
 

JavaFX
Oracle JavaFX Creating Transitions and Timeline 
Animation in JavaFX 
Release 2.1 
E20468-04

April 2012



JavaFX Creating Transitions and Timeline Animation in JavaFX, Release 2.1 

April 2012

Copyright © 2011,2012 Oracle and/or its affiliates. All rights reserved.

Primary Author:  Dmitry Kostovaorv

Contributing Author:  Andrey Nazarov

This software and related documentation are provided under a license agreement containing restrictions on use and 
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or 
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, 
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or 
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find 
any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of 
the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered 
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the 
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, 
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable 
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set 
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle 
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not 
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of 
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all 
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its 
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their 
respective owners. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC 
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro 
Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services 
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of 
any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be 
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or 
services.



Contents

1 Animation Basics
1.1 Transitions .....................................................................................................................................   1-1
1.1.1 Fade Transition .......................................................................................................................   1-1
1.1.2 Path Transition........................................................................................................................   1-1
1.1.3 Parallel Transition...................................................................................................................   1-2
1.1.4 Sequential Transition ..............................................................................................................   1-3
1.2 Timeline Animation .......................................................................................................................   1-4
1.2.1 Basic Timeline Animation......................................................................................................   1-4
1.2.2 Timeline Events ......................................................................................................................   1-5
1.3 Interpolators ...................................................................................................................................   1-7
1.3.1 Built-in Interpolators ..............................................................................................................   1-7
1.3.2 Custom Interpolators ..............................................................................................................   1-7

2 Tree Animation Example
Figure 2–1Project and Elements.................................................................................................................   2-1
n Grass ..............................................................................................................................................   2-2
n Creating Grass ........................................................................................................................   2-2
Example 2–1Creating Timeline Animation for Grass Movement .............................................................   2-3
Example 2–2Tree .......................................................................................................................................   2-4
Figure 2–4 Branches .................................................................................................................................   2-4
Example 2–4Leaves and Flowers...............................................................................................................   2-6
Example 2–5Animating Tree Elements .....................................................................................................   2-6
Example 2–6 Growing a Tree................................................................................................................   2-6
Example 2–9 Creating Tree Crown Movement.....................................................................................   2-7
Example 2–10 Animating Season Change ..............................................................................................   2-8
iii



iv



Part I
Part I About This Document

This document contains information that you can use to create animation in JavaFX.

Animation Basics provides basic animation concepts and contains the following parts:

n Transitions

n Timeline Animation

n Interpolators

The Tree Animation Example chapter contains a description of the Tree Animation sample and 
provides some tips and tricks about animation in JavaFX.





1

Animation Basics 1-1

1Animation Basics

Animation in JavaFX can be divided into timeline animation and transitions. This chapter 
provides examples of each animation type.

n Transitions

n Timeline Animation

n Interpolators

Timeline and Transition are subclasses of the javafx.animation.Animation class. For 
more information about particular classes, methods, or additional features, see the API 
documentation.

1.1 Transitions
Transitions in JavaFX provide the means to incorporate animations in an internal timeline. 
Transitions can be composed to create multiple animations that are executed in parallel or 
sequentially. See the Parallel Transition and Sequential Transition sections for details. The 
following sections provide some transition animation examples.

1.1.1 Fade Transition
A fade transition changes the opacity of a node over a given time.

Example 1–1 shows a code snippet for a fade transition that is applied to a rectangle. First a 
rectangle with rounded corners is created, and then a fade transition is applied to it.

Example 1–1 Fade Transition
final Rectangle rect1 = new Rectangle(10, 10, 100, 100);
rect1.setArcHeight(20);
rect1.setArcWidth(20);
rect1.setFill(Color.RED);
...
FadeTransition ft = new FadeTransition(Duration.millis(3000), rect1);
ft.setFromValue(1.0);
ft.setToValue(0.1);
ft.setCycleCount(Timeline.INDEFINITE);
ft.setAutoReverse(true);
ft.play();

1.1.2 Path Transition
A path transition moves a node along a path from one end to the other over a given time.



Transitions

1-2 Oracle JavaFX Creating Transitions and Timeline Animation in JavaFX

Figure 1–1 Path Transition

Example 1–2 shows a code snippet for a path transition that is applied to a rectangle. The 
animation is reversed when the rectangle reaches the end of the path. In code, first a rectangle 
with rounded corners is created, and then a new path animation is created and applied to the 
rectangle.

Example 1–2 Path Transition
final Rectangle rectPath = new Rectangle (0, 0, 40, 40);
rectPath.setArcHeight(10);
rectPath.setArcWidth(10);
rectPath.setFill(Color.ORANGE);
...
Path path = new Path();
path.getElements().add(new MoveTo(20,20));
path.getElements().add(new CubicCurveTo(380, 0, 380, 120, 200, 120));
path.getElements().add(new CubicCurveTo(0, 120, 0, 240, 380, 240));
PathTransition pathTransition = new PathTransition();
pathTransition.setDuration(Duration.millis(4000));
pathTransition.setPath(path);
pathTransition.setNode(rectPath);
pathTransition.setOrientation(PathTransition.OrientationType.ORTHOGONAL_TO_
TANGENT);
pathTransition.setCycleCount(Timeline.INDEFINITE);
pathTransition.setAutoReverse(true);
pathTransition.play();

1.1.3 Parallel Transition
A parallel transition executes several transitions simultaneously.

Example 1–3 shows the code snippet for the parallel transition that executes fade, translate, 
rotate, and scale transitions applied to a rectangle.

Figure 1–2 Parallel Transition

Example 1–3 Parallel Transition
Rectangle rectParallel = new Rectangle(10,200,50, 50);



Transitions

Animation Basics 1-3

rectParallel.setArcHeight(15);
rectParallel.setArcWidth(15);
rectParallel.setFill(Color.DARKBLUE);
rectParallel.setTranslateX(50);
rectParallel.setTranslateY(75);
...
        FadeTransition fadeTransition = 
            new FadeTransition(Duration.millis(3000), rectParallel);
        fadeTransition.setFromValue(1.0f);
        fadeTransition.setToValue(0.3f);
        fadeTransition.setCycleCount(2);
        fadeTransition.setAutoReverse(true);
        TranslateTransition translateTransition =
            new TranslateTransition(Duration.millis(2000), rectParallel);
        translateTransition.setFromX(50);
        translateTransition.setToX(350);
        translateTransition.setCycleCount(2);
        translateTransition.setAutoReverse(true);
        RotateTransition rotateTransition = 
            new RotateTransition(Duration.millis(3000), rectParallel);
        rotateTransition.setByAngle(180f);
        rotateTransition.setCycleCount(4);
        rotateTransition.setAutoReverse(true);
        ScaleTransition scaleTransition = 
            new ScaleTransition(Duration.millis(2000), rectParallel);
        scaleTransition.setToX(2f);
        scaleTransition.setToY(2f);
        scaleTransition.setCycleCount(2);
        scaleTransition.setAutoReverse(true);
        
        parallelTransition = new ParallelTransition();
        parallelTransition.getChildren().addAll(
                fadeTransition,
                translateTransition,
                rotateTransition,
                scaleTransition
        );
        parallelTransition.setCycleCount(Timeline.INDEFINITE);
        parallelTransition.play();

1.1.4 Sequential Transition
A sequential transition executes several transitions one after another.

Example 1–4 shows the code for the sequential transition that executes one after another.  Fade, 
translate, rotate, and scale transitions that are applied to a rectangle.

Example 1–4 Sequential Transition
Rectangle rectSeq = new Rectangle(25,25,50,50);
rectSeq.setArcHeight(15);
rectSeq.setArcWidth(15);
rectSeq.setFill(Color.CRIMSON);
rectSeq.setTranslateX(50);
rectSeq.setTranslateY(50);

...

         FadeTransition fadeTransition = 
            new FadeTransition(Duration.millis(1000), rectSeq);



Timeline Animation

1-4 Oracle JavaFX Creating Transitions and Timeline Animation in JavaFX

        fadeTransition.setFromValue(1.0f);
        fadeTransition.setToValue(0.3f);
        fadeTransition.setCycleCount(1);
        fadeTransition.setAutoReverse(true);
 
        TranslateTransition translateTransition =
            new TranslateTransition(Duration.millis(2000), rectSeq);
        translateTransition.setFromX(50);
        translateTransition.setToX(375);
        translateTransition.setCycleCount(1);
        translateTransition.setAutoReverse(true);
 
        RotateTransition rotateTransition = 
            new RotateTransition(Duration.millis(2000), rectSeq);
        rotateTransition.setByAngle(180f);
        rotateTransition.setCycleCount(4);
        rotateTransition.setAutoReverse(true);
 
        ScaleTransition scaleTransition = 
            new ScaleTransition(Duration.millis(2000), rectSeq);
        scaleTransition.setFromX(1);
        scaleTransition.setFromY(1);
        scaleTransition.setToX(2);
        scaleTransition.setToY(2);
        scaleTransition.setCycleCount(1);
        scaleTransition.setAutoReverse(true);

sequentialTransition = new SequentialTransition();
sequentialTransition.getChildren().addAll(
        fadeTransition,
        translateTransition,
        rotateTransition,
        scaleTransition);
sequentialTransition.setCycleCount(Timeline.INDEFINITE);
sequentialTransition.setAutoReverse(true);

sequentialTransition.play();

For more information about animation and transitions, see the API documentation and the 
Animation section in the Ensemble project in the SDK.

1.2 Timeline Animation
An animation is driven by its associated properties, such as size, location, and color etc. 
Timeline provides the capability to update the property values along the progression of time. 
JavaFX supports key frame animation. In key frame animation, the animated state transitions of 
the graphical scene are declared by start and end snapshots (key frames) of the state of the 
scene at certain times. The system can automatically perform the animation. It can stop, pause, 
resume, reverse, or repeat movement when requested.

1.2.1 Basic Timeline Animation
The code in Example 1–5 animates a rectangle horizontally and moves it from its original 
position X=100 to X=300 in 500 ms. To animate an object horizontally, alter the x-coordinates 
and leave the y-coordinates unchanged.



Timeline Animation

Animation Basics 1-5

Figure 1–3 Horizontal Movement

Example 1–5 shows the code snippet for the basic timeline animation.

Example 1–5 Timeline Animation
final Rectangle rectBasicTimeline = new Rectangle(100, 50, 100, 50);
rectBasicTimeline.setFill(Color.RED);
...
final Timeline timeline = new Timeline();
timeline.setCycleCount(Timeline.INDEFINITE);
timeline.setAutoReverse(true);
final KeyValue kv = new KeyValue(rectBasicTimeline.xProperty(), 300);
final KeyFrame kf = new KeyFrame(Duration.millis(500), kv);
timeline.getKeyFrames().add(kf);
timeline.play();

1.2.2 Timeline Events
JavaFX provides the means to incorporate events that can be triggered during the timeline play. 
The code in Example 1–6 changes the radius of the circle in the specified range, and KeyFrame 
triggers the random transition of the circle in the x-coordinate of the scene.

Example 1–6 Timeline Events
import javafx.application.Application;
import javafx.stage.Stage;
import javafx.animation.AnimationTimer;
import javafx.animation.KeyFrame;
import javafx.animation.KeyValue;
import javafx.animation.Timeline;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.effect.Lighting;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.text.Text;
import javafx.util.Duration;
 
public class TimelineEvents extends Application {
    
    //main timeline
    private Timeline timeline;
    private AnimationTimer timer;
 
    //variable for storing actual frame
    private Integer i=0;
 
    @Override public void start(Stage stage) {



Timeline Animation

1-6 Oracle JavaFX Creating Transitions and Timeline Animation in JavaFX

        Group p = new Group();
        Scene scene = new Scene(p);
        stage.setScene(scene);
        stage.setWidth(500);
        stage.setHeight(500);
        p.setTranslateX(80);
        p.setTranslateY(80);
 
        //create a circle with effect
        final Circle circle = new Circle(20,  Color.rgb(156,216,255));
        circle.setEffect(new Lighting());
        //create a text inside a circle
        final Text text = new Text (i.toString());
        text.setStroke(Color.BLACK);
        //create a layout for circle with text inside
        final StackPane stack = new StackPane();
        stack.getChildren().addAll(circle, text);
        stack.setLayoutX(30);
        stack.setLayoutY(30);
 
        p.getChildren().add(stack);
        stage.show();
 
        //create a timeline for moving the circle
        timeline = new Timeline();
        timeline.setCycleCount(Timeline.INDEFINITE);
        timeline.setAutoReverse(true);
 
//You can add a specific action when each frame is started.
        timer = new AnimationTimer() {
            @Override
            public void handle(long l) {
                text.setText(i.toString());
                i++;
            }
 
        };
 
        //create a keyValue with factory: scaling the circle 2times
        KeyValue keyValueX = new KeyValue(stack.scaleXProperty(), 2);
        KeyValue keyValueY = new KeyValue(stack.scaleYProperty(), 2);
 
        //create a keyFrame, the keyValue is reached at time 2s
        Duration duration = Duration.millis(2000);
        //one can add a specific action when the keyframe is reached
        EventHandler onFinished = new EventHandler<ActionEvent>() {
            public void handle(ActionEvent t) {
                 stack.setTranslateX(java.lang.Math.random()*200-100);
                 //reset counter
                 i = 0;
            }
        };
 
  KeyFrame keyFrame = new KeyFrame(duration, onFinished , keyValueX, keyValueY);
 
        //add the keyframe to the timeline
        timeline.getKeyFrames().add(keyFrame);
 
        timeline.play();
        timer.start();



Interpolators

Animation Basics 1-7

    }
        
        
    public static void main(String[] args) {
        Application.launch(args);
    }
  } 

1.3 Interpolators
Interpolation defines positions of the object between the start and end points of the movement. 
You can use various built-in implementations of the Interpolator class or you can implement 
your own Interpolator to achieve custom interpolation behavior.

1.3.1 Built-in Interpolators
JavaFX provides several built-in interpolators that you can use to create different effects in your 
animation. By default, JavaFX uses linear interpolation to calculate the coordinates.

Example 1–7 shows a code snippet where the EASE_BOTH interpolator instance is added to 
the KeyValue in the basic timeline animation. This interpolator creates a spring effect when the 
object reaches its start point and its end point.

Example 1–7 Built-in Interpolator
final Rectangle rectBasicTimeline = new Rectangle(100, 50, 100, 50);
rectBasicTimeline.setFill(Color.BROWN);
...
final Timeline timeline = new Timeline();
timeline.setCycleCount(Timeline.INDEFINITE);
timeline.setAutoReverse(true);
final KeyValue kv = new KeyValue(rectBasicTimeline.xProperty(), 300,
 Interpolator.EASE_BOTH);
final KeyFrame kf = new KeyFrame(Duration.millis(500), kv);
timeline.getKeyFrames().add(kf);
timeline.play();

1.3.2 Custom Interpolators
Apart from built-in interpolators, you can implement your own interpolator to achieve custom 
interpolation behavior. A custom interpolator example consists of two java files. Example 1–8 
shows a custom interpolator that is used to calculate the y-coordinate for the animation. 
Example 1–9 shows the code snippet of the animation where the  
AnimationBooleanInterpolator is used.

Example 1–8 Custom Interpolator
public class AnimationBooleanInterpolator extends Interpolator {
    @Override
    protected double curve(double t) {
        return Math.abs(0.5-t)*2 ;
    }
}

Example 1–9 Animation with Custom Interpolator

 final KeyValue keyValue1 = new KeyValue(rect.xProperty(), 300);
 AnimationBooleanInterpolator yInterp = new AnimationBooleanInterpolator();



Interpolators

1-8 Oracle JavaFX Creating Transitions and Timeline Animation in JavaFX

 final KeyValue keyValue2 = new KeyValue(rect.yProperty(), 0., yInterp);



2

Tree Animation Example 2-1

2Tree Animation Example

This chapter provides details about the Tree Animation example. You will learn how all the 
elements on the scene were created and animated. Figure 2–1 shows the scene with a tree.

Figure 2–1 Tree Animation

Project and Elements
The Tree Animation project consists of several files. Each element, like leaves, grass blades, 
and others are created in separate classes. TreeGenerator class creates a tree from all the 
elements. Animator class contains all animation except grass animation that resides in the 
GrassWindAnimation class.

The scene in the example contains the following elements:

n Tree with branches, leaves, and flowers

n Grass

Each element is animated in its own fashion. Some animations run in parallel, and others run 
sequentially. The tree-growing animation is run only once, whereas the season-change 
animation is set to run infinitely.



Grass

2-2 Oracle JavaFX Creating Transitions and Timeline Animation in JavaFX

Figure 2–2 Animation Timeline

The season-change animation includes the following parts: 

n Leaves and flowers appear on the tree

n Flower petals fall and disappear

n Leaves and grass change color

n Leaves fall to the ground and disappear

Grass
This section describes how the grass is created and animated.

Creating Grass
In the Tree Animation example, the grass, shown in Figure 2–3 consists of separate grass 
blades, each of which is created using Path and added to the list. Each blade is then curved and 
colored. An algorithm is used to randomize the height, curve, and color of the blades, and to 
distribute the blades on the "ground." You can specify the number of blades and the size of the 
"ground" covered with grass.

Figure 2–3 Grass

Example 2–1 Creating a Grass Blade
public class Blade extends Path {
 
    public final Color SPRING_COLOR = Color.color(random() * 0.5, random() * 0.5 
 + 0.5, 0.).darker();
    public final Color AUTUMN_COLOR = Color.color(random() * 0.4 + 0.3, random() 
 * 0.1 + 0.4, random() * 0.2);
    private final static double width = 3;
    private double x = RandomUtil.getRandom(170);
    private double y = RandomUtil.getRandom(20) + 20;
    private double h = (50 * 1.5 - y / 2) * RandomUtil.getRandom(0.3);
    public SimpleDoubleProperty phase = new SimpleDoubleProperty();
 
    public Blade() {
 



Grass

Tree Animation Example 2-3

        getElements().add(new MoveTo(0, 0));
        final QuadCurveTo curve1;
        final QuadCurveTo curve2;
        getElements().add(curve1 = new QuadCurveTo(-10, h, h / 4, h));
        getElements().add(curve2 = new QuadCurveTo(-10, h, width, 0));
 
        setFill(AUTUMN_COLOR); //autumn color of blade
        setStroke(null);
 
        getTransforms().addAll(Transform.translate(x, y));
 
        curve1.yProperty().bind(new DoubleBinding() {
 
            {
                super.bind(curve1.xProperty());
            }
 
            @Override
            protected double computeValue() {
 
                final double xx0 = curve1.xProperty().get();
                return Math.sqrt(h * h - xx0 * xx0);
            }
        }); //path of top of blade is circle
 
        //code to bend blade
        curve1.controlYProperty().bind(curve1.yProperty().add(-h / 4));
        curve2.controlYProperty().bind(curve1.yProperty().add(-h / 4));
 
        curve1.xProperty().bind(new DoubleBinding() {
 
            final double rand = RandomUtil.getRandom(PI / 4);
 
            {
                super.bind(phase);
            }
 
            @Override
            protected double computeValue() {
                return (h / 4) + ((cos(phase.get() + (x + 400.) * PI / 1600 + 
 rand) + 1) / 2.) * (-3. / 4) * h;
            }
        });
    }
}

Creating Timeline Animation for Grass Movement
Timeline animation that changes the x-coordinate of the top of the blade is used to create grass 
movement.

Several algorithms are used to make the movement look natural. For example, the top of each 
blade is moved in a circle instead of a straight line, and side curve of the blade make the blade 
look as if it bends under the wind. Random numbers are added to separate each blade 
movement.

Example 2–2 Grass Animation
class GrassWindAnimation extends Transition {
 



Tree

2-4 Oracle JavaFX Creating Transitions and Timeline Animation in JavaFX

    final private Duration animationTime = Duration.seconds(3);
    final private DoubleProperty phase = new SimpleDoubleProperty(0);
    final private Timeline tl = new Timeline(Animation.INDEFINITE);
 
    public GrassWindAnimation(List<Blade> blades) {
 
        setCycleCount(Animation.INDEFINITE);
        setInterpolator(Interpolator.LINEAR);
        setCycleDuration(animationTime);
        for (Blade blade : blades) {
            blade.phase.bind(phase);
        }
    }
 
    @Override
    protected void interpolate(double frac) {
        phase.set(frac * 2 * PI);
    }
}

Tree
This section explains how the tree shown in Figure 2–4 is created and animated.

Figure 2–4 Tree

Branches
The tree consists of branches, leaves, and flowers. Leaves and flowers are drawn on the top 
branches of the tree. Each branch generation consists of three branches (one top and two side 
branches) drawn from a parent branch. You can specify the number of generations in the code 
using the NUMBER_OF_BRANCH_GENERATIONS passed in the constructor of TreeGenerator in the 
Main class. Example 2–3 shows the code in the TreeGenerator class that creates the trunk of the 
tree (or the root branch) and adds three branches for the following generations.



Tree

Tree Animation Example 2-5

Example 2–3 Root Branch
    private List<Branch> generateBranches(Branch parentBranch, int depth) {
        List<Branch> branches = new ArrayList<>();
        if (parentBranch == null) { // add root branch
            branches.add(new Branch());
        } else {
            if (parentBranch.length < 10) {
                return Collections.emptyList();
            }
            branches.add(new Branch(parentBranch, Type.LEFT, depth));
            branches.add(new Branch(parentBranch, Type.RIGHT, depth));
            branches.add(new Branch(parentBranch, Type.TOP, depth));
        }
 
        return branches;
    }
To make the tree look more natural, each child generation branch is grown at an angle to the 
parent branch, and each child branch is smaller than its parent. The child angle is calculated 
using random values. Example 2–4 provides a code for creating child branches.

Example 2–4 Child Branches
    public Branch(Branch parentBranch, Type type, int depth) {
        this();
        SimpleDoubleProperty locAngle = new SimpleDoubleProperty(0);
        globalAngle.bind(locAngle.add(parentBranch.globalAngle.get()));
        double transY = 0;
        switch (type) {
            case TOP:
                transY = parentBranch.length;
                length = parentBranch.length * 0.8;
                locAngle.set(getRandom(10));
                break;
            case LEFT:
            case RIGHT:
                transY = parentBranch.length - getGaussianRandom(0, 
 parentBranch.length, parentBranch.length / 10, parentBranch.length / 10);
                locAngle.set(getGaussianRandom(35, 10) * (Type.LEFT == type ? 1 : 
 -1));
                if ((0 > globalAngle.get() || globalAngle.get() > 180) && depth < 
 4) {
                    length = parentBranch.length * getGaussianRandom(0.3, 0.1);
                } else {
                    length = parentBranch.length * 0.6;
                }
                break;
        }
        setTranslateY(transY);
        getTransforms().add(new Rotate(locAngle.get(), 0, 0));
        globalH = getTranslateY() * cos(PI / 2 - parentBranch.globalAngle.get() * 
 PI / 180) + parentBranch.globalH;
        setBranchStyle(depth);
        addChildToParent(parentBranch, this);
    }



Tree

2-6 Oracle JavaFX Creating Transitions and Timeline Animation in JavaFX

Leaves and Flowers
Leaves are created on top branches. Because the leaves are created at the same time as the 
branches of the tree, leaves are scaled to 0 by leaf.setScaleX(0) and leaf.setScaleY(0) 
to hide them before the tree is grown as shown in the Example 2–5. The same trick is used to 
hide the leaves when they fall. To create a more natural look, leaves have slightly different 
shades of green. Also, the leaf color changes depending on the location of the leaf; the darker 
shades are applied to the leaves located below the middle of the tree crown.

Example 2–5 Leaf Shape and Placement
public class Leaf extends Ellipse {
 
    public final Color AUTUMN_COLOR;
    private final int N = 5;
    private List<Ellipse> petals = new ArrayList<>(2 * N + 1);
 
    public Leaf(Branch parentBranch) {
        super(0, parentBranch.length / 2., 2, parentBranch.length / 2.);
        setScaleX(0);
        setScaleY(0);
 
        double rand = random() * 0.5 + 0.3;
        AUTUMN_COLOR = Color.color(random() * 0.1 + 0.8, rand, rand / 2);
 
        Color color = new Color(random() * 0.5, random() * 0.5 + 0.5, 0, 1);
        if (parentBranch.globalH < 400 && random() < 0.8) { //bottom leaf is 
darker
            color = color.darker();
        }
        setFill(color);
    }
}
Flowers are created in the Flower class and then added to the top branches of the tree in the 
TreeGenerator class. You can specify the number of petals in a flower. Petals are ellipses 
distributed in a circle with some overlapping. Similar to grass and leaves, the flower petals are 
colored in different shades of pink. 

Animating Tree Elements
This section explains techniques employed in the Tree Animation example to animate the tree 
and season change. Parallel transition is used to start all the animations in the scene as shown in 
Example 2–6.

Example 2–6 Main Animation
final Transition all = new ParallelTransition(new GrassWindAnimation(grass),
treeWindAnimation, new SequentialTransition(branchGrowingAnimation,
seasonsAnimation(tree, grass)));
        all.play();

Growing a Tree
Tree growing animation is run only once, at the beginning of the Tree Animation example. The 
application starts a sequential transition animation to grow branches one generation after 
another as shown in Example 2–7. Initially length is set to 0. The root branch size and angle are 
specified in the TreeGenerator class. Currently each generation is grown during two seconds.



Tree

Tree Animation Example 2-7

Example 2–7 Sequential Transition to Start Branch Growing Animation
SequentialTransition branchGrowingAnimation = new SequentialTransition();
The code in Example 2–8 creates the Tree growing animation:

Example 2–8 Branch Growing Animation
    private Animation animateBranchGrowing(List<Branch> branchGeneration, int
 depth, Duration duration) {
 
       ParallelTransition sameDepthBranchAnimation = new ParallelTransition();
       for (final Branch branch : branchGeneration) {
         Timeline branchGrowingAnimation = new Timeline(new KeyFrame(duration,
 new KeyValue(branch.base.endYProperty(), branch.length)));
            sameDepthBranchAnimation.getChildren().add(
                    new SequentialTransition(
PauseTransitionBuilder.create().duration(Duration.ONE).onFinished(new
 EventHandler<ActionEvent>() {
 
                @Override
                public void handle(ActionEvent t) {
                    branch.base.setStrokeWidth(branch.length / 25);
                }
            }).build(),
                    branchGrowingAnimation));
 
        }
        return sameDepthBranchAnimation;
 
    }
Because all the branch lines are calculated and created simultaneously, they could appear on the 
scene as dots. The code introduces a few tricks to hide the lines before they grow. In Example 
the code duration.one millisecond pauses transition for an unnoticeable time. In the 
Example 2–9, the base.setStrokeWidth(0) code sets branches width to 0 before the grow 
animation starts for each generation.

Example 2–9 Tree Growing Animation Optimization
    private void setBranchStyle(int depth) {
        base.setStroke(Color.color(0.4, 0.1, 0.1, 1));
 
        if (depth < 5) { 
            base.setStrokeLineJoin(StrokeLineJoin.ROUND);
            base.setStrokeLineCap(StrokeLineCap.ROUND);
        }
        base.setStrokeWidth(0); 
    }
}

Creating Tree Crown Movement
In parallel with growing a tree, wind animation starts. Tree branches, leaves, and flowers are 
moving together.

Tree wind animation is similar to grass movement animation, but it is simpler because only the 
angle of the branches changes. To make the tree movement look natural, the bend angle is 
different for different branch generations. The higher the generation of the branch (that is the 
smaller the branch), the more it bends. Example 2–10 provides code for wind animation.



Tree

2-8 Oracle JavaFX Creating Transitions and Timeline Animation in JavaFX

Example 2–10 Wind Animation
    private Animation animateTreeWind(List<Branch> branchGeneration, int depth,
 Duration duration) {
     ParallelTransition wind = new ParallelTransition();
     for (final Branch brunch : branchGeneration) {
        final Rotate rotation = new Rotate(0);
        brunch.getTransforms().add(rotation);
wind.getChildren().add(TimelineBuilder.create().keyFrames(new KeyFrame(duration,
new KeyValue(rotation.angleProperty(), depth *
 2))).autoReverse(true).cycleCount(Animation.INDEFINITE).build());
        }
        return wind;
    }

Animating Season Change
Season-change animation actually starts after the tree has grown, and runû infinitely. The code 
in Example 2–11 calls all the season animations:

Example 2–11 Starting Season Animation
private Transition seasonsAnimation(final Tree tree, final List<Blade> grass) {
 
        Transition spring = animateSpring(tree.leafage, grass);
        Transition flowers = animateFlowers(tree.flowers);
        Transition autumn = animateAutumn(tree.leafage, grass);
        return SequentialTransitionBuilder.create().children(spring, flowers,
 autumn).cycleCount(Animation.INDEFINITE).build();
    }
 
    private Transition animateSpring(List<Leaf> leafage, List<Blade> grass) {
        ParallelTransition springAnimation = new ParallelTransition();
        for (final Blade blade : grass) {
springAnimation.getChildren().add(FillTransitionBuilder.create().shape(blade).
toValue(blade.SPRING_COLOR).duration(GRASS_BECOME_GREEN_DURATION).build());
        }
        for (Leaf leaf : leafage) {
springAnimation.getChildren().add(ScaleTransitionBuilder.create().toX(1).
toY(1).node(leaf).duration(LEAF_APPEARING_DURATION).build());
        }
        return springAnimation;
    }
Once all the tree branches are grown, leaves start to appear as directed in Example 2–12.

Example 2–12 Parallel Transition to Start Spring Animation and Show Leaves
    private Transition animateSpring(List<Leaf> leafage, List<Blade> grass) {
        ParallelTransition springAnimation = new ParallelTransition();
        for (final Blade blade : grass) {
springAnimation.getChildren().add(FillTransitionBuilder.create().shape(blade).
toValue(blade.SPRING_COLOR).duration(GRASS_BECOME_GREEN_DURATION).build());
        }
        for (Leaf leaf : leafage) {
springAnimation.getChildren().add(ScaleTransitionBuilder.create().toX(1).toY(1).
node(leaf).duration(LEAF_APPEARING_DURATION).build());
        }
        return springAnimation;
    }



Tree

Tree Animation Example 2-9

When all leaves are visible, flowers start to appear as shown in Example 2–13. The sequential 
transition is used to show flowers gradually. The delay in flower appearance is set in the 
sequential transition code of Example 2–13. Flowers appear only in the tree crown.

Example 2–13 Showing Flowers
    private Transition animateFlowers(List<Flower> flowers) {
 
        ParallelTransition flowersAppearAndFallDown = new ParallelTransition();
 
        for (int i = 0; i < flowers.size(); i++) {
            final Flower flower = flowers.get(i);
            for (Ellipse pental : flower.getPetals()) {
          flowersAppearAndFallDown.getChildren().add(new SequentialTransition(
                        FadeTransitionBuilder.create().delay(FLOWER_APPEARING_
DURATION.divide(3).multiply(i + 1)).duration(FLOWER_APPEARING_
DURATION).node(pental).toValue(1).build(),
                        fakeFallDownAnimation(pental)));
            }
        }
        return flowersAppearAndFallDown;
    }
Once all the flowers appear on the screen, their petals start to fall. In the code in Example 2–14 
the flowers are duplicated and the first set of them is hidden to show it later.

Example 2–14 Duplicating Petals
    private Ellipse copyEllipse(Ellipse petalOld, Color color) {
        Ellipse ellipse = new Ellipse();
        ellipse.setRadiusX(petalOld.getRadiusX());
        ellipse.setRadiusY(petalOld.getRadiusY());
        if (color == null) {
            ellipse.setFill(petalOld.getFill());
        } else {
            ellipse.setFill(color);
        }
        ellipse.setRotate(petalOld.getRotate());
        ellipse.setOpacity(0);
        return ellipse;
    }
Copied flower petals start to fall to the ground one by one as shown in Example 2–15. The 
petals disappear after five seconds on the ground. The fall trajectory of a petal is not a straight 
line, but rather a calculated sine curve, so that petals seem to be whirling as they fall.

Example 2–15 Shedding Flowers
           Animation fakeLeafageDown = fakeFallDownEllipseAnimation((Ellipse)
 leaf, leaf.AUTUMN_COLOR, new HideMethod() {
 
                @Override
                public void hide(Node node) {
                    node.setScaleX(0);
                    node.setScaleY(0);
                }
            });
The next season change starts when all the flowers disappear from the scene. The leaves and 
grass become yellow, and the leaves fall and disappear. The same algorithm used in 
Example 2–15 to make the flower petals fall is used to show falling leaves. The code in 
Example 2–16 enables autumn animation.



Tree

2-10 Oracle JavaFX Creating Transitions and Timeline Animation in JavaFX

Example 2–16 Animating Autumn Changes
    private Transition animateAutumn(List<Leaf> leafage, List<Blade> grass) {
        ParallelTransition autumn = new ParallelTransition();
 
        ParallelTransition yellowLeafage = new ParallelTransition();
        ParallelTransition dissappearLeafage = new ParallelTransition();
 
        for (final Leaf leaf : leafage) {
 
            final FillTransition toYellow =
 FillTransitionBuilder.create().shape(leaf).toValue(leaf.AUTUMN
_COLOR).duration(LEAF_BECOME_YELLOW_DURATION).build();
            yellowLeafage.getChildren().add(toYellow);
 
            Animation fakeLeafageDown = fakeFallDownEllipseAnimation((Ellipse)
 leaf, leaf.AUTUMN_COLOR, new HideMethod() {
 
                @Override
                public void hide(Node node) {
                    node.setScaleX(0);
                    node.setScaleY(0);
                }
            });
            dissappearLeafage.getChildren().add(new SequentialTransition(
                    fakeLeafageDown,
                    FillTransitionBuilder.create().shape(leaf).toValue((Color)
 leaf.getFill()).duration(Duration.ONE).build()));
        }
 
    ParallelTransition grassBecomeYellowAnimation = new ParallelTransition();
        for (final Blade blade : grass) {
            final FillTransition toYellow =
 FillTransitionBuilder.create().shape(blade).toValue(blade.AUTUMN_
COLOR).delay(Duration.seconds(1 * random())).duration(GRASS_BECOME_YELLOW_
DURATION).build();
            grassBecomeYellowAnimation.getChildren().add(toYellow);
        }
 
        autumn.getChildren().addAll(grassBecomeYellowAnimation, new
 SequentialTransition(yellowLeafage, dissappearLeafage));
        return autumn;
    }
After all leaves disappear from the ground, spring animation starts by coloring grass in green 
and showing leaves.


	Contents
	1 Animation Basics
	2 Tree Animation Example
	Part I About This Document
	1 Animation Basics
	1.1 Transitions
	1.1.1 Fade Transition
	1.1.2 Path Transition
	1.1.3 Parallel Transition
	1.1.4 Sequential Transition

	1.2 Timeline Animation
	1.2.1 Basic Timeline Animation
	1.2.2 Timeline Events

	1.3 Interpolators
	1.3.1 Built-in Interpolators
	1.3.2 Custom Interpolators


	2 Tree Animation Example
	Project and Elements
	Grass
	Creating Grass
	Creating Timeline Animation for Grass Movement

	Tree
	Branches
	Leaves and Flowers
	Animating Tree Elements
	Growing a Tree
	Creating Tree Crown Movement
	Animating Season Change




