

JavaFX
Concurrency in JavaFX

Release 2.1

E26565-03

June 2012

JavaFX/Concurrency in JavaFX, Release 2.1

E26565-03

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Irina Fedortsova

Contributor: Richard Bair

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Why Use the javafx.concurrent Package? .. 1-1
Overview of the javafx.concurrent Package.. 1-1

The Worker Interface ... 1-2
The Task Class .. 1-2

Cancelling the Task... 1-3
Showing the Progress of a Background Task ... 1-4

The Service Class.. 1-4
The WorkerStateEvent Class and State Transitions.. 1-6
Conclusion... 1-7

iv

1

Concurrency in JavaFX 1-1

1Concurrency in JavaFX

This article describes the capabilities provided by the javafx.concurrent package to
create multithreaded applications. You learn how to keep your JavaFX application
user interface (UI) responsive by delegating time-consuming task execution to
background threads.

Why Use the javafx.concurrent Package?
The JavaFX scene graph, which represents the graphical user interface of a JavaFX
application, is not thread-safe and can only be accessed and modified from the UI
thread also known as the JavaFX Application thread. Implementing long-running
tasks on the JavaFX Application thread inevitably makes an application UI
unresponsive. A best practice is to do these tasks on one or more background threads
and let the JavaFX Application thread process user events.

If you implement a background worker by creating a Runnable object and a new
thread, at some point, you must communicate with the JavaFX Application thread,
either with a result or with the progress of the background task, which is error prone.
Instead, use the JavaFX APIs provided by the javafx.concurrent package, which
takes care of multithreaded code that interacts with the UI and ensures that this
interaction happens on the correct thread.

Overview of the javafx.concurrent Package
The Java platform provides a complete set of concurrency libraries available through
the java.util.concurrent package. The javafx.concurrent package leverages the
existing API by considering the JavaFX Application thread and other constraints faced
by GUI developers.

The javafx.concurrent package consists of the Worker interface and two basic classes,
Task and Service, both of which implement the Worker interface. The Worker interface
provides APIs that are useful for a background worker to communicate with the UI.
The Task class is a fully observable implementation of the
java.util.concurrent.FutureTask class. The Task class enables developers to
implement asynchronous tasks in JavaFX applications. The Service class executes
tasks.

The WorkerStateEvent class specifies an event that occurs whenever the state of a
Worker implementation changes. Both the Task and Service classes implement the
EventTarget interface and thus support listening to the state events.

Overview of the javafx.concurrent Package

1-2 Concurrency in JavaFX

The Worker Interface
The Worker interface defines an object that performs some work on one or more
background threads. The state of the Worker object is observable and usable from the
JavaFX Application thread.

The lifecycle of the Worker object is defined as follows. When created, the Worker
object is in the READY state. Upon being scheduled for work, the Worker object
transitions to the SCHEDULED state. After that, when the Worker object is performing the
work, its state becomes RUNNING. Note that even when the Worker object is
immediately started without being scheduled, it first transitions to the SCHEDULED state
and then to the RUNNING state. The state of a Worker object that completes successfully
is SUCCEEDED, and the value property is set to the result of this Worker object.
Otherwise, if any exceptions are thrown during the execution of the Worker object, its
state becomes FAILED and the exception property is set to the type of the exception
that occurred. At any time before the end of the Worker object the developer can
interrupt it by invoking the cancel method, which puts the Worker object into the
CANCELLED state.

The progress of the work being done by the Worker object can be obtained through
three different properties such as totalWork, workDone, and progress.

For more information on the range of the parameter values, see the API
documentation.

The Task Class
Tasks are used to implement the logic of work that needs to be done on a background
thread. First, you need to extend the Task class. Your implementation of the Task class
must override the call method to do the background work and return the result.

The call method is invoked on the background thread, therefore this method can only
manipulate states that are safe to read and write from a background thread. For
example, manipulating an active scene graph from the call method throws runtime
exceptions. On the other hand, the Task class is designed to be used with JavaFX GUI
applications, and it ensures that any changes to public properties, change notifications
for errors or cancellation, event handlers, and states occur on the JavaFX Application
thread. Inside the call method, you can use the updateProgress, updateMessage,
updateTitle methods, which update the values of the corresponding properties on the
JavaFX Application thread. However, if the task was canceled, a return value from the
call method is ignored.

Note that the Task class fits into the Java concurrency libraries because it inherits from
the java.utils.concurrent.FutureTask class, which implements the Runnable
interface. For this reason, a Task object can be used within the Java concurrency
Executor API and also can be passed to a thread as a parameter. You can call the Task
object directly by using the FutureTask.run() method, which enables calling this task
from another background thread. Having a good understanding of the Java
concurrency API will help you understand concurrency in JavaFX.

A task can be started in one of the following ways:

■ By starting a thread with the given task as a parameter:

Thread th = new Thread(task);

th.setDaemon(true);

th.start();

■ By using the ExecutorService API:

Overview of the javafx.concurrent Package

Concurrency in JavaFX 1-3

ExecutorService.submit(task);

The Task class defines a one-time object that cannot be reused. If you need a reusable
Worker object, use the Service class.

Cancelling the Task
There is no reliable way in Java to stop a thread in process. However, the task must
stop processing whenever cancel is called on the task. The task is supposed to check
periodically during its work whether it was cancelled by using the isCancelled
method within the body of the call method. Example 1–1 shows a correct
implementation of the Task class that checks for cancellation.

Example 1–1

import javafx.concurrent.Task;

Task<Integer> task = new Task<Integer>() {
 @Override protected Integer call() throws Exception {
 int iterations;
 for (iterations = 0; iterations < 100000; iterations++) {
 if (isCancelled()) {
 break;
 }
 System.out.println("Iteration " + iterations);
 }
 return iterations;
 }
};

If the task implementation has blocking calls such as Thread.sleep and the task is
cancelled while in a blocking call, an InterruptedException is thrown. For these
tasks, an interrupted thread may be the signal for a cancelled task. Therefore, tasks
that have blocking calls must double-check the isCancelled method to ensure that the
InterruptedException was thrown due to the cancellation of the task as shown in
Example 1–2.

Example 1–2

import javafx.concurrent.Task;

Task<Integer> task = new Task<Integer>() {
 @Override protected Integer call() throws Exception {
 int iterations;
 for (iterations = 0; iterations < 1000; iterations++) {
 if (isCancelled()) {
 updateMessage("Cancelled");
 break;
 }
 updateMessage("Iteration " + iterations);
 updateProgress(iterations, 1000);

 //Block the thread for a short time, but be sure
 //to check the InterruptedException for cancellation
 try {
 Thread.sleep(100);
 } catch (InterruptedException interrupted) {
 if (isCancelled()) {
 updateMessage("Cancelled");
 break;

Overview of the javafx.concurrent Package

1-4 Concurrency in JavaFX

 }
 }
 }
 return iterations;
 }
};

Showing the Progress of a Background Task
A typical use case in multithreaded applications is showing the progress of a
background task. Suppose you have a background task that counts from one to one
million and a progress bar, and you must update the progress on this progress bar as
the counter runs in the background. Example 1–3 shows how to update a progress bar.

Example 1–3

import javafx.concurrent.Task;

Task task = new Task<Void>() {
 @Override public Void call() {
 static final int max = 1000000;
 for (int i=1; i<=max; i++) {
 if (isCancelled()) {
 break;
 }
 updateProgress(i, max);
 }
 return null;
 }
};
ProgressBar bar = new ProgressBar();
bar.progressProperty().bind(task.progressProperty());
new Thread(task).start();

First, you create the task by overriding the call method where you implement the
logic of the work to be done and invoke the updateProgress method, which updates
the progress, totalWork, and workDone properties of the task. This is important
because you can now use the progressProperty method to retrieve the progress of the
task and bind the progress of the bar to the progress of the task.

The Service Class
The Service class is designed to execute a Task object on one or several background
threads. The Service class methods and states must only be accessed on the JavaFX
Application thread. The purpose of this class is to help the developer to implement the
correct interaction between the background threads and the JavaFX Application
thread.

You have the following control over the Service object: you can start, cancel and restart
it as you need. To start the Service object, use the Service.start() method.

Using the Service class, you can observe the state of the background work and
optionally cancel it. Later, you can reset the service and restart it. Thus, the service can
be defined declaratively and restarted on demand.

When implementing the subclasses of the Service class, be sure to expose the input
parameters to the Task object as properties of the subclass.

The service can be executed in one of the following ways:

Overview of the javafx.concurrent Package

Concurrency in JavaFX 1-5

■ By an Executor object, if it is specified for the given service

■ By a daemon thread, if no executor is specified

■ By a custom executor such as a ThreadPoolExecutor

Example 1–4 shows an implementation of the Service class which reads the first line
from any URL and returns it as a string.

Example 1–4

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;
import javafx.application.Application;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.concurrent.Service;
import javafx.concurrent.Task;
import javafx.concurrent.WorkerStateEvent;
import javafx.event.EventHandler;
import javafx.stage.Stage;

public class FirstLineServiceApp extends Application {

 @Override
 public void start(Stage stage) throws Exception {
 FirstLineService service = new FirstLineService();
 service.setUrl("http://google.com");
 service.setOnSucceeded(new EventHandler<WorkerStateEvent>() {

 @Override
 public void handle(WorkerStateEvent t) {
 System.out.println("done:" + t.getSource().getValue());
 }
 });
 service.start();
 }

 public static void main(String[] args) {
 launch();
 }

 private static class FirstLineService extends Service<String> {
 private StringProperty url = new SimpleStringProperty();

 public final void setUrl(String value) {
 url.set(value);
 }

 public final String getUrl() {
 return url.get();
 }

 public final StringProperty urlProperty() {
 return url;
 }

 protected Task<String> createTask() {

Overview of the javafx.concurrent Package

1-6 Concurrency in JavaFX

 final String _url = getUrl();
 return new Task<String>() {
 protected String call()
 throws IOException, MalformedURLException {
 String result = null;
 BufferedReader in = null;
 try {
 URL u = new URL(_url);
 in = new BufferedReader(
 new InputStreamReader(u.openStream()));
 result = in.readLine();
 } finally {
 if (in != null) {
 in.close();
 }
 }
 return result;
 }
 };
 }
 }
}

The WorkerStateEvent Class and State Transitions
Whenever the state of the Worker implementation changes, an appropriate event,
defined by the WorkerStateEvent class, occurs. For example, when the Task object
transitions to the SUCCEEDED state, the WORKER_STATE_SUCCEEDED event occurs, the
onSucceeded event handler is called, after which the protected convenience method
succeeded is invoked on the JavaFX Application thread.

There are several protected convenience methods such as cancelled, failed,
running, scheduled, and succeeded, which are invoked when the Worker
implementation transitions to the corresponding state. These methods can be
overridden by subclasses of the Task and Service classes when the state is changed to
implement the logic of your application. Example 1–5 shows a Task implementation
that updates the status message on the task’s success, cancellation, and failure.

Example 1–5

import javafx.concurrent.Task;

Task<Integer> task = new Task<Integer>() {
 @Override protected Integer call() throws Exception {
 int iterations = 0;
 for (iterations = 0; iterations < 100000; iterations++) {
 if (isCancelled()) {
 break;
 }
 System.out.println("Iteration " + iterations);
 }
 return iterations;
 }

 @Override protected void succeeded() {
 super.succeeded();
 updateMessage("Done!");
 }

Overview of the javafx.concurrent Package

Concurrency in JavaFX 1-7

 @Override protected void cancelled() {
 super.cancelled();
 updateMessage("Cancelled!");
 }

@Override protected void failed() {
 super.failed();
 updateMessage("Failed!");
 }
};

Conclusion
In this article, you learned the basic capabilities provided by the javafx.concurrent
package and became familiar with several examples of the Task and Service classes
implementation. For more examples of how to create the Task implementation
correctly, see the API documentation for the Task class.

	Contents
	1 Concurrency in JavaFX
	Why Use the javafx.concurrent Package?
	Overview of the javafx.concurrent Package
	The Worker Interface
	The Task Class
	Cancelling the Task
	Showing the Progress of a Background Task

	The Service Class
	The WorkerStateEvent Class and State Transitions
	Conclusion

