

JavaFX
Deploying JavaFX Applications

Release 2.2.40

E20472-11

September 2013

JavaFX Deploying JavaFX Applications Release 2.2.40

E20472-11

Copyright © 2008, 2013 Oracle and/or its affiliates. All rights reserved.

Primary Author: Dmitry Kostovarov

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Part I About This Guide

1 What's New

2 Getting Started
2.1 Deployment Quick Start .. 2-1
2.2 Write Once, Deploy Anywhere ... 2-1
2.3 Application Package .. 2-2
2.3.1 Self-Contained Applications .. 2-2
2.4 Packaging Tools .. 2-2
2.4.1 NetBeans IDE .. 2-3
2.4.2 Ant Tasks .. 2-3
2.4.3 JavaFX Packager Command-Line Tool ... 2-4
2.5 User Experience .. 2-4
2.6 Getting the Most Out of the Execution Environment ... 2-5
2.7 Deploying Swing and SWT Applications with Embedded JavaFX Content 2-6

3 Application Execution Modes
3.1 Execution Modes .. 3-1
3.2 Understanding Feature Differences ... 3-2
3.2.1 Preloader Support ... 3-2
3.2.2 Desktop Integration via Shortcut .. 3-3
3.2.3 Built-In Proxy Support .. 3-3
3.2.4 Run in Sandbox Unless Signed and Trusted .. 3-3
3.2.5 Auto-Updates ... 3-3
3.2.6 Deployment Toolkit .. 3-4
3.2.7 Communicate to the Host Web Page ... 3-4
3.2.8 Managing Platform Dependencies .. 3-4
3.3 Coding Tips .. 3-5
3.3.1 Detecting Embedded Applications .. 3-5
3.3.2 Accessing Application Parameters .. 3-5
3.3.3 Consider the Use of Host Services ... 3-5
3.3.4 Loading Resources ... 3-6
3.3.5 Resize-Friendly Applications ... 3-6

iv

4 Application Startup
4.1 Application Startup Process, Experience, and Customization .. 4-1
4.1.1 Startup Process ... 4-1
4.1.1.1 Visual Feedback During Phase One Initialization .. 4-2
4.1.1.2 Visual Feedback After Initialization ... 4-2
4.1.2 Default User Experience ... 4-3
4.1.3 Customization Options .. 4-4
4.2 Helping Users Start the Application .. 4-5
4.2.1 No JavaFX Runtime ... 4-5
4.2.1.1 Standalone Launch ... 4-5
4.2.1.2 Launch with the Deployment Toolkit ... 4-5
4.2.1.3 Launch a Remote Application without the Deployment Toolkit 4-6
4.2.2 Runtime Errors ... 4-6

5 Packaging Basics
5.1 JavaFX Packaging Overview ... 5-1
5.2 Base Application Package .. 5-2
5.3 Overview of Packaging Tasks .. 5-2
5.3.1 JavaFX Packaging Tools ... 5-4
5.4 Stylesheet Conversion ... 5-5
5.5 Create the Main Application JAR File ... 5-5
5.6 Sign the JAR Files .. 5-6
5.7 Run the Deploy Task or Command ... 5-7
5.7.1 Configure the Deployment Descriptor .. 5-7
5.7.2 Application Resources .. 5-8
5.7.3 Package Custom JavaScript Actions ... 5-9
5.7.4 Web Page Templates .. 5-9
5.8 Packaging Cookbook ... 5-11
5.8.1 Passing Parameters to the Application .. 5-11
5.8.2 Customizing JVM Setup ... 5-11
5.8.2.1 Specifying User JVM Arguments .. 5-12
5.8.2.2 Macro Expansion of Application Directory for jvmarg and jvmuserarg 5-13
5.8.3 Packaging Complex Applications .. 5-13
5.8.4 Publishing an Application that Fills the Browser Window .. 5-15
5.9 Performance Tuning for Web Deployment .. 5-16
5.9.1 Background Update Check for the Application .. 5-16
5.9.2 Embed the Deployment Descriptor into the Web Page ... 5-16
5.9.3 Embed Signing Certificate into Deployment Descriptor ... 5-17
5.9.4 Use New JavaFX Signing Method (Signed Applications) ... 5-18

6 Self-Contained Application Packaging
6.1 Introduction .. 6-1
6.2 Pros and Cons of Self-Contained Application Packages .. 6-1
6.3 Basics .. 6-2
6.3.1 Self-Contained Application Structure ... 6-3
6.3.2 Basic Build .. 6-3

v

6.3.3 Customization Using Drop-In Resources .. 6-4
6.3.3.1 Preparing Custom Resources ... 6-5
6.3.3.2 Substituting a Built-In Resource .. 6-5
6.3.4 Customization Options .. 6-6
6.3.5 Platform-Specific Customization for Basic Packages ... 6-7
6.3.5.1 Mac OS X ... 6-7
6.4 Installable Packages .. 6-7
6.4.1 EXE Package ... 6-9
6.4.2 MSI Package .. 6-10
6.4.3 DMG Package .. 6-11
6.4.4 Linux Packages .. 6-12
6.5 Working Through a Deployment Scenario ... 6-13

7 Deployment in the Browser
7.1 API Overview ... 7-1
7.1.1 Application Descriptor (dtjava.App) ... 7-2
7.1.2 Platform (dtjava.Platform) ... 7-3
7.2 Callbacks ... 7-5
7.2.1 onDeployError ... 7-6
7.2.2 onGetNoPluginMessage .. 7-7
7.2.3 onGetSplash ... 7-7
7.2.4 onInstallFinished .. 7-7
7.2.5 onInstallNeeded .. 7-8
7.2.6 onInstallStarted .. 7-8
7.2.7 onJavascriptReady .. 7-9
7.2.8 onRuntimeError .. 7-9
7.3 Examples ... 7-9
7.3.1 Embedded Application Starts After the DOM Tree Is Constructed 7-9
7.3.2 Launch a Web Start Application from a Web Page ... 7-10
7.3.3 Pass Parameters to a Web Application .. 7-11
7.3.4 Specify Platform Requirements and Pass JVM Options .. 7-12
7.3.5 Access JavaFX Code from JavaScript ... 7-12
7.3.6 Disable the HTML Splash Screen ... 7-13
7.3.7 Add a Custom HTML Splash Screen .. 7-14
7.3.8 Create a Handler for an Unsupported Platform .. 7-15
7.3.9 Check for Presence of JavaFX Runtime .. 7-16

8 JavaFX and JavaScript
8.1 Accessing a JavaFX Application from a Web Page ... 8-1
8.2 Accessing the Host Web Page from an Embedded JavaFX Application 8-3
8.3 Advanced topics .. 8-4
8.4 Threading ... 8-5
8.5 Security .. 8-6
8.6 Tab Pane Example .. 8-6

vi

9 Preloaders
9.1 Implementing a Custom Preloader .. 9-1
9.2 Packaging an Application with a Preloader .. 9-3
9.2.1 Packaging a Preloader Application in NetBeans IDE ... 9-4
9.2.2 Packaging a Preloader Application in an Ant Task ... 9-5
9.3 Preloader Code Examples .. 9-7
9.3.1 Show the Preloader Only if Needed .. 9-7
9.3.2 Enhance Visual Transitions ... 9-8
9.3.3 Using JavaScript with a Preloader .. 9-8
9.3.4 Using a Preloader to Display the Application Initialization Progress 9-10
9.3.5 Cooperation of Preloader and Application: A Login Preloader .. 9-13
9.3.6 Cooperation of Preloader and Application: Sharing the Stage ... 9-15
9.3.7 Customizing Error Messaging .. 9-17
9.4 Performance Tips .. 9-18

10 JavaFX in Swing Applications
10.1 Overview ... 10-1
10.2 Packaging with JavaFX Ant Tasks .. 10-1
10.2.1 Enabling an HTML Splash Screen ... 10-2
10.3 Packaging without JavaFX Tools .. 10-3
10.3.1 Using the Deployment Toolkit ... 10-3

11 The JavaFX Packager Tool
javafxpackager ... 11-2

12 JavaFX Ant Tasks
12.1 Requirements to Run JavaFX Ant Tasks ... 12-1
12.2 JavaFX Ant Elements .. 12-1
12.3 Using JavaFX Ant Tasks ... 12-2
12.4 Ant Script Examples ... 12-2

JavaFX Ant Task Reference ... 13-1
<fx:csstobin> ... 13-2
<fx:deploy> ... 13-3
<fx:jar> ... 13-7
<fx:signjar> ... 13-9

JavaFX Ant Helper Parameter Reference .. 13-11
<fx:application> ... 13-12
<fx:argument> ... 13-14
<fx:callback> ... 13-15
<fx:callbacks> ... 13-16
<fx:fileset> .. 13-17
<fx:htmlParam> ... 13-19
<fx:icon> ... 13-21
<fx:info> ... 13-22

vii

<fx:jvmarg> ... 13-24
<fx:jvmuserarg> ... 13-25
<fx:param> .. 13-26
<fx:permissions> .. 13-27
<fx:platform> ... 13-28
<fx:preferences> ... 13-30
<fx:property> ... 13-32
<fx:resources> ... 13-33
<fx:splash> .. 13-35
<fx:template> ... 13-36

13 Troubleshooting
13.1 Running Applications .. 14-1
13.2 Development Process Issues ... 14-1
13.3 Runtime Issues .. 14-2
13.3.1 Standalone Execution .. 14-3
13.3.2 Self-Contained Applications .. 14-3
13.3.3 Web Start ... 14-4
13.3.4 Applications Embedded in the Browser .. 14-4
13.3.5 Disabling the Autoproxy Configuration in the Code ... 14-4

viii

Part I
Part I About This Guide

This guide provides basic and advanced information about building, packaging, and
deploying your JavaFX application. JavaFX deployment requires no special code in
your application and has many other differences from Java deployment. Even if you
are an advanced Java developer, it is a good idea to review the Getting Started page.

This guide contains the following topics:

■ What's New

Describes new and changed features in the current release.

■ Getting Started

This page shows you how to get a basic JavaFX application running.

■ Application Execution Modes

An introduction of the terms and concepts used in JavaFX deployment.

■ Application Startup

How users experience JavaFX application startup and how to customize the
default behavior.

■ Packaging Basics

An introduction to packaging JavaFX applications.

■ Self-Contained Application Packaging

How to create self-contained application packages, which can be distributed either
as zip files or as operating-system-specific installers.

■ Deployment in the Browser

Topics related to applications embedded in the browser.

■ JavaFX and JavaScript

How to make JavaFX and JavaScript communicate with each other.

■ Preloaders

Tip: For updates to this information, watch the following blogs and
forums:

■ The "JavaFX 2.0 and Later" Forum on OTN

■ The Java Tutorials Blog

■ The FX Experience Blog

Information about creating your own preloader.

■ JavaFX in Swing Applications

How to deploy Swing applications in which JavaFX is embedded.

■ The JavaFX Packager Tool

Information about Using the JavaFX Packager tool and a reference to the
command line syntax.

■ JavaFX Ant Tasks
JavaFX Ant Task Reference
JavaFX Ant Helper Parameter Reference

Reference pages for Ant Task elements and attributes that work with the JavaFX
Ant task API.

■ Troubleshooting

Basic troubleshooting tips if your first deployment efforts are not successful.

1

What's New 1-1

1What's New

This chapter enumerates new deployment features.

The following list describes the new features in JavaFX 2.2 that affect deployment.

■ Starting with JRE 7 Update 6, JavaFX Runtime is part of JRE installation

This integration significantly simplifies the process of getting the system ready to
run JavaFX applications. No separate installation is needed for JavaFX, and there
is no need to write custom code to detect where JavaFX is installed. Moreover,
JavaFX Runtime will be autoupdated in the same way as Java Runtime.

There is nothing needed to be changed in the application code but you may need
to repackage your application to update your copy of deployment toolkit
javascript APIs.

■ Deployment of JavaFX applications is now supported on Mac and Linux

JavaFX applications are expected to work on Mac and recent Linux distributions,
as long as they meet system requirements. No code changes or packaging changes
are needed.

However, it is a good idea to repackage the application using the latest version of
the packaging tools, to update the built-in launchers plus the copy of the current
Deployment Toolkit, to be aware of new supported platforms.

■ JavaFX applications can be redistributed as self-contained application packages

These platform-specific packages include all application resources and a private
copy of Java and JavaFX Runtimes. Distributed as a native installable package,
they provide the same installation and launch experience as native applications for
that operating system. See Chapter 6, "Self-Contained Application Packaging."

■ Pass parameters to a Web Start Application from a Web Page

See Section 7.3.3, "Pass Parameters to a Web Application."

■ Better support for packaging Swing applications with integrated JavaFX content

Packaging tools are extended to simplify deploying hybrid applications. You now
use the same deployment approach as you would for pure JavaFX applications.

The resulting package provides support for the same set of execution modes as a
package for a JavaFX application; in other words, the application can be run
standalone, using Web Start, embedded into a web page, or distributed as a
self-contained application bundle. See Chapter 10, "JavaFX in Swing Applications."

■ Support for relative sizes for embedded applications

1-2 JavaFX Deploying JavaFX Applications

Embedded applications can now be deployed with size relative to the browser
window. See Section 5.8.4, "Publishing an Application that Fills the Browser
Window."

2

Getting Started 2-1

2Getting Started

This page shows you the basics of taking your JavaFX application from code to
deployment.

■ Section 2.1, "Deployment Quick Start"

■ Section 2.2, "Write Once, Deploy Anywhere"

■ Section 2.3, "Application Package"

■ Section 2.4, "Packaging Tools"

■ Section 2.5, "User Experience"

■ Section 2.6, "Getting the Most Out of the Execution Environment"

■ Section 2.7, "Deploying Swing and SWT Applications with Embedded JavaFX
Content"

2.1 Deployment Quick Start
Mastered JavaFX basics and have your application ready? Now want to learn what to
do to publish it?

Here is all you have to do:

■ Decide how you want to deploy the application.

■ Use JavaFX tools to create the application package.

■ If you plan to embed the application in a web page, update your HTML page to
include the generated JavaScript snippet.

■ Copy the package to the place you want to deploy it.

■ You are done.

If you would like to try these steps in packaging one of the tutorial applications in the
JavaFX Getting Started series using the NetBeans IDE, see the page on basic
deployment and try out any of the tutorials.

2.2 Write Once, Deploy Anywhere
The same JavaFX application can be used in multiple execution environments
including:

■ Launching a desktop application

■ Launching from the command line using the Java launcher

Application Package

2-2 JavaFX Deploying JavaFX Applications

■ Launching by clicking a link in the browser to download an application

■ Viewing in a web page when opened

2.3 Application Package
By default, all of the JavaFX packaging tools generate the following collection of files
needed to run the application:

■ An application JAR file (or multiple JAR files for large applications)

■ A JNLP file with a deployment descriptor

A deployment descriptor is an XML file that describes application components,
platform requirements, and launch rules.

■ An HTML file containing JavaScript code to embed or launch JavaFX content from
the web page

For the Colorful Circles application from the JavaFX Getting Started tutorials, the basic
package consists of these files:

■ ColorfulCircles.jar

■ ColorfulCircles.jnlp

■ ColorfulCircles.html

2.3.1 Self-Contained Applications
Starting from JDK 7 update 6, JavaFX applications can be packaged as a
platform-specific, self-contained application. These applications include all application
resources, the Java and JavaFX runtimes, and a launcher, and they provide the same
install and launch experience as native applications for the operating system.

Self-contained applications can be distributed as zip files or as installable packages:
EXE or MSI for Windows, DMG for Mac, or RPM or DEB for Linux.

Depending on your requirements, this may be a good distribution vehicle for your
application:

■ They resemble native applications for the target platform, in that users install the
application with an installer that is familiar to them and launch it in the usual way.

■ They offer no-hassle compatibility. The version of Java Runtime used by the
application is fully controlled by the application developer.

■ Your application is easily deployed on fresh systems with no requirement for Java
Runtime to be installed.

■ Deployment occurs with no need for admin permissions when using ZIP or
user-level installers.

For more information, see Chapter 6, "Self-Contained Application Packaging."

2.4 Packaging Tools
There are three different tools that you can use to package your application:

■ NetBeans IDE

■ Ant Tasks

■ JavaFX Packager Command-Line Tool

Packaging Tools

Getting Started 2-3

The HTML page generated by default is a simple test page for your application. It
includes sample JavaScript code to launch and embed your application, which you can
copy to your own web page. To avoid manual copying, consider using HTML
templates for application packaging to insert these code snippets into an existing web
page. For more information, see Section 5.7.4, "Web Page Templates."

For more information about JavaFX packaging, see Chapter 5, "Packaging Basics."

2.4.1 NetBeans IDE
If you use Netbeans IDE (see the JavaFX Getting Started tutorials for information
about how to use JavaFX projects in Netbeans IDE), then it will do most of the work
for you. Open Project Properties to specify preferred dimensions for your application
scene. Enter 800 for width and 600 for height if you use the Colorful Circles example.
Then build the project with Clean and Build. Your application package is generated to
the dist folder. Open it in Windows Explorer and try double-clicking the HTML, JNLP,
or JAR files.

For more information about packaging and deploying simple JavaFX applications
using NetBeans IDE, see the basic deployment page in the Getting Started with JavaFX
tutorials.

If you want to package a self-contained application, you need to customize the
build.xml script in the NetBeans IDE. For more information, see Section 6.3.2, "Basic
Build."

2.4.2 Ant Tasks
If you are using another IDE, then you can add JavaFX packaging as a post-build step,
using Ant tasks that are included in the JavaFX SDK. Example 2–1 shows an Ant
package task for Colorful Circles.

When you add the attribute nativeBundles="all" attribute into the <fx:deploy> Ant
task, all possible packages will be created: a standalone application package, one or
more self-contained application packages for that platform, and a web deployment
package. Installable packages are created based on the third-party software that is
available at packaging time. For example, if you have both Inno Setup and WiX on
Windows, then you will get three packages: a folder with the application, an .exe
installer file, and an .msi installer file. For more information, see Chapter 5, "Packaging
Basics." A simple Ant task with the nativeBundles attribute is shown in Example 2–1.

Example 2–1 Ant Task to Produce All Packages for the ColorfulCircles Application

<taskdef resource="com/sun/javafx/tools/ant/antlib.xml"
 uri="javafx:com.sun.javafx.tools.ant"
 classpath="${javafx.sdk.path}/lib/ant-javafx.jar"/>

<fx:jar destfile="dist-web/ColorfulCircles.jar">
 <fx:application mainClass="colorfulcircles.ColorfulCircles"/>
 <fileset dir="build/classes/">
 <include name="**"/>
 </fileset>
</fx:jar>

<fx:deploy width="800" height="600" outdir="dist-web"
 outfile="ColorfulCircles" nativeBundles="all">
 <fx:info title="Colorful Circles"/>
 <fx:application name="Colorful Circles example"

User Experience

2-4 JavaFX Deploying JavaFX Applications

 mainClass="colorfulcircles.ColorfulCircles"/>
 <fx:resources>
 <fx:fileset dir="dist-web" includes="ColorfulCircles.jar"/>
 </fx:resources>
</fx:deploy>

2.4.3 JavaFX Packager Command-Line Tool
If you cannot use Ant and prefer command-line tools, use the JavaFX Packager tool
that comes with the JavaFX SDK. The JavaFX Packager tool has several commands for
packaging applications, described in Chapter 11, "The JavaFX Packager Tool." For a
quick test build, you can use the javafxpackager -makeall command, such as the one
in Example 2–2. This command compiles source code and combines the
javafxpackager -createjar and javafxpackager -deploy commands, with
simplified options.

Example 2–2 javafxpackager -makeall Command to Build an Application

javafxpackager -makeall -appclass colorfulcircles.ColorfulCircles
 -name "Colorful Circles" -width 800 -height 600

As a command intended only to help to build simple projects quickly, the -makeall
command supports a limited set of options to customize the command behavior. The
-makeall command makes the following assumptions about input and output files:

■ Source and other resource files must be in a directory named src under the main
project directory.

■ The resulting package is always generated to a directory named dist, and file
names all start with the dist prefix.

■ By default, the -makeall command tries to build a self-contained application
package. If this is not possible, the JAR, HTML, and JNLP files are generated so
you can deploy to any other execution mode.

When your application is ready to go live, use the -createjar and -deploy commands
instead of the -makeall command. The -createjar and -deploy commands have
considerably more options. You can create a self-contained application package with
the -deploy command plus the -native option. For more information, see
Section 5.3.1, "JavaFX Packaging Tools."

2.5 User Experience
Users are easily annoyed if they are unable to start an application, do not understand
what are the next steps, or perceive the application as slow or hung and for many
other reasons.

Default JavaFX packaging takes care of many problem areas including:

■ Ensuring the user has the required JRE and JavaFX installed

Note: Stage width and height must always be specified for
applications embedded in the browser.

Tip: For even more flexibility of options, use an Ant task instead of
the JavaFX Packager tool.

Getting the Most Out of the Execution Environment

Getting Started 2-5

■ Auto installing missing dependencies or offering to install them as needed

■ Providing visual feedback to the user while the application is being loaded

■ Showing descriptive error messages

For example, when users do not have JavaFX installed and double-click the JAR file for
your application, they see a dialog box explaining that they need to download and
install the JavaFX Runtime.

Moreover, developers have a wide range of options on how to tune the experience for
their users, such as:

■ Customize the messaging (for example explain to users why they need to install
JavaFX Runtime in a language other than English)

■ Show your own splash screen and use a custom loading progress indicator

■ Switch to alternative content if the user’s system is not capable of running JavaFX
applications

For example, you could pass the following string as a value of the
javafx.default.preloader.stylesheet parameter to add a company logo to the
default preloader:

".default-preloader { -fx-preloader-graphic:url
 ('http://my.company/logo.gif'); }"

In Example 2–3, the text in bold shows what must be changed in the Ant code used to
deploy the ColorfulCircles example.

Example 2–3 Ant Task to Add a Company Logo to the Default Preloader

<fx:deploy width="800" height="600"
 outdir="dist-web" outfile="ColorfulCircles">
 <fx:info title="Colorful Circles"/>
 <fx:application name="Colorful Circles example"
 mainClass="colorfulcircles.ColorfulCircles">
 <fx:param name="javafx.default.preloader.stylesheet"
 value=".default-preloader
 { -fx-preloader-graphic: url('http://my.company/logo.gif'); }" />
 </fx:application>
 <fx:resources>
 <fx:fileset dir="dist-web" includes="ColorfulCircles.jar"/>
 </fx:resources>
</fx:deploy>

See the following chapters for more information and examples:

■ Chapter 4, "Application Startup"

■ Chapter 7, "Deployment in the Browser"

■ Chapter 9, "Preloaders"

2.6 Getting the Most Out of the Execution Environment
Different execution environments have different specifics, and taking these specifics
into account can help to make an application more natural and powerful when run in
this execution environment.

One specific could be a unique feature that is not applicable to other environments, for
example that applications embedded in a web page can use JavaScript to communicate

Deploying Swing and SWT Applications with Embedded JavaFX Content

2-6 JavaFX Deploying JavaFX Applications

to the host web page. Another specific could be an important peculiarity such as a
presized stage that is provided to a JavaFX application embedded into a web page.

Example 2–4 shows an example of using JavaScript to go to a new page:

Example 2–4 Using JavaScript to Go to a New Page

final HostServices services = getHostServices();
JSObject js = services.getWebContext();
js.eval("window.location='http://javafx.com'");

See the following pages for more information and examples:

■ Chapter 3, "Application Execution Modes"

■ Chapter 8, "JavaFX and JavaScript"

■ Chapter 9, "Preloaders"

2.7 Deploying Swing and SWT Applications with Embedded JavaFX
Content

If you are developing Swing applications with embedded JavaFX content, then you
must follow deployment scenarios for Swing applications and applets (see the Swing
tutorial for tips on coding).

While most of the techniques discussed in this guide are not directly applicable to
Swing application with JavaFX content some of them are:

■ You can use the same packaging tools to package your Swing applications.

■ You can use the Deployment Toolkit to embed your Swing applet into a web page
or launch it from a web page.

■ Your application can be bundled and packaged as an installable package, using the
same technique as for self-contained JavaFX applications.

For more information, see Chapter 10, "JavaFX in Swing Applications".

SWT applications with embedded JavaFX content are deployed in the same manner as
Swing applications, but the SWT library must be included as a resource. For an
example of deploying an SWT-JavaFX application, see JavaFX Interoperability with SWT.

3

Application Execution Modes 3-1

3Application Execution Modes

This chapter explains different application execution modes.

One of the main features of the JavaFX application model is that you can write one
application and easily deploy it several different ways. The user can experience the
same application running on the desktop, in a browser, or starting from a link in a web
page.

However, different execution modes are not completely equivalent. There are some
important differences to keep in mind while developing the application.

This page contains the following topics:

■ Section 3.1, "Execution Modes"

■ Section 3.2, "Understanding Feature Differences"

■ Section 3.3, "Coding Tips"

3.1 Execution Modes
One of the main features of the JavaFX application model is that the applications you
develop can be deployed in several different ways, as described in Table 3–1.

Each execution environment has its own specific complications and usability issues.
For example, for remote applications the loading phase can be very long because the

Table 3–1 JavaFX Execution Modes

Execution Mode Description

Run as a
standalone
program

The application package is available on a local drive. Users launch it
using a Java launcher, such as java -jar MyApp.jar, or by
double-clicking the application JAR file.

Launched from a
remote server
using Web Start

Users click a link in a web page to start the application from a remote
web server. Once downloaded, a Web Start application can also be
started from a desktop shortcut.

Embedded into a
web page

JavaFX content is embedded in the web page and hosted on a remote
web server.

Launched as a
self-contained
application

Application is installed on the local drive and runs as a standalone
program using a private copy of Java and JavaFX runtimes. The
application can be launched in the same way as other native
applications for that operating system, for example using a desktop
shortcut or menu entry.

Understanding Feature Differences

3-2 JavaFX Deploying JavaFX Applications

application has to be loaded from the network. This is less of an issue for applications
that run on a local drive.

3.2 Understanding Feature Differences
Figure 3–1 lists some of the features that behave differently in different environments.
The following sections describe the figure in more detail.

Figure 3–1 Features of Deployment Types

3.2.1 Preloader Support
The preloader is a small JavaFX application that receives notifications about
application loading and initialization progress. The preloader is used with all
execution modes, but depending on the execution mode, the preloader
implementation receives a different set of events and optimal behavior may be
different.

For example, in self-contained application or standalone execution mode or when
launched from a shortcut, the preloader will not get any loading progress events,
because there is nothing to load. See Chapter 9, "Preloaders" for information about
preloader implementation and differences in behavior.

Understanding Feature Differences

Application Execution Modes 3-3

3.2.2 Desktop Integration via Shortcut
Most of the operating systems allow applications to simplify subsequent launch and
integrate with the user’s desktop by creating a desktop shortcut or adding a link to the
programs menu or dock.

Built-in support for desktop shortcuts is available for self-contained and
web-deployed applications. There is no built-in support for standalone applications.

3.2.3 Built-In Proxy Support
Properly packaged JavaFX application have proxy settings initialized according to Java
Runtime configuration settings. By default, this means proxy settings will be taken
from the current browser if the application is embedded into a web page, or system
proxy settings will be used. Proxy settings are initialized by default in all execution
modes.

3.2.4 Run in Sandbox Unless Signed and Trusted
WebStart and embedded applications are, by default, run in a restricted environment,
known as a sandbox. In this sandbox, Java Runtime does the following:

■ Protects users against malicious code that could affect local files.

■ Protects enterprises against code that could attempt to access or destroy data on
networks.

Applications fall into three categories: signed and trusted, signed and not trusted, and
unsigned. When running on a client (unless launched as a standalone application),
un-trusted applications operate with maximum restrictions within a security sandbox
that allows only a set of safe operations.

Un-trusted applications cannot perform the following operations:

■ They cannot access client resources such as the local filesystem, executable files,
system clipboard, and printers.

■ They cannot connect to or retrieve resources from any third-party server (in other
words, any server other than the server it originated from).

■ They cannot load native libraries.

■ They cannot change the SecurityManager.

■ They cannot create a ClassLoader.

■ They cannot read certain system properties. See System Properties for a list of
forbidden system properties.

3.2.5 Auto-Updates
JavaFX applications that run from a web page or were earlier installed from the web
automatically check for availability of updates to the application at the original
location where the application is loaded. This happens every time an application
starts, and, by default, the update runs in the background. The application is
automatically updated if updates are detected.

For standalone and self-contained applications, you are responsible for handling
updates.

Understanding Feature Differences

3-4 JavaFX Deploying JavaFX Applications

3.2.6 Deployment Toolkit
The Deployment Toolkit performs two important functions:

■ It helps to simplify web deployment of JavaFX applications by managing updates.

■ It improves the end user experience while waiting for applications to start.

These two functions are intertwined, because the application startup phase is a critical
component of user satisfaction. For example, the Deployment Toolkit verifies that the
user has JavaFX Runtime installed, and if not, it will offer to install it before trying to
run the application, without much effort on the user’s part.

The Deployment Toolkit provides a JavaScript API and is only available for
applications embedded in a web page or launched from a web page.

For more information about the Deployment Toolkit, see Chapter 7, "Deployment in
the Browser."

3.2.7 Communicate to the Host Web Page
Applications embedded into a web page can communicate with it using JavaScript. To
initiate communication, the application must get the web context from the JavaFX
HostServices API. For any other execution environment, an attempt to get a reference
to web context returns null.

See Chapter 8, "JavaFX and JavaScript" for information about using JavaScript to
communicate with the browser.

3.2.8 Managing Platform Dependencies
To run JavaFX content, recent versions of the Java and JavaFX runtimes are required.
Unless the application is self-contained, the Java and JavaFX runtimes need to be
installed on the user’s system.

For most users, JavaFX 2.2 and later will be installed as part of the Java Runtime and
will be auto-updated to the latest secure version. If the user does not have the required
version of the Java or JavaFX runtime he or she will be guided to install it.

However, there are situations in which system installations of the Java and JavaFX
runtime and the auto-update functionality are not sufficient. For example:

■ The user does not have admin permissions to install the runtimes.

■ The user requires an older version of Java for other applications.

■ Users who need multiple system installations feel they are too complicated.

■ You want to set the exact version of Java and JavaFX to be used by your
application.

■ Your distribution channel disallows dependencies on external frameworks

These issues are resolved if you choose to deploy your application as a self-contained
application. The Java and JavaFX runtimes will be included in your application
package, and users do not need to install them separately. The self-contained
application package can be as simple as a .zip file distribution, or it can be wrapped
into an installable package using technology that is native to the target operating
system. See the topic Chapter 5, "Packaging Basics" for more details about
self-contained application packages.

Coding Tips

Application Execution Modes 3-5

3.3 Coding Tips
The following small programming tips work well in all environments and simplify the
development and deployment of applications.

3.3.1 Detecting Embedded Applications
When an application is run in embedded mode, it gets staged with predefined
dimensions and cannot update them directly. Example 3–1 shows a very simple code
snippet to detect if the application is embedded in the browser. The code can be used
in either the main application or the preloader start method.

Example 3–1 Detect if the Application is Embedded in the Browser

public void start(Stage stage) {
 boolean isEmbedded = (stage.getWidth() > 0);
 ...
}

As an alternative, you can try to get a reference to the web context from the
Application.getHostServices() method. It will be null unless the applications is
embedded.

3.3.2 Accessing Application Parameters
JavaFX applications support both named and unnamed parameters that can be passed
in a variety of ways:

■ They can be specified on the command line for a standalone launch.

■ They can be hardcoded in the application package (jar and deployment
descriptor).

■ They can be passed from the HTML page in which the application is embedded.

To access parameters from a preloader or main application, use the getParameters()
method. For example, the code in Example 3–2 gets a list of all named parameters and
their values:

Example 3–2 Get a List of Named Deployment Parameters and Values

Map m = getParameters().getNamed();
int cnt = 0;
String labelText = "List of application parameters: \n";
for(String st: (Set<String>) m.keySet()) {
 labelText += " ["+st+"] : ["+m.get(st)+"]\n";
 cnt++;
}

3.3.3 Consider the Use of Host Services
The Application.getHostServices() method provides access to
execution-mode-specific services, including:

■ Access to information about the code base and the document base.

For example, for embedded applications this is the URL of the application and
URL of the host web page, respectively.

Coding Tips

3-6 JavaFX Deploying JavaFX Applications

■ Access to the host web page using the JavaScript engine, only available to
embedded applications.

■ Ability to open a web page in the browser.

Example 3–3 shows a few things you can do with getHostServices().

Example 3–3 Using getHostServices()

final HostServices services = getHostServices();

Button jsButton = new Button("Test Javascript");
jsButton.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent t) {
 JSObject js = services.getWebContext();
 js.eval("window.alert('Hello from JavaFX')");
 }
});

Button openButton = new Button("Test openDocument()");
 openButton.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent t) {
 services.showDocument("http://javafx.com/");
 }
});

3.3.4 Loading Resources
Using the File API and explicit relative references to external data files or resources
may not work when the application is loaded from the web.

The best way to refer to resources relative to your application is to use the
getResource() method on one of the application classes, as shown in Example 3–4.

Example 3–4 Use the getResource() Method to Load Resources

scene.getStylesheets().
 add(this.getClass().getResource("my.css").toExternalForm());

As an alternative, consider using getCodeBase() or getDocumentBase() from the
HostServices class to refer to resources relative to the application or the location
where the application is used.

3.3.5 Resize-Friendly Applications
When an application is embedded into a web page, it cannot control stage dimensions.
Dimensions you specify at packaging time are preferences only and can be overridden
by the user, for example if the user has custom browser zoom settings. Moreover, the
stage can be resized at runtime any time by the user.

To provide a good user experience, it is necessary to be prepared for arbitrary stage
size. Otherwise, the application might be cropped, or there could be garbage painted
in the unused area of the stage.

If your application uses layouts, then you do not need to do anything. Layouts take
care of resizing for you. Otherwise, implement resizing logic and listen to stage
dimension changes to update the application, as shown in the simplified code in
Example 3–5.

Coding Tips

Application Execution Modes 3-7

Example 3–5 Using Listeners to Resize an Embedded Application

public class ResizeFriendlyApp extends Application implements
 ChangeListener<Number> {
 private Stage stage;
 public void start(Stage stage) {
 //be resize friendly
 this.stage = stage;
 stage.widthProperty().addListener(this);
 stage.heightProperty().addListener(this);

 ...

 //resize content
 resize(stage.getWidth(), stage.getHeight());

 stage.show();
 }

 private void resize(double width, double height) {
 //relayout the application to match given size
 }

 public void changed(ObservableValue<? extends Number> ov,
 Number t, Number t1) {
 resize(stage.getWidth(), stage.getHeight());
 }
}

Coding Tips

3-8 JavaFX Deploying JavaFX Applications

4

Application Startup 4-1

4Application Startup

This chanpter provides information about application startup process, user experience,
and customization.

The user experience (UE) is an extremely important factor for success of the
application. The way the application is deployed creates a first impression on the user
and has a crucial impact on user satisfaction, even before the application itself is ready.

Users are easily annoyed if they fail to launch the application, if they do not
understand what the next steps are, if they perceive the application to be slow or it
hangs, or for other reasons.

A properly packaged and deployed JavaFX application includes tweaks for many
typical user experience problems, and with JavaFX, developers have a wide range of
options to customize the user experience for their application and its audience.

In this section, the default experience for users of JavaFX applications is explained, and
the options the developer has to customize the user experience are presented. This
page contains the following sections:

■ Section 4.1, "Application Startup Process, Experience, and Customization"

■ Section 4.2, "Helping Users Start the Application"

4.1 Application Startup Process, Experience, and Customization
Out of the box, JavaFX application startup was designed for a good user experience.
The following sections describe the transition phases of application startup, how users
experience those phases, and how the default visual feedback to the user can be
customized.

4.1.1 Startup Process
Between the time an application is started and the time the user sees the main
application, a sequence of events occurs on screen while operations are carried out in
the background, as shown in Figure 4–1 and described in the following paragraphs.
This startup sequence partially depends on the execution mode and on the speed with
which the background operations complete. Figure 4–1 shows a series of boxes that
depict the background operations over time, along with screenshots of what the user
sees while these operations occur.

Application Startup Process, Experience, and Customization

4-2 JavaFX Deploying JavaFX Applications

Figure 4–1 Background Operations and Screen Events During Application Startup

There are four phases in the application startup process:

■ Phase 1: Initialization

Initialization of Java Runtime and an initial examination identifies components
that must be loaded and executed before starting the application. The initialization
phase is depicted in the first two boxes in the upper row in Figure 4–1.

■ Phase 2: Loading and preparation

The required resources are loaded from either the network or a disk cache, and
validation procedures occur. All execution modes see the default or a custom
preloader. This phase is depicted in the third box in the upper row in Figure 4–1.

■ Phase 3: Application-specific initialization

The application is started, but it may need to load additional resources or perform
other lengthy preparations before it becomes fully functional. An example of this
is checking whether elevated permissions are needed and displaying the
appropriate request for permission to the user.

■ Phase 4: Application execution

The application is displayed and is ready to use. This occurs after the background
operations shown in Figure 4–1 are finished.

4.1.1.1 Visual Feedback During Phase One Initialization
Options to provide visual feedback during the first phase of initialization are limited.
At that moment, it is not yet known what must be done to launch the application, and
the Java platform has not initialized yet. Visual feedback must be provided using
external means, for example using JavaScript or HTML if the application is embedded
into the web page. By default, a splash screen is displayed during this phase, as
described in Section 4.1.2, "Default User Experience."

4.1.1.2 Visual Feedback After Initialization
To provide visual feedback after the initialization phase, JavaFX provides a preloader,
which gets notifications about the loading progress and can also get
application-specific notifications. By default, a default preloader with a progress bar is
displayed during this phase, as described in Section 4.1.2, "Default User Experience."
You can customize the default preloader (see Section 4.1.3, "Customization Options"),
or you can create your own preloaders to customize the display and messaging (see
Chapter 9, "Preloaders").

Application Startup Process, Experience, and Customization

Application Startup 4-3

4.1.2 Default User Experience
A properly packaged JavaFX application provides default visual feedback to the user
for the first two phases for all execution modes. The actual behavior depends on the
execution mode.

When launched in standalone mode most applications start quickly, and no visual
feedback is required.

Table 4–1 summarizes the default behavior according to execution mode when the
application is launched for the first time (in other words, is loaded from the network).

Table 4–2 summarizes the default behavior for subsequent launches, in which the JAR
files are loaded from the cache. In this case, the process has fewer visual transitions
because nothing needs to be loaded from the network during the Loading Code phase,
so launch time is substantially shorter.

Table 4–1 Default Behavior During First-Time Launch

Startup
Phase Web Start Launch Embedded into Web Page

Phase 1
Initialization

Splash screen: Splash screen:

Phase 2
Loading Code

Progress window: Progress window:

Phase 3
Transition to
Application

Hide progress window Fade-out progress window

Table 4–2 Default Startup Behavior During Subsequent Launches

Web Start Launch or Launch from
Shortcut Embedded into Web Page

Phase 1
Initialization

Splash screen: Splash screen:

Phase 2
Loading Code

Application Startup Process, Experience, and Customization

4-4 JavaFX Deploying JavaFX Applications

4.1.3 Customization Options
The splash screen for embedded applications is displayed in the web page and can be
easily customized by using an onGetSplash callback, as shown in Section 7.2.3,
"onGetSplash."

The default preloader can be customized by using a CSS stylesheet, similar to other
JavaFX components. Pass the customized style data using the
javafx.default.preloader.stylesheet parameter for your application. The value of
the parameter can be any of following:

■ Absolute or relative URI of the CSS stylesheet, either as a text file with a .css
extension or in binary form with a .bss extension. For more information about
binary conversion, see Section 5.4, "Stylesheet Conversion."

■ Actual CSS code.

To customize the preloader, use the .default-preloader class. In addition to standard
CSS keys, the preloader has two special keys:

■ -fx-preloader-status-text

Status text to be shown in the preloader

■ -fx-preloader-graphic

Absolute or relative URI of the image to be used by the preloader

Example 4–1 shows an example of CSS file my.css:

Example 4–1 Example CSS Class to Customize the Preloader

.default-preloader {
 -fx-background-color: yellow;
 -fx-text-fill: red;
 -fx-preloader-graphic: url("http://host.domain/duke.gif");
 -fx-preloader-text: "Loading, loading, LOADING!";
}

Add the stylesheet to the <fx:deploy> Ant task as shown in Example 4–2:

Example 4–2 Adding a Preloader Stylesheet to the <fx:deploy> Ant Task

<fx:deploy ...>
 <fx:application ...>
 <fx:htmlParam name="javafx.default.preloader.stylesheet"
 value="my.css"/>
 <fx:application>
</fx:deploy>

If your customizations are small, then it is more efficient to pass CSS code instead of a
file name, because there is no need to download the file. Example 4–3 shows to change
the background color to yellow.

Phase 3
Transition to
Application

Hide splash screen Hide splash screen

Table 4–2 (Cont.) Default Startup Behavior During Subsequent Launches

Web Start Launch or Launch from
Shortcut Embedded into Web Page

Helping Users Start the Application

Application Startup 4-5

Example 4–3 Changing the Default Preloader Background Color

<fx:deploy ...>
 <fx:application ...>
 <!-- Using fx:param here, so it will be applicable to all web
 execution environemnts -->
 <fx:param name="javafx.default.preloader.stylesheet"
 value=".default-preloader { -fx-background-color: yellow; }"/>
 <fx:application>
</fx:deploy>

If customizing the default preloader is not enough and you need a different
visualization or behavior, see Chapter 9, "Preloaders" for information about how to
implement your own preloader and see Chapter 5, "Packaging Basics" for information
about how to add it to your package.

4.2 Helping Users Start the Application
There are various reasons why a particular user might have difficulty getting your
application to run, such as the following:

■ The user has an unsupported platform.

■ The user’s system does not have JavaFX Runtime or Java Runtime installed.

■ Java is not configured correctly, for example the proxy information is not set.

■ The user declined to grant permissions to a signed application.

Because most users never experience any of these problems, it is important to plan for
users who experience problems, either providing guidance to resolve the issue or
having the application fail gracefully and explaining to the user why it cannot be
resolved.

The following sections describe approaches to some common issues.

4.2.1 No JavaFX Runtime
If the user does not have JavaFX Runtime installed, then the application cannot start.
The JavaFX application package includes several hooks to improve user experience if
this is the case.

You can customize the default behavior described in the following sections. See
Chapter 5, "Packaging Basics" for information about how to embed various fallback
applications into the application package. See Chapter 7, "Deployment in the Browser"
for information about how to customize prompts to install JavaFX Runtime and error
handling for web applications.

4.2.1.1 Standalone Launch
The main application JAR file includes a launcher program, which is used to detect
JavaFX runtime. If JavaFX Runtime or Java Runtime is not found, then a dialog box
displays that explains where to get JavaFX Runtime and Java Runtime.

4.2.1.2 Launch with the Deployment Toolkit
If the JavaFX application is embedded into a web page or launched from a web page
using the Deployment Toolkit (see Chapter 7, "Deployment in the Browser"), then the
Deployment Toolkit takes care of JavaFX Runtime and Java Runtime detection before
trying to launch the application. If JavaFX Runtime or Java Runtime is missing, the
Deployment Toolkit initiates installation of JavaFX Runtime, either by offering the user

Helping Users Start the Application

4-6 JavaFX Deploying JavaFX Applications

a link to the installer, or by triggering download and installation automatically. By
default, automatic download only occurs when the user launches an application using
Web Start and has a recent version of the Java Runtime.

4.2.1.3 Launch a Remote Application without the Deployment Toolkit
The application package includes a fallback Swing application, which is used if an
attempt to launch the application is made but the JavaFX Runtime cannot be found.

4.2.2 Runtime Errors
An application can fail to launch due to various runtime errors or user mistakes, such
as the absence of a network connection needed to load some of application JAR files.

One of the most common errors is when the user does not grant permissions to the
application. In that case, the application fails, and the user has to restart the
application and then grant permissions to get it to run. In a case like this, it is helpful
to explain to the user why the application failed and what the user must do to restart it
successfully. By default, an error message will display, either in a dialog box or inside
the web page in the location where the application is embedded. In either case, the
messaging can be customized.

If the Deployment Toolkit is used, then the onDeployError handler can be used to
display an error message in the application area in the web page. You can also
consider including some instructions to the splash screen to alert users about granting
permissions. For more information, see Chapter 7, "Deployment in the Browser".

You can also include a custom preloader in your application to get notifications about
errors, unless the error occurs while launching the preloader. For more information
about preloaders and code examples, see Chapter 9, "Preloaders."

5

Packaging Basics 5-1

5Packaging Basics

This chapter provides an overview of JavaFX packaging and tools.

This page contains the following topics:

■ Section 5.1, "JavaFX Packaging Overview"

■ Section 5.2, "Base Application Package"

■ Section 5.3, "Overview of Packaging Tasks"

■ Section 5.4, "Stylesheet Conversion"

■ Section 5.5, "Create the Main Application JAR File"

■ Section 5.6, "Sign the JAR Files"

■ Section 5.7, "Run the Deploy Task or Command"

■ Section 5.8, "Packaging Cookbook"

■ Section 5.9, "Performance Tuning for Web Deployment"

5.1 JavaFX Packaging Overview
A properly packaged JavaFX application runs in one or more of the following
deployment modes:

■ As a standalone application, using the system Java Runtime

■ As a self-contained standalone application, using a private copy of Java Runtime

■ As a Web Start application

■ Embedded in a web page

By default, JavaFX packaging tools produce a package that includes everything
needed to provide a good user experience for various user environments, including:

■ Ensuring that the required Java and JavaFX Runtimes are installed

■ Autodownloading missing dependencies or offering to install them as needed

■ Providing visual feedback to the user while the application is being loaded

■ Showing descriptive error messages

JavaFX application packages work out of the box in multiple execution environments,
including:

■ Launching from the command line using the Java launcher

■ Double-clicking the JAR file or self-contained application launcher

Base Application Package

5-2 JavaFX Deploying JavaFX Applications

■ Embedding the application into a web page

Optionally, JavaFX packaging tools can produce self-contained application packages
that simplify redistribution by avoiding dependencies on external software. For more
information about self-contained application packages, see Chapter 6, "Self-Contained
Application Packaging."

5.2 Base Application Package
The JavaFX application package that is generated by default includes:

■ An executable application JAR file, which contains application code and resources
and can be launched by double-clicking the file

■ Additional application JAR and resource files

■ A deployment descriptor for web deployment (kept in the JNLP file)

■ An HTML file containing sample JavaScript code to embed and launch JavaFX
content from a web page

Figure 5–1 shows an example of the structure of a base application package. By
default, NetBeans IDE will use also include a copy of other support files in the
web-files folder, but for production it is recommended that you use a public copy of
the dtjava.js file, because it is always up to date.

Figure 5–1 Example of a Package for Web Deployment

5.3 Overview of Packaging Tasks
The build process for JavaFX applications extends the normal build process with
several additional steps, as outlined in Figure 5–2.

Overview of Packaging Tasks

Packaging Basics 5-3

Figure 5–2 The Build Process for JavaFX Applications

New or modified steps are marked with colored arrows and described as follows:

■ (Optional) Convert stylesheets to binary form

Converts CSS files to binary form to reduce parsing overhead at application
runtime.

■ Create JAR

Packages code and resources needed for the JavaFX application into a JAR file
and embeds the utility classes to support autodetection of JavaFX Runtime,
launch on double-click, and integration with the preloader JAR, if needed.

See Section 5.5, "Create the Main Application JAR File."

■ (Optional) Sign the JAR files

Signing JAR files is needed only when the application requires elevated privileges,
such as accessing files on the local file system or accessing nonsecure system
properties. Signing is not a new concept, and you can sign the JAR files for your
JavaFX application in the same way as you would for Swing/AWT applications.

Overview of Packaging Tasks

5-4 JavaFX Deploying JavaFX Applications

JavaFX Runtime supports a new method to sign JAR files that reduces the JAR size
overhead for signing, thereby improving the download time.

See Section 5.6, "Sign the JAR Files."

■ Run the Deploy task

Assembles the application package for redistribution. By default, the deploy task
will generate the base application package, but it can also generate self-contained
application packages if requested. See Section 5.7, "Run the Deploy Task or
Command" and Chapter 6, "Self-Contained Application Packaging."

5.3.1 JavaFX Packaging Tools
The recommended way to package JavaFX applications is to use a collection of Ant
tasks (ant-javafx.jar), provided with the JavaFX SDK and also with JDK 7 Update 6 or
later.

NetBeans IDE uses these Ant tasks to package JavaFX projects. Embedded packaging
support in NetBeans IDE covers most of the typical use cases. However, if you need
something special, you can always tune packaging by adding custom packaging hooks
to the build.xml file (for example, as a -post-jar target).

Most of the other popular IDEs can easily use custom Ant build scripts. Other popular
build frameworks, for example Maven or Gradle, support integration with Ant also.

The JavaFX SDK and JDK 7 Update 6 or later include a command-line packaging
utility, javafxpackager, which can be used for simple packaging tasks. Note that
javafxpackager is a convenience utility and does not provide as much flexibility or as
many options as Ant tasks.

Table 5–1 summarizes how to accomplish the build steps using the various packaging
tools available. Note that javafxpackager also provides a -makeall macro command
to create a complete application package for simple applications (for more
information, see Chapter 11, "The JavaFX Packager Tool.").

Table 5–1 JavaFX Packaging Tasks and Tools

Task

JavaFX
Packager
Library Ant
Task

JavaFX Packager Tool
Command NetBeans IDE

Convert any CSS
files to binary
format (See
Section 5.4,
"Stylesheet
Conversion.")

<fx:csstobin> javafxpackager -createbss Packaging category in Project
Properties

■ Select Binary Encode
JavaFX CSS Files check
box.

Create a JAR
archive (See
Section 5.5,
"Create the Main
Application JAR
File.")

<fx:jar> javafxpackager -createjar Occurs by default with a
Build command, using the
configuration in Project
Properties.

Sign a JAR
archive as one
binary object
(See Section 5.6,
"Sign the JAR
Files.")

<fx:signjar> javafxpackager -signJar Deployment category in
Project Properties

■ Request unrestricted
access check box.

■ To attach a certificate,
click Edit.

Create the Main Application JAR File

Packaging Basics 5-5

5.4 Stylesheet Conversion
Converting stylesheets to binary format is optional but improves application
performance. This is especially noticeable on larger CSS files.

To use a binary CSS file, refer to it instead of the CSS file, as shown in Example 5–1:

Example 5–1 Using a Binary Stylesheet

scene.getStylesheets().add(this.getClass().getResource
 ("mystyles.bss").toExternalForm());

Usage:

■ Ant task: Convert CSS Files to Binary

■ JavaFX Packager tool: -createbss command in the javafxpackager reference

■ NetBeans IDE: In the Packaging category of Project Properties, select Binary
Encode JavaFX CSS Files.

5.5 Create the Main Application JAR File
In addition to application classes and resources, you can provide the following
information when you create the main application JAR file:

■ Platform requirements

■ Required versions of Java Runtime and JavaFX Runtime

■ Any required Java VM arguments

■ The following details about the application:

– Name of the main application class (Required)

– Name of preloader class (if there is a preloader)

– Name of fallback class to use if the platform does not support JavaFX

■ Details about application resources, if applicable

■ Set of class files and other resources included in the JAR file

■ List of auxiliary JAR files needed by the application, including a custom preloader
JAR file (if needed)

Assemble
application
package for
deployment (See
Section 5.7, "Run
the Deploy Task
or Command")
and Chapter 6,
"Self-Contained
Application
Packaging."

<fx:deploy> javafxpackager -deploy Base application package is
produced by default with a
Build command. To produce
self-contained applications,
see Section 6.3.2, "Basic
Build."

Table 5–1 (Cont.) JavaFX Packaging Tasks and Tools

Task

JavaFX
Packager
Library Ant
Task

JavaFX Packager Tool
Command NetBeans IDE

Sign the JAR Files

5-6 JavaFX Deploying JavaFX Applications

The use of JavaFX packaging tools to create the main application JAR file is very
important for packaging double-clickable jars and self-contained applications. The
main application JAR file will include a launcher program that takes care of the
bootstrap launch. This also improves launch by:

■ Checking for the JavaFX Runtime

■ Guiding the user through any necessary installations

■ Setting the system proxy for your application

Usage:

■ Ant task: <fx:jar> Usage Examples

■ JavaFX Packager tool: -createjar command (see the javafxpackager reference)

■ NetBeans IDE: Handled automatically when you specify this information in the
project’s properties.

5.6 Sign the JAR Files
Before adding code to sign your application, ensure that signing is needed, because it
carries a cost of overhead to perform validation and often causes additional dialog
boxes to be shown to the end user on application startup. See Section 3.2.4, "Run in
Sandbox Unless Signed and Trusted" to find out when an application needs elevated
permissions.

If you want to use traditional methods to sign JAR files, consult the Java Tutorial’s
steps for code signing and the description of the standard Ant signjar task for
information about the traditional signing method.

JavaFX also provides a new signing method that helps to reduce the size overhead of
signing the JAR file. In this method, you sign the JAR file as one large object instead of
signing every JAR entry individually. This saves up to 10 percent of the total JAR size.

To use the new signing method provided by JavaFX, you need the keystore and
signing key. See the Java Tutorial on generating keys for instructions.

Usage:

■ Ant task: <fx:signjar> Usage Examples

■ JavaFX Packager tool: -signJar command in the javafxpackager reference

■ NetBeans IDE: Netbeans IDE users enable signing when they request elevated
permissions for the application by selecting the Request unrestricted access check
box in the project properties. To sign with a specific certificate, click Edit next to
the check box.

Note: If you have a preloader, as shown in Figure 5–2, create a
separate JAR file with the preloader resources, using any of the
packaging tools listed below. For more information, see Chapter 9,
"Preloaders."

Run the Deploy Task or Command

Packaging Basics 5-7

5.7 Run the Deploy Task or Command
A basic redistribution package consists of the following items:

■ The main executable JAR file

■ (Optional) A set of auxiliary JAR files, including a JAR file with preloader code

■ A deployment descriptor, defining how to deploy the application

■ Either a basic HTML file with sample code to embed the application into your
own web page or a custom web page that is the result of preprocessing an HTML
template

JavaFX packaging tools can also package the application as a self-contained
application bundle. This is an opt-in scenario, and it is disabled by default. For more
details, see Chapter 6, "Self-Contained Application Packaging."

To assemble the redistributable package, you can use one of the following ways:

■ Ant task: <fx:deploy> Task Usage Examples

■ JavaFX Packager tool: -deploy command in the javafxpackager reference

■ NetBeans IDE: A redistributable package is created every time you build the
project. Packaging options are set in the project's properties.

5.7.1 Configure the Deployment Descriptor
The key part of this task is providing information to fill the deployment descriptor for
web deployment. This information includes:

■ Entry points: the main application class, preloader class, and other details

Defined as attributes of the <fx:application> tag.

■ Parameters to be passed to the application

Defined using <fx:param> and <fx:htmlParam> tags under <fx:application>.

■ The preferred application stage size

It is crucial to reserve the display area for embedded content.

Width and height are defined using width and height attributes in the <fx:deploy>
tag for Ant tasks, the javafxpackager -deploy command in the javafxpackager tool,
or in the Run category of NetBeans project properties.

■ A description of application to be used in any dialog boxes that the user sees
during application startup

Defined using the <fx:info> tag.

Note: All JAR files must be signed or unsigned in the context of a
single deployment descriptor file. If you need to mix signed and
unsigned JAR files, use an additional <fx:deploy> Ant task to generate
an additional deployment descriptor for each JAR file. These
additional deployment descriptors are called extension descriptors.
Use <fx:resources> to refer to the extension descriptors when the main
descriptor is generated. For an example of how to do this, see Using
<fx:resources> for Extension Descriptors.

Run the Deploy Task or Command

5-8 JavaFX Deploying JavaFX Applications

■ Platform requirements, including required versions of Java and JavaFX Runtimes
and JVM settings

Defined using the <fx:platform> tag. For an example, see <fx:platform> Parameter
to Specify JVM Options.

■ Desktop integration preferences of the application, such as adding a shortcut to
the desktop or a reference to the Start menu.

Defined using the optional <fx:preferences> tag. See <fx:preferences> Usage
Examples.

■ Permissions needed to run the application.

By default web applications run in the sandbox. To request elevated permissions,
use the <fx:permissions> tag. Note that in order for permissions to be granted,
application JAR files must be signed, and the user must trust the security
certificate used for signing. If the application requests elevated permissions but
requirements for the user granting permissions are not met, then the application
will fail to launch.

5.7.2 Application Resources
Supported application resource files include:

■ JAR files

■ Native JAR files

■ JNLP files

■ Icons

■ License files

■ Data files

Every resource has additional metadata associated with it, such as operating system
and architecture for which this resource is applicable, plus a priority preference
defining the point in the application lifecycle at which this resource is needed. Careful
use of metadata may have a significant impact of the application startup experience.
For a list of supported values, see Table 12–8.

All files in the resource set will be copied to the build output folder. However, not all
of them are used in all execution modes, as described in the following paragraphs.

Regardless of execution mode, all regular JAR files from the resource set will be added
to the application classpath.

Native JAR files and JNLP files are only used for web deployment. Additional JNLP
files are typically used to refer to external JNLP extensions or if the application itself is
packaged as a set of components. See Using <fx:resources> for Extension Descriptors
in the JavaFX Ant Task Reference.

Native JAR files are used to deploy native libraries used by application. Each native
JAR file can contain a set of native dynamic libraries and is inherently
platform-specific. For more details, see Example 5–11 and Section 5.8.3, "Packaging
Complex Applications."

License files are currently applicable to self-contained applications only and are used
to add a click-through license to installable packages. See Section 6.4, "Installable
Packages."

Run the Deploy Task or Command

Packaging Basics 5-9

Data files do not have special semantics, and applications are free to use them for
anything. For example if your application needs to bundle a movie file, then you can
mark it as "data," and it will be included into the application package.

For further details, see Table 12–8.

5.7.3 Package Custom JavaScript Actions
The Deployment Toolkit provides a set of hooks that can be used to customize the
startup behavior when an application is deployed in the browser. Developers must
install a callback function to the hook, so it will be utilized by the Deployment Toolkit.

Chapter 7, "Deployment in the Browser" describes in detail what hooks are available
and how to use them in the code. However, in order to ensure that they are correctly
installed, they also must be specified at packaging time.

To specify callbacks, list them in the <fx:callbacks> tag under <fx:deploy>. Add an
<fx:callback> entry for every callback you want to install and specify the name of the
hook in the name attribute. The content of the <fx:callback> tag is the JavaScript
function to be used. You can use a full function definition or refer to a function defined
elsewhere.

Usage:

■ Ant task: <fx:callback> Usage Examples

■ JavaFX Packager tool: See -deploy command in the javafxpackager reference.

■ NetBeans IDE: Add callbacks in the Deployment category of Project Properties.
Click the Edit button to the right of Custom JavaScript Actions.

5.7.4 Web Page Templates
By default, JavaFX packaging tools generate a simple web page with a placeholder for
the embedded application. You can manually copy code from this generated page to
your real web page, but this is error prone and time consuming if you need to do this
often.

JavaFX packaging tools also support injecting required code into an existing web page
through the use of an input template. This is especially useful when the application is
tightly integrated with the web page, for example if the application uses JavaScript to
communicate to the web page, or if callbacks are used and their code is kept in the
web page itself.

An input template is an HTML file containing markers to be replaced with JavaScript
or HTML snippets needed to deploy the JavaFX application on the web page.
Example 5–2 shows an example of an input template.

Example 5–2 HTML Input Template

<html>
 <head>
 <title>Host page for JavaFX Application</title>
 #DT.SCRIPT.CODE#
 #DT.EMBED.CODE.ONLOAD#
 </head>
 <body>
 <h1>Embed JavaFX application into existing page</h1>
 <!-- application will be inserted here -->
 <div id="ZZZ"></div>
 </body>

Run the Deploy Task or Command

5-10 JavaFX Deploying JavaFX Applications

</html>

#DT.SCRIPT.CODE# and #DT.EMBED.CODE.ONLOAD# are markers that will be substituted
with JavaScript and HTML code snippets when the template is processed. Markers
have the form of #MARKERNAME# or #MARKERNAME(id)#,

id is the identifier of an application (specified using the id attribute of the <fx:deploy>
tag if you are using Ant), and MARKERNAME is the type of the marker. If id is not
specified, then MARKER matches any application. For a list of supported markers, see
<fx:template> in the Ant task reference.

Templates can be used to deploy multiple applications into the same page. Use the full
form of the marker including application ID (an alphanumeric string without spaces)
and pass the partially processed template file when packaging each applications to
insert.

Example 5–3 shows an example of a template that is used to deploy multiple
applications.

Example 5–3 An Input Template Used to Deploy Multiple Applications

<html>
 <head>
 <title>Page with two application</title>
 <script src="#DT.SCRIPT.URL#"></script>

 <!-- code to load first app with id 'firstApp'
 (specified as attribute to fx:application) -->
 <!-- #DT.EMBED.CODE.ONLOAD(firstApp)# -->

 <!-- code to load first app with id 'secondApp' -->
 <!-- #DT.EMBED.CODE.ONLOAD(secondApp)# -->
 </head>
 <body>
 <h1>Multiple applications in the same page</h1>

 JavaFX app:

 <!-- First app. Ant task need to use "ZZZ_1 as placeholderId -->
 <div id="ZZZ_1"></div>

 Another app:

 <!-- Second app. Ant task need to use "ZZZ_2 as placeholderId -->
 <div id="ZZZ_2"></div>
 </body>
 </html>

Example 5–3 demonstrate one useful feature of the JavaFX template processor: the
markers can be placed in the HTML comments. If the comment does not contain
anything other than marker code, then the comment tags will be removed from the
content in the resulting HTML. This keeps the HTML in the template page well
formed.

Usage:

■ Ant task: Add a template tag. See <fx:template> Usage Examples.

■ JavaFX Packager tool: -deploy command in the javafxpackager reference

■ NetBeans IDE: Specify the input HTML template file in the Run category of Project
Properties.

Packaging Cookbook

Packaging Basics 5-11

5.8 Packaging Cookbook
This sections presents several examples for popular deployment tasks.

The examples use Ant APIs, but in most cases the same result can be achieved using
the JavaFX Packager tool. See Chapter 12, "JavaFX Ant Tasks" and Chapter 11, "The
JavaFX Packager Tool."

5.8.1 Passing Parameters to the Application
JavaFX applications support two types of application parameters: named and
unnamed (see the API for Application.Parameters).

Static named parameters can be added to the application package using <fx:param>
and unnamed parameters can be added using <fx:argument>. They are applicable to
all execution modes including standalone applications.

It is also possible to pass parameters to a JavaFX application from a Web page that
hosts it, using <fx:htmlParam>. Prior to JavaFX 2.2, this was only supported for
embedded applications. Starting from JavaFX 2.2, <fx:htmlParam> is applicable to Web
Start applications also.

Passing parameters from the HTML page is the most useful if parameters are dynamic.
To use this technique, we recommend the following approach:

■ Use a web page template (see Section 5.7.4, "Web Page Templates") to provide
JavaScript code to prepare dynamic parameters.

■ Pass a JavaScript snippet as a value for <fx:htmlParam> and specify
escape="false". Then it will be evaluated at runtime

Example 5–4 shows the use of various parameter types:

Example 5–4 Using Various Parameter Types

<fx:application name="Test" mainClass="tests.Params">
<!-- unnamed parameters -->
 <fx:argument>Arg1</fx:argument>
 <fx:argument>Arg2 with spaces </fx:argument>

 <!-- name parameters -->
 <param name="sampleParam" value="Built with ${java.version}"/>
 <param name="noValueParam"/>

 <!-- parameters passed from HTML page -->
 <htmlParam name="staticParamFromWebPage"
 value="(new Date()).getTime()"/>
 <htmlParam name="dynamicParamFromWebPage" escape="false"
 value="(new Date()).getTime()"/>
</fx:application>

5.8.2 Customizing JVM Setup
Does you application need a larger heap size? Do you want to tune garbage collector
behavior? Trace class loading?

You can specify required JVM options and set system properties using the <fx:jvmarg>
and <fx:property> tags in your Ant task. These tags are applicable for all execution
modes except standalone applications. In other words, you always get the default JVM
if you double-click the JAR file, but you can tailor the JVM to your requirements if you

Packaging Cookbook

5-12 JavaFX Deploying JavaFX Applications

are running a self-contained application, a Web Start application, or an application
embedded into a web page.

If you use any nonsecure JVM options or system properties, the application will need
to have elevated permissions. A set of "secure" JVM command-line arguments and
system properties is defined in the Java Web Start Developers' Guide.

In Example 5–5, the Ant task will package the application so that, when the
application is run, the JVM will be launched with the following arguments:
"-Xmx400 -verbose:jni -Dpurpose=sample".

Neither "-verbose:jni" nor purpose are secure, so elevated permissions are required
for Web Start and embedded execution modes.

Example 5–5 Specifying Custom JVM Options and Properties in the Ant Task

<fx:platform javafx="2.1+">
 <fx:jvmarg value="-Xmx400m"/>
 <fx:jvmarg value="-verbose:jni"/>
 <fx:property name="purpose" value="sample"/>
</fx:platform>

5.8.2.1 Specifying User JVM Arguments
If you require a capability to specify user overridable jvm options, use the
<fx:jvmuserarg> attribute in <fx:platform>. This attribute explicitly defines an
attribute that can be overridden by the user.

Example 5–6 Specifying User Overridable Options

 <fx:platform>
 <fx:jvmuserarg name="-Xmx" value="768m" />
 </fx:platform>
In Example 5–6, -Xmx768m is passed as a default value for heap size. The user can
override this value in a user configuration file on linux and mac or in the registry on
windows. The configuration file and the registry uses the conventions of the Java
Preferences API for location and format.

The node for the applications user preferences is based on the application id (or if that
hasn't been specified, the fully qualified main class), which is passed as
-Dapp.preferences.id to the Application so it can provide a preferences UI if required.
The application can access the jvm user options with node -Dapp.preferences.id and
key "JVMOptions".

The following examples provide code for overriding the JVM heap size value of 768m
to 400m on different platforms.

Example 5–7 Overriding Default Value on Mac

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>JVMUserOptions</key>
 <dict>
 <key>-Xmx</key>

Note: The user overridable arguments are implemented for Ant
tasks only.

Packaging Cookbook

Packaging Basics 5-13

 <string>400m</string>
 </dict>
</dict>
</plist>

Example 5–8 Overriding Default Value on Windows in Registry

Computer\HKEY_CURRENT_
USER\Software\JavaSoft\Prefs\com\companyx\appy\/J/V/M/Options
 name: -Xmx
 type: REG_SZ
 data: 400m

Example 5–9 Overriding Default Value on Linux

~/.java/.userPrefs/com/companyx/appy/JVMOptions/prefs.xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE map SYSTEM "http://java.sun.com/dtd/preferences.dtd">
<map MAP_XML_VERSION="1.0">
 <entry key="-Xmx" value="400m"/>
</map>

5.8.2.2 Macro Expansion of Application Directory for jvmarg and jvmuserarg
You can provide string substitution to the root of the install directory for parameters
passed into the application.

Example 5–10 Substituting Parameters Passed to the Application

<fx:platform>
 <fx:jvmarg value="-Djava.policy.file=$APPDIR/app/whatever.policy"/>
 <fx:jvmuserarg name="-Xmx" value="768m" />
</fx:platform>

5.8.3 Packaging Complex Applications
Real-life applications often have more than just a single JAR artifact. They may have
third-party libraries, data files, native code, and so on. For the complex application
you may need special packaging tweaks to support different execution modes

There are too many possible scenarios to cover all cases, but here are some guidelines:

■ Mark platform-specific resources accordingly.

■ For the double-clickable JAR file, consider repackaging everything into a single
giant JAR file and loading native libraries and data files from inside the JAR.

Alternatively, if you prefer to have multiple files:

– Make sure all dependent JAR files are listed in the <fx:resources> tag in the
<fx:jar> task that will create the main JAR file.

– List all data files and libraries in filesets with type="data" to copy them into
the output folder.

– Load native libraries and resources from locations relative to the main JAR
file.

– See the example <fx:jar> Ant Task for a Simple Application in the Ant Task
Reference chapter.

■ For self-contained applications:

Packaging Cookbook

5-14 JavaFX Deploying JavaFX Applications

– Avoid packaging anything but the main JAR file using <fx:jar>. Multiple
embedded launchers can confuse the native launcher.

– List all dependent JAR files in the <fx:resources> section of <fx:deploy> and
<fx:jar> for the main application JAR file.

– Either use an explicit location relative to the application JAR file to load native
libraries, or copy native libraries into the root application folder. (Use
type="data" to copy native library files.)

– See Example 6–5.

■ For Web Start and embedded applications:

– List all dependent JAR files in the <fx:resources> section of <fx:deploy>.

– Native libraries should be wrapped into the JAR files for redistribution.

Use one JAR file per platform. Ensure the JAR files contain native libraries
only and that the libraries are all in the top-level folder of the JAR file.

– See Example 5–11.

Example 5–11 Packaging Native Libraries into JAR Files

<jar destfile="${basedir}/build/native-libs-win-x86.jar"
 basedir="native/windows/x86" includes="*"/>
<jar destfile="${basedir}/build/native-libs-win-x86_64.jar"
 basedir="native/windows/x86_64" includes="*"/>

<!-- sign all jar files --->
<signjar keystore="test.keystore" alias="TestAlias" storepass="xyz123">
 <fx:fileset dir="dist" includes="**/*.jar"/>
</signjar>

<!-- assemble package -->
<fx:deploy width="600" height="400"
 outdir="${basedir}/${bundle.outdir}"
 outfile="Demo">
 <fx:info title="Demo app"/>
 <fx:application name="${bundle.name}"
 mainClass="${javafx.main.class}"/>
 <fx:permissions elevated="true"/>
 <fx:resources>
 <!-- jar files with classes and shared data -->
 <fx:fileset dir="dist" includes="*.jar"/>
 <fx:fileset dir="dist" includes="lib/*.jar"/>

 <!-- add native libs for deployment descriptor -->
 <fx:fileset dir="build" type="native"
 os="windows" arch="x86">
 includes="native-libs-win-x86.jar"/>
 </fx:fileset>
 <fx:fileset dir="build" type="native"
 os="windows" arch="x64"
 includes="native-libs-win-x86_64.jar"/>
 </fx:fileset>
 ...
 </fx:resources>
</fx:deploy>

Packaging Cookbook

Packaging Basics 5-15

5.8.4 Publishing an Application that Fills the Browser Window
Prior to JavaFX 2.2, it was not easy to size embedded applications relative to the size of
browser window. The width and height attributes of the <fx:deploy> task can only
take numeric values, because they are used not just in the generated HTML/Javascript
code but also in the deployment descriptor.

In JavaFX 2.2, two new attributes were added to the <fx:deploy> task: embeddedWidth
and embeddedHeight. These attributes enable you to specify the size relative to the
browser window (for example, as "50%").

These optional embeddedWidth and embeddedHeight attributes are only used for
embedded applications, and only in the generated HTML/Javascript code. Also note
that width and height values in pixels are still required.

To fill the browser window completely, you must set embeddedWidth and
embeddedHeight to "100%". This alone does not produce a perfect result, because
scrollbars will be added to the browser window, for the following reasons:

■ The default HTML template has some other content.

■ The default style of HTML tags may reserve space for things like margins.

The resulting web page will appear to be larger than the view area, and therefore the
browser will add scrollbars.

The full solution consists of the following steps:

■ Specify embeddedWidth="100%" and embeddedHeight="100%" in the <fx:deploy>
task. (See Example 5–12.)

■ Add a custom web page template. (See Example 5–13 and Section 5.7.4, "Web Page
Templates.")

■ Reset the style of used HTML elements to ensure the application is the only
element in the view area.

Example 5–12 Packaging

<fx:deploy width="100" height="100"
 embeddedWidth="100%" embeddedHeight="100%"
 outdir="${basedir}/${dist.dir}" outfile="${application.title}">
 <fx:application name="${application.title}"
 mainClass="${javafx.main.class}"/>
 <fx:template file="${basedir}/web/index_template.html"
 tofile="${dist.dir}/TestApp.html"/>
 <fx:resources>
 <fx:fileset dir="${basedir}/${dist.dir}" includes="*.jar"/>
 </fx:resources>
 <fx:info title="${application.title}"
 vendor="${application.vendor}"/>
</fx:deploy>

Example 5–13 Web Page Template (web/index_template.html)

<html>
 <head>
 <!-- This will be replaced with javascript code to embed the application -->
 <!-- #DT.SCRIPT.CODE#-->
 <!-- #DT.EMBED.CODE.ONLOAD#-->

 <!-- Reset html styles to ensure these elements do not waste space -->
 <style>

Performance Tuning for Web Deployment

5-16 JavaFX Deploying JavaFX Applications

 html, body {
 margin: 0;
 }
 </style>
 </head>
 <body>
 <!-- Application will be added to the div below -->
 <div id='javafx-app-placeholder'></div>
 </body>
</html>

5.9 Performance Tuning for Web Deployment
There are several options that can be used to improve application launch time for the
first and subsequent launches of web applications.

5.9.1 Background Update Check for the Application
Every time a web application starts (Web Start or embedded), a background update
check is conducted for whether updates are required. By default, JavaFX applications
perform "lazy" update checks in the background while the application runs. This helps
to avoid wait time to check for updates when the application starts. If updates are
found, then they will be used only after the application restarts. To switch between
update modes, use the following mechanisms in the JavaFX packaging tools:

■ Ant task: updatemode attribute of the <fx:deploy> task.

■ JavaFX Packager tool: -updatemode option of the javafxpackager -deploy
command in the javafxpackager tool.

■ NetBeans IDE: In the Deployment category of Project Properties, select Check for
Application Updates in Background.

5.9.2 Embed the Deployment Descriptor into the Web Page
You can embed the content of the deployment descriptor into the HTML page, which
helps to reduce the number of network connections needed to launch the application,
as shown in Figure 5–3.

Tip: While you actively develop an application it is a good idea to
disable optimizations to avoid unneeded complexity. Use them at the
final packaging stage.

Performance Tuning for Web Deployment

Packaging Basics 5-17

Figure 5–3 Embedding JNLP Content Reduces Network Connections

The original JNLP file will be loaded in the background to perform application update
checks.

To embed the content of the deployment descriptor:

■ Ant task: embedjnlp attribute of the <fx:deploy> task.

■ JavaFX Packager tool: -embedjnlp option of the javafxpackager -deploy command
in the javafxpackager tool.

■ NetBeans IDE: The content is embedded by default.

5.9.3 Embed Signing Certificate into Deployment Descriptor
If the application is signed, then this option embeds into the JNLP file a copy of the
details of the certificate used to sign the JAR files. If the user needs to approve
permissions, this certificate, followed by a security prompt, is shown while the
application JAR files are being loaded, as shown in Figure 5–4.

Performance Tuning for Web Deployment

5-18 JavaFX Deploying JavaFX Applications

Figure 5–4 Advantage of Embedding the Certificate in the Deployment Descriptor

To use this feature:

■ Ant task: cachecertificates attribute of the <fx:permissions> task.

■ JavaFX Packager tool: -embedCertificates option of the javafxpackager -deploy
command in the javafxpackager tool.

5.9.4 Use New JavaFX Signing Method (Signed Applications)
Reducing the JAR file size helps to reduce download time and improve startup time.
See Section 5.6, "Sign the JAR Files."

6

Self-Contained Application Packaging 6-1

6Self-Contained Application Packaging

A self-contained application is a wrapper for your JavaFX application, making it
independent of what the user might have installed.

■ Section 6.1, "Introduction"

■ Section 6.2, "Pros and Cons of Self-Contained Application Packages"

■ Section 6.3, "Basics"

■ Section 6.4, "Installable Packages"

■ Section 6.5, "Working Through a Deployment Scenario"

6.1 Introduction
JavaFX packaging tools provide built-in support for several formats of self-contained
application packages. The basic package is simply a single folder on your hard drive
that includes all application resources as well as Java Runtime. It can be redistributed
as is, or you can build an installable package (for example, EXE or DMG format).

From the standpoint of process, producing a self-contained application package is very
similar to producing a basic JavaFX application package as discussed in Chapter 5,
"Packaging Basics," with the following differences:

■ Self-contained application packages can only be built using JDK 7 Update 6 or
later. (The standalone JavaFX SDK does not support self-contained applications.)

■ Self-contained application packages must be explicitly requested by passing
additional arguments to the <fx:deploy> Ant task or javafxpackager tool.

■ Operating system and tool requirements must be met to be able to build a package
in a specific format.

While it is easy to create a basic self-contained application package, tailoring it to
achieve the best user experience for a particular distribution method usually requires
some effort and a deeper understanding of the topic.

6.2 Pros and Cons of Self-Contained Application Packages
Deciding whether the uses of self-contained application packages is the best way to
deploy your application depends on your requirements.

Self-contained application packages have several benefits:

■ They resemble native applications for the target platform, in that users install the
application with an installer that is familiar to them and launch it in the usual way.

Basics

6-2 JavaFX Deploying JavaFX Applications

■ They offer no-hassle compatibility. The version of Java Runtime used by the
application is fully controlled by the application developer.

■ Your application is easily deployed on fresh systems with no requirement for Java
Runtime to be installed.

■ Deployment occurs with no need for admin permissions when using ZIP or
user-level installers.

On the other hand, there are a few caveats:

■ "Download and run" user experience

Unlike web deployment, the user experience is not about "launch the application
from the web." It is more one of "download, install, and run" process, in which the
user might need to go through additional steps to get the application launched.
For example, the user might have to accept a browser security dialog, or find and
launch the application installer from the download folder.

■ Larger download size

In general, the size of self-contained application packages will be noticeably larger
than the size of a standalone application, because a private copy of Java Runtime
is included.

■ Package per target platform

Self-contained application packages are platform specific and can only be
produced for the same system that you build on. If you want to deliver
self-contained application packages on Windows, Linux and Mac you will have to
build your project on all three platforms.

■ Application updates are the responsibility of developer

Web-deployed Java applications automatically download application updates
from the web as soon as they are available. The Java Autoupdate mechanism takes
care of updating the Java and JavaFX Runtimes to the latest secure version several
times every year. There is no built-in support for this in self-contained
applications.

6.3 Basics
Each self-contained application package includes the following:

■ The application code, packaged into a set of JAR files, plus any other application
resources (data files, native libraries)

■ A private copy of the Java and JavaFX Runtimes, to be used by this application
only

■ A native launcher for the application

■ Metadata, such as icons

Multiple package formats are possible. Built-in support is provided for several types of
packages, but you can assemble your own packages by post-processing a
self-contained application packaged as a folder, for example if you want to distribute
your application as a ZIP file.

Basics

Self-Contained Application Packaging 6-3

6.3.1 Self-Contained Application Structure
The basic form of a self-contained application is a single folder on your hard drive,
such as the example in Figure 6–1. When any of the installable packages are installed,
the result is a folder with the same content.

Figure 6–1 Example of a Self-Contained Application Package

The internal structure of a self-contained application folder is platform-specific and
may change in future. However, the following points are guaranteed:

■ The application package, as defined in Chapter 5, "Packaging Basics,", is included
as a folder, preserving the application directory structure.

■ A copy of Java Runtime is included as another folder, and the Java Runtime
directory structure is preserved.

Because directory structure is preserved, the application can load external resources
using paths relative to the application JAR or java.home system property.

6.3.2 Basic Build
The easiest way to produce a self-contained application is to modify the deployment
task. To request creation of all applicable self-contained application packages simply
add nativeBundles="all" to the <fx:deploy> task, as shown in Example 6–1.

Example 6–1 Simple Deployment Task to Create All Self-contained Application Packages

<fx:deploy width="${javafx.run.width}" height="${javafx.run.height}"
 nativeBundles="all"
 outdir="${basedir}/${dist.dir}" outfile="${application.title}">
 <fx:application name="${application.title}" mainClass="${javafx.main.class}"/>
 <fx:resources>
 <fx:fileset dir="${basedir}/${dist.dir}" includes="*.jar"/>
 </fx:resources>
 <fx:info title="${application.title}" vendor="${application.vendor}"/>
</fx:deploy>

Note: Only a subset of Java Runtime is included by default. Some
optional and rarely used files are excluded to reduce the package size,
such as all executables. If you need something that is not included by
default, then you need to copy it in as a post-processing step. For
installable packages, you can do this from the config script that is
executed after populating the self-contained application folder. See
Section 6.3.3, "Customization Using Drop-In Resources."

Basics

6-4 JavaFX Deploying JavaFX Applications

You can also specify the exact package format you want to produce. Use the value
image to produce a basic package, exe to request an EXE installer, dmg to request a
DMG installer, and so on. For the full list of attribute values, see the nativeBundles
attribute in the <fx:deploy> entry in the Ant Task Reference.

If you have a JavaFX project in Netbeans 7.2, you can add the above snippet as a
post-build step by overriding the "-post-jfx-deploy" target, as shown in
Example 6–2. Add the following code to the build.xml file in the main project
directory.

Example 6–2 Custom build.xml Script to Create Self-contained Application Packages in
NetBeans IDE

<target name="-post-jfx-deploy">
 <fx:deploy width="${javafx.run.width}" height="${javafx.run.height}"
 nativeBundles="all"
 outdir="${basedir}/${dist.dir}" outfile="${application.title}">
 <fx:application name="${application.title}"
 mainClass="${javafx.main.class}"/>
 <fx:resources>
 <fx:fileset dir="${basedir}/${dist.dir}"
 includes="*.jar"/>
 </fx:resources>
 <fx:info title="${application.title}"
 vendor="${application.vendor}"/>
 </fx:deploy>
 </target>

You can also produce native packages using the JavaFX Packager tool. self-contained
application packages are built by default if you use the -makeall command, or you
can request them explicitly using the -native option in the -deploy command. See the
javafxpackager command reference.

Example 6–3 shows the use of the -native option with the -deploy command, used to
generate all applicable self-contained application packages for the BrickBreaker
application. The -deploy command requires a JAR file as input, so it assumes that
dist/BrickBreaker.jar has already been built:

Example 6–3 JavaFX Packager Command to Generate Self-Contained Application
Packages

javafxpackager -deploy -native -outdir packages -outfile BrickBreaker
 -srcdir dist -srcfiles BrickBreaker.jar -appclass brickbreaker.Main
 -name "BrickBreaker" -title "BrickBreaker demo"

6.3.3 Customization Using Drop-In Resources
The packaging tools use several built-in resources to produce a package, such as the
application icon or config files. One way to customize the resulting package is to
substitute built-in resource with your customized version.

For this you need to:

■ Know what resources are used

■ Drop custom resources into a location where the packaging tool will look for them

The following sections explain how to do this.

Basics

Self-Contained Application Packaging 6-5

6.3.3.1 Preparing Custom Resources
To get more insight into what resources are being used, enable verbose mode by
adding the verbose="true" attribute to <fx:deploy>, or pass the -v option to the
javafxpackager -deploy command.

Verbose mode does the following:

■ It prints the following items:

– A list of config resources used for the package you are generating

– The role of each resource

– The expected custom resource name

■ It saves a copy of all config files to the temp folder, so you can use and customize
it.

Example 6–4 shows sample output, with the important parts highlighted:

Example 6–4 Sample Output in Verbose Mode

Using base JDK at: /Library/Java/JavaVirtualMachines/jdk1.7.0_06.jdk
 Using default package resource [Bundle config file] (add
 package/macosx/Info.plist to the class path to customize)
 Using default package resource [icon] (add package/macosx/DemoApp.icns
 to the class path to customize)
Creating app bundle: /tmp/test/TestPackage/bundles/DemoApp.app
Config files are saved to /var/folders/rd/vg2ywnnx3qj081sc5pn9_
 vqr0000gn/T/build7039970456896502625.fxbundler/macosx. Use them
 to customize package.

Now you can grab a copy of the config file and tune it to your needs. For example, you
can take Info.plist and add localized package names.

Note: It is recommended that you disable verbose mode once you are done with
customization or add a custom cleanup action to remove sample config files.

6.3.3.2 Substituting a Built-In Resource
Packaging tools look for customized resources on the classpath before reverting to
built-in resource. The Javafx Packager has "." (the current working directory) added to
the classpath by default. Hence, to replace the application icon, simply copy your
custom icon to ./package/macosx/DemoApp.icns in the directory where
javafxpackager is run (typically, the root project directory).

The classpath for JavaFX Ant tasks is defined when task definitions are loaded. You
must add an additional path to the lookup before the path ant-javafx.jar.

Example 6–5 shows how to add "." to the classpath. For a more detailed code snippet,
see Example 10–1).

Example 6–5 Enabling Resource Customization for JavaFX Ant Tasks

<taskdef resource="com/sun/javafx/tools/ant/antlib.xml"
 uri="javafx:com.sun.javafx.tools.ant"
 classpath=".:path/to/sdk/lib/ant-javafx.jar"/>

If you created a JavaFX project using Netbeans 7.2 or later, then the JavaFX Ant tasks
are predefined, and "." is already added to the classpath by default.

Basics

6-6 JavaFX Deploying JavaFX Applications

Once you provide a customized resource, verbose build output will report that it is
used. For example, if you added a custom icon to an application, then the verbose
output would report the addition, shown in Example 6–6.

Example 6–6 Verbose Output After Adding a Customized Icon Resource

Using base JDK at: /Library/Java/JavaVirtualMachines/jdk1.7.0_06.jdk
 Using default package resource [Bundle config file] (add
 package/macosx/Info.plist to the class path to customize)
Using custom package resource [icon] (loaded from
 package/macosx/DemoApp.icns on class path)
Creating app bundle: /tmp/test/TestPackage/bundles/DemoApp.app

6.3.4 Customization Options
Many of the existing JavaFX Ant elements are used to customize self-contained
application packages. Different sets or parameters are needed for different packages,
and the same element might have different roles. Table 6–1 introduces most of the
customization options.

Table 6–1 Customization Options with Ant Elements and Attributes

Tag Attribute Details

<fx:application> id Identifier of application. Format is
platform/package specific. If not specified, then
a value will be generated.

version Application version. Default: 1.0.

name Short name of the application. Most bundlers use
it to create the name of the output package. If not
specified, then the name of the main class is
used.

<fx:preferences> shortcut If set to true, then a desktop shortcut is
requested.

menu If set to true then an entry in the applications
menu is requested.

install If set to false, then a user-level installer is
requested. Default behavior depends on the
package format. See Table 6–2.

<fx:fileset> type Defines the role of files in the process of
assembling the self-contained application
package. Resources of types jnlp and native are
not used for building self-contained application
packages. Resources of type license are used as
a source of content for a click-through license or
a license embedded into the package

<fx:info> title Application title.

vendor Application vendor.

category Application category. Category names are
package-format specific.

license License type (for example, GPL). As of JavaFX
2.2, this attribute is used only for Linux bundles.

copyright Short copyright statement.

description Application description.

Installable Packages

Self-Contained Application Packaging 6-7

6.3.5 Platform-Specific Customization for Basic Packages
Creation and customization of the basic form of self-contained application packages is
a fairly straightforward process, but note the following points:

■ Different icon types are needed for different platforms.

For example, on Windows, the .ico format is expected, and on Mac it is .icns. No
icon is embedded into launcher on Linux.

■ To ensure that the icon is set in runtime, you also need to add it to the application
stage. For example, add the following code to to the start() method of your
application:

stage.getIcons().add(new
 Image(this.getClass().getResourceAsStream("app.png")));

■ Consider signing files in output folder if you plan to redistribute them.

For example, on Windows, the launcher executable can be signed using
signtool.exe.

6.3.5.1 Mac OS X
The resulting package on Mac OS X is an "application bundle" (or .app) in the Mac OS
"dialect/jargon".

Several config parameters end up in the Info.plist file in the application bundle and
need to conform to the rules:

■ Application ID (or main class name if ID is not specified) is used as
CFBundleIdentifier.

■ Application version is used as CFBundleShortVersionString.

Mac OS X 10.8 introduces Gatekeeper, which prevents execution of untrusted code by
default (regardless of whether this code was implemented in Objective-C or Java).

The user can manually enable the application to run, but this is not a perfect user
experience. To get optimal user experience, you need to obtain a Developer ID
Certificate from Apple and sign the .app folder produced by JavaFX packaging tools,
as follows:

 % codesign -s "Developer ID Application" ExampleApp.app

For more details, see the Developer ID and Gatekeeper topic at the Apple Developer
site.

6.4 Installable Packages
A self-contained application can be wrapped into a platform-specific installable
package to simplify redistribution. JavaFX packaging tools provide built-in support for

<fx:jvmarg> — JVM arguments to be passed to JVM and used to
run the application (for example, large heap
size).

<fx:property> — Properties to be set in the JVM running the
application.

Table 6–1 (Cont.) Customization Options with Ant Elements and Attributes

Tag Attribute Details

Installable Packages

6-8 JavaFX Deploying JavaFX Applications

several formats of installable packages, depending on the availability of third-party
tools.

Tuning the user experience for the installation process is specific to the particular
installer technology, as described in other sections in this chapter. However, you must
decide what type of installer you need. The following considerations that might help
with your decision.

■ System-wide or per-user installation?

System-wide installation results in a package installed into a shared location and
can be used by any user on the system. On the other hand it assumes admin
permissions and will likely result in additional steps during the installation
process, such as an OS prompt to approve elevating installer permissions.

Per-user installation copies the package into a private user directory and does not
require admin permissions. This enables you to show as little dialogs as possible
and run the program even if user is not eligible for admin privileges.

Note that whenever a user- or system-level installable package is requested, the
build procedure itself does not require admin permissions.

■ Do you need a click-through license?

Some installable packages support showing license text before initiating the
installation. The installation process starts only after the user accepts the license.

Think carefully if you really need this, because extra dialogs degrade the user
experience.

■ What menu/desktop integration is needed?

The user should be able to launch your application easily. Therefore, we assume
that having a desktop shortcut or adding the application to the list of applications
in the menu is required.

Note that the current implementation contains many simplifying assumptions.

For example, installers never ask the user to choose the location to install the package.
Developers also have limited control of the installation location—they can only choose
system or private user location).

If this is not sufficient for your needs you can try advanced customizations by tuning
the config file templates (see Section 6.3.3, "Customization Using Drop-In Resources")
or packaging a basic self-contained application and then wrapping it into an
installable package on your own.

As of JDK 7u6, the following installable package formats are supported:

Table 6–2 Installable Package Formats

Package
format

Installation Location

(Default mode in bold)
Click-Through
License Prerequisites

EXE Per user: %LOCALAPPDATA%

System: %ProgramFiles%

Yes (option) ■ Windows

■ Inno Setup 5 or later

MSI Per user: %LOCALAPPDATA%

System: %ProgramFiles%

No special support ■ Windows

■ WiX 3.0 or later

DMG Per user: user's desktop folder

System: /Applications

Yes (option) ■ Mac OS X

Installable Packages

Self-Contained Application Packaging 6-9

6.4.1 EXE Package
As of JavaFX 2.2, in order to generate an EXE package, you must have Inno Setup 5 or
later installed and available on the PATH. To validate that it is available, try running
iscc.exe from the command line where you launch the build or from your build
script.

By default, the generated package:

■ Does not require admin privileges to install

■ Is optimized to have a minimum number of dialogs

■ Must be referenced from programs menu or have desktop shortcut (having both
are fine)

■ Is configured so the application launches at the end of installation

Figure 6–2 shows a typical dialog box for a self-contained JavaFX application being
installed on Windows.

Figure 6–2 Windows Installation Dialog for a Self-Contained JavaFX Application

Customization tips:

■ If you chose system-wide installation, then the user will need to have admin
permissions, and the application will not be launched at the end of installation.

RPM Per user: unsupported

System: /opt

No special support ■ Linux

■ RPMBuild

DEB Per user: unsupported

System: /opt

No special support ■ Linux

■ Debian packaging
tools

Table 6–2 (Cont.) Installable Package Formats

Package
format

Installation Location

(Default mode in bold)
Click-Through
License Prerequisites

Installable Packages

6-10 JavaFX Deploying JavaFX Applications

■ A click-through license is supported (an .rtf file is required).

■ The image shown in the installation dialogs is different from the application icon.

You can customize it using the "drop-in technique" described in Section 6.3.3,
"Customization Using Drop-In Resources."

The current version of Inno Setup assumes the image is a bitmap file with
maximum size of 55x58 pixels.

■ To ensure the icon is set in the runtime, make sure to explicitly add it to the stage.
See Section 6.3.5, "Platform-Specific Customization for Basic Packages."

■ Consider signing the resulting .exe package. If you distribute an unsigned
executable, then many versions of Windows will scare the user with an "Unknown
Publisher" warning dialog.

If you sign your package, then this warning will be removed. You will need to get
a certificate and then can use the signtool.exe utility to sign the code.

■ You can fine tune the self-contained application folder before it is wrapped into an
.exe file, for example to sign the launcher executable.

To do this, provide a Windows script file, using the technique from Section 6.3.3,
"Customization Using Drop-In Resources."

6.4.2 MSI Package
MSI packages are generated using the Windows Installer XML (WiX) toolset (also
known as WiX). As of JavaFX 2.2, WiX 3.0 or later is required, and it must be available
on the PATH. To validate, try running candle /? from the command line where you
launch the build or from your build script.

By default, a generated MSI package:

■ Is optimized for deployment using enterprise deployment tools

■ Installs to a system-wide location

■ Does not have any click-through UI. Only a progress dialog is shown.

■ Must to be referenced from the programs menu or have a desktop shortcut (having
both is fine)

■ Will remove all files in the installation folder, even if they were created outside of
the installation process. (WiX 3.5 or later is required.)

■ Will try to use the application identifier as UpgradeCode.

If the application identifier is not a valid GUID, then a random GUID for
UpgradeCode is generated.

■ ProductCode is randomly generated. To use a fixed Product code, customize the
WiX template file using the technique from Section 6.3.3, "Customization Using
Drop-In Resources."

If you plan to distribute your MSI package on the network, then consider signing it for
the best user experience.

Note: While the resulting package is displayed in the list of installed
applications, it does not use Windows Installer (MSI) technology and
does not require the use of GUIDs. See the Inno Setup FAQ for details.

Installable Packages

Self-Contained Application Packaging 6-11

You can also fine tune the self-contained application folder before it is wrapped into
the .msi file, (for example, to sign the launcher executable). For details, see
Section 6.4.1, "EXE Package."

To add a custom UI to the MSI package, you can customize WiX template file used by
JavaFX Packager using technique from Section 6.3.3, "Customization Using Drop-In
Resources.". Consult WiX documentation for more details.

6.4.3 DMG Package
By default, a DMG package provides a simple drag-and-drop installation experience.
Figure 6–3 shows an example of the default behavior during installation.

Figure 6–3 Example of Default Installer for Mac OS X

To customize the appearance of the installation window, you can provide a custom
background image.

If the background image has different dimensions or you need to position the icons
differently, then you must also customize the DMG setup script that is used to tweak
sizes and positions of elements on the install view. For details about how to do this, see
Section 6.3.3, "Customization Using Drop-In Resources."

To fine tune the self-contained application folder before it is wrapped, you can provide
your own bash script to be executed after the application folder is populated. You can
use it, for example, to enrich it with localization files, and so on. Figure 6–4 shows an
example of a "tuned" application installer.

Installable Packages

6-12 JavaFX Deploying JavaFX Applications

Figure 6–4 Example of Customized Appearance of Installable Package for Mac OS X

To create a Gatekeeper-friendly package (for Mac OS X 10.8 or later, see Section 6.3.5.1,
"Mac OS X"), the application in the DMG package must be signed. It is not necessary to
sign the DMG file itself. To sign the application, you can use a technique described in
Section 6.3.3, "Customization Using Drop-In Resources" to provide a config script to be
executed after the application bundle is populated. For sample DemoApp, the config
script is located in the package/macosx/DemoApp-post-image.sh and has the content
shown in Example 6–7.

Example 6–7 Example of Config Script to Sign the Application

echo "Signing application bundle"
#Move to the folder containing application bundle
cd ../images/dmg.image
#do sign
codesign -s "Developer ID Application" *.app
echo "Done with signing"

The DMG installer also supports a click-though license provided in the text format. If
use of rich text format is desired, then prepare the license.plist file externally, then add
it to the package using the technique from Section 6.3.3, "Customization Using Drop-In
Resources."

No third party tools are needed to create a DMG package.

6.4.4 Linux Packages
Producing install packages for Linux assumes that the native tools needed to build
install packages are installed. For RPM packages, this typically means the RPMBuild
package and its dependencies. For DEB packages, dpkg-deb and dependencies are
needed.

No admin permissions are needed to build the package.

By default the resulting package:

Working Through a Deployment Scenario

Self-Contained Application Packaging 6-13

■ Will install the application to /opt

■ Will add a shortcut to the application menu

■ Does not have any UI for installation (normal behavior for Linux packages)

Customization tips:

■ To place the application into a specific category in the application menu, use the
category attribute of <fx:info>.

Refer to Desktop Menu Specification and your window manager docs for the list
of category names.

■ The icon is expected to be a .png file

■ Advanced customization is possible by tuning the build template files using
techniques from Section 6.3.3, "Customization Using Drop-In Resources.".

Consult the DEB/RPM packaging guides to get more background on available
options.

6.5 Working Through a Deployment Scenario
Consider following scenario. You have a JavaFX application that:

■ Uses several third-party libraries

■ One of the third-party libraries uses JNI and loads a platform-specific native
library using System.loadLibrary()

■ Needs a large 1Gb heap

How do you package it as a self-contained application that does not need admin
permissions to install?

It is assumed that your application works fine as a standalone, that the main JAR file is
built in the dist folder (using <fx:jar>) and that third-party libraries are copied to the
dist/lib directory.

One way to assemble a self-contained application package is shown in Example 6–8.
The approach is:

■ Include all application JAR files.

■ Add native libraries applicable to current platform as resources of type data.

Ensure that the fileset base directory is set to the folder containing the library. This
ensures that the libraries are copied to the top-level application folder.

■ Request a user-level installation with <fx:preferences install="false"/>

Note that the top-level application folder is added to the library search path, and
therefore System.loadLibrary() will work fine.

Example 6–8 shows an example <fx:deploy> task.

Example 6–8 Example <fx:deploy> Task

<fx:deploy nativeBundles="all" width="600" height="400"
 outdir="${basedir}/dist" outfile="NativeLibDemo">
 <fx:application name="NativeLib Demo" mainClass="${javafx.main.class}"/>

 <fx:resources>
 <!-- include application jars -->
 <fx:fileset dir="dist" includes="*.jar"/>

Working Through a Deployment Scenario

6-14 JavaFX Deploying JavaFX Applications

 <fx:fileset dir="dist" includes="lib/*.jar"/>

 <!-- native libs for self-contained application -->
 <!-- assume they are stored as
 native/windows/x86/JNativeHook.dll
 native/linux/x86_64/libJNativeHook.so
 -->
 <!-- ensure libraries are included as top level elements
 to get them on java.library.path -->
 <fx:fileset dir="${basedir}/native/${os.name}/${os.arch}"
 type="data">
 <include name="*.dll"/>
 <include name="*.jnilib"/>
 <include name="*.so"/>
 </fx:fileset>
 </fx:resources>

 <!-- Custom JVM setup for application -->
 <fx:platform>
 <fx:jvmarg value="-Xmx1024m"/>
 <fx:jvmarg value="-verbose:jni"/>
 <property name="my.property" value="something"/>
 </fx:platform>

 <!-- request user level installation -->
 <fx:preferences install="false"/>
</fx:deploy>

7

Deployment in the Browser 7-1

7Deployment in the Browser

This page explains how to deploy JavaFX applications in the browser using the
Deployment Toolkit. The chapter includes an API overview, information about the
callback methods, and typical examples of use.

The recommended way to embed a JavaFX application into a web page or launch it
from inside a web browser is to use the Deployment Toolkit library.

The Deployment Toolkit provides a JavaScript API to simplify web deployment of
JavaFX applications and improve the end user experience with getting the application
to start.

In addition to providing functionality to add HTML tags needed to insert JavaFX
content into the web page, the Deployment Toolkit also does the following:

■ Detects whether the user environment is supported

■ Offers to install the JavaFX Runtime if needed

■ Provides visual feedback to the user while the application is loaded

■ Reports to the user in case of unexpected error

■ Provides other helper APIs to the developer, which can be used to simplify
deployment and integration with the web page

The recommended way to use the Deployment Toolkit is to import the Deployment
Toolkit JavaScript file from a shared location at http://java.com/js/dtjava.js.

This way your application always uses the latest recommended way to integrate into a
web page. If you cannot use the shared location, you can include the necessary files
with your application by using the includeDT option in the <fx:deploy> Ant task.

Note that for the majority of simple use cases, most if not all of the code needed for
deployment is generated by JavaFX packaging tools (see Section 5.3.1, "JavaFX
Packaging Tools"), and you can use callbacks to tune default behavior further.
However, if you need more flexibility, you can use the Deployment Toolkit APIs
directly.

This page contains the following topics:

■ Section 7.1, "API Overview"

■ Section 7.2, "Callbacks"

■ Section 7.3, "Examples"

7.1 API Overview
The Deployment Toolkit API provides several important methods:

API Overview

7-2 JavaFX Deploying JavaFX Applications

■ dtjava.embed(app, platform, callbacks)

Embeds the application into the browser based on a given application descriptor.
If Java Runtime or JavaFX Runtime installation is required, by default it will guide
the user to click to install it or click to redirect to the page to download the
installer.

■ dtjava.launch(app, platform, callbacks)

Launches applications that are deployed outside the browser, based on a given
application descriptor. If Java or JavaFX Runtime installation is required, then by
default it performs the following actions:

– It attempts to start the Java or JavaFX Runtime installer.

– If automated installation of the Runtime is not possible, it presents a popup
request for the user to install manually.

■ dtjava.install(platform, callbacks)

Initiates installation of required components according to platform requirements.

■ dtjava.validate(platform)

Validates that the user environment satisfies platform requirements (for example,
if a required version of JavaFX is available). Returns PlatformMismatchEvent
describing problems, if any.

■ dtjava.hideSplash(id)

Hides the HTML splash panel for an application with a given id. If the splash
panel does not exist, this method has no effect. For JavaFX applications, this
method is called automatically after the application is ready.

See the following sections for more information about arguments taken by these
methods.

7.1.1 Application Descriptor (dtjava.App)
The application launch descriptor is an instance of the dtjava.App object. It contains
all of the details describing what needs to be launched. The dtjava.App constructor
takes the following two parameters:

dtjava.App(url, {attribute_map});

The first parameter contains the required url attribute, which contains a URL or a
relative link to the JNLP file. The second parameter contains a subset of the attributes
described in the following list.

■ id

Identifier of the application. Expected to be unique on the web page. If null, then it
is autogenerated. Later it can be used to get the handle of the application in
JavaScript code.

■ jnlp_content

(optional) Content of the JNLP file in BASE64 encoding.

■ params

The set of named parameters to pass to an application, if any. This attribute takes
the following form:

params: { variable: 'value' }

API Overview

Deployment in the Browser 7-3

■ width and height

Dimensions used to reserve space for an embedded application. The values can be
absolute (in pixels) or relative (for example, 50 or 50%).

■ placeholder

Reference to a DOM node, or an identifier of a DOM node, in which to embed an
application.

Example 7–1 shows an example of application launch descriptor code for an
application that will run in the browser.

Example 7–1 Creating a dtjava.App Object

var app = new dtjava.App(
 'ssh.jnlp',
 {
 id: 'SSH',
 width: 100,
 height: 25,
 placeholder: 'SSH_application_container',
 params: {
 config: 'ssh_application.conf',
 }
 }
);

7.1.2 Platform (dtjava.Platform)
Platform requirements for an application to launch are defined by the
dtjava.Platform object. The following attributes are supported:

■ javafx

The minimum JavaFX version needed. Default is null.

■ jvm

Minimum version of Java Runtime needed. Default is 1.6+.

■ jvmargs

List of requested JVM arguments. The default is null.

Version strings are treated according to the following rules:

■ The null version string is treated as if there is no requirement to have it installed.
Validation passes whether this component is installed or not.

■ The version pattern strings are of the form #[.#[.#[_#]]][+|*], which includes
strings such as "1.6", "2.1*", and "1.6.0_18+".

■ An asterisk (*) means any version within this family, where family is defined by a
prefix.

Note: The width, height, and placeholder attributes are required
for applications that run in the browser (in other words, applications
that use the dtjava.embed() method, but not for other types of
deployment (applications that use the dtjava.launch() method).

API Overview

7-4 JavaFX Deploying JavaFX Applications

■ A plus sign (+) means any version greater or equal to the specified version.

■ If the version pattern does not include all four version components but does not
end with an asterisk or plus sign, it will be treated as if it ended with an asterisk.

To clarify differences, consider the following examples:

■ "1.6.0*" matches 1.6.0_25 but not 1.7.0_01, whereas "1.6.0+" or "1.*" matches
both.

■ "2.1" is equivalent to "2.1*",and will match any version number beginning with
"2.1".

■ Both asterisk and plus sign patterns will match any installed version of the
component. However, if the component is not installed, then validation fails.

Example 7–2 shows a dtjava.Platform object:

Example 7–2 Example of a dtjava.Platform Object

var platform = new dtjava.Platform({
 javafx: "2.1+",
 jvmargs: "-Dapp.property= ? -Xmx1024m"
 });

If platform requirements are not met, then dtjava.PlatformMismatchEvent is
returned, either as a return value from the validate() method or passed to the
onDeployError callback. This object provides a set of helper methods to identify root
causes:

■ javafxStatus()

Returns ok if the error was not due to a missing JavaFX Runtime. Otherwise, this
method returns one of the following error codes characterizing the problem:

– none

No JavaFX runtime is detected on the system.

– old

A version of JavaFX Runtime is detected, but it does not match the platform
requirements.

– disabled

A matching version of JavaFX Runtime is detected, but it is disabled.

– unsupported

JavaFX is not supported on this platform.

■ jreStatus()

 Returns ok if the error was not due to a missing JRE. Otherwise, this method
returns one of the following error codes characterizing the problem:

– none

No JRE was detected on the system.

– old

A version of the JRE is detected, but it does not match the platform
requirements.

– oldplugin

Callbacks

Deployment in the Browser 7-5

A matching JRE was found, but it is configured to use a deprecated Java
plug-in.

■ canAutoInstall()

Returns true if the installation of missing components can be triggered
automatically or if there are no missing components.

■ isRelaunchNeeded()

Returns true if a browser must be restarted before the application can be loaded.
This often is true in conjunction with the need to perform an installation.

■ isUnsupportedBrowser()

Returns true if the current web browser is not supported (for example, if it is out
of date).

■ isUnsupportedPlatform()

Returns true if this platform (OS/hardware) does not satisfy the supported
platform requirements. For example, a JavaFX 2.0 application attempts to launch
on Solaris, which is not supported.

■ javafxInstallerURL (locale)

Returns the URL of a page to download and install the required version of JavaFX
Runtime manually. If a matching JavaFX Runtime is already installed or not
supported, then the return value is null.

■ jreInstallerURL (locale)

Returns the URL of a page to visit to install the required version of Java. If a
matching Java Runtime is already installed or not supported, then the return value
is null.

7.2 Callbacks
The Deployment Toolkit provides a set of hooks that can be used to customize startup
behavior. To use the hook, the developer must provide a callback function. The
following hooks are supported:

■ onDeployError: function(app, mismatchEvent)

Called when platform requirements are not met.

■ onInstallFinished: function(placeholder, component, status,
relaunchNeeded)

Called after the installation of a required component is completed, unless
installation was started manually.

■ onInstallNeeded: function(app, platform, cb, isAutoinstall,
needRelaunch, launchFunc)

Called if embedding or launching an application needs additional components to
be installed.

■ onInstallStarted - function(placeholder, component, isAuto,
restartNeeded)

Called before installation of the required component is triggered.

The following hooks are specific to embedded applications:

■ onGetNoPluginMessage function(app)

Callbacks

7-6 JavaFX Deploying JavaFX Applications

Called to get content to be shown in the application area if the Java plug-in is not
installed and none of the callbacks have helped.

■ onGetSplash: function(app)

For embedded applications, called to get the content of the splash panel.

■ onJavascriptReady: function(id)

 Called after the application is ready to accept JavaScript calls.

■ onRuntimeError: function(id)

Called if the application failed to launch.

7.2.1 onDeployError
This handler can be utilized to customize error handling behavior, such as showing
messages in the user’s language. See the example in Section 7.3.8, "Create a Handler
for an Unsupported Platform" for an example of the onDeployError handler.

A callback function is called if the application cannot be deployed because the current
platform does not match the given platform requirements. It is also called if a request
to install missing components cannot be completed due to platform incompatibility.

Function signature:

onDeployError : function(app, mismatchEvent)

The problem can be a fatal error or a transient issue, such as a required relaunch.
Further details can be extracted from the mismatchEvent that is provided. Here are
some typical combinations:

■ The browser is not supported by Java.

 mismatchEvent.isUnsupportedBrowser() returns true

■ The browser must be restarted before the application can be launched.

mismatchEvent.isRelaunchNeeded() returns true

JRE-specific codes:

■ JRE is not supported on this platform.

mismatchEvent.jreStatus() == "unsupported"

■ JRE is not detected and must be installed.

mismatchEvent.jreStatus() == "none"

■ The installed version of JRE does not match application requirements.

mimatchEvent.jreStatus() == "old"

■ A matching JRE is detected, but a deprecated Java plug-in is used.

mimatchEvent.jreStatus() == "oldplugin"

JavaFX-specific codes:

■ JavaFX is not supported on this platform.

mismatchEvent.javafxStatus() == "unsupported"

■ JavaFX Runtime is missing and must be installed manually.

mismatchEvent.javafxStatus() == "none"

■ The installed version of JavaFX Runtime does not match application requirements.

Callbacks

Deployment in the Browser 7-7

mismatchEvent.javafxStatus() == "old"

■ JavaFX Runtime is installed but is disabled.

mismatchEvent.javafxStatus() == "disabled"

The default error handler handles both application launch errors and embedded
content.

7.2.2 onGetNoPluginMessage
This handler is called to get content to be shown in the application area if the Java
plug-in is not installed and none of the callbacks helped to resolve this.

Function signature:

onGetNoPluginMessag : function(app)

7.2.3 onGetSplash
This handler gets the content of the splash panel when the application is embedded in
a browser.

Function signature:

onGetSplash: function(app)

Gets the application launch descriptor as input. If null is returned, then the splash
panel is disabled. A non-null return value is expected to be an HTML snippet to be
added into the splash overlay. Note that the splash overlay does not enforce any
specific size. You must ensure that the custom splash image is sized to fit the area in
which the application will run.

For examples of customizing the splash panel, see Section 7.3.7, "Add a Custom HTML
Splash Screen" and Section 7.3.6, "Disable the HTML Splash Screen."

7.2.4 onInstallFinished
This handler is called after the installation of a required component is completed. This
method will not be called if the installation is performed in manual mode.

Function signature:

onInstallFinished: function(placeholder, component, status,
relaunchNeeded)

Parameters:

■ placeholder: A DOM element that was passed to onInstallStarted to insert
visual feedback.

■ component: String "jre" or "javafx"

■ status: The status code is a string categorizing the status of the installation.

("success", "error:generic", "error:download" or "error:canceled")

Note: Autohiding the splash panel is only supported by JavaFX
applications. If you are deploying a Swing applet, then the application
must call dtjava.hideSplash() explicitly to hide the splash panel. See
Example 10–6 on the Swing deployment page.

Callbacks

7-8 JavaFX Deploying JavaFX Applications

■ relaunchNeeded: Boolean value to specify whether a browser restart is required to
complete the installation

7.2.5 onInstallNeeded
This handler is called if the embedding or launching application needs additional
components to be installed. This callback is responsible for handling situations such as
reporting to the user the need to install something, initiating installation using
install(), and hiding the splash panel for embedded applications (if needed). After
installation is complete, the callback implementation may retry the attempt to launch
the application using the provided launch function.

This method is not called if the platform requirement could not be met (for example, if
the platform is not supported or if installation is not possible).

The default handler provides a click to install solution for applications embedded in a
browser and attempts to perform installation without additional questions for
applications that have been started using launch().

If the handler is null, then it is treated as a no-op handler.

Function signature:

onInstallNeeded: function(app, platform, cb, isAutoinstall, needRelaunch,
launchFunc)

Parameters:

■ app: Application launch descriptor. For embedded applications, app.placeholder
refers to the root of the embedded application area in the DOM tree (to be used for
visual feedback).

■ platform: Application platform requirements.

■ cb: The set of callbacks to be used during the installation process.

■ isAutoinstall: True if the installation can be launched automatically.

■ needRestart: True if restarting the browser is required after installation is
complete.

■ launchFunction: Function to be executed to retry launching the application after
the installation is finished.

7.2.6 onInstallStarted
This handler is called before the installation of the required component is triggered.
For a manual installation scenario, it is called before the installation page is opened.

This hook can be used to provide visual feedback to the user during the installation.
The placeholder points to the area that can be used for visualization. For embedded
applications it will be the area into which the application will be embedded. If null,
then the callee must find a place for display on its own.

In case of automatic launch of the installation, onInstallFinished will be called after
installation is complete (successfully or not).

If the handler is null, then it is treated as no-op handler.

Function signature:

onInstallStarted: function(placeholder, component, isAuto, restartNeeded)

Parameters:

Examples

Deployment in the Browser 7-9

■ placeholder: The DOM element to insert visual feedback into. If null, then the
callee must add visual feedback to the document on its own (for example,
embedding the application into a web page).

■ component: String "Java", "JavaFX", or "Java bundle".

■ isAutoInstall: True if the installer will be launched automatically.

■ restartNeeded: Boolean value to specify whether a browser restart is required.

7.2.7 onJavascriptReady
This handler is called after the embedded application is ready to accept JavaScript
calls.

Function signature:

onJavascriptReady: function(id)

7.2.8 onRuntimeError
This handler is called if the embedded application fails to launch.

Function signature:

onRuntimeError: function(id)

7.3 Examples
This section shows examples of deployment that use the Deployment Toolkit.

The recommended way to initiate deployment is to use onload handlers to add the
application after the HTML content is loaded, for the following reasons:

■ The DOM tree must exist when the application content is inserted. The DOM tree
is created after the HTML content page loads.

■ The Deployment Toolkit’s detection code does not prevent loading of the HTML
page.

■ It avoids loading concurrently with other resources that are needed for the page.

7.3.1 Embedded Application Starts After the DOM Tree Is Constructed
Example 7–3 shows the default deployment scenario for applications embedded in a
web page. The application is added to the web page in the deployIt() function. This
function is called after the page is loaded and its DOM tree is constructed. The position
of the application in the DOM tree is determined by the value of the placeholder
parameter. In this case, the application will be inserted into a <div> tag with
id="place".

Note: Some of the Deployment Toolkit methods may not be fully
operational if used before the web page body is loaded, because the
Deployment Toolkit plug-ins cannot be instantiated. If you intend to
use the Deployment Toolkit before the web page DOM tree is
constructed, then dtjava.js must be loaded inside the <body> element
of the page and called before any other Deployment Toolkit APIs.

Examples

7-10 JavaFX Deploying JavaFX Applications

Adding the application to a web page after the main page is loaded helps to get a
complete web page (including the embedded application) to load faster, because the
application starts concurrently with loading other resources required by the web page.

Note that the value of the placeholder element can be a string or a JavaScript variable
pointing to the container DOM node. If that node is detached from the document
DOM tree, then the application is not initialized until the parent node is attached to
the DOM tree.

Example 7–3 Insert the Application into the HTML Body with a Placeholder

<head>
 <script type="text/javascript" src="http://java.com/js/dtjava.js"></script>
 <script>
 function deployIt() {
 dtjava.embed(
 { id: "myApp",
 url: "Fish.jnlp",
 width: 300,
 height: 200,
 placeholder: "place"
 },
 { javafx: "2.1+" },
 {}
);
 }
 dtjava.addOnloadCallback(deployIt);
 </script>
</head>
<body>
 <div id="place"></div>
</body>

7.3.2 Launch a Web Start Application from a Web Page
The canonical form for the link to launch a Web Start application is shown in
Example 7–4. Either relative or absolute links are acceptable.

Example 7–4 Canonical Link to Launch a Web Start Application

<a href="my.jnlp"
 onclick="dtjava.launch(new dtjava.App('my.jnlp'));
 return false;">Launch me!

An alternative simplified syntax is shown in Example 7–5.

Example 7–5 Link to Launch a Web Start Application, Simplified

<a href="my.jnlp"
 onclick="dtjava.launch({url: 'my.jnlp'});
 return false;">Launch me!

A third form for simple applications is shown in the following example.

Example 7–6 Link to Launch a Web Start Application, Third Example

<a href="my.jnlp"
 onclick="dtjava.launch('my.jnlp');
 return false;">Launch me!

Examples

Deployment in the Browser 7-11

If JavaScript is disabled in the browser, the Deployment Toolkit does not work. In this
case, the browser tries to use the href attribute. If JavaFX Runtime is installed, then the
application will still launch. The return false; statement ensures that the browser
will not leave the current page if the launch is successful.

7.3.3 Pass Parameters to a Web Application
You can pass dynamic parameters to JavaFX applications from a web page. For this
you need to add a set of named parameters as the params attribute of the application
descriptor.

In Example 7–7, the embedded application gets two dynamic parameters from the web
page. Note that the "zip" parameter is assigned with the value of the JavaScript
variable.

Example 7–7 Pass Parameters to an Embedded Application

<head>
 <script type="text/javascript" src="http://java.com/js/dtjava.js"></script>
 <script>
 function deployIt() {
 var zipcode = 95054;

 dtjava.embed(
 { id: "myApp",
 url: "Map.jnlp",
 width: 300,
 height: 200,
 placeholder: "place",
 params: {
 mode: "streetview",
 zip: zipcode
 }
 },
 { javafx: "2.1+" },
 {}
);
 }
 dtjava.addOnloadCallback(deployIt);
 </script>
</head>
<body>
 <div id="place"></div>
</body>

The same approach works for Web Start applications if the user has JavaFX Runtime
2.2 or later. Here is an example:

Example 7–8 Pass Parameters to a Web Start Application

<script>
 var zipcode = 95054;

 function launchApp() {
 dtjava.launch(
 { url: 'my.jnlp',
 params: {
 mode: "streetview",
 zip: zipcode

Examples

7-12 JavaFX Deploying JavaFX Applications

 }
 },
 { javafx : '2.2+' },
 {}
);
 return false;
 }
</script>

 Launch me!

To access parameters in the application code, use the getParameters() method of the
Application class. For example:

String zipcode = app.getParameters().getNamed("zip");

7.3.4 Specify Platform Requirements and Pass JVM Options
Use the second argument group of the dtjava.embed() function to specify platform
requirements for the application.

In Example 7–9, JRE 1.6 or later is specified in the jvm parameter; JavaFX 2.1 or later is
specified in the javafx parameter; and the jvmargs parameter indicates that the
application should be executed in the Java Virtual Machine (JVM) with a 1 gigabyte
heap size and given options.

Example 7–9 Specify Platform Requirements and Passing JVM Properties

<head>
 <script type="text/javascript" src="http://java.com/js/dtjava.js"></script>
 <script>
 function deployIt() {
 dtjava.embed(
 { id: "my",
 url: "app.jnlp",
 width: 300,
 height: 200,
 placeholder: "place"
 },
 {
 jvm: "1.6.0+",
 javafx: "2.1+",
 jvmargs: "-Dapp.property=somevalue -Xmx1024m"
 }
);
 }
 dtjava.addOnloadCallback(deployIt);
 </script>
</head>
<body>
 <div id="place"></div>
</body>

7.3.5 Access JavaFX Code from JavaScript
To access a Java or JavaFX application from JavaScript, you must get a reference to the
JavaScript object representing the application. The best way to do this is to specify an

Examples

Deployment in the Browser 7-13

id parameter in the first argument group of the dtjava.embed() function, as shown in
Example 7–3

For example, if an id parameter is set to my, then a public method of the application
can be accessed with the script shown in Example 7–10.

Example 7–10 Access an Application Method with an id Parameter

<script>
 var a = document.getElementById("my");
 a.java_method();
</script>

Attempts to call application methods may not work until the application finishes the
initialization phase. (For a description of startup phases, see Application Startup
Process, Experience, and Customization.) To access an application while it is loading,
use an onJavascriptReady callback, as shown in Example 7–11.

Example 7–11 Access an Application Method While the Application Is Loading

<head>
 <script type="text/javascript" src="http://java.com/js/dtjava.js"></script>
 <script>
 function callApp(id) {
 //it is safe to call now
 var a = document.getElementById(id);
 a.java_method();
 }
 function deployIt() {
 dtjava.embed(
 { id: "my",
 url: "fxapp.jnlp",
 width: 300,
 height: 200,
 placeholder: "place"
 },
 {},
 {
 onJavascriptReady: callApp
 }

);
 }
 dtjava.addOnloadCallback(deployIt);
 </script>
</head>
<body>
 <div id="place"></div>
</body>

7.3.6 Disable the HTML Splash Screen
To disable the HTML splash screen for a JavaFX application, add an onGetSplash
handler that returns null:, as shown in Example 7–12. For information about
application startup phases, see Section 4.1, "Application Startup Process, Experience,
and Customization."

Examples

7-14 JavaFX Deploying JavaFX Applications

Example 7–12 Disable the HTML Splash Screen

<head>
 <script type="text/javascript" src="http://java.com/js/dtjava.js"></script>
 <script>
 function deployIt() {
 dtjava.embed(
 { id: "my",
 url: "app.jnlp",
 width: 300,
 height: 200,
 placeholder: "place"
 },
 {
 jvm: "1.6.0+",
 javafx: "2.1+",
 },
 {
 onGetSplash: function(app) {return null;}
 }
);
 }
 dtjava.addOnloadCallback(deployIt);
 </script>
</head>
<body>
 <div id="place"></div>
</body>

7.3.7 Add a Custom HTML Splash Screen
Example 7–13 shows how to replace the default HTML splash screen with a green
rectangle, defined in a JavaScript function.

Example 7–13 Replace the Splash Screen with a Custom One

<head>
 <script type="text/javascript" src="http://java.com/js/dtjava.js"></script>
 <script>
 function getSplash(app) {
 //custom splash - green rectangle
 var p = document.createElement('div');
 p.style.width = app.width;
 p.style.height = app.height;
 p.style.background="green";
 return p;
 }

 function deployIt() {
 dtjava.embed(
 { id: "my",
 url: "app.jnlp",
 width: 300,
 height: 200,
 placeholder: "place"
 },
 {
 jvm: "1.6.0+",
 javafx: "2.1+",
 },

Examples

Deployment in the Browser 7-15

 {
 onGetSplash: getSplash
 }
);
 }
 dtjava.addOnloadCallback(deployIt);
 </script>
</head>
<body>
 <div id="place"></div>
</body>

7.3.8 Create a Handler for an Unsupported Platform
Example 7–14 shows the use of JavaScript to handle an unsupported browser.

Example 7–14 Handle an Unsupported Browser with JavaScript

<head>
 <script type="text/javascript" src="http://java.com/js/dtjava.js"></script>
 <script>
 function reportError(app, r) {
 //ovewrite behavior for unsupported browser
 var a = app.placeholder;
 if (a != null && r.isUnsupportedBrowser()) {
 var p = document.createElement('div');
 p.id = "splash";
 p.style.width = app.width;
 p.style.height = app.height;
 p.style.background="red";
 p.appendChild(
 document.createTextNode("This browser is not supported."));

 //clear embedded application placeholder
 while(a.hasChildNodes()) a.removeChild(a.firstChild);

 //show custom message
 a.appendChild(p);
 } else {
 //use default handlers otherwise
 var def = new dtjava.Callbacks();
 return def.onDeployError(app, r);
 }
 }

 function deployIt() {
 dtjava.embed(
 { id: "my",
 url: "app.jnlp",
 width: 300,
 height: 200
 },
 {
 jvm: "1.6.0+",
 javafx: "2.1+",
 },
 {
 onDeployError: reportError
 }

Examples

7-16 JavaFX Deploying JavaFX Applications

);
 }
 dtjava.addOnloadCallback(deployIt);
 </script>
</head>
<body>
 <div id="place"></div>
</body>

7.3.9 Check for Presence of JavaFX Runtime
Example 7–15 shows the use of JavaScript to replace the default text offering to install
JavaFX. It is replaced with an offer to start the application only if the correct version of
JavaFX is found on the user’s system.

Example 7–15 Launch Only If JavaFX Is Installed

<html>
 <head>
 <script type="text/javascript"
 src="http://java.com/js/dtjava.js"></script>
 <script>
 function mayBeOfferLaunch() {
 var platform = new dtjava.Platform({'javafx' : '2.1+'});

 //check if validate find any problems
 if (dtjava.validate(platform) == null) {
 var t = document.getElementById("text");
 t.innerHTML = "<a href='my.jnlp' " +
 "onclick='dtjava.launch({url: 'my.jnlp'}); return false;'>" +
 "Launch me!";
 }
 }
 dtjava.addOnloadCallback(mayBeOfferLaunch);
 </script>
 </head>
 <body>
 <div id="text">To view this content you need
 to install
 JavaFX Runtime 2.1.</div>
 </body>
</html>

8

JavaFX and JavaScript 8-1

8JavaFX and JavaScript

This chapter shows how JavaFX applications can be accessed from JavaScript and vice
versa.

A JavaFX application can communicate with the web page in which it is embedded by
using a JavaScript engine. The host web page can also communicate to embedded
JavaFX applications using JavaScript.

This page contains the following sections.

■ Section 8.1, "Accessing a JavaFX Application from a Web Page"

■ Section 8.2, "Accessing the Host Web Page from an Embedded JavaFX
Application"

■ Section 8.3, "Advanced topics"

■ Section 8.4, "Threading"

■ Section 8.5, "Security"

■ Section 8.6, "Tab Pane Example"

8.1 Accessing a JavaFX Application from a Web Page
To access a JavaFX application from JavaScript, the first step is to get a reference to a
JavaScript object representing the JavaFX application. The easiest way to get the
reference is to use a standard JavaScript getElementById() function, using the
identifier that was specified in the id attribute of the Ant <fx:deploy>, as shown in
Example 8–1.

Example 8–1 Use JavaScript to Access an Application Object ID

var fxapp = document.getElementById("myMapApp")

The result corresponds to the main class of the JavaFX application.

By getting the reference to a JavaScript object, you can use JavaScript code to access
any public methods and fields of a Java object by referencing them as fields of the

Note: To a large extent, this functionality is based on the
Java-to-JavaScript communication bridge that is implemented in the
Java plug-in. Therefore most of the available documentation and
examples for Java applets are also applicable to JavaFX applications.
For more information about the Java implementation, see the Java
LiveConnect documentation.

Accessing a JavaFX Application from a Web Page

8-2 JavaFX Deploying JavaFX Applications

corresponding JavaScript object. After you have the fxapp reference, you can do
something similar to the following:

var r = fxapp.doSomething()

The implementation of the doSomething() method in Java code returns a Java object.
The variable r becomes a reference to the Java object. You can then use code such as
r.doSomethingElse() or fxapp.dosomethingWithR(r).

You can access static fields or invoke static methods for classes loaded by a given
application, by using a synthetic Packages keyword attached to the application object.
You can use the same approach to create new instances of Java objects. For example,
Example 8–2 contains Java code, and Example 8–3 contains JavaScript that interacts
with that code. Look at both examples to see how they work together.

Example 8–2 Java Code Example

package testapp;

public class MapApp extends Application {
 public static int ZOOM_STREET = 10;

 public static class City {
 public City(String name) {...}
 ...
 }

 public int currentZipCode;

 public void navigateTo(City location, int zoomLevel) {...}

}

The JavaScript snippet in Example 8–3 passes several values to the Java code in
Example 8–2. Before these values are used in the Java code, they are automatically
converted to the closest Java type.

Example 8–3 JavaScript Code for Example 8–2

function navigateTo(cityName) {
 //Assumes that the Ant task uses "myMapApp" as id for this application
 var mapApp = document.getElementById("myMapApp");
 if (mapApp != null) {
 //City is nested class. Therefore classname uses $ char
 var city = new mapApp.Packages.testapp.MapApp$City(cityName);
 mapApp.navigateTo(city, mapApp.Packages.testapp.MapApp.ZOOM_STREET);
 return mapApp.currentZipCode;
 }
 return "unknown";
}
window.alert("Area zip: " + navigateTo("San Francisco"));

The JavaScript string, numeric, and Boolean objects can be converted into most of the
Java primitive types—Boolean, byte, char, short, int, long, float, and double—and
java.lang.String.

For JavaScript objects representing Java objects (in other words, objects that have
previously been returned from Java), conversion results in extracting a reference to
that Java object.

Accessing the Host Web Page from an Embedded JavaFX Application

JavaFX and JavaScript 8-3

Conversion into one and multidimensional arrays is supported according to rules
similar to rules for conversion of individual objects. If conversion cannot be performed
successfully, then the JavaScript engine raises an exception.

All Java objects returned to the web browser are associated with a particular JavaFX
application instance. References held by the JavaScript engine to a Java objects act as
persistent references, preventing that Java object from being garbage-collected in the
hosting JVM. However, if a particular application is destroyed, for example by leaving
the web page hosting the application or by detaching the application from the HTML
DOM tree, then references are immediately invalidated and further attempts to use
those object in JavaScript will raise exceptions.

For more information about data type conversion and object lifetimes, see

http://jdk6.java.net/plugin2/liveconnect/#JS_JAVA_CONVERSIONS

8.2 Accessing the Host Web Page from an Embedded JavaFX Application
JavaFX applications can call the following JavaScript components:

■ Functions

■ The get, set, and remove fields of JavaScript objects

■ The get and set elements of JavaScript arrays

JavaFX applications can also evaluate snippets of JavaScript code. Through the
JavaScript DOM APIs, JavaFX applications can modify the web page dynamically by
adding, removing and moving HTML elements.

To bootstrap JavaFX-to-JavaScript communication, the JavaFX application must get a
reference to the JavaScript window object containing the application. This reference
can be used for subsequent operations such as evaluation, function calls, and fetches of
variables.

Both the main and preloader application can get this reference by accessing the
HostServices class in the JavaFX API and requesting getWebContext(), as shown in
Example 8–4.

Example 8–4 Access the HostServices Class from JavaFX Code

public class MyApp extends Application {
 private void communicateToHostPage() {
 JSObject jsWin = getHostServices().getWebContext();
 //null for non-embedded applications
 if (jsWin != null) {
 //use js
 ...
 }
 }
 ...

Note: If a Java object has overloaded methods, in other words if it
has multiple methods with the same name, but different sets of
argument types, then the heuristic will be adopted of using the
method with the closest types. For information, see the Java
LiveConnect documentation.

The general recommendation is to avoid overloaded methods if you
plan to use them from JavaScript code.

Advanced topics

8-4 JavaFX Deploying JavaFX Applications

}

All instances of JavaScript objects, including references to the DOM window, appear
within Java code as instances of netscape.javascript.JSObject.

Example 8–5 shows how to use JavaScript to implement a function to resize an
embedded application with id='myMapApp' at runtime.

Example 8–5 Use JavaScript to Resize an Application in the Browser

public void resizeMyself(int w, int h) {
 JSObject jsWin = getHostServices().getWebContext();
 if (jsWin != null) {
 jsWin.eval("var m = document.getElementById('myMapApp');" +
 "m.width=" + w + "; m.height=" + h + ";");
 } else {
 // running as non embedded => use Stage's setWidth()/setHeight()
 }
}

8.3 Advanced topics
JavaFX applications embedded in a web page can call JavaScript methods in a web
page after the init() method is called for the preloader or main application class.

JavaScript can access JavaFX applications at any time, but if the application is not
ready yet, then this request may be blocked until the application is ready. Specifically,
this will happen if the init() method of the main application class has not finished
yet and the main application did not perform calls to the web page itself. A JavaScript
call from the preloader does not fully unblock JavaScript-to-Java communication.

Most browsers use single-threaded JavaScript engines. This means that when blocking
occurs, the host web page and the browser appear to be frozen.

To access a JavaFX application from the host web page early and avoid blocking, either
notify the web page when the application is ready by calling a Java function from the
application, or use an onJavascriptReady callback in the Ant task.

Example 8–6 shows an HTML template for an Ant task that uses an
onJavascriptReady callback to call the doSomething() method in the main application
without blocking the browser.

Example 8–6 HTML Input Template for an Ant Task

<html>
 <head>
 <!-- template: code to load DT JavaScript will be inserted here -->
 #DT.SCRIPT.CODE#
 <!-- template: code to insert application on page load will be
 inserted here -->
 #DT.EMBED.CODE.ONLOAD#

 <script>
 function earlyCallFunction(id) {
 //it is safe to call application now
 var a = document.getElementById(id);
 if (a != null) a.doSomething();
 }
 </script>
 </head>
 <body>

Threading

JavaFX and JavaScript 8-5

 <!-- application is inserted here -->
 <div id="ZZZ"></div>
 </body>
</html>

Example 8–7 shows the relevant part of the Ant task used to generate an HTML page
from the template in Example 8–6. For this example, it is assumed that the template
has the path src/web/test_template.html.

Example 8–7 Ant <fx:deploy> Task to Generate an HTML Page from a Template

<fx:deploy placeholderId="ZZZ" ...>

 <fx:template file="src/web/test_template.html"
 tofile="dist/test.html"/>
 <fx:callbacks>
 <fx:callback name="onJavascriptReady">earlyCallFunction</fx:callback>
 </fx:callbacks>
</fx:deploy>

8.4 Threading
Java code called from JavaScript is executed on a special thread that is not the JavaFX
application thread. Use the Platform.runLater() method in the JavaFX code to ensure
that something is executed on the JavaFX application thread.

In general, return as quickly as possible from functions that are called from JavaScript.
In most modern browsers, JavaScript engines are single-threaded. If the call sticks,
then the web page can appear frozen, and the browser will be unresponsive. In
particular, it is recommended that you avoid writing code to wait for work to be done
on a JavaFX application thread. If JavaScript code depends on the result of this work,
then it is recommended that you use a callback from Java to notify the JavaScript code
of the result of the execution of the work.

Example 8–8 shows an example of code to avoid in JavaScript.

Example 8–8 Naive implementation Blocking JavaScript Thread

function process(r) {
 window.alert("Result: "+r);
}

var result = myApp.doSomethingLong();
process(result);

Example 8–9 shows a better pattern to follow in JavaScript code.

Example 8–9 A Better Implementation of Example 8–8

function process(r) {
 window.alert("Result: "+r);
}

myApp.doSomethingLong(function(r) {process(r);});

Example 8–10 shows a better example in Java code.

Security

8-6 JavaFX Deploying JavaFX Applications

Example 8–10 Java Code Using a Callback

public void doSomethingLong(JSObject callback) {
 Object result;
 //do whatever is needed to get result

 //Invoke callback
 // callback is a function object, and every function object
 // has a "call" method
 Object f[] = new Object[2];
 f[0] = null; //first element is object instance but this is global function
 //not applying it to any specific object
 f[1] = new String(result); //real argument
 callback.call("call", f);
}

Java code can call JavaScript from any thread, including the JavaFX application thread.
However, if the JavaScript engine in the browser is busy, then a call to JavaScript may
stick for some time. If there is a call on the JavaFX application thread, then it may
make your application appear frozen, because it will not be able to update the screen
and handle user events. It is recommended that you offload execution of LiveConnect
calls from the JavaFX application thread.

8.5 Security
JavaScript code on the web page can always make JavaScript-to-Java calls against an
application on the page, and it can access all public methods and fields of Java classes
loaded by the application. However, when a JavaScript-to-Java call is made, it is
treated as called from the sandbox environment. Moreover, if the HTML document
and the application originate from different sites, then JavaScript on the web page
cannot cause any network connections to be made on its behalf.

Aside from this restriction, calling Java from JavaScript does not have any other
consequences if the application is running in the sandbox. However, if the application
is signed and trusted and therefore can request elevated permissions, then a call to a
Java method from JavaScript is executed in the sandbox without elevated permissions.
If elevated permissions are needed, then AccessController.doPrivileged in the Java
API can be used to request them in the trusted code.

Developers should be careful not to expose APIs in their applications that would
accidentally confer additional privileges on untrusted JavaScript code. Developers
who must grant elevated privileges to JavaScript code are encouraged to serve their
applications over verifiable HTTPS connections, and perform checks to ensure that the
document base of the web page hosting the application is the same as the expected
origin of the application's code.

8.6 Tab Pane Example
This section contains a sample that demonstrates how to use communication between
JavaFX and JavaScript to integrate JavaFX web applications with the browser.
Example 8–11 shows a JavaFX application that creates a tab pane on a web page, with
20 tabs.

Example 8–11 Create Tabs on the Embedding Web Page

public class TabbedApp extends Application {
 Group root = new Group();
 TabPane tabPane = new TabPane();

Tab Pane Example

JavaFX and JavaScript 8-7

 public void init() {
 // Prepare tab pane with set of tabs
 BorderPane borderPane = new BorderPane();
 tabPane.setPrefSize(400, 400);
 tabPane.setSide(Side.TOP);
 tabPane.setTabClosingPolicy(TabPane.TabClosingPolicy.UNAVAILABLE);

 for(int i=1; i<=20; i++) {
 final Tab t = new Tab("T" + i);
 t.setId(""+i);
 Text text = new Text("Tab "+i);
 text.setFont(new Font(100));
 BorderPane p = new BorderPane();
 p.setCenter(text);
 t.setContent(p);
 tabPane.getTabs().add(t);
 }
 borderPane.setCenter(tabPane);
 root.getChildren().add(borderPane);
 }

 @Override
 public void start(Stage primaryStage) throws Exception {
 primaryStage.setScene(new Scene(root));
 primaryStage.show();
 }
}

This application can be further improved to save the history of visited tabs into the
browser history. This enables users to click the Back and Forward buttons in the
browser to move between tabs.

The implementation is based on the onhashchange event introduced in HTML 5 and
described at

http://www.whatwg.org/specs/web-apps/current-work/#event-hashcha
nge

The JavaScript technique used by AJAX applications to achieve a similar effect is to
save a reference to the current selection in the hash part of the document URL. When
the user clicks the Back button, the URL is updated, and a selection state can be
extracted that must be restored.

To implement this solution, two new methods are added to the sample: onNavigate()
and navigateTo(). The onNavigate() method is called whenever a new tab is selected.
It delivers information about the new selection to the web page by calling the
JavaScript method navigateTo() and passing the tab ID to it. The JavaScript code
saves the tab ID in the URL hash.

The navigateTo() method is responsible for reverse synchronization. After the web
page URL is changed, this method is called with the ID of the tab to be selected.

Example 8–12 shows the updated code of the application. The code that is different
from Example 8–11 appears in bold.

Example 8–12 Improved Application that Saves Tab History

public class TabbedApp extends Application {
 Group root = new Group();
 TabPane tabPane = new TabPane();

Tab Pane Example

8-8 JavaFX Deploying JavaFX Applications

 public void init() {
 // Prepare tab pane with set of tabs
 BorderPane borderPane = new BorderPane();
 tabPane.setPrefSize(400, 400);
 tabPane.setSide(Side.TOP);
 tabPane.setTabClosingPolicy(TabPane.TabClosingPolicy.UNAVAILABLE);

 for(int i=1; i<=20; i++) {
 final Tab t = new Tab("T" + i);
 t.setId(""+i);
 Text text = new Text("Tab "+i);
 text.setFont(new Font(100));
 BorderPane p = new BorderPane();
 p.setCenter(text);
 t.setContent(p);

 // When tab is selected, notify web page to save this in the
 // browser history
 t.selectedProperty().addListener(new ChangeListener<Boolean>() {
 public void changed(ObservableValue<? extends Boolean> ov,
 Boolean tOld, Boolean tNew) {
 if (Boolean.TRUE.equals((tNew))) {
 onNavigate(t.getId());
 }
 }
 });
 tabPane.getTabs().add(t);
 }
 borderPane.setCenter(tabPane);
 root.getChildren().add(borderPane);
}

 @Override
 public void start(Stage primaryStage) throws Exception {
 primaryStage.setScene(new Scene(root));
 primaryStage.show();
 }

 public void navigateTo(String tab) {
 for (Tab t: tabPane.getTabs()) {
 if (tab.equals("#"+t.getId())) {
 tabPane.getSelectionModel().select(t);
 return;
 }
 }
 }

 private void onNavigate(String tab) {
 JSObject jsWin = getHostServices().getWebContext();
 // Null for nonembedded applications
 if (jsWin != null) {
 //use js
 jsWin.eval("navigateTo('" + tab + "')");
 }
 }
}

Part of the implementation logic is in the HTML page. Example 8–13 shows a page
that is used as an input template in an Ant script. When the Ant script is run, it inserts

Tab Pane Example

JavaFX and JavaScript 8-9

code to embed the JavaFX application next to the custom JavaScript code. For more
information about input templates, see <fx:template>.

The implementation of JavaScript functions is straightforward. The onhashchange
attribute of the <body> tag is used to subscribe to notifications of updates of the hash
part of the URL. After the event is obtained, the JavaFX application is embedded in the
web page, and the navigateTo() method is called.

If the application calls with an update on the selected tab, it is saved to the hash part of
the URL.

Example 8–13 HTML Template Used as Input to the Ant Script

<html>
 <head>
 <!-- template: code to load DT javascript will be inserted here -->
 #DT.SCRIPT.CODE#
 <!-- template: code to insert application on page load will be
 inserted here -->
 #DT.EMBED.CODE.ONLOAD#

 <script>
 function hashchanged(event) {
 var a = document.getElementById('tabbedApp');
 if (a != null) {
 try {
 a.navigateTo(location.hash);
 } catch (err) {
 alert("JS Exception: " + err);
 }
 }
 }

 function navigateTo(newtab) {
 if (window.location.hash != newtab) {
 window.location.hash = newtab;
 }
 }
 </script>
 </head>
 <body onhashchange="hashchanged(event)">
 <h2>Test page</h2>
 <!-- Application will be inserted here -->
 <div id='javafx-app-placeholder'></div>
 </body>
</html>

For completeness, Example 8–14 shows the Ant script used to deploy this sample. The
application is created with the ID tabbedApp. The JavaScript code uses this ID to find
the application on the page. and the HTML template uses it to embed the application
into the custom HTML page that is produced by the Ant task.

Example 8–14 Ant Script to Package the Application

<fx:application id="tabbedApp"
 name="Example of browser integration"
 mainClass="docsamples.TabbedApp"/>

<fx:jar destfile="dist/docsamples/tabbedapp.jar">
 <fx:application refid="tabbedApp"/>

Tab Pane Example

8-10 JavaFX Deploying JavaFX Applications

 <fileset refid="appclasses"/>
</fx:jar>

<fx:deploy width="400" height="400"
 outdir="dist-web"
 outfile="BrowserIntegrationApp">
 <fx:info title="Doc sample"/>
 <fx:application refid="tabbedApp"/>
 <fx:template
 file="src/template/TabbedApp_template.html"
 tofile="dist-web/TabbedApp.html"/>
 <fx:resources>
 <fx:fileset requiredFor="startup" dir="dist/docsamples">
 <include name="tabbedapp.jar"/>
 </fx:fileset>
 </fx:resources>
</fx:deploy>

9

Preloaders 9-1

9Preloaders

This chapter explains preloaders in JavaFX.

During the second phase of startup, a preloader application runs, either the default
application in the JavaFX Runtime or a custom application that you supply. See
Section 4.1, "Application Startup Process, Experience, and Customization" for
information about how a preloader fits into the startup flow.

A custom preloader application is optional and can be used to tune the application
loading and startup experience. For example, users tend to get irritated if they have to
wait for an application to start or if they do not get status messages. Use of a preloader
can help to reduce perceived application startup time by showing some content to the
user earlier, such as a progress indicator or login prompt.

A preloader application can also be used to present custom messaging to the user. For
example, you can explain what is currently happening and what the user will be asked
to do next, such as grant permissions to the application, or you could create a
preloader to present custom error messaging.

Not every application needs a preloader. For example, if the size of your application is
small and does not have special requirements such as permissions, then it probably
starts quickly. Even for larger applications, the default preloader included with the
JavaFX Runtime can be a good choice, because it is loaded from the client machine
rather than the network.

This page contains the following topics:

■ Section 9.1, "Implementing a Custom Preloader"

■ Section 9.2, "Packaging an Application with a Preloader"

■ Section 9.3, "Preloader Code Examples"

■ Section 9.4, "Performance Tips"

See Section 4.1, "Application Startup Process, Experience, and Customization" for
information about how to customize the default preloader.

9.1 Implementing a Custom Preloader
A custom preloader is a specialized JavaFX application extending the
javafx.application.Preloader class. Because the Preloader class is an extension of
javafx.application.Application, a custom preloader has the same lifecycle and can
use all of the features of the JavaFX Runtime.

The preloader startup sequence is shown in relation to the application startup in
Figure 9–1. The preloader application is started before the main application and gets

Implementing a Custom Preloader

9-2 JavaFX Deploying JavaFX Applications

notification of the progress of the loading application resources, application
initialization, and startup, as well as of errors.

Figure 9–1 Preloader Startup Related to Application Startup

Example 9–1 shows a simple preloader that uses the ProgressBar control to visualize
the loading progress.

Example 9–1 Simple Preloader Using the ProgressBar Control

public class FirstPreloader extends Preloader {
 ProgressBar bar;
 Stage stage;

 private Scene createPreloaderScene() {
 bar = new ProgressBar();
 BorderPane p = new BorderPane();
 p.setCenter(bar);
 return new Scene(p, 300, 150);
 }

 public void start(Stage stage) throws Exception {
 this.stage = stage;
 stage.setScene(createPreloaderScene());
 stage.show();
 }

 @Override
 public void handleProgressNotification(ProgressNotification pn) {
 bar.setProgress(pn.getProgress());
 }

 @Override
 public void handleStateChangeNotification(StateChangeNotification evt) {
 if (evt.getType() == StateChangeNotification.Type.BEFORE_START) {
 stage.hide();
 }
 }
}

Packaging an Application with a Preloader

Preloaders 9-3

As a regular JavaFX application, the FirstPreloader class uses the start() method to
create a scene to display the loading progress. Updates on progress are delivered to the
preloader using the handleProgressNotification() method, and the FirstPreloader
implementation uses them to update the UI.

The preloader and main application have different Stage objects, and the preloader
needs to take care of showing and hiding its own stage when needed. In Example 9–1,
the preloader stage is hidden after notification is received that the start() method of
the main application is about to be called.

The implementation of the FirstPreloader class illustrates the main concept and will
work in many scenarios, but it does not provide the best user experience for all use
cases. See Section 9.3, "Preloader Code Examples" for examples of how to improve it
further.

9.2 Packaging an Application with a Preloader
There are some special requirements for packaging applications with preloaders.

First, in most cases, the code for the preloader must be packaged into one or more JAR
files that are separate from the rest of application. This enables faster loading when the
application is deployed on the web. Using a single JAR file for both application and
preloader code can be a good choice for some specialized cases, for example if the
application is run in standalone mode only. In NetBeans IDE, the JAR files are
packaged separately by creating two projects: one for the main application and a
special JavaFX preloader project for the preloader. See Section 9.2.1, "Packaging a
Preloader Application in NetBeans IDE."

Second, application deployment descriptors should include information about which
class belongs to the preloader and where the preloader code is. The way to specify it
depends on what tools you use for packaging. For more information about tools, see
Section 5.3.1, "JavaFX Packaging Tools."

All of the packaging tools produce a deployment descriptor that includes the
preloader, as in Example 9–2. In this example, the main application is called
AnimatedCircles and the preloader application is called FirstPreloader.

Example 9–2 Sample Deployment Descriptor for an Application with a Preloader

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0" xmlns:jfx="http://javafx.com" href="AnimatedCircles.jnlp">
 <information>
 <title>AnimatedCircles</title>
 <vendor>Oracle</vendor>
 <description>Animated Circles</description>
 <offline-allowed/>
 </information>
 <resources os="Windows">
 <jfx:javafx-runtime version="2.1+"
 href="http://javadl.sun.com/webapps/download/GetFile/
 javafx-latest/windows-i586/javafx2.jnlp"/>
 </resources>
 <resources>
 <j2se version="1.6+" href="http://java.sun.com/products/autodl/j2se"/>
 <jar href="lib/FirstPreloader.jar" size="2801" download="progress" />
 <jar href="AnimatedCircles.jar" size="13729" download="always" />
 </resources>
 <applet-desc width="800" height="600"
 main-class="com.javafx.main.NoJavaFXFallback" name="AnimatedCircles" />

Packaging an Application with a Preloader

9-4 JavaFX Deploying JavaFX Applications

 <jfx:javafx-desc width="800" height="600"
 main-class="animatedcircles.AnimatedCircles" name="AnimatedCircles"
 preloader-class="firstpreloader.FirstPreloader"/>
 <update check="background"/>
</jnlp>

The manifest must also contain the classpath to the preloader, shown in Example 9–3.

Example 9–3 Sample Manifest for an Application with a Preloader

Manifest-Version: 1.0
JavaFX-Version: 2.1
implementation-vendor: nhildebr
implementation-title: AnimatedCircles
implementation-version: 1.0
JavaFX-Preloader-Class: firstpreloader.FirstPreloader
JavaFX-Application-Class: animatedcircles.AnimatedCircles
JavaFX-Class-Path: lib/FirstPreloader.jar
JavaFX-Fallback-Class: com.javafx.main.NoJavaFXFallback
Created-By: JavaFX Packager
Main-Class: com/javafx/main/Main

9.2.1 Packaging a Preloader Application in NetBeans IDE
If you are using NetBeans IDE, in the main application you can specify either another
NetBeans project that contains the main preloader class or a JAR file in which the
preloader was packaged.

The following procedures show two ways to package a preloader in NetBeans IDE,
depending on your project configuration. You can either create a new NetBeans project
and choose a preloader option, or you can add a preloader to an existing NetBeans
project. Both procedures use the preloader class from Example 9–1.

To create a new application with a preloader in NetBeans IDE:

1. On the File menu, choose New Project.

2. Select the JavaFX category and JavaFX Application as the project type. Click Next.

3. Enter FirstApp as a project name and choose Create Custom Preloader. Click
Finish.

Netbeans IDE creates two new projects for you: a FirstApp-Preloader project with
basic implementation of a custom preloader, and FirstApp project with a sample
JavaFX Application using your custom preloader.

4. Open the SimplePreloader class in Source Packages in the FirstApp-Preloader
project.

5. Replace the implementation of the SimplePreloader class with the
implementation of the FirstPreloader class, or any other sample from this page.

Be sure to fix imports if needed by going to the Source menu and choosing Fix
Imports.

6. Select the FirstApp project and run Clean and Build to build both the sample
application and the preloader.

The artifacts are placed in the dist folder in the FirstApp project.

7. Test the artifacts by running them in Netbeans.

Packaging an Application with a Preloader

Preloaders 9-5

 Note that for standalone launch, the preloader may be not visible if it displays
loading progress only, because there is nothing to load. Even when testing web
launch from a local hard drive, the preloader might show up for a very short time.

To add a preloader to an existing NetBeans project:

1. Create a separate NetBeans project of type JavaFX Preloader for the preloader
class. In the example, the project name is FirstPreloader, which contains the
firstpreloader package and the code for the FirstPreloader class.

2. In the Project Properties for the main application, click the Run category.

3. Select the check box Use Preloader, then Click Browse, then choose the NetBeans
project for the preloader. The Preloader Class field is populated by default, as
shown in Figure 9–2.

Figure 9–2 Preloader Option in the Run Category of NetBeans Project Properties

4. Click OK to close the Project Properties dialog box.

5. Right-click the main application and choose Clean and Build.

The main application files are created for deployment in the dist directory, and the
preloader JAR file is placed in a lib subdirectory. All of the necessary JNLP and
manifest entries are handled by the IDE.

9.2.2 Packaging a Preloader Application in an Ant Task
Ant users must specify information about the preloader class and JAR files in both the
<fx:jar> and <fx:deploy> tasks. Setting the proper parameters in the <fx:jar> task
ensures that the preloader is registered for standalone applications. Setting the proper
parameters in the <fx:deploy> task creates the configuration for web deployment.

Some settings are required in other parts of the Ant script. The preloader main class is
specified as part of the <fx:application> element, as shown in Example 9–4.

Example 9–4 Specify the Preloader Class in <fx:application>

<fx:application id="app-desc"
 mainClass="sample.AppSample"
 preloaderClass="preloaders.SamplePreloader"/>

Preloader resources are marked with the requiredFor="preloader" attribute in the
description of application resources, nested under <fx:application>, as shown in
Example 9–5.

Tip: You can launch your application as standalone or in a browser
by choosing a Run category in Project Properties, or you can directly
open the build artifacts.

Note: As an alternative to selecting a NetBeans project for the
preloader, when you click Browse you have the option of selecting a
preloader JAR file.

Packaging an Application with a Preloader

9-6 JavaFX Deploying JavaFX Applications

Example 9–5 Use the requiredFor Attribute of <fx:fileset>

<fx:application ... >
 <fx:resources>
 <fx:fileset id="preloader-files"
 requiredFor="preloader"
 dir="dist"
 includes="preloader.jar"/>
 <fx:fileset dir="dist" includes="myapp.jar"/>
 </fx:resources>
</fx:application>

With the help of the refid attribute creating a reference to an id attribute, elements
can be reused to reduce code duplication. The preloader settings for the <fx:jar> and
<fx:deploy> tasks are shown in Example 9–6.

Example 9–6 Preloader Settings in <fx:jar> and <fx:deploy> Tasks

<fx:jar destfile="dist/application.jar">
 <fx:application refid="app-desc"/>
 <fx:resources>
 <fx:fileset refid="preloader-files"/>
 </fx:resources>
 <fileset dir="build/classes/" include="**"/>
</fx:jar>

<fx:deploy width="600" height="400"
 outdir="app-dist" outfile="SampleApp">
 <fx:info title="Sample application"/>
 <fx:application refid="app-desc"/>
 <fx:resources>
 <fx:fileset requiredFor="startup" dir="dist" include="application.jar"/>
 <fx:fileset refid="preloader-files"/>
 </fx:resources>
</fx:deploy>

See Example 12–2 to see another preloader configuration in a full Ant task. In that
example, both the preloader and the main application JAR files are signed in the
<fx:signjar> task. If the preloader JAR file is unsigned and the main application JAR
file is signed, then a multipart deployment descriptor is needed. Packaging is similar
to any other JavaFX application using a mix of signed and unsigned code. For more
information, see Section 5.7.2, "Application Resources."

Note the following preloader-specific details:

■ The name of the preloader class is always specified in the main application
descriptor, as in Example 9–4.

■ In most cases, it is a good idea to keep the preloader JAR files in the main
application descriptor so they will start loading sooner.

The reasoning for the last point is as follows. There are two <fx:deploy> tasks to
package this application, which generate two different JNLP files: one for the main
application and another extension. The application will start from the link to the main
JNLP, so whatever is referenced from the main JNLP file can start loading sooner and
is ready faster.

Preloader Code Examples

Preloaders 9-7

9.3 Preloader Code Examples
The following code examples demonstrate various uses of preloaders:

■ Section 9.3.1, "Show the Preloader Only if Needed"

■ Section 9.3.2, "Enhance Visual Transitions"

■ Section 9.3.3, "Using JavaScript with a Preloader"

■ Section 9.3.4, "Using a Preloader to Display the Application Initialization Progress"

■ Section 9.3.5, "Cooperation of Preloader and Application: A Login Preloader"

■ Section 9.3.6, "Cooperation of Preloader and Application: Sharing the Stage"

■ Section 9.3.7, "Customizing Error Messaging"

9.3.1 Show the Preloader Only if Needed
If the application runs standalone or is loaded from the web cache, then the preloader
does not get any progress notifications because there is nothing to load, and the
application will likely start quickly.

Using the FirstPreloader example as implemented in Example 9–1, users only see the
preloader stage briefly with 0 percent progress. Unless the application is embedded in
a browser, a window also pops up that is briefly visible. In this case, a better user
experience is to show nothing until the first progress notification.

When the application is embedded in a web page, something needs to be shown to
avoid having a gray box (hole in the web page effect) where the application will
appear. One possible approach is to display the HTML splash screen until the
preloader has something to display or, if the preloader does not get any events, until
the application is ready. Another option is to show a simplified version of the
preloader and add a progress indicator after the first progress notification is received.

Example 9–7 shows how to improve the relevant parts of the FirstPreloader
implementation:

■ Do not show the progress indicator until the first progress notification.

■ If the preloader stage is not embedded, do not show it until the first progress
notification.

Example 9–7 Example of Tweaking When the Preloader Appears

boolean isEmbedded = false;
public void start(Stage stage) throws Exception {
 //embedded stage has preset size
 isEmbedded = (stage.getWidth() > 0);

 this.stage = stage;
 stage.setScene(createPreloaderScene());
}

@Override
public void handleProgressNotification(ProgressNotification pn) {
 if (pn.getProgress() != 1 && !stage.isShowing()) {
 stage.show();
 }
 bar.setProgress(pn.getProgress());
}

Preloader Code Examples

9-8 JavaFX Deploying JavaFX Applications

See Section 9.3.3, "Using JavaScript with a Preloader" for an example of how to
postpone hiding the splash screen.

9.3.2 Enhance Visual Transitions
The last state change notification received by the preloader before the application
starts is StateChangeNotification.Type.BEFORE_START. After it is processed, the
application's start() method is called. However, it can take time before the
application is ready to display its stage after the start() method is called. If the
preloader stage is already hidden, then there could be a period of time when the
application shows nothing on the screen. When the application is embedded in a web
page, this can result in a hole in the web page effect.

For this and other reasons, hiding the preloader instantly might not be the best visual
transition from preloader to application. One approach to improve the visual
transition between preloader and application is shown in Example 9–8. If this
FirstPreloader example is used for an application embedded in a web page, it will fade
out over a period of 1 second instead of hiding instantly.

Example 9–8 Make the Preloader Fade Out

@Override
public void handleStateChangeNotification(StateChangeNotification evt) {
 if (evt.getType() == StateChangeNotification.Type.BEFORE_START) {
 if (isEmbedded && stage.isShowing()) {
 //fade out, hide stage at the end of animation
 FadeTransition ft = new FadeTransition(
 Duration.millis(1000), stage.getScene().getRoot());
 ft.setFromValue(1.0);
 ft.setToValue(0.0);
 final Stage s = stage;
 EventHandler<ActionEvent> eh = new EventHandler<ActionEvent>() {
 public void handle(ActionEvent t) {
 s.hide();
 }
 };
 ft.setOnFinished(eh);
 ft.play();
 } else {
 stage.hide();
 }
 }
}

If the preloader and application cooperate, then the transition is even smoother. See
Section 9.3.6, "Cooperation of Preloader and Application: Sharing the Stage" for an
example of a preloader that fades into the application.

If the application takes time to initialize, then it can be helpful to use a custom
notification to initiate the transition from preloader to application when the
application is ready. See Section 9.3.4, "Using a Preloader to Display the Application
Initialization Progress" for further information.

9.3.3 Using JavaScript with a Preloader
Because a JavaFX application preloader has access to application features such as
parameters and host services, the preloader can use JavaScript to communicate to the
web page in which an application is embedded.

Preloader Code Examples

Preloaders 9-9

In Example 9–9, JavaScript access is used to create a preloader that displays the
loading progress in the HTML splash screen and hides the splash screen only when
the application is ready. The code uses the following two JavaScript methods, which
must be provided by the web page:

■ hide() to hide the HTML splash screen

■ progress(p) to update the progress

It is assumed that there is a custom HTML splash screen that is not hidden by default.

Example 9–9 Use JavaScript from the Preloader

import javafx.application.Preloader;
import javafx.stage.Stage;
import netscape.javascript.JSObject;

public class JSPreloader extends Preloader {
 public void start(Stage stage) throws Exception {}

 public void handleStateChangeNotification(StateChangeNotification evt) {
 if (evt.getType() == StateChangeNotification.Type.BEFORE_START) {
 JSObject js = getHostServices().getWebContext();
 if (js != null) {
 try {
 js.eval("hide();");
 } catch (Throwable e) {
 System.err.println("Ouch "+e);
 e.printStackTrace();
 }
 }
 }
 }

 public void handleProgressNotification(ProgressNotification pn) {
 JSObject js = getHostServices().getWebContext();
 if (js != null) {
 try {
 js.eval("progress("+ ((int) (100*pn.getProgress()))+");");
 } catch (Throwable e) {
 e.printStackTrace();
 }
 }
 }
}

Example 9–10 shows a sample web page template that uses the preloader in
Example 9–9. When this template page is processed during packaging,
#DT.SCRIPT.URL# and #DT.EMBED.CODE.ONLOAD# will be replaced with code to embed
the JavaFX application into the web page. For more information about templates, see
<fx:template> in the JavaFX Ant reference.

Example 9–10 Web Page Template Containing JavaScript for Preloader

<html>
 <head>
 <style>
 div.label {
 position:absolute;
 bottom:100px;
 left:200px;

Preloader Code Examples

9-10 JavaFX Deploying JavaFX Applications

 font-family: 'tahoma';
 font-size:150px;
 color:silver;
 }
 </style>

 <SCRIPT src="#DT.SCRIPT.URL#"></SCRIPT>
 <script>
 //Postpone the moment the splash screen is hidden
 // so it can show loading progress
 // save reference to hide function and replace it with no op for now
 var realHide = dtjava.hideSplash;
 dtjava.hideSplash = function(id) {}

 //hide splash
 function hide() {
 realHide('sampleApp');
 }

 //update progress data
 function progress(p) {
 var e = document.getElementById("splash");
 e.removeChild(e.firstChild);
 e.appendChild(document.createTextNode(""+p));
 }

 //create custom splash to be used
 function getSplash(app) {
 var l = document.createElement('div');
 l.className="label";
 l.id="splash";
 l.appendChild(document.createTextNode("..."));
 return l;
 }
 </script>
 <!-- #DT.EMBED.CODE.ONLOAD# -->

 </head>
 <body>
 <h2>Test page for JS preloader sample</h2>
 <!-- Application will be inserted here -->
 <div id='javafx-app-placeholder'></div>
 </body>
</html>

9.3.4 Using a Preloader to Display the Application Initialization Progress
A JavaFX application can pass information about events to a preloader by using
custom notifications. For example, the preloader can be used to display the application
initialization progress.

Technically, any class implementing the Preloader.PreloaderNotification interface
can serve as a custom notification, and the application can send it to the preloader by
using the Application.notifyPreloader()method. On the preloader side, the
application notification is delivered to the handleApplicationNotification()
method.

Example 9–11 is a variation of the FirstPreloader example. It does not hide the
preloader after notification of application startup is received. It waits for

Preloader Code Examples

Preloaders 9-11

application-specific notifications, displays the progress notifications, and hides the
splash screen after the application sends a state change notification.

Example 9–11 Preloader to Display Progress of Application Initialization and Loading

public class LongAppInitPreloader extends Preloader {
 ProgressBar bar;
 Stage stage;
 boolean noLoadingProgress = true;

 private Scene createPreloaderScene() {
 bar = new ProgressBar(0);
 BorderPane p = new BorderPane();
 p.setCenter(bar);
 return new Scene(p, 300, 150);
 }

 public void start(Stage stage) throws Exception {
 this.stage = stage;
 stage.setScene(createPreloaderScene());
 stage.show();
 }

 @Override
 public void handleProgressNotification(ProgressNotification pn) {
 //application loading progress is rescaled to be first 50%
 //Even if there is nothing to load 0% and 100% events can be
 // delivered
 if (pn.getProgress() != 1.0 || !noLoadingProgress) {
 bar.setProgress(pn.getProgress()/2);
 if (pn.getProgress() > 0) {
 noLoadingProgress = false;
 }
 }
 }

 @Override
 public void handleStateChangeNotification(StateChangeNotification evt) {
 //ignore, hide after application signals it is ready
 }

 @Override
 public void handleApplicationNotification(PreloaderNotification pn) {
 if (pn instanceof ProgressNotification) {
 //expect application to send us progress notifications
 //with progress ranging from 0 to 1.0
 double v = ((ProgressNotification) pn).getProgress();
 if (!noLoadingProgress) {
 //if we were receiving loading progress notifications
 //then progress is already at 50%.
 //Rescale application progress to start from 50%
 v = 0.5 + v/2;
 }
 bar.setProgress(v);
 } else if (pn instanceof StateChangeNotification) {
 //hide after get any state update from application
 stage.hide();
 }
 }
 }

Preloader Code Examples

9-12 JavaFX Deploying JavaFX Applications

In Example 9–11, note that the same progress bar is used to display the progress of
both the application initialization and loading. For simplicity, 50 percent is reserved for
each phase. However, if the loading phase is skipped, for example when the
application is launched as standalone, then the entire progress bar is devoted to
displaying the progress of the application initialization.

Example 9–12 shows the code on the application side. The longStart() method is
used to simulate a lengthy initialization process that happens on a background thread.
After initialization is completed, the ready property is updated, which makes the
application stage visible. During initialization, intermediate progress notifications are
generated. At the end of initialization, the StateChangeNotification is sent, which
causes the preloader to hide itself.

Example 9–12 Application Code to Enable the Progress Display

public class LongInitApp extends Application {
 Stage stage;
 BooleanProperty ready = new SimpleBooleanProperty(false);

 private void longStart() {
 //simulate long init in background
 Task task = new Task<Void>() {
 @Override
 protected Void call() throws Exception {
 int max = 10;
 for (int i = 1; i <= max; i++) {
 Thread.sleep(200);
 // Send progress to preloader
 notifyPreloader(new ProgressNotification(((double) i)/max));
 }
 // After init is ready, the app is ready to be shown
 // Do this before hiding the preloader stage to prevent the
 // app from exiting prematurely
 ready.setValue(Boolean.TRUE);

 notifyPreloader(new StateChangeNotification(
 StateChangeNotification.Type.BEFORE_START));

 return null;
 }
 };
 new Thread(task).start();
 }

 @Override
 public void start(final Stage stage) throws Exception {
 // Initiate simulated long startup sequence
 longStart();

 stage.setScene(new Scene(new Label("Application started"),
 400, 400));

 // After the app is ready, show the stage
 ready.addListener(new ChangeListener<Boolean>(){
 public void changed(
 ObservableValue<? extends Boolean> ov, Boolean t, Boolean t1) {
 if (Boolean.TRUE.equals(t1)) {
 Platform.runLater(new Runnable() {
 public void run() {

Preloader Code Examples

Preloaders 9-13

 stage.show();
 }
 });
 }
 }
 });;
 }
}

In this example, standard events are reused, but in general the application can send
arbitrary data to the preloader. For example, for application loading, image collection
notifications can include sample preview images and so on.

9.3.5 Cooperation of Preloader and Application: A Login Preloader
As part of StateChangeNotification, the preloader receives a reference to the
application, which enables the preloader to cooperate closely with the application.

The example in this section shows how to use this cooperation in a login preloader,
which requests user credentials while the application is loading, then passes them to
the application.

In order to cooperate, this preloader and application share the CredentialsConsumer
interface, which the preloader uses to pass credentials to the application. In addition to
implementing a shared interface, the only other special thing in this sample is that the
application does not show itself until it has both user credentials and a reference to a
Stage object.

Example 9–13 shows the application code for the login preloader.

Example 9–13 Enable the Login Preloader

public class AppToLogInto extends Application implements CredentialsConsumer {
 String user = null;
 Label l = new Label("");
 Stage stage = null;

 private void mayBeShow() {
 // Show the application if it has credentials and
 // the application stage is ready
 if (user != null && stage != null) {
 Platform.runLater(new Runnable() {
 public void run() {
 stage.show();
 }
 });
 }
 }

 @Override
 public void start(Stage stage) throws Exception {
 this.stage = stage;
 stage.setScene(new Scene(l, 400, 400));
 mayBeShow();
 }

 public void setCredential(String user, String password) {
 this.user = user;
 l.setText("Hello "+user+"!");
 mayBeShow();

Preloader Code Examples

9-14 JavaFX Deploying JavaFX Applications

 }
}

The preloader stage is displayed unconditionally, because the user must provide
credentials. However, the preloader is not hidden when the application is ready to
start unless there are credentials to pass to the application.

To be able to pass credentials, you can cast a reference to the application from
StateChangeNotification to CredentialsConsumer, assuming the application
implements it.

In Example 9–14, the login pane UI from the previous example above is simplistic, but
it shows how to adapt it to execution mode. If there is no progress to display, then
there is no point to adding a progress bar to the UI. Also, if the application has
finished loading but is still waiting for user input, then the UI can be simplified by
hiding unneeded progress.

Example 9–14 Login Preloader Code

public class LoginPreloader extends Preloader {
 public static interface CredentialsConsumer {
 public void setCredential(String user, String password);
 }

 Stage stage = null;
 ProgressBar bar = null;
 CredentialsConsumer consumer = null;
 String username = null;
 String password = null;

 private Scene createLoginScene() {
 VBox vbox = new VBox();

 final TextField userNameBox = new TextField();
 userNameBox.setPromptText("name");
 vbox.getChildren().add(userNameBox);

 final PasswordField passwordBox = new PasswordField();
 passwordBox.setPromptText("password");
 vbox.getChildren().add(passwordBox);

 final Button button = new Button("Log in");
 button.setOnAction(new EventHandler<ActionEvent>(){
 public void handle(ActionEvent t) {
 // Save credentials
 username = userNameBox.getText();
 password = passwordBox.getText();

 // Do not allow any further edits
 userNameBox.setEditable(false);
 passwordBox.setEditable(false);
 button.setDisable(true);

 // Hide if app is ready
 mayBeHide();
 }
 });
 vbox.getChildren().add(button);

 bar = new ProgressBar(0);

Preloader Code Examples

Preloaders 9-15

 vbox.getChildren().add(bar);
 bar.setVisible(false);

 Scene sc = new Scene(vbox, 200, 200);
 return sc;
 }

 @Override
 public void start(Stage stage) throws Exception {
 this.stage = stage;
 stage.setScene(createLoginScene());
 stage.show();
 }

 @Override
 public void handleProgressNotification(ProgressNotification pn) {
 bar.setProgress(pn.getProgress());
 if (pn.getProgress() > 0 && pn.getProgress() < 1.0) {
 bar.setVisible(true);
 }
 }

 private void mayBeHide() {
 if (stage.isShowing() && username != null && consumer != null) {
 consumer.setCredential(username, password);
 Platform.runLater(new Runnable() {
 public void run() {
 stage.hide();
 }
 });
 }
 }

 @Override
 public void handleStateChangeNotification(StateChangeNotification evt) {
 if (evt.getType() == StateChangeNotification.Type.BEFORE_START) {
 //application is loaded => hide progress bar
 bar.setVisible(false);

 consumer = (CredentialsConsumer) evt.getApplication();
 //hide preloader if credentials are entered
 mayBeHide();
 }
 }
}

Note that close cooperation between the preloader and application is subject to mixed
code restrictions unless both the preloader and application are in the same trust
domain, in other words both are signed or unsigned.

9.3.6 Cooperation of Preloader and Application: Sharing the Stage
This section demonstrates how to use cooperation between the preloader and the
application to improve the transition from preloader to application.

Example 9–15 shows how the preloader and application share the same stage, and the
preloader fades into the application when the application is ready. As in Example 9–14,
the preloader and application need to share the SharedScene interface.

Preloader Code Examples

9-16 JavaFX Deploying JavaFX Applications

Example 9–15 SharedScene Interface

/* Contact interface between application and preloader */
public interface SharedScene {
 /* Parent node of the application */
 Parent getParentNode();
}

The Application class implements it to provide the preloader with access to the
application scene. The preloader later uses it for setup transition.

Now, the interface must be implemented. The code in Example 9–16 shows that the
application is active during the transition.

Example 9–16 Implement the SharedScene Interface

public class SharedStageApp extends Application
 implements FadeInPreloader.SharedScene {
 private Parent parentNode;
 private Rectangle rect;

 public Parent getParentNode() {
 return parentNode;
 }

 public void init() {
 //prepare application scene
 rect = new Rectangle(0, 0, 40, 40);
 rect.setArcHeight(10);
 rect.setArcWidth(10);
 rect.setFill(Color.ORANGE);
 parentNode = new Group(rect);
 }

 public void start(Stage primaryStage) {
 //setup some simple animation to
 // show that application is live when preloader is fading out
 Path path = new Path();
 path.getElements().add(new MoveTo(20, 20));
 path.getElements().add(new CubicCurveTo(380, 0, 380, 120, 200, 120));

 PathTransition pathTransition = new PathTransition();
 pathTransition.setDuration(Duration.millis(4000));
 pathTransition.setPath(path);
 pathTransition.setNode(rect);
 pathTransition.setCycleCount(Timeline.INDEFINITE);
 pathTransition.setAutoReverse(true);

 pathTransition.play();
 }
}

On the preloader side, instead of hiding the preloader stage, the code initiates a fade-in
transition by inserting the application scene behind the preloader scene and fading out
the preloader scene over time. After the fade-out is finished, the preloader is removed
from the scene so the application can own the stage and scene.

Example 9–17 Preloader Use of Fade-Out for a Smooth Transition

public class FadeInPreloader extends Preloader{
 Group topGroup;

Preloader Code Examples

Preloaders 9-17

 Parent preloaderParent;

 private Scene createPreloaderScene() {
 //our preloader is simple static green rectangle
 Rectangle r = new Rectangle(300, 150);
 r.setFill(Color.GREEN);
 preloaderParent = new Group(r);
 topGroup = new Group(preloaderParent);
 return new Scene(topGroup, 300, 150);
 }

 public void start(Stage stage) throws Exception {
 stage.setScene(createPreloaderScene());
 stage.show();
 }

 @Override
 public void handleStateChangeNotification(StateChangeNotification evt) {
 if (evt.getType() == StateChangeNotification.Type.BEFORE_START) {
 //its time to start fading into application ...
 SharedScene appScene = (SharedScene) evt.getApplication();
 fadeInTo(appScene.getParentNode());
 }
 }

 private void fadeInTo(Parent p) {
 //add application scene to the preloader group
 // (visualized "behind" preloader at this point)
 //Note: list is back to front
 topGroup.getChildren().add(0, p);

 //setup fade transition for preloader part of scene
 // fade out over 5s
 FadeTransition ft = new FadeTransition(
 Duration.millis(5000),
 preloaderParent);
 ft.setFromValue(1.0);
 ft.setToValue(0.5);
 ft.setOnFinished(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent t) {
 //After fade is done, remove preloader content
 topGroup.getChildren().remove(preloaderParent);
 }
 });
 ft.play();
 }
}

9.3.7 Customizing Error Messaging
A preloader can also be used to customize messaging to the end user. For example, if
the application cannot be started because the user declines to grant permissions, then
an unsigned preloader can be used to provide better feedback, as shown in
Example 9–18.

Example 9–18 Preloader with Error Messaging

@Override
 public boolean handleErrorNotification(ErrorNotification en) {
 // Display error

Performance Tips

9-18 JavaFX Deploying JavaFX Applications

 Label l = new Label(
 "This application needs elevated permissions to launch. " +
 "Please reload the page and accept the security dialog.");
 stage.getScene().setRoot(l);

 // Return true to prevent default error handler to take care of this error
 return true;
 }

Note that the preloader cannot provide error messaging when the error affects the
preloader itself. For example, if a user cannot run an application embedded in a web
page because the Java proxy settings are incorrect, then the preloader code cannot be
loaded and therefore cannot display an error message.

9.4 Performance Tips
Because preloaders are displayed while the main application is loading, it is critical
that they load quickly and run smoothly.

Use the following guidelines to ensure your preloaders perform well.

■ Put the preloader classes and resources in a separate JAR file from the main
application and follow packaging instructions. See Section 9.2, "Packaging an
Application with a Preloader."

■ Keep it small.

Optimizing visual assets for size can significantly reduce the size of JAR files.

■ Plan for achieving smooth transitions.

Take care of the transition both from the splash screen to the preloader and from
the preloader to the application. Consider reducing the number of transitions, for
example by doing the following:

– Show the preloader in HTML. See Section 9.3.3, "Using JavaScript with a
Preloader."

– Share the stage between the preloader and application. For an example, see
Section 9.3.6, "Cooperation of Preloader and Application: Sharing the Stage."

– Do not display a preloader. See Section 9.3.1, "Show the Preloader Only if
Needed.".

■ Ensure there is something to display before initiating a transition.

Both the application and the preloader itself may need some initialization time
before they can display something on the screen. If this is the case, consider
explicitly hiding the splash screen when the preloader is ready (see Section 9.3.3,
"Using JavaScript with a Preloader") and hiding the preloader on custom
notification from the application (see Section 9.3.4, "Using a Preloader to Display
the Application Initialization Progress").

■ If application initialization takes time, use custom events to update the preloader
on initialization progress. For example, see Section 9.3.4, "Using a Preloader to
Display the Application Initialization Progress."

■ Avoid signing the preloader if possible

If the preloader is signed and the user needs to grant permissions, then the
preloader is not visible until the user grant permissions.

Performance Tips

Preloaders 9-19

The following guidelines are applicable to both the main application and the
preloader. See also Section 3.3, "Coding Tips" for general tips.

■ Avoid lengthy operations on the JavaFX application thread.

Blocking the JavaFX thread pauses any UI updates and event processing. To avoid
freezing the application UI, use the JavaFX Worker API and offload lengthy
operations to other threads.

■ Try to keep the start() method implementation lightweight.

Doing more work in the init() method unclogs the JavaFX application thread.

■ Enable embedding when packaging your application for web deployment.

Embedding a deployment descriptor (JNLP) and security certificates (if needed)
reduces the time needed to collect all the information about the application and
help to start the preloader and application faster.

Performance Tips

9-20 JavaFX Deploying JavaFX Applications

10

JavaFX in Swing Applications 10-1

10JavaFX in Swing Applications

You can create Swing applications with embedded JavaFX content. This page describes
how to deploy such applications.

This page contains the following topics:

■ Section 10.1, "Overview"

■ Section 10.2, "Packaging with JavaFX Ant Tasks"

■ Section 10.3, "Packaging without JavaFX Tools"

See also Section 2.7, "Deploying Swing and SWT Applications with Embedded JavaFX
Content".

10.1 Overview
Developers working on existing Swing applications may still take advantage of new
JavaFX features by integrating JavaFX content into their Swing applications. (See the
tutorial JavaFX and Swing Applications.)

Deployment of a Swing application with embedded JavaFX content on the web is
similar to deployment of a regular Swing application as a Web Start (JNLP) application
or applet. See the Java Tutorials lessons on Java applets and Web Start applications.

However, to be able to use JavaFX, the deployment descriptor of your application
(JNLP file) needs to express a dependency on JavaFX Runtime.

JavaFX Ant tasks are recommended for packaging hybrid applications, as described in
Section 10.2, "Packaging with JavaFX Ant Tasks."). Alternatively, you can tweak your
existing packaging process manually, as described in Section 10.3, "Packaging without
JavaFX Tools."

10.2 Packaging with JavaFX Ant Tasks
As of JavaFX 2.2, you can use same set of Ant tasks (see Chapter 5, "Packaging Basics")
to package Swing applications with integrated JavaFX content. You only need to mark
that the application’s primary UI toolkit is Swing, using the toolkit="swing" attribute
of <fx:application>.

The resulting package will be very similar to the package for pure JavaFX applications.
(See Section 5.2, "Base Application Package.") The only difference is that there will be
two deployment descriptors - one for deploying as a Swing applet and another for
launching your application using Web Start.

Example 10–1 shows a sample Ant task for a Swing-JavaFX application that uses the
toolkit="swing" attribute.

Packaging with JavaFX Ant Tasks

10-2 JavaFX Deploying JavaFX Applications

Example 10–1 Using JavaFX Ant Tasks to Package a Swing Application with Integrated
JavaFX Content

<taskdef resource="com/sun/javafx/tools/ant/antlib.xml"
 uri="javafx:com.sun.javafx.tools.ant"
 classpath="${javafx.sdk.path}/lib/ant-javafx.jar"/>

<fx:jar destfile="dist-web/ColorfulCircles.jar">
 <fx:application refid="myapp"/>
 <fileset dir="build/classes/">
 <include name="**"/>
 </fileset>
</fx:jar>

<fx:deploy width="800" height="600" outdir="dist-web"
 outfile="SwingInterop">
 <fx:info title="Swing Interop"/>
 <!-- Mark application as a Swing app -->
 <fx:application id="myapp"
 mainClass="swinginterop.SwingInterop"
 toolkit="swing"/>
 <fx:resources>
 <fx:fileset dir="dist-web" includes="SwingInterop.jar"/>
 </fx:resources>
</fx:deploy>

10.2.1 Enabling an HTML Splash Screen
Swing applications do not have a default preloader, so there is no code to hide the
HTML splash screen when the application is ready. Therefore, by default, the
generated HTML page will not use an HTML splash screen.

To enable a splash screen, do both of the following:

■ Explicitly define a code splash callback onGetSplash. For example; add the
markup in Example 10–2 to Example 10–1:

Example 10–2 Defining a Code Splash Callback onGetSplash

<fx:callbacks>
 <!-- force use of default splash handler -->
 <fx:callback name="onGetSplash">
 (new dtjava.Callbacks()).onGetSplash
 </fx:callback>
</fx:callbacks>

See Section 7.2, "Callbacks" for more information about callbacks and
<fx:callbacks> for further details on the use of <fx:callbacks>.

■ Add code to explicitly hide the HTML splash screen when your application is
ready, by using LiveConnect to call the JavaScript function dtjava.hideSplash()
from Java code, as shown in Example 10–3.

Example 10–3 Hide the HTML Splash Screen When the Application is Ready

Applet myApplet = ...;
//appId is id used in the dtjava.embed() call String appId = "sampleApp";

JSObject window = JSObject.getWindow(myApplet);
try {

Packaging without JavaFX Tools

JavaFX in Swing Applications 10-3

 window.eval("dtjava.hideSplash('"+appId+"');");
 } catch(Throwable t) {
 ...
}

10.3 Packaging without JavaFX Tools
If your project already has existing support for packaging as a Web Start application or
applet, then it might be easier to tweak the template of the JNLP file directly.

To express the dependency on JavaFX Runtime, you need to edit the JNLP to do the
following:

■ Define the JavaFX namespace with jfx:.

■ Add the <jfx:javafx-runtime> tag and specify the minimum required version of
JavaFX.

■ Specify that the minimum required version of Java Runtime is Java Runtime 7
update 6 or later

Example 10–4 shows an example of these modifications to the deployment descriptor.

Example 10–4 Modify the Deployment Descriptor

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0"
 xmlns:jfx="http://javafx.com"
 href="SwingAppWithJavaFXContent.jnlp"
 ...>

 <resources>
 <j2se version="1.7.0_06+"
 href="http://java.sun.com/products/autodl/j2se"/>
 <jfx:javafx-runtime version="2.1+"
 href="http://javadl.sun.com/webapps/download/GetFile/
 javafx-latest/windows-i586/javafx2.jnlp"/>
 </resources>
 ...
</jnlp>

No changes are required on the HTML side. However, you may also use the JavaFX
Deployment Toolkit to integrate your content with the web page, as shown in the
following examples.

10.3.1 Using the Deployment Toolkit
It is recommended that you use the Deployment Toolkit to deploy your application as
an applet or launch it from a web page. The Deployment Toolkit greatly simplifies
deployment routines, such as ensuring that JavaFX Runtime is available. The
Deployment Toolkit also has a number of bonus features, such as:

■ Passing JVM options or arguments to your application dynamically. See
Section 7.3.4, "Specify Platform Requirements and Pass JVM Options" and
Section 7.3.3, "Pass Parameters to a Web Application."

■ Usage procedures are almost the same as for JavaFX applications. The only
requirement is to specify the Swing toolkit as one of the platform requirements.

Packaging without JavaFX Tools

10-4 JavaFX Deploying JavaFX Applications

For example Example 10–5 shows an example of web page code for launching a Swing
Web Start application. This code is the same as that used to launch JavaFX
applications.

Example 10–5 Scripts and Markup in HTML Page for a Web Start Application

<html>
 <head>
 <SCRIPT src="http://java.com/js/dtjava.js"></SCRIPT>
 <script>
 function launchApplication(jnlpfile) {
 dtjava.launch(
 { url : jnlpfile },
 {
 javafx : '2.2+',
 toolkit: 'swing'
 },
 {}
);
 return false;
 }
 </script>
 </head>
 <body>
 <h2>Test page</h2>
 <a href='SampleApp.jnlp'
 onclick="return launchApplication('SampleApp.jnlp');">Click
 to launch test app.
 </body>
</html>

Example 10–5 is simplistic, but you can use other features of the dtjava.launch()
method in the Deployment Toolkit for Swing applications, as needed. For example,
you can embed the JNLP file into the web page for faster startup.

For applets, the approach is similar. Applets can be embedded into a web page using
the dtjava.embed() function. You must also specify the 'swing' toolkit to indicate a
preference of application type for the Deployment Toolkit.

Another caveat concerns built-in HTML splash support in the Deployment Toolkit.
Swing applications do not have a default preloader, so there is no code to hide the
HTML splash screen when the application is ready. To address this difference, do
either of the following:

■ Add code to explicitly hide the HTML splash screen when your application is
ready, by using LiveConnect to call the JavaScript function dtjava.hideSplash()
from Java code, as shown in Example 10–6.

Example 10–6 Hide the HTML Splash Screen When the Application is Ready

Applet myApplet = ...;
//appId is id used in the dtjava.embed() call String appId = "sampleApp";

JSObject window = JSObject.getWindow(myApplet);
try {
 window.eval("dtjava.hideSplash('"+appId+"');");
 } catch(Throwable t) {
 ...
}

Packaging without JavaFX Tools

JavaFX in Swing Applications 10-5

■ Provide a custom splash callback that does nothing, as shown in Example 10–7
and in Section 7.3.6, "Disable the HTML Splash Screen".

Example 10–7 Custom Callback to Disable the HTML Splash Screen

<html>
 <head>
 <SCRIPT src="http://java.com/js/dtjava.js"></SCRIPT>
 <script>
 function embedApp() {
 dtjava.embed(
 {
 id : 'sampleApp',
 url : 'SampleApp_browser.jnlp',
 placeholder : 'app-placeholder',
 width : 960,
 height : 720
 },
 {
 javafx : '2.2+',
 toolkit: 'swing'
 },
 { onGetSplash: function() {} } //disable splash
);
 }
 <!-- Embed Swing application into web page after page is loaded -->
 dtjava.addOnloadCallback(embedApp);
 </script>
 </head>
 <body>
 <h2>Test page</h2>
 <!-- Applet will be inserted here -->
 <div id='javafx-app-placeholder'></div>
 </body>
</html>

Packaging without JavaFX Tools

10-6 JavaFX Deploying JavaFX Applications

11

The JavaFX Packager Tool 11-1

11The JavaFX Packager Tool

The JavaFX Packager tool can be used to compile, package, sign, and deploy JavaFX
applications from the command line. It can be used as an alternative to an Ant task or
building the applications in an IDE.

You can access reference information about the JavaFX Packager tool in this document
or by entering javafxpackager at the command line if you have set an environment
variable for the path to the tool in your JavaFX SDK installation.

The javafxpackager command has several component task commands, described in
Table 11–1. The command-line options depend on which task command you are using,
as described in the javafxpackager reference documentation.

Tip: For Windows installations, add the path to the javafxpackager
command to the PATH environment variable. The javafxpackager.jar
file is located in the bin directory of your JavaFX SDK installation.

Table 11–1 Task Commands in the JavaFX Packager Tool

Task Command Description

javafxpackager -createbss Converts a CSS file into binary form

javafxpackager -createjar Produces a JAR archive according to other parameters specified
as options.

javafxpackager -deploy Assembles the application package for redistribution. By default,
the deploy task will generate the base application package, but it
can also generate self-contained application packages if
requested.

javafxpackager -makeall Compiles source code and combines the -createjar and
-deploy commands, with simplified options.

javafxpackager -signJar Digitally signs JAR files and attaches a certificate.

javafxpackager

-2 JavaFX Deploying JavaFX Applications

javafxpackager

A tool with commands that perform tasks related to packaging and signing JavaFX
applications.

11Synopsis
javafxpackager -taskcommand [-options]

where -taskcommand is one of the following:

-createjar
Produces a JAR archive according to other parameters.

-deploy
Assembles the application package for redistribution. By default, the deploy task will
generate the base application package, but it can also generate a self-contained
application package if requested.

-createbss
Converts CSS files into binary form.

-signJar
Signs JAR file(s) with a provided certificate.

-makeall
Performs compilation, createjar, and deploy steps as one call, with most arguments
predefined. By default, it attempts to generate all applicable self-contained application
packages. The source files must be located in a folder called src, and the resulting files
(JAR, JNLP, HTML, and self-contained application packages) are put in a folder called
dist. This command can only be configured in a minimal way and is as automated as
possible.

Note that all options are case-insensitive.

11Options for the createjar Command

-appclass <application class>
Qualified name of the application class to be executed.

-preloader <preloader class>
Qualified name of the preloader class to be executed.

-paramfile <file>
A properties file with default named application parameters.

-argument arg
An unnamed argument to be inserted into the JNLP file as an <fx:argument> element.

-classpath <files>
List of dependent JAR file names.

 -manifestAttrs <manifest attributes>
List of additional manifest attributes. Syntax:

"name1=value1,name2=value2,name3=value3"

javafxpackager

-3

-noembedlauncher
If present, the packager will not add the JavaFX launcher classes to the JAR file.

-nocss2bin
The packager will not convert CSS files to binary form before copying to JAR.

-runtimeversion <version>
Version of the required JavaFX Runtime.

-outdir <dir>
Name of the directory that will receive generated output files.

-outfile <filename>
Name (without the extension) of the file that will be generated.

 -srcdir <dir>
Base directory of the files to package.

-srcfiles <files>
List of files in srcdir. If omitted, all files in srcdir (which is a mandatory argument in
this case) will be used. Files in the list must be separated by spaces.

11Options for the deploy Command

-title <title>
Title of the application.

-vendor <vendor>
Vendor of the application.

-description <description>
Description of the application.

-appclass <application class>
Qualified name of the application class to be executed.

-preloader <preloader class>
Qualified name of the preloader class to be executed.

-paramfile <file>
Properties file with default named application parameters.

-htmlparamfile <file>
Properties file with parameters for the resulting application when it is run in the
browser.

-width <width>
Width of the application.

-height <height>
Height of the application.

-native <type>
Generate self-contained application bundles (if possible). If type is specified, then only
a bundle of this type is created. List of supported types includes: installer, image, exe,
msi, dmg, rpm, deb.

javafxpackager

-4 JavaFX Deploying JavaFX Applications

-name <name>
Name of the application.

-embedjnlp
If present, the JNLP file will be embedded in the HTML document.

-embedCertificates
If present, the certificates will be embedded in the JNLP file.

-allpermissions
If present, the application will require all security permissions in the JNLP file.

 -updatemode <updatemode>
Sets the update mode for the JNLP file.

-isExtension
If present, the srcfiles are treated as extensions.

-callbacks
Specifies user callback methods in generated HTML. The format is the following:

"name1:value1,name2:value2,..."

-templateInFilename
Name of the HTML template file. Placeholders are in the following form:

#XXXX.YYYY(APPID)#
Where APPID is the identifier of an application and XXX is one of following:

■ DT.SCRIPT.URL

Location of dtjava.js in the Deployment Toolkit. By default, the location is

http://java.com/js/dtjava.js

■ DT.SCRIPT.CODE

Script element to include dtjava.js of the Deployment Toolkit.

■ DT.EMBED.CODE.DYNAMIC

Code to embed the application into a given placeholder. It is expected that the
code will be wrapped in the function() method.

■ DT.EMBED.CODE.ONLOAD

All the code needed to embed the application into a web page using the onload
hook (except inclusion of dtjava.js).

■ DT.LAUNCH.CODE

Code needed to launch the application. It is expected that the code will be
wrapped in the function() method.

-templateOutFilename
Name of the HTML file that will be generated from the template.

 -templateId
Application ID of the application for template processing.

-argument arg
An unnamed argument to be inserted into an <fx:argument> element in the JNLP file.

javafxpackager

-5

-outdir <dir>
Name of the directory that will receive generated output files.

-outfile <filename>
Name (without the extension) of the file that will be generated.

-srcdir <dir>
Base directory of the files to package.

-srcfiles <files>
List of files in srcdir. If omitted, all files in srcdir (which is a mandatory argument in
this case) will be used. Files in the list must be separated by spaces.

11Options for the createbss Command

-outdir <dir>
Name of the directory that will receive generated output files.

-srcdir <dir>
Base directory of the files to package.

-srcfiles <files>
List of files in srcdir. If omitted, all files in srcdir (which is a mandatory argument in
this case) will be used. Files in the list must be separated by spaces.

11Options for the signJar Command

-keyStore <file>
Keystore file name.

-alias
Alias for the key.

-storePass
Password to check integrity of the keystore or unlock the keystore

 -keyPass
Password for recovering the key.

-storeType
Keystore type. The default value is "jks".

-outdir <dir>
Name of the directory that will receive generated output files.

-srcdir <dir>
Base directory of the files to be signed.

-srcfiles <files>
List of files in srcdir. If omitted, all files in srcdir (which is a mandatory argument in
this case) will be used. Files in the list must be separated by spaces.

11Options for the makeAll Command

-appclass <application class>
Qualified name of the application class to be executed.

javafxpackager

-6 JavaFX Deploying JavaFX Applications

-preloader <preloader class>
Qualified name of the preloader class to be executed.

-classpath <files>
List of dependent JAR file names.

-name <name>
Name of the application.

-width <width>
Width of the application.

-height <height>
Height of the application.

11Notes
■ A -v option can be used with any task command to enable verbose output.

■ When the -srcdir option is allowed in a command, it can be used more than once.
If the -srcfiles option is specified, the files named in the argument will be looked
for in the location specified in the preceding srcdir option. In case there is no
-srcdir preceding -srcfiles, the directory where the javafxpackager command is
executed will be used.

11Examples

Example 1 -createjar Command Usage
javafxpackager -createjar -appclass package.ClassName
 -srcdir classes -outdir out -outfile outjar -v

Packages the contents of the classes directory to outjar.jar, sets the application class to
package.ClassName.

Example 2 -deploy Command Usage
javafxpackager -deploy -outdir outdir -outfile outfile -width 34 -height 43
 -name AppName -appclass package.ClassName -v -srcdir compiled

Generates outfile.jnlp and the corresponding outfile.html files in outdir for application
AppName, which is started by package.ClassName and has dimensions of 34 x 43.

Example 3 -makeall command Usage
javafxpackager -makeall -appclass brickbreaker.Main -name BrickBreaker
 -width 600 -height 600

Does all the packaging work including compilation: compile, createjar, deploy.

Example 4 -signJar Command Usage
javafxpackager -signJar --outdir dist -keyStore sampleKeystore.jks

 -storePass **** -alias javafx -keypass **** -srcdir dist

Signs all of the JAR files in the dist directory, attaches a certificate with the specified
alias, keyStore and storePass, and puts the signed JAR files back into the dist directory.

12

JavaFX Ant Tasks 12-1

12JavaFX Ant Tasks

This chapter shows how to use Ant to package JavaFX application.

JavaFX Ant tasks and the JavaFX Packager tool are currently the only supported ways
to package JavaFX applications. This includes supported versions of the NetBeans
IDE, which build JavaFX applications with JavaFX Ant tasks.

This page contains the following topics:

■ Section 12.1, "Requirements to Run JavaFX Ant Tasks"

■ Section 12.2, "JavaFX Ant Elements"

■ Section 12.3, "Using JavaFX Ant Tasks"

■ Section 12.4, "Ant Script Examples"

See also the following two Ant Task Reference sections:

■ JavaFX Ant Task Reference

■ JavaFX Ant Helper Parameter Reference

12.1 Requirements to Run JavaFX Ant Tasks
The ant-javafx.jar file is required to use these tasks. It is located in the following
locations:

■ In JDK 7 Update 6 or later, it is located in jdk_home/lib

■ In a standalone JavaFX installation, it is located in javafx-sdk-home/lib

12.2 JavaFX Ant Elements
There are two categories of Ant elements for JavaFX. Each of the following elements is
described in JavaFX Ant Task Reference.

JavaFX Ant Tasks
These elements accomplish the following tasks:

■ Creating double-clickable JAR files

■ Creating an HTML page and deployment descriptor for Web Start applications or
applications embedded in a web page

■ Digitally signing an application, when necessary

■ Converting CSS files to binary format

■ Assembling self-contained application packages

Using JavaFX Ant Tasks

12-2 JavaFX Deploying JavaFX Applications

See JavaFX Ant Task Reference. For general information about packaging for JavaFX
applications, see Chapter 5, "Packaging Basics" and Chapter 6, "Self-Contained
Application Packaging."

Ant Helper Parameters
These elements are used by the JavaFX tasks. They are listed and described in JavaFX
Ant Helper Parameter Reference.

12.3 Using JavaFX Ant Tasks
To use the JavaFX Ant tasks in the your Ant script, you must load their definitions. An
example is shown in the build.xml file in Example 12–1:

Example 12–1 Load JavaFX Ant Task Definitions

<project name="JavaFXSample" default="default" basedir="."
 xmlns:fx="javafx:com.sun.javafx.tools.ant">
 <target name="default">
 <taskdef resource="com/sun/javafx/tools/ant/antlib.xml"
 uri="javafx:com.sun.javafx.tools.ant"
 classpath=".:path/to/sdk/lib/ant-javafx.jar"/>
 </target>
</project>

Notes about Example 12–1:

■ Ensure that you declare the fx: namespace, shown in bold in Example 12–1,
because short names for some of JavaFX tasks are the same as those used for some
system tasks.

■ The current directory (".") is added to the classpath to simplify customization
using drop-in resources. See Section 6.3.3, "Customization Using Drop-In
Resources."

Once JavaFX Ant task definitions are loaded, the javafx.ant.version property can
be used to check the version of Ant tasks APIs. Use the following list for version
numbers:

■ Version 1.0: shipped in the JavaFX 2.0 SDK

■ Version 1.1: shipped in the JavaFX 2.1 SDK

■ Version 1.2: shipped in the JavaFX 2.2 SDK and JDK 7 Update 6

12.4 Ant Script Examples
Example 12–2 shows an Ant script that uses the <fx:jar> task to build the JAR file and
the <fx:deploy> task to build the JNLP and HTML files for web deployment. Other
elements, such as <fx:application> and <fx:resources> are types that are described
in the <fx:application> and <fx:resources> in the Ant task reference.

Example 12–2 Typical JavaFX Ant Script

<taskdef resource="com/sun/javafx/tools/ant/antlib.xml"
 uri="javafx:com.sun.javafx.tools.ant"
 classpath="${javafx.lib.ant-javafx.jar}"/>

<fx:application id="sampleApp"
 name="Some sample app"

Ant Script Examples

JavaFX Ant Tasks 12-3

 mainClass="test.MyApplication"
 <!-- This application has a preloader class -->
 preloaderClass="testpreloader.Preloader"
 fallbackClass="test.UseMeIfNoFX"/>

<fx:resources id="appRes">
 <fx:fileset dir="dist" requiredFor="preloader"
 includes="mypreloader.jar"/>
 <fx:fileset dir="dist" includes="myapp.jar"/>
</fx:resources>

<fx:jar destfile="dist/myapp.jar">
 <!-- Define what to launch -->
 <fx:application refid="sampleApp"/>

 <!-- Define what classpath to use -->
 <fx:resources refid="appRes"/>

 <manifest>
 <attribute name="Implementation-Vendor"
 value="${application.vendor}"/>
 <attribute name="Implementation-Title"
 value="${application.title}"/>
 <attribute name="Implementation-Version" value="1.0"/>
 </manifest>

 <!-- Define what files to include -->
 <fileset dir="${build.classes.dir}"/>
</fx:jar>

<fx:signjar keyStore="${basedir}/sample.jks" destdir="dist"
 alias="javafx" storePass="****" keyPass="****">
 <fileset dir='dist/*.jar'/>
</fx:signjar>

<fx:deploy width="${applet.width}" height="${applet.height}"
 outdir="${basedir}/${dist.dir}" embedJNLP="true"
 outfile="${application.title}">

 <fx:application refId="sampleApp"/>

 <fx:resources refid="appRes"/>

 <fx:info title="Sample app: ${application.title}"
 vendor="${application.vendor}"/>

 <!-- Request elevated permissions -->
 <fx:permissions elevated="true"/>
</fx:deploy>

JavaFX Ant Task Reference

-1 JavaFX Deploying JavaFX Applications

JavaFX Ant Task Reference

The following items comprise the main JavaFX Ant tasks:

■ <fx:csstobin>

Used to convert CSS files to binary format for faster processing. See also
Section 5.4, "Stylesheet Conversion."

■ <fx:deploy>

Used to assemble the application package for redistribution. By default, the deploy
task will generate the base application package, but it can also generate
self-contained application packages if requested. See also Section 5.7, "Run the
Deploy Task or Command."

■ <fx:jar>

Used to create one or more application JAR files. See also Section 5.5, "Create the
Main Application JAR File."

■ <fx:signjar>

Used when the application needs a digital signature. See also Section 5.6, "Sign the
JAR Files."

Items are in alphabetical order.

JavaFX Ant Task Reference

-2

<fx:csstobin>

12Description
Converts a set of CSS files into binary form (BSS).

12Parent Elements
None.

12Parameters

12Parameters Accepted as Nested Elements
■ <fx:fileset>

12<fx:csstobin> Task Usage Examples

Example 1 Convert CSS Files to Binary
This example converts all CSS files in the output tree to binary form.

<fx:csstobin outdir="build/classes">
 <fileset dir="build/classes" includes="**/*.css"/>
</fx:csstobin>

Table 12–1 fx:csstobin

Attribute Description Type Required?

outdir Name of the directory in
which output files are
generated.

String Yes

<fx:deploy>

-3 JavaFX Deploying JavaFX Applications

<fx:deploy>

12Description
Generates a package for both web deployment and standalone applications. The
package includes a set of JAR files, a JNLP file, and an HTML file.

12Parent Elements
None.

12Parameters

Table 12–2 fx:deploy

Attribute Description Type Required?

embeddedHeight If present, this value will be
used for Javascript/HMTL
code instead of width/height.
Affects only embedded
deployment mode.

Use it if you want to specify a
relative dimension for an
embedded application.

See Section 5.8.4, "Publishing
an Application that Fills the
Browser Window."

String No

embeddedWidth Same description as for
embeddedHeight.

String No

embedjnlp If true, embed the JNLP
descriptor into the web page.
Reduces number of network
connections to be made on
startup and helps to improve
startup time.

Boolean No

Default is
false.

extension Treat the files named in
srcfiles as extensions. If
present, only a portion of the
deployment descriptor is
generated, and the HTML file
is not generated.

Boolean No

Default is
false.

height Height of the application
scene, for embedding
applications into a web page.

String Yes

includeDT If set to true, files related to
the Deployment Toolkit will
be copied to a web-files
subdirectory of the directory
specified in outdir. This
setting is useful for offline
development but is not
advised for production.

Boolean No

Default is
false.

JavaFX Ant Task Reference

-4

nativeBundles Values:

■ all

■ deb

■ dmg

■ exe

■ image

■ msi

■ none

■ rpm

Value all produces all
applicable self-contained
application packages. Value
none produces no
self-contained application
packages. Or use another
value to produce a specific
package installer.

String No

Default is
none.

offlineAllowed If the value is true, the cached
application can operate even if
the client system is
disconnected from the
network.

Boolean Default is
true.

outdir Name of the directory in
which output files are
generated.

String Yes

outfile Prefix of the output files,
without the extension.

String Yes

placeholderref Placeholder in the web page
where the application will be
embedded. This is expected to
be JavaScript DOM object.

String Yes

Either
reference or
ID of
placeholder
is required.

placeholderid Used with callbacks. The ID of
the placeholder in the web
page where application will be
embedded. The JavaScript
function
document.getElementById()
is used to resolve it.

String Yes

Either the
reference or
the ID of the
placeholder
is required.

Table 12–2 (Cont.) fx:deploy

Attribute Description Type Required?

<fx:deploy>

-5 JavaFX Deploying JavaFX Applications

12Parameters Accepted as Nested Elements
■ <fx:platform>

■ <fx:preferences>

■ <fx:application>

■ <fx:permissions>

■ <fx:template>

■ <fx:callbacks>

■ <fx:info>

■ <fx:resources>

12<fx:deploy> Task Usage Examples

Example 1 Minimal <fx:deploy> Task
This is a simple example of an <fx:deploy> Ant task. It generates an HTML file and
JNLP file into the web-dist directory and uses "Fish" as the prefix for the generated
files.

<fx:deploy width="600" height="400"
 outdir="web-dist" outfile="Fish"
 offlineAllowed="false">
 <fx:info title="Sample application"/>
 <fx:application refid="myapp"/>
 <fx:resources refid="myresources"/>
</fx:deploy>

updatemode Indicates the preferences for
when checks for application
updates are performed for
embedded and Web Start
applications.

A value of always means to
always check for updates
before launching the
application.

A value of background means
to launch the application while
checking for updates in the
background.

See Section 5.9.1, "Background
Update Check for the
Application."

String No

Default is
background.

width Width of the application scene,
for embedding applications
into a web page.

String Yes

Table 12–2 (Cont.) fx:deploy

Attribute Description Type Required?

JavaFX Ant Task Reference

-6

Example 2 <fx:deploy> Task for an Application with a Preloader
The following Ant task creates a redistributable package for a simple application with
a preloader. Details about the application and its resources are defined in the
<fx:application> and <resource> elements in the task.

Note that the location of the output package is defined by the outdir attribute of the
<fx:deploy> task. New files are generated using the name prefix specified in the
outfile attribute. As a result of execution of this task, the following files are created in
the web-dist folder:

■ preloader.jar

■ helloworld.jar

■ App.jnlp

■ App.html

<fx:deploy width="600" height="400"
 outdir="web-dist" outfile="App">
 <fx:info title="Sample application"/>
 <fx:application name="SampleApp"
 mainClass="testapp.MainApp"
 preloaderClass="testpreloader.Preloader">
 <fx:param name="testVariable" value="10"/>
 </fx:application>
 <fx:resources>
 <fx:fileset requiredFor="preloader" dir="dist">
 <include name="preloader.jar"/>
 </fx:fileset>
 <fx:fileset dir="dist">
 <include name="helloworld.jar"/>
 </fx:fileset>
 </fx:resources>
</fx:deploy>

Note: By default, the deployment package uses auxiliary files from
java.com to support web deployment. This is the preferred way,
because it enables the application to always use the best way to
deploy on the web. However, if you want to test your application in a
closed network then you can include these files into your application
package. To do this, pass includeDT="true" as an attribute in the
<fx:deploy> Ant task.

<fx:jar>

-7 JavaFX Deploying JavaFX Applications

<fx:jar>

12Description
Packages a JavaFX application into a JAR file. The set of files to be included is defined
by nested <fx:fileset> parameters. The <fx:jar> task also embeds a JAR manifest
into the JAR file.

In addition to creating a JAR archive, this task also:

■ Embeds the JavaFX launcher, which detects the presence of JavaFX Runtime, sets
up the environment, and executes the application.

■ Embeds the fallback AWT applet, to be used if JavaFX is not available.

■ Creates a manifest in the JAR file.

The resulting JAR file supports launching by double-clicking.

12Parent Elements
None.

12Parameters

12Parameters Accepted as Nested Elements
■ <fx:platform>

■ <fx:fileset>

■ <fx:application>

■ <fx:info>

■ <fx:resources>

12<fx:jar> Usage Examples
See Example 12–2 and the following example.

Example 1 <fx:jar> Ant Task for a Simple Application
This example shows how to use the <fx:jar> Ant task to create the main application
JAR file for a simple application without a custom preloader. The resulting JAR file
performs the following two actions:

■ Starts test.MyApplication with all resources needed on the classpath when
launched as java -jar application.jar or by double-clicking the JAR file.

■ Automatically detects the location of JavaFX Runtime and prompts the user to
install it if it is not available, or reports if the platform is not supported.

<!-- Expect definition of JavaFX ant tasks is already imported -->

<fx:jar destfile="dist/application.jar">
 <!-- Details about application -->

Table 12–3 fx:jar

Attribute Description Type Required?

destfile Path to output JAR file
(location and name)

String Yes

JavaFX Ant Task Reference

-8

 <fx:application name="Sample JavaFX application"
 mainClass="test.MyApplication"/>

 <!-- Define what auxilary resources are needed -->
 <fx:resources>
 <fx:fileset dir="dist" includes="lib/*.jar"/>
 </fx:resources>

 <!-- What to include into result jar file?
 Everything in the build tree -->
 <fileset dir="build/classes"/>

 <!-- Customize jar manifest (optional) -->
 <manifest>
 <attribute name="Implementation-Vendor" value="Samples Team"/>
 <attribute name="Implementation-Version" value="1.0"/>
 </manifest>
</fx:jar>

<fx:signjar>

-9 JavaFX Deploying JavaFX Applications

<fx:signjar>

12Description
Digitally signs an application JAR file with a certificate.

Signs the JAR file as BLOB. In other words, instead of every entry being signed
separately, the JAR file is signed as a single binary object.

This is a new signing method in JavaFX. For traditional signing, the standard Ant
signjar task should be used.

12Parent Elements
None.

12Parameters

*Note that:

<fx:signjar jar="path/to/jar/folder/jarname" .../>

is simply a convenience syntax for the following:

<fx:signjar ...>
 <fileset dir="path/to/jar/folder" file="jarname"/>
</fx:signjar>

12Parameters Accepted as Nested Elements
■ <fx:fileset>

Table 12–4 fx:signjar

Attribute Description Type Required?

alias The alias for the key String Yes

destdir Location of output file String Yes

keypass Password for the private key String Yes

keystore Keystore file name File Yes

jar The JAR file to sign* String No

Either this
attribute or a
nested
<fx:fileset>
element is
required.

storepass Password to check integrity of
the keystore or unlock the
keystore

String Yes

storetype Keystore type String No

Default is jks.

verbose Enable verbose output. Boolean No

Default is
false.

JavaFX Ant Task Reference

-10

12<fx:signjar> Usage Examples

Example 1 Sign JAR Files
The following snippet of Ant code shows how to sign JAR files using the new sign as
BLOB technique.

<fx:signjar destdir="dist"
 keyStore="sampleKeystore.jks" storePass="****"
 alias="javafx" keyPass="****">
 <fileset dir='dist/*.jar'/>
</fx:signjar>

JavaFX Ant Helper Parameter Reference

-11 JavaFX Deploying JavaFX Applications

JavaFX Ant Helper Parameter Reference

Helper parameters are types that are used by the JavaFX tasks described in JavaFX Ant
Task Reference. This reference page contains the following elements:

■ <fx:application>

■ <fx:argument>

■ <fx:callback>

■ <fx:callbacks>

■ <fx:fileset>

■ <fx:htmlParam>

■ <fx:icon>

■ <fx:info>

■ <fx:jvmarg>

■ <fx:param>

■ <fx:permissions>

■ <fx:platform>

■ <fx:preferences>

■ <fx:property>

■ <fx:resources>

■ <fx:splash>

■ <fx:template>

Items are in alphabetical order.

JavaFX Ant Helper Parameter Reference

-12

<fx:application>

12Description
Basic application descriptor. It defines the main components and default set of
parameters of the application.

12Parent Elements
■ <fx:deploy>

12Parameters

Table 12–5 fx:application

Attribute Description Type Required?

name -- String --

fallbackClass AWT-based applet to be used
if application fails to launch
due to missing FX runtime
and installation of JavaFX is
not possible.

String No

id Application ID that can be
used to get a JavaScript
reference to the application in
HTML. The same ID can be
used to refer to an application
object in the Ant task (using
refid).

String No

mainClass Qualified name of the main
application class, which
should extend
javafx.application.Applica
tion

String Yes

name Short name of the application.
For self-contained
applications, also defines the
name of the output package.

String No

Default
value is
derived
from the
main
application
class.

preloaderClass Qualified name of the
preloader class, which should
extend
javafx.application.Preload
er

String No

Default is
the
preloader
that is
shipped
with the
JavaFX
Runtime.

refid* -- Reference No

<fx:application>

-13 JavaFX Deploying JavaFX Applications

* If refid is used, then none of the other parameters can be specified.

12Parameters Accepted as Nested Elements
■ <fx:argument>

■ <fx:htmlParam>

■ <fx:param>

12<fx:application> Usage Examples
See Example 12–2.

toolkit Indicates your preference for
the application to use a
specific UI toolkit. Possible
values:

■ fx

■ swing

String No

Default
value is fx.

Table 12–5 (Cont.) fx:application

Attribute Description Type Required?

JavaFX Ant Helper Parameter Reference

-14

<fx:argument>

12Description
An unnamed argument that is inserted in the <fx:argument> element in the
deployment descriptor. Multiple arguments are added to the list of arguments in the
same order as they are listed in the Ant script.

12Parent Elements
■ <fx:application>

12Parameters
None.

12Parameters Accepted as Nested Elements
None.

12<fx:argument> Usage Examples

Example 1 Passing Various Unnamed Arguments
<fx:application name="Sample app"
 mainClass="test.MyApplication">
 <!-- unnamed arguments -->
 <fx:argument>Something</fx:argument>
 <!-- value with spaces that are generated at build time -->
 <fx:argument>JRE version: ${java.version}</fx:argument>
 <!-- example of value using a special character -->
 <fx:argument>true & false</fx:argument>
</fx:application>

<fx:callback>

-15 JavaFX Deploying JavaFX Applications

<fx:callback>

12Description
Defines a JavaScript callback that can be used to customize user experience.

12Parent Elements
■ <fx:callbacks>

12Parameters

* If refid is used, then none of the other parameters can be specified.

12Parameters Accepted as Nested Elements
<TEXT>

12<fx:callback> Usage Examples

Example 1 A Callback Calling a JavaScript Function
In this example, a callback is used to create an HTML splash screen for an application
embedded in a web page. When the event onGetSplash is triggered, the JavaScript
function customGetSplash is executed.

<fx:callbacks>
 <fx:callback name="onGetSplash">customGetSplash</fx:callback>
</fx:callbacks>

Example 2 A Callback with JavaScript Inserted
In this example, the callback is defined with JavaScript code in the <fx:callback>
element itself.

<fx:callbacks>
 <fx:callback name="onLoadHandler">
 function () {perfLog(0, "onLoad called");}
 </fx:callback>
</fx:callbacks>

Example 3 Multiple Callbacks
<fx:callbacks>
 <fx:callback name="onJavascriptReady">callAppFunction</fx:callback>
 <fx:callback name="onGetSplash">function(id) {}</fx:callback>
 </fx:callbacks>

Table 12–6 fx:callback

Attribute Description Type Required?

name Name of the event for
callback.

String Yes

refid* -- Reference No

JavaFX Ant Helper Parameter Reference

-16

<fx:callbacks>

12Description
Collection of JavaScript callbacks to be used to customize the user experience.

12Parent Elements
■ <fx:deploy>

12Parameters

* If refid is used, then none of the other parameters can be specified.

12Parameters Accepted as Nested Elements
■ <fx:callback>

12<fx:callbacks> Usage Examples
See the examples for <fx:callback>.

Table 12–7 fx:callbacks

Attribute Description Type Required?

refid* -- Reference No

<fx:fileset>

-17 JavaFX Deploying JavaFX Applications

<fx:fileset>

12Description
Extension of the standard Ant FileSet type, which provides the means to specify
optional meta information on a selected set of files. This includes:

■ Type of resource (see the type attribute)

■ Operating system and architecture for which this resource is applicable

■ When this resource is needed, which helps to optimize loading order

Depending on type, the resource might not be used by the enclosing task. See
Section 5.7.2, "Application Resources" for details.

A fileset of type "jar" is expected to contain a set of JAR files to be added to the
classpath.

Resource of type "native" is expected to be a JAR file with a set of native libraries. In
most of cases, it makes sense to set the operating system and architecture for this
resource too.

Resources of type "jnlp" are expected to contain JNLP files defining external JNLP
extensions.

Filesets of type "license" can contain arbitrary files, but additional restrictions can be
applied when they are actually used (for example, on Mac it has to be a plain text file,
and on Windows it needs to be RTF).

Filesets of type "data" can contain arbitrary files.

12Parent Elements
■ <fx:jar>

■ <fx:resources>

12Parameters

Table 12–8 fx:fileset

Attribute Description Type Required?

arch

(used only when
<fx:fileset> is
nested under
<fx:resources>

Specifies the architecture for
which these resources should
be considered.

String No

Default is
any.

excludes -- String --

includes -- String --

os

(used only when
<fx:fileset> is
nested under
<fx:resources>

Specifies the operating
systems for which these
resources should be
considered.

String No

Default is
any.

JavaFX Ant Helper Parameter Reference

-18

* If refid is used, then none of the other parameters can be specified.

12Parameters Accepted as Nested Elements
None (except standard Ant elements).

requiredFor

(used only when
<fx:fileset> is
nested under
<fx:resources>

Defines when resources are
needed (affects loading
priority). Supported values
are:

■ preloader - resources are
needed to launch the
preloader (first thing to be
executed)

■ startup - resources are
needed to launch the
application.

■ runtime - resources are
not critical to launch the
application but may be
needed later.

String No

Default is
startup.

type

(used only when
<fx:fileset> is
nested under
<fx:resources>

Type of the resources in the
set. Supported values are:

■ auto for autodetect

■ data

■ jar

■ jnlp

■ license

■ native for JAR files
containing native libraries

■ icon

String No

Default is to
guess based
on
extension.

Table 12–8 (Cont.) fx:fileset

Attribute Description Type Required?

<fx:htmlParam>

-19 JavaFX Deploying JavaFX Applications

<fx:htmlParam>

12Description
Parameter to be passed to the embedded or Web Start application from the HTML
page. The value of the parameter can be calculated at runtime using JavaScript.

12Parent Elements
■ <fx:application>

12Parameters

12Parameters Accepted as Nested Elements
None

12<fx:htmlParam> Task Usage Examples

Example 1 Various Parameters Passed from HTML Page
<fx:application name="Sample app"
 mainClass="test.MyApplication">
 <!-- Parameters passed from HTML page. Only applicable
 to embedded [nd Web Start applications and unused when
 run in a standalone and self-contained context. -->
 <!-- Parameter with name 'fixedParam', whose value is string
 '(new Date()).getTime()' -->
 <htmlParam name="fixedParam"
 value="(new Date()).getTime()"/>
 <!-- Parameter with name 'dynamicParam', whose value will be
 the timestamp of the moment when the application is added
 to the web page (value will be assigned the result
 of execution of JavaScript code) -->
 <htmlParam name="dynamicParam" escape="false"

Table 12–9 fx:htmlParam

Attribute Description Type Required?

escape Defines how to interpret the
value for the values that are
passed—as string literal (true)
or JavaScript variable (false).

Boolean No

Default is
true,
meaning
value is
treated as
string literal.

name Name of the parameter to be
passed to the embedded or
Web Start application from the
HTML page.

String Yes

value Value of the parameter. Could
also be the name of a
JavaScript variable whose
value is expected to be passed
as parameter.

For JavaScript variables,
ensure escape is set to false.

String Yes

JavaFX Ant Helper Parameter Reference

-20

 value="(new Date()).getTime()"/>
</fx:application>

<fx:icon>

-21 JavaFX Deploying JavaFX Applications

<fx:icon>

12Description
Passes an icon to the <fx:deploy> task, other than a splash screen image.

Note that in JavaFX 2.2, <fx:icon> is not used for self-contained applications. For
details on how to customize icon for self-contained application, see Section 6.3.3,
"Customization Using Drop-In Resources."

12Parent Elements
■ <fx:info>

12Parameters

12Parameters Accepted as Nested Elements
None.

12<fx:icon> Usage Examples

Example 1 Use of <fx:icon>
<fx:info title="Sample application">
 <!-- icon to be used by default for anything but splash -->
 <fx:icon href="shortcut.ico" kind="shortcut"
 width="32" height="32" depth="8"/>
</fx:info>

Table 12–10 fx:icon

Attribute Description Type Required?

depth Image depth String No

href Location of image String Yes

height Image height String No

kind Icon type. Supported values
are:

■ default

■ disabled

■ rollover

■ selected

■ shortcut

String No

Default
value is
default.

width Image width String No

JavaFX Ant Helper Parameter Reference

-22

<fx:info>

12Description
Application description for users. These details are shown in the system dialog boxes,
if they need to be shown.

12Parent Elements
■ <fx:deploy>

12Parameters

12Parameters Accepted as Nested Elements
■ <fx:icon>

Table 12–11 fx:info

Attribute Description Type Required?

category Application category. Creates
a link to an application in a
specified category. Semantics
of the value depends on the
format of the package.

For example:

■ For a self-contained
application on Linux, it is
used to define the
application menu
category where the
application is listed.

■ On Mac: Creates key in
info.plist
<key>LSApplicationCate
goryType</key>
<string>unknown</strin
g>

■ On Windows creates a
group, for instance, if you
specify "My Music" it will
create your app in
C:\ProgramData\Microso
ft\Windows\Start
Menu\Programs\My
Music

String No

copyright Short copyright statement String No

description A short statement describing
the application.

String No

license License type (for example,
GPL). As of JavaFX 2.2, this
attribute is used only for
Linux bundles.

String No

title Title of the application String Yes

vendor Provider of the application String Yes

<fx:info>

-23 JavaFX Deploying JavaFX Applications

■ <fx:splash>

12<fx:info> Usage Examples

Example 1 <fx:info> Parameter Used in <fx:deploy> Task
<fx:info vendor="Uncle Joe" description="Test program"/>

JavaFX Ant Helper Parameter Reference

-24

<fx:jvmarg>

12Description
The JVM argument to be set in the JVM, where the application is executed. Can be
used multiple times. Note that you do not need to aditionally escape values if they
contain space characters.

12Parent Elements
■ <fx:platform>

12Parameters

12Parameters Accepted as Nested Elements
None.

12<fx:jvmarg> Usage Examples
See <fx:platform> Parameter to Specify JVM Options.

Table 12–12 fx:jvmarg

Attribute Description Type Required?

value Value of JVM argument. String Yes

<fx:jvmuserarg>

-25 JavaFX Deploying JavaFX Applications

<fx:jvmuserarg>

12Description
The user overridable JVM argument to be set in the JVM, where the application is
executed. Can be used multiple times. Note that you do not need to aditionally escape
values if they contain space characters.

12Parent Elements
■ <fx:platform>

12Parameters

12Parameters Accepted as Nested Elements
None.

12<fx:jvmuserarg> Usage Examples
See <fx:platform> Parameter to Specify JVM Options.

Table 12–13 fx:jvmuserarg

Attribute Description Type Required?

value Value of JVM argument. String Yes

JavaFX Ant Helper Parameter Reference

-26

<fx:param>

12Description
Parameter to be passed to the application (embedded into application package).

 This tag no impact on standalone applications, including self-contained applications.

12Parent Elements
■ <fx:application>

12Parameters

12Parameters Accepted as Nested Elements
None.

12<fx:param> Task Usage Examples

Example 1 Passing Various Types of Parameters
<fx:application name="Sample app"
 mainClass="test.MyApplication">
 <!-- parameter with name 'simpleParam' and fixed string value-->
 <param name="simpleParam" value="something"/>
 <!-- parameter with name 'complexParam' with value generated
 at build time -->
 <param name="complexParam" value="Compiled by ${java.version}"/>
 <!-- parameter with name 'novalueParam' and no value -->
 <param name="novalueParam"/>
</fx:application>

Table 12–14 fx:param

Attribute Description Type Required?

name Name of parameter String Yes

value Value of parameter String Yes

<fx:permissions>

-27 JavaFX Deploying JavaFX Applications

<fx:permissions>

12Description
Definition of security permissions needed by application. By default, the application
runs in the sandbox. Requesting elevated permissions requires signing the application
JAR files.

This option has no impact on standalone applications, including self-contained
applications.

12Parent Elements
■ <fx:deploy>

12Parameters

12Parameters Accepted as Nested Elements
None.

12<fx:permissions> Usage Examples

Example 1 Embed Signing Certificate into Deployment Descriptor
See Section 5.9.3, "Embed Signing Certificate into Deployment Descriptor."

<fx:permissions elevated="true" cacheCertificates="true"/>

Table 12–15 fx:permissions

Attribute Description Type Required?

cachecertificates If set to true, then the
certificate used to sign the JAR
files are cached in the
deployment descriptor.
Caching enables the user to
accept elevated permissions
earlier in the startup process,
which improves startup time.

This setting has no effect if the
application is run in the
sandbox.

Boolean No

Default is
false.

elevated If set to false, the application
runs in the sandbox.

Boolean No

Default is
false.

JavaFX Ant Helper Parameter Reference

-28

<fx:platform>

12Description
Defines application platform requirements.

12Parent Elements
■ <fx:deploy>

■ <fx:jar>

12Parameters

* If refid is used, then none of the other parameters can be specified.

12Parameters Accepted as Nested Elements
■ <fx:jvmarg>

■ <fx:property>

12<fx:platform> Usage Examples

Example 1 <fx:platform> Parameter to Specify Version
In this example, the application needs JavaFX Runtime version 2.1 or later and JRE
version 7.0 or later.

<fx:platform javafx="2.1+" j2se="7.0"/>

Example 2 <fx:platform> Parameter to Specify JVM Options
In this example, the application needs JavaFX Runtime version 2.1 or later and needs
to run in a JVM launched with "-Xmx400 -verbose:jni -Dpurpose="sample value".

Table 12–16 fx:platform

Attribute Description Type Required?

refid* -- Reference No

javafx Minimum version of JavaFX
required by the application.

String No

Default
value
matches the
release of
the JavaFX
SDK; for
example, if
you use the
JavaFX 2.2
SDK, the
default
value is ’2.2’.

j2se Minimum version of JRE
required by the application.

String No

Default is
any JRE
supporting
JavaFX.

<fx:platform>

-29 JavaFX Deploying JavaFX Applications

<fx:platform javafx="2.1+">
 <fx:jvmarg value="-Xmx400m"/>
 <fx:jvmarg value="-verbose:jni"/>
 <property name="purpose" value="sample value"/>
</fx:platform>

Example 3 <fx:platform> Parameter to Specify User Overridable JVM Options
In this example, -Xmx768m is passed as a default value for heap size. The user can
override this value in a user configuration file.

 <fx:platform>
 <fx:jvmuserarg name="-Xmx" value="768m" />
 </fx:platform>

JavaFX Ant Helper Parameter Reference

-30

<fx:preferences>

12Description
Deployment preferences for the application. Preferences can be expressed but may not
necessarily be satisfied, for example in the following cases:

■ The packager may ignore a preference if it is not supported for a particular
execution mode.

■ Java Runtime may ignore it if it is not supported.

■ The user may reject a request, for example if he is prompted whether a desktop
shortcut can be created.

12Parent Elements
■ <fx:deploy>

12Parameters

* If refid is used, then none of the other parameters can be specified.

12Parameters Accepted as Nested Elements
None.

Table 12–17 fx:preferences

Attribute Description Type Required?

install Install true means that the
application is installed for the
system and false means the
application is installed for the
current user only.

For self-contained
applications, true indicates a
developer preference that the
application package should
perform a system-wide
installation. If false, then a
package is generated for
per-user installation.

This value is ignored if the
packager does not support
different types of install
packages for the requested
package format.

Boolean No

For Web Start
and
embeddedapp
lications,
default is
false.

For
self-contained
applications,
default value
is different for
various
package
formats.

menu If true, then the application
requests to add an entry to the
system application menu.

Boolean No

Default is
false.

refid* -- Reference No

shortcut If true then application
requests a desktop shortcut to
be created.

Boolean No

Default is
false.

<fx:preferences>

-31 JavaFX Deploying JavaFX Applications

12<fx:preferences> Usage Examples

Example 1 <fx:preferences> Parameter to Add a Desktop Shortcut
This example shows a request to create a desktop shortcut.

<fx:preferences id="p1" shortcut="true"/>

Example 2 <fx:preferences> Parameter to Mark as Installed
This example does the following:

■ It requests creation of a web deployment descriptor that will add the application
to the Applications Menu and mark it as installed (in other words, the application
will be listed in Add/Remove programs.)

■ If self-contained bundles are created, then they will be installed system-wide and
will create an application entry in the Applications menu.

<fx:preferences shortcut="false" install="true" menu="true"/>

Example 3 Using a refid to the <fx:preferences> Parameter
This example uses a reference to the <fx:preferences> parameter in <fx:preferences>
Parameter to Add a Desktop Shortcut to create the shortcut.

<fx:resource refid="p1"/>

JavaFX Ant Helper Parameter Reference

-32

<fx:property>

12Description
Optional element and can be used multiple times. Java property to be set in the JVM
where the application is executed.

12Parent Elements
■ <fx:platform>

12Parameters

12Parameters Accepted as Nested Elements
None.

Table 12–18 fx:property

Attribute Description Type Required?

name Name of property to be set. String Yes

value Value of property to be set. String Yes

<fx:resources>

-33 JavaFX Deploying JavaFX Applications

<fx:resources>

12Description
The collection of resources used by the application. Defined as a set of JavaFX FileSet
filters. Could be reused using id or refid.

12Parent Elements
■ <fx:deploy>

■ <fx:jar>

12Parameters

* If refid is used, then none of the other parameters can be specified.

12Parameters Accepted as Nested Elements
■ <fx:fileset>

12<fx:resources> Usage Examples
See also examples in Chapter 5, "Packaging Basics" and Chapter 6, "Self-Contained
Application Packaging."

Example 1 <fx:resources> Parameters Used with id and refid Attributes
In this example, both <fx:resources> elements define the collection, consisting of s.jar
in the dist directory. The first <fx:resources> element uses an id attribute, and the
second <fx:resources> element refers to the first with the refid attribute.

<fx:resources id="aaa">
 <fx:fileset dir="dist" includes="s.jar"/>
</fx:resources>
<fx:resources refid="aaa"/>

Example 2 Using <fx:resources> for Extension Descriptors
If you mix signed and unsigned JAR files, use an additional <fx:deploy> Ant task to
generate an extension descriptor for each JAR file, and refer to the extension
descriptors by treating them as resources in the main file, as shown in this example.

<!-- Prepare extension -->
<fx:deploy extension="true"
 outdir="dist" outfile="other">
 ...
<fx:deploy>

<!-- Use it in the main descriptor -->

Table 12–19 fx:resources

Attribute Description Type Required?

id ID that can be referred from
another element with a refid
attribute.

String No

refid* -- Reference No

JavaFX Ant Helper Parameter Reference

-34

<fx:deploy outdir="web-dist" ...>
 ...
 <fx:resources>
 <fx:fileset dir="dist" includes="other.jnlp"/>
 ...
 </fx:resources>
<fx:deploy>

<fx:splash>

-35 JavaFX Deploying JavaFX Applications

<fx:splash>

12Description
Passes the location of the image to be used as a splash screen. Currently custom splash
images can only be passed to Web Start applications, and use of this parameter has no
impact on standalone applications or applications embedded into web pages.

12Parent Elements
■ <fx:info>

12Parameters

12Parameters Accepted as Nested Elements
None.

12<fx:splash> Usage Examples

Example 1 Use of <fx:splash>
In the following example, splash images of various types are passed.

<fx:info title="Sample application">
 <fx:splash href="http://my.site/custom.gif"/>
</fx:info>

Table 12–20 fx:splash

Attribute Description Type Required?

href Location of image String Yes

mode Deployment mode. Supported
values are:

■ any (but currently only
functional in Web Start
mode)

■ webstart

String No

Default
value is any.

JavaFX Ant Helper Parameter Reference

-36

<fx:template>

12Description
Template to preprocess. A template is an HTML file that contains markers to be
replaced with the JavaScript or HTML snippets that are required for web deployment.
Using templates enables you to deploy your application directly into your own web
pages. This simplifies the development process, especially when the application is
tightly integrated with the page, for example when the web page uses JavaScript to
communicate to the application.

Template markers have one of the following forms:

■ #XXX#

■ #XXX(id)#

id is the identifier of an application and XXX is one of following:

■ DT.SCRIPT.URL

Location of dtjava.js in the Deployment Toolkit. By default, the location is

http://java.com/js/dtjava.js

■ DT.SCRIPT.CODE

Script element to include dtjava.js of the Deployment Toolkit.

■ DT.EMBED.CODE.DYNAMIC

Code to embed the application into a given placeholder. It is expected that the
code will be wrapped in the function() method.

■ DT.EMBED.CODE.ONLOAD

All the code needed to embed the application into a web page using the onload
hook (except inclusion of dtjava.js).

■ DT.LAUNCH.CODE

Code needed to launch the application. It is expected that the code will be
wrapped in the function() method.

A page with different applications can be processed multiple times, one per
application. To avoid confusion, markers must use application IDs with an
alphanumeric string and no spaces.

If the input and output files are the same then the template is processed in place.

12Parent Elements
■ <fx:deploy>

12Parameters

Table 12–21 fx:template

Attribute Description Type Required?

file Input template file. File Yes

<fx:template>

-37 JavaFX Deploying JavaFX Applications

12Parameters Accepted as Nested Elements
None

12<fx:template> Usage Examples

Example 1 <fx:template> Parameter Used in <fx:deploy> Task
This example shows a <fx:template> parameter in which both input and output files
are specified.

<fx:template file="App_template.html" tofile="App.html"/>

Example 2 <fx:template> Parameter in Context
<fx:deploy placeholderId="ZZZ"
 width="600" height="400"
 outdir="dist-web" outfile="App1">
 <fx:application id="myApp" name="Demo"
 mainClass="fish.FishApplication"/>
 <fx:template file="src/templates/EmbedApp_template.html"
 tofile="dist-web/EmbedApp.html"/>
 <fx:resources>
 <fx:fileset requiredFor="startup" dir="dist" includes="*.jar"/>
 </fx:resources>
</fx:deploy>

tofile Output file (after
preprocessing).

File No

Default is
the same as
the input
file.

Table 12–21 (Cont.) fx:template

Attribute Description Type Required?

14

Troubleshooting 13-1

13Troubleshooting

This page contains some troubleshooting practices to follow if you encounter any
problems deploying your JavaFX applications. It contains the following sections.

■ Section 13.1, "Running Applications"

■ Section 13.2, "Development Process Issues"

■ Section 13.3, "Runtime Issues"

13.1 Running Applications
Use the following checklist if you have trouble running applications after you package
them.

■ Verify that you have a supported environment. See the System Requirements
document for your JavaFX release.

■ Check the release notes for known issues.

If the tips below do not help to resolve the issue, then:

■ Ask experts in the JavaFX Forum.

■ File a bug to JIRA.

Describe in detail what you are trying to do, and what exactly does not work as
expected. If possible, share a test case to reproduce the problem. Be sure to include
information about your environment and your Java and JavaFX versions.

13.2 Development Process Issues
■ Verify that you use the latest version of JavaFX tools.

■ javafxpackager command fails:

– Ensure that the JDK bin folder, where javafxpackager utility resides, is on the
PATH.

– Ensure JAVA_HOME is set.

– On Mac, the problem could be due to simultaneous use of Apple's JDK 6 and
Oracle's JDK 7. To work around them, set JAVA_HOME and add it to the path.

* export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_
06.jdk/Contents/Home

* export PATH=$JAVA_HOME/bin:$PATH

■ Packaging self-contained applications:

Runtime Issues

13-2 JavaFX Deploying JavaFX Applications

– If the package format you are trying to build depends on third-party tools,
then make sure they are available on the PATH.

– Set verbose="true" in the <fx:deploy> task or pass "-v" to javafxpackager
to get verbose build output.

– Set the environment variable JAVAFX_ANT_DEBUG to true to get additional
details and keep intermediate build artifacts.

– If drop-in custom resources are not used, then verify that the JavaFX Ant task
definitions are loaded with the correct classpath, typically with "." at the
beginning. See Using JavaFX Ant Tasks

■ Packaging self-contained applications on remote systems:

– If packaging tools are executed on remote system (e.g. Jenkins, Hudson, and
other build systems) to produce the artifact, then it is important to have same
user logged on a desktop system. If using the same user login is not possible,
you can create a custom .dmg bundle as follows:

1. Create a .dmg image from manual build

2. Convert the .dmg file to a read-write form

3. Remove the content of you application folder, but keep the top level app
directory

4. Add the dmg to the build

5. At the build time, mount it, copy .app contents to the image, then convert
.dmg to a compressed read only form

■ NetBeans issues:

– Ensure you are using NetBeans 7.2 or later

– If a Clean and Build fails to build sample application or double-clicking some
or all of the files results in an error, check that the JavaFX platform is enabled
properly in NetBeans. See "Setting Up NetBeans IDE With JavaFX".

– To get more insight into the build process, enable verbose output by clicking
the Tools icon in the build output window.

– To build self-contained applications, ensure that the required third-party tools
are added to the PATH before you start NetBeans. See Section 6.4, "Installable
Packages."

13.3 Runtime Issues
Basic checklist:

■ Verify that you have the latest version Java installed (Java 7 update 6 or later).

■ Before trying to troubleshoot your application, ensure the JavaFX samples run
properly.

1. Download the JavaFX samples zip file.

2. Double-click the JAR file, the JNLP file, and the HTML file for at least one
sample to ensure it runs correctly.

■ Validate that the java process is using your Java Runtime installed location.

Runtime Issues

Troubleshooting 13-3

■ If you have a 64-bit system, you may be using either a 32 -or 64-bit version of Java.
The best way to avoid problems caused by unexpected use of an older version of
Java Runtime is to keep both 32- and 64-bit versions of Java up to date.

13.3.1 Standalone Execution
■ Run the same application from the command line as

java -jar MyApp.jar

This way you can see actual exceptions and trace messages (if any).

■ Pass "-Djavafx.verbose=true" to enable verbose output from the embedded
launcher.

■ If your application starts slow, then it could be due to network configuration. Try
disabling the autoproxy configuration by passing
"-Djavafx.autoproxy.disable=true" to see if it helps.

■ Do not forget that it is just a Java application, and you can use your favorite
techniques to troubleshoot it.

13.3.2 Self-Contained Applications
■ Run the native launcher from the console window to see trace messages and so on.

– On Mac, the launcher is MyApp.app/Contents/MacOS/JavaAppLauncher

– On Windows, you must pass the "/Debug" option to the launcher to open a
window to see the trace messages.

■ You can pass debug options to your application with <fx:jvmarg> or
<fx:property> at package time. Examples:

– To list all classes loaded, add the following to your <fx:deploy> task:

<fx:jvmarg value="-verbose:class"/>

– To debug:

<fx:jvmarg value="-agentlib:jdwp=transport=
 dt_socket,address=4000,server=y,suspend=y"/>

This instructs the agent to suspend after the JVM is initialized and wait for a
debugger to connect on port 4000. Consult this guide for a full description of
invocation options.

– To profile in Netbeans 7.2 on Mac OS X:

<fx:jvmarg value="-agentpath:/Applications/NetBeans/NetBeans
 7.2.app/Contents/Resources/NetBeans/profiler/lib/deployed/jdk16/
 mac/libprofilerinterface.jnilib=/Applications/NetBeans/NetBeans
 7.2.app/Contents/Resources/NetBeans/profiler/lib,5140"/>

This will stop the application after it is loaded until the profiler is attached.
Consult the documentation on your profiler for exact values to pass.

■ Review the tips for troubleshooting standalone applications.

■ Mac OS X: if other users cannot run your application, then ensure it is signed See
Section 6.3.5.1, "Mac OS X.")

– To validate signing, use

codesign -v -d --verbose=4 MyApp.app

Runtime Issues

13-4 JavaFX Deploying JavaFX Applications

13.3.3 Web Start
■ If you rebuilt the application but do not see changes in the runtime, exit the

application and clear the Java cache, as follows:

1. Run javaws -viewer from the command line, or open Java Control Panel
manually (for example, by choosing Java in Windows Control Panel).

2. In Java Control Panel, in the Temporary Internet Files section, click Settings,
then click Delete Files.

3. Select Cached Applications and Applets and click OK.

■ If the application fails with an error, then check the process list to see what java
process is actually used to run it. Ensure it comes from correct place.

■ Consult the Java SE 7 Desktop Troubleshooting Guide for tips on how to
troubleshoot generic Java Web Start problems.

13.3.4 Applications Embedded in the Browser
■ Validate your version of Java at http://java.com.

■ Check the JavaScript error console for errors.

■ Try a different browser. See if the problem is common to the system or is
browser-specific.

Remember that not all browsers are supported. For example, Chrome on Mac OS
X is not supported.

■ Find out the architecture of the browser you are using. Most of the browsers are
32-bit even if you are using a 64-bit platform.

Install/upgrade 32-bit Java and JavaFX runtimes to resolve the problem.

■ Review the browser's list of installed plugins.

– There should be one and only Java Plugin on the list. For JavaFX 2.2 and Java 7
update 6 the correct plugin is version 10.6.*.

– On Windows, there should be one and only one Deployment Toolkit plugin,
and it should be the same or a higher version than that of the Java Plugin.

■ Safari 6 on Mac if the file:// protocol is used:

– According to default Safari 6 policy, "no file:// is allowed to open any local
resources that might run code". This means that JavaFX applications will not
load and appear to get stuck on the spinning wheel.

– Run a local web server or disable local file restrictions. To do this, enable the
Develop menu, then check the Disable Local File Restrictions menu item.

■ See the Java SE 7 Desktop Troubleshooting Guide for tips on how to troubleshoot
generic Java plug-in problems.

13.3.5 Disabling the Autoproxy Configuration in the Code
By default, JavaFX application proxy settings are taken from the current browser if the
application is embedded into a web page, or system proxy settings are used.
Sometimes SOCKS proxy settings, specified in the System.setProxy are ignored.

Runtime Issues

Troubleshooting 13-5

If you need to disable the automatic proxy configuration in the application, specify a
JavaFX-Feature-Proxy manifest entry in the fx:jar with the None as a value as in the
following example.

<manifest>
 <attribute name="JavaFX-Feature-Proxy" value="None"/>
 </manifest>
Once you enter the JavaFX-Feature-Proxy manifest, the network stack will not be
initialized prior to application code gets executed and you can set socks properties in
the code.

Runtime Issues

13-6 JavaFX Deploying JavaFX Applications

	Contents
	Part I About This Guide
	1 What's New
	2 Getting Started
	2.1 Deployment Quick Start
	2.2 Write Once, Deploy Anywhere
	2.3 Application Package
	2.3.1 Self-Contained Applications

	2.4 Packaging Tools
	2.4.1 NetBeans IDE
	2.4.2 Ant Tasks
	2.4.3 JavaFX Packager Command-Line Tool

	2.5 User Experience
	2.6 Getting the Most Out of the Execution Environment
	2.7 Deploying Swing and SWT Applications with Embedded JavaFX Content

	3 Application Execution Modes
	3.1 Execution Modes
	3.2 Understanding Feature Differences
	3.2.1 Preloader Support
	3.2.2 Desktop Integration via Shortcut
	3.2.3 Built-In Proxy Support
	3.2.4 Run in Sandbox Unless Signed and Trusted
	3.2.5 Auto-Updates
	3.2.6 Deployment Toolkit
	3.2.7 Communicate to the Host Web Page
	3.2.8 Managing Platform Dependencies

	3.3 Coding Tips
	3.3.1 Detecting Embedded Applications
	3.3.2 Accessing Application Parameters
	3.3.3 Consider the Use of Host Services
	3.3.4 Loading Resources
	3.3.5 Resize-Friendly Applications

	4 Application Startup
	4.1 Application Startup Process, Experience, and Customization
	4.1.1 Startup Process
	4.1.1.1 Visual Feedback During Phase One Initialization
	4.1.1.2 Visual Feedback After Initialization

	4.1.2 Default User Experience
	4.1.3 Customization Options

	4.2 Helping Users Start the Application
	4.2.1 No JavaFX Runtime
	4.2.1.1 Standalone Launch
	4.2.1.2 Launch with the Deployment Toolkit
	4.2.1.3 Launch a Remote Application without the Deployment Toolkit

	4.2.2 Runtime Errors

	5 Packaging Basics
	5.1 JavaFX Packaging Overview
	5.2 Base Application Package
	5.3 Overview of Packaging Tasks
	5.3.1 JavaFX Packaging Tools

	5.4 Stylesheet Conversion
	5.5 Create the Main Application JAR File
	5.6 Sign the JAR Files
	5.7 Run the Deploy Task or Command
	5.7.1 Configure the Deployment Descriptor
	5.7.2 Application Resources
	5.7.3 Package Custom JavaScript Actions
	5.7.4 Web Page Templates

	5.8 Packaging Cookbook
	5.8.1 Passing Parameters to the Application
	5.8.2 Customizing JVM Setup
	5.8.2.1 Specifying User JVM Arguments
	5.8.2.2 Macro Expansion of Application Directory for jvmarg and jvmuserarg

	5.8.3 Packaging Complex Applications
	5.8.4 Publishing an Application that Fills the Browser Window

	5.9 Performance Tuning for Web Deployment
	5.9.1 Background Update Check for the Application
	5.9.2 Embed the Deployment Descriptor into the Web Page
	5.9.3 Embed Signing Certificate into Deployment Descriptor
	5.9.4 Use New JavaFX Signing Method (Signed Applications)

	6 Self-Contained Application Packaging
	6.1 Introduction
	6.2 Pros and Cons of Self-Contained Application Packages
	6.3 Basics
	6.3.1 Self-Contained Application Structure
	6.3.2 Basic Build
	6.3.3 Customization Using Drop-In Resources
	6.3.3.1 Preparing Custom Resources
	6.3.3.2 Substituting a Built-In Resource

	6.3.4 Customization Options
	6.3.5 Platform-Specific Customization for Basic Packages
	6.3.5.1 Mac OS X

	6.4 Installable Packages
	6.4.1 EXE Package
	6.4.2 MSI Package
	6.4.3 DMG Package
	6.4.4 Linux Packages

	6.5 Working Through a Deployment Scenario

	7 Deployment in the Browser
	7.1 API Overview
	7.1.1 Application Descriptor (dtjava.App)
	7.1.2 Platform (dtjava.Platform)

	7.2 Callbacks
	7.2.1 onDeployError
	7.2.2 onGetNoPluginMessage
	7.2.3 onGetSplash
	7.2.4 onInstallFinished
	7.2.5 onInstallNeeded
	7.2.6 onInstallStarted
	7.2.7 onJavascriptReady
	7.2.8 onRuntimeError

	7.3 Examples
	7.3.1 Embedded Application Starts After the DOM Tree Is Constructed
	7.3.2 Launch a Web Start Application from a Web Page
	7.3.3 Pass Parameters to a Web Application
	7.3.4 Specify Platform Requirements and Pass JVM Options
	7.3.5 Access JavaFX Code from JavaScript
	7.3.6 Disable the HTML Splash Screen
	7.3.7 Add a Custom HTML Splash Screen
	7.3.8 Create a Handler for an Unsupported Platform
	7.3.9 Check for Presence of JavaFX Runtime

	8 JavaFX and JavaScript
	8.1 Accessing a JavaFX Application from a Web Page
	8.2 Accessing the Host Web Page from an Embedded JavaFX Application
	8.3 Advanced topics
	8.4 Threading
	8.5 Security
	8.6 Tab Pane Example

	9 Preloaders
	9.1 Implementing a Custom Preloader
	9.2 Packaging an Application with a Preloader
	9.2.1 Packaging a Preloader Application in NetBeans IDE
	9.2.2 Packaging a Preloader Application in an Ant Task

	9.3 Preloader Code Examples
	9.3.1 Show the Preloader Only if Needed
	9.3.2 Enhance Visual Transitions
	9.3.3 Using JavaScript with a Preloader
	9.3.4 Using a Preloader to Display the Application Initialization Progress
	9.3.5 Cooperation of Preloader and Application: A Login Preloader
	9.3.6 Cooperation of Preloader and Application: Sharing the Stage
	9.3.7 Customizing Error Messaging

	9.4 Performance Tips

	10 JavaFX in Swing Applications
	10.1 Overview
	10.2 Packaging with JavaFX Ant Tasks
	10.2.1 Enabling an HTML Splash Screen

	10.3 Packaging without JavaFX Tools
	10.3.1 Using the Deployment Toolkit

	11 The JavaFX Packager Tool
	javafxpackager

	12 JavaFX Ant Tasks
	12.1 Requirements to Run JavaFX Ant Tasks
	12.2 JavaFX Ant Elements
	12.3 Using JavaFX Ant Tasks
	12.4 Ant Script Examples
	JavaFX Ant Task Reference
	<fx:csstobin>
	<fx:deploy>
	<fx:jar>
	<fx:signjar>

	JavaFX Ant Helper Parameter Reference
	<fx:application>
	<fx:argument>
	<fx:callback>
	<fx:callbacks>
	<fx:fileset>
	<fx:htmlParam>
	<fx:icon>
	<fx:info>
	<fx:jvmarg>
	<fx:jvmuserarg>
	<fx:param>
	<fx:permissions>
	<fx:platform>
	<fx:preferences>
	<fx:property>
	<fx:resources>
	<fx:splash>
	<fx:template>

	13 Troubleshooting
	13.1 Running Applications
	13.2 Development Process Issues
	13.3 Runtime Issues
	13.3.1 Standalone Execution
	13.3.2 Self-Contained Applications
	13.3.3 Web Start
	13.3.4 Applications Embedded in the Browser
	13.3.5 Disabling the Autoproxy Configuration in the Code

