

JavaFX
Drag-and-Drop Feature in JavaFX Applications

Release 2.1

E24176-05

June 2013

JavaFX/Drag-and-Drop Feature in JavaFX Applications, Release 2.1

E24176-05

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Irina Fedortsova

Contributor: Pavel Safrata

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

1 Drag-and-Drop Feature in JavaFX Applications

Introduction... 1-1
Transfer Modes... 1-1
Implementing a Basic Drag-and-Drop Gesture ... 1-2

Starting the Drag-and-Drop Gesture on a Source .. 1-2
Handling a DRAG_OVER Event on a Target ... 1-2
Providing Visual Feedback by a Gesture Target.. 1-3
Handling a DRAG_DROPPED Event on a Target ... 1-4
Handling a DRAG_DONE Event on a Source.. 1-4
Dragging Custom Data .. 1-5

View and Download Application Files.. 1-5

iv

1

Drag-and-Drop Feature in JavaFX Applications 1-1

1Drag-and-Drop Feature in JavaFX
Applications

In this article, you learn how to implement a drag-and-drop feature in JavaFX 2
applications, which objects participate in a drag-and-drop gesture, what types of data
can be transferred, and which events occur during a drag-and-drop gesture.

This article also includes code samples to illustrate the APIs being used and the
explained material.

Introduction
A drag-and-drop operation is a data transfer between two objects: a gesture source
and a gesture target. The gesture source and gesture target can be the following
objects:

■ Nodes

■ Scenes

The gesture source and gesture target can belong to a single JavaFX application or to
two different JavaFX or Java Client applications. Moreover, drag-and-drop can be
implemented between a JavaFX application and a third-party (native) application such
as Windows Explorer or a desktop.

A drag-and-drop gesture happens as follows: The user click a mouse button on a
gesture source, drags the mouse, and releases the mouse button on a gesture target.
While dragging the data, the user gets visual feedback, which denotes locations that
do not accept the data and, when over a target that accepts the data, gives a hint where
to drop the data.

The data is transferred using a dragboard, which has the same interface as a system
clipboard but is only used for the drag-and-drop data transfer.

During the drag-and-drop gesture, various types of data can be transferred such as
text, images, URLs, files, bytes, and strings.

The javafx.scene.input.DragEvent class is the basic class used to implement the
drag-and-drop gesture. For more information on particular methods and other classes
in the javafx.scene.input package, see the API documentation.

Transfer Modes
Transfer modes define the type of transfer that happens between the gesture source
and gesture target. Available transfer modes include COPY, MOVE, and LINK.

Introduction

1-2 JavaFX/Drag-and-Drop Feature in JavaFX Applications

A gesture source reports supported transfer modes. A gesture target accepts one or
more transfer modes. The transfer mode in a given drag-and-drop gesture is chosen by
the system from the modes supported by the source and accepted by the target
according to the keyboard modifiers pressed by the user.

Implementing a Basic Drag-and-Drop Gesture
You can learn how to implement basic drag-and-drop functionality by using the
HelloDragAndDrop sample application. To download the source code, click the link in
the sidebar. The gesture source and gesture target are two text nodes defined as shown
in Example 1–1.

Example 1–1

final Text source = new Text(50, 100, "DRAG ME");
final Text target = new Text(300, 100, "DROP HERE");

Starting the Drag-and-Drop Gesture on a Source
The drag-and-drop gesture can only be started by calling the startDragAndDrop
method inside the handler of the DRAG_DETECTED event on a gesture source. It is here
that transfer modes supported by the gesture source are defined, and the data to be
transferred is placed onto the dragboard.

See the implementation of the onDragDetected handler in Example 1–2.

Example 1–2

source.setOnDragDetected(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent event) {
 /* drag was detected, start a drag-and-drop gesture*/
 /* allow any transfer mode */
 Dragboard db = source.startDragAndDrop(TransferMode.ANY);

 /* Put a string on a dragboard */
 ClipboardContent content = new ClipboardContent();
 content.putString(source.getText());
 db.setContent(content);

 event.consume();
 }
});

The startDragAndDrop method takes a set of transfer modes supported by the gesture
source. You can pass any combination of available transfer modes. By passing
TransferMode.COPY, you can indicate that the gesture source only supports copying,
but not moving or referencing.

Handling a DRAG_OVER Event on a Target
After the drag-and-drop gesture is started, any node or scene that the mouse is
dragged over is a potential target to drop the data. You specify which object accepts
the data by implementing the DRAG_OVER event handler.

Note the importance of the DRAG_OVER event handler. For a successful drag-and-drop
operation, you must implement the DRAG_OVER event handler, which calls the
acceptTransferModes(TransferMode...) method on the event, passing the transfer
modes that the target intends to accept. If none of the passed transfer modes are

Introduction

Drag-and-Drop Feature in JavaFX Applications 1-3

supported by the gesture source, the potential target does not fit the given
drag-and-drop gesture.

Note that the type of data available on the dragboard must be taken into account when
deciding whether to accept the event. To access the data stored on the dragboard, use
the event.getDragboard() method.

Example 1–3 shows the implementation of the DRAG_OVER event handler.

Example 1–3

target.setOnDragOver(new EventHandler<DragEvent>() {
 public void handle(DragEvent event) {
 /* data is dragged over the target */
 /* accept it only if it is not dragged from the same node
 * and if it has a string data */
 if (event.getGestureSource() != target &&
 event.getDragboard().hasString()) {
 /* allow for both copying and moving, whatever user chooses */
 event.acceptTransferModes(TransferMode.COPY_OR_MOVE);
 }

 event.consume();
 }
});

Providing Visual Feedback by a Gesture Target
During a drag-and-drop gesture, when the mouse pointer hovers over a target that fits
the given drag-and-drop gesture, the target typically changes its appearance to
provide a hint to the user where the data can be dropped.

When the drag gesture enters the boundaries of a potential gesture target, the target
receives a DRAG_ENTERED event. When the drag gesture leaves the potential target’s
boundaries, the target receives a DRAG_EXITED event. You can use the DRAG_ENTERED
and DRAG_EXITED event handlers to change the target’s appearance in order to provide
the visual feedback to the user.

Example 1–4 shows how the visual feedback is implemented by changing the color of
the text.

Example 1–4

target.setOnDragEntered(new EventHandler<DragEvent>() {
 public void handle(DragEvent event) {
 /* the drag-and-drop gesture entered the target */
 /* show to the user that it is an actual gesture target */
 if (event.getGestureSource() != target &&
 event.getDragboard().hasString()) {
 target.setFill(Color.GREEN);
 }

 event.consume();
 }
});

Note the importance of verifying the contents of the dragboard. The target only
changes its appearance if the dragboard contains data in the proper format, which is a
string in this case.

Introduction

1-4 JavaFX/Drag-and-Drop Feature in JavaFX Applications

Example 1–5 shows the implementation of the DRAG_EXITED event handler, which
restores the original appearance of the text.

Example 1–5

target.setOnDragExited(new EventHandler<DragEvent>() {
 public void handle(DragEvent event) {
 /* mouse moved away, remove the graphical cues */
 target.setFill(Color.BLACK);

 event.consume();
 }
});

Handling a DRAG_DROPPED Event on a Target
When the mouse button is released on the gesture target, which accepted previous
DRAG_OVER events with a transfer mode supported by the gesture source, then the
DRAG_DROPPED event is sent to the gesture target. In the DRAG_DROPPED event handler,
you must complete the drag-and-drop gesture by calling the
setDropCompleted(Boolean) method on the event. Otherwise, the gesture is
considered unsuccessful.

See the implementation of the DRAG_DROPPED event handler in Example 1–6.

Example 1–6

target.setOnDragDropped(new EventHandler<DragEvent>() {
 public void handle(DragEvent event) {
 /* data dropped */
 /* if there is a string data on dragboard, read it and use it */
 Dragboard db = event.getDragboard();
 boolean success = false;
 if (db.hasString()) {
 target.setText(db.getString());
 success = true;
 }
 /* let the source know whether the string was successfully
 * transferred and used */
 event.setDropCompleted(success);

 event.consume();
 }
});

Handling a DRAG_DONE Event on a Source
After the drag-and-drop gesture is finished, the DRAG_DONE event is sent to the gesture
source to inform the source about how the gesture finished. In the DRAG_DONE event
handler, get the transfer mode by calling the getTransferMode method on the event. If
the transfer mode is NULL then that means the data transfer did not happen. If the
mode is MOVE, then clear the data on the gesture source as shown in Example 1–7.

Example 1–7

source.setOnDragDone(new EventHandler<DragEvent>() {
 public void handle(DragEvent event) {
 /* the drag and drop gesture ended */

View and Download Application Files

Drag-and-Drop Feature in JavaFX Applications 1-5

 /* if the data was successfully moved, clear it */
 if (event.getTransferMode() == TransferMode.MOVE) {
 source.setText("");
 }
 event.consume();
 }
});

Dragging Custom Data
Similarly, you can implement the drag-and-drop gesture on custom data. Define the
custom data type as shown in Example 1–8:

Example 1–8

/** The custom format */
private static final DataFormat customFormat =
 new DataFormat("helloworld.custom");

When putting a custom data onto a dragboard, specify the data type. Note that the
data must be serializable.

When reading the data from the dragboard, a proper casting is needed.

View and Download Application Files

View Source Code
http://docs.oracle.com/javafx/2/drag_drop/HelloDragAndDrop.java.html

Download Source Code
http://docs.oracle.com/javafx/2/drag_drop/hellodraganddrop.zip

	Contents
	1 Drag-and-Drop Feature in JavaFX Applications
	Introduction
	Transfer Modes
	Implementing a Basic Drag-and-Drop Gesture
	Starting the Drag-and-Drop Gesture on a Source
	Handling a DRAG_OVER Event on a Target
	Providing Visual Feedback by a Gesture Target
	Handling a DRAG_DROPPED Event on a Target
	Handling a DRAG_DONE Event on a Source
	Dragging Custom Data

	View and Download Application Files

