

JavaFX
Working with Canvas

Release 2.2

E36205-02

April 2013

JavaFX/Working with Canvas, Release 2.2

E36205-02

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Scott Hommel

Contributing Author: Jim Graham

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

1 Working with Canvas

Overview .. 1-1
Drawing Basic Shapes ... 1-1
Applying Gradients and Shadows.. 1-2
Interacting with the User .. 1-4
Creating a Simple Layer System ... 1-6

iv

1

Working with Canvas 1-1

1Working with Canvas

This tutorial explores the JavaFX Canvas API, featuring code examples that you can
compile and run. Use the links at the right of the page to download the examples as
NetBeans IDE projects.

Overview
The JavaFX Canvas API provides a custom texture that you can write to. It is defined
by classes Canvas, CanvasBuilder, and GraphicsContext in the javafx.scene.canvas
package. Using this API involves creating a Canvas object, obtaining its
GraphicsContext, and invoking drawing operations to render your custom shapes on
screen. Because the Canvas is a Node subclass, it can be used in the JavaFX scene graph.

Drawing Basic Shapes
The BasicOpsTest project (shown in Figure 1–1) creates a Canvas, obtains its
GraphicsContext, and draws some basic shapes to it. Lines, ovals, round rectangles,
arcs, and polygons are all possible using methods of the GraphicsContext class.

Figure 1–1 Drawing Shapes on a Canvas

Example 1–1 Drawing Some Basic Shapes on a Canvas

package canvastest;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;

Applying Gradients and Shadows

1-2 Oracle JavaFX/Working with Canvas

import javafx.scene.canvas.GraphicsContext;
import javafx.scene.paint.Color;
import javafx.scene.shape.ArcType;
import javafx.stage.Stage;

public class BasicOpsTest extends Application {

 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Drawing Operations Test");
 Group root = new Group();
 Canvas canvas = new Canvas(300, 250);
 GraphicsContext gc = canvas.getGraphicsContext2D();
 drawShapes(gc);
 root.getChildren().add(canvas);
 primaryStage.setScene(new Scene(root));
 primaryStage.show();
 }

 private void drawShapes(GraphicsContext gc) {
 gc.setFill(Color.GREEN);
 gc.setStroke(Color.BLUE);
 gc.setLineWidth(5);
 gc.strokeLine(40, 10, 10, 40);
 gc.fillOval(10, 60, 30, 30);
 gc.strokeOval(60, 60, 30, 30);
 gc.fillRoundRect(110, 60, 30, 30, 10, 10);
 gc.strokeRoundRect(160, 60, 30, 30, 10, 10);
 gc.fillArc(10, 110, 30, 30, 45, 240, ArcType.OPEN);
 gc.fillArc(60, 110, 30, 30, 45, 240, ArcType.CHORD);
 gc.fillArc(110, 110, 30, 30, 45, 240, ArcType.ROUND);
 gc.strokeArc(10, 160, 30, 30, 45, 240, ArcType.OPEN);
 gc.strokeArc(60, 160, 30, 30, 45, 240, ArcType.CHORD);
 gc.strokeArc(110, 160, 30, 30, 45, 240, ArcType.ROUND);
 gc.fillPolygon(new double[]{10, 40, 10, 40},
 new double[]{210, 210, 240, 240}, 4);
 gc.strokePolygon(new double[]{60, 90, 60, 90},
 new double[]{210, 210, 240, 240}, 4);
 gc.strokePolyline(new double[]{110, 140, 110, 140},
 new double[]{210, 210, 240, 240}, 4);
 }
}
As shown in Example 1–1, the Canvas is instantiated with a width of 300 and a height
of 250. Its GraphicsContext is then obtained with a call to
canvas.getGraphicsContext2D(). After that, a number of basic drawing operations
are carried out by invoking methods such as strokeLine, fillOval, strokeArc, and
fillPolygon.

Applying Gradients and Shadows
The next example (CanvasTest project) tests more of the GraphicsContext methods by
drawing a custom shape, along with some gradients and shadows. The final result
appears as shown in Figure 1–2.

Applying Gradients and Shadows

Working with Canvas 1-3

Figure 1–2 Drawing Shapes, Gradients, and Shadows

The code for this example is organized so that each drawing operation is carried out in
its own private method. This allows you to test out different features by simply
invoking (or commenting out) the methods of interest. Just keep in mind that in terms
of learning the Canvas API, the code to focus on is the underlying calls to the Canvas or
GraphicsContext objects.

There are five main parts to this pattern.

First, the position of the Canvas is set at coordinates(0,0). This is done by invoking the
code in Example 1–2, which applies a translation transformation to the underlying
Canvas object.

Example 1–2 Moving the Canvas

private void moveCanvas(int x, int y) {
 canvas.setTranslateX(x);
 canvas.setTranslateY(y);
}

You can pass in other values as parameters to move the Canvas to a new location. The
values that you pass in will be forwarded to the setTranslateX and setTranslateY
methods, and the Canvas will move accordingly.

Next, the primary shape (which looks like the capital letter "D") is drawn on screen.
This is done with a bezier curve, invoked through the bezierCurveTo method of the
GraphicsContecxt object.

Example 1–3 Drawing a Bezier Curve (Capital "D") On Screen

private void drawDShape() {
 gc.beginPath();
 gc.moveTo(50, 50);
 gc.bezierCurveTo(150, 20, 150, 150, 75, 150);
 gc.closePath();
}

Interacting with the User

1-4 Oracle JavaFX/Working with Canvas

You can experiment with this shape by changing the parameter values. The
bezierCurveTo will stretch and pull the shape as you do.

After that, a red and yellow RadialGradient provides the circular pattern that appears
in the background.

Example 1–4 Drawing a RadialGradient

private void drawRadialGradient(Color firstColor, Color lastColor) {
 gc.setFill(new RadialGradient(0, 0, 0.5, 0.5, 0.1, true,
 CycleMethod.REFLECT,
 new Stop(0.0, firstColor),
 new Stop(1.0, lastColor)));
 gc.fill();
}

Here, the setFill method of the GraphicsContext accepts a RadialGradient object as
its parameter. Again, you can experiment with different values, or pass in different
colors as you prefer.

A LinearGradient colors the custom "D" shape, from blue to green:

Example 1–5 Drawing a LinearGradient

private void drawLinearGradient(Color firstColor, Color secondColor) {
 LinearGradient lg = new LinearGradient(0, 0, 1, 1, true,
 CycleMethod.REFLECT,
 new Stop(0.0, firstColor),
 new Stop(1.0, secondColor));
 gc.setStroke(lg);
 gc.setLineWidth(20);
 gc.stroke();
}

This code sets the stroke of the GraphicsContext to use the LinearGradient, then
renders the pattern with gc.stroke().

And finally, the multi-colored drop shadow is provided invoking applyEffect on the
GraphicContext object.

Example 1–6 Adding a DropShadow

private void drawDropShadow(Color firstColor, Color secondColor,
 Color thirdColor, Color fourthColor) {
 gc.applyEffect(new DropShadow(20, 20, 0, firstColor));
 gc.applyEffect(new DropShadow(20, 0, 20, secondColor));
 gc.applyEffect(new DropShadow(20, -20, 0, thirdColor));
 gc.applyEffect(new DropShadow(20, 0, -20, fourthColor));
}

As shown in Example 1–6, this effect is applied by creating a DropShadow object with a
specified color, which gets passed to the applyEffect method of the GraphicsContext
object.

Interacting with the User
In the following demo (project CanvasDoodleTest) a blue square appears on screen,
which will slowly be erased as the user drags the mouse across its surface.

Interacting with the User

Working with Canvas 1-5

Figure 1–3 Interacting with the User

You have already seen how to create basic shapes and gradients, so the code in
Example 1–7 focuses only on the portions responsible for interacting with the user.

Example 1–7 Interacting with the User

 ...

private void reset(Canvas canvas, Color color) {
 GraphicsContext gc = canvas.getGraphicsContext2D();
 gc.setFill(color);
 gc.fillRect(0, 0, canvas.getWidth(), canvas.getHeight());
}

@Override
public void start(Stage primaryStage) {
 ...
 final GraphicsContext gc = canvas.getGraphicsContext2D();
 ...

 // Clear away portions as the user drags the mouse
 canvas.addEventHandler(MouseEvent.MOUSE_DRAGGED,
 new EventHandler<MouseEvent>() {
 @Override
 public void handle(MouseEvent e) {
 gc.clearRect(e.getX() - 2, e.getY() - 2, 5, 5);
 }
 });

 // Fill the Canvas with a Blue rectnagle when the user double-clicks
 canvas.addEventHandler(MouseEvent.MOUSE_CLICKED,
 new EventHandler<MouseEvent>() {
 @Override
 public void handle(MouseEvent t) {
 if (t.getClickCount() >1) {
 reset(canvas, Color.BLUE);
 }
 }

Creating a Simple Layer System

1-6 Oracle JavaFX/Working with Canvas

 });
...

Example 1–7 defines a reset method that fills the entire rectangle with its default blue
color. But the most interesting code appears in the start method, which is overridden
to interact with the user. The first commented section adds an event handler to process
MouseEvent objects as the user drags the mouse. With each drag, the clearRect
method of the GraphicsContext object is invoked, passing in the current mouse
coordinates, plus the size of the area to clear away. As this takes place, the background
gradient will show through, as seen in Figure 1–4.

Figure 1–4 Clearing Away the Rectangle

The remaining code simply counts the number of clicks, and resets the blue square to
its original state if the user double-clicks the mouse.

Creating a Simple Layer System
You can also instantiate multiple Canvas objects, and use them to define a simple layer
system. Switching layers therefore becomes a matter of selecting the desired Canvas
and writing to it. (A Canvas object is completely transparent, and shows through until
you draw on parts of it.)

This final demo (LayerTest project) defines such a system by adding creating two
Canvas objects, placed directly on top of each other. As you click on the screen, a
colored circle will appear on the layer that is currently selected. You can change layers
by using the ChoiceBox at the top of the screen. Circles added to layer 1 will be green.
Circles added to layer 2 will be blue.

Creating a Simple Layer System

Working with Canvas 1-7

Figure 1–5 Creating a Simple Layer System

The GUI for this demo uses a BorderPane to manage its components. A ChoiceBox is
added to the top, and the two Canvas objects are added to a Panel which is then added
to the center of the screen.

Example 1–8 Creating and Adding the Layers

 ...

private void createLayers(){
 // Layers 1&2 are the same size
 layer1 = new Canvas(300,250);
 layer2 = new Canvas(300,250);

 // Obtain Graphics Contexts
 gc1 = layer1.getGraphicsContext2D();
 gc1.setFill(Color.GREEN);
 gc1.fillOval(50,50,20,20);
 gc2 = layer2.getGraphicsContext2D();
 gc2.setFill(Color.BLUE);
 gc2.fillOval(100,100,20,20);
}
 ...

private void addLayers(){
 // Add Layers
 borderPane.setTop(cb);
 Pane pane = new Pane();
 pane.getChildren().add(layer1);
 pane.getChildren().add(layer2);
 layer1.toFront();
 borderPane.setCenter(pane);
 root.getChildren().add(borderPane);
}
 ...
User interaction is accomplished by adding an event handler directly to each layer.
Clicking on the Canvas will generate a MouseEvent, which when received, will draw a
circle at the current mouse location.

Example 1–9 Adding Event Handlers

private void handleLayers(){
 // Handler for Layer 1
 layer1.addEventHandler(MouseEvent.MOUSE_PRESSED,

Creating a Simple Layer System

1-8 Oracle JavaFX/Working with Canvas

 new EventHandler<MouseEvent>() {
 @Override
 public void handle(MouseEvent e) {
 gc1.fillOval(e.getX(),e.getY(),20,20);
 }
 });

 // Handler for Layer 2
 layer2.addEventHandler(MouseEvent.MOUSE_PRESSED,
 new EventHandler<MouseEvent>() {
 @Override
 public void handle(MouseEvent e) {
 gc2.fillOval(e.getX(),e.getY(),20,20);
 }
 });
 }

Because both layers are placed directly on top of each other, only the topmost Canvas
will process the mouse clicks. To move a specific layer to the front of the stack, simply
select it from the ChoiceBox component at the top of the screen.

Example 1–10 Selecting a Layer

private void createChoiceBox(){
 cb = new ChoiceBox();
 cb.setItems(FXCollections.observableArrayList(
 "Layer 1 is GREEN", "Layer 2 is BLUE"));
 cb.getSelectionModel().selectedItemProperty().
 addListener(new ChangeListener(){
 @Override
 public void changed(ObservableValue o, Object o1, Object o2){
 if(o2.toString().equals("Layer 1 is GREEN")){
 layer1.toFront();
 }else if(o2.toString().equals("Layer 2 is BLUE")){
 layer2.toFront();
 }
 }
 });
 cb.setValue("Layer 1 is GREEN");
 }

As shown in Example 1–10, a ChangleListener is registered on the ChoiceBox, and
brings the selected layer to the foreground by invoking toFront() on the appropriate
Canvas. Layer selection will become even more apparent as you switch layers after
adding lots of blue and green circles. You will be able to tell (from looking at the circle
edges) which layer has been moved to the front. Figure 1–6 and Figure 1–7 show what
this looks like.

Creating a Simple Layer System

Working with Canvas 1-9

Figure 1–6 Selecting Layer 1

Figure 1–7 Selecting Layer 2

The ability to select layers is common in software applications, such as image
manipulation programs. And because each Canvas object is a Node, you are free to
apply all the standard transformations and visual effects that you would on other
components.

	Contents
	1 Working with Canvas
	Overview
	Drawing Basic Shapes
	Applying Gradients and Shadows
	Interacting with the User
	Creating a Simple Layer System

