

JavaFX
Skinning JavaFX Applications with CSS

Release 2.2

E20470-06

June 2013

Learn how to skin your JavaFX applications using cascading
style sheets (CSS) to create a custom look.

JavaFX/Skinning JavaFX Applications with CSS, Release 2.2

E20470-06

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joni Gordon

Contributor: Alexander Kouznetsov

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

1 Skinning JavaFX Applications with CSS

Default Style Sheet .. 1-2
Creating Style Sheets ... 1-3
Defining Styles ... 1-3

Selectors ... 1-4
Rules and Properties .. 1-4

Skinning the Scene .. 1-5
Skinning Controls .. 1-5

Overriding Default Styles ... 1-5
Creating Class Styles.. 1-6
Creating ID Styles .. 1-7
Setting Styles in the Code.. 1-7

Additional Resources .. 1-7

iv

1

Skinning JavaFX Applications with CSS 1-1

1Skinning JavaFX Applications with CSS

This topic describes how to use cascading style sheets (CSS) with JavaFX applications.
Use CSS to create a custom look for your application.

Style sheets contain style definitions that control the look of user interface elements.
Using CSS in JavaFX applications is similar to using CSS in HTML. JavaFX CSS are
based on the W3C CSS version 2.1 specification (available at
http://www.w3.org/TR/CSS21/) with some additions from current work on
version 3 of the specification and some extensions that support specific JavaFX
features.

Skinning your UI with JavaFX CSS enables you to change the UI shown in Figure 1–1
to the UI shown in Figure 1–2 just by changing the style sheet used.

Figure 1–1 Style 1

Default Style Sheet

1-2 JavaFX/Skinning JavaFX Applications with CSS

Figure 1–2 Style 2

Default Style Sheet
The default style sheet for JavaFX applications is caspian.css, which is found in the
JavaFX runtime JAR file, jfxrt.jar. This style sheet defines styles for the root node and
the UI controls. To view this file, go to the \jre\lib directory under the directory in
which the Java Development Kit (JDK) is installed. Use the following command to
extract the style sheet from the JAR file:

jar xf jfxrt.jar com/sun/javafx/scene/control/skin/caspian/caspian.css

Figure 1–3 shows what the sample UI looks like with the default style sheet.

Defining Styles

Skinning JavaFX Applications with CSS 1-3

Figure 1–3 Default Style

Creating Style Sheets
You can create one or more of your own style sheets to override the styles in the
default style sheet and to add your own styles. Typically style sheets that you create
have an extension of .css and are located in the same directory as the main class for
your JavaFX application.

The style sheet controlStyle1.css provides the skinning shown in Figure 1–1. The style
sheet controlStyle2.css provides the skinning shown in Figure 1–2.

Style sheets are applied to Scene objects as shown in Example 1–1, where path is the
directory structure that reflects the location of your style sheet, and stylesheet is the
name of your style sheet. For example, the path and name of the style sheet for
Figure 1–2 is uicontrolcss/controlStyle2.css.

Example 1–1 Adding a Style Sheet

Scene scene = new Scene(new Group(), 500, 400);
scene.getStylesheets().add("path/stylesheet.css");

Defining Styles
A style definition consists of the name of the style, also called the selector, and a series
of rules that set the properties for the style. Rules for a definition are enclosed in braces
({}). Example 1–2 shows the definition for a style named .custom-button.

Example 1–2 Sample Style Definition

.custom-button {
 -fx-font: 16px "Serif";

Defining Styles

1-4 JavaFX/Skinning JavaFX Applications with CSS

 -fx-padding: 10;
 -fx-background-color: #CCFF99;
}

Selectors
Several types of styles can be defined. Each type of style has its own convention for
selectors.

Style classes correspond to class names. By convention, style class names that consist
of more than one word use a hyphen (-) between words. Style class selectors are
preceded by a dot (.).

Examples of class selectors:

.button

.check-box

.scroll-bar

You can also define styles that are associated with a node through the node’s ID. The
ID is set using the node’s setId() method. The style name is the ID preceded by a
hash symbol (#). For example, a node with the ID my-button is skinned with the style
#my-button.

Examples of ID style selectors:

#my-button
#shaded-hbox

Compound selectors are also possible. Some classes include elements that can have
their own style definition, which are called descendant classes. For example, many UI
controls have a descendant class for the label. These definitions are identified by the
selector for the class and the selector for the descendant class separated by a space.

Examples of selectors for descendant classes:

.check-box .label

.check-box .box

.radio-button .dot

Pseudo-classes enable you to customize states of a node, such as when a node has
focus. These definitions are identified by the selector for the class and the name for the
state separated by a colon (:).

Examples of selectors for pseudo-classes:

.radio-button:focused

.radio-button:hover

.scroll-bar:vertical

Rules and Properties
The rules for a style definition assign values to properties associated with the class.
Rule property names correspond to the names of the properties for a class. The
convention for property names with multiple words is to separate the words with a
hyphen (-). Property names for styles in JavaFX style sheets are preceded by -fx-.

Note: The size of a font can be specified in either points (pt) or pixels
(px). A resolution of 96 dots per inch (dpi) is assumed, so 1px = 0.75pt.

Skinning Controls

Skinning JavaFX Applications with CSS 1-5

Property names and values are separated by a colon (:). Rules are terminated with a
semicolon (;).

Examples of rules:

-fx-background-color: #333333;
-fx-text-fill: white;
-fx-alignment: CENTER;

The .root style class is applied to the root node of the Scene instance. Because all
nodes in the scene graph are a descendant of the root node, styles in the .root style
class can be applied to any node.

The .root style class includes properties that can be used by other styles to provide
consistency in a UI. For example, the property -fx-focused-base is defined in the
.root style. This property is used by styles for other UI controls as the color for the
control when it has focus. The following definition shows how this property is used in
the style for the class CheckBox:

.check-box:focused {
 -fx-color: -fx-focused-base;
}

Skinning the Scene
You can quickly change the look of your UI just by customizing the .root style class.
Both of the sample style sheets set the font size and family, the base color from which
other colors are derived, and the background color of the scene. Example 1–3 shows
the .root style from controlStyle2.css.

Example 1–3 Root Style from controlStyle2.css

.root{
 -fx-font-size: 16pt;
 -fx-font-family: "Courier New";
 -fx-base: rgb(132, 145, 47);
 -fx-background: rgb(225, 228, 203);
}

With just this style, you create the basic look of Figure 1–2. This is possible because the
built-in UI controls use the properties set for the root node to derive their own colors
and fonts.

Skinning Controls
You can further customize your UI by defining styles for the different controls that you
are using. You can override the definitions in the default style sheet or create new class
or ID styles. You can also define the style for a node within your code.

Overriding Default Styles
You can override a style in the default style sheet by including the style in your style
sheet and assigning it different properties. Example 1–4 shows the style for the
Button class from controlStyle2.css.

Example 1–4 Override a Style

.button{

Skinning Controls

1-6 JavaFX/Skinning JavaFX Applications with CSS

-fx-text-fill: rgb(49, 89, 23);
-fx-border-color: rgb(49, 89, 23);
-fx-border-radius: 5;
-fx-padding: 3 6 6 6;

}

The font color, border color, border radius, and padding are picked up from this
definition. The color of the button and the font style of the label are picked up from the
.root definition from Example 1–3. Buttons with this styling look as shown in the
following image.

Creating Class Styles
You can create a class style by adding a definition for it to your style sheet.
Example 1–5 defines a new style in controlStyle1.css called .button1.

Example 1–5 Define a New Style

.button1{
 -fx-text-fill: #006464;
 -fx-background-color: #DFB951;
 -fx-border-radius: 20;
 -fx-background-radius: 20;
 -fx-padding: 5;
}

Any button to which this style is added looks as shown in the following image. Note
that the font of the label is picked up from the .root definition in controlStyle1.css.

To assign this class style to a node, use the getStyleClass().add() sequence of
methods. Example 1–6 shows the .button1 style assigned to the Accept button.

Example 1–6 Assign a Class Style

Button buttonAccept = new Button("Accept");
buttonAccept.getStyleClass().add("button1");

Be aware that adding styles to a node is accumulative. After adding the .button1
style class to the buttonAccept node, the node is rendered using rules from both the
.button and .button1 styles.

Note: If a class does not have a style defined in the caspian.css style
sheet, define the style in your style sheet and assign it to each class
instance as shown in Example 1–6. For example, layout panes do not
have styles defined in the caspian.css style sheet. See Styling Layout
Panes with CSS for information on creating styles for classes such as
HBox and GridPane.

Additional Resources

Skinning JavaFX Applications with CSS 1-7

Creating ID Styles
You can define a style for an individual node by creating a style and assigning the style
to the node. The style name is the ID preceded by a hash symbol (#). Example 1–7
creates a definition for a style named #font-button.

Example 1–7 Define an ID Style

#font-button {
 -fx-font: bold italic 20pt "Arial";
 -fx-effect: dropshadow(one-pass-box , black , 8 , 0.0 , 2 , 0);
}
The button that is assigned the ID font-button looks as shown in the following
image.

Example 1–8 shows how to assign the ID style to a node.

Example 1–8 Assign an ID Style

Button buttonFont = new Button("Font");
buttonFont.setId("font-button");

Setting Styles in the Code
You also have the option of setting style properties for a node within the code for your
application. Rules set within the code take precedence over styles from a style sheet.
Example 1–9 shows how to change the background color and font color for a button.

Example 1–9 Define a Style Inline

Button buttonColor = new Button("Color");
buttonColor.setStyle("-fx-background-color: slateblue; -fx-text-fill: white;");

The following image shows how the button appears.

Additional Resources
For more in-depth information on JavaFX style sheets, see the JavaFX CSS Reference
Guide.

For information on styling the UI Controls, see Using JavaFX UI Controls.

For information on styling layout panes, see Styling Layout Panes with CSS.

For information on styling charts, see Styling Charts with CSS.

Additional Resources

1-8 JavaFX/Skinning JavaFX Applications with CSS

	Contents
	1 Skinning JavaFX Applications with CSS
	Default Style Sheet
	Creating Style Sheets
	Defining Styles
	Selectors
	Rules and Properties

	Skinning the Scene
	Skinning Controls
	Overriding Default Styles
	Creating Class Styles
	Creating ID Styles
	Setting Styles in the Code

	Additional Resources

