeResource to display Duke's age, reads in a date provided by the
user, accesses DukesBirthdayBean to calculate who is older, and then displays the

 Java EE Server

dukes-age

Java DB

JAX-RS
Resource

firstcup

Enterprise Beans

Java Persistence API

JavaServer Faces
Application
Creating Your First Java EE Application 3-1

Coding the dukes-age Example Application
difference in years between the user and Duke and the average age difference of all
users.

The firstcup-war web application consists of the following:

■ greeting.xhtml: A Facelets-enabled XHTML page, which is a page that uses the
JavaServer Faces Facelets tag libraries. Users can type their birth date in a field and
submit it for comparison against Duke's birth date.

■ response.xhtml: A Facelets-enabled XHTML page that tells the user whether he
or she is older or younger than Duke, based on the date the user entered in the
greeting.xhtml page, and displays the average age difference of all users.

■ DukesBDay.java: A CDI managed bean that defines properties to hold the user's
birth date, uses the JAX-RS Client API to get Duke's current age from the
DukesAgeResource web service, and calculates the age difference between the user
and Duke from the enterprise bean.

■ web.xml: The web application's deployment descriptor, which is used to configure
certain aspects of a web application when it is installed. In this case, it is used to
provide a mapping to the application's FacesServlet instance, which accepts
incoming requests, passes them to the life cycle for processing, and initializes
resources. It also specifies greeting.xhtml as the welcome file for the application.

■ WebMessages.properties and WebMessages_es.properties: Java programming
language properties files that contain the localized strings used in greeting.xhtml
and response.xhtml. By default, the English language strings in
WebMessages.properties are used, but Spanish language strings are also provided
in WebMessages_es.properties.

■ DukesBirthdayBean.java: as described above, the enterprise bean packaged
within the firstcup-war application. DukesBirthdayBean calculates the difference
between the user's birthday and Duke's birthday.

3.1.1 Tiers in the Example Applications
The example applications have a web tier component (the firstcup-war web client),
three business tier components (the DukesAgeResource web service, the FirstcupUser
entity, and the DukesBirthdayBean enterprise bean), and an enterprise information
system (EIS) tier (the data in the Java DB database table). The user's web browser is the
client tier component, as it accesses the rest of the application through the web tier.

3.1.2 Java EE Technologies Used in the Example Applications
The DukesAgeResource web service is a JAX-RS resource. The DukesBirthdayBean
enterprise bean is a stateless session bean. The FirstcupUser entity is a Java
Persistence API entity. The DukesBDay CDI managed bean uses the JAX-RS client API
to access the DukesAgeResource web service. The firstcup-war web client is a
JavaServer Faces application that runs in the web container of the Java EE server.

3.2 Coding the dukes-age Example Application
This section describes how to code the dukes-age example application, a web
application containing a JAX-RS RESTful web service endpoint.

3.2.1 Getting Started
Before you start coding the example, you need to perform some configuration tasks:
3-2 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

Coding the dukes-age Example Application
1. Register the server with your NetBeans IDE as described in Configuring Your
Environment.

2. Install the Maven archetypes used to create the example applications.

3.2.1.1 Install the Maven Archetypes
Maven archetypes are templates that create the structure of a particular application.
There are two archetypes included in the example, dukes-age-archetype and
firstcup-war-archetype. These archetypes create Java EE 7 web applications that you
will then edit and deploy.

Before you can create applications based on the archetypes, you must first install the
archetypes and supporting projects to your local Maven repository by following these
steps:

1. In NetBeans IDE select File, then Open Project, navigate to the location where you
installed the tutorial (usually glassfish4/docs/firstcup), select example, deselect
the Open Required Projects check box, and click Open Project.

2. Right-click the firstcup project in the Projects pane and select Build.

The required projects, including the archetypes, will be built.

3.2.2 Creating the Web Service
The DukesAgeResource endpoint is a simple RESTful web service. REST stands for
representational state transfer, and software architectures that conform to the principles
of REST are referred to as RESTful. RESTful web services are web-based applications
that use the HTTP protocol to access, modify, or delete information contained within a
resource. A RESTful web service resource is a source of specific information identifiable
by a uniform resource identifier (URI), for example
http://example.com/someResource, and may be manipulated by calling the HTTP
protocol's methods, for example GET or POST.

Web services are designed to be independent of their clients. Typically RESTful web
services are publicly available to a wide variety of clients, and the clients are located
throughout the Internet. This is called "loose coupling," as the clients and servers are
connected only by the standard HTTP-based requests and responses, and do not need
to know each other's implementation details. For this reason, dukes-age will be
developed in its own application module and deployed separately from the
DukesBirthdayBean enterprise bean and firstcup-war web client. dukes-age could be
deployed on a completely different machine without affecting the functionality of the
firstcup-war web client.

3.2.2.1 JAX-RS Resources
DukesAgeResource is a JAX-RS resource class that responds to HTTP GET requests and
returns a String representing the age of Duke at the time of the request.

The basic DukesAgeResource resource class is generated from the
dukes-age-archetype Maven archetype. This class is annotated with the
javax.ws.rs.Path annotation, which specifies the URL suffix to which the resource
will respond. DukesAgeResource has a single method, getText, annotated with the
javax.ws.rs.GET and javax.ws.rs.Produces annotations. @GET marks the method as
a responder to HTTP GET requests, and @Produces specifies the MIME-type of the
response sent back from getText to clients. In this case, the MIME-type is text/plain.
Creating Your First Java EE Application 3-3

Coding the dukes-age Example Application
3.2.2.2 Creating the dukes-age Application Using the Maven Archetype
In NetBeans IDE, create a new web project using the dukes-age-archetype Maven
archetype.

Create the Project in NetBeans IDE

1. From the File menu, select New Project.

2. Under Categories, select Maven.

3. Under Projects, select Project from Archetype.

4. Click Next.

5. In the Search field, enter dukes-age.

6. In the Known Archetypes field, select dukes-age-archetype.

7. Click Next.

8. In the Project Name field, enter dukes-age.

9. In the Package field, enter firstcup.dukesage.resource.

10. Click Finish.

You should now see the module you created in the Projects tab. The project is
created in the NetBeansProjects directory under your home directory.

The dukes-age-archetype archetype creates the structure of the JAX-RS endpoint
application, including:

■ The DukesAgeResource resource class

■ The web.xml deployment descriptor

After you create the basic application structure with the archetype, you will configure
how the application will run, implement the functionality of the resource class, and
then deploy the application.

Configure the dukes-age Web Application

Set the default URL that is brought up in a web browser when you run dukes-age.

1. In the Projects tab, right-click the dukes-age project and select Properties.

2. Under Categories, click Run.

3. Under Server select the GlassFish Server instance you configured.

4. Under Relative URL enter /webapi/dukesAge.

5. Click OK.

Implement the getText Method

Add code to DukesAgeResource.getText that calculates Duke's age at the time of the
request. To do this, use the java.util.Calendar and java.util.GregorianCalendar
classes to create an object representing the date May 23, 1995, Duke's birthday. Then
create another Calendar object representing today's date, and subtract today's year
from Duke's birth year. If today's date falls before May 23, subtract a year from this
result. Then return the result as a String representation.

1. Expand the Source Packages node, expand the firstcup.dukesage.resource
node, then double-click the DukesAgeResource.java file to open it in the editor
window.

2. Highlight the current code in getText and replace it with the following code:
3-4 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

Coding the dukes-age Example Application
// Create a new Calendar for Duke's birthday
Calendar dukesBirthday = new GregorianCalendar(1995, Calendar.MAY, 23);
// Create a new Calendar for today
Calendar now = GregorianCalendar.getInstance();

// Subtract today's year from Duke's birth year, 1995
int dukesAge = now.get(Calendar.YEAR) - dukesBirthday.get(Calendar.YEAR);
dukesBirthday.add(Calendar.YEAR, dukesAge);

// If today's date is before May 23, subtract a year from Duke's age
if (now.before(dukesBirthday)) {
 dukesAge--;
}
// Return a String representation of Duke's age
return "" + dukesAge;

3. In the editor window, right-click and select Format.

4. From the File menu, select Save to save the file.

3.2.2.3 Starting GlassFish Server and the Database Server
Follow these steps to start GlassFish Server and the Java DB database server.

1. Click the Services tab.

2. Expand Servers.

3. Right-click the GlassFish Server instance and select Start.

Both the database server and the GlassFish Server instance will start. In the tab
where the GlassFish Server instance is running, you can see the contents of the
server log.

3.2.2.4 Building and Deploying the Web Service Endpoint
Build dukes-age.war, the JAX-RS web application, and deploy it to your GlassFish
Server instance.

In the Projects tab, right-click dukes-age and select Run.

After dukes-age.war deploys successfully to GlassFish Server, a web browser will
load the URL of the DukesAgeResource path, and you'll see the returned String
representing Duke's age.

At this point, you've successfully created, deployed, and run your first Java EE
application. Now you will create a web application that uses this web service data.
Creating Your First Java EE Application 3-5

Coding the dukes-age Example Application
3-6 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

4

4Creating Your Second Web Application

This chapter gives step-by-step instructions on coding and running the firstcup-war
web application, which uses the dukes-age web service described in Chapter 3,
"Creating Your First Java EE Application". The firstcup-war web application is a
more complicated application that uses several different Java EE APIs.

The firstcup-war example application consumes the data from the dukes-age web
service using the JAX-RS client API. A JavaServer Faces web front end asks users to
enter their birthdays to find out who is older, the user or Duke. This data is stored in a
Java DB database table using the Java Persistence API. The business logic, which
provides the core functionality of the application, is handled by an enterprise bean.

All the tiers described in Tiered Applications are present in the firstcup-war web
application. The web or client tier is the JavaServer Faces front end. The enterprise
information systems, or EIS, tier is the Java DB database. The business tier is the
enterprise bean.

4.1 Creating the firstcup-war Project
The firstcup-war web application project consists of the Java Persistence API entity,
the enterprise bean, and the JavaServer Faces web front end.

4.1.1 Create the Web Application Project Using the Archetype
Follow these steps to create a new web application project using the
firstcup-war-archetype in NetBeans IDE.

1. From the File menu, select New Project.

2. Under Projects, select Project from Archetype.

3. Click Next.

4. In the Search field, enter firstcup.

5. In the Known Archetypes field, select firstcup-war-archetype.

6. Click Next.

7. In the Project Name field, enter firstcup-war.

8. In the Package field, enter firstcup.

9. Click Finish.

You should now see the module you created in the Projects tab.

The firstcup-war-archetype archetype creates the structure of the web application,
including the following:
Creating Your Second Web Application 4-1

Modifying the Java Persistence API Entity
■ Basic entity classes

■ Basic enterprise bean classes

■ Basic backing bean classes

■ Basic Facelets XHTML components and views

■ The web.xml, faces-config.xml, and persistence.xml deployment descriptors

After you create the basic application structure with the archetype, you will configure
how the application will run, implement the functionality of the classes, implement
the Facelets views, and then deploy the application.

4.2 Modifying the Java Persistence API Entity
The Java Persistence API allows you to create and use Java programming language
classes that represent data in a database table. A Java Persistence API entity is a
lightweight, persistent Java programming language object that represents data in a
data store. To create or modify entities, or to remove them from the data store, call the
operations of the Java Persistence API entity manager. To query entities, or to query the
data encapsulated by the persistent fields or properties of a entity, use the Java
Persistence Query Language (JPQL), a language similar to SQL that operates on
entities.

In firstcup-war, there is a single entity that defines one query.

4.2.1 Edit the Constructor of the FirstcupUser Entity
Add code to the constructor for FirstcupUser.

1. Expand the Source Packages node, expand the firstcup.entity node, then
double-click the FirstcupUser.java file to open it in the editor window.

2. Below the field definitions in the FirstcupUser class, add the following code in
bold to the second, two-argument constructor:

 public FirstcupUser(Date date, int difference) {
 Calendar cal = new GregorianCalendar();
 cal.setTime(date);
 birthday = cal;
 ageDifference = difference;
 }

3. Right-click in the editor window and select Format.

4.2.2 Add a Named Query to the FirstcupUser Entity
Add a JPQL named query to the FirstcupUser entity that returns the average age
difference of all firstcup-war users.

This query uses the AVG aggregate function to return the average of all the values of the
ageDifference property of the FirstcupUser entities.

1. Directly before the class definition, copy and paste in the following code:

@NamedQuery(name="findAverageAgeDifferenceOfAllFirstcupUsers",
query="SELECT AVG(u.ageDifference) FROM FirstcupUser u")

The @NamedQuery annotation appears just before the class definition of the entity
and has two required attributes: name, with the unique name for this query; and
query, the JPQL query definition.
4-2 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

Modifying the Enterprise Bean
2. Right-click in the editor window and select Format.

3. From the File menu, select Save.

4.3 Modifying the Enterprise Bean
DukesBirthdayBean is a stateless session bean. Stateless session beans are enterprise
beans that do not maintain a conversational state with a client. With stateless session
beans, the client makes isolated requests that do not depend on any previous state or
requests. If an application requires conversational state, use stateful session beans.

DukesBirthdayBean is a local enterprise bean that uses a no-interface view:

■ A local enterprise bean is visible only within the application in which it is deployed.

■ Enterprise beans with a no-interface view do not need a separate business interface
that the enterprise bean class implements. The enterprise bean class is the only
coding artifact needed to create a local, no-interface enterprise bean.

DukesBirthdayBean will be packaged within the same WAR file as the Facelets web
front end.

4.3.1 Implement a Business Method to DukesBirthdayBean that Gets the Average Age
Difference of firstcup-war Users

Add code to a business method to the DukesBirthdayBean session bean to call the
findAverageAgeDifferenceOfAllFirstcupUsers named query in FirstcupUser that
returns the average age difference of all users.

1. Expand the Source Packages node, expand the firstcup.ejb node, then
double-click the DukesBirthdayBean.java file to open it in the editor window.

2. Find the business method called getAverageAgeDifference and add the following
code in bold by copying and pasting:

 public Double getAverageAgeDifference() {
 Double avgAgeDiff = (Double)
 em.createNamedQuery("findAverageAgeDifferenceOfAllFirstcupUsers")
 .getSingleResult();
 logger.log(Level.INFO, "Average age difference is: {0}", avgAgeDiff);
 return avgAgeDiff;
 }

The named query in FirstcupUser is called by using the EntityManager's
createNamedQuery method. Because this query returns a single number, the
getSingleResult method is called on the returned Query object. The query returns
a Double.

3. Right-click in the editor window and select Format.

4.3.2 Implement a Business Method for Calculating the Age Difference Between Duke
and the User

Add code to a business method that calculates the difference in age in years between
Duke and the user and creates a new FirstcupUser entity.

1. Find the getAgeDifference business method and add the following code in bold:

 public int getAgeDifference(Date date) {
 int ageDifference;
Creating Your Second Web Application 4-3

Modifying the Web Client
 Calendar theirBirthday = new GregorianCalendar();
 Calendar dukesBirthday = new GregorianCalendar(1995, Calendar.MAY, 23);

 // Set the Calendar object to the passed-in Date
 theirBirthday.setTime(date);

 // Subtract the user's age from Duke's age
 ageDifference = dukesBirthday.get(Calendar.YEAR)
 - theirBirthday.get(Calendar.YEAR);
 logger.log(Level.INFO, "Raw ageDifference is: {0}", ageDifference);
 // Check to see if Duke's birthday occurs before the user's. If so,
 // subtract one from the age difference
 if (dukesBirthday.before(theirBirthday) && (ageDifference> 0)) {
 ageDifference--;
 }

 // Create and store the user's birthday in the database
 FirstcupUser user = new FirstcupUser(date, ageDifference);
 em.persist(user);

 logger.log(Level.INFO, "Final ageDifference is: {0}", ageDifference);

 return ageDifference;
 }

This method creates the Calendar objects used to calculate the difference in age
between the user and Duke and performs the actual calculation of the difference in
age.

Similar to the DukesAgeResource.getText code, getAgeDifference subtracts
Duke's birthday year from the user's birthday year to get a raw age difference. If
Duke's birthday falls before the user's, and the raw difference is more than 0, it
subtracts one year from the age difference.

A new FirstcupUser entity is created with the user's birthday and age difference,
then stored in the Java DB database by calling the EntityManager's persist
method.

The final age difference is returned as an int.

2. Right-click in the editor window and select Format.

3. From the File menu, choose Save.

4.4 Modifying the Web Client
To add the correct functionality to the web client, you need to perform the following
tasks:

■ Modify the DukesBDay managed bean class

■ Modify the Facelets pages

4.4.1 Modify the DukesBDay Managed Bean Class
DukesBDay is a CDI managed bean that acts as a backing bean. A managed bean is a
lightweight container-managed object that supports a set of basic services. A backing
bean is a managed bean that provides temporary data storage for the values of the
components included on a particular JavaServer Faces page. The JavaServer Faces
4-4 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

Modifying the Web Client
application instantiates the managed bean and stores it in scope. The section following
this one describes more about managed beans and how to configure them.

This section describes how to modify the DukesBDay class.

4.4.1.1 Call the dukes-age Web Service to Retrieve Duke’s Current Age
Now modify the getAge method of DukesBDay to call the dukes-age web service using
the JAX-RS Client API. This will retrieve Duke’s current age, so it can be compared to
the user’s age.

1. Expand the Source Packages node, expand the firstcup.web node, then
double-click the DukesBDay.java file to open it in the editor window.

2. Find the getAge method and implement its functionality by copying and pasting
the following code in bold:

 public int getAge() {
 try {
 Client client = ClientBuilder.newClient();
 WebTarget target =
 client.target("http://localhost:8080/dukes-age/webapi/dukesAge");
 String response = target.request().get(String.class);
 age = Integer.parseInt(response);
 } catch (IllegalArgumentException | NullPointerException |
 WebApplicationException ex) {
 logger.severe("processing of HTTP response failed");
 }
 return age;
 }

3. In the editor window, right-click and select Format.

4. From the File menu, select Save.

4.4.1.2 Get the Age Difference from the DukesBirthdayBean Enterprise Bean
Now modify the processBirthday method to get the difference in age between the
user's age and Duke's age from the DukesBirthdayBean EJB, set the absAgeDiff
variable to the absolute value of the age difference, and set a result string that will
forward the user to the display page.

1. Find the processBirthday method and implement the functionality by copying
and pasting the following code in bold:

 public String processBirthday() {
 this.setAgeDiff(dukesBirthdayBean.getAgeDifference(yourBD));
 logger.log(Level.INFO, "age diff from dukesbday {0}", ageDiff);
 this.setAbsAgeDiff(Math.abs(this.getAgeDiff()));
 logger.log(Level.INFO, "absAgeDiff {0}", absAgeDiff);
 this.setAverageAgeDifference(dukesBirthdayBean.getAverageAgeDifference());
 logger.log(Level.INFO, "averageAgeDifference {0}", averageAgeDifference);
 return "/response.xhtml";
 }

This method calls the getAgeDifference method of DukesBirthdayBean to get the
age difference and store it in the ageDiff property, sets the absolute age difference
stored in the absAgeDiff property, and sets the average age difference stored in the
averageAgeDifference property. It returns the relative URL of the response page
to which the user will be forwarded.

2. In the editor window, right-click and select Format.

3. From the File menu, select Save.
Creating Your Second Web Application 4-5

Modifying the Web Client
4.4.2 Creating the Facelets Client
The Facelets client consists of a resource library, a composite component, and two XHTML
files.

4.4.2.1 Resource Libraries in firstcup-war
A JavaServer Faces resource library is a collection of user-created components
collected in a standard location in a web application. Resource libraries are identified
according to a resource identifier, a string that represents a particular resource within a
web application. Resources can be packaged either at the root of the web application
or on the web application's classpath.

A resource packaged in the web application root must be in a subdirectory of a
resources directory at the web application root.

resources/resource-identifier

A resource packaged in the web application classpath must be in a subdirectory of the
META-INF/resources directory within a web application.

META-INF/resources/resource-identifier

Resource identifiers are unique strings that conform to the following format:

[locale-prefix/][library-name /][library-version/]resource-name
[/resource-version]

Elements of the resource identifier in brackets ([]) are optional. A resource name,
identifying a particular resource (a file or a graphic, for example), is required. In
firstcup-war, a resource library with the name components is packaged in the web
application root, and this library contains one resource, a file called inputDate.xhtml.
The resource identifier for this resource is therefore components/inputDate.xhtml, and
it is located in the web application root at resources/components/inputDate.xhtml.

4.4.2.2 The inputDate Composite Component
A composite component is a set of user-defined JavaServerFaces and Facelets
components located in a resource. In firstcup-war, the inputDate.xhtml resource,
located in the components resource library, is a composite component that contains
tags for reading in a date the user enters in a form. Composite components consist of
an interface definition and an implementation.

The interface definition is specified with the <cc:interface> tag to define which
attributes are exposed to pages that use the composite component. Attributes are
identified with the <cc:attribute> tag.

The inputDate.xhtml interface definition is as follows. It defines a single attribute,
date, that must be specified in pages that use the inputDate composite component.

<cc:interface>
 <cc:attribute name="date" />
</cc:interface>

The implementation of the composite component is specified with the
<cc:implementation> tag. The tags within the <cc:implementation> are the actual
component tags that will be added to pages that use the composite component. They
can be any HTML render kit, JavaServer Faces, or Facelets tags. The
#{cc.attrs.attribute-name} expression is used to get the value of the specified
attribute from the page or component that is using the composite component.
4-6 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

Modifying the Web Client
The implementation of the inputDate composite component is as follows. An HTML
input text component will store the entered text into the date attribute, accessed by the
#{cc.attrs.date} expression. A JavaServer Faces convertDateTime component will
convert the entered text to a date with the form of MM/dd/yyyy (04/13/2014, for
example).

<cc:implementation>
 <h:inputText id="getdate" value="#{cc.attrs.date}">
 <f:convertDateTime pattern="MM/dd/yyyy" />
 </h:inputText>
 <p/>
 <h:message for="getdate" style="color:red" />
</cc:implementation>

If there's an error with the input of the inputText component, the form submission is
unsuccessful, and a warning message is displayed. The message output is specified by
the <h:message> tag, which is connected to the inputText component that has the id
getdate.

4.4.2.3 Implement the inputDate Composite Component
Modify the inputDate composite component in the components resource library.

1. Expand Web Pages, then resources, then components, and open
inputDate.xhtml.

2. Add the composite component interface definition between the opening and
closing <cc:interface> tags in inputDate.xhtml:

 <cc:interface>
 <cc:attribute name="date" />
 </cc:interface>

3. Add the composite component implementation between the opening and closing
cc:implementation tags:

 <cc:implementation>
 <h:inputText id="getdate" value="#{cc.attrs.date}">
 <f:convertDateTime pattern="MM/dd/yyyy" />
 </h:inputText>
 <p/>
 <h:message for="getdate" style="color:red" />
 </cc:implementation>

4. In the editor window, right-click and select Format.

5. From the File menu, select Save.

4.4.2.4 The Facelets Web Interface
The firstcup-war web application interface has two XHTML files. The
greeting.xhtml file displays Duke's current age and the form where the user can enter
a birthday. The response.xhtml file displays the age difference between the user and
Duke.

The greeting.xhtml file contains several pieces of the firstcup-war application
detailed previously. It uses the localized strings contained in WebMessages.properties
and WebMessages_es.properties. It uses the DukesBDay managed bean to call both the
DukesAgeResource JAX-RS web service and the DukesBirthdayBean enterprise bean. It
uses the inputDate composite component to create the input for the user to enter a
birthday.
Creating Your Second Web Application 4-7

Modifying the Web Client
Here's the content of the greeting.xhtml file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:fc="http://xmlns.jcp.org/jsf/composite/components">
 <h:head>
 <title>Firstcup Greeting Page</title>
 </h:head>
 <h:body>
 <h:form>
 <h2>
 <h:outputText value="#{bundle.Welcome}"/>
 </h2>
 <h:outputText value="#{bundle.DukeIs} "/>
 <h:outputText value="#{dukesBDay.age} #{bundle.YearsOldToday}"/>
 <p/>
 <h:outputText value="#{bundle.Instructions}"/>
 <p/>
 <h:outputText value="#{bundle.YourBD} "/>
 <fc:inputDate id="userBirthday" date="#{dukesBDay.yourBD}" />
 <p/>
 <h:commandButton value="#{bundle.Submit}"
 action="#{dukesBDay.processBirthday}"/>
 </h:form>

 </h:body>
</html>

The greeting.xhtml file uses the HTML RenderKit and the components resource
library tag libraries. The components tag library has a prefix of fc, and is used to
specify the inputDate composite component in the form below. The <fc:inputDate
id="userBirthday" date="#{dukesBDay.yourBD}" /> tag has the required date
attribute, and it stores the value in the yourBD property in the DukesBDay managed
bean by using the EL expression #{dukesBDay.yourBD}.

The localized strings are referenced by the EL expressions #{bundle.property-name}.
For example, the <h:outputText value="#{bundle.Welcome}"/> tag will display the
following string in English locales:

Hi. I'm Duke. Let's find out who's older -- you or I.

The <h:commandButton> tag creates a Submit button and specifies that a successful
submission should render the response.xhtml file by setting the action attribute to
#{dukesBDay.processBirthday}. The processBirthday method returns the value
"/response.xhtml". The action attribute is used to define navigation rules for forms
in Facelets pages.

The response.xhtml file displays the age difference between the user and Duke and
the average age difference of all users so far. Different strings are displayed based on
whether the user is the same age, younger, or older than Duke. The text can be
displayed or not based on the conditions specified by the rendered attribute of the
<h:outputText> tag. The conditions used in the rendered attribute are Expression
Language (EL) alternatives to the Java programming language conditional operators to
allow XML parsing of the XHTML file.
4-8 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

Modifying the Web Client
Here's the content of the response.xhtml file.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>Response Page</title>
 </h:head>
 <h:body>
 <h:form>
 <h:outputText value="#{bundle.YouAre} "/>
 <h:outputText value="#{bundle.SameAge}"
 rendered="#{dukesBDay.ageDiff == 0}"/>
 <h:outputText value="#{dukesBDay.absAgeDiff}"
 rendered="#{dukesBDay.ageDiff lt 0}"/>
 <h:outputText value=" #{bundle.Year} "
 rendered="#{dukesBDay.ageDiff == -1}"/>
 <h:outputText value=" #{bundle.Years} "
 rendered="#{dukesBDay.ageDiff lt -1}"/>
 <h:outputText value="#{bundle.Younger}"
 rendered="#{dukesBDay.ageDiff lt 0}"/>
 <h:outputText value="#{dukesBDay.absAgeDiff}"
 rendered="#{dukesBDay.ageDiff gt 0}"/>
 <h:outputText value=" #{bundle.Year} "
 rendered="#{dukesBDay.ageDiff == 1}"/>
 <h:outputText value=" #{bundle.Years} "
 rendered="#{dukesBDay.ageDiff gt 1}"/>
 <h:outputText value="#{bundle.Older}"
 rendered="#{dukesBDay.ageDiff gt 0}"/>
 <p/>
 <h:outputText
 value="#{bundle.AverageAge} #{dukesBDay.averageAgeDifference}."/>
 <p/>
 <h:commandButton id="back" value="#{bundle.Back}" action="greeting"/>
 </h:form>
 </h:body>
</html>

For example, the #{bundle.SameAge} string is displayed if the user and Duke have the
same birthday, as specified by the condition #{dukesBDay.ageDiff == 0} in the
rendered attribute. That is, the following string is displayed when the ageDiff
property of DukesBDay equals 0:

You are the same age as Duke!

The form also contains a <h:commandButton> tag that creates a Back button, which
directs the user back to the greeting.xhtml page, as specified in the action attribute.

Table 4–1 Conditional Operator EL Language Alternatives

Logical Condition
Java Programming Language Conditional
Operator EL Alternative

AND && &&

EQUALS == ==

LESS THAN < lt

GREATER THAN > gt
Creating Your Second Web Application 4-9

Modifying the Web Client
4.4.2.5 Add the Form to greeting.xhtml
Add the form that provides the user interface for displaying Duke's age and specifying
the user's birthday.

1. In the Projects tab, double-click greeting.xhtml in the firstcup-war project and,
in the editor window, replace the text between the <h:form> and </h:form> tags
with the following:

 <h2>
 <h:outputText value="#{bundle.Welcome}"/>
 </h2>
 <h:outputText value="#{bundle.DukeIs} "/>
 <h:outputText value="#{dukesBDay.age} #{bundle.YearsOldToday}"/>
 <p/>
 <h:outputText value="#{bundle.Instructions}"/>
 <p/>
 <h:outputText value="#{bundle.YourBD} "/>
 <fc:inputDate id="userBirthday" date="#{dukesBDay.yourBD}" />
 <p/>
 <h:commandButton value="#{bundle.Submit}"
 action="#{dukesBDay.processBirthday}"/>

2. In the editor window, right-click and select Format.

3. From the File menu, select Save.

4.4.2.6 Add the Form to response.html
Add a form that displays the age difference between Duke and the user, displays the
average age difference of all users, and allows the user to navigate back to
greeting.xhtml.

1. In the Projects tab, double-click response.xhtml in the firstcup-war project and,
in the editor window, replace the text between the <h:form> and </h:form> tags
with the following:

 <h:outputText value="#{bundle.YouAre} "/>
 <h:outputText value="#{bundle.SameAge}"
 rendered="#{dukesBDay.ageDiff == 0}"/>
 <h:outputText value="#{dukesBDay.absAgeDiff}"
 rendered="#{DukesBDay.ageDiff lt 0}"/>
 <h:outputText value=" #{bundle.Year} "
 rendered="#{dukesBDay.ageDiff == -1}"/>
 <h:outputText value=" #{bundle.Years} "
 rendered="#{dukesBDay.ageDiff lt -1}"/>
 <h:outputText value="#{bundle.Younger}"
 rendered="#{dukesBDay.ageDiff lt 0}"/>
 <h:outputText value="#{dukesBDay.absAgeDiff}"
 rendered="#{dukesBDay.ageDiff gt 0}"/>
 <h:outputText value=" #{bundle.Year} "
 rendered="#{dukesBDay.ageDiff == 1}"/>
 <h:outputText value=" #{bundle.Years} "
 rendered="#{dukesBDay.ageDiff gt 1}"/>
 <h:outputText value="#{bundle.Older}"
 rendered="#{dukesBDay.ageDiff gt 0}"/>
 <p/>
 <h:outputText
 value="#{bundle.AverageAge} #{dukesBDay.averageAgeDifference}." />
 <p/>
 <h:commandButton id="back" value="#{bundle.Back}" action="greeting"/>
4-10 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

Building, Packaging, Deploying, and Running the firstcup-war Web Application
2. In the editor window, right-click and select Format.

3. From the File menu, select Save.

4.5 Building, Packaging, Deploying, and Running the firstcup-war Web
Application

In this section, you will build the firstcup-war web application, deploy it to the
server, and run the application.

4.5.1 Build, Package, and Deploy the firstcup-war Web Application
Now build and package the DukesBirthdayBean enterprise bean, the FirstcupUser
entity, and the firstcup-war web client into a WAR file, firstcup-war.war, then
deploy it to the server.

1. In the Projects tab, select the firstcup-war project.

2. Right-click firstcup-war and select Run.

After firstcup-war.war deploys successfully to GlassFish Server, a web browser will
load the application URL.

4.5.2 Run the firstcup-war Application
1. On the greeting page, enter your birth date in the Your birthday field. Make sure

you use the date pattern specified on the page: MM/dd/yyyy.

2. Click Submit.

3. After the response.xhtml page is displayed, click Back to return to the
greeting.xhtml page.

4. Enter a different birthday in the text field and click Submit again to see how the
average age of First Cup users changes.
Creating Your Second Web Application 4-11

Building, Packaging, Deploying, and Running the firstcup-war Web Application
4-12 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

5

5Next Steps

This chapter provides additional resources for learning more about enterprise
application architecture, the Java EE platform, and GlassFish Server.

5.1 The Java EE Tutorial
The Java EE Tutorial documents the technologies that make up the Java EE platform.
The Java EE Tutorial describes each piece of the platform in detail, and includes code
examples that demonstrate how to use each piece of the platform.

5.2 More Information on the Java EE Platform
For more information on the Java EE platform, see these resources:

■ The GlassFish project (http://glassfish.java.net/)

■ The Aquarium (http://blogs.oracle.com/theaquarium/), a blog about GlassFish
Server and open-source Java EE projects
Next Steps 5-1

More Information on the Java EE Platform
5-2 Java Platform, Enterprise Edition Your First Cup: An Introduction to the Java EE Platform

